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Abstract 

After a brief review of the history and philosophy of neural modelling, several 

attractor neural networks are studied in some detail. Firstly a variation of the 

Hopfield Model employed to perform symmetry invariant pattern recognition is 

considered. It is shown that parallel dynamics tend to perform a symmetry-

transformation of the network configuration at each update. In contrast serial 

dynamics tend to drive the network configuration into a symmetry invariant. The 

component of the interactions that drive the aforementioned dynamic tendencies 

act as a noise upon the Hopifeld interactions. However replica symmetric the-

ory shows that an extensive number of patterns may be stored whilst allowing 

symmetry invariant .pattern recognition. 

The performance of Gardner optimal interactions, that optimise the performance 

of a perceptron, is examined in the context of attractor neural networks. The 

discussion is restricted to randomly dilute networks for which dynamical equations 

for the overlaps are available. A general analysis of these equations is performed 

and the transitions to no memory categorised. In particular the conditions for 

a point, tricritical in nature, to exist in the a—T plane are derived. Retrieval 

phase diagrams for the optimal interactions with and without errors in storage 

are constructed. 

The case of sparse spatial coding is then investigated by considering two connec-

tion rules, Covariance and Willshaw, that have the storage capacities of the form 

of the Gardner optimal connections as the bias of the patterns becomes very large. 

In both cases the choice of threshold is crucial in order to achieve maximum stor-

age, and also controls the basins of attraction of the memories. Both connection 

schemes exhibit an undesirable high activity attractor, but in the Wilishaw case 

this may be suppressed by introducing an activity dependent inhibition. 

In order to bring neural network models into close contact with biological exper-

iment, the problem of firing rates is discussed. A model is then proposed that 

uses a biologically realistic dynamics and incorporates a variety of other biological 

features. Graphic displays from computer simulation of the model are presented 

and associative retrieval can be seen to occur whilst the network functions in a 

manner that is reminiscent of the results of biological experiments. 
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Chapter 1 

Neural Modelling: From Hebb to Attractors 

1.1 Neural Modelling and two Philosophies 

The understanding of cognitive function and memory is a challenge with appeal 

to a variety of disciplines. The many levels at which studies may be undertaken 

range from considering the biochemistry through which the neural components 

function, to theorising about the origin of consciousness. In order to embark 

on a programme of research within this mélange, one ought first to know the 

context and limitations within which the investigations are to be carried out. 

Even if one is working within a purely mathematical framework the motivations 

and tradition that lead to the models being investigated must not be forgotten or 

else the resulting work maybe ephemeral and of interest only to the author and 

colleagues. Any importance will be lost to the rest of the scientific community. 

With this polemic in mind I will try to sketch the history and philosophy of the 

tradition of research that I feel the present thesis is continuing. 

It was Psychologists who first considered the idea that behaviour and memory in 

particular could be construed on all levels as sequences of associations. One idea 

leads to another and action results from stimulation. Hebb was one of the first to 

theorise on how these associations could be effected by the cortical components of 

neurons and synapses. His book [1] contains a well developed theory of memory 

and learning without referring to detailed biology. This illustrates what I hold 

as a main tenet of neural modelling - too much biological detail may obscure the 
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underlying principles at work. Hebbs treatise centred around the concept of neu- 

ral assemblies. These are groups of neurons that work together to perform some 

-general computation. -Computations were interpreted as reverberations where dif-

ferent subsets of the neural assembly would become active on response to different 

stimuli. The stimuli led to an association with an item in the memory store, the 

reverberation was the act of recall. The items in the memory store were consid-

ered to be coded in the synaptic connections between neurons in the assembly. 

Hebb also proposed a learning mechanism by which these connections could be 

strengthened in an unsupervised manner to allow the memory to be encoded. - 

These remarkably clear ideas on cognitive function still hold good today over fifty 

years after their inception. The work done in the interim has been to construct 

mathematical models to furnish the theory. These models in turn must evolve to 

become more and more biologically realistic once the principle-in each modelling 

step has been investigated and understood. This is philosophy with which the 

present thesis was researched. 

An alternative and contrasting approach to modelling is to examine carefully 

the biological evidence and construct a model that is a faithful representation of 

all the features. The rationale for this approach is that nature has endowed the 

system under study with many complex features and it would be precocious of the 

modeller to decide a priori what is essential and what is peripheral. A paradigm 

of this approach is the Hodgkin-Huxley equations [2] for the dynamics of the squid 

giant axon. These equations accurately reproduce some observed phenomenology 

of a single neuron at the expense of having to solve a system of four first order non-

linear differential equations. The next step in this approach has to be to remove 

some of the biological detail and see if it changes the properties of the model. I 

believe that removing detail and hoping that nothing changes gives the researcher 

less insight than starting with a simple model, adding detail and analysing the 

changes. 

The ultimate aim of this thesis is to present a model neural network that realises 

llebb's ideas and at the same time has enough biological detail to convince neu-

robiologists that the resulting model bears some relevance to their studies. In 

the spirit of the previous discussion one must first study some simple, unrealistic 

models in order to gain a solid understanding of principles of the modelling. First 
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a little biology is required to describe the system that we attempt to model. 

1.2 A Little Biology 

The fundamental components of the cortex are neurons and synapses. A neuron 

has three areas: a dendritic tree; the soma or cell body; and the axons. The 

synapses are the connections between neurons. A synapse is formed between the 

terminal of the axon of a pre-synaptic neuron and a dendrite of another, post-

synaptic, neuron. The cell is separated from the extra-cellular fluid by the cell 

membrane. This membrane has different conductances to different ionic species. 

Concentration gradients of the different ions are maintained by a metabolic pump. 

Due to these concentration gradients, and the different conductances of the mem-

brane to different ions, charge separation occurs at the cell membrane. This causes 

the cell membrane to be polarised so that the inside of the cell membrane is neg-

ative with respect to the outside. The polarisation is quantified by the membrane 

potential, Vm, which is the potential of the inside relative to the potential of the 

outside. The resting membrane potential is about -60 mV. Within the dendrites 

the membrane potential may become.less negative, or depolarised, due changes in 

the conductivities of the membrane. This would be the result of an excitatory 

synaptic action. Alternatively the membrane potential within the dendritic tree, 

may become more negative or hyper-polarised, which would be the result of in-

hibitory synaptic action. These changes in membrane potential at the dendrites 

propagate electrotonically (with attenuation) towards the trigger zone of the cell 

membrane at the cell body. If the membrane potential at the trigger zone is 

depolarised past a threshold level, an action potential or spike occurs. 

The action potential is a sudden increase in the membrane potential which for a 

short time becomes positive with respect to the outside of the cell. The membrane 

potential then returns to slightly below the resting potential for a short time, which 

is known as post-spike hyper-polarisation. Disregarding the effects of any incoming 

currents the membrane potential then decays back to the resting level. Action 

potentials are the means by which different neurons communicate with each other. 

The spike shape of the action potential is transmitted without attenuation along 

the axons of the cell. When the action potential reaches a synapse, transmitters 
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are released across the synaptic gap which cause changes in conductance in the 

post-synaptic cell's dendrites according to whether the synapse is excitatory or 

inhibitory, as discussed in the previous paragraph: The depolarisation required 

to cause a neuron to spike is greater than the excitatory post synaptic potential 

generated from a single incoming action potential from a presynaptic neuron. In 

order to depolarise to threshold each neuron is able to integrate its afferents over 

space and time. 

This brief sketch of neural function is sufficient background knowledge for the first 

4 chapters of this thesis. In chapter 5, the mechanisms by which a cell membrane 

can integrate afferents and the functioning of inhibitory synapses will be expanded 

upon. For a good introduction to neural mechanisms the reader is referred to [3]. 

Hebb's ideas concerning reverberations can be made more precise now that some 

basic neurophysiology has been discussed. The output of a single neuron is in the 

form of spiking. Experiments involving isolated single neurons show that when the 

neuron is stimulated by an external current then the rate of spiking increases with 

the strength of stimulus. Within an assembly of neurons in the cortex, an increased 

spike rate of an excitatory neuron will mean that the other neurons to which it 

has synaptic connections will receive larger excitatory post synaptic potentials 

which should increase their spiking rates. In this way the elevated spike rates can 

then sustain themselves and the interpretation of a reverberation becomes a set 

of neurons whose spike rates are elevated above the background or spontaneous 

rates. Of course, a particular neuron only makes connections with some of the 

other neurons in the vicinity. Thus only certain neurons can communicate with 

each other directly by means of action potentials. The synaptic connections are 

in general unidirectional so that if cell A synapses onto cell B it does not imply 

that cell B synapses onto cell A. 

In pursuing Hebb's ideas about reverberations one is really dealing with feed-back 

systems. A feed back system is one where the neurons are densely interconnected 

so that the output of a neuron is fed back to become the input to other neurons in 

the assembly which in turn feed-back into the assembly. This is to be contrasted 

to feed-forward systems where a neuron in an assembly feeds its output forward to 

neurons in a different assembly which in turn feed-forward to other neurons. Feed-

forward networks shall be discussed in section 1.4. Although the connectivity of 
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most parts of the brain falls somewhere between these two extremes, the cerebral 

cortex appears suitable for modelling as a feed-back system. This is because each 

_neuron is connected to > 10000 other neurons. We shall interpret our neural 

assemblies as small regions of the cortex, of approximate volume 1mm 3 , which 

contain around io neurons. 

1.3 Model Neural Components 

For the present we have enough information to discuss the goal of the modelling. 

Although processes leading to the emission of an action potential are rather com-

plicated, the Hodgkin-Huxley equations[2] do describe accurately the development 

of an action potential in a single neuron. However the processing involved in any 

neural computation is distributed over many neurons. It would be unfeasible to 

use the Hodgkin-Huxley equations to describe a system of say 1000 neurons. On 

top of that one would have to solve the countless equations for the propagation 

of action potentials along axons and for currents in the dendritic trees. Modelling 

would have to be performed for the functioning of synapses and so on. Even if 

such computation was possible, then to specify a particular system would require 

the values of a multitude of parameters that are not and cannot be known due 

to the unreliable nature of the neural components. Clearly simplification is re-

quired. Before any simplifications can be made one must consider the aims of a 

neural model. Any model must be tailored to what is required from it as well as 

to the physical system for which understanding is sought. When the mechanisms 

through which memory operates are under investigation then the focus of any the-

oretical study is how large numbers of neurons can act together in a co-operative 

manner to produce these mechanisms. The study will be facilitated considerably 

if the detailed internal mechanics of, each neuron are omitted from the model so 

that the co-operative phenomena are highlighted. 

One striking feature of the brain and mental function is the speed at which in-

formation processing can take place. For example our visual system collects and 

processes information so quickly that we can play racket sports, a task beyond 

present day robotics. What makes this speed even more remarkable is that the ba-

sic neural components, neurons and synapses, have operating speeds of the order 
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of milliseconds. This suggests that to achieve the observed speed, the information 

must be processed in parallel and distributed over large numbers of components. 

It is this parallel anddistributed information processing that an initial model of 

memory must capture and the accuracy with which individual neurons are rep-

resented is of secondary importance. What must be done however, is to retain 

the salient features of how the neurons function. This requires an abstraction or 

idealised model neuron. 

The most commonly used model neuron preserves three features from biology. 

Firstly the neuron summates inputs from other neurons. The result of this sum-

mation is compared to a threshold. An output is produced which depends on 

the result of the comparison. In this thesis the outputs of the model neuron are 

binary. The model neuron then becomes a simple logic device in the spirit of Mc-

Culloch and Pitts[4]. If the summed inputs exceed a threshold the neuron takes 

one value if not it takes another. Analogue neurons have also been considered 

by some authors [5,6] but these shall not be studied in the present thesis. The 

inputs to a neuron represent the effect of dendritic currents in a biological neuron. 

The effect of these currents at the trigger zone depends on how much transmitter 

has been released, how far up the deñdritic tree the synapse is located and many 

other factors. However the overall strength with which an action potential in the 

pre-synaptic neuron j affects the post-synaptic neuron i can be simply modelled 

by a synaptic weight .1,3. 

In this thesis two binary representations for neuron outputs will be used. In 

chapters 2 and 3 Ising spin Neural Networks where the output of a neuron i is 

Si = ±1 are studied; in chapters 4 and 5 neural components with outputs of 

1,0 are investigated. For the present discussion the difference representation is 

not significant but I will use The Ising spin representation for concreteness. The 

input—output relation for a single neuron then becomes 

Si = Sgn(h —0) 	 (1.1) 

where 

Sgn(x)= 1 if z>O 

= —1 if x<0. 	 (1.2) 
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hi  is the local field at site i due to a set of inputs I, from other neurons j: 

N 
(1.3) 

j=1  

and 8 is the threshold level. The local field h1  models the membrane depolarisation 

of a neuron. The interpretation of the binary neuron states is that the if the 

neuron takes value 1 then it is active in some sense, whereas if it takes value 

-1 then it is passive. This rather vague interpretation is unsatisfactory, as shall 

be discussed in chapter 5, when one begins to compare the results of models to 

biological experiment. In my view, the only feasible biological interpretation is 

that the 1 state indicates that the neuron has emitted an action potential as a 

result of the integration of inputs, whereas the -1 state indicates that the neuron 

has not. Some authors consider the 1 state to mean that the neuron has an elevated 

firing rate whereas the .1 state means that the neuron fires at the background rate. 

However I believe that directly equating the model neurons' outputs to firing rates 

is only reasonable when analogue neurons are used This is because experiments 

that artificially stimulate neurons show that the firing rate of a single neuron can 

vary continuously [3]. The problems of a direct interpretation of the binary neural 

states will be discussed further in chapter 5. For the present I shall put aside the 

problems with a biological interpretation of such neurons until that chapter, and 

refer to them as spins at lattice sites. A network of N sites is considered and the 

state of the assembly of neurons may be described by the configuration of spins 

{ S}. A Mathematical representation of a reverberation, which we shall refer to 

as a pattern, can now be presented. Each pattern is a vector {'} where the 

subscript i runs from 1 to N and is the index that labels the spins corresponding 

to each component. The superscript p labels the patterns. Each component of 

the pattern vector is binary and can take values 1 or -1. The value 1 indicates 

that when the nominated pattern p is being recalled the spin i should take value 

1; a value of -1 for indicates that the spin S i should take value -1. 

1.3.1 Noise 

An additional striking feature of the brain is that as well as the individual com-

ponents being slow, they are not uniform and are unreliable. The unreliability 

stems from the fact that properties of neurons, such as the threshold, may fluc-

tuate in time. In addition, the spontaneous activity of neurons outside of the 
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network which may have connections leading into the network, will mean that the 

membrane potential generated is not deterministic. Hebb foresaw this noisiness of 

neural components when he concluded that complete determinism within the as-

sociation process was not consistent with attention. A way to model this noisiness 

[7,8] is to introduce stochasticity into the input—output relation: 

\1' 
Si = 1 with probability [i + exp 	

2h 
(--fjj 

2h\1' 
= —1 with probability 	[i + exp (__j . 	(1.4) 

T is the temperature and parameterises the amount of noise in the network. As 

T -* 0, (1.4) reduces to (1.1) and the output is deterministic. At the other 

extreme, as T -* oo, the output is completely random, with probability 0.5 of 

being 1 or -1 for any input. 

1.4 Perceptrons and Pattern Associators 

The idealised neurons described in the previous section first became well known in 

the context of perceptrons [9] and later for pattern associators [10,11] A percep-

tron, in its simplest form, is one model neuron that computes its output through 

(1.1) from a set of N inputs {I}. The perceptron can then classify all the possi-

ble input configurations into two classes depending on whether the output is +1. 

Learning algorithms were developed [9] to construct the synaptic connections to 

perform desired classifications. Minsky and Papert [12] were then able to define 

the types of classification that could be performed 

Pattern associators [10,11] use a set of N model neurons. Pairs of patterns (nom-

inated configurations of the neurons) are then chosen. Rules for constructing the 

connection strengths were developed so that on presentation of the first pattern 

of a pair as input to the associator, the second pattern is produced as the output. 

An association has then been made. 
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1.5 Attractor Neural Networks 

Although perceptrons and pattern associators made use of the basic model neuron 

and synapse components, they did not fully realise the ideas of Hebb because 

they did not explore the idea of a self-sustaining reverberations. Perceptrons and 

pattern associators basically use a single updating of each model neuron so that 

an input produces an output. In an attractor neural network [5,7,13] the outputs 

are fed back into the network as inputs for the next updating. This produces a 

time evolution of the network, with each updating of the neurons corresponding to 

a time step. The network configuration then evolves in time. If after a long period 

of time the network configuration explores only a small area of the configuration 

space, then an attractor has been reached. Attractors realise to some extent the 

reverberations of Hebb. 

1.5.1 Hopfleld Model 

The paper of Hopfield [14] opened the way for attractor neural networks to become 

amenable to analysis [15-17] by using symmetric synaptic connection strengths. In 

the Hoplield model patterns are stored by giving the synaptic connections between 

spins values according to the rule: 

'P 

Hij 	 (1.5) 

The index jt runs over the patterns so that P is the number of patterns stored. 

One may consider this set of synapses as the result of some learning process which 

may be interpreted as having some of the features proposed by Hebb. However for 

the purposes of this thesis the theory of how synaptic connections are formed and 

evolve is not central. Equation (1.5) also assumes that the network is fully con-

nected. The symmetry of the synapses generated by 1.5 allows a configurational 

energy to be defined. The form of the energy depends on what type of dynamics 

is used. In the dynamics the process defined in Eq (1.4) is used as the updat-

ing procedure for each spin. However the synchronisation and order with which 

the updating is carried out within the network must also be specified. There are 

two obvious choices for the synchronisation: parallel dynamics whereby at each 

time step all neurons are updated simultaneously; asynchronous dynamics where 
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a time step is divided into N subdivisions and a different neuron is updated in 

each subdivision. One would hope that both of these dynamics should produce 

qualitatively similar performances. Hopfield[14] used asynchronous dynamics, in 

which case the configurational energy, when the threshold 9 is taken to be zero, 

is given by 

B = - 	H 1 SS. 	 (1.6) 
i0j 

Once a configurational energy has been defined, one can consider the shape of the 

energy surface over the space of network configurations, which is known as the 

energy landscape. Under the prescribed dynamics and at zero temperature the 

network will perform downhill motion in the energy landscape. 

1.5.2 Content Addressable Memory and the Act of Re-

call 

A content addressable memory is one where the item in the memory store is 

recalled by presenting the item or part of it or a distorted version of it rather 

than the address at which the item is to be found. In this way the content of the 

memory is itself the address. The energy landscape metaphor allows an intuitive 

understanding of how content addressable memory occurs in the llopfield model. 

If a stored pattern is near to the bottom of valleys in this landscape, then the valley 

will become a basin of attraction for that pattern. From a corrupted version of 

the pattern, which corresponds to a point on the slope of the valley, the network 

configuration will evolve towards the valley floor thus recalling the stored pattern. 

The initial spin configuration forms a content address for the stored pattern. 

A slight variation of this theme is associative recall (c.f section 1.4). In this 

interpretation the initial configuration has been associated with a stored pattern. 

The act of recall has then been performed by an association. 

In order to formulate the recall process mathematically one defines a parameter 

m that measures the overlap of the stored network configuration with the pattern 

to be recalled (taken to be pattern 1). 

(Li) 
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The local field hi at a site i, which is given by 

N 

(1.8) 
j=1 

can then be decomposed into a signal and a noise: 

L qs3 	 (1.9) 

The first, signal, term is linear in the overlap order parameter in and consequently 

the larger the value of in the more likely the spin i is to line up to 4j. If the initial 

value of in is large enough, then after some updating, the spin configuration should 

match up with the stored pattern and the overlap in approach the value 1. The 

co-operative nature of the recall process, that has each spin interacting with all 

the others through synaptic connections, endows the model with a high degree 

of robustness. The robustness is manifested by a tolerance to various structural 

noises such as synaptic clipping and synaptic destruction [18], as well as dynamic 

noise (temperature). 

The end result of the aforementioned recall process is that the network remains 

in the close vicinity of a stored pattern. The configuration of the network has 

evolved through the dynamics to an attractor. An attractor maybe a fixed point 

configuration as would be the case for zero temperature asynchronous dynamics; a 

limit cycle as may occur for parallel dynamics; or some set of configurations each 

with high overlap with stored pattern. The distinguishing feature of an attractor 

is that after the network has relaxed into the attractor only a restricted volume of 

the network's configuration space is explored. This is a loose statement of broken 

ergodicity. 

1.6 Outline of Thesis 

The starting point of the present thesis is the llopfield Model[14], for which an 

analysis has been developed by Amit, Gutfreund and Sompolinsky[15-17]. This 

analysis will be presented and extended in chapter 2 where the capability of the 

llopfield model for a particular form of associative memory will be explored. The 

analysis will centre on a variation of the llopfield model where the interactions 
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(1.5) are augmented by an interaction component that generates a dynamic ten-

dency to perform a symmetry transform on the network configuration. In the 

chapter first time step equations shall be derived. These equations describe ex-

actly the dynamics tendencies on the first step of parallel dynamics. They shall 

demonstrate how a stored pattern and the symmetry transform of a stored pat-

tern may be associated with the same attractor. However these equations also 

highlight how the symmetry transform component of the interactions acts as a 

structural noise on the Hopfield interactions. The effect of this noise is quantified 

by performing a replica symmetric analysis of the model and comparing the results 

with the replica symmetric analysis of a model with a simpler form of noise. Both 

calculations demonstrate the robustness of the Hopfield interactions to structural 

noise. Chapter 2 will also serve as a pedagogical introduction to the techniques 

used in the analyses and their limitations. 

Chapter 3 will then proceed to consider the theoretical capabilities of attractor 

neural networks by examining how interactions, that optimise certain properties of 

perceptrons, fare in the more demanding environment of attractor neural networks 

with dynamical noise. There are two motivations for this. Firstly to understand 

how perceptron interactions generate attractors, as opposed to performing simple 

pattern association (see section 1.4); secondly to demonstrate that interactions 

that are optimal in one environment (the perceptron) may not be optimal in 

another environment (attractor neural network with dynamical noise). In order 

to carry out this study, randomly diluted networks must be considered, so that 

the dynamics for the overlap in (1.7) may be solved exactly. A general theory for 

the dynamic evolution of the overlap parameter in will be developed. This theory 

will then be applied to the interactions that optimise the storage of a perceptron. 

In chapter 4 a move towards biological realism will be made by the consideration of 

networks that store patterns with low spatial activity. A pattern with low spatial 

activity only has small fraction of the spins that take the value 1. In the neural 

interpretation this corresponds to only a small fraction of neurons being involved 

in a computation, which seems to be borne out in biological experiment. Two 

synaptic connections schemes will be studied: the Covariance rule and Willshaw's 

rule. However the networks are found to be wanting in that as will as having 

memory attractors they still exhibit attractors with very high spatial activity. In 

the case of the Willshaw rule, a way to suppress this high activity attractor by 
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the use of inhibitory interactions, will be investigated. The method is effective, 

but there is a forfeit in another detail of biological reality. 

In chapter 5 the limitations concerning the temporal firing rates of attractor neu-

ral networks will be fully discussed. The problem is basically that using dynamics 

based on (1.4), when the network is in an attractor the spins either take value 1 

most of the time they are updated, or take value -1 most of the time. In the neural 

interpretation this corresponds to a neuron either emitting a spike at every oppor-

tunity, or not at all. This neural behaviour is not seen in biological experiment. 

The lessons from a discussion of why these extreme firing rates occur in the models 

and from chapter 4 will then be assimilated to present a biologically acceptable 

network. The model basically involves a complete revision of network dynamics. 

This network is examined by means of computer simulation, and graphic displays 

that illustrate some behaviours of interest will be presented. The results of these 

simulations may be compared directly with biological experiments. 
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Chapter 2 

Storage Capacity for Symmetry Invariant 

Pattern Recognition Tasks 

2.1 Symmetry Invariant Pattern Recognition 

2.1.1 The Hopfleld Model and Symmetry Invariant Pat-

tern Recognition 

In the previous chapter the Hopfield model was introduced and presented as a 

model for pattern recognition that used the principles of cognitive function. More-

over the attractors of the Hopfield model went some way towards providing reali-

sations of the ideas of Hebb. However from a pragmatist's viewpoint the appeal of 

the Hopfield model is that one can borrow the techniques developed in the study 

of spin glasses to gain much analytic insight into the co-operative phenomena on 

which the pattern recognition mechanism relies. 

An analysis of the Hopfield model for a finite number of stored patterns was first 

performed by Aniit, Gutfreund and Sompolinsky[15] . They then developed a 

more complicated analysis to deal with the case of storing an extensive number of 

patterns [16,17]. In this chapter I will develop their analysis to examine a model 

that is an extension of llopfield's. The model to be studied is primarily concerned 

with the idea of associative recall within the Hopfield model. As stated in section 

1.5.2 the idea of associative recall is that a memory is evoked from a store through 
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an association with an input. In the Hopfield model this idea is carried out with 

the proviso that the input has large overlap with the stored pattern. However 

in pattern associator models [10,11] it is not necessary for the input and output 

vectors to be correlated in this way. The restricted association capabilities of the 

Hopfield model are most obvious when the network configuration is pictured as 

an array of pixels. A spin taking value -1 becomes a dark pixel whereas a spin 

taking value becomes a light pixel. If a simple symmetry-transformation, such as 

a rotation or reflection, of a stored pattern is presented to the network, the input 

configuration will have microscopic overlap m with the relevant stored pattern and 

the correct association will not be made. However to the eye the rotated array 

of pixels can still be recognised as the initial pattern. In other words the human 

brain can perform symmetry-invariant pattern recognition whereas the Hopfield 

model cannot. 

One solution to this problem is to pre-process the initial configurations before 

presentation to the final llopfield network [19,20]. This involves finding a mapping 

from the space of original configurations to the space of processed configurations 

that are presented to the Hopfield Network, such that original configurations and 

their symmetry transforms are mapped onto the same processed configuration. 

What is required is a symmetry invariant of the transformation. However this 

solution involves more than one network. In this thesis the capabilities of single 

networks of neurons are explored. It is of interest to see if a single network can in 

fact make wider associations than that of the original Hopfield model. 

In section 1.5.2 the concepts of an Energy landscape and basins of attractions on 

that landscape were discussed. Within this metaphor one would like to be able 

to sculpt more complicated basins of attraction. For the example of recognising a 

stored pattern and its reflection as the same input one in fact requires a disjoint 

domain of attraction with two basins. One basin is the usual Hopfield model basin 

of attraction comprising configurations a small Hamming distance away from the 

stored pattern. The second basin should contain configurations a small Hamming 

distance away from the reflected pattern. In order to sculpt a channel from the 

latter basin to the former the Hopfield model must be modified. 

Recently several schemes have been proposed to perform such a task. One proposal 

involves the use of dynamic connection strengths [21,22]. Another idea is to have 
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competing directions within the configurational flow produced by the dynamics 

of the network. The ideal that is sought with this approach is a network that 

symmetry-transforms the presented configuration until a macroscopic overlap with 

one of the stored patterns is found. At this point in the configurational flow the 

llopfield interactions predominate and the pattern is recalled. In effect the network 

performs its own pre-processing. 

To this end several mechanisms have been proposed. Dotsenko [23] has used mod-

ifiable thresholdings as the component of the model that causes the symmetry. 

transformation to occur. Coolen and Kuijk[24] have shown that the connections 

can be trained by example from pairs of configurations and their symmetry-

transforms to perform the desired symmetry transformation. The study presented 

in the present chapter will be based upon [24] because the formulation of the model 

is simpler, and more amenable to analysis. 

2.1.2 The Symmetry Transform Interaction 

A simple interaction [24] that produces a symmetry transformation of the network 

configuration is given by 

	

Tij = aSjr(i) i j4 .1 	 (2.1) 

= 	0 	i=j, 	 (2.2) 

where ir(i) is the site that i is mapped onto under the symmetry-transformation. 

Thus (2.1) couple sites to their image sites under the transformation. We will use 

the term "local" to refer to the fact that the lattice is fully connected so that the 

sites can be rearranged to leave a site and its image adjacent to each other. In this 

sense the symmetry transform interaction is local as opposed to H13  where all sites 

have interactions with each other and the interaction is therefore long-range. Our 

study will centre on how the local structure of the symmetry transform interactions 

couples with the long range structure of the Hopfield interactions. In order that the 

symmetry transform interactions be as local as possible we choose a Z2  symmetry. 

This will also give the convenient property of symmetric interactions J ij  = .Jjj. In 

the transformation each spin is acted upon by an element of the group. The spin 

is either mapped onto itself ( by the identity element) or mapped onto another 

spin. In the latter case the Z2  constraint ir(ir(i)) = i ensures that the pair of spins 
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at i and r(i) are interchanged by the transformation. For simplicity we will set 

the number of spins mapped onto themselves to zero. 

In order to see that a symmetry transformation is indeed performed by the inter-

action (2.1) consider the local field produced at a site i when this interaction is 

used by itself: 

h(t) = LTi5a(t) 
joi 

= aSr(0(t). 	 (2.3) 

The field at each site has the sign of the spin at the image of the site and so, 

at least at zero temperature and parallel dynamics, the transformation will be 

faithfully performed. For serial dynamics however, a single updating sweep allows 

the system to converge to a transformation invariant configuration. To see this 

consider a pair of sites i and ir(i). If starting from time t, i is visited first in 

the updating sequence at time t 1 , then the spin at i will be updated to 

so that S(t 1 ) = S(I)(t). When the site r(i) is visited at a later time t 2 , the 

local field will be 	= aS(t 2 ) = aS(t i ) = aS,1(I)(t) so that the spin at 

ir(i) will already be aligned to its local field. Both spins then end up taking the 

value S7()(t). Whereas if ir(i) is visited first both spins will end up taking the 

value of S(t). Clearly the order of updating within the sweep determines the 

final configuration but whatever order is chosen the final configuration will be 

symmetry invariant. It is now apparent that serial and parallel updating give 

contrasting dynamic tendencies: equation (2.3) showed that parallel dynamics 

faithfully performs the symmetry-transformation; sequential dynamics drives the 

configuration into a symmetry invariant. 

This point is rather interesting as it implies that the two different dynamics endow 

the model with rather different properties. Recalling that in the neural interpre-

tation these two dynamics represent different degrees of synchronicity then this 

may be an indication that synchronicity could be a parameter that is utilised in 

neural information processing. 

The fact that the interactions are symmetric allows us to write down a configura-

tional energy 

B = 	 (2.4) 

4j 
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This simple model can be solved by basic statistical mechanics: 

Z = Trg exp (—/3E) 

	

= [4 cosh ()] 	 (2.5) 

where 3 is the inverse temperature and Z is the partition function. This energy 

only corresponds to the model that uses random sequential dynamics. As this 

dynamics drives the network into a symmetry invariant, one expects that an order 

parameter should be introduced that measures the symmetry invariance of the 

network. The order parameter, g, associated with this symmetry is given by 

	

g = 1>(SiST(i)). 	 (2.6) 

and corresponds to the magnetisation of a configuration {Sr}  generated by a local 

gauge transformation 
SY = 	 (2.7) 

This configuration is invariant under the symmetry transform of the old configu-

ration and is thus a symmetry invariant. 

The value of this order parameter can be obtained from 

2 OlnZ 

9 $NOa 

	

= tanh (th'-). 	 (2.8) 

At zero temperature (0 -* oo) we find p = 1 if a is positive. In this case the 

thermodynamic equilibrium phase is that of ferromagnetic order in the positive 

magnetisation direction of the symmetry invariant configuration {Sf}. However 

in the spin space Si this ground state is highly degenerate with the ground state 

entropy equal to Nln(2)/2. The energy barriers between these ground states are 

not extensive so that at finite temperature the system will wander between ground 

states and make the phase paramagnetic. 
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2.2 The First Time-Step Equations 

We now proceed to analyse the full model with synaptic interactions 

Jjj  = H11 + T13. 	 (2.9) 

Ideally we would like to investigate the dynamics of the model as we are inter-

ested in the associative properties of the network, which are determined by the 

dynamic behaviour. However to solve fully the dynamics of the Hopfield model is 

an insurmountable task due to the lack of self-averaging( see section2.3.1) in the 

dynamic evolution equations [25]. Roughly speaking this means that during the 

dynamic evolution of network, the spin configuration becomes correlated with the 

set of synaptic strengths in a way that depends on the particular realisation of the 

network. However the equation for first-time step of parallel dynamics(t = 1) can 

be derived, if one assumes that the values of the spins in the initial configuration 

have been generated independently. The equation derived for the resulting overlap 

M(1) 

m(l) = f(m(0)) 	 (2.10) 

is known as a first time-step equation. The information this equation gives is 

the overlap m(1) averaged over an ensemble of initial conditions corresponding to 

m(0). A realisation of such an initial condition could be generated by taking the 

stored pattern and flipping each spin with probability (1 - m(0))/2. 

In order to derive an equation of the form (2.10) for the model (2.9) we need 

to classify the sites according to how the symmetry transform interaction affects 

them. 

The sites unchanged by the transformation. 

i = r(i) 	 (2.11) 

Pairs of sites that are interchanged by the transformation and which take 

the same value in the pattern 

i 	ir(i) and E = E,r(i) 	 (2.12) 
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3. Pairs of sites that are interchanged by the transformation and which take 

values of opposite sign in the pattern 

i ir(i) and E = -er(i) 	 (2.13) 

We assume that the nominated patterns are random: 

F(E) = i (U —1) + W + 1)) 	 (2.14) 

so that to within s/TJV fluctuations there are equal number of sites in classes 2) 

and 3). In the following we also disregard the possibility of sites being mapped 

onto themselves, so that there are no sites of class 1. However the equations can 

be easily generalised to include such a possibility. The overlap order parameters 

for our remaining two classes of sites are given respectively by 

	

= F 	< Si > W1  + Ew) 	 (2.15) 

1723 = 	7 	<Si > (e - E(0) 	 (2.16) 

(2.17) 

so that 

m=(m2 +m3) 	 (2.18) 

The distinction between the two overlap paramteres is that in2  measures the over-

lap of the configuration with the pattern at sites where the pattern is symmetry 

invariant; in2 measures the overlap at sites where the pattern is antisymmetric. 

In the thermodynamic limit the magnitudes of both m 2  and in3 both lie between 

0 and 1. 

We must also quantify the ordering due to the symmetry transform interaction. 

For this purpose we consider 

1 	
(2.19) 

where 

92 = 	< 	> . + G,  ( i) 	 (2.20) 

93 = N E <5i5r(i) H - Cir(i) L 	 (2.21) 

26 



The order parameter g measures the symmetry invariance of the system. The two 

orders, overlap with a stored pattern and symmetry invariance, compete directly 

in sites of class 3. For these sites the spins in pattern 1 at the site and image 

site are of opposite sign. When these spins align with the stored pattern one has 

antisymmetry under a symmetry transformation, so that m3  = 1 implies 93 = — 1. 

I shall now derive the first-time step equation for m 2 . First it is convenient to 

write (2.15) as 

M2(l) =<< £(S(1)) >)'2, 	 (2.22) 

where the single angular brackets denote a thermal average and double angular 

brackets denote a composite average: an average over sites of class 2; and an 

average over the ensemble of initial configurations that have the specified overlaps 

m2 (0) and 'M3(0).  The thermal average can be performed straight away to give 

M2(1) =< tanh(E1f3h(0)) >>2, 	 (2.23) 

where the fact that tanh is an odd function has been used to absorb into its 

argument. One must now assume that the averages over sites of class 2 and the 

ensemble of initial conditions are equivalent to averaging at a single site over all the 

possible values the local field with the appropriate probability distribution. This 

is an assumption that m 2 (1) is self-averaging which is why the double angular 

bracket notation has been used. The details of the term self-averaging will be 

discussed in section 2.3.1. This assumption results in 

2)\ 	 (2.24) = f dh,Y 	2  p(h) tanh (4i3h (2'
) ,  

where /42)(0)  denotes the local field at a site i which is of class 2, so that 

=JijSj  

= C(m + aS()) + 	 (2.25) 

The first term in (2.25) is the signal and has finite mean. Recalling that i is a site 

of class 2 , the value of this mean is 

Ei(m + a) with probability 

- a) with probability 

	

(1+m2(0)) 	 (2.26) 

	

- m2(0)). 	(2.27) 
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The second term in (2.25) is noise. The noise is composed of a sum of (F— 1)(N-1) 

terms each of value +11N. The initial configuration is not correlated with the 

uncondensed patterns at all, therefore each term in the sum is independent. The 

probability distribution for this noise is a Gaussian with mean zero and variance 

a. The probability distribution for 
J42)  can now be constructed as a weighted 

sum of two Gaussians each with mean and weight given by (2.27) and both with 

variance a. m 2 (1) then becomes 

aJ42  [i 	 ((h2) - m(0) - a) 2  
M2(1) = f 	(1+ m2(0)) exp - 	

2a 	) 	
(2.28) 

	

+ (1 - m2  (0)) exp - ((h2) - 
m(0) + a)2 	

tanh (h 2 ). 
2a 	Jj 

The corresponding equation for m 3(1) can be derived in a similar manner. As 

)3—*.00(T—*0) one finds 

M2(1) = (1 +m2) 	
fm+ 

al 1(1 m2) 	
Fm - 

	

erfl 	1+— - 	erfi 	I 	(2.29) 
[J 	2 	 LVi 
Fm — al 1(1 m3) 
	

Fm+al 
M3( 1) = 	(1+m3)erfI 	1+— - 	erfi 	I, 	(2.30) 

ivi 2 

where the error function is given by 

erf(x) = 
2
- I dzexp(—z 2 ). 	 (2.31) 

Jo 

In these equations the order parameters on the r.h.s. are evaluated at t = 0. 

Starting from the symmetry-transformed pattern (in 2  = 1,m3  = — 1) one finds 

M(l) = m2 (1) = m3 (1) = erf[ 
a 
 ] . ( 2.32) 

With a high enough value of a the pattern will be accurately reproduced after 

one parallel iteration. However if a is too large then at the second time step 

the transformed pattern will be reproduced. To get an idea of this effect we can 

consider a first time-step starting from the exact pattern. To do this we insert 

(m 2  = 1,m3  = — 1) in equations (2.29, 2.30). The result is 

l 
M2(l) = erf 1+a I 	 (2.33) 1 vJ 

I - ' 
tn3(1) = erf 

[ 

i a 
I 	 (2.34) 

I1I— alm(1) = 1 erf+—erf
2 	2 	

(2.35) 



The overlap m(1) given by (2.35) is maximised when a = 0. This corresponds to 

the Hopfield model. When a increases m(1) decreases monotonically. For a -* oo, 

m(1) -* 0. From these results one can surmise that increasing the strength of the 

symmetry-transform interaction a has an adverse effect on the recall capabilities of 

the model. However (2.32) demonstrates that increasing the value of a improves 

the symmetry-transformation capabilities of the model. There is a conflict be-

tween the two dynamic tendencies of the model which stems from the competition 

between the Hopfield and symmetry-transformation interactions. This competi-

tion will lead to a decrease in the storage capacity of the Hopfield model, which 

is similar to that caused by a noise, such as destruction of synapses[18]. However 

if one wishes to interpret the symmetry transform interactions as a noise on the 

Hopfield interactions, then it is a noise with some coherence. The coherence is 

demonstrated by the fact that these symmetry-transform interactions can produce 

a locally ordered zero temperature phase as was analysed in section 2.1.2. 

Unfortunately first time-step equations, although straightforward to derive, are 

rather unsatisfactory. This is because one does not know what happens after the 

first time-step. For example it is possible that one may move towards the stored 

pattern at the first time-step and then move away from it later so that there is 

in fact no attractor corresponding to the stored pattern. In order to investigate 

the equilibrium properties of the model we must rely on the methods of statistical 

mechanics. This is in fact the complement of the first-time step equation as we 

shall be examining the long time behaviour of the model. 

2.3 Self-Averaging and the Replica Method 

2.3.1 Self-Averaging 

Each realisation of the llopfield model is defined by the choice of stored patterns. 

From these patterns the synaptic interaction strengths are constructed. The pat-

tern vectors are said to be quenched random variables to denote that they are 

initially chosen in a random manner but then kept fixed. To derive physical prop-

erties of a particular realisation of the model would be an enormous task as one 

would have to specify each component of each pattern vector. Instead one seeks to 
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calculate average quantities by performing an average over all possible choices of 

the quenched random variables {'}. This quenched average is denoted by <<>>. 

The averaging amounts to calculating the average physical properties over the 

ensemble of all realisations of the Hopfield model. An important consideration is 

whether the quenched average reflects the physical properties of a typical realisa-

tion of the randomness. In other words whether there are large fluctuations about 

the quenched average in the thermodynamic limit. If the fractional deviation of a 

quantity, over the ensemble of all realisations of the randomness, vanishes in the 

thermodynamic limit, then the quantity is said to self-average. 

The question remains as to a rule of thumb for which type of quantities self-average 

and which do not. Many quantities of physical interest are extensive thermody-

namic quantities. These are observables which are proportional to the size of the 

system. They are often simply configurational averages of local quantities. An 

example is the overlap parameter tnti: 

=(2.36) 

Equation (2.36) is simply a definition. During a calculation one aims to develop an 

expression for This expression will depend on, amongst other parameters, 

the set of quenched random variables at that site: 

= f({E . . . e?u. 	 (2.37) 

Each site i has its set of quenched random variables chosen independently, so in 

turn the function f becomes quenched at each site. However it is far more con-

venient to consider the quenched average of the function f rather than a random 

realisation of the function at each site. The configurational average, given by the 

sum over i, in the definition of mM  is an average of f over sites. If this average is 

equivalent to a quenched average, so that 

M" =cZ< f({ . . . f}) >>, 	 (2.38) 

then mTM is self-averaging. One says that an extensive quantity is self-averaging if 

the average of the corresponding local quantity over sites is equivalent to an aver-

age of the local quantity at a site over all possible realisations of the randomness 

at that site. 

Continuing with the example 2.37, if f depends on the P bits 	assigned to a 

site i then there are 2 P  possible realisations of f, each with equal probability of 



occurring. The mean number of times a particular f appears over the N sites is r. 

The variance in this number is 	- _2F 
The fractional deviation in this number 

is then 	If the fractional deviation vanishes as N -* oo then the number of 

times a particular f appears amongst the N sites varies negligibly from realisation 

to realisation and is given to within /V by N12". The distribution off over sites 

for any realisation of the randomness then becomes an exact representation of 

the probability distribution of f and one has self-averaging. The condition for 

the fractional deviation to vanish is 2" << N which holds for any finite P. To 

summarise one may say that extensive variables may often be self-averaging. 

However there are other quantities to be calculated that may not be extensive. For 

example the partition function is exponentially related to the size of the system: 

Z = exp(—Nf). 	 (2.39) 

If an average is performed on the partition function, the particular realisations 

of the randomness that minimise f will dominate the average. In effect the in-

teractions are treated in the same way as the spin variables, and the average is 

analogous to the configurational trace. This implies that the interactions are in 

thermal equilibrium and. the average is known as an annealed average. Therefore 

a typical realisation of the randomness will produce a value of Z far from the 

annealed averaged value and Z does not self-average. 

2.3.2 The Replica Methàd 

When using the techniques of statistical mechanics one usually tries to evaluate 

the partition function of the system as all the thermodynamic quantities can be 

calculated from it. However, as was noted in section (2.3.1), the partition function 

is not an extensive quantity and therefore does not self-average. On the other hand 

the free energy should be self-averaging as it is extensive. One should then start 

to calculate the quantity 

f = 	<czlnZ{Jj1}>)'. 	 (2.40) 

However the averaging of the in function cannot be performed directly and one 

must use what is known as the replica method [26,27] to express the free energy 

in a more tractable form. 
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The replica method is based on the expansion 

?=exp(nlnx)=1+nlnx+... 	 (2.41) 

Taking the limit it —* 0 and rearranging terms leads to the identity 

mx = lim 	
- 1. 
	 (2.42) 

n—+O 	j 

After setting x = Z and inserting a quenched average, one obtains 

<<mnZ>>=lim<<Z>>l. 	 (2.43) 
n—+O 	fl 

The quenched averaging on the r.h.s. of Eq. 2.43 is rather easier to perform 

than that on the l.h.s., due to the form the partition function takes. r is the 

partition function of it replicas of the original system. The composite system can 

be considered as one system connected to the same heat bath but with no direct 

interactions between the replicas. To see this one can write 

	

Zn = Tr{ sp} exp I-fl 	E ({Jj}, {Sfl)1 
L 	a=1,n 

= Tr{s.}exp [_f3ff({J3},{s i },...,{ sr})] 
The primed energy is then a function of the spins in all it replicas, {Sf,c = 

1,... ,n}. However when we wish to take the limit it —* 0, it must become con-

tinuous and the physical interpretation of it replicas becomes rather difficult to 

understand. In fact there is no a priori correct choice for the mathematical form 

of this limit and in certain regions of the phase diagram the most obvious choice, 

the "replica-symmetric" one, is incorrect. However the effects due to replica sym-

metry breaking [28] are usually small corrections to the replica sythmetric theory 

and in this thesis studies of replica symmetry breaking shall not be pursued. 

2.4 Replica Symmetric Theory 

In this section the replica-symmetric mean-field equations for the Hopfleld model 

with symmetry-transform interactions shall be derived. First I shall give a sum-

mary of the approach, as the details of the calculation become rather lengthy and 

opaque. The starting point of the calculation is the expression for the free energy 

= lim lim << 
Zn>> 1 

f 	
, 	

( 2.44) 

	

n—.ON—.00 	On 
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The initial calculation task is to perform the quenched averaging << Z" >>. One 

then proceeds to express this quantity as an integral over a space of order param-

eters, with the integrand an exponential of an extensive quantity. This extensive 

quantity is the free energy functional. In the thermodynamic limit the saddle 

points of the free energy dominate the integrals and give the equilibrium free en-

ergy. The equations for the saddle points form a set of mean field equations that 

can be solved to give the physical values of the order parameters. However to 

obtain the saddle point equations an ansatz must be made as to the form of the 

solutions. The ansatz used is replica symmetry. 

The configurational energy for the model is 

E= 	 (2.45) 

We will consider the case where P, the number of stored patterns is proportional 

to N so that a storage ratio of the network may be defined as 

P 	
(2A6) 

The partition function of vi replicas becomes 

<<Zn  >>=c(< Trgp exp 	 S - 3nP + 
L 
	E 	> (2.47) 

  
 

ip 	j 

where the i,j indices run from 1 to N; p is the replica index that runs from 1 t 

vi; and p runs over the stored patterns. The term 12 f3Pm is a correction for the 

component i = j of the previous sum term. In order to linearise the contributions 

of the E's to the argument of the exponential a Gaussian transformation is used. 

/ 
exp (bx2) 

=

f 
dz 

—y =exP (- 1  z2 + v'zr). 	(2.48) 

In the first term inside the exponential a Gaussian transformation can be carried 

out for each pair of indices p and p. The integration variable for each pair shall 

be denoted m. 

mM 

= exp(_ç) <<Trsrf 
d 

ll 	 (2A9) 

X exp 	+ 	> EJ2 5t + E 
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However the argument of the exponent, which is the free energy, should be pro-

portional to N. This requirement motivates a rescaling of the m's: 

-* \/Ii.ñfl, 	 (2.50) 

and one obtains 

a 

= exp (-F) 	
[~N]  2 

fHdrn 	 (2.51) 
 

$ 	 2ir 

(&L) 2  
exp (—fiN_ ; + fiNmJç L St + E Sf  S:(i) 

) > 

At this point one can see that if a saddle point is taken with respect to m then 

one finds 

(2.52) 

However this saddle point is only valid if in is finite, so that it is only for a 

condensed pattern jt that m is defined as the overlap order parameter for replica 

p. The main purpose of this chapter is to investigate how the symmetry transform 

interactions disrupt the retrieval state of the llopfield model. We therefore assume 

that only the overlap with a particular pattern (taken to be pattern 1) is finite the 

others are microscopic (0(1/a)). For the patterns with microscopic overlaps 

the configurations {Sf} that contribute to the free energy are not correlated with 

the pattern vectors, therefore the quenched averaging over these uncondensed 

patterns may now be performed. To do this one uses the cumulant expansion 

(2.53) 

For each i,jz we can set z = /3EJAE pm S7, and find << z >>= 0, << z 2  >>= 

(/3 mSf) 2 . As we assume that these overlaps are microscopic we need only 

keep the lowest order terms which result from << z 2  >>. The total contribution 

from the microscopic overlaps becomes 

f
!~N

] ' ffidrnexPs (_cLm; 2 +s 	mmS(SZ) . 	 (2.54) 
2ir 

The m's can now be integrated out by using the general formula for Gaussian 

integrals 

t dx 

	

i (2)d/2 
exp (_xivrx + bt x) = exp (_TrinM + btM_ib) 	(2.55) 
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where d is the dimensionality of the matrix M. In the present case the dimen-

sionality of the matrix is the number of replicas n. One obtains 

aN 
- 1 TrinM'1 11  (ivr - srsi'i 	(2.56) f ndrexPL  2 	

'p0e p~U 

where 

	

M = (1 - )3)Spe 
- 	 (2.57) 

In Eq 2.56 dirac delta functions were used to introduce the Edwards- Anderson [34} 

order parameters q. In order that the partition function takes the correct form 

an integral representation of the dirac delta function may be used 

=  f
+ioody 

- exp(xy). 	 (2.58) 

In Eq. 2.56 the delta function becomes 

5(Nq 	= icE°rexp 
(_as2rnr + a$2 rP0 EStPSr) 

(2.59) 

The rescaling of the integration variables by a/32  is purely cosmetic as it simplifies 

the eventual saddle point equations. This exponentiation of the delta function 

has introduced another set of order parameters r. The saddle point of the free 

energy with respect to q"° can be shown to define r'° as 

(2.60) 
a 

In order to develop the determinant of the matrix in (2.55) further one must make 

use of the ii -* 0 limit so that one can expand to first order in it. To be able to 

do this one must make some assumptions about the symmetry properties of the 

matrix q. The simplest scheme is that of replica symmetry 

qPU = q VP i4 o. 	 (2.61) 

With this ansatz one finds that 

lim Trin M = mm [1 - ,3(1 - q)] - 	 13(1 - q)• 	
(2.62) 

0 	 -  

For consistency, the replica symmetric ansatz must now be used on all the saddle 

point order parameters. Now that the microscopic overlaps have been dealt with, 
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the superscript 1 shall be dropped from the condensed pattern. 

MP  = in Vp 	 (2.63) 

qfl = q Vp74 a 	 (2.64) 

rPa = r Vp 74 a. 	 (2.65) 

The question of replica symmetry and the ii —* o limit is actually rather subtle. 

The problems stem from the fact that the space of 0 by 0 square matrices is infinite 

so that there is no obvious analytic continuation from ii by n matrices where ii is 

an integer ton = 0. Parisi [29-32] has proposed a rather more sophisticated scheme 

for the symmetry properties of replica matrices and his replica symmetry breaking 

scheme is now generally accepted as correct. For a more detailed discussion of 

these topics a good reference is [33]. 

The development of the partition function now reads 

GO

a$2
<<Zn>> = 	(._r' 	ffldmpfldrfldqfl 

in )
POT 

Nfl-. 	nNf3cx 
X exp[__j.LJmP)

2 
- 2 - 2 

nNa 
ln(1—fl(1—q)) 

nNa 	fiq 	iafi2N> rPcqPtT] 
+ 2 (1—fl(1—q))2 

x ccexp [lnTrsexP (flLmeisP 

+cØ2 > rfl Sr Sig +LSrS())] >>. (2.66) 
_ 

	

i,p 	 i,p 

The last exponential of this equation can be dealt with by invoking self-averaging. 

It then becomes 

exp N <<hi Trg  exp (p L m,E1S19  + fl2 E rSfS + 	Sf S 	>> 

	

\ 	 i.p~a 	 i,p 	/ 
(2.67) 

One can then impose the replica symmetric ansatz and extract the free energy as 

f = 	+m2+ a  [In(l 	+,3q) 	 — aqr
pq  

	

2 2 	2P 	 1 — 0 + 8q]  2 

1 	1 	fcr/3 2r 

	

NnfJ 
<<ln LT1 5re 	2 	

SfS 	 (2.68) 
i,p?Ec 
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Pa 
 SPS P 	>> 

	

z 	(j)j I 
i 	p 	i,p 	JJ 

It is only the final term of Eq. 2.68 that differs from the equivalent expression for 

the original Hopfield model, which is recovered when a = 0. In the Hopfield model 

calculation this term could be developed by performing a Gaussian transform to 

linearise the first term inside the exponential for each site i and then factorising 

over sites i. In the present calculation we can only factorise over pairs of sites 

i, ir(i). However the configurational trace may then be taken to give the free 

energy as 

• f = +m2 +j
l  

	

[in(l— f3±$)— 	i +af3r(1—q) 

Dz / Dz, in [2ePa  cosh [/3'(z + z) + /3m(E1  + 
20 

+2e-pacosh [ ((z - z,) + m(' - 	 (2.69) 

where the Gaussian measure is denoted by 

Dz= 5.j =. 	 (2.70) 

The values taken by the order parameters appearing in Eq. 2.69 are given by the 

solution of the saddle point equations. In addition we have the order parameter 

associated with the symmetry transform interactions 

One finds the mean field equations to be 

Of 
cia 

(2.71) 

= /Dzf 
e2 ' cosh 10 ( 

e2 sinh[f3(y'(z+ z) +2m 

/(z+z) +2tn)J+ cosh [13( z - z 

(2.72) 

sinh [3 (,/(z - z) + 2m)] 
= / Dzf 

Dz2 
cosh [$(z + z4] + cosh ((z - Z) + 2m)} 

(2.73) 

q = - zD ID I 	e4 ° sinh 2 [)3 (v'(z + z,) + 2m)] + sixth '  [3 (/(z - 
fz, 

(e2Pa cosh [8 (/(z + Zr) + 2m)] + cosh [8 (/(z - 	2 

+ — Dz
J

Dz, 
e' sinh 2  [3 ( / (z + z4) ] + sinh 2  [8(/ (z - 

  

zr) + 2m)

)

] 

2  (e 2Pa cosh [8(/a(z + Zr))] + cosh [8 (%/&(z - zr) + 2m)]  
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(2.74) 

r = 	
q 	

(2.75) 
( 1- /3 +$q)2  

92 = J DzJ Dz 
e2 cosh [(v'&(z + zr) + 2m)] - cosh [$v'5F(z - z,)]  (2.76) 

we213a cosh  [(/(z + Zr) + 2m)I + cosh [fl/(z - z4J 

93 	

e2$a cosh/3 ([/(z + zr))] - cosh [3 (/&(z - Zr) + 2m)] 
= f D•Z ! DZr e2pacosh$[((z+z))]+ cosh ((z_Z)+2m)I• 

(2.77) 

In Eqs (2.72-2.77) the average over the independent quenched spin variables ' and 

has been taken. The parameters with subscript 2 result from the contributions 

with ' 
= ; the parameters with subscript 3 result from the contributions with 

0 
- flr 

2.4.1 The Zero Temperature Limit 

Obtaining the zero temperature limit of the mean-field equations (2.72-2.77) is a 

task requiring some patience. The strategy used is to examine the integrands of the 

equations and determine the regions of the z - Zr plane where they do not vanish. 

In -this process one finds that the symmetry 7n3 (-a) = m 2 (a);g3 (-a) = 92 (a) 

apparent in eqs (2.72-2.77), is broken in the 0 —f cc' limit, because one must 

restrict the equations to the case a > 0. One eventually obtains the following zero 

temperature equations. 

	

= 	erf 	- 	I 
2 	 2 

[m+a 
 + erfl 
j 	1 	1m -a' 

1%-" 
	

2m

L/2—a-r
2mz 1 	 (2.78) 

2Jrnp 	 v i  

	

= .! erf- 	 I 
2 

[m+a 
+ erfl tn 

} 	1 	1-al 

1 	1m -a1 1 	Im+al 
+-erf2 l 	I--erf2 l 	I 	 (2.79) 

4 	[VJ 4 

— erf
~ m +a

j +-erfl 	I
1 I (m+a) 2 (n_a)3 )

(  

	1 	Inz - al\ 
f3(1-q) 	 (e 2ar +e 2ar 	1 

	

= 	 2 	 2 

	

1 	1 a 1 ,,2 	 1 	/ 
	
[m+al 

+ 	erfI—Ie+ 	I erf 	+ erfl
2 	[V 	4\ 	[V) 

(2.80) 

r = (1 - /3(1 - q)) 2 	 (2.81) 

K1 
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92 = cr1 	
erf 	
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N27r 	
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(2.82) — 	cr12 	

—a

] — 
erg [

rn+a
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I 	
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Dz erf + 2f 	
rn+a 

Dzerf r_j]+21 Im — a 	
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I

m—al

J
= cr1 	 erf 	ILv   

S
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[—,,72 	
erg 	 (2.83) 

1 	h—a] 	1 12  [rn+a] 

— 
The a = 0 limit of these equations gives the equivalent equations for the llopfield 

model[16,17] with the symmetry order parameters taking the values 

92 = erg 
rn 1 

Ivi 
93 = -92 

2.4.2 The Phase Diagram 

Eqs.2.78-2.83 show 2 distinct solutions. At all values of a and & there is a solution 

characterised by 

rn=0 

92 > 0 

92 — 93. 

These order parameter values correspond to a phase which has some symmetry 

under the transformation i —* lr(i); we shall refer to it as the symmetric solution 

although the symmetry may not be total 
( 

g < 1). At low & and a we find the 

retrieval solution which is characterised by 

m2 >O 

rn3  > 0 

rn2  > rn 

92 > 0 

g3 < 0 

92 1  > 193. 
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Figure 2.1: Phase Diagram for the llopfield Model with 

Z 2  symmetry interactions (full curve) 

Random External Fields (dashed curve) 

The retrieval(I) and non-retrieval(II) phases are described in the text 

In Fig.2.1 the area marked I is the region in the space of a - a where the retrieval 

solution exists, which is the retrieval phase. The rest of the parameter space (II) 

constitutes the symmetric phase. The transition from retrieval phase to symmetric 

phase with increasing a is a first order one. At a = 1.0 one sees that a = 0, 

showing that at this value of a there is no retrieval phase. The symmetric phase 

replaces the usual spin glass phase. Despite our nomenclature this symmetric 

phase is rather different from the ground states of the energy (2.4), because we 

have q -* 1. This implies that we have freezing of the spins so that the phase is 

spin-glass in character. 

2.4.3 The Hopfield Model with Random External Fields 

As we are interested in how the symmetry transform interactions act as a noise 

upon the Hopfield interactions it is useful to compare the phase diagram resulting 

from equations (2.78-2.83) to phase diagrams resulting from other simpler forms 

of noise. Eq. (2.3) shows that addition of symmetry interactions results in an 
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additional component of magnitude a to the local field generated by the Hopfield 

interactions. The sign of this field component is determined by the direction of 

the spin at the image site. A simpler form of noise results if the signs of these 

field components are assigned randomly. For this model, which we shall refer to 

as the llopfield model with random external fields, the configurational energy is 

given by 

(2.84) 
2 44i 

where each C is selected randomly according to the distribution 

P(C) = (5(( —1) + 5(( + 1)). 	 (2.85) 

The random fields are then quenched in contrast to the fields in (2.3) which are 

"annealed" in character. The relevant separation of sites into two classes is now 

according to whether the pattern spin is in the same direction as the random 

external field. We have 

1 
M  = 	(in2 + in3 ) 

in2 = 

in3 = 

The zero temperature mean-field equations are given by 

1 	Itn+al 
= 	

erf[r....j 	
(2.86) 

- 

7723 = 	erf 
in  a

[,r__] 	 (2.87) 

1 ~ M+al 
1 	1m—a1 

in = —  erf 	+—erfl 	I 	 (2.88) 
2 	Y 	2 

1 	1 (m+s) 3 	(rn—a) 2 ) 
q) (e 2ar + C 2a, 	 (2.89) f3(1— 	

= 

= (1 - j3(1 - q)) 2 	 (2.90) 

The phase diagram for this model is also shown in Fig.2.1 - The non-retrieval 

phase is where the only solution to the equations gives in3 < 0 indicating that the 

spins are aligned to the random external fields rather than to a stored pattern. 
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Figure 2.2: Overlap in versus a for a=0.4: 

Full curve - Z 2  symmetry interactions 

Dashed curveS Random external fields 

Symbols - results of simulations (see text for details). Error bars are shown only 

when they are larger than the symbol size. 
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Figure 2.3: Overlaps in2 and in3 versus a for a=0.4: 

Full curveS Z2  symmetry interactions 

Dashed curveS Random external fields 

Symbols - results of simulations (see text for details). Error bars are shown only 

when they are larger than the symbol size. 
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Again a = 1.0 is the value of a at which there is never a retrieval phase. If 

one ignores this physical difference in the non-retrieval phase then the two phase 

diagrams are strikingly similar. To investigate the extent of the similarity figures 

2.2 and 2.3 compare the solutions of the zero temperature mean-field equations 

for the two models. In figure 2.2 the value of the overall overlap in can be seen 

to be very similar in both models. The random external field model in fact gives 

a slightly higher value of in. Both models are in reasonable agreement with the 

result of simulations, up to the phase transition. In figure 2.3 the values of in2  

and in3  for the two models are compared. The in2  curves are almost identical, so 

much so that the random external field curve is obscured. For in3 however, the 

random external field model gives a higher value than the symmetry-transform 

model. This suggests that at sites of class 3 the symmetry-transform interactions 

act as a stronger noise than random external fields on the Hopfield interactions. 

To summarise, it appears that the zero temperature mean-field equations for the 

llopfield model with random external fields approximate rather well the far more 

complicated equations for the Hopfield model with symmetry interactions. 

2.5 Parallel Dynamics and Invariant Pattern 

Recognition 

We showed in section 2.1.2 that using the symmetry transform under parallel 

and sequential dynamics gives considerably different configurational flows. If we 

consider imposing a transformed version of a stored pattern on the network and 

iterating, then for serial dynamics the direction of the configurational flow induced 

by the symmetry transform interaction is towards a symmetrised version of the 

pattern. In terms of the overlap order parameters the transformed pattern is 

given by m 2  = 1,m3  = — 1 and in = 0; the symmetrised version is given by 

in2 = 1, m3  = 0 and in = 0.5. Thus starting from the transformed exact pattern 

we reach a configuration which is the pattern with 25% noise. If the llopfield 

interactions then start to dominate the configurational flow it would only be for 

relatively low storage levels that the exact pattern could be recalled [35]. In light 

of this we consider the use of serial dynamics, less suitable for invariant pattern 

recognition than the use of parallel dynamics. 
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In section 2.2 the competition between the Hopfield and symmetry-transform in-

teraction was emphasised. The effectiveness of the symmetry transform interac-

tions was gauged by deriving and examining the first time step equations. The 

mean-field equations have served to gauge the effectiveness of the Hopfleld inter-

actions with respect to pattern storage. From the two sets of equations in tandem 

the optimum value of a may be gauged by using the following guidelines. 

a > vfKa 	 (2.91) 

a < a(a); 	 (2.92) 

where a(a) is the phase boundary plotted in Fig.11. The first condition comes 

from the requirement that the transformed pattern be mapped accurately onto the 

pattern after one parallel update; the second condition comes from the require-

ment that the symmetry interactions should not disrupt the the retrieval phase of 

the Hopfield model. The guidelines are rules of thumb rather than quantitative 

bounds because on the one hand, the basins of attraction of the fully connected 

Hopfield model cannot be simply parameterised, which makes the first condition 

(2.91) rather arbitrary. On the other hand parallel dynamics appear more suitable 

for symmetry invariant pattern recognition whereas the second condition (2.92) 

applies to random sequential dynamics. However even if the guidelines are held 

in no greater esteem than rules of thumb, then the optimal value of a that they 

yield may well give the true optimal value of a if one does not specify the accu-

racy to greater than 1 decimal place. To determine the optimal value of a from 

(2.91-2.92) one simply searches for the maximum value of a(a) subject to the con-

straint (2.91). This approximation suggests an optimal value of a 0.4 at which 

0.06. These numbers indicate that if we desire invariant pattern recognition, 

then although the maximum capacity of the network is reduced from the Hopfield 

case, we can still store an extensive number of patterns. 

In Fig. 2.4 the results of numerical simulations of invariant pattern recognition 

using parallel dynamics are presented. In these simulations the transformed pat-

tern was presented to the network and 20 parallel iterations were performed. The 

final overlaps were then calculated. The even number of iterations is convenient 

because if the symmetry transform interactions dominate and the configuration is 

symmetry transformed at each time step, then after an even number of iterations 

the configuration will return near to the transformed pattern, which has small 

overlap with the nominated pattern. We also found that 20 iterations was enough 
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Figure 2.4: Simulation results for recognising transformed patterns under parallel 

dynamics. Error bars are shown only when they are larger than the symbol size. 

The lines are drawn solely in order to guide the eye between simulation points for 

constant a. 

to ensure that a fixed point was reached if one existed. The figure indicates the 

existence of an optimal value of a because the curves rise and fall, to some extent, 

as a increases. The optimal value appears to be a 0.4, as predicted from (2.91-

2.92). However the retrieval quality in appears to deteriorate when a passes 0.05, 

which is lower than the a predicted from (2.91-2.92). At a = 0.2 one may note 

that even for very low a the recall of the transformed pattern is not good, indi-

cating that the dynamic tendency to transform the pattern is not strong enough. 

In contrast, for a = 0.6 the recall is excellent at a <6.D2 but deteriorates rapidly 

as a increases. This reflects the disruption of the retrieval attractors at low a, for 

high a. 

2.6 Discussion 

In this chapter we have investigated the Hopfield model with Z2  symmetry trans-

form interactions with two aims in mind. Firstly we have demonstrated how 

basins of attraction on the energy surface may be sculpted by introducing appro-

priate interactions. The Z2  symmetry transform interactions that were used are 

a specific example that illustrate the general principle. Increasing the basin of 
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attractions and therefore the content addressability results in a decrease in ab-

solute storage capacity. The second aim was to demonstrate how the available 

techniques may be employed to probe analytically the properties of a model. The 

two techniques that were used were the first time step dynamic equations and 

replica-symmetric mean-field theory. Both calculations yielded quantitative re-

sults that exposed the competition between the two types of interaction, Hopfield 

and symmetry-transform. However a full solution of the model, which would be 

realised by obtaining self-averaging dynamic equations for the evolution of the 

order parameters at all times, is not possible. 

If we recall the discussion of the first chapter that attempted to justify the simplifi-

cations inherent in the Hopfield model when used as a model of neural information 

processing, then the present chapter has offered the reader more compelling ma-

terial. Here I have presented the fruits of the simplification which come in the 

form of clear analytic insight. 

As well as being a pedagogical example this chapter has also covered new ground 

in neural network theory. Most obviously the chapter has presented quantitative 

results on the performance of the Hopfield model applied to symmetry-invariant 

pattern recognition. However several secondary lines of investigation have also 

been pursued. The first was the contrasting properties of serial and parallel dy-

namics. This is a bit of a dark horse. On the one hand it can be said that serial and 

parallel dynamics represent opposite degrees of synchronicity within the neurons 

of the network. Therefore the different properties of serial and parallel dynamics 

reflect the fact that the level of synchronicity is a degree of freedom that may 

be utilised constructively within neural processing. On the other hand one may 

demand that the properties of the Hopfield model and its variants should not be 

strongly affected by the particular implementation of the dynamics. Within that 

context the present work becomes a counter-example that highlights the short-

comings of the Hopfield model and its dynamics. 

The other subsidiary theme of the chapter was how the local (in the sense defined 

in sec. 2.1.2) symmetry-transform interactions act as a noise upon the long range 

Hopfield interactions. Even though there were some sites (those of class 2) at 

which the two sets of interactions sought to align the spins in the same manner the 

calculations showed that these particular local and long-range interactions always 
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competed rather than co-operated. This statement is backed up by the random-

external field model. Here the additional elements to the Hopfield interactions, 

which are the quenched random external fields, are uncorrelated with the patterns 

and therefore truly a noise. However the phase diagrams for the random external 

field model and symmetry-transform model are virtually identical, apart from the 

interpretation of the non-retrieval phases. 
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Chapter 3 

The Theoretical Capabilities of Attractor 

Neural Networks 

C' 

3.1 Introduction 

In the previous chapter an attractor neural network with explicit synaptic inter-

actions designed for a specific pattern recognition task was examined. Within 

the framework of attractor neural networks one would like to consider what is 

the best choice of synaptic interactions. Of course best is not a well defined word 

until one has some definite criterion for comparison. Fortunately the analysis of 

chapter 2 did produce a quantitative measure of performance - the storage capac-

ity . However a programme of choosing sets of synaptic interactions and then 

analysing to find the storage capacity that they yield, would be rather time con-

suming. Gardner[36,37] has circumvented this problem by creating a theoretical 

framework in which the space of all synaptic interactions is searched to find the 

fractional volume of this space that can recall exactly the stored patterns. When 

this fractional volume vanishes the maximum storage capacity has been reached. 

The subtleties of this approach, its implications and the results it produces will 

be discussed fully in the next section. For the moment I will assume that it can 

yield a set of optimal interactions that maximise a subject to a constraint, the 

simplest constraint being that all patterns are stored exactly. 

Having found a set of optimal interactions the question remains as to the scope of 

their optimality. Interactions that are optimal with respect to one criterion may 



not be optimal with respect to another closely related criterion. Additionally we 

have the question of robustness. A set of interactions may well have the optimal 

storage capacity but in the presence of some sort of noise the performance may 

deteriorate drastically. Both of these points can be envisaged as a system highly 

adapted to a particular environment. When the environment changes, will the 

system still be successful or will a less highly adapted system be more successful 

in a variety of environments? In the living brain the environment is constantly 

changing. Neurons and synapses die and parameters such as thresholds and the 

quantity of synaptic transmitter released fluctuate. The synaptic strengths used 

for information processing must be able to cope with this noisy environment, they 

must be robust. 

One aim of this chapter is to examine how the optimal interactions of Gardner 

perform in the presence of noise. The discussion of the previous paragraphs has 

basically argues that there is no a priori reason to expect that these interactions 

are optimal in the presence of noise. As discussed in Chapter 1 noise may be 

parameterised by a temperature T. At zero temperature the Gardner interactions 

are optimal because they maximise the number of patterns that can be stored 

exactly. As the temperature increases these interactions may perform less well. 

We shall make a comparison with the llopfield interactions to show that as the 

noise increases there is some cross over point where the Hopfield interactions out 

perform those of Gardner. The more general aim of this chapter is to examine how 

the Gardner interactions perform in the context of attractor neural networks. This 

is because the Gardner calculation uses the framework of perceptrons (see section 

1.4). The question is then whether the optimal interactions for one framework (the 

perceptron) also perform well in a related framework (attractor neural network 

with noise). 

In the next section I shall review Gardner's calculation [36-38] so that the aims 

of the present chapter can be more clearly, defined in section 3.3. The theoretical 

technique, random dilution, by means of which the study will be carried out will 

be reviewed in section 3.4. Random dilution allows the overlap dynamics of a 

network to be explored through an order parameter map, once the distribution 

of the local fields is known. This distribution will be calculated in section 3.5. A 

general analysis of the order parameter map, which will lead to understanding of 

the attractor structure and transitions in the attractor structure, will be developed 
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in section 3.6. The results of this analysis will then be applied in section 3.7 to 

investigate the aims set out in section 3.3. 

3.2 The Gardner Volume 

Gardner considered a pattern associator to which an input vector was presented 

and an output produced according to the parallel dynamic zero temperature up-

dating rule 

S(t + 1) = Sgn (>i JS(t)). 	 (3.1) 

For pattern storage one desires a nominated input vector (the pattern) {} to 

be reproduced by the updating procedure (3.1). This shall be referred to as 

a pattern being stable. If interactions can be found to perform this task then 

under a sequential updating sweep the input vector will again be reproduced. 

Furthermore under iterative dynamics, where the output becomes the input for 

the next time-step, the nominated vector will be a fixed-point of the dynamics. 

Therefore the pattern will also be stable in a noiseless attractor neural network. 

In order that each nominated pattern be stable a set of constraints, one for each 

spin i in each pattern p, must be satisfied by the interactions 

Ls' ~ tc 	 (3.2) 

where 

	

tt' 	T..tM 

	

= 2 	 (3.3) 
$ 	

vtJi.. 
The parameter K is a stability parameter. For the pattern to be stable one requires 

tc > 0 at each site. In the Gardner approach one considers the volume of the 

space of interactions that satisfies these constraints. However, if there is a set 

of interactions that satisfy the constraints (3.2) then simply multiplying each 

interaction by a positive factor will generate another set of interactions that satisfy 

(3.2). In this way an infinite family of sets of interactions that satisfy (3.2) could 

be generated. Therefore for the volume of interactions to be well defined one must 

put a constraint on the possible sets of interactions. Gardner chose the spherical 

constraint 

(3.4) 
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The sets of constraints (3.2) at each site i are independent because the interactions 

Jj and Jji are independent variables. One need only consider the typical space 

of interactions at a site i. This reduces the problem to that of a perceptron at a 

site i. In order to do this some self-averaging property must be invoked. First one 

must determine which quantity will self-average. 

One may consider Vc, the volume of interactions that satisfy the constraints (3.2) 

and (3.4) at a site i. 

	

J,23 	(3.5) 

However if VT, the volume that satisfies the spherical constraints (3.4), is evaluated 

one finds 

14 =flldJa :T' 6  (4 - N) = exp 	-l21Mc21t). (3.6) 

This suggests that the volume VC  will be of the form exp(Ng). This quantity will 

not be self-averaging as discussed in section (2.3.1). Instead one must consider 

<czlnVc >>. 

The argument that one should average the logarithm of the required volume rather 

than the volume is reminiscent of the one that demanded the averaging of the 

logarithm of the partition function in chapter 2. In fact Gardner and Derrida[38] 

have taken this analogy further. If one rewrites the Heaviside function as 

	

0(z) = lim exp (—hO(—x)), 	 (3.7) 

and writes Jilito  denote that the values over which the synaptic interactions are 

integrated are those allowed by the spherical constraint, then the volume appears 

as 	

Vcrnffld4exP(hL0(K_A)). 	(3.8) 

This resembles the zero temperature limit of a partition function with the config-

urational trace replaced by the integrations over interactions; the inverse temper-

ature replaced by h and the configurational energy replaced by a cost function 

P 

E 0(tc - A"). 	 (3.9) 
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Within this interpretation the synaptic interaction strengths are the degrees of 

freedom in thermal equilibrium. They become the variables that are replicated in 

the calculation and for them one obtains an Edwards Anderson order parameter 

qPa =4E(Jtc.J). 	 (3.10)12 

The angular brackets are analogous to a thermal average. The physical interpre-

tation is that it is an average, weighted with the Boltzmann like factor in (3.8), 

over all sets of interactions. The limit ii -* cci corresponds to projecting out the 

sets of synaptic interactions that yield the ground state of the cost function (3.9). 

The limit q -* 1, in turn indicates-that a finite fraction of the space of interac-

tions has been singled out. It is this limit that in fact yields the optimal storage 

capacity. The value of a at which q —* 1 is the storage level at which the volume 

of interactions satisfying the stability constraints shrinks to a point. 

Within this cost function representation of the volume one may also investigate 

the situation where the constraints (3.2) cannot all be satisfied at a kite i. This will 

occur if there are too many patterns P. The patterns jt for which the constraints 

are not satisfied, L4' < tc, have then been incorrectly stored and errors have 

occurred. The cost function (3.9) is equal to the number of errors at a site. In 

this case the sets of interactions that minimise the cost function 3.9 are those that 

produce the least errors, Pfmjn.  The minimum fraction of errors, fmjn,  may be 

evaluated by 

	

fi =! lim—±lnVc(h). 	 (3.11) 

The key results that arose from the papers by Gardner[36,37) and Gardner and 

Derrida[38] are 

	

K 	 —1 

	

ap(lc, 1mm) = (L_ Dz(z — IC)2) 	 (3.12) 

where the error fraction is given by 

fmm = 	Dz. 	 (3.13) 
-00 

If one demands that there be no errors so that fmjn = 0, then one finds x —* cc 

and one recovers Gardner's original result[36] 

	

K 	 —1 
ap(ic,0) = VM Dz(z - K)2) 	 (3.14) 
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which for ,c = 0, corresponding to minimal stability constraints, yields ap(0, 0) = 

2. 

When the stability of the replica symmetric solution to the saddle point equations 

was checked it was found[38] that replica symmetry is broken when 

X 	I(tc - x)2l 	
I — expi 	I >ic 	Dz(tc—z). 	 (3.15) 

V2 7r [ 	2 	j 

For fmjn = 0(x —s t) replica symmetry is never broken if tc > 0. Whereas for 

fmin > 0 (x finite) replica symmetry may be broken and in the regions of the 

plane where this occurs, (3.12) is invalid. 

3.3 Aims of the Chapter 

3.3.1 Storage Capacities - cip and c 

The maximal storage capacity is denoted ap in (3.12) to distinguish it from the 

critical storage capacity a that was the subject of calculation in the previous 

chapter. This is because it is only for a zro temperature ANN and Gardner 

interactions with error fraction equal to zero, that the two quantities coincide. 

ap(n, fmjn)  gives the maximum number of patterns that may be stored with sta-

bility ic and error fraction fmjn,  and is a parameter concerned with the training of 

the network. In contrast a,,, as calculated in chapter 2, is a parameter concerned 

with the performance of a network during retrieval. In that chapter the augmented 

I-Iopfield interactions were considered and they formed a family of sets of interac-

tions parameterised by a, the number of patterns stored, and a the strength of 

the symmetry transform component. a,,(a) then gave the.maximum number of 

patterns that could be stored and had attractors associated with them, for the 

particular value of a. If Temperature had been considered in that chapter then 

a,,(a,T) could have been calculated. It should be noted that a,, is a critical value 

of a quantity a that parameterises a particular family of sets of interactions. 

The Gardner interactions on the other hand, are parameterised by K and fmjn.  If 

we consider first the case of no errors fmjfl = 0, the interactions are parameterised 
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by K which can be converted into a parameterisation by ap through (3.14). In this 

case the definition of a(T) is the maximal value of ap at which there are attractors 

associated with each pattern. More fundamentally we are considering K(T) the 

minimal value of the stability parameter ic at which the Gardner interactions give 

attractors. At T = 0 the patterns will be fixed points of the dynamics for all 

positive Ic SO that ic(T = 0) = 0 and a(T = 0) = 2. 

The situation is more complicated when fmjn  is not restricted to zero. In this case 

ap does not fully parameterise a family of interactions because different pairs of 

values for ic and fmjn  may produce the same ap. In order to define an a one must 

fix either fmjn,  as was done in the previous paragraph, or K. If one fixes it then the 

fundamental critical quantity is it), which is the maximum error fraction at 

which Gardner interactions retain attractors. This can be converted into a(T, it), 

the maximal value of ap for optimal interactions with stability parameter it that 

generate attractors. 

3.3.2 Performance of Optimal Interactions in ANNs 

Although a has to be carefully defined the physical questions associated with the 

quantity are more obvious. The Gardner optimal interactions are optimal for a 

noiseless network because they maximise the number of patterns that are stored 

perfectly, but will there be retrieval at finite noise levels? if so, how will the 

retrieval quality vary with the noise level? These questions are concerned with 

the robustness of the Gardner optimal interactions. To answer these questions 

one would like the equivalent of the phase diagram in a T—a plane. 

A second set of questions is concerned with how storage errors affect retrieval. 

When the optimal storage allows for violations of the stability condition at some 

sites, the question of the existence of attractors becomes non-trivial, even in the 

absence of noise (T - 0). This is particularly true for the Gardner Derrida 

scheme which, as shall be calculated in section 3.5 yields a field distribution Fig 

(3.1 b). It might have been the case that while all the violations of the stability 

condition produced sites at which &' < it they still produced N' > 0. This 

would have meant that the pattern would still be a fixed point of the dynamics at 

T = 0. However, what actually happens is that any site that violates the stability 
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constraint has A? < 0. The first question to be answered in this case is: when 

do the networks with minimised error number have attractors associated with the 

(incorrectly) stored pattern? Again we are after the equivalent of a phase diagram 

in the T—a plane. Equation (3.12) shows that ap increases as the error fraction is 

allowed to increase. One may wonder whether this increase in storage is actually 

useful in retrieval. One may also consider the interplay between the parameters 

K and fm, the stability at sites stored correctly and the fraction of sites stored 

incorrectly. At different temperatures the combination of these two parameters 

that gives the best performance may differ. Answers to any of the above questions 

must rely on a method of ascertaining exactly when attractors exist. 

3.4 Random Dilution and Dynamics 

For fully connected networks no method of analysing the attractors generated 

by the Gardner interactions has yet been found. The reason is that on the one 

hand the interactions are not symmetric, precluding the application of statistical 

mechanics. On the other hand, dynamical equations become very complicated 

beyond the first step as discussed in section 2.2. However there exists a class of 

models where the dynamic equations for the overlaps maybe written down explic-

itly. These are models defined on the randomly diluted lattice[40]. Gardner[41] 

has shown that optimal interactions may be studied on such a lattice. The ran-

domly diluted lattice is defined by cutting the bonds of a fully connected lattice 

with probability 1 - C/N. In this dilution process the bond from site j to i is 

considered independent of the bond from site i to j, thus models defined on the 

randomly diluted lattice are always asymmetric. 

In order to understand why the dynamics are exactly soluble let us consider first 

deterministic dynamics. The value at time t of the spin at a site i , S(t), is 

determined by the values at the previous time step, of the spins at the sites to 

which i is connected. 

S(t) = Sgn(J 3 S1 (t —1)) 	 (3.16) 
a 

In section 2.2 it was pointed out that one could derive a first time step equation 

for t = 1 because {S(0)} were uncorrelated, thus one could average each S1(0) 

independently. However to know the values of the set {S 1( )(t - 1)} when t > 1 
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(the notation Sj(i)  indicates a site j to which site i is connected) one must know 

the values at time t - 2 of all the spins to which {Sj(i))} are connected. In this 

way one traces back to t = 0 a tree of all the ancestors of site i. If the connectivity 

is C, there are C ancestors in this tree. In the case of full connectivity C = N 

each site appears Nt_i  times in the tree. However when the network is diluted 

different sites will appear in the tree a different number of times. If no site appears 

more than once in a tree then the tree is said to contain no loops. In this case, 

within each level of the tree, the spins will be uncorrelated with each other. This 

is because they share no common ancestors in the tree. Each spin may therefore 

be averaged independently. 

The question remains as to under what conditions the tree of ancestors contains 

no loops. This has been derived by Derrida and Weisbuch[39]. Mathematically 

one would like to know when the probability P of the tree containing no loops 

tends to one. This probability is difficult to calculate exactly. One may consider 

a related situation with a probability of no loops P, where P c P. The condition 

at which P —* 1 then is a sufficient condition for P —* 1. This related situation 

is to consider a randomly chosen set of Ct  sites. The probability that all the sites 

are different is 
C,-' 

P= (1—j II 	). 	 (3J7) 

If Ct  <<N this probability may be expanded to first order in n/N to give 

r C I -1 	 1 

exp 

P = ex_Lj 

[- C

2t_Ctl 
= 
	2N j 	

(3.18) 

One then obtains the sufficient condition for P — 1 

Ct  c a 	 (3.19) 

or for finite times t 

C<<lnN. 	 (3.20) 

In the following sections that involve randomly diluted networks, in particular 

sections 3.4.1, 3.5 and 4.3, we will assume that C obeys (3.20). For the Gardner 

framework this dictates a modification of the spherical constraint (3.4) to 

LJ=CVi. 	 (3.21) 
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3.4.1 Derivation of the Order Parameter Map 

We consider the quantity m(t) =< S1(t)E >. Where the angular brackets indi-

cate a thermal average as well as an average over an ensemble of initial conditions. 

The dynamics is stochastic, namely the probability of the spin at site i taking on 

the state Si at time t + 1 is 

Pr[S(t + 1)] = 	
1 	

(3.22) 
1 + exp[-2/3h1 (t)S(t + 1)] 

The thermal average leads to 

mj(t +1) = (tanh (* L J11S(t))) 

= (fdytanh[_/3y]8 (Y_e1EJs(t))) 
a 

dx d 
= K) 2  tanh[fl$y]expix (Y—eiJisa@)). (3.23) 

iC) 

The averaging over the ensemble of initial conditions then becomes an average 

over the {S3 (t)J. When these spins are uncorrelated, the conditions for which 

were discussed in 3.4, each Sj  can be averaged independently according to the 

probability distribution. 

= (1 + m(tflS(Sj - J) + ( 1 - m(t))5(Sj + E) 	(3.24) 

This is an average over all configurations{S 1 (t)} that have overlap m(t) with 

pattern 1. This average can be justified if one assumes that it is equivalent to 

averaging over all initial configurations{S(0)} that have overlap m(0), which is 

the average that was carried out in the first time step equation. The average is 

performed by taking the cumulant expansion (2.53) to second order. Using the 

definition of A (3.2) and imposing the spherical constraint (3.4), one obtains 

1—rn 2  dx dy 	 ______ 

	

rn;(t + 1) = / 
	

tanh[:1y] exp (ix - irnx 
- 	2 

x) 
2ir 

	

' 	
tanh[;fly]_1 
	(rn& - exp- 

= )V' 	 V1_m2 	2(1— M2) 

= / 
Dy tanh {j3 [rnAl + s/i - rn2y] 

}, 	 (3.25) 

where mon the right hand side is the value at t. The convenience of using (3.24) is 

now clear: rn(t + 1) becomes a function only of m(t) and a. In order to simplify 
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further and obtain the order parameter map, one writes the site average as 

m(t+1) = 	Em1(t+1) 

= L: dAp(A)L : 
 Dy tanh{/3[nzA + 
	

(3.26) 

where p(A) is known as the field distribution. 

3.5 Calculation of the Field Distribution 

We now have to consider the distribution 

p(A) = (5(AY - A)). 	 (3.27) 

The physical interpretation of this quantity is that it is the probability that on 

picking a set of interactions from the ensemble that minimise the cost function 

(3.9), and choosing a site i at which to examine the stability of pattern v, the 

value of A' is A. The angular brackets in (3.27) then indicate an average over 

sites and sets of interactions that minimise the cost function. This average can be 

written out explicitly and (3.27) becomes 

	

pt(A) 
	

(3.28) 
V0 

where 

p(A) :=. Ill U1  [Es (A - 	fJ lirn exp —h (Ci ) s (L j,2. - a). 
(3.29) 

Here we are consider a randomly diluted network so that the index j always runs 

over the sites from which the bond to i has not been cut. VC  is given by equation 

(3.8) with the spherical constraint suitably modified to (3.21). 

p(A) depends on the particular realisation of the stored patterns. However we 

can see from equation (3.29) that it is extensive. This is because we have a sum 

over i to give an extensive part and the non-extensive part in the numerator 

should cancel with VC  in the denominator so that we end up with a well-defined 

probability distribution. Therefore p,(A) can be assumed to be self-averaging and 



the distribution, MA), for a typical realisation of the random patterns is given 

by 

p,(A) =<< p(A) >>, 	 (3.30) 

where the double angular brackets represent the quenched average over the distri-

bution of the random patterns. The quenched average then allows the index i to 

be dropped, so that Jjj becomes J, because the contributions to the sum in the 

square brackets of equation (3.29) will all be identical. 

Although we have invoked self-averaging, we still have the problem that the de-

nominator, Vc, depends on the stored patterns in a non trivial way. This will make 

the quenched averaging rather difficult to carry out. To alleviate this difficult we 

can introduce replicas in a slightly different way from chapter 2: 

p(A) =<< limZ" 1 p,.(A)>> . 	 (3.31) 

When equation 3.31 is written out in full, 

	

pK (A) = <<limffldJ75(A—L4) 	 (3.32) 

x fl [0 (_ K) + exp(—h)0 (K -4)] ll 
(F

(Jj- ) 2 - a) >>, 

one can see that the probability distribution now takes a form that will eventually 

be amenable to quenched averaging. In order to develop this form one must 

exponentiate the delta functions according to (2.58) and use the corresponding 

form of the Heaviside function 

	

°° d.\ t 	dx 
0(z—K)= 	—j —exp[zx(A—z)]. 	(3.33) 

f v2ir -oos/2ir 

The delta function for i4 makes it unnecessary to exponentiate the Heaviside 

functions in the cost function associated with A because the delta function iden-

tifies A as A. 

p(A) = << 9JfldJ, fl! expiy (A_a4) [0 (A—tc)+exp(—h)0 (K—A)] 
aj 

xf [J dx[f-l-C'J ] II dAexpi > 

x  II dx [f+etf" jil  dAl 	> II x (A—a) 
a2 	 °° a2 	 t2,a cx=2 

xfllexia (~;(Jj-) 2 - c > 	 (3.34) 
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The quenched averaging may now be performed. The method used is the same as 

in chapter 2. In the present calculation there are two cases p = 1 and p 1. For 

it 74  1 one finds 

<<exp —i xA >>= exp - 	J,?4 = exp - 

(3.35) 

where q" is the Edwards Anderson order parameter in the space of interactions 

= 	 for a!/3  

= 1 	for a =)3. 	 (3.36) 

For p = 1 we have 

cexp —i (Yi + xa >>= exp - 1 (y2 + 2y x 1  ql a + L xxW/i) .  
) 

(3.37) 

p(A) may now be written as 

p(A) = lim Ill 	H dc°dq° 

	

n-.OJ a 2ir 	2ir
013 

X 

	

a 	a//i 

+Cln IJndrexp (jLa(ja)2 

a
L  e/irJ/i 

a 	
)] 

[ 	a 	 //i 

+(aC - 1) In [f fl [P +e' 	] II dAa 
a i it 	 a 

X expiEzaAa_Lqc13zaxii]} 

• TH[fl +e_hlt]ndA a  
a LL. 	I a  

'dy •  i _ exp {iyA_ y2_ y E xaq1a_ 	qa/ixaxs+iExaa  } 
fJ 2ir 

	

a~4 1 	a/i/i 	 a 

• [e(A _ r  ) + e'®(K - A)] 	 (3.38) 

For large C the integrals over 0, e, q may be evaluated by the method of steepest 

descent. As usual replica symmetry will be assumed at the saddle point. From 

this saddle point we will develop an expression for q in terms of a and h. However 
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when the limit ii — 0 is taken the contribution from the exponential will vanish 

as it is of the form exp(nCG). p,(A) will then be given by the contribution from 

the second part of (3.38). 

First we will deal with the saddle point integrals. Assuming replica symmetry 

qafi = q for ajf3 

eO = c for a56 f9 

00 = 4, Va, 	 (3.39) 

making the transformations 

ie = — F, 	 (3.40) 

and taking the n -, 0 limit one finds 

E F 	ln(E+F) 	F 
C = --+1+ln(iri)— 	

2 	+2(E+F) 	
(3.41) 

+ aJJDtni[f+e'tf' 	
d.X 	1(A+ z,/) 2 1 

U 	- 	2(1_ q)2 1—q 

The saddle point equations for E and F have solution 

- 1-2q 
(3.42) 

— (1—q) 2  
q 	 (3.43) 

(l—q) 2  

Inserting these in Eq (3.41) one obtains 

G = ln(l_)+ 2(1q) +afDz 

x In [ 
	

+e " J" 	 exp _1(A + z/)2 	
(3.44) fK 	- 	2ir(1—q) 	2 1—q 

The minimum of this function will yield an equation relating a, q, ii. However 

in order to find the ground state of the cost function the limit Ii —+ oo must be 

taken. This limit is related to the limit q —* 1 that signals that the volume of 

interactions contributing to the partition function (3.8) has shrunk to a point. In 

order to take the two limits simultaneously, one defines a parameter x such that 

h= 2(l-q) 	
(3.45) 
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One then replaces h in (3.44) with (3.45) and expands for q —* 1. The leading 

order terms are singularities of form 11(1 — q). Retaining only these terms one 

obtains 

G = —q) @ a 	K 

	

fDz(_ z)2 
— ax 2 f" D z). 	(3.46) 

2(1  

In order to extremise (3.46) with respect q it is simplest to write q in terms of 

x through (3.45) and extremise with respect to x. One then obtains the results 

listed in sec 3.2 that were derived by Gardner and Derrida[38]. 

We now turn to the part of Equation 3.38 that will yield the form of the probability 

distribution. After performing the y integral, the integrals over Xa and taking the 

ii -* 0 limit one obtains 

p(A) = 	
1

O(A — K) + e®(n — A)] 
72r(1—q)  

	

X J
Dz 	

exp — 2(1—q) 	 (3.47) 
[f: +;7h 	dA 	________  f - 1 21— exp — 2(lq) q) 

In order to take the q —* 1 limit one must evaluate the forms which the denom-

inator of the z integral in Eq. 3.47 takes. To do this one makes use of equation 

(3.45) and the expansion of the gauss error function for large argument: 

	

2 	 exp(—x 2 ) 
erf(x) = — I dzexp(—z 2 ) = 1- 

	

+ .... 	(3.48) 

	

QJo 	 yFx 

The denominator then takes the forms 

1 for Z< —K 

	

F

1 	(n+z)2 
for —sc<z<x —n 

(z+K) ' 2(1—q)  

e-4  for Z )' X— K 	 (3.49) 

which give 

1 	1 
 I®(A—K)+exp (_2(I

X1q)) 
e(k_Aj p(A) 	

2(1 - q) L 

	

I " 	( z+A) 2  
x1[ Dzexp- 

2(1—q) 
pt-K 	I 2ir 	 (_(z +A)2 + (z+'c)2 \ 

+ I 	Dz/ 	(,c+z)exp 
y(1—q) 	 2(1—q) 	) 

—(z+.A) 2 +a,2'1 
+ 
f

(3.50)  
2(1 - q) 	

(3.50) 
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Figure 3.1: (a) The probability distribution of the stability parameter in a network 

optimised with n = 0.1 and zero error fraction. (b) The probability distribution 

for a network optimised with K = 0.1 and error fraction f = 0.15. 

In order to evaluate these integrals one must identify certain representations of 

the dirac delta function. 

1 	 (z+A) 2  
urn exp 

q) 
= Sz + A), 	 (3.51) 

(z+K) 	(z+A) 2 +(z+ic)2  
lirn®(z+,c)®(A—ic) 	exp 
q-.1 	 (1—q) 	2(1—q) 

= e(z + tc)6(A - tc). 	 (3.52) 

Finally one obtains 

1 	A 2  
p,(A) = 	

= exp(_T) [®(A - ic) + ®(r. - x - A)] + S(A - ic) Ex Dz, (3.53) 

which is the field distribution function shown in Fig 3.1. 

In this section a full derivation of the field distribution has been given. On the 

way to deriving this distribution the Gardner -Derrida results (3.12-3.14) have 

been obtained. The calculation is rather lengthy and involved. Wong and Sher-

rington[42,43] have recently presented a method of calculation that provides a 

simple recipe for deriving ap and p(A) for an arbitrary cost function. Using their 

recipe would shorten the calculation considerably, at the sacrifice (or relief) of not 

working from first principles. 
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3.5.1 Physical Significance of the Field Distribution 

In Fig 3.1 there are two qualitatively different forms. The first is for x - 	. 

Here we have a delta function at A = K and a Gaussian tail for A > K. Clearly 

this is the regime where the constraints 3.2 are all obeyed. Mathematically this 

has occurred because x —*ooindicates that the ground state of the cost function 

(which is an interaction configuration where all constraints are obeyed) has been 

singled out before the volume VC  shrinks to a point. Therefore when VC  shrinks 

to a point it indicates that we have reached an a where the constraints can no 

longer all be satisfied. When x is finite it indicates that the ground state has 

been singled out at a rate proportional to the shrinking of the volume VC . The 

interaction configuration singled out is then one that stores the patterns with error 

fraction fm given by (3.13). 

The striking feature of fig 3,1b is the sharp gap, Ic - z < A C it, in the field 

distribution. It is a result of the particular cost function employed. Fig 3.1 

illustrates that for a distribution of Gaussian form, the sites at which errors in the 

stability parameter occur violate the stability in a maximal way. In other words 

the fields at those sites, when the network is in a pattern, are as large as possible 

and opposite in sign to the pattern. The corresponding cost function (3.9) only 

penalises the number of stability errors, not the size. Conversely, if one desired 

a different field distribution at the same storage level a as figure 3.1, then the 

fraction of stability errors would have to increase. 

3.6 Analysis of the Order Parameter Map 

The order parameter map given by Eq.(3.26) is quite general and can be studied 

without specifying either the form or the parametrisation of p(A). We first pro-

ceed to analyse the fixed point structure of the map without specifying p(A). In 

particular, one can obtain conditions on p(A) for various types of transitions from 

retrieval to no retrieval, which would, in turn, yield critical values of the parame-

ters of the model. All these questions go back to the dependence of the fixed point 

structure of Eq. (3.26) and of the stability of these fixed points on the properties 

of p(A) and on the noise T. Eq. (3.26) describes the parallel dynamics of a dilute 
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network. Here we are primarily concerned with the structure of the fixed points of 

(3.26) so that the dynamical features implied by this equation will not be consid-

ered in detail. The fixed points are the same as those of asynchronous dynamics, 

which is perhaps more realistic and more robust. The fixed points, m(ic, 72), of 

Eq. 3.26 are given by the roots of g(rn,n,/3) where 

g(m,n,j9) = f(rn,n,/3) - 	 (3.54) 

f(m, tc, 	
=

Dy 	dAp(A) tanh{/3[mA + 	- m.2 (t)y]}, (3.55) 

with T = 1/0. This function is odd so we can focus our discussion on in > 0. For 

an attractor, we require g'(m) c 0 where g(m) = 0, and for an unstable fixed 

point g'(rn) > 0. 

There are three fixed point structures: in = 0 is always a fixed point, due to the 

antisymmetry of g(m). It may be the only fixed point or there may be either one 

or two additional fixed points with in> 0. 

When in = 0 is the only fixed point it must be stable (Fig. 3.2(1 )). This is 

the situation of no retrieval. 

When there is only one additional positive fixed point it must be stable and 

in = 0 must be unstable (Fig 3.2 (2)). The domain of attraction of the 

positive in fixed point is then unity and the retrieval is 'wide'. 

Finally, when there are two additional positive fixed points, the in = 0 fixed 

point and the fixed point with the highest absolute value of in are stable and 

the fixed point in the middle is unstable (Fig. 3.2 (3)). The intermediate 

fixed point delimits the basin of attraction of the high-rn (retrieval) fixed 

point and the retrieval is 'narrow'. 

As the structure of g changes with the noise level, at fixed storage parameters 

(e.g. tc or a), the fixed point structure may change between any two of the three 

alternatives. For purposes of associative retrieval, we are primarily interested in 

changes between retrieval dynamics and no retrieval, namely (2)—*(1) or (3)—*(1). 

The first transition is continuous, in the sense that the finite in fixed point dis-

appears as in -* 0 continuously. The second transition is discontinuous, as the 

two finite in fixed points coalesce and disappear at finite in. In addition there is 
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Figure 3.2: (a)Schematic sketch of the three possible fixed point structures in g: 

(1) no retrieval, (2) wide retrieval, (3) narrow retrieval. (b) Schematic represen-

tation of different retrieval regions in the phase diagram 

a transition (2)—*(3), through which the retrieval attractor survives, but its basin 

of attraction, which is unity in (2), is reduced in (3). 

3.0.1 The Continuous Transition and the Tricritical Point 

A necessary condition for a continuous transition is 

g'(0) = 0, 	 (3.56) 

which, using Eq. 3.55, reads: 

1 
(A) 

= 3 fDy sech2(3y) 	
(3.57) 

where the angular brackets denote an average over the distribution p(A): 

(F(A)) = FW dAp(A)F(A). (3.58) 

However this condition is not sufficient since g' = 0 may also indicate a transition 

(2)—*(3). This issue will be discussed fully below. The additional condition for a 

continuous transition is 

= 0) < 0, 
	 (3.59) 
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to ensure a stable fixed point at arbitrarily small in as T is raised to the transition 

value. Whereas for 

	

= 0) > 0, 	 (3.60) 

in = 0 is a stable fixed point and the retrieval fixed point disappears discontin-

uously, when the two roots at finite positive in coalesce and disappear. The two 

cases are separated by the point at which 

	

= 0) = 0, 	 (3.61) 

when all five (positive and negative) roots of g(m) coalesce at in = 0. The special 

point is determined by the two simultaneous equations (3.57) and (3.61). It is 

the analogue of a thermodynamic tricritical point. When (3.55) is substituted in 

(3.61), one has 

	

3(A) - (A3 ) = 0. 	 (3.62) 

Note that this condition is temperature independent, which implies that it must 

reflect itself also in the T = 0 dynamics (see section 3.6.4). 

3.6.2 Transitions near the 'Tricritical' Point 

The line of discontinuous transitions is defined by the appearance of a double zero 

of g  at non-zero in. This occurs when the maximum in Fig. 3.2(3) crosses g = 0. 

Thus, in addition to the equation g(m) = 0, g'(m) = 0 must be satisfied, both at 

in y 0. The two equations can be written as 

	

f(m,sc,(3) = 1 
	 (3.63) 

M 

	

df(m7ic,(3) = 1 
	 (3.64) 

din 

These are two equations for the three unknowns m,,3 and K, whose solution is the 

equation for the line of discontinuous transitions, /3('c),  and for the discontinuity 

in the retrieval amplitude Am(n). 

To investigate the neighbourhood of the tricritical point, where in is small on both 

the continuous and the discontinuous sides, we expand Eq. 3.55 for small in, up 

to fifth order. Analysing, in the Appendix, the expanded map we find that the 

retrieval amplitude in grows as as one goes below the line of continuous 
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transitions. The line given by Eq. 3.57 can be evaluated beyond the tricritical 

point and all the way to T = 0. In this region, where g ... (0) > 0, as one lowers 

1' or raises /3 from the state of no retrieval, two non zero roots appear before 

(at higher temperature than) g'(0) vanishes. This is the discontinuous transition. 

Thus, two lines start at the tricritical point. They are the dotted and the dashed 

lines in Fig. 3.2b. The first is the line of discontinuous transitions and the second 

is the continuation to 1' = 0 of the line of instability of the in = 0 fixed point. 

Near the tricritical point the two lines can be computed and compared, see the 

appendix. The result is that the two lines start with equal slopes and diverge at 

second order. 

3.6.3 The Transition From Wide to Narrow Retrieval 

The dotted curve in figure 3.2 is the continuation of the line of continuous transi-

tions past the tricritical point. Its dynamical significance is that it separates two 

sub-regions: to its left there is 'wide retrieval', marked (2) in figure 3.2(b), and to 

its right is a region of 'narrow retrieval', marked(3). 

The dotted curve is in a region where g"(0) > 0. Thus above (and near) this curve 

g'(0) cc 0 and the form of g is that of (3), with the middle unstable fixed point 

approaching in = 0, as one approaches the line g'(0) = 0. This unstable fixed 

point delimits the basin of attraction of stable high in fixed point. One may then 

say that the basin of attraction of this stable fixed point reaches the full interval 

(0-1) continuously as the dotted curve is crossed and the transition from 'narrow' 

to 'wide' retrieval is made. 

3.6.4 Summary of Transitions 

If one considers raising the temperature from T = 0 then then there are three 

possibilities for the transition sequence to no retrieval 

(2) -* (1) wide to no retrieval 

(2) —, (3) —* (1) wide to narrow to no retrieval 



3. (3) -* (1) narrow to no retrieval 

In this subsection the conditions for each of these transitions will be stated con-

cisely. 

If at T = 0, g'(0) > 0 is satisfied, which is equivalent to 

(A) > 42 
	 (3.65) 

then one is guaranteed an attractor at 1' = 0 and the retrieval will be wide. As 

the temperature is raised the transition to no retrieval will occur by going directly 

from wide to no retrieval if (3.59) is satisfied at T = 0. This condition becomes 

3(A) - (A3 ) < 0. 	 (3.66) 

If (3.66) is not satisfied but (3.65) is then the transition sequence will be wide to 

narrow to no retrieval as the temperature is raised. 

In the case that (3.65) is not satisfied then one is not guaranteed an attractor even 

at T = 0. If in addition (3.66) is satisfied then there are certainly no attractors. 

However when (3.65) and (3.66) are both not satisfied, to determine whether an 

attractor does exist at T = 0 one must seek numerically solutions of (3.63) and 

(3.64) as -* oc. If indeed one finds a solution then one will have narrow retrieval 

at 7' = 0 and the transition will be discontinuous from narrow to no retrieval as 

the temperature is raised. In this way all the qualitative information about the 

transitions can be obtained from the zero temperature map. Remarkably, nearly 

all this information, apart from the existence of a narrow retrieval attractor, is 

contained in the moments of p(A). 

3.7 Numerical Results for Overlap Dynamics 

3.7.1 Noiseless Dynamics of Errorless Optimal Network 

We now proceed to use the general theory of order parameter maps presented in 

the previous section to investigate the performance of optimal interaction matrices. 

[if!] 



First we can recover the results of Gardner[41], by studying the structure of the 

basins of attraction in a noiseless (T = 0) errorless optimally connected network. 

In this case the order parameter map (3.26) is 

(n '\ ' 	( m(t),c 	'\ 

	

m(t+1) = 	(1+erf 71j erf ) 

	

+ 	DAerf 
[cc 	

( 	

rn(t)A 	
(3.67) 

2(l - m 2 (t))) 

For the noiseless network the temperature is fixed at zero, so that we can only 

consider the transitions effected by increasing ap (decreasing ic). A transition 

from wide to narrow retrieval occurs when 

exp(—ç) rf 
(A) = (1+erf()) + 	= 	 (3.68) 

72 

When this equation is solved for K and the K value converted into ap one finds 

that the transition from wide to narrow retrieval occurs at ap = 0.42, which is 

the transition value of Gardner[41]. Above this value of a the m=0 fixed point 

becomes an attractor at the expense of the basin of retrieval. By searching for 

fixed points of (3.67) numerically one finds that the transition from narrow to no 

retrieval occurs at ap = 2.0 as expected. 

3.7.2 Noisy of Errorless Optimal Network 

Having recovered the results of Gardner[41], we can make the first new application 

of the general results for order parameter maps: to extend Gardner's study[41} 

to the case of the noisy network (T > 0). In this case the order parameter map 

(3.26) becomes, after suitable rotation in the plane of integration, 

ic 	1/3y) 

	

m(t+1) = f_cc[1+erf 	
+my 	tanh( 2(l _ nz2)) j 

+ 	[1+ erf (i)] 
	
Dytanh{(mtc + ill - m 2y)}. 

(3.69) 

The fixed points of (3.69) were studied numerically and the results are summarised 

in figures 3.3 and 3.4. In fig 3.3(a) we present the phase diagram on which are 
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drawn lines separating the different retrieval regimes. Recall that a is determined 

by the q = 1 condition as a function of the stability parameter K. The lines are 

more fundamentally lines of T(e'c), which is why it is given on the top horizontal 

axis. In order that the full range of temperature can be viewed in 3.3a the temper-

ature axis has been rescaled as T vla. The first curve of interest is the continuous 

transition line. Using equation (3.57) we find this line as 

exp(—ç) 	1 

	

f (1+erf)) +
= $fDysech2($y) 	

(3.70) 
72 	vf2-7r 

from which one can construct the dotted curve in Figure 3.3a. Moreover, expand-

ing the left-hand side of (3.70) for large it and the right hand side for small fi 
one finds the relation T0  = K. Since the correction to the left hand side is ex-

ponentially small and to the right-hand side it is of relative magnitude $2,  the 

relation holds over a wide region. In figure 3.3b the exact relationship is plotted. 

One can see that above the tricritical point, which is the region corresponding to 

the continuous transition line, the linear relationship is well obeyed. This relation 

vindicates the designation of it as a stability parameter, the stability being with 

respect to temperature. 

The condition given by (3.62) for the tricritical point becomes 

	

(1 + erf (i)) (3it - r.3 ) +~1;2 exp (_j-) (1—it2 ) = 0. 	(3.71) 

Equations (3.70) and (3.71) can be solved numerically to give the tricritical point 

as 'Ctr = 1700,$ = 0.909 which corresponds to a 1  = 0.258,T 7  = 1.100 in 

the phase diagram, figure 3.3a. Beyond the tricritical point the line of continuous 

transitions becomes the phase separation curve between wide and narrow retrieval, 

and appears as the dotted line in fig 3.3a. It reaches a = 0.42 at T = 0. 

The discontinuous transition line (full curve in fig 3.3a) was calculated numerically 

by solving (3.64, 3.64). The discontinuous transition to no retrieval occurs in 

general at high a and low 7' values, whereas the continuous transition occurs at 

low a and high 7' values. 

In Fig. 3.4 we show the retrieval quality in vs 7' for several values of a(it), i.e. 

several values of K. For high it (low a(it)), in vanishes continuously at the tran- 

sition. Hence the horizontal intercepts of the retrieval quality curves correspond 
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Figure 3.3: (a)Phase diagram, a—T plane, for dilute, optimally connected network. 

Full part of curve: discontinuous transition; dashed part: continuous transition; 

dotted part: transition from 'wide retrieval' (100 % basin of attraction) to 'narrow 

retrieval' (less than 100 % ). The small circle is tricritical point. Curve (H) is 

phase separation curve for randomly dilute Hopfield network[40], with couplings 

normalised according to (3.4). The top horizontal axis gives the value of ,c which 

corresponds to the a on the bottom axis. 

(b)Transition temperature vs it. Conventions as in Fig. 3.3(a). Note the relation 

T=ec over almost the entire range of continuous transitions. 
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Figure 3.4: Retrieval quality m vs noise T for several values of K (and hence of 

marked on figure. 

to points on the phase line separating wide retrieval from no retrieval. This tran-

sition is continuous up to the tricritical storage a t, = 0.26(n = 1.7,Ttr = 1.1). 

For lower n, in vanishes discontinuously, and the broken curve shows in at the 

discontinuous transition. The touching points of the retrieval quality curves with 

the broken curve correspond to points on the phase line separating narrow re-

trieval from no retrieval. It should be noted that while for low a (high K) in 

vanishes continuously at the transition, wherever both networks retrieve, the high 

ic network gives better retrieval quality. For example at T = 1.5 the two curves 

that correspond to retrieval in the figure are K = 2.0 and sc = 3.0. Their respective 

retrieval qualities are in = 0.29 and in = 0.94. 

3.7.3 Comparison with the Hopfleld Model 

The phase line for the randomly diluted llopfleld network, first studied by Derrida, 

Gardner and Zippelius[40] is also plotted in fig 3.3a. The field distribution for this 

network can be obtained by taking the a —* o limit of that calculated in section 

2.2: 
1 	( 	-_*) 2  

2 	
) 

p(A) = 	exp 	
(A 	 (3.72) 

1.0 

73 



One sees that the field distribution for the llopfield model is a broad Gaussian 

distribution. This is rather different in character from the distributions for the 

optimal networks in 3.1. In view of this Abbott and Kepler[44] have proposed 

that the llopfield model and the optimal network belong to different universality 

classes. Wong and Sherrington[45] have also recently speculated that the mecha-

nisms for recall may be fundamentally different. 

The order parameter map for the randomly diluted llopfield is given by equation 

(3.55) with 

f(nz) = f Dy tanh to [v/&y  + m] }. 	 (3.73) 

The line of continuous transitions is given by equation 3.57 as 

1 	 1 
(3.74) 

= sr:0 Dy sech2 ($y) 

For the randomly diluted llopfield model there is in fact no tricritical point. This 

is because 

3(A) - (A3) = a3/2 	
(3.75) 

so 3.62 is never satisfied. According to the rules stated in section 3.6.4 this implies 

that for (A) > the retrieval will be wide at T = 0 and the transition as the 

temperature is raised will be continuous from wide to no retrieval. Whereas for 

(A) .c there will be no retrieval even at T = 0. The T = 0 critical value of 

a is therefore a, = 2/ir = 0.64. 

In figure 3.3a this transition line is superimposed on the optimal phase diagram. 

One sees that while the Gardner prescription has a higher storage capacity for 

attractors at low temperatures, the llopfield network stores more attractors at 

high temperatures. Recently it has been shown that the llopfield network in fact 

has the largest storage capacity for attractors at sufficiently large temperatures 

[43]. At very high temperatures there is a common intercept in the transition lines 

atT/a=1. 

3.7.4 Retrieval in Networks with Errors in Storage 

We now consider the implications for attractors of a network of the Gardner-

Derrida type discussed in the previous section. The formula for ap(s'c, fmjn)  of 
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Gardner-Derrida shows a dramatic increase in the number of patterns that can 

be stored at each site if a fraction fmjn  of the patterns are stored incorrectly. For 

example, for fmjn=0.1, ap 5.7. An error at a site implies that the imposed 

stability condition Eq. 3.2 is violated at that site. From Fig. 3.1 we can see that 

for the Gardner-Derrida cost function the constraint violations (A < ic) always 

give stability violations (A < 0), so that we are not guaranteed an attractor, even 

at 2' = 0, as would be the case if all 0 < A < K. If the maximal number of 

patterns per neural connection stored in a perceptron with error fraction fmjn  is 

given by ap(n,fmjn), one would like to know what is a (see section 3.3. 1) for field 

distributions of the form Fig. 3.1. 

The order parameter map (3.26) becomes, after suitable rotation in the plane of 

integration 

1 	 ic ( — — my\ 	/ n  — my 
erfi 	 I —  erfi 

	

m(t + 1) = f Dy 
[ 	V2(1 - m) 	kV2(1 - m)j tanh($y) 

+ - I erf I - I erf 	 Dy tanh{13(mic + s/i mYy)} 
(n_z)1j 

21 ksñ) 	 - 	 - 
(3.76) 

Figure 3.5 presents the results of solving the fixed point equations of Eq. 3.76. 

Each point in the a-ic plane corresponds to a value of fmin  where of = ap(lc, fmjn). 

Several lines of constant fmjn are drawn in the figure. The dashed lines are lines 

of constant critical temperature. A point on such a line gives: 

The temperature at which the retrieval attractor of the map Eq. 3.76 is 

destabilised for the particular values of a and ic 

The error fraction, fmjn (n, a), corresponding to optimal perceptron storage. 

No distinction is made in the figure between continuous and discontinuous tran-

sitions to no retrieval. From Fig. 3.5 one can read off a(ic, 2') which is the value 

of a beyond which storage with errors with ic fixed no longer gives attractors at 

temperature T. Note that to each a(e'c, 2') corresponds a value of fmjfl  so once the 

critical a has been crossed there are no attractors because at fixed ic an increase 

in a leads to an increase of fmjn.  To obtain a(i'c,T) one draws a line parallel 

to the a axis, at the chosen value of ic, to find the intersection with the chosen 
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Figure 3.5: Phases of retrieval attractors for optimal storage with errors. Solid 

curves: perceptron storage capacities Qp vs training stability constraint K for 

several values of the error fraction fmjfl  Dashed curves: retrieval storage capacities 

a0  vs tc for several values of the synaptic noise parameter T. The dotted curve 

delimits to its right the region in which replica symmetry is broken. (b) is an 

expansion of the large a small n corner of (a), for very small error fractions. 

temperature curve. One then projects down to the a axis to find a 0 . To obtain the 

error fraction corresponding to a 0 , one interpolates between neighbouring curves 

of constant f-in. 

An alternative way of reading Fig. 3.5 is to select a value of fmjfl  and a temperature 

and to find the minimum value of ic that can support this error fraction and still 

give an attractor at that temperature. This is done by finding the intersection 

between the relevant fmjfl  and T curves. 

3.7.5 The Noiseless Case 

For tc = 0 the Gardner result, that the perceptron can store as many as 2C 

random patterns implies that an ANN with connectivity C can have as many as 20 

attractors at zero temperature. It also implies that errors cannot possibly increase 

this number. The reason is that attractors at T = 0 are fixed points. Hence, every 

attractor is also a configuration stored by the perceptron. But the perceptron 
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cannot store more than 2C uncorrelated patterns. This rules out the possibility 

of the existence of attractors for a > 2, even when the error fraction allows ap > 2. 

However, for storage at a fixed positive value of K there is no reason, a priori, to 

exclude the existence of attractors for values of a with 2 > a > ap(, 0). 

At zero temperature and tc = 0 we see in Fig. 3.5 that a = 2 at fmjn = 0 

which agrees with our a priori argument. In Fig. 3.5(b) the region of low ic is 

highlighted to show that for small positive ic, a is always less than 2 and attractors 

exist only for extremely low values of fmjn.  For example, in Fig. 3.5(b) we can take 

fm,, = 1.4 x 10 and T = 0 to find that we must have ic = 0.25 to have retrieval 

fixed points. This shows that for low it storage with errors will be detrimental to 

the possibility of attractors unless the error fraction is kept extremely small. On 

the other hand for K > 0,cx(tc,0) is always greater than ap(fmjn  = 0), so that at 

a fixed positive value of K storage with errors always increases the storage capacity 

for retrieval. 

3.7.6 The Presence of Noise 

We now consider the effect of finite temperature. At T = 0 we have argued that 

the maximum value of a is fixed at 2 and this is given by the perceptron algorithm 

without errors. At finite T, a will be reduced due to the disordering nature of 

noise. For a spin configuration that is a fixed point at zero temperature to be 

stable against thermal noise, a finite value of ic is required (see e.g. Fig. 3.3b 

). Robustness against temperature demands a sacrifice of capacity for stability. 

Indeed, Fig. 3.3b shows that for the Gardner case (fu. = 0), in a wide region 

of K values (namely those that give continuous transitions to no retrieval with 

temperature), T K. Thus high temperature requires a high K for retrieval. It 

is in this high K regime that storage with errors gives a significant increase in 

a(ic, 0) over the Gardner case. For fixed a, storage errors allows a higher value of 

K with the sacrifice of stability of a small fraction of sites. An interesting question 

is whether at finite temperature this trade-off will allow attractors to be retained 

at a values where otherwise (for no storage errors) there would be no attractors. 

In other words for a fixed finite temperature can the overall maximum of a be 

given by storage with errors? 

Vkl 



0 	 1.0 

U 

Figure 3.6: Phases of retrieval attractors for optimal storage with errors 

fmin = 0.023 and without errors (1mm = 0). Conventions for fmjn = 0 are as 

for Fig. 3.3a. For = 0.023 the long chain curve is the line of discontin-

uous transitions to no retrieval; the short chain curve is the line of continuous 

transitions to no retrieval; the tricritical point is marked by a dotted circle. 

Returning to Fig. 3.5 one observes, inspecting the lines of constant critical tem-

perature, that as T increases they become more vertical. This implies that as 

T increases, a 0  becomes essentially independent of ic, over a wide range of K. 

Equivalently, storage with no errors has approximately the same a, as storage 

at a higher value of ic and allowing errors. For T = 1,0 the fixed temperature 

curve even bends back slightly on itself. The maximum cx 0  (the overall maximum 

storage capacity) for T = 1.0 is found to be 0.279 at fmi,, = 0.037, whereas for 

no errors a, = 0.275. Thus the improvement in a 0  at finite temperature is only 

marginal. Finally, it is important to notice in Fig. 3.5 that in the region where 

replica symmetry breaking occurs, see (3.15), there are no attractors present. The 

point a=2, e'c=O is on the boundary. In the entire region where attractors exist 

replica symmetry is stable. 

In order to compare retrieval phase diagrams of optimal perceptron storage net-

works with and without errors, we present in Fig. 3.6 a phase diagram for a 

network storing patterns with a fixed fraction of errors fmmn = 0.023 , superposed 

on the phase diagram Fig. 3.3a for which fm =O. The two diagrams are qualita-

tively similar. The most significant difference between the two phase diagrams is 
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that at T 0.2 the regime of narrow retrieval is sharply curtailed in the case of 

finite fmjn,  which reflects the sensitivity of the attractors to errors at low values 

of K. It is also of interest to note that at high K values (higher than that of the 

tricritical point) the regime of 'wide retrieval' is increased if errors are allowed. 

This is indicated by the continuous transition line for the network with errors ris-

ing marginally above the continuous transition line for the network without errors 

as the temperature is raised. Although this does reflect the enhanced robustness 

to noise of storage with errors over storage without errors at a fixed high value of 

K, the effect is only marginal. 

3.7.7 Summary of Results 

The first aim of this chapter was to study the performance of the Gardner optimal 

interactions in a noisy attractor neural network. Figures 3.3a) and b) present the 

main results of this study. As the temperature is raised the storage capacity a 

for Gardner interactions decreases quite sharply. At low K the transition to no 

retrieval is discontinuous whereas at high tc it is continuous. The position of the 

tricritical point where the discontinuous and continuous transition lines meet on 

the phase diagram can be calculated. The critical temperature is approximately 

equal to K over a wide range of K which validates the interpretation of K as param-

eterising the stability to thermal noise. High values of K also improve the retrieval 

quality. At high temperatures the randomly diluted Hopfield model has a larger 

storage capacity which underlines the fact that the Gardner optimal interactions 

are strictly optimal only at zero temperature. At low temperatures nevertheless 

a, for the Gardner interactions is still relatively high. 

Errors in storage, with interactions of the Gardner—Derrida optimal type, reduce 

a drastically at zero and low temperature. This reflects the sensitivity of the 

attractors to storage errors when the retrieval is narrow. At intermediate tem-

perature 1 wherè the retrieval is wide, storage with a small error fraction may in-

crease a over storage with no errors and a lower r. However this effect is only 

marginal. One may conclude that storage errors of the Gardner—Derrida type are 

not particularly productive when one considers retrieval attractors. This has been 

demonstrated by Wong and Sherrington [43,45], who have recently studied optimal 

interactions that result from cost functions that are more relevant to retrieval in 
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a noisy environment. 
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Chapter 4 

Towards Biology: Sparse Spatial Coding and 

Biased Patterns 

4.1 Biased Patterns and the 1,0 representation 

In the previous chapters the patterns to be stored have been been assumed random. 

This has meant that, to within v'N fluctuations, in a nominated pattern half 

the spins take value 1 and half the spins take value -1. This choice of patterns 

maximises the information stored in each pattern and facilitates the technical 

calculation of averages. 

From a biological viewpoint random patterns are not acceptable. If the pat-

terns are random, then a particular spin takes value 1 in half the patterns. This 

corresponds to a neuron in the neural assembly being involved in half of the com-

putations that the assembly can perform. Biological evidence [46] suggests that 

neurons in the cortex have the spontaneous firing rate most of the time and have 

the elevated firing rate rather infrequently. This is interpreted to mean that a 

particular neuron is involved in only a small fraction of the computations that are 

carried out. Furthermore the fraction of neurons with an elevated firing rate at 

any one time is small [47]. 

These observations lead one to consider the case of biased patterns or as it has 

become more recently known - sparse spatial coding. In biased patterns the 

fraction f of neurons taking the active state in a given pattern is less than a half. 
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To set this down mathematically I shall change representation from the Sian Ising 

spin (1,-i) neuron, to Vj a neuron that takes values (1,0). Although it has been 

shown that for unbiased patterns the V representation gives a storage capacity 

half that for the S representation [48], the V representation will prove to be more 

suitable for the models considered in this chapter. In fact initial investigations 

into the storage of biased patterns were discouraging because Ising spins were 

used [49]. In V representation 'j '  denotes the value of the ith neuron in the 11th 

nominated pattern. The exact definition of f is then given by the probability 

distribution of the quenched random variables q. 

= f S(ij - 1) + ( 1 - f)8(71) 	 (4.1) 

Sparse coding is quite suitable for more general image recognition problems. A 

pattern or image, in any sense, involves a foreground and a background. The 

foreground, although it takes up only a small fraction of the field of view, contains 

the features of the pattern. The background is of less importance. A misrepresen-

tation of the background of the pattern should not necessarily stop the pattern as 

a whole being recognised, whereas a misrepresentation of the foreground should 

be more serious. One can interpret the spins that take value 1 in a pattern as the 

foreground of the image and those that take value 0 as the background. 

Gardner[37] extended her study of the interaction space volume to consider the 

case of sparse coding. She found that as the bias increases and f tends to zero 

the storage capacity a diverges as 

1 

f log  f 	
(4.2) 

Although this result indicates that when sparse coding is used many more pat-

terns can be stored, the total information stored within all the patterns does not 

increase. 

In this chapter I shall study two connection rules that exhibit the divergence (4.2) 

in a. These are the Covariance Rule[50] and Willshaw's Rule[10]. The aim of this 

chapter is to give an overall understanding of the attractor structure in attractor 

neural networks that store biased patterns, and in particular to illustrate how the 

threshold controls the activity in the dynamic evolution of such networks. As 

was demonstrated in the previous chapter, a useful way to understand network 



dynamics and consequently the attractor structure is to consider the randomly 

dilute lattice. This shall be carried out for the Covariance Rule in section 4.3. A 

remarkable result that shall be derived, is that for f << 1 the fixed point equations 

for the randomly diluted network are equivalent to the saddle point equations for 

the fully connected model. This indicates that randomly diluting the lattice may 

not change the characteristics of this model. In light of this, a detailed study of the 

attractor structure and trajectories in the space of the overlap parameters near to 

the memory attractor, will be pursued in sections 4.4-4.5. The order parameter 

maps that shall be derived always exhibit two attractors that are not correlated 

with the stored patterns. These are the "all zeros", or quiescent, fixed point and 

an high activity attractor. The latter is rather undesirable as it corresponds to a 

high spatial activity in the neural population. 

The Wiilshaw connection scheme shall be considered in section 4.7. First Will-

shaw's original analysis is reviewed and its validity, physical interpretation and 

generalisations considered in 4.7. These analyses will then be used to show that 

the key features of biased pattern networks highlighted in the study of the Go-

variance rule, persist with the Willshaw rule. However Willshaw's connection rule 

was introduced in the context of pattern associators (section 1.4), thus section 4.8 

aims to give an understanding of how the rule functions in the context of attractor 

neural networks. The most disappointing aspect of both connections schemes is 

the existence of a high activity attractr. A method of suppressing this attractor 

will be studied in 4.8. 

4.2 The Covariance Rule 

The Covariance Rule was first introduced by Sejnowski[50], and later reconsidered 

within attractor neural networks [51,52]. The connection strengths are given by 

1p 
Jjj = 	(ij '  - f)(ij - f). 	 (4.3) 

jh=1 

A variation of the mean-field theory of the Hopfield model discussed in chapter 1 

[51,52] shows that at zero temperature and f << 1, the optimal value of threshold 

gives a first order phase, transition to no memory at a value of a of the form (4.2). 
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When biased patterns are used the threshold 9 becomes an important parameter. 

The expression (4.2) only holds for the covariance rule if the threshold is suitably 

chosen. The role of 9 becomes more apparent when one considers the local field 

at a site i 
(4.4) 

Mi 
and the updating rule of the dynamics 

(t)
V1 (t + 1) = 1 with probability [i + exp 

(_Lh 

 T ) ]' 

	

(t)\1
14(t + 1) = 0 with probability 	i + exp 

(Lh T ) j 	(4.5) 

where T is the temperature. The threshold acts to restrict the number of ones in 

a configuration. In the extreme case that 9 is very large then all hi  will become 

negative and the configurational flow will be towards the all zeros configuration 

where all spins take value 0. This example of the configurational flow moving away 

from the region of configuration space with the same bias as the patterns shows 

that in order to describe the network fully the usual overlap parameter in needs 

to be complemented. To express the overlap of the configuration of the system 

with a single pattern (taken to be pattern 1) one requires two order parameters. 

(1) 
in 1 	= 	 (4.6) 

in2  = - L <kl—ih
(1)  )V> . 	 (4.7) (1) 	

NI 	
i  

t=1 

It is also useful to consider 
(1) 	(1) y=m1  +m2  . 	 (4.8) 

These parameters have straightforward physical interpretations: in1 measures the 

number of "correct ones" (sites that are 1 in the configuration and pattern); in2  

measures the number of "incorrect ones" (sites that are 1 in the configuration 

and 0 in the pattern); y measures the "activity" (the number of ones in the 

configuration). The choice of in 1  and in2 is convenient because they correspond 

to averages over 1-sites (sites where = 1) and 0-sites (sites where ,çn = 0) of 

the pattern respectively. We shall see that the asymmetry between the fields at 

the 2 types of site necessitates this separation. 
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Mean-field theory of the type discussed in chapter 1 gives no information on the 

dynamical behaviour of the model, which is the aspect we examine in this chapter. 

Specifically we consider flows in phase space of a the randomly diluted version (see 

3.4) of the model in which the dynamics can be solved exactly. The points to be 

investigated are: 

• To what extent are the flows restricted to the region of phase space that has 

the same bias as the patterns? 

. What are the qualitative features of the basins of attraction of the patterns 

and how do they change as the system becomes saturated at a? 

• How does varying the threshold change the flows? 

In previous chapter (section 3.7.3) the results of randomly diluting the Hopfield 

model were discussed. We saw that the Hopfield model changes its characteristics 

considerably. In particular the transition at a becomes second rather than first 

order and a has a higher value. However we will show that when we randomly 

dilute the connection rule (4.3) the transition remains first order. Moreover in the 

limit f << 1 the fixed point equations of the randomly diluted model are identical 

to the saddle point equations of the fully connected model. The implications 

of this result will be discussed in section 4.6, first a derivation of the dynamic 

equations will be presented. 

4.3 Derivation of Evolution Equations 

The connection rules is randomly diluted in the usual manner (see section 3.4) 

and becomes 

Jid = 2' 	
- f)(/A - 

f), 	 (4.9) 

where the distribution of C 1  is given by 

P (C3) = 	(C11  - 1) + (i - 
	

s (a11 ). 	 (4.10) 

C is the mean number of other neurons a particular neuron is connected to. 
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We now proceed to derive equations for the evolution of the order parameters. 

Consider the situation where is finite but 's' O(1/Nf), for p > 1. This 

requires y r'-' 0(1). In this situation the configuration is near to pattern 1 and we 

need only consider the 2 order parameters associated with pattern 1. With this 

in mind we will drop the pattern 1 superscript from the order parameters. which 

may be expressed as 

im 1 (t + 1) = << (V,(t + 1)) >>i_sites 	 (4.11) 

= << [i + exp T )j >>i_sites, 	(4.12) 

m2(t + 1) = << (V,(t + 1)) >>o-sites 	 (4.13) 

= << + exp 	T )j >>o-sites 	(4.14) 

The single angular bracket indicate a thermal average and the double angular 

brackets a composite average over sites and an ensemble of initial conditions. To 

perform the site averages we must construct expressions for the field distributions. 

As the configurations are near to pattern 1 we can split the field into a sum of 

signal terms from pattern 1 and a sum of noise terms from the other patterns. 

h(t) = ( - f) 	( - i) Vk(t) + E- f)(' -  f)V(t) —9 (4.15) 
k=1 	 1,2 k=j 

where the k index labels the K sites that are connected to site i (Ck = 1). For a 

site k that is a 1-site 

14(t) = 1 with probability rmi(t), 	 (4.16) 

and for a site Ic that is a 0-site 

14(t) = 1 with probability (1 f) m2(t) 	 (4.17) 

We can now write down the probability that 

h(t) = ('i - f)(Si(1 - f) —521) + N1(1 - f)2 - N2f(1 - f) + N3f 2  —9 (4.18) 

as 

P(S1 ,S2 ,N1 ,N2 ,N3 ) 	 (4.19) 
N C" c" K! 

= 	K! S1!S2!53!(fmdtfl(fm2(tfl(1 - fy(t)) 5  
K=O 

EZJ 



X8$ 1 +5,+53 K 

(K(P— 1))!
x N1!N2!N3!N4!Ubt(t 	(2(1 - flf 2 y(t)Y V2  

x((1 - f)2fy(t))'(1 - 

XSN1+N2+N3+N4K (P-1). 	 (4.20) 

Although this equation appears complicated it is rather easy to understand. The 

S terms are the signal, coming from the first term on the r.h.s of (4.15), and the 

N terms are noise. As the lattice is randomly diluted the spins are uncorrelated, 

therefore the probability distributions for the values which each of the terms in 

(4.15) take are independent. For example one of the K signal terms will be an S 

term, which contributes (,j - f)(1 
- f), if  qkl = 1 and 14 = 1. The probability 

that /L = 1 is f. Given that 71' = 1 the probability that 14 = 1 is nj(t). Therefore 

the probability of an 51  term is fm 1 . Likewise one of the K(p - 1) noise terms 

will be a N1  term, which contributes (1—f) 2 , if 'ir = 1, ij = 1 and 14(t) = 1. The 

probability of this happening isl3.  The multinomial factors and Kronecker deltas 

come from the constraints in the number of terms in each sum in (4.15). Finally 

the sum over K, weighted with Poisson probability, averages over how many sites 

i is connected to. 

As C —s oo , bearing in mind that C << In N the probability distribution h, p(h) 

becomes a Gaussian: 

p(h1) = 
	1 	

exp 
_(h - ( ii - f) (f(1 - .f)mi - f 2 n12 )) 2  

2irayf3(1 
- f)2 	 2ayf3(1 

- f)2 	
. (4.21) 

The mean of this Gaussian is given by the mean of the summation of signal terms 

in (4.15), because the mean of the noise terms vanishes. The variance of the 

distribution comes from the variance of the summation of noise terms in (4.15), 

because the contribution from the signal terms to the variance is of order 11C. 

In this chapter we are interested in the regime of highly biased patterns f << 1. 

In this regime one need only keep the lowest order terms in f and (4.21) becomes 

1 	(1z—r4fm 1 ) 2  
p(h1) = 7 

	
exp - 
	2jf3 	

(4.22) 

Referring back to (4.20), equation (4.22) tell us that for f << 1 the dominant 

contribution to the signal is from S terms and the dominant contribution to the 

noise is from N1  terms. Equation (4.22) also shows that the mean of hi  depends 
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on whether site i is a 1 or 0-site. The two different Gaussian distributions that 

result from ijj = 1,0 can be used to perform the averaging over 1-sites in (4.12) 

and over 0-sites in (4.14) respectively. One finds 

mj (t+1) = I 	l Dz( + exp [j (mj (t) + (afy(t))" 2 z - 

__ 	 -1 

m 2 (t + 1) = - I Dz 1 ± exp - (afy(t)) 112z 90 
1 	

( 	

[_2( 	
- )]) , 
	(4.23) 

fJ 	 T0  

8 

	

where To= 
T  
y; a= 

P  
?y; 80=y- 	 (4.24) 

At T = 0 the integrals appearing in (4.23) can be written as Gauss error functions 

to give 

mi (t + 1) = 	[i + erf ( ml 
 (t) —Go 

(2afy(t)) 1 /2 )} 

m2 (t +1) = 	I 	((2afy(t))112
i - erf 	

)] 	
(4.25) 

One could also consider the model defined by random sequential dynamics where 

at each time step a site is chosen randomly and updated by rule (4.5). This model 

would have, in place of the map (4.25), the flow 

din1-  ii 
	(

af

mj-8, 
 [+ erf (2y(t))1/2)j - 

drn2 - i 	 80 

	

Tf 1 - erf ((2afy(t)) 1 /2  ) - 
in2 1 	(4.26) 

i  

which is similar in form to the Wilson and Cowan[53] evolution equations for 

populations of interacting excitatory and inhibitory neurons. The fixed points of 

(4.25) and (4.26) are identical and one would expect that the trajectories in the 

M1—M2 plane near to these fixed points are qualitatively the same. For simplicity 

only the model using parallel dynamics will be considered further. 

4.3.1 Discussion of Evolution Equations and their Fixed 

Point Structure 

In studying the map (4.25) we are primarily interested in fixed points that are 

highly correlated with the patterns. These fixed points will be referred to as mem- 

ory attractors to distinguish them from the nominated patterns. The fixed point 
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equations of (4.25) are equivalent to the saddle point equations derived for the 

fully connected model [51,52]. This is a remarkable result because it indicates that 

the replica method is unnecessary when f cc 1. In order to understand why this 

is so we can compare the overlap saddle point equation for the fully connected 

Hopfield model, (2.78-2.79), and the order parameter map for the randomly di-

luted Hopfield model, (2.29-2.30). The difference between these equations lies in 

the order parameter r. Equation (2.60) gives the physical meaning of r: it is the 

sum of the squares of the overlaps from uncondensed patterns. However these 

microscopic overlaps are not independent and the replica method yields a self-

consistency equation for r in terms of the Edwards—Anderson order parameter q. 

In the present case it appears that treating these overlaps as independent (which 

is what random dilution effectively allows one to do) gives correct results in the 

limit f cC 1, even for the fully connected model. 

This can be explained by recalling that it was N1  terms in equation (4.20) that 

contributed to the noise. This meant that the noise at a site i only came from 

patterns p where i was a 1-site. Furthermore the noise due to such a pattern It 

came from sites Ic that had 17k = 1 and were 1-sites in pattern p. For low activity 

y and for f cc 1 the sites Ic that fulfill these criteria will tend to be different for 

different patterns p. This suggests that the uncondensed overlaps are to a large 

extent independent and the Gaussian treatment of the noise due to uncondensed 

patterns is justified even for the fully connected model. 

4.3.2 Analysis of 'Fixed Point Equations 

The analysis of the map (4.25) is not as straightforward as the analysis of section(3.6) 

because the map is two dimensional. As shall be shown in the next section, this 

means that transitions where fixed points lose their stability or disappear can be 

rather complicated. In the next section we shall examine these transitions numeri-

cally. However we can make some qualitative analysis to determine the qualitative 

behaviour of some critical quantities. 

The first feature to note of (4.25) is that there are two fixed points of the map 

that are not correlated with the patterns. These are the "all zeros" fixed point 

in1 = in2 = 0 and the high activity attractor where y r'. 0(11f). The second of 



these is outwith the region of validity of (4.25) because for such a large activity the 

configuration will have finite m 1  overlaps with more than one pattern. Although 

this attractor's position cannot be determined by (4.25) it does exist in the model 

and its effect on trajectories near to a pattern is evident in the next section. One 

would expect that at high thresholds the memory attractor will become unstable 

to the all zeros fixed point whereas at low thresholds the instability will be towards 

the high activity attractor. 

For a memory attractor we desire a fixed point of (4.25) of the form 

m=1—c 

M2 
= 4) 	 (4.27) 

where c and 4) are small quantities. The starred values of the overlaps indicate 

that they are fixed point solution of (4.25). At low values of the threshold one 

would expect that the activity y of the fixed point would be larger than for high 

values of the threshold. Therefore the overriding condition for a memory attractor 

is that 4? be small. We can make a first order approximation to 4) by inserting 

= 1, m*, = 0 into the right hand side of the fixed point equation for m4 and 

equating the left hand side to 0. One can then expand the error function for a 

large argument by using (3.48), to give 

I  F 92 eXp
(4.28) 

To determine whether this value of 4) is less than unity the natural log of this 

equation is taken and the large terms kept to find the condition 

1 
—In

[a] - . f9. <
0. 
	 (4.29) 

f 2af 

If a cc 11f one can ignore the a in the logarithm and find a critical value of a at 

92 

ac(f) (4 .30 ) 
f I log T ' 

This critical value of a is consistent with a cc 11f and it will give the qualitative 

form of a in the regime of 'small' 90  

For a high threshold , 	1, one would expect the activity of a memory attractor 

to be low. The overriding condition in (4.27) is that € be small. Again we can a 

90 



first order approximation to find 

1(1_9)2  
(4.31) 

c= (1 6o ) 2r - 	2af 

When the natural logarithm of this equation is taken and only the dominant terms 

retained one finds 	 - 	2 	
(4.32) 

2flln(1-9o) L 
This is the qualitative form of the critical value of a for 'high' threshold. 

At some intermediate value of 0 0  there must be a crossover between the two forms 

of a. As 0 0  increases this will occur when (4.30) becomes equal to(4.32). This 

condition gives 

	

21 (19) 1002 = In 
	 (4.33) 

For 9 	1 the dominant term on the 1.h.s of (4.33) is 1/(1 - 9)2 so that the 

qualitative form of the crossover value of 90  is 

	

0. = 1 - ( 1 In f 1Y 5 
	

(4.34) 

which is very close to unity for f <C 1. Overall the maximum value of a will be 

given when Oo  is just below the crossover value and so 

1 

f I In  f 
(4.35) 

which is the same as the Gardner bound (4.2). Of course the Gardner bound is for 

memory attractors to be identical to the nominated patterns so that m = 1 and 

= 0. Therefore the interactions given by (4.3) are not the Gardner optimal 

interactions. 

The existence of the 2 fixed points uncorrelated with the patterns reflects the 

fact that the activity is not rigidly constrained by the dynamics. Although the 

stored patterns have a set low level of activity the configurational flow may explore 

regions of configuration space that do not have the same level of activity. The main 

parameter that controls the level of activity is 9 and we have used the dependence 

of the fixed points on 9 in the preceding analysis. However one can also get a 

qualitative understanding of the directions of configurational flows by looking at 

how the level of activity y comes into the map (4.25). 
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For both 1 and 0-sites the variance of the noise distribution is 2ay. An increase in 

the activity will increase the noise which in general will decrease ini but increase 

in2 . This can be seen by noting that in (4.25) the derivative of in1 with respect to 

y is negative whereas the derivative of m 2  is positive. Therefore the activity may 

continue to increase or decrease depending on the threshold, storage and initial 

level of activity. This constitutes a feedback-loop in the activity, that may be 

delicately balanced. 

In order to analyse the flows in the neighbourhood of the memory attractor one 

could perform a linear stability analysis of the fixed points of (4.25). However 

such an analysis is difficult to carry out in more detail than that of the initial part 

of this section because one cannot obtain simple exact expressions for the position 

of the memory attractor. In the following section we shall resort to a numerical 

investigation of the configurational flows. 

4.4 Numerical Study of Evolution Equations 

In this section we quantify numerically the qualitative analysis and discussion of 

the previous section. In order to reduce the number of parameters we will keep a 

fixed value of f = iO' and only consider the zero temperature equations. This 

leaves two parameters a and 8 0 
 

The analysis performed in the previous section to determine the form of the critical 

value of a rested on the assumption that 0 0  controlled the level of activity y in 

the memory fixed point. Figure 4.1 validates this assumption. The figure plots 

the position of the memory attractor at fixed a as 0 0  increases. At the lowest 

90  value shown the activity and both n4 and m are greatest. One sees that as 

00  increase both m and m decrease. This means that the number of incorrect 

zeros increases but the number of incorrect ones decreases. The transition to no 

memory occurs at S = 0.73 when m drops discontinuously to zero whereas n4 
vanishes continuously. In this case we see a transition to no memory at fixed a as 

00  increases. 

We now turn to investigating the transition to no memory at fixed 0 0  as a in- 

creases. In chapter 3 one could also obtain information about the nature of the 
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a 0  
Figure 4.1: A plot of the m 1  (full curve) and m 2  (broken curve) values of the 

memory fixed point against 9 0  for f = iO and a = 200. 

basin of attraction at the transition, namely whether there was narrow or wide 

retrieval. However in the present case the nature of the basins of attraction is 

rather more complicated. The distance a configuration is from the pattern could 

be be parameterised by the Hamming distance. However this obscures the nature 

of the incorrect spins within the configuration. The use of the tn j  and in2 , which 

parameterise the number of incorrect zeros and incorrect ones respectively, allows 

the basin of attraction to be viewed in a plane. The value of 90  should influence the 

shape of the basin of attraction in this plane. As a increases one might expect the 

basin of attraction to vanish in a manner dependent on this shape. The vanishing 

of the basin of attraction is intrinsically linked to the nature of the transition to 

no memory, therefore the value of O o  should effect the nature of the transition to 

no memory. 

Figures 4.2 and 4.3 show trajectories in the m 1 —m 2  plane at selected values of 9 

and a. They show sequences in which a increases past some critical value. In 

fig.4.2 at a = 260 the memory is an attractive node and there is a saddle point to 

its lower left which limits the memory's basin of attraction. The term attractive 

node means qualitatively a fixed point of the map to which there are definite 

directions of entry. A saddle point is an unstable fixed point which has definite 

directions of departure. There is also a saddle point, at higher value of in2  out 

of the frame, which acts as a watershed for trajectories reaching the high activity 
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Figure 4.2: A Sequence of frames showing trajectories of (4.25) near to the pattern 

which is marked by a cross. In the sequence a passes through its critical values. 

When a trajectory leaves the frame, a 1 indicates that it continues to the high 

activity attractor and a 0 indicates that it continues to the all zeros fixed point. 

The fixed parameter values are f = 10 and 0o = 0.699. 
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Figure 4.3: A sequence of trajectories as in fig.4.2. The fixed parameter values 

are f = iO and 0 0  = 0.6917. 



attractor. At a = 261 the qualitative structure remains the same. However a 

trajectory starting at the pattern (marked by a cross) is no longer within the 

memory's basin of attraction. When a reaches 262 the memory and lower saddle 

point have annihilated. This sequence of memory loss can be classified as a saddle. 

node bifurcation. At the transition value of a the trajectories that were contained 

in the basin of attraction of the memory attractor are captured by the all zeros 

fixed point. We shall describe this as the attractor destabilising towards the all 

zeros fixed point. 

In fig. 4.3 the memory starts as a spiral. Qualitatively an attractive (unstable) 

spiral is a fixed point with no definite directions of entry (departure). The 2 saddle 

points mentioned above are again present. At a = 258 the pattern is no longer 

within the memory's basin of attraction. The memory destabilises at a = 261.4 

and trajectories starting from it spiral out to an attractive limit cycle. At a = 265 

this limit-cycle is no longer present and all trajectories leave the frame. However 

at a = 268 the spiral restabilises and so a memory is again present. When a 

reaches 270 the lower saddle and memory have annihilated and there are no fixed 

points present in the frame. The destabilisation and restabilisation of the memory, 

of which this sequence is an example, will be referred to as intermittancy 

These two figures illustrate the 2 types of memory loss that are present in the 

model - saddle node bifurcations and spiral destabilisations. At lower 0 0  val-

ues the same mechanisms are present but spirals destabilise to the high activity 

attractor and the higher saddle point is involved in the bifurcations. One may 

summarise these observations by the following generalisations of the features of 

the memory near to the transition. 

. At high 00  the attractor is a node and which destabilises with increasing a 

with respect to the all zeros fixed point. 

• As 00  is decreased slightly. The feed-back loop in activity, mentioned in 

the previous section, becomes delicately balanced and the trajectories begin 

to spiral. The memory is then an attractive spiral. The transition to no 

memory will occur through complicated mechanisms such as limit cycles 

and intermittancy. However the end result is destabilisation towards the all 

zeros fixed point. 

RN 



• As 00  is decreased still more the memory attractor is again a spiral. However 

the overall destabilisation is towards the high activity attractor. 

• For low 00  the memory is a node that destabilises towards the high activity 

attractor. 

One can interpret these various memory losses as the basins of attraction of the 

all zeros and high activity attractors becoming large enough to encroach on the 

memory. The value of 00  then determines which of these basins of attraction 

reaches the memory first. Figure 4.3 is in the intermediate Oo  regime where both 

non-memory attractors are strongly affecting the memory. This gives rise to the 

spiraling, limit cycles and intermittancy. 

Figures 4.2 and 4.3 again show that the transition to no memory is discontinuous 

because m and n4 do not vanish continuously at the transition. In addition we 

see that the basin of attraction of the memory attractor does not take up the 

whole of the m1-m2 plane. In the language of chapter 3 the basins of attraction 

are always narrow. However in chapter 3 we saw that when the retrieval was 

narrow then the basin of attraction vanished continuously at the transition to no 

memory which was discontinuous in m. In the present case the basins of attraction 

do not vanish continuously. 

The figures also illustrate the need for a more careful definition of the critical value 

of a. When considering neural networks as associative memories one would like 

the the pattern to be within the basin of attraction of the memory attractor so that 

there is a clear association between them. The value of a at which this is no longer 

so will be called a 1 . However a 1  is not a parameter directly relevant to stability 

analysis of the fixed points of the map, thus unless one can find formàlae for the 

basins of attractions, it is only from numerical studies of flows as performed in 

this work that a 1  can be determined. A second a value of importance is a 2 , which 

we define to be the lowest value at which there is no memory. By using a 1  and 

a2  we avoid dealing with any intermittancy that may be present. a 2  corresponds 

more closely to the definition of a used in previous chapters. However a 1  is an 

easier parameter than a 2  to determine numerically. One need only insert m 1  = 1 

and in2 = 0 as the initial condition for the map (4.25) and then iterate to a fixed 

point. If this fixed point is the all zeros fixed point or high activity attractor then 

a is greater than a 1 . 
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Figure 4.4: A plot of a 1  (full curve) and a 2  (broken curve) against 0 0  for f = 10 

The range of 00  is that within which both a values are maximised. 

Fig.4.4 shows that a1  and a 2  differ only in the region of O o  values that give the 

highest storage. This also illustrates that in the region of highest storage capacity 

the basins of attraction are small. The slight kink on the left of a 2  curve is where 

the attractor becomes a spiral. The ease of calculation of a 1  and the similarity of 

the a i (Oo ) and a2 ( 00) curves make it convenient to use a 1  to quantify the storage 

capacity throughout the rest of this chapter. 

Fig.4.5 shows how a1  has a 6o  dependence similar to (4.30) and (4.32). Namely 

for low 00  the curve appears quadratic in 0 0  whereas for the high theta values it 

appears approximately quadratic in 1 - 90. The position of the memory at a, 

shown by the broken curves, moves sharply in the transition region between the 

2 forms. 

4.5 Higher than Random Overlap between Pat-

terns 

In the llopfield model it has been found that multiple storage of a pattern improves 

its recall [54]. This as an example of a certain memory being reinforced or stored 

more strongly than others [55]. Storing a pattern twice is the extreme case of 
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Figure 4.5: A plot of a 1  against O o  at f = 10 with the values of the order 

parameter memory fixed points at a 1  superimposed. Full curve, a 1 ; broken curve 

in1 ; dotted curve in2. 

storing two patterns that have higher than random overlaps with each other. 

The latter situation has been studied in both the random diluted [40] and fully 

connected [56] llopfleld model. In both cases it gives rise to 3 distinct phases: at 

low a there is a separate memory for each pattern; as a is increased there is a 

single memory equally correlated with both patterns and at higher a there is no 

memory. In [40] the range of a values for the undistinguishing memory includes 

values that are greater than a for the recall of the random patterns. This also 

applies at the higher values of the correlation between the two patterns in [56]. 

This implies that as the storage becomes large the network will forget patterns 

that have not been reinforced but still remember those that have. These ideas 

have been extended within the Gardner framework, discussed in chapter 3, by 

Virasoro[57]. 

However all these studies focussed on the case of random unbiased patterns. In 

the case of biased patterns the patterns are already correlated by the bias so that 

any two stored patterns share a large number of 0-sites. One may interpret the 

increase in storage capacity as a result of this correlation [57]. In this section we 

shall see investigate whether the recall of a pattern (taken to be pattern 1) can 

be further improved by storing an additional pattern (taken to be pattern 2) that 
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has a large number of 1-sites in common with it. The overlap within the 1-sites 

can be quantified by introducing a parameter Q, 

r' (1) (2) 
Q 

	

2_,Th 71i 	 (4.36) 
i=1 

If patterns 1 and 2 are identical we find Q = 1 whereas if the one sites are 

uncorrelated we find Q = f. The method used is to derive evolution equations for 

the overlaps with the two patterns of interest. These overlaps, 

N 
(1) In1  = -

Nf  1=1 

N 
(2) 	 Vi nil  = 

i=1 

N 
  

M2 -
Nf E(1 - 2  =  

are defined in the same way as before but have the pattern index reinstated. Again 

it is convenient to use the activity 

(1) 	(1) 

	

Y(t) = m 1  + In2 	 (4.37) 

as a parameter. The parameter m is not used explicitly because 

(2) 
In2  = y(t)—rn 1  

(1) 	(1) (2) 
= nil +m —n  t1  

We let patterns 1 and 2 have overlap Q '- 0(1) and all other pattern pairs be 

üncorrelated. In deriving evolution equations for the 3 order parameters required, 

one uses the same techniques outlined in the previous sections and so here we will 

just write down the zero temperature result in the regime f <C 1. 

(1) 

II 

	

m(t+ 1) = 	[+ erf (
2)  rn 1  (t)+n4(t) —o\1 

J2afy(t) 	)j 

+1;Q 

[i+ erf

0\ 
/2afy(t) ) j 

	

+ 1) = 	
[ 	

( mI(t) + in(t) - e0 \ 1 
1+ erfl\ 	 II 

2afy(t) 	1] 
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1—Q 	
erf 

(M12(t) - eo 	
(4.38) 

\2afy(t)Jj 

°° 
1— erf( MM (t +1) = 	

[ 	2afy(t) 

(  
m

(2)( _ 	 u t)_9O'i 1Q [1+ erf 	
2afy(t) )j 

The equations for mt(t + 1) and m(t + 1) are transformed into each other when 

and are interchanged. This symmetry means that any solution of the 

fixed point equations of the three dimensional map (4.38) will remain a solution 

when the fixed point values of m(l) and m 2  are interchanged. 

To construct a phase diagram the criterion used is that starting from one of the 

patterns the fixed point to which the map (4.38) iterates classifies the phase to 

which the a, Q values belong. This is equivalent to using an a1  definition for the 

critical value of a. The distinguishing memory phase is characterised by a fixed 

point of the form 

 1 
 

Q 

<< 1, 

the undistinguishing memory phase is characterised by 

nt =m 
(1) 	(2) 
1 	1  

(2) 
M 2  <<1 

and the no memory phase is characterised by the high activity attractor or all 

zeros fixed point. Fig.4.6 shows that only at comparatively high Q values is the 

undistinguishing memory phase present. In fact there is only a small range of Q 

values where all 3 phases are present. Except at very low Q values the storage 

capacity is reduced compared with Section 2. 

These observations reflect the importance of the threshold parameter and activity 

of a configuration. A memory that does not distinguish between the patterns 

(m1 = Q) will have too low an activity to be a fixed point at low Q. Although 

a Q overlap between patterns will strengthen the connections between shared l's, 
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Figure 4.6: A phase diagram depicting the three phases discussed in the text. 

this will lead to higher activities in trajectories near to the patterns because m 1  

will be increased. This may destabilise, through the resulting increase in y and 

therefore noise, the memories that distinguish between the patterns at lower, a 

than before. Consider the case of storing a pattern twice (Q = 1). Equations 

(4.38) reduce to (4.25) if 

Oo  = 20 

a = 4cr' 

where the primed values are those for storing the pattern once. Hence an in-

crease in the maximum a for recall of the pattern is possible only if O o  is suitably 

increased. 

4.6 Discussion of Results of Covariance Rule 

So far in this chapter several interesting results that involve biased pattern net-

works been obtained. Although the calculations have centered on the covariance 

rule (4.3), the results may give some general properties for models that use biased 

patterns and 1,0 spins. 

Firstly we have seen that as well as memory fixed points there are two other attrac- 

tors to which the configurational flow may lead. These are the all zeros fixed point 
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an high activity attractor. The all zeros fixed point may be considered useful for, 

as Shinomoto[58] and Buhmann et aI [52] have pointed out, if the configurational 

flow is towards this fixed point then it is a signal that initial configuration was not 

recognised by the network. I consider this argument appealing in the case of the 

all zeros fixed point because the signal of non-recognition is the activity within 

the network dying out. When the activity has died out the network is then ready 

for processing a new input. Whereas for the high activity attractor the signal of 

non-recognition is the activity proliferating. This leads to very high spatial activ-

ity which for a signal of non-recognition appears to be much ado about nothing. 

Although the high activity fixed point can co-exist with the memory attractors, 

its presence is not biologically satisfactory as it indicates that the spatial activity 

is not constrained in the model. A suitable modification to rid the model of such 

a fixed point could be to introduce an activity dependent threshold. This might 

also improve content addressable memory because the region of the m 1 —m 2  plane 

that comprises the basin of attraction of the high activity attractor would become 

within the basin of attraction of either the all zeros or memory attractor. Imple-

mentations of such a proposal will be discussed later in this chapter and chapter 

5. 

The mathematical structure of the memory fixed point changes with the threshold. 

This was initially noted in the qualitative from of a(9), equations (4.30) and 

(4.32). Later we saw, in figures 4.2 and 4.3, that the nature of the entry of 

trajectories to the attractor changes with 8. Indeed in the intermediate range, 

between low and high 9, the attractor could become a limit cycle rather than a 

fixed point in the m 1 —m2 plane. These limit cycles are rather appealing because 

within them the activity y oscillates somewhat and oscillations in spatial activity 

within the brain are well known [3]. However there is some doubt as to whether 

these limit cycles would sustain themselves even in the randomly diluted model. 

This is because the system does not reach a fixed point in finite time t therefore 

the condition 

(4.39) 

cannot hold as t -* oc. On the other hand the mean-field equations for the fully 

connected model are equivalent to the map (4.25) so the condition (4.39) may not 

in fact be necessary. In order to determine if the limit cycles do exist numerical 

simulations would have to be carried out. 
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A parameter that has attained a high importance in the present chapter is the 

threshold. The threshold must be carefully chosen in order to gain the maxi-

mal storage capacity. Near to this optimal threshold value small changes in the 

threshold change the characteristics of the trajectories in the order parameter 

space considerably. The characteristics of the trajectories define the basin of at-

traction of the memory, thus the threshold determines both the storage capacity 

and associativity. In addition section 4.5 demonstrated that storing two highly 

correlated patterns is only only fruitful when the threshold is suitably adjusted. 

This would then rule out the recall of the other independent patterns. All of these 

points suggest that in future the threshold may have to be modelled with more 

sophisticated properties such as site or time dependence. 

Several surprising features of the model have also been illustrated. Firstly the 

fixed point equations of the ma?  (4.25) are equivalent to the mean-field equations 

of the fully connected model, implying that random dilution has not changed the 

features of the model to a great extent. Tsodyks[59] also noted this "universality" 

for the continuous-time model. Secondly in considering the storage capacity there 

is a need for careful definition of the critical value of a, due to the possibilities 

of intermittancy and the pattern being outwith the basin of attraction of the 

memory. 

In the next section we shall discuss another connection rule for storing biased 

patterns and investigate which of the features discussed here in the context of the 

covariance rule persist when a different connection rule is used. In particular the 

role of the threshold and existence of an all zeros fixed point and high activity 

attractor shall be highlighted. 

4.7 The Wilishaw Rule 

4.7.1 Willshaw's Rule and Dale's Principle 

Willshaw's Associative Network [10] was first introduced as a device that learned 

a set of associations, each between an input pattern and an output pattern. In 

contrast to the models discussed previously in this work, the synaptic connections 
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can only take values 1 or 0. Willshaw ci al[10] found that the network is most 

efficient when the patterns are extremely biased. It was found that at the optimal 

value of f 
1 lnN 

fjjr 	 (4.40) 

the network has an information efficiency of 69%. This remarkably high informa-

tion capacity alone justifies further study of the Willshaw rule. However the rule 

has several other features of merit from a biological viewpoint. 

Let us first review the Wilishaw rule and how Wilishaw's Associative Net func-

tions. We will consider without loss of generality the case where the Network is 

auto-associative. Basically a synaptic connection between 2 neurons is made if 

both neurons are active in at least one pattern that has been stored. Wiilshaw's 

rule is 
fr 
E 77j" (4.41) 

\p'l 	/ 

where P is the number of nominated configurations and 

e(x) =1 when x>0 

=0 when z<0 

One may note that all the synaptic connections are positive which is in contrast 

to the covariance rule where approximately equal numbers of connections were 

positive and negative. This feature of the Wilishaw rule has some biological appeal 

due to a biological observation known as Dale's Principle [60]. Dale's principle 

states that the synaptic connections emanating from a particular neuron are either 

all excitatory or all inhibitory. Interpreting this in terms of model synapses and 

neurons one can say that for a neuron i the set of synapses {JkI},  where the 

index k runs through all the neurons k that i has a synaptic connection with, 

must all be of the same sign. The WiUshaw rule satisfies this condition because 

all the synaptic connections emanating from any neuron are positive. One can 

say that the Willshaw rule creates a neural network in which all the neurons are 

excitatory. Dobson[61] has shown that a simple variation of the Willshaw rule 

creates a network where all the neurons are inhibitory, without deterioration of 

performance. 
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4.7.2 Wilishaw's Analysis and its Validity 

If one considers the setting up of the synaptic connections by storing the pat-

terns in sequence as a dynamic learning process, then before learning has begun 

the synaptic connection matrix has all elements set to zero and as the learning 

proceeds more and more connections are switched on. This process can continue 

until the network is saturated at which point the network can no longer make the 

correct associations. 

Willshaw[10] gave a simple analysis of when this saturation occurs. We denote 

the probability of a connection being on (i.e J1 = 1) by c which is given by 

c = 1(1f2)P 

= 1—exp(—) asP—*oo and f—*0 	 (4.42) 

where 

-y=Pf2 . 	 (4.43) 

It is convenient to use as the loading parameter rather than a because at maxi- 

mum loading the number of patterns is not proportional to the number of neurons. 

The field at a site i is defined as 

h(t) = E J11 T'(t) - 9 	 (4.44) 
i/i 

The original Willshaw model worked by performing one parallel update according 

to the rule: 	 - 

V(t + 1) = L(h), 	 (4.45) 

where 

L(z) =1 when x>0, 

=0 when z<0. 	 (4.46) 

If the configuration of the network is one of the nominated patterns, then we shall 

say the network is "in a pattern ". The connection rule ensures that connections 

are on between sites that are both 1 in a pattern. When the network is in a 

pattern the 1-sites will therefore receive a field of exactly Nf. This allows the 

threshold to be set at 

0=Nf 
	

(4.47) 
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which is the maximum it can be whilst ensuring that the 1-sites are correctly 

recalled. 

If we turn to the sites that are 0-sites in a pattern the situation is somewhat 

different. These passive sites have not caused any modification to the synapses 

(4.41) and so when the network is in a pattern there is no signal component to the 

local field. One can say that the field these sites do receive is composed entirely 

of noise due to synaptic interference. However this noise has a slightly different 

character than the noise component of the local field in the previous section (4.15), 

because the mean is not zero. 

Willshaw defined the capacity of the network as the number of patterns stored 

when this noise will cause a 0-site to be incorrectly recalled as a 1. For this to 

happen when the threshold is given by (4.47), all the 1-sites must be connected 

to a particular 0-site. The probability of this happening if the connections are 

independent is c' 1 . The capacity of the network is then given by 

N(1 - f)&"1  = 1. 	 (4.48) 

The value of c that solves (4.48) can be converted into a storage level 'Ti  through 

(4.42). 'Ti  gives the critical loading implied by Willshaw's analysis. The l.h.s. 

of (4.48) is the mean number of 0-sites which are connected to all Nf 1-sites 

assuming that the connections are independent. If the conditions f << 1 and 

N - oo are assumed (4.48) gives 

ln N 
N ln c 

(4.49) 

When c the fraction of connections on is finite, equation (4.49) shows that the 

pattern associator only functions well in the extremely sparse coding limit of 

InN 
 (4.50) 

To measure the efficiency of the network Willshaw considered the information 

stored I. For perfect recall this is given by 

I = Fln( 
N 	

(4.51) 
kNf 

PN41n(f) For N >> Nf 	 (4.52) 
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where the binomial coefficient 

fN\ 	N! 

M) 
 - 	 (4.53) 
- M!(N—M)! 

Utilising (4.42) and (4.49) one finds the information at the limit of capacity as: 

I = N2 in(1 - c) Inc 

which has a maximum at c = 1/2 at which the information stored per synapse is 

(in 2)2.  The maximum information that can be stored per synapse is in 2 so the 

network functions at in 2 or 69% efficiency. At this value of c and at the capacity 

of the network 

" N \2 
P = (in 2) (jw) (4.54) 

To show that this obeys the Gardner bound one can insert f r.s In(N)IN into 

(4.2) to obtain 
N 

(1n  N)2 
(4.55) 

This analysis relies on the assumption that the synaptic connections are indepen-

dent of each other. Goioumb et al have shown that the correlation between two 

synapses Jjj and Jk  feeding into the same post synaptic neuron i is given by - 

((J11 — < J >) (Jik <J >)) = exp (_2Pf2) P13 	(4.56) 

so that the correlation increases with f. 

The analysis concentrates on the perfect recall of patterns. More general memory 

attractors will be considered in the next section. The case of exact storage can be 

investigated by simulation in a relatively straightforward manner. The simulation 

amounts to presenting a network with a stored pattern and checking whether 

the spins at each site are aligned to the threshoided fields. The programme is 

structured in the following way. 

1. A number of patterns that obey the activity constraint z11 14 = Nf are 

generated and stored according to rule (4.41). 
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Figure 4.7: The fraction of patterns stored exactly in the net vs. 7  for  f = 1/ ln(2) 

and 00  = 1. 

System sizes are: 64; 128; 256; 512; 1024 where the curves steepen as system size 

increases. The curves are best fit polynomials through the points. 

All the patterns so far stored are tested for stability by presenting them 

to the network and testing each site to see if it is correctly aligned to the 

thresholded molecular field, ix whether or not 

(27j - 1) (2L(h) - 1) > 0 1 	 (4.57) 

where L 	is defined by (4.46). If a site is encountered that is incorrectly 

aligned then the pattern ji is unstable. After testing all the patterns in this 

manner one can calculate the fraction of a patterns that are stable F,ta& as 

for the present value of -y- 

More patterns are then stored and the calculation of Fatab is repeated. In this 

way one obtains the value of Fstao at several points in the learning process 

for the particular realisation of the patterns. 

All the previous steps are repeated 20 times so that averaged values of 

Fstab(7) are obtained. 

This computer experiment was repeated for different system sizes as shown in 

fig(4.7) In fig(4.7) the transition through which Fs ta& changes from 1 to 0 with 

increasing 7  can be seen. The transition sharpens slowly as N increases. 7i = 

1111:] 



0.693, given by the analysis of section 4.7.2 is within the transition range of . It 

appears to very close to the values of 'y at which the different system size curves 

intersect. In order to understand the full meaning of 1i  Willshaw's analysis has 

to be extended a little. This will also allow a finite size scaling form for the curves 

in Fig. 4.7 to be developed. 

4.7.3 Finite Size Scaling 

Eq.(4.48) specifies that the mean number of unstable 0-sites is equal to 1. The 

l.h.s gives the mean number of unstable zero sites in a pattern. We can model 

the actual number of such sites with a Poisson distribution so that P5 (k), the 

probability of k sites being unstable in a pattern is given by 

Ps(k) = Ic! 
' 	 (4.58) 

where A is the l.h.s of Eq. 4.66. The probability of a pattern being stable is then 

P, which is given by 

F,, = P,(0) = e_A 	 (4.59) 

At , the probability of a pattern being stable is e 1  = 0.378 and is independent 

of system size. This explains the position of 7,  as the point where the different 

system size curves intersect in Fig 4.7. However in Fig 4.7, for N = 1024, 7i 
has Fa tab 0.5 rather than 0.378 which suggests that the assumed independence 

of the stability of patterns and of stability of sites within patterns, used in the 

derivation of (4.59), is not accurate. The general expression for P. is obtained by 

inserting the l.h.s of (4.48) into (4.59): 

F,, = exp — 	 . 	 (4.60) 

Eq. (4.60) implies that as N —*oo, values of less than ' will yield P,, = 1 

whereas values greater than 

y, 

 will yield F,, = 0. This is because 71  is the value 

at which the power that N is raised to on the r.h.s. of (4.60) is equal to zero. 

Therefore as N —*oo, the transition from Fs tab = 1 —* 0 should become discontin-

uous. There is no direct evidence for this in Fig 4.7, and it appears that extremely 

large values of N would have to be simulated in order to verify the discontinuity. 

However the finite size scaling forms of the curve may be investigated to verify 
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Figure 4.8: The data of Fig 4.7 is plotted according to the finite size scaling form 

(4.60). The system sizes are: 64 (crosses); 128(circles); 256(triangles); 512(plus 

signs); 1024( squares). 

the validity of (4.60). This is carried out by arranging (4.60) to give 

7= —In  [1_exP{T 
1 (

inN _i)}]. 	 (4.61) 

In Fig. 4.8 the numerical values of P, from Fig.4.8 are inserted into the r.h.s. of 

4.61 and plotted against 'y. The different system sizes do indeed collapse onto the 

same line as -y increases but the line has gradient 1.4 rather than 1. This suggests 

that 

-Pp  = exp - 	 (4.62) 

which is less than the expression Eq. 4.60. This indicates that the actual value 

of P, is smaller than that predicted by the analysis. This discrepancy can be 

attributed to the correlations between synapses. As f increases equation (4.56) 

suggests that the effect of such correlations should become more important in 

calculating critical storage capacities. 

WSI 

0.5 
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4.7.4 The Effect of Lowering the Threshold 

In the analysis of the covariance rule we saw that to achieve the maximum storage 

capacity the threshold must be suitably chosen. With the Wilishaw rule a very 

specific choice of threshold has been made namely equation (4.47). If the threshold 

is chosen to be higher than this then the field received in a pattern by a 1-site 

will be less than the threshold, so that the pattern will not be correctly recalled. 

However if the threshold is chosen as 

9 = O0Nf 
	

(4.63) 

where 00  is less than unity then the 1-sites will still be correctly recalled. The 

procSsing of noisy inputs, where some 1-sites have been flipped to zero and the 

signal at 1-sites brought below Nf, could then be achieved. In order that the 

1-sites be correctly recalled one would have to choose 0 0  < 1. This illustrates 

how changing the threshold alters the basin of attraction of the memories. In 

order to determine how changing the threshold alters the storage capacity we will 

generalise Willshaw's analysis to calculate the condition for a pattern to be a 

recalled exactly when 0 0  < 1. Again we shall consider the limit of stability of the 

pattern as the loading at which on average a 0-site will become unstable. This 

occurs when: 
Nf Nf 

N L( 	?( 1 - c)(1_(t) = 	 (4.64) 
x=90Nf \ x ) 

- 	The l.h.s. of Equation (4.64) is the probability that a 0-site is connected to more 

than 90 Nf 1-sites multiplied by N. For f << 1 and with the assumption that the 

connections are uncorrelated the l.h.s is equal to the mean number of 0-sites that 

are unstable when the network is in a pattern. 

If the x = 90 Nf term of the sum in Eq. (4.64) is taken as the dominant contri-

bution then Eq. 4.64 becomes 

N ( Nf ) c °1  (l - c)(1O0f = 1. 	 (4.65) k Oo Nf 

Taking the natural log of this equation and using Stirling's approximation gives 

1_9o fll n 1' _(1_9o)fl n ( 1 M =0 	(4.66) 
to  c) 	 \1—c) 
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Figure 4.9: A plot of-)' 1  against O o  for f = 1/ln(2). The curve was obtained from 

the solution of (4.66). 

Eq(4.66) gives a relationship between 9, f', c for the limit of stability of patterns. 

If l.h.s > 0 then the pattern is unstable to 0-sites flipping to l's. Equation (4.66) 

can be solved to give 7i through (4.42). Fig. 4.9 illustrates the dependence of ii 

on the threshold. A dramatic decrease in storage can be seen as the threshold is 

lowered. For example when 0 0  is reduced to 0.9, 1i  is reduced from 0.693 to 0.412. 
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Figure 4.10: Simulation results for different thresholds with the system size con- 

stant at N = 1024. The fraction of patterns stored exactly in the net vs. 	for 

= 1/ln(2) and for the different 0 0  marked on the figure. The curves are best 

fit polynomials through the points. 
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where f is given by (4.50). 

Figure 4.10 presents simulations of the same type as figure 4.7 but with 0 0  < 1. 

The simulation results show, as did equation (4.66), that the storage capacity 

decreases sharply with 00. 

4.7.5 Gaussian Noise Analysis 

If we examine the above analysis we can see that the probability of the noise at 

a 0-site is a binomial distribution. Eq. (4.66) shows that the probability that a 

0-site is unstable in a pattern is given by the area under the tail of the distribution 

cut off at 90 Nf. In the previous chapters we have represented synaptic noise as a 

Gaussian distribution by taking the cumulant expansion to the second cumulant. 

If we do this in the present case then we obtain instead of (4.64) 

NJ 	exp "  
O0Nf 	

= 1 	 (4.67) 

where the mean of the noise R is given by 

J=Nfc. 	 (4.68) 

and the variance of the noise a 2  is given by 

= Nfc(1 - c) . 	 (4.69) 

We may write the l.h.s of (4.67) as a Gauss error function and expand it for a 

large argument, using (3.48), to give 

- ) N 	 (4.70) 

where 	b = 1 - 
	- c)2 	

(4.71) 
2c(1 - c) 

For b < 0, (4.70) vanishes in the thermodynamic limit and for b > 0 it diverges. 

(4.70) represents the number of one sites that have flipped to ones after 1 parallel 

update, thus b < 0 indicates that the pattern is stable. The transition to no 

memory then occurs at b = 0. 

To judge the accuracy of this signal and Gaussian noise analysis one can take 

0o = 1 and find = ln(1 + f'/2). Using the Willshaw analysis one finds y = 1/f'. 
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This error highlights the difficulties in studying the model analytically. In a mean 

field theory fluctuations are usually approximated by a Gaussian distribution, but 

here we see that this approximation gives an inaccurate result. This is because it 

is the tail of the noise distribution that is important for the stability of 0-sites, and 

the tail of a binomial distribution is not accurately approximated by a Gaussian. 

4.8 Attractors in the Wilishaw Network 

In dealing with the Wiilshaw rule so far we have only investigated whether the 

patterns are stable. To analyse this point we have considered one parallel update 

of the sites. In general the configuration of the network after such an update is 

not a fixed point of the dynamics. It is only when the configuration has remained 

unchanged, as is the case when a pattern is stable, that an attractor has been 

reached. It may be the case that the patterns are themselves unstable but there 

are attractors near to the patterns. This has usually been the case in the models 

discussed in the previous chapters. If the pattern is not stored exactly we wish to 

know if the network configuration will evolve to such a memory attractor when 

a pattern is presented as the initial configuration. We also have to consider the 

case of noisy inputs and to which attractor they will evolve. The main aim of 

this section are to determine how Willshaw's rule will perform in the context 

of ANN's. More precisely how will the new features of recurrency, the need for 

attractors and asynchronous dynamics affect the performance? Will the model 

need to be modified in anyway to deal with these new features? 

In the previous section we in fact considered m i (1) and m2 (1) the order parameters 

after one time step. The condition for stability was that after presenting m l (0) = 1 

and m2 (0) = 0 we demanded m l (l) = 1 and m2 (1) = 0. For an ANN we are 

interested in mi (oo) and m z (oo) that result from more general inputs. 

The attractors uncorrelated with the patterns that were present when the co-

variance rule was used are also present when we study the Willshaw rule. If we 

consider the all zeros configuration where each site takes value 0 then the local 

field given by (4.44) is zero at all sites. Therefore this configuration is stable if 

00  > 0. We can also see that the an high activity attractor is present by examining 
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(4.44) for the case where all sites take value 1. All the local fields are greater than 

zero, thus the configuration is stable, provided that Nc >> 0. This is the case 

when c is finite and f is given by (4.50). 

The remaining possibility is for memory attractors that are not the exact patterns. 

In this case the errors in the memory attractor must be incorrect ones. This is 

because if the threshold is chosen correctly, 0o  < 1, the 1-sites will all be recalled 

correctly. However if one considers iterating from a pattern, then if some 0-sites 

Hip to is the activity has increased and the probability of other 0-sites flipping to 

Is will increase. In this way a finite number of zero sites flipping to is will cause 

the activity to proliferate and the high activity attractor should be reached. 

4.8.1 Suppressing the High Activity Attractor 

In order to rid the network of any high activity fixed point one needs a mechanism 

that inhibits the production of is in the dynamics. A constant threshold is already 

present but we require an additional activity dependent threshold that will vary 

in the configurational flow produced by the dynamics: 

0 = (O0Nf + 0(y)) 

The mean noise at 0-sites increases linearly with the activity and we wish Oj  to 

exhibit the sane behaviour: 

01 =byNf 

= 6Lvi. 

One can consider this inhibition as resulting from an auxiliary network of in-

hibitory neurons, the activity within which is directly proportional to the activity 

of the excitatory network. However this second interpretation, used by Golomb ci 

ad [62], requires that the inhibitory neurons respond instantaneously to changes 

in the activity of the excitatory network. Alternatively the activity dependent 

threshold is equivalent to changing the Willshaw rule to make the synapses that 

have not been switched on inhibitory: 

0=1

p  

J3=(1+b)® 	 ,jij4) —b 	 (4.72) 
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Before any learning, when all synapses take value —b, the only fixed point is the 

all zeros configuration. As the learning proceeds and more and more synapses are 

switched on the inhibition is gradually removed. If we take the learning to an 

extreme where all synapses are on then the the domain of attraction of the high 

activity attractor comprises nearly all the configuration space except the portion 

with y < 9. At some point in the learning, or equivalently at some value of c, a 

high activity attractor must become stable. If the average connection strength is 

positive, a high activity attractor with E j  V rs  N exists. For b = 1 the average 

interaction strength is positive when c > 0.5. However high activity attractors 

with E j  Vi  N°, where 0 <g < 1, may occur in the learning at an earlier time. 

To evaluate when this occurs we consider an initial configuration of activity j,(0) 

and calculate the activity at the next time step y(l). If 

i,(1) > y( 0), 
	 (4.73) 

the activity is. increasing and we assume that a high activity attractor exists. 

Conversely if we cannot find a value y(0) where (4.73), holds then we conclude 

thatno high activity attractor exists. The analysis of section 4.7.4 can be extended 

in a straightforward manner to give 

y(l) 	 (4.74) 

where 

= 1— uf'ln () - (ii - u)f'ln 
(y1 	) 	

(4.75) 
yc 

and 

= 	 (4.76) 

The activity y that maximises g(y) is given by the equation 

(vc(1 + b)

J 

 (y*(l 

  

- c)(1 + 6)\ = 1. 
	 (4.77) 

\ uo +by 	y'—zi0 	J 

This value of y in fact maximises the probability that h1  = 9o. For brr 1, (4.77) 

has solution
go  

=1_4:(1—c) (4.78) 

This is the value of the activity that maximises the activity at the next time 

step. g(y(c)) = 0, then gives the connectivity value CF..ga at which a high activity 
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attractor appears. This equation can be solved numerically to give, for b = 1,90 = 

1 

	

= 0.333, 	 (4.79) 

	

= 3.001. 	 (4.80) 

The value of Chaa given by (4.79) yields a value of  through equation (4.42). This 

value of 'y is less than 'Yi,  the storage at which the patterns become unstable. 

Therefore a high activity fixed point occurs before the Willshaw critical loading 

71 is reached. However, (4.80) shows that for iteration to this high activity fixed 

point at Ch..,  an activity thrice that of the patterns is required. In view of this 

one would not expect the high activity attractor to affect the dynamics initially, 

when iterating from a stored pattern. 

The upshot of this calculation is that the high activity attractor has been sup-

pressed. This is demonstrated most simply by the result that for b = 1, the high 

activity attractor appears only when C > 0.333. This is in contrast to b = 0 when 

the high activity attractor is always stable. When b = 1 the previous paragraph 

has hinted that configurational flows that start to move away from a stored pattern 

may not reach an high activity attractor even when one is present. To understand 

why this is so let us consider again the case 6 = 0. If the pattern is unstable, 

0-sites flip to is and the activity proliferates until the high activity attractor is 

reached. However in the case where 6> 0 the flipping of a 0-site to 1 may cause 

a decrease in the local field at other sites because the connections from the 0-site 

to these other sites may be inhibitory. Therefore the proliferation of activity may 

be halted. This argument suggests that when 6 > 1, memory attractors which do 

not coincide exactly with the stored pattern may be present. In order to ascertain 

whether this actually occurs I will present some numerical simulations. 

4.8.2 Numerical Simulations of Attractor Structure 

In order to investigate the effect on the attractor structure of the introduction of 

inhibitory interactions a similar method to that used to calculate the fraction of 

exactly stable patterns is employed. The computation is performed as follows. 

1. A number of pattern are stored by the connection rule (4.72). 
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A pattern, tt, is presented to the network which is then allowed to evolve 

according to the serial dynamics with updating rule (4.45) until a stable 

configuration is reached. The foreground overlap with the pattern m(oo) 

and the activity yM(oo)  of this stable configuration are then computed. 

This process is repeated for all patterns stored so far in order that the 

average of the overlap between a configuration associated with a pattern by 

the dynamics and that pattern can be computed. 

1P 

	

.cml(oo)> = - E rm(oo) 	 (4.81) 
P 
'P 

	

<y(oo) > = -P L Y'(00) 	 (4.82) 

This scheme is repeated for increasing system size and the appearance of a 

discontinuity in one of the averaged parameters is taken to indicate a critical 

storage level 72. 

72 in fact measures the storage level at which trajectories in the m 1 —m 2  plane 

near to the pattern begin to be captured by a high activity attractor. This is 

because a single trajectory that reaches a high activity fixed point will make a 

large contribution to <y(oo) >. Therefore 72  measures the storage level at which 

a finite number of patterns become unstable to the high activity attractor. This 

is contrast to fl , the capacity as given by Willshaw's analysis, which theoretically 

should predict the storage level when 0.38 of the patterns remain exactly stable. 

Figure 4.11 shows a sudden change in the value of the associated activity. Whereas 

the averaged foreground overlap remains large until a higher loading has been 

reached. Of particular interest is the fact for 0 0  = 1 the 2 levels of inhibition 

simulated show different behaviours which contrasts with the pattern associator 

where the behaviours are identical. This indicates that the use of b = 1 has 

suppressed the onset of the high activity attractor until higher storage levels, as 

was predicted by the analysis of section 4.8.1. We also note that the transition 

value 72  suggested by the simulations, is in both inhibition cases below the j 

value. 

In order to examine the attractor structure in more detail we can analyse the 

computer data in a slightly different way. Figure 4.12 presents histograms of 
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Figure 4.11: < y(oo) > (see (4.82)) vs. y for f' = 1/ln(2) and 0 0  = 1. 

For b = 1 the system sizes are: 128(squares); 256(circles); 512(crosses) 

For b = 0 the system sizes are: 128(triangles); 256(plus signs); 512(diamonds) 

Errorbars are shown when they are larger than symbol size. 
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Figure 4.12: Histograms of number of is in configurations iterated to from patterns 

when b = 1. Each bar of the histogram is the fraction of configurations with the 

corresponding activity. When a bar leaves the frame the value it takes is written 

adjacent to the bar. The number of systems averaged over was 10. N = 512 and 

= 1/ In 2 so that each pattern contains 9 1-sites; 0o = 1. 
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the activities of the attractors that have been reached for the case of b = 1. At 

= 0.303, c = 0.261, a small fraction of the patterns has become unstable however 

instead of iterating to a high activity fixed point, as would happen for b = 0, a 

stable configuration is reached after a few spin flips. As7 increases more patterns 

become unstable and the fixed points reached have a greater range of activities. 

At 7 = 0.593,c = 0.447 some trajectories reach high activity fixed points. The 

distribution of these high activity fixed points is fairly even until = 0.693, c = 0.5 

where a peak appears. This high activity peak is illustrated for 7 = 0.735, c = 0.52 

The introduction of inhibition has allowed slightly noisy versions of the patterns 

to become fixed points at high loading. In this way the capacity of the network 

is increased compared with the case of no inhibitory interactions. The incorrect 

background ones that are present in these fixed points are the is common to the 

large number of patterns that have small overlaps with recalled pattern. Thus a 

form of generalisation, be it welcome or not, is taking place. 

4.9 Discussion of Wilishaw Rule 

The Willshaw rule is a connection scheme that is rather contrary in that its formu-

lation (4.41) is very simple, yet its performance is difficult to analyse exactly. It 

is only for the case of extremely biased patterns that Willshaw's original analysis 

appears accurate. However, within this regime of f a thorough understanding of 

the rule can be obtained. When the original Willshaw rule is used, so that Dale's 

Principle is obeyed, the memory attractors are the exact patterns. Increasing the 

storage level results in a higher connectivity within the network, and the patterns 

eventually become unstable to a high activity attractor. When the connections 

are modified through (4.72), so that connections are inhibitory before they are 

switched on and become excitatory, the high activity attractor is suppressed. The 

high activity attractor that occurs with this version of the Willshaw rule is, to an 

extent, within biological acceptability. This is because it is only appears for high 

connectivity levels that are not realised in biological neural networks. However 

there is a forfeit in biological reality because Dale's principle is violated. In order 

to avoid this forfeit, Golomb et al have argued that the inhibitory interactions 

can be considered an effective interaction arising from an auxiliary network of 
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inhibitory neurons. This idea will be pursued in the next chapter. 

The introduction of inhibitory interactions into the model also changed the at-

tractor structure of the memories. This is most clearly demonstrated by the 

simulations presented in Figures 4.11 and 4.12. When inhibitory interactions are 

introduced patterns that are not exactly stable may still have attractors associ-

ated with them. The simulations also illustrated that for the Willshaw rule in 

attractor neural networks 72  as opposed to y  given by Willshaw's analysis, is the 

more relevant saturation storage. 

For the two connection rules, Covariance and Willshaw, studied in this chapter 

the storage capacity for extremely biased patterns f << 1 is very high and in 

both cases has the form of the Gardner bound (4.2). However to obtain this 

large storage capacity the threshold must be carefully chosen. The threshold also 

determines the basins of attractions of the memory attractors. This is particularly 

apparent with the Willshaw rule, where the overlap has to be greater than the 

threshold for a noisy pattern to be retrieved. 

To summarise, the main biological problem with biased pattern networks is obey-

ing with Dale's principle whilst avoiding the existence of high activity attractors. 

In addition there is the problem of low rates which shall be discussed in the next 

chapter. 
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Chapter 5 

A Biologically Acceptable Neural Network 

Model 

5.1 Low and High Rates 

In the previous chapters, features of attractors that exist in neural network models 

have been analysed and discussed. In the preceding chapter the task of bringing 

these attractors closer to biological reality was initiated by examining the spatial 

activity of the network configuration. In this chapter this task will be pursued 

more vigorously by considering the temporal activity or rates of the model neurons. 

5.1.1 Biological Rates 

In order to bring Neural Network models closer to biology biological experiments 

must be considered so that one knows the behaviour that the models are try-

ing to reproduce. Many Neurophysiological studies are based on microelectrode 

recordings from cortical areas of animals trained to perform certain tasks. As an 

example we shall discuss the experiments of Miyashita and Chang[63]. 

In these experiments a monkey was positioned in front of a video monitor and the 

following trial sequence carried out: 
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Figure 5.1: Activity histograms of a neuron upon presentation of 7 visual stimuli. 

One pattern provokes a high rate while the other 6 lead to the low rates. The 

stimuli is presented for 200ms, as is indicated by the schedule marked under the 

graph. The elevated rate persists for 16 seconds. (Taken from Miyashita and 

Chang[63]) 

• The monkey depressed a lever. 

• A green warning light appeared to signal that a stimulus was imminent. 

• A stimulus pattern appeared on the screen for 0.2 seconds. 

• A delay lasting 16 seconds occurred in which the video screen was blank. 

• A second stimulus, that was either identical to, or different from, the first, 

appeared for 0.2 seconds. 

• The monkey made a choice, by touching the video screen or not, as to 

whether the second stimulus was identical to or different from the first. 

Before the trials were carried out the monkey had been trained to make the correct 

choices and any errors it made during the trials were discarded from the results. 

Throughout the trial the monkey had a microelectrode that recorded from the 

anterior ventral part of its temporal cortex. This mi cro electrode recorded the 

emission of spikes from a single neuron. Each monkey underwent a series of these 

trials with many different stimuli. 

The experiments showed that when the monkey received the initial stimulus the 

firing rate of the recorded neurons, in most cases, became elevated (the firing rate 
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was greater than 10 spikes/s). Of the 144, out of a total of 188, neurons where 

this occurred, 77 showed a selective response in the delay period. This means that 

only for certain stimuli did the firing rate of the neuron remained elevated during 

the delay period. Most of these neurons only gave a response in the delay period 

to a small number of the stimuli. These stimuli to which the neurons showed a 

selective response differed from neuron to neuron. Figure 5.1 shows the results of 

7 trials with different stimuli on the same neuron. The figure clearly shows that 1 

stimulus out of the seven elicited a high firing rate from the neuron that continued 

during the delay period to be terminated by the second stimulus. 

The significant result of the experiment was that during the 16 second delay the 

neurons could sustain an elevated firing rate. The elevated firing rate was greater 

than 10 but less than 20 spikes per second. This is firm support for the concept 

of attractors where a high firing rate of a single neuron can be maintained by the 

cooperative action of an assembly of neurons. It is difficult to see how a single 

neuron could sustain an elevated firing rate independently, in the absence of a 

stimulus. 

5.1.2 Rates and Glauber Dynamics 

The problem in relating the attractors discussed in the previous chapters more 

precisely to the elevated rates noted in the experiments of Mayashita and Chang is 

in the interpretation of rate in the neural network model. If we wish the Glauber 

dynamics used for random sequential updating, to represent the dynamics of a 

system of real neurons, then the time taken for an updating sweep must be related 

to a biological time scale. In an updating sweep each spin is visited once on average 

once, thus only gets a chance to take the active value 1 once every time step. It 

seems natural to equate the time step with some refractory period of the neuron. 

However this raises a serious problem. The models so far discussed are designed so 

that when the network configuration is near to a stored pattern, the spins active in 

a pattern have positive local field. This was revealed most simply by the signal and 

noise analyses (see for example section 2.2). A spin that has a positive local field 

will take the active value 1 whenever it is updated. In the biological comparison 

this amounts to emitting a spike after every refractory period. A neuron active 

in the recall then spikes at the maximum possible rate, that is at several hundred 
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spikes per second. Although the effects of temperature and synaptic asymmetry 

may mean that the attractor is not a single fixed spin configuration, so that some 

spins may not be frozen, a spin with a local field that is, on average, positive will 

still spend more than half the time in the active state. This firing rate is still far 

too high for fruitful comparison with biology. 

5.1.3 Neural Network Models that Produce Low Rates 

In the context of ANN's there have been three models proposed that can produce 

firing rates of a satisfactory magnitude. These models all use a bath of inhibitory 

neurons to control the overall spatial activity. The patterns are stored in an 

excitatory network to which the inhibitory network is coupled. All three models 

basically work by having the inhibition strong enough that the spatial activity 

generated when all the neurons in a pattern fire simultaneously is too high to 

be stable. When the excitatory network is retrieving, at each time step only a 

fraction of the excitatory neurons in the pattern can emit spikes. If, at each time 

step, this fraction is a random subset of the the excitatory neurons in the pattern, 

then each neuron in the pattern will emit on average a spike every few time steps. 

In order for this idea to work, the local field of each neuron involved in recall must, 

on average, be below threshold so that the neuron will emit spikes less than half 

the time. 

However all three models that have implemented this idea have serious drawbacks. 

The model proposed by Arnit and Treves[64,65] has the inhibitory network working 

through an effective inhibition so that the activity in the inhibitory network reacts 

instantaneously to changes in the activity of the excitatory network. In addition 

the effective inhibition has a very specific pattern dependent structure that is 

necessary to to ensure that a single pattern, rather than a mixture of patterns, is 

recalled. 

The model introduced by Rubin and Sompolinsky[66] used the Willshaw synaptic 

structure with an effective inhibition of the same type discussed in the previous 

chapter, section 4.8.1. However the low rate mechanism described above requires 

that the complete patterns are not stable so that a large value of the parameter 

b, discussed in section 4.8.1, must be employed. If the threshold were positive, as 
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was the case in the previous chapter, then the only attractor would be the all zeros 

configuration. In order to destabilise the all zeros attractor a negative threshold 

is introduced. Although this negative threshold is not immediately biologically 

acceptable it can be rationalised by construing it as uniform external stimulus to 

the network from other cortical regions, or attention. In the resulting recall mode 

the fields of the active neurons are below threshold. It is then noise, parameterised 

by temperature T that allows these active neurons to emit spikes every few time. 

steps. 

However, two additional problems appeared with this model. Firstly, the model 

relies on the fact that when a pattern is being recalled, the Willshaw structure gives 

the same field to all 1-sites. When this homogeneity is relaxed, for example by 

introducing non-uniform thresholds, the spins tend to freeze and the low rates are 

lost. Secondly, when the inhibition was simulated in full by a separate inhibitory 

network, it was found that a recalled pattern could not be stabilised for times 

greater than 10 updating sweeps of the system or Monte Carlo Steps (MCS). 

This instability can be understood by realising that the activity of the excitatory 

population is not rigidly constrained. The modulation is by feedback from the 

inhibitory network. The delay in the feedback and the fact that the network is 

stochastic, due to the finite temperature, means that fluctuations in the activity of 

the excitatory network will occur. These fluctuations can instantaneously reduce 

the activity of the network to zero. The spatial activity in the network will 

regenerate itself but the network has no information as to which pattern was being 

recalled. Therefore the network will typically wander from pattern to pattern. 

Buhmann[67] has studied a network similar to [66] but with several differences. 

Firstly, the thresholds are positive which is a more comfortable situation biolog-

ically. The inhibition is effected in a quadratic manner rather than the linear 

manner of [66] and equation (4.72). Thirdly, the connection scheme from the 

inhibitory to excitatory network is not fully connected. This network appeared 

to be the first model, with an explicit inhibitory network, to stabilise a recalled 

pattern, in which the active neurons fired with low rates, for extensive periods of 

time (greater than 30 M.C.S). 

However a closer inspection of the simulations of [67] revealed that the crucial 

feature necessary to bring about this stabilisation was none of the features men- 
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tioned in the previous paragraph, but the specific implementation of the random 

sequential dynamics. In the dynamics used, the neuron to be updated was chosen 

randomly at each update. This means that, in an time step of N updates, the 

number of times each individual neuron is updated is given by a Poisson distri-

bution with mean N x 1/N = 1. The probability that a neuron is not updated is 

then e' 0.38. This implies that 0.38 of neurons, that emit a spike, will remain 

in the active state without being updated for more than 1 time-step. Moreover 

0.14 of neurons that emit a spike will remain in the active state for more than 

two time steps. If in one time-step, a fluctuation in the activity occurs and no 

neurons emit spikes, then the network has some record of the neurons that spiked 

in the previous time steps. This memory allows the same pattern to be recalled 

after a temporary drop in activity. When the network was run with the updating 

of the neurons in a fixed sequence, or alternatively when in each time-step every 

neuron was updated but the order of updating was randomly chosen, the long 

term instability of the patterns returned. 

From the critique of these works some important principles can be extracted: 

• The observance of Dale's principle which separates the neural network into 

two sub-assemblies of excitatory and inhibitory neurons serves as useful 

framework in which the two sub-assemblies are functionally distinct. The 

excitatory neurons store and recall information whereas the inhibitory neu-

rons monitor the activity of the network. Biological evidence[3] shows that 

only 15-20 % of cortical neurons are inhibitory which makes the less direct 

deployment of these neurons for information processing within the models 

appear more reasonable. 

• Noise (parameterised by the temperature T) is an essential feature as it 

allows neurons depolarised below threshold to emit spikes. On the updating 

of such neurons the probability of emitting a spike is less than a half so that 

low rates may result. 

• In order to stabilise the recall of patterns for significant lengths of time, 

there must be some short term memory of the spiking within the network. 
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5.2 Integrate and Fire Neurons 

5.2.1 Neurons that Integrate over Time 

The third principle extracted in the last section indicates that a there must be 

some memory of the spike history of the network. In the model of Buhmann[67] 

this was realised by the phenomenon of neurons remaining in the active state for 

more than 1 time-step. However this was an artifact of a particular dynamics. 

One way to introduce this memory into a neural network by more direct means 

is to allow the model neurons to integrate their inputs over time as well as space. 

The model neurons studied so far in this thesis have only integrated their inputs 

over space, by virtue of the summed weights rule (1.8). 

If we return to biology it is well known that the cell membrane integrates its 

inputs over time as well as space. This is performed by the membrane having a 

time constant r that is due to the capacitance of the cell membrane produced by its 

insulating properties. The changes in membrane potential due to incoming action 

potentials are then smeared out over time and the effects of non-simultaneous 

incoming action potentials can add up. This effect can be partially modelled by 

introducing the time constant i-  through an exponential decay of the membrane 

potential to its resting level. 

h1(t + 1) = h(t)exp(- 1 ) + 	Ja1(t)  
3 

( 

t + ' + 
E JaV(t')expP

~ )
(5. 2 ) h(0)exp

r  

In (5.2), hi  denotes the membrane depolarisation rather than the absolute mem-

brane polarisation so that hi  = 0 indicates that the membrane potential is at the 

resting level. The term membrane potential will be used to refer to h from now 

on, to distinguish it from the local field (1.3). The initial condition in (5.2) is 

given at i = 0. In biology this corresponds to the post-synaptic potential at the 

end of the absolute refractory period due to the last spike emitted by the neuron. 

The values h(0) may take will be discussed in section 5.3.2. 

In (5.2) the sum over V shows that such a model neuron is integrating its inputs 

over time as well as space. What equation (5.2) amounts is keeping the membrane 
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potential as a dynamical variable of each neuron, rather than calculating it only 

when a neuron is updated. This is the essence of an integrate-and-fire neuron. 

The study of such model neurons has developed separately from the study of 

the model neurons considered in the previous chapters[68] . Integrate and fire 

neurons are usually considered on the single neuron level as a unit that integrates a 

constant afferent stimulus which decays exponentially. When the potential reaches 

threshold the neuron emits a spike and the membrane potential is set to some 

negative (hyper-polarised) value. Continuous time is usually considered and the 

membrane potential dynamics written as a differential equation 

dh(t) -hi 
 +1(t), 	 (5.3) 

dt - r 

where 1(t) is the afferent current. If the afferent current is constant then the time 

for the neuron to reach the threshold, which, excluding the ARP, amounts to the 

period of the firing frequency, is given by [68} 

Pr - h0 1 
,r In 	I . 	 (5.4) 1 ft - 9 J 

If Ii- .c 9 7  the potential does not reach threshold and the firing frequency is zero. 

5.2.2 New Considerations Introduced by Integrate and 

Fire Dynamics 

The basic aim of the present chapter is to incorporate integrate and fire neurons 

into a network with attractors and associative memory properties. In practice this 

amounts to a complete revision of network dynamics. The first step of this revision 

is to move towards continuous time so that the exponential decay of the membrane 

potentials can be implemented. With regards to computer simulation one still has 

to discretise the time so that a programme that carries out the updating may 

be written. When Glauber dynamics are used, the shortest time scale is one 

updating sweep which corresponds to a refractory period of approximately 5 ins. 

When time scales shorter than this are considered, one must also consider the 

biological mechanisms that operate at these shorter time scales. As the time scale 

becomes shorter and shorter then more biological complexity must be taken into 

account. For example the duration of an action potential is about 1 ins. If one 

considers a basic time scale much smaller than this then the effect of an action 
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potential must be spread over more than one unit of time. In order to avoid an 

unreasonable amount of complexity we will choose the basic time scale to be of 

order lms. This time scale is additionally convenient as it is approximately the 

resolution at which biological experiments are carried out. This will then allow a 

direct comparison between the results of computer simulation and the results of 

biological experiment. 

At this time scale there is one obvious biological feature that must be modelled. 

This is the time for an action potential emitted by the pre-synaptic neuron to 

reach the post-synaptic neuron. This delay time is a summation of the time 

for the action potential to propagate along the axon, the time for the synaptic 

transmitters to cross the synaptic cleft and the time for electrotonic propagation 

of the effect of the action potential up the dendritic tree. The modelling of the 

delay time will be explained in detail in section 5.3.6. 

A feature of network modelling that must be reconsidered when the basic time 

scale is shortened is the implementation of noise. In Glauber dynamics the noise 

is implemented through the probabilities of the outcome of the update (4.5). 

The probabilities require a random number to be generated. For two consecutive 

updates of a neuron these random numbers are, of course, uncorrelated which 

means that the noise is uncorrelated at consecutive updates. As discussed in 

Chapter 1, noise may be interpreted in a variety of different ways. The main 

features it has been used to capture are variations in the properties of neurons over 

the neural population; variations in time of an individual neurons properties; and 

the variations in stimuli afferent upon on individual neuron from extra-network 

sources. The latter two features both involve fluctuations in time at an individual 

neuron. As the time scale becomes shorter these fluctuations must be correlated 

from one update of the neuron to the next update. 

In the present chapter we will primarily consider noise as extra network afferents. 

These afferents directly affect the membrane potential of a neuron so that the 

most convenient way of implementing the noise and allowing correlations in time 

to develop is to write the equation for the membrane potential as 

1 
h(t + 1) = h(t)exp(--) + 1(t) + . 	 (5.5) 

.7.  

Here 1(t) represents the coherent afferents on the neuron whereas is a random 

number which represents the uncorrelated extra-network afferents. This imple- 

130 



mentation of the noise should allow the mechanism of low rates to occur: the 

accumulation of noise components can allow the membrane potential of a neu-

ron left below threshold by the coherent input 1(t) to cross the threshold. Recall 

that the noiseless integrate and fire neuron would only spike if the stimulus was 

above a certain strength. This was demonstrated by equation (5.4). - 

In equation (5.5), 1(t) may have two components: the first is the feedback from 

action potentials within the network; the second is a coherent stimulus from out-

side the network. In the dynamics discussed in the previous chapters, recall of a 

stored pattern could be initiated by setting the spin configuration of the network 

to be a noisy version of a stored pattern and then iterating the dynamics. However 

in the dynamics presently being formulated it is the membrane potentials that are 

the important dynamical variables rather than the states of neurons. In order to 

stimulate a network towards recall of a stored pattern it is the membrane poten-

tials that must be initialised. The most realistic way of doing this is to impose a 

stimulus component of 1(t) at a certain set of neurons for an initialisation period. 

Another feature that must be reconsidered when one moves to shorter timescales 

is the refractory periods. With Glauber dynamics the refractory period did not 

have to be modelled because the basic unit of time was some refractory period. 

However we now have to implement a refractory period explicitly. In addition the 

distinct phenomena of absolute and relative refractory periods must be modelled 

separately. An absolute refractory period can be modelled by simply not updating 

a neuron for a short time after it has fired. This means that the neuron will not 

spike but may still receive afferents. In addition, if immediately after a neuron 

has spiked, the membrane potential is reset to a negative value, the neuron will 

emerge from the absolute refractory period hyper-polarised. The time taken for 

the neuron to reach its resting potential and depolarise to somewhere near the 

threshold value will then represent a relative refractory period. 
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5.3 The Model Network in Detail 

5.3.1 The Parameters of the Network Model 

The network is composed of Ne excitatory neurons and N inhibitory neurons. 

An- acceptable biological figure of N r 0.2N will be observed. Each neuron 

is described by two time dependent variables: its membrane potential, h (r 

h) and the time of the last spike emitted by it t7 (or t), where the superscript 

differentiates the excitatory from inhibitory neurons. 

In addition, each neuron has several other parameters associated with it: 

A threshold ge,i 

An exponential decay time constant, 7e,j  of the neuron's membrane poten-

tial. 

The absolute refractory period (ARP) of duration p. Within this period, 

which immediately follows the emission of a spike a neuron cannot emit a 

second spike. 

The value of the post-spike membrane potential, jt, which may effectively 

represent a relative refractory period. 

The synaptic couplings between pairs of neurons fall into four categories: excitatory-

excitatory, excitatory-inhibitory, inhibitory-excitatory and inhibitory-inhibitory. 

The connections within each of the last three categories are taken to be uniform, 

for example any two inhibitory-inhibitory connections!  take the same value J1 /Nf. 

The excitatory-excitatory connections are assigned values according to the Will-

shaw connection scheme discussed in section 4.7 with a different normalisation. 

To be specific 
ice 

JFF — - 	if in at least one pattern m = 71j= 1 	(5.6) 
ti 7 

= 0 	 otherwise. 	 (5.7) 

Altogether there are four coupling parameters J1, Jie,  J and Jt€,each  of which 

are of approximate magnitude unity. 
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Each synapse also has a delay parameter, Sjj  associated with it. This delay is the 

time taken for a spike emitted by the pre-synaptic neuron j to reach the post-

synaptic neuron i. Finally there are two global noise levels, Te  and Ti, for the 

excitatory and inhibitory networks respectively. 

5.3.2 The Dynamics 

The basic time scale is determined by the ARP which corresponds to about 2ms. 

The ARP is of duration p time steps. These time steps are the resolution of the 

model. In general we will consider p = 4. Within each time step, each neuron 

is updated. The updating is basically parallel within each time step so that the 

order of updating is of no importance. An exception to this statement is when 

there are no delays in which case the updating should be random sequential. The 

updating procedure for a particular neuron is as follows. 

The neuron's membrane potential is reset according to the equation 

h'1 (t) = 	- 1)exp(---r)+ i + 	JS(t —11 - S) + , 	(5.8) 

where I is the stimulus (if any) and . is the incoming noise. The third term 

on the r.h.s. of Equation (5.8) represents the integration of action potentials, 

from within both the excitatory and inhibitory sub-networks, that arrive at 

neuron i at time t. 

The last time the neuron spiked is examined to see if the neuron is in an 

ARP. This is so if t < t + p. If this is the case the neuron is refractory and 

cannot spike so the updating is complete. 

If the neuron is not refractory and if h7"(t) > 97' then the neuron spikes at 

time t. In this case tj  is set to t and h1$  is reset to t. If ji < 0 the neuron 

will eventually emerge from the refractory period with a hyper-polarisation 

of around p exp(—p/'r), which will lead to an effective refractory period as 

discussed in section 5.2.2. 
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5.3.3 Initial Stimulus and Associative Recall 

A stimulus, at a neuron i, is represented by an afferent current that persists, for 

an initialisation period Ts and generates an excitatory post synaptic potential of 

magnitude I. per time step. The associative memory properties of the network 

are determined by how such stimuli are distributed across the combined network 

and how the network responds. The distribution of the stimuli is described by: 

XP 	the fraction of neurons in the pattern receiving I 

x 6 	the fraction of neurons in the background receiving I 

XI 	the fraction of inhibitory neurons receiving I. 

The first two groups are both excitatory. The first group is composed of neurons 

which. have 77J = 1, whereas the second group have 71i = 0 (the pattern being 

recalled is taken to be pattern 1). The inhibitory neurons are not included in the 

pattern structure but may still be subject to stimuli. 

5.3.4 The Noise Distribution 

So far the exact distribution of the noise C has not been specified. When the noise 

is interpreted as random afferents from extra-network sources then the distribution 

will have a finite positive mean. This because it is excitatory neurons that make 

the long range connections within the cortex. So in general the afferents from 

extra-cortical sources will be excitatory. The mean of the noise must vary as the 

size of the time step l/p, is altered. To show this explicitly we write the mean as 

(5.9) 
P 

Equation (5.9) guarantees that whatever value p takes, the mean noisy contri-

bution to the membrane potential in one refractory period will be T (excluding 

the effect of decay of membrane potential). T then becomes a measure of the 

extra-network activity. With regard to simulation the easiest distribution to use 

is a Gaussian. A Gaussian distribution can be justified if the mean number of 

random inputs to a neuron in each time step is large. This should be the case 

if p is not too large so that the discretisation of time is not too fine. One still 
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needs to specify the variance of the Gaussian distribution. The variance repre-

sents the stochastic part of the extra-network afferents for if zero variance was 

chosen, each network neuron would just be receiving a constant stimulus of T/p 

every time-step. Although this variance can be chosen arbitrarily, we choose to 

make a correspondence with the noise implementations of the previous chapters. 

In these chapters a neuron was updated once every refractory period, so that a 

random number to calculate the probability of firing was generated once every 

refractory period. We can make a correspondence between the random number 

generated for Glauber dynamics and a noisy afferent to the neuron. Although 

strictly a tanh function should be used for Glauber dynamics, this is qualitatively 

the same as the use of a Gauss error function for which the noisy afferent has a 

Gaussian distribution with variance T 2 , where T is the temperature parameter of 

Glauber dynamics. The noisy afferent could have arrived at any time during the 

refractory period. In the present dynamics we update the neuron p times in a 

refractory period so that one can approximate Glauber dynamics in the present 

framework as a binomial process for the arrival of a Gaussian random variable. 

Mathematically, 

= 0 with probability 
p 

1 	1 
—,exp— (i) 

 

 

= z with probability (5.10) 

However the point of formulating the noise as a stochastic contribution to the 

membrane potential was to introduce the possibility of correlations within the 

noise. The stochastic process realised by (5.10) will generate a stochastic contri-

bution to the membrane potential on average once every ARP. This allows time 

for the different stochastic contributions to decay and so suppress the build up of 

correlations. In order to avoid this effect we must have a stochastic contribution 

at each update. In order to do this and still have some correspondence with the 

temperature of Glauber dynamics we can use a Gaussian distribution for that 

has the same variance, a2 , as (5.10): 

a2 = T2 1, 	 (5.11) 
P 

and a mean given by T/p. 

135 



5.3.5 Shunting and Noise 

In chapter 4 the inhibition was introduced in a linear manner so that the effec-

tive inhibition term used in (4.8.1), 1', was simply subtracted from the 

fields at the sites, in the same way that excitatory contributions to the fields 

were added. This linear effect of inhibition is hyper-polarisation. However in re-

ality inhibition occurs through shunting as well as hyper-polarisation. Shunting 

basically decreases the depolarisation caused by excitatory afferents. This is be-

cause inhibitory afferents increase the overall conductivity of the membrane. One 

can visualise a simple circuit to understand that an excitatory current will cause a 

smaller voltage drop across the shunted membrane because the resistance is lower. 

Inhibition in cortical neurons is a mixture of increased conductivity for K+  and 

Cl- ions. Increased K conductivity has both hyper-polarising and shunting ef-

fects whereas increased Cl- conductivity is mostly shunting. In this chapter the 

aim is to present simulations which can be compared with biological experiments. 

In order to do this shunting must be modelled. 

In this chapter shunting is modelled by expressing the membrane potential h as 

:0% - 
uiex - (1 - s)UF 	 (5.12) 

1+ 

where UeJc  is the temporal summation (linear summation with exponential decay) 

of excitatory afferents and uln  is the temporal summation of the inhibitory affer-

ents. The inhibitory term with coefficient 1 - .s represents the hyper-polarising 

effect of the inhibition whereas the term in the denominator with coefficient .s/O 

represents the shunting effect. The reason for the choice of these coefficients will 

become apparent in the next paragraph. This manner of modelling inhibition is a 

simplification because it does not distinguish an inhibitory afferent that increases 

Cl- conduction, and so results primarily in shunting, from one that causes a high 

degree of hyper-polarisation. Instead all inhibitory afferents cause the same ratio 

of hyper-polarisation to shunting. This ratio is determined by the parameter .s. 

As s is varied from 0 to 1 one goes from a fully hyper-polarising implementation 

of inhibition to a fully shunting implementation. 

When the noise in the network is implemented as random afferents the value of 

s does not alter the -the time at which a neuron's membrane potential crosses 
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threshold, although the actual value of the membrane potential at a general time 

may be different. In order to see this it is convenient to consider the noiseless case 

first. The condition for the emission of a spike is 

U!(1s)UF 2 hi  - 
 

	. 	> 9, 	 (5.13) 
,uln 

1+ —t— 
which yields, after multiplying out the denominator 

	

ufx_un>9. 	 (5.14) 

This condition is independent of s and is equivalent to the condition obtained for 

a fully hyper-polarising implementation of shunting. In the presence of noise the 

condition for the emission of a spike becomes 

	

ur ± - ( 1— s)UF 	 (5.15) 

The noise term . is placed alongside Ujex because we are viewing noise as an 

excitatory afferent. What this implies is that the noisy afferents are shunted as 

well. One then finds 
Uexuin+ . > o 	 (5.16) 

which again is independent of s and equivalent to fully hyper-polarising inhibitiot 

Practically one may take advantage of the fact that running the network with or 

without shunting is mathematically equivalent, to produce several representations 

of the membrane potential from the same run. It is most convenient to initially 

run a simulation with the inhibition fully hyper-polarising (to which the quoted 

synaptic efficacies in the figures refer) and then vary the amount of shunting to 

a biologically realistic level. The desired level may be determined by taking into 

account the current biological knowledge as to how much shunting occurs, or more 

pragmatically by comparing the appearance of the representation to experimental 

results. The fully hyper-polarising representation of the membrane potential may 

be described as "effective" because the amount the potential is below threshold 

determines the the amount of excitatory afferents the neuron must receive to emit 

a spike. In contrast representation of the membrane potential that involves some 

shunting may be described as "biological". 
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5.3.6 Delays 

Synaptic transmission delays may have several origins. They may reflect the 

length of the pre-synaptic axonal distance; the time taken for transmitters to 

cross the synaptic cleft; or the post-synaptic dendritic distance. We model delays 

by the parameter Sjj  associated with each synaptic connection. In the updating 

scheme described in section 5.3.2 a spike emitted by the pre-synaptic neuron j 

at time t affects the membrane potential of the post-synaptic neuron i at time 

t + Sj. The Sjjs are quenched random variables that are selected according to 

some distribution Pr(85). The true nature of this distribution is not known. One 

could make relatively complex choices for the distribution: for example one could 

consider different distributions for excitatory and inhibitory neurons which would 

reflect the tendency for the inhibitory neurons' dendritic trees to be more localised. 

However one would hope that the details of the distribution do not qualitatively 

affect the performance of the network. We will consider two contrasting but 

relatively simple distributions which shall be referred to as uniform and random. 

For uniform delays Sj  is independent of i and j: 

= 	 (5.17) 

where D1  is the fixed delay length, which may assume different values according 

to whether the pre-synaptic neuron is excitatory or inhibitory. 

For random delays we choose a maximal delay (Dmax)  and a minimal delay 

(Dmin) and then set each Sjj  to a value inclusively between D max  and Drain  

with equal probability: 

Pr(8j) = 	
1

. 	if Dmln < 8ij $ Dma 
Dma_ Drum +1 	- 

= 0 	 oththrwise 	 (5.18) 

In general Dm` will be taken to be 1. 

The introduction of delays into the network forms a test of robustness. The 

network is most robust when the effect of spikes on membrane potentials is in-

stantaneous. This is because fluctuations in activity within the network are more 

quickly damped out. If associative memory can be found in the presence of de-

lays then one would be optimistic that associative memory would endure in the 

presence of other disruptive influences. 
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Our specific choice of distributions is motivated by a desire to keep the model sim-

ple, which in turn facilitates simulation, hence the use of uniform delays. Random 

delays are used to compare with uniform delays and check whether the simplicity 

of the latter has not obscured any important phenomena. Random delays are 

also a partial realisation of structural inhomogeneities. The introduction of such 

inhomogeneities into the model is important because the connection strengths are 

uniform for each of the four types of synapses (see Sec 5.3.1). We will show that 

in many parameter regimes the two delay distributions give qualitatively simi-

lar results, demonstrating the insensitivity of the basic substrate to model details, 

though random delays provide a more robust network and higher storage capacity. 

5.4 Computer Experiments and Graphic Dis-

plays 

We shall investigate the model described in the previous sections solely by com-

puter simulations. There are two reasons for this. Firstly, as it stands the model 

is too complex to perform an analysis on and in addition the Willshaw connection 

rule used is only amenable to analysis in the regime of extreme bias of patterns 

f r-' ln(N)/N as discussed in chapter 4. Secondly, the reason the model is complex 

is because it has been designed to be reasonably faithful to biological reality and 

this has necessitated the introduction of a large number of new parameters and a 

revision of the dynamics. In order to test whether this complexity has served its 

purpose one would like to see the manner in which the model functions rather than 

obtain theoretical bounds on, for example, storage capacity. Of course, the under-

lying motivation is to produce results that, whilst resembling those of biological 

experiments, also manifest the fundamental principles of associative memory, thus 

vindicating the more abstract studies of the last thirty years. For these purposes 

a computer simulation is ideal. I shall present fairly sophisticated graphic displays 

produced by simulation runs that may be compared directly with the results of 

cortical experiments. The displays are of three types that shall now be discussed 

in turn, referring to Fig. 5.2 

139 



5.4.1 Membrane Potentials 

These are displayed in the three top windows in the figure, each is equivalent to an 

intra-cellular electrode measuring the time course of the membrane depolarisation 

of a particular neuron. Time runs from left to right. One probe neuron is selected 

from each of the three classes (from top): foreground ( excitatory neurons in the 

pattern being recalled); inhibitory neurons; background (excitatory neurons not 

in the pattern being recalled). The resting potential and threshold depolarisa-

tion levels are marked by horizontal lines across each window, with the threshold 

drawn above the resting potential. The potential plotted may be the "effective" 

membrane potential in which all the inhibition acts as hyper-polarising current, or 

a "biological" membrane potential in which some some fraction of the inhibition 

has been converted into shunting (see section 5.3.5). In both cases, whenever the 

potential reaches the threshold a spike is emitted. This can be checked by com-

paring the times at which the threshold is crossed with the corresponding spike 

raster. 

5.4.2 Spike Rasters 

Three spike rasters form the central window of each display. In each raster there 

are seven rows of dots. Each row of dots represents the spike emission times 

of a particular neuron. Each raster represents seven randomly chosen neurons 

from a particular class: inhibitory (top raster); background (middle raster) and 

foreground (bottom raster). The raster representing background neurons uses 

large dots, for ease of viewing, because the emission of a spike from one of these 

neurons is a less frequent occurrence than the emission of a spikes from a neuron 

in one of the other two classes. Time runs from right to left. The time at which 

the initial stimulus is turned is marked by a vertical line. The small horizontal 

bar at the top of the raster window sets the time scale and is 2 ART in length. 

This type of plot is the most useful for comparison with real cortical recordings 

where spike rasters are often presented (see for example [47]). It also gives a useful 

visual impression of effects such as "freezing" ( when some neurons spike with 

high rates while others are quiescent). Freezing has a tendency to occur amongst 

the background neurons due to the use of the Willshaw matrix that leaves some 
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background neurons highly interconnected with neurons in the pattern whilst 

other background neurons are disjoint. 

5.4.3 Average Spike Rates and the Edwards-Anderson 

Parameter 

The three bottom windows display a quantitative picture of the spike activity 

within the three classes of neurons during a run. The quantity plotted is a running 

time average of the population average of the spike rate over each of the classes of 

neurons. It is calculated by counting the total number of spikes that have been 

emitted by neurons within the class in a time bin of fixed length B ARPs. This 

number is then divided by the number of neurons within the class and by B to 

give uPuub(t)  the short time average of the number of spikes per neuron per ARP. 

The superscript corresponds to the class of neurons being considered so that 

1 
9(t) = 

BNdf 	
(5.19) 

Bp i 

1 = 	>1 E(' - ii )Vt(t') 	(5.20) 
BN(1 - 1) 

1 
Vi(t) =BN 	

'V'(t') 	 (5.21) 
t'=t— 	i Bp  

where Vi ( t) = 1 if neuron i spiked at time t and is 0 otherwise. However because 

the background spike rate is very low (1— f)vb/f is displayed in the window. This 

implies that when the displays of u  b and 9 are of the same height it indicates 

that equal absolute numbers of foreground and background neurons have spiked 

in the bin period. 

To quantify the activity within the different classes over the length of an individual 

run one calculates the average activity over time and population of a neuron within 

a class. This simply amounts to counting the total number of spikes emitted from 

neurons within a class, dividing by the duration of the run in ARPs and the 

number of neurons in the class to give (zfl ib ) the average number of spikes per 

ARP. Retrieval then manifests itself through (vP) t  being significantly higher than 

(u6 ). The value of (v ' ) t  is not directly relevant to retrieval but we shall see that 
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(VP, 
) 	( v . ). This is acceptable because the inhibitory neurons then do not 

have an unreasonably high spike rate. 

In order to quantify the distribution of rates over a class of neurons we shall use 

the Edwards-Anderson[341 order parameter. This parameter is in fact the mean 

square of the .rates over the class: 

qi'bi 
= Ni' 	

((Pb.5)2 	 (5.22) 

The variance of the rate distribution over a class is then 

52 = f.b.i - ((v i' 61)) 2 	 (5.23) 

When this variance is zero, then each neuron in the class has spiked with the 

same average frequency. The opposite extreme is when the neurons are frozen 

so that some do not spike at all ((vi'4'6') t  = 0) and some spike at maximal rate 

((

b,i 	 61 	 pbi 	61 vf ) = 1). This would give q '  its maximal value q 	= (vi' 

5.5 Results from the Computer Simulations 

In order to focus the simulations on specific points we shall present graphic displays 

that illustrate: 

The manner in which associative memory and retrieval manifests itself. 

The effect of varying the amount of thermal noise. 

How the simulations with the different delay distributions compare with each 

other. 
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Figure 5.3: see p.146 for caption 
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Figure 5.2: Retrieval illustrated by graphic display produced during a run of the 

network. The top three windows are the time course of the membrane potential 

from three selected neurons. From top: pattern, inhibitory, background. These 

neurons' spike times are recorded in the bottom row of the corresponding spike 

raster. The shunting representation used fully hyper-polarising (s = 0). The 

horizontal lines mark the resting potential (lower line) and threshold. 

The large middle window contains the spike rasters: the top 7 rows (small dots) 

contain the spike times of 7 inhibitory neurons; the middle rows (big dots) contain 

the spike times of 7 background neurons; the bottom rows (small dots) contain the 

spike times of 7 pattern neurons. The vertical line marks the end of the stimulus 

period. The short horizontal line at the top left of the window sets the time scale 

and corresponds to 2 ARPs. 

The bottom windows display the time course of the average activity rates. From 

top: neurons in a pattern, inhibitory neurons, background neurons. The thin 

horizontal bar marks the position of an activity level of 10 % of the maximal 

rate. The thicker horizontal line marks the average level of the activity within the 

current run. 

All windows share a common time axis. 

Parameters: 

Neurons: N 6  = 1000, W = 200. Patterns: P = 3,1 = 0.2. Synaptic strengths: 

jee  = 0.87, J = 0.87, fi = 0.9, J" = 0.9. ARP: p = 4. Delays: uniform 

= 3,D1  = 2. Thresholds: 96 = 9 = 0.25. Noise: 7' = 0.05,7' = 0.045. 

Post spike hyperpolarisation: ji = —0.2 Decay constants: r6  = = 4. Stimulus: 

XP  = 0.4, xb = 0.0, xi  = 0.1; amplitude I = 0.04; duration 5 ARP. Duration of 

run = 200 ARP 400ms. 

Results: 

Foreground (v") g  = 0.086, q" = 0.008; background (v 6)t 
	10 -4

,q ' 	10_ 6 ;  

inhibitory (v) = 0.075, q = 0.006. 

5.5.1 Associative Retrieval 

Associative retrieval manifests itself as an elevated firing rate in the pattern neu-

rons that survives for an extended period of time after the initial stimulus has 

ceased. The elevated firing rate should extend to those pattern neurons that did 

not receive an initial stimulus. The firing rate is elevated compared to the firing 
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rate of the background neurons. The firing rate of the inhibitory neurons is not 

directly relevant to associative retrieval. However it is important that they still ex-

hibit low rates. This is assured by demanding that the firing rate of the inhibitory 

neurons is not higher than that of the pattern neurons. This assumes that the 

pattern neurons have low (but elevated) rates. There is no sharp criterion for what 

is a biologically acceptable low rate. Nevertheless we can arbitrarily choose a rate 

of 50 spikes per second as the threshold for acceptability. This translates, with an 

ARP of 2 ms, into ii = 0.1. The simulation in Fig. 5.2 fulfills these requirements 

and is thus an example of associative retrieval. One may note that the rates die 

down to the steady level of ii = 0.1 (for the foreground neurons) after a transient 

burst of actvity driven by the initial stimulus. The is reminiscent of the data from 

real biological experiment shown in Fig. 5.1. 

In Fig. 5.2 it can be seen that for the foreground and inhibitory neurons q is 

very near ((v)t) 2  so that the rates are evenly distributed within these two classes. 

However for the background neurons this is not true and qb >> (u6 )t. This implies 

that the some background neurons are spiking with higher frequency than others. 

The large value of the EA parameter for the background neurons may well be 

particular to the Willshaw connection scheme used for the Jee connections. At any 

rate its source is easily understandable: the background neurons with the higher 

rates are those connected to a large proportion of the neurons in the pattern being 

recalled. In Fig.5.2 two of the background neurons emit spikes, but one can see 

that their rates are very much less than those of the foreground neurons. The 

more serious implication of the high EA value for background neurons is that 

many background neurons are spiking with very low rates or not all. This can 

be seen in the spike raster of Fig. 5.2 where five out of the seven background 

neurons probed do not emit spikes. The average background rate (v')  converts 

into something less than 0.5 spikes per second. Instead one would like to see all 

background neurons spiking with the biological spontaneous firing rate of around 

2 spikes per second. 

Apart from the reservation about the distribution of background firing rates, Fig: 

5.2 displays convincingly the the manifestation of associative memory that the 

model was developed with a view towards. This type of retrieval occurs with a 

wide range of parameters as long as the level of rates demanded is not too low. 

The level of rates is controlled by the relative strength of the inhibitory synapses, 
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Figure 5.3: Two displays illustrating the temperature dependence of retrieval. 

Parameters are as for Fig. 5.2 except for temperatures. 

left hand display Te  = 0.04,T = 0.036; right hand display Te  = 0.06,7' = 0.054. 

Results: left hand display: Foreground (v ' ) t = 0.038, qP = 0.001; background 

= 0.002, qb 	0; inhibitory (VA) = 0.037, q' = 0.001. 

right hand display: Foreground (vP) t 	0.115,q' = 0.013; background 

0, q' 	0; inhibitory (v)t = 0.105, q' = 0.011. 

J" to Jig , and more directly by the temperature. 

5.5.2 The Dependence on Temperature 

In general it was found that to achieve associative recall the temperature of the 

inhibitory network needed to be lower than that of the excitatory network. A 

qualitative explanation for this is that if, in the recall process, no neurons have 

fired for a short period of time so that the intra.network contributions to the 

membrane potentials have decayed below their equilibrium levels, then the ex-

citatory neurons will have spikes generated through noise at a higher rate then 

the inhibitory neurons. This excitation will cause the activity in the network to 

regenerate itself and recall to continue. 

Figure 5.3 displays two runs with identical parameters to figure 5.2 except for the 

temperatures. In the left hand frame, which is at low temperatures, the pattern 

remains stable for only a short time after the initial stimulus. The rates quickly 

drop to a very low level and the recall of the pattern is lost. After the recall is 

lost, the activity does not regenerate itself to the level it attained after the initial 
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stimulus. In the second frame which is at higher temperatures than Fig 5.2, the 

recall of the pattern continues after the initial stimulus has been turned off. The 

display is similar to Fig 5.2 except that the rates are higher. Figure 5.3 illustrates 

how the rates in recall increase with temperature and that the temperature must 

be must be above a certain level for recall to occur reliably. Of course, at the 

extreme of very high temperature one would expect recall to breakdown asweU. 

The left hand side frame of the figure is of additional interest as it suggests a 

mechanism through which the network could be removed from an attractor once 

a neural computation was complete. Starting from a recall mode similar to that 

of Fig. 5.2, the temperature could be lowered and the activity in the network 

will simply die down, as in the left hand frame of Fig. 5.3. The interpretation of 

temperature as extra-network afferents can then be construed further as attention. 

5.5.3 Oscillatory Behaviour with Uniform and Random 

Delays 

The difference between the behaviours of nets with uniform or random delays is 

best exposed through an unexpected but interesting phenomenon that appeared 

during the simulations. This is oscillatory behaviour in the rates. 

An example of this oscillatory behaviour is shown in the left hand frame of Fig. 

5.4. One can identify the oscillations visually in all three types of graphic display 

but most easily in the average rates window. The oscillation is not perfect, which 

may be explained by the stochasticity in the model, and the average period is 

about 8 ARP. These oscillations are very reminiscent of those first reported by 

Gray and Singer[69,70]. In order to make a more definite connection between the 

oscillations seen in the present simulations and these cortical recordings, more 

detailed experiments are required to define the true nature of the biological oscil-

lations, and a systematic analysis of the simulation data, in the manner of [71], 

would need to be carried out. 

In general there are two simple ways to produce oscillations in the simulations 

with uniform delays: 

1. Increase the strength of the excitatory efficacies relative to the inhibitory 
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Figure 5.4: Displays illustrating oscillatory behaviour with uniform delays (left 

hand frame) and the absence of such behaviour with random delays (right hand 

frame). Parameters are as in Fig. 5.2 except that the excitatory synaptic strengths 

have been increased to fC = Jei = 1.1. 

ones (e.g. Fig. 5;4). 

2. Keep a small stimulus present throughout the run 

The latter method is perhaps more relevant to the Cray-Singer oscillations. The 

first method is illustrated in Fig. 5.4. where the parameters are identical to Fig. 

5.3 except that the strength of the excitatory synaptic efficacies has been increased. 

In the right hand display of the figure the parameters are identical to the left hand 

side except that random delays have been used. The mean delay times are the 

same in both frames. In the presence of random delays the oscillatory behaviour 

has been lost, although retrieval is still good. Oscillatory behaviour is attainable 

with random delays but one must search harder in the parameter space, than for 

uniform delays, to find it. One may say that although oscillatory behaviour is not 

an artifact of uniform delays, its presence is enhanced by them. 

In order to compare the robustness of uniform and random delays we resort to 

testing the storage capacity. In Fig 5.5 the left hand display shows a network with 

uniform delays that has been overloaded by the storage of too many patterns. The 

network is identical to that of Fig. 5.3 except that the number of patterns stored 

has been increased from 3 to 7. The difference between the two displays is an 
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Figure 5.5: Displays illustrating breakdown of retrieval at high storage for uniform 

delays (left display) but retention of retrieval for random delays (right display). 

Parameters are the same as Fig: 5.2 except for P = 7 and j" = = 0.9. 

The representation of the membrane potential uses s = 0.7. Right hand dis- 

play (uniform delays): Foreground (vP) t 	0.032, qP = 0.001; background 

= 0.011,q6  = 0.0; inhibitory W) t 	0.069,q' = 0.005; left hand dis- 

play (random delays): Foreground (v" ) t = 0.083, qP = 0.007; background 

= 0.002, q6 	0; inhibitory (v) = 0.079, q 1  = 0.006. 
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increase in background activity, in Fig. 5.3 over Fig. 5.5, after the stimulus 

has been switched off. This results in decreased foreground activity in Fig. 5.5 

which leads to the foreground neurons no longer having a significantly higher rate 

than those of the background. This sequence of pattern destabilisation is of a 

different appearance and origin from that shown on the left hand of Fig. 5.3, 

but is to be expected from a Willshaw connection scheme. At too high a loading 

some background neurons will become almost fully connected to the foreground 

neurons. These background neurons will then fire at nearly same rate as the 

foreground neurons and the increased spatial activity will cause other background 

neurons to fire. The inhibitory network will suppress the overall activity in after 

a slight delay, by which time the recall of the initial pattern has been lost. 

In the Willshaw net with inhibition discussed in chapter 4, recall could still take 

place when some background neurons became active. This was because the inhibi-

tion acted instantaneously. When we use random delays then effects of fluctuations 

in activity within the pattern being recalled or inhibitory network are transmitted 

in a manner more smeared over time than with uniform delays. This is because 

some delays are shorter than average and some are longer. This should allow the 

network to react in a quicker but less forceful manner to fluctuations in activity. 

The network may then be able to suppress the activity of those backgrdund neu-

rons highly connected to the foreground neurons, without endangering the recall 

of the pattern. That this is indeed the case is illustrated in the right hand frame 

of Fig.5.5. Here the parameters are identical to the left hand frame, except that 

random delays, with the same mean, are used. One can see that recall still takes 

place. 

The storage levels illustrated in the previous paragraph do not at first glance seem 

very impressive. However one must remember that a Willshaw connection scheme 

is being used for values of f far from the optimal regime of f r' ln(N)/N for 

the Willshaw network. In Fig. 5.6 the value of f is reduced to 0.1 and one sees 

that when 25 patterns are stored, recall can still occur when random delays are 

employed. 

Figure 5.7 makes a comparison between two different membrane potential repre- 

sentations of the same run. In the upper windows s, defined in (5.12), is 0.7 so 

that a large proportion of the inhibition acts through shunting. This is a "bio- 
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Figure 5.6: Display illustrating the enhanced storage capacity of a network with 

random delays and lower spatial coding f. The parameters are the same as Fig: 

5.2 except for P = 25,f = 0.1, N = 100, J" = = Jie = = 1.1, D = 0.04, 

and random delays are used. 

Results: 

Foreground (v")t = 0.103, q" = 0.011; inhibitory (v)t = 0.094, q' = 0.009; back-

ground (v b ) t 	0 
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Figure 5.7: Displays illustrating different shunting representations of same run. 

The run is the same as that shown in Fig: 5.6 The top three windows show the 

membrane potential when s = 0.7, whereas the bottom three membrane potential 

windows show fully hyper-polarising inhibition (s=0). One should note that the 

spike times are identical. 
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logical" representation of the membrane potential. At the neurons displayed the 

membrane potential is seldom less than zero, so that overall hyper-polarisation of 

the cell membrane is rare. The times when overall hyper-polarisation does occur 

is immediately after a spike. In contrast the lower displays show the same three 

neurons' membrane potential when .s = 0, so that the inhibition is fully hyper-

polarising and the "effective" membrane potential is shown . Here the membrane 

potentials are often less than zero. This is especially true for the background neu-

ron. Overall the "biological" membrane potential fluctuates less violently than the 

"effective" membrane potential. This is to be expected as the "biological" case is 

modelling the effects of shunting and therefore capacitance of the cell membrane. 

Finally one should note that the threshold is always crossed at the same time for 

both representations as proven in section 5.3.5. 

5.6 Discussion and Conclusion 

The graphic displays illustrating the performance of the neural network model 

presented in the is chapter are encouraging. They are the first simulations from 

a neural network model, functioning as an associative memory, that may be com-

pared directly with biological experiments. In this way the gulf between neural 

network theory and biological reality has been bridged. In future work the model 

could be explored further in order to understand its capabilities and limitations. 

Once this information has been gathered, the task of comparing with biological 

experiment would be on a surer footing. The origins of biological phenomena 

which are at present not well understood, such as the Gray—Singer oscillations 

could then be elucidated. 

At present the only means of investigation of the model is by computer simulation. 

Although this yields visually impressive results, the understanding one achieves 

is superficial compared with insight given by the analyses of chapters 2-4. For 

example the graphic displays and the corresponding rate and Edward-Anderson 

order parameters, show the existence of a retrieval phase and non-ergodicity. Yet 

one has little understanding of the mechanisms by which the retrieval phase is 

destabilised, for example by decreasing temperature (Fig. 5.3). In order to de-

velop analytic techniques, the model studied in this chapter may well have to be 
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simplified. In that case simulations of more detailed formulations of the model, as 

presented in this chapter, would take on the crucial role of bridge between abstract 

theory and experiment. 

Chapters 2-4 of this thesis each present analytic studies which one would like to 

effect on the model of this chapter. Chapter 2 investigated certain associativity 

properties of the llopfield model. The mechanism of associativity of the present 

model ( see section 5.3.3) is novel, and its functioning has yet to be fully exjAored. 

The equivalent of a first-time step equation (2.2) would be a useful tool for this 

exploration. As discussed in the previous paragraph, the equivalent of the static 

mean-field theory presented in section 2.4, would allow the mechanism of retrieval 

to be understood. In chapter 3 the functioning of interactions optimal for one en-

vironment (the perceptron) was investigated in a different environment (attractor 

neural network with noise). One could consider the model of the present chapter 

as a new network environment. The functioning of interactions, different from or 

more complicated than the Willshaw interactions, in the new environment could 

be analysed in a straightforward manner if one had the equivalent of the dynamic 

equations of section 3.4. 

The development of analyses to explain the results of this chapter would undoubt-

edly lead to a deeper understanding of the present model, and would perhaps 

generate other models and methods of general interest. However the question 

remains as to the model's worth. That can only be determined by the scientific 

community at large through cross-disciplinary appraisal and constructive criti-

cism. I hope that the response will be positive so that the present work will repay 

something to the tradition of research from which it has borrowed. 
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Appendix 

Expansions about the Tricritical Point 

The function g will be parameterised by $ and another parameter it, which 

determines the loading level a and may even be a itself. For example, in 
Gardner's optimal network[41], tc is the site stability parameter. Or, it may 
be related to the number of errors allowed in the process of storage, etc. 
Ultimately we wish to consider a phase diagram in the rc—T or a—T plane. 

The condition for a fixed point reads: 

in = f(1)($,K)m + f ( 3 ) p, 	+ f() (f3,rt)m. 5 . 	( 1) 

The line of continuous transitions, determined by (3.56) together with 

g"(rn = 0) < 0, gives $, or T, as a function of K. As T is lowered below 
this line, at fixed ic, one has the usual mean field result for the developing 

retrieval amplitude in: 

= 	C)A$ 	 (2) 

where the subscript indicates partial differentiation; the variable c implies 
that the function is evaluated on the continuous line, i.e. at ic and $(n) and 

A$ EE/3—$(n). 

At the tricritical point the line of continuous transitions, g'(0) = 0, which 
becomes the line of transitions from wide to narrow retrieval, is expanded as 

A/3(tc) = aAtc + b(Ac) 2 	 (3) 

and the line of discontinuous transitions to no retrieval as 

A$d(s'c) = a 1 An + c(An) 2 	 (4) 

where An = it - tc. On substituting the first expansion into (3.56) one 

finds: 

a 
- 	f,')(tr) 	

(5 

- 	a2f(tr)+2af(tr)+f(ir) 	
6 - - 

	2f(tr) 
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and (tr) indicates evaluation at the tricritical point. The equation for the 
discontinuous transition, near the tricritical point, reads 

1 = f(1)(/3,n) + 3f()(0,ic)m 2  + 5f'(0,tc)m4 . 	 ( 7) 

Combined with the condition for the fixed point, it gives the relation: 

( f  (3))l = — 4f(5)(1 - f(fl) , 	 (8) 

which is an equation relating /3 and it along the discontinuous transition line. 
After expanding this expression about the tricritical point at which f(3) = 0, 
f3) = 0, f(1) = 1, and substituting Eqs. 3 and 4, one finds 

0 = Aic {4f (5) (tr)(f 1) (tr) + aif,1)(tr))] 

+ (An)2 [[f3)(tr)]2 + 4c (f()(tr)f,'ktr) + f(5)(tr)p[f,1)(tr)  + ai f,(tr)]) 

- —8bf () (tr)f'(tr) + 4f5)(tr) (f(1)(tr) + aif,'(,tr))] 	 (9) 

This equation gives 

a1 = a 
	 (10) 

e=b- 
 4f'(tr)f()(tr) 
	 (11) 

With a and b given by Eqs. 5 and 6. Hence the line of transition from retrieval 
to no retrieval is continuous and has a continuous slope at the tricritical point. 
The discontinuity is in the curvature. 
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