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Abstract

In recent years, ranking approaches to Natural Language Generation have become in¬

creasingly popular. They abandon the idea of generation as a deterministic decision¬

making process in favour of approaches that combine overgeneration with ranking at

some stage in processing.
In this thesis, we investigate the use of instance-based ranking methods for surface

realization in Natural Language Generation. Our approach to instance-based Natural

Language Generation employs two basic components: a rule system that generates a

number of realization candidates from a meaning representation and an instance-based
ranker that scores the candidates according to their similarity to examples taken from a

training corpus. The instance-based ranker uses information retrieval methods to rank

output candidates.
Our approach is corpus-based in that it uses a treebank (a subset of the Penn Tree-

bank II containing management succession texts) in combination with manual seman¬

tic markup to automatically produce a generation grammar. Furthermore, the corpus

is also used by the instance-based ranker. The semantic annotation of a test portion of
the compiled subcorpus serves as input to the generator.

In this thesis, we develop an efficient search technique for identifying the optimal
candidate based on the A*-algorithm, detail the annotation scheme and grammar con¬

struction algorithm and show how a Rete-based production system can be used for
efficient candidate generation. Furthermore, we examine the output of the generator

and discuss issues like input coverage (completeness), fluency and faithfulness that are

relevant to surface generation in general.
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Chapter 1

Introduction

Ambiguity is one of the most salient characteristics of natural language. This has led
the field of computational linguistics to develop techniques for exploring the poten¬

tially large space of possible analyses for natural language phenomena and for disam¬
biguating between alternative analyses. The ranking of alternatives has been common

for a long time in research fields such as speech recognition (SR; e.g. Huang et al.,
2001), machine translation (MT; e.g. Berger et al., 1994) and information retrieval (IR;
e.g. Baeza-Yates and Ribeiro-Neto, 1999). Since the beginning of the 1990s, corpus-

based methods have been extensively used in parsing but much less so in natural lan¬
guage generation (NLG). However, the seminal work of (Knight and Hatzivassiloglou,
1995; Langkilde and Knight, 1998a) has sparked interest in ranking approaches to

NLG and has been followed by work by Ratnaparkhi (2000), Bangalore and Ram-
bow (2000a) and others. This thesis should be seen as being part of a larger research

program that explores ranking approaches in natural language generation.
The task of generating natural language can broadly be separated into determining

the content ("what to say") and determining its realization ("how to say it"). In this
thesis, we are concerned with the task of realizing a given meaning input. We view
realization in natural language generation as a one-to-many mapping from meaning
representation to surface strings, combined with a ranking scheme. The task is to make
a choice between alternative ways of realizing some meaning input. This is in contrast
to the more traditional view of 'generation as explicit choice', i.e. as a deterministic,
decision-making process (see Appelt, 1985, for example). The new approach can be

1



2 Chapter 1. Introduction

regarded as replacing some of the explicit choices of more traditional generators by
decisions based on machine learning.

Assuming that we are employing explicit grammar rules - in contrast to some ap¬

proaches to statistical machine translation, for example - realization in NLG entails
two tasks that do not necessarily need to be separated in practice: First, we need to

explore the space of possible candidates that realize the meaning input by employing
the available grammatical resources. Second, a method for choosing between alter¬
native output candidates needs to be defined. This is essentially a ranking task. In

many cases, we will be most interested in the single best candidate but a generation

output containing several ranked candidates might be useful as well, for example for

re-ranking in a wider textual or extra-linguistic context.

A basic assumption of the approach to natural language generation explored in this
thesis therefore is that of a hybrid system containing a grammar that maps meaning

inputs to strings and a ranker that chooses between alternative output candidates. In
order to make such an overgeneration-and-ranking approach to NLG feasible, we pro¬

pose to interleave grammar-based construction of candidates with ranking so that the
search space can be restricted early on during processing. However, this does not com¬

promise our view that natural language processing (NLP) can in principle be separated
into two parts: opening up the space of possible solutions and disambiguating between
solutions within this space.

The particular ranking method employed in this thesis is based on instance-based

learning (IBL; see Aha et al., 1991, for example). IBL systems store previously en¬

countered instances in memory and use them directly to process new input, rather than
abstracting them into some statistical distribution. Instance-based learning is known to

be able to learn exceptions in data well and adapt to subregularities. Since these are

highly desirable properties for natural language processing in general, instance-based
methods have been used in NLP under various names (example-based, memory-based,
case-based; see (Daelemans, 1999) for an overview). Furthermore, they have been
used in many real-world applications as well (e.g. Aha, 1998). In this thesis, we ex¬

plore the application of instance-based learning to candidate ranking in natural lan¬
guage generation. In particular, we draw an analogy between instance-based learning
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and information retrieval by noting that IR methods are essentially performing a form
of nearest-neighbour search when computing the similarity between text documents.

The field of natural language generation is haunted by two notorious problems:
first, the question where the input to the generator should actually come from and how
it can be constructed (McDonald, 1993); second, the problem of acquiring the knowl¬

edge to perform the task. The latter is often referred to as the knowledge acquisition
bottleneck and is a problem for NLP in general. Any exploration in the field of natural

language generation has to address these issues. The traditional answer is to hand-build
a sophisticated grammar and assume as input to the generator an equally sophisticated
structure to match the grammar formalism.

In this thesis, we employ an input format similar to the templates often used in
information extraction (IE). These often make use of semantic roles (e.g. Collins and
Miller, 1998). The task of an IE system is to associate substrings of the analysed text
with these roles. In some respect, the task of a realizer is the reversal of an infor¬
mation extraction process. The advantage of such a relatively simple input format is
its non-commitment to any of the highly specialized grammar formalisms that have
been developed in the field of computational linguistics. This is intended to ease the

problem of providing the realizer with the input it requires. On the other hand, such a

simplified generation input is unlikely to provide the realizer with enough knowledge
to make fine-grained linguistic choices. It is the main idea of an overgeneration ap¬

proach to NLG to fill these "knowledge gaps" (Knight and Hatzivassiloglou, 1995) by

corpus-based ranking methods.

In order to alleviate the knowledge acquisition problem on the grammar side, we

use a corpus-based approach also for constructing the grammar. We aim at taking ad¬
vantage of the advances in statistical parsing by using the (in most cases syntactic)
output of statistical parsers to form the basis of a generation grammar. To this end, we

need to augment the syntactic information produced by the parser with semantic infor¬
mation that corresponds to the input representations of the generator. This is the place
in our approach where manual effort is required. However, once a semantic markup of
a generation corpus has been obtained, we can automatically construct grammar rules
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that map meaning input to surface strings. This effectively shifts the focus of manual
effort from grammar development to semantic annotation. Since in our approach the
instance-based ranker requires a set of semantically annotated examples in any case,

using the annotation for the grammar component as well reduces the overall develop¬
ment effort.

1.1 Problem statement

In this thesis, we address the problem of how to make an instance-based approach to

surface realization in natural language generation work and investigate the properties
of such a system. We explore how to take advantage of corpus-based methods to
address the knowledge acquisition problem and limit the requirements on the generator

input.

1.2 The main ideas

In this section, we present in greater detail the ideas underlying this thesis. Our goal is
to provide the reader with an understanding of how the different parts of this thesis -

and the implemented surface generation system - fit together and also what motivates
them.

1.2.1 Corpus-based methodology for NLG

A corpus-based approach to natural language generation quite obviously involves the
collection of a human-authored corpus. In the context of natural language generation,
we will at least require the corpus to contain surface strings and meaning represen¬

tations. It should be noted that such a set-up implies that content determination has

already taken place. The corpus can only tell us about the information the human
authors chose to express, not the information they chose to ignore or the real-world
context of their decisions. On the other hand, for the purpose of this thesis, a corpus

of meaning-string pairs is what is required since we are interested in realizing a given
content.
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As in other corpus-based approaches to NLP, the corpus needs to be separated into

training and test sets. The training set can be used to obtain knowledge about the task
at hand. To test our system, we need to take the meaning representations of the test set

and present them to the generator (in the context of this work, 'generator' refers to a

surface realization system). The separation of test set from training set is valuable as it

clearly identifies the resources available to the generator and provides a way of testing
the system on real-world data.

Corpus-based approaches aim at acquiring knowledge automatically by means of
machine learning techniques, as opposed to having knowledge provided manually (in
the form of knowledge bases, grammars etc.). However, as is widely known, creating
the training material for machine learning approaches can require considerable manual
effort. In this thesis, we aim to take advantage of the output of statistical parsers which
have been developed independently of any NLG application. In other words, the idea is
to reuse existing resources. In practice, the corpus employed in this work is a subcorpus
of the Penn Treebank II (Marcus et al., 1993). This implies that a syntactic analysis
is already available so that we do not need to employ a statistical parser. The Penn
Treebank is frequently used for training parsers (e.g. Collins, 1999) so that it should be
possible to obtain syntactic structures for newly compiled generation corpora as well.
Taking advantage of the Penn Treebank in the way proposed in this work is a novel
form of reuse because the treebank has not been constructed with natural language

generation in mind.
In addition to syntactic structures, a generation corpus also needs to contain se¬

mantic information of the kind that is expected to be given to the generator. In the
work reported here, we provided this annotation manually. On the other hand, named

entity recognition and other techniques might fruitfully be employed to aid semantic
annotation with the goal of developing natural language generation systems.

1.2.1.1 Domain specific corpus

The corpus chosen for this work is domain-specific. We would characterize domain
specificity by a certain semantic overlap between the texts in the corpus. The alter¬
native is a corpus of entirely unrelated texts which in turn would make it difficult to
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apply knowledge obtained from a training portion of the corpus to a test portion. In
fact, other corpus-based NLP tasks that involve a level of semantic representation are

also domain-specific, for example many information extraction tasks.
In this work, we aim at generating sentences in the management succession do¬

main, examples of which can be found in the Who's News section of the Wall Street
Journal. This domain was used in the information extraction task of the Sixth Message

Understanding Conference (MUC-6, 1995). Consider the following example:

(1) Carl E. Pfeiffer, chief executive officer, was named to the additional post of chairman
of this specialty-metals manufacturing concern. Robert C. Snyder, a director and chief

operating officer of the company, succeeds Mr. Pfeiffer as president. (wsj_0368)

In the Wall Street Journal, these texts are usually preceded by a headline contain¬

ing name and location of the company in question. We identified 144 of such texts in
the Penn Treebank II (as in the example above, the headline has often not been pre¬

served). A collection of 144 texts is obviously not large. However, it is important to

investigate how corpus-based NLG can deal with the problem of limited training data.
Furthermore, the generation corpus - for which we assume a standard syntactic analy¬
sis can be obtained automatically - still needs to be semantically annotated. Since this
involves manual effort, it is advantageous to be able to work with corpora of limited
size.

1.2.1.2 Flat input semantics

In a corpus-based approach to surface realization, the semantic annotation of the gen¬

eration corpus corresponds to the assumed input to the generator. The choice of an¬

notation therefore is influenced by considerations of the generation task on the one

hand, and the ease of annotation on the other. In the context of an overgeneration-and-

ranking approach, we are interested in an input format that facilitates the generation
of paraphrases. As has been pointed out by Nicolov et al. (1996), 'flat' (or 'non-
hierarchical') input structures can increase paraphrasing power. In contrast, input in
the form of more traditional predicate-argument structures tends to bias realization in
favour of specific lexical entries. For example, the input may only match verbal en¬

tries. Flat input structures have also been used in approaches to chart generation (Kay,
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1996; Shemtov, 1998a) and are in accordance with some developments in theoretical

computational linguistics (e.g. Copestake et al., 1999). The annotation scheme devel¬
oped here adheres to the idea of a flat generation input. For example, the first sentence

of (1) is annotated as follows:

(2) [ INPERSON-FULLNAME Carl E. Pfeiffer ], [ INPERSON_OTHERPOST_NODET chief executive

officer], was named to the [POST_DESCR_ADJ additional] post of [POST_NODET chair¬
man] of this [COMP_DESCR* specialty-metals manufacturing concern].

In this thesis, we limit ourselves to the generation of the first sentences of the
articles found in the Who's News section of the Wall Street Journal. (A brief discussion
of issues concerning discourse generation within our approach is provided in section
8.4.1.) The input to the generator is an (unordered) set of attribute-value pairs.1 For

example, from the annotated sentence (2) we extract generation input (3) and expect

the generation system to produce a template like (4). Into such a template, the values
of (3) can be inserted:

(3)

INPERSON-OTHERPOST-NODET chief executive officer

POST_DESCR_ADJ additional

COMP-DESCR* specialty-metals manufacturing concern
INPERSON-FULLNAME Carl E. Pfeiffer

POST-NODET chairman

(4) INPERSON-FULLNAME , INPERSON_OTHERPOST_NODET , was named to the POST_DESCR_ADJ

post of POST_NODET of this COMP-DESCR* .

Since the tags also occur in the generated surface string, we regard surface gener¬

ation as the problem of ordering tags and filling the gaps between them with natural
language words. The task is to find most fluent completion of the underspecified input
where 'fluency', or 'naturalness', is interpreted as being likely to belong to a corpus of
human-authored texts.

'For content determination, a task outside the scope of this work, this implies not only the selection
of attributes but also the generation of the appropriate slot fillers.
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1.2.1.3 Automatic grammar construction

The syntactic analyses provided by the Penn Treebank can be combined with the an¬

notation to yield a grammar that maps meaning inputs to surface strings. To this end,
we first merge markup and treebank and then recursively construct context-free rules
that form the backbone of the generation grammar. As we will see, automatic grammar

construction produces grammars that contain a potentially large number of rules.
In chapters 4 and 5, we describe the principles of the semantic annotation of the

domain corpus and develop the grammar construction algorithm.

1.2.2 Overgeneration-and-ranking architecture

In this work, we explore the use of an overgeneration-and-ranking architecture for
the realization of meaning inputs like (3) above. Such an architecture is hybrid in
nature as it combines a rule-based component with a ranking component that makes
use of machine learning techniques. Ranking approaches to NLG are a relatively recent

innovation, pioneered by the seminal work of (Knight and Hatzivassiloglou, 1995;

Langkilde and Knight, 1998a) who present a sentence realizer that uses ngram models
trained on large corpora to rank candidate sentences.

In the area of 'traditional' NLG (which we would characterize as purely rule-based,
i.e. not involving any ranking of alternatives), architectural issues have received sig¬
nificant attention. As a result of an analysis of several applied NLG systems, Reiter
(1994) proposed a general 'pipeline' architecture consisting of content determination,
sentence planning and linguistic realization. In many applied systems, the sentence

planning stage mediates between content determination and linguistic realization. The
sentence planning stage is described as mapping conceptual structures onto linguis¬
tic ones, including lexical choice, aggregation of propositions into clausal units and

referring expression generation. The RAGs project (see Cahill et al., 1999, 2000, for
example) provided a set of declarative representations of the various levels of linguistic
representation in generation.

Realization from a set of attribute-value pairs such as (3) involves linguistic re¬

alization. It also encompasses lexical choice and may include aggregation and other
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tasks as well. In chapter 7, we examine the choices made by the generator and discuss
the issue of input that is not necessarily sentence-sized.

1.2.2.1 Motivation for overgeneration approach

Discussions about generation architectures are often motivated by interdependencies
between choices at various levels of linguistic description (e.g. Ward, 1994). Decisions
at one point in the generation process can have consequences for the availability of
choices at other points. While this problem may not be so apparent when dealing
with small-scale grammars and applications, it becomes more urgent when attempts
are made to scale systems up.

An example of interdependencies is the 'French pronoun case'. Citing (Danlos and
Namer, 1988), Reiter (1994) discusses the problem of references to specific objects be¬
coming ambiguous when the pronouns le and la are abbreviated to /' in certain phono¬

logical contexts. The interaction between decisions on the levels of referring expres¬

sion generation and phonology seems to require a corresponding interaction between
the modules that are responsible for these tasks. Cases like this one have motivated

generation architectures that enable feedback between modules or are 'integrated' in
such a way that an interaction between different parts of the system is facilitated. For

example, Mellish et al. (2000) propose an architecture in which modules communicate
via a central cumulative blackboard, allowing the flow of communication to be flexible.

An overgeneration-and-ranking approach changes the perspective on problems that
seem to require complex communication between modules. An overgeneration-based
system would propose a large number of possible output candidates. In the French
pronoun example, some would contain abbreviated determiners and some would not.
It is then left to the ranker to decide which candidate it prefers. There is no need for a

phonological component to ask the referring expression generator whether a different
choice of words is possible, for example. This can result in a simplified grammar com¬

ponent because there is less need to handle complex interactions between constraints.
In the approach presented in this thesis, a single (and simple) grammar is used to

perform tasks that in purely rule-based approaches are often carried out by different
modules. On the other hand, an overgeneration-and-ranking approach requires the
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definition of a ranking model that is able to make decisions left open by the grammar

component. Yet, the approach promises several advantages that will be investigated in
this thesis:

• Robustness. The overall system will generally be more robust in the sense that
it can produce a result even if no perfect candidate can be constructed.

• Trade-off between goals. The generator can deal with conflicting goals by

choosing candidates that are not optimal with respect to any individual goal but

represent the best compromise.

• Separation of candidate construction and ranking. A hybrid overgeneration-

and-ranking architecture does not require the ranker to work with the kinds of

representations used by the grammar. In other words, the ranker can work with

representations that cross the boundaries of the grammatical units used to build

up the candidates. This contrasts with approaches that augment existing gram¬

mar formalisms with probability scores, like Probabilistic Context-Free Gram¬
mars (PCFGs) or Stochastic Lexicalized Tree Adjoining Grammars (Schabes,
1992; Resnik, 1992), for example.

Furthermore, the separation of the generation system into two components does
not hold the ranker responsible for proposing structure. It can concentrate on

choosing between candidates that are made available by the rule-based compo¬

nent. As a result, an overgeneration-and-ranking architecture can consist of two

relatively simple components that contribute different kinds of knowledge.

The most pure instantiation of an overgeneration-and-ranking architecture is one

in which the ranker evaluates entire candidates. The alternative, to mix ranking and
candidate construction such that partial solutions are ranked (and, crucially, pruned)
runs the danger of missing globally best solutions because of local pruning decisions.
It therefore seems that we need a new variant of a pipeline architecture (a 'fat' pipeline)
in which candidate construction has finished before ranking starts.

In this work, however, we develop an alternative approach. We propose an inter¬
leaved architecture that eases the burden of candidate construction while still main¬

taining the ability to find globally best candidates. This architecture allows grammar
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interpreter and ranker to mutually constrain each other. Such an interleaved generation
architecture is orthogonal to the dimensions of linguistic description (morphology, syn¬

tax etc.) and to the tasks of standard generation modules (sentence realization, content

planning etc.).

1.2.3 Instance-based ranking

There are a large number of machine learning techniques that could potentially be ap¬

plied to candidate ranking in natural language generation. Taking advantage of a train¬

ing corpus means employing a supervised learning method. Instance-based learning
is a lazy, supervised learning method that simply stores training set examples ('in¬
stances') until a new input is processed. At run-time, new inputs are compared to
each instance in the training set (the 'instance base'). In other words, the instance-
based learner computes the nearest-neighbours of the new inputs (Cover and Hart,

1967). Instance-based learning has become known under a variety of names, such as

'case-based reasoning', 'analogical reasoning' and 'exemplar models' in the fields of
Artificial Intelligence and Cognitive Science. It has a number of properties that can

be considered the strengths of this learning method (see Wilson, 1997; Aha, 1998, for

example):

• Learning is fast. In general, storing instances in the instance base (or converting
them into a suitable representation) is linear to the size of the training set.

• "It is intuitive and easy to understand, which facilitates implementation and mod¬
ification." (Wilson, 1997)

• It can explain its decisions by pointing to the nearest-neighbour(s) that motivated
them.

• It can learn complex 'target functions' by keeping a collection of relatively sim¬

ple local functions. It therefore tends to learn exceptions in data well.

The last point merits further explanation. In contrast to IBL, most other learning
methods are eager because they generalize beyond the training data. IBL differs from
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statistical methods in that the training set is not abstracted into a single representation
for all instances (a statistical distribution). The ability of lazy learners to learn excep¬

tions is due to the fact that individual training items are not outweighed by a majority
vote based on other examples of the training set.

Concerning the task addressed in this thesis, there are a number of expected benefits
from using an instance-based approach to candidate ranking:

• Flexibility. The instance base can be changed dynamically depending on the
input. For example, the ranker can use different subsets of the instance base, or

change its response to the same input over time.

• Learning exceptions. We expect the instance-based generator to learn language
data that exhibits exceptions, subregularities and cooccurrence patterns that are

difficult to capture by the representations of conventional grammar formalisms.

• Dealing with sparseness of data. Even very few examples may enable the

generator to decide what is and what is not a good output sentence. This is

particularly important when the amount of training data is limited.

On the other hand, there are a number of typical disadvantages of instance-based

learning that mirror some of its general advantages mentioned above:

• Runtime efficiency. Although an instance-based learner can typically be trained

quickly, processing new inputs can be inefficient because, in principle, these
have to be compared to every instance in the instance base.

• Sensitivity to noise. A disadvantage of learning exceptions in the training data
is the ability to also learn noisy examples.

• When carrying out similarity computations, nearest neighbour approaches typi¬
cally take into account all features that are used to represent instances and inputs.
This can be a disadvantage if the solution depends on only very few features (see
Mitchell, 1997).
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An instance-based approach to candidate ranking in NLG has to address these
issues. The issue of efficiency is of particular importance in an overgeneration ap¬

proach because of the expected high number of candidates. It will be dealt with by
an 'expectation-based' search algorithm (described in chapter 3) within the interleaved

generation architecture. In chapter 7, we investigate the implemented generation sys¬

tem with respect to the expected benefits.

1.2.3.1 Information retrieval methods for surface-based ranking

Like any other IBL-approach, instance-based generation has to answer the question
how to represent and retrieve its stored instances. Our proposal is to use standard infor¬
mation retrieval techniques for representation and ranking because nearest-neighbour
and IR approaches are essentially based on the same concept of computing the sim¬

ilarity between pairs of individual items. Furthermore, the representation of candi¬
dates and instances is surface-based. Our goal is to find the best sequence of words.
This surface-orientation is motivated by the success of (surface-based) ngram language
models in speech recognition and statistical machine translation.

1.2.4 Rete-based "bottom-up" chart generation

The grammar construction algorithm yields a potentially large number of grammar

rules. These require a suitable grammar interpreter to form the rule-based component

of the hybrid generation system. Again, an overgeneration architecture requires one to

place particular emphasis on efficiency issues.
Chart-based techniques are an established method for efficient generation since

they allow the generator to share subcomputations (Neumann, 1994; Kay, 1996; Er-
bach, 1997). However, they do not explicitly address the problem of handling large
numbers of rules. The approach developed in this thesis is to address the matching
problem for large sets of automatically generated grammar rules by employing tech¬

niques developed for production systems (Rete networks; Forgy, 1982) which we show
are closely related to chart-based techniques. The proposed Rete-based chart algorithm
is effectively a purely input-driven 'bottom-up' generator.
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Bottom-up algorithms have the general advantage of being robust by simply ignor¬

ing pieces of the input that are ill-formed and cannot be combined into larger structures.

Furthermore, a flat input semantics also increases robustness by separating the input
into different parts. Even if some parts of the input cannot be expressed at all, the

generator will still be able to explore combinations of the remaining parts.

1.2.4.1 Integration of chart generation with surface-based ranking

In the Rete-based chart algorithm, the grammar rules generate short phrases (edges)
that are recursively combined into larger ones. These edges contain continuous surface

strings. A bottom-up (forward-chaining) rule interpreter enables the ranker to score

phrases early during processing because the ranker uses a surface-based representation
of the edge contents. Thus, the ranking function and the tree-traversal strategy of the

grammar interpreter are a good fit.

1.2.5 Overview of implemented system

The implemented system consists of a preprocessing phase and the generation system

proper. The preprocessor takes the syntactic treebank and the semantic annotation,

merges them, and produces two resources that the generation system employs at run¬

time: the grammar which is used in the rule-based part of the generation system, and
the instance base which is used by the ranker. These two resources represent different

aspects of the same training material.

Figure 1.1 depicts the preprocessing phase. Constructing the grammar rules makes
crucial use of both semantic annotation and treebank. From the combined structure,

the context-free backbone of the generation grammar can be extracted which in turn is
transformed into productions in a standard production language. The implementation

language we use for the rule-based component of the generation system is JESS (Java

Expert System Shell; Friedman-Hill, 2000). It is closely related to the CLIPS expert

system language (Riley, 1999).
The instance representations can in principle also be constructed by using features

taken from both treebank and annotation. However, in practice we only need to extract
terms from the semantically annotated corpus because of our surface-based approach
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Figure 1.1: Preprocessing in the instance-based generation system

to ranking. The instance representations are stored as serialized Java objects that can

be loaded when the generation system is started.
The interleaved architecture of the generation system is shown in figure 1.2. The

chart generator passes newly generated edges to the ranker which evaluates them. It
then adds the edges to the agenda (unless it decides to block them). The results of
the ranker can be used as preference scores on the agenda. To start a new 'cycle', the

top-most agenda item is taken from the agenda and added to the chart. Edges that are

considered candidates (for example, all edges of syntactic category S), are also added
to an incrementally increasing ranked candidate list.

1.3 An overview of this thesis

Before we present our approach in detail, we describe relevant previous work on natu¬
ral language generation and instance-based language processing in chapter 2, including
a general comparison between our work and these previous approaches.

Chapter 3 presents a heuristic search algorithm for instance-based generation that
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Edges

Figure 1.2: Architecture of the instance-based generator
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can interact with standard chart algorithms. It shows how decisions about search mo¬

tivate the overall architecture and how, in practice, the ranking algorithm constrains
the grammar interpreter. Furthermore, chapter 3 outlines the similarity metric used for
the definition of a nearest-neighbour, investigates an alternative search algorithm and
demonstrates the feasibility of the proposed algorithms by means of an empirical study
of their efficiency.

Chapter 4 details the semantic annotation scheme for the collected domain corpus.

Chapter 5 shows how a standard syntactic treebank - in combination with the se¬

mantic annotation - can be employed to automatically produce a generation grammar.

Chapter 6 presents a bottom-up chart generator that uses a Rete network to share
partial matches on grammar rules. This is particularly useful when large numbers
of rules are derived automatically. Furthermore, chapter 6 presents empirical results

concerning the amount of structure sharing for the grammars used in this thesis.

Chapter 7 describes our findings when running the implemented instance-based
generator. It describes several extensions of the basic system based on these findings.
For example, it describes the tension between the goals of fluency and completeness in
natural language generation and presents two techniques to deal with it.

Chapter 8 presents discussions of several aspects of the approach explored in this
thesis: the issue of test set reproduction, the relation of our approach to statistical NLG
in general, possible extensions and practical applications of the work presented.

Chapter 9 draws conclusions and summarizes the results of this thesis.
The appendix describes the practical encoding of grammar rules as productions and

provides an exhaustive list of the semantic tags used to annotate the domain corpus.



 



Chapter 2

Previous work

This chapter gives an overview of previous ranking approaches to natural language
generation and also discusses a number of related areas of NLP. We review literature
in the following areas:

• Related approaches to NLG. This section introduces the main reference points
for our approach which subscribe to the basic concept of overgeneration-and-
ranking for surface realization. The section also describes corpus-based ap¬

proaches to other NLG subtasks.

• Instance-based Natural Language Processing. This section reviews approaches
that use 'example-based' or 'memory-based' techniques for NLP tasks other
than natural language generation.

In section 2.3, we provide a detailed comparison between our work as described in
chapter 1 and the other work described in sections 2.1 and 2.2.

2.1 Related approaches to NLG

In this section, we first briefly examine the 'traditional' paradigm of natural language

generation to contrast it with the relatively recent overgeneration approaches. How¬

ever, we do not attempt to give a comprehensive overview of the history of NLG. We
will concentrate on sentence realization since this is the main task addressed in this

19
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work. (For a brief discussion of the pipeline architecture in rule-based models of NLG
see also section 1.2.2.)

2.1.1 Generation as explicit choice

In the knowledge-based view of NLG, generation is seen as a series of explicit linguis¬
tic decisions that ultimately lead to a single output. A number of approaches based on

various linguistic theories have been developed for realizing a given meaning input:

• unification-based approaches like Functional Unification Grammar (FUG) (Kay,
1985), unification combined with head-driven search (Shieber et al., 1990) and
head-driven search for HPSG (Wilcock and Matsumoto, 1998). Both the TEXT

system (McKeown, 1985) and FUF (Elhadad, 1991, 1993) use formalisms based
on Functional Unification Grammar;

• systemic network traversal, embodied in the PENMAN system (Mann and Matthiessen,
1985), the WAG system (O'Donnell, 1996) and the ILEX system (Oberlander et al.,

1998);

• realization with Tree Adjoining Grammars (Joshi, 1987; Nicolov et al., 1996;
Stone and Doran, 1996);

• realizers based on Meaning-Text Theory (Mel'cuk, 1988) like RealPro (Lavoie
andRambow, 1997);

• realization with Categorial Grammar (Calder et al., 1989);

• classification-based approaches (Reiter and Mellish, 1992);

• realization using production systems (Kukich, 1983, 1988).

Systemic approaches may be the most obvious representatives of the explicit-choice
model because they generate text by a number of deterministic choices at each point

during network traversal. Classification systems are also deterministic. In contrast,

unification can be combined with backtracking and other search techniques to explore
alternative search paths.
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The approaches listed above perform 'deep' generation and tend to expect a large
number of explicit features to guide the generation process. In contrast, template-based
realization is less demanding concerning the input specifications but offers consider¬

ably less flexibility. The difference between deep NLG and templates has sparked
some debate in the field (KI-99, 1999). For the purpose of this work, it is important to

realize that the demands on the input increase with the expressibility of the generator.

If input specifications are missing, default specifications are needed (see McDonald
and Meteer, 1988, for example). In the following, we sometimes generically refer to

explicit-choice generators as 'rule-based' although they in fact might use 'systems' or

'schemata' rather than 'rules'.

The traditional model of deep NLG follows a knowledge engineering approach. It
aims at explicitly representing our understanding of the task and problem domain.
Therefore, it inherits a number of typical problems of the knowledge engineering

paradigm. Ward (1994) gave a characterization of the problems of rule-based NLG.

Apart from the problem of specifying the fine-grained input that is required to choose

explicitly between the available options, the knowledge acquisition bottleneck makes
it difficult to maintain and extend hand-crafted rule systems. We often find an interac¬
tion between decisions at various levels and need to deal with potentially conflicting
constraints (see also section 1.2.2). Providing defaults for missing input or grammar

specifications is generally haunted by similar problems. In addition, the use of defaults
raises the question how they are justified (if not empirically).

These problems have led to the application of machine learning techniques to NLG.
The fundamental assumption is that implicit, corpus-based choice - often performed

by a statistical model trained on the corpus - can replace part of the knowledge engi¬

neering effort required in explicit-choice approaches and keep the input requirements

simple. Furthermore, it is assumed to be able to deal with interdependencies and rec¬

oncile conflicting constraints in ways that are difficult to emulate by 'hard' constraints.

2.1.2 Statistical surface realization

In this section, we describe four statistical approaches to natural language generation.
The first three employ an overgeneration-and-ranking architecture and are therefore
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relevant reference points for our work. The fourth, a purely statistical realization sys¬

tem, also generates a number of output candidates and provides a ranking function for
these. We detail input and output of the described systems, their task and architecture,
the corpus used and the kind of evaluation that was carried out (if any).

2.1.2.1 Hybrid surface realization with ngram language model

Probably the most influential statistical approach to NLG is work carried out at the In¬
formation Sciences Institute/USC which is why we discuss it here in somewhat greater

detail. In (Knight and Hatzivassiloglou, 1995; Langkilde and Knight, 1998a,b), a hy¬
brid sentence realizer called NITROGEN is described which combines rule-based over-

generation with ranking based on a bigram language model. The goal is to limit the

requirements on input specifications and grammar engineering, in short, to address the

"knowledge gaps" (Knight and Hatzivassiloglou, 1995) that limit the usefulness of the

generator. The NITROGEN system was originally developed in the context of a large

Japanese-English newspaper translation system. Machine translation makes it particu¬

larly important to be able to deal with missing input specifications because the source

language parser may not be able to elicit all features that are required.

Nitrogen produces a vast number of alternative realizations in a first step using
a rule-based grammar. In a separated second step, these alternatives are filtered by a

statistical extractor which uses bigram statistics to find the most fluent (i.e. most likely)
realization. Thus, it does not provide missing input specifications directly (by using

defaults), but rather chooses them indirectly by selecting one of the sentences already

produced. The two-stage pipeline of Nitrogen is shown in figure 2.1.
The input to the system is a labelled directed graph similar to the attribute-value

matrices used in unification-based formalisms. The input is sentence-sized and gen¬

erally semantic in nature. The main tasks of the system are lexical choice (mapping

concepts to words) and syntactic realization.
The rule-based part of Nitrogen consists of grammar rules, lexicon and a mor¬

phological component. These are deliberately knowledge-poor in the sense that many

linguistically relevant distinctions are not made. The lexicon does not capture syn¬

tactic subcategorization frames of lexical items, gradability of adjectives, countability
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Figure 2.1: Two-stage architecture of NITROGEN (adapted from Langkilde and Knight,
1998a)

of nouns etc. On the other hand, the grammar does cover linguistic phenomena like
active and passive voice, negation, modality and tense of verbs and accepts input on a

number of semantic and syntactic levels. This is necessary to be able to propose a large
number of alternatives to the ranker. Furthermore, a recasting mechanism that defines
equivalences between input representations is used to increase the paraphrasing power

of the generator.

Generation starts by matching the input recursively against grammar rules until
lexical entries are reached. Rule expansion proceeds top-down by matching the input
feature structure against the left-hand sides of the grammar rules and processing their
right-hand sides in turn. The recursion stops when the lexical base case is reached,
allowing a bottom-up construction of a word lattice beginning with the most nested
levels of the recursion. This word lattice is the output of the rule-based component.

Using a word lattice avoids the massive redundancies that would result from simply
enumerating alternative realizations sentence by sentence. The statistical ranker ex-
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tracts the path with the highest probability according to the language model from the
lattice.

Recent development efforts on the Nitrogen system involve the construction of a

forest data structure by the grammar component (Langkilde, 2000). A forest (a non-

recursive context-free grammar) has the advantage of greater sharing of substructures
than a lattice. Most importantly, it facilitates the use of stochastic lexicalized models
of syntax which have proved successful in statistical parsing (Collins, 1999; Charniak,
2000). Recent results presented in (Daume III et ah, 2002) indicate that lexicalized
models of syntax should improve candidate ranking for surface realization in NLG.

The bigram language model of Nitrogen is domain independent as it is trained on

a large, general corpus. However, being based on the SENSUS knowledge base (Knight
and Luk, 1994), the semantic input representation is the result of significant manual
effort. Furthermore, the grammar needs to be able to match the wide range of concepts
defined by such a knowledge base. Therefore, with any extension of the semantic input

language, the grammar component needs to be extended as well.

Langkilde (2002) shows the results of an automatic evaluation of an improved ver¬

sion of the system. In a number of experiments, the ability of the system to reproduce
a test portion of the Penn treebank was evaluated (2377 inputs). The input in these

experiments was largely syntactic. The task of the generator was mainly to order con¬

stituents, to inflect word forms and to insert function words. The experiments showed
that generally the quality of the output increases with the degree to which the input is

specified. With maximal input specifications, 58% of the output sentences were exact

reproductions of the original sentence, dropping to 5% for minimally specified inputs.
The evaluation used a number of automatic evaluation metrics. No human judgement
of the output was performed. The coverage of the system was measured as the per¬

centage of inputs for which the generator was able to produce an output (about 80%).

The basic philosophy of Nitrogen shows some analogies to developments in sta¬
tistical parsing: output which is sometimes incorrect is accepted for the sake of robust¬
ness, broader coverage and speed. In many applications, like machine translation for
example, robustness and coverage can be more important than quality. Recent (man¬
ual) improvements of the grammar component described in (Langkilde, 2002) aim at
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achieving greater flexibility concerning the level of input specification so that the sys¬

tem is usable for a wider variety of tasks.

2.1.2.2 Surface realization with supertags and ngram model

Bangalore and Rambow (2000b) present a surface realizer that follows the Nitrogen
model in that it is a hybrid system organized in a two-stage architecture. The first phase
constructs a lattice of alternative realizations from which the path with the highest

probability according to a trigram language model is extracted in the second phase.
The input to the system, called FERGUS, is a syntactic dependency tree labelled with
lexemes. The main task of the system as described in (Bangalore and Rambow, 2000b)
is to linearize the input tree, excluding lexical choice and morphology.

In the first stage, a stochastic tree model is used to determine supertags (Bangalore
and Joshi, 1999) for the words in the input tree. Then, the hand-crafted, wide-coverage
XTAG grammar (The XTAG Research Group, 1998) is used to produce a word lattice
of all possible linearizations that are compatible with the grammar. Next, the ngram

model is used to determine the word sequence with the highest probability. Thus, two
different statistical models are used, one at the beginning of processing and one at the
end.

In (Bangalore and Rambow, 2000a) an extension of the system is described that
addresses the lexical choice problem. The input to the system is now a dependency tree
labelled with extended synonym sets rather than lexemes. (Bangalore and Rambow,
2000a) discuss different options of where to fit the lexeme chooser into the generation

pipeline.
The tree-based stochastic model of FERGUS was trained on 1,000,000 words of a

version of the Penn treebank that was converted to XTAG derivations. For evaluation,

100 sentences of this corpus were chosen at random. The experiments used automatic
evaluation methods based on the string edit distance between generator output and
original corpus sentence. Bangalore and Rambow (2000b) show that the use of the

supertag-based stochastic model in combination with the XTAG grammar proper in the
first stage improves the performance of the system over a baseline tree model. Results
in (Bangalore and Rambow, 2000b) show that taking into account the syntactic context
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in the dependency tree improves lexical choice from extended sets of synonyms over a

baseline model that always chooses the most frequent lexeme.

2.1.2.3 Sentence generation from head words

Uchimoto et al. (2002) describe a two-step approach to generating sentences in Japanese
from a list of head words. Possible applications include machine translation (where an

additional translation model would be required to generate the head words) and support

systems for people with aphasia.
Candidate construction uses rules that generate 'bunsetsus' (phrasal units) when

the head word is given. The rules are automatically acquired from a Japanese corpus

annotated with the appropriate information (head words and bunsetsus). The proposed
bunsetsus for a new input of head words are combined and dependency relationships
between the candidate bunsetsus are stipulated. The approach assumes that the input
head words are given to the generator in the appropriate order. Uchimoto et al. (2002)
do not address any efficiency issues of this overgeneration approach.

The ranking phase makes use of a number of statistical models that incorporate in¬
formation about dependencies, morphology and word ngrams. These statistical models
were trained on corpora of various sizes between about 1000 and 9000 sentences.

The system was evaluated by two human judges using 30 sets of three head words
each. The best combination of statistical models resulted in 27 semantically and gram¬

matically correct dependency trees.

2.1.2.4 Surface realization with Maximum Entropy model

Ratnaparkhi (2000) describes a domain-specific generation system which uses max¬

imum entropy probability models to rank generation candidates. The input to the sys¬

tem is a set of attribute-value pairs describing flights in the air travel domain. The

output of the system are noun phrases (which can contain relative clauses) in the form
of surface words mixed with attributes. The attributes are then replaced by their values.
The kind and level of semantic input is similar to our task as described in chapter 1.

Maximum entropy modelling is a general machine learning technique that allows
one to incorporate arbitrary features. It has been used for purely statistical machine
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translation systems such as (Berger et al., 1996). Ratnaparkhi (2000) trains two differ¬
ent models for ranking output sentences. The first uses ngram features; the second uses

syntactic dependency features. Furthermore, a baseline model is devised that simply
reuses the templates of training sentences without any adaption, i.e. the baseline model
cannot handle unseen input.

The approach does not employ a rule-based grammar to construct output candi¬
dates. Rather, a search procedure determines the output features by "matching the

patterns over the training data" (Ratnaparkhi, 2000). The statistical model learns how
to map the input semantics to surface forms directly, including word choice and word
order of phrases. The search procedure ensures that the input is completely consumed
and that no part of the input is expressed more than once.

For training and testing the system, a corpus of texts in the air travel domain was

semantically annotated. There are 26 different attributes to represent flights. 6000
annotated noun phrases were used for training and 1946 for testing. The training corpus

for the dependency model also needed to contain the required syntactic dependencies.
To evaluate the system, the semantic representations of the test set were given to the

generator and two human judges ranked the output according to four criteria ('correct',
'ok', 'bad' and 'no output'). The results showed that the dependency model improves

upon the ngram model which in turn was an improvement over the baseline model.
The latter achieved over 80% correct (='perfectly acceptable') outputs because of the

degree of repetition between test and training data. The best statistical model achieved
close to 90%.

2.1.3 Learning methods for other generation tasks

In this section, we describe a number of approaches that apply statistical or other ma¬

chine learning techniques to NLG tasks. Given the recent rapid development of the
field (see the proceedings of INLG, 2002, for example), we do not claim to be ex¬

haustive in this review. Our goal is to show the range of NLG tasks to which learning
methods have been applied.
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2.1.3.1 Information novelty in a dialogue system

(Ratnaparkhi, 2001) describes a hybrid approach aimed at expressing new informa¬
tion differently to old information in the context of a conversational system in the air
travel domain. There are approximately 50 domain-specific, hand-crafted rules spec¬

ifying template fragments which can be composed by the grammar. The point of the

paper is the treatment of information novelty depending on the dialogue state. This
is handled by the grammar rules of which there are two kinds for every semantic at¬

tribute to be expressed, one rule for new and one rule for old information. The use of
the statistical model (an ngram language model) is restricted to cases where there is
more than one old and one new attribute so that word order is not fully determined by
the grammar rules. The ngram model was trained on about 8000 utterances in the air
travel domain. No evaluation was carried out. It was planned to evaluate the system in
the context of the overall dialogue system.

2.1.3.2 Determining adjective ordering

Malouf (2000) describes experiments that use a number of statistical and machine

learning techniques to determine the order of pre-nominal adjectives. It is suggested
that the learned models be used in a distinct adjective ordering module within a larger
NLG system (which was not implemented). The starting point of the paper is the obser¬
vation that simple ngram models do not perform well on the task of adjective ordering:
when an ngram model was presented with the permutations of about 5000 adjective

sequences taken from the British National Corpus (BNC), only 75.57% were predicted
correctly. Malouf (2000) goes on to compare a number of methods for improving

adjective ordering. Their correctness was measured on 10% of about 127,000 differ¬
ent adjective pairs taken from the BNC. Because of sparse data problems (most pairs
of adjectives only occur once), a method called 'direct evidence' which was adapted
from (Shaw and Hatzivassiloglou, 1999) did not perform particularly well. There are

two methods, memory-based learning (using a character-based distance metric) and

positional probabilities (treating adjectives independently of one another) that achieve
close to 90% correctness. The two methods can be combined to yield about 92% cor¬

rectness. The interesting conclusion of this paper is that a domain-independent model
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(which is specific to this particular task) performs better than a general purpose ngram

language model.

2.1.3.3 Generating nominal expressions

Cheng et al. (2001) investigate corpus-based modifier generation for non-referring
nominal phrases. The approach uses a decision tree learning algorithm which was

trained on an annotated corpus of 1863 modifiers. The annotation scheme consisted
of pragmatic, semantic and syntactic features. The correctness of the realization de¬
cisions made by the decision tree was evaluated using 10-fold cross-validation on the
available data, achieving a global success rate of 67.5%. The best predictions were

made on appositive and possessive modifiers (for which the model achieved close to

89% correctness), and adjectives. Prepositional phrases and posthead NPs were pre¬

dicted "reasonably well" (Cheng et al., 2001), prehead nouns and posthead participles
"rather badly" and relative clauses were not predicted correctly at all.

The learned decision tree was then used within the NP module of the ILEX system

(Oberlander et al., 1998). The input to the NP module was provided by the aggregation
module of ILEX. It specified the information to be conveyed by the NP. The rule-based
realization decisions were guided by the preferences of the decision tree. The approach
assumed a fixed maximal number of pre- and post-modifiers.

Jordan and Walker (2000) address the problem of referring expression genera¬

tion excluding pronominals. In particular, the (domain-specific) task is to learn what
subset of four different attributes describing furniture to include in a specific position
in the discourse. There were 393 nominal descriptions in the domain corpus. These
were encoded in terms of 58 features which were motivated by theoretical work on

discourse processing. The task was framed as a classification problem with 16 classes
to choose from. A rule learning algorithm (RIPPER; Cohen, 1995) learned an ordered
set of if-then rules that can act as a classification model. The best performing rule
set achieved 50% correctness as measured against a corpus gold standard. In contrast,
a baseline model that just chooses the most frequent class achieved 16% correctness.
The experiments showed that some features proposed in the literature were much more
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effective than others. The paper does not report whether the learned model has been

deployed in a working NLG system.

Furthermore, there is research on generating articles, often in the context of ma¬

chine translation. Recent work on article generation includes (Minnen et ah, 2000)
who use a memory-based approach (see section 2.2.2) to predict whether to generate

the, a/an or no article.

2.1.3.4 Sentence and text planning

(Walker et al., 2001) present a hybrid sentence planner (called SPoT) that follows the

overgeneration approach to generation. The specific task is 'sentence scoping', i.e. the
choice of syntactic structures for elementary speech acts and their distribution over one

or more sentences. The paper focuses on learning a ranking function for candidate sen¬

tence plans. These are generated by a simple sentence-plan generator using weighted
randomization. For a corpus of 100 text plans generated by a dialogue system, 1868
sentence plan trees were generated offline (with an upper bound of 20 candidate sen¬

tence plans per input text plan). These were realized by the Real Pro realizer (Lavoie
and Rambow, 1997) and evaluated by two human judges on a qualitative scale from 1
to 5. A machine learning algorithm based on boosting (Freund et al., 1998) was then
used to learn conditional rules that change the score of some candidate structure if cer¬

tain conditions hold. (While the conditions are easily readable, the change of the score

is a relative value which is more difficult to interpret.) On average, the learned ranking
function performed only 5% worse than the human judges and 36% better than tak¬

ing a candidate sentence plan at random. In an independent evaluation with 60 judges
(which is described in Rambow et al., 2001), it was shown that the choices of the sen¬

tence plan ranker were not statistically distinguishable from the output of hand-crafted

templates.

(Duboue and McKeown, 2001) use an algorithm based on combinatorial pattern

discovery (used in genomics, for example) to identify patterns and ordering constraints
between them in a corpus of semantically annotated patient status briefings. The goal
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was to group and order elementary semantic tags for text planning.1 The corpus con¬

tained 24 transcripts of patient status briefings. The tag set consisted of about 200 tags.

The learning task was unsupervised since the training data contained only the semantic

tags but not the correct tag groupings (which are difficult to determine manually). The

algorithm learned 29 ordering constraints between 23 clusters of tags. Demonstrating
the validity of the approach, these constraints were largely replicating the rules of an

existing, hand-crafted text planner, and also added some additional information. The
learned rules were not yet used in a generation system. The intention was to use them
in a top-down planner for selecting and ordering content.

2.1.4 Connectionist language generation

(Ward, 1994) describes a connectionist sentence generator called FIG ("Flexible In¬
cremental Generator"). The book also serves as a general exposition of fundamental

problems concerning natural language generation. A main motivation is to be able to

deal with multiple conflicting goals and interdependent choices. Lexical choice is the
main practical problem addressed in this work. The application is Japanese to English
machine translation. FIG is a spreading activation system (in contrast to distributed
connectionist systems) in which concepts, words and syntactic constructions are rep¬

resented as nodes (or sets of nodes in the case of syntactic constructions). The network
computes its activations incrementally for each input concept in turn and the general
activation flow is from concepts to words.

The book presents a wealth of ideas. It also proposes a feature representation for
semantic information and discusses human language production, for example. No em¬

pirical evaluation of the implemented system is reported in the book.

2.1.5 Chart generation

The term 'chart generation' refers to certain algorithmic techniques rather than to par¬

ticular implemented systems or approaches to NLG in general. We give an overview

'The paper talks about "content planning" which is a task similar to "text planning" in other work
(see Mellish et al., 1998, for example).
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of the literature on chart generation here because candidate generation in our approach
is a variation of the chart generation theme (see chapter 6).

Chart generation has often been discussed in the literature under the assumption
of a unification-based approach to grammar (Shieber, 1988; Neumann, 1994, 1998).
Erbach (1997) proposes a pure bottom-up Earley deduction approach to parsing and

generation. This has advantages for processing with grammar formalisms like HPSG
which locate most linguistic information in the lexicon. Erbach emphasizes robustness
and easy integration with 'preferences' as advantages of bottom-up processing but
concedes that efficiency is a problem for bottom-up generation (Erbach, 1997, pl08).
We contend that this is mainly due to the lack of actual integration with a ranking
function that directs search and restricts the search space.

Recent research to a large extent makes use of flat semantic representations for gen¬

eration. Kay (1996) introduces the concept of internal indices. Internal indices allow a

chart generator to prevent an edge from being created if it has not consumed all parts of
the input that share some index, assuming that this index is internal to the correspond¬

ing grammar rule. An index is defined as internal if it only instantiates variables on the

right-hand side of a grammar rule and does not proliferate them to the rule left-hand
side. In other words, access to an internal index for incorporating rules is sealed off. A

typical example involves adjectival modifiers that are not yet incorporated into an NR
If this NP is combined into a VP, for example, further modification by other modifiers
might not be possible anymore. This issue has been taken up by Trujillo (1997) and
Carroll et al. (1999). However, we do not aim to adopt the concept of internal indices
since we cannot require complete consumption of the input in the general case (see
section 7.4).

A number of generation algorithms have been proposed for Shake and Bake Ma¬
chine Translation where the input to the generator is a multi-set of richly structured
signs containing orthographic, syntactic and semantic information. Brew (1992) pro¬

poses a combination of shift-reduce parser and constraint propagation. Popowich
(1996) presents a chart-based generator. In contrast to our approach, these techniques
assume that lexical choice has already taken place. On the other hand, the algorithmic
task is similar: generation from a multi-set of input units.
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Shemtov (1998b) views generation in the context of machine translation as a many-

to-many mapping and introduces packed generation charts as a means of representing
alternative renderings without having to enumerate them explicitly. The intention is to

handle the problem of ambiguity in machine translation by avoiding disambiguation
if possible, i.e. to preserve ambiguities of the source language in the target language.
However, this does not seem possible in our approach since the input is unambiguous
and we do want to disambiguate the output candidates.

2.2 Instance-based Natural Language Processing

The term 'instance-based' refers to approaches that make decisions based on a near¬

est neighbour search for new inputs. A number of alternative terms like 'example-
based', 'memory-based' or 'case-based' has been used in the literature. In the follow¬
ing, we review two strands of research in NLP other than NLG that use methods we

call 'instance-based' in this work.

2.2.1 Example-based Machine Translation

There is an extensive body of research in Example-based Machine Translation (EBMT).
A relatively recent review can be found in (Somers, 1999). EBMT systems typically
perform the following three steps:

1. (they) match fragments resulting from a source language analysis against a database
of examples,

2. identify the corresponding target language fragments and

3. recombine these fragments to produce the target language output.

An important issue in EBMT is the level of representation of the fragments since
this affects the required degree of source language analysis, the similarity metrics that
are available and the grammaticality of the combined target language fragments. At
one end of the spectrum, there are fully annotated tree structures for both source and
target language with explicit links between them. For example, Sato and Nagao (1990)
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populate the example base with linked pairs of word-dependency trees. At the other
end of the spectrum, there are approaches that store examples literally or as 'general¬
ized' examples. For example, Brown (1999) generalizes examples by replacing dates
and city names etc. with appropriate tokens. The EBMT-component of the Pangloss
machine translation system (Brown, 1996) performs subsentential alignment at run¬

time.

The first step performed by an EBMT system is typically called the 'matching'

phase. The task is to identify the example or set of examples that most closely matches
the source language string. This is the phase which makes use of a similarity metric.
Often, matching is string/character-based or uses a thesaurus to determine the degree of
semantic similarity between source language input and source language examples. For

example, Murata et al. (1999) search for the longest matching substring in the example
base to translate tense, aspect and modality from Japanese to English. The stored
choices of the English translation of the retrieved example are used for the translation
of the input sentence. Other approaches that perform similarity matching on parse

trees require appropriate rule-based analysis components (e.g. Sato and Nagao, 1990).
These can be regarded as 'hybrid' EBMT systems.

Having identified matching target language examples, the task is to extract the ap¬

propriate fragments, possibly adapt them and then recombine them. As Somers (1999)

points out, these steps have received less attention in the literature than other aspects
of EBMT. In some approaches, substrings retrieved from the example base are simply
pasted together. An example is the EBMT component within the Pangloss system

(Brown, 1996). The approach works best for languages with little or no inflection
like Japanese or English. On the other hand, hybrid approaches rely on linguistically
motivated grammars to guide analysis and generation. For example, Sato (1995) uses

word-dependency analyses of both source and target language in combination with a

"non-destructive transfer process" using unification.

Translation Memories are often seen as a starting point for EBMT (e.g. Somers,
1999). They make use of a database of human-authored source and target language

pairs. For a new sentence to be translated, they retrieve those sentence pairs that con¬

tain similar source language sentences. This method is not very flexible as it does not
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adapt the examples to the source language text in question. However, it is useful as

an aid for human translators, underlined by the fact that Translation Memory systems

have proved commercially successful.

Despite the differences between the various EBMT approaches, a common element
is the assumption that example retrieval is done before adaption and recombination. In
section 2.3.2 we contrast this with the approach adopted in this work.

2.2.2 Memory-based NLP by classification

A number of NLP tasks have been addressed by 'memory-based' techniques using
classification.2 For example, Daelemans et al. (1999b) report on experiments in NP and
VP chunking as well as subject/object detection. Training examples are represented
as feature-value vectors of fixed dimensionality labelled with a class chosen from a

fixed set of labels. Following this methodology, more demanding tasks like full-scale

parsing need to be decomposed into a series of classifiers, for example into subtasks
like segmentation, disambiguation and attachment resolution.

The memory-based approach to article generation mentioned above (Minnen et al.,
2000) also addresses the problem as one of choosing from a fixed set of class labels.
However, to the best of our knowledge, full natural language generation has not yet
been dealt with in a classification-based framework.

2.3 Relating instance-based realization to previous work

In the following, we compare our instance-based generator as proposed in chapter 1 to
the work described in the previous sections. It should be noted that brief descriptions of
previous work on automatic grammar construction and the use of production systems
for NLG can be found in sections 5.7 and 6.6, respectively.

2Note that here the term 'classification' is used in the sense of the machine learning literature. This
is different from the 'classification-based' approach to NLG presented in (Reiter and Mellish, 1992).
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2.3.1 Comparison to work on statistical surface realization

In contrast to statistical approaches to surface realization, an instance-based realizer
stores previously encountered instances in memory and uses them directly to process

new inputs, rather than abstracting them into some statistical distribution. Thus, our

ranking model is different from the statistical surface realization systems described in
section 2.1.2. However, it is similar to ngram models in that it is purely word-based
and even uses ngrams extracted from the corpus sentences (which are semantically
annotated in our case). On the other hand, unlike some of the statistical realizers, we

do not score tree structures.

In contrast to our approach, the Nitrogen sentence realizer (see section 2.1.2.1)
is a two-stage pipeline without frequent interactions between candidate generator and
ranker. On the other hand, both are hybrid systems that use a rule-based grammar and
a corpus-based ranker. Furthermore, the Nitrogen candidate generator also exhibits
a bottom-up element (in the way its lattice is constructed). However, the grammar

organization is quite different. The Nitrogen generator is geared toward efficient
lattice construction, requiring appropriate special-purpose mechanisms. In contrast,
we are using a standard chart algorithm with an agenda, albeit one that is implemented
in a production system. In our system, the grammar is automatically constructed from
a semantically annotated treebank. The Nitrogen system uses a hand-built grammar

and relies on the semantic formalism provided by a large, manually crafted knowledge
base. The semantic input to Nitrogen is hierarchically structured and can be defined
on various levels of linguistic description. In contrast, the input to our system is a

set of attribute-value pairs. Because our grammar is automatically constructed from a

corpus, we know how much training material is used by the system. This is much more

difficult to estimate for a hand-crafted grammar.

Similar to our approach, the realizer based on maximum entropy modelling de¬
scribed in (Ratnaparkhi, 2000) is domain-specific and uses attribute-value pairs as its

input. However, the system is not hybrid since it does not use any grammar rules. Fur¬
thermore, it only generates NPs rather than sentences and it is trained on a significantly

larger corpus.

The FERGUS system (Bangalore and Rambow, 2000a,b) employs a large, hand-
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crafted grammar which required several person-years to develop. In contrast to our

approach, it requires complex input structures (syntactic dependency trees). Like
Nitrogen, the system architecture is based on a pipeline without frequent interaction
between grammar interpreter and ranker. It also constructs a lattice for ngram scoring
but in addition uses a tree-based stochastic model at the beginning of processing. In
contrast, in our approach and in Nitrogen, only the result of grammar construction is
evaluated by the ranker.

2.3.2 Comparison to Example-based Machine Translation

A major difference between our approach and EBMT - apart from the task which is not

explicitly MT in our case - is the overall architecture. At least conceptually, we first

open up a space of possibilities for the ranker to choose from and then rank among the
alternatives. In practice, candidate generation and ranking are interleaved to increase

efficiency. However, the admissibility of the A*-algorithm (see section 3.2.1.2.1) guar¬

antees that this does not change the generation output. In contrast, EBMT systems first
search for the most similar examples and then try to adapt them. The EBMT approach
seems to take a direct route for arriving at a translation. The overgeneration approach
takes a more indirect route: we are doing the adaption before/during the computation
of the nearest neighbour. 'Initial semantic ranking', a technique which is introduced in
section 7.6, comes closest to doing the similarity computation first. However, we only
do this to keep the number of rules at a manageable size. The different architecture
allows us to use rules taken from all examples as long as they match some portion of
the input, opening up a wider range of possibilities than could be achieved by reusing

only very few examples at a time.
Like the overgeneration approaches of statistical MT and the statistical realization

systems described in section 2.1.2, our architecture allows us to model target language

fluency (see also section 8.2). In contrast, target language fluency is typically not
taken into account by the similarity metric in EBMT. Rather, EBMT systems perform
similarity computations on source language strings in the first processing stage. An
interesting exception is the proposal of Sato (1995) to define the score of translation
candidates as the combination of the scores of source and target language trees which



38 Chapter 2. Previous work

are composed of dependency-tree fragments. (However, this does not seem to have
been applied to real-world data. (Sato, 1995) concentrates on algorithms for tree-to-

tree transformations.) The issue of machine translation is taken up again in section
8.6.1.

2.3.3 Comparison to memory-based NLP by classification

In contrast to our approach, the memory-based NLP approach developed by Daele-
mans and colleagues in Antwerp and Tilburg does not use any rule-based knowledge,
i.e. the approach is not a hybrid one. Furthermore, we do not frame our task as a classi¬
fication problem. Therefore, we do not need to decompose generation into a number of

separate decisions as is done in memory-based approaches for the task of shallow pars¬

ing (Daelemans et ah, 1999b), for example. Because there is no classification, there
is no 'carrying over' of a class label from nearest-neighbour(s) to new inputs. As will
become clear in the next chapter, we use the raw similarity value to score candidates.

2.4 Conclusion

Our approach subscribes to the basic overgeneration-and-ranking approach to NLG
that has been developed for the purpose of statistical generation. In contrast to the
Nitrogen model and the approach presented in (Ratnaparkhi, 2000), we explicitly aim
at dealing with very limited training data. In both cases, it is an open question how well
the systems perform when only about 150 examples are available. Furthermore, the
system described in (Ratnaparkhi, 2000) only addresses the task of generating nominal

phrases. Moreover, in contrast to Nitrogen and FERGUS, our approach assumes simple,
non-hierarchical input structures.

To our knowledge, this is the first work that explores the use of an instance-based
ranking function for NLG. In contrast to Example-based Machine Translation, which
does similarity testing on the input of the system, we do similarity testing on the output.

In the next chapter, we describe the instance-based ranker.
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Instance-based ranking

In this chapter, we develop a heuristic search algorithm for instance-based generation
that can interact with standard chart algorithms. We discuss the similarity metric used
for the definition of a nearest-neighbour, investigate an alternative search algorithm
and demonstrate the feasibility of the proposed algorithms by means of an empirical
study of their efficiency.

Efficiency is of particular importance in an overgeneration-and-ranking approach.
Without efficient search, experiments are not possible and there would be no prospect
of real-world applications employing the techniques developed in this work. We as¬

sume that it is generally not possible to enumerate all output candidates that can be

generated by the grammar for a given meaning input. In practical terms, exhaustively
enumerating all candidates often takes 30 minutes or runs into memory problems.1 As
outlined in chapter 1, we employ an interleaved generation architecture in which the
chart generator and the ranker constrain each other. Although slightly non-standard,
the Rete-based chart algorithm and the shallow grammar formalism we developed can

be seen as place holders for other, more commonly used mechanisms.
In general, we believe that efficiency issues should be addressed even though ad¬

vances in hardware provide ever faster machines. A more efficient algorithm is gener¬

ally preferable over a less efficient one. Moreover, computing resources can be limited
in certain applications, or an instance-based NLG system might just be part of a larger

'The implementation language used is Java; experiments are usually run on a Sun Ultra 10.

39
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software system that claims most of the resources.

3.1 Similarity metric

A crucial ingredient in any nearest-neighbour approach is the distance metric. Here,
we need to identify a metric that is suitable for the task of natural language generation.
As described in chapter 1, our approach is surface-based in the sense that we are

interested in finding the best sequence of words, including semantic tags instead of the
fillers where they occur. For example, instead of 'was elected a vice president', we

want to use 'was elected a postjndef'. However, for the purpose of ranking, we can

treat postjndef just like any other word. The question therefore is how to compute the

similarity between such sequences. Viewed from this angle, there does not seem to be

anything very specific about the NLG task. We can thus employ a distance-metric for

strings that has proved successful on other tasks.
A prominent application that requires similarity computations between strings is in¬

formation retrieval (IR). There are strong parallels between instance-based approaches
and IR as both involve distance computations between pairs of concrete examples. In¬
stances in a nearest-neighbour approach correspond to stored documents in IR; edges

(including candidates) in instance-based NLG can be regarded as queries in IR.
A well-known distance metric for information retrieval is the cosine of the angle

between vector representations of the strings in question (Salton, 1989). The vector
model produces a ranking that reflects the degree of similarity between documents
and query. Despite its simplicity, the cosine similarity metric has proved successful in
many IR applications:

"A large variety of alternative ranking methods have been compared to the
vector model but the consensus seems to be that, in general, the vector model
is either superior or almost as good as the known alternatives." (Baeza-Yates
and Ribeiro-Neto, 1999, p.30)

In the following, we look at three aspects of similarity computations involving the
cosine metric: the term representations, the weighting scheme for these terms and the
distance metric proper.
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3.1.1 Term representation

In the so-called bag-of-words models of information retrieval, texts are represented as

bags of terms ('features' in machine learning terminology), implying that there is no

ordering between the terms. These models enable partial matches and ultimately the

computation of degrees of similarity between strings regardless of the position of the
terms in the original string.

A theoretical disadvantage of bag-of-words models is the underlying assumption
that all terms are mutually independent. This is especially true when the bag-of-words
indeed consists of individual words. However, we can capture local word cooccur¬

rences by using ngram terms (with n > I) instead of individual words, thereby repre¬

senting a limited amount of context. A simple example:

(5) 'was elected a POST_INDEF':

unigrams: {'was', 'elected', 'a', 'POST_INDEF'}

bigrams: {'was elected', 'elected a', 'a POST_INDEF'}

trigrams: {'was elected a', 'elected a POST_INDEF'}

In addition to ngram representations where n is fixed to a certain value, there is the

possibility of mixing ngrams of different orders. Furthermore, in our approach punc¬

tuation is treated just like any other word. No stop list is employed so that terms are

not excluded per se. As the example above shows, we do not use stemming or reduce
words to their part-of-speech. The reason for this is the loss of information resulting
from any such transformation. For example, if all prepositions were reduced to the

symbol P, the ranker would not be able to make any distinctions between different
prepositions.

3.1.2 Weighting scheme

In information retrieval, extensive research has been devoted to term weighting schemes
for the vector model (see Salton, 1988, for example). Probably the most successful of
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these is the well-known tf.idf term weighting scheme. The term frequency (tf) com¬

ponent measures the frequency of a term within a document. The inverse document

frequency (idf) component assigns highest weights to terms that occur in few docu¬
ments and little weight to terms that occur in many documents. It therefore quantifies
the discriminatory power of the terms across documents: how much does knowledge
about the presence of a term tell us about the document which it is from? In practice,
this means that determiners like the, for example, have little weight even without using
a stop list. In contrast, rare terms, for example those involving a tag that occurs in only
one instance, are assigned a high weight.

The tf.idf weight of a term i in document j is calculated as follows:

(6) wtj = fij x log2%

The term frequency is represented by the raw frequency / of i in j. The inverse
document frequency is calculated as the logarithm of the total number N of documents
in the collection (i.e. of instances in the instance base) divided by the number of
documents in which term i actually occurs.

For sentence generation, idf is more important than tf which in many cases will be
1. Furthermore, we will introduce an upper bound on the ?/-count for edges requiring
that the edge tf does not exceed the instance-?/. This will be discussed in section
3.2.1.1.

3.1.3 Distance metric

In instance-based NLG, the ranker compares edge contents to instances. Following
the representation and weighting scheme described above, training set instances are

generally represented as bags of terms of the form /,• = {wjj, ...,wIjn} where is the
weight of term k in instance i. These representations can be computed off-line. Like
queries in information retrieval, edges need to be converted into 'pseudo-document
vectors' at runtime, following the same representation. (In the vector model, terms

are generally assigned fixed dimensions. Document terms are mapped to the vector
model by representing, for each term, the weight of that term in the corresponding
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dimension. However, this does not imply that there is an ordering in the basic 'bag-of-
words' model.) The definition of the cosine distance between an edge e and an instance
i is

where wej is the weight of term j for edge e and w,y the weight of term j for
instance i.

Essentially, the cosine formula adds matches between instance and edge in the
numerator and divides them by the overall weight of the terms in both instance and
edge. There is obviously no explicit count of mismatches. Rather, mismatches are

implicitly expressed since mismatching terms only contribute to the denominator but
not the numerator, keeping the cosine below the maximal value of 1. We need the
denominator since otherwise ever more non-matching words could be added to an

edge without penalties. The sum of the squared instance weights (to the right of the
denominator in (7)) can be computed off-line like the instance representation since it
does not depend on the matches with edge e.

The instance-based generation system will need to compute the cosine between
different edge vectors with respect to different instance vectors and compare the re¬
sults. We therefore need to make the assumption that cosine scores of different origin
are actually comparable. This does not seem to be an unreasonable assumption given
that the cosine is often used in document clustering (see Salton and McGill, 1983, for

example).
In contrast to IR which mostly deals with larger texts, the ranking task for sentence

generation has to consider relatively short sequences of words. However, there does
not seem to be any intrinsic reason why the cosine metric should not work on shorter
strings. In fact, the cosine is also used in applications such as automatic call routing
in which the caller's request - which can just consist of a single sentence - and possi¬
ble routing destinations are represented as vectors (Chu-Carroll and Carpenter, 1999).
Another example is the FAQ Finder system (Burke et al., 1997) which uses the cosine
to compute the similarity between a user question and individual faq-files in order to
identify those faqs that should be searched further for an answer to the question. One

/"7\ Xy= 1 WejXWiJ(7) cos(e, i ) = 1
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potential drawback of using term-vector comparisons on short sequences of words is
the requirement that exactly the same terms have to be matched (i.e. synonyms do not

match). However, in addition to surface words, terms in our system also contain the
more abstract semantic tags. As a result, classes of proper names like, for example, the
names of the incoming person, can be treated as identical. In this sense, the semantic
annotation can be seen as a form of application-specific 'clustering' of words that are

similar in meaning.

3.1.3.1 Computing the cosine

In what follows, we indicate how we represent vectors for efficient cosine computa¬

tions. Each term is represented by its weight and a unique integer index, according to

which the terms are sorted in a list or array. The integer indices correspond to the dif¬
ferent dimensions of the vector model. Imagine we want to compare two such vectors

(left columns: indices, right columns: weights):

Vector 1: Vector 2:

1: 0.37 4: 1.94

8: 1.81 8: 1.81

14: 2.12 65: 0.55

65: 0.55 72: 2.55

78: 1.94

The basic idea is to traverse both lists in parallel by moving pointers from the head
of the lists to the end. If we find equal indices, we calculate the match by multiplying
their weights. If we find an integer index in one vector but not in the other, we re¬

member its weight if the vector represents an edge. As mentioned above, if the vector

stands for an instance, we can calculate the sum of their squared weights off-line. If
the vector represents an edge, we only need to actually compute the square root of the

'sum-squared' weights if the numerator is not 0. (Note that in general this has to be
determined for each pair of edge vector and instance vector separately.)

The algorithm proceeds by always moving forward the pointer of the lower index.
If the next index found is higher than the other vector's index, we obviously 'jumped
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too far', resulting in a mismatch. In the example above, we start by noting a mismatch
between indices 1 and 4 and move the left index forward to 8. Since this is higher than
the current right index, we have to move the right index forward as well. Since both
indices are now 8, we record a match (we add 1.812 to the numerator) and move both

pointers forward. This results in a mismatch between indices 14 and 65, requiring the
left pointer to be moved forward which results in a match etc. When the end of one list
is reached, we know that the remaining terms of the other list must be mismatches. (In
the example above, the cosine is 0.3.)

3.1.4 Unknown terms

Concerning the term representations of the ranker in an NLG system, the question
arises whether there is a fixed number of terms. Many approaches to instance-based

learning assume a fixed number of features (see Daelemans et al., 1999a, for example).
In principle, knowing the lexicon means knowing the number of different lexical items
that can be generated, at least as long as the 'filler words' of the generation input are

represented by tags rather than surface words. However, the use of higher order ngrams

would lead to an explosion of the number of possible terms, only a small fraction of
which could be generated by the grammar. On the other hand, new word ngrams can

arise because the grammar can generate word sequences that have not been seen in
the training corpus. The vector representation chosen here lists only the terms that
are present but does not require one to state the absence of terms, thereby leaving the
overall number of terms open-ended.

The generation of terms that do not occur in the training set also raises the issue of
the idf-weighting of unknown terms. A weight of 0 would allow the system to use non-

matching terms without penalty. A weight that is too large would stifle 'innovation'.
Generally, we assign unknown terms a document frequency of 1, i.e. we pretend that
it has occurred in a single instance.
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3.2 The search problem

The search problem we are facing has the following characteristics: Our goal is to find
the candidate sentence 5 that has the highest similarity score w.r.t. some instance I in
the instance base:

argmax cosine(S,I). (3.1)

The cosine score of an edge is the distance from its nearest neighbour. The candidate
sentences that are produced by the grammar form a subset of the set of edges. In

principle, we need to iterate over the entire instance base for any given edge. Since the
grammar produces a potentially large number of candidate sentences, both S and I can

be chosen from large sets to maximize (3.1). Thus, both S and I are variable and we

are interested in finding the pair of S and I whose cosine distance is minimal. (Also,
we may want to be able to find the n best sentences. This will be discussed in section

3.2.1.5.)

As pointed out above, we cannot just enumerate all possible sentences for some

meaning input. On the other hand, we do not have to wait for the grammar interpreter
to produce entire sentences. Due to the interleaved architecture, we have access to all
new edges being produced, including shorter ones that do not yet constitute a sentence.
The question is how to use this possibility of interaction.

Our goal is to use knowledge about the instances and the distance function to re¬

strict the number of similarity computations between edges and instances. Thus, our

search algorithm belongs to the class of heuristic search strategies, in contrast to un¬

informed search strategies like breadth-first and depth-first that do not possess any

problem-specific knowledge. One obvious way of employing the ranker at the 'point
of interaction' is to score all new edges Enew and use the highest score of Enew to de¬
termine the ordering of edges on the agenda. (As pointed out in section 3.1.3, this

requires that the similarity scores of an edge w.r.t different instances are comparable.
This is true since we use the same distance metric, instance representations and term

weights for all instances.) Using the cosine score on the agenda should give priority to

longer edges that closely resemble some instance.
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Unfortunately, it turns out that this is not a very efficient way of ordering edges
on the agenda (see section 3.3 for efficiency evaluations). What is more, there is a

cost involved in scoring every edge. In contrast, uninformed breadth-first or depth-
first search strategies only need to rank edges once they have become full sentences.

There is a danger that the cost involved in scoring every edge offsets the gains (if there
actually are any). On the other hand, we do need to find a way of directing search
since uninformed search strategies ultimately amount to exhaustive search if we want

to guarantee that the best solution (i.e.. the best candidate sentence) has been found in
the end.

3.2.1 Expectation-based search

Thinking about search in an instance-based approach is made difficult by the fact that
there are many nearest-neighbours (instances) towards which search from a partial

edge can proceed. We want the system to consider all those instances simultaneously.
Instance-based ranking seems to encourage a 'parallel view' on the search problem. At
the same time, the grammar interpreter is continuously producing new edges that have
to be integrated into the nearest-neighbour search. We aim at addressing this point by

taking advantage of our knowledge about what edges are combined. Results (of some

form) that apply to subedges should be reused when scoring the combined edge.2
We can combine these two observations by trying incrementally to restrict the num¬

ber of instances considered for scoring edges. The idea is to start by using the entire
instance base for initial edges and restrict the number of instances as edges are com¬

bined. Eventually, we will be able to drop an edge altogether (i.e. remove it from the

agenda) when there are no instances left to consider for this edge.
The key problem is to identify a property that allows us to restrict the instance base

incrementally. To identify this property, we have to look more closely at the distance
function (this knowledge will make the resulting search procedure a heuristic one).
We observe that the cosine score of an edge can increase as well as decrease when it is
combined with other edges, depending on whether or not the newly added terms match

2This point is also taken up in section 3.6 which discusses the applicability of probabilistic chart
algorithms.
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the instance terms. Thus, the cosine score does not exhibit a monotonic behaviour

which could be exploited.

We can, however, define the notion of the expectation of an edge w.r.t an instance
which is monotonically decreasing. This is the potentially best cosine score an edge
would have with respect to a specific instance if all missing matching words were added
to it. With regard to information retrieval techniques, the expectation can be seen as a

special kind of 'query expansion'. For example, if an edge is represented by the terms

a and d and the instance by a,b and c, one match and one mismatch result for the edge.
The best possible similarity score for the edge would be achieved by extending the edge

by b and c to yield a,b,c,d. (Of course, the cosine similarity metric is more complicated
than the simple overlap considered in this example, but matches and mismatches form
its basic ingredients.) Actual further combinations of the edge could never improve

upon this potentially best score as the added edge can only contribute matches (which
have been assumed already) or mismatches (in which case the new expectation is lower
than the previous one). It should be noted that the expectation, in contrast to the cosine,
is asymmetric since the expectation of a candidate bag is always computed with respect
to a reference bag. If we use the notation exp(bagc/mci,bagref) for the expectation in
general, then exp(bag\,bag2) expibagi- bag\).

Assuming that the ranker is able to compute an expectation for newly generated

edges, the question arises how to exploit its monotonic behaviour. The key idea is
to look at the similarity score of the best candidate sentence that has already been

produced, and prune those similarity computations which involve instance-edge com¬

binations that have an expectation that is lower than this best candidate's score. This
is justified since the definition of the expectation guarantees that the edge will never

be able to become a better candidate than the one obtained already. When edges are

combined, we can use information about the instances considered for the subedges to
avoid unnecessary similarity computations for the combined edge. Again, this is a re¬

sult of the monotonicity of the expectation since the expectation of the combined edge
can only be equal to or lower than the lower expectation of the subedges.

Effectively, the similarity score of the current best candidate serves as a threshold
for the remaining edges. However, it should be noted that an edge can have many
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expectations (w.r.t. different instances). Edges can only be dropped if there is no

expectation w.r.t. any instance which is higher than the current threshold.
In the following, we will describe the properties of the algorithm in more detail.

The reader may have noticed already that it shares important characteristics with the
well-known A*-search algorithm. In fact, it can be seen as an extension of A* to the
case of multiple heuristic functions. This will be discussed in section 3.2.2.

3.2.1.1 Monotonicity of expectation

The expectation w.r.t. an instance i is defined as the best cosine score that a given

edge e can possibly obtain. From the perspective of the similarity function, generation
means incrementally adding to an initially empty edge. We can therefore show that the

expectation is monotonically decreasing:

• Initialization The expectation of an initially empty edge e is 1 since it contains
no non-matching terms: exp(eempty,i) = 1.

• Induction For each term t that is added to e, two cases can arise:

1. t does not occur in i. This will decrease the score as well as the expectation
since it only increases the denominator of the cosine formula. The score

but not the expectation can recover from this if further matching words are

added later (case 2).

2. t occurs in i. If t has not been present in e before, the expectation does not

change since it already assumes that all correct words have been added. On
the other hand, the cosine score increases.

If t occurs in e already, we have to consider the case of the r/-component in
the edge term weights. (We assume that the same weighting scheme applies
to both candidate and instance terms.) If the number of occurrences of t in
e is lower or equal than its number in i (tft^e ^ the expectation still
remains unchanged. However, if tft^e > tfp e is able to neutralize the
effect of its non-matching terms by repeating correct terms. Therefore, we

impose an upper bound on tft e in the numerator (but not the denominator)
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of the cosine and restrict it to tftp As a result, exceeding correct terms
in e can only lead to an increase of the denominator and will decrease the
cosine score.

A monotonically decreasing expectation requires two assumptions: First, edges are

always extended monotonically. Terms are not allowed to be removed. Since mono-

tonic extension of structures is a standard assumption of many grammar formalisms,
the algorithm can be used with a variety of such formalisms. Second, it requires an

upper bound on the ?/-component of edge term weights. An example might be in or¬

der. Assuming that we have the instance terms a,b and an edge ape, the impact of the
mismatch caused by term x could be largely offset by repeating as if we did not restrict
the ^/-component. For example, an edge a,a,ape would have a much higher similarity
score although the four as of the edge match the same instance term.

The upper bound does not seem to be unreasonable if we consider that only the in¬
stances in the instance base but not the candidates are justified by human authorship. In
this sense, there is indeed an asymmetric relationship between instances and candidate

outputs. In practice, we do not find any noticeable difference between using the normal
cosine or the bounded one. We explain this partially by the effect of a constraint in the
candidate generator which prevents repeated realizations of the input semantics (see
section 6.4.1.1).

3.2.1.1.1 Computing the expectation The expectation can be efficiently computed
by largely reusing the precomputed sum-squared instance-weights. To see this, we

need to look at the actual definition of the expectation for some edge e and instance i
which is a modification of the cosine formula (7):

sq\ r-fr £™=i (w,J)2(8) expte, i ) = , 1
W+SJLl (*e]atm)2)x I?=l K)2

where wejextra is the weight of those terms in edge e that only occur in e but not in i.
The expectation simulates a maximally perfect match between instance and edge terms.

This is reflected in the numerator: Since the tf-component of the edge term weights
is bounded by the corresponding instance-?/, instance and edge weights are the same.

The numerator therefore is just the precomputed sum-squared instance weights which
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are needed in the denominator part of the instance in any case (to the right in the
denominator of (8)).

This leaves as the only component of the expectation to be computed at generation
time the denominator part of the edge (to the left in the denominator of (8)). Here again
the sum-squared instance weights can be reused since the matching terms assumed in
the numerator need to be counted in the denominator as well. However, we also need

to add all those terms that only occur in the edge but not in the instance. Furthermore,
we need to consider the r/-boundary of the matching terms: although the numerator

is bounded by the instance-tf, the denominator needs to use the actual frequency of
these terms.

These 'error terms' or 'mismatches', if present, keep the expectation below its
maximal value of 1. The computation of the expectation can be combined with the

computation of the cosine with little extra cost.

3.2.1.2 Ranking algorithm

We can now modify the ranker to take advantage of the expectation. Again, the idea
is that as soon as we have a first candidate and its score, we can discard all similarity

computations that involve an expectation that is lower than this score. The score of
already available candidates serves as a threshold tlx that can be dynamically adjusted
to the current best candidate as more candidates are constructed.

For each chart edge e we define the notion of relevant instances rie. This is a table
of all instances i for which the edge has an expectation higher (or equal) than the score

of the current best candidate. Each i in rie is associated with its current expectation
w.r.t. edge e: rie — {q : exp(e,ii),...,in : exp(e,in)}. As long as no candidate is avail¬
able, we assume a threshold of 0 to allow all instances to be considered. For each enew

built by a grammar rule, the ranker performs the following steps:

1. Determine rie :cnew

• In principle, for chart edges built from scratch, rienew contains references to
the entire instance base with an expectation of 1: rienew = {z'i : 1, 1}.
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However, this is an idealized case. An expectation of 1 on all instances

implies that the edge is empty - it does not yet contain any non-matching
terms to any instance. Since many input grammar rules (see section 5.3.1)
introduce new terms, the expectation will be lower than 1 in many cases.

• For chart edges built by combining existing edges, say e\ and e2, a cheap
initial approximation of rienew is obtained by intersecting riei and rie2 and
taking the lower expectation of the remaining i. This is justified because
the resulting edge will contain terms of both e\ and e2 and because of the
downward monotonicity of their respective expectations.

Thus: rienew = riei Drie2 where for each i <E ri€new: exp(enew,i) = exp{e\,i)
if exp(ei,z) < exp(e2,i) and exp(enew,i)= exp(e2,i) otherwise.

2. Check the (preliminary) expectations in rienew against the current threshold th.
For all i E rienew: if exp{enew, i) > th keep i in rienew, else remove i. (We can use

exp(enew,i) > th to find all best solutions.)

Removing instances from rienew is possible because of the monotonicity of the
expectation: the expectation will never increase beyond the threshold, and it
forms an (optimistic) upper bound on the actual similarity score.

This step incrementally constrains the number of relevant instances that need to
be considered for the computation of the actual expectation in the next step.

3. Compute the actual exp(enew,i) for all i E rienew.

We use the highest expectation of rienew to determine the rank of enew on the
agenda. Thus, the expectation serves two roles in this algorithm: it helps reduc¬

ing the number of similarity computations and it determines the agenda order¬

ing. (The expectation can always be used for ordering the agenda, regardless of
whether or not a candidate has already been found.)

In our grammar formalism, most grammar rules introduce new surface words.
Therefore, we need to actually compute a new expectation from scratch rather
than trying to reuse the expectations of the subedges in some form.
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It should be noted that we do not check the new, accurate expectation against the
threshold at this point. Rather, the check is delayed until the edge is added to the
chart. This allows the ranker to always use the most recent threshold since the
threshold is dynamically increasing (see section 3.2.1.3 below).

4. Add enew with its updated rienew to agenda unless | ri |= 0 in which case we can

drop enew.

This is a very desirable case as it leads to less edge combinations in the chart.

5. If enew also qualifies as a candidate, compute cos(enew,i) for all i E rienew and
add it to the current list of candidates. If cosmax(enew,i) > th adjust threshold:
th = cosmax[enew. z).
The actual cosine score only needs to be computed when the edge is consid¬
ered a candidate. This can be any edge of category S or only edges that satisfy
an arbitrary number of constraints. (We generally treat all generated sentences

as candidates. Section 7.4 (especially 7.4.3.1) discusses the use of additional
constraints on candidates.) In practice, there is no big difference between cal¬

culating the cosine similarity and calculating the expectation since both involve

cycling over the term representations of instance and edge. They can therefore
be computed together.

This ranking algorithm incrementally constrains the set of relevant instances ri of
the chart edges. It is called for each new edge produced by the grammar. The chart

algorithm (see section 6.4) stops when the agenda is empty. However, the ranking al¬
gorithm can influence the agenda by dropping edges deemed not promising (step 4). It
can deliver an output as soon as the first candidate is available, and further computation
can be used to find potentially better ones. Furthermore, it has the advantage of being

independent of the order in which chart edges are combined.

3.2.1.2.1 Admissibility of search The algorithm finds a single (or all) globally best
solutions (if any exist). It can therefore be called an admissible algorithm. To see why
this is consider as a starting point exhaustive search which obviously finds the optimal
solution. The algorithm presented above restricts search by pruning those edges that
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will never be able to build candidates that are better than the best candidate already
available. (We know that the score of the best candidate already obtained can only

improve or stay the same but never decrease.) Pruning edges is only possible if none

of the various expectations of the edge is larger than the score of the best candidate
and the ranking algorithm does not stop before the remaining expectations have been
explored.

The crucial point therefore is the monotonicity of the heuristic function that es¬

timates the best possible similarity score. We have seen in section 3.2.1.1 that the
expectation never underestimates the potentially best score. As long as this is guaran¬

teed, the algorithm is not able to prune any edge that might eventually obtain a better
score than the available best candidate.

The performance of the expectation-based algorithm depends on how quickly a

good candidate can be constructed since this sets the threshold for the remaining edges.
If no candidate is available at all, no pruning can take place and the algorithm reverts to
exhaustive search. However, these seem to be rather rare cases in practice (see section
3.3).

3.2.1.3 Blocking of agenda edges

In addition to the steps carried out for new edges about to be added to the agenda
(see 3.2.1.2), the ranker performs the following check for all agenda edges about to be
added to the chart:

1. If expmax(eagenda) > th, add agenda edge to chart. Else drop edge. (Again, we
can use a non-strict threshold to find all best candidates: expmax{eagenda) > th.)

This check is performed because there is a possibility that the threshold has been
increased while the edge was waiting on the agenda. It is a means for improving

efficiency but does not alter the admissibility of the algorithm: since the expectation is

non-increasing, it can be checked against the non-decreasing threshold at any point.
As a result of the additional step described here, we check the newly computed

expectation of edges about to be added to the agenda twice: the first check in the 'life

cycle' of an expectation is in fact the one now described. It can be carried out cheaply



3.2. The search problem 55

since it only compares the single best expectation of the edge against the threshold.
The second check occurs when two edges are combined into a new one. It is more

detailed since it looks at the different expectations in the relevant instance table (see

step 2 in the main ranking algorithm in section 3.2.1.2).
There are parallels - and differences - between checking the expectation of edges

against the threshold and redundancy checking in chart parsing. If redundancy check¬

ing at the point of a new edge being added to the agenda takes into account chart and

agenda items, it is not required when edges are added from the agenda to the chart

(Shieber et ah, 1995). If the agenda were allowed to contain redundant items, these
could lead to the computation of spurious new edges (for agenda items added to the
chart) which are deemed redundant when about to be added to the agenda.

In contrast, in expectation-based search, the definition of what is regarded a 'use¬
less' edge can change while edges are stored on the agenda because the threshold may

increase. If agenda edges are not checked against the current threshold before be¬
ing added to the chart, they can lead to spurious computations of new edges that are

deemed unpromising when about to be added to the agenda.

3.2.1.4 Example of expectation-based search

Figure 3.1 shows an example of the concatenation of two edges el and e2. For both

edges and the combined edge el2, cosine scores and expectation with respect to two
instances are given. For example, the cosine w.r.t. instance i 1 increases from 0.35 to
0.75 as e2 is combined with el into el2. This is because el contributes two matching
terms. On the other hand, the cosine decreases from 0.5 to 0.35 w.r.t. instance 12

from e2 to el2 because el adds two non-matching terms. These changes of the cosine

similarity value show that it is not monotonically changing in one direction.
In contrast, the expectation is monotonically decreasing (w.r.t. the same instances).

For example, it decreases from 1.0 for el w.r.t. il to 0.89 for el2 since e2 adds a non-

matching term. On the other hand, viewed from e2, which has an expectation of 0.89
with regard to il, the expectation stays the same when moving to el2. This is because
the expectation has assumed the presence of the matching terms of el already.

Strictly speaking, the ranking algorithm does not need to compute cosines for the
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Assumptions:

all term weights are 2
current best candidate cos: 0.75

Instance i1: { a, b, c, d }
Instance i2: { c, z }

Edge combinations:

edge el: { a, b } edge e2: { c, y }

il: il:

cos: 0.7 cos: 0.35

exp: 1.0 exp: 0.89

12: 12:
cos: 0.0 cos: 0.5

exp: 0.7 exp: 0.82

ri: { il:1.0 } ri: { il:0.89,
i2 : 0 . 82 }

\ /
\ /
\ /
\ /
\ /
\ /

edge el2: { a, b, c, y }

il:

cos: 0.75

exp: 0.89

i2 :

cos: 0.35

exp: 0.63

ri: { il:0.89 }

Figure 3.1: Example of expectation-based search
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edges unless they qualify as candidates. Under the assumption of a current best candi¬
date cosine of 0.75, we can furthermore identify the relevant instance table ri for the

edge <?12. This table indicates which expectations actually need to be computed by the
ranker. Knowing that el has an expectation of only 0.7 w.r.t. 12 we can immediately
conclude that any combination of this edge will never produce a better candidate than
the one obtained already. We can therefore exclude T2 from the relevant instance table
of the combined edge. (The actual expectation of 0.63 of el2 confirms this.) Thus, we

only need to compute the expectation of el2 w.r.t. il. Although the resulting expec¬

tation of 0.89 remains unchanged compared to the one for el, it should be noted that
the expectation of a combined edge can be lower than any one of the component ex¬

pectations, as exp{e 12, il)-0.63 shows. Furthermore, in practice most grammar rules
introduce additional words, making further mismatches that might lower the resulting
expectation possible.

3.2.1.5 n-best search

The definition of the threshold in the ranking algorithm can be made non-strict in the
sense that similarity computations are also not pruned if their expectation equals the

similarity score of the current best candidate. This ensures that all best candidates are

found if there are more than one. However, it does not ensure that the algorithm finds
a fixed number n of best candidates.

In order to find the n best candidates, the search algorithm can be modified so that
it keeps the threshold as low as the score of the nth candidate in the ranked list, or at

0 as long as there are less than n candidates. This ensures that we never prune edges
that may end up above the current nth candidate in the ranked candidate list. Like the
normal threshold defined by the top-most candidate on the list, the n-best threshold
increases dynamically as more candidates are generated.

3.2.2 Comparison to A*-search

Like the instance-based search algorithm presented above, the well-known A*-search
algorithm is a best-first search algorithm which always considers the estimated best
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partial solution next. In this section, we discuss the differences and similarities be¬
tween the algorithms.

A*-search is often employed for problems like finding the shortest path to some

goal state in a graph. A variation known as 'stack decoding' is also used in speech

recognition (Huang et ah, 2001). Discussions of A* can be found in many AI textbooks
(Nilsson, 1980; Rich and Knight, 1991; Norvig, 1995) and studies of search algorithms
(Pearl, 1984). Here, we will concentrate on the basic path finding problem.

A* estimates the overall cost / from a starting state to a goal state via a current state

by adding the known cost from the start state to the current state (g) to an estimate of
the remaining distance (h):

(9) f = g + h

As in our algorithm, the heuristic function h which estimates the remaining path
to the goal needs to be optimistic. When dealing with costs like these in path finding
problems, the algorithm needs to make sure never to overestimate the minimal cost

to the goal which would lead to ignoring potentially good paths. This situation is the

opposite of our problem where we are trying to maximize the similarity score rather
than minimizing a cost (we need to ensure that the potentially highest similarity score

has not been underestimated). However, maximizing the similarity is just the inverse
of minimizing the distance between candidates and instances. The problem can be
formulated in different ways; the underlying idea is exactly the same.

However, there is a difference in the way the overall estimate is calculated. Our

algorithm does not make a distinction between the path from the start to the current

state, i.e. from the empty edge to the current edge, and the estimated 'cost' of reaching
the goal from the current edge. In other words, the expectation corresponds to / rather
than h. In principle, the actual similarity score of an edge can be equated to func¬
tion g, and correspondingly h = expectation — cosine. However, such a distinction is
not necessary in our algorithm since the overall expectation can be straightforwardly
computed from the bag-of-words representations (see section 3.2.1.1.1).

Furthermore and probably crucially, in contrast to the standard A*-algorithm, the
instance-based ranking algorithm needs to handle several scores and expectations which
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are derived with respect to different instances. This can be regarded as there being sev¬

eral heuristic functions rather than one. As described in section 3.1.3, a requirement for
the instance-based search algorithm to work is the comparability of similarity scores

and expectations from different instances. By always considering only the best simi¬

larity score and expectation regardless of the instance with respect to which it has been

computed, we basically treat the different heuristic functions as one.

A path finding problem in the simplest case has only a single known goal state

and the A*-algorithm stops as soon as the goal state has been reached. In contrast, in
the NLG system developed here, the search algorithm can suddenly 'stumble' across

a solution from which it cannot proceed (i.e. any edge that qualifies as a candidate).

Obviously, there are an a priori unknown number of 'goal states' generated by the

grammar. However, in the proof of optimality of A* in (Norvig, 1995, p.99/100) the
case of several goal states is considered. It is assumed that non-optimal solutions are

not returned as final solutions since these would not be selected for further best-first

expansion. This consideration indicates that A* works in a similar way to our search

algorithm.
Both A* and the instance-based ranking algorithm depend on the monotonicity of

the estimation function and are guaranteed to find an optimal solution if one exists.
Because of the similarities between the algorithms, our instance-based ranking algo¬
rithm can be seen as an extension of the standard A*-algorithm to the case of several
estimation functions. Devising a suitable heuristic function is crucial to a successful
application of A*-search in any variant. If h underestimates the potentially best score,

the algorithm is not admissible; if it is too optimistic, search becomes inefficient. In
this work, we defined a heuristic function that takes into account the peculiarities of
the distance function and the problem domain.

3.2.2.1 Related literature

Woods (1982) introduces an "A* shortfall method" for speech understanding that is
similar in spirit to our expectation-driven ranking algorithm in that search is guided
by optimistic assumptions about the best possible score of parts of the input not yet
covered by a partial solution. The speech understanding task involves parsing compet-
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ing word sequences generated by a lexical component and finding the optimal word

sequence that is consistent with the grammar.

Woods (1982) requires the allocation of maximal scores to parts of the input before
the beginning of processing. The scores of these segments are additive so that the
speech recognition problem can be treated as an A* path finding problem with a known

goal state, separate scores for segments already covered and possible scores for the
remaining segments. The shortfall is defined as the difference between the actual score

of a partial solution and the best possible score of that partial solution. The priority p

of a partial solution on the agenda is

(10) p = T — (m — q)

where T is the maximal total score allocated to all segments, m the best potential
score for the partial solution and q its actual score (i.e. function g in (9)). The ex¬

pression m — q therefore represents the shortfall. The resulting p is characterized by
Woods (1982, p298) as the "estimated best possible future score" and corresponds to
our notion of an expectation (i.e. function / in (9)).

There are still several differences between the shortfall scoring method and our al¬

gorithm. As the discussion of A* in section 3.2.2 has made clear, we do not separate

current and future scores. It would not be possible to assign maximal scores to parts
of the input (the semantic tags in our case) and assume that the overall score is simply

composed of the component scores. Furthermore, the approach of Woods assumes that
a lexical component enumerates words in decreasing order of score and that the gram¬

mar is merely used as a constraint on the possible word sequences. Moreover, it does
not deal with the problem of having several heuristic functions. Finally, the speech un¬

derstanding problem addressed by (Woods, 1982) assumes a single well-defined goal
state which is defined as complete coverage of the input signal. In contrast, we do
not make the assumption that the grammar is always able to express the entire input
semantics (this will be discussed in section 7.4).
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3.3 Efficiency evaluation

In order to investigate the general behaviour of the proposed search algorithm and eval¬
uate its efficiency, we tested our system with different settings using the semantic tags

of a test set as generation inputs. To this end, we divided the annotated corpus of Wall
Street Journal articles into a random selection of 100 first sentences for the training
set and 40 for the test set. This should give a realistic indication of the performance
of the system since the evaluation is carried out on application data. As mentioned in
section 1.2.4, we employ an agenda-based bottom-up chart generator that makes use of
a Rete network. The chart generator is described in greater detail in chapter 6. For the

purpose of the efficiency evaluation, it can be assumed that the generator behaves like
a standard bottom-up chart generator (see also 2.1.5). Furthermore, the exact nature of
the input tags and the output candidates is not relevant for the efficiency evaluation.

In the following, we will set out by evaluating the basic system and comparing it
with a number of variations and competitors. We then add additional refinements that
come closer to the system that we are going to use in the following chapters. Still,
the final system of this thesis will contain extensions that will be introduced when the

output of the generator is investigated. In particular, we will make it harder for the
generator to find a 'good solution'. This in turn will influence search which will then
be re-evaluated (see chapter 7). However, the basic behaviour of the proposed hybrid

generation system is best investigated using relatively simple initial system settings.

3.3.1 Examining individual generator runs

We first evaluate the algorithm with respect to an individual input in order to give a

detailed account of its behaviour. We then evaluate the system on the entire test set

to avoid the particularities of individual inputs. For the moment, we assume bigram
terms and a tf.idf weighting scheme. Furthermore, the generator runs until the agenda
is empty. Also, only instances with expectations that are strictly larger than the thresh¬
old are considered. (An alternative is to also keep instances that have an expectation
equally large as the current best candidate score; see section 3.2.1.5 above.)
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3.3.1.1 Expectation-based agenda ordering

For a random semantic input consisting of 6 tags (close to the average number in
the corpus), the expectation-based system produces 92 edges. It takes about 1.5/1.8
seconds to exhaust the agenda (on a Sun Ultra 10/Sun Enterprise E220R). Figure 3.2
shows the rank of newly produced edges on the agenda in relation to the size of the

agenda. Generation proceeds from left to right on the x-axis.

Figure 3.2: Edge ranks on expectation-based agenda (input: wsj_0030)

At the beginning of processing, newly produced edges are placed right on top of
the agenda. These edges have been derived from initial edges presenting the input to
the system. They can be found to the left of the first point at which an edge is taken
from the agenda. (Several assertions can take place at one point if no new edge can be

produced.) The first new edges all have expectations of 1.0. They are always moved to
the top of the agenda ahead of edges that have the same expectation.

From about edge 35, the ordering is more mixed. We explain this by the fact that
longer edges containing more error terms are produced. However, edge 92 is a candi¬
date with a cosine of 1.0. From this point, the ranker blocks all edges that are taken
from the top of the agenda and that would usually be added to the chart to produce more

edges. This is because the edge expectation is checked against the current threshold
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when agenda items are added to the chart (see section 3.2.1.3). Blocking edges be¬
fore they are added to the chart is quite obviously more efficient than computing new

edge combinations and blocking these later. (In fact, leaving out the agenda-to-chart
threshold check results in 301 edges and takes about twice the time.) As a result of

blocking all remaining agenda edges, the agenda size shrinks without any edges being

produced. (Note that figure 3.2 only provides a snapshot of the agenda size at the time
a new edge is created - with the exception of the final size.)

3.3.1.2 Cosine-based agenda ordering

The expectation serves a two-fold purpose in the ranking algorithm. It determines the
agenda priority and it helps pruning the number of instances used for similarity com¬

putations. However, we can also employ the cosine to determine the agenda ordering
while continuing to prune similarity computations by means of the expectation. This
variation of the algorithm generates 355 edges and takes approximately 3.5/7.0 seconds
to run. At least for this specific input, this is less efficient than an expectation-based
ordering.

Figure 3.3 shows agenda size and rank of new edges for the cosine-based agenda.
The agenda seems to shrink and expand periodically. Many new edges end up close to
the top of the agenda so that search seems to be predominately depth-first. However,
the ranker does not find a candidate until edge 199 and a candidate with a cosine of 1.0
is not found until edge 250 (in contrast to edge 92 for the expectation-based agenda).
This indicates that the cosine is less efficient as an agenda ordering. The grammar still
generates new edges beyond edge 250 (because the chart generator needs to explore all
combinations of the remaining agenda edges). However, these are all blocked before
they are added to the agenda (see the ranking algorithm in section 3.2.1.2). Only when
the grammar has stopped does the agenda try to add its edges to the chart. Again, these
are all blocked.

3.3.1.3 Comparing agenda priorities

Figures 3.2 and 3.3 indicate that both expectation and cosine-based agenda ordering
mix aspects of depth-first and breadth-first search. Since the priority policies are differ-
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Figure 3.3: Edge ranks on cosine-based agenda (input: wsj_0030)

ent, the results are not directly comparable: a new edge that is assigned rank 1 on the

agenda means that the system has been successful in generating an edge continuation
that has a high priority according to its priority criterion. The question arises how we

can measure the ranking of edges in a more objective way in order to compare different
priority policies.

One way of doing this is to measure how 'old' edges taken from the agenda actually
are. To this end, each edge is assigned an integer for the current cycle of the Rete

interpreter (starting from 0) in which it was created. A new cycle is started each time an

edge is added from the agenda to the chart. We can then compare the cycle of the point
when the edge is taken from the agenda and relate it to the cycle of the edge creation.
A small difference means that an edge stayed only briefly on the agenda, resulting
in depth-first search. On the other hand, breadth-first search should be reflected by

long stays on the agenda. A natural upper bound on the number of cycles an edge can

possibly wait is formed by the overall number of cycles at any given point.

Figure 3.4 shows the results for the same generation input used before. The upper

bound is a diagonal starting at the origin of the axis. In contrast to figures 3.2 and
3.3 which show all edges that are produced by the grammar, we can only sensibly
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Figure 3.4: Time in Rete cycles of edges waiting on agenda (input: wsj„0030)

measure the waiting time for those edges that are also added from the agenda to the
chart. Therefore, expectation and cosine seem to have less edges than in figure 3.2 and
3.3.

Figure 3.4 confirms the previous finding that both expectation and cosine-based
priorities mix depth-first and breadth-first search. Cosine-based search continues for
considerably more cycles. There seems to be a pattern that edges that waited only
briefly on the agenda are followed by increasingly 'older' edges. As long as these are

located on a diagonal, they must have been produced at the same cycle, getting older
as their predecessors are added to the chart (which increments the cycle counter).

Although agenda policies are easier to compare by counting agenda waiting cycles,
it should be noted that cosine and expectation-based system still rank different edges
over time. Relating the two ways of measuring the agenda ordering we explored here
is not entirely straightforward. For example, all edges produced to the left of the first
agenda-to-chart assertion point in figure 3.2 belong to cycle 0. In figure 3.4, these
additions to the agenda are not visible because only edges taken from the agenda are

counted. Another example are edges of expectation-based search that are located at
the upper bound in figure 3.4 (cycles 4-6, 9-13 and 16,17). They obviously have had to



66 Chapter 3. Instance-based ranking

wait a maximal time on the agenda. However, they might have been ranked on top of
the agenda initially but newly produced edges could have been placed ahead of them.

3.3.1.4 Edge length and priority scores

Short edges should generally have high expectations and should therefore be highly
ranked on the agenda (which considers the highest of the different expectations). Con¬

versely, long edges will in many cases have only low expectations although a single

exception would be enough to give it a high agenda rank. Above, we suggested that
a cosine-based priority might lead the system into buying more mismatches since the
overall cosine score of long edges containing mismatches can still be higher than the
score of a short edge without mismatches.

0.8
0)
C

o
o

c 0.6
o

c5
o
0)
ex
X

0.4
O)
bO
Cb
t-H
<U
>

0.2

0
0 5 10 15 20 25 30

edge length in terms

Figure 3.5: Average priority values (input: wsj-0030)

Figure 3.5 relates the average agenda priority values (defined by the expectation or

the cosine) of the produced edges to the length of the edges.3 In the context of ranking,
the length of an edge is measured by the magnitude of its pseudo-document vector, i.e.
by the number of terms used for presenting the edge to the ranker. Figure 3.5 confirms

3To obtain more data, we used a slightly different system setting requiring full consumption of the
input in order to force both variations of the system to produce more edges (see section 7.4).
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the intuition that the expectation tends to decrease on average as edges become longer.
In contrast, the cosine has its peak value at an edge length of 14 terms.

3.3.2 Results for test set

To obtain a better picture of the performance of the expectation-driven algorithm, we

tested it on 40 test set inputs. Furthermore, we added two competitors, pure depth-
first and breadth-first search. All systems can be simulated by changing the agenda
policy. Pure depth-first and breadth-first search have the advantage of being able to
determine the agenda ordering cheaply without any similarity computation. The cosine

only needs to be computed for edges that have been grown into candidates. However,
both approaches will lead to exhaustive search without any pruning of the search space

if there is no pre-defined stopping criterion (exhaustive search can take 30 minutes or

more). Therefore, we generally assume that the system halts when a first candidate
that has a cosine of 1.0 is found. This effectively gives all rankers the information that
no better candidate can be produced. However, in case no candidate of 1.0 is found,
pure depth-first and breadth-first perform exhaustive search. Therefore, we need to
introduce a limit on the total generation time which we set at 1 minute.

agenda ordering E oE EE EC sim E?"« &empty 1.0 t-out t

expectation 316 1305 12 637 4 272 29.0 353 201 17.5% 82.5% 0% 2.3

cosine 1268 2034 50 734 18 565 32.6 1 571 326 15% 72.5% 12.5% 13.3

breadth-first 957 2027 38 277 13 016 34.0 1 301 600 15% 80.0% 5.0% 4.9

depth-first 471 1133 18 826 6 666 35.4 666 600 15% 77.5% 7.5% 6.5

Table 3.1: Efficiency results for test set of 40 inputs: bigram terms, tf.idf weights

Table 3.1 shows the results for the test inputs. For different agenda orderings, we

detail the average number of edges (E), the standard deviation of the edge counts (oE)
and the overall number of edges for all 40 inputs ( JjE); the overall number of candi¬
dates (£C); the average number of similarity computations, i.e. cosine or expectation,

per edge (sim) and the overall number of similarity computations (Zsim); the reasons

for halting the system (aempty- agenda empty, 1.0= candidate of 1.0 found, t-out= time
limit exceeded); finally, the average time the system requires per input in seconds (J).
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The results show that the expectation-based ranker is the fastest and performs least
overall and average similarity computations. The average number of similarity compu¬

tations per edge (29) is significantly lower than the size of the instance base (100).4 The

high standard deviation in the number of edges reflects the fact that the performance
on different inputs varies significantly. This is true for all tested algorithms. One major
factor is runs that exceed the time limit (which does not affect the expectation-based
ranker).

The cosine-based agenda seems to fare particularly badly, producing the largest
number of edges and candidates and requiring the most similarity computations. This
is a somewhat surprising result since the cosine does not seem to be an unreasonable
candidate for determining the agenda ordering as it gives preference to the current

'best' edge. However, it seems that this leads to prioritizing edges that also contain
mismatches. In contrast, the expectation basically avoids mismatches since these are

the only way to decrease it.

Table 3.1 also shows that depth-first and breadth-first search perform better than
the cosine-based agenda. The average number of similarity computations per edge is

fairly low (although still larger than for expectation-based search) because depth-first
and breadth-first search only have to compute the cosine for candidates but not for
other edges. Since computing the cosine for candidates needs to use the entire instance
base, the overall number similarity computations is equal to the size of the instance
base (100) times the number of candidates.

The time measurements show that depth-first search, despite producing less edges
and candidates than breadth-first search, takes longer on average. This can be explained
by the fact that depth-first search runs the danger of exploring the search space in areas

where it cannot even successfully combine edges into new ones. We can measure the
number of attempted edge combinations by counting the number of checks for non-

overlapping semantics (see section 6.4.1.1). For the entire test set, depth-first search
performs 980 010 checks whereas breadth-first search performs only 135 327 checks.

4This average number includes the empty instance tables of the dropped edges. Furthermore, some

edges that were produced by the grammar (and which are therefore included in the overall edge count
YjE) are blocked by the redundancy check (see section 6.4.1.2). This is why the average number of
similarity computations sim is not exactly the same as ^sim divided by ~ZE.
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However, about twice as many checks are successful for breadth-first search than for

depth-first search. The larger number of successful checks for breadth-first search
translates into its larger number of edges.

In summary, the results in table 3.1 show that instance-based NLG is feasible in
reasonable time, in particular if an expectation-based search algorithm is used.

3.3.2.1 Edge length and similarity computations

Similarity computations are more expensive for longer edges since the size of the

pseudo-document vector is larger. The expectation-based ranker attempts to incre¬

mentally reduce the number of instances used for similarity computations as edges are

combined into larger ones. This is possible because it has access to the chart edges
in the interleaved generation architecture. We therefore expect the ranker to perform
more similarity computations on shorter edges than on longer ones.

Figure 3.6: Overall number of similarity computations (bigrams, tf.idf weights)

Figure 3.6 shows the number of overall similarity computations for the 40 test

inputs w.r.t. edge length as measured by the number of terms. In general, there seems

to be a tendency for the overall number of similarity computations to increase over

time because more longer edges are generated by combining shorter ones. On the
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other hand, the maximum edge length is constrained by the size of the semantic input.

Figure 3.6 confirms that expectation-driven search manages to reduce the number
of similarity computations for longer edges. Breadth-first and depth-first search nat¬

urally score larger edges because they only rank sentences. As before, cosine-driven
search fares worst which is due to the large overall number of edges it generates.

3.3.3 Alternative term representations and weights

There are a number of variations of the basic ranker. Instead of bigrams, one can

use ngrams of different orders or mixtures of ngrams. Furthermore, a large number
of term weighting schemes have been developed in information retrieval that could
be applied to ranking for NLG. Here, we will investigate binary term weighting5 and
terms represented as ngrams with n < 3 including mixtures. To the ranker, only the
term weights matter (and their 'identity', obviously), not the fact that the terms are

unigrams or bigrams per se. Furthermore, the size of the pseudo-document vectors

will have an effect on efficiency.
In general, we can expect a stronger influence of the term weights on cosine and

expectation-based agenda priorities than on breath-first and depth-first search. The
latter should only be affected by an increase in the absolute number of terms which
are used to compute the cosine score of the final candidates. In contrast, the weighting
scheme affects the ordering of edges on the agenda for cosine and expectation-based

priorities.
Table 3.2 shows efficiency results for tf.idf term weights along the same dimen¬

sions as used in table 3.1 (which is included in table 3.2). Confirming the considera¬
tions above, there is little difference between unigram and bigram terms for breadth-
first and depth-first search. However, there is a slowdown when moving to a com¬

bination of unigram, bigram and trigram terms since for n unigram terms, there are

n + (n — 1) + (n — 2) overall terms.

Both cosine and expectation-based search are slower when using unigram terms
than when using bigram terms. An explanation may be found in the term weights

5When using binary weights in the vector representation, a 1 in a vector component indicates the
presence of a term. As for tf.idf weighting, the absence of a term in the vector implies a weight of 0 in
the corresponding dimension.
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agenda E oE IE XC sim X sim Uempty 1.0 t-out t

unigrams:
expectation 506 1827 20 227 3018 26.8 514 556 15% 80.0% 5.0% 4.8

cosine 1188 1760 47 538 12690 36.9 1 717 151 15% 75.0% 10.0% 15.4

breadth-first 1003 2220 40 101 13962 34.8 1 396 200 15% 80.0% 5.0% 4.8

depth-first 487 1214 19 480 7187 36.9 718 700 15% 77.5% 7.5% 6.4

bigrams:
expectation 316 1305 12 637 4272 29.0 353 201 17.5% 82.5% 0% 2.3

cosine 1268 2034 50 734 18565 32.6 1 571 326 15% 72.5% 12.5% 13.3

breadth-first 957 2027 38 277 13016 34.0 1 301 600 15% 80.0% 5.0% 4.9

depth-first 471 1133 18 826 6666 35.4 666 600 15% 77.5% 7.5% 6.5

trigram:
expectation 297 1144 11 873 4872 63.1 717 127 15% 82.5% 2.5% 2.5

cosine 475 806 18 993 5769 80.0 1 464 252 15% 80.0% 5.0% 8.4

unigrams + bigrams:
expectation 332 1406 13 275 4390 27.7 353 946 15% 82.5% 2.5% 2.5

cosine 1100 1615 43 996 12923 52.9 2 270 987 15% 75.0% 10.0% 18.8

unigrams + bigrams + trigrams:
expectation 213 680 8 517 2718 63.2 512 489 15% 82.5% 2.5% 3.0

cosine 878 934 35 134 9896 71.2 2 456 884 15% 67.5% 17.5% 21.7

breadth-first 680 913 27 181 7034 25.9 703 400 15% 80.0% 5.0% 8.3

depth-first 332 562 13 278 4191 31.6 419 100 15% 77.5% 7.5% 8.3

Table 3.2: Efficiency results for test set: tf.idf weights
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that result from the idf component of the tf.idf weighting scheme. Since unigram
terms tend to occur more frequently in different instances, they tend to result in less
discrimination between edges. Furthermore, as larger mixtures of ngrams are used,
cosine-based search becomes more inefficient. Expectation-based search seems to be
less affected by this.

agenda E GE IE ic sim YjSim nempty 1.0 t-out t

unigrams:
expectation 379 1117 15 153 5516 48.2 702 699 12.5% 82.5% 5.0% 5.6

cosine 496 1472 19 822 8667 27.9 541 374 12.5% 82.5% 5.0% 4.3

bigrams:
expectation 1086 2655 43 426 15499 21.8 912 353 15% 75.0% 10% 7.5

cosine 1603 2326 64 082 23075 30.4 1 877 549 45% 35.0% 20% 18.2

trigrams:
expectation 312 829 12 460 4253 86.1 1 030 521 15% 82.5% 2.5% 3.2

cosine 493 826 19 707 6124 73.1 1 395 911 15% 80.0% 5.0% 9.1

unigrams + bigrams:
expectation 325 1194 12 997 5013 34.4 429 903 15% 82.5% 2.5% 2.8

cosine 904 1335 36 142 12031 39.5 1 406 524 15% 77.5% 7.5% 12.2

unigrams + bigrams + trigrams:
expectation 236 660 9 450 3249 59.9 541 171 15% 82.5% 2.5% 3.4

cosine 793 1027 31 714 12052 50.9 1 587 438 15% 75.0% 10.0% 17.3

Table 3.3: Efficiency results for test set: binary weights

If the discriminatory power of the term weights is indeed responsible for the effec¬
tiveness of cosine and expectation-based search, binary term weights should be least
efficient. Table 3.3 shows efficiency results for the different ranking variations using bi¬
nary term weights. (Depth-first and breadth-first search do not need to be re-evaluated
as they are not affected by the weighting scheme.) When using expectation-based
priorities, binary weights are always slower than their tf.idf counterpart. However,
cosine-based search only seems to be slower for binary weights as long as unigram
terms are not part of the term representation. In fact, a system using pure binary uni¬

gram terms is significantly faster than a system using tf.idf weighted unigram terms.
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3.3.3.1 Discriminatory power of term representations

Above, it has been suggested that the term weighting scheme - in combination with the
choice of term representation which in turn influences the distribution of terms - is an

important factor in determining the effectiveness of the expectation-based ranker by al¬

lowing it to distinguish between 'relevant' and 'irrelevant' instances. However, tables
3.2 and 3.3 do not seem to show a strong correlation between the average number of

similarity computations and the runtime. Yet, we expect a reduced number of instances
to be an indicator of efficiency of the expectation-based ranker. One explanation for
the above-mentioned lack of correlation is that in some cases search continues with

edges that have small relevant instance tables but that cannot be dropped, whereas in
other cases, edges can be dropped early. The first case reduces the average number of

similarity computations per edge although the grammar is forced to continue using the

edge. On the other hand, an edge that is dropped quickly cannot help keeping the av¬

erage number of similarity computations per edge down although dropping it reduces
the search space of the grammar. Therefore, the overall number of similarity com¬

putations might be a better indicator of the discriminatory power of term weighting
schemes. However, since different edges are produced for each run, a direct compari¬
son between term representations is made difficult.

To investigate the ranking behaviour of different vector models more directly, we

designed the following experiment: the edges produced in one parameter setting are

dumped into a file (35475 edges, some marked as candidates), and we use different
vector models to score exactly the same edges with the expectation-based ranker (the
issue of what threshold to use is discussed below). The result allows one to determine,
with respect to every edge, the size of the relevant instance table. The smaller the re¬

sulting tables, the greater the discriminatory power of the term representation. This
is because the expectation-based ranker uses all instances for similarity computations
for which it cannot be absolutely sure that the instances are not 'relevant' anymore.

The smaller the instance table, the more precisely the ranker can focus on the relevant
instances. One can liken the size of the relevant instance table to the notion of per¬

plexity in speech recognition (see Jurafsky and Martin, 2000, for example) because it

represents the number of choices for the nearest-neighbour when the edge is combined
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again.
In the experiment, we first compute the expectations for the entire instance base for

each edge. Then, the expectations are checked against the threshold to determine the
size of the relevant instance table. (This is necessary because the dumped edges have
no predecessors from which to inherit an already reduced relevant instance table. In
the real system, the updated relevant instance table is used only when the scored edge
is combined with another one. In a sense, the experimental set-up therefore implies
immediate reuse of the scored edge, i.e. depth-first style search. In other words, the
threshold cannot change between computing the instance table and using it.)

There are two options at this point: one can use the 'real threshold' defined by the
best candidate at any point a new edge is produced, or one can define a fixed threshold.
A fixed threshold has the advantage of being neutral with respect to the term weighting
scheme, allowing a direct comparison between term weighting schemes. On the other
hand, the actual candidate score (which is affected by the term representation) should
give a better indication of the real effects of the term weighting scheme.

Figure 3.7: Reduction of instance tables for different fixed thresholds

Figure 3.7 shows the average numbers of instances on which the dumped edges
have an expectation higher than fixed thresholds between 0.0 and 1.0 (computed for
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0.0, 0.1, 0.2 etc). Three different term representations (unigram/bigram/trigram) and
two term weighting schemes have been used (binary versus tf.idf). Detailed figures

including standard deviations and the actual thresholds defined by the score of the cur¬

rent best candidates are given in table 3.4. Figure 3.7 is intended to give an impression
of the sizes of the relevant instance tables. For all vector models, edges always have

expectations larger than 0. Thus, for a threshold of 0, there are always 100 instances
to consider. As the threshold increases (moving to the right on the x-axis), different
vector models reduce the number of instances to different extent. In general, and this
is the main result of figure 3.7, tf.idf weighted terms (dotted lines) reduce the number
of instances further than their binary weighted counterparts (straight lines). Moreover,
the lines seem to be clustered according to the weighting scheme rather than term rep¬

resentation, suggesting that the weighting scheme has a stronger influence on the size
of the instance set than the term representation.

threshold urograms bigrams trigrams
binary tf.idf binary tf.idf binary tf.idf

0.0 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
0.1 100 (0.0) 99.9 (0.4) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
0.2 100 (0.0) 96.9 (3.0) 100 (0.0) 99.5 (0.9) 100 (0.0) 99.9 (0.4)
0.3 100 (0.0) 92.3 (5.1) 100 (0.0) 95.6 (4.1) 100 (0.0) 97.4 (2.6)
0.4 100 (0.0) 86.5 (8.4) 100 (0.0) 88.6 (6.8) 100 (0.0) 91.3 (5.9)
0.5 100 (0.0) 78.7 (12.7) 99.9 (0.2) 79.8 (10.5) 99.8 (0.6) 81.9 (10.0)
0.6 99.8 (0.4) 68.3 (18.6) 98.1 (3.8) 66.5 (17.0) 96.8 (4.9) 68.4 (15.8)
0.7 96.4 (5.5) 53.5 (25.3) 87.2 (13.0) 45.8 (24.8) 83.0 (16.8) 45.7 (25.2)
0.8 75.1 (20.0) 34.3 (29.0) 50.7 (29.0) 21.9 (25.3) 44.5 (31.2) 19.7 (25.5)
0.9 23.9 (27.2) 15.4 (25.0) 10.8 (22.8) 6.5 (18.8) 9.7 (23.5) 5.8 (19.3)
1.0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

by cand: 54.4 (42.5) 42.8 (44.6) 68.2 (39.1) 55.7 (41.9) 76.4 (33.0) 62.5 (40.0)

Table 3.4: Number of instances used with different thresholds

Table 3.4 shows that for any term representation, the binary weighted variant needs
to use the entire instance base (100 instances) up to a larger fixed threshold than its

tf.idf counterpart. In general, as the average size of the instance tables is reduced,
the standard deviation (in brackets) increases (there is more 'room' for variation). The
most efficient reduction of the instance table size is achieved by tf.idf weighted uni-

grams for a fixed threshold up to 0.5, and by tf.idf weighted bigrams for a threshold
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larger than 0.5. (In table 3.4, the smallest table size for each fixed threshold is shown
in bold face.)

Table 3.4 also shows the (more realistic) instance numbers resulting from a thresh¬
old defined by the score of the best candidates ('by cand')- However, relating the
instance table sizes in this 'batch experiment' to the real table sizes (and ultimately the
real runtime) is not straightforward: according to the experiment (where the thresh¬
old is defined by the candidate), unigram terms should be most efficient for both term

weighting schemes because the instance table sizes are the smallest (for both binary
and tf.idf weighted terms, respectively). This is generally not the case, as tables 3.2
and 3.3 show (with the exception of binary weighted unigram terms and cosine-based

agenda ordering). An explanation might be found in the influence of agenda ordering
and edge droppings on real system performance. On the other hand, figure 3.7 shows
that for fixed thresholds the instance tables are largest for binary weighted unigram
terms and these result indeed in a relatively bad performance of the real system. Still,
we have to conclude that the efficiency of the ranker cannot directly be predicted by
the discriminatory power of the term weighting scheme alone.

3.4 Lowering the expectation

A crucial prerequisite in any application of the A* algorithm is the definition of an

optimistic heuristic for the best possible future score. So far, the expectation has been

computed under the assumption that all terms that are still missing in an edge w.r.t.
some instance will eventually be added by future extensions of the edge. This is an

overly optimistic assumption, begging the question whether the expectation can be
lowered without giving up on the admissibility of the algorithm. (An alternative is to

drop admissibility in favour of approximate, or 'almost admissible' algorithms. We
will not pursue this line of research here.)

For the task of lowering the expectation, it is necessary to identify those instance
terms that cannot possibly be added to a given edge. In general, there are two deter¬
minants that influence edge construction (and therefore also term construction): the

input and the grammar. One possibility - which will not pursue here - might be to
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inspect the grammar and define a form of reachability for terms. However, the input
itself affects the term representation in a very direct way since the input tags become

part of the term representation. Therefore, we can exclude from the computation of
the expectation terms that contain tags that do not occur in the input. The insight here
is that the grammar will never be able to produce edges that contain semantic tags not

found in the input. Consequently, instance terms that contain such semantic tags can¬

not be expected to be matched by some edge. We can therefore exclude them from the

computation of the expectation.

This semantic term exclusion technique is applicable as long as the semantic input
is not presented to the generator in an incremental way. As long as this can be assumed,
semantic term exclusion can always be employed.

In an implementation of semantic term exclusion, the instance terms that cannot

possibly be produced can be computed once when the input is known: Semantic term
exclusion does not depend on the properties of edges. However, in order to take into
account the excluded terms, the computation of the expectation described in section
3.2.1.1.1 needs to be changed. More specifically, the magnitude of the vector repre¬

senting the best possible edge needs to be computed from scratch, making use only of
non-excluded terms.

Semantic term exclusion lowers the expectation and therefore makes it harder for
instances in the relevant instance tables to pass the threshold. Increased efficiency is
the result. For example, the individual run examined in detail in section 3.3.1 now only

generates 51 edges instead of 91 to find the first candidate with a score of 1.0.

Tables 3.5 and 3.6 show that a system employing semantic term exclusion is faster
than a system without it (tables 3.2 and 3.3). In particular, expectation-driven search
with unigram term representations (and both binary and tf.idf weights) experiences a

remarkable speed-up. This is reflected in a significantly lower number of edges, can¬

didates and overall similarity computations. There are only two cases where seman¬

tic term exclusion seems to slow down processing (cosine-driven search with mixed

ngrams and tf.idf weighting). A possible explanation might be the larger term repre¬

sentations in combination with the large number of similarity computations which are

slightly more expensive as the expectation is built up from scratch.
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agenda E G£ IE XC sim YjSim Q-empty 1.0 t-out t

unigrams:
expectation 89 98 3 549 447 53.3 175 775 17.5% 82.5% 0% 0.6

cosine 653 555 26 122 2705 47.8 1 198 783 17.5% 80.0% 2.5% 8.5

bigrams:
expectation 59 36 2 374 190 77.9 178 832 17.5% 82.5% 0% 0.5

cosine 816 1847 32 653 5089 25.4 776 302 17.5% 77.5% 5.0% 7.0

trigrams:
expectation 104 156 4 168 517 63.6 240 829 42.5% 57.5% 0% 1.2

cosine 472 1133 18 860 5767 30.5 554 000 40.0% 57.5% 2.5% 5.0

unigrams + bigrams:
expectation 57 32 2 287 217 78.5 172 100 17.5% 82.5% 0% 0.7

cosine 806 1080 32 226 6945 42.6 1 334 113 17.5% 72.5% 10.0% 20.2

unigrams + bigrams + trigrams:
expectation 81 127 3 256 448 67.2 205 471 17.5% 82.5% 0% 1.2

cosine 764 764 29 291 5330 49.0 1 403 193 17.5% 62.5% 20.0% 26.3

Table 3.5: Efficiency results for test set: semantic term exclusion, tf.idf weights

agenda E oE IE XC sim X sim aempty 1.0 t-out t

unigrams:
expectation 107 160 A 212 623 59.4 237 349 15% 82.5% 2.5% 2.5

cosine 325 895 13 017 2690 23.0 284 047 15% 82.5% 2.5% 2.7

bigrams:
expectation 165 255 6 588 1327 28.3 175 744 50.0% 50.0% 0% 1.0

cosine 1062 1995 42 464 8140 23.2 922 695 55.0% 37.5% 7.5% 9.7

trigrams:
expectation 370 1649 14 795 6453 17.6 250 428 15% 82.5% 2.5% 2.3

cosine 535 1368 21 413 6447 15.5 324 803 15% 80.0% 5.0% 5.8

unigrams + bigrams:
expectation 82 92 3 299 411 55.9 175 003 17.5% 82.5% 0% 1.3

cosine 612 994 24 475 6012 30.9 732 135 17.0% 82.5% 0% 9.4

unigrams + bigrams + trigrams:
expectation 111 204 4 446 694 44.1 182 089 17.5% 82.5% 0% 2.1

cosine 595 822 23 787 6286 32.4 753 578 15.0% 75.0% 10.0% 13.8

Table 3.6: Efficiency results for test set: semantic term exclusion, binary weights
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3.4.0.2 Discriminatory power

In section 3.3.3.1, we described a batch experiment that allows one to test the discrim¬

inatory power of vector models more directly by scoring exactly the same edges for
all models. Semantic term exclusion can be expected to reduce the size of the relevant
instance tables in comparison to a vector model without semantic term exclusion. To
test this hypothesis, we ran the batch experiment for binary and tf.idf weighted mixed
ngram terms (uni/bi/trigrams) using semantic term exclusion.

threshold for edge expectations

Figure 3.8: Semantic term exclusion reduces instance table sizes (mixed ngrams)

Figure 3.8 shows a clear reduction in the instance table sizes for fixed thresholds
for both binary and tf.idf weighted terms. This explains the efficiency gains obtained
by semantic term exclusion when comparing the results of tables 3.2 and 3.3 to tables
3.5 and 3.6.

Table 3.7 details the average table sizes and standard deviations (in brackets) for
fixed thresholds as well as for the actual thresholds defined by the current best candi¬
dates. For the latter, realistic thresholds, the system also shows a significant reduction
of the table sizes, for example from 68.6 to 42.2 instances for binary weighted terms.
In addition, table 3.7 shows the average threshold values that are used when the cosine
of the best previously occurring candidate defines the threshold (1 cos thres'). These
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threshold binary tf.idf

standard sem excl. standard sem excl.

0.0 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
0.1 100 (0.0) 100 (0.0) 100 (0.0) 96.2 (4.4)
0.2 100 (0.0) 100 (0.0) 99.7 (0.8) 79.7 (10.7)
0.3 100 (0.0) 99.3 (1.4) 96.4 (3.4) 59.8 (14.9)
0.4 100 (0.0) 94.0 (6.9) 89.8 (6.4) 39.6 (16.9)
0.5 99.9 (0.1) 78.6 (14.2) 80.9 (10.2) 21.7 (15.9)
0.6 98.9 (2.5) 51.3 (19.6) 67.9 (16.1) 9.4 (12.1)
0.7 89.7 (11.0) 21.7 (17.3) 47.0 (25.0) 3.4 (7.5)
0.8 56.2 (28.5) 5.0 (9.0) 21.9 (25.5) 1.0 (4.3)
0.9 12.6 (24.5) 0.7 (2.6) 6.4 (19.0) 0.3 (1.8)
1.0 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.01 (0.1)

by cand: 68.6 (39.3) 42.2 (45.1) 60.1 (40.7) 38.6 (45.0)
cos thres: 0.52 (0.37) 0.52 (0.37) 0.47 (0.35) 0.47 (0.35)

expect edges: 0.92 (0.04) 0.83 (0.06) 0.88 (0.06) 0.73 (0.09)

Table 3.7: Semantic term exclusion: instance table sizes for mixed ngrams

are not affected by semantic term exclusion. On the other hand, the average expecta¬

tion of the edges (1 expect edges') is reduced by semantic term exclusion, making it
harder for the expectations to pass the thresholds.

This concludes the efficiency evaluation of the basic generation system and a first

improvement. We have demonstrated that instance-based NLG can be fast. In chapter
7, we will introduce extensions motivated by the actual output of the generator. These
extensions will then be re-evaluated, including considering the issue of scalability (in
terms of the number of rules and instances) of the proposed generator (see section 7.5).

3.5 Generality of expectation-based ranking

The expectation-based approach to instance-based ranking makes a number of basic

assumptions about the grammar and the distance metric. If these are met, the proposed

algorithm should be portable to other systems.

Firstly, it is assumed that edges are always extended monotonically. More specifi¬

cally, terms are not allowed to be removed or altered since this could invalidate previ¬
ous pruning of instances in the relevant instance table. This assumption is met by any

standard chart algorithm that forms new edges by concatenation. (It should be noted
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that in a unigram bag-of-words model, this requirement still leaves the possibility of
word reordering by grammatical operations since this does not affect the term repre¬

sentation.) Moreover, as will become clear in chapter 6, an expectation-based ranker
can interface with any standard chart generator. All that is required is access to newly

generated edges (and their content for scoring) before they enter the agenda.
A further point concerns the applicability of the expectation-based ranking method

to other distance metrics under the assumption of bag-of-words representations. The
basic idea of an expectation is to add all missing instance terms to the edge represen¬

tation and compute the distance of the extended edge representation to the instance.
For other distance metrics to apply, it needs to be guaranteed that the extended edge

representation is indeed the optimal monotonic extension of the edge. Here, we in¬
troduced a boundary on the frequency of edge terms to avoid excessive repetitions of
terms. Similar measures might be required for other distance metrics as well.

3.6 Dynamic programming algorithms for ranking

Dynamic programming algorithms are commonly used in probabilistic chart parsing
and also in statistical generation (Langkilde, 2000). These algorithms are similar to

the Viterbi algorithm used for finding the best path (state sequence) in Hidden Markov
Models (Huang et al., 2001). Because of their general usefulness and widespread

adoption, in the following we investigate whether dynamic programming algorithms
can also be employed for instance-based ranking.

The basic idea of these dynamic programming algorithms is to reuse (in most cases

probabilistic) internal scores of partial results in larger contexts. In this sense, they are

quite similar in spirit to non-probabilistic chart algorithms. The requirement for this to

work is the independence from the context of the internal scores: future combinations
of these results are not allowed to change the scores. The scores of the partial results
can then be used as building blocks to compute the score of larger elements. For
instance, in parsing with probabilistic context-free grammars (PCFGs), the probability
a language model assigns to a constituent, say, PP, should not change when the PP is
combined with other constituents. If this is guaranteed, the internal score of the PP
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can be reused in any number of combinations without recomputation.
In addition to internal scores which are based on independence assumptions about

the language model being used, external scores are context-dependent. For example, if
a bigram language model is used to score sequences of terminal symbols, the first and
the last words of a sequence are externally relevant since they will be part of bigrams
that are not yet known. In contrast, the (internal) score of the sequence in between the
first and the last word can be reused.

An important advantage of probabilistic dynamic programming algorithms is their
ability to safely prune away edges that have the same externally relevant features for
further combinations but lower internal scores. In other words, the algorithm forms

equivalence classes of edges and prunes within these classes. For example, let us

assume a statistical generator has produced a number of edges with the same semantics
and syntactic category. If the generator uses a bigram language model, it needs to

separate these edges into classes containing the same first and last word. It can then

drop all edges in their respective classes except the ones with the highest internal score.

An example is given in (Langkilde, 2000). The details of forming equivalence classes

depend on the grammar as well as the language model. The members of each class
need to be exchangeable with respect to both the grammar and the language model:
in addition to the externally relevant features for scoring by the language model, the
details of the grammar formalism determine how many edge properties need to be
taken into account.

Considering dynamic programming algorithms of the form just outlined, the ques¬

tion arises whether we can adapt them to the case of instance-based ranking. There
are at least two aspects of the instance-based ranking algorithm that distinguish it from
standard probabilistic chart algorithms:

1. Each edge has as many scores as there are instances in the instance base. In
contrast, language models assign unique scores.

2. The similarity computations work on global bags-of-words: matches and mis¬
matches between edge and instance are calculated by considering all terms of the

respective term representations regardless of the place in the original structure
from which the terms are derived.
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In the following, we investigate the consequences of these differences for a ' Viterbi-

style instance ranker':

1. Unique versus multiple scores. The first difference poses the following prob¬
lem: In general, we are always interested in the single best score for some edge
out of the larger number it is assigned. If we form grammar-based equivalence
classes for edges (say, for edges that have the same semantics and syntactic

category), we would prune all non-best edges regardless of the instances that
'caused' the scores. However, if two of the supposedly best edges are combined,
the result needs to be scored w.r.t. to the same instance. As a result, at least one

of the edges to be combined will most likely have to be matched against a differ¬
ent instance than the one for which it previously received its high score. This in
turn will result in a non-optimal overall score for the new edge. In other words,
without modification, a Viterbi-style algorithm is is unlikely to combine edges
that are optimal w.r.t. the same instance. Figure 3.9 shows a table which holds
the best cosine encountered so far for classes of edges defined by their category
and semantics. We hold that such a table is non-optimal as it conflates scores

derived from different instances.

The remedy for this problem is to maintain a separate table for each instance
within each class, and keep edges as long as they have a better score than previ¬

ously seen on at least one instance. An example of such a table is given in figure
3.10. The changes to the chart algorithm just outlined extend it to the case of
several instances, i.e. several 'evaluation functions'.

2. Globality of bag-of-words models. The second difference concerns the global
nature of bag-of-words models. Pruning edges requires the definition of an in¬
ternal score that is not dependent on any context. Bag-of-words models seem to
contradict this idea. Let us assume that we are combining two edges that both
have the highest score in their equivalence classes. Theoretically, this does not

guarantee the best overall score of the combined edge in (at least) two situations:

(a) If the subedges of the combined edge have overlapping term representa¬
tions, the upper bound on matching edge terms will punish the combined
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thresholdTable = { Catl -> { Semi -> scorell,
Sem2 -> scorel2,
Sem3 -> scorel3,
... },

Cat2 -> { Semi -> score21,
Sem2 -> score22,
Sem3 -> score23,
... },

... }

Figure 3.9: Incorrect: threshold scores conflating instances in Viterbi-style algorithm

thresholdTable = { Catl -> { Semi -> { instl -> scorelll,
inst2 -> scorell2,
... },

Sem2 -> { instl -> scorel21,
inst2 -> scorel22,
... },

...},
{ Cat2 -> { Semi -> { instl -> score211,

inst2 -> score212,
... },

Sem2 -> { instl -> score221,
inst2 -> score222,
... ),

... },
... }

Figure 3.10: Thresholds stored per instance in Viterbi-style algorithm
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edge for excessive repetitions of the same terms. This problem is a result of
the globality of bag-of-words models because edge terms can be matched
with instance terms representing any part of the original instance.

An example might help explaining this point. Consider an instance repre¬

sented by the three terms a,b,c and an edge e\ represented by a,b. Further
combinations of e\ should preferably contribute the term c to yield a per¬

fect match with the instance. If we have two edges e2 : a,b and e3 : c of
the same equivalence class competing to be combined with e\, we would
clearly prefer e3. However, in dynamic programming, <23 might have been
pruned away already since e2 has a higher overlap with the instance than
e3.

(b) Long versus short edges: Even if the term representations of subedges
do not overlap, there is a possibility that short edges that are needed in
a larger context receive a lower score. For example, with respect to an

instance a,b,c,d, an edge a is assigned a lower score than an edge a,b,e
despite the non-matching term in the latter.6 If both edges compete within
the same equivalence class, the shorter edge will be pruned away although
it might be needed later during processing. This problem is again a re¬

sult of the global nature of bag-of-words models because both edges are

matched against the entire instance bag-of-words (rather than a local area,

for example).

It should be emphasized that the globality problem even affects the solution for the
problem of multiple scores in figure 3.10 because the use of bags-of-words represen¬

tations remains unchanged.

3.6.1 Implementation experiment

To investigate these considerations, we implemented two versions of a Viterbi-style
instance ranker and tested it on 10 inputs for which the expectation-based ranker is able

6Under the assumption of binary weighted unigram terms and a cosine distance metric, edge a has a
cosine of 0.25 with the instance; edge a,b,e has a cosine of 0.57.
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to exhaust the agenda. The systems were required to express the entire input to produce
more edges on average. This can generally be expected to result in longer runtimes per

input (see section 7.4 for a detailed discussion of completeness). Like the expectation-
based ranker, but unlike breadth-first and depth-first search, the Viterbi rankers need to

compute similarity scores for each edge rather than just for each candidate. The score

is used to determine the agenda ordering. In contrast to expectation-based search, the
Viterbi rankers have to use the entire instance base.

ranker type cos c(cos) IE X sim sim t

unigrams, tf.idf
expectation 0.953 0.057 4 972 175 933 40.0 7.0

viterbi-single 0.81 0.11 1 960 196 000 100 1.9

viterbi-multi 0.951 0.058 16 932 1 693 200 100 24.3

unigrams, binary
expectation 0.95 0.06 10 395 196 175 19.6 13.6

viterbi-single 0.92 0.07 2 088 208 800 100 2.0

viterbi-multi 0.95 0.06 9 203 920 300 100 11.2

bigrams, tf.idf
expectation 0.906 0.083 9 287 134 123 15.0 9.0

viterbi-single 0.66 0.13 2 654 256 900 96.8 3.0

viterbi-multi 0.906 0.083 17 171 1 708 600 99.5 25.4

bigrams, binary
expectation 0.894 0.11 9 170 205 281 23.4 9.0

viterbi-single 0.825 0.12 2 817 273 200 97.0 3.1

viterbi-multi 0.892 0.111 13 319 1 323 400 99.4 20.6

trigrams, tf.idf
expectation 0.839 0.1136 14 920 203 144 14.0 14.3

viterbi-single 0.64 0.13 2 363 220 800 93.4 2.7

viterbi-multi 0.838 0.114 10 709 1 055 400 98.6 20.8

trigrams, binary
expectation 0.827 0.145 22 653 382 361 17.5 30.1

viterbi-single 0.74 0.16 2 756 260 100 94.4 3.1

viterbi-multi 0.824 0.146 10 212 1 005 700 98.5 14.0

Table 3.8: Results for Viterbi-style and expectation-based rankers

Table 3.8 shows the results for six different term representations. Ranker type

viterbi-single refers to a ranker that keeps a single best score for each equiva¬
lence class as depicted in figure 3.9. Ranker type viterbi-multi refers to a sys-
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tem that separates scores according to instances within each class (see figure 3.10).
Our main concern is the cosine score of the best candidates. Since we know that the

expectation-based ranker finds optimal candidates as long as it is able to exhaust the

agenda, achieving its cosine results should be the aim of the Viterbi rankers.

3.6.1.1 Unigramterm representations

We set out by testing the rankers in combination with unigram, tf.idf-weighed term

representations. As predicted, the single-score Viterbi ranker clearly misses the best

possible scores. However, it is very fast because it drops a large number of edges (in

many cases, more than 50% of the newly produced edges). The multi-instance Viterbi
ranker produces better candidates than the single-score version. In fact, the candidates

generated by the multi-instance Viterbi ranker seem to be almost as good as those of
the expectation-based ranker. In six cases, the candidates and scores were exactly the
same; in four cases, the expectation-based system generates slightly better candidates.
These differences result in different candidates so that they still have a real effect on

the output of the generator.

For the unigram, tf.idf-weighed term representation, the multi-instance Viterbi
ranker obviously performs surprisingly well in terms of the average cosine score al¬

though it still is much more inefficient than the expectation-based ranker. The theoreti¬
cal problems of using a Viterbi-style ranker in combination with bag-of-words models
mentioned above do not seem to have a big impact - if any at all. To investigate this,
we can ask whether the multi-instance Viterbi system can be improved so that it gener¬

ates the same candidates as the expectation-based ranker in the cases where the outputs

have been different.

It turns out that improving the multi-instance Viterbi ranker is possible: in cases

where an edge does not offer an improvement over another edge on the same instance in
its equivalence class, it has so far been dropped. The multi-instance Viterbi ranker can

be changed so that it keeps edges that are equal in score to the score in the table. As a

result, the Viterbi ranker now generates exactly the same candidates as the expectation-
based ranker. However, this achievement comes at a price: it now exceeds a time limit
of two minutes for 3 out of the 10 inputs, and generates 30 000 edges for the inputs
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within this time frame (versus 4972 of the expectation-based ranker). Furthermore,
the theoretical problems of using a Viterbi ranker in combination with global bags-of-
words representations remain.

In terms of the overall number of similarity computations, the expectation-based
ranker is the most efficient although it does not produce the least edges. It manages to

reduce the average number of similarity computations per edge to 40. In contrast, the
Viterbi rankers have to perform as many cosine computations for each edge as there
are instances in the instance base.

Table 3.8 also shows the results for binary weighted unigram terms. Again, the

single-score Viterbi ranker is fast but produces suboptimal candidates. Both expectation-
based ranker and the multi-instance Viterbi ranker (without the extension just dis¬
cussed) produce exactly the same candidates. The multi-instance Viterbi ranker even

is faster than the expectation-based ranker. However, as the efficiency evaluations in
section 3.3 have shown, binary weighted unigram terms seem to be particularly diffi¬
cult for the expectation-based ranker (because discrimination between edge-instance

pairs is made difficult).
A further observation concerns the t/-boundary on matching terms. The boundary

affects almost exclusively unigram models. In other words, only when using unigram
terms are there cases where edges have a higher number of terms of a certain kind
than the instance. Obviously, individual words like determiners are more likely to

be used repeatedly than higher order ngrams. Therefore, the cosine function of the
Viterbi rankers also needs to take the tf-boundary into account. Apart from changing
the actual candidates, this is required for a detailed comparison of the scores between
Viterbi ranker and expectation-based ranker since both need to assign exactly the same

score to the same candidates.

3.6.1.2 Bigram and trigram term representations

Bigram terms that are weighted according to tf.idf result in exactly the same can¬

didates for both expectation-based ranker and multi-instance Viterbi ranker. How¬
ever, the expectation-based ranker is significantly faster than the multi-instance Viterbi
ranker (9 versus 25.4 seconds). Again, the multi-instance Viterbi ranker is not able
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to reach the efficiency scores of the other rankers. The average number of similarity

computations per edge is slightly lower than 100, the size of the instance base. This
is because with ngrams with n > 2 there can be edges that are too short to allow the
construction of at least one term, i.e. their term representation is empty. In such cases,

we keep the edge since there is no reason yet to drop it.
For binary weighted bigram terms, the results are similar with the exception that

for one input, the multi-instance Viterbi ranker does not produce the candidate of the

expectation-based ranker but a lower scoring one. The optimal candidate can be pro¬

duced by keeping new edges that score equally well as the best old ones in their class.
However, processing the input in question now requires 6:05 minutes versus 12.8 sec¬

onds for the expectation-based ranker.
For trigram terms weighted according to tf.idf, a similar picture can be observed.

Expectation-based search is faster than the multi-instance Viterbi ranker. Both differ
only w.r.t. a single input. If the multi-instance Viterbi ranker is to find the same

candidate as the expectation-based ranker, it needs to keep equal edges. However, the

system runs out of memory after the candidate has been found.

Binary weighted trigram terms show a different picture. Again, the multi-instance
Viterbi ranker produces the same candidate with one exception. It does not produce
a better candidate when keeping equal edges before memory problems occur. Despite
this, the previous experiments suggest that obtaining the optimal candidate should be

possible.
However, for binary weighted trigram terms, the expectation-based ranker also en¬

counters problems for one of its inputs where it does not terminate within the two

minute time limit. This leads to the high average time requirement of 30.1 seconds
shown in table 3.8. A closer inspection of the run in question reveals that the best
candidate - although being produced after 3 seconds - does not yield a threshold high
enough to prune the remaining search space sufficiently.

3.6.1.3 Time limits

The above-mentioned observation that the best candidate for one particular input was

found early during processing begs the general question how long it actually takes the
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rankers to produce the best candidates, and whether there can be a general guideline
for a sensible time limit. Tables 3.9 and 3.10 detail the runtime in seconds until the

best candidate is produced for the three vector models. Time requirements greater than
10 seconds are shown in bold face.

input no unigrams tf.idf bigrams tf.idf trigrams

expect Vm expect Vm expect Vm

1 6 6 3 18 4 4

2 1 3 1 3 1 1

3 1 4 1 7 2 9

4 1 1 1 2 1 1

5 22 13 3 3 2 9

6 2 2 1 31 9 11

7 1 6 1 3 3 10

8 6 42 10 13 8 6

9 1 33 2 19 3 4

10 2 22 3 9 4 9

average 4.3 13.2 2.6 10.8 3.7 6.4

a 6.5 14.4 2.8 9.5 2.8 3.7

tend 7.0 24.3 9.0 25.4 14.3 20.8

Table 3.9: Runtime until best candidate found: tf.idf weights

The third last rows in tables 3.9 and 3.10 show the average time to the best can¬

didate. The last rows show the average time it takes to exhaust the agenda (which is
also displayed in table 3.8). Both expectation-based ranker and multi-instance Viterbi
ranker are able to produce the best candidate quickly but require more time to finally
exhaust the agenda. For both tf.idf and binary weighted terms, the general picture is
that the expectation-based ranker finds the best candidate more quickly - with the ex¬

ception of binary trigram terms. There are 3 cases where the expectation-based ranker
requires more than 10 seconds to produce the best candidate, compared to 16 cases

for the multi-instance Viterbi ranker. The standard deviation of the times to the best

candidate (second row from the bottom) tends to be lower for the expectation-based
ranker. In other words, the expectation-based ranker is more consistent in its time re¬

quirements, making it easier to define a time limit. In this experiment, a time limit of
less than 15 seconds seems to be appropriate for the expectation-based ranker.
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input no unigrams binary bigrams binary trigrams binary
expect Vm expect Vm expect Vm

1 3 3 5 7 8 3

2 1 1 1 2 1 1

3 2 2 1 4 1 3

4 2 1 2 2 3 1

5 8 12 7 31 6 12

6 2 5 1 15 1 6

7 1 4 4 8 3 4

8 4 34 2 57 9 8

9 1 4 5 5 9 2

10 13 3 3 22 4 1

average 3.7 6.9 3.1 15.3 4.5 4.1

a 3.9 10.0 2.1 17.5 3.3 3.6

tend 13.6 11.2 9.0 20.6 30.1 14.0

Table 3.10: Runtime until best candidate found: binary weights

3.6.2 Combining expectation and Viterbi ranker

The greater speed of the multi-instance Viterbi ranker at least in some cases raises
the question whether expectation-based ranker and Viterbi ranker can be combined.
However, as pointed out above, a disadvantage of the Viterbi ranker is the need to

score the edges on all instances. In contrast, a key benefit of the expectation-based
ranker is its ability to reduce the number of instances to be considered. A combination
of the ranking methods should inherit this trait from the expectation-based ranker.

A possible solution is offered by the concept of a relevant instance table which is
used by the expectation-based ranker. It implies that those instances that cannot be
found in the table are deemed to be 'irrelevant'. Thus, it should not matter that a score

on some irrelevant instance is unknown for a given edge. For keeping an edge, we

would therefore require it to show an improvement of the score on at least one instance
in its equivalence class in the Viterbi table (where adding a new instance to the class
also counts as an improvement).

Implementing such an additional 'Viterbi filter' for the expectation-based ranker in
the end is quite similar to a redundancy check. The Viterbi check needs to be performed

after expectation-based ranking has taken place because it needs the results of ranking
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(which then always needs to compute the cosine in addition to the expectation). Thus,
the Viterbi check adds another step to the ranking algorithm outlined in section 3.2.1.2
(after step 3).

ranker type cos o(cos) IE YjSim sim t

trigrams, tf.idf
expectation standard 0.839 0.1136 14 920 203 144 14.0 12.4

expectation Viterbi filter 0.839 0.1136 13 946 202 116 15.0 9.8

trigrams, binary
expectation standard 0.827 0.145 22 881 383 833 17.4 25.7

expectation Viterbi filter 0.827 0.145 21 121 377 922 18.5 17.0

Table 3.11: A Viterbi filter can improve expectation-based search

To test the effects of the Viterbi filter on the expectation-based ranker, we used the
same 10 inputs as in the previous evaluation. Table 3.11 shows the results for tf.idf-

weighted and binary trigram terms. It should be noted that the Viterbi check needs to

accept an edge even if it has a score equal to (but not better than) the best previous
score (on the same instance in the same equivalence class) since this was one of the
results of the previous experiments. However, this still does not guarantee optimality
in general.

As table 3.11 shows, the extended expectation-based ranker improves the perfor¬
mance and it is still able to find exactly the same candidates as the standard expectation-
based ranker. The speed-up is limited in the case of tf.idf-weighted trigram terms but

quite substantial for binary weighted trigram terms. In particular, it is now able to
avoid the time-out for one of the inputs from which the standard expectation-based
ranker suffered.7 Results for the multi-instance Viterbi ranker are not shown in table

3.11 because the earlier results were based on a ranker that drops equal-scoring edges
(and keeping them turned out to be not feasible).

As a result, we conclude that the expectation-based ranker can be extended by a

Viterbi filter. This may avoid problems especially in cases where the best candidate
is not good enough to prune successfully. However, we still maintain that the Viterbi

7The average ranking times of the expectation-based ranker have changed with respect to the previ¬
ous evaluation because of the machine used. This also effects the time-out run to some degree. However,
experiments are always run in a row to ensure comparability.
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filter is potentially liable to theoretical problems even if these could not be verified in
the experiments. Thus, it should only be used after the optimal results have been es¬

tablished by the standard expectation-based ranker (as was done in these experiments).

3.6.3 Summary of Viterbi implementation experiment

The inputs for the evaluation in this section were chosen so that the rankers were able
to produce complete candidates and exhaust the agenda. Keeping in mind that the
number of inputs is limited, we draw the following conclusions:

• A Viterbi ranker that does not distinguish between instances is not able to deliver

optimal candidates.

• A Viterbi ranker that separates similarity scores w.r.t. to different instances can

achieve the same (optimal) results as the expectation-based ranker in most cases.

However, to obtain the same results for all tested inputs, it also needs to keep
edges that score as well as the best old ones in their class. This leads to pro¬

hibitive runtime requirements - unless a time limit is used (see below). More¬
over, even keeping new edges that score as well as the best ones in their class
does not guarantee optimality in general.

• The expectation-based ranker performs better than its competitors when tf.idf
term weights are used.

• For binary term weights, the expectation-based ranker can encounter efficiency
problems (although this seems to be rare).

• It is possible to empirically determine a time limit for both the expectation-based
ranker and the multi-instance Viterbi ranker that ensures that an optimal candi¬
date is found in most cases. The multi-instance Viterbi ranker is less consistent

in its time requirements, making it harder to define the time limit.

• It is possible to combine expectation-based ranking and Viterbi-style ranking
while still avoiding similarity computations on the entire instance base. An
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expectation-based ranker extended by a Viterbi filter seems to improve effi¬

ciency. However, such a combination also inherits the 'globality problem'.

• The theoretical problems of using a Viterbi-style algorithm in combination with
bag-of-words instance representations identified could not be verified.

The latter point merits a further look. The theoretical problem of globality might
not occur because edges in their equivalence classes have roughly the same length
(after all, they cover the same semantic subset of the input). Furthermore, in general
there seems to be little overlap between the edges which can be explained by the fact
that terms cover different semantics, and different semantics tends to be mapped to
different terms. The exception are unigram terms which have overlapping term repre¬

sentations. However, the t/-boundary does not seem to distort the determination of the
best 'local' edge even in this case.

As a result of the evaluation experiment, we can establish that a Viterbi-style ranker
that distinguishes between instances could be used as a practical alternative to the

expectation-based ranker for our test data. However, the theoretical problem of non-

optimality remains so that it is difficult to say how the Viterbi-style ranker will per¬

form on other test data. Expectation-based and Viterbi-style ranker do not seem to be

mutually exclusive, despite the fact that one draws on ideas of A*-search, the other on

concepts taken from probabilistic chart algorithms. Although for most term representa¬
tion and weight combinations, the expectation-based ranker exhausts the agenda more

quickly, binary weighted models might benefit from the Viterbi ranker, or a Viterbi
filter within an expectation-based ranker. However, it should be emphasized that eval¬

uating the Viterbi rankers was only possible because we also have an admissible al¬

gorithm that is guaranteed to find the optimal candidate(s). Only by means of the

expectation-based ranker can we verify whether the multi-instance Viterbi ranker en¬

counters problems in other domains or when using other term representation schemes.

3.7 Conclusion

In this chapter, we have presented an instance-based ranking algorithm for natural lan¬

guage generation. The ranker employs information retrieval methods for the computa-
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tion of similarity scores and applies them to the notion of an 'expectation'. The ranking

algorithm can be regarded as an extension of the A*-algorithm to the case of several
estimation functions, adapted to the chosen distance metric. The algorithm prunes

away combinations of instance-edge pairs that are not expected to result in sufficiently

high similarity scores. The algorithm uses the entire instance base for initial edges and
restricts the number of instances as edges are combined. An edge can be discarded

completely when it has no remaining 'relevant instances'. The overall architecture of
the generator is based on the idea of an interaction between grammar interpreter and
ranker such that both components are able to constrain each other. Furthermore, we

have introduced an adaption of 'Viterbi-style' probabilistic chart algorithms to the task
of instance-based ranking, and have described a combination of the two ranking algo¬
rithms. The efficiency evaluations have shown the feasibility of the proposed methods.

In the following chapters, we describe how grammar rules can be constructed au¬

tomatically from a semantically annotated treebank and how those grammar rules can

be executed using a Rete-based chart algorithm.



 



Chapter 4

Semantic annotation of a domain

corpus

Having described an instance-based ranker for the proposed hybrid surface realizer, we

now need to specify the rule-based component. As outlined in chapter 1, our intention
is to use an existing syntactic treebank to automatically produce a generation grammar.

Developing principles for doing so is intended to reduce the development effort for the

grammar component. It will also help porting the system to other domains for which a

treebank-like corpus can be obtained by using the results of running a statistical parser

on a text corpus. However, we need to add a level of semantic annotation to the tree-
bank which corresponds to the assumed input to the realizer. Only then will we be able
to construct grammar rules that map input semantics to surface strings. This semantic
annotation is domain-specific and is applied manually. It is intended to be declarative
and should not impose any ordering on processing when the annotation is used as gen¬

eration input. Because the level of semantics is similar to that of information extraction

systems, the process of producing the resource for generation grammar construction is
similar to producing training material for an information extraction system (see section

5.7). However, when annotating with the aim of providing generation input, we need
to mark all information that should not be generated without appropriate generation

input. This seems to be in contrast to NLP tasks like information extraction that can

ignore parts of the corpus that are not of interest to the application.

97
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We collected 144 Who's News articles of the Wall Street Journal that are part of
the Penn treebank II (Marcus et al., 1993). This had to be done manually because the
information about the specific origin of the texts was not preserved when the treebank
was compiled. As mentioned before, we limit ourselves to the first sentences of these
articles. In this work, we first annotate the unanalysed corpus and then merge the
semantically annotated corpus with the treebank. (An alternative is to apply the anno¬

tation directly to the treebank.) In this chapter, we describe the first step, the annotation
of corpus sentences.

4.1 Annotating generation templates

The basic idea behind the annotation scheme is to produce generation templates into
which values, or 'slot fillers', can be inserted. Strings marked as slot fillers therefore
need to contain information that can be provided by a content determination compo¬

nent which, for example, may draw on a database. Starting from such templates, our

next goal will be to introduce more flexibility by taking advantage of the constituent
structure provided by the treebank (this will be described in chapter 5).

To define the annotation scheme, we make a number of assumptions. Corpus

strings are marked by tags. Since the generation input is supposed to be 'flat', the
annotation scheme needs to be non-hierarchical as well. Thus, no nesting of tags is

possible. The marked string will be the values of the generation input. It is assumed
that only continuous sequences of words are marked. Generally, these can be of arbi¬

trary length. However, since it should be possible for a content determination module
to provide the marked information, we aim at marking factual information as 'nar¬

rowly' as possible. (11) gives a (generalized) example without introducing specific tag

names:

(11) [TAG Pierre Vinken], [TAG 61 ] years old, will join the board as a [TAG nonex¬

ecutive director] [TAG Nov. 29].

Tags are just character sequences without whitespace and, like words, are treated
as atoms by the ranker. Because we intend to merge syntactic treebank and annotation
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at a later stage, the annotation needs to be consistent with the bracketing structure of
the treebank. As we will see below, in some cases treebank words need to be broken

up when we do not want to mark an entire treebank word.
We generally assume that strings marked by a certain tag always have the same

syntactic category. In other words, we are defining equivalence classes that make sure

that a tag's slot fillers are not only semantically but also syntactically substitutable.
This consideration points towards a general requirement of the annotation process:

consistency. When annotating with the goal of producing generation templates, con¬

sistency means that marked strings of the same type (tag) need to be substitutable.

Consequently, a useful tool for developing the annotation scheme is a concordancer
because it allows the annotator to see the same tag in different contexts.

4.2 Defining tag names

The definition of tag names generally starts with a basic semantic category, followed

by more detailed specifications. Although such a system helps the annotation process,

it should be stressed again that tags are treated like atomic symbols by the generation

system. Thus, the system can only test the identity of these symbols (and not their

similarity at the level of more general semantic types, for example). There are four
basic semantic categories in the annotation scheme that are used as first elements in
the final, composed tags:

1. POST: tags referring to the main position of the management succession event,

2. INPERSON: persons occupying posts,

3. OUTPERSON: persons leaving posts,

4. COMP: company descriptions including subsidiaries.

Furthermore, there are tags pertaining to temporal and referring expressions. In the
following, we introduce some of the actually used tags that are based on these main
semantic categories, pointing out particular uses and difficulties. (An exhaustive list
of the semantic tags can be found in appendix B.) The presented annotation scheme
reflects experience gained with earlier versions of the scheme.
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4.2.1 Tags pertaining to the main post

The POST tag prefix refers to the name of the post in the company or organization that
is to be occupied or left. Some examples:

(12) a. ... was named an executive vice president...

b. ... was named president.

c. ... was elected senior vice president, public affairs and advertising,...

Marking post names requires one to handle definiteness. In (12a), the indefinite ar¬

ticle is used to express that there is more than one 'executive vice president' at the
main company. On the other hand, there is only one 'president' and one 'senior vice

president, public affairs and advertising' so no determiner is used in the original texts.

One option would be to simply ignore the existence of determiners and mark all
main positions just as POST. However, since the generator can only see the attributes
of the inputs but not their values, i.e. the strings we are marking, it is not able to distin¬

guish between different values and would thus generate 'was named an president', for
example. Thus, we want to give the generator more guidance. For example, we might
want to simply include determiners in the string marked by POST. However, this is not

possible since it would require discontinuous tags due to intervening material:

(13) ... the 56-year old chairman of ...

If we want to be able to mark the age information as well, we cannot mark 'the' and
'chairman' with the same tag in a non-hierarchical annotation scheme. (Example (13)
shows a different kind of post which is categorized below. However, we want to be

systematic in developing the annotation scheme and apply the same treatment of def¬
initeness throughout the annotation scheme.) Another option is to mark determiners

individually by specific tags. However, we do not want to give the generator explicit
word forms of non-factual information.

Our strategy to solve the problem is to mark posts narrowly, excluding any de¬
terminers, but to distinguish between tags without determiner (P0ST_N0DET, corpus

frequency f=142), indefinite post descriptions (POST.INDEF, f=36) and definite ones
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(POST_DEF, f^O1). Thus, an annotated sentence template contains different usage pat¬
terns for these tags:

(14) ... was named [P0ST_N0DET president], [P0ST_N0DET chief executive officer]
and a [POST_INDEF director] ...

Template (14) shows three coordinated posts. The template expresses, for example,
that the indefinite post is the last one in such a template (empirically true in 5 out of 6
cases of three coordinated posts).

The POST tags just introduced expect as slot fillers singular nouns. There is also a

POST-PLURAL tag (f=7) which will be discussed in section 4.3.
Furthermore, there is a designated tag for becoming a member of a company's

board:

(15) a. ... was elected to the [ POSTJBOARD board] of this ...

b. ... was elected to the [P0ST_B0ARD board of directors] of this ...

In cases like these, no explicit post name is mentioned and the board is referred to by a

definite article. The introduction of the P0ST_B0ARD tag (f=10) prevents the generator

from producing 'was elected to the president of or 'was named a board', for example.
The Wall Street Journal articles also specify a change in the number of board mem¬

bers which we mark in the following way:

(16) a. ... , expanding the board to [BOARD.INCR eight] members.

b. ... , increasing board membership to [BOARD_INCR 14].

The B0ARD_INCR tag has a corpus frequency of 14.
The corpus sentences often provide additional information about the main post.

The filler needs to be an adjective or an adjective phrase (labelled JJ and ADJP in the
Penn treebank):

(17) a. ...the [POSTJDESCR-ADJ additional] post of chairman.
]In the corpus, there is no example of a P0ST_DEF tag which is likely to be due to the fact that we are

generating first sentences. However, we will need a .DEF suffix for cases like (13).
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b. ... , a [ POST JDESCR_A.DJ newly created] post.

In this case, we decided to mention the syntactic category of the slot filler explicitly
in the tag name. However, it should be remembered that all tags are assumed to have
fillers of the same syntactic category.

0195: officer, posts which had been
0197: ner division, was named to the
0206: ent of its technology group, a

0226: rces concern, was named to the
0237: chief operating officer, both
0366: stment Trust, was named to the
0368: tive officer, was named to the
0369: no, resident, was named to the
0512: staurant operator, assumed the
0548: president, was elected to the
0644: tive officer, was named to the
0740: en named regional president, a

26 matches

Figure 4.1: Output of concordancer for annotation tag POST_DESCR_A.DJ

Figure 4.1 shows the output of a simple concordancer which provides the annota-

tor with an overview of the different uses of a tag, in this case the POST_DESCR_ADJ

tag. The numbers to the left of figure 4.1 refer to the corresponding treebank files.
The output of the concordancer shows that one could indeed exchange the slot fillers.
There seems to be little variation within the words marked by POST_DESCR_A.DJ. The
POST_DESCRJ\.DJ tag has a corpus frequency of 25. The context of the tags also shows
that the value of some POST_DESCR-ADJ tags refers to more than one post. This will be
discussed in section 4.3.

Specific geographical locations of the main post are marked by the POST_LOC tag. It

pertains to the place where a person occupying a post is based. The entire NP including
the determiner is marked:

(18) a. ...based in [POST-LOC Tokyo].

b. ... named a vice president in [POST_LOC the Canadian head office].

[POST_DESCR_ADJ vacant] .

[POST_DESCR_ADJ additional] post of group

[POST_DESCR_ADJ new] position.
[POST_DESCR_ADJ additional] post of chief
[POST_DESCR_ADJ newly created] posts, and
[POST_DESCR_ADJ new] post of vice chairma
[POST_DESCR_ADJ additional] post of chair
[POST_DESCR_ADJ new] post of vice chairma
[POST_DESCR_ADJ additional] post of chief
[POST_DESCR_ADJ additional] posts of chai
[POST_DESCR_ADJ additional] post of chair
[POST_DESCR_ADJ new] post at the bank-hol
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The POST_LOC tag (f=4) refers to the physical location of the position, in contrast to

some post names containing a location that further determines the function of the po¬

sition:

(19) ... was named [P0ST_N0DET group head investment banking in Asia], based in

4.2.2 Tags pertaining to persons occupying the main post

The INPERSON-FULLNAME tag (f=139) marks the name of the person assuming the main

position, including initials, titles and appositives such as 'Jr.' and TIT:

(20) a. [INPERSON-FULLNAME Robert G. Walden] was elected ...

b. [INPERS0N2FULLNAME Frank Carlucci III] ...

c. [INPERSON-FULLNAME Gen. Paul X Kelley] ...

d. [INPERSON-FULLNAME G. William Ryan] ...

The first sentences of the corpus articles introduce the person into the discourse. It can

be assumed that the full name is given as far as it is known to the authors of the articles.
The age of the incoming person is marked by INPERSON-AGE (f=56). Only the

numeral proper is marked. In some cases, this leads to marking only a substring of a

word:

(21) a. ..., [INPERSON-AGE 55] years old,...

b. ..., [ INPERSON_AGE 63 ] -year-old chairman of ...

To be able to deal with (21b), the treebank word '63-year-old' needs to be broken up.

We thus converted '(JJ 63-year-old)' into '(CD 63) (JJ -year-old)' in the treebank.
The person assuming a position frequently has other positions in the same or other

companies. We mark these by -OTHERPOST. As for the POST tag, the determiners 'a',
'an' or 'the' are not included in the tagged string. Rather, the presence and type of
determiner is specified in the tag:
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(22) a. George W Koch, 63 years old, [ INPERS0N_0THERP0ST_N0DET president] of
Grocery Manufacturers of America Inc., was elected ... (f=59)

b. Charles S. Mitchell, a [ INPERS0N_0THERP0ST_INDEF vice president] with ...

(f=9)

c. Erwin Tomash, the 67-year-old [ INPERS0N_0THERP0ST_DEF founder] of this
... (f=3)

(22c) shows that the slot filler 'founder' is treated like other ordinary posts.

The name of the company at which additional posts of a person are held is marked
as INPERSON-OTHERCOMP:

(23) George W Koch,... president of [INPERSON-OTHERCOMP Grocery Manufacturers
of America Inc.], was elected ... (f=33)

There are a few special cases concerning the INPERS0N-0THERP0ST tag that are

due to specific slot fillers. The prepositions used to relate INPERS0N-0THERP0ST and
INPERSON-OTHERCOMP are 'of (f=26), 'at' (f=3) and 'with' (f=l). Alternatively, a

comma can be used (f=l). The concordances suggest that the respective slot fillers
are interchangeable. A few cases, however, require a new tag to prevent unwanted
substitutions:

(24) a. ... a [INPERSON_OTHERPOST_PARTNER_INDEFpartner] in [INPERSON-OTHER¬
COMP the Washington law firm of Powell, Goldstein, Frazer & Murphy], ...

(f=l)

b. ... a [INPERS0N_0THERP0ST_C0NSULTANT-INDEF consultant] to [INPERSON-

_0THERC0MP Drexel Burnham Lambert Group Inc.],... (f=l)

Although we want to avoid tying tag names to individual slot fillers, we are forced
to do so here because the prepositions 'in' and 'to' cannot be used in combination
with the more common posts. Note that in (24a) we include the definite article in the
string marked by INPERSON-OTHERCOMP. This is necessary to ensure substitutability
with other, more common fillers of this tag.
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The Wall Street Journal articles also detail previous posts of the incoming person.

These tags are generally analogous to INPERSON-OTHERPOST and INPERSON-OTHERCOMP
above. Again, the variety without determiner is the most frequent one:

(25) a. ..., formerly [INPERSON_PREVIOUSPOST_NODET vice president, West Coast
Operations,] at this ... (f=25)

b. ... a former [INPERSON_PREVIOUSPOST_INDEF chairman] ... (f=0)

The use of the adjective 'former' in between determiner and noun is another example
that motivates our treatment of determiners.

The company at which a previous position was held is marked by INPERSON-
_PREVI0USC0MP (f=10):

(26) a. ..., former president of [INPERSON_PREVIOUSCOMP Toys "R" Us Inc.], ...

b. ..., former chairman of [ INPERSON_PREVIOUSCOMP the Joint Chiefs of Staff],

In most cases, the company name is in fact a proper name (as in 26a). In special cases

like (26b), we include the determiner in the marked string.

4.2.3 Tags pertaining to persons leaving the main post

All INPERSON tags mentioned above can in principle also be used for the person leaving
a position, which is marked by OUTPERSON. Below we give examples of the ones that
are actually required in the first sentence. Although the frequencies of OUTPERSON tags
in the first sentences tend to be low, many more examples can be found in the follow-
up sentences where the articles tend to focus more on the outgoing person. However,
this is outside the scope of this work. We first show some examples of tags that are a

direct adaption of the ones for incoming persons:

(27) a. ....succeeding [OUTPERSON_FULLNAMEErskin N, White Jr.], [ OUTPERSONJtGE

65] years old,...
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b. 51-year-old [OUTPERSON_OTHERPOSTJNODET deputy chairman] of this...,
... has retired ...

c. Christopher Whittington, ... chairman of [OUTPERSON-OTHERCOMP Morgan
Grenfell & Co.],... has retired ...

The OUTPERSON_FULLNAME tag has 23 occurrences in the corpus. Many tags that are

possible following the system developed for the incoming person do not occur in the
first sentences, for example 0UTPERS0N_PREVI0USC0MP, OUTPERSON-PREVIOUSPOST-
_N0DET or 0UTPERS0N_0THERP0ST_INDEF. However, there are also tags that apply only
to the outgoing person. For example, an outgoing person can assume a new post:

(28) ..., succeeding Delmont A. Davis, who was named [0UTPERS0N_NEWP0ST_N0DET

president] ... (f=2)

Both occurrences of OUTPERSONJSfEWPOSTJSfODET refer to a person leaving the main

post but who is assuming a new one. In principle, these persons could as well be

tagged as INPERSONs. The chosen annotation reflects the focus of the article on the
other person assuming the main post.

The person leaving the main post may continue in other positions in the same or

another company:

(29) a. ... , who remains [OUTPERSONJPOSTCONT-NODET chairman]. (f=l)

b. ... , who continues as a [0UTPERS0N_P0STC0NT_INDEF vice chairman] ...

(f=l)

Verbs describing incoming events are not tagged. Thus, we expect the use of these
verbs as part of the template always to be correct if there is an INCOMINGJVLLNAME or

another INCOMING tag. However, in the case of outgoing events the verb can express

the reason for leaving a post. It needs to be tagged as well if we want to avoid tying the

surrounding tags to the particular reasons for leaving a post in individual sentences.
The purpose or reason for leaving a post is marked by OUTPERSON_PRP_VP plus a

time suffix where PRP stands for "purpose and reason" (following Santorini, 1990). A
time suffix is needed to distinguish past tense, present tense and future tense verbs.
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This is intended to prevent a combination of a past tense verb with a date in the future,
for example:

(30) a. , who [OUTPERSON_PRP_VP_PAST resigned] to become president of ... (f=9)

b. ... [OUTPERSON_PRP_VP_PAST has retired] from his executive duties.

c. ... [OUTPERSON_PRP_VP-FUTURE will retire] next April as chairman ... (f=4)

d. ... [OUTPERSON_PRP_VP_FUTURE will take early retirement] from this steel¬
maker ...

e. ..., who [OUTPERSON_PRP_VP_PRESENT is retiring early]. (f=2)

In (30a), the reason for leaving the post is resignation. In the other cases, it is retire¬
ment. In (30b), we include 'his executive duties' in the generation template. We do
this to give the generator greater expressibility. However, this implies that the chosen
domain always deals with posts and persons at the executive level.

Strings marked by OUTPERSON_PRP_VP can include entire VPs but exclude all ma¬

terial that is covered by other tags. For example, in (30a) 'president' is a new post of
the outgoing person and marked as OUTPERSONJMEWPOST-NODET.

4.2.4 Tags pertaining to the main company

The name of the main company is usually introduced in the headline and not explicitly
mentioned again in the first sentence. Companies are frequently specified further by
their field of activity, the kinds of products they produce etc.

The COMP_DESCR tag (f=121) marks descriptions of the main company or organi¬
zation, including nouns such as 'company' or 'concern'. The marked string is an NP
without determiner2 but including premodifiers:

(31) a. The [COMPJDESCR closely held supermarket chain] named...
2We regard determiners that precede COMP-DESCR as part of the template (see sections 4.2.7.1 and

4.2.7.2).
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b. ... has been elected to this [COMPJDESCR telecommunications company] 's
board.

c. ...of this [C0MP_DESCR closely held publisher].

d. ... this [COMP_DESCR_RC company which primarily has interests in radio and
televisions stations] ... (f=2)

The company description in (3 Id) requires a new tag because of the relative clause that

prevents substitution into (31b), for example.
If an explicit nationality or location of a company is given, it is marked separately

from COMP_DESCR by the C0MP_NATI0NALITY tag:

(32) of this [C0MP_NATI0NALITY British] [COMP_DESCR bank]. (f=5)

The location of the main company is tagged as C0MP_L0C:

(33) ... of this [C0MP_L0C New York] investment banking firm. (f=3)

Furthermore, there are descriptions and locations of INPERSON.OTHERCOMPs. In
contrast to POST tags, company descriptions include preceding determiners:

(34) a. ... a partner of Alpha partners, [ INPERS0N_0THERC0MP_DESCR a venture cap¬

ital firm] based in ... (f=2)

b. ... based in [INPERSON.OTHERCOMPJLOC Menlo Park, Calif.], ... (f=6)

4.2.5 Tags pertaining to subsidiaries of the main company

The post assumed or left often is not with the main company mentioned in the head¬
line but with a subsidiary. The proper name of the subsidiary, if given, is marked by
COMP_SUBSIDIARY (f=22):

(35) a. ... was named president of the [COMP.SUBSIDIARY Atlantic Research Corp.]

subsidiary.

b. ... of [COMP.SUBSIDIARY Balcor Co.], a Skokie, 111., subsidiary of this ...
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Note that nouns like 'unit' or 'subsidiary' are excluded. The description of the kind of

subsidiary at which the main post is located is marked as COMP_SUBSIDIARY_DESCR.
It may contain only a single word or a larger description. As for post-related tags, we

encode definiteness in the tag but do not include any preceding determiner. The filler
can be a single word:

(36) a. ..., the [COMP_SUBSIDIARY_DESCR_DEF investment management subsidiary]
of... (f=9)

b. ... was named president of the Clairol [COMP_SUBSIDIARY_DESCRJDEF divi¬
sion] of this ...

c. ... at this firm's Chemical Bank [COMP_SUBSIDIARY_DESCRJNODET unit] ...

(f=9)

d. ... ofBalcorCo., aSkokie, 111., [COMP_SUBSIDIARY_DESCR_INDEF subsidiary]
of this ... (f=5)

4.2.5.1 Some singleton tags

The descriptions of companies and their subsidiaries can be of considerable complex¬
ity. In many cases we can derive tags for them in a systematic way. However, since
the tags tend to have single occurrences, they are of limited use: if they occur in the

training set, we cannot test them; if they occur in the test set, we are not able to train
on them. On the other hand, as we emphasized earlier, when annotating for NLG input
it is important to mark all information that should not be assumed as always avail¬
able. Thus, we will have to accept the existence of singleton tags in the corpus. In
the remainder of this section, we show some examples of such singleton tags. (Their
usefulness will be investigated in section 7.7.2).

Other posts of the incoming person can be located at a subsidiary of another com¬

pany rather than the main company. The name of the subsidiary is marked as follows:

(37) Thomas H. Johnson, president of the [INPERSON_OTHERCOMP_SUBSIDIARY Coat-
edboard] division of Mead Corp., was named ...
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In this case, the other position is held at a subsidiary of Mead Corp. which is labelled

by OTHERCOMP. This is in contrast to more common cases where the other post is held
at a subsidiary of the main company:

(38) William A. Wise, 44 years old, president of the [COMP.SUBSIDIARY El Paso
Natural Gas Co.] unit of this ...

The distinction between a subsidiary of the main company and of another company

resolves the problem that more than one tag seems to apply to (38) at a first glance: For
the string 'El Paso Natural Gas Co.' both COMP_SUBSIDIARY and INPERSON-OTHERCOMP-
-SUBSIDIARY seem to be appropriate. However, only COMP.SUBSIDIARY applies to

subsidiaries of the main company.

A previous post might also have been located at a subsidiary of the main company:

(39) ... formerly vice chairman of Capital Holding Corp. and president of its [ INPERSON-
JPREVIOUSCOMP-SUBSIDIARY Accumulation Investment Group] ...

The main post can be located at a subsidiary of a subsidiary of the main post as¬

sumed to be present in the headline. Obviously, this is recursive and the appropriate

tag can be assembled accordingly:

(40) ... was named chairman of [COMP_SUBSIDIARY_SUBSIDIARY County NatWest
Investment Management Ltd. ], the investment management subsidiary of County
NatWest Ltd., the investment banking arm of this British bank.

Descriptions of subsidiaries of subsidiaries can be handled analogously to less embed¬
ded subsidiary descriptions.

4.2.6 Tags pertaining to temporal expressions

Dates of incoming and outgoing events are treated separately because in some cases a

position opened by a leaving person is not filled immediately. Furthermore, we make a

distinction between date specifications referring to future and to past succession events.

The core of the tag name is constructed according to the following scheme:
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{INDATE | OUTDATE}_{PAST | FUTURE}

The default slot filler is of category NP and the default person the event is referring
to is the incoming person for INDATEs and the outgoing person for OUTDATEs. If the
defaults do not hold, we attach appropriate extensions to the tag name.

A temporal expression indicating that a post is occupied at a future date is marked
by INDATE.FUTURE (f=l 1). The marked string can include adverbs:

(41) a. ... will assume responsibility ..., effective [ INDATE_FUTURE Nov. 1],

b. ... was named executive director, effective [ INDATE-FUTURE early Novem¬
ber] .

c. ... will join the board as nonexecutive director [ INDATE.FUTURE Nov. 29].

Dates only seem to be given if a decision about a management succession does not

take effect immediately, i.e. the given date is different from the date of publishing
the article. Most verbs are in past tense (like 41b) but some use future tense (41a,c).
Therefore, this tag does not specify verb tense. In most cases, the date is preceded by
'effective' but there are exceptions as (41c) shows. There is no obvious regularity for
the use of 'effective' in combination with specific verb tenses.

If only a month is given, we include the preposition 'in' in the marked string:

(42) ... will become chairman [INDATE_FUTURE in May] ,...

By including the preposition we avoid introducing a special purpose tag for months
as fillers. Substitutions can yield surface strings like 'effective in May' which are

grammatical but have not been seen in the corpus.

The date of an incoming event can also lie in the past. These dates seem to be
mentioned in combination with outgoing events and refer to the outgoing person. The
examples seen in the corpus specify months only:

(43) Kenneth J. Thygerson, who was named president of this thrift holding company

[OUTPERSON_INDATE_PAST in August], resigned, ... (f=2)
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The date of leaving a position is marked by OUTDATE. We distinguish between dates

referring to time points in the past and those referring to time points in the future:

(44) a. ... will retire from his post.... effective [OUTDATE_FUTURE Dec. 31]. (f=4)

b. ... succeeding Thomas W. Field Jr., 55, who resigned [OUTDATE_PAST last
month]. (f=3)

All three occurrences of OUTDATE_PAST are used in combination with a past tense verb
and refer to the outgoing person.

In one case, the filler of a future outgoing event is a PP rather than an NP and thus

requires its own tag to prevent unwanted substitutability:

(45) ... resigned as chairman of this diesel truck manufacturer, effective [OUTDATE-
_FUTURE_PP upon appointment of a successor]. (f=l)

4.2.7 Referring expressions

Natural language texts contain a wealth of referring expressions. Although generating
referring expressions is not the focus of this work, we need to deal with those referring
expressions that occur in the collected corpus. Our general strategy is to see referring
expressions as part of the template, i.e. to leave them unmarked. In other words, the

generation input does not contain (instructions to use) referring expressions but the

output does. This assumes that the generator uses the templates (which provide the

referring expressions) only in the right context.

Since we are generating the first sentences of the Who's News articles of the Wall
Street Journal, the only textual context available is the headline of the articles. As
mentioned before, most headlines have not been preserved in the corpus. However,
there are a few examples that indicate that the headlines always consist of a company

name and a location. We can mark them accordingly (but we do not count them as

'first sentences' or use them as instances):

(46) a. [COMP INGERSOLL-RAND Co.] ( [COMP_LOC Woodcliff-Lake, N.J.]) -

b. [COMP INTER-TEL Inc.] ( [COMP_LOC Chandler, Ariz.] )-
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Using generation templates that contain references to the main company assumes that
such headlines have been generated first. In the following, we first show the referring

expressions of the first sentences that refer to the main company introduced in the
headline. This is the most frequent form of referring expressions. We then show a few
other phenomena.

4.2.7.1 'this'(f=121)

In most cases, the demonstrative pronoun 'this' is used to refer to the main company,

followed by the tag COMP_DESCR. The main company's nationality or location can pre¬

cede the COMPJDESCR tag. We have already seen many examples of this use of the
demonstrative pronoun (in 31 and 32, for example). A special case is the following:

(47) Clark J. Vitulli was named senior vice president and general manager of this U.S.
sales and marketing arm of Japanese auto maker Mazda Motor Corp.

The company referred to in the headline is the subsidiary of a mother company which
is specified further in the article. This is a change of perspective from the other articles
which take the mother company as a reference point and then introduce subsidiaries in
the article proper. However, in (47) 'this' still refers to the company in the headline.
Thus, the example requires new tags to label the mother company of the company in
the headline but 'this' still refers to the headline company:

(48) Clark J. Vitulli was named senior vice president and general manager of this
[COMPJDESCR U.S. sales and marketing arm] of [COMPJ10THER_NATIONALITY

Japanese] [C0MPJ40THERJDESCR auto maker] [COMPJMOTHER Mazda Motor Corp ].

4.2.7.2 'the' (f=3)

In a few cases, the definite article is used instead of the demonstrative pronoun:

(49) a. ... has been named regional president, a new post at the [COMPJDESCR bank-
holding company].

b. ... was elected chief executive of the [COMPJDESCR holding company] 's two

principal insurance subsidiaries.
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(49a) seems to be a standard example. (49b) exhibits a possessive marker which is
described below.

4.2.7.3 'its' (f=9)

The company in the headline can be referred to by 'its'. It seems that the company

must have been mentioned in the left context of the first sentence already, typically by
'this COMPJDESCR':

(50) a. ... of this transportation industry supplier, increasing its board to six mem¬

bers.

b. ... of the company and its First National Bank of Toms River subsidiary.

There are two exceptions where 'its' does not refer to the headline company but to
the one mentioned in the immediate left context. This confirms that the last company

mentioned in left context is crucial for resolving the reference of 'its':

(51) a. ... , formerly vice chairman of Capital Holding Corp. and president of its
Accumulation Investment Group,...

b. ... was named chairman of this insurance firm's reinsurance brokerage group

and its major unit,...

In (51a), 'its' refers to a INPERSON_PREVIOUSCOMP, in (5 lb) it refers to a string marked
as COMP_SUBSIDIARY_DESCR_NODET. However, these references should not pose a prob¬
lem in a fixed template since the antecedent needs to be present.

4.2.7.4 Possessive marker's (f=15)

All occurrences of the possessive marker's refer to a directly preceding COMP JDESCR

tag, and therefore to the main company:

(52) a. ... for this [COMP_DESCR financial and travel services concern] ^American

Express Bank Ltd. subsidiary.

b. ... this [ COMP_DESCR telecommunications company] ^s board...
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In one case, the possessive marker occurs inside a slot filler. This does not seem

problematic as long as the 'owner' is also part of the slot filler:

(53) ... [ INPERSON_OTHERCOMP Harvard University js Graduate School of Business]

4.2.7.5 References to persons

There are only two personal pronouns used throughout the corpus: 'he' (f=l) and 'his'
(f=3). Obviously, their use requires an appropriate antecedent in the left context. In all
cases, the antecedent is an OUTPERSON-FULLNAME. Two examples:

(54) a announced that he [OUTPERSON_PRP_VP-FUTURE will retire] [OUTDATE-

-FUTURE next April] as .. .

b. ... [OUTPERSON_PRP_VP_PAST has retired from his executive duties].

In (54a), the personal pronoun is part of the surface string outside tagged areas. It
therefore becomes part of the domain-specific pattern of the template which records
that persons in this domain are predominately male. In (54b), the possessive pronoun

is part of the slot filler OUTPERSON_PRP_VP_PAST. All uses of this tag, however, follow
after the outgoing person has been introduced in the discourse.

4.3 Tag indices

The annotation scheme we have developed up to this point does not account for cases

where a distinction between different tags of the same type is necessary. Typical cases

involve several previous posts that are located at different companies and multiple
occurrences of tags when there is more than one incoming person:

(55) a. John W. Day, president of Allied-Signal Automotive and executive vice president
of Allied-Signal Inc., has been named ...

b. William G. Kuhns, former chairman and chief executive officer of General

Public Utilities Corp., was elected ...
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c. ... was named president and chief operating officer, posts which had been
vacant.

d. ... was named executive vice president and chief operating officer, both newly
created posts, and a director, filling a vacancy.

e. Sheldon B. Lubar, chairman of Lubar & Co., and John L. Murray, chairman

of Universal Foods Corp., were elected to the board of this engine maker.

f. Anton Amon and George Gourlay were elected vice presidents of this soft-
drink company.

The examples in (55) exhibit considerable complexity. They involve phenomena like
coordination, plurals and anaphora that are long-standing topics of linguistic research.
In this work, we do not aim at providing a deep analysis of these phenomena. However,
we need to be able to represent complex semantic relationships at the level of the
annotation if we want to be able to correctly fill in the gaps in the sentence templates.

A first attempt to represent relationships between tags might be to simply add
counts to the tag names to distinguish them, for example, INC0MINGJVGE_1 and IN-

PERS0N_FULLNAME_1. However, this would introduce large numbers of new tag names,

changing the frequencies of tags and resulting in changes in the ranking model. For

example, many succession events involve several posts. The tags P0ST_1, P0ST_2 and
P0ST_3 would have very different frequencies, with P0ST_3 being much less frequent
than P0ST_1. However, there do not seem to be fundamental differences between cor¬

pus sentences that report on persons assuming one, two or three new posts. Moreover,
counts in tag names could result in sentences that only contain P0ST_3 tags without

any P0ST_1 or P0ST_2 tag if not all parts of the input semantics are expressed. If the
numbers indeed reflect counts, the question is whether this is appropriate.

Even without these problems, it is questionable whether counts can provide the
means to represent the kind of relationship between tags that we want to express.

It seems likely that counts, if introduced from the beginning of each sentence - the
first occurrence of a certain tag gets the suffix _1, the second gets _2 etc. - lead to

inconsistencies in the annotation across different sentences. For example, a P0ST_3
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might be the newly occupied post of INPERS0N_FULLNAME_1 in one sentence and of
INPERS0N_FULLNAME_2 in the other.

Therefore, we need to have a more general way of expressing the fact that two

tags are related, regardless of their order of occurrence in specific corpus sentences,

and without modifying the tag names. For this reason, we introduce the notion of tag-

indices, an additional means of representation that allows one to attach indices to pairs
of tags. Tag-indices are not interpreted as being part of the tag name and are not used in
the term representation for ranking. For notational convenience, we nonetheless attach
the indices at the end of the tags (separated from the tag name by '-'). Tags can carry

several indices (separated by '+') because we want to be able to link a tag to several
others while using indices only pairwise, i.e. there are always two occurrences of each
index in any annotated sentence. Tag-indices act as variables whose material names are

not important. No directionality is implied between the two occurrences of an index.
As a general rule, tag-indices need to be applied whenever a tag name occurs more

than once (ignoring suffixes for determiners). The sentences in (55) are annotated with
indices in the following way:

(56) a. [INPERSON_FULLNAME John W.Day], [INPERS0N_0THERP0ST_N0DET-P1 pres¬

ident] of [INPERS0NJDTHERC0MP-P1 Allied-Signal Automotive] and [IN-
PERS0N_0THERP0ST_N0DET-P2 executive vice president] of [ INPERSON_OTHER-

C0MP-P2 Allied-Signal Inc.], has been named ...

b. [ INPERSON-FULLNAME William G. Kuhns], former [ INPERSON_PREVIOUSPOST-

_N0DET-P1 chairman] and [INPERS0N_PREVI0USP0ST_N0DET-P2 chief exec¬

utive officer] of [ INPERS0N_PREVI0USC0MP-Pl+P2 General Public Utilities

Corp.], was elected ...

c. ...was named [P0ST_N0DET-P1 president] and [P0ST_N0DET-P2 chief oper¬

ating officer], posts which had been [P0ST_DESCR_ADJ-Pl+P2 vacant].

d. ... was named [POST_NODET-Pi executive vice president] and [P0ST_N0DET-P2
chief operating officer], both [ POST_DESCR_ADJ-P1+P2 newly created] posts,
and a [P0ST_INDEF-P3 director], filling a [P0ST_DESCR_VACANCY-P3 va¬

cancy] .
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e. [INPERSONJFULLNAME-P2+P5 Sheldon B. Lubar], [INPERSON.OTHERPOST-

JN0DET-P1+P2 chairman] of [INPERS0N_0THERC0MP-P1 Lubar & Co.], and

[ INPERSON-FULLNAME-P4+P6 John L. Murray], [ INPERS0N_0THERP0ST2N0DET-

-P3+P4 chairman] of [INPERS0N_0THERC0MP-P3 Universal Foods Corp.],
were elected to the [POST_BOARD-P5+P6 board] of this [COMP_DESCR engine
maker].

f. [ INPERSON_FULLNAME-Pl Anton Amon] and [INPERS0N-FULLNAME-P2 George

Gourlay] were elected [P0ST_PLURAL-P1+P2 vice presidents] of this [COMP-
_DESCR soft-drink company].

In (56a) indices are used to indicate pairs of OTHERPOSTs and OTHERCOMPs. In

(56b) indices represent that both PREVIOUSPOSTs refer to the same PREVIOUSCOMP.
Without indices, the first PREVIOUSPOST could be interpreted as referring to the main

company in the headline. However, this is not the meaning we want to represent. In

(56c) indices represent that POST_DESCR_ADJ applies to both POST tags. In (56d) they

distinguish the new posts from the vacant one. The sentence uses the word 'both'

explicitly. It should be noted that as long as we use the sentence as a fixed template,
it is guaranteed that there are indeed two POSTs to which the POST_DESCR_ADJ tag

refers. POST_DESCR_VACANCY is a special-purpose tag which seems to be necessary

because of particular uses of the slot filler in constructions like 'filling a There are

five occurrences of this tag, justifying its introduction. The need for indices is also
obvious in (56e). First, there are two persons with their respective OTHERPOSTs and
OTHERCOMPs. Second, both persons were elected to the same board. We therefore also
need to co-index the incoming persons with the post. In (56f) we use a POST_PLURAL

tag in combination with co-indexing to represent that the slot filler of POST_PLURAL
refers to two incoming persons.

There are a few cases in which we do not use indices although a tag occurs repeat¬

edly. For example:

(57) Robert D. Paster, 49 years old, [ INPERSON-OTHERPOST vice president] and [IN-
PERSON.OTHERPOST Space Shuttle Main Engine program manager], was named
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Since no OTHERCOMP is mentioned in the sentence, the INPERSOKLOTHERPOST tags refer
to the main company which is mentioned in the headline. However, in this work we

limit ourselves to single sentence generation and do not add any indices in these cases.

Generally, we try to limit the use of indices. However, in a number of cases they
seem to be necessary. In the corpus of 144 sentences, there are 25 articles that require
the use of indices. Many have only one or two pairs of indices. In a few cases, up

to 9 pairs of indices are required. In general, there seems to be a trade-off between
the information encoded in tag names and in tag-indices. The more information is
encoded in indices, the less complex the tags need to be. For example, one could use a

single AGE tag instead of differentiating between INPERSON-AGE and OUTPERSON-AGE.
The AGE tag would then always need to be co-indexed with an incoming or outgoing

person tag. This would have consequences for the ranker because of changed term

weights and a different distribution of tags. It would also place a bigger burden on the
mechanism that checks tag-indices, which is described in section 5.5.

4.4 Problematic cases

In order to annotate generation templates, we mark all strings that should not be gen¬

erated without being triggered by a particular generation input. However, there is
information in the corpus sentences that seems difficult to annotate systematically:

(58) a. James T. Boone was named to the new position of chief administrative officer,
[ ? becoming second in command] at this bank holding company.

b. Frank Carlucci III was named to this telecommunications company 's board,
filling the vacancy [? created by the death 1 of William Sobey last May.

c. ... was named executive vice president, North America, for the Financial
Times, the business newspaper [? published by] this ...

d. ... was named vice president and senior officer in charge of equipment leasing
to municipalities, [ ? a new effort of 1 this bond insurer.
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e. J.P. Bolduc , vice chairman of W.R. Grace and Co. , [ ? which holds a 83.4 %

interest in 1 this energy-services company , was elected a director.

f. This magazine and book publisher said [ ? three men] were elected directors,
increasing the board to 10.

g. This maker of electronic measuring devices named two new directors, in¬
creasing board membership to nine.

The ? tag marks rather arbitrary pieces of text that in most cases are not semantically
or syntactically interchangeable. Information marked by ? should not be present in the
generation input. There are seven such cases in the corpus of 144 sentences. As Reiter
and Dale (2000) observe, there tend to be textual fragments in corpora that present
data that is unavailable to the generation system. In other words, it is not always

possible to fully regenerate the target language corpus. This may be due to missing

input specifications and/or to knowledge gaps in the grammar. (In section 7.2.0.2.3,
we discuss how ? tags affect generation inputs and instance representations in the
evaluation experiments.)

We use the ? tag in (58) because it seems difficult to find a systematic annotation
scheme for these sentences. There are other cases in which we can derive tags follow¬

ing our general scheme although the information also seems to be rather arbitrary at a

first glance. For example:

(59) a. Richard W. Lock, [INPERSON_DESCR_JJ retired] vice president and treasurer
of Owens-Illinois Inc.,...

b. [ INPERSON_DESCR_JJ Retired] Adm. William J. Crowe, former chairman of

the Joint Chiefs of Staff,...

There are three occurrences of the INPERSON_DESCR_JJ tag in the corpus. This seems

to justify the use of this tag although they all occur with the same filler.

4.4.1 Announcements

In some cases, the management succession is reported as being explicitly announced

by the main company or a person. One option is to tag the corresponding verb in a
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way similar to the treatment of verbs like 'retired' (see tag OUTPERSON_PRP_VP_PAST
and related above):

(60) a. This magazine and book publisher [ANN0UNCE_C0MP said] three men were

elected directors ...

b. Manhattan National Corp. [ANN0UNCE_C0MP said] Michael A. Conway ...

c. A.F. Sloan, 60 years old, [ANN0UNCE_0UTPERS0N announced] that he will
retire ...

There are five such cases in the corpus. However, one could also leave the verb
unmarked, assuming that an announcement of some form always takes place. The
grammar would then effectively have the ability to use the announcement construction
without being explicitly told to do so. It amounts to saying that we do not consider
announcements as particularly meaningful. Rather, they are seen as a variation of ex¬

pressing the marked pieces of information. This is the strategy used in this markup
scheme. Therefore, we do not use any ANNOUNCE tag.

4.4.2 Punctuation

Punctuation is an important aspect of dealing with real-world texts. With respect to

NLG, wrongly generating punctuation can seriously hamper the readability or even

faithfulness of the generation output. Marking punctuation is made difficult because
punctuation can serve roles inside and outside the marked string at the same time. In
the following examples, the last comma can either be clearly outside the tagged area

(61a), clearly inside (61b) or ambiguous (61c):

(61) a. ... was named [P0ST_N0DET group head investment banking in Asia], based
in ...

b. ... was elected [P0ST_N0DET senior vice president, public affairs and adver¬

tising,] for this ...

c. ... was named [POSTJNODET senior vice president, industrial systems], suc¬

ceeding ...
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In (61a) the comma should be part of the template because it separates the marked NP
from the following VP. (Both are at the same level according to the treebank analysis.)
In contrast, in (61b) the comma does not have any syntactic role outside the marked
area. However, if we replace the filler words of sentence (61a) by the ones of (61b),
we end up with two commas in a row. To make matters worse, whatever possibility is
taken with respect to (61c), there will be cases in which a comma is missing: excluding
the comma from the marked string of (61c) results in a missing comma when the filler
of (61c) is inserted into (61b); including the comma results in a missing comma when
the filler of (61a) is inserted into template (61c).

When annotating such cases, we opted for excluding commas that are syntactically
relevant to the surrounding context of the template (as shown in 61c). This should
make sure that no template is lacking a comma that is required syntactically. It is

easily possible to remove duplicate commas. However, this still leaves a problem
when inserting the filler words of (61c) into (61b).

The problem also extends to full stops. For example, company names often carry

the abbreviated form 'Corp.'. If 'Corp.' occurs as the last word of the sentence, its
full stop serves two roles. Similar problems as for commas can therefore arise in such
cases.

Ideally, one should distinguish between template markup and generation input

markup and include a comma in both, provided duplicate commas are removed dur¬

ing generation. We do not have this markup option here but we manually make sure

that the generation input is not lacking any commas. Therefore, the output of the sys¬

tem needs to be polished by removing duplicate punctuation. We use the following

mappings:

(62) a. ,, —> ,

b. , . —> .

c. . . —> .

These rules are similar in spirit to the rules of 'absorption' (Nunberg, 1990) which
delete 'weaker' punctuation marks when adjacent to 'stronger' ones.
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4.4.3 Referring expressions

We typically deal with references to the main company by applying a COMP JDESCR tag

(see 31). This assumes that there is one such input fact that needs to be expressed.
However, there can also be repeated references to the main company:

(63) Christopher Whittington, 51-year-old deputy chairman of this British [COMP JDESCR

investment-banking group 1 and chairman of Morgan Grenfell & Co., the group

's main banking unit, has retired from his executive duties.

The second reference of the group adds no further information to the sentence but
rather seems to have the purpose of providing a 'link' from mother company to sub¬

sidiary. On the one hand, we would like to leave this second reference unmarked in
order to avoid giving the realizer input that is too detailed. On other hand, not all com¬

panies can be referred to as 'groups'. Consequently, the second mention of 'group'
needs to be marked as well. We do this by simply using another COMP JDESCR tag. This
is in line with other mentions of the main company that are used in combination with
the possessive marker and that do not contribute much new information:

(64) Roy E. Parrott, the [COMPJDESCR company] 's president and chief operating of¬
ficer since Sept. 1, was named to its board.

Referring expressions can also be part of the slot filler. In the following example,
a reference to the 'parent' company is expressed:

(65) William A. Wise, 44 years old, president of the [INPERSON_OTHERCOMP_SUB-
SIDIARY El Paso Natural Gas Co.] unit of this energy and natural-resources
concern, was named to the additional post of chief executive officer, succeed¬
ing Travis H. Petty, 61, who continues as a [OUTPERSON_POSTCONT_INDEF vice
chairman of the parent].

In contrast to (53), the slot filler of (65) refers to an antecedent outside the slot filler.
We interpret 'the parent' as a reference to the main company in the headline because
a subsidiary was mentioned in the left context of 'the parent'. However, rather than
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introducing another special purpose tag, we assume that generally there are no refer¬

ring expressions in the filler (although this may cause problems when inserting this

particular filler into other templates).

freq. tag name

142 P0ST_N0DET

139 INPERSON-FULLNAME

121 COMP_DESCR

59 INPERSON_OTHERPOST_NODET

56 INPERSON_AGE

36 POST.INDEF

33 INPERS0N_0THERC0MP

25 POST_DESCR_ADJ

25 INPERSON_PREVIOUSPOST_NODET

23 OUTPERSON-FULLNAME

22 COMP_SUBSIDIARY

14 BOARD_INCR

13 COMP

11 INDATE_FUTURE

10 POST-BOARD

10 OUTPERSON_AGE

10 INPERSON-PREVIOUSCOMP

9 OUTPERSON-PRP.VP-PAST

9 INPERSON_OTHERPOST_INDEF

9 COMP_SUBSIDIARY_DESCR_NODET

Figure 4.2: The most frequent tags in the collected corpus

4.5 A look at the annotated corpus

71 different tags are used to annotate the corpus of 144 sentences. There are relatively
few high-frequency tags and relatively many low-frequency ones. The most frequent
tag occurs 142 times and there are 23 singletons. Such a distribution is typical of many

language phenomena. Figure 4.2 shows a list of the 20 most frequent tags.

The annotated sentences exhibit a dense markup (see 56, for example). As pointed
out above, this is necessary for natural language generation since we need to make sure

that no pieces of information that should not be part of the template remain. However,



4.5. A look at the annotated corpus 125

there are still unmarked sequences outside tagged areas. The largest one contains 9
tokens (words and punctuation). Figure 4.3 shows the largest template sequences,

including their length and corpus frequency. Note, for example, the different ways of
expressing an increase in the size of a company's board (many of which happen to be of
the same length). The sequences in figure 4.3 obviously cross constituent boundaries
and in this respect are similar to word ngrams.

length freq. template sequence

9 1 years old , will join the board as a
8 1 years old , has been elected to the
7 1 , increasing the number of seats to
6 3 years old , was elected a
6 2 years old , was named a
6 1 , has been named to the
6 1 years old , announced that he
5 13 years old , was named
5 3 years old , was elected
5 1 of the company and its
5 1 from his executive duties .

5 1 , will assume responsibility for
5 1 , who continues as a

5 1 , were elected to the
5 7 , was named to the
5 1 , was named to its
5 9 was elected to the

5 1 , posts which had been
5 3 , increasing the board to
5 1 , increasing its size to
5 1 , increasing its board to
5 4 , increasing board membership to
5 4 , expanding the board to
5 1 , boosting the board to
4 3 years old , formerly

Figure 4.3: The largest word sequences of the generation templates

We also measured the annotation stability by re-annotating 35 corpus sentences,

using an annotated corpus of the remaining sentences as annotation examples. The
two annotation files were compared by a script. Overall, about 93% of the tags were

placed correctly, i.e. the same tag is used to mark exactly the same area. 24 out of 35
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sentences were entirely correct, the remaining ones contained at least one error. Two
errors were due to different areas of non-taggables ([ ? . . . ]) and one to the inclusion
of punctuation. These seem to be typical points of confusion. Furthermore, in two

cases either the 'gold standard' or the newly annotated sentences did not separate the
location of a company from its name. Another error was not to include the preposition
'in' preceding months into the area marked by a date tag. Furthermore, in one case a

slightly different singleton tag name was newly constructed. Another error was due to

a lack of background knowledge:

(66) Selwyn B. Kossuth was named executive director of the commission, effective

early November.

Without knowing the headline (and understanding the basics of how companies are

organized), it is difficult in some cases to categorize fragments correctly. In this case,

we can simply mark the entire sequence 'executive director of the commission' as a

P0ST2N0DET to avoid the problem.

4.6 Discussion

In this chapter, we described a declarative annotation scheme for the chosen domain

corpus. It is based on the principle that equivalence classes for marked strings have
two properties:

1. semantic equivalence of all class members and

2. syntactic equivalence of all class members.

From a more philosophical point of view, forming such equivalence classes can be
seen as an idealization. In the words of Bloomfield (1933, pi45): "If the forms are

phonemically different, we suppose that their meanings are also different [...]" In the
extreme, each word or sequence of words needs to form its own equivalence class. In
contrast, we regard all strings marked by a tag as interchangeable although individual

strings might in fact have subtle consequences for the occurrence of other words in the
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context. Furthermore, we treat many words that are part of the template as semantically

equivalent, for example the various verbs expressing the main succession event.

An important factor in allowing us to use such equivalence classes is the avail¬

ability of a ranker and the fact that the corpus and the task are domain-specific. The
annotation scheme addresses the question what can be seen as semantically and syn¬

tactically equivalent for the purpose of this specific application. By abstracting away

from particular filler words, the tags allow the instance-based ranker to capture certain
kinds of cooccurrences even though the amount of training data is limited. Further¬
more, the use of tags allows one to define generation templates which can be used with
different slot fillers. The relatively simple semantic annotation of the corpus sentences

can be used as generation input, reducing the complexity of the input representations.
However, these simple semantic tags also need to trigger the use of relatively complex

templates. This in turn requires one to assume that different templates are expressing
the same semantics although they are using different ways of expressing it. Still, if
there is a subtle cooccurrence of certain verbs with certain combinations of tags, this
is recorded by the template.

A further consideration is the guidance we give to the realizer by providing in¬

put in the form of corpus markup. (28) has shown that the markup can represent a

focus on a particular person when more than one person is mentioned. (48) changes
the view on a company structure from the perspective of the mother company to that
of a subsidiary. Furthermore, a POST_PLURAL tag as in (56f) embodies a decision to

'summarize' several identical posts by one mention of the post name. As examples
like (63) have shown, referring expression generation is clearly outside the scope of a

generator that expects corpus markup of the kind developed in this work as its input.
In addition, definiteness is encoded in several tag names. It is not the goal of this work
to go beyond these generation decisions. However, one should be aware that using our

corpus markup as generation input implies that certain generation tasks have already
been performed.

In this chapter, we assumed that we are marking the corpus to obtain fixed genera¬

tion templates. In the next chapter, we show how we can introduce more flexibility by
constructing grammar rules that are derived by means of the syntactic treebank.



 



Chapter 5

Automatic grammar construction

In this chapter, we show how a standard syntactic treebank - in combination with the
semantic annotation of the unanalysed coipus described in the previous chapter - can

be employed to automatically produce a generation grammar. The overall goal is to en¬

able the developer of the NLG system to concentrate on the semantics of the system by

providing the semantic annotation scheme and to concentrate less on syntactic struc¬

tures, grammar rules and the organization of grammatical resources. This effectively

changes the way the NLG system is being developed. In the following, we describe
some characteristics of the syntactic treebank and present the algorithm for grammar

construction, followed by an examination of the constructed rule set.

5.1 Syntactic treebank

We use a treebank based on constituency in the style of the Penn treebank (Marcus
et al., 1993, 1994). The representational framework of the Penn treebank can be de¬
scribed as a "relatively impoverished flat context-free notation" (Marcus et al., 1993,
p.321). It is extended by a variety of null-elements to represent trace positions of
'moved' w/z-constituents and 'understood' subjects of infinitive and imperative verbs,
amongst others. As will be seen below, we do not exploit the presence of null-elements
in the Penn treebank. Furthermore, our grammar construction procedure does not re¬

quire the identification of complements and adjuncts, which is not provided by the

129
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treebank (although different authors have developed heuristics to identify these, e.g.

(Collins, 1999, pl74)).
An example of the flat bracketing structure (taken from the compiled subcorpus of

the Penn treebank II comprising texts in the management succession domain) is given
in figure 5.1. Note the passive trace *-1 which is co-indexed with the surface subject
(i.e. the logical object). The tag CLR (CLosely Related) attached to the PP is an

"experiment" (Marcus et al., 1994) to indicate a strong connection between PP and
VP.

s

new post
*-1 of...

Figure 5.1: Flat tree structure (wsj_0366)

It is possible to extract a context-free grammar from the treebank parses by a re¬

cursive bottom-up procedure. As before, we are only dealing with one sentence per

article. Figure 5.2 shows some of the rules that can be extracted from the tree structure

in 5.1. It should be noted that such a simple grammar does not provide meaningful
rules for the use of empty elements. (5.4% of lexical items are 'empty elements' in the
treebank parses of the collected domain corpus.)

Figure 5.3 shows the growth of the set of different context-free rules extracted from
the treebank parses of the corpus sentences in relation to the number of articles. This
number seems too small to decide the question whether there is a finite grammar for the
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s -> NP-SBJ-1 VP .

NP-SBJ-1 -> NP.NP,
NP -» NNP NNP NNP
NNP -» Joe
NNP -> F.
NNP -> Lynch
VP -> VBD VP
VBD -> was

VP -> VBN NP PP-CLR

Figure 5.2: Some cfg rules for wsj_0366

2000

— all cfg rules
no (pre)terminals

50 100

number of parsed corpus sentences

Figure 5.3: Cfg rule set growth
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chosen domain, i.e. whether the number of rules stays stable at some point. However,
when lexical items, i.e. rules of the form preterminal —> terminal, are excluded, rule
set growth slows down at a faster rate than when lexical items are included.

400
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O
200

o
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100

0
0 500 1000 1500 2000

frequency rank

Figure 5.4: Cfg rule ranks vs frequency

A further characteristic of the extracted rule set is its 'Zipfian' distribution1 which
is typical for many language phenomena: there is only a small set of high frequency
rules and a large set of low frequency ones (figure 5.4).

We can determine the 'coverage' of the extracted grammar by setting aside a num¬

ber of sentences as held-out data and measuring the proportion of cf-rules in the held-
out data that can be found in the training data. (Note, however, that this measure does
not address the harder task of generating the held-out sentences.) Extracting cf-rules
from 75% of the first sentences in the corpus (108 sentences) covers 85% of the rule
tokens in the remaining 25% (36 sentences), for example. This number increases to
93% when lexical items are excluded and is smaller if rule types rather than tokens are

counted. We explain this by the presence of a few high frequency rules (figure 5.4).

'Zipf's law states that the frequency of a word is (roughly) proportional to the reciprocal of its rank
in a frequency list (Zipf, 1949).

I | ! | 1 1 1

— all cfg rules
no (pre)terminals
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Figure 5.5: Coverage of treebank grammar w.r.t. held-out data

They are covered by even a small training set and account for a large proportion of rule
tokens. Counting rule types rather than tokens decreases the relative weight of these

high frequency rules. Figure 5.5 shows the increase in coverage of the rules in 25%
held-out data as the number of training sentences for the different options grows. (The
'distance' between all-rules and non-(pre)terminals for either types or tokens seems

to be fairly constant. This might be due to the fact that uncovered rare lexical items

largely remain uncovered as the training set is enlarged.)

5.2 Merging treebank and annotation

A context-free grammar which is purely based on syntactic structures like the one just
described cannot directly be used for generation. At the very least, a grammar for
generation needs to be able to accept some semantic input and map this input to its
grammatical resources.

We assume that the input is presented to the generator in the form of a set of
attribute-value pairs according to the annotation scheme. As described in the previous
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chapter, the semantic annotation is applied to the raw, unanalysed corpus. Therefore,
we are looking for a way of combining the annotation of the corpus sentences with
the corresponding treebank structures since these are the only grammatical resources

available to us. (An alternative is to apply the markup directly to the treebank, provided
appropriate, possibly XML-based annotation tools.)

The annotation for the sentence corresponding to the parse tree in figure (5.1) is the
following:

(67) [INPERSON.FULLNAME Joe F. Lynch], the [INPERSON_AGE 56]-year-old [INPERSON-
_OTHERPOST_DEF-PI chairman] and [INPERS0N_0THERP0ST_DEF-P2 chief executive of¬

ficer] of [ INPERS0N-0THERC0MP-P1+P2 First Continental Real Estate Investment Trust],

was named to the [ POST_DESCR_ADJ new ] post of [ POSTJNODET vice chairman ] of this
[COMP_DESCR bank holding company].

There are some characteristics of the annotation scheme that are relevant in this

context. Most importantly, tags do not cross the bracketing structure of the treebank

parses. In our experience, this property seems to fall out naturally under the assumption
that relevant information should always be tagged as 'narrowly' as possible. Further¬
more, it is possible for a tag to mark a word sequence within a constituent or just a part

of a treebank word.

We set out by just applying the annotation tags to the words or word sequences of
the parse tree. Figure 5.6 shows the result of merging the treebank parse (figure 5.1)
with the annotation (67). Tags always mark pairs of terminal and preterminal nodes
(and also any constituent structure that spans the terminal node sequence). For now, we

ignore the treatment of tag-indices. The marked areas are surrounded by square brack¬
ets whereas the Penn treebank structure is displayed using its original round brackets.
In some cases, a marked area corresponds to a full treebank constituent, for example
the NP 'Joe F. Lynch' in line 3 or the NP 'vice chairman' in line 23. In the case of

'56-year-old', pos-tagged in the treebank as a single adjective, the cardinal number has
been separated and the appropriate pos-tag introduced (line 6). The result is a marked
area that comprises only some part of the NP at the next level. The same is true for
'new' (line 20) and 'bank holding company' (line 25).
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l (s
2 (NP-SBJ-1
3 (NP [INPERSON_FULLNAME (NNP Joe) (NNP F.) (NNP Lynch) ] )
4 (, ,)
5 (NP
6 (NP (DT the) [INPERSON_AGE (CD 56) ] (JJ -year-old)
7 (NX
8 (NX [INPERSON_OTHERPOST_DEF (NN chairman) ] )
9 (CC and)
10 (NX [INPERSON_OTHERPOST_DEF (JJ chief) (JJ executive) (NN officer) ] )))
11 (PP (IN of)
12 (NP [INPERSON_OTHERCOMP (NNP First) (NNP Continental)
13 (NNP Real) (NNP Estate) (NNP Investment) (NNP Trust)] )))
14 (, ,) )
15 (VP (VBD was)
16 (VP (VBN named)
17 (NP (-NONE- *-1) )
18 (PP-CLR (TO to)
19 (NP
20 (NP (DT the) [POST_DESCR_ADJ (JJ new) ] (NN post) )
21 (PP (IN of)
22 (NP
23 (NP [POST_NODET (NN vice) (NN chairman) ] )
24 (PP (IN of)
25 (NP (DT this) [COMP_DESCR (NN bank) (VBG holding) (NN company)] ))))))))
26 (. .) )

Figure 5.6: Annotation applied to treebank (pre)terminals
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5.3 Preparing the treebank structures for generation rule

construction

As we have argued above, the annotated corpus sentences can be used as fixed tem¬

plates for generation without any syntactic analysis. After merging with the treebank
structure, such a template also specifies its syntactic structure. However, this in itself
does not alleviate the main problem of templates, their limited flexibility. We need
to find a way to introduce more flexibility and we aim at making use of the syntactic
structure to do so.

To start with, we can reason about what should happen when individual tags are

given to the generator. In the case of annotation tags spanning an entire constituent,
we could generate just that constituent. This could result in rules like the following:

(68)

SEM {IN_NAME([T])}
SYNCAT NP

PHON <[T]>

SEM IN_NAME([Tj)

This rule corresponds to line 3 in figure 5.6. Tag names are abbreviated. We
use a feature structure notation for clarity and assume a sign-based approach in that

grammatical structures are characterized by a phonological string (phon), a syntactic

category (syncat) and a semantic representation (sem).2 However, we do not want
to imply any particular grammatical theory, nor have we specified yet in which way

grammatical structures are to be combined. The feature structure notation should not

imply a unification-based approach, for example. Rule (68) expresses that if we have
a tag INPERSON-FULLNAME with a slot filler stored in variable Q], we can produce an

NP with that tag and slot filler as its semantics in which the slot filler doubles as the
surface string.

Associating a syntactic category with an annotation tag that does not mark a full
constituent in the treebank parse is somewhat more difficult. As a heuristic, we take as

the syntactic category of the rule left-hand side the preterminal symbol of the rightmost
element of the marked sequence. However, these category assignments are only provi¬
sional and serve as a starting point for the following steps. The key question is how to

2The semantics of the NP is represented in a set notation. This is explained in section 5.4.
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divide the entire treebank parse into substructures in such a way that the complete tree
can be reconstructed when the corresponding semantic annotation is given to the gen¬

erator. We therefore need to answer the question for which unmarked surface words a

specific tag is 'responsible', and then cut the tree structure accordingly. We will call
the surface words marked by a tag the 'marked/tagged string/area'. In unambiguous
cases we will sometimes just speak of the 'tag' instead. The 'assigned string/area' will
refer to the surface words that are associated with some tag but that are outside marked
areas.

5.3.1 Input rules

As a first step for assigning unmarked surface words to rule areas, we extend assigned
areas to the left and right of the tagged areas. This implies that tags always mark
continuous areas of the surface string.

With respect to the tree in figure 5.6, the most pressing question is how to han¬
dle the largest unmarked substring, ',was named to the'. The neighbouring tags are

INPERSON-OTHERCOMP to the left and POST_DESCRJVDJ to the right. If we want to as¬

sign the unmarked words to tags in accordance with the syntactic bracketing, we need
to address the question how conflicts between two expanding assigned areas are han¬
dled. The answer lies in the tree structure itself: as a first step, we identify maximal
nodes that dominate exactly one tag, avoiding conflicts up to this point. For exam¬

ple, COMP_DESCR is dominated by the NP node (figure 5.6, line 25) as well as the PP
node (line 24). The latter is maximal since the next-level NP (line 22) also domi¬
nates POST_NODET. In some cases, the maximal non-conflicting node might just be the

preterminal of a single word or the rightmost preterminal of a sequence of words. The
maximal node dominating INPERSON-AGE (line 6) while not dominating any other tag

is the preterminal CD.

Determining maximal nodes dominating single tags allows us to produce grammar

rules that generate larger strings than before. We will call these rules input rules since

they directly apply to input tags. There are always as many input rules for a treebank
parse as there are tags in its semantic annotation. Following the same notation as

above, we give some of the 8 input rules for the example parse in figure (5.6):
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(69) a.

b.

SEM {COMP_DESCR(|T|)}
SYNCAT PP

PHON <ofthis[T]>

SEM {POST -DESCR-ADJ(Q])}
SYNCAT JJ

PHON <the |T| post>

SEM COMP_DESCR(|T])

SEM POST_DESCR_ADJ(|T|)

c.

d.

SEM {INJSfAME([T])}
SYNCAT NP

PHON <|j~]>

SEM {IN_AGE([T])}
SYNCAT CD

PHON <Q]>

SEM IN_NAME([7])

SEM IN_AGE(|T|)

The first and second rule contain further lexical material in their phonological rep¬

resentation whereas (69c) remains the same as (68) and the syntactic category of (69d)
is just the preterminal symbol of the marked numeral as described above.

5.3.2 Phrase-combining rules

Obviously, we have not yet covered the entire parse tree. For example, the verb remains
outside the reach of input rule areas. In figure (5.7), we represent the extended input
rule areas just produced by square brackets. Any internal structure has been removed

except for the root node and the words. To abstract away from particular filler words,
variables ($ + tag name) are used to represent marked words. The marked words
themselves have been deleted. The uncovered parts of the tree are those outside square

brackets.

We now need to find a way to split the tree further so that the remaining portions
of the tree are eventually covered and appropriate rules can be extracted. We will call
the rules at this next level phrase-combining or phrasal rules because they will serve to

combine tree fragments generated by the input rules. In addition, phrasal rules should
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i (s
2 (NP-SBJ-1
3 [NP $INPERSON_FULLNAME]
4 (, ,)
5 (NP
6 (NP (DT the) [CD $INPERSON_AGE] (JJ -year-old)
7 (NX
8 [NX $INPERSON_OTHERPOST_DEF]
9 (CC and)
10 [NX $INPERSON_OTHERPOST_DEF] ))
11 [PP of
12 $INPERSONJOTHERCOMP
13 ] )
14 (, ,) )
15 (VP (VBD was)
16 (VP (VBN named)
17 (NP (-NONE- *-1) )
18 (PP-CLR (TO to)
19 (NP
20 [NP the $POST_DESCR_ADJ post]
21 (PP (IN of)
22 (NP
23 [NP $POST_NODET]
24 [PP of
25 this $COMP_DESCR] ))))))
26 (. .) )

Figure 5.7: Input rules areas within treebank bracketing
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also operate recursively on other phrasal rules. Again, the procedure will be to extend
rule areas ('phrasal rule areas' henceforth) up to some stopping-criterion. We need to

make sure that we do not end up with a single phrasal rule generating the entire tree
since the resulting grammar would obviously lack flexibility.

The idea is to introduce and extend phrasal rule areas bottom-up by always working
on the most embedded part of the tree seen so far. Since we have already identified
maximal nodes dominating individual tags and collapsed them into input rules, the
next-level node will encompass at least one more input rule. This node forms the root

of a new phrasal rule area that can be extended further. As for input rule areas, further
lexical material can always be incorporated. In contrast to the treatment of input rules,
however, potential overlaps with other rule areas result in new rule areas being wrapped
around the lower level ones. Before we define the algorithm in more detail, we will
look at our example tree.

Working our way backwards through the tree structure in (5.7), we first encounter
a surface full stop and its preterminal. They can be reduced to the full stop. Next,
the COMP_DESCR and POSTJNODET rules (lines 25 and 23) are wrapped in a phrasal rule
area with root NP (line 22) that can be extended to encompass the surface word 'of',

changing its root to PP (line 21). Incorporating the POST_DESCR_A.DJ input rule is not

allowed, however, and a new phrasal rule area needs to be wrapped around this rule
and the previous phrasal rule area. The new phrasal rule area is necessary because we

want to combine two areas whose root node is at the same level of embedding. Thus,
none of the root nodes dominates the other. Without introducing new phrasal rules
areas at these points, we would indeed end up with a single phrasal rule generating the
entire tree. In this case, the new phrasal rule area is rooted in NP (line 19) and can be
extended until it also encompasses the surface string 'was named to', rooted in VP (line
15). The empty surface element is ignored. Further extensions of the VP-area are not

possible because it competes with NP-SBJ-1 (line 2) at the same level of embedding.

A similar bottom-up procedure applies to the subject-NP. The two INPERSON-

_0THERP0ST_DEF input rules are combined in an area with root NX (line 7) that cannot

be expanded further. The NP in line 6 dominates the INPERSONJ\GE rule and the area

rooted in NX and thus forms the root of the next-level area. To incorporate the PP
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node of INPERSON_OTHERCOMP, another phrasal area with root NP, line 5, has to be in¬
troduced. After wrapping the result of this with INPERSON-FULLNAME into a new area,

yet another phrasal rule area wrapping the subject NP, VP and the final full stop can be
formed.

We can think of this process as an operation on the tree structure that performs two

actions:

1. It wraps phrasal rule markers around maximal nodes that dominate sets of input
rules. This is shown in figure (5.8). Curly brackets indicate phrasal rule markers;

square brackets indicate extended input rule areas.

2. It deletes all syntactic category nodes outside input rule areas that do not form
the root of phrasal rule areas, i.e. it keeps only category nodes following an

opening curly bracket. It also removes all remaining round brackets of the orig¬
inal treebank parse but keeps surface words apart from empty elements. The
result is shown in figure (5.9).

Before we address the task of constructing input and phrasal rules based on reduced
tree structures such as figure 5.9, we detail somewhat more formally how input and

phrasal rule areas are defined.

5.3.3 Constraints on treebank marked for generation rule construc¬

tion

The input to the grammar construction phase is the result of merging the treebank
bracketing with the annotation, which we will call Ttag. The tagged areas Atag in Ttag
are sequences of terminal leaves, possibly including extra levels of structure.

Preparing Ttag for actually constructing the grammar rules (which is described in
section 5.4) results in Tn,ie. As explained above, this involves adding additional markup
for input and phrasal rule areas as well as deleting some parts of the original treebank
bracketing. For the resulting Truje the following constraints need to hold:

1. For each input rule area Ainput:
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i {(s
2 {(NP-SBJ-l
3 [NP $INPERSON_FULLNAME]
4 (, ,)
5 { (NP
6 {(NP (DT the) [CD $INPERSON_AGE] (JJ -year-old)
7 {(NX
8 [NX $INPERS0N_0THERP0ST_DEF-P1]
9 (CC and)
10 [NX $INPERSON_OTHERPOST_DEF-P2] )})}
11 [PP of
12 $INPERSON_OTHERCOMP-Pl+P2
13 ])}
14 (,,))}
15 {(VP (VBD was)
16 (VP (VBN named)
17 (NP (-NONE- *-1) )
18 (PP-CLR (TO to)
19 (NP
20 [NP the $POST_DESCR_ADJ post]
21 {(PP (IN of)
22 (NP
23 [NP $POST_NODET]
24 [PP of
25 this $COMP_DESCR] ))}))))}
26 (. .) )}

Figure 5.8: Phrasal rule markers (curly brackets) added to treebank bracketing

• Aj:nput is a subtree of Tride.

• The root node of the input rule area, RAinput, dominates exactly one tagged
area, i.e. each Ainput corresponds to one annotation tag.

• There is no other node N in Truie dominating Ajnput that also dominates
root node without dominating some other root node R\ of aninPul ^ ft input

input rule area.

2. For each phrasal rule area Aphrasai'-

• Aphrasai is a subtree of Trule.

• The root node RAphrasai of -Aphrasal dominates more than one disjoint input
or phrasal rule area.
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l { s
2 { NP
3 [NP $INPERSON_FULLNAME]
4

5 { NP
6 { NP the [CD $INPERSON_AGE] -year-old
7 { NX
8 [NX $INPERSON_OTHERPOST_DEF-Pl]
9 and

10 [NX $INPERSON_OTHERPOST_DEF-P2] } }
11 [PP of
12 $INPERSON_OTHERCOMP-Pl+P2
13 ] }
14 , }
15 { VP was

16 named

17

18 to

19

20 [NP the $POST_DESCR_ADJ post]
21 { PP of
22

23 [NP $POST_NODET]
24 [PP of
25 this $COMP_DESCR] } }
26 . }

Figure 5.9: Reduced treebank structure

• There is no other node N dominating the same rule areas that also domi¬
nates root node Ra , ,.phrasal

5.3.3.1 Algorithm

A shift-reduce-style algorithm can be used to identify input and phrasal rule areas. It
can work forwards or backwards through the treebank bracketing merged with anno¬

tation tags. The algorithm recursively removes the bracketing of the original treebank
structure, inserting or changing markers for input and phrasal rule areas. It terminates
when all original treebank brackets have been removed. Assuming a backward walk
through the treebank bracketing, the algorithm shifts closing brackets and nodes left of
it on the stack, and reduces the last closing bracket on the stack as soon as it finds an

opening bracket. This is a deterministic process; no ambiguity can arise. There are as



144 Chapter 5. Automatic grammar construction

Def: treebank brackets: ( )
semantic annotation: < >

input rule marker: [ ]
phrasal rule marker: { }

Input: treebank structure T merged with semantic annotation,
i.e. T contains ()s and <>s.

Start at the end of T and repeat until all ()s in T are removed:

1. Identify next subtree ST backwards in T:
ST spans elements between first '(' from back of T and next ')' to its right.

2. Remove ( and ) around ST.

3. Cases:

3.1 if ST does not contain any pair of <> or [] or {}:
remove all nodes except non-empty terminals.

3.2 else if ST contains one pair of <> and no [] or {}:
wrap [] around ST, i.e. introduce initial input rule area.

3.3 else if ST contains exactly one pair of [] and no {}:
remove current [] and wrap new [] around ST,
i.e. extend input rule area.

3.4 else if ST contains more than one pair of [] or {}:
wrap {} around ST, i.e. introduce new phrasal rule area.

3.5 else if ST contains one top-level {}, possibly with internal {}s and []s:
remove current top-level {} and wrap new {} around ST,
i.e. extend phrasal rule area.

(3.3 and 3.5 remove all treebank nodes except non-empty terminals
and the root node of the extended area.)

Figure 5.10: Pseudo-code for identifying input and phrasal rule areas
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many reductions as there are constituents in the original treebank. Without going into
too much detail, figure (5.10) lists the cases that need to be distinguished when treating
subtrees identified in this way.

5.4 Constructing input and phrasal rules

After identifying input and phrasal rule areas in the treebank parse, we need to actually
extract those rules and construct the generation rules. The reduced structure of figure
(5.9), for example, can be drawn as a tree (figure 5.11; surface words are not shown;

input rules are shown as abbreviated boxed tags). It should be noted that the resulting
tree is not necessarily binary branching. For example, a coordination of posts might
lead to higher-branching nodes. The rules that can be extracted from such a tree form
the context-free backbone of the generation grammar. However, before we can do this,
we need to make a number of decisions concerning category labels and the semantics
of phrases.

NP VP

POST.DSCR PP

Figure 5.11: Phrasal-rule tree (input rules are boxed; surface words are not shown)

The annotated and reduced treebank trees basically provide three kinds of informa¬
tion: syntactic categories, surface words and semantic tags. Syntactic categories are

available at every level of the treebank trees. We can make use of these node labels in
the rules to be extracted. For input rule areas, there is a single semantic tag that can

be assigned to that area as its semantics. However, we need to make a decision about
the semantics of phrasal rules which is not directly available in tree structures such as
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figure 5.9. Our approach is to assign phrasal rule areas the union of the semantic tags

of the areas they dominate. When the grammar rules are used for generation, this will
allow us to check the flat semantic representations of the generated phrases against the

equally flat semantic input. In practice, we assign a unique integer to each attribute-
value pair in the input and represent the semantics of phrases as the set of such integers.
Thus, input rules create phrases whose semantics is a set with just a single element,
the semantic tag around which they are built (see 69a-69d). We allow each phrase built

by the generator to consume each input integer only once, similar to the constraint in

parsing that an input word can only be consumed once.

The next question concerning rule construction is the specification of root node

categories. One extreme is to just take the syntactic category of the treebank tree.

However, this would lead to serious overgeneration since all phrases with the right

syntactic categories could be combined (subject to the constraint that they do not have

overlapping semantic sets). To give the generator somewhat more guidance, we pick
one of the semantic tags of the dominated areas and combine it with the syntactic

category of the area root nodes. Our heuristic is to always choose the leftmost semantic

tag. Higher-level phrasal rules take over this semantic tag from their leftmost daughter.
For example, the input rule area of POSTJNODET rooted in NP (figure 5.9, line 23) is

assigned a combined category NP-POST_NODET. The input rule area rooted in PP, line
24, is assigned PP-COMP_DESCR. The phrasal rule area dominating these two input rule
areas rooted in PP, line 21, adopts the tag suffix of its leftmost daughter and is thus
labelled PP-POST_NODET.

In previous examples of input rules (69a-d), we have used a phon feature to repre¬

sent the surface words of a phrase, including the filler words, i.e. values, of the input

tag. However, for the purpose of ranking, we need to have access to the tags at the cor¬

rect positions in the surface string. For example, we want the grammar to construct a

string <the INPERSON-AGE (56) -year-old INPERSON_OTHERPOST_DEF (chairman) >

rather than just <the 56-year-old chairman>. From the richer notation, the phono¬

logical string can easily be read-off. However, the ranker now is also able to score the
mixed string <the INPERSON_AGE -year-old INPERSON_OTHERPOST_DEF>. This is
what we intend to do to abstract away from particular slot fillers. To indicate the
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changed representation, the phon feature is replaced by a terms feature. (70) shows
two examples of phrasal rules extracted from the reduced tree in figure 5.9:

(70) a.

sem |T|u|T|
CAT VP-POST-DESCR-ADJ

TERMS <was named to |T] [7~|>

sem [7]
cat NP-POST_DESCR-ADJ

terms |t]

sem [7]
cat PP-POST-NODET

terms [t|

sem |T]u[T|u|T|
cat NP-AGE

terms <the [7] -year-old [7] [~6~|>

sem [7]
cat CD-AGE

terms [7]

sem [7]
cat NX-OPOST

terms [7]

sem [7]
cat PP-OCOMP

terms [7]

The U symbol denotes set union. Phrasal rules generally share semantic and phono¬

logical information between left-hand side and right-hand side. Phrasal rules do not
add any further semantic information to a phrase beyond what is being contributed by
their daughters. In this sense, our approach is strictly compositional. However, phrasal
rules can add further surface words to the phonological string as the left-hand sides of
(70a) and (70b) show.

The representation of input rules needs to be adapted in order to carry the new

syntactic-semantic category and copy tags as well as filler words into the value of
the terms feature. Below, we show the updated versions of two previous input rule
examples (69a,69b):

(71) a.

SEM {[7]}
CAT PP-COMP.DESCR

TERMS <0f this [7]>
sem [7]C0MPJ5ESCR($x)

sem {[7]}
syn JJ-POST_DESCR.ADJ

terms <the [7] post>

SEM [7]POST_DESCR_ADJ($X)

In appendix A, we show how grammar rules are actually implemented. Chapter
6 addresses the more general question how the constructed generation rules can be
efficiently executed. In the remainder of this chapter, we address the question of tag-
indices and investigate some characteristics of the extracted rule set.
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5.5 Handling tag-indices

Tag-indices are used in the annotation scheme to represent links between tags when
there is more than one occurrence of a tag (see section 4.3). The grammar construction

algorithm presented so far has ignored the existence of indices. The question is how we

should handle indices that are part of the input to the generator. Since tag-indices are

intended to represent co-indexing, we should treat indices in the input as variables, and
the grammar rules should provide a mechanism for ensuring that the variables unify.
This in turn requires the rules to pass indices on until they meet, which goes beyond
the basic context-freeness of the grammar. We use the local trees defined by the rules
to handle indices (rather than adding an additional 'global' mechanism outside the
grammar).

Since the handling of indices is based on rules that are derived from the syntactic
treebank, indices will meet following this structure. Our idea is to exploit this structure-

driven combination when deciding what should happen when indices are combined.
When looking at the syntactic tree structure, we observe that constituents that are syn¬

tactically related are also semantically related. For example, two OTHERPOSTs are com¬

bined with their OTHERCOMP before being combined with other tags (see figure 5.9, for

example). Thus, we can enforce a check for index compatibility when constituents are

combined.

Similar observations of structural relatedness can also be made for coordinated

persons. Figure 5.12 shows a treebank fragment initially merged with some annotation

tags (corresponding to example 56f, page 118). In structural terms, the two persons

are equally related to the POST_PLURAL tag. The coordination can be interpreted as

expressing this. Note that in this example we use two pairs of indices to connect the
coordinated persons to their posts. (Furthermore, it should be noted that the structural
relations between the tags are preserved when the original treebank structure is reduced
by the grammar construction algorithm.) Another example of a three-way connection
between two persons and their posts can be found in sentence (56e) on page 118 where
we use two pairs of indices, one for each INPERSON_FULLNAME-POST_BOARD pair. (The

example also requires additional indices for the persons' other companies and posts.)
These observations suggest that the treatment of indices should be linked to the use
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( (s
(NP-SBJ-l

(NP [INPERSON_FULLNAME-PI (MP Anton) (MP Amon) ] )
(CC and)
(NP [INPERSON_FULLNAME-P2 (MP George) (MP Gourlay) ] ))

(VP (VBD were)
(VP (VBN elected)

(S
(NP-SBJ (-NONE- *-1) )
(NP-PRD

(NP [POST_PLURAL-Pl+P2 (M vice) (MS presidents) ] )
(PP (IN of)

(NP (DT this) [COMP_DESCR (M soft-drink) (M company)]))))))
(• •) ))

Figure 5.12: Coordination of incoming persons in annotated treebank parse

of coordination. We will require index pairs to meet at the next structural level after
coordination has taken place, i.e. we have to collect indices when tags are coordinated,
and we have to check their compatibility when the coordinated constituent is combined
with other index-bearing constituents. Furthermore, we will cancel indices after they

successfully meet since we will not need them again. A sentence expressing the entire

input semantics should therefore not have any remaining indices.
However, we also need to be able to cancel indices when no coordination is directly

involved. For example, when there is more than one INPERSONJFULLNAME, each with
its respective OTHERPOST (see 56e, page 118), we need to be able to combine and
cancel indices when INPERSON_FULLNAME and OTHERPOST are combined, or block the

combination if the indices are not compatible. On the other hand, there are cases where
tags without indices need to be combined with those that carry indices, for example
COMPJDESCR and POST_PLURAL in figure 5.12. Such combinations should be possible.
These considerations lead us to define the following requirements for the treatment of
indices:

1. each phrase has an index set (similar to their set of semantic tags),

2. when two phrases are combined by a coordination, form the union of their index
sets,

3. when non-coordinated phrases are combined, require the cancelling of at least
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one index unless (at least) one of the phrases has an empty index set,

4. when a coordinated phrase is combined with another, uncoordinated, phrase,

require the cancelling of at least one index of each non-empty coordinated con¬

stituent.

The third item considers the standard case of non-concatenated phrases. If none

of the phrases involved contains indices, we do not require anything to happen. This
refers to the rule combinations of the majority of annotated sentences that do not carry

indices. However, if indices are used and two phrases with non-empty index sets are

combined, we require the cancelling of at least one index. This implements the intu¬
ition that structurally related constituents are also semantically related. By requiring
cancellation, the index of an AGE tag could not be passed on to the wrong person past
the correct person, for example. On the other hand, we do allow the indices of a con¬

stituent simply to be passed on when the other constituent with which it is combined
has an empty index set. This makes index handling somewhat more liberal since it al¬
lows the treatment of cases like the abovementioned combination of COMP_DESCR and

POST_PLURAL in figure 5.12.
The fourth item considers coordinated phrases. In general, we expect each coor¬

dinated constituent to carry at least one index, and we want to be able to cancel these
out at the next level upwards in the tree. However, there are cases where not all coor¬

dinated constituents carry indices. For example, there can be two OTHERPOSTs but no

OTHERCOMP (see example (57), page 118). Another example is the following:

(72) This business trust company said its board elected Kieran E. Burke, ... , as

[P0STJN0DET-P1 chief executive officer], a [P0ST_DESCR-ADJ-P1 new] post,
and as [P0ST_N0DET president].

In (72), POST_DESCR_ADJ needs to be combined with the left-most P0ST_N0DET.

When the two are joined, their indices can cancel each other out. When the two

POSTJNODETs are coordinated by the extracted rule 'PP-POSTJNODET -» PP-P0ST_N0DET

and PP-P0ST_N0DET' they do not carry indices anymore, and therefore we cannot en¬

force a cancellation at the next level. On the other hand, if POST_DESCRJtDJ is com¬

bined with the wrong POSTJSIODET (yielding 'as president, a new post, and as
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chief executive officer'), the coordinated phrase still contains an index. In the

proposed mechanism, this does not pose problems for the derivation as long as the
index does not meet another, incompatible one (which cannot happen in this example
because there is only one index pair). However, ceteris paribus, we would like to ex¬

press a preference for edges that contain fewer indices. This preference is implemented
in the redundancy check of the chart generator (see section 6.4.1.2).

In general, we want to limit the use of indices and avoid adding additional ones

just for the sake of the mechanisms of index handling. However, it should be clear that
our treatment of tag indices is 'shallow' and might not work in all situations. On the
other hand, a shallow grammar does not necessarily lead to incorrect output because
of the pruning/ranking provided by the instance-based ranker. The rules for index
combination outlined above should be regarded as heuristic rules. We will evaluate
them in section 7.7.1.

5.5.1 Detecting coordination

Before we can use the indices in the way just described, we need to identify the co¬

ordination of generation rule areas in the treebank. We look for sequences of nodes
on rule right-hand sides that have the same syntactic category and are separated by a

conjunction (a comma or 'and'). To avoid false positives, the last conjunction must
be an 'and'. In general, there are two cases: the coordination can span the entire rule

right-hand side or just a subsequence. If only a subsequence is coordinated, we intro¬
duce a new coordination level so that coordination is taking place in a separate rule.
This is necessary because the index mechanism distinguishes between coordinated and
non-coordinated rules. The left-hand side of that rule is assigned an appropriate syn¬

tactic category taken from the treebank fragment under consideration. As for other
rules, the mother node reuses the tag of its left-most daughter in its combined category
label. This allows for recursive coordination and avoids introducing new categories
that explicitly indicate coordination, for example. (73) shows some examples of co¬

ordinated rules that span entire constituents. These coordinations are recognized (and
the grammar rules are flagged appropriately) but no new coordination level rules are

introduced. (74) shows rules that require the introduction of a new coordination level.
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The original rule shown first is replaced by the following two new rules.3

(73) a. NP-POSTJSTODET -> NP-POST_NODET and NP-POSTJJODET

b. NP-POST_NODET -> NP-POST-NODET , NP-POST_NODET and NP-POST-INDEF

c. VP-POST_NODET —» was named NP-POSTJSTODET and NP-POST_NODET

d. NP-OUTPERSON-AGE -> NP-OUTPERSON-AGE and NP-OUTPERSON_PREVIOUSPOST_INDEF

(74) a. S - POST-NODET -> NP - POST-NODET and NP-POST_NODET PP-COMP_DESCR

S-POST_NODET ->• NP-POST_NODET PP-COMP_DESCR

NP-POST_NODET -> NP-POST_NODET and NP-POST_NODET

b. VP-POST_NODET ->■ was named NP-POST_NODET and NP-POST_NODET PP-COMP.DESCR

VP-POSTJSTODET ->• was named NP-POST_NODET PP-COMP_DESCR

NP-POST-NODET -> NP-POST_NODET and NP-POST_NODET

C. NP-INPERSON-AGE -> a CD-INPERSON-AGE -year-old NN-INPERSON_OTHERPOST_INDEF

and NN- INPERSON_DESCRJNP_INDEF

NP-INPERSON_AGE a CD-INPERSON-AGE -year-old NN-INPERSON_OTHERPOST_INDEF

NN- INPERSON-OTHERPOST-INDEF -> NN- INPERSON_OTHERPOST_INDEF and

NN- INPERSON_DESCR_NP_INDEF

It should be noted that we are not looking for identical syntactic-semantic cate¬

gories in order to detect coordinated phrases but only for identical syntactic category
labels. This allows us to detect the coordination of NPs that are associated with dif¬

ferent tags (see 73b and d, for example). Furthermore, it should be noted that the
introduction of new coordination levels does not cross the treebank bracketing.

3INPERSON and OUTPERSON have been abbreviated to IN and OUT.
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5.6 A look at the extracted rule set

The grammar extraction algorithm produces 1624 rule tokens for the 144 annotated
treebank sentences, 896 of them input rules and 728 phrasal rules. When we remove

duplicate rules, the size of the grammar is reduced to 476 rule types overall (181 input
rules and 295 phrasal rules). Figure 5.13 shows the growth of the rule set when the
number of annotated treebank parses used for grammar construction is increased. As
for the treebank grammar (see figure 5.3), the size of the grammar seems too small to

decide whether one would arrive at a finite rule set at some point.

Figure 5.13: Growth of generation rule set

To conduct experiments, our corpus will be split into training and test sets, i.e.
we will not be able to use a grammar based on all 144 annotated treebank parses.

Figure 5.14 shows the coverage of the rules in 25% held-out data (=36 sentences) for
training set grammars from 1 to 108 treebank parses. What is measured is the number
of held-out rules that occur in the training set. Similarly to the coverage of cf-rules
on the same held-out set (figure 5.5), relatively few training sentences are sufficient
to cover the most frequent rules. This is reflected by the higher coverage values for
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Figure 5.14: Coverage of generation grammar w.r.t. held-out data

rule tokens in the held-out data (which are 'weighted') compared to rule types (which
are 'unweighted'). The extracted generation rules also contain relatively few high-

frequency rules and many low frequency ones (figure 5.15). Again, this is similar
to the set of simple cf-rules extracted from the treebank (figure 5.4). Generally, the

coverage of input rules is higher than the coverage of phrasal rules which seems to be
due to the larger number of phrasal rule types.

A closer look at the generation grammar rules reveals that 78.5% of the phrasal
rules introduce additional lexical material, i.e. most phrasal rules are 'lexicalized' in
this sense. Furthermore, most phrasal rules are binary branching (89%), some are

ternary (10%) and 1% have four daughter nodes. Of the input rules, which are unary

by definition, 49% are lexicalized. This lower number might help explain why there
are fewer input rule types than phrasal rule types.

Figures 5.16 and 5.17 show some extracted generation rules.4 The columns titled
' |w |' refer to the number of additional surface words that are introduced by the rule.
These added words do not affect the branching factor of the rules. The average number

4Again, INPERSON and OUTPERSON have been abbreviated to IN and OUT.
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Figure 5.15: Generation rule ranks vs frequency

|w| input rule
(1) 6 S-BOARD-INCR —> increasing the number of seats to BOARD.INCR
(2) 5 S-BOARD_INCR —» increasing the board to BOARD-INCR members
(3) 5 S-BOARD-INCR —> expanding the board to BOARD-INCR members
(4) 5 S-BOARD_INCR —> boosting the board to BOARD-INCR members
(5) 4 VP-POST-BOARD —> was named to its POST-BOARD

(6) 4 VP-OUT_PRP_VP-PAST —> OUT_PRP_VP-PAST from his executive duties

(7) 4 SBAR-OUT-POSTCONT.INDEF -> who continues as a OUT-POSTCONT-INDEF

(8) 4 NP-POST_DESCR_ADJ —> posts which had been POST-DESCR-ADJ
(9) 3 VP-POST.INDEF -)• was elected a POST-INDEF

(10) 3 S -OUT-NEWPOST-INDEF ->■ to accept a OUT_NEWPOST-INDEF
(11) 2 VP-POST-NODET —> was named POST-NODET

(12) 2 VP-POST-LOC -> based in POST-LOC

(13) 2 SBAR-OUT-POSTCONT.NODET ->• who remains OUT-POSTCONT-NODET

(14) 2 PP-COMP.DESCR -> of this COMP-DESCR

Figure 5.16: Some extracted input rules
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lwl phrasal rule
(1) 5 PP-COMP_SUBSIDIARY ->■ of the company and its NAC-COMP_SUBSIDIARY

NN-COMP_SUBSIDIARY_DESCR-NODET

(2) 4 VP-P0ST-INDEF -» will join the board PP-P0ST_INDEF NP-INDATE-FUTURE

(3) 4 VP-POST-BOARD -» has been elected to NP-P0ST_B0ARD PP-C0MP_DESCR

(4) 4 VP-IN-FULLNAME ->■ said its board elected NP-IN-FULLNAME PP-P0ST_N0DET

(5) 4 PP-P0ST_N0DET from his post as NP-P0ST_N0DET PP-COMP_DESCR
(6) 3 VP-POST-RESPONSIBILITY —> will assume responsibility

PP-POST_RESPONSIBILITY ADJP-INDATE-FUTURE

(7) 3 VP-P0ST_DESCR_ADJ -> was elected to NP-P0ST-DESCR-ADJ PP-P0STJJ0DET

(8) 3 VP-OUT_PRP_VP_FUTURE -> announced that he VB-OUT.PRP-VP-FUTURE

VP-0UTDATE_FUTURE

(9) 3 SBAR-P0ST.N0DET -+ who was named S-POST-NODET PP-OUT_INDATE_PAST

(10) 3 SBAR-IN_PREVI0USP0ST_N0DET -> who had been NP-IN-PREVI0USP0ST.N0DET

PP-IN_PREVIOUSPOST_DATESPAN-PAST

(11) 3 PP-COMP -» of both NP-C0MP and NP-C0MP

(12) 2 VP - P0ST_DESCR_ADJ -* will assume NP-POST.DESCR-ADJ PP-POST_NODET

(13) 2 NP-IN-AGE -> a CD-IN-AGE -year-old NN-IN_OTHERPOST_INDEF
(14) 1 VP-P0ST_B0ARD ->• joins NP-POST-BOARD PP-INDATE-FUTURE
(15) 1 VP-IN-FULLNAME -» said NP-IN-FULLNAME VP-POST-NODET

(16) 1 Sup-INPERSON-FULLNAME ->■ NP-INPERSON-FULLNAME VP-P0ST.N0DET .

Figure 5.17: Some extracted phrasal rules

of elements on the right-hand sides of phrasal rules (words and syntactic-semantic

categories) is 3.5. This is close to the average branching factor of the simple treebank
grammar discussed in section 5.1, which is 3.8. On average, there are 1.7 elements
on the right-hand sides of the input rules (and there is always at least one element, the

input tag).

The extracted grammar rules show the effects of the annotation scheme in com¬

bination with the treebank bracketing. For example, rule (1) in figure 5.16 can be in¬

terpreted as stating that we can generate a constituent with category S-BOARD_INCR and
surface words ' increasing the number of seats to BOARD_INCR'if tagBOARD-
_INCR is present in the input. Guided by the treebank bracketing, the tag BOARD_INCR
has been made 'responsible' for generating the surrounding surface words. Rule (1)
also shows the need to introduce a distinct top-level category for candidate sentences

(which we call 'Sup') since a rule such as (1) does not generate a full sentence that
could be regarded as a potential output of the sentence realizer. Phrasal rule (16) in

figure 5.17 shows a typical top-level rule generating NP, VP and a full stop.
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Rule (6) in figure 5.16 contains the surface string 1 from his executive duties',
a result of the annotation decision to leave these pieces of information unmarked. In
other words, we assume that we are only dealing with executive posts. Furthermore,
the rule records that the person in question is male (which is empirically true in almost
all cases).

Phrasal rules for VPs can generate word sequences like 'will join the board'

(rule 2, figure 5.17). Compared to the corresponding fixed annotation template which
contains the word sequence 'years old, will join the board as a' (see figure
4.3, page 125), the phrasal rule is shorter because the word sequence needs to be broken
down according to the syntactic structure. As a consequence, it will be able to be used
more flexibly.

Some example rules contain variations of the DATE tag. These tend to correspond to

adjuncts in the treebank. However, we do not make a distinction between complements
and (optional) adjuncts. Rather, the grammar rules record the actual use of the DATE

tags, motivated by particular treebank parses. Furthermore, rules that contain verbs
like 'said' or 'announce' (rules 4,8,15 in figure 5.17) are a result of the annotation
decision to leave announcements unmarked, i.e. we assume that the explicit mention of
the announcement is just a minor semantic variation. In addition, it should be noted that
arule like (11) in figure 5.17 which generates 'both' expects exactly two coordinated
COMP tags. It therefore records the semantically correct use of 'both'.

A further question concerning the extracted rule set is related to the recursiveness
of the grammar. We can identify 98 phrasal rules (out of 295) that are directly recur¬

sive, i.e. the mother category reappears on the rule right-hand side. They involve 32
different syntactic-semantic categories. The recursiveness of the grammar is obviously
influenced by decisions about node labelling. (As described above, we use the tag
of the left-most daughter node as part of the mother node label.) Some examples of
directly recursive phrasal rules have been shown in (73a,b,d) and (74a,b,c).
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5.7 Related work on combining treebank and annota¬

tion

There is work on simply reading-off a context-free grammar from a syntactic treebank
(Charniak, 1996). Krotov et al. (2000) show a method for compacting such a treebank

grammar by removing redundant rules, where a rule is defined as redundant when it
can be parsed by other rules.

However, (syntactic) treebank grammars alone are not sufficient for NLG because

they lack semantic representations. Combinations of treebank and semantic annotation
have been explored for information extraction (IE). Chelba and Mahajan (2002) show
how a structured language model can be trained on a treebank augmented with seman¬

tic frames. The task of the IE system is to determine the correct frame and fill in the

appropriate slots. Similar to our approach, the semantic annotation is 'flat'. However,
we do not have dedicated frame labels for specific combinations of slot tags.

(Miller et al., 2000) also describe a statistical approach to information extraction
that combines manual semantic annotations with syntactic structures. The semantic
annotation is more complicated, comprising nested tags and relations between them.
In contrast to our approach and the one of (Chelba and Mahajan, 2002), additional

syntactic nodes have to be introduced into the treebank to make syntax and semantics
match.

It seems that the (manually constructed) resources of these approaches are gener¬

ally quite similar to the resources developed in our approach. However, the task is

analysis rather than generation. An issue for possible future work is the question of
whether it is possible to have a reversible system for NLG and IE (see also section

8.6.2).

5.8 Conclusions

In this chapter, we presented an approach to automatically derive the context-free back¬
bone of a generation grammar from a treebank and a manual semantic annotation. Our

approach assumes a syntactic treebank based on constituency in the style of the Penn
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treebank (Marcus et al., 1993). The reason for this choice is the widespread use of
this treebank and the availability of state-of-the-art parsers trained on it (see Collins,
1999, for example). It should therefore be possible to obtain syntactic structures for
new corpora that are collected in the context of NLG system development efforts by

using such parsers. Our approach provides a way of taking advantage of the continuing
progress in statistical parsing.

It should be noted that the manipulation of the rule structure to account for coor¬

dination is based on general heuristics that apply to the entire treebank. No individual
grammar rule is written or altered manually. Similarly, the treatment of indices is based
on a few general considerations.

By using grammar rules rather than templates, we increase the robustness and flex¬
ibility of the generation system. On the other hand, this also extends the search space

of the candidate generator. Section 3.3 gave some idea of the number of edges involved
in finding the output candidates; chapter 7 will show examples of the candidate sen¬

tences that are actually produced by the system. In the next chapter, we show how the
constructed grammar rules can be used to build an efficient candidate generator for our

hybrid generation system.



 



Chapter 6

Rete-based chart generation

The rule extraction phase described in the previous chapter produces a large number
of input and phrasal rules. In this chapter, we describe a bottom-up chart generation

algorithm which is able to handle several hundreds of rather 'shallow' rules.
One issue concerning the organization of large numbers of grammar rules is the

question of rule generalization. Finding common characteristics within sets of rules
can improve processing and might also lead to linguistic insights. In parsing, tech¬
niques have been developed that exploit the fact that rules may share a number of
daughter nodes. For example, Evans and Weir (1997, 1998) describe a structure-

sharing parser that merges finite-state automata derived from LTAG trees. As a result,
a bottom-up parser is able to simultaneously traverse several trees at once by matching
nodes in the merged automaton.

We use a method that also enables the sharing of daughter nodes, albeit in a dif¬
ferent way. Rete networks (Forgy, 1982) are commonly used in production system

languages such as OPS5 (Forgy, 1981) and CLIPS ("C Language Integrated Produc¬
tion System", (Riley, 1999)) to organize large sets of rules (or 'productions').

Knowledge-based expert systems are a typical application of production systems.
A match of a node in a Rete network partially 'activates' a whole set of rules that
share that node. This avoids cycling over large numbers of rules in turn and repeatedly
matching the same elements. Once all elements required in a rule are matched, the rule
'fires' by executing a function call.

In the following, we introduce Rete networks and relate them to the chart algo-
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rithms of NLP. We then present a bottom-up chart generator that uses a Rete network
to share partial matches on grammar rules and show empirical results of the amount of
structure sharing for the grammars used in this thesis. The actual encoding of grammar

rules as productions is shown in appendix A.

6.1 Rete networks

Knowledge-based expert systems basically consist of rules and a knowledge base of
facts (KB). Rules express logical implications and facts contingent truths. Facts match

(possibly partially defined) fact descriptions, or 'conditions', in the antecedent of rules,
and if all conditions required in a rule antecedent are satisfied, the consequent follows.
This usually involves the assertion or retraction of facts to/from the KB. The basic out¬

line of knowledge-based expert systems is similar in spirit to declarative rule systems
based on the logic programming paradigm in NLP in which the order of rule execution
does not alter the result (Pereira and Warren, 1983). In particular, the knowledge base
serves as a store for proved facts and is hence comparable to a chart data structure in
NLP. The knowledge base corresponds to a passive chart as it only contains completed
chart edges representing linguistic phrases.

Standardly, a forward chaining interpreter is used to execute expert system rules.
This corresponds to bottom-up tree traversal algorithms in computational linguistic

terminology. Productions are often characterized as 'condition-action rules' which im¬

plies forward-chaining. However, backward-chaining (top-down) processing is also

possible. The 'conflict resolution strategy' in expert systems addresses the question
which of the 'activated' rules should fire and in what order. In chart algorithms, this

question is dealt with by means of an agenda and a function that determines its order¬

ing. Figure 6.1 relates expert system terminology to computational linguistic terminol¬
ogy. This relationship will be explored throughout the rest of this chapter, in particular
with respect to active edges and Rete networks.

The question we are concerned with here is how production system methods can

help deal with a large number of rules in the context of an NLG system. This is¬
sue arises because of the potentially large number of rules produced by the automatic



6.1. Rete networks 163

Expert Systems NLP

productions in
Rete network

grammar rules

working memory/
knowledge base

passive chart

facts in knowledge base passive edges
partially activated
productions (inside
Rete network)

active edges

conflict resolution

strategy
agenda (of passive
edges) with
ordering function

Figure 6.1: Comparison of terminologies

grammar construction algorithm described in chapter 5.
A simple approach would be to cycle over all rules and check the conditions in

the antecedents against the facts in the knowledge base. There are two sources of
inefficiencies when computing inferences on a large set of rules in such a way (see
Jackson, 1990, for example):

1. Within-cycle redundancies: Matches of facts against rule antecedents are repeat¬

edly performed because many rules have at least partially similar conditions. In
other words, the rule set exhibits structural similarities.

2. Between-cycle redundancies: Facts that remain in the KB from cycle to cycle
are matched against the same rules at each cycle. This is called temporal redun¬
dancy.

With respect to the issue of organizing rules we are mainly concerned with struc¬
tural similarities. However, we also have to address the question to what extent tem¬

poral redundancies are a problem in NLP. We need to make sure that the assumptions
about production systems that underly solutions to the handling of large sets of rules
also hold for NLP.
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6.1.1 A simple network

A solution to the problem of within-cycle redundancies is to exploit structural simi¬
larities between rule antecedents by creating a network that allows facts to match an¬

tecedents in several rules at once. Forgy (1982) introduced Rete networks which have
been widely used in expert system applications ('rete' is Latin for 'net'). The idea
is to create tests for conditions in rule antecedents and to share the results between

rules. For example, consider the following two simple rules (more complex ones are

discussed in the following sections):

We use left arrows in these context-free rule to emphazise a logic-based view of
rules. In this case, the rule right-hand side is the antecedent and the left-hand side the

consequent. (As we will see below, production systems use a different rule notation.
A logic-based characterization of rules allows one to abstract away from notational

issues.) There are only three different symbols in the two rule antecedents. A match
on b should be attributed to both rules at once. A Rete network for these two rules

makes this possible (figure 6.2).

a ■<— c

(75)
d {— a b

start

/ I \
b c a [pattern network]

al a2 a3 [alpha memories]

|\/
\/\ /

jl j2 [join nodes]

bl b2 [beta memories]

FIRE: a d [rule consequent]

Figure 6.2: Simple Rete network

In the graph structure in figure 6.2, new facts enter the network at the start node and
are then tested against 'one-input tests'. In this case, these are just tests for the atomic
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symbols b, c and a. The test results for two one-input nodes are joined into 'two-input
nodes' (or 'join nodes'): b and c are joined into jl and lead to a consequent node that
asserts fact a into the knowledge base. In the same way, b and a are joined into j 2
and connect to a node asserting d. The network organization allows the result of the
test for b to be shared between the two rules. This addresses the problem of structural
similarities between rules and the resulting computational redundancy.

Furthermore, temporal redundancies are avoided by associating memories with the
nodes in the network. Many accounts of Rete-based production systems (Miranker,
1990; Nayak et al., 1988; Doorenbos, 1993, for example) distinguish between mem¬

ories for one-input nodes, called 'alpha memories', and those for two-input nodes,
called 'beta memories'. Alpha memories store information about the set of individ¬
ual facts that satisfy the conditions they represent. Beta memories, sometimes called
'instantiation memories' (Bouaud, 1993), store information about compatible joins of
their left and right input. This is related to the use of variables in production languages
which will be discussed below. Other accounts, including (Forgy, 1982), mention only
memory of join nodes.

In the example at hand (figure 6.2), if processing starts by asserting b and c, the
antecedent of the first rule is satisfied and fact a can be asserted. Join node j 1 re¬

members the facts on its left and right inputs; j2 memorizes the fact on its left input.
Let us assume that a new a-fact matches the right-hand side of the second rule in the
following cycle. Since j2 remembers its left input, the new right input is sufficient to

fully activate the second rule and assert fact d. Because of this memoing of test results,
Rete algorithms belong to the class of 'state saving match algorithms'.

The example shows that there is no predetermined order in which facts need to
be presented to the network. Parsing sequences of facts can proceed in any order of
elements. On the other hand, Rete networks have been developed under the assump¬

tion of forward-chaining interpreters (although backward-chaining is available in some

implementations too). Traversing a Rete network from the start node always results in

bottom-up processing. Still, the order of processing daughter nodes is less fixed than in
the automaton-directed parsing approach of (Evans and Weir, 1997, 1998) mentioned
above.
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More realistic examples of productions add more issues that need to be addressed
when constructing the Rete network. In the following, we give examples for those
issues that are relevant for encoding grammar rules in our approach. A more detailed

description of production system languages can be found in (Giarratano and Riley,
1993) or (Jackson, 1990), for example.

6.1.2 Structured facts

Facts can have more structure than just consisting of a single atomic symbol. They
can be defined by template definitions that specify a number of attributes for a specific
'type' or 'class' of fact. These attributes have values which are atomic symbols, vari¬
ables (possibly with some tests attached to them) or lists of these. However, attribute-
value pairs are not recursive: a value cannot be assigned another attribute-value pair.
Thus, one cannot represent arbitrary feature structures straightforwardly. On the other
hand, this makes it easier to match facts against conditions. These are split into a finite
number of nodes, called a 'pattern'. The part of the Rete network matching facts in iso¬
lation is called the 'pattern network', as opposed to the 'join network' which combines
the results of the pattern network tests.

Figure 6.3 shows conditions matching facts that are structured as attribute-value

pairs. We use the standard functional notation of production system languages. An¬
tecedents are shown on rule left-hand sides; no consequent has been specified in the

example. The network in figure 6.3 shows the maximal amount of node sharing that
is possible. Depending on the internal order of attributes, practical production system

implementations may split the network at other points depending on the order of at¬

tributes chosen. There are fewer performance improvements possible in this kind of
structure sharing since new facts always have to filter through the pattern network from
the beginning. This is because facts are distinct objects so that subtests for values of
different facts cannot be pooled together. Therefore, a fact is only remembered by an

alpha memory in such a network if it passes all tests of the condition it represents.
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(defrule rule-1
(sign (phon man) (syn n) (num sing))
(sign (phon girl) (syn n) (num sing))
=>

)

(defrule rule-2
(sign (phon men) (syn n) (num plur)
(sign (phon girls) (syn n) (num plur)

start

type= sign

syn= n

/ \
num= sing plur

/ \ / \

phon= man girl men girls
I I I I
al a2 a3 a4

\ / \ /

jl j2

bl b2

I I
FIRE: rule-1 rule-2

Figure 6.3: Matching structured facts in Rete network

6.1.3 Variables in conditions

Variables are part of expert system languages. Consequences for the construction of
Rete networks follow in cases where the same variable is used in different conditions

in a rule's antecedent. This requires the introduction of join nodes that test whether the
instantiation of the variables in one fact is consistent with the instantiation in another.

(Although this points to fundamental questions of programming language design such
as how "equality" between data structures is defined, it should be remembered that we

are dealing with relatively simple objects here. In addition to their non-recursive struc¬

ture, in production systems, facts are not allowed to contain variables. On the other
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hand, they do not need to have specified values for all their attributes. The test for com¬

patibility required to match partially defined facts of the KB against partially defined
fact descriptions in rule antecedents is nonetheless much simpler than unification for
arbitrary recursive feature structures.) Some authors emphasize the role of join nodes
for checking variable consistency across facts (Giarratano and Riley, 1993; Miranker,
1990). However, as we have seen above, join nodes are also introduced for combining
test results of facts without any variables. Generally, the structure of the Rete network
is fixed at compile time. Maintaining the bindings of variables (if they are used) needs
to be done at runtime.

(defrule rule-3
(sign (syn np) (num ?n))
(sign (syn vp) (num ?n))
=>

)
start

type=sign
/ \

syn=np syn=vp

al a2

\ /
\ /

jl:
num=?n

bl

I
FIRE: rule-3

Figure 6.4: Conditions with variables in Rete network

A simple example for the introduction of a join node due to the use of variables (no¬
tation: ? . .) is given in figure 6.4. In many production system languages, explicit tests

in the form of function calls can be attached to variables in conditions. Rete networks

make the results of these tests reusable for re-occurring variables. For example, a test

attached to the first occurrence of ?n - for instance, that it should only be instantiated



6.1. Rete networks 169

by certain values - also applies to the second occurrence of ?n due to the structure of
the network.

6.1.4 Ordering of conditions

In Rete networks, join nodes are binary, i.e. they have two inputs. In larger networks,
many of them receive input from other join nodes rather than one-input nodes. Stan¬

dardly, a join node combines the alpha memory associated with a single-input node on

its right input with a beta memory associated with a join node on its left input. (Com¬
bining the first two alpha memories in a rule is obviously a special case and is often
dealt with by assuming a dummy beta memory as the top node to keep the structure

uniform.) In other words, in standard Rete networks, join nodes never combine input
from two join nodes. For example, the network in figure 6.5 first combines alpha mem¬

ories for the antecedents a and b in a join node (the special case), and then combines
the output of this join node with an alpha memory for antecedent c. The alpha mem¬

ories of d and e feed into join nodes that integrate the join nodes of the antecedents to
their left. However, there is no join node that directly combines d and e, or b and e, for
instance.

In general, there are three activities in the join network (Doorenbos, 1993): com¬

puting the left activation of join nodes, computing their right activation, and prolifer¬
ating the facts to the associated beta memory if both inputs are non-empty. When facts
b,c,d and e are presented to the network in figure 6.5, there are no facts in the beta
memories since there are no join nodes with two non-empty inputs. On the other hand,
presenting facts a, b, c and d to the network results in a chain of three join nodes being
fully activated. The associated beta memories then remember the facts that arrived at
the left and right inputs of these join nodes and proliferate the facts to their child nodes.

The example in figure 6.5 shows that the order of conditions in rule antecedents
has consequences for the structure of the network. This in turn affects the efficiency of
the Rete algorithm. Highly volatile facts matching conditions at the beginning of rule
antecedents tend to result in frequent recomputations of joins. If facts b to e are given
in the above example and a is frequently asserted and retracted, the state of all beta
memories is affected by each such action. This is because the entire network has to be
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(defrule rule-4
(a) start
(b) / / | \ \
(c) a b c d e

(d) | III!
(e) al a2 a3 a4 a5

| / / / /
jl / / /
bl I I I

| III
j2 / /
b2 | |
I / /
I ' /
|/ /
j3 /
b3 |
I I
| /
J4
b4

I
FIRE: rule-4

Figure 6.5: Chain of join nodes in Rete network

updated to the current state of the KB after each assert or retract. Therefore, a general
guideline for writing expert system rules is to place conditions that match volatile facts
last (Giarratano and Riley, 1993, p492). This can contradict another guideline, to place
most specific conditions and those matching infrequent facts first, if the facts matching
those specific conditions are volatile. The problem is more severe if productions have

many conditions so that long chains of join nodes are built in the Rete network (as in

figure 6.5).

Figure 6.6 shows how the order of conditions influences the structure of the net¬

work for sets of two similar rules, one of which has the specific condition cl, the other
has condition c2. Memory nodes are omitted for simplicity. In the first example in fig¬
ure 6.6, j 1 is shared because both rule antecedents share the prefix ah. In the second

example, the specific conditions cl and c2 are placed at the first position, not allow¬

ing any sharing of join nodes. This also requires five join nodes rather than just four.
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(defrule rule-5 start
(a) / / \ \ \
(b) a b cl d c2
(cl) I / / / /
=> j/ / / /
) jl / / /

|\/ II
(defrule rule-6 j2/\ / /

(a) | \/ /
(b) FIRE rule-5 j3 /
(d) |/
(c2) j4
=> !

) rule-5

(defrule rule-7
(cl)
(a)
(b)
=>

)

(defrule rule-8
(c2)
(a)
(b)
(d)

start

/ / \ \ \
cl a b c2 d

I / \/| | |
I/ \ I I I

jl / \ J3 |
I / I / I
| / |II

j2 j4 /
I I /

FIRE rule-7 | /
j5

rule-8

Figure 6.6: Effects of condition ordering in Rete networks

Figure 6.6 shows that Rete networks only share join nodes for identical prefixes of
conditions.

The example shows that Rete does not automatically minimize the number of join
nodes (for example, by joining a and b and sharing that join node between the two

rules). On the other hand, this allows one to influence how the network is built in
the light of application data. In section 6.5.2 we show differences in node sharing for
different condition orderings.
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6.1.5 Suitability of Rete networks for NLP

Rete networks seem to be most useful if there is a large number of rules with repeated
occurrences of antecedents since this allows the network to share match results. In

addition, Forgy (1982) establishes a number of general conditions that must be satis¬
fied for Rete to be employed successfully. Firstly and probably most importantly, the
knowledge base must change "relatively slowly". The reason for this is that there is a

cost involved in updating the Rete network which grows with the number of changes
to the knowledge base, i.e. the number of asserts and retracts. This cost must be lower
than the alternative, cycling over rules which still can use efficient indexing techniques,
for example. If the knowledge base is used as a store for completed chart edges, it is

only monotonically increased. Usually, chart edges are not removed once they have
been added to a chart (unless one wanted to claim back memory space or model hu¬
man forgetting, for example). Therefore, for chart-based NLP there is no problem

involving volatile edges. There are no volatile edges since there is no retracting of
facts from the KB. Thus, there does not seem to be a reason why maintaining state

across cycles should involve any additional cost apart from memory requirements and
the need to compute the spread of facts through the network. It is always possible that
the result of a successful matching operation in one cycle is eventually used at a later
one.

Furthermore, Forgy (1982) mentions that Rete networks require facts in the knowl¬

edge base to be immutable. If facts were allowed to change, references to facts in
the network could become incorrect. This poses no additional constraints on chart

algorithms since immutability of chart edges is generally assumed. Furthermore, in

production languages, facts do not contain variables that could be bound to outside

objects which may result in changes to the fact's match results.

6.1.6 Other state saving match algorithms

Rete networks are the most widely used method for organizing production rules. Sev¬
eral alternatives have been proposed. Many of them address the problem of join order¬

ing, i.e. of sequentializing the network. In the following, we give an overview of some
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of the proposals.
The Treat algorithm (Miranker, 1990) is probably the most well-known alternative

to Rete. It has one-input nodes with associated alpha memories but does not have a

fixed network of join nodes. Instead, the join order is determined dynamically. Treat

places less emphasis on memoing and does more recomputation of joins. Furthermore,
it aims at reducing the amount of work to be done for retracting facts which in Rete

generally is the same as for asserting facts. A sketch of a Treat network is given in

figure 6.7.

(defrule rule-9
(a) start

(b) / / | \ \
(c) a b c d e

(d) 1 1 1 1 1
(e) { any join order }
=>

)
\ \ | / /
FIRE: rule-9

Figure 6.7: Structure of Treat network

The performance of Rete versus Treat has been evaluated in the context of the Soar
project (Laird et al., 1987). Nayak et al. (1988) report that Rete outperformed Treat on

several tasks within the Soar project. Their analysis of the strengths and weaknesses
of the algorithms is relevant for language processing as well since there are similarities
between Soar and chart-based NLP: According to (Nayak et al., 1988), productions
cannot retract facts from the knowledge base in Soar. In other words, the Soar knowl¬
edge base is monotonically increasing just as a chart is. This makes any recomputation
of joins unnecessary and therefore gives an advantage to Rete which does more mem¬

oing. Furthermore, the Treat algorithm has to spend effort on determining the order
of join computations at runtime. Rete, on the other hand, fixes the network at compile
time. As a result, Rete indeed seems to be the better choice for chart-based NLR

There are a number of other approaches that should be mentioned. Ishida (1988)
aims at automatically optimizing the total cost of join operations based on execu¬

tion statistics of earlier program runs. Bouaud (1993) presents the Tree algorithm,
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a state-saving match algorithm that has been developed for production systems with
a restricted rule format. In contrast to Rete, where the network directly reflects the

ordering of elements in the antecedent, Tree tries to reduce the size of the join search

space heuristically. Furthermore, there has been theoretical work on 'Generalized Rete
networks' that are characterized by arbitrary join structures. Lee and Schor (1992)
define update algorithms for these generalized networks.

There is substantial work on scaling up production systems to large sets of rules.
Dewan (1994) addresses the problem with respect to data bases and parallel process¬

ing. Doorenbos (1993, 1994) shows that production systems can deal with 100 000

productions and do not need to slow down as more rules are added. The key idea is to
unlink left and right inputs to join nodes if the opposite input is empty. For example,
if the left memory input of a join node is empty, there is no need to activate its right
memory even if there is a matching fact in the associated alpha memory since that fact
has no chance of filtering further through the network. However, if the left input be¬
comes non-empty, the right input is linked into the network again. Doorenbos (1994)
discusses the question how to combine left and right unlinking without disabling a

join node completely. An interesting point about this approach is the assumption that

productions are automatically learned which requires addressing scalability problems.
NLP using much larger sets of (possibly automatically derived) rules could draw on

this work.

6.2 Chart algorithms

Chart-based techniques explore the search space by keeping track of already performed

subcomputations. Pereira and Warren (1983) characterise chart parsing within the

logic programming paradigm. They describe Earley deduction as a general deduction

procedure for definite clauses based on the Earley parsing algorithm (Earley, 1970). It
uses unification to perform matching. We take Earley deduction in the following as an

example of a principled approach to chart algorithms for NLP.
The Earley deduction procedure distinguishes between program and state. The pro¬

gram consist of grammar rules ('non-unit clauses') and lexical entries ('unit clauses').
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Clauses are of the general form

(76) P^Q\...Qn

P is the head or positive literal of the clause. Q\ to Qn are negative literals. Non-
unit clauses have at least one negative literal; unit clauses have none. Literals are terms,

i.e. predicate argument structures that are possibly nested. Non-unit clauses represent

logical implications and are therefore very similar to productions in production systems
under the assumption that the consequent of a production always asserts exactly one

fact. Derived unit clauses correspond to derived facts in production systems. They
represent proved consequences of a given set of initial unit clauses that are assumed to
be true. In contrast to production systems which use relatively simple data structures
and matching operations, Earley deduction uses term unification to perform matching.
This is a major difference between the two approaches that effects how the notion of
'redundancy' is defined (see 6.4.1.2).

In Earley deduction, the state is a chart of unit and non-unit clauses that reflects the
state of the inference process. The 'fundamental rule' combines items and performs
inference proper. Non-unit clauses (corresponding to active edges - see figure 6.1,
page 162) are reduced by unifying one of their negative literals with some unit clause
(passive edge) which has no negative literals (anymore).

The fundamental rule only works on items in the state whereas the 'scanning rule'
and 'prediction rule' introduce new items from the program into the state. The scan¬

ning rule adds unit clauses for lexical items to the state. The prediction rule introduces
non-unit clauses from the program into the state but does not perform any inference

steps proper. It selects those grammar rules (non-unit clauses) from the program whose
positive literal unifies with the selected literal of the non-unit clauses of the state. Thus,
it performs top-down prediction of grammar rules. Depending on the selection function
for the next negative literal of non-unit clauses to be matched, left-to-right, head-driven
or other strategies result.

In Earley deduction, an initial goal statement (stating, for example, that some string
is a sentence) is proved successfully if it can be deduced from the program by repeated
rule applications. A dot-notation is common for parsing a string from left to right,
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implying that the literal to be matched next is the one to the right of the dot. For ex¬

ample, a non-unit item [NP<- DefN < 0,1 >] states that we have found a Det between
positions 0 and 1 and we are looking for an N to the right of Det next. For head-driven

strategies, for example, one could require literal N to be matched first, requiring slight
changes in notation.

Earley deduction mixes top-down and bottom-up processing as in the original Ear-

ley parsing algorithm. Other tree-traversal strategies like pure top-down and bottom-up
can be implemented within this paradigm by modifying the order of inference rule ap¬

plications, i.e. by varying the degree of 'eagerness' of the algorithm. For example,
pure bottom-up processing only selects lexical entries by means of the scanner and
uses the fundamental rule to recursively apply them to non-unit clauses of the gram¬

mar. It does not need to use the prediction rule (Erbach, 1997). Shieber et al. (1995)
describe a common framework for various parsing strategies within the paradigm of

parsing as deduction. Often, an agenda is employed to determine the next item to be

processed. If the agenda is used as a last-in, first-out stack, the interpreter performs

depth-first search. Breadth-first search is modelled by a queue, i.e. first-in, first-out.
Other ordering functions can be used for best-first search.

The distinction between program and state in the Earley deduction framework gives
a clear separation between those things that change during processing and those things
that do not. In principle at least, chart items are always copies of program items.1 They
become further instantiated as items are combined. However, this does not affect the

grammar rules and lexical entries in the program. For example, an input word might
match a lexical entry of the grammar/program. This results in the introduction of a

copy of the corresponding unit clause into the state. In a similar way, non-unit clauses
of the state are always copies of non-unit clauses of the program. If they are selected

by unifying a unit clause of the state with their head, for example, the copy of the
non-unit clause of the program which is added to the state is further instantiated by
this unification.

'in this discussion, we assume a direct copying approach for passive and active edges to highlight
the difference between program and state. There are also methods based on structure sharing that might
be more efficient for implementing the underlying programming languages.
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6.3 Relating chart algorithms to production systems

To investigate the relationship between Rete-based algorithms and chart algorithms,
it is useful to ask what parts of the Rete-based algorithm are constant and what are

mutable. Obviously, the knowledge base of facts is part of the state. It is also clear
that the compiled network of rules is part of the program in the sense defined above.
However, rules in the Rete network can be further instantiated by matching facts just
as a non-unit clause can when one of its literals is unified with a unit clause. As we

have seen above, rules in production systems are allowed to contain variables. A Rete
network needs to keep track of these instantiations to determine consistent matching
of facts in the antecedent and to pass them on to the rule consequent, if required.

Obviously, variable instantiations are part of the mutable state rather than the program.

Partial instantiations/activations of rules in the Rete network correspond to the ac¬

tive edges of chart algorithms. Since these instantiations are handled internally by
the Rete network, they are more difficult to observe than the active edges of chart al¬
gorithms. (However, production languages such as JESS (Java Expert System Shell,
Friedman-Hill, 2000) are able to display the fact combinations that activate the rules.)

When a production fires, only the consequent is asserted into the knowledge base.
The facts matching the antecedent and instantiations of variables in the antecedent are

'left behind'. This is different from standard chart items which monotonically add
information when combined with other items. In other words, passive edges, which
are the best characterization of fully activated rules, are treated slightly differently in
Rete-based chart algorithms. Only an instantiated copy of the consequent is added to
the knowledge base rather than an instantiated copy of the entire production.

6.3.1 Agenda and conflict resolution strategy

A further point of comparison between Rete and chart algorithms concerns the notion
of an agenda. In chart algorithms, the agenda can contain passive as well as active
edges. In Rete networks, the output of the matching phase for a new fact presented
to the network is a 'conflict set', i.e. the set of all newly activated rules. The pro¬

duction system has to make a decision about the order in which the rules should fire.
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Like in chart algorithms, common strategies are depth-first and breadth-first search.
Furthermore, some production languages allow the user to specify a pre-determined
or dynamic rule ordering. In other words, Rete networks have an internal agenda of
activated rules. In our implementation, we introduce an additional agenda outside the
Rete network. This agenda collects all newly generated facts before they are presented
to the network which allows us to freely manipulate the ordering in which new facts
are used.

In chart algorithms, it is assumed that all inferences can eventually be drawn, which

guarantees the completeness of the algorithm. The same is true for production systems:

regardless of the internal agenda ordering (or our external agenda ordering), all facts

(passive edges) can eventually be given to the network. An important point for using a

production system instead of a standard chart algorithm for overgeneration-based NLG
is that the space of possible realizations can be fully explored.

6.3.2 Structural redundancies

As described above, the basic idea of both Rete networks and chart algorithms is to use

memoing techniques in order to deal with repetitive computations. For example, after

matching b against the rules in (75), a chart algorithm has the following two active

edges (matched elements are shown in bold face):2

Cl i—b c

(77)
d <— ah

A chart algorithm needs to match b against each rule individually. In contrast, in a

Rete-based algorithm, b is matched only once. The key difference between Rete-based

processing and standard chart algorithms therefore is the reduction of structural redun¬
dancies. This addresses the problem of within-cycle redundancies (see page 163). On
the other hand, both Rete and chart algorithms reduce between-cycle redundancies by
maintaining state across cycles. In section 6.5.2 we quantify the reduction of structural
redundancies of our Rete-based chart algorithm with respect to our rule set.

2Matching in Rete is non-directional. In the context of this work, we assume the same for chart
algorithms.
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6.4 Bottom-up chart generation with Rete networks

To define a chart generator in a production system, we make a number of basic as¬

sumptions. The automatically constructed generation grammar rules are compiled into
a Rete network. In the overall system architecture, the chart generator is interleaved
with the ranker (depicted in figure 1.2, page 15). Both communicate via an agenda
into which newly produced passive edges are added after they have been scored by the
ranker. (As described in section 6.3, the rule instantiations that correspond to the active

edges are tied to the Rete network.)

(1) Initially:
(2) - for all input tags:
(3) - add fact for tag to agenda

(4) Repeat until agenda is empty:
(5) - move top-most agenda item (passive edge) to Rete network
(6) - compute rule activations for item, i.e. move all the dots
(7) - for all new items (passive edges) generated by

Figure 6.8 gives the basic outline of the algorithm.3 Generation starts by adding
facts representing individual input tags and their indices to the (external) agenda.
Agenda items (passive edges) are then repeatedly matched against the Rete network,
partially or fully activating grammar rules. This corresponds to 'moving the dots' in
chart parsing. The top-most fact (passive edge) on the agenda is only presented to the
Rete network after all consequences of the previously presented fact have been drawn,
i.e. all possible dot movements have been computed. Thus, rules are executed in a

breadth-first manner. All rules that can fire as a consequence of a new fact (passive
3We use the terms 'fact', 'item' and 'edge' interchangeably in the appropriate contexts. They all

refer to passive chart items.

(9)
(10)
(11)
(12)
(13)

(8)
fully activated rules:

- check redundancy
- if item not redundant:

- score item
- if item 'promising':

- add item to agenda
- adjust agenda ordering

Figure 6.8: Bottom-up chart generation algorithm
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edge) being presented to the network do so before any more facts are taken from the

agenda. Any Rete-internal rule ordering does not affect our algorithm, i.e. does not

affect the result. The algorithm stops when the agenda is empty.

The implementation language we use is JESS (Friedman-Hill, 2000). It is closely
related to the CLIPS expert system language (Riley, 1999). (The implementation of

grammar rules as productions is described in appendix A.) The algorithm works

bottom-up and can use the forward-chaining interpreter of production systems directly.
As discussed in section 6.3, matching a fact (passive edge) against the Rete network

corresponds to applying the fundamental rule in chart algorithms (in cases where the
rule application is initiated by a passive edge). The generation algorithm is a variation
of a standard bottom-up chart parser (Gazdar and Mellish, 1989).

Epsilon productions (i.e. rules of the form X —> e) generally pose a problem for

bottom-up processing since empty elements can be stipulated at any point without any

restriction by top-down predictions. However, this is not a problem in our approach
because the grammar construction algorithm eliminates all treebank traces.

Furthermore, bottom-up processing avoids termination problems due to left-recursion.
There is no prediction rule so that there cannot be a prediction loop. Therefore, tech¬
niques that remove left-recursion from context-free grammars do not need to be applied
(see Johnson and Roark, 2000, for example).

6.4.1 Changes to standard production systems

In order to use a standard production system for chart generation, we need to make a

number of changes and additions. As pointed out already, our agenda is an additional
data structure different from the Rete-internal one. We bypass the internal conflict
resolution strategy by collecting all newly generated passive edges first before going
into the next cycle. Presenting a fact (passive edge) to the Rete network can simply
be done by taking a fact from the agenda and adding it to the knowledge base of the

production system. This is implemented by a simple rule of lower preference than the
grammar rules that requests a new agenda item after the grammar rules have finished
firing.

The use of an (external) agenda enables one to carry out experiments using different
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agenda orderings for passive edges (see section 3.3, for example). The agenda ordering
can depend on a simple 'time stamp' or a more elaborate ranking function (instance-
based or otherwise). For time stamp-based search strategies like depth-first or breadth-
first, it is assumed that all items are potentially useful. A more elaborate ranker might
decide that an item is not 'promising enough' to be considered further so that it can

be dropped. Like the agenda itself, the function that determines the agenda ordering
is outside the realm of standard production systems. In the following, we discuss two
further mechanisms that need to be implemented in order to use a production system

for chart generation.

6.4.1.1 Non-overlapping semantics

The basic definition of grammar rules comprises semantic, syntactic and surface form
features. An example is given in (78) (see section 5.4 for a more detailed descrip¬
tion of the rule format and appendix A for the actual encoding of grammar rules as

productions):

(78)

SEM |T]|±||T]
CAT VP-POSTJDESCR-ADJ

TERMS <was named to fT~l[~4~|>

SEM [7]
CAT NP-POST-DESCR.ADJ

TERMS [7]

SEM [7]
CAT PP-POST_NODET

TERMS jT]

When edges are combined, a check needs to be performed to ensure that the re¬

sulting edge does not cover the same semantic input tag twice. For example, in (78)
we need to make sure that [7] and [T] do not contain the same input tag. This check
serves the same purpose as the constraint in parsing to consume each input word only
once. However, since we are dealing with (unordered) sets of semantic tags rather than

(ordered) lists of words, this check needs to be performed slightly differently. Our im¬

plementation uses set functions built into the production language. An alternative is to

use bit vector representations of the semantics covered by the edges (Kay, 1996), and

only allow the combination of edges whose bit vectors have empty intersections.

6.4.1.2 Redundancy checking

Redundancy checking is performed before newly generated facts are added to the
agenda. This saves the potentially expensive effort of ranking facts that are blocked
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by the redundancy check anyway. We do not need to check items in the chart for
redundancy since all those items had been added to the agenda before and therefore
have been checked already. This begs the question when an edge should be considered
redundant.

Generally, if only atomic symbols are used in the grammar (as in context-free gram¬

mars, for example), checking for equivalence between items is a simple identity check.
However, if definite clauses (or feature structures encoded in definite clauses) are used,

redundancy checking needs to block those new items that are subsumed by some chart
or agenda item. This is because non-ground items are abbreviations of all their ground
instances: if a new item is subsumed by some chart or agenda item, then the ground
instantiations of the new item are a subset of the ground instantiations of this chart or

agenda item. In other words, the new item would add no new information to the chart
or agenda.

In our encoding of grammar rules as productions, we assume that the values of all
attributes of facts representing chart edges are instantiated and redundancy is defined
as identity of the slot values for sem, cat and terms. Therefore, redundancy checking
is much less costly in this approach than in chart generation with unification gram¬

mars. The implementation of grammar rules as productions also makes use of other
attributes, for example unique ids for facts (see appendix A). These are not considered
by the redundancy check. However, the use of the terms slot needs to be further qual¬
ified. If it is used directly for determining edge equality, a problem arises in the case

of generation input containing some tag more than once. For example, consider the

following values of the terms slot of a VP:

(79) a. was named [ POSTJStODET vice president ] and [ POST_NODET assistant to
* the chairman ] of this [ COMP.DESCR maker of alcoholic beverages and

consumer products ]

b. was named [ POST_NODET assistant to the chairman ] and [ POST_NODET

vice president ] of this [ COMP_DESCR maker of alcoholic beverages and

consumer products ]

The only difference between the two edges is the order of the slot fillers for tag

POST_NODET. The question arises whether these two strings should be treated as identi-
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cal for the purposes of redundancy checking if they occur in two edges that otherwise
have identical syntactic-semantic category and multi-sets of semantic indices. On the
one hand, the phonological string of these edges is different, and one could argue that

they should therefore be treated as dissimilar. On the other hand, this would allow all

permutations of filler words for the same tag to be generated. There are examples in
the domain corpus that have three posts, resulting in a corresponding extension of the
search space.

The answer to this question needs to be given with respect to the ranking func¬
tion. If the ranker scores the term representations in (79) differently, the corresponding

edges should be regarded as different by the redundancy check. However, in our ap¬

proach the ranker considers only tags and words outside tags but not filler words. We
therefore ignore filler words for redundancy checking. The above examples are then
both presented in the following way for the purpose of redundancy checking:

(80) was named P0ST_N0DET and POST_NODET of this C0MP_DESCR

Using this representation, one of the edges in (79) will be blocked if the other is

already in the chart or agenda. It should be noted that linear order still matters in
this representation. A different word order of non-filler words is still treated as being
different:4

(81) a. was named [ P0ST_N0DET vice president ] of this [ COMP_DESCR maker

of alcoholic beverages and consumer products ] and [ P0ST_N0DET

assistant to the chairman ]

b. was named POSTJNODET of this COMP_DESCR and P0ST_N0DET

Since the representation in (81b) - which is used for redundancy checking - is
different from the one in (80), the corresponding edges cannot block each other.

The redundancy check can be efficiently implemented using a tree-structured rep¬

resentation, first checking the syntactic-semantic category, then the semantic indices,
then the reduced content of the terms slots.

4We are not considering nuances in semantics at this point.
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However, if index checking is performed, we also store the number of tag indices
associated with the edge in question. This allows us to prefer edges with less indices
(see section 5.5).

Finally, it should be noted that the derivation is not considered by the redundancy
check. This means that the derivation of blocked edges is lost, and only the one of the

blocking edge which is already in the chart or agenda survives. If we were interested
in keeping the derivations of all edges, we could store information about derivations
separately and recover them after processing has finished. This technique is used in
two-step parsing (see Shieber et al., 1995). Alternatively, one could introduce disjunc¬
tive representations for the derivation encoding of chart edges. In such an approach, the
blocking edge keeps the derivation of the blocked edge in addition to its own deriva¬
tion.

6.5 Match savings of Rete networks

Employing a Rete network for rule matching avoids cycling over all rules in turn. In
the following, we aim to examine - at a reasonable level of abstraction - how much
work is actually being saved in comparison to standard chart algorithms. We first look
at a simple example and show how we estimate the expected matches in standard chart

algorithms. We then empirically investigate the number of matches with respect to an

automatically derived generation grammar.

6.5.1 Scalability of Rete networks

In Rete networks, the number of matches in the pattern network increases linearly
with the number of facts whereas the number of matches in the join network increases

quadratically. This is because in the pattern network, a successful match result for a

fact can be used in all productions that share the corresponding condition. In contrast,
in the join network, the cross product of all combinations of facts needs to be checked
in principle.
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(defrule rule-10
(a ?X)
(b ?X)

=> )

start

/ \
a b

\ /
?X

FIRE rule-10

Facts in KB:

(a 1) (b 1) (a 1) (b 1) (a 1) (b 1)
(a 2) (b 2) (a 2) (b 2) (a 2) (b 2)

(a 3) (b 3) (a 3) (b 3)
(a 4) (b 4)

number of facts: 4

pattern matches: 4
join computations: 4

(successful joins:
total: 8

6

9

15

16

24

Figure 6.9: Scaling w.r.t. the number of facts in Rete network: matching one rule

6.5.1.1 Matching with a single rule

Figure 6.9 shows a simple example (memory nodes are omitted). Production rule-
10 requires two ordered facts that share variable ?X to match its conditions. Two
a-facts and two b-facts in the KB require four matches in the pattern network and
four variable comparisons in the join network. The pattern network matches the facts
(a 1), (a 2), (b 1) and (b 2). (We only count successful matches in the pattern

network, not match attempts. We believe this is justified under the assumption of
a simple indexing scheme for the atomic heads of facts and conditions.) The join
network checks the compatibility of the variable instantiations for the pairs of facts (a
1) - (b 1), (a 1) - (b 2), (a 2) - (b 1) and (a 2) - (b 2). Two of these four checks
are successful. Doubling the number of a-facts and b-facts results in 8 pattern matches
and 16 join computations (4 of which are successful).

The question now is how these observations translate into chart algorithms. For
the purpose of comparing algorithms, we regard matching in chart algorithms as also
consisting of two phases: matching facts against conditions in isolation, and checking
variable consistency. For a grammar that only contains a single rule as in figure 6.9,
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the matching effort for Rete and chart algorithms will be the same.

A possible point of confusion when comparing Rete and a chart algorithm in this

way is the creation of new active edges in chart algorithms. For example, after rule
rule-10 matches two a-facts, there are two active edges (al.b and a2.b in dot-

notation) that wait for matching b-facts. The Rete network does not create such ac¬

tive edges (see section 6.3). However, it also keeps track of the rule instantiations
(and maintains them across cycles similar to chart algorithms). It is difficult to esti¬
mate which of the two methods of representing rule instantiations/activations is more

efficient. For the purpose of this comparison, we assume that both involve equal costs.

6.5.1.2 Matching with a more than one rule

The previous example did not exhibit any differences between Rete and chart algo¬
rithm. Since the main difference between Rete networks and chart algorithms is the
removal of structural redundancies, we need to look at an example that exhibits such
redundancies.

Figure 6.10 shows a Rete network for the rule of the previous example and one

more rule that has the conditions of the first as its prefix. For the same sets of facts in
the KB, the matching cost in a Rete-based approach is exactly the same as in the single
rule case since all network nodes belonging to the first rule are shared.

In contrast, if we interpret chart algorithms as approaches that have separate net¬
works for each rule and do not allow any structural sharing between them, each net¬

work needs to be traversed individually. This is depicted in figure 6.11.5 As for the
Rete network, we assume indexing of fact/condition-heads and count only successful

pattern matches. The chart algorithm has to perform twice as many pattern matches as

the Rete algorithm since there are two grammar rules. For example, for 4 input facts
we now perform 8 successful pattern matches rather than just 4. A similar situation
arises w.r.t. the join computations, i.e. the variable unifications: for 4 input facts (2
a-facts and 2 b-facts), we perform 4 comparisons in each rule network, resulting in 8

comparisons overall (rather than just 4 for Rete). For larger numbers of input facts, the

5Figure 6.11 lists the facts that match the pattern network of each rule separately. However, the KB
contains exactly the same facts as in the Rete case (see figure 6.10).
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Productions:

(defrule rule-10
(a ?X)
(b ?X)

=> )

(defrule rule-11
(a ?X)
(b ?X)
(c)
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Rete: start
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a b c

\ / I
?X---I

FIRE rule-10 rule-11

Facts in KB:
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Figure 6.10: Scaling in Rete network: matching two rules
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Chart algorithm: individual networks

start start

/ \ / | \
a b a b c

\ / \ | /
?X ?X— |

rule-10 rule-11

Facts in KB matching rule patterns (only one instance of each fact in KB):
rule-10: (a 1) (b 1) (a 1) (b 1) (a 1) (b 1)

(a 2) (b 2) (a 2) (b 2) (a 2) (b 2)
(a 3) (b 3) (a 3) (b 3)

(a 4) (b 4)
rule-11: (a 1) (b 1) (a 1) (b 1) (a 1) (b 1)

(a 2) (b 2) (a 2) (b 2) (a 2) (b 2)
(a 3) (b 3) (a 3) (b 3)

(a 4) (b 4)

number of facts: 4 6 8

pattern matches: 8 12 16

join computations: 8 18 32

(successful joins 4 6 8)
total: 16 30 48

Figure 6.11: Scaling in chart algorithm: matching two rules
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hypothesized chart algorithm always performs twice the number of joins computations
(variable unifications) than the Rete case.

The total number of match savings achieved by the Rete network is expected to

become more dramatic if we increase the number of rules. It should be noted, however,

that the above example allows the Rete network to share the maximal number of nodes.
On the other hand, for larger rule sets, even non-maximal sharing will be beneficial.
This will be investigated empirically in section (6.5.2).

6.5.2 Match savings for grammar rules

The previous section discusses match savings for Rete networks that can be expected
in the general case. In this section, we quantify match savings with respect to a Rete
network of 381 productions that were automatically constructed from 104 annotated
treebank sentences. The productions are described in more detail in appendix A. Here,
we are only interested in the matching behaviour of the Rete network built from these
rules. In order to compare Rete and chart algorithms, we again assume that chart

algorithms perform matching in a pattern and a join network. However, as in the

previous section, we assume that standard chart algorithms do not allow any sharing
of match results across sets of rules in the same 'cycle', i.e. for the same fact (passive

edge) that is taken from the agenda and added to the chart.

6.5.2.1 Pattern network

The amount of sharing in the pattern network depends on the frequency of the different

types of conditions in the grammar. These conditions match the corresponding types
of unordered facts. For the most frequent type of condition, NP-P0ST_N0DET occurring
46 times, for example, employing a Rete network means that matching is performed
only once rather than than 46 times for a single edge matching this condition. Put
another way, a single match partially activates 46 productions. This is what we set
out to achieve by employing a Rete network. In contrast, a standard chart algorithm
needs to perform matches on all rules individually. On the other hand, there are no

savings in the pattern network for conditions that only occur once in the grammar.

Thus, measuring the actual amount of savings in a generation sysLem runs requires one
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to look at the actual facts asserted into the KB. There will be more savings if facts tend
to match frequent conditions rather than infrequent ones.

After generation has finished for some semantic input, we can examine the facts
in the KB and relate them to the frequency of the conditions they match. Since the

frequencies of conditions in productions can be interpreted as the number of matches
required in standard chart algorithms, the sum of the condition frequencies for the facts
in the KB represents the number of pattern matches for chart algorithms. In contrast,
Rete networks only perform as many pattern matches as there are facts in the KB.

input A B C D E F G H I J

KB edge facts 86 144 189 166 98 162 232 237 266 337

a-matches: Rete 92 150 195 172 103 167 238 242 271 342

a-matches: chart 885 1510 2578 2893 1214 2254 2096 2204 2021 2335

Rete savings 793 1360 2383 2721 1111 2087 1858 1962 1750 1993
in % 89.6 90.1 92.4 94.1 91.5 92.6 88.6 89.0 86.6 85.4

Figure 6.12: Pattern matches in Rete network versus chart algorithm

Figure 6.12 details the number of edges for individual system runs and the number
of matches in the pattern network for Rete and chart algorithms ("a-matches"). The

example runs were carried out using the expectation-based ranker and standard system

settings as in the experiments described in section 3.3. Here, the number of facts in the
KB is most relevant since these are presented to the Rete network.

The number of pattern matches in the Rete network is the same as the number of
chart edges (unordered facts of the KB) plus the number of initial facts for the input
tags (usually about six). The initial facts do not count as chart edges because they
were not generated by the grammar (see also our encoding of input rules in appendix
A). The difference between Rete and hypothesized chart matches shows how many

matches in the pattern network have been saved with respect to individual generation

inputs by using a Rete network. For example, input A yields 86 facts in the KB. These
facts, together with 6 input facts, result in 92 matches of facts against conditions in the

pattern network. In contrast, a standard chart generator needs to perform 885 matches
since it looks at all rules in isolation. Therefore, using a Rete network saves 793
matches, or 89.6%. The average savings for all inputs are 90%. Differences between
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inputs with respect to the number of saved matches for similar numbers of KB-facts
can be explained by the varying frequency of conditions and of heads in KB-facts.

6.5.2.2 Join network

The figures for match savings in the pattern network have to be seen in the context of
the work required in the join network. One example of checks performed in the join
network is the test for non-overlapping semantics of chart edges ('consumes-check',
see section 6.4.1.1) which obviously requires information from more than one edge.
Generally, the number of consumes-checks corresponds to the number of join tests if
all grammar rules are binary. This is largely true for the automatically derived gram¬

mars in this approach (see section 5.6). We can count how often the consumes-check
is performed in the generation runs (and also how often it is successful or fails). This
measures the number of combinations of facts that are tested by the consumes-check
for those facts that filter successfully through the pattern network.

input A B C D E F G H I J

a-matches: Rete 92 150 195 172 103 167 238 242 271 342

consumes checks 863 1742 11415 11542 2162 6797 5710 6153 4554 6892

success 233 336 1102 468 507 1473 1686 543 547 680

failure 630 1406 10313 11074 1655 5324 404 5610 4007 6212

Figure 6.13: Computations in the join network: placing unique condition first ('chart')

Figure 6.13 gives the number of consumes checks for the same inputs and system

parameter settings as in the previous table. For example, there are 863 consumes-

checks for input A (233 of which succeed whereas 630 fail). In contrast, there are only
92 matches in the pattern network for the same input.

Since combinations in the join network scale quadratically in general, it is not

surprising that the number of consumes-checks tends to be higher than the number of
pattern matches even for a chart algorithm (see figure 6.12).

6.5.2.2.1 Condition ordering The counts in figure 6.13 have been obtained by us¬

ing rules that place a specific condition matching a unique rule-id first (for example:
'input-rule-23'; see appendix A). This effectively simulates the performance of
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chart algorithms with respect to the join network since productions never share a com¬

mon prefix. We can also ask how many join nodes are actually shared for the rule
set at hand, and what effect this has on the number of consumes-checks if the unique
conditions are placed last.

fact-id —> none last first

('rete') ('chart')

a-unshared 485 1251 1494

a-shared 1328 1328 1073

(3-unshared 238 621 639

(3-shared 20 20 0

Figure 6.14: Number of shared and unshared nodes in Rete network

Figure 6.14 gives the number of shared nodes in pattern and join network (a- and
(3- networks, respectively) for the different condition orderings for the grammar we

are using throughout these experiments. (Note that the sharing in the Rete network
does not depend on the generation input.) The high overall number of nodes can be
explained by the fact that the JESS rule compiler produces nodes for subtests on facts.
For example, a pattern matching a structured fact is represented by two nodes in the
pattern network.

If no conditions matching rule-ids are used at all (first column in figure 6.14), the
number of shared join nodes is the same as if they are placed last (second column).
This is because rule-ids are unique and the tests cannot be shared. There is no sharing
at all if rule-ids are placed first (third column) because there can be no common prefix
among productions. In this case, rule-ids act as guards or control facts.6

Placing the unique condition last results in 20 join nodes out of a total of 641 being
shared. This seems to be a fairly small number. In principle, join nodes may be shared
across a large number of rules so that they may save more work than this number

suggests. However, when we compare the number of shared and unshared (3 nodes in
chart and Rete networks in table 6.14, we see that the savings are indeed small. In

general, join node-sharing takes place in two cases:

6It is also noteworthy that the number of shared and unshared nodes in the pattern network seems to
change slightly depending on the position of the rule-id. We attribute this to the specific Rete compiler
used in the experiments.
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1. The sequence of conditions in one production is a prefix of another production.
For example, a ternary rule might share its first two daughters with a binary rule.

2. Productions have identical conditions but different consequents. For example,
two binary rules might match the same daughters but have different mother
nodes.

The low number of shared join nodes can be explained by the fact that, excluding rule-
ids, most rules are binary (see section 5.6) and they are obviously not identical since
identical rules are filtered out by the grammar construction procedure. For the majority
of rules, only sharing in the second case is a possibility.

input A B C D E F G H I J

a-matches: Rete 92 150 195 172 103 167 238 242 271 342

consumes checks 756 1742 11383 11542 2090 5667 4938 5753 3832 6492

success 216 336 1070 468 471 1183 1439 538 488 675

failure 540 1406 10313 11074 1619 4484 3499 5215 3344 5817

% id last vs id first -12.4 0 -0.3 0 -3.3 -16.6 -13.5 -6.5 -15.9 -7.3

Figure 6.15: Computations in the join network: placing unique condition last ('Rete')

6.5.2.2.2 Effects of condition ordering We can compare the number of consumes

checks for productions that place rule-ids last to those that place them first, effectively
disabling any join sharing. Figure 6.15 shows the changed number of consumes-checks
for the same inputs and parameter settings as in the previous tests. The last row in fig¬
ure 6.15 shows the reduction in the number of consumes-checks for the two condition

orderings. Placing rule-ids last is always at least as good as placing them first, and
in some cases up to 16% better. The average improvement is 7.6%. These savings
are a systematic effect that can be explained by the sharing of join nodes in the Rete
network. Differences for specific inputs are due to the fact that not all productions are

able to share results.

The differences between the two condition orderings seem to be rather small. This

finding is in line with other studies on relatively small sets of rules showing that im¬

proved sharing in the join network only produces very limited speedups (Doorenbos,
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1993, p294). It may be the case that for language processing with (largely) binary
rules, the amount of join node sharing that is possible remains fairly limited. However,

especially for larger rule sets, even a small amount of join sharing is beneficial.

Although for our grammar of 381 productions the differences between the Rete
network (estimated by placing rule-ids last) and chart algorithms (estimated by plac¬

ing rule-ids first) are relatively small concerning join computations, gains in the pattern

network are still an advantage of Rete networks. The 7.6% improvement in the join
network seems rather modest compared to the 90% improvement in the pattern net¬
work.

From a processing point of view, sharing in the pattern network could be exploited
best when the linguistic representations used in the grammar formalism become more

complex. Furthermore, it is preferable to limit the use of shared variables and try to do
as much work as possible in the pattern network. In our approach, shared variables are

only used to perform tests that require information from two facts, most notably the
check that edges have no overlapping semantics. The tag index treatment (see section
5.5) is another candidate for this. In the practical implementation, the test is performed
in the rule antecedent since it rarely fails (see appendix A). In general, however, shared
variables will be necessary to model agreement, for example, unless one wanted to use

only ground values for the corresponding attributes in conditions which in turn would

require a larger number of productions.

6.6 Related work on NLG using production systems

The Ana stock report generation system (Kukich, 1983, 1988) is an early example of
a knowledge-based approach to NLG and was implemented in a production system

language (OPS5). Ana is an example of the explicit-choice model of generation. The
input to the system are stock quotes. Ana first generates the facts to be expressed, then
identifies appropriate "messages", groups these according to topic and realizes them
with a phrase-based grammar. Although the general processing strategy is top-down,
realization is performed bottom-up by a "clause-combining grammar" that builds up

sentences from phrases originating from a phrasal lexicon. As we have seen in this
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chapter, the forward-chaining interpreter of production language encourages this kind
of processing strategy.

Our automatically constructed grammar shares some characteristics with a phrasal

grammar such as the one used by Ana. The elementary units of processing are often
larger than single words, limiting the number of rule applications required for building

up a sentence. In our system, the rules are derived systematically and conform to the
bracketing structure of the treebank.

A production system language was also used to analyse and generate natural lan¬
guage in the NL-Soar project which formed part of the larger Soar project (Laird et al.,
1987). The grammatical framework is based on Chomsky's Government and Bind¬
ing theory. NL-Soar distinguishes between 'utterance model', used for building up

syntactic structure, and 'situation model', used for semantic interpretation.
In the utterance model of NL-Soar, each node in a syntax tree is represented by

an unordered fact. The fact's head represents a unique node-id, attribute names are

bar-level, category, head and spec amongst others. In contrast to the represen¬

tations used in our approach, which basically associate facts with edges and therefore
with local trees, NL-Soar 'distributes' tree representations across facts. A result of
this choice of representation is that more work needs to be done in the join network.
To match nodes that are part of the same tree, instantiations across facts need to be
identical. As described in section 6.5.1, this involves more work than matching in the

pattern network.

6.7 Conclusion

The idea put forward in this chapter is to address the matching problem for large sets
of automatically generated grammar rules by employing techniques developed for pro¬

duction systems. To our knowledge, there has been little overlap between the NLP
community and the production system community although both have developed ma¬

ture techniques over the years. To bridge the gap, we systematically relate chart pars¬

ing algorithms to production systems and show empirically that Rete networks have
advantages over standard chart algorithms with respect to the amount of matching they
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perform. This is due to the exploitation of structural similarities between rules in Rete
networks. The gains in the pattern network of Rete-based rule systems are larger than
those in the join network, especially if the rules are mostly binary. For this reason, it
seems advisable to choose grammar representations that limit the use of shared vari¬
ables in productions and to try to maximize join node sharing.



Chapter 7

Evaluating the instance-based

generator

In the previous chapters, we described the two basic components of the hybrid gener¬

ation system: the instance-based ranker on the one side and the rule-based candidate

generator on the other. In this chapter, we investigate the output of the system and its
general behaviour. We divide our experiments into two categories: 'gold standard' ex¬

periments and experiments based on manual exploration. Gold standard experiments
divide the corpus into training and test set and use the test set semantics as input to the
generator. This evaluates the system in a way that is empirically justified with respect

to both the individual inputs and the distribution of these inputs.

The experimental setup of gold standard experiments is depicted in figure 7.1. The
figure is simplifying matters a bit because it does not show the interleaved architecture
of the generation system (see section 1.2.5, figure 1.2). As in previous experiments,
we extract inputs from the semantically annotated test corpus and match them against
the grammar rules. Instances and grammar rules are derived from the semantically
annotated training set. The edges produced by the grammar rules are scored with
respect to the instance base. The resulting candidates can be compared to the original
sentences (this is discussed in section 8.1). An important characteristic of our approach
is the separation of individual corpus examples (or the resources derived from them)
throughout the generation system: the items of the instance base as well as the grammar

197
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rules are always individually motivated by annotated treebank parses.

Figure 7.1: General experimental setup

However, the empirical gold standard methodology does not test the system on

ill-formed input and it does not probe the generator systematically by searching for

particular weaknesses. Such experiments need to be conducted by using hand-crafted

input. This is necessary to obtain a more complete picture of the capabilities of the

generation system.

7.1 The need for ranking

The grammar interpreter generates large numbers of candidates depending on the size
of the input and the individual tags involved. For example, inputs of size 6 typically

yield about 10000 candidates. In chapter 3 we investigated the efficiency implications
of such an overgeneration approach. In this chapter, we look at the actual candidates
chosen by the ranker. The need for ranking arises from the fact that many candidates
are ungrammatical, unintelligible or at least non-fluent. Thus, we expect the ranker to

identify the good candidates among the many 'bad' ones.

The generated candidates contain intelligible pieces since our grammar is phrase-
based, i.e. many grammar rules generate several words at once (see section 5.6). Fur¬
thermore, the slot fillers also often contain several words. As a consequence, bad can¬

didates typically combine phrases in the wrong order but they do not exhibit random

permutations of the words available to the grammar.
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Lord Chilver , 63 to English China Clays PLC , , chairman , , was elected an nonexecutive
director of the chemical company .

Lord Chilver , chairman , at English China Clays PLC , 63 , was elected an nonexecutive
director of the chemical company .

James L. Pate , 54 ,, this oil concern 's , was elected a director .

James L. Pate , from this oil concern ,, 54 years old , was elected a director .

from this metals and industrial materials maker said its board elected Michael Henderson of
chairman .

Michael Henderson , group chief executive , , , This metals and industrial materials maker , ,

51 , was appointed chairman , effective in May , succeeding Ian Butler .

this metals and industrial materials maker's group chief executive said Michael Henderson was
named chairman succeeding Ian Butler .

Scott C. Smith , formerly former chief financial officer was elected senior vice president at the
media concern .

Scott C. Smith , formerly vice president, finance,,, formerly chief financial officer, was elected
senior vice president at the media concern .

Charles A. Pearce, 66, will retire This bank holding company Dec. 31.
Charles A. Pearce , chief executive officer , , 66 , , will retire this bank holding company's
Dec. 31 .

Frank Nicastro, this closely held supermarket chain's, was named treasurer.
Frank Nicastro, This closely held supermarket chain, was named vice president.
Frank Nicastro, from this closely held supermarket chain, was named treasurer.
Frank Nicastro, from this closely held supermarket chain, was named treasurer, and vice pres¬
ident.

the closely held supermarket chain's said Frank Nicastro was named treasurer.
from this closely held supermarket chain said Frank Nicastro was named treasurer.
from this closely held supermarket chain said its board elected Frank Nicastro of treasurer and
of vice president.

Drug Emporium Inc. 's said its board elected Gary Wilber , This drugstore chain , , former
chief operating officer , of chief executive officer .

Drug Emporium Inc. 's said its board elected Gary Wilber , formerly formerly former president
and formerly chief operating officer of chief executive officer .

Drug Emporium Inc. said its board elected Gary Wilber , formerly formerly formerly chief
operating officer and formerly president as chief executive officer .

Terry L. Haines , this plastics concern 's , has been named vice president, North American
sales,, both new posts .

Terry L. Haines , from this plastics concern , was named vice president, North American sales,
, the new posts .

Figure 7.2: Some rather bad candidates
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Figure 7.2 shows some bad candidates for a number of inputs. They often contain

sequences of punctuation marks. Some punctuation marks are part of the slot fillers
and are not visible to the ranker. Most, however, are generated by the grammar rules.

Generally, the ranker treats punctuation marks like words since they are separate tokens
in the instance representation. We do not apply any text polishing during generation.1
However, in the following evaluations, we assume a simple text polishing function that
applies the rules of absorption.

Finding particularly bad examples can be a problem in itself since in many cases

exhaustive search is not possible due to memory problems. In these experiments, we

tricked the expectation-based ranker into preferring bad edges by defining an inverted
expectation expi,w = 1 — exp. We then ran the system without pruning and a time limit
of 3 minutes. (However, even this time limit leads to memory problems in some cases.)
We then looked at the resulting candidate list from the bottom.

7.2 Reproducing the training set

A first test of an instance-based system should evaluate whether it has correctly learned
the training set instances. In our hybrid generation system, this implies a number of
issues:

1. Does the rule system reproduce the annotated training set template?

2. Does the ranker choose the correct candidate?

Quite obviously, training set reproduction is a gold standard experiment. It can

be conducted at different levels of difficulty depending on how many rules and in¬
stances are available to the system. In the simplest case, we only allow the generator
to use rules that were extracted from the treebank parse in question, and restrict the
instance base to a single instance, the corresponding annotated training template. This
effectively excludes issues of search and comes closest to testing the implementation

'The rules of absorption for punctuation (see section 4.4.2) only apply when the final candidates are
presented to the user. The proposed duplication of punctuation in the markup scheme does not affect
the system internal instance/edge representations since the additional commas are inserted into the slot
filler and are therefore not visible to the ranker.
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of grammar rule construction and vector-based matching between candidate and in¬
stance. We can then increase the number of rules and instances and test whether the

system still reproduces the training set instance in question.
In order to carry out these experiments, we need to be able to block and unblock

grammar rules of particular treebank parses. The general mechanism for this is to use

unique facts for rule names in rule antecedents. To unblock a particular rule, its rule
name needs to be added to the chart as a fact (see appendix A). Since a grammar rule
can be derived from more than one treebank parse but is only spelled-out once in the

grammar, we associate each training set parse with a set of rule names where a rule
name can occur in more than one such set. To unblock a particular training set parse,

we release the rule names associated with that parse into the chart.

7.2.0.2.3 Dealing with non-taggables When evaluating training set reproduction,
it makes sense to test the system on as many inputs as possible. To this end, we treat
the entire corpus as a training set and produce grammar rules for the entire treebank.

However, the question arises how to deal with sentences that contain areas regarded
as non-taggable (see section 4.4). Generally, we do not want '?'-tags to be part of the
generation input although it should be technically possible to use them like any other
tag in the rule system. (Grammar construction does not regard them as special.) Except
for rules that expect the presence of a '?'-tag, the grammar rules extracted from parse

trees of sentences containing non-taggables are still generally useful.
Furthermore, we need to deal with instance representations containing '?'-tags.

One option is to just omit terms that contain a non-taggable tag and keep the rest of the
instance representation. However, such a reduced instance would not correspond to any

corpus sentence and might even be ungrammatical. If we decide to keep the instance,
the question arises how to weight terms containing non-taggable tags. Simply using
the common tf.idf weighting scheme (see section 3.1.2) does not seem to be justified
because the weights of '?'-containing terms should not depend on the occurrence of
other '?'-tags in the corpus. Thus, a high, fixed weight, for example one corresponding
to a single occurrence of the non-taggable tag in the corpus might be appropriate. This
allows us to still use the instance for similarity computations although we will never

be able to get a similarity score of 1.0.
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For training set reproduction, however, sentences containing non-taggable tags do
not seem to be suitable. There are 6 of these in the corpus which leaves us with 138

corpus sentences for the reproduction experiments.

Figure 7.3: Experimental setup of narrow reproduction experiment

7.2.1 Reproduction with narrow rule set and instance base

The first set of reproduction experiments unblocks the grammar rules associated with
the instance in question, and uses this instance as the only member of the instance base.
This is depicted in figure 7.3; the numbers correspond to individual corpus sentences

(and their parse trees and annotations). Even when only rules extracted from the in¬
stance parse in question are used, the rule system produces more than one candidate in
121 out of 138 inputs. In order to make the overall generation process transparent, we

present one such example in somewhat greater detail.

Figure 7.4 shows a number of representations involved in testing the reproduction
of original sentence (82) which is given the semantic annotation (83):

(82) original: Robert P. Bulseco, 44 years old, was named president and chief administrative
officer of this regional commercial bank.

(83) annotation: [INPERSON.FULLNAME Robert P. Bulseco], [INPERSON-AGE 44] years old,
was named [POST_NODET president] and [POSTJSFODET chief administrative officer] of
this [COMP_DESCR regional commercial bank].
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(84) template: INPERSON-FULLNAME , INPERSON-AGE years old , was named
POST_NODET and POST_NODET of this COMP-DESCR .

(85) instance terms: {<INPERSON-FULLNAME , >, <, INPERSON-AGE>,
<INPERSON-AGE years>, <years old>, ... }

(86) generation input:
COMP-DESCR regional commercial bank
POST_NODET administrative officer

POST-NODET president
INPERSON^AGE 44

INPERSON-FULLNAME Robert P. Bulseco

(87) input rules:
PP-COMP_DESCR of this COMP-DESCR

NP-POST-NODET ->■ POST_NODET

ADJ P - INPERSON_AGE ->■ INPERSON-AGE years old

NP- INPERSON-FULLNAME -> INPERSON-FULLNAME

phrasal rules:
NP-POST-NODET NP-POST.NODET and NP-POST-NODET

VP-POST-NODET -> was named NP-POST-NODET PP-COMP.DESCR

NP-INPERSON-FULLNAME ->• NP-INPERSON-FULLNAME , ADJP-INPERSON-AGE ,

Sup-INPERSON-FULLNAME -> NP-INPERSON-FULLNAME VP-POST_NODET .

(88) generation output:

a. (cos=1.0) Robert P. Bulseco, 44 years old, was named chief administrative officer
and president of this regional commercial bank.

b. (cos=0.88) Robert P. Bulseco, 44 years old, was named chief administrative officer
of this regional commercial bank.

c. (cos=0.88) Robert P. Bulseco, 44 years old, was named president of this regional
commercial bank.

d. (cos=0.59) Robert P. Bulseco was named chief administrative officer and president
of this regional commercial bank.

e. (cos=0.38) Robert P. Bulseco was named chief administrative officer of this regional
commercial bank.

f. (cos=0.38) Robert P. Bulseco was named president of this regional commercial bank.

Figure 7.4: Example input for 'narrow' reproduction experiment
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From the annotated sentence (83) we extract generation input (86). It should be
noted that generally the ordering of the attribute-value pairs is not important. In this
case, we presented the input in reverse ordering to the generator. The goal of the gen¬

erator is to produce a template (84) which matches the corresponding instance in the
instance base. However, instances and edges are not matched directly but transformed
into sets of terms. For example, in the current experiment we used bigram terms, and
hence the instance as well as the content of the terms slot of the edge are represented
as bigrams (85).

The chart generator uses generation rules based on the context-free grammar (87).
In this case, the rule system produces 6 candidates which are shown in (88). These
candidates are produced by inserting the slot fillers into the generated templates. All six
candidates are grammatical - which is not always the case, as we will see below - and
are faithful to the input although not all candidates express the entire input semantics.
The candidates have different similarity scores w.r.t. the only instance available. Since
we only have a single nearest neighbour, more dissimilar but grammatical sentences

like (88e,f) are bound to have a low score. The generated candidates show that a

grammar based on a single parse tree is able to produce 'summarized' versions of the
original sentence.

In order to obtain all candidates, we used a simple ranker without expectation that
does not prune edges in this 'narrow' experiment. The experiment confirmed that
the rule system is able to reproduce all 144 templates with a cosine of 1.0. We also
wanted to know whether it reproduced the exact surface string of the original sentence.
It turns out that this is not always the case because slot fillers of identical tags may

be exchanged. For example, 'chief administrative officer and president' in the best
candidate in (88) is not literally the same as 'president and chief administrative officer'
in the original string (82). However, their template representation is identical and, thus,
the redundancy check filters out one or the other, depending on the order in which the

edges are generated. This in turn can vary on the ordering of the input (which otherwise
has little effect). When we switch off redundancy checking, all 138 original strings
are reproduced. However, the system also generates many permutations. The largest
number of candidates for a single input now is 900, in contrast to 152 candidates for the



7.2. Reproducing the training set 205

same input when redundancy checking was used. Thus, in an overgeneration approach
to generation with larger grammars, the redundancy check is indispensable.

Exchanged slot fillers, like the P0ST_N0DET fillers of the first candidate in (88) for

example, show that surface string reproduction is difficult to achieve when the chart
generator does redundancy checking. However, the ranker is working on the template
level, so that template regeneration should be what we are aiming for. In addition,
there are practical problems in measuring string reproduction, for example whether or

not punctuation is attached to the previous word or how special symbols like are

rendered does not literally match Unlike (88), exchanging slot fillers can

also result in faithfulness problems which motivated the introduction of tag-indices
(see sections 4.3 and 5.5). These are evaluated in section 7.7.1.

7.2.2 Reproduction with broad rule set and instance base

Having confirmed that the system is able to reproduce the original sentences when us¬

ing the associated grammar rules, we now broaden the grammar and the instance base
to all 138 corpus sentences. We still expect the original templates to be reproduced
but search will be harder. We will therefore need to use the expectation-based ranker.
The experiments described in chapter 3 give some impression of the number of candi¬
dates that can be generated by the rule system when search is not expectation-based.
However, exhaustive candidate production is difficult to achieve in practice because the
system tends to run out of memory after about 10 000 candidates. This demonstrates
the need for efficient search algorithms like expectation-based search.

Figure 7.5 illustrates the changed experimental setup. The tags of input 1 are

matched to rules derived from all treebank parses and edges can be scored using the
entire instance base. The goal is to reproduce the template of sentence 1.

For reasons that will become apparent in section 7.4, in this experiment we require
the generator to express more of the input semantics than it would naturally do. Since
the instance base and the rule base in this experiments are an extension of those of
the previous experiment, we know that template reproduction should still be possible.
Running the generator on the 138 inputs resulted in 118 template reproductions. Of the
20 remaining inputs, 10 resulted in candidates that have a perfect score and express the
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Generator

Inputs Grammar Instances Orig. sentences
►

Figure 7.5: Experimental setup of broad reproduction experiment

entire input semantics - however, their nearest neighbour was not the original template
(therefore that template was not regarded as reproduced). In other words, the genera¬

tion system found another instance that expressed the input semantics perfectly well.
Some examples of original sentence and best candidate:

(89) a. candidate: Charles D. Way, president, was named to the additional post of chief
executive officer of this restaurant operator.

b. original: Charles D. Way, president of this restaurant operator, assumed the addi¬
tional post of chief executive officer.

(90) a. candidate: Frank Nicastro was named treasurer and vice president of this closely
held supermarket chain.

b. original: The closely held supermarket chain named Frank Nicastro vice president
and treasurer.

In (89) and (90), the original sentence is effectively recast by another sentence.

Other examples involve simply exchanging 'increasing' and 'expanding' or 'named'
and 'elected'. This is possible because the semantics of the original sentence is also
expressed by another sentence. In fact, we might as well have just exchanged the
slot fillers in the annotation templates without any generation. Our annotation scheme
is suggesting that the output sentences are mere paraphrases of the sentences from
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which the input is taken. The examples show an important general point: reproducing
the original template cannot be the aim of the generator. Rather, reproducing some

template that fully expresses the semantics should be considered a 'successful repro¬

duction'. For the reproduction experiments, we can assume that at least one such a

template exists.
The remaining 10 best candidates in this reproduction experiment also had a per¬

fect similarity score with the original nearest neighbour but still did not reproduce the

template. This is possible because the ranker measures similarity at the level of ngram

term representations of the generated template sequences, not of these sequences them¬
selves. There can be cases in which a candidate is not identical to the nearest neighbour

template but still gives rise to the same term representation. In this experiment, we rep¬

resented edge contents and instances as bigram terms. In the following examples, some

bigrams of the original sentence (at the template level) have been exchanged:

(91) a. candidate: George L. Manzanec, senior vice president of Texas Eastern Corp., 53

years old, was elected a group vice president of this natural-gas-pipeline concern.

b. original: George L. Manzanec, 53 years old, senior vice president of Texas Eastern

Corp., was elected a group vice president of this natural-gas-pipeline concern.

In (91), the string 53 years old,' seems to have been moved to another position
and the candidate does not seem to be as fluent as the original sentence. The problem
occurs because bigrams cannot look beyond the comma so that subordinate clauses
can be 'moved' if the overgenerating grammar licences it. In the following example, a

similar swap of parts of the original template seems to take place:

(92) a. candidate: Sheldon B. Lubar, and John L. Murray, chairman of Universal Foods

Corp., chairman of Lubar & Co., were elected to the board of this engine maker.

b. original: Sheldon B. Lubar, chairman of Lubar & Co., and John L. Murray, chairman
of Universal Foods Corp., were elected to the board of this engine maker.

In (92b), the word sequence ', chairman of Lubar & Co.,' has been misplaced so

that the resulting sentence is ungrammatical. This case is more difficult because it also
involves tag-indices (which we are not using yet) to indicate the relationship between
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the persons and their OTHERPOSTs. However, the sentence is ungrammatical in any

case and again this seems to be due to the use of bigram term representations.
In (93), the two incoming persons and their OTHERPOSTs have been swapped as

well:

(93) a. candidate: F. Warren McFarlan, a professor at Harvard University's Graduate School
of Business, and Leon J. Level, chief financial officer and vice president of this com¬

puter services concern, were elected directors, increasing board membership to nine.

b. original: Leon J. Level, vice president and chief financial officer of this computer

services concern, and F. Warren McFarlan, a professor at Harvard University's Grad¬
uate School of Business, were elected directors, increasing board membership to

nine.

The underlying templates of (93a) and (93b) are not the same because one of the
persons has two OTHERPOSTs whereas the other has one 0THERP0ST and an OTHERCOMP

tag. Therefore, the redundancy check cannot block one at the expense of the other.
However, once candidate (93a) has been found, it can be used as a threshold in the A*-

algorithm to prune away the other one, as has happened in this case. We can prevent

this by using a non-strict threshold, i.e. by only pruning similarity computations that
have an expectation strictly lower than the current threshold (see the ranking algorithm
in section 3.2.1.2). This results in the generation of both (93a) and (93b). However,
this leaves open the question how to make a decision between the two. On the other
hand, candidate (93a) seems to be just as fluent as original sentence (93b).

7.2.2.1 Reproduction with trigram terms

The above observations suggest that trigram terms might be more appropriate represen¬

tations because of the extended local context they provide. Running the reproduction

experiment with trigram term representations yields 128 reproduced templates, i.e. 10
more than for bigram terms. The examples (91-93) now are all reproduced at the tem¬

plate level. The remaining 10 inputs that have no template reproduction are those that
have a perfect match with another nearest neighbour (like (89) and (90)).
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7.2.2.2 Reproduction with unigram terms

We have seen that bigram term representations can result in reproductions that exhibit
'moved' bigrams. Thus, for unigram terms we expect even more such movements.

In the following, we give two examples of candidates whose word order has been
changed:

(94) a. candidate: Roy E. Parrott, the company's since Sept. 1 chief operating officer and

president, was named to its board.

b. original: Roy E. Parrott, the company's president and chief operating officer since

Sept. 1, was named to its board.

(95) a. candidate: Joseph L. Dionne, chief executive officer of McGraw-Hill Inc. and chair¬
man, was elected to the board of directors of this electronics manufacturer.

b. original: Joseph L. Dionne, chairman and chief executive officer of McGraw-Hill
Inc., was elected to the board of directors of this electronics manufacturer.

Candidates (94a) and (95a) contain exactly the same words as the original strings.
However, they are still not extremely different from the original sentences. In princi¬

ple, a unigram-based ranker assigns the same score of 1.0 to any permutation of the
words of the original sentence. On the other hand, the fragments which the grammar

combines are relatively large and rule combinations are constrained by the syntactic-
semantic category labels (as well as the check for non-overlapping semantics, in gen¬

eral) so that most permutations are not generated.

7.2.3 Summary

In this section, we investigated whether the instance-based generator is able to repro¬

duce the training set. Our experiments show that the generator is indeed capable of
producing candidates that exactly match the instance term representations. Table 7.1
summarizes the reproduction results for bigram and trigram term representations. The
experiments show an important aspect of our approach: there can be more than one
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instance that completely expresses the input semantics. If the best candidate has a per¬

fect match with a different instance from the one from which the input is taken, this is
indicated by 'other NN' in table 7.1. We regard these cases as equally 'correct' as a

perfect match with the original sentence template.

bigrams trigrams
Reproduction (orig. NN) 118 128

Reproduction (other NN) 10 10

changed ngram order 10 -

sum 138 138

Table 7.1: Reproduction results (broad rule set and instance base)

If lower order ngram term representations are used, problems concerning exchanged

ngrams can arise: the surface form of the candidate sentence template does not exactly
match that of the original sentence although their term representations match perfectly.
Table 7.1 shows that bigram term representations encounter problems of exchanged

ngrams whereas trigram term representations do not. (It is difficult to obtain reliable

figures for unigram terms because these can lead to efficiency problems for some in¬

puts. In general, we expect a higher number of exchanged ngrams for unigrams than
for bigrams.) Thus, the experiments suggest that trigram terms are preferable over bi¬

gram terms. However, there seems to be a trade-off between the amount of context -

which points toward using ever larger ngrams - and the usability of the ngrams when

matching unseen sequences - which points toward using short ngrams. We will take
this point up again in section 7.3.1 where we introduce mixed-order ngram representa¬

tions.

7.3 Evaluating the generator on test data

Proper evaluation of the proposed generation system needs to distinguish between

training and test data. Figure 7.6 shows the resulting experimental setup. The main
difference between (broad) reproduction experiments (figure 7.5) and test set evalua¬
tion is the need to exclude all test data from the generation system. In principle, one
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could again insist on reproducing the original sentence (as figure 7.6 suggests). How¬
ever, this requirement seems too strict in practice. After all, we expect the generator to

produce novel output for previously unseen input. At the very least, there can be more

than one way of expressing the input as the repetition of some tag combinations in the

corpus has shown. Thus, we will have to look at the actual candidates to get a picture
of the output of the generation system. (The issue of test set reproduction is taken up

again in section 8.1).

Figure 7.6: Experimental setup of test set experiments

We have already seen that our approach allows us to block and unblock particular

grammar rules and instances. This is because both rules and instances can always

point to the corpus examples from which they were derived. In order to evaluate the

generation system on test data, it might seem that we could also proceed by blocking
and unblocking grammar rules and instances of at least the corpus sentence from which
the input is taken. This would allow one to do 'leave-one-out'-testing without the need
to compile new instance models. However, there is a problem concerning tf.idf-
based term weighting: the /(//-computation depends on the 'instance frequency' of the
terms, i.e. it does matter what and how many instances are considered to be part of
the training set when the weights are computed. We therefore need to compile new

instance weights for particular training sets to maintain a clean separation between
training and test set. For most of the time, the generation system had been developed
with a training set of 104 sentences and a test set of 40 sentences where grammar and
instance base were compiled for the purpose.
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7.3.1 Examining the output of the basic generation system

We first trained a basic version of the generation system on 104 sentences and tested it
on 40 test set inputs. (96) in figure 7.7 shows the best candidates of a number of test

inputs. (97) shows the corresponding original sentences. (96) also details for every

candidate the similarity score ('cos') and the number of input tags expressed ('cov').
Almost all of the output sentences in (96) are syntactically correct. Furthermore,

they are semantically faithful compared to the original sentences (97). Most candidates
have a cosine score of 1.0. This means that their term representation exactly matches
the instance representation. The overwhelming tendency of the ranker seems to be to

choose perfectly matching candidates that do not fully express the input semantics.
However, the basic version of the generation system also produces 9 candidates that
have a cosine of less than 1.0. For outgoing events, the system settles for the same

nearest neighbour in two cases. (96e) and (96f) are both motivated by an instance

representation of (98) (we show the surface string and the template from which the
term representation is extracted):

(98) a. A.F. Sloan, 60 years old, announced that he will retire next April as chairman and
chief executive officer of this snack food and bakery products maker.

b. OUTPERSON_FULLNAME , OUTPERSON_AGE years old , announced that he OUTPERSON-

_PRP_VP_FUTURE OUTDATE.FUTURE as P0ST_N0DET and P0ST_N0DET of this COMP-

-DESCR .

The similarity scores for (96e) and (96f) w.r.t. (98) are different because they ex¬

press different semantic tags. The input for (96f) does not provide any age information
and does not express the company descriptor 'regional banking company'. In con¬

trast, (96e) expresses the entire input semantics although the system cannot produce a

candidate that matches the instance perfectly.
(96f) exhibits a syntactic error by using the wrong preposition in 'and of president'.

We know that the context-free grammar overgenerates and does not have sophisticated

grammatical knowledge. However, we would expect the ranker to make a better choice.
A possible explanation for the preference for candidate (96f) can be found in the term

representation. The trigram representation of the candidates yields many unknown
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(96) generation output:

a. James L. Pate was named a director of this oil concern. (cos=1.0, cov=3/6)

b. Michael Henderson was named chairman of this metals and industrial materials
maker. (cos=1.0, cov=3/10)

c. John F. Barrett, 40 years old, was named chief operating officer and president.
(cos=1.0, cov=4/7)

d. Gary Wilber was named chief executive officer of this drugstore chain. (cos=1.0,
cov=3/8)

e. Charles A. Pearce, 66 years old, announced that he will retire Dec. 31 as chief
executive officer of this bank holding company. (cos=0.89, cov=6/6)

f. John F. McNair III, announced that he will retire on Dec. 31 as chief executive officer
and of president. (cos=0.68, cov=5/10)

g. Arthur Price resigned from his executive duties. (cos=0.42, cov=2/7)

(97) original sentences:

a. James L. Pate, 54-year-old executive vice president, was named a director of this oil
concern, expanding the board to 14 members.

b. Michael Henderson, 51-year-old group chief executive of this U.K. metals and in¬
dustrial materials maker, will become chairman in May, succeeding Ian Butler, 64,
who is retiring.

c. John F. Barrett, 40, formerly executive vice president and chief financial officer, was
named president and chief operating officer, posts which had been vacant.

d. Drug Emporium Inc. said Gary Wilber, 39 years old, who had been president and
chief operating officer for the past year, was named chief executive officer of this
drugstore chain.

e. Charles A. Pearce, 66 years old, will retire from his post as chief executive officer of
this bank holding company effective Dec. 31.

f. First Wachovia Corp. said John F. McNair III will retire as president and chief ex¬
ecutive officer of this regional banking company's Wachovia Corp. and Wachovia
Bank & Trust Co. subsidiaries on Dec. 31.

g. Arthur Price resigned as president and chief executive officer of MTM Enterprises
Inc., a Studio-City, Calif., entertainment concern.

Figure 7.7: Some outputs of the basic generation system (using trigram term represen¬
tations) and the original test sentences
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terms so that the ranker only has a choice between candidates with large numbers of
unknown terms. The ranker can obviously not distinguish between different unknown
terms.

In general, one has to distinguish between unknown terms which have not been
seen in the training set and non-matching (but known) terms which are not present in
the instance representation at hand but do occur in other instance representations. It
is not possible for the grammar to generate unknown unigram terms since all words
and tags that can be used by the grammar are present in the instance base.2 However,

previously unseen higher order ngrams can be generated as the result of grammar rule
combinations.

On average, we find that 40% of all terms extracted from the generated edges in this

experiment (this includes edges that never contribute to forming a sentence) have not

been seen in the training data. As explained in section 3.1.4, we deal with these cases

by assuming a document (instance) frequency of 1 for the missing terms. A closer look
at the non-matching terms of the best candidates revealed that the majority are actually
not unknown. It is the low scoring edges and candidates that cause the high number
of unknown terms. However, some of the non-matching terms of the best candidates
have not been seen in the training set either. This shows that the ranker can select
candidates that contains unknown terms. It is not confined to the known ones. From

the perspective of the ranker, unknown terms are just like any other non-matching term.

To reduce the number of unknown words, we wanted to give the ranker a more

fine-grained representation and compiled a new instance model that contained mixed

unigrams, bigrams and trigrams. The idea is to allow the ranker to 'back-off to de¬
cisions based on lower-order ngrams even if the trigrams involved are unseen in the

training data. This reduces the number of unknown terms in the test set run to 10%.

Running the system with the mixed ngram model yields the following two best
candidates for the problematic input:

(99) a. John F. McNair III, announced that he will retire on Dec. 31 as president. (cos=0.81,

2This is true as long as we use rules and instances derived from the same examples. Initial semantic
ranking (section 7.6) can in principle choose subsets of different size of the grammar and the instance
base so that the rules can generate words that are not present in the instance base. However, the only
question that needs to be answered in such a case is - as before - how to weight the unknown terms.
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cov=4/10)

b. John F. McNair III, announced that he will retire on Dec. 31 as chief executive

officer. (cos=0.81, cov=4/10)

In this case, the system produces two best candidates (which is relatively unusual).

Although the two candidates have the same template representation, the redundancy
check does not block one at the expense of the other because they consume different
sets of input tags. Compared to (96f), candidates (99a,b) avoid the syntactic error as

expected but also express one tag less.
Since our choice of a trigram model was based on the reproduction experiments

(section 7.2.2.1), we re-evaluated reproduction with the mixed ngram model and found
that reproduction was as good as for the pure trigram model (see table 7.1).

The lowest scoring candidate in the trigram experiment is (96g). It realizes only
2 out of 7 input tags. The nearest neighbour of (96g) is shown below in its template
form:

(100) OUTPERSON.FULLNAME , 0UTPERS0N_AGE -year-old POST_NODET of this COMP_NATIONALITY

COMP_DESCR and POST_NODET chairman of COMP.SUBSIDIARY , the COMP_DESCR's COMP-

-SUBSIDIARY.DESCR-DEF , OUTPERSON_PRP_VP_PAST from his executive duties .

Candidate (96g) is not only very different from the original string but also from
the nearest neighbour (as the low similarity score suggests). The sequence 'from his
executive duties' in (96g) is part of the generation template and had not been marked in
the annotation scheme (see (30b) in section 4.2.3). (96g) also lacks two P0ST_N0DET

tags that are present in the generation input although nearest neighbour (100) also
contains P0ST_N0DET tags. Again, the pure trigram model is the culprit. The rule
system does produce candidates that express the POSTJNJODET tags of the input but
these are ranked lower w.r.t. nearest neighbour (100) because the trigrams do not
match. The output obtained from the system using the mixed ngram model supports
this explanation:

(101) Arthur Price, chief executive officer and president, resigned from his executive duties.
(cos=0.56, cov=4/7)
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In contrast to (96g), candidate (101) realizes the post tags. In this case, the system

sticks to the same nearest neighbour for both term representations. The increased
number of matching terms results in a higher cosine score for (101). (However, cosine
scores are generally not directly comparable when different representations are used.)

In one case there is no output at all. This seems to be due to the presence of a

singleton tag P0ST_INF in the input the original sentence of which is shown in (102):

(102) Directors elected R. Marvin Womack, currently vice president/product supply, purchas¬

ing, to [POST.INF head] the company's Washington, D.C., office.

The P0ST_INF tag does not occur in the training data, and hence there is no input
rule to build an initial phrase for that tag. This example shows that at least for gold
standard testing singleton tags are of limited use. In other cases the system might be
able to build candidate sentences without the unknown tag.

7.3.1.1 Explaining the lack of completeness

We have not yet explained why the ranker tends to choose candidates that match some

instance representation perfectly but as a result also convey considerably less informa¬
tion than the original sentences. This is generally true irrespective of the term repre¬

sentation. In the trigram experiment, the candidates express only 55% of the input tags
on average. Only 7.7% are complete. In the mixed ngram experiment, 56% of the in¬

put tags are expressed and 10% of the candidates are complete. The average sentence

length of the 40 best candidates in the trigram experiment is 13.2 words and 13.9 in
the mixed ngram experiment, in contrast to 21.9 words of the original candidates. The

average template length (which replaces filler words by tags and keeps punctuation
outside tags as separate tokens) is 9.1 tokens for the best candidates versus 16.3 for the

original annotated sentences. Furthermore, there does not seem to be much variation in
the generator output. For example, (97d) has been 'normalized' to the more standard

(96d). 35 best candidates use 'named' in contrast to just 26 in the original sentences.

The explanation for the lack of completeness3 of the chosen candidates lies in the
nearest neighbours that are used by the system. The grammar is able to flexibly com-

3We use the words 'coverage' and 'completeness' interchangeably. The context should make clear
whether we are referring to the coverage/completeness of individual candidates or the grammar.
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bine input tags in various ways. This allows it in many cases to produce candidates
that exactly match some instance, as demonstrated by the cosine score of 1.0 for the
candidates (96a-96d). Thus, the instance-based ranker tends to prefer candidates con¬

veying subsets of the input semantics that have been expressed by some training set
instance. This tendency is furthered by the A*-search algorithm which uses short can¬

didate sentences that have a high cosine score to prune away longer but lower scoring
candidates. A*-search does make sure that we do not prune candidates that may turn

out to be better than already obtained ones. However, once a short candidate with a

similarity score of 1.0 has been found, the remaining edges are pruned away because
there is no edge with an expectation larger than the threshold. Given this preference of
the ranker, candidate (96e) which is complete and has a cosine score of less than 1.0
seems to be rather an exception. Obviously, the grammar was not able to generate a

perfectly matching but incomplete candidate in this case.

Counting the number of support instances verifies our observation about variation
in the output sentences: 11 different nearest neighbours have been used for the 40 test

set inputs. In principle, the ranker could have chosen 40 different nearest neighbours
from the instance base of 104 instances. Furthermore, only 44 different support rules
have been used to construct the candidates out of 384 rules specified in the grammar.

7.3.2 Summary

Running the instance-based generator on test data showed that it is capable of handling
unseen input and produce (mostly) fluent and grammatical output sentences. (An effi¬
ciency evaluation of the basic system on test data can be found in section 3.3.2). We
also identified a major characteristic of this basic version of the instance-based gener¬

ator: it tends to produce incomplete candidates that have a perfect match with some

instance in the instance base. This can be seen as a problem as the generator does not

fully complete the task that is given to it. In the following section, we address this
problem and present an improved version of the instance-based generator.
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7.4 Fluency and completeness

In order to obtain more complete candidates, it helps to modify the A*-search so that
it does not prune edges that have an expectation larger or equal to the cosine of the
best already obtained candidate (rather than insisting on an expectation that is strictly
larger than the threshold; see section 3.2.1.2). Instead of just one best candidate, we

now often obtain several ones. An example:4

(103) a. James L Pate was named a director of this oil concern . (cos=1.0, cov=3/6)

b. James L Pate , 54 years old , was elected a director of this oil concern , expanding
the board to 14 members . (cos=1.0, cov=5/6)

c. James L Pate , 54 years old , was elected a director of this oil concern , increasing
the board to 14 members . (cos=1.0, cov=5/6)

Using the more liberal definition of the threshold in A*-search effectively elimi¬
nates a peculiarity of this search procedure. However, the fundamental problem re¬

mains unsolved: the instance-based ranker chooses candidates that express subsets of
the input semantics and are a perfect match for one of the instance representations.

Only rarely does the system find a candidate that expresses the entire input semantics
or has a cosine score of less than 1.0.

A fundamental assumption underlying instance-based NLG is the idea that in or¬

der to be fluent the output should be as similar to human-authored corpus sentences

as possible. Being similar to the corpus sentences is a desirable property and a gen¬

eral characteristic of corpus-based approaches - the goal is to mimic some aspects of
the corpus. However, maximizing only this similarity can be a problem. Candidates
(103a-103c) could in fact be generated by a system that simply has a complex tem¬

plate corresponding to each instance. In other words, the creativity of the rule-based

grammar has not been exploited by the instance-based generator. The grammar rules

might be able to generate previously unseen candidates that better express the input.
However, these are not preferred by the ranker.

4These experiments were carried out using tf.id/-weighted mixed ngram term representations.
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One obvious attempt to address this problem is to extend the definition of a 'candi¬
date' from any edge of syntactic category 'Sup'5 to also require the complete realiza¬
tion of the input. This yields the following best candidate for the input corresponding
to original sentence (97a):

(104) James L. Pate, 54 years old, executive vice president, was named a director of this oil
concern, increasing the board to 14. (cos=0.97, cov=6/6)

This sentence has a cosine score lower than 1.0 and has therefore previously lost
out against its shorter but higher scoring competitors (103a-103c). (The system is
not able to fully reconstruct the original sentence (97a) because it lacks the grammar

rule to produce 54-year-old executive vice president in the required syntactic context.)
However, it cannot generally be assumed that the generator is always able to express

the entire input semantics in one sentence although in this case we were lucky. For
example, there are 7 tags in the test set that do not occur in the training set. Further¬
more, there is no guarantee that a given combination of tags known to the grammar

can be expressed in a single sentence. This is part of a general problem that has been
described as the "generation gap" Meteer (1990). The fundamental question is how
a generation input can be constructed by some external component without knowing
exactly what the grammar is able to express.

7.4.1 Combining cosine score and coverage

In this thesis, we are not trying to decide whether or not the generation gap can be
bridged but rather address the practical question how we can influence the coverage of
the input semantics in an instance-based approach to candidate ranking without hard¬
wiring a completeness constraint. Our first proposal is to use a linear combination of
the cosine score and a coverage score to compute a new edge score:

(105) [Xe{0...1}]
5Recall that we introduce a special top-level syntactic category during grammar construction (see

section 5.6).
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The cosine between edge E and some instance / (to the left of 105) is combined
with a coverage score which is computed by dividing the size of the semantics of E by
the size of the input.6 In principle, the coverage score could take into account different

weights for parts of the semantic input. A high value of X places more emphasis on

completeness, a low value yields candidates that more closely resemble instances.

Choosing different values for X results in candidates of different sentence lengths
and input coverages. For example, one can only obtain the complete candidate (104)
with X >0.31. The nearest neighbour of (104) is a training set template that lacks the
INPERS0N_0THERP0ST_N0DET tag:

(106) [INPERSON-FULLNAME William C. Ballard Jr.], [INPERSON_AGE 48] years old, was

elected a [POST.INDEF director] of this [COMP_DESCR distilled beverages concern], ex¬

panding the board to [B0ARD_INCR 11] members.

The linear combination of cosine score and coverage score effectively 'squeezes'
the missing INPERS0N_0THERP0ST_N0DET tag ('executive vice president' in (104)) into
the nearest neighbour template. (However, the system does not directly adapt templates
to new inputs but rather uses grammar rules derived from an analysis of the instances
to produce the output candidates.)

There are always certain values of X at which the system 'switches' between differ¬
ent best candidates. The switching points and number of best candidates for different

settings of X can vary greatly for different inputs. Another example:7

(107) a. X= 0.0-0.32: David A. DiLoreto was named group vice president, packaging prod¬

ucts, of this packaging, industrial and aerospace products concern. (cos=1.0, cov=3/10)

b. X= 0.33-0.7: David A. DiLoreto, president of metal container division, has been
named group vice president, packaging products, a additional post at the packaging,
industrial and aerospace products concern. (cos=0.86, cov=6/10)

c. X= 0.71-1.0: David A. DiLoreto, president of metal container division, was named
to the additional post of group vice president, packaging products, of this packaging,

6When we talk about the 'length' of an edge, we are referring to the size of the semantic set. This
broadly correlates with the length of the surface string (see table 7.2).

7The cosine of the candidates 'cos' in this and the following examples is always the pure similarity
score even if a linear combination is used.
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industrial and aerospace products concern, succeeding Delmont A. Davis. (cos=0.61,

cov=7/10)

d. original: David A. DiLoreto, president of metal container division, was named to

the additional post of group vice president, packaging products, at this packaging,
industrial and aerospace products concern, succeeding Delmont A. Davis, who was

named president and chief operating officer in August.

(107) shows 3 candidates that are optimal for certain ranges of A,. The example

suggests that there is a trade-off between fluency (cosine) and completeness (coverage).
When more emphasis is placed on completeness, sentences are generated that have a

greater distance from the nearest neighbours of the instance base. In fact, this generally
turns out to be the case when the generator is run with different values of X.

X cosine std. coverage std. complete len(templ) std. len(surf) std.

0.0 0.94 0.12 0.67 0.21 15.4% 10.5 3.3 14.6 3.7

0.1 0.94 0.12 0.68 0.20 15.4% 10.7 3.5 14.9 3.7

0.2 0.94 0.12 0.69 0.20 18.0% 11.0 3.6 15.2 4.0

0.3 0.94 0.13 0.71 0.21 23.1% 11.4 3.8 15.8 4.5

0.4 0.90 0.13 0.77 0.19 33.3% 12.6 3.9 17.1 5.0

0.5 0.88 0.13 0.79 0.19 35.9% 13.0 3.8 17.6 5.0

0.6 0.77 0.17 0.88 0.16 56.4% 14.5 3.9 19.5 4.9

0.7 0.75 0.16 0.90 0.16 64.1% 15.2 3.7 19.8 4.8

0.8 0.73 0.18 0.90 0.14 64.1% 15.4 3.7 20.0 5.0

0.9 0.73 0.18 0.90 0.14 64.1% 15.4 3.7 20.0 5.0

1.0 0.73 0.18 0.90 0.14 64.1% 15.4 3.7 20.0 5.0

Table 7.2: Trade-off between fluency (cosine similarity) and completeness

Table 7.2 shows average values of cosine and coverage for the test set for different
values of X. It clearly indicates that the cosine decreases as the coverage weight X
increases.8 This is also depicted in figure 7.8. Increasing X has the desired effect of in¬

creasing the average candidate length as measured by the number words ('len (surf)')
and by the length of the template representation ('len (tempi)'). The maximal candi¬
date length of 20.0 words comes close to the average length of the original sentences
which is 21.9 words. Maximal coverage is reached at A.=0.7 where the average cosine

8 As a reference point at A,=0.0, we take the longest candidate if there are more than one.
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score has not yet reached its minimum. We will use this value of X in the following
experiments when we want to encourage the system to produce long sentences.

Figure 7.8: Trade-off between fluency (cosine similarity) and completeness

The number of support rules and instances increases when a linear combination
is used. For X-OJ, 29 different instances are used (in contrast to 11 for A=0.0) and
117 different rules (versus 44 for A,=0.0). The increase in the number of rules can be

explained by the need to produce candidates that express larger sets of tags.

When the similarity score is less than 1.0, the candidate representation contains
terms that are not present in the instance representation or it is missing terms. From the
definition of the distance metric (section 3.1.3) it follows that the ranker prefers missing
or non-matching terms that are as 'light' as possible in order to minimize this error. If
the weighting scheme contains an id/-component as is the case here, these additional
terms tend to be frequent ones, i.e. terms that occur in many documents/instances.

Using a linear combination, we can now look again at the candidates for the inputs
of the original sentences in (97). (108) shows candidates chosen by a mixed ngram

model and A,=0.7 (which is where the maximum coverage is reached according to table
7.2):

These candidates cover considerably more input tags than those in (96). For ex¬

ample, (108b) now expresses 8 out of 10 tags instead of just 3. It still lacks the slot
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(108) generation output:

a. James L. Pate, 54 years old, executive vice president, was named a director of this
oil concern, increasing the board to 14 members. (cos=0.82, cov=6/6) =(104)

b. Michael Henderson, 51 years old, group chief executive, was appointed chairman of
this metals and industrial materials maker, effective in May, succeeding Ian Butler,
who is retiring. (cos=0.83, cov=8/10)

c. John F. Barrett, 40 years old, formerly chief financial officer, was named chief oper¬

ating officer, both vacant posts, and president. (cos=0.592, cov=6/7)

d. Drug Emporium Inc. said Gary Wilber, 39 years old, was elected chief executive
officer of this drugstore chain. (cos=0.63, cov=5/8)

e. Charles A. Pearce, 66 years old, announced that he will retire Dec. 31 as chief
executive officer of this bank holding company. (cos=0.95, cov=6/6)

f. John F. McNair III, announced that he will retire on Dec. 31 as president and of chief
executive officer of Wachovia Bank & Trust Co. of this regional banking company.
(cos=0.71, cov=7/10)

g. Arthur Price, chief executive officer and president of MTM Enterprises Inc., resigned
from his executive duties. (cos=0.51, cov=5/7)

fillers 'UK' and '64' whose tags the grammar cannot combine with the other input
tags. Similarly, (108d) realizes 5 out of 8 tags rather than just 3. One of the missing
tags is a singleton. The other two can only be forced into the candidate at the expense

of omitting one of the tags of (108d). Candidate (108e) remains the same as (96e).
(Note that its cosine score is different due to the change of the instance model.)

All but two candidates in (108) are syntactically and semantically correct. Com¬

pared to original sentence (97f), (108f) does not seem to be very fluent. The generator

(correctly) tries to express that 'Wachovia Bank & Trust Co.' is a subsidiary of the
main company (described as a 'regional banking company') by using prepositions ('of
... of). The nearest neighbour of (108f) is still (98). It is the same that was cho¬
sen by the basic ranker without linear combination for (96f) and does not contain any

tag related to subsidiaries. There are a number of corpus examples that deal with sub¬
sidiaries similarly to (108f). However, these clearly indicate the status of the subsidiary
by using words like 'unit' or 'division'. An example:
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(109) ...of the [COMP_SUBSIDIARY Clairol] [COMP_SUBSIDIARY_DESCR_DEF division] of this
[COMP_DESCR pharmaceuticals and health-care company].

However, in the case of (108f) the information about the subsidiary is given to the

generator in the form of a singleton tag COMP_SUBSIDIARY_DESCR_PLURAL. Since this
tag only occurred in the test set, it was not available in the training set and cannot

be expressed.9 Thus, under the given circumstances, the generator makes the best
use of the available tags. Unfortunately, it also seems to be forced to buy the wrong

preposition in 'and of chief executive officer' (again).
(108c) exhibits a syntactic error by misplacing a constituent. The system correctly

chooses 'both' (the original sentence does not use this word) but seems to get the word

ordering wrong. There is no explicit representation in the grammar that expresses that
'both' needs to refer to exactly two referents. Despite this, the ranker chooses a nearest

neighbour that uses 'both' correctly:

(110) ... was named executive vice president and chief operating officer, both newly
created posts, and a director, filling a vacancy.

However, the ranker seems to get 'confused' by the presence of the NP at the end
of (110). A correct candidate can be found at rank 5:

(111) John F. Barrett, 40 years old, formerly chief financial officer, was named presi¬
dent and chief operating officer, both vacant posts. (cos=0.586, cov=6/7)

Candidate (111) consumes the same number of input tags but has a slightly lower
cosine score on the same nearest neighbour using the mixed ngram model (and also
the trigram model).

7.4.1.1 Effects on A*-search algorithm

A linear combination of cosine and coverage score affects the computation of the

expectation: we need to be optimistic about the coverage score (as we are about
candidate-instance similarity) and assume that the expectation for the coverage score

9 A practical solution in this case might be to recast the unknown plural tag by other, known tags.
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is always maximal (1.0). We have to make this assumption since we do not know what
combinations of tags are licensed by the grammar - again a manifestation of the fun¬
damental problem of expressibility. The combined expectation therefore is higher than
the cosine alone, making it easier for edges to pass the threshold set by the combined
score of already existing candidates. This extends the search space but does not lead
to problems in practice except for extreme values of A,. Typical average runtimes range

from 1.3 seconds for the basic system with A=0 to 11.5 sees for A=0.7. For high values
of A (>0.8), the A*-search algorithm tends to search for ever larger candidates so that
we need to apply a time limit (30 seconds). However, as in previous experiments the

expectation-based agenda ordering ensures that good candidates are generated early
during processing, i.e. we do not seem to miss any better candidate although the search

space has not been fully explored before the time limit applies. Only in the extreme

case of A=1.0 is there no guidance by the expectation since (combined) score and ex¬

pectation are fully dominated by the coverage values.
An advantage of using a linear combination in contrast to incorporating a complete¬

ness constraint into the candidate definition is related to the A*-algorithm: the linear
combination allows the system to obtain candidates quickly and use their similarity
score as a threshold. This is more efficient than having to wait until the first complete
candidate has been produced despite the fact that the candidate score may have been
discounted because of a lack of completeness. In the reproduction experiments with
the large grammar and instance base (section 7.2.2) we therefore used a linear combi¬
nation rather than a completeness constraint to prevent the system from just expressing
some subset of the input semantics. (In section 7.4 we did not use the linear combina¬
tion because we wanted to present a basic version of the instance-based generator. The
experiences we made with this basic system were our main motivation to introduce the
linear combination.)

7.4.2 Generating candidates into several ranked lists

In general, it is difficult to determine ahead of time how many different candidates there
are for all values of A, where the switching points are, or whether increasing A would
result in larger coverage. It may be possible to choose a heuristically determined value
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for X if the goal is simply to express as much input as possible without compromising

fluency (i.e. similarity between candidate and nearest neighbour) too much.
We would like to take a step back at this point and ask what we actually expect

the output of a realizer to be in the context of an overgeneration approach. For text

generation, or any input for which we are unsure whether it can really be expressed in a

single sentence, there is a possibility that we do not want to express a maximal number
of tags in the first sentence since we do not know whether the remaining semantics can

be expressed in the follow-up sentences. We would rather aim at generating a globally
best text than a locally best first sentence.

We therefore propose that a realizer used in the context of a text generation system

produce several ranked candidate lists, each one for a different subset of the input
semantics. Follow-up sentences would be generated for the remaining semantics of
these candidate lists which again return a set of ranked lists. The ranked lists could be

organized in a lattice or a similar data structure. The text generator would then choose
a path though this data structure.

In this thesis, we concentrate on sentence realization but believe that maintaining
several dynamically created candidate lists for different semantic sets is a useful output
of a sentence realizer if it is unclear how much semantics should be expressed in the
individual sentences.

As an example, we take again the input corresponding to original sentence (107d).
The system dynamically creates 14 ranked lists ('bins') according to the semantic sets
of the candidates that have been produced. In (112-125, figure 7.9) the best candidates
in each bin are shown in combination with their semantic 'footprint' (a set of unique in¬

tegers that represents the input tags consumed by the candidates). Behind every shown
candidate there is a list of lower ranked candidates that express the same semantics
(which are not shown). Note that all candidates are syntactically and semantically
correct.10

There are more bins for this input than there are best candidates for different set¬

tings of X (see 107). Generating into different bins has the advantage of making locally

non-optimal candidates available for rescoring in a larger context. This also addresses
10In (113), 'a additional' should be changed into 'an additional' which can be done by simple post

processing.
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another problem of imitating the instance base too closely: if there is a good match for
a long candidate, the system might not be able to find a shorter, lower scoring one. For
example, candidate (125) which expresses only two input tags also has a low cosine
score and is therefore not optimal for any setting of X.

7.4.2.1 Effects on A*-search algorithm

The use of multiple rankings allows candidates only to compete within their bins. How¬
ever, the question arises which threshold to use when pruning the instance-edge pairs
used for the similarity computations. In principle, we cannot know how an edge is
going to be extended so that the correct bin from which to take the threshold remains
unknown. Therefore, in these experiments we used an expectation-based ranker that
does no pruning of similarity computations. This requires one to use a time limit (in
practice, 30 seconds is usually sufficient). However, we are helped (again) by the
expectation-based agenda ordering: the best candidates tend to be produced early so

that shutting down the generator after 30 seconds does not have a large effect on the
top-scoring candidates. It is possible to define a 'dynamic time limit' that applies when
no new best candidate (in any bin) has been produced in a given time span.

time limit n bins av bins std. n cands av cands std. av time std.

dynamic 5 sees 417 10.4 11.8 2629 67 66.4 10.9 7.8

absolute 60 sees 506 12.7 14.6 9213 236 184.7 40.0 25.6

Table 7.3: Generating into semantic bins: comparing stopping criteria

The number of bins that are generated depends on the size of the input and the
combinations of tags that can be produced by the grammar. The maximum number of
bins generated for one test set input with an absolute time limit of 60 seconds is 64
bins, the minimum number is 2 and the average is 12.7 bins. We compared a system

run that uses an absolute time limit with one that uses a dynamic time limit of 5 seconds
(in combination with an absolute limit of 60 seconds). Only in 9 out of 40 inputs does
the dynamic time limit return fewer bins than the absolute time limit. Table 7.3 shows
the results of the comparison. The dynamic time limit reduces the average runtime by
almost 30 seconds at the expense of losing 18% of the bins (for the entire test set).
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(112) 4 5 9: David A. DiLoreto was named group vice president, packaging products, of this
packaging, industrial and aerospace products concern. (cos=1.0, cov=3/10)

(113) 45678 9: David A. DiLoreto, president of metal container division, has been named
group vice president, packaging products, a additional post at the packaging, industrial
and aerospace products concern. (cos=0.86, cov=6/10)

(114) 4 5 6 9: David A. DiLoreto was named to the additional post of group vice presi¬
dent, packaging products, of this packaging, industrial and aerospace products concern.
(cos=0.84, cov=4/10)

(115) 5 6 9: David A. DiLoreto was named to the additional post of group vice president,
packaging products. (cos=0.84, cov=3/10)

(116) 567 8 9: David A. DiLoreto, president of metal container division, assumed the addi¬
tional post of group vice president, packaging products. (cos=0.84, cov=5/10)

(117) 3 4 5 9: David A. DiLoreto was named group vice president, packaging products, of this
packaging, industrial and aerospace products concern, succeeding Delmont A. Davis.
(cos=0.81, cov=4/10)

(118) 34578 9: David A. DiLoreto, president of metal container division, was named group
vice president, packaging products, of this packaging, industrial and aerospace products
concern, succeeding Delmont A. Davis. (cos=0.74, cov=6/10)

(119) 457 8 9: This packaging, industrial and aerospace products concern said its board
elected David A. DiLoreto, president of metal container division, as group vice presi¬
dent, packaging products. (cos=0.68, cov=5/10)

(120) 3 5 9: David A. DiLoreto was named group vice president, packaging products, suc¬

ceeding Delmont A. Davis. (cos=0.64, cov=3/10)

(121) 34567 8 9: David A. DiLoreto, president of metal container division, was named
to the additional post of group vice president, packaging products, of this packaging,
industrial and aerospace products concern, succeeding Delmont A. Davis. (cos=0.61,
cov=7/10)

(122) 3 4 5 6 9: David A. DiLoreto was named to the additional post of group vice presi¬
dent, packaging products, of this packaging, industrial and aerospace products concern,

succeeding Delmont A. Davis. (cos=0.61, cov=5/10)

(123) 3 5 7 8 9: David A. DiLoreto, president of metal container division, was named
group vice president, packaging products, succeeding Delmont A. Davis. (cos=0.59,
cov=5/10)

(124) 5 7 8 9: David A. DiLoreto, president of metal container division, was named group
vice president, packaging products. (cos=0.47, cov=4/10)

(125) 5 9: David A. DiLoreto was named group vice president, packaging products.
(cos=0.41, cov=2/10)

Figure 7.9: Semantic 'bins' produced by generation system
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The mechanisms that are used for generating candidates into semantic bins can also
be used for determining the optimal candidate for different values of A. in the linear
combination. To this end, we define bins by the coverage value rather than a semantic

footprint. Only the best candidates in each bin have a chance of being optimal for
some value of A,. To identify these optimal candidates, we iterate over a number of
values for A. and compute the linear combination for the best candidate in each bin
after generation has finished. The number of bins generated for different coverage

values tends to be lower than the number of semantic bins because different semantic

sets of the same size are mapped to the same coverage value (as long as all tags are

assigned the same coverage weight).

7.4.2.2 Semantic bins and n-best search

The A*-search algorithm can be extended so that n best candidates are found (see sec¬

tion 3.2.1.5). Keeping n best candidates in each bin when generating into multiple
ranked lists might be useful if macroscopic properties are scored in text generation (see
Oberlander and Brew, 2000). For example, one might want to approximate a certain

global distribution of verbs in the text, and this might require the system to choose can¬

didates that are non-optimal according to the sentence-based nearest neighbour ranker.
Similarly, issues of discourse coherence in multi-sentence generation may require a

re-ranking of the locally best sentences. Alternatively, discourse coherence could be
ensured by means of grammar constraints. In other words, additional knowledge needs
to be added to either the ranker or the rule-based part of the hybrid generation system

(see also section 8.4.1).

7.4.3 Faithfulness and completeness

Realizing the generation input only partially can result in non-intended interpretations.
An example of a faithfulness error due to the omission of certain tags:

(126) George L Manzanec, senior vice president, was named a group vice president of this

natural-gas-pipeline concern.
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(127) George L Manzanec, senior vice president of Texas Eastern Corp., was elected a group

vice president of this natural-gas-pipeline concern .

Only the second realization is faithful to the input since Manzanec is senior vice

president at another company, not the natural-gas-pipeline concern as (126) implies.
Similar examples can be found for previous posts that can be located at either the
current company of a person or at a former company, for example.

Solutions to this faithfulness problem need to consider that the only semantic in¬
formation available to the system is the annotation of the corpus sentences. We do
not have a deep semantic model that is able to reason about possible interpretations of
candidates.

7.4.3.1 Cooccurrence constraints on semantic tags

One approach to address this problem is to manually specify hard cooccurrence con¬

straints on semantic tags that effectively act as additional filters on candidates. For

example, they can state that both IN-OTHERCOMP and IN_0THERP0ST_N0DET need to be
expressed together. This leaves the system the freedom of not expressing any of the
two as this can result in a short but still faithful sentence:

(128) George L Manzanec was named a group vice president of this natural-gas-pipeline con¬

cern .

Tag coocurrence constraints can be applied to two or more tags which can be re¬

garded as single tags that are allowed to be realized discontinuously.
An efficient implementation of tag cooccurrence constraints is possible by only

checking for those semantic indices that are actually present in the input. The con¬

straints are specialized to semantic indices when the input is given to generator. This
means that constraints that do not apply (since not all tags that need to cooccur are

present in the input) need never be checked during generation. For example, consider
the following input and coocurrence constraints:
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(129)

IN-FULLNAME Bruno DeGol

IN-OTHERPOST-NODET chairman

IKLOTHERCOMP DeGol Brothers Lumber

IN_0THERC0MP_L0C Gallitzin Pa

POST_INDEF director

COMP_DESCR bank-holding company
BOARD_INCR 11

(130)

coocurrenceCst(["IN_0THERC0MP","IN_0THERP0ST_N0DET"]).
coocurrenceCst(["IN_0THERC0MP","IN_OTHERPOST_DEF"]).
coocurrenceCst(["INPERSON_PREVIOUSCOMP",

"INPERSON_PREVIOUSPOST_NODET"]).

When input (129) is given to the generator, only the first constraint is translated
into requiring either both IN-OTHERCOMP and IN_0THERP0ST_N0DET or none of these.
The other constraints do not apply, avoiding unnecessary overhead when individual
candidates are checked. Furthermore, constraint specialization for tag coocurrence

constraints needs to consider tag-indices if these are used in the input. A coocurrence

constraint only applies to those pairs of tags that 'belong together'. In some cases, this
can result in the same constraint applying more than once. An example is given in
section 7.7.1 below.

7.4.3.2 Improving the annotation scheme

A related faithfulness problem can be traced back to an ambiguity in the annotation
scheme. In the following example, the best candidate places the post of the incoming

person at the main company:11

(131) William J Russo was named senior vice president public affairs and advertising, of this
financial and travel services concern .

However, the original sentence specifies that the post is located at a subsidiary (we
only show the annotation of the relevant parts of the sentence):

1 'Recall that the main company is assumed to have been introduced into the discourse context already,
usually by a headline to the article about the management succession.
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(132) William J. Russo was named senior vice president, public affairs and advertising, for
this [COMP_DESCR financial and travel services concern]'s [COMP_SUBSIDIARY American

Express Bank Ltd.] [COMP_SUBSIDIARY_DESCR_NODET subsidiary].

The annotation does not clearly specify the location of the post, and in a sense

the ranker does not choose an "unfaithful" candidate. The problem can be solved by

marking the post location explicitly, for example by adding to each tag specifying
the location of the main post. If this is done consistently for the entire corpus, the
system will be able to clearly distinguish between COMPJDESCR - as we will find it in
the revised annotation of (132) - and COMP_DESCR* for corpus sentences like (133):

(133) Bruno DeGol, chairman of DeGol Brothers Lumber, Gallitzin, Pa., was named a direc¬
tor of this bank-holding company, expanding the board to 11 members.

This example demonstrates that we can influence the output of the generation sys¬

tem by changing the annotation that forms the basis of the ranker (and the grammar, of
course).

7.4.4 Human evaluation of the test set candidates

Although the similarity values and the completeness of the candidates can be measured

automatically, faithfulness errors and other problems need to be observed by human

judges. To this end, two people (including the author) evaluated the output of the
generator for the test set of 40 inputs. We also observed other types of errors such
as fluency and syntactic problems. The results in this section were obtained using a

trigram instance model.

Figure 7.4 shows the results of the manual evaluation of the improved system. Se¬
mantic errors include faithfulness errors and other semantic problems. We distinguish

syntax errors from fluency errors. Some examples:

(134) Fluency: Francis D. John, 35 years old, president, was elected to ... .

(135) Syntax: This bank holding company said its board elected John W. Day.

(136) Semantics: ... was named vice president,..., the new post/both new posts ...
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X Semantic Syntax Fluency correct

errors errors errors candidates

0.0 3 0 0 92.5%

0.2 3 0 0 92.5%

0.4 5 0 3 80.0%

0.6 5 2 10 62.5%

0.8 5 4 12 57.5%

1.0 5 4 12 57.5%

Table 7.4: Human evaluation of best candidates (using faithfulness improvements)

(134) is considered a fluency error by the two judges. In fact, no pattern like the
one in (134) can be found in the corpus. More fluent phrases include 'the 35-year-old
president' and '35 years old, president of this ...', for example. (135) is a syntactic
error as it violates the subcategorization frame of the ditransitive verb 'elected'. (136)
is a semantic error - the correct use of 'both' is beyond the capabilities of the shallow
grammar.

We observed an increase in the number of fluency and syntactic errors for lower av¬

erage cosine scores - confirming our basic assumption that cosine similarity is a good
indicator of fluency. As a result of tag cooccurrence constraints and improved anno¬

tation, the number of faithfulness errors is relatively small, even for short candidates.
An unmodified version of the system yields 7 faithfulness errors due to omissions of
tags for X-0.2 (versus 3 faithfulness errors for the new system). The overall number of
correct sentences is maximal for A.=0.0 and A.=0.2 and decreases when more weight is

given to completeness. When using the additional faithfulness constraints, the number
of semantic errors follows the general trend of the fluency and syntactic errors: it is
low for candidates that have a high similarity score and high for candidates that have a

low similarity score.

7.4.5 Summary

We started with the observation that many candidates produced by a basic version of
the instance-based generator do not completely express the input semantics. We then
presented two techniques to deal with this problem. First, using a linear combination
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of cosine and coverage score allows one to trade candidate-instance similarity against

candidate-input similarity (in semantic terms). Second, maintaining multiple candidate
lists circumvents the problem of choosing a candidate that expresses the right portion
of the input altogether by delaying the final decision until a larger context is known.
We also demonstrated that faithfulness problems can arise if parts of the generation

input are omitted, and proposed tag cooccurrence constraints as well as refining the
annotation scheme as potential solutions. Finally, the results of a human evaluation of
the system output showed that 57.5 - 92.5% of the candidates were perfectly correct,

depending on the completeness of the candidates which can be controlled by the setting
of X in the linear combination. Section 7.8.1 will discuss the generality of the trade-off
between the goals of fluency and completeness in NLG.

7.5 Scalability

To investigate how the generation system scales with respect to the size of the grammar

and the instance base, we compiled a number of sub-grammars/instance bases and
tested them on the 40 test set inputs. To keep the generator from replicating the instance
base too closely we used a linear combination with X=0.1 and trigram terms throughout
the experiments but also tested a basic system without linear combination.

sent. inst. rules solutions b=0.7 b OOII

cos std. cov% tags all cos std. cov% tags all
2 2 17 1 (0.65) (0) (0.7) 5 (0.65) (0) (0.7) 5

3 3 26 11 0.46 0.07 50.8 32 0.47 0.08 49.2 31

4 4 36 11 0.45 0.08 50.8 32 0.46 0.08 49.2 31

5 5 47 24 0.45 0.16 70.3 97 0.53 0.11 56.5 78

10 10 81 27 0.45 0.27 81.2 125 0.58 0.20 65.6 101

20 20 149 35 0.52 0.24 79.4 162 0.63 0.21 63.7 130

30 30 178 36 0.54 0.25 81.4 171 0.67 0.22 66.2 139

40 40 186 36 0.66 0.26 81.0 170 0.90 0.19 57.6 121

50 50 227 36 0.68 0.22 84.8 178 0.94 0.16 52.9 111

70 70 345 37 0.71 0.21 84.3 182 0.93 0.16 58.8 127

90 90 359 38 0.70 0.20 85.2 190 0.94 0.15 55.6 124

104 104 384 39 0.70 0.21 85.4 199 0.93 0.15 54.9 128

Table 7.5: Results of scalability experiments (trigram terms)



7.5. Scalability 235

Table 7.5 shows the results of the experiments. The left columns show the number
of instances and rules for different numbers of corpus examples. There are always as

many instances as there are annotated corpus sentences. The growth of the rule set is
slower (it is described in more detail in section 5.6).

The first issue to be investigated is the coverage of the grammar: for how many of
the 40 test set inputs does the grammar produce some candidate? As table 7.5 shows,
5 examples are sufficient to yield at least one candidate for more than half of the inputs
('solutions'). The largest grammar generates candidates for 39 inputs. (One input
contains an unknown POST tag; see example (102) on page 216). These results are the
same for both sets of experiments. Not entirely surprisingly, the experiments suggest
that more corpus examples will further increase the coverage of the grammar.

The next issue concerns the similarity score of the candidates. We measured the

average cosine score for those inputs that result in at least one candidate. The gen¬

eral tendency for both sets of experiments is an increase of the similarity score as the
grammar and instance base grow larger. This increase is smaller for A.=0.7 than for
A.=0.0 because of the higher emphasis on coverage ('cov'). This demonstrates again
the trade-off between fluency and coverage. In addition, table 7.5 shows the total num¬

ber of tags realized by the candidates across the test set ('tags all'). Thus, it factors
in that there is no candidate for some inputs. The test set provides 238 input tags. The
maximal number of tags expressed by the generator is 199 for the largest grammar with
linear score combination. This corresponds to 83.6% overall coverage of the generator.

Small decreases of the average cosine with increasing corpus size can be explained
by the larger number of inputs for which a candidate can be obtained. For X-0.1,
the cosine score peaks at 70 corpus examples. However, more training material still
increases the completeness of the candidates. A minor oddity occurs when moving
from a corpus of 3 to a corpus of 4 examples. In both cases, exactly the same candidates
are produced. Despite this, the average cosine decreases slightly. This can be explained
by the changed term weights. In addition, the results for a corpus of size 2 which yields

only one solution can be regarded as unreliable. Furthermore, there is no solution for
the extreme case of a single instance in the instance base: in this case, all fi?/-weights
are 0 since all terms occur in all instances, i.e. the only one available.
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(137) a. corpus=5: David A. DiLoreto, president of metal container division, was named
group vice president, packaging products, of this packaging, industrial and aerospace
products concern. (cos=0.24, cov=5/10, nn=wsj_0009)

b. corpus=10: David A. DiLoreto, president of metal container division of this pack¬
aging, industrial and aerospace products concern, was elected group vice president,
packaging products, a additional position. (cos=0.33, cov=6/10, nn=wsj J3196)

c. corpus=20: David A. DiLoreto, president of metal container division, was named to
the additional post of group vice president, packaging products, of this packaging,
industrial and aerospace products concern. (cos=0.73, cov=6/10, nn=wsj_0368)

d. corpus=30: David A. DiLoreto, president of metal container division of this packag¬
ing, industrial and aerospace products concern, assumed the additional post of group
vice president, packaging products. (cos=0.78, cov=6/10, nn=wsj_0512)

e. corpus=40-90: David A. DiLoreto, president of metal container division, has been
named group vice president, packaging products, a additional post at the packaging,
industrial and aerospace products concern. (cos=0.82-0.84, cov=6/10, nn=wsj_0740)

f. corpus=104: David A. DiLoreto, president of metal container division,
was named to the additional post of group vice president, packaging products,
of this packaging, industrial and aerospace products concern, succeeding
Delmont A. Davis. (cos=0.61, cov=7/10, nn=wsj_1459)

(138) a. corpus=3,4: Alvin W. Trivelpiece was elected a director. (cos=0.42, cov=2/6,
nn=wsj_0005)

b. corpus=5: Alvin W. Trivelpiece, director of Oak Ridge National Laboratory, was
elected a director. (cos=0.68, cov=4/6, nn=wsj_0005)

c. corpus=10-30: Alvin W. Trivelpiece, director of Oak Ridge National Labora¬
tory, was elected a director of this optical-products concern. (cos=1.0, cov=5/6,
nn=wsj_0185,wsj_0378)

d. corpus=40-104: Alvin W. Trivelpiece, director of Oak Ridge National Laboratory,
Oak Ridge, Tenn., was elected a director of this optical-products concern. (cos=1.0,
cov=6/6, nn=wsj_0729)

Figure 7.10: 'Evolution' of candidates with growing resources
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(137) and (138), figure 7.10, show the 'evolution' of candidates as the training set

increases (settings: X=0.1, trigram terms). The numbers preceding the candidates in¬
dicate the size of the resources that have been used. Generally, the coverage of the
candidate increases with the size of the coipus. In (137), the ordering of the informa¬
tion as well as the main verb changes at the different stages if this is necessary to obtain
a higher similarity score. These changes happen even if they do not lead to increased
completeness (see 137b-137e). The system is not just modifying the 'same' candidate
but actually switches between different nearest neighbours ('nn' in figure 7.10). The

reordering of information becomes apparent when we look at the placement of 'ad¬
ditional'. The ranker uses global bag-of-terms representations and, thus, reordering
happens globally as well: the goal of the ranker is to optimize the overall similarity
score of the entire sentence. (138) shows that the system can move from one perfect
match with a nearest neighbour to another, more complete one as more grammar rules
and nearest neighbours become available. This is because the combined score of the
non-complete candidate in the linear combination is below 1.0. In (138), the candi¬
dates always use the same main verb although different nearest neighbours are used.
Furthermore, (138c) is equidistant to two nearest neighbours.

7.5.1 The benefits of a large instance base

A variation of the previous scalability experiment is to keep the number of grammar

rules fixed and only vary the size of the instance base. Table 7.6 shows the results of
such an experiment. The main finding is that fluency as well as efficiency increase as

the instance base grows larger. For very small instance bases, the grammar is less likely
to generate a high-scoring candidate, and thus, less pruning can take place. When the
instance base is large, new inputs tend to have a higher similarity to the tags expressed
by some instance, and thus the generator is more likely to produce a candidate that is
similar to the surface template of that instance. This in turn increases the similarity
score and allows the system to prune more.

In this experiment, we used again a 30 second time limit. For very small instance
bases the time limit is reached frequently. As before, for an instance base of size 1
there is no solution due to idf term weighting. The minimum runtime is reached at an
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instances rules

cos std.
k=0.7, trigram t

cov% tags all
erms

time av cands all

2 384 0.08 0.14 84.6 197 13.6 11759

3 384 0.21 0.24 82.8 193 13.0 9838

4 384 0.32 0.26 82.0 187 13.5 9687

5 384 0.28 0.23 81.5 190 12.4 6143

10 384 0.35 0.28 81.5 190 10.8 4996

20 384 0.46 0.27 84.6 197 11.1 5447

30 384 0.50 0.27 84.6 197 10.3 6093

40 384 0.59 0.31 83.7 195 9.6 5516

50 384 0.62 0.27 85.0 198 9.5 5361

70 384 0.66 0.25 84.6 197 9.2 4883

90 384 0.68 0.22 84.6 197 9.4 4764

104 384 0.70 0.21 85.4 199 9.8 4327

Table 7.6: Results of scalability experiments with fixed grammar

instance base of size 70 and increases slightly for the larger instance bases despite the
fact that the average cosine score still grows. This may indicate that from 70 instances
onwards the sheer size of instance base slows the generation system down. In that case,

the technique described in the next section becomes relevant.
In sum, our experiments indicate that the instance-based generator scales well. A

particularly interesting finding is the increase in efficiency as instance base and gram¬

mar grow larger. However, the number of available training examples is too small to

draw conclusions about much larger instances bases.

7.6 Dynamic rule and instance selection

'Initial semantic ranking' is a technique that increases the efficiency of the system by

reducing the number of grammar rules and instances before generation starts. It com¬

putes the cosine similarity between the semantic input and the instances represented
by their semantic tags only. Since we do not assume any ordering of the semantic input
tags, we use unigram terms to represent input and instance semantics. These unigrams
are tf.idf-weighted to avoid missing rare tags. The similarity computation only in¬
volves a single cycle over the instance base. We can then select the n-best instances
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for all further similarity computations.

Moreover, we can characterize each instance by a bitvector representation of the

grammar rules derived in the grammar construction phase. We determine the rules

corresponding to the n semantically closest instances by the union of their bitvector

representations. Generation can then proceed as before with a reduced number of
instance tables and grammar rules from the beginning of processing. This effectively
adds some top-down information into the bottom-up generation process in the sense

that information about the goal (the input semantics) is used to restrict search.
A major advantage of initial semantic ranking is the increase in efficiency due to

the reduced number of grammar rules and instances. We conducted a number of ex¬

periments in which we allowed the generator to dynamically select subsets of different
sizes from a large grammar/instance base of 104 examples. Again, a trigram instance
model with tf.idf term weighting was used.

window solutions cos std. cov% tags all time av cands sum

1 24 0.80 0.21 76.2 109 0.1 39

2 26 0.81 0.22 76.7 122 0.2 113

3 29 0.77 0.23 81.1 142 0.4 185

4 29 0.78 0.23 82.9 145 1.0 229

5 30 0.78 0.22 82.8 149 1.1 254

10 34 0.77 0.21 82.2 171 5.4 1126

20 36 0.73 0.22 85.7 186 4.0 2835

30 36 0.69 0.23 87.6 190 7.2 5805

40 36 0.69 0.23 87.6 190 7.3 4994

50 36 0.70 0.24 87.6 190 8.2 5213

70 39 0.70 0.21 85.4 199 9.0 4137

90 39 0.70 0.21 85.4 199 9.6 4159

104 39 0.70 0.21 85.4 199 9.8 4327

Table 7.7: Results of initial semantic ranking (A,=0.7, trigrams)

Table 7.7 compares the results of initial semantic ranking to a generation system
that uses all available resources (window size: 104). Compared to the small but fixed
grammars/instance bases in the scalability experiments (see table 7.5), initial semantic
ranking selects more appropriate resources: it provides more solutions for the inputs
for the same grammar/instance base sizes, and the candidates have higher average co-
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sine and coverage values. As the window size increases, the results for both sets of
experiments begin to look more similar, which is due to the larger overlap between the
resources. For example, for a window of size 90, there can only be a maximal diver¬

gence of 14 examples. As before, increasing the number of solutions can bring the
average cosine and coverage scores down. However, the total coverage of all candi¬
dates increases steadily until it reaches a maximum at a window size of 70. From then
on, no further changes happen. The available data therefore suggests that a window
size of 70 is sufficient to obtain the best possible results.

The efficiency results for initial semantic ranking are encouraging: although in¬

creasing the window size leads to increased runtime requirements, the growth is mod¬
est. For example, moving from a window size of 50 to 104 examples only increases
the average runtime from 8.2 to 9.2 seconds. Furthermore, a larger window can even

decrease the number of candidates that are generated (which peaks at a window size
of 30). This is because more suitable grammar rules and instances become available
which allow the generation of better candidates. However, if speed is more important
than returning a solution to the maximal number of inputs, dynamic rule and instance
selection is a practical solution. Moreover, it could be used with much larger grammars

and instance bases to limit the runtime requirements of the generator. In addition, per¬

forming initial semantic ranking is very cheap: it takes less than 50 msecs on average.

This is because computing the similarity between input and (semantic) instance base
is in general no more costly than scoring a single chart edge.

In sum, initial semantic ranking appears to be a technique that allows the instance-
based ranker to use much larger instance bases and automatically constructed gram¬

mars than we have done in this work. This technique would be especially useful if it
should turn out that the results of the scalability experiments reported in section 7.5 do
not apply beyond the currently available corpus.
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7.7 Manual experiments

7.7.1 Testing tag-index checking

In section 4.3 we introduced tag-indices as an additional means of representation to

indicate a close relationship between two tags and avoid confusion when a tag name

occurs more than once in the input. Section 5.5 details the general mechanism that is

employed when edges carrying tag-indices are combined. In this section, we look at

some candidates that are generated from input that specifies tag-indices. We use mixed

ngram representations with X-0.1.

7.7.1.1 Repeated otherpost and othercomp tags

One of the major sources of tag repetitions is the reoccurrence of OTHERPOST and
OTHERCOMP tags. (139) shows a simple manually created input that contains these tags:

(139)

index tag slot filler

1 IN_OTHERPOST_NODET other-post-1
1 IN.OTHERCOMP other-comp-1
2 IN-OTHERPOST.NODET other-post-2
2 IN.OTHERCOMP other-comp-2
- IN_FULLNAME George Miller
- POST.NODET president
- COMP_DESCR* natural-gas-pipeline concern

Without tag-index checking, the generator produces unwanted candidates like the fol¬
lowing:

(140) George Miller , other-post-2 of other-comp-1 , other-post-1 of other-comp-2 , was

named president of this natural-gas-pipeline concern . (cos=0.48, cov=7/7)

Apart from not being faithful, candidate (140) also does not seem to be particularly
fluent (note the relatively low cosine). However, it does express all the input tags.

Using tag-index checking, we generate the following candidates, among others:

(141) a. George Miller, other-post-1 of other-comp-1, other-post-2 of other-comp-2, was named

president of this natural-gas-pipeline concern.
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b. George Miller, other-post-1 and other-post-2 of other-comp-2 was named president
of this natural-gas-pipeline concern.

c. George Miller, other-post-2, becomes president of this natural-gas-pipeline concern.

Candidate (141a) combines the input tags in the desired way. However, the other
two candidates do not. (141b) places 'other-post-1' at 'other-comp-2'. As described
in section 7.4.3, we consider a candidate like (141c) unfaithful because 'other-post-2"
needs to be interpreted as belonging to a company already introduced into the discourse
context.

Structurally, (141b) first correctly combines 'other-post-2' with 'other-comp-2' and
cancels off the matching index 2. However, it then also combines the result with 'other-

post-1' to its left. This means that resulting sentence still contains an index that has
not been cancelled off. One way of dealing with this problem is to exclude sentences

with a non-empty index set as valid candidates. This would also prevent candidate
(141c). However, in more complex cases with several indices this would be too strict
because faithful but non-complete candidates can also have non-empty index sets. In
some cases, this would effectively amount to a hard-wired completeness constraint.
The solution to the problem lies in the tag cooccurrence constraints that have not been
used here (see section 7.4.3.1). They make sure that certain pairs of tags are always

expressed together. In addition to (141a), the generator produces the following tags
when cooccurrence constraints are applied:

(142) a. George Miller, other-post-1 of other-comp-1, was appointed president of this natural-

gas-pipeline concern.

b. George Miller, other-post-2 of other-comp-2, was appointed president of this natural-

gas-pipeline concern.

c. George Miller was named president.

(142c) shows that the system can still choose not to express any of the indexed tags.
These examples show that it is the combination of tag-index checking with tag

cooccurrence constraints that finally yields the desired output. The observations about
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OTHERPOST and OTHERCOMP tags also apply to PREVIOUSPOST and PREVIOUSCOMP tags

which are used in a similar way in the corpus. To verify that the mechanisms work

correctly, one needs to look down the entire candidate list since hard constraints should

apply to all candidates.12

7.7.1.2 Repeated AGE and FULLNAME tags

Another source of repetitions in the corpus are AGE tags in combination with several
FULLNAME tags. In this experiment, we would like to test whether the system asso¬

ciates person names correctly with their ages. (143) shows an input that is an ex¬

tension of a training set example (see 56e, page 118). This input also tests whether
the INPERSON_OTHERPOST and INPERSON-OTHERCOMP are combined with the correct

persons:

(143)

index tag slot filler

- COMPJ7ESCR* engine maker
5,6 POST-BOARD board

3 INPERSON-OTHERCOMP Universal Foods Corp.
3,4 INPERSON_OTHERPOST_NODET chairman

4,6,8 INPERSON-FULLNAME John L. Murray
1 INPERSON-OTHERCOMP Lubar & Co.

1,2 INPERSON-OTHERPOST-NODET chairman

2,5,7 INPERSON-FULLNAME Sheldon B. Lubar

7 INPERSON-AGE 55

8 INPERSON.AGE 44

As for the previous input (139), tag cooccurrence constraints apply to the OTHERPOST
and OTHERCOMP tags but there are no further relevant constraints. (144) shows some of
the generated candidates:

(144) a. John L. Murray, chairman of Universal Foods Corp., and Sheldon B. Lubar, 55

years old, chairman of Lubar & Co., were elected to the board of this engine maker.
(cos=0.95, cov=9/10)

b. John L. Murray, 44 years old, and Sheldon B. Lubar, chairman of Lubar & Co. were

elected to the board of this engine maker. (cos=0.68, cov=7/10)

12In principle, one also needs to check the candidates that are pruned away by expectation-based
search.
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c. Sheldon B. Lubar, 55, was elected to the board of this engine maker. (cos=0.75,

cov=4/10)

d. Sheldon B. Lubar, 55 years old, were elected to the board of this engine maker.

(cos=0.57, cov=4/10)

Candidate (144a) is ranked highest and exhibits the maximal coverage the gener¬

ator seems to be able to obtain. (144b) expresses fewer input tags but also correctly
combines the realized ones. We did not observe any incorrect combination of tags in
the candidate set, for example 'Sheldon B. Lubar, 44 years old, ...'. Furthermore, the
plural verb form has been used correctly in (144a) and (144b). These candidates are

motivated by the nearest neighbour from which the input was derived. They therefore
use the same verb form. (144d) incorrectly uses the plural verb form but it is beaten
in the ranking by (144c) which is motivated by a nearest neighbour that also realizes

only a single FULLNAME tag. Similarly, a version of (144a) that uses a singular verb is
ranked lower than the correct version.

These examples should suffice to convince us that the basic index mechanism
serves its intended purpose. It is not claimed that it will produce correct results in
all circumstances. However, this cannot be the aim of such a shallow mechanism. Fur¬

thermore, it should be noted that the (largely) context-free grammar does not employ

grammatical agreement constraints and decisions about verb number can be incorrect
in some cases.

7.7.2 The usefulness of singleton tags

Singleton tags cannot be tested in gold standard experiments because they are missing
in either training or test set. However, we can of course use singleton tags of the

training set in combination with manually constructed inputs. The more interesting

question is whether the grammar rules and the instances that use the singleton tag are

applicable beyond the particular example from which they were derived. To investigate
this, we identified singleton tags in the training set and tested variations of the inputs
in which they occurred. In other words, we took reproduction as a starting point and
then deviated incrementally from there.
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We found that the system tends to realize the singleton tag in the highest ranked

candidate, motivated by its closeness to the original nearest neighbour and the high

weight of rare terms in idf-based term weighting. However, while extensions of the

original input were usually possible, changes or omissions of tags could render the
realization of the input impossible. This is because the grammar rules record patterns
of tags in the node labels. An example rule and the corresponding fragment of the
original annotated sentence:

(145) a. S-POST_INDEF -> NP-POST.INDEF PP-COMP_DESCR_RC*

b. ... was elected a [POST_INDEF director] of this [COMP_DESCR_RC* company, which

primarily has interests in radio and television stations], ...

The PP-COMP_DESCR_RC*13 tag only occurs in the form of (145b) in the corpus, and
(145a) is the only phrasal rule that can combine this tag. (Node PP-COMPJDESCR-RC
is generated by an input rule). Thus, the grammar also needs a POST_INDEF tag for
rule (145a) to fire. For example, we cannot express 'was elected president of this
company, which ....' since this requires a POSTTJODET tag. A practical solution might
be to generalize rules such as (145a) to match any POST-related tag (see also section
8.3.1.2). On the other hand, the current rule format still allows the realization of a large

variety of subject NPs in combination with a VP that incorporates the S-POST_INDEF
node generated by rule (145a).

In sum, the system is able to realize input tags that only have a single occurrence in
the training corpus in novel combinations of tags. However, this often requires certain
other tags to be present in the input as well. This is explained by the fact that the

grammar rules record patterns extracted from specific treebank parses. In other words,
the less frequent a tag in the training set, the less flexibly it can be used to express novel
input. On the other hand, frequent tags will tend to have many different realizations.

13The P P - C OMP_DE S C R_RC * tag is also mentioned in (3Id) in chapter 4. In (3Id) it does not yet carry
the marker we introduced in section 7.4.3.2.
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7.7.3 Learning exceptions

It is generally claimed that instance-based models learn exceptions well (e.g. Daele-
mans et al., 1999a). To investigate this issue we need to clarify what characterizes

exceptionality. Generally, we would liken 'exceptional' events to 'rare' or 'infrequent'
ones. In our approach, these can be tags, template words or cooccurrence patterns of
these. The previous section has indicated that the system is able to use singleton tags

beyond the original sentence to some degree. It tends to use the instance representa¬
tion of the original sentence as its nearest neighbour because of the high weight of rare

terms in idf-based term weighting. The system thus learns the particular usage pattern
of that rare instance as well.

Generally, there is no explicit distinction between 'exceptional' and 'regular' cases

in the instance base. Each instance is valid in its own right, and serves as a potential
nearest neighbour for the generated candidates. For example, the well-known first
sentence of the Penn treebank, although looking quite 'normal', is also exceptional in
the sense that it is the only sentence in our corpus that uses 'will join':

(146) [INPERSON_FULLNAME Pierre Vinken], [ INPERSONJVGE 61] years old, will join the
board as a [POST_INDEF nonexecutive director] [ INDATE_FUTURE Nov. 29].

There is one other use of 'join' in the corpus (in the present tense):

(147) ... joins the [POST.BOARD board] of this [COMP_DESCR* cement products company]
[ INDATE_FUTURE on Dec. 1 ].

From (146) and (147) we might conclude that there is a hidden regularity in the

corpus that wants to realize 'join' verbs in combination with INDATE_FUTURE tags. In
fact, when we remove the INDATE_FUTURE tag from the input in these two cases, the

system switches to other nearest neighbours, using 'was elected' and 'has been elected
to the board' instead of 'join'. The question we have to ask is whether it is the instance
model or the rule system that is responsible for this 'regularity'. It turns out that it is
the rule system in this case:

(148) a. VP-POST_INDEF -> will join the board PP-POST_INDEF NP-INDATE-FUTURE
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b. VP-POST_BOARD ->• joins NP-POST-BOARD PP-INDATE-FUTURE

However, the instance base plays a role as well. To show this, we experimentally
removed the suffixes that define definiteness of POST tags from the grammar to widen
the range of candidates. The rule system now generates the following candidates for a

changed version of the input that can be extracted from (146):

(149) a. Pierre Vinken, chairman, will join the board as a nonexecutive director Nov. 29.

(cos=0.91, cov=4/4, nn=wsj_0001)

b. Pierre Vinken, chairman, was named a nonexecutive director, effective Nov. 29.

(cos=0.43, cov=4/4, nn=wsj_2135)

The best candidate in this experiment is (149a), still using the verb 'join' and the
instance representation of (146) as its nearest neighbour. Candidate (149b), which can

be found at rank 6, is the first one to use another verb.

The corpus has more uses of INDATE_FUTURE tags than there are 'join' verbs, and
thus there are cases when the INDATE_FUTURE tag is expressed in combination with
other verbs. Vice versa, it is unlikely that a 'join' verb is used without a INDATE-FUTURE

tag. A combination of the two will score high on the instances that contain both but a

candidate that uses 'join' without INDATE-FUTURE is bound to loose against its com¬

petitors. In other words, the instance-based ranker learns that there is an 'exceptional'
cooccurrence pattern of terms containing INDATE-FUTURE and 'join'.

In conclusion, the ability to learn exceptions is built-in in the instance-based gener¬

ator. In some sense, every instance is its own 'exception'. Regularity only arises when
several instances exhibit the same pattern. However, regularity is never explicitly rep¬

resented.

7.7.4 Robustness

The 'robustness' of a generation system has a number of dimensions. In the following,
we discuss a few of them. The first issue cannot be tested by gold-standard experi¬
ments:
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• ill-formed input: The input format is a simple set so that there should be no

danger for some external component to get the input structure wrong. The leaves
the potential problem of ill-formed members of the input set. This is relevant to
the grammar component which needs to match the input against the rules. The
bottom-up chart algorithm is able to deal with ill-formed input tags by simply
ignoring the ill-formed tags. From the point of view of the grammar, unknown
input tags are no different from 'ill-formed' input tags. Furthermore, it seems

difficult to conceive ill-formed fillers since, at least in principle, the fillers do not

need to be used by the generation system until the selected candidate templates
are completed and presented to the user.

Another possibility of ill-formed input is input that contains semantically incor¬
rect information. For example, we can specify an input that assigns two AGE tags

to the incoming person. The generator is able to express that information (for ex¬

ample: 'Pierre Vinken, 58-year-old chairman, 61 years old, ...') but it is beyond
the capabilities of the system to reason whether this actually makes sense.

• ill-formed grammar rules: Rules that are 'ill-formed' can be grammar rules
that are obviously incorrect syntactically, for example. An earlier version of the

grammar construction algorithm introduced the following coordination level rule
into the grammar:

(150) VP-P0ST_N0DET ->• NP-P0ST_N0DET and NP-P0ST_N0DET

This allowed the generation of candidates such as (151)

(151) Clark J Vitulli senior vice president and general manager.

However, candidates without verbs never showed up among the first candidates.
The explanation can be found in the instance base: there is no instance without
a verb, and thus, a candidate like (151) never wins against a competitor that
contains a (matching) verb.

• ill-formed instances: 'Ill-formed instances' is another term for 'noisy data'.
Since the generator makes its decision based on the instance base, it is in-
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deed sensitive to noise which it cannot distinguish from well-formed exceptions.

However, an instance base for generation is likely to be carefully selected and
annotated. Furthermore, we can detect the ill-formed instance if it contains an

unwanted candidate (and if that instance is never used, the noise is not harmful).

Improving the annotation scheme can be seen as a way to make the instance
base less noisy. For example, generating 'was elected to the president' was a

typical error of an earlier version of the annotation scheme. The introduction
of the P0STJ30ARD tag (see section 4.2.1) prevented the generation of the above-
mentioned VP. By refining the annotation scheme we have removed some 'noise'
from the instance base.

7.8 Conclusions

In this chapter, we have reported on a number of experiments that served to evaluate
different aspects of the implemented instance-based generation system. First, we iden¬
tified the ability to reproduce the training set as an important property of an instance-
based generator. The experiments have shown that the system is indeed capable of
reproducing the training material. This is not necessarily the case for more eager ap¬

proaches, for example those that convert the training corpus into a statistical model.
In contrast, a (correctly implemented) instance-based generator never performs worse

than a rote learner on the training data. Furthermore, we observed that there can be
more than one instance that completely expresses the input semantics. In such cases,

a candidate reproducing any of these instances should be seen as a correct solution to
the reproduction task.

Next, we ran the instance-based generator on test data and observed that it largely
produces fluent, grammatical and faithful output. However, the basic version of the
generator also tends to produce candidates that do not fully express the input seman¬

tics although they perfectly match with some instance. This problem of completeness
results from the combination of a flexible rule system and an instance-based learner.
We proposed two techniques to deal with this problem and have evaluated the im¬

proved generation system in a number of ways. By preventing the generator from
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realizing mere subsets of the input semantics, the linear combination with a coverage

value takes better advantage of the inherent 'exceptionality' of many members of the
instance base. This manifests itself in the increase of support instances, for example.
The linear combination allows one to trade fluency against completeness. We discuss
the generality of this fluency-completeness trade-off in section 7.8.1 below. In ad¬
dition, we proposed maintaining multiple candidate lists which allows the system to

delay the final decision about the completeness of the output candidates until a larger
context is known.

We observed that faithfulness problems can arise if the generation output is incom¬

plete and introduced a number of measures to improve the faithfulness of the candi¬
dates. The results of a human evaluation of the system output (using the linear combi¬
nation) showed that up to 92.5% candidates are perfectly correct for short candidates
(low values of A), decreasing to 57.5% for more complete candidates (high values of
A). As a general tendency, candidates that have a high similarity score exhibit less
errors than those having a low similarity score, confirming our basic assumption that
the generator should aim at producing candidates that are similar to the training set
instances.

Although the overall corpus size is small, the results summarized above indicate
the validity of our approach. In fact, being able to work with limited amounts of
training data is one of the strengths of this approach. We also conducted a number of
experiments that addressed the scalability of the instance-based generator. The results
were encouraging: in addition to improving fluency (as measured by the instance-
candidate similarity score), the efficiency of the system increases when moving from a

very small instance base of only a few examples to an instance base of size 70. It still
seems possible that a much larger instance base (and grammar) will slow the system
down. However, in that case, subsets of the instance base and the grammar can be

dynamically selected to increase efficiency. Thus, we conclude that instance-based
generation is technically feasible, scalable and reasonably efficient.

In a number of manual experiments, we convinced ourselves that the mechanism
for tag-index checking serves its intended purpose of preventing combinations of tags
with incompatible tag-indices. In addition, we found that the system is able to realize
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tags that occur only once in the training set in novel combinations of tags, albeit with
a limited degree of freedom. Furthermore, the instance-based generator is robust with

respect to ill-formed input and even ill-formed grammar rules. The biggest danger
for the instance-based generator probably lies in ill-formed instances. However, we

claim that in our approach this is not a serious practical problem (see also section 7.8.2
below).

Throughout this chapter, the discussion of individual candidates illustrated the
workings of the instance-based generation system (see, for example, figure 7.10 which
shows that the system switches between nearest-neighbours as the instance base grows

larger). The nearest neighbours of the chosen candidates can be regarded as 'expla¬
nations' of the decisions made by the system. In principle, the derivation tree of the
candidates should also be seen as part of an explanation of how the output came about
(as the explanation of the rule-based part of the hybrid system).

In the following, we draw conclusions about the generality of the completeness-
fluency trade-off and take up a number of fundamental issues concerning instance-
based learning.

7.8.1 Generality of the completeness-fluency trade-off

Ranking models for NLG that are based on corpus similarity alone (even if the cor¬

pus contains additional syntactic or semantic information) make the assumption that
all candidates are (equally) complete and (equally) faithful. If this assumption is re¬

laxed - as we have done in this work - the possibility of a trade-off between fluency
and other goals arises. This does not depend on the search strategy or the generation
architecture and also applies to systems in which grammar interpreter and ranker are

non-interleaved.

In instance-based ranking, the tendency towards replicating training set sentences

is easily observable because the original examples are available as nearest neighbours
which can be imitated directly. In statistical approaches, the corpus material is gener¬

ally not accessible. However, in case statistical NLG systems do not ensure complete¬
ness, they can face similar problems of comparing candidates. For example, ngram

models tend to prefer sequences of words that are much shorter than any corpus sen-
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tence. Knight and Hatzivassiloglou (1995) describe using a function which increases
with sentence length to counter this behaviour. Avoiding minimising sentence length
can be seen as an indirect way to approximate a completeness criterion.

7.8.2 Instance-based learning

The experiments in this chapter are related to a number of general claims about instance-
based approaches that were mentioned in section 1.2.3. Here, we would like to point
to the results of this research concerning these claims:

• Dealing with sparseness of data. The evaluation of scalability (section 7.5)
shows that very few examples are indeed sufficient to generate solutions for
combinations of input tags not seen in the training corpus. The fluency and the
coverage of the output sentences increases as more training material becomes
available. Generally, the ranker is able to deal with edges that contain large
numbers of unknown terms (see section 7.3.1).

• Runtime efficiency. This issue becomes particularly important when an instance-
based learner is combined with rule-based overgeneration. Expectation-driven
A*-search turns out to be a practical solution to this problem. The scalability
results of section 7.5 are particularly encouraging.

• Flexibility. The instance base is flexible in the sense that it can be adapted to the
current input. Instances (and rules) can be selected dynamically as the technique
we call 'initial semantic ranking' shows (see section 7.6).

• Learning exceptions and sensitivity to noise. By treating instances individu¬

ally, the instance-based system ensures that their 'exceptionality' remains avail¬
able as a blueprint for the output candidates (see section 7.7.3). On the other
hand, this poses the danger of also learning noisy data. However, as we have

argued in section 7.7.4 ('ill-formed instances'), our semantic annotation is gen¬

erally carefully crafted. In addition, in an instance-based approach erroneous

examples can always be identified and corrected.
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This concludes our evaluation of the implemented instance-based generator. In the
next chapter, we discuss a number of general issues and directions for future research.
Section 8.1 addresses the question of test set reproduction, an issue that arises naturally
in a corpus-based approach to NLG that separates training from test set.



 



Chapter 8

Discussion, future work and

applications

In this chapter, we take up a number of issues concerning our approach to instance-
based natural language generation. We start by discussing an issue concerning the
automatic evaluation of the instance-based generator. We then relate our approach to

statistical NLG in general. A working realization system has many facets, and we will
discuss some extensions and alternatives. Naturally, these options do not belong to the
tried-and-tested methods of the previous chapters and need to be investigated further.
Finally, we discuss possible applications of our approach.

8.1 The question of test set reproduction

The general experimental setup for test set evaluation (depicted in figure 7.6, sec¬

tion 7.3) suggests as a natural evaluation metric a comparison between the genera¬

tion output and the original annotated sentence from which the input was extracted.
Automatic evaluation with respect to reference strings bears close similarities with an

instance-based approach to candidate ranking since it also directly compares pairs of

strings/templates. Since we have argued that the cosine similarity of surface templates
is a suitable metric for the ranker, we should use that same metric for the comparison
between output and original sentence. Using a different metric would imply that we

255



256 Chapter 8. Discussion, future work and applications

believe the newly introduced metric to be more suitable for our similarity computations
- and in that case, the ranker should be able to use that same metric.

We conducted a test set reproduction experiment in which we reused candidates
that were generated by a system trained on 104 sentences and tested on 40 test set

inputs. In that earlier experiment, we employed mixed term representations and tf.idf
term weighting (see section 7.4.1). In order to measure the reproduction of the original
test sentences, we needed to compute the similarity of the generated candidates to
these original sentences. At this point, the question arises what instance model to use

for the similarity computations. Since generation has finished and we are examining
the result, we are allowed to use the entire corpus for similarity computations (rather
than just the training corpus). Thus, we computed a new instance model for the entire
corpus, using again mixed ngrams and tf.idf weighting.

training set (104) globally best score (144) score on orig
X cos. std. cov. compl. cos std. nn=orig cos std. repro

0.0 0.94 0.12 0.67 15.4% 0.94 0.13 2.6% 0.26 0.23 2.6%

0.1 0.94 0.12 0.68 15.4% 0.94 0.13 2.6% 0.27 0.23 2.6%

0.2 0.94 0.12 0.69 18.0% 0.94 0.13 2.6% 0.27 0.23 2.6%

0.3 0.94 0.13 0.71 23.1% 0.93 0.13 2.6% 0.28 0.23 2.6%

0.4 0.90 0.13 0.77 33.3% 0.90 0.12 5.1% 0.32 0.24 2.6%

0.5 0.88 0.13 0.79 35.9% 0.88 0.14 5.1% 0.33 0.24 2.6%

0.6 0.77 0.17 0.88 56.4% 0.80 0.16 18.0% 0.37 0.25 5.1%

0.7 0.75 0.16 0.90 64.1% 0.76 0.17 23.1% 0.39 0.26 5.1%

0.8 0.73 0.18 0.90 64.1% 0.75 0.17 23.1% 0.41 0.26 5.1%

0.9 0.73 0.18 0.90 64.1% 0.75 0.17 23.1% 0.41 0.26 5.1%

1.0 0.73 0.18 0.90 64.1% 0.75 0.17 23.1% 0.41 0.26 5.1%

Table 8.1: Similarity scores of generated candidates on training set, entire corpus and
original sentences

Table 8.1 shows the results of the test set reproduction experiment. The column
'training set (104)' just repeats the results of the earlier experiment in which the
system was trained on 104 sentences and tested on 40 test set inputs (see table 7.2).1
Column'globally best score (144)' in table 8.1 shows the cosine score of the 40

'in table 8.1, 'cov.' is the average coverage value of the candidates; 'compl.' is the number of
complete candidates for the 40 inputs.
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best candidates with the closest of the 144 corpus examples. This globally best score

decreases from 0.94 to 0.75 as the candidates become more complete, which can be

explained by the fact that the generator is forced to express more rare tags and tags
combinations.

The globally best scores are generally quite similar to the ones for the training set

model, suggesting that the training set model makes good use of the available data. For

larger values of X, the globally best score remains higher than the training set score.

(However, the similarity scores are not directly comparable because they are obtained
using term weights computed for different corpus sizes.) Column 'nn=orig' in table
8.1 shows in how many cases (out of 40) the globally best score of the candidate was

actually obtained by using the original sentence as the nearest-neighbour. This number
increases with the completeness of the candidates but generally stays fairly low (the
maximum is 23.1%).

Column 'score on orig' in table 8.1 shows the similarity score of the gener¬

ated candidates with the original examples. This score is relatively low but increases

slightly with the coverage of the candidates which can be explained by the fact that at

least the unigram terms containing the input tags match the ones of the original sen¬

tence template. However, exact reproduction is rare: only in maximally 5.1% does the
generator reproduce the original test set sentence.

These results indicate that the system is using the training data well (high training
set similarity scores) but that the system is not reproducing the test corpus to a large
extent. In other words, the system is able to produce fluent candidates that are quite
unlike the original sentences/templates from which the generation input was extracted.

Obviously, there is more than one 'good' way of expressing the input semantics, and
in many cases, our system chooses realizations that are different from the original
sentences.

In general, automatic evaluation could significantly facilitate the development of
NLP systems. Measures for automatic evaluation in statistical NLG and Machine
Translation have been proposed by (Bangalore et ah, 2000) and (Papineni et al., 2001),
for example. Unfortunately, the results we obtained from the experiment described
above do not seem to indicate that automatic evaluation could greatly contribute to
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the development of our NLG system, especially if automatic evaluation is based on

the idea of reproducing the original sentences. We had hoped that we might be able
to determine an optimal value of X, for example. Instead, the similarity scores of the
candidates and the original sentences just suggest that the candidates should be as com¬

plete as possible. Furthermore, the generation output seems to be of a better quality
than the low reproduction rate and the low similarity score (with the original sentences)

suggest. As a consequence, we remain skeptical as to the possibility of fully automatic
evaluation. However, more research is certainly needed to clarify this point.

In chapter 2 we discussed a number of approaches to statistical realization. In this
section, we demonstrate that statistical realization can be described by a noisy channel
model similar to speech recognition and statistical machine translation. We identify a

theoretical problem and discuss its consequences for instance-based realization.

8.2.1 Applying Bayes' rule to statistical NLG

A statistical generator tries to find the best realization S for a given meaning input M.

Thus, it needs to find

8.2 An interpretation of statistical generation

argmax P(S\M) (8.1)

We can transform this conditional probability by using Bayes' rule:

argmax P(S\M) = argmax
s s

(8.2)

argmax P(M\S) • P(S) (8.3)

The denominator on the right-hand side in (8.2) can be omitted since M is fixed,
i.e. dropping it does not affect the relation between competing S. As a result of this
transformation, the statistical generator has to compute two quantities:
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1. The prior probability P{S). This is the probability of the candidates without

taking into account the meaning input. The 'language model' of statistical NLP

systems computes prior probabilities.

2. The conditional probability P(M\S). This translates into asking whether the gen¬

eration input M is a likely interpretation of the candidate S. In the context of
NLG, we can call P(M\S) a 'semantic model'.

Using Bayes' rule to transform an initial conditional probability is done in many

areas of statistical NLP (e.g. Manning and Schiitze, 1999; Jurafsky and Martin, 2000).
It adheres to the metaphor of a noisy channel. A prototypical application is statistical
machine translation (MT) where it is assumed that a noisy channel distorts a transmit¬
ted target language string in such a way that it arrives as a source language string, and
the task of the MT system is to reconstruct the input of the noisy channel (the target

language string) given the output (e.g. Berger et al., 1994). Likewise, in speech recog¬

nition the original task of determining the best word sequence for a given speech signal
is transformed into determining the product of the likelihood of the word sequences,

i.e. the prior probability, and the channel probability of the candidate word sequences

generating the noisy input to the channel.
The rationale behind applying Bayes' rule to statistical NLP lies in the fact that

the resulting probabilities tend to be easier to compute than the original conditional
probability. The language model can be computed from a training corpus of target
texts without knowing anything about the input to the statistical NLP system. A typ¬
ical example is a ngram language model trained on a large corpus. The conditional
probability in (8.3) can be obtained from a corpus of parallel texts (in MT) or from a

corpus of speech signal and word sequence pairs (in speech recognition).
The channel model also offers an interpretation of statistical realizers in natural lan¬

guage generation. Ranking output candidates by means of a statistical model trained
on target language texts corresponds to using the prior probability of (8.3). However,
this ignores the semantic model. This is spelled out explicitly by Knight and Hatzivas-
siloglou (1995) who employ a bigram language model for candidate ranking:

"Suppose that according to our knowledge bases, input / may be ren¬
dered as sentence A or sentence B. If we had a device that could invoke
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new, easily obtainable knowledge to score the input/output pair < I, A >
against < I,B >, we could then choose A over B or vice-versa. An al¬
ternative is to forget I and simply score A and B on the basis of fluency.
This essentially assumes that our generator produces valid mappings from
I, but may be unsure as to which is the correct rendition." (Knight and
Hatzivassiloglou, 1995)

In other words: The idea is to require all candidates to express the desired semantics
in a sufficient way and then to omit the conditional probability P(M\S).

8.2.2 A potential problem for statistical NLG

Scoring generation candidates only by means of a language model implies that the
interpretation M is equally likely for all candidates. This raises the question whether
this simplification can lead to undesirable choices by the generation system. Is a human
reader likely to be led 'up the wrong track', i.e. towards an unintended interpretation,
as a result of the simplification of the statistical model? For example, consider the
following two candidate realizations:2

(152) Si : John was believed to have been shot by Bill.

S2 '■ John was believed by Bill to have been shot.

If we assume that the system is given an input conveying a believed-by-bill

meaning rather than a shot-by-bill meaning, the second sentence is the better choice
because it makes the intended interpretation more likely. However, if the language
model gives a higher probability to the first sentence, i.e. P(Si) > P(S2), it is clear that Si
will always win, regardless of the meaning input. In other words, the statistical ranker
has no means to take into account that P(believed-by-bill|S2) > P(believed-by-bill|Si ).
However, this is exactly what a channel model would contribute if it were available.

The example shows that a candidate sentence may have unwanted interpretations
which are more likely than the desired one. In general, the assumption that all can¬

didates convey the intended meaning equally well does not seem to hold. However,
the human ability to interpret ambiguous sentences in context may play an important

2The example is taken from (Collins, 1999).
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role in limiting its effect. In the above example, it may be obvious from the context
that Bill cannot be the murderer of John and hence the chosen realization S\ is given a

believed-by-bill interpretation.

8.2.3 Consequences for instance-based generation

Instance-based generation does not convert its training examples into a probabilistic
model but rather retains them for direct use in candidate-instance similarity computa¬

tions. As a consequence, one might be tempted to conclude that the interpretation of
statistical NLG given above (including the potential pitfall) does not apply to instance-
based NLG. However, we believe that this is not the case. The instance base fulfills the

same role as the language model in statistical NLG: it serves to judge candidates by
means of their 'likelihood' of belonging to a training corpus and it does not take into
account the specific generation input.

A possible point of confusion is the fact that in our approach the training set ex¬

amples are semantically annotated and the candidates contain semantic tags as well.
Therefore, we know which tags the candidates can possibly contain. However, this
should not be confused with the overall meaning of the candidate sentences. As the

investigation of faithfulness problems in section 7.4.3 has shown, the interpretation of
tags (once they have been replaced by filler words) can depend on the context of other
parts of the sentence. In addition, producing output that contains semantic tags is not
a unique feature of the instance-based realizer. The statistical surface realizer of (Rat-

naparkhi, 2000) is also trained on a semantically annotated corpus and its candidates
contain tags.

If the instance base can be interpreted as performing the role of a prior probability,
it follows that the interpretation problem described in section 8.2.2 also applies to

instance-based generation. In fact, we might argue that faithfulness problems like
those originating from the omission of certain tags are caused by the lack of a semantic
model. Such a model would need to be able to detect the unfaithful interpretation of
the candidate from a parser's perspective. In contrast to the rather subtle ambiguity of
example (152), the unfaithful candidates described in section 7.4.3 often seem to have

only one (unwanted) interpretation.
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We can interpret the introduction of additional semantic constraints on candidates
(section 7.4.3.1) as an attempt to control the output of the generator which is other¬
wise too 'loose' and only oriented toward fluency. However, this may be a price worth

paying. In general, the lack of a semantic model in today's ranking-based surface
generation systems seems to be due to the difficulty of obtaining the relevant train¬
ing material. It should be stressed that simplifying assumptions are often the key to

practical success and may thus be necessary.

8.3 The division of labour between knowledge sources

The hybrid generation system developed in this thesis employs two sources of knowl¬
edge: a rule-based grammar and an instance base populated by training examples. Both

components can be regarded as placeholders for directions of science that are often
seen as incompatible: the rationalist tradition and the empiricist tradition. It is the lack
of rationalist knowledge (in the form of explicit input and grammar specifications) that
makes a combination of the two paradigms seem worthwhile. The rule-based grammar

contributes the ability to produce previously unseen structures by means of recursive
rules ('creativity'). The instance base provides empirical knowledge about the use of
language which is often difficult to codify by means of grammar rules alone. On the
other hand, using only empirical data tends to lead to conservativeness in the sense that
observations of the past are repeated in the future.

Both analytical and empirical knowledge run into problems of completeness in
their coverage of language use. These have been termed the 'knowledge acquisition
bottleneck' and the 'sparse data problem', respectively. A hybrid approach like the one

explored in this thesis combines two incomplete sources of knowledge in the hope of
obtaining more complete knowledge than provided by one of the sources alone. Our
interpretation of such a hybrid system is that of a division of labour between knowl¬
edge sources. The instance base represents empirically known data points, and the rule
system generates new data points in the space between these. The decision between
alternative candidates, i.e. newly proposed data points, is made on the basis of their
distance to the empirically justified data points. Furthermore, the candidates are gen-



8.3. The division of labour between knowledge sources 263

erated by rules that result from an analysis of the instances. Therefore, an important
test for the appropriateness of the rule system is the ability of the rules to reproduce
the known data points (see section 7.2).

As Knight and Hatzivassiloglou (1995) have argued, corpus-based knowledge can

fill in the "knowledge gaps" of a rule-based grammar. This increases the robustness of
the generation system by producing output in situations where input or grammar spec¬

ifications are missing. It can be regarded as a form of "emergent choice" (Ward, 1994).
In most cases, robustness is a desirable property. However, there may be applications
for which no output is better than an approximately correct one.

Ideally, the knowledge sources are complementary and, when combined, result in

'complete' knowledge at least of the domain in question. In practice, knowledge gaps

may remain, resulting in errors in the system output. This is our interpretation of the

remaining errors made by the implemented generator. Consequently, there are gener¬

ally two locations where improvements can be made: the grammar component and the
ranker. Generally, fluency problems should be dealt with in the ranking component.

Syntactic problems could be dealt with in either the grammar or by making the ranker
aware of syntactic structures (see sections 8.3.1.1 and 8.3.2.2 below). Semantic prob¬
lems seem to require improvements in the annotation scheme, possibly in combination
with additions to the grammar component (like the additional filtering implemented by
tag cooccurrence constraints). In the following, we indicate a number of options for

changing grammar and ranker that could be pursued in the future.

8.3.1 Improving the grammar component

8.3.1.1 Extending the current approach

The current approach of automatically constructing a generation grammar from a syn¬

tactic treebank could be extended in a number of ways:

• We could add extra knowledge to the existing mechanisms. For example, we

could encode that 'both' needs to refer to exactly two coordinated constituents.
Furthermore, grammar construction could make a distinction between singular
and plural VPs, taking advantage of the recognition of coordination.
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• The grammar could use recasting rules for semantic tags to increase its para¬

phrasing power. This will involve not only a change of the tag names but in
many cases also of the slot filler, as the latter always needs to be of a specific

syntactic category. For example, a singleton tag such as POST_INF ('infinitive')
could be recast by other POST tags that require a noun or a noun prefixed by an

adjective. Other recasting rules could be applied to slot fillers such as 'vacant'
and 'vacancy'.

• Additional information about heads and complement/adjunct distinctions could
be employed to extract subcategorization frames.

• We could make use of the long-distance dependencies (traces) of the Penn tree-

bank which are currently ignored.

• One could use a treebank based on a principled grammar theory such as Combi¬

natory Categorial Grammar (Hockenmaier and Steedman, 2002).

• The semantic markup could be based on (typed) feature structures. Generation

using such a formalism requires a unification-based grammar formalism (see
next section).

8.3.1.2 Unification-based grammar formalisms

Unification seems to be well-suited for overgeneration approaches to NLG because
of its ability to represent underspecified structures and the possibility of fully explor¬

ing the space of candidates within a given set of constraints. Underspecification in
unification-based grammar formalisms is a means of encoding uncertainty. It could
be exploited to allow the instance-based generator to accept input at different levels of
linguistic description, making it more versatile. Input specifications would generally
act as constraints on the space of possible candidates. Although the grammar format
used in this work seems to be adequate for the task, applications like summarization
oi machine translation (see section 8.6) might benefit from input that contains not only
semantic but also lexical and syntactic constraints.
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To be practically interesting for our approach, the grammar construction procedure
should provide a richer representation of grammatical descriptions than we currently
obtain from our annotation scheme and the Penn treebank II. On the other hand, if

a large number of rules - based on typed feature structure representations, for exam¬

ple - can indeed be automatically constructed, the rule-edge matching problem needs
to be rephrased with respect to unification. Under the assumption that many rules
partially share some feature structure description, subtests for feature structure unifi¬
cations might be shared across rules. In effect, the general unification operation would
be split into subtests whose results are reusable. These tests could be organized in a

Rete network in such a way that sharing is maximized.
The interleaved architecture proposed in this work also allows an instance-based

ranker to be combined with a chart generator that uses a hand-crafted unification-based

grammar. The main requirement would be to give the ranker access to newly generated
edges and to their phon feature. We would then be able to investigate whether the
grammar can be simplified due to the availability of an instance base. This in turn

might simplify manual grammar development since examples would be used to avoid
overgeneration. In other words, the research question would be whether providing

examples can help avoiding excessively fine-grained features.

Furthermore, it may be possible to map the simple 'flat' semantic input used in
this work to underspecified representations in unification grammars, for example using
Minimal Recursion Semantics (Copestake et ak, 1999). This in turn would offer a

way of combining a shallow NLP component (for example, an information extraction

system) with a principled grammar formalism for realization (see also Crysmann et ah,
2002).

8.3.2 Improving the instance-based ranker

8.3.2.1 Extending the current approach

The three basic ingredients of an instance-based ranking function are the term repre¬

sentation, the term weights and the distance metric (section 3.1). Many variations are

possible for these parameters. Concepts from information retrieval can be applied to
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instance-based NLG because of the close connection between the fields. In sections

8.3.2.2 and 8.3.2.3, two alternatives are discussed briefly. Section 8.3.2.4 then dis¬
cusses how slot fillers could be incorporated in the ranking function. Finally, section
8.3.2.5 discusses the combination of similarity scores from a number of instances.

8.3.2.2 Syntactic features

The surface-based representation of edges and instances can be extended to also in¬
clude syntactic features. However, it is unclear whether syntactic information actually

improves candidate ranking for generation. Experience in information retrieval has
shown that improving on the standard retrieval methods by adding syntactic features
is difficult (Lewis and Jones, 1996). Furthermore, it should be noted that the incorpo¬
ration of syntactic information would decrease the portability of the generator in the
sense that grammar formalism and instance base needed to provide matching syntactic
features. On the other hand, the ranking tasks in NLG and IR are different enough for
this to merit further investigation. Lurthermore, results presented by Daume III et al.

(2002) indicate that, with respect to statistical language modelling, syntactic informa¬
tion could improve candidate ranking for NLG over ngram models.

In order to obtain syntactic structures in the style of the original treebank during

generation, the grammar rules would need to specify the original treebank fragments
which would be combined when edges are combined. This way, one could recover the

original treebank parse if the appropriate semantic input is given to the generator. The
syntactic structure might be useful not only for the ranker but also as input to further

processing steps. However, in our approach, representing the full treebank parse is not

necessary.

8.3.2.3 Latent Semantic Indexing (LSI)

LSI (Deerwester et al., 1990) is a technique for reducing the dimensionality of high-
dimensional spaces that maps coocurring document terms onto the same dimensions,
and non-coocurring terms onto different dimensions. Applying LSI to instance-based
NLG would mean mapping instances as well as edge contents to a reduced vector

space before the conventional similarity metric is used. LSI seems to be most useful
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when applied to large, heterogeneous collections of documents (Manning and Schtitze,
1999). However, it remains an open question whether LSI is also suitable for small,

domain-specific corpora because it amounts to losing some of the valuable information
about the coocurrence of surface words that is available.

8.3.2.4 Slot filler preferences

In the current version of the system, instances and edge contents are represented in
such a way that the ranker only sees the semantic attributes but not their values, or

'slot fillers'. This makes good sense for small corpora since it generalizes from the
training data and avoids learning the wrong exceptions. For example, many proper

names occur only once in a small training corpus. If an input attribute happens to
contain the same proper name as one of the training examples, this would wrongly
gear the generation process towards this nearest neighbour. On the other hand, the
current approach cannot learn realization differences for certain slot fillers of the same

attribute (this has also been noted by Ratnaparkhi, 2001). Apart from particular filler
words, the length of the filler string will play a role in determining the overall length
of a sentence, for example. Therefore, the introduction and appropriate weighting of
features pertaining to slot fillers is worth further investigation.

8.3.2.5 Mixing instances

In chapter 7, we saw that the decisions of the ranker are always based on a single in¬
stance at a time, combined with 'light' terms which add a statistical (frequency-based)

component to the decisions of the ranker if the term weighting scheme is based on

inverse document frequency. An alternative is to use as nearest-neighbours combina¬
tions of instances which are chosen with respect to the input. This does not necessarily
mean that instances are merged in practice but rather that their similarity scores are

combined, resulting in an adaptive ^-nearest neighbour model. Using combinations of
examples has also been explored for other tasks such as the translation of line draw¬
ings from one style to another (Freeman et al., 1999). For generation, we would aim at

finding combinations of instances whose semantics fits the input and use them as near¬

est neighbours for candidate surface forms. Furthermore, the combined score could
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incorporate a measure of dissimilarity to unwanted instances, for example those used
for a previous input, in order to increase variation.

8.4 Extending the scope of instance-based generation

8.4.1 Text generation

In this work, we have limited ourselves to the generation of the first sentences of the
articles in the chosen domain. Some of the articles indeed only contain a single sen¬

tence. The majority, however, include a number of follow-up sentences. The average

text length is 2.8 sentences. The follow-up sentences tend to provide background in¬
formation about the main succession event reported in the first sentence and become

increasing diverse as the article continues. Two examples are given in (153).

(153) a. Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.
Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group. (wsj_0001)

b. Mark Q. Huggins was named executive vice president and chief financial officer. Mr.

Huggins, 39 years old, formerly was controller and chief accounting officer at Harte-
Hanks Communications Inc. Management Co. manages entertainers and produces,
markets and finances entertainment. (wsj_0731)

The current instance base contains the first sentences of these articles. The anno¬

tation scheme developed for the first sentences would be able to mark the follow-up
sentences in (153). However, the treatment of referring expressions such as Mr. Vinken
is a major requirement for text generation. Furthermore, extensions of the basic anno¬

tation scheme would be required to annotate the follow-up sentences of other articles.
In the following, we indicate how issues of text generation could be addressed within
our approach.

• Annotation and candidate generation. Referring expressions would be an¬

notated as pointing towards the antecedent tag they refer to. For example, Mr.
Vinken could be marked a title_name pointing to a specific inperson_fullname.

The grammar would only be allowed to produce referring expressions that refer
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to tags present in the input. Since the generator cannot consume a part of the

input more than once, rules that produce referring expressions should be non-

consuming. One could investigate whether the concept of tag-indices can be

applied to referring expression generation.

• Ranking. The extended grammar would (over-)generate texts including refer¬
ring expressions. In this setting, it is the task of the ranker to choose not only
fluent but also coherent text.

There is, in general, a large number of options for instance-based text ranking.
One is to continue to use an instance base of sentences but to populate it with
sentences from different positions in original articles. However, a last sentence

of the original text obviously should not serve as a nearest neighbour for a first
sentence. To impose a global text structure onto the local sentence model, one

could experiment with representing the original texts by ngrams of their tags,

crossing sentence boundaries. Such ordering information would indirectly ex¬

press that articles start with a headline or that referring expressions appear to the

right of their antecedent. Furthermore, one could experiment with discontinu¬
ous ngrams. An alternative approach is to simply represent an article as a single

bag-of-ngrams and treat full stops (sentence boundaries) just like words.

• Efficiency. Since the grammar adheres to the principle that any part of the input
can only be consumed once, sentence-sized candidates should be generated into
semantic bins (see section 7.4.2) with follow-up sentences trying to consume the

remaining input. However, text generation in an overgeneration approach places
additional requirements on efficiency. We might thus be forced to generate in¬

crementally sentence-by-sentence and prune the number of bins at each step to

keep the number of continuations tractable.

• Completeness. Inputs in the single-sentence approach which yield low fluency
(i.e. cosine) values if emphasis is placed on completeness suggest that the content
should better be distributed across two sentences. However, the fundamental

problem of completeness versus fluency will repeat itself on the text level. On
the other hand, at text level there are more ways of expressing the content which
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should ease the tension between the two goals.

Above, we have sketched a relatively knowledge-poor text generation system fol¬

lowing the approach of this work. Basically, we are confident that we could over-

generate texts as well and see the challenge in providing the appropriate ranker. An
alternative view is to improve the grammar component in such a way that only coher¬
ent text is generated in the first place. However, it should be emphasized that further
research is required to verify the feasibility of these ideas.

8.4.2 Scalability and clustering

In this work, we assume that edges are compared with individual instances. If a training
set considerably larger in size is used, it may improve efficiency to cluster instances
off-line and change the A*-based search algorithm to work in two phases. In the first,
search works with cluster centroids to narrow down the number of "relevant clusters".

The expectation would need to be more tolerant to account for all material members of
the cluster. In the second step, clusters are replaced by their members and the algorithm
works as usual. The point of switching between the two phases could simply be defined
in terms of the maximum number of instances that can be used in the second phase.

Identifying clusters based on the input could also help narrowing down the number
of grammar rules for candidate construction, just as we are already doing when select¬
ing rules before the start of candidate generation. In general, the use of IR techniques
for candidate ranking in NLG allows one to draw on the techniques for working with

large document collections developed in IR and adapt them to the needs of NLG.

8.4.3 Incorporating other domains

An important issue in extending the coverage of the instance-based ranker is the ad¬
dition of further domains. As a first step, we propose to deal with new domains sep¬

arately and in a way similar to our treatment of texts in the management succession
domain. As a second step, we propose to merge the derived grammars and instance
bases. Apart from the technical aspect of narrowing down the search space by cluster¬
ing instances and selecting a subset of the available grammar rules (see section 7.6),
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issues of consistency concerning treebank and semantic annotation would arise.
A combination of domain corpora may involve overlapping annotation schemes. In

general, we may be faced with problems concerning the combination of 'ontologies'
(Hovy, 1998). However, we do not see tags that occur in more than one scheme as

a problem even if they have different intended meanings. The instance-based ranker
treats tags just like words which are disambiguated in the context of a bag-of-words. In
other words, there does not seem to be a need for insisting on a globally unambiguous
semantic annotation scheme.

On the other hand, consistency of the syntactic corpus analysis seems to be required
if candidates are to be generated by rules derived from different domain corpora. How¬
ever, in our approach this could be achieved by using the same statistical parser across

domain corpora. The alternative is to keep domains completely separate and to chose
the relevant domain before generation starts. Note, however, that this might still re¬

quire the computation of semantic similarity between input and domain clusters which
in turn would take advantage of the fact that tags do not need to be unambiguous.

The identification of domains suitable for instance-based generation might make
use of clustering techniques as well. Possibly preceded by named entity recognition,
the clustering of large general purpose corpora could at least be an aid to an incremental
extension of the instance-based ranker to other domains.

8.4.4 Many-to-many mapping

In chapter 1, we introduced our basic assumption of realization as a one-to-many map¬

ping combined with ranking techniques. A logical extension of this concept is to view

generation as a many-to-many mapping. This would yield 'fat pipelines' in which the
content determination module does not need to commit itself to a single semantic rep¬

resentation, enabling the system to trade content against fluency whilst preserving the

conceptual simplicity of a pipeline. Extending the presented realizer to account for dis¬

junctive input would require an adaption of the check for non-overlapping semantics
when chart edges are combined. The idea is to throw all tags mentioned in the input at
the rule system, generate bottom-up as before but prevent edges from combining that
would result in a semantic representation incompatible with the input. Furthermore,
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the disjunctive parts of the generation input could have weights attached to them which
are taken into account by the coverage score.

8.5 Future scientific work

8.5.1 Comparison to statistical ranking

The goal of this thesis has been to investigate the technical feasibility and properties
of instance-based realization (the results are summarized in section 7.8). Based on

this investigation, we can only draw limited conclusions about the characteristics and
relative advantages of alternative approaches to candidate ranking in NLG. In principle,
a large number of machine learning methods can be applied to the task. Among those,
the statistical methods used in other ranking approaches to NLG play a prominent role
(see chapter 2).

What seems to set instance-based learning apart from statistical models is its flexi¬
bility concerning the use of the training set. As we have shown, the system can adapt
itself to new inputs by choosing 'relevant' subsets of the instance base. Furthermore,
the ability of instance-based methods to learn exceptions has been confirmed in our ex¬

periments (see section 7.7.3). However, the importance of this property might depend
on the regularity of the chosen corpus.

The investigation of the generator output has demonstrated the importance of the
issue of input coverage. Instance-based methods naturally represent the length of the
training set examples towards which candidate generation is directed. Simple ngram

models do not exhibit this property and tend to prefer very short word sequences. To
counter this behaviour, Knight and Hatzivassiloglou (1995) employ a function which
increases with sentence length. Although this method of correcting candidate length
seems rather ad-hoc, statistical frameworks like maximum entropy modelling (Berger
et al., 1996) are able to include features that represent sentence length explicitly (pro¬

posed in Oberlander and Brew, 2000).
A further notable property of the instance-based generator is its ability to rank can¬

didates based on very few instances. An investigation of alternative ranking approaches
should ask questions about the minimally required training material. An ngram lan-
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guage model, for example, will be based on exactly the same ngram counts as the

corresponding instance model if both are trained on the same corpus. Although this

might allow one to carry out a fairly direct comparison between the ranking methods,
issues of input coverage are likely to interfere. On the other hand, our treatment of

coverage by means of a linear combination should be applicable to other models too:
in a statistical ranker, the overall score of a candidate would be a compromise between
the minimal structure preferred by the statistical model and the maximal structure pre¬

ferred by the coverage score. Furthermore, such research might point to principled
combinations of instance-based and statistical techniques. We can ask, for example,
whether it is possible to use the similarity score of the instance-based learner as a

feature in the maximum entropy framework.

8.5.2 Cognitive models of language production

Exemplar-based models, as well as combinations of exemplar- and rule-based mod¬
els are popular in Cognitive Science, for example in category learning (Johansen and
Palmeri, 2002) and dual-route models of morphology (Pinker, 1991). The hybrid ap¬

proach to NLG proposed in this work is also an attempt to combine rule-based and
example-based methods and might offer a starting point for psycholinguistic research
in human language production. For instance, some human production errors might be

explained by wrongly mixing or adapting examples. However, we should emphasize
that the present work does not make any claims about cognitive models of language

production.

8.5.3 Human evaluation in-the-large

In the present work, we judge candidates mainly by criteria that we believe can be

applied with reasonable accuracy (like syntactic correctness and faithfulness). A large
scale evaluation involving human acceptability judgements should allow one to also
draw fine-grained conclusions about the fluency decisions of the generator. In our ap¬

proach, these are based on the cosine distance metric which has been extensively used
in information retrieval. In practice, the cosine tends to rank more fluent candidates
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higher than less fluent ones. To reliably determine the usefulness of other distance
metrics, for example, considerable resources seem to be required.

8.6 Applications of the proposed methods

This thesis assumes a scenario in which the realization system obtains a semantic input
from another component that determines the content by drawing on a knowledge base.
The assumptions about the input are more relaxed than in most 'classical' NLG sys¬

tems which expect highly structured representations meeting the specific requirements
of the grammar formalism used for sentence realization. In this section, we indicate
other possible applications of the techniques developed in this thesis. In the first two

applications, we consider tasks in which natural language strings form the input as well
as the output.

8.6.1 Machine Translation

Translation Memories can be seen as a starting point for more flexible instance-based
machine translation in the same way as fixed template-based generation systems can be
regarded as a starting point for instance-based NLG. A similar line of reasoning with

respect to Example-based Machine Translation can be found in (Somers, 1999). To

perform fully automatic translation, we would envision a hybrid system consisting of
rule-based candidate construction and instance-based ranking similar to our approach
to realization in NLG. The off-line grammar construction phase needs to derive gram¬

mar rules that map source language strings to target language strings. The input to
the grammar construction algorithm would need to be an aligned corpus and a syntac¬
tic analysis of at least one of the languages involved. In contrast to Example-based
Machine Translation, there would be no separate source language analysis, transfer
and generation phases. Rather, we would aim at generating translation candidates as

directly as a parser generates semantic forms.
The translation process should be regarded as a many-to-many mapping (see sec¬

tion 8.4.4), enabling the preservation of ambiguities. Chart-based algorithms for achiev¬

ing this are described in (Shemtov, 1998b,a). Translation candidates would be scored
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by their similarity to selected target language sentences, taking into account the simi¬

larity between the source language counterparts of these target language sentences and
the source language input to the translation system. The latter would be functionally

equivalent to our treatment of coverage. Again, the system needs to reconcile the two

goals of fitting the input and maximizing fluency and could thus trade target language
fluency against source language faithfulness.

8.6.2 Summarization

In recent years, document summarization has attracted increasing interest in the NLG

community. We believe that at least some of the techniques developed in this thesis
could be fruitfully applied to the task of summarization. The chosen level of seman¬

tic representation in this work is similar to that of many information extraction (IE)

applications. Thus, IE system and generator could be combined in a straightforward

pipeline. In the end, this is not very different to obtaining the generation input from a

database (which might have been populated by IE techniques in the first place). Com¬
binations of information extraction and NLG techniques have been explored in (White
et al., 2001), for example. An extension of the approach presented in this thesis to
account for disjunctive input (see section 8.4.4) would allow the IE system to keep
its options open. We would like to mention two other issues that would need to be
addressed in an adaption of our approach to summarization:

• Integrating IE phase and generation grammar. The output of the IE phase
could consist of constituents labelled with semantic roles, possibly annotated
with confidence scores. The generation grammar would need to be able to 're¬

play' these constituents, and combine or paraphrase them in novel ways. Our

experiments3 indicate that the automatically derived grammar seems to be able
to perform sentence compression (Knight and Marcu, 2000).

• Instance base. Following the approach developed in this thesis, an instance
base for summarization needs to consist of a collection of 'good' summaries.

Knowing the source documents that have been summarized allows one to train
3See the experiment described in section 7.2.1, for example.
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content selection decisions as well. Providing appropriate training material and

making good use of it do seem to be difficult tasks. However, these are problems
shared with many machine learning approaches to summarization.

8.6.3 Integrating expert systems and case-based reasoning

Our hybrid approach to natural language generation uses techniques that have been

successfully employed in other fields of Artificial Intelligence. The grammar is imple¬
mented in a production system language which is commonly used for expert system

applications. The instance-based ranker makes use of the same principles that un-

derly case-based reasoning systems (Aha, 1998). Thus, the techniques developed in
this thesis should allow one to combine the two paradigms beyond natural language

generation.
The basic approach in applying our work to case-based reasoning would be that the

expert system is proposing some structure - for example a piece of legal or medical

reasoning - and the case-based ranker judges the structure. Again, the underlying idea
is to overgenerate because the explicitly codified knowledge of the expert system is

incomplete.

Golding and Rosenbloom (1996) describe a system that combines rule-based and
case-based reasoning. Similar to our approach, the case-based reasoner serves as a

critic to the solution proposed by rule applications. However, the system has to make
a decision whether to trust the rule-based or the case-based component. Furthermore,
the latter uses a case base of negative examples of rule applications. In contrast to our

approach, Golding and Rosenbloom (1996) assume that rule application is determinis¬
tic.



Chapter 9

Conclusions

In this thesis, we developed a novel approach to natural language surface realization
that is based on the idea of an instance-based ranking of output candidates. The ap¬

proach is hybrid in nature since it combines a rule-based grammar with a corpus-based
ranker. We showed that instance-based generation is technically feasible, reasonably
efficient and in most cases produces sentences that are fluent, syntactically correct and
faithful. Furthermore, experimental evidence suggests that instance-based generation
also scales well. In the following, we summarize the main contributions of this work
and draw final conclusions.

A considerable part of this work has been devoted to efficiency issues since these
are particularly pressing in an overgeneration approach. A naive version of an instance-
based generator might just compare each output candidate to the entire instance base.

Using an A*-based search algorithm and interleaving chart generator and instance-
based ranker significantly improves efficiency and makes practical use of instance-
based generation a plausible perspective: in our implementation, the best candidates
are usually found after a few seconds. The interleaved architecture should allow a wide
class of grammar formalisms to be used in combination with instance-based rank¬

ing without the need to construct special purpose data structures for ranking. Thus,
instance-based NLG does not make strong assumptions about the nature of the gram¬

mar. Our approach can be seen as a general framework for combining a component in
the rationalist research tradition (characterized by the use of rules) with an (empirical)
instance-based learner.
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The evaluation of a basic instance-based generator on test data revealed that the

system tended to generate incomplete candidates that exactly replicate some instance
of the instance base. Having identified this problem of completeness, we introduced
a linear combination of the instance-edge similarity score and a coverage score that
allows the system to trade the goal of fluency against the goal of producing com¬

plete output. This trade-off can be observed empirically. Moreover, we claim that the
trade-off between fluency and completeness is general and applies to other overgener-

ation approaches as well. The possibility of trade-offs between competing goals offers
promising prospects for future research on text generation and for applications such as

machine translation and summarization. (A more detailed summary of the evaluation

experiments can be found in section 7.8.)
We proposed a new approach to the development of generation grammars that ex¬

ploits a corpus of domain texts in two ways: to populate the instance base and to au¬

tomatically construct the grammar rules. The only manual effort that is required is the

provision of a semantic markup scheme (and possibly the definition of additional faith¬
fulness constraints on candidates). Furthermore, the domain corpus does not need to
be very extensive for our approach to work. The output of the generation system shows
that such a grammar, in combination with an instance-based ranker, produces mostly
fluent, syntactic and faithful candidates, depending on the emphasis that is placed on

coverage. This is achieved without manually writing a single grammar rule.
However, as a word of caution, it should be emphasized that the development of a

consistent annotation scheme can be challenging, and in practice there are limits to the
number of distinctions that can be made. What these distinctions are should depend
on the application and the capabilities of the NLP component that provides the input
to the realizer. On the one hand, it may be tempting to develop ever more fine-grained
semantic annotation schemes to guide the realizer. On the other hand, it should be

kept in mind that the presented approach uses a corpus precisely for the reason that

fine-grained explicit choice has its limitations.
In conclusion, the main contributions of this work are:

• an architecture that interleaves grammar-based overgeneration with instance-
based ranking (chapter 1),
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• an efficient A*-based search algorithm for instance-based ranking (chapter 3),

• a novel method for automatically constructing a generation grammar from a syn¬

tactic treebank which has been extended by semantic annotations (chapters 4,5),

• a bottom-up chart algorithm for candidate generation that uses a Rete network,
which makes it particularly suitable for generation with large numbers of gram¬

mar rules (chapter 6),

• several improvements of an initial version of the instance-based generator: using
a linear combination of the fluency score with a coverage score, generating into
several ranked lists and additional filtering of candidates by means of (hard)
faithfulness constraints (chapter 7).

The instance-based sentence realizer performs a number of tasks that have become

increasingly separated in explicit-choice models of NLG. In addition to sentence real¬
ization, our approach performs lexical choice and some aspects of aggregation. More¬
over, sentence realization proper here involves more work than in many rule-based
realizers because its input is semantic rather than syntactic in nature. The processing
model that seems to emerge from this is that of a candidate generator of reduced com¬

plexity that maps its input as directly as possible to concrete word forms. The resulting
candidates are then evaluated by a ranker. We indicated above that this model could
be extended to text generation, machine translation and other tasks, possibly within a

single module or alternatively by a 'fat pipeline' of simple modules. In effect, such a

system would encompass the entire 'how-to-say-it' phase of natural language genera¬

tion since this is what fluency is about.



 



Appendix A

The encoding of grammar rules as

productions

The implementation language used for the chart generator is JESS (Java Expert System
Shell, Friedman-Hill, 2000). We use structured (or 'unordered') facts of attribute-value

pairs to define chart edges. The following representations are produced fully automat¬

ically after the context-free backbone of the generation grammar has been constructed
(see chapter 5). Given the grammar rules (productions) the JESS compiler produces a

Rete network (see chapter 6) which is part of the runtime generation system.

A.0.3.0.1 Input rules Figure A.l shows an input rule encoded as a production as

used in the actual implementation and the corresponding representation in a more ab¬
stract format. Input rules generally need to match simple facts that represent input
tags and their index. These so-called 'ordered facts' are unstructured and contain a

list of atoms and variables. In figure A.l, the input fact to be matched is (input ?sdx
COMP_DESCR ?cx $?fillerPhon). The head input is followed by a variable for the se¬

mantic index of the input tag, followed by the tag proper, the tag index and the slot
filler, i.e. the surface words associated with the input tags given as input to the genera¬

tor.

The semantic index is unique for each input tag and allows one to determine which
input tags a chart edge consumes. It can be interpreted as a reference to an object in
the real world. In contrast, the tag represents the semantics of this object and is not
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SEM {|T]COMP_DESCR([T[)}
CAT PP-COMP-DESCR
TERMS <ofthis[T]>

SEM COMP_DESCR([T[)

(defrule input-rule-23
(input ?sdx COMP_DESCR ?cx $?fillerPhon)
(input-rule-23)

=>

(add-to-agenda
(PP-COMP_DESCR

(idx (bind ?idx (npt)))
(coicbc ?cx)
(syn PP)
(consumes (create? ?scbc))
(terms of this [ COMP_DESCR $?fillerPhon ] ))
(instances (new-instance-table))
(deriv [ PP i23-0014 ?idx of this COMP_DESCR ] )
(fired-by input-rule-23))))

Figure A.1: Input rule and its encoding as production

necessarily unique.
The antecedent of input rules also contains a condition that matches a simple unique

fact for the name of the rule input-rule-23. In this way, input rules can be blocked
and unblocked dynamically. Only those rules are able to fire whose name has been
asserted into the KB.

If all conditions are met, an unordered fact that has the syntactic-semantic category

as its head is added to the agenda. A unique fact-id is created by the function npt
as the value of the idx slot. Slot coidx takes the tag index given in the input. The

syntactic category syn is represented separately to allow identification of (candidate)
sentences by the ranker. The consumes slot takes the unique semantic index of the
input tag and creates a 'multi-field' for multi-sets of such indices. The terms slot
contains the marked-up surface string of the edge. The content of this edge is used by
the ranker. The terms slot contains the filler words of the input explicitly (stored in
the variable $?f illerPhon). Strictly speaking, these are not needed during generation
and could be recovered from the semantic index after generation has finished. The
instances slot contains a reference to all those instances that should be considered for
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ranking. These are the 'relevant instances' of the ranker (see 3.2.1.2). The f ired-by
slot contains the rule name

The deriv slot represents the derivation for the edge. It details the merged and
reduced treebank structure that is the basis for this grammar rule, i.e. each constructed

grammar rule forms a local tree. In the above example, the syntactic category of the
mother node is a PP and the daughter nodes are the sequence 'of this COMPJDESCR'

(the slot filler is not represented in the value of deriv). The deriv slot also specifies
the fact-id (?idx) and the name of the input rule and the treebank sentence by which it
is motivated (i23-0014).

New fact added to agenda:
(PP-COMP_DESCR

(idx 15)
(coidx <External-Address:java.util.HashMap>)
(syn PP)
(consumes 6)
(terms of this [ COMP_DESCR industrial conglomerate ])
(instances <External-Address:j ava.util.Hashtable>)
(deriv [ PP i23-0014 15 of this COMP_DESCR ])
(fired-by input-rule-23))

Facts matched on conditions:

(input 6 COMP_DESCR <External-Address:java.util.HashMap> industrial conglomerate)
(input-rule-23)

Figure A.2: Fact generated by input rule

An example of a fact produced by the production in figure A.l is given in figure
A.2. It shows a fully instantiated terms value,'of this [ COMP_DESCR industrial

conglomerate ] '. The content of the coidx and instances slots contains references
to objects outside the realm of the production system language.

A.0.3.0.2 Phrasal rules In contrast to input rules, phrasal rules match structured
facts representing chart edges in their conditions. Figure A.3 shows a production for a

phrasal rule that matches facts with heads NP-POST_DESCR-ADJ and PP-P0ST_N0DET. It
also requires a simple ('ordered') fact in order to be unblocked ('phrasal-rule-83').
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SEM [T]
CAT PP-POST.NODET

TERMS [T]

(defrule phrasal-rule-83
(NP-POST_DESCR_ADJ (idx ?i0) (coidx ?cxO) (syn ?s0) (consumes $?c0)

(terms ?t0) (instances ?i_tableO) (deriv $?d0))
(PP-POST_NODET (idx ?il) (coidx ?cxl)

(syn ?sl) (consumes $?cl&:(set (create$ $?c0 $?cl)))
(terms ?t1) (instances ?i_tablel) (deriv $?dl))

(phrasal-rule-83)
=>

(if (bind ?cxc (combine-index-sets ?cxO ?cxl ))
then (add-to-agenda

(VP-POST_DESCR_ADJ
(idx (bind ?idx (npt)))
(coidx ?cxc)
(syn VP)
(consumes (create$ $?c0 $?cl))
(terms was named to ?t0 ?tl)
(instances (combine-instance-tables ?i_tableO ?i_tablel))
(deriv [ VP p83-0366 ?idx was named to $?d0 $?dl ] )
(fired-by phrasal-rule-83)))))

SEM |T|iti|T]
CAT VP-POST_DESCR-ADJ

TERMS <was named to [T|[T|>

SEM [7]
CAT NP-POSTJDESCR-ADJ

TERMS [T]

Figure A.3: Phrasal rule and its encoding as production
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Matches for facts in conditions of phrasal rules are largely confined to matching
fact heads. Slot values are mainly only picked up by variables and passed on to the rule

consequent. However, there is an exception. The condition matching the second edge
in figure A.3 performs a test to prevent a combination of edges that express overlapping
semantics, based on the unique semantic indices in the consumes slot. In order to

perform these tests as early as possible, they are called for each non-first condition
in principle. Since the example has two daughters, there is only one such test to be
performed. This is indeed the most frequent case since most phrasal rules are binary.

On the consequent side of phrasal rules, a further check related to the treatment of
tag indices is performed (see section 5.5). If this test is also successful, a new fact is
created and then added to the agenda. Its consumes slot contains the union of the val¬
ues of the daughter's consumes slots. This implements the concept that the semantics
of a phrase is the union of the semantic information of its daughters. Furthermore, a

new value of the instances slot is computed on the basis of the corresponding values
of the daughter edges: the instance table of the newly created edge is the intersection
of the relevant instance tables of the daughter edges, combined with the lowest expec¬

tation for the instances (this is a cheap initial approximation of the true expectations -

see step 1 of the ranking algorithm, section 3.2.1.2). Finally, the deriv slot embeds
the derivation information of the daughter edges, building up structure in this way.
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A complete list of annotation tags

This part of the appendix shows the final list of semantic tags, including their frequen¬
cies. The tags are grouped by their name. This list reflects the changes to the annotation
scheme described in section 7.4.3.2. Therefore, some tag counts differ from the ones

given in chapter 4. The overall number of tags in the final list below is 78.

freq. tag name

14 B0ARD_INCR

7 COMP

6 COMP*

19 C0MP_DESCR

102 C0MP_DESCR*

1 C0MP_DESCR_RC

1 C0MP_DESCR-RC *

1 C0MP_DESRC*

3 C0MP_L0C

1 C0MP_M0THER

1 C0MP_M0THER_DESCR

1 COMP_MOTHER_NATIONALITY

5 C0MP_NATI0NALITY

2 COMP.SUBSIDIARY

20 COMP_SUBSIDIARY *

2 COMP_SUBSIDIARY_ADDINFO_JJ

8 COMP_SUBSIDIARY_DESCR_DEF

1 COMP_SUBSIDIARY_DESCR_DEF*

5 COMP_SUBSIDIARY_DESCR_INDEF

6 COMP_SUBSIDIARY_DESCR_NODET

3 COMP_SUBSIDIARY_DESCR_NODET*
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freq. tag name

1 COMP_SUBSIDIARY_DESCR_PLURAL

1 COMP_SUBSIDIARY_DESCR_PLURAL*

3 COMP_SUBSIDIARY_LOC

3 COMP_SUBSIDIARY_SUBSIDIARY*

1 COMP_SUBSIDIARY_SUBSIDIARY_ADDINFO_JJ

1 COMP_SUBSIDIARY_SUBSIDIARY_DESCR_DEF

1 COMP_SUBSIDIARY_SUBSIDIARY_DESCR_DET

1 COMP_SUBSIDIARY_SUBSIDIARY_DESCR_NODET

1 INDATE.ENDURING

11 INDATE.FUTURE

1 INDATE_FUTURE_ENDING

56 INPERSON-AGE

1 INPERSON_DESCR_ADJP

3 INPERSON_DESCR_JJ

2 INPERSON_DESCRJnTP_INDEF

139 INPERSON_FULLNAME

33 INPERSON_OTHERCOMP

2 INPERSON_OTHERCOMP_DESCR

6 INPERSON_OTHERCOMP_LOC

2 INPERSON_OTHERCOMP_SUBSIDIARY

2 INPERSON_OTHERCOMP_SUBSIDIARY_DESCR_DEF

1 INPERSON_OTHERPOST_CONSULTANT_INDEF

3 INPERSON_OTHERPOST_DEF

9 INPERSON_OTHERPOST_INDEF

1 INPERSON_OTHERPOST_LOC

59 INPERSON_OTHERPOST_NODET

1 INPERSON_OTHERPOST_PARTNER_INDEF

10 INPERSON-PREVIOUSCOMP

1 INPERSON-PREVIOUSCOMP_SUBSIDIARY

1 INPERSON_PREVIOUSPOST_DATESPAN-PAST

25 INPERSON_PREVIOUSPOST_NODET

4 OUTDATE_FUTURE

1 OUTDATE_FUTURE_PP

3 OUTDATE_PAST

10 OUTPERSON_AGE

23 OUTPERSON_FULLNAME

2 OUTPERSON_INDATE_PAST

1 OUTPERSON-NEWPOST.INDEF

2 OUTPERSON_NEWPOST_NODET

1 OUTPERSON_OTHERPOST_DEF

1 OUTPERSON_POSTCONT_INDEF

1 OUTPERSON_POSTCONTJSTODET

2 OUTPERSON_PREVIOUSPOST_INDEF

4 OUTPERSON_PRP_VP_FUTURE

9 OUTPERSON_PRP_VP_PAST

2 OUTPERSON_PRP_VP_PRESENT

1 OUTPERSON_PRP_VP_SADV_PAST
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freq. tag name

10 POST-BOARD

25 POST-DESCR-ADJ

5 POST_DESCR_VACANCY

36 POST_INDEF

1 POST.INF

4 POST_LOC

142 POST_NODET

7 POST.PLURAL

2 POST.RESPONSIBILITY

6 •p
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