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ABSTRACT 

During 1990 a 51 metre core was recovered from Lago Grande di Monticchio, a maar lake in 

S Italy. This provides a high quality laminated sequence extending back into the Late 

Quaternary which is being examined by a multidisciplinary group. The project here is 

concerned with sediment geochemistry as a tool for reconstruction of palaeoenvi ron mental 

conditions at this locality. 

The core was analysed at 10cm resolution using techniques such as X-ray fluorescence 

(XRF). This has produced a highly detailed record of change reflecting either the last 70,000 

or 220,000 years. Organic carbon and biogenic silica are believed to represent biogenic 

productivity and, in particular, nutrient status in the lake system. It is found that the Holocene 

is marked by very high concentrations of these components in contrast to the minerogenic 

glacial sediments. Possible earlier interglacials (e.g. the Eemian) contain significantly lower 

contents of biogenic matter, suggesting that nutrient conditions may have been somewhat 

poorer during these times. Alternatively, these periods could represent interstadials within the 

last glacial cycle. C/N ratios and Hydrogen Index values probably reflect both the source and 

degree of preservation of the organic matter, but should be interpreted cautiously. The 813C 

record for bulk organic matter shows a significant shift to isotopically lighter values during the 

glacial-Holocene transition, but the profile is difficult to interpret due to the many possible 

factors involved. 

Indicators of terrigenous clastic material show that the late-glacial and Holocene sediments 

have received relatively base-rich clastic material probably derived from contemporary 

tephra inputs to the catchment. This is marked by ratios such as Na/Al and K/Al which 

increase in apparent association with increased tephra deposition and Zr/Rb which 

decreases. The effect of tephra blanketing of the catchment and subsequent release of 

nutrients is proposed as a cause for the much higher productivity during the Holocene 

interglacial. A second factor, lake infilling and consequent enhanced nutrient recycling, 

provides a further reason for increased productivity with time. These two factors are 

independent of climate which has generally been considered as the main driving force. 

A variety of diagenetic phases are present, including vivianite, pyrite, calcite and siderite. The 

latter is sometimes Mn-rich and the associations of these phases often over mm-scale 

intervals in the sediment are used to reconstruct possible diagenetic regimes in the lake. 



Organic geochemical investigations are at an early stage, but so far show a dominance of 

higher plant n-alkanes in the sediment record, possibly a result of selective preservation. 

Palynofacies examination of the organic matter indicates that the Holocene and, to a lesser 

extent the earlier interglacial (or interstadial?) horizons contain relatively fresh algal and plant 

material together with an abundance of insect and pollen remains. 

The geochemical composition of the core may be summarised by multivariate data analysis 

and such a summary is used to correlate the record against the marine oxygen isotope 

curve. From this, a speculative reconstruction can be made of sedimentation rates for the 

Holocene (0.75mm/year) and for earlier periods (generally <0.25mm/year). It is emphasised 

that such interpretations require the support of objective dating to gain in value. 
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CHAPTER 1 

INTRODUCTION 



The Quaternary Period 

The Quaternary covers approximately the last 2 million years of earth history (Lowe and 

Walker, 1984; Bowen, 1978). It has been characterised by dramatic changes in climate 

occurring over relatively short geological time scales. The best known example of this 

perhaps being the Ice Ages which have affected the European continent and further afield. 

The Quaternary period is also influenced by the effects of volcanism and tectonic 

movements (typically on a more regional scale) and by the emergence of man. In addition to 

providing evidence on the past, the Quaternary would seem the most appropriate place to 

act as a key to understanding how future environments might develop. 

Information concerning the Quaternary is available from geomorphological features in 

glaciated terrains and from depositional records such as marine sediments, fluvial or 

lacustrine sediments and ice accumulations. Also available are records preserved by 

organisms such as ancient tree rings and coral skeletons. Much information has been 

deduced from this broad range of material, but the increasing demands of science encounter 

several recurring problems: 

it is often difficult to obtain a record covering the desired length of time or, if the coverage 

is available, then it may not be of high enough resolution 

many of the changes recorded are rapid and difficult to tightly constrain with the dating 

techniques available. 

it is desirable to produce quantitative information (e.g. how warm actually was it?). This 

has been achieved with some success from oxygen isotope values on foraminiferal 

skeletons and from certain palynological records, but may be very difficult to obtain from 

many of the geological products that are available for study. 

In an attempt to gain maximum information a multidisciplinary approach is often applied with 

a variety of scientists examining the sedimentological, biological, chemical, anthropogenic 

and many other aspects of a record. This combined information can then be synthesised and 

an overall reconstruction produced. 

Records and theories of climatic change 

Perhaps the best known evidence for climatic change on a 10 to 106  year time scale is 

derived from the marine oxygen isotope record (e.g. Imbrie et. al., 1984). 8 180 stratigraphy, 

as a combined record of ocean surface temperature and global ice volume, has provided 

crucial support for the astronomical theories of glacial-interglacial change which were 

conceived during the early part of this century (Berger, 1988; Kukla et. al., 1981). The so- 
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Fig. 1.1. Correlation between the land pollen record from La Grande Pile in eastern France 

and the marine 8 180 record (Woillard and Mook, 1982) 



called Milankovitch theory which involves sinusoidal changes in insolation received at the 

earths surface resulting from changes in the earth's orbital parameters has been widely 

embraced and received little serious challenge over the last 20 years (Winograd et. al., 

1992). It predicts that the degree of insolation received should oscillate with frequencies of 

100,000, 43,000, 24,000 and 19,000 years. A direct sinusoidal forcing effect on global 

climate has been argued against however. It is thought more likely that the changes in 

insolation induce responses in the ocean-atmosphere circulatory system which then directs 

climatic change in a broadly saw-toothed pattern (Broecker and Denton, 1989). Although the 

glacial-interglacial changes provide a dominant signal in the Quaternary, other more abrupt 

changes are observed in detailed proxy records (Berger and Labeyrie, 1987). For example, 

the Younger Dryas period (Broecker, 1992; Fairbanks, 1989), the Dansgaard-Oeschger 

cycles of polar ice core records (Johnsen et. al., 1992) and Heinrich events in the North 

Atlantic (Bond et. al., 1992) have been recognised within the broader glacial cycles. These 

do not receive direct explanation by the orbital model and may be considered as 

representing jumps or fluctuations which are a natural part of the ocean-atmosphere system 

(Broecker and Denton, 1989). 

Non-marine long records of palaeoclimate have been obtained from the polar ice sheets and 

on the continents from lake sediments, loess accumulations and peat deposits. In the case of 

continental records palynology has provided the main indicator of past climate with stable 

isotopes and sedimentology used to a lesser extent. It has been possible to correlate these 

records with the marine oxygen isotope curve on the broad glacial-interglacial level (Jouzel 

et. al., 1987; Kukla, 1989; Heuser and Heuser, 1990; Adam and West, 1983; Guiot et. al., 

1989). This is illustrated in Fig. 1.1. which shows a correlation between the (radiocarbon 

dated) pollen record from the Grande Pile site in eastern France and the marine oxygen 

isotope record for the past 130,000 years. However, attempts to correlate shorter term 

changes have met with varying degrees of success. For example the Younger Dryas event is 

now widely accepted as affecting a large area of the northern hemisphere and perhaps 

beyond (Wright, 1989). However the Dansgaard-Oeschger cycles seen in the Greenland ice 

sheet have not been unequivocably correlated with terrestrial records (Broecker et. al., 1988) 

and Heinrich events seen through ice rafted detritus in the NW Atlantic have only received 

preliminary associations with the terrestrial pollen record (Grimm et. al., 1993). 

In order to improve our knowledge of how these climatic changes operate it is necessary to 

recover high resolution and long records which can be correlated with established marine 

profiles. The continents provide a potentially valuable source of information in their relatively 

high rates of sediment accumulation and their sensitivity to factors such as temperature and 



rainfall change. As well as climate, other effects such as tectonics and man may influence a 

proxy record in time and space. Volcanism too can affect some records both in terms of 

extraneous contributions of material (Kurenkov, 1966) and perhaps through short term 

forcing of climate itself (Chester, 1989). It is desirable to unravel these effects from the 

processes of longer term climatic change to achieve a maximum understanding of 

Quaternary environmental change. 

Lake sediments as a proxy record 

Lake sediments have long been recognised as providing detailed geological records of 

environmental change, both in terms of the variety of facies that they can display and their 

sensitivity to changing climate (Allen and Collinson, 1986). Under favourable conditions it 

may be possible to reconstruct with an annual resolution for at least the last 13,000 years of 

earth history (Negendank and Zolitschka, 1993a). This presents an unparalleled opportunity 

to solve problems such as the nature and timing of the Younger Dryas event (Lotter, 1991 a). 

Brief review of previous work 

Notable early studies concerning lakes and lake sediments include the appreciation of 

varves (de Geer, 1912) and sedimentation processes in lakes (Lundqvist, 1925). Also at this 

time Bradley published a great number of ideas from studies on the Green River formation in 

Wyoming (e.g. Bradley, 1929). Among this work he envoked a hypothesis of Milankovitch-

type cyclic control on sedimentation. 

A major consolidation of theory concerning lakes came about during the 1950's. At this time 

Hutchinson published the first volume of his treatise on Limnology (Hutchinson, 1957). He, 

and later workers such as Deevey, combined limnological theories with palaeolimnological 

investigations of sediment cores. Over the next two decades they characterised sediment 

geochemistry and used their data to make basic interpretations concerning changes in 

sedimentation (Hutchinson and Cowgill, 1963; Hutchinson, 1970). Also, work was well 

underway in the English Lake District through initiatives by Mortimer and others. (A recent 

review of the Lake District studies is given by Pennington, 1991.) The mid-1 950's also saw 

the appearance of a devoted journal to the subject -'Limnology and Oceanography'. 

In addition to continuing work by groups associated with Hutchinson and Deevey, some 

influential theories were crystallised from the 1960's Lake District studies. Mackereth (1965; 

1966) measured a wide range of elements in sediments from a range of Lake District sites 

and offered more advanced interpretations of the compositional changes seen. He found that 

glacial lake sediments consisted wholly of mineral clay, often laminated. Overlying these, 



post-glacial sediments contained a high percentage of organic matter which must have 

originated photosynthetically either on the land surface or in the lake waters. These two 

lithologies can be seen in lakes across many parts of Europe. He regarded the sediments as 

representing an accumulation of debris (or soils) derived from the land surface with minor 

additions from the lake biomass. The latter would influence diagenesis and the precipitation 

of certain elements in the sediment. Consequently the information obtained from a study of 

lake sediments should mainly be concerned with events affecting the surrounding land 

surface, and to a lesser extent with conditions in the lake itself. Mackereth assumed that no 

major post depositional diffusion of elements had taken place, since the material had 

endured subaerial weathering and then survived several years in contact with dilute lake 

waters before finally becoming buried. On the other hand, he recognised the mobility of some 

elements (e.g. Fe and Mn) under reducing conditions. Nodules of vivianite which he 

observed were deemed secondary features brought about by migration of Fe and P into a 

precipitation centre. These theories have been applied in many subsequent lake sediment 

studies and may often hold in the case of oligotrophic lakes. However, it has been found that 

the 'record of changing soil composition of the watershed' may be apparent rather than real 

(Dearing, 1991). 

The 1960's saw other groups building up the data base on lake sediment geochemistry. In N. 

America, the Minnesota group in particular were responsible for a wide body of publications 

between the mid 1960's and mid-1 970's (Swain, 1966; Gorham et. al., 1974; Dean and 

Gorham, 1976). Relationships between bottom sediments and lake type were found and 

explained. In Scandinavia, Digerfeldt pioneered the concept of lake level reconstructions 

from multi-core sediment records during the late 1960's (Digerfeldt, 1966). 

The 1970's were associated with the application of significant technological improvements 

both in coring and geochemical analysis. It became possible to carry out routine multi-

element analysis on relatively large numbers of samples. Major new areas of the world 

received investigation with the recovery of long records, particularly East Africa (Degens et. 

al., 1973), Australia (Kershaw, 1978) and South America (Lewis and Weibezahn, 1981). In 

Switzerland a series of studies on Greifensee and other lakes provided information on the 

processes of freshwater carbonate formation and lake sediment diagenesis. Groups in the 

U.S. and Canada improved our understanding of other diagenetic minerals such as vivianite, 

siderite and pyrite. 

A celebrated 200 metre long record was recovered from Lake Biwa in Japan by wire-line 

coring rig. Many geochemical and other kinds of measurements were made on the Biwa 
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sediment record. This included the application of modern techniques such as AA, INAA, ICP 

and XRF. The vast amount of data collected was presented in a series of reports (e.g. Hone, 

1972-81) which describe the techniques and results, but often suffer from weak interpretation 

or discussion in relating the sediment signatures to environmental change. 

Organic geochemical investigations also increased significantly during this decade with new 

information emerging from compounds such as pigments and lipids (Sanger and Gorham, 

1972; Cranwell, 1973). These improved investigations led to a large number of new facts and 

relationships and the publication of a new generation of texts (Wetzel, 1975; Lerman, 1978; 

Matter and Tucker, 1978). 

Towards the end of the 1970's and into the 1980's more theory building took place (Oldfield, 

1977; Binford et. al., 1983; Hákanson and Jansson 1983; Haworth and Lund, 1984; Stumm, 

1985). Relationships between lake, catchment and driving forces (climate change, hydrology, 

soil and man) were reviewed more critically (Dearing and Foster, 1986). New programmes of 

work led to the combined multidisciplinary investigation of groups of lakes in Europe and N. 

America, including the EEC funded examination of maar lakes. Lake sediments were looked 

at in relation to evidence for geomorphological changes in the catchment (Flower and Foster, 

1987) and the horizontal distribution of sediment chemistry was mapped in an individual lake 

(Hilton and Gibbs, 1984). More multiple core studies were carried out after DigerIeldt's 

pionerring efforts and sometimes revealed profound information concerning the differences in 

sediment accumulations between the deep and shallow water zones (Anderson, 1990; 

Engstrom and Swain., 1986). Workers such as Rippey (1982) attempted to make closer links 

between lake sediments and climatic parameters such as rainfall. At the end of the decade a 

new 'Journal of Paleolimnology' emerged. 

The early 1990's have seen intensified efforts to improve our theoretical base for 

interpretation through studying well behaved systems and using laboratory modelling. A plea 

was made for broader cooperation between palaeolimnologists and 'neolimnologists' to meet 

these new challenges (Smol, 1991). There have been greater attempts to integrate long 

records with well known evidence for climatic change. An excellent example of this is the 

correlation of the record from Lake Lugano with Late Quaternary events such as the Younger 

Dryas and Holocene subdivisions (Niessen and Kelts, 1989). Most recently Kerry Kelts has 

attempted to establish a data base with the aim of correlating pronounced climatic changes 

from a global network of lake records (Kelts, 1993). Efforts have also intensified towards 

reconstructing lake level fluctuations as a source of regional climatic change (Harrison et. al., 

1991; Stine and Stine, 1990). As this is taking place, new and exciting records are being 
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recovered from crater lakes (e.g. Sacred Lake in Kenya -Perrot, unpubl. work) and from large 

lakes such as Lake Baikal. In small lakes with calcareous varved sediments it now seems 

possible to answer important questions concerning the timing of the Younger Dryas and the 

extent of the late-glacial radiocarbon plateau. For example, records bearing combined 

sidereal and 14C timescales together with oxygen isotope curves, reflecting local temperature 

changes, may be recovered from some sites (Lotter, 1991 a; 1991b). 

Long lacustrine sediment records 

Sites containing long records of lacustrine sedimentation (>20,000 years) are unusual and 

where such sites occur there may be considerable logistical difficulties in recovering long 

core profiles over a body of water. Long records occur in two main settings: large tectonic 

depression lakes and volcanic crater lakes. The former includes sites such as Lake Biwa in 

Japan where a continuous sediment record of around the last 2 million years has been 

recovered (Meyers et. al., 1993; Hone, 1984). It also includes other large lakes such as 

Tanganyika and Malawi in Africa and Baikal in Russia where records extending back to the 

Tertiary probably exist, but have not yet been cored (Frostick et. al., 1986). The relatively 

small crater lake sites occur in many parts of the world which have experienced volcanic 

activity. Lakes of this type have been studied in areas such as cental America, the western 

United States, west and eastern Africa, Australasia, the Middle East and Europe. These 

lakes have an average lifetime of several hundred thousand years and so extant lakes will 

probably be associated with volcanism during the last 1 M.a. In addition, settings containing 

long records normally occur outside areas that experienced ice activity during the last 

glaciation (i.e. they are constrained to the low and middle latitudes). At higher latitudes older 

sediments would tend to suffer obliteration by the processes of ice denudation or at best 

provide discontinuous time windows (e.g. Sejrup, 1987). 

EU ROMAARS 

The EEC supported 'EUROMAARS' programme was established with the aim of recovering 

long, continuous continental sequences from information recorded in the sediment infill of 

carefully selected maar-type lakes in western Europe. From this it was hoped to examine the 

relationship between the climatic oscillations recorded over the last million years in marine 

cores and the climatic cycles apparent in a more discontinuous fashion across many 

disseminated continental sequences. 

EUROMAARS followed on from the mid-1980's 'GEOMAARS programme which had been 

concerned with similar subject matter on a shorter timescale (e.g. Documents du CERLAT, 

1991). Valuable experience had been gained by the same group of workers in this earlier 
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project, and this was utilised in selecting the most promising sites to be drilled for 

EUROMAARS. 

Advantages of maar lakes as sources of proxy climatic data 

Maar lakes are characterised by their persistence and stability over suitably long time 

scales (i.e. >10 years) 

Sedimentation is regular due to the absence of major in- and outflows in an always 

modest catchment area 

The depositional sequences that accumulate are particularly suitable for recording 

environmental conditions in the region around the lake. 

Maar formation and evolution 

The formation of a maar occurs by phreatomagmatic explosive activity excavating a crater in 

the surrounding bedrock (Lorenz, 1973; OIlier, 1967). Due to the necessary presence of 

groundwater involved in the formation mechanism, it is common for the water table to be at a 

height which causes a water body or lake to subsequently appear in the basin. Initial 

sedimentation may involve coarse detrital inwashing (Büchel and Lorenz, 1993) and alluvial 

fans or mass movement processes. However, after this early domination by physical 

sedimentation the crater slopes will normally become stabilised (with vegetation) and a more 

steady and subdued sedimentation ensue. Eventually the lake basin is likely to be infilled, 

albeit on a long enough time scale to be of interest. This may be characterised by an 

organic-rich mire which will eventually be succeeded by dry land. At this stage the maar has 

become fossilised and will no longer provide a contemporary sediment record. Such maars 

have been recognised by trained geomorphologists, such as Jorg Negendank, and provide 

time windows into earlier periods (e.g. the Tertiary). However, the main interest of 

EUROMAARS has been with extant lake sites and records extending back continuously from 

the present day. 

Maar lakes in Europe 

In western Europe maar lakes are found in the Eifel region of Germany, in the Velay area of 

the Massif Central and in central and southern Italy. All three locations have received 

attention from the EUROMAARS and GEOMAARS programmes. 

Previous studies concerning long lacustrine records from Italy 

Table 1.1. shows published work on other lake sediment records from Italy. These sites have 

mainly been studied for their pollen records, although in some cases geochemical and 

sedimentological data have been investigated. 



Site 

Lago di Martignano 

Valle di Castiglione 

Lago Vico 

Lago Monterosi 

Valle di Baccano 

Lagaccione 

Stracciacappa 

Prato Spilla 

Lagdei 

Lago di Ganna 

Canolo Nuovo 

Age 

11,000 years 

250,000 years 

138,000 years 

26,000 years 

>10,000 years 

100,000 years 

60,000 years 

12,500 years 

15,000 years 

14,200 years 

40,000 years 

Authors 

Kelly and Huntley (1991) 

Narcisi et. al. (1992), Follieri et. al. 

(1988) 

Francus et. al. (1993), Frank(1 969) 

Hutchinson (1970) 

Bonatti (1963) 

Follieri et. al. (1993) 

Follieri et. al. (1993) 

Lowe (1992) 

Bertoldi (1980) 

Schneider and Tobolski (1983) 

Gruger (1977) 

Table 1.1. Long sediment records from Italian lakes and related enviroments. 

The first seven sites are maars situated within 60km of Rome while the next two are in the 

northern Apennines. Lago di Ganna lies further north in the Varese region on the southern 

flanks of the Alps. The Canolo Nuovo deposit lies to the south of Monticchio in Calabria. 

Other Italian lakes have been studied, although the work appears to be concerned with 

present limnology and sediment records on historic time scales. 

Aims and methodology of this project 

It is the aim of this project to apply modern and traditional geochemical techniques in a 

comprehensive study of the sediment record obtained from Lago Grande di Monticchio (see 

Chap. 2) under the EUROMAARS programme. It is possible that the material collected from 

Lago Grande covers the last 200,000 years (almost continuously), in which case this work 

would represent an unusually detailed investigation of the chemical stratigraphy from such a 

long sequence. It is hoped to extract as much information as possible concerning 

palaeoenvi ron mental conditions, and particularly how the last (Eemian) interglacial may have 

compared to the present. Parallel studies in palynology, sedimentology and 

tephrochronology will aid the overall palaeoenvi ron mental reconstruction for this site. The 

results will help improve our understanding of southern Europe's late Quaternary history. 

Attempts can then be made to integrate this data with information currently available from the 

ocean and ice-core records. 
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CHAPTER 2 

THE SETTING OF LAGO GRANDE DI MONTICCHIO 

,1 



Location 

Two small maar lakes, collectively known as Laghi di Monticchio, are situated in a caldera of 

the Monte Vulture volcanic massif, lying within the Basilicata province of southern Italy 

(1 5°36E, 40°56'N). Lago Grande lies at an altitude of 656 metres above sea level and is 

subcircular in outline with a maximum diameter of 0.8km (Fig. 2.1.). It is separated from the 

smaller Lago Piccolo by a 5 metre bar or terrace. The site lies approximately 120km east of 

Naples and 7km west of the nearest town, Rionero-in-Vulture. Monte Vulture, at 1326 metres 

above sea level, forms the highest point in the nearby area. 

Regional geology 

The Vulture complex lies above a sequence of sedimentary rocks of late Triassic to Tertiary 

age which form the southern Apennines (Fiore et. al., 1986; Stanley and Wezel, 1985). 

Monte Vulture represents one of a chain of volcanic centres which developed around 1 

million years ago during a phase of Quaternary crustal extension (Locardi, 1985). These 

volcanic centres extend from Vulture in the southeast to beyond Rome in the northwest and 

are characterised by perpotassic eruption products. Renewed extensional phases during the 

mid-Quaternary produced further volcanic centres such as Campi Flegrei which formed 

around 300,000 years ago (Locardi, 1985). 

The Vulture volcanic complex has been studied both in terms of its geomorphological 

evolution and its petrographic and geochemical features. Guest et. al. (1988) provide a 

detailed account of the development of the complex which included an initial basal stage and 

a major cone building period. In the final stage, a caldera formed on the western flanks of the 

volcano (probably by gravitational caldera collapse) and the Laghi di Monticchio 

subsequently formed within this caldera by phreatomagmatic eruption. 

The petrographic and geochemical aspects of the Vulture system are described in a number 

of papers, including Caggianelli et. al. (1990) and de Fino et. al. (1986). The bulk of the 

sequence is composed of foiditic and tephritic pyroclastics (fall, flow and surge deposits) with 

interbedded lava flows. These rocks are similar in overall chemistry to the potassic series 

rocks of the Roman Province, although potassium itself is a less dominant component 

(Caggianelli et. al., 1990). The Vulture series is also noted for its peculiar enrichments in Na, 

Ca, Cl, S and P. These have been tentatively attributed to the interaction of magma with 

aqueous solutions rich in Ca, S042  and NaCl, which might be related to Miocene or 

Mesozoic evaporitic sediments 'underlying the volcano' (de Fino et. al., 1986). 
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Fig. 2.1 Location of Lago Grande di Monticchio (above) and area of lakes enlarged (below) 
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For reference, two rocks from the Vulture sequence were collected during the coring trip and 

later analysed chemically and mineralogically (see Appendix 1). These samples are from 

outside the immediate catchment area, but within the main volcanic sequence and are 

believed to be similar to the rocks in the Monticchio catchment. Their composition is shown 

below (Table 2.1.). 

major elements (wt%) 

Si02  A1203  Fe203  MgO CaO Na20 1(20 Ti02  MnO P205  

VUL2 48.20 18.27 8.24 3.43 9.41 6.68 1.46 1.00 0.18 0.83 

VUL4 44.82 17.70 8.83 4.80 11.10 4.23 4.40 1.18 0.18 0.94 

CO2  N so  IQI! 

VUL2 0.14 0.05 1.00 98.89 

VUL4 0.07 0.32 98.56 

trace elements (ppm) 

Cl Sr Ba V La Ce Nd Cr Ni Cu 

VUL2 5892.2 2973.3 2174.8 211.6 285.8 484.1 170.5 13.4 11.7 71.6 

VUL4 3660.9 2409.5 2343.7 269.2 212.8 382.3 143.0 40.9 17.2 87.1 

Zn Pb Th U Rb Y Zr I Br Mo 

VUL2 105.1 100.3 87.8 22.9 117.5 56.9 552.4 --- 9.8 4.5 

VUL4 103.0 59.5 53.8 16.7 142.2 47.6 376.4 --- 5.4 3.4 

Table 2.1. Composition of Vulture rocks 

The data shown are comparable to results described by de Fino et. al. (1986). It can be seen 

that the samples contain significant enrichments in volatile elements: 0.05wt% N, 0.36-

0.58wt% Cl and 0.3-1 .Owt% SO 3.  These elements are probably hosted by a hauyne-sodalite 

phase (identified by XRD) and perhaps by the glassy groundmass. In thin section, the rocks 

were observed to contain mainly clinopyroxene phenocrysts with some hauyne, plagioclase, 

corroded dark mica and apatite. The groundmass was microcrystalline to glassy and difficult 

to identify in further detail. It has been noted in other sudies that the feldspathoid minerals 

and glass of the Vulture rocks frequently exhibit deep alteration to zeolites, analcite and 

argillaceous material (de Fino et. al., 1986). 
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Age of Monticchio and the Vulture sequence 

Formation of the lavas and pyroclastic rocks is believed to have begun around 1 million 

years B.P. (La Volpe et. al., 1984). The main cone building phase has been bracketed 

between 830,000 and 500,000 years B.P. (Guest et. al., 1988; de Fino et. al., 1986; Capaldi 

et. al., 1985). Recently Laurenzi et. al. (1993) have presented a single date of 130,000 years 

which they associate with the formation of the Monticchio lakes. The authors advised that 

this date should be treated with caution and further information is awaited concerning this 

work. Therefore, the date of maar formation is not yet well constrained. From the Watts 

(1985) palynological work on an earlier sediment core, it is thought that the sediment record 

in the lake covers at least 40,000 years. At present it may be assumed that Monticchio 

formed somewhere between 40,000 and 500,000 years B.P. 

Obviously, the maar formation age provides an upper limit on the oldest sediments that could 

have accumulated in the lake. From the September 1990 coring work, it seems that a 

borehole somewhat longer than 51 metres would be required before the solid bedrock 

underlying the lake is encountered. Unfortunately, seismic investigations ran into the problem 

of high gas content in the sediments and cannot penetrate to anywhere near the bottom of 

sequence (Stefanon, 1993). This age question may either be resolved from a longer 

sediment core or from further work on the surrounding pyroclastic sequences. The former is 

made difficult by the problems of dating sediments outside the 40,000 year range and the 

latter made difficult by the poor exposure in and around the catchment. 

Climate 

Temperature and rainfall data from a weather station at Monticchio are shown in Fig. 2.2. 

The site experiences a Mediterranean climate which is probably moderated to some degree 

by its elevation. The characteristic summer drought is not particularly strong here with rainfall 

during June to September remaining above 30mm per month. The summer is warm, but not 

intensely hot. Winter is cool and experiences moderately high rainfall. Wind speed data is not 

shown, but it is thought that the steep crater walls shelter Monticchio from much of the 

effects of wind. During fieldwork the lake was always observed to be calm and did not display 

signs of wave movement. 

Although the Vulture region is elevated, it is unlikely that Lago Grande was affected by the 

presence of ice during glacial times because of its southerly location. It would appear that 

only the Alps and a few areas above 2000 metres altitude in peninsula Italy experienced ice 

cover during the last glacial maximum (Fig. 2.2.). 
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Fig. 2.2. Temperature and rainfall data for Monticchio (above) and maximum extent of ice cover 

during the last glacial maximum (below) from West (1977) 



From the palynological record at this site and others (Watts, 1985) it is believed that the 

region had a cool steppe vegetation and climatic regime during the glacial period. This 

probably comprised slightly cooler summers and considerably colder winters. Also, there was 

probably a strong moisture deficit during the summer growing season, with most rainfall 

occurring during winter. This regime may have present day analogues in Tibet and in the 

prairie regions of N. Dakota and Alberta (B. Huntley, pers. comm.). 

Basic catchment and limnological features 

Lago Grande has a present surface area of 0.4km2  and an approximate catchment area of 

2.4km2. Therefore the ratio of catchment to lake area is 6 and this relatively low value would 

predict a lake system dominated by slope and surface transport processes (Dearing and 

Foster, 1993). This seems to be the case since fluvial activity is at present negligible. A 

number of small dry channels do exist in the catchment, but these may only operate under 

high rainfall events. The small ratio of catchment to lake area would also predict a low rate of 

clastic sediment accumulation in the lake basin, but the exact magnitude of clastic influx will 

depend on the degree to which the catchment topography is being lowered by denudation 

(Dearing and Foster, 1993). If it is assumed that the lake covered a present 5 metre marginal 

terrace zone prior to the 11th century (see later), then the catchment/lake surface area would 

be even lower (perhaps <3). 

Lago Grande has a maximum depth of 34 metres, but much of the lake is a shallow shelf 

sloping gently from the shoreline towards 12 metres depth (Fig. 2.3.). This asymmetric profile 

contrasts with the more simple cauldron shape usually encountered in maars. For example, 

in Lac du Bouchet the lake floor slopes steeply away from the shoreline to an extensive deep 

basin area (Creer, 1991). It is thought that the shallow shelf area of Monticchio which is <12 

metres in depth reflects a level of sediment infill that has reached a mature stage. The lake 

would be expected to evolve into a swamp or terrestrial environment with continued sediment 

accretion. The deep pit area (Fig. 2.3.) may represent a relict vent feature in the original 

basin shape which has not been evened by sediment infill or focusing. Sonar investigations 

detected the presence of vertical 'cliffs of hard material (possibly lava) in the steep slopes 

leading to the deep basin (Hansen, 1993). It is possible that the vent feature may represent 

the site of a secondary phreatomagmatic eruption during the middle or later history of the 

lake. On the other hand it may be a more contemporary structure resulting from a focus of 

volcanic gas emanation (B. Huntley, pers. comm.). The possibility of active CO  degassing 

from the Monticchio site is currently being investigated and preliminary measurements 

suggest that a net volume of gas is emanating from the lake. 
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Plate 2. Lago Grande in the distance viewed from the S. Michele monastery 

(above), and piston coring operations on the raft (below). 



It is believed that the lake is spring fed and thus regulated by the local groundwater system 

(B. Narcisi, unpubl. work). This will probably be augmented by direct rainfall and surface 

runoff during wet periods. It might be expected that the Mediterranean summer drought 

would cause the lake level to lower (e.g. Hutchinson, 1970). This effect is estimated to be 

<70cm between spring and summer (B. Huntley, pers. comm.) and is not a dramatic 

seasonal change. In comparison, other Mediterranean lakes under different hydrological 

regimes have recorded fluctuations greater than 8 metres over short time periods (Flower 

and Foster, 1992). It is probable that the groundwater reserves buffer any seasonal or 

decadal switches due to climate. Therefore major lake level changes at the site are thought 

to require long term climatic changes or permanent alterations to the tectonic-hydrological 

system. 

The lake is presently eutrophic to polytrophic (Zolitschka and Negendank, in prep.). This is 

illustrated by the high densities of macrophytes in the shelf zone (particularly in the 

shallowest 4 metres of water) and by the green water colour reflecting surface algal 

productivity. Gelatinous films of blue-green algae are also observed and are typical indicators 

of anthropogenic pollution. Limited stocks of fish appear to exist in the lake, although these 

may not thrive under the conditions of high productivity. 

According to high amplification rate sonar measurements (Hansen, 1993) there is probably a 

sparse thermocline present at around 10 metres depth, at least during the summer period. 

This implies that the shelf site where cores B to E were taken (see later) currently lies in the 

epilimnion zone. Further sonar results suggest an absence of fish shoals below 4 metres 

depth which might be an indication of oxygen depletion. It is not certain whether Monticchio 

is characterised by permanent stratification or seasonal stratification with subsequent 

overturn during the winter. This situation may well have changed over recent decades due to 

human disturbance of the lake system. The low wind action in the basin and its small surface 

area are thought to allow only minimum wave activity. This situation is conducive to the 

development of stratification or chemical gradients in the waters. Since wave action is a 

major driving force for redeposition processes (Hilton et. al., 1986) it is thought that sediment 

focusing may not be an important influence on the Monticchio environment. 

The lakes are surrounded on three sides by a steep crater whose slopes support a stable 

cover of mainly beech and oak. High deciduous forest of this type is believed to represent 

the natural vegetation for this part of the Apennines (Watts, 1985). The fourth side opens into 

a valley which is at present dry. The dry stream here forms a theoretical inflow at present. 

However, if the lake level was around 50 metres higher than at present, it would provide a 
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major outlet towards the Ofanto valley in the west. Possible terraces are present on the 

flanks of this valley and it may be speculated as to whether the lake actually ran into this 

channel at previous times. This would seem to require a dramatic change in hydrological 

configuration to operate. 

The soils in the catchment zone are expected to represent the main source of clastic material 

to the lake sediments, having been derived from underlying tephritic and foiditic rocks by 

weathering. As yet the soils have not been sampled or studied, although they appear at first 

sight to be well-established and reasonably thick. According to a European atlas of soils 

(FAO-Unesco, 1974), the Monticchio region is associated with soil type "Bea-'/2ad". This is 

an ando-eutric cambisol of coarse to medium texture, with associated orthic luvisols and 

vitric andosols. Such a soil is by definition of volcanic origin and may reflect characteristics of 

the parent rock as much as prevailing climatic regime (Duchaufour, 1982). The soil types that 

occur in this setting may vary from the young, base-rich and eutrophic state to the more 

developed humic-allophane complex state with substantial losses of bases and 

immobilisation of phosphorus by aluminium. Brunification (clay development in the B horizon 

and preservation of iron hydroxides) may also influence the soils developed here. This will 

reflect on the prevailing Mediterranean climate (Duchaufour, 1982). 

A 120 metre wide terrace (Watts, 1985) approximately 5 metres above the present shoreline 

indicates a previously higher water level for the lake. This is thought to be connected with the 

foundation of a monastery (see next section). The terrace earth is known to contain diatoms 

which can easily be dug up below the surface (B. Zolitschka, pers. comm.). On the lower 

parts of the terrace a swamp of alder, willow and poplar surrounds the lake margins. The 

swamp grades through rich stands of rush vegetation into the shallow water areas of the lake 

proper. This feature provides a filter or barrier to sediments reaching the lake from the crater 

slopes and ensures minimal influxes of clastic material at present. However, clastic 

sedimentation may still have been low when the lake waters actually reached up against the 

foot of the crater slopes. 

Seismic activity has been documented in the recent past, most notably the large 1980 

earthquake that hit Campania and Basilicata (Westaway and Jackson, 1987). The 

devastation associated with this was still widespread during a 1982 field trip (B. Huntley, 

pers. comm.). This sort of activity might be expected to disrupt the surface sediment layers 

or temporarily increase erosion rates through tilting and shaking movements at certain times 

during the lake's history. 
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Human activities 

Recent activities in the catchment such as burning of vegetation for cultivation and the input 

of sewage from hotels etc. were evident during 1990 fieldwork at the lake. The clearance of 

vegetation mainly appears to be carried out in a northwestern segment of the catchment and 

the rest of the catchment consists of mature woodland. Tourism is centred on weekend or 

day visitors from local areas. These human effects have probably led to further 

eutrophication of an already productive lake. Recommendations have been made that the 

upper few metres of organic rich sediments in Lago Grande should be removed by dredging 

in order to improve the potential of the lake for fishing and leisure activities (A. Stefanon, 

1993). Although the present anthropogenic effects may have a marked influence on the 

youngest lake sediments, such effects are not thought to be of influence in the sediment 

record studied here because these cores do not include the uppermost 40cm (possibly >300 

years) of sedimented material. 

Earlier historic information documents the construction of a monastery in A.D. 1059 at San 

Ippolito (Fig. 2.1 .). Evidence from a 5 metre terrace above the present lake level suggests 

that this event may have been associated with artificial drainage of the Laghi di Monticchio 

(Zolitschka and Negendank, in prep.). It is thought that prior to this time Lago Grande and 

Lago Piccolo may have been joined as a single lake with a considerably larger surface area. 

Information on Roman settlement and activities has not been found specifically for the 

Monticchio site. However, it might be assumed that some cultural activity took place locally 

between say 450 B.C. and 400 A.D. Nearby Bronze Age sites have been noted at Rapolla 

(9km to the NE) and Melfi (10km to the NE). It is possible that cultures reflecting this level of 

technical development (and perhaps a later Iron Age equivalent) may have influenced the 

Monticchio environment, say between 4000 and 400 B.C. This would involve peoples of 

Greco-southern Italian origin (B. Huntley, pers. comm.). There appear to be few records of 

earlier human activities in this part of northern Basilicata (D. Ridgway, pers. comm.). This 

might, however, reflect the lack of detailed investigation that has been made. 

Previous investigations 

The Vulture region appears to have been studied for at least the last 30 years in connection 

with its volcanic features. However investigation of the sediments of Lago Grande di 

Monticchio may have begun with exploration by Bill Watts and Brian Huntley during the early 

1980's. These workers made trips to the lake in 1982, 1984, 1986 and 1988 to collect hand-

held Livingstone cores from the swampy margins. During the 1988 trip they were joined by a 

team from Edinburgh University and Mackereth cores were taken from deeper parts of the 
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lake. The success of the palynological results (e.g. Watts, 1985) and the potential for other 

studies such as tephrochronology led the site to be included in the Euromaars 'deep drilling 

programme of fieldwork during 1990. 

The 1990 Coring Trip 

During early September 1990, a combined team under the EUROMAARS programme 

recovered a series of cores covering just over 51 metres of sediment from Lago Grande di 

Monticchio. Operations were carried out using a modified Livingstone (piston) corer mounted 

on a raft. The coring equipment, largely of German design (Usinger, 1991; Livingstone, 

1955), had been transported to the site by lorry at a cost of around £7000. Cores B, C and D 

covering the main profile were taken in the shelf zone under 6 metres depth of water (Fig. 

2.3.). A shallow core (Core E) was also taken within a few metres of this location. Core A had 

previously been taken in the deep cauldron zone of the lake under 30 metres depth of water 

(Fig. 2.3.). However, coring was abandoned at this location owing to the chaotic and 

inpenetrable nature of the sediments. Together, Cores B/C/DIE make up a 51 metre master 

sequence (Fig. 2.4.) which has been used for all the studies. The top of this master 

sequence is nominally taken as 0cm, but in actual fact the sediment water interface is a 

further 40cm above this. These uppermost sediments were not collected in the piston core 

series because they would be too unconsolidated to recover properly. 

After the cores had been recovered they were transported to Trier in Germany where they 

were extruded later in September. While the material was in prime condition, all core 

sections were photographed and described visually. It was possible to correlate individual 

core sections, again visually. Due to the range of studies being made (Table 2.2.), the cores 

had to be subsarnpled and material was brought back to Edinburgh for analysis (Appendix 

1). 

Institution 

Edinburgh University 

Trier University 

Louvain-la-Neuve 

Dublin and Durham Universities 

Rome  

Investigations 

palaeomagnetism, geochemistry 

and tephrochronology 

varve analysis, sedimentology 

ostracods 

palynology, plant macrofossils 

(and diatoms?) 

geomorphology,teph rochronology 

Table 2.2. Parallel studies undertaken on the 1990 core sequence 
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Basic core stratigraphy 

The sequence broadly consists of laminated muds and gyttjas with occasional layers of 

coarser material. Sediments from Core D are illustrated in Plates 3-5. This core covers the 

zone between 170 and 51 00c depth and the core sections shown pass downwards from 

right to left and from top to bottom on each Plate. 

In the upper sections a brown diatom gyttja (0-500cm) grades into black, highly organic mud 

(500-850cm.) The latter contains localised patches of vivianite up to 5mm in size. These 

upper 850cm of sediments are the most organic-rich in the profile and have a distinct pulpy 

or gelationous texture as well as high water contents. 

Below 850cm the sequence continues with laminated pale brown or olive-grey muds. These 

occasionally grade into darker and presumably more organic-rich zones, but not of the same 

quality as the upper 850cm. Horizons rich in plant material (mostly mosses) occur locally and 

are up to 2cm in thickness. These are particularly noticeable between 900 and 1900cm 

depth. The sequence is interrupted by a relatively coarse and clastic-rich zone of silty 

turbidites between 1900 and 21 20cm. Two slump units are found at 2200cm and at 2800cm 

depth. Both these are over a metre in thickness. However, the bulk of the sequence is 

characterised visually as a series of laminated muds. 

Tephra layers are found throughout and provide useful stratigraphic markers. They are of 

varied compositional nature and range from >20cm in thickness to microscopic horizons not 

readily detectable. 

If the moss horizons in the record represent in situ growth this might imply a low lake level 

over the core site at such times. Such macrophytic plants require light penetration to 

photosynthesise and this would probably necessitate a maximum of 3 metres overlying water 

in a productive lake (Moss, 1982). However, the macrofossils may have grown in a wet 

environment nearer to the shoreline and be washed in as a concentrated layer (W. Watts, 

pers. comm.). There do not appear to be indicators in the sediment record for lake 

desiccation or emergence since the presence of soil or peat horizons, evaporite deposits or 

oxidised layers has not been observed. This suggests that the sediment record may be more 

or less continuous. It may be possible that the slump units or turbidites are associated with 

the erosive removal of packages of earlier deposited sediment, but this process is thought to 

account for only brief gaps in the record from this type of basin (W. Watts, pers. comm.). 
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Water content 

A water content profile for the sequence is shown in Fig. 2.5. The upper 850cm of sediments 

which are highly organic are characterised by water contents of 80wt% or more. These 

sediments will be the least compacted in the profile and may also contain more water 

because of their sponge-like organic composition. The exponential decrease in water content 

with depth typically observed due to early sediment compaction (Foster et. al., 1990; 

Bengtsson and Enell, 1986) does not appear to be a feature of this upper 850cm zone. 

However, below 850cm the water content drops rapidly towards 60wt% and remains around 

or just below this value for the rest of the profile. It is believed that the relative constancy 

between 1000 and 51 00c indicates that further increases in compaction are slight. The 

variations observed may largely reflect compositional changes in the sediment and thus 

relative conipactability. For example, the more organic rich sediments around 2700-3400cm 

and at 4900cm depth contain above average water contents, while the clastic dominated 

(and relatively coarse) sediments around 2000cm depth have unusually low water contents. 

As a basic starting hypothesis it is predicted that the sediments in the upper 850cm 

represent shorter slices of time interval per metre than the deeper sediments. This may of 

course be invalidated by opposing changes in the quality or quantity of sediment deposited. 
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CHAPTER 3 

SEDIMENT GEOCHEMISTRY AND DATING OF THE MONTICCHIO SEQUENCE 
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LAKE SEDIMENTATION 

A cartoon is presented to illustrate many of the environmental processes thought to be 

contributing to the sediment of a lake such as Lago Grande di Monticchio (Fig. 3.1.). In 

combination, these environmental processes will create the geochemistry recorded in the 

lake sediment record. 

In a maar-lake setting clastic material is supplied mainly by surface runoff and mass 

movement, such as soil creep, within the small catchment area. At present, no streams are 

found draining into the lake and so fluvial inputs are thought to be unimportant. Clastic input 

from crater denudation will be augmented by sporadic inputs of volcanic material or tephra 

fallout. This is readily apparent from the numerous tephra layers preserved in the core. A 

more continuous input of material from further afield might occur by aeolian processes, 

particularly during more and periods. Productivity within the lake (diatoms, green algae, 

macrophytes, ostracods, etc.) will contribute to the biogenic sedimentation together with 

organic matter brought in from the catchment area. These primary inputs may be affected by 

diagenetic processes such as the degradation of organic matter and the release/enrichment 

of redox sensitive and diagenetically mobile elements such as iron, manganese and certain 

trace metals. Also, the presence of slump units suggests that physical disturbance of the 

sediment takes place occasionally and this could be brought about by heavy rainfall or 

earthquake activity. 

These environmental processes may change, and so alter the sediment geochemistry, in 

response to a number of primary driving forces: 

climate 

volcanism 

ontogeny or evolution of the maar-lake system 

human/anthropogenic effects 

The climatic factor is of particular interest in studies of the Quaternary. It has both global and 

regional significance, whereas factors 3) and 4) are of more local significance. It is desirable 

to separate out the effects, as seen in the sedimentary record, of these primary factors in 

order to reconstruct the past environment as clearly as possible. The human factor is 

expected to influence only the most recent 5000 years or so of the record (Chap. 2), but the 

climatic signal may be obscured in other parts of the record by factors 2) and 3). Changes in 

the lake ecosystem, such as the gradual infilling of the lake basin and its succession to a 



Fig. 3.1. Environmental processes contributing to the sediment geochemistry 
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mire, are a feature common to many lakes owing to their limited geological lifetime. This can 

cause sedimentation differences between lakes situated within the same climatic regime and 

contrasts somewhat with the deep sea environment where conditions may be uniform over 

large areas and stable for thousands of years. Volcanism adds a further complication not 

normally encountered in many lakes. It is obvious that the irregular input of volcanic material 

may affect the rate of sedimentation and productivity and inflict noise on underlying 

sedimentary climatic signals. 

PALAEOLIMNOLOGY FROM THE SEDIMENT GEOCHEMISTRY 

From the product of the above processes (i.e. the lake sediment record) it is necessary to 

work backwards using the chemical stratigraphy to deduce these environmental processes 

and hopefully their driving forces. The individual chemical elements in a lake sediment do not 

behave in complete independence, but are related through organic phases and minerals to 

the sedimentary processes. It is important to recognise with which phases in the mixture 

each element is associated in order to interpret the record well. This need to identify the 

origins of different chemical parameters has led to various geochemical classification 

schemes. Jones and Bowser (1978) suggest that the sediment components be distinguished 

in terms of allogenic, endogenic and authigenic sources. Each of these fractions would be 

expected to give information on different aspects of the lake system and help to elucidate 

the important types of interactions between lakes and sediments. Engstrom and Wright 

(1984) choose to combine the endogenic materials into the authigenic fraction and thus have 

just two fractions. They emphasise many of the difficulties in making distinctions into such 

fractions. From the initial analytical results and multivariate data appraisal, it was decided in 

this study to group the geochemical discussion into terrigenous clastic, biological and 

diagenetic fractions. The terrigenous clastic fraction broadly corresponds to the allogenic 

fraction mentioned above. The biological fraction considers both endogenic (i.e. 

autochthonous) biological matter and organic matter of allogenic origin (i.e. allochthonous) in 

one group. The diagenetic fraction is similar to the authigenic fraction of Jones and Bowser 

(1978), but also incorporates chemical precipitates that might form in the water column. 

Although some elements are connected with more than one fraction, causing overlap, this 

approach was felt to be the simplest way to proceed with the discussion. The types of 

information that might be reconstructed from each fraction are shown in Table 3.1. 

To unravel the environmental information present in the sediment geochemistry also requires 

an understanding in terms of geochemical processes operating in the system. Fig. 3.2. 

identifies many of these geochemical processes by presenting the pathways in which 

30 



I inorganic 
SOURCES organic 

I 

I 

'V 
particles_  solution 	J 
A (6) q  

/ (io) (7I 8) (9) 
 

1
I 
(2)  

(i) 

outflow j Fsedime!tn _I 
SINKS 

Fig. 3.2. Pathways for the transport of metals 

in hydrological systems (Hilton et. al. 1985) 

1 =mineral erosion 

2=supply of detrital material 

3=leaching 

4=microbial decompostion 

5=adsorption/coprecipitation 

6=desorption/dissolution 

7=resuspension 

8,9=particle settling 

1 O=redox/desorptive release 

11 ,12=hydraulic losses 

31 



sediment fraction 	 information on 

terrigenous clastic 	 catchment erosion/weathering, teph ra input 

activity, aeolian dust transport (-climate?) 

biological 	 lake productivity/nutrient status, catchment 

soil and vegetation quality (-climate?) 

diagenetic 	 redox, pH and ionic concentrations in the 

sediment zone and overlying lake water 

Table 3.1. Potential information available from each 

of the sediment fractions 

chemical components can leave and enter the sediment. In the case of Monticchio it is 

thought that the hydraulic losses through outflow are unlikely. An additional pathway that 

might be included in this diagram is the diffusion into the sediments and subsequent 

precipitation of dissolved components. This would operate in an opposing direction to the 

redox/desorptive release process and might include, for example, sulphate reduction. The 

diagram illustrates the possibility that metals may either be transported to the sediment 

directly (shaded solid arrows) or reach the sediment after going through a phase in solution 

(open solid arrows). To differentiate between these indirect and direct pathways clearly 

requires a good knowledge of geochemical behaviour. 

THE MEASUREMENT APPROACH 

The most traditional technique for lake sediment geochemical reconstructions has involved 

the measurement of elemental concentrations within bulk sediment samples (Mackereth, 

1966). This is the method adopted in the present study. 

It might be expected that geochemical analysis of separated sediment fractions would 

provide for a more effective reconstruction than trying to disentangle complex information 

from the bulk material. However the extract approach requires much greater time and effort 

to carry out and a precise division of conceptually distinct fractions is difficult to attain' 

(Engstrom and Wright, 1984). It is only recently that standard procedures involving selective 

chemical attack (Engstrom and Wright, 1984; Bengtsson and Enell, 1986) have been 

proposed for lake sediments. The detail of reconstruction obtained by Heathwaite and 

O'Sullivan (1991) using these procedures indicates their potential effectiveness, but for the 
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Monticchio study a high number of sample points was favoured over this higher degree of 

quality. In an attempt to overcome some of the deficiencies of bulk geochemistry, use will be 

made of appropriate geochemical ratios to distinguish more information. 

Expression of the geochemical data in raw concentration terms reflects only the relative 

sediment composition. It is necessary to convert concentrations to accumulation rate values 

(expressed in g.cm 2.yr 1 ) in order to identity how net depositional rates have changed. If 

sediment density measurements and sedimentation rate values are known, the accumulation 

rate of a component, C, is calculated by: 

Cacc  = C 0  (wt%) * dry bulk density (g.cm3) * linear sedn rate (cm.yr') 

It would be desirable to look at how fluxes per unit area of chemical components have 

changed over time as an aid to deciphering the palaeoenvironment. This would enable 

identification of how fast processes have operated at and changed in the past. Although the 

dry bulk density information is available for the Monticchio record, the sediment chronology is 

still very uncertain and it is not possible to apply sedimentation rate values with any degree 

of reliability. Therefore the data cannot be converted to accumulation rates at present. It may 

be possible to make this calculation in the future if varve counting results and improved 

radiometric dates become available. 

Another feature of the study of Lago Grande di Monticchio is the fact that interpretation of the 

sediment record is being made from a single core profile. In some lacustrine settings 'one 

good core' is considered to give a sufficient picture for the whole lake system. Other studies 

(Engstrom and Swain, 1986; Anderson, 1990) have shown that one coring location does not 

provide the whole story and may indeed distort the overall interpretation. The EUROMAARS 

team only recovered deep core material from one shelf-zone site on Monticchio after having 

abandoned operations in the deep cauldron part of the lake, so logistically it is only possible 

to carry out this study on one profile in space. It would however be interesting in future work 

to study core profiles from the deep part of the lake. 

MULTIVARIATE ANALYSIS OF THE GEOCHEMICAL DATA: a data summary 

It would be expected from the known geochemical behaviour of elements (e.g. Goldschmidt, 

1954) that the 35 parameters determined on each sample would separate into various 

subgroups associated with the different phases contributing to the sediment. This appears to 

be the case if, for example, organic carbon (Fig. 4.1.) and bromine (Fig. 4.15.) are compared. 
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These two elements show very similar profiles and could perhaps be grouped together into 

an association reflecting organic matter in the sediments. To aid differentiation between 

possible groupings multivariate data analysis was applied. This is able to summarise the 

large amount of information available by reducing redundancy in the data set while retaining 

maximum information on how the complete data varies. It offers a more objective and 

efficient alternative to sitting down and comparing the 35 separate graphs visually. 

The two main types of multivariate analysis are cluster analysis and ordination methods 

(Birks and Birks, 1980). Ordination was used in prefence to cluster analysis in this study 

because it is easier to deal with the large number of sample points and their representation 

using this technique. Also, cluster analysis imposes discrete structure on the variables and is 

unable to show the continuous variation (to be expected from geochemical data) within and 

between groupings that ordination can (Prentice, 1986). Ordination methods operate by 

extracting eigenvalues and eigenvectors from the original data in a matrix form (JOreskog, 

1976; Davis, 1986). Both princpial components analysis (PCA) and correspondence analysis 

(basic and detrended) were applied to the data set. All the samples were included for these 

operations. 

PCA is probably the most straightforward ordination technique and is available on many 

computer statistical packages. At first, the data acquired from the upper 15 metres of the 

core was examined by this method. Ordinations were made on a correlation matrix after the 

data had been normalised by standard deviations. The results obtained are best displayed 

graphically. Fig. 3.3. shows how the two main axes of variance (principal components 1 and 

2) projected onto a scatter plot divide the elements measured on samples from the upper 15 

metres of the profile into fields and groupings. This is an example of R-mode analysis, i.e. 

investigating the similarities between the variables (chemical elements). With the information 

already known concerning the sedimentology and mineralogy of the core and by applying 

geochemical inferences (e.g. Park, 1974) a number of possible associations can be stated: 

-the tight clustering of Corg, Br and N is related to organic matter (plants and 

animal soft parts) 

-biogenic silica (bSil) represents contributions from diatom productivity and 

appears to be associated with S 

-a band or arch of elements extending from Ni to Zr could represent incompletely 

weathered igneous minerals (eg. pyroxene), clays and heavy minerals (eg. zircon) 

-Rb, K and Na (and to some extent Cl and Ca) may be associated with 

feldspars/feldspathoids, especially in tephra derived material 
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Fig. 3.3. PCA projection of elements measured on the upper 1500cm of core onto 1st 

and 2nd principal components axes 
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Fig. 3.4. Detrended correspondence analysis (DCA) projection of elements measured 

on the upper 1500cm of core onto 1st and 2nd principal axes of variance 



-a broad group of elements (U, Zn, Mn, P, Fe, V, Mo) are largely derived from 

minerals locally, but show some association with organic matter and may reflect 

the influence of diagenesis upon the sediment. In particular, P, Fe, Mn and Zn form 

a compact subgroup probably reflecting vivianite content. 

-inorganic carbon (CO3) reflects the presence of calcite and/or siderite and is 

situated in a field between Fe and Ca. 

PCi accounts for 52.7% of the variance exhibited by the dataset and appears to show a 

gradient between biological vs. mineral clastic inputs to the sediment. Thus, the largest 

differences in sediment geochemistry depend upon the relative contributions from these two 

sources. PC2 accounts for 12.4% of total variance and appears.to  divide elements strongly 

influenced by diagenesis from more conservative or immobile elements. The subsequent 

axes (PC3 to PC35) account for progressively less of the variance shown by the data set and 

do not display additional meaningful information. They will not be discussed further. 

The same data from the upper 15 metres of the core was also examined by correspondence 

analysis using the DECORANA programme described by Hill (1979). Ordination was carried 

out on raw unweighted data using the default rescaling options. These results may be 

represented in a similar form to the PCA results above by a scatter plot of Axis-2 against 

Axis-1. Fig. 3.4. shows the results of detrended correspondence analysis (DCA) on the data. 

It can be seen that the two main axes of variance divide the chemical elements into similar 

groupings as before. There do exist some subtle differences between the PCA and DCA 

plots, but only the main broad groupings will be dealt with for this study. 

Later, when geochemical analysis on samples from the remainder of the profile had been 

completed, the whole data set could be examined. Due to differences observed during 

preliminary examination of the lower part of the profile as compared with the younger part 

(comprising the uppermost 10-15 metres) it was decided to carry out a multivariate appraisal 

of the two sections separately as well as on the combined data. If the lower part of the profile 

(from 15 to 51 metres) is now looked at with the PCA method, a similar grouping of elemental 

variables is seen (Fig. 3.5.), albeit with certain differences. 

-Corg, Br and biogenic silica remain in a grouping representing biogenic 

contributions, but S and N have moved towards the lithogenic pole. 

-the band of elements previously extending from Ni to Zr appears as a more 

compact group and has re-ordered to some extent. 
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Fig. 3.5. PCA projection of elements measured on the lower 3600cm of core onto 1st 

and 2nd principal components axes 



-the association between Cl and the alkali metals appears to have broken down 

and these elements are now somewhat dispersed. 

-the broad group of elements possibly associated with diagenetic processes now 

includes mainly Mo, S, Mn, CO3, Fe, V and N. These components could reflect the 

contribution from phases such as iron sulphides, siderite and calcite. It is 

suggested in Chap 4a and Chap 4c that N may experience diagenetic enrichment 

too. P appears to behave more conservatively, lying closer to the lithogenic pole. 

Again, Axis 1 shows heavy weighting between indicators of biological vs. minerogenic input 

and accounts for 50.6% of the total data set variance. Likewise, Axis 2 (12.4% of the total 

variance) seems to separate conservative from mobile elements. 

Examination of the data in 0-mode allows the samples to be classified into different facies. It 

is possible to crowd all the samples (with their depth labels) onto a similar form of scatter plot 

and to draw facies boundaries around groups of points. Alternatively, the data may be 

viewed by plotting sample loadings for just one axis against sample depth. This requires the 

two main axes of variance to be looked at separately, but shows the sample properties in 

relation to their core stratigraphy more clearly. Fig. 3.6. shows the sample loadings from PCi 

(reflecting biological vs. clastic phases of deposition) plotted against sample depth. In this 

plot the PCA loadings used are taken from PCA analysis of the whole core data set. As a 

working hypothesis it is suggested that periods of climatic amelioration are reflected by more 

biologically dominated sediment geochemistry and high positive scores on Fig. 3.6. Periods 

of downturn are indicated by more clastic dominated geochemistry and show low scores on 

Fig. 3.6. This signal is made spiky by the presence of tephra layers (see Chap 2/Chap 4b). 

As would be expected, the Holocene period covering the upper 800cm has consistently high 

sample scores on this profile. The trends on this 'composite' geochemical profile are later 

used in the discussion regarding the age of the core sequence. It will also be suggested that 

the PCi sample score against depth profile strongly resembles palynological indicators for 

climate change obtained by W. Watts and J. Allen (see later in this chapter). 

Fig. 3.7. shows sample scores from the subsequent PC2 axis plotted against sample depth. 

This component appeared to separate diagenetically mobile elements from immobile 

conservative elements in R-mode. When the sample stratigraphy is viewed it is found that 

high scores are associated with tephra-rich samples. These contain high concentrations of 

immobile alkali metals which have been given strong positive weightings on PC2. 
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This information provided by a preliminary multivariate appraisal of the data appears to be 

useful in objectively identifying a small number of element associations which can be related 

to different aspects of the sediment contributors. This will help to order the forthcoming 

discussion of the geochemistry in Chaps. 4a-c. It has also provided a working summary of 

the core stratigraphy (PCi sample scores against depth). Multivariate analysis might be used 

to search for further hidden meaning in the data set and to remove extraneous variation 

where specific information is sought (e.g. Marcotte and Fox, 1990), but the geochemical 

discussion will now be returned to in terms of individual components in the next chapter. 

DATING OF THE SEQUENCE 

Uncorrected radiocarbon dates made on the 1990 core sequence are presented in Fig. 3.8a. 

The second part of the diagram (Fig. 3.8b.) shows new dates made on two samples taken 

from earlier marginal cores. Information concerning the error bars associated with these 

dates and the initial sample preparation for the a.m.s. dated samples is given in Appendix 1. 

Tephra samples for Ar-Ardating have also been submitted by Judy Allen at Durham 

University, but results from this are not yet avaiable. Fig. 3.9. shows an earlier suite of 

radiocarbon dates from the published work of Watts (1985) and includes some 

accompanying palynological data. 

As can be seen, there are major discrepancies amongst the ages shown. Firstly, the 

sequence of six a.m.s. dated samples from 945cm, 1074cm, 1403cm, 161 8cm, 1853cm and 

2351 cm depth all show a similar age of around 30,000 years B.P. Secondly, in both Watts 

(1985) and in the 1990 core, bulk radiocarbon dates appear excessively old. In the former 

case the Holocene boundary, denoted by an abrupt rise in birch followed by oak pollen (Fig. 

3.9.), is bracketed by bulk dates of 18,290 and 21,200 years B.P., while in the present core 

the Holocene boundary at 750 or 850cm depth dates at around 15,000 years B.P. Moreover, 

in the 1984a and 1988 cores the samples dated were presumed to lie in the glacial-Holocene 

transition between 14,000 and 10,000 years B. P. (W. Watts, pers. comm.), but give ages of 

23,670 and 30,460 years. Such data conflicts with other studies from southern Europe 

(Behre, 1989; Huntley and Birks, 1983) which date the onset of the Holocene interglacial 

close to the normal 10,000 years B.P. age, and suggests the presence of 'dead carbon' in 

the sediment. 

Olsson (1986) reviews the potential causes for contamination by both young and old, inert 

carbon. The sediments of a lake represent a complex mixture of carbon from internal and 
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Fig. 3.9. Previous dating and patynological work on Monticchio (modified from Watts, 1985) 
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external sources, but the two main possibilities for inclusion of dead carbon are thought to 

be: 

reservoirthard-water' effects 

inwash of older carbonaceous material 

Attempts to overcome these effects have included the use of a.m.s. dating on selected 

macrofossil fragments. In the light of Watts excessively-old bulk dates from his 1985 paper, 

it was decided to try this selective approach on the new core. It is of course necessary to 

ensure that the macrofossils submitted have not been susceptible to the 'hard water effect. 

This is best done by selecting material of known terrestrial affinity, such as birch fruits or pine 

needles. Although birch fruits exist in the Monticchio core material they may not occur in 

sufficient quantity to provide the >1 mg of carbon needed to furnish a reliable date. This is a 

greater problem for the 1990 cores since they were taken from much further offshore and 

would receive less input of birch fruits etc. from catchment vegetation than the sediments 

accumulating at the lake margins. As an alternative, bryophyte fragments were selected from 

layers which are rich in this type of macrofossil. Examination of the fragments by Brian 

Huntley and Judy Allen at Durham showed the presence of both shallow fen type and 

probable deep water genera. From the assemblages present, the former types were picked 

out for dating, including the genera Calliergon and Scorpidium. Broadly speaking, these 

varieties of moss are believed to take their carbon from atmospheric CO  as opposed to 

deeper water genera (such as Fontinales) which could assimilate carbon from the lake 

bicarbonate/dissolved CO  reservoir or from CO  sources due to organic matter decay in the 

sediments. Unfortunately the dates produced are anomalous and do not even show 

stratigraphic concordance. 

The hard-water effect is believed to affect many lake systems. The classic case is of a lake 

situated in a catchment of limestone or carbonate geology. Dissolution transfers some of this 

ancient carbon into the lake waters as bicarbonate. This adds to lake bicarbonate formed 

through normal exchanges with atmospheric carbon dioxide. The input of ancient carbon 

gives the lake water bicarbonate reservoir a lower 14C activity than that in equilibrium with 

atmospheric CO 2  concentrations and this depletion is maintained due to insufficient lake 

circulation. Therefore plants assimilating from this source will date too old. The effect has 

also been observed in deglaciated terrains which do not necessarily lie in limestone areas. 

Due to the presence of carbonate material in glacial till, the early sediments of some 

postglacial lakes give anomalously old dates, but these anomalies may decrease as soil and 

vegetation development change the catchment (e.g. Bradley, 1985 and refs. therein). The 

VILN 



hard-water effect is difficult to quantify and, as the last point illustrates, the associated error 

may change overtime. According to Shotton (1972) "it is usually stated that the maximum 

possible error is equivalent to the half-life of 14c,  5570 yr, but rarely amounts to as much as 

this...' Most authors simply recognise that the factor varies amongst lakes depending on 

hydrologic and chemical conditons (e.g. Stiller, 1988). 

Recently, results from 14C measurements made on living plants in Lago Grande and Lago 

Piccolo suggest the presence of a significant hard water effect (J. Allen, pers. comm.). This 

is evidenced by samples of aquatic vegetation (Ceratophyllum and Myriophyllum) which are 

thought to photosynthesise from the lake water reservoir showing dates of 2000 and 7300 

years before present. In contrast, vegetation known to photosynthesise from atmospheric 

CO2  (Nymphaea and Phraçimites) showed essentially modern ages. As mentioned in Chap. 

2, Lago Grande di Monticchio is situated in a catchment area of alkali basic volcanic rocks. 

These lavas and pyroclastics are essentially non-carbonate bearing, however investigation 

by Fiore et. al. (1992) indicates that the sequence is invaded by veins of calcite. More 

importantly, the emanation of juvenile CO  has been inferred from recent field observations at 

Laghi di Monticchio (B. Huntley, pers. comm.). This would have the potential for adding 14C 

free carbon to the lake water reservoir and maybe even influencing the local atmospheric 

composition. The possible volcanogenic CO2  input effect on Monticchio may be difficult to 

quantify, but there is a strong suspicion that it is responsible for some of the errors observed. 

It is also to be noted that, several km from the lake, mineral water is extracted for local 

consumption and that this mineral water is slightly sparkling (-contains CO 2  from some 

source) as well as being rather salty. In addition to these recent observations, it should be 

remembered that carbonate precipitation occurred at Lago Grande di Monticchio during 

earlier periods, as evidenced by the presence of calcite and siderite in glacial parts of the 

sediment record. 

In order to produce the probably large age errors encountered it would seem unlikely that the 

hard-water effect alone is responsible. In particular, the macrofossil samples appear strongly 

in error and are assumed to have been outside the influences of the hard-water effect. It 

would appear that the inwash of older plant material is another likely process for explaining 

the suspected artificially high ages. 

It may be the case that the dated bryophyte fragments have been reworked from an older 

(30,000 year interstadial?) growth. Perhaps change in lake water level or a more 

catastrophic erosional event such as storm runoff led to their redeposition. The mosses 

appear in well-defined layers up to several cm thick in the core sequence and were initially 
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thought to have developed as in situ mats on a shallow lake bed or to have grown near to the 

shoreline and become redeposited soon afterwards. It appears unusual that the bryophyte 

remains should be reworked into a fairly uniform layer thousands of years after they grew. 

The reworking process could be aided by the instability of the lake environment which has 

experienced volcanic activity and earthquakes with potential for disturbing material that has 

resided in the catchment zone for a long period of time. From the palynological record (see 

next section) it is clear that the crater has experienced considerable changes in the quantity 

and quality of vegetational cover (perhaps affecting soil stability) and probably changes in 

climatic conditions such as precipitation and storminess. These factors could also offer 

mechanisms of redeposition. 

If the reworking hypothesis is correct for the selected bryophyte fragments, then it could also 

assist in explaining the older ages seen in the bulk dates. Bulk sediment could easily contain 

some remains of older organic carbon or graphite. This contamination could include anything 

from infinitely old (highly residual kerogen/graphite) to plant debris merely a few thousands 

years older than the contemporaneous sediments. Observation of organic residues prepared 

for palynofacies examination (see Appendix 1 and Chap. 5) shows the presence of dark, 

resistant lignaceous material in many sections. This is one possible contributor of old carbon 

to the bulk sediment. It is interesting to note that the bulk dates taken on the new 1990 core 

show probable age errors considerably lower than the probable errors on the Watts (1985) 

marginal core. A possible explanation for this is the fact that the sediments in the earlier 

marginal core have been contaminated with a higher proportion of reworked material due to 

their closer proximity to the crater source zone of such material. 

Olsson (1986) shows that contamination by material younger than the sediment being dated 

gives a considerably larger error than the effect of contamination on young material by old 

carbon. Therefore to cause an appreciable error in the older direction requires a relatively 

large degree of contamination. For example, contamination to a degree of 50% with very old 

material is required to cause a sample to date 5570 years (i.e. one half-life) older than its true 

age.) Very old or infinitely old carbon may be taken to imply material older than 50,000 or 

100,000 years in this case. This level of 14C activity is beyond the detection range by present 

analytical techniques and thus is effectively of infinite age. Table 3.2. shows the amount of 

contamination by such infinitely old material required to produce dates between 400 and 

11,000 years older than the true age of a sample. 

The bulk dates from the 1990 core material may be up to 5000 years too old implying that 

40-50% of dead carbon could be present. And an even greater proportion of contamination 
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contamination 	 age error (years) 

5% 	 400 

10% 850 

20% 1800 

30% 2650 

40% 4100 

50% 5570 

75% 11140 

Table 3.2. Age errors associated with varying amounts of inert carbon 

(modified from Lowe and Walker, 1984) 

could be present in the Watts (1985) profile. In this case the dates surrounding the Holocene 

boundary may be up to 10,000 years out. It seems probable that part of the total error is 

caused by a contribution from hard-water phenomena affecting the contemporaneous plant 

matter, but it is also likely that a significant amount of secondary material is present in the 

Monticchio sediments. 

At the time of writing no further radiocarbon dating of the sequence is planned, although the 

Ar-Ar dates are eagerly awaited. There appears to be a real dating problem at Monticchio, 

probably due to reworking, and the use of selected macrofossils may not be the best 

approach in this environment. Indeed the evidence so far shows that the macrofossils 

selected give worse age indications than the bulk sediment, which is relatively unusual. 

Carbon dating may best proceed by using bulk sediment samples, preferably with sieving 

treatment to remove coarser organic particles, such as woody fragments, which may be 

unreliable constituents to include. The additional step of separating humic (NaOH soluble) 

and insoluble humin fractions and perhaps dating both is worth pursuing. This has been 

shown to be particularly effective in identifying valid radiocarbon ages by Olsson (1991) and 

refs. therein. The dates made on the humic fraction are generally more reliable for lake 

sediment material such as gyttja (Olsson, 1991). Lowe et. al. (1988) go further and 

recommend a.m.s. dating of five organic preparations (conventionally pretreated sub-sample, 

humic acid fraction, total unbound lipids, macrofossil cellulose and bulk cellulose residue) 

together with normal scintillation counting of a bulk sample from the same zone. However, 

this requires much greater resources and might not get round problems such as 
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redeposition. In this kind of study, Creer (1991) emphasises the importance of using 

sequences of samples rather than a small number of isolated dates. 

AN AGE MODEL FOR THE SEQUENCE 

At present there exist two possible age models for interpretation of the sequence: 

the core covers up to the last 70,000 years with the zone from 2700 to 3400cm 

representing a 30-45,000 year interstadial and the 4900cm zone representing a minor 

interstadial some time after the major St. Germain II interstadial. In this case there are no 

earlier interglacial periods recorded and the record of the last glacial period is highly detailed: 

-the "young alternative" 

OR 

the core covers the past 200-250,000 years and thus includes the Eemian interglacial at 

3400cm and a preceding interglacial which is perhaps equivalent to oxygen isotope Stage 7 

at 4900cm depth: -the "old alternative" 

To these two alternatives might be added the possibility of varying time gaps in the record 

caused by erosive removal or non-deposition. So far, no positive evidence for periods of 

desiccation or emergence has been found (Chap. 2). It is also believed that sediment 

focusing (Lehman, 1975) is not an important process in Lago Grande (B. Zolitschka, pers. 

comm.). The lake lies within a small, sheltered catchment where wave action, a principal 

agent of sediment redeposition, is probably minimal. If large quantities of the sediment pile 

had been redeposited in deeper parts of the lake, then the 30 metre deep cauldron feature 

(Fig. 2.3.) would most likely have been filled in with material from the rest of the lake which 

covers a large shallow shelf area. It should nevertheless be remembered that this deep pit 

may represent a relatively young feature in the overall lake sedimentation history and could 

be partially filled with resuspended sediment. The turbiditic and slump features that appear in 

the record show that physical disturbance has taken place at certain times. It is possible that 

initial erosive processes connected with these events (particularly the two large slump units) 

may have removed a few hundred or thousand years worth of sediment record at the slump 

base. 

With the radiocarbon dates that are available, we cannot conclusively eliminate either of the 

age possibilities. For one thing, these dates appear to contain errors and cannot be applied 

confidently. And, even if correct, it is not possible for radiocarbon dating to reach the critical 
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lower part of the core (which is generally accepted as extending some way beyond 40,000 

years B.P.). 

It is hoped that the varve-analysis work being carried out by Bernd Zolitschka in Trier may 

clarify the dating problem. Although thin section preparations show that laminae suffer from 

periods of obliteration or non-formation over major sections of the profile, enough of the 

record may contain laminae of one form or another to permit a reasonable age estimate. 

Unfortunately, systematic counting of these micro-layers has only just begun and the work 

involved will take at least two more years to complete. 

These relatively objective methods of dating have been accompanied by more subjective 

correlative approaches from other groups working on the 1990 core sequence. Due to the 

presence of numerous (and sometimes very thick) tephra layers in the record it was hoped 

that analysis of the volcanic glass fragments would allow these layers to be fingerprinted 

against well documented eruptions. Initial work has been done on several of the thicker 

layers from the upper 15m of the profile (Newton and Dugmore, 1993). These have been 

linked with a source in the Campi Flegrei province around Naples, but it has not been 

possible to identify with certainty which particular eruption they came from. A major problem 

in this field is the lack of published data on Italian eruptions to make correlations with. On the 

other hand, if the sedimentary record from Monticchio was well-dated by other means, the 

tephra layers here might provide an excellent sequence for future sites to be correlated 

against. It is interesting to note that the upper part of the core records a high number of 

visible tephra layers compared with the sediments below 25 metres depth (see Figs. 2.4. and 

6.7.), and perhaps indicates a shift in the amount of regional volcanicity. At present, the 

Monticchio tephrochronological studies have shifted to the group working at Rome, but no 

results are known so far. 

Attempts to date the core from the sediment pollen record have been made by Watts (1992) 

and by Huntley and Allen at Durham (unpubl. work). The results of their palynological work 

are illustrated in Fig. 3.10. and discussed further towards the end of this chapter. 

Other attempts at dating have been made by correlating palaeomagnetic measurements with 

type palaeosecular variation records from Europe and with the marine oxygen isotope curve 

(Turton, 1993). The magnetic intensity records from Monticchio appear to be quite weak, 

probably because the sediments are dominated for large areas by organic matter and 

biogenic silica. These components strongly dilute the terrigenous clastic fraction which 

carries the magnetic signal. As a consequence of this, the curves for parameters such as 



palaeointensity are not strongly defined and can be correlated in more than one way with 

other records. Environmental magnetic parameters, such as magnetic susceptibility, show 

the predicted inverse correlation with organic carbon content and with biogenic silica content. 

Like organic carbon they can be correlated with climatic records from other sites, but they do 

not reveal the breadth of information that is available from a series of geochemical analyses. 

The correlation of organic carbon with other lacustrine records will be dealt with in Chap. 4a. 

Before discussing the bulk geochemistry in Chaps. 4a-c, some of the arguments are 

presented for the rival age hypotheses: 

The young alternative 

The young alternative arose following initial examination of the sedimentology and micro-

sedimentology (Zolitschka and Negendank, 1991) and applying ideas gained from the study 

of Eifel maar lake deposits. From pilot investigations of the upper 900cm of the sequence, 

laminae of annual nature were confirmed. In this part of the core the laminae varied from 

0.25 to 1.25mm in thickness. Using an average sedimentation value of 0.75mm/year the 

Holocene would begin at 750cm depth, which is in agreement with the abrupt rises in 

arboreal pollen and organic carbon content observed. If this sedimentation value is 

extrapolated to the whole 51 metres of core then the base dates at 68,000 years B.P. This 

exercise obviously ignores the effects of compaction (which might condense the lower parts 

of the sequence), but it was thought that this would be offset by Pleistocene sedimentation 

rates being higher than those in the Holocene. It was also suggested that several metres of 

the record (including slump units, tephra layers and turbidites) would probably have been 

deposited rapidly and not represent substantial time intervals. With this model, the zone of 

clastic-rich sediments between 1900 and 2250cm was initially correlated with the last glacial 

maximum (18-20,000 years B.P.) and interpreted as a time of increased soil erosion and/or 

aeolian activity in response to a barren steppe-like vegetation. This was later re-interpreted 

as a period of high rainfall under conditions of low vegetational cover, somewhere between 

20 and 30,000 years B.P. (Zolitschka and Negendank, in prep.). The climatic amelioration 

suggested by the more biogenic sediments between 2700 and 3400cm depth would correlate 

with a 30-45,000 year interstadial event or oxygen isotope stage 3. The signature of this 

climatic amelioration is nowhere as strong as the Holocene (which should represent type 

interglacial conditions) and thus the zone must merely represent an interstadial event. The 

climatic amelioration suggested by the sediments around 4900cm depth would correlate with 

an earlier interstadial event, although not the pronounced St Germain I[/oxygen isotope stage 

5a period. Therefore the climatic amelioration at 4900cm is regarded as an interstadial of 

around 60,000 years age/within oxygen isotope stage 4. This implies that the St Germain 11 



(and for that matter the Eemian interglacial) may be present some distance below the base 

of the 1990 core, perhaps beyond 60 metres depth. 

The old alternative 

Suggestion that the core might encompass the Eemian and a preceeding interglacial was 

made by Watts (1992) from palynological evidence. This interpretation has since been 

retracted somewhat (W. Watts, pers. comm.) in favour of the young alternative. From the 

geochemical and sedimentological evidence, however, this older model is favoured by the 

present author and it will be fully incorporated in the subsequent discussion of the sediment 

geochemistry. 

Arguments in favour of the older alternative are introduced by presenting evidence against 

the previous model. Firstly, the young model assumes a mean sedimentation rate of around 

0.75mm/year for the glacial period, i.e. comparable to the mean Holocene rate of 

0.75mm/year. It has been suggested that an increased glacial sedimentation rate may result 

from a reduction in vegetation cover permitting increased erosion of catchment soils and/or 

transport of aeolian dust. However, it is to be noted from analysis of the Holocene zone 

(Chap. 4a) that these sediments are dominated by organic matter and biogenic 

(diatomaceous) silica components and that an extremely low amount of clastic material 

(<1 Owt%) is present. The Holocene sediments are also particularly uncompacted since they 

contain over 80wt% water (Fig. 2.5.). From this information, it would appear that the 

sediment accumulation rate value of 0.75mm/year does not give a reliable measure of the 

accumulation of eroded clastic materialfor the overall record. A much lower figure should 

probably be evaluated for lower parts of the core because the basic Holocene accumulation 

rate is made artificially high by conditions of high autochthonous productivity. It is still to be 

expected that the underlying glacial deposits would have experienced a higher accumulation 

rate of the terrigenous clastic fraction, but this should be compensated for (or perhaps 

strongly offset) by the greatly reduced addition of organic matter and biogenic silica resulting 

from lower internal productivity during the glacial period. Increased compaction due to 

overlying material would also condense the lower sediment zones relative to the Holocene. 

This is evidenced by lower water contents (around 60wt%) for this part of the core (Fig. 2.5.). 

The idea that the Holocene accumulation rate is considerably higher than that of the 

preceding glacial period is in agreement with conclusions from a survey of sediment 

accumulation rates in North American small lakes (Webb and Webb, 1988), where rates of 

inorganic sediment accumulation were found on average to be lower than those of organic 

sediments. The survey also looked at late-Pleistocene vs. Holocene subsets of data from 

these mid-latitude lake sites and found that the average accumulation rates for the two 



subsets were 0.52mm/year and 0.81 mm/year respectively. The results were interpreted in 

terms of depressed temperatures during the glacial resulting in lower productivity in the 

basins, leading to lower sediment accumulation rates. 

Possible support that the glacial sediments are condensed and cover a relatively long time 

interval comes from microscopic investigation of the sedimentary laminae. The laminae for 

the Holocene section have already been identified as being annual (Zolitschka and 

Negendank, 1991) and as having an average individual thickness of approximately 0.75mm. 

Pilot sections prepared from the Holocene zone were examined and compared with sections 

prepared from the late-glacial section. Within this latter zone, the laminae present differed 

from those of the Holocene and appeared to be several times thinner (perhaps around 

0.2mm thick). This preliminary observation needs to be treated with caution as these older 

laminae have not yet been proved to be of annual nature and require careful counting work 

to be made on them. 

The bulk radiocarbon dates made so far offer more equivocal support to the case for an older 

interpretation. A reasonable guess might be that in Watts (1985) the dates are on average 

10,000 years too old, and for the 1990 core an average of 3,000 years too old. If these 

corrections are made, it turns out that 20,000 years B.P. lies somewhere close to 1500cm 

depth rather than at 2000cm where the clastic-rich sediments occur. The 1985 dates point 

more in this direction than those on the more recent core, but this involves the assumption 

that the sediment accumulation at the former marginal site is similar to that of the present 

core. There appear to be problems correlating marginal cores with the present shelf core (B. 

Huntley, pers. comm.), although profiles from both sites contain a similar thickness (around 

700cm) of Holocene deposit. If an even bigger assumption is made that the Watts (1985) 

radiocarbon ages are systematically in error by a constant factor, it might be the case that 

the 30,000 years B.P. period is reached by 1800cm depth. This would hold the possibility for 

suitably low sedimentation rates to be prevalent in the glacial period. In opposition to these 

ideas, the presence of dates which are 'too young' to support the old age interpretation arises 

if the a.m.s. dated macrofossil samples are considered. In particular the 25,200 years B.P. 

date at 2351 cm (Fig. 3.8.) conflicts with this model unless the sample in question has been 

contaminated with young carbon. 

The sediment geochemistry as summarised by multivariate analysis may also provide an 

argument as it is noted that the three peaks in amelioration of 2700, 3050 and 3400cm depth 

(Fig. 3.6.) have a similar form to stage 5 of the oxgen isotope curve (ignoring for the moment 

the fact that they are of considerably reduced magnitude as compared with the Holocene). 
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This correlation would tend to fit with the old age alternative. Further discussion of the 

geochemical data will now be postponed until the next chapter. 

If the four previous arguments are correct, this implies that deeper parts of the core 

(especially from 2250cm to the base) contain a sediment sequence much more condensed 

than the Holocene and possibly covering a very long time interval. These lower sediments 

contain only 40-60wt% water (Fig. 2.5.) and much lower concentrations of (autochthonous) 

organic matter (Chap. 4a), making clastic deposition a more significant control on sediment 

thickness. In order to reach an age of 240,000 years B.P. at the base requires sediment 

accumulation rates averaging 0.1 to 0.2mm/year in the zone below 2200cm depth. In Webb 

and Webb (1988), 95% of lakes surveyed showed accumulation rates between 0.16 and 

2.15mm/year. It was also suggested that extremely low rates (<0.1mm/year) were likely to be 

associated with depositional gaps. In this context, 0.1 to 0.15mm/year is a particularly low 

rate for a small lake. On the other hand, this survey did not include sediments beyond those 

of late-glacial age and these examples are likely to be less well compacted than very old 

material. Also, Monticchio is characterised by a low catchment to surface area ratio (as 

described in Chap. 2) and low accumulation rates would be predicted. This has been 

demonstrated from other maars, for example Lac du Bouchet is believed to show 

accumulation rates below 0.2mm/year over large parts of its sediment record (Truze and 

Kelts, 1993). 

An early interpretation of the pollen record, summarised in Fig. 3.10., suggested the 

presence of the Eemian interglacial at 3400cm depth (Watts, 1992). Incidentally, this work 

has placed the Holocene boundary at 850cm as opposed to 750cm depth, although more 

detailed pollen analysis together with improved dating control will be needed to clarify the 

exact position. Certain features diagnostic of an interglacial were recognised in the record 

around 3400cm. These included high percentages of tree pollen, the appearance of broad 

leaved thermophilous taxa, indications of the re-appearance of a reed swamp at the lake 

margins, and vegetational successions known to be associated with glacial to interglacial 

transitions. The record between 2700 and 3400cm was seen to mirror stage 5 of the oxygen 

isotope record in a similar way to the summary of sediment geochemistry dealt with in the 

preceding paragraphs. Indeed, there is a strong consistency between the pollen and 

geochemical records in pointing to these zones of climatic amelioration (c.f. Figs. 3.6. and 

3.10.). Although the reason why both records (particularly the pollen record which indicates 

change in the terrestrial environment i.e. much more directly climate) should show 

significantly lower signals for this interglacial than for the Holocene is difficult to explain, the 

profiles do appear to fit well against stage 5. During this early interpretation the zone around 
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4900cm depth was placed in oxygen isotope stage 7 at around 240,000 years B.P. This zone 

also shows interglacial-like features, but was more tentatively interpreted as being such an 

event (Watts, 1992). 

Subsequent reservations about the presence of the Eemian have altered the palynological 

interpretation in favour of the young age model. It is now suggested that the pollen record is 

a highly detailed one extending back through late and mid-glacial times (W. Watts, pers. 

comm.) In this alternative explanation, the fluctuations seen in the zone between 2700 and 

3400cm are tentatively associated with Heinrich events (Bond et. al., 1992.) This relationship 

has previously been suggested from Florida lake sediment records (Grimm et. al., 1993; 

Watts et. al. 1992). 

The two possible age models (a and b) are shown in terms of correlatable marine oxygen 

isotope stages beside the pollen diagram in Fig. 3.10. Again the need for objective dates 

must be emphasised. 

With this unresolved picture in mind the sediment geochemistry will now be dealt with in 

more detail. 
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CHAPTER 4a 

BIOGENIC COMPONENTS OF THE SEDIMENTS 



ORGANIC CARBON 

Many lake sediment studies have considered organic carbon to be the most important 

geochemical variable. Mackereth (1965; 1966) was one of the first to measure a wide range 

of elements on sediments from the English Lake District. In a series of lakes he found that 

the carbon content rose rapidly after the cessation of glaciation to reach a maximum in the 

first half of the post-glacial period. This association between rise in organic carbon and 

climatic improvement has been found in many other large and small lakes, including 

European maar-lakes (Brown, 1991; Truze, 1990). However care must be taken in the 

widespread extrapolation of this relationship which was originally based on lakes with a 

predominantly oligotrophic character. The lack of a simple direct relationship with climate 

(e.g. temperature or rainfall) can be illustrated by the case of two lakes from as widely 

different areas as Arctic Canada (King, 1991) and equatorial Africa (Giresse et. al., 1990) 

both containing lOwt% organic carbon content in their sediments. Local factors are clearly 

significant influences on organic carbon content. 

If the Monticchio profile is examined (Fig. 4.1.), organic carbon values appear relatively low 

(<4wt%) between the oldest sediments at 5100cm up to around 1500cm depth. Between 

1500cm and 860cm depth, values increase gradually, towards 7wt% C. Above 860cm depth, 

there is a sharp rise to much higher organic carbon contents, and from here to the surface 

values remain consistently above 1 5wt% C. These basic differences are easily related to 

visual examination of ther core sections (Fig. 2.4. and Plates 3-5.). In particular, the abrupt 

rise above 860cm is seen as a change from pale brown muds to intense black gyttja and 

subsequent dark brown gyttja. An immediate feature in this youngest part of the sequence is 

the presence of a number of pronounced negative spikes. These are due to tephra layers 

covered in the sampling profile. The main tephra layers, from visual examination, have been 

marked on Fig. 4.2. for comparison. The pervasive presence of tephra layers adds noise to 

the probable underlying climatic signal. 

It is now worth examining these three main areas of the profile separately and in more detail. 

1) 0-860cm. The upper section begins sharply with a rise from 7wt% to 18wt% organic 

carbon over just 30cm. The first maximum occurs at 825cm, after which there is a decline in 

organic carbon over the next metre or so. A tephra layer (organic carbon poor material) is 

also situated within this zone of decline. Above 750cm the organic carbon profile risely 

sharply to even higher values than before. A maximum of 30wt% C is reached at 680cm. The 

following zone is strongly affected by "noise" from numerous tephra layers. The background 
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trend, however, appears to maintain high values of 20 to 30wt% C through to a third 

maximum at 460cm depth. From this point up to 125cm depth, organic carbon decreases 

gradually towards 1 5wt%. Following another tephra layer at 115cm, the organic carbon 

content begins to rise once more and the top of the core shows values of around 20wt% C. 

The uppermost sample is diluted by yet another tephra layer. 

860-1500cm. In the section from 1500 to 860cm a fairly steady upwards increase in 

organic carbon content is seen, perhaps levelling off above 1000cm. Two tephra layers of 

considerable thickness (>20cm) are found within the profile at 1450 and 1120cm. There also 

appears to be a pronounced organic-rich zone between 1390 and 1340cm. Here, organic 

carbon rises from a background value of 2wt% up to a brief maximum of 6wt%. This can be 

correlated with a number of dark brown horizons (each several cm thick) seen in the core 

section when freshly extruded. 

1500-51 00cm. The organic carbon profile for the lower part of the core contains structural 

detail which is best examined on an expanded y-axis scale (Figs. 4.1. and 4.2.). The core 

record commences just before a minimum in organic carbon (lwt%) at 5050cm depth. 

Following this organic carbon rises sharply up to a 4wt% maximum at 4900cm depth, before 

dropping back to a lwt% minimum over the next metre. Between 4700 and 3450cm there 

appears to be a broad cycle from values around 2.5wt% C to a minimum at 4000cm with 

<lwt% C values, and then back up to 2.5wt% C values over the next few metres. From 3450 

to 3400cm organic carbon rises sharply to a brief maximum of 4wt%. This is of a similar 

magnitude to the maximum at 4900cm. From 3400 to 2700cm organic carbon remains 

relatively high at between 2 and 3wt% C. Values fluctuate between several maxima and 

minima, each lasting for one or two metres. At 2700cm the curve drops sharply to the lwt% 

level and remains under 2wt% for the next 5 metres. A second sharp drop occurs at 2250cm 

where the visual record shows a slump unit and the beginning of a series of minerogenic 

turbidites. Here organic carbon content reaches some of its lowest values (0.5 to lwt% C) in 

the whole record. Above 2000cm values start to rise slowly at first and then more steeply 

towards a maximum centred on 1800cm depth. The 3wt% organic carbon attained in this 

zone is obviously not as high as the previous maxima at 4900 and 3400cm. Elevated values 

continue for a further 150cm and then decline to values below 2wt% once more from 1650 to 

1500cm. 

Discussion 

It should be remembered that the percentage concentration values presented in this study 

represent a closed data system and that one component can be diluted (show an apparent 
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decrease) merely by increase in the depositional rate of another component. Organic carbon 

content is affected by three basic factors: 

1) productivity, 2) preservation, 3) dilution 

PRODUCTIVITY The organic carbon content is both a reflection of organic productivity 

within the lake and of the productivity and supply of material from within the catchment zone. 

Within lakes, as in marine environments, increased productivity is generally considered to 

arise through increased nutrient availability (Birks, 1986; Tissot and Welte, 1984), and to a 

lesser extent by light or temperature increases, particularly in the productive epilimnetic 

zone. Lake productivity has generally been considered in terms of climatic factors, edaphic 

factors and morphometric factors (Carpenter, 1983). The effect of human activity might also 

be added to this list and is of major interest over more recent time scales. Each of these 

factors may have a direct or indirect effect upon nutrient availability. Increase in lake nutrient 

supply may come from external inputs (e.g. anthropogenic sources or changes in the 

catchment denudation or geology) or from recycling of the internal nutrient load (e.g. 

increased nutrient regeneration from the sediments). Terrestrial productivity in the lake 

catchment zone is influenced by edaphic factors and perhaps more directly by climatic 

factors as is often illustrated through the pollen record of vegetational change. This 

component of the organic matter also requires effective transportation into the lake to be 

included in the sediments. 

PRESERVATION Organic matter is inherently unstable from a thermodynamic point of 

view and on average less than 0.1% of the amount produced in the biosphere survives into 

the geological record (Tissot and Welte, 1984). In the marine environment, the degradatiän 

of organic matter is widely recognised as approximating a 1st order rate process with respect 

to carbon concentration (Emerson and Hedges, 1988). In other words, under constant 

sedimentation conditions, the organic carbon content in the sediments should show an 

exponential decrease with depth. This simple model has been modified because organic 

matter consists of a mixture of components of differing reactivities. The more labile 

components should be consumed first and at a faster rate by microbial processes. More 

sophisticated models accommodate for these effects by evaluating different 1st order 

reactivities for the individual components or by modelling an overall decrease in organic 

matter reactivity with time (Middelburg, 1989). According to Lowe et. al. (1988), lacustrine 

organic matter typically consists of 30-60% humic and fulvic acids, 5-20% cellulose, 10-50% 

humin, <1% lipids and <1% amino acids. It would be expected that labile components such 

as the amino acids would be preferentially recycled at an early stage in the sediment pile and 
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that in deeper burial stages the remaining organics would undergo degradation at a slower 

rate as favourable substrates for microbial attack became less available. 

The rate of organic matter degradation is affected by the quality of the organic matter, as 

mentioned, and by the availability of oxidants or electron acceptors (Gale et. al., 1992). The 

effects of physical mixing and bioturbation can also influence decomposition through aiding 

the movement of electron acceptors into the sediment zone. In a study of organic 

degradation in young lacustrine sediments by Avnimelech et. al. (1983) the authors found 

that the average rate constant was 4x10 3  to 24x10 3. This translates into an organic matter 

'half-life of between 30 and 170 years. However, this rather rapid rate of decomposition was 

observed on sediment profiles encompassing the most recent few decades. Older sediment 

profiles representing time spans of up to 1000 years were found to have lower rate constants 

translating into organic matter 'half-lives' of hundreds or thousands of years. There are 

indeed wide variations in the rates calculated from the various laboratory and field studies 

made on lacustrine organic matter (e.g. Gale et. al., 1992; Ishiwatari and Uzaki, 1987). 

Emerson and Hedges (1988) attribute this wide range of degradation rates to the availability 

of different qualities of organic compound as substrates. Thus highly residual organic matter 

such as lignin has been shown to have an effective half-life of 400,000 years for its 

degradation in the sediments of Lake Biwa (Ishiwatari and Uzaki, 1987). 

Although widely ranging values for organic decomposition exist, it is thought that in many 

organic lacustrine muds the majority of mineralisation takes place within the first few 

centimetres of the sediment-water interface (Herczeg, 1988; Lovley and KIug, 1986; Wersin, 

1991). Below this acitve zone, decomposition may take place at a much slower rate until the 

onset of thermal decarboxylation (Tissot and Welte, 1984) at great burial depth. Part of this 

decrease in reactivity must be due to the early removal of the most labile components in the 

surface zone and part due to the diffusion-limited availability of oxidants from the overlying 

lake water. In many fine grained sediments oxygen, which is a particularly energetic 

decomposer of organic matter, only penetrates the upper few millimetres or centimetres of 

the sediment column (Berner, 1981). When oxygen has been consumed, organic 

decomposition continues through utilisation of a series of electron acceptors (Froelich et. al., 

1979). These oxidants may also be consumed within the uppermost parts of the sediment 

due to limited replenishment by diffusion. Further degradation then takes place mainly by 

bacterial methanogenesis which does not require external sources of electron acceptors. It 

has been suggested that this mechanism of decomposition operates at a relatively slow rate 

(Pedersen and Calvert, 1990), but in some lacustrine settings vigorous methanogenesis has 

been documented during early diagenesis (Talbot and Kelts, 1986). It might be a reasonable 
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assumption that this process is most effective in the top few decimetres of the sediment at 

Lago Grande di Monticchio and that, thereafter, the organic matter is permanently buried or 

suffers little further change. 

Interpretations of long sedimentary records of organic carbon from lakes have tended to 

emphasise that the primary control over organic carbon content is productivity rather than 

preservation (Talbot and Johannessen, 1992; Brown, 1991; Meyers, 1989). Many of these 

records display shifts in organic content which are not constant in direction and occur over 

short stratigraphic intervals. If decomposition was the main control over carbon content then 

a systematic and monotonic decrease in organic carbon would be expected with depth. This 

is not seen in the case of the Monticchio record, where high organic carbon values persist for 

more than 700cm and then drop sharply over a short interval. The present organic carbon 

record will therefore be interpreted in terms of productivity being the driving force, although it 

is recognised that variations in the level of decomposition through time have had a 

secondary effect. The complication of changes in the degree of preservation (non-steady 

state diagenesis) is recognised by Meyers (1989) and requires additional information from 

organic geochemistry and optical examination if it is to be assessed. 

3) DILUTION To properly evaluate the effects of dilution by other components on the 

organic carbon content requires accumulation rate data. From concentration data alone, it is 

not completely safe to state that the rise in organic carbon above 860cm depth is not merely 

the result of a sharp decrease in the input of minerogenic clastic material (and that the 

accumulation of organic carbon has in fact proceeded at a constant rate throughout!). 

Although accumulation rates cannot be calculated, it is possible to make reasoned 

interpretations using crude sedimentation estimates from the age models available and from 

ideas on the likely palaeoenvironment. 

Interpretation 

In the interpretation of the organic carbon profile, comparison is sought with similar lacustrine 

records, of which Lac du Bouchet (Fig. 4.3.) is considered the closest. Other long records of 

organic carbon content do exist, but their sampling resolution or dating control are relatively 

poor. From the study of Lac du Bouchet, Truze (1990) provides a model to explain the 

increases in organic carbon accumulation during periods such as the Holocene as compared 

with glacial times. This model will be applied to Lago Grande di Monticchio and it is 

summarised in cartoon form (Fig. 4.4a.) Briefly, an increase in terrestrial vegetation in 

response to a more humid or warmer climate causes the slopes of the crater catchment area 

to become stabilised. The ensuing reduction in erosional activity dilutes the amount of clastic 
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deposition which may be seen as an apparent rise in organic carbon concentration. More 

importantly, weathering processes become dominant and increased nutrients leached from 

the soil lead to high productivity within the lake. Thirdly, as erosion and transportation 

declines the lake waters will stratify more easily due to reduced turbulence. Under elevated 

lacustrine productivity this could promote anoxic conditions in the hypolimnion zone (if 

present). This too could favour higher organic carbon contents in the sediments because 

preservation of deposited organic matter would be enhanced. The type of organic matter 

expected during these times would be mainly autochthonous and relatively labile. In contrast, 

during glacial periods erosional activity is more intense and organic productivity reduced. The 

type of organic matter predicted under these conditions would be highly degraded and 

consist mainly of resistant terrestrial debris. Truze considered that interstadial events, such 

as at 40,000 years B.P., represented 'intermediate environmental regimes' between these 

end members. 

At Monticchio the rise in organic carbon immediately above 860cm most probably reflects 

such a response to a more humid and perhaps warmer climate. Discussion with other groups 

working on the record suggests that 860cm may be close to the start of the Holocene. This 

depth is comparable to that found for the Holocene boundary in an earlier palynological study 

(Watts, 1985) made on a core from the lake margins. Alternatively, it is possible that the 

actual transition is near 750cm. In this case, the area from 860 to 800cm might reflect a late-

glacial interstadial (Allerod-Bolling event?), with an intervening period of climatic deterioration 

(Younger Dryas?) between 800cm and 750cm. Evidence of the Younger Dryas signal being 

observed in lake sediment geochemistry comes from southern Alaska (Engstrom et. al., 

1990). Here a marked decrease in the sedimentary organic content and rise in mineral 

erosion (alumina content) are related to a 'pedogenic reversal' brought about by local 

vegetation changes. At Monticchio, such an interpretation requires further evidence from 

detailed palynology and independent dating controls for support. 

A basic feature of the Holocene part of the record is the organic carbon maximum seen in the 

early part of this period from 700 to 400cm, followed by lower concentrations in the 

uppermost 400cm. As will be seen, the entire Holocene section is dominated by two 

components: organic matter and biogenic silica (i.e. biogenic material). The later Holocene 

appears to reflect a period when diatoms reach a dominant phase, whereas in the earlier 

part, other organisms such as green algae, blue green algae or terrestrial plants may have 

been greater contributors. This will be discussed more in relation to nutrient availability 

during the section on biogenic silica. Unfortunately, without accumulation rate data it is 

impossible to discriminate whether organic carbon deposition decreased or biogenic silica 



sedimentation increased during the upper 400cm. It is hoped that future results from varve 

analysis will make possible flux calculations. 

The negative spikes in organic carbon content associated with tephra layers most probably 

reflect a simple dilution of the surrounding gyttja with inorganic material. Visual examination 

shows that the tephra layers are quite sharply defined and that organic rich sediments 

resume almost immediately above such catastrophic events. Previous studies (Mehringer et. 

al., 1977) have shown that tephra fall events occur over short time intervals of a few months 

or years and that secondary runoff from material deposited onto the catchment does not 

occur for long after this time. In some cases it has been found that the input of tephra has led 

to increased productivity (in particular of diatoms) as the lake recovers (Kurenkov, 1966). In 

Monticchio there are cases in the organic carbon record of a shift to higher concentrations 

above some tephra layers (e.g. at 1 010c depth), but some of these features might be 

connected with climatic improvement instead. Stimulation of productivity by the tephra may 

be outweighed by the already high productivity of the lake, especially during the Holocene. 

This subject will be returned to in Chap. 4b. 

The organic carbon record from 860cm to the base of the sequence at 51 00c may be 

interpreted in alternative ways according to the two age models presented in Chap. 3. A 

central question regarding this interpretation is: 'Do we expect the Eemian interglacial to 

show similar levels of organic carbon as the Holocene? If we examine the record from Lac 

du Bouchet it can be seen that in the 1987 20-metre core sequence (Fig. 4.3.) the Eemian 

contains only 5wt% carbon compared with over 15wt% carbon in the Holocene. Truze (1990) 

suggested that both greater degradation of the Eemian deposits and lower primary 

productivity during Eemian time might be responsible for the difference. Evidence from grain 

size measurements (Truze, 1990) had shown that clastic deposition was more active during 

this earlier interglacial and so the more turbid waters may have reduced the level of 

biological productivity. Preliminary results from the 1990 55-metre core sequence (Fig. 4.3.) 

show that organic carbon is again substantially lower during Eemian times as compared with 

the Holocene. However, at greater depth in this sequence, organic carbon levels as high as 

the Holocene occur once more. These are believed to be associated with earlier interglacial 

periods (T. Williams, pers. comm.). 

With the young age interpretation, the more organic rich area between 2700 and 3400cm in 

Monticchio correlates with the zone around 10 metres depth in Lac du Bouchet (Fig. 4.3.) 

where a 40,000 year interstadial period is found. In Lac du Bouchet the organic carbon 

content at this time is slighly higher (2-3wt%) as compared with the surrounding glacial zones 
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which contain <1 wt% carbon. The lower organic rich area at 4900cm in Monticchio would 

correlate with the zone around 15 metres depth in the Bouchet profile. This is where organic 

content increases again, but not by as much as when the St Germain II interstadial/oxygen 

isotope stage 5a is reached. The last glacial maximum period in Monticchio might be 

considered to lie at around 2000cm where organic carbon values decrease to a <lwt% 

minimum for several metres. The area from here up to 860cm would thus be interpreted as 

the subsequent deglaciation leading towards the Holocene above. If this interpretation is 

correct, it appears that the last deglaciation contains an early period of enhanced productivity 

at 1800cm depth (soon after the glacial maximum) which is then followed by a drop to low 

productivity around 1500cm before productivity rises again towards the Holocene transition. 

This trend cannot be correlated with other known records which typically show a monotonic 

improvement during the last deglaciation. 

The old alternative involves correlation of the more organic rich area between 2700 and 

3400cm in Monticchio with the zone around 20 metres depth in Lac du Bouchet, i.e. the 

Eemian interglacial and St Germain I and II events (Fig. 4.3.). The area at 4900cm in 

Monticchio is correlated with the zone around 31 metres depth in Lac du Bouchet, i.e. a 

presumed interglacial at 240,000 years B.P. In this interpretation, the organic poor area at 

2000cm in Monticchio is hypothesised to be the product of sustained dilution by a prolonged 

phase of clastic input to the system which may have involved factors other than climate 

(Chap. 4b). The actual last glacial maximum may be represented around 1500cm depth. This 

permits the organic carbon peak at 1800cm to be correlated with the 40,000 year interstadial 

seen at 10 metres depth in Lac du Bouchet. 

The difficulty with this last interpretation is the need to account for the significantly lower 

organic carbon contents in the two previous interglacials. It is thought that the primary reason 

for this situation would have to be lower productivity during these times. It is considered 

unlikely that these zones once contained as much organic matter as the uppermost 

Holocene sediments and that degradation has reduced amounts to the present level below 

4wt%. Also, for dilution effects to be responsible would require a very high sedimentation rate 

of clastic material in order to dilute the carbon flux. This seriously opposes the older age 

model which requires low sedimentation rates to reach back 100,000 years across only 20 

metres. Although the involvement of the processes described by Truze (1990) is accepted as 

a cause for the broad differences between glacial and interglacial sedimentation at 

Monticchio, a new model (Fig. 4.4b.) is proposed at this stage. This is offered to provide a 

supplementary explanation of why organic productivity may have been lower during the last 

interglacial and in general during the earlier history of the lake. 
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The new model incorporates the additional influences of A) evolution in lake morphometry 

(Binford et. al., 1983) and B) the effect of volcanic input upon edaphic conditions. This 

contrasts with Truze's model which only looks at climate as a driving force. 

It is suggested that during its earlier history (before say 50,000 years B.P.) the lake was 

substantially deeper over its shelf area because it was less filled with sediments. This might 

have allowed a stratification regime to develop in which nutrients became sequestered into 

the hypolimnion for much of the productive summer period. This would limit further 

productivity in the water column and therefore cause less carbon to be fixed into the 

sediments. In contrast, gradual sediment accretion has led to a decrease in the depth of the 

shelf zone within the more recent history of the lake. Under these conditions, the epilimnion 

zone is in contact with most of the shelf surface and this could allow potential nutrient 

recycling to increase (Carpenter, 1983). Regeneration might be further enhanced by the 

spread of macrophytes across the shallow water zone. Recent observations show that 

pondweeds and other plants colonise large areas of the present lake (Chap. 2) and 

macrdphyte vegetation is known to efficiently mobilise phosphorus through its roots and 

return it to the lake waters (Carpenter, 1981 and refs. therein). This change in nutrient supply 

and increase in productivity is associated with internal factors. 

An external factor in the form of volcanic inputs may also play a role concerning the 

change in productivity at Monticchio. It is proposed that the earlier history of the lake was 

characterised by a relatively low number of tephra falls into the system. The soil in the 

catchment zone may have reached a mature and nutrient-depleted state over a previously 

long time interval. With very slow erosion of the crater slopes, new rock would not become 

exposed and available for leaching. Therefore the existing soil could be low in nutrients and, 

during the earlier interglacial periods, the increased weathering regime (according to the 

Truze model) would not be supplying the elements such as P and alkali metals into the lake 

in quantity. So, productivity would be relatively low. However, during the more recent history 

of the lake a greater number of tephras have been deposited onto both the lake and its 

watershed, especially in the record above 2500cm depth. This could have provided a thick 

blanket of 'fresh' mineral matter to the crater which became held in place by vegetation, 

permitting weathering and replenished inputs of external nutrients (c.f. Einarsson et. al., 

1993). This would allow relatively high productivity to take place particularly in the sediments 

deposited above 2000cm depth. 

This hypothesis is considered to provide a working explanation for the geochemical record in 

support of the old age model, but will require objective dating to prove or disprove. The new 
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model (and the younger age interpretation) will be further discussed in relation to the rest of 

the geochemistry in subsequent sections. Next, some other biological aspects of the 

sediment geochemistry are dealt with. 

C/N RATIO 

C/N ratios can assist in defining the nature of the organic matter (Stuermer et. al., 1978). It 

should be noted that some authors present the weight C/N ratio, while others use atomic C/N 

ratios and sometimes the inverse (i.e. the N/C ratio) is shown. The atomic C/N ratio is 

equivalent to 1. 1 6xC/N(weight  ratio). Also the nitrogen, N, referred to may represent organic 

nitrogen or the more commonly determined total nitrogen content of the sample. In this study, 

C/N ratios refer to the weight ratios of organic carbon to total nitrogen in the sample. 

The C/N ratios in the Monticchio core (Fig. 4.5.) show fluctuations between zero and >17, 

although most samples lie between values of 5 and 15. From 51 00cm to 3500cm there is a 

broad correspondence between high C/N and high organic carbon values. C/N ratios 

decrease from 12.5 at 4900cm to 5 at the organic carbon minimum around 4000cm. Above 

this depth, C/N rises to its highest values in the entire profile from 3500 to 3250cm. This 

contrasts somewhat with the more subdued organic carbon maximum in the same zone. 

After 3250cm, the ratio drops back to below 10 as 3000cm is approached, while maintaining 

a good correlation with the organic carbon profile. Another minimum (C/N=5) is reached at 

2000cm where some of the lowest organic carbon concentrations occur. This is followed by a 

maximum of 10 or 11 in the 1850 to 1600cm zone, again correlating well with elevated 

organic carbon. The area of the profile between 1600 and 1150cm is particularly noisy, but 

appears to begin with a minimum (C/N<6) up to 1400cm followed by a maximum (C/N 7-12). 

Values fall back to <5 at 11 00c and then rise progressively towards the presumed glacial-

Holocene boundary. A maximum C/N ratio of 10 is reached at 850cm. This is followed by a 

downturn over the next metre which correlates with the possible Younger Dryas signal 

mentioned previously. Above 750cm the ratio rises back from <5 to 10. The remainder of the 

Holocene is characterised by fairly constant values of 9-12, although the uppermost 150cm 

shows generally higher values than the rest of this section. As with the organic carbon 

record, tephra-rich samples impose negative spikes on the overall trend. Indeed, most of the 

samples displaying C/N<5 are ones in which there is a significant tephra component. 

Discussion 

The C/N ratio may be a reflection of both the source(s) of the organic matter and its level of 

diagenesis. A table compiled with data from Muller (1977) and Bremner (1967) is presented 
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to show some of the range in values for organic matter and for soils (Table 4.1.). Essentially, 

organisms have different C/N ratios according to the amounts of protein that they contain. A 

major difference exists between algae or lower organisms which contain high amounts of 

protein (giving C/N ratios of 5 to 8) and the more cellulose-rich terrestrial plants which 

typically have C/N ratios greater than 15. 

component 	 C/N ratio 

proteins 3.0 

zooplankton 5.4-5.9 

bacteria 4.0-5.0 

blue-green algae 6.5 

diatoms 5.5-7.5 

terrestrial plants 	 15.0-100.0 

most soils 
	

9.0-22.0 

Table 4.1. Average C/N ratios associated with different 

sedimentary components. 

It can be seen that some of the groups in Table 4.1. display considerable overlap in values. 

This precludes a detailed reconstruction being made from bulk geochemical data and it may 

only be possible to distinguish between the relative contributions of higher versus lower plant 

groups. 

The effects of diagenesis are generally accepted as leading to an increase in the C/N ratio of 

the remaining sedimentary organic matter. This is found both in the marine environment 

(Stevenson and Cheng, 1972) and in lake sediments from laboratory (Gale et. al., 1992) and 

field (Herczeg, 1988; Kuivila, 1984) studies. An illustration is provided by a sedimentary 

profile from a small lake in New York State (Fig. 4.6.). Here the C/N ratio is seen to increase 

from below 11 in the surface sediments to around 13 at 5cm depth. Beyond 5cm, however, 

the ratio remains more or less constant. This preferential loss of the nitrogen-rich fraction of 

organic matter is also evidenced from sediment porewater studies. Kuivila (1984) found that 

the C/N ratio of the organic matter being decomposed was 3.9 at 7cm depth, but rose to 14.7 

at 53cm depth in the sediments of Lake Washington. Most studies show that after intial 
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preferential losses in a zone of active diagenesis, the deeper sedimentary organic matter 

ceases to become nitrogen depleted (Binford et. al., 1983). These conditions of long term 

stability at depth should allow some indication of the primary source components to be 

retained. However, it is worth noting that some studies from the marine record suggest a 

continued change at greater depths (Stevenson and Cheng, 1972), perhaps due to non-

biological reactions. 

Unfortunately, a reconstruction of the primary organic sources (with a diagenetic overprint 

that can be estimated for) from the sediment record may be complicated by the retention of 

released nitrogen onto clay minerals (Lew, 1981). This phenomena will not affect studies 

where organic nitrogen has been analysed for, but could represent a problem for organic 

carbon/total nitrogen ratios, particularly in organic-poor sediments. When low amonts of 

organic matter are present, an appreciable percentage of the total nitrogen may be inorganic 

leading to erroneously low C/N values. Muller (1977) also recognised the possiblity that 

organic nitrogen compounds released by diagenesis could be preferentially retained by 

14 
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adsorption onto clay minerals. It was suggested that montmorillonite in particular might 

protect these compounds which would otherwise be lost from the sediments. 

In a palaeoenvi ron mental reconstruction we would mainly like to use the C/N ratio as an 

indicator of organic matter sources. Most results from long lacustrine records have been able 

to make associations with changing source inputs (Meyers, 1989; Meyers et. al., 1993; 

Talbot and Johannessen, 1992), but are only able to go as far as distinguishing relative 

changes at the terrestrial versus lower aquatic plant level. 

Interpretation 

In the interpretation of the Monticchio record it is thought that early diagenetic losses of 

nitrogenous organic matter could be tenuously associated with the rising C/N trend over the 

top 25cm of the core (Fig. 4.5.), but that the majority of the record may be shaped by the C/N 

ratios of organic (and inorganic) source contributions. Under the present limnological 

conditions it is likely that most of the early regeneration of nitrogenous organic matter occurs 

in the topmost unconsolidated sediment layers or in the water column, both above the 

attention of the core record studied here. 

The Holocene C/N ratios are generally close to 10 and probably reflect a mixture of terrestrial 

components with a major aquatic lower plant component. The relative constancy in ratio over 

perhaps 10,000 years of sedimentation suggests that the period has not experienced any 

fundamental changes in the basic organic mixture. The higher values around 12 in the upper 

150cm of the profile could be associated with an increase in aquatic macrophytes (high C/N 

plants) across the lake shelf. It is possible that the presence of their root systems could also 

have increased nitrogen loss from these sediments. 

During the Holocene and at earlier times, tephra samples are seen to drag the C/N ratio to 

very low values. Although tephra inputs may sometimes stimulate blooms of lower plants 

(e.g. diatoms) the ratios associated with these samples are below the range of known 

organic sources. However, if the geochemistry of typical catchment area rocks is examined 

(Table 2.1.) it can be seen that this primary inorganic material contains virtually no carbon, 

but up to 0.07wt% nitrogen. This is an unusually high nitrogen content for an igneous rock, 

normal values being below 0.Olwt% nitrogen (Stevenson, 1962). According to Stevenson 

(1962), the nitrogen content of igneous rocks is a function of the type and amount of silicate 

minerals present and the amount of ammonium available for fixation during the existence of 

the mineral. In this case ammonium nitrogen is probably substituting in place of K in the 

lattice of feldspar or feldspathoid minerals, and it has been shown in Chap. 2 that many of 

75 



the volcanic rocks in this region are enriched in volatiles, possibly from evaporite 

assimilation. As a result, the local volcanic material has an effective C/N ratio close to zero 

and a large amount of this component in the sediment mixture could account for the very low 

C/N ratios in the core profile. 

The zone between 500 and 2000cm, encompassing the last glacial transition, is shown in 

more detail in Fig. 4.7. From 750 to 11 50c depth the C/N ratio decreases from 10 towards 

5. This general trend also contains a sharp drop to low values in the 750cm to 800cm zone 

which may equate with the Younger Dryas period. These trends towards values as low as 5 

suggest that diatoms or algae have become the dominant source of organic matter. 

Comparison with the organic carbon profile (Fig. 4.7.) shows that a positive correlation exists 

between the two parameters. Assuming that dilution and diagenetic effects are of secondary 

importance, this suggests that the amount of organic matter supplied by terrestrial vegetation 

and/or aquatic macrophytes has decreased significantly while the input from planktonic 

productivity has decreased at a lower rate or maintained its level. In the possible Younger 

Dryas period this would suggest a sensitive response to climate from productivity in the 

terrestrial/catchment vegetation zone, but a lower response from productivity changes within 

the lake. 

After interruption by a tephra layer around 11 00c depth, the zone between 1150 and 

1400cm appears to indicate a relative increase in the contibution of terrestrial plant material. 

This is set against a background of declining organic carbon content (Fig. 4.7.) and is 

interpreted as reflecting decreased organic input from both the catchment vegetation and 

from plankton within the lake due to declining climatic conditions and nutrient availability. 

High areas of C/N, especially around 1360cm depth, suggest certain periods of increased 

terrestrial organic matter input or aquatic macrophyte contributions. 

Between 1400 and 1600cm depth, organic carbon values are reduced to below 2wt% C and 

the C/N ratio is around 5 suggesting a limited contribution from lacustrine plankton and 

virtually no contribution from higher plant matter to the sediment organic matter. A return to 

higher organic carbon content and C/N ratios up to 12 occurs between 1600 and 1800cm 

depth and suggests that the input of terrestrial vegetation and perhaps also the productivity 

within the lake has increased again in response to improved climate/nutrient supply. This is 

followed by the zone around 2000cm where high clastic deposition dominates the sediments. 

The organic carbon and C/N values suggest an organic sedimentation similar to that 

between 1400 and 1600cm, although the possible effect of inorganic nitrogen on the C/N 

ratio of these organic-poor sediments needs to be considered. The possibility of inorganic 
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nitrogen affecting the sediments which contain <2wt% organic carbon will be dealt with in the 

following paragraphs, but for the moment the interpretations are based on C/N ratio 

principally reflecting the organic matter C/N ratio. 

The remainder of the profile (Fig. 4.5.) contains two important maxima in C/N ratio at 3200 to 

3500cm depth and at 4900cm. These periods have been suggested as interglacials 

according to the old age interpretation or otherwise interstadials, and organic carbon content 

is generally elevated. Both lacustrine and catchment productivity were probably somewhat 

higher during these times, with the relative increase in higher plant sedimentation dominating 

the C/N signal. The lower C/N and organic carbon values outside these zones reflect 

gradients towards reduced contributions of terrestrial organic matter and the dominance of 

planktonic matter components. It is interesting to note that if the older age model is correct, 

the Eemian contains a strong signal from high C/N ratios, while the predicted St Germain I 

and II interstadial zones between 2700 and 3200cm show relatively low or intermediate 

values. 

The sediments in lower parts of the Monticchio profile show some correlation between C/N 

ratio and the organic carbon content. Such a relationship was found in the Lake District area 

by Mackereth (1966) and attributed to the increasingly significant contibution of mineral NH 4  

under conditions of low organic matter abundance. Analysis of the local glacial clays showed 

them to contain 0.20wt% nitrogen -an extremely high value. The presence of this component 

was held responsible for the artificially low C/N ratios in some sediments. It is to be 

wondered whether the effect of high levels of inorganic nitrogen may be responsible for the 

often low glacial C/N ratios (<7) in the Monticchio record and if the removal of this effect 

might perhaps shift the ratios in these zones to much higher values. 

In a plot of total nitrogen against organic carbon (Fig. 4.8.) it can be seen that the two 

parameters are strongly correlated suggesting that the nitrogen content is mainly associated 

with organic matter. Virtually all of the samples fall within fields representing C/N ratios of 5 to 

15. The main exceptions to this are tephra layers which have been marked separately on the 

diagram. These do contain significant amounts of inorganic nitrogen and display sharp 

excursions to low C/N. In contrast, the majority of samples in the core profile lay above a 

minimum 'threshold ratio' of 5 and remain separate from the extreme tephra values. It is 

considered reasonable that C/N ratios as low as 5 could be related to mainly or exclusively 

organic nitrogen components. A further consideration is the fact that the 'best-fit' line 

intercepts the y-axis at around 0.05wt% nitrogen which could represent a reasonable 

maximum for the fixed level of organic nitrogen present in most of these sediments. This 
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value is in accordance with lake and marine studies by Kemp and Mudrochova (1972), 

Stevenson and Cheng (1972), Muller (1977), Lew(1981) and Talbot and Johannessen (1992) 

who all find that the level of sedimentary inorganic nitrogen to be below 0.05wt%. If this figure 

is then removed from total nitrogen values during high-glacial times (e.g. at 4000cm depth) it 

is found that an adjusted C/N ratio rises from 5 to 6.7. This is still very much lower than the 

adjacent interglacial or interstadial zones which have ratios of 10 or more. 

In a plot of C/N ratio against mineral content indicators such as aluminium or potassium (Fig. 

4.9.) the tephra layers are again seen to stand out with their exceptionally low C/N ratios and 

high mineral contents. Muller (1977) found a strong positive correlation between inorganic 

nitrogen content and the concentration of mineral indicators. If the presence of appreciable 

mineral-associated nitrogen was influencing the C/N ratios in Monticchio it might be expected 

that a plot of C/N ratio against mineral indicators would show a strong negative correlation. It 

should be remembered that, as a variable, C/N ratio is dependent on both inorganic nitrogen 

contributions and on the strict C/N ratio of the organic matter, and that the fundamentals 

driving sedimentation may influence both simultaneously. The scatter plots of C/N ratio 

against aluminium and potassium show only weak to moderate negative correlations 

amongst the body of samples, and this also suggests that inorganic nitrogen is not a primary 

factor of influence to the C/N ratios. However its increased presence could enhance C/N to 

slightly lower ratios during mineral-rich glacial periods of deposition. A possible reason for 

the limited presence of inoganic nitrogen may be the low abundance of suitable host phases 

such as illite or montmorillonite over large parts of the core (see Chap. 4b). 

In summary, the sediment C/N ratios are not thought to be primarily influenced by inorganic 

nitrogen contributions with the exception of tephra inputs and high clastic sedimentation by 

turbidites. Therefore the C/N ratios may largely reflect the organic matter composition. 

Nevertheless, it may be possible that the sediments have experienced some lowering of the 

C/N ratio during organic matter diagenesis. This opposes the normally encountered increase 

in C/N ratio discussed earlier, but Kemp and Mudrochova (1972) associated increased 

organic nitrogen contributions with the complexing of amino-compounds to newly formed 

humic materials. This process was thought to be most effective during periods of slow 

sedimentation when bacterial populations would have more time to degrade the sediment 

organic matter. Further investigation into characterising the phases with which N is 

associated (e.g. by selective extraction procedures) would seem worthwhile in order to 

reliably interpret the C/N record. 

r;ji 



BIOGENIC SILICA 

Like organic carbon, biogenic silica offers a guide to past biological productivity. But while the 

former variable is related to the general level of organic production within and surrounding 

the lake, biogenic silica reflects a specific portion of lacustrine production -in general the 

abundance of diatoms. Although microscopic examination reveals the presence of other 

siliceous organisms in the Monticchio sediments, such as chrysophyte cysts and sponge 

spicules (Zolitschka, unpubl. work), the dominant siliceous organisms here are diatoms. This 

is illustrated by S.E.M. photographs taken at 1750 and 3410cm depth within the core (Plate 

6.) which show the large quantities of diatom valves that often occur. In fact the Monticchio 

sediments are particularly rich in this component over many depth intervals, probably a 

reflection of the lake's volcanic setting (Martin et. al., 1992; Jones and Bowser, 1978). 

Pyroclastic minerals are known to be subject to greater dissolution and alteration than normal 

catchment rocks and large amounts of silica can be derived through weathering processes to 

stimulate high diatom productivity. A great deal of information may be derived from the study 

of the diatoms in their own right (Battarbee, 1986; Dixit et. al., 1992), but this study will look 

just at biogenic silica as a proxy indicator of absolute diatom concentrations. It may be the 

case that the biogenic silica record has experienced better preservation than the organic 

carbon record allowing a clearer signal of past productivity. The biogenic silica record might 

also provide complimentary information on conditions such as nutrient levels through its 

contrasts with total organic carbon. 

During the determination of actual biogenic silica (Appendix 1) it was found that the early 

results correlated extremely well with a normative model for biogenic silica calculated from 

the XRF major element data: 

biogenic s iIica=Si02 2.8*Al203  

This calculation is similar to that employed by Bostrom et. al. (1972) and assumes that total 

silica is composed of a biogenic component and an aluminosilicate+quartz component. The 

factor of 2.8 selected is lower than an often quoted 'average shale' silica:alumina ratio of 3.4 

(Turekian & Wedepohl, 1961), but fits the more aluminous sediment type from these cores 

better. As the actual measurement of biogenic silica is time consuming it was decided to 

continue with a smaller number of selected samples below 970cm in order to verify the 

accuracy of the XRF estimation model. Comparison of the two curves (Fig. 4.10.) shows that 

below 970cm some discrepancy occurs and negative estimations of biogenic silica are seen 

at 2000cm and 4000cm depth. This must be due to changes in the silica:alumina ratio of the 
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non-biogenic sediment fraction as a result of changes in aeolian dust input, tephra input and 

local weathering processes which all contribute to the sediment mixture. Previous attempts to 

improve the normative technique have applied well-constrained mineralogical modelling and 

included additional parameters in the normative calculation (e.g. Leinen, 1977). However, for 

the Monticchio record, the more simple normative model above offers an adequate high 

resolution semi-quantitative guide to the large scale variations that occur in biogenic silica 

content. This can be used in conjunction with the more limited profile of actual biogenic silica 

concentrations to pin down absolute values. 

If the biogenic silica profile is viewed as a whole (Fig. 4.10.), the lower part of the profile 

(below 2000cm depth) shows broadly comparable trends to organic carbon content (c.f. Fig. 

4.1.), but the signal from the biogenic silica record is much more accentuated. For example, 

the zone around 3400cm which may represent the Eemian interglacial (according to the old 

age model) shows biogenic silica contents of 60wt%, while values drop to effectively zero at 

2000cm depth. Microscopic examination has shown that diatoms are present throughout the 

entire profile, although at 2000cm and 4000cm they occur in very low numbers (Zolitschka, 

unpubl. work). If the old age model is applied, it is seen that the stage 7 interglacial, the 

Eemian and the St Germain I interstadial are all characterised by very high levels of biogenic 

silica reaching over 50wt% in value, but that the suggested St Germain II period at 2700cm 

depth contains a noticeably lower content around 40wt% Si0 2. The biogenic silica record 

also appears to pick out more clearly possible interstadial events at 2600cm and 2300cm 

depth. The latter event again records very high levels of biogenic silica over 50wt%. 

In the upper part of the profile the biogenic silica content increases from 0 towards 30wt% 

between 2000 and 1 000c depth (Fig. 4.11.). This parallels the broad trend shown by 

organic carbon (Fig. 4.11.), although the climatic improvement suggested by the elevated 

organic carbon levels between 1600 and 1800cm appears more subdued in the biogenic 

silica record than might be expected. Above 1000cm the biogenic silica content varies more 

independently with regard to organic carbon content and the two parameters only correlate 

closely where tephra layers dilute both with high amounts of clastic material. From Fig 4.11. it 

is clear that much of the upper 700 to 1000cm of the Monticchio record is dominated by 

organic matter and biogenic silica (diatom) constituents and that clastic mineral matter only 

represents a small contribution outside the areas of high tephra input. 

From 1000 to 780cm depth biogenic silica content remains around 30wt% with two 

fluctuations towards higher values over 40wt%. The previously suggested Younger Dryas 

zone does not suffer a significant decline in biogenic silica outside the brief influence of a 
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coeval tephra layer at 785cm. This contrasts with the marked declines in organic carbon and 

C/N ratio between 810 and 750cm depth and supports the evidence from the C/N ratios that 

productivity within the lake may have declined to a much lesser extent than productivity of 

the surrounding higher vegetation at this time. 

The Holocene is typified by biogenic silica contents between 30 and 63 wt%. During the 

early half of this period, biogenic silica is generally lower at around 30wt%, although peaks at 

750cm and 540cm show brief periods of very high values. Above 350cm, however, values 

rise to a sustained high for the next 300cm and range from 40 to 60wt% Si0 2. In the most 

recent part of the Holocene, above 50cm depth, there appears to be a pronounced reversal 

and values decrease sharply towards the present. 

Discussion 

As with organic carbon, biogenic silica content is influenced by productivity, preservation and 

dilution. 

1) PRODUCTIVITY As with the other components of the lake plankton, the productivity of 

diatoms is influenced mainly by epilimnion nutrient supply and usually to a lesser extent by 

temperature and light conditions. Increased availability of nutrients will in general favour 

increased productivity by plankton as a whole, but diatoms differ from other plankton in their 

requirement of silica as a key nutrient. Kilham (1971) recognised that when silica demand is 

high (e.g. due to increased diatom productivity) and available silica becomes depleted, 

diatoms are replaced by algae not requiring silica (i.e. green and blue-green algae). Tilman 

et. al. (1986) studied natural assemblages of lacustrine plankton under controlled laboratory 

conditions of varying nutrient ratios (Si/P, NIP), light and temperature levels. Due to 

ecological competition diatoms increased in dominance under conditions of high Si/P and 

N/P nutrient ratios and were the dominant planktonic group at a wide range of nutrient ratios 

when temperatures were below 14°C. On the other hand, at very low light levels (perhaps 

due to increased water turbidity) diatoms were replaced by green algae as the dominant 

group and at progressively higher water temperatures green followed by blue-green algae 

became dominant. At temperatures above 24°C blue-green algae dominated a wide range of 

nutrient ratios. 

Sustained high diatom productivity therefore requires a sufficient supply of silica as well as 

phosphorus. Both these nutrients may be derived from external sources or from the internal 

nutrient load. It is found that phosphorus is normally recycled at a much faster rate than silica 

in the water column or lake sediment zone (Schelske et. al., 1986). Phosphorus release is 



tied up with the microbial breakdown of organic matter which is a faster process than the 

chemical or physically controlled dissolution of biogenic silica (in most environments). This 

means that a higher net amount of silica is lost to the sediments and so it is more necessary 

for this nutrient to be replaced by continued external supplies. 

PRESERVATION According to Engstrom and Wright (1984) diatom frustules seem to be 

well preserved in the sediments of most lakes despite the potential for silica dissolution. 

Possible degradation can occur through mechanical break-up under conditions of high 

turbulence or through dissolution. The latter has been associated with particular 

environments including deep lakes with sil ica-u ndersatu rated water columns, areas where 

sedimentation and burial are slow and high pH settings (e.g. in lakes where carbonates are 

being secreted). The diatoms may to some extent be protected from these effects by their 

organic coatings or by the presence of multivalent cations in the silica structure. It is believed 

that preservation changes are of secondary importance to productivity in interpreting the 

Monticchio record and that in general the level of diatom preservation is good (B. Zolitschka, 

pers. comm.). However, a systematic examination of the core by S.E.M. would be required to 

confirm this, and it is possible that the diatom component may have suffered from some 

dissolution in diatom-poor areas or where carbonate sediments are found. 

DILUTION It is expected that biogenic silica content would be influenced by the same 

dilution effect from increased clastic input that causes organic carbon content to be reduced. 

In general, primary productivity is thought to be the main influence on the record of biogenic 

silica content and only in areas of high tephra or turbidite input is dilution considered the 

definite primary factor. However, during the Holocene period where clastic mineral matter is 

scarce, it is possible for mutual dilution effects to exist between the biogenic silica and 

organic carbon contents. It is not possible to evaluate whether silica input increased or 

organic carbon flux decreased without the availability of accumulation rate data. 

Interpretation 

The interpretation of biogenic silica content may be related to the models explaining organic 

carbon deposition which were presented in Figs. 4.4a. 4.4b.. According to the new model 

(Fig. 4.4b.), sedimentation during the earlier history of the lake (below 2000cm depth) took 

place under conditions of lower nutrient supply from the catchment. Therefore rates of 

phophorus supply were limited, although supply of silica through mature-stage soil 

weathering may not have been as reduced in relative terms. Under these conditions diatoms 

could outcompete other planktic groups and they therefore represent the dominant 

component of the biological material sedimented at that time. Only a relatively small increase 



in phosphorus supply might be required to cause a large increase in diatom productivity 

(Schelske et. al., 1986). This is what may have occurred during the proposed interglacial 

periods at 4900 and 3400cm when enhanced terrestrial vegetation cover favoured the 

leaching of slightly higher levels of nutrients (in particular P) from the catchment area. This is 

reflected in dramatic rises in biogenic silica content, although the response of organic carbon 

content (representing overall productivity) is more subdued. 

During the later history of the lake (above 2000cm depth) the renewed nutrient supply from 

freshly leached volcanic material in the catchment could have caused an increase in the 

supply of phosphorus relative to silica, perhaps culminating during the maximal leaching 

conditions of the Holocene and latest-glacial periods. This would cause the dominance of 

diatom contributions to be reduced and is reflected by the more subdued trends in the 

biogenic silica profile when compared against organic carbon rises. It is possible that the 

lower than expected biogenic silica maximum in the zone between 1600 and 1800cm depth 

may be connected with lower rates of preservation. This area is characterised by significant 

carbonate precipitation and higher pH conditions at this time could have accelerated the rate 

of diatom dissolution (Newberry and Schelske, 1986). 

During the Holocene the C/N ratio remains at a similar value throughout and so variations in 

biogenic silica and organic carbon content should mainly reflect patterns of relative 

dominance amongst the lower plants or phytoplankton of the lake. The early part of the 

Holocene (300 to 700cm) shows reduced dominance by diatoms and it is expected that 

green algae (and blue-green algae) reached their peak here. In contrast, the later Holocene 

sees a renewed dominance from diatoms until the uppermost 50cm of the record. These 

changes may reflect mainly nutrient availability, for example in terms of lower Si/P ratios 

during the earlier Holocene. it may also be possible that temperature has had an effect on 

the planktic populations. For example, the presumed increase in green algae during the early 

Holocene might partially be attributed to higher temperature levels (Tilman et. al., 1986). It is 

not certain how sensitive the changes in plankton dominance might be in this environment 

and so both nutrient and temperature changes remain reasonable possibilities. Nutrient 

changes would probably be related to external supply either through climate-vegetational 

induced changes in leaching inputs or modifications in nutrient supply associated with tephra 

deposition. It is possible that the decline in diatom dominance suggested above 50cm depth 

is connected with an increase in phosphorus loading from human activities in the catchment. 

It would be very useful if the diatoms could be studied in their own right as more detailed 

information would be available from this work. As an indicator of total diatom abundances, 
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biogenic silica has provided additional ideas on productivity and past nutrient conditions in 

Monticchio and may more sensitively reflect this information than the organic carbon profile 

in lower parts of the core. 

HYDROGEN INDEX 

Hydrogen index (HI) values have mainly been applied in the study of petroleum source rocks 

and the kerogen characterisation of ancient sediments (Tissot and Welte, 1984). In the last 

decade the measurement has become used more frequently on younger lake sediments and 

Talbot and Livingstone (1989), in recognising its value, have recommended that pyrolysis 

techniques should become a standard part of palaeolimnological investigations. 

Like C/N ratios, hydrogen index can give further information on the sources and diagenetic 

state of the sediment organic matter. It provides an indirect estimate of the atomic H/C ratios 

of the kerogen (i.e. the >90% of organic matter in the sediment that is not soluble in organic 

solvents) and is determined from the measurement of the hydrocarbon yield of the kerogen 

when it is subjected to thermal cracking. This has become a standard tool in organic 

geochemistry and petroleum geology due to its convenience over the direct elemental 

analysis of kerogen (Espitalié et. al., 1985). 

Care must be taken when analysing sediments with low organic carbon contents due to 

possible mineral matrix effects (Peters, 1986). This may be a particular problem in organic-

poor clays and carbonates where the matrix may retain a high proportion of the liquid 

hydrocarbons produced during pyrolysis. In the study of Lac du Bouchet (Bertrand et. al., 

1992), it was thought that hydrogen index was a reliable indicator in sediments containing 

>0.5wt% organic carbon. The sediments from Lago Grande di Monticchio generally contain 

more than lwt% carbon and are thought to be little affected by this phenomena. 

Previous studies of lacustrine organic matter have emphasised to varying degrees the 

relative importance of source and diagenetic factors on hydrogen index. Fig. 4.12. shows 

typical HI values that have been associated with fresh and altered organic material. It can be 

seen that values over 750 should be related to the presence of a primarily planktonic matter 

source. However, more recent data has confirmed that many samples of amorphous or 

planktonic organic matter may possess HI values below 600 and that, when altered, this 

component can display values of 100-300, similar to woody material (R. Tyson, pers. 

comm.). It is possible for HI values below 500 to be interpreted in terms of one or more 

source components in a mixture and/or the presence of altered material. The progressive 
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reduction in hydrogen index associated with kerogen maturation (under oxygen deficient 

conditions) is illustrated in Fig. 4.13. which shows how the main classes of kerogen evolve 

with burial. Type I kerogen which equates with planktonic lacustrine organic matter has initial 

HI values greater than 800, but these fall as burial and thermal evolution take place (Tissot 

et. al., 1974). The arrows suggest that eventually this material may evolve into a 

polyaromatic carbon-rich residue containing virtually no hydrogen. These changes are in the 

context of much longer time spans than the present study and Tissot and Welte (1984) 

consider that young sediments should retain much of the variation inherited from their 

organic sources. 

In her study on Lac du Bouchet, Truze (1990) interpreted the hydrogen index results in terms 

of sediment source mixtures. Two principal organic sources were proposed: a high HI 

planktonic component and a low HI detrital component. These were modelled with mixing 

equations to represent the sediment composition. The Holocene period (a lacustrine 

planktonic episode) might have been expected to display HI values of over 700. The modest 

values of 400-500 that were found were interpreted as the result of some "detrital" organic 

matter also being present. It was thought that diagenesis provided a limited influence on the 

record since a simple time-dependent evolution path did not exist in the HI profile. However, 

in a later study (Bertrand et. al., 1992) the influence of 'amorphous-degraded' matter in 

creating lower HI values was given greater emphasis for this site. 

Talbot and Livingstone (1989) interpreted hydrogen indices in mainly diagenetic terms for 

their reconstruction of lowered lake levels from two African sites. They associated HI decline 

with the selective removal of labile compounds by bacterial respiration and inorganic 

oxidation during periods of emergence or bottom water oxygenation. At these times the 

sediment record contained low levels of inert organic matter having considerably lower 

values (HklOO) than the surrounding sediments (Hl>400). Hollander et. al. (1992) also 

associated changes in hydrogen index with degree of preservation of the organic-rich 

sediments in a Swiss lake. Parallel work had shown that not only did the relative proportions 

of terrestrial versus aquatic matter sources remain constant during the period under study, 

but that there was no change in dominance between the phytoplankton groups present in the 

aquatic matter either. The independent process of early diagenesis was ruled out, but it was 

thought that changes in HI reflected changes in surface water productivity and its 

subsequent influence on oxygen depletion causing change in the quality (and quantity) of the 

organic matter preserved. 



10 

20 

30 

40 

50 

60 

Lac du Bouchet 

IM (mg.HC/g.CO) 

0 	 400 	800 

Bertrand et. al. (1992) 

0 	100 200 300 400 500 600 

-E 

a-q) 
-D 

Hydrogen Index (mg.HC/g.TOC) 

0 	100 200 300 400 500 600 

Fig. 4.14. Comparison of Hydrogen Index values for Monticchio and Lac du Bouchet 

FOPFA 



These studies illustrate that hydrogen index may be controlled by either organic matter 

source or alteration depending on the environment. The possibility also exists that both 

factors may dominate at different times in the same setting or record. 

If the Monticchio record is examined (Fig. 4.14.) the HI profile appears to show similarites 

with both the organic carbon and biogenic silica profiles previously presented, but is more at 

variance with the C/N ratio profile. The highest values for hydrogen index lie in the Holocene 

period and range from 300 to 500. A peak occurs at 250cm during a time when biogenic 

silica content is also maximal. After a 'plateau phase between 750 and 1200cm values drop 

to a minimum in the clastic-dominated zone at 2000cm depth. The lower interglacial (or 

interstadial) horizons identified at 3400cm and 4900cm depth also show relative HI maxima, 

although values here never rise above 300. HI values for most of the core profile below 

2000cm lie in the 100 to 200 range typical of major contributions from altered/oxidised 

organic material and/or woody or higher plant tissue (Fig. 4.12.). 

A hydrogen index profile from Lac du Bouchet is also shown in Fig. 4.14. for comparison. 

Like Monticchio this profile shows a considerable correlation with organic carbon content (c.f. 

Fig. 4.3.). Higher HI values up to 750 occur in the Bouchet record for brief periods, but most 

points lie between 100 and 500 as in Monticchio. 

From the C/N ratios in the upper part of the Monticchio record it was suggested that the 

organic matter in the Holocene sediments contains a major planktonic component with some 

contribution from terrestrial organic sources. A major planktonic component might be 

expected to give HI values above 500 and it is not certain whether the modest HI values of 

300 to 500 represent a simple mixture (terrestrial and planktonic) of unaltered sources or a 

dominant component of low HI (partially degraded?) planktonic matter. It is possible that both 

oxidative and anaerobic forms of alteration may have affected the planktonic material during 

early diagenesis. Perhaps also a quantity of reworked organic matter is present. This could 

be linked with reasons for the excessively old bulk radiocarbon dates described in Chap. 3. 

The plateau seen during the glacial-Holocene transition between 750 and 1250cm depth is in 

concordance with the biogenic silica record and suggests that a major part of the lacustrine 

productivity maintained itself at moderately high levels during this period of change, and was 

not adversely affected by a possible Younger Dryas event, if present. From 1250 to 2000cm 

depth the decline in HI paralleled by declines in organic carbon and biogenic silica content 

suggest a marked decline in organic productivity. The HI values below 200 that are 

encountered in this area could reflect the presence of mainly altered organic matter (probably 
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due to increased oxygenation and microbrial breakdown) with possible additions of old 

reworked organic matter from the catchment. 

It is thought that the generally low HI values from 2000cm downwards are reflective of 

changes in the degree of organic matter preservation coupled with productivity. If primary 

source factors were the only influence, it would be difficult to reconcile the HI values with the 

C/N profile. In particular, the lower C/N ratios seen in glacial areas (suggesting dominance of 

plankton) would be expected to correspond with increased HI values, which is not the case. 

This can be explained if the glacial areas contain low amounts of highly degraded planktonic 

matter (i.e. of low HI value) and contain a significant quantity of humic- or lignin-bound 

nitrogen. In contrast the interglacial (interstadial) areas will contain higher quantities of both 

planktonic and terrestrial organic matter which has perhaps been deposited under more 

oxygen depleted conditions. This will give somewhat higher HI values and with the reduced 

process of nitrogen incorporation during humification and/or the increased relative 

contribution of higher plant matter will lead to higher C/N ratios. 

In conclusion it is thought that primary productivity and organic sources exert a major 

influence on the sedimentation record, but that lower productivity may be connected with 

lower preservation through the increased availability of oxygen during diagenesis and the 

slower rates of organic matter deposition-burial. These changes are ultimately governed by 

the influence of nutrient supply and its control on production. Evidence from radiocarbon 

dating to suggest the importance of redeposited older organic matter is offered some support 

by the hydrogen index values. 

BROMINE and IODINE 

The profile for bromine (Fig. 4.15.) is highly correlated with that for organic carbon, 

particularly over the upper 1500cm of the sequence (r=0.938). Outside the Holocene part of 

the profile where concentrations can exceed lOOppm, the concentration of bromine tends to 

lie below the 20ppm level which is normal for freshwater lacustrine sediments (Fuge, 1978a). 

It is known that sediments can be enriched in Br due to the presence of plant material 

(Cosgrove, 1970) and that the element is concentrated in humic layers of soils (Vinogradov, 

1959). Thus the unusually high bromine values up to 120ppm are thought to be a 

consequence of the unusually high organic matter contents of the Holocene section. 

It is possible that the element may be largely derived from weathering of the catchment rocks 

which contain 5-10ppm Br (Table 2.1.) On the other hand, the lake sediments have more 
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enriched compositions and a major supply of the halogens is thought to occur through the 

atmospheric transport of ocean-derived aerosols (Mackereth, 1965). Changes in Br/organic 

carbon ratios might therefore reflect the climatic 'oceanicity' (wind conditions, air 

temperature, etc.). Mackereth (1965) found independent variation between halogen and 

organic carbon contents in the post-glacial period from certain lake sediment records and 

was able to divide the post-glacial into three stages of differing 'oceanicity of climate'. 

However, he recognised that in addition to climatically controlled supply changes, the 

halogen content could also be influenced by changes in the chemistry and ionic balance of 

catchment soils. In addition the selective effects of diagenesis and change in the type of 

organic matter sources cannot be disregarded. Examination of Br/CORG  ratios from the 

Monticchio core (Fig. 4.16.) shows that marginally higher ratios occur between 850cm and 

1450cm than in the Holocene zone above. Thus, if the ratio depended only on rate of 

halogen supply from rainfall, the ocean (Mediterranean Sea/N Atlantic?) may have had more 

influence on local climate during this earlier period. However the ratio is more or less 

constant at around 5x10 4  for much of the profile and it is difficult to make sound 

interpretations of any trends seen. Positive spikes associated with some of the tephra 

samples show that these layers have relatively high (mineral-associated) bromine contents in 

comparison to their low organic carbon values, while the area of negative ratios around 

2000cm depth is caused by erroneous XRF concentration data. 

The iodine profile (Fig. 4.17.) is particulary noisy and the errors bars associated with the XRF 

determination are of similar magnitude to the trends exhibited (Appenidx 1). Selective 

examination by wet chemistry (see Appendix 1) suggests that the XRF measurements are of 

the right order of magnitude and that the Monticchio sediments do not contain iodine 

concentrations above 10ppm. Values below loppm appear normal for freshwater lake 

sediments (Fuge, 1978b) although values up to 35ppm have been documented, particularly 

from seaward localities (Pennington and Lishman, 1971). Supply from weathering of the 

catchment rocks is thought to be minimal as these contain virtually no iodine (Table 2.1.) and 

so supply by atmospheric processes is assumed to be dominant. In spite of the values 

measured being close to the XRF detection level, it would appear that the sediments above 

1 100c depth show somewhat higher iodine concentrations than those below. Like bromine, 

iodine is known to be associated with organic matter content in both marine (Price et. al., 

1970) and lacustrine sediments (Pennington and Lishman, 1971) and so a simple 

relationship with the elevated organic matter content of this zone can be inferred. A minimum 

zone appears to exist around 2000 to 2500cm depth, but the amount of noise makes the 

identification of real trends difficult. 



Attempts have been made to use the iodine/organic carbon ratio to infer past rainfall changes 

or soil development (Pennington and Lishman, 1971) and in the marine environment to 

recognise past oxygenation conditions in the surface sediment zone (Pedersen et. al., 1988). 

The l/CORG  profile from Monticchio (Fig. 4.17.) shows no convincing trends and values tend to 

remain below 1x10 4  throughout. Due to the difficulty in obtaining a reliable iodine profile with 

the techniques used it is not thought possible that such information can be extracted from the 

data and the relationships will not be discussed further. 

CARBON STABLE ISOTOPE RATIO (13C112C) 

Interest in the stable carbon isotopic ratio of organic matter (Rounick and Winterbourn, 1986) 

is centred on its possible relations to climatic change. This response to climatic change may 

be manifest through wide-reaching phenomena (e.g. change in temperature, change in the 

atmospheric CO2  reservoir) or more local and indirect effects (e.g. change in the types of 

organic matter being sedimented in response to climate). It would be particularly interesting if 

trends of regional or global significance could be identified (Jasper and Gagosian, 1989), but 

it is possible that local factors dominate or at least confuse signals which might be more 

widely correlated. 

Lacustrine studies have found both negative (Hákansson, 1985) and positive (Nakai, 1972) 

shifts in &C associated with the change from glacial to interglacial conditions, and some 

studies (Harkness and Walker, 1991) find 613C peaks occurring between these two climatic 

extremes within the zone of transition. In interpreting the isotopic record from Monticchio, use 

will be made of the other biological parameters so far measured. However, none of these is 

found to show a simple coherent relationship with 8 3C. 

The stable carbon isotopic ratio measured on bulk organic matter is shown in Fig. 4.18. The 

1 C values are presented relative to the PDB standard and the C/N ratio profile is shown for 

comparison. Isotope values determined on the Monticchio core vary between -27 and -21%. 

This could be said to typify a fairly average mix of lacustrine organic matter (Deines, 1980). 

The two most striking features of the profile are the shift from -22.1 to -25.3%o seen between 

950 and 750cm depth (i.e. during the late-glacial transition) and the pronounced minima in 

values at around 3300cm depth which may correlate with the Eemian interglacial. This latter 

zone is preceded by an even bigger negative shift of 5%o between 3500 and 3350cm. Both 

features are shown enlarged in Fig. 4.19. 



Fig. 4.18. Stable carbon isotopic ratio of bulk organic matter and ON ratio 
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Outside these two 'zones of interest' values fluctuate around an average value of -24%. 

Between 3500 and 4800cm the 813C  values are typically higher than this average in what is 

thought to be a glacial period. The interglacial (or interstadial) at 4900cm depth differs from 

that at 3300 to 3400cm in not showing a pronounced minimum. Instead, values vary between 

-25 and -23%. The glacial period from above 3000cm to around 1 000c depth shows 

fluctuations between -25 and -22%, but most values lie close to the profile average of -24%. 

Following the pronounced negative shift at the end of the last glacial period the Holocene 

begins with an abrupt shift back towards isotopically heavier carbon between 700 and 

675cm. Above this values fall to a minimum of -25.6%o at 600cm and then rise to a second 

maximum between 500 and 350cm depth. The upper part of the Holocene contains a further 

zone of low 813C values between 300 and 1 00c depth before an increasing trend towards 

higher values as the top of the core is reached. 

Discussion 

The factors thought to cause changes in the 13C/12C ratio of sedimentary organic matter are 

reviewed by Stuiver (1975), Deines (1981) and Hàkansson (1985). In this discussion they 

are divided into organic matter source changes, diagenetic fractionation effects and changes 

in the atmospheric carbon reservoir coupled with temperature changes. 

SOURCE FACTORS Photosynthetic fixation of carbon into living organisms involves 

relatively large isotopic fractionations (often up to 20%o) with respect to the inorganic source 

reservoir. The degree that 12C is preferentially incorporated into the plant tissue varies 

amongst different groups and species depending on the photosynthetic mechanisms 

employed (O'Leary, 1981; O'Leary, 1988) and the isotopic composition of the source 

reservoir. It is found that plants can be grouped into a number of major types which are 

characterised by particular ranges of 813C  (Fig. 4.20.). 

The majority of terrestrial vegetation belongs to the C3 group and typically has 613C between 

-23 and -33%. It is thought that C3 plants dominate the terrestrial environment at Monticchio 

and therefore that the contributions from terrestrial organic matter at this site will most 

probably have values in the range shown. The C4 plant group consists of tropical grasses 

and plants associated with water-stressed environments and is characterised by heavier 

isotopic compositions between -8 and -1 9%o. It is possible that a small proportion of the 

grasses that grow at Monticchio belong to this group (B. Huntley, pers. comm.), but their 

contribution is not considered a significant influence during the Holocene. During the glacial 

periods when a steppe vegetation may have persisted the possibility of greater numbers of 

04 plants cannot be ruled out altogether. A third group, the CAM plants, show a broad range 
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of isotopic values, but these plants are succulents thought to be confined to truly and 

regions. 

Aquatic vegetation can be divided into plankton, floating macrophytes and submerged 

macrophytes. Most of these groups follow the C3 photosynthetic pathway, but 513C values 

can range more widely depending on the inorganic carbon reservoir utilised (Osmond et. al., 

1981). In general, plankton and floating macrophytes photosynthesise from the atmospheric 

CO2  reservoir and are characterised by relatively low 61 C values which range between -26 

and -34% (Nakai, 1984). In contrast, submerged macrophytes photosynthesise from a 

dissolved inorganic carbon reservoir which may be isotopically heavy (<+1 %o) or light (>- 

21 %o), and this can allow plant values to range from -10 to -50% (Osmond et. al., 1981). In 

many circumstances, however, the organic carbon of submerged macrophytes is thought to 

have a stable isotopic composition distinctly heavier than that of terrestrial C3 plants (LaZerte 

and Szalados, 1982). This is attributed to the greater diffusional resistance to CO 2  under 

water (reducing the effectiveness of kinetic fractionation) and the often higher 813C of 

dissolved inorganic carbon in comparison with atmospheric CO 2 . From the review by 

Hákansson (1985), it would appear that values between -14 and -24%o are most typical for 

submerged macrophytes and this will be taken as a reasonable range in the case of 

Monticchio. 

It is possible that an increased rate of photosynthesis (driven by nutrient availability) could 

decrease the effectiveness of kinetic fractionation and lead to heavier isotopic compositions 

in the source planktonic matter deposited. A relationship between high 813C and organic 

productivity (organic carbon content) was found for Lake Biwa (Nakai, 1972), although the 

mechanism here may have involved change in the supply of CO 2  also. 

DIAGENESIS It is possible that positive or negative shifts in 813C can occur during the 

diagenesis of sedimentary organic matter (Anderson and Arthur, 1983). The main chemical 

component groups in organic matter have been shown to vary with respect to the average 

6 3C value of an organism (Galimov, 1981). Lignin and lipids which are particularly resistant 

to degradation tend to have lower öC values than associated components such as 

cellulose or proteins. Benner (1987) found a marked decrease in sediment 513C  with depth in 

a saltmarsh environment which was attributed to the progressive loss of other constituents 

relative to lignin. On the other hand, it is known that during organic decomposition bacteria 

preferentially utilise 12C-enriched functional groups (Anderson and Arthur, 1983). This would 

tend to cause higher 813C  values in the remaining organic matter. It is possible that both 
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these effects may be compensated for by the incorporation of the bacterial decomposers 

(which have previously consumed the isotopically light or heavy carbon) into the sediment. 

Methanogenesis is another diagenetic process which could potentially cause large isotopic 

shifts (Hákansson, 1985). Organic matter with very high 813C  values might be produced 

through photosynthesis from the heavy CO 2  fermentation product, providing the CH, product 

was able to escape to the atmosphere. Alternatively, very low 813C  organic matter could be 

photosynthesised from CH  which had been bacterially oxidised to CO 2'  In many cases it is 

probable that the isotopically light CH 4  is oxidised before leaving the system and that this 

cancels out the effects of the isotopically heavy CO  byproduct. 

Under certain conditions it is possible for an imbalance to allow major isotopic shifts due to 

diagenesis, but in most lake sediment reconstructions the major isotopic features have been 

attributed to source factors (Meyers, 1988; Talbot and Johannessen, 1992). As with the 

organic carbon and biogenic silica records it is thought that the major shifts and abrupt 

changes seen in the Monticchio 513C record are driven by primary source contributions. 

Smaller secondary effects from diagenesis may be connected with these changes in primary 

input. 

ATMOSPHERIC CO 2  RESERVOIR and TEMPERATURE Evidence from the ice core record 

(Barnola et. al., 1987) has shown that atmospheric carbon dioxide concentrations were 

around 200ppmv during the last glacial period compared to 280ppmv in the Holocene. 

Further evidence for lower CO 2  during the glacial period has been found in marine (Jasper 

and Hayes, 1990) and lacustrine (Lal and Revelle, 1984) records. The latter authors used 

increases in the 14C/12C ratio of the sediments to infer lower atmospheric contents of carbon 

dioxide and included several major assumptions in their argument. Nevertheless, evidence 

appears to be widespread and possible mechanisms have been advanced to explain the 

change (Shackleton et. al., 1983). Most of the models that have been suggested involve 

increases in the amount of carbon dioxide absorbed in the ocean surface layers and/or the 

quantity of carbon stored within the marine sediment system. 

It is not certain whether a lake system such as Monticchio would have responded sensitively 

to such changes. It would seem most appropriate to look for changes in the terrestrial 

organic component. This directly interacts with the atmospheric CO 2  reservoir whereas it is 

possible that organic components within the lake might be buffered by chemical changes in 

the dissolved inorganic carbon pool. A previous compilation of isotopic data from radiocarbon 

dated terrestrial material found that 813C  values for glacial samples were on average 1% 

higher than values for the Holocene (Leavitt and Danzer, 1991). It was suggested that this 
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might be caused by the less selective removal of 12C by plants in response to the reduced 

CO2  availability. An earlier study by Crayton and Epstein (1977) found that glacial wood 

samples were around 1%o higher than more recent samples, but did not consider the 

differences statistically significant and so offered no interpretation of the trend. It would seem 

possible that some components of the organic matter at Monticchio could in theory record 

such a change, but it may be difficult identifying this from the mixture of organic material in 

the sediments. 

In an opposing sense to the above trends (connected with reduced pCO 2), certain studies 

have shown evidence for glacial atmospheric CO 2  to be lighter in isotopic compositon than 

that of the Holocene. For example, a study of plant remains from packrat middens in North 

America (Marino et. al., 1992) suggested that glacial CO 2  may have been around 1%o lower 

in 813C. These isotopically lighter glacial ratios were suggested as resulting from lowered 

global levels of terrestrial biomass and reduced productivity in cold surface water zones of 

the ocean releasing more 12C into the ocean-atmosphere system. 

Temperature has been shown to influence the isotopic equilibrium between CO 2  and HCO3  

in ocean water, causing slightly lower 513C dissolved CO2  at lower temperatures (Deuser et. 

al., 1968). This could potentially cause planktonic organisms assimilating CO 2  in colder 

waters to be of a lighter isotopic composition. The effect is only around 0.1% per °C change 

in temperature and this would probably be outweighed by the much larger local variations 

resulting from source mixing and chemical changes seen in a lake. However, the effects of 

temperature may at the same time alter the amount of dissolved CO 2  available and this could 

enlarge the trend of decreasing 613C  with decreasing temperature. It is not certain whether 

the temperature changes experienced at Lago Grande di Monticchio would provide a 

significant influence on the sedimentary 813C record through these mechanisms. 

Past studies 

Most lake sediment studies have associated 813C  changes with lake and catchment flora 

changes, such as C3 versus C4 plant or terrestrial versus aquatic plant dominance, in 

resonse to changing climatic condtions (Talbot and Livingstone, 1984; Krishnamurthy et. al, 

1986). Studies from European maar lake records have not been able to pinpoint exclusively 

the causes for change. In Meerteldermaar changing contributions from C4 plants or an 

isotopically heavy indigenous algal bloom versus terrestrial C3 plant inputs is suggested, 

together with an unexplained 'regional or global shift' to lighter isotopic values during the 

glacial-Holocene transition (Brown, 1991). Also, smaller scale cycles observed in the 

Holocene section are related to changes in terrestrial vegetation dominance, but no evidence 



from pollen records etc. has been able to substantiate this. In Lac du Bouchet, Truze (1990) 

broadly associates lower 813C  with interglacials and higher 813C  with glacial periods, 

although this association does not entirely fit. Truze suggests that three factors may 

influence 313C in the record: 1) temperature, 2) mixtures of aquatic versus terrestrial sources 

and 3) the pCO2  of the lake waters. These three factors are used to model the isotope record 

observed, but the individual magnitude and significance of their effects could not be properly 

tested. 

In summary, the interpretation of the 813C record in lake sediments is complicated and the 

lakes that have been studied vary in their sensitvity to climatic change (Stuiver, 1975). Care 

must be taken when using &'C to deduce information concerning climatic or other changes 

considering that many factors may be involved (Hákansson, 1985). 

Interpretation 

Other geochemical parameters measured on the Monticchio profile (C, C/N, BSilica, HI) 

appear to be related to the stable carbon profile in certain areas, and this suggests that 

source changes are at least partly responsible for the isotopic variations. From Fig. 4.18. 

there appears to be a negative correlation (r=-0.625) between 513C and C/N ratio over the 

3000 and 4700cm depth region. This may be due to an increased contribution from higher 

C3 plant organic matter with light isotopic values (-30%o?) mixing with isotopically heavier (-

22%o?) planktonic lacustrine matter in the zone between 3300 and 3400cm depth. In 

addition, greater degradation of the organic matter between 3500 and 4700cm depth could 

have caused preferential loss of 12C leading to higher 8 1 C in the remaining organic matter. 

The 513C  record for the upper 1 000c is shown together with other geochemical parameters 

in Fig. 4.21. The section between 950 and 750cm, displaying an isotopic shift towards lower 

values, cannot be correlated with the biogenic silica or hydrogen index profiles which both 

remain fairly constant over this interval. Also, it is difficult to correlate the small 513C  minima 

zone within this trend at 895 to 925cm with any other geochemical information. There is a 

temporary positive correlation with organic carbon and C/N ratio, but only in the subzone 

between 820 and 700cm depth. The positive correlation here between 513C  and C/N ratio 

contrasts with the inverse relationship seen at 3300cm depth. It is planned to investigate this 

zone of pronounced isotopic shift with the aid of compound specific isotope ratio mass 

spectrometry in the hope of revealing additonal information (e.g. Rieley et. al., 1991). 

During the Holocene period itself there is a good correlation between 813C and the ratio of 

organic carbon to biogenic silica (Fig. 4.21.). From the C/N ratios it has been suggested that 
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this period experienced consistently high contributions from autochthonous productivity and 

that the major changes in organic material are due to the relative dominance of diatoms and 

other types of algae. It is possible that the diatom organic matter component has a lighter 

isotopic composition (-28%o?) than the averaged ratio of the non-diatom algal matter 

component (-22%o?) and that the isotopic profile is mainly shaped by the mixing of these 

sources. Isotopic measurements made on recent aquatic components in Lago Grande would 

aid this interpretion. Nevertheless, the section between 650 and 500cm depth departs from 

this simple correlation and it is noted that a brief maximum in C/N ratio occurs at 600cm 

depth in parallel with a minimum in 613C. This might suggest that a temporary increased 

contribution from isotopically light higher plant material may be causing a greater influence at 

this time. It is also possible that the sharp rise towards heavier 813C at 700cm, associated 

with a sharp presumed rise in productivity (organic carbon), could reflect some influence 

from a decrease in the effectiveness of kinetic fractionation and the formation of higher 813C 

values in the aquatic carbon photosynthesised. 

Between 1000 and 3000cm depth the isotopic values hover around -24%o and the lack of 

change makes it difficult to extract information from this zone. A number of positive 

excursions occur, for example at 1400cm depth. Although a number of horizons rich in 

macrophyte plant material (which may include submerged and isotopically heavy types) have 

been noted in the sequence, none of these appears to be associated with the excursions 

seen. Carbonate sediments, however, occur throughout this section and it is possible that 

periods of increased water hardness could have influenced the photosynthesis of some of 

the submerged plant matter (Hákansson, 1985) and caused isotopically heavier organic 

matter to be deposited at certain times. This could again be tested for by using compound 

specific isotope measurements to see whether the terrestrial organic matter has also 

experienced 813C enrichments at these times. 

The lack of a simple or coherent interpretation regarding the 813C record could reflect the 

lake's insensitivity to direct climatic change, although the two pronounced shifts observed 

may disprove this if they can be fully understood. The lake's location in a moderately 

elevated Mediterranean climatic zone must bear some responsibility for its behaviour. 

Perhaps the vegetation associated with some of the northern European sites suffered more 

climatic stress between glacial and interglacial periods. It is also possible that autochthonous 

organic matter is profoundly influenced by the lake water bicarbonate reservoir. This could 

modify the expected ratios if a majority of plants are assimilating carbon from this source and 

changes have occurred in the lake water chemistry. For example, the lake waters may have 

been altered during periods of carbonate precipitation or through volcanogenic CO 2  
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emissions at certain time periods. Also the possibility that a significant fraction of the organic 

matter may consist of reworked material which is not reflective of the environmental 

conditions at the time of depostion could be responsible for further confusion in the signal. 

These results emphasise the local differences between individual lakes and the difficulties of 

investigating bulk organic matter. 



CHAPTER 4b 

TERRIGENOUS CLASTIC COMPONENTS OF THE SEDIMENTS 



Introduction 

Examination of the terrigenous mineral component should provide physical and chemical 

information on the sedimentation regime. Grain size and mineral distribution may be related 

to physical processes of erosion and transportation while mineralogy and chemistry are 

connected with source and the amount of mineral alteration that has taken place. It is again 

emphasised that the chemical elements measured reside in discrete mineral phases and that 

the nature of these phases must be characterised to fully appreciate the sedimentary 

processes operating. Although some basic sedimentology and mineralogical information is 

known, most of these studies are yet to be carried out by other institutions working on the 

Monticchio record. At the moment quantitative information on subjects such as particle size 

distribution and clay mineralogy is not available and this imposes some limits on the 

geochemical interpretation. 

MAAR SEDIMENTATION 

One of the first detailed studies concerning sedimentation in a volcanic lake was made by 

Nelson (1967). Crater Lake (Oregon) is actually a relatively large caldera lake, but has many 

similarities with maar environments. The lake itself is at a young stage of development and is 

dominated by mineral clastic sediments and nutrient-poor conditions. It was recognised that 

the lake sediment mineralogy (plagioclase feldspar, pyroxene, hornblende etc.) was very 

similar to that of the surrounding bedrock suggesting a strong relationship between local 

source supply and sedimentation. Poorly sorted deposits of fine material were related to the 

low energy introduction of sediments into the lake by wind action, wave erosion or surface 

creep. On the other hand, well sorted sand and silt layers were related to turbidity currents. 

White (1989) proposed a general development model for maar-crater sedimentation based 

on studies from semi-arid regions. After the initial 'excavation event', early sedimentation 

would be dominated by slumps and debris flows. However, as the environment became more 

stabilised (perhaps through slope reduction or the binding effects of vegetational 

development), laminated sedimentation would take over. In the final stages this might be 

interrupted by ingression of external fluvial systems or of aeolian depositional systems. In the 

semi-arid playa setting studied the laminated sedimentation consisted of carbonate deposits, 

but it was suggested that under different climatic and/or groundwater regimes the 

sedimentation type would be different during this stage. 

In South Africa, Smith (1986) recognised three depositional facies in an ancient crater-lake 

deposit and equated 'normal' lacustrine sedimentation with the laminated mud facies. This 
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was thought to have accumulated through the settling of fine material from suspension under 

possible seasonal influences. Within the microlaminated muds incursions of turbidites and 

tephra layers were observed, while in nearshore areas pyroclastic talus cones and debris 

flows occurred (Fig. 4.22.). 
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Fig. 4.22. Depositional facies in a crater lake (modified from Smith, 1986) 

Comparable features are found in sedimentary sequences from the Eifel maar region in 

Germany (Negendank et. al., 1990). Here the Holocene record is characterised by organic 

varve deposition incorporating thin clay layers which have settled from suspension. During 

glacial times when reduced vegetation cover permitted greater catchment erosion, silt-clay 

laminae or thin turbidite layers are more common. Coarser layers of sand material are 

related to tephra inputs such as the well known Laacher See Tuff horizon. 

In Lac du Bouchet, Truze (1990) found that during vegetated interglacial periods 

sedimentation was also dominated by quiet-water clay settling. During periods of reduced 

vegetation cover the inwash of increased amounts of catchment material was related to 

possible high-rainfall periods causing rapid surface runoff. Changes were identified in the 
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tl) inwash of smectite (S) and 'interlayered' (In, mixed layer) clays during the early 

stages of a temperate/interglacial period, 

downward migration of smectite and interlayered clays during the main 

interglacial phase. Illite (I) and kaolinite (K) which become dominant in the upper 

parts of the soil profile are transported to the lake, 

during the subsequent cold/glacial period erosion causes widespread removal of 

surface soil layers. Smectites and interlayered clays reappear in the lake 

sedimentation 

114- 



clay mineralogy too. The catchment soils had been observed to contain mainly illite and 

kaolinite in their most weathered surface horizons, but increasing quantities of smectite and 

interlayered clays with depth. The soil profile was also judged to have remained of similar 

composition throughout the history of deposition. During temperate vegetated periods the 

slightly higher illite and kaolinite concentrations in the lake sediments were related to the 

gradual removal of surficial soil layers into the basin. During more active erosional periods 

(evidenced by coarser sediment grain sizes) the increased content of smectite and 

interlayered clays was attributed to the deeper incision and removal of soil layers (Fig. 4.23.). 

Like most maar-lake studies these interpretations have involved the assumption that 

changes in the sediment mineralogy are primarily due to changes in the weathering and 

erosive regime acting on minerals from within the catchment -i.e. that the catchment is the 

dominant supplier of material. In some studies the presence of probable aeolian material, 

such as rounded quartz, has been noted but rarely quantified. In most settings, however, it 

would be unlikely that this has had a major influence on the clay record and that, excluding 

continued inputs from external tephra fall, the terrigenous minerals reflect the catchment 

source zone. 

SEDIMENTOLOGY AND MINERALOGY 

Basic indications of the sedimentology at Monticchio are apparent from visual inspection of 

the core sections (c.f. Fig. 2.4. and Plates 3-5.). Most of the sediment sequence is relatively 

fine grained consisting of muds with various amounts of organic material present. Only in the 

tephra horizons and in the zone of turbidites around 20 metres depth do the sediments 

contain sands or coarser clastic material. 

Preliminary XRD mineralogical investigation by Irion (unpubl. work) has found very low 

concentrations of clastic minerals over large sections of the profile, particularly between 0 

and 660cm and between 3200 and 3500cm depth. This is due to dilution by the large 

amounts of organic matter and amorphous silica present and makes detailed identification of 

the clay mineral assemblages difficult. A similar situation exists in certain other volcanic 

lakes, for example Lake Kivu, where clay minerals were undetectable in a diatom-rich facies 

(Degens et. al., 1973). 

The present author has found evidence for members of the illite-muscovite clay group 

KAl 4[Si7A1020](OH)4  and perhaps also halloysite AI 4Si4(OH) 8010.8H20 and beidellite 

(Ca, Na)0 7(Al ,Mg, Fe) 4[(Si ,Al) 8O20](OH) 4 . nH2O from XRD examination of trial sediment 
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suspensions. Fig. 4.24. illustrates the diffraction trace for a clay suspension taken from a 

sample at 2096cm depth. Prominent in this trace is the illite/muscovite peak at 8.8 0  and a 

large hump feature between 20 and 35 0. Irion (unpubl. work) also reports illite, together with 

kaolinite and smectite, to be present in 'small amounts' and recognises a pronounced hump 

zone around 4.5A which is related to amorphous substances. These may include diatom 

silica, volcanic glass and amorphous clay minerals. Amorphous clays such as imogolite 

(Si02 .A1 203 .2H20) and allophane (1 .0-2.OSiO 2 .A1203.2.5-3.0H20) are known to occur in 

volcanic weathering regimes (Wada, 1987) and could represent a significant fraction of the 

clay mineral assemblage. A proper investigation of the clay mineralogy will require careful 

preparation techniques and additional analyses steps including infrared spectroscopy in 

order to place some quantitative value on the mineralogical changes. This would ideally be 

accompanied by a survey of soil profiles from the present Monticchio catchment. 

XRD examination of the bulk sediment shows that the main minerals present are pyroxene, 

quartz and apatite. These are probably concentrated in the silt fraction and are illustrated in 

Fig. 4.25. which shows the XRD trace for a sediment sample from 4017cm depth. It is 

thought that pyroxene and apatite are locally derived and survive weathering processes in 

preference to the feldspathoid and glass components of the local rocks. These latter phases 

are known to be rapidly decomposed by reactions such as hydrolysis (Loughnan, 1969). 

Quartz is considered to be exotic to the Vulture petrological system, but has nevertheless 

been recognised in mineralogical studies (Fiore et. al., 1992). It may have been acquired 

during magma ascent and be present as xenocrysts. Due to its strong denudational 

resistance and its over-representation on XRD traces (G. Angell, pers. comm.) its 

appearance is emphasised during the mineral identification. Some quartz may also be of 

aeolian provenance, but this cannot be confirmed without examination of the grain 

morphologies under high magnification. 

Tephra layers also contain considerable pyroxene and apatite together with alkali feldspars 

(sanidine and orthoclase), plagioclase and some leucite. Several of these tephra layers have 

been defined as trachytes from analysis of their glass fragments (Newton and Dugmore, 

1993) and this is in fitting with the mineral assemblages observed. 

PREDICTED SEDIMENTATION PROCESSES 

The majority of the Monticchio sediment profile, which consists of finely laminated muds, 

probably accumulated through the gradual removal of soils from the catchment by wind 

action, surface creep or runoff and subsequent deposition by suspension settling. Some of 

118 



the clay layers may also reflect the deposition of distal turbidites (B. Zolitschka, pers. 

comm.). This accumulation would be augmented by an unknown amount of aeolian 

transported material and by deposition of biological matter produced within the lake. The 

turbidite layers, most noticeably between 1900 and 2200cm depth, contain silt or fine-sand 

material and reflect more energetic depositional processes. They could be generated through 

the instability of quantities of sediment in the crater region or in littoral areas, perhaps 

triggered by heavy rainfall or seismic activity. Such events are more likely to occur when 

vegetation cover is reduced, as during glacial periods. The tephra layers, which often present 

distinct horizons, result from the direct airfall of volcanic material into the lake and the lesser 

effects associated with secondary catchment inwash following the depositional event. 

Thus there appear to be three sources of clastic material to the Monticchio sediments: 

1)local catchment minerals (both primary and secondary), 2)tephra inputs and 3)aeolian 

material which may have been transported over long distances. Under normal circumstances 

the local catchment supply would be expected to dominate a lake's sedimentation, but if 

catchment material is supplied at a very low rate, the external sediment sources might have 

a primary influence on the mineralogy observed. To some extent the contribution from tephra 

falls can be recognised in the form of prominent and discrete horizons, but the effects of 

secondary inwash cannot be accurately assessed with the sampling resolution of this study 

and it is possible that a number of minor tephra-fall events have contributed to the sediments 

without being readily visible. Aeolian dust is unlikely to contribute large accumulations of 

material in the absence of local dune systems, but in the deep marine environment it has 

been shown that dust contributions (from the Saharan desert) can account for most if not all 

of the clastic sediment component (Prospero et. al., 1981). This results from the otherwise 

extremely low sedimentation rates in such an environment. 

It would be desirable to retrieve information from the sediment record concerning the 

individual inputs from these three components and concerning the changes in the catchment 

weathering-erosive regime, if possible. It is often difficult, however, to separate out the 

signals from provenance and weathering regime by geochemical means (Fairchild et. al., 

1988). Also, with the mineralogical information available it is not possible to constrain the 

relative importance of these three sources reliably. In theory, it might be possible to use trace 

mineral assemblages as signatures for the different source provenances, but there may still 

be too much overlap in the mineralogy to separate the three components. In terms of the 

geochemistry, many elements show considerable overlap between different phases. 

Potassium, for example, may be contained in alkali feldspars (strongly associated with the 

tephra horizons), but also in feldspathoid minerals and in illite which could both be derived 
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from the catchment area or externally. Interpretation of the geochemistry will be made in the 

light of the mineralogical and sedimentological information that is available and by making 

deductions concerning the most likely host phases responsible. 

GEOCHEMISTRY OF THE CLASTIC FRACTION 

In Chap. 3 it was suggested that elements associated with the terrigenous clastic fraction 

were identifiable from the PCA data summary by their high negative loadings on the PCi 

axis (Fig. 3.3. and Fig. 3.5.). It can be seen from these plots that many of the metallic 

elements are grouped within this field, although a number of metals exhibit intermediate 

behaviour between the inorganic and biological poles and show susceptibility to diagenetic 

mobilisation. In studying the clastic mineral fraction it is desirable to avoid additional imprints 

caused by diagenesis as these processes will be studied in their own right in Chap. 4c. With 

this aim, the current discussion will focus on the more conservative elements in the sediment 

system such as Al, Zr and K which are associated almost exclusively with the terrigenous 

clastic fraction, and do not become later involved in diagenetic processes. Elements such as 

Fe, Ca and P which do have a component in the clastic fraction, but are more complex 

because of their residence in diagenetic phases will not be focused on. Also, many of the 

trace elements analysed show similar behaviour to the major elements, but cannot be related 

to any single mineralogical phase with certainty. Their ranges of possible substitutions do not 

permit the bulk results to be interpreted with particular environmental significance beyond 

that provided by the major element data. 

TOTAL AMOUNTS OF CLASTIC MATERIAL 

Basic concentration profiles for conservative elements such as Al and Y (Fig. 4.26.) indicate 

how the relative amount of clastic deposition has varied. These elements show strong 

inverse trends to those elements reflecting biological sedimentation. For example, the 

correlation coefficient between Al and [organic carbon+biogenic silica] is -0.951. 

The Holocene period is characterised by low values for these clastic indicators (Fig. 4.26.), 

although tephra layers within this zone add positive spikes to the underlying trend. A 

minimum seems to occur during the early Holocene between 750 and 500cm depth, above 

which values rise to slightly higher levels. 

Clastic content rises sharply below 750cm depth producing a brief maximum in what may be 

the Younger Dryas period. After a subsequent minimum around 825cm depth, values rise 
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sharply again to much higher levels over the next 150cm. Maxima are reached at around 

1500cm depth and lower in the profile at 2000cm, 2400cm and 4000cm depth. In these areas 

the concentrations of Al and Y are around x1  that in the Holocene. Prior to the Holocene, 

values never drop back to such a minimum, although pronounced minima occur at 1750cm, 

2300cm, 31 00cm, 3350cm and 4900cm depth. These zones have been previously related to 

interstadial or interglacial events depending on the age interpretion applied to the sequence 

(Chap. 3 and Chap. 4a). 

Interpretation 

Decrease in the clastic content of the sediment could be interpreted as reflecting reduced 

clastic deposition (i.e. diminished erosive and transportational processes) or dilution from 

increased biogenic sedimentation. This can only be determined objectively with accumulation 

rate data. It is possible that both effects may be operating simultaneously. For example, 

during the Holocene increased vegetation cover could stabilise the catchment slopes 

reducing erosive activity and at the same time permit more nutrient supply by leaching which 

would lead to increased organic productivity. Most of the sediment sequence consists of 

muds which contain fine laminae (<1 mm in thickness) and it is thought that in such sections 

the rate of terrigenous inwash has not changed dramatically. Therefore the primary factor 

causing change in clastic content is believed to be the dilution effects from dramatic 

increases in biological productivity. However, the tephra layers and the relatively coarse 

turbidites at 2000cm depth (which sometimes contain laminae over 10mm in thickness) 

probably represent situations where enhanced clastic deposition represents the primary 

control. 

NATURE AND QUALITY OF THE CLASTIC MATERIAL 

Due to the large mutual dilution effects between clastic and biogenic components it is 

necessary to compensate for changes in the biological content of the sediment in order to 

examine changes within the terrigenous mineral fraction. Mackereth (1966) looked for 

element changes within the ash fraction which had been produced after ignition of the total 

sediment. The geochemical data from Monticchio may be examined in this way since major 

elements were analysed from the ignited fraction produced during XRF fusion. However, in 

Monticchio significant amounts of biogenic silica are present in this fraction and trends 

attributable to changes in the clastic mineralogy could still be obscured. Therefore it is best to 

examine ratios between elements which are neither influenced by the organic matter 

component nor the biogenic silica component. It is common practise to ratio other elements 
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to Al which is relatively abundant and considered to remain essentially constant during 

sedimentary processes (Krauskopf, 1967). 

Na/Al RATIO 

The Na/Al ratio has been used as an index of weathering in lake sediment studies (e.g. Dean 

et. al., 1984). This approach assumes that during periods of increased weathering intensity 

greater amounts of alkalis are leached from the catchment soils and therefore material with 

lower Na/Al ratios is deposited into the sediment. Conversely, when erosive processes 

dominate over weathering, sediments are deposited with more of the alkali elements 'locked' 

in the mineral lattice. An alternative hypothesis to the weathering index or 'record of changing 

soil compositions' idea is the possibility that soil profiles remain essentially constant in 

chemical composition for long periods of time. In this case a change in Na/Al or other ratios 

would reflect a 'mechanical sorting' effect caused by erosion to different depths into the same 

soil system or selective transport of sediments in different particle size classes (Dearing, 

1991 and refs. therein). 

Mackereth (1966) pioneered the first of these hypotheses in his examination of the Na 

content of the mineral (ash) fraction in Lake District sediments. This might be expected to 

reflect similar trends to the Na/Al ratio in the absence of biogenic silica. He found a positive 

correlation between this and the total amount of mineral matter in the sediment. During the 

glacial periods rates of erosion were high and so alkali bearing mineral grains were washed 

into the lakes relatively unaltered. The sediments from these periods possessed both high 

total mineral contents and high amounts of Na in the mineral fraction. In contrast, during 

post-glacial times erosion rates were lower and weathering processes operated more 

effectively causing small quantities of Na-leached mineral matter to be deposited. From the 

maar sedimentation model suggested by Truze (Chap. 4a) it might be expected that the 

Holocene sediments at Monticchio would exhibit lower Na/Al ratios than those from the 

glacial periods because weathering processes would be more effective over erosion during 

an interglacial period with increased vegetation cover. Although the soil composition might 

not change, it would be more likely that base depleted surface soil layers would be deposited 

since erosive processes would be weaker. Deeper erosive removal might be necessary to 

deposit layers of the soil zone retaining greater levels of alkali metals. 

If the Na/Al profile is examined (Fig. 4.27.) it can be seen that the Holocene actually contains 

higher ratios (>0.1) than the preceding glacial periods. Tephra layers are alkali-rich in 
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comparison with the normal sediments and impart positive spikes on the record. Much of the 

additional Na is expected to be hosted by alkali feldspar minerals. 

If the profile is looked at in more detail it appears that Na/Al ratios around 0.05 are typical for 

the lowest part of the sequence between 5100 and 3900cm depth. Between 3900 and 

3800cm values rise slightly and remain around 0.07 up until 1000cm depth. Above 1000cm 

Na/Al ratios increase further and remain consistently higher than 0.1. Tephra layers cause 

positive excursions towards 0.3 or 0.4, but values seem to remain elevated for prolonged 

periods outside the actual tephra horizons. For example, above a prominent tephra layer at 

650cm Na/Al remains greater than 0.2 for the next 150cm (Fig. 4.27.). This suggests that the 

secondary deposition of tephra material supplied to the catchment might be responsible for 

the continued higher ratios in post tephra-fall sediments. Another possible example is found 

close to the shift in Na/Al values between 3900 and 3800cm depth. In this zone a thick 

tephra layer at 381 5-3850cm occurs, although it is not included in the sampling and therefore 

cannot be seen directly in the geochemical profiles. A histogram of tephra thickness (in cm) 

per 300cm of sediment was compiled from visual notes. It is shown for comparison beside 

the Na/Al profile (Fig. 4.27.). This illustrates the major deposition of tephra between 500 and 

1500cm in the record which corresponds to increasing Na/Al ratios seen in the sediment 

geochemistry. 

Interpretation 

A scatter plot of Al against Na/Al ratio should show a similar trend (i.e. a positive correlation) 

to the total mineral content against 'Na in the mineral fraction' plot used by Mackereth (1966) 

if there is a relationship between catchment weathering-erosive regime and the type of 

minerals sedimented. However, if the samples from Monticchio are plotted it appears that a 

weak negative relationship exists between the two parameters (Fig. 4.28.). It should be 

remembered that in this diagram Na/Al is a reflection of mineral quality and Al content is 

being used to represent the amount of erosion. This latter parameter would ideally be 

replaced with Al accumulation rate as it is possible that Al content changes do not always 

reflect increases in mineral erosion. Nevertheless, it would seem that possible signals from 

the catchment weathering-erosive regime are outweighed by the effects of tephra supply 

which has probably caused marked changes in the quality of mineral matter deposited. 

Under normal sedimentation conditions there is often little change in the Na/Al ratio that can 

be attributed to catchment weathering/erosion. For example, between 2500 and 3750cm 

depth relatively few tephra layers are observed and there is also little change in the Na/Al 

ratio from a value around 0.07. 
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K/Al RATIO 

The K/Al ratio might be expected to show similar behaviour to the Na/Al ratio since both 

reflect the alkali metals group. Potassium was also used by Mackereth (1966) to deduce 

changes in catchment weathering-erosive regimes. If the K/Al profile is examined (Fig. 4.29.) 

it appears to follow a similar trend to Na/Al. The K/Al values are generally below 0.2 for the 

core section between 5100 and 1 000c depth and rise to >0.3 background values for the 

upper 1000cm. Tephra layers show prominent positive spikes and their increased K content 

is probably associated with alkali feldspar phases once more. As with Na/Al there appears to 

be no positive correlation between K/Al and Al content when the whole data set is examined 

on a scatter plot (Fig. 4.28.). 

Although a similar interpretation to that for Na/Al is proposed for much of the record, it is 

noted that a prominent zone of elevated K/Al values occurs around 21 00c depth. This is in 

the region of mineral rich turbidites where the sediments are believed to contain increased 

concentrations of illite (Irion, unpubl. work). The elevated ratios in this zone are thought to be 

associated with the increased illite contents which may have been brought about by 

enhanced erosion and removal of deeper soil layers in the catchment region. This will be 

discussed further at the end of the chapter. 

Mg/Al RATIO 

Mackereth (1966) again associated the concentration of Mg in the mineral fraction of lake 

sediments with the degree of catchment weathering versus erosion. From the XRD 

examination of the Monticchio sediments and the mineralogy of primary igneous rocks in the 

catchment area (Chap. 2) it is believed that pyroxene represents the dominant host for this 

element. Therefore changes in the Mg/Al ratio may reflect the relative deposition of pyroxene 

together with possible changes in the degree of weathering. 

Mg/Al ratios for the base of the core up to 1000cm depth are typically around 0.1 or 0.15 

(Fig. 4.29.). Noticeably elevated values occur around 2100cm depth in the turbidite zone, 

suggesting that the turbidites contain relatively high concentrations of pyroxene. This 

geochemical change may be a consequence of chemical sorting through particle size effects 

(Dearing, 1991). It is likely that pyroxene is more abundant in the silt fraction of sediment 

sources and so if coarser material is deposited it will carry higher proportions of Mg within its 

constituents. The tephra layers, however, are characterised by negative spikes (e.g. at 

2470cm and 1450cm) or by average values for Mg/Al. It is possible that many of the trachytic 
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tephra possess relatively low pyroxene contents in comparison to the amounts of Al-bearing 

phases (e.g. feldspar) that they provide. 

Between 1000cm and the top of the profile Mg/Al ratios generally range between 0.1 and 0.2, 

with higher values in the uppermost 300cm. Imposed on this trend are a number of much 

higher zones at 825cm, 700cm, 530cm and 460cm depth. In these zones Mg/Al ratios reach 

as high as 0.6 which is twice that in the turbidite zone maximum at 2100cm. These Holocene 

peak areas do not coincide with tephra layers, but are sometimes associated with high Fe 

and P concentrations. This relationship may result from limited amounts of diagenetic 

enrichment, for example substitution in an iron phosphate phase (Chap. 4c). 

TI/Al RATIO 

The Ti/Al ratio may be associated with grain size variations in certain environments (Calvert, 

1976). Ti is generally bound in minerals such as ilmenite and rutile which are concentrated in 

the coarse sediment fraction and so Ti/Al might be used to reflect the silt/clay content of the 

sediment. In Monticchio, these Ti-bearing minerals have not been identified in the sediments 

and, if present, are not thought to be abundant. It is considered more likely that most of the Ti 

resides in pyroxenes as with Mg. In contrast to Mg, however, Ti is a more residual element 

and might be expected to show less susceptibility to removal by weathering. 

The Ti/Al profile shows that values around 0.06 to 0.07 are typical for the lower part of the 

core up to 1000cm depth. Slight maxima occur at 4250cm, 2150cm and 1250cm, although 

values rarely exceed 0.08. These maxima probably reflect higher contents of pyroxene in the 

sediments. Tephra layers are marked by strong negative spikes suggesting low 

concentrations of mafic or heavy minerals in these layers as compared with the surrounding 

catchment derived material. 

The upper 1000cm of the profile generally exhibits lower values (between 0.4 and 0.6) with a 

minimum present at 700cm depth during the early Holocene. Enhanced supply of non-mafic 

material from the increased inputs of alkali tephra is probably responsible for the overall 

trend, although an association between the actual tephra horizons and negative Ti/Al spikes 

is not prevalent. There is a possibility that the Ti/Al maximum at 580cm depth may be 

connected with a diagenetic enrichment, but the relationship is not clear. 

Zr/Rb RATIO 
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Fig. 4.30. Ti/Al and Zr/Rb ratios 
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The Zr/Rb ratio has also been used to identify changes in grain size (silt/clay) of the clastic 

material sedimented (O'Donnell, 1987). Zr is principally hosted by the mineral zircon which is 

concentrated in coarser sediments as opposed to Rb which might be concentrated in the 

clay fraction. In Monticchio it is possible that the Rb level could either reflect alkali feldspar 

content or perhaps alkali-rich clay components. Results (Fig. 4.30.) show that Zr/Rb ratios 

are relatively high (between 3 and 4) for the lower part of the core up to 1500cm depth. 

Between 1500 and 700cm values decrease progressively towards 1.5. From 700cm upwards 

the ratio remains steady at close to 1.5. Tephra horizons are marked by well-defined 

negative spikes. 

There does not appear to be a primary relationship between Zr/Rb and grain size in this 

record. Firstly, the tephra layers which often represent coarse sandy material are 

characterised by negative spikes. Secondly, the zone of turbidites at 2000cm depth, which is 

significantly coarser grained than the surrounding muds, does not show an elevation above 

the average values for the lower core. Therefore it is thought that the Zr/Rb ratio primarily 

reflects the influence of external tephra inputs which are relatively rich in alkali elements as 

compared with the weathered catchment sources. Below 1500cm the tephra input events 

only cause a temporary drop in Zr/Rb ratios, but in the upper part of the record their effect 

would appear to be more pervasive. The transition between 1500 and 700cm could reflect a 

gradual shift towards catchment sedimented material which is compositionally influenced by 

a sequence of tephra falls that have progressively blanketed its slopes. The implications of 

this are that the entire catchment soil surface has altered due to tephra deposition. This 

would have consequences for the type of clastic material sedimented and possibly for the 

biological balance of the lake system (Haflidason et. al., 1992.) 

FURTHER DISCUSSION 

Catchment weathering 

The catchment zone will comprise of a soil system containing primary and secondary 

minerals which rests upon primary igneous material below. A simplified model is illustrated in 

Fig. 4.31. The mineral distribution of a soil profile is unlikely to be uniform (Singer, 1980). 

Lower sections of the profile commonly contain more recently formed clay minerals which 

are at less advanced stages of weathering. The upper horizons where major leaching 

processes take place will contain secondary minerals reflecting the most advanced stages of 

weathering together with particularly resistant primary minerals. 

It is predicted that the surface weathering horizons at Monticchio will be richer in components 
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Fig. 4.31. A typical soil profile (Chamley, 1989) 

such as allophane, halloysite, amorphous hydrous oxides and quartz due to intensive 

removal of K, Na, Ca and other ions. Deeper horizons would be expected to contain more 

illite, smectites (beidellite?), apatite and pyroxene. During normal depositional periods the 

lake sediments may have received material almost exclusively from the uppermost layers. 

Only during periods of major disturbance, such as when the coarse turbidite layers were 

deposited, would erosive processes supply material from the B and C horizons in quantity. 

Therefore the sediments are mineralogically dominated by amorphous phases together with 

small amounts of quartz and pyroxene for the majority of the record. 

Under the criteria required if clays are to be used to reconstruct palaeoclimatic parameters 

(Singer, 1984) it would seem that the Monticchio sediment record contains significant 

overprints from the additions of volcanic material and from erosional changes perhaps 

induced by seismic activity (see following sections). These may alter the zonality of the 

catchment soil system and make a clear signal of climatic change inextractable. 

Tephra falls 

From the elevated Na/Al and K/Al ratios associated with tephra horizons in the record, it 

would appear that the tephra component that has fallen directly into the lake has not 

experienced substantial subaqueous losses through leaching. This is supported by the 

presence of fetdpathoid minerals (e.g. leucite) and glass shards (Newton and Dugmore, 

1993) in these layers. Timperley and Vigor-Brown (1985) constructed a whole-lake budget 
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for major ions in the Lake Taupo system (New Zealand) and found that the major inputs of 

dissolved ions were derived from runoff, fluvial inflows, groundwater and geothermal waters. 

Somewhat enhanced concentrations of Na in the sediment porewaters, however, were 

related to sub-aqueous weathering of pumice that had been introduced to the lake. This 

transfer was thought to be significant only in the upper 1cm of the sediment zone, particularly 

when the relatively coarse pumice layer had been covered with a subsequent layer of 

sedimented mud. Studies on the impact of the Mount St. Helens eruption (Wissmar et. al., 

1982a; 1982b; Fruchter et. al., 1980) found large post-eruption enrichments of dissolved 

species in lakes which were in the immediate blast zone, but little change in the waters of 

more distant lakes which had received air fall material. Results suggested that the most 

profound impact on many lake systems would arise from catchment perturbation. It was 

predicted that the catchment zone would take a number of decades to recover while the lake 

itself was able to respond more rapidly. In Lago Grande di Monticchio it is probable that the 

tephra layers deposited on the lake bed have some direct influence on lake chemistry for a 

few decades at most before gradually becoming sealed' off by overlying mud layers. 

The impact of a series of tephra falls on the Monticchio catchment could be to blanket a 

mature and highly leached surface horizon with layers of base-rich and unweathered 

material. This could favour improved vegetation growth in the catchment through 

improvement in the soil quality and soil-water retention (Mehringer et. al., 1977 and refs. 

therein). Rapid vegetational recovery might stabilise the newly deposited mineral layer and 

minimise erosion of the material into the lake sediments. In this case, the tephra deposits 

would gradually release chemicals to the lake through leaching action and presumably alter 

the lake chemistry. This could affect productivity if nutrient elements such as P and N were 

provided in greater quantity. Timperley (1983) found high P contents in the spring waters 

around Lake Taupo and attributed this to pumice dissolution. Change in the lake chemistry 

could also affect the diagenetic environment and the precipitation or dissolution of phases in 

the water column. For example, increased supply of Na, K and Ca 2+  ions from catchment 

weathering might promote the precipitation of calcium carbonate under conditions of 

increased alkalinity. These effects will be discussed in Chap. 4c. 

It is concluded that the input of tephra material to the lake and particularly to the catchment 

zone could have profound consequences for the sediment record. These changes can be 

related to the model proposed in Chap. 4a which suggests that the more frequent inputs of 

tephra into Lago Grande di Monticchio during the later history of the lake are responsible for 

increased organic productivity in the system, a process which is independent of climate. 
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Aeolian contributions 

The main present day sources of aeolian dust are shown in Fig. 4.32. The Sahara desert 

which lies to the south of Italy and the Mediterranean is considered to be the most significant 

contributor in of dust emissions in global terms. Mineralogical studies have shown that 

Saharan dust is dominantly composed of illite and quartz (Glaccum and Prospero, 1980) 

which are obviously minerals that coincide with the sediment mineralogy identified at 

Monticchio. The possibility of dust contributions from the Sahara and central Europe (e.g. the 

Alps) has been shown in sampling studies from the Adriatic and the Italian mainland. 

Tomadin et. al. (1984) observed higher concentrations of chlorite and ferromagnesian 

minerals in dusts of northerly provenance. 

00 

krTv 	 I'0 

deserts 	
semi-arid [-:::; j major dust 
regions 	 trajectories 

Fig. 4.32. Major present day sources of dust aerosol and dust 

trajectories (from Pye, 1987) 

The relative significance of dust contributions is related to availability of source material 

(normally controlled to vegetation cover) and to wind patterns. Both of these factors are 

ultimately influenced by climate and in some instances it has been possible to correlate dust 

concentration profiles with global climatic records (Rea et. al., 1985). Dust accumulation can 

be very high (<1mm/year) in regions close to major dust sources, such as the loess regions 

of central China. On the other hand accumulations several orders of magnitude lower than 
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this are more normal. Loge-Pilot et. al. (1986) estimated an average deposition rate of 

0.01 mm/year over the Mediterranean region from atmospheric trap studies. This compares 

with estimated lake sedimentation rates at Monticchio of between 0.12 and >1 .0mm/year 

(Table 6.1.). It is therefore possible that aeolian dust may contribute a percentage of clastic 

material to the lake sediment record, but that in geochemical and mineralogical terms this 

may well be obscured by larger changes in catchment and tephra sediment contributions. 

Dust related clay minerals such as illite and chlorite are generally below detection levels 

except in the regions of most intense erosion where they reflect local weathering products. 

A few lake sediment studies have made indirect attempts to measure dust content. Work on 

Lake Ann (Keen and Shane, 1990) found a close relationship between the grain size and 

morphological distributions characteristic of aeolian material and magnetic susceptibility. The 

susceptibility profile was used to reconstruct a record of past dust deposition and this was 

interpreted in relation to regional climatic change. In the case of Lake Ann, local sand ridges 

are major feature of the lake environment and the amounts of dust sedimented by these 

were substantial. Seret et. al. (1992) used particle size measurements to reflect the dust 

content in the Grande Pile record. This is a lake/mire setting situated on an isolated 

watershed plateau where fluvial activity is absent. The silt content of the sediments was 

therefore considered to represent primarily aeolian dust and was used together with 

palynological data to reconstruct past temperature and precipitation changes. 

It is concluded that for the Monticchio environment which has received relatively high inputs 

of tephra material and catchment sediments, the dust contribution is not a primary influence 

on the sediment geochemistry. It is not certain whether detailed sedimentological work would 

be able to identify a dust component, say of aeolian quartz and clays. 

The turbidite zone 

The zone of clastic rich sediments between 1850 and 2250cm depth represents an abrupt 

and pronounced change in lake sedimentation. Profiles of water content (Fig. 2.5.) and PCi 

sample score (Fig. 3.6.) show abnormally low values for this interval before returning steeply 

towards normal background levels. Also the sediments contain almost no organic matter or 

diatoms in marked contrast with the finely laminated muds above and below. In addition to a 

series of turbidites, the 1850 to 2250cm zone contains a one metre thick slump horizon and 

below this a coarse sand layer (c.f. Plate 4.). 

It was wondered whether this whole zone might reflect the input of an abnormally large 

tephra fall into the system, either from the trachytic source regions of Campania or perhaps 
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Fig. 4.33. Comparison of turbidte zone samples with other clastic dominated zones around 

1500cm (sedl) and 4000cm (sed2) and with major tephra samples and local Vulture rocks 

(additional data on Vulture rocks from de Fino et. al., 1986) 
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from Vulture itself. The initial tephra fall might then be correlated with the coarse basal sand 

layer at 2248cm and the subsequent slump unit and turbidite sequence might reflect the 

instability caused by an unusually high volume of material being loaded onto the catchment. 

This, however, is not favoured by geochemical evidence which suggests that the sediments 

here have much greater affinities with the conventional clastic rich zones at 1500cm and 

4000cm depth than with either local unweathered pyroclastics or the trachytic tephra layers 

(Fig. 4.33.). 

The Ti02  against MgO plot (Fig. 4.33.) shows that the turbiditic sediments are clearly distinct 

from the group of trachytic tephra layers which contain much lower Ti concentrations. In 

terms of Mg and Ti, the turbidites show considerable overlap with the Vulture igneous rock 

group. Together both these groups are more Mg-rich than the normal clastic rich sediment 

fields. This plot suggests that the turbidites are genetically more likely to be related to a 

Vulture source than to an external trachytic source. The lower plot (Fig. 4.33.) considers 

elements that are more sensitive to weathering. In this diagram, both the trachytic tephra 

layers and the primary Vulture pyroclastics are seen to have high contents of Cl and Na. 

However, the turbidite group (including the basal sand layer) is clearly distinct from these and 

associates very closely with normal clastic rich sediment groups. This suggests that the 

turbidite sediments were subjected to a significant period of subaerial weathering before 

being deposited and did not result from a contemporary pyroclastic input. It is thought that 

their slightly higher Cl, Na 20/Al203  and MgO values in comparison with the normal sediment 

groups reflect a lower degree of weathering that the material may have experienced. An 

obvious explanation for this would be if the turbidites had been derived from deep erosion of 

the local soil system. 

The possible mechanisms for increased erosion that might lead to this deposition are thought 

to include earthquake activity and intense rainfall. It is perhaps unlikely that rainfall alone 

could cause what appears to be a unique and catastrophic event in the sedimentary record. 

The Basilicata region is known to be seismically active as evidenced by the major 

earthquake in 1980 (Chap. 2). It is possible that a large earthquake or tectonic movement 

could have disturbed the Monticchio catchment allowing initially a large package of crater 

material to be deposited in the lake. This might include the basal sand and overlying slump 

unit in one depositional event. It is not certain whether the slump unit merely reflects a major 

and chaotic movement of material into the sediment accumulation zone or whether it has 

also been disrupted by subsequent liquefaction. Sims (1975) found that seismic disturbances 

could be recorded in lakes by their effects on surface sediment layers causing liquefaction to 

take place. Additional quantities of material may have been dumped in unstable littoral or 
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nearshore positions by the main disturbance event and these sediments may have later 

been triggered into turbidity flows by periodic increased rainfall or subsequent earth tremors. 

Gradually the amount of unstable material available for removal would have diminished and 

the depositional processes would turn back towards normal suspension settling and 

accumulation of fine laminae. 

Another possibility is that the sediments might record a secondary phreatomagmatic type 

eruption occurring in what is now the deep pit zone of the lake (Chap. 2). This could have 

ejected large volumes of bedrock and older sedimentary material and caused an unstable 

accumulation of debris in the catchment. If this is the case, it may be possible to date this 

volcanological event quite precisely from a future sediment chronology being established. 

The validity of this process will require more fieldwork to be tested. 

The basic sedimentological division of the turbidite zone is compared with geochemical 

parameters in Fig. 4.34. It can be seen that the basal coarse sand is not associated with 

elevated Na/Al or K/Al ratios as would be expected if it had been deposited as a primary 

tephra fall. The ensuing turbidite sequence shows a progressive decrease in Mg/Al, K/Al and 

Ti/Al ratios thought to reflect decreased contributions of illite-muscovite and pyroxene. This 

trend is believed to reflect a progressive return to sedimentation dominated by limited surface 

soil material. 
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CHAPTER 4c 

AUTHIGENIC COMPONENTS OF THE SEDIMENTS 



Introduction 

This chapter examines both strictly diagenetic components formed within the sediments and 

endogenic precipitates that are believed to have formed within the lake waters (e.g. calcite). 

Visual and XRD examination of the Monticchio profile reveals the presence of a number of 

diagenetic phases, including calcite, siderite, iron sulphides and vivianite. These minerals 

often occur in distinct and exclusive zones of concentration, but in some instances several 

phases coexist on a millimetre scale. Some of these minerals occur in narrow and discrete 

laminae which are believed to reflect rapid formation in a non-steady state environment of 

deposition. Other products may have developed over longer time scales following sediment 

burial. 

The elemental constituents of these phases are largely derived from the catchment rocks 

(Engstrom and Wright, 1984). The catchment is believed to represent the fundamental 

influence both through regulating the level of organic matter deposited in the lake system and 

as a direct supplier of reactive metals and anions. Secondary effects associated with the 

internal dynamics of the lake will tend to influence the way in which these components 

become fixed as authigenic minerals. 

Many of the elements used to examine the authigenic features are also present to some 

degree in the terrigenous clastic fraction. For example, Fe shows pronounced elevations and 

spikes representative of diagenetic enrichments that are superimposed on a background 

which probably reflects the relative content of mineral detritus (Fig. 4.35.). This background 

has a similar shape to the profile for a strict clastic indicator such as Al (Fig. 4.35). In this 

chapter use of normalisations and ratios to Al will be made in order to remove the effects of 

changing clastic content. In some elements this is unnecessary since their clastic 

contribution is negligible and the effects of diagenesis are sufficiently clear from a basic 

concentration profile. 

CALCITE 

Calcite was initially identified from thin section examination (B. Zolitschka, unpubl. work) to 

be present between 1500 and 2300cm depth. The presence of calcite is indicated 

geochemically through the concentration of inorganic (carbonate) carbon and the 

concentration of excess Ca (i.e. Ca above that contained in the aluminosilicate fraction). This 

parameter was estimated from the XRF data by a normative calculation: 

excess Ca= Ca- 0.2*  Al 

144 



2 	4 	6 	8 	10 	12 	14 

E 
U 

-c 
-I-a 

CL 

Al (wt%) 

4 	6 	8 	10 	12 0 	2 

0 	2 	4 	6 	8 	10 	12 

E 
U, 

-c 
0 w 

Fe (wt%) 

2 	4 	6 	8 	10 	12 	14 

Fig. 4.35. Total Fe and Al content compared 

142. 



The value of 0.2 was taken as a typical Ca/Al ratio for mudrocks (Turekian and Wedepohl, 

1961). Although this may be an inaccurate indicator for low levels of excess Ca, it is thought 

to provide a reasonable guide where calcite concentration reaches higher levels. 

In Fig. 4.36. it can be seen that significant enrichments occur in excess Ca and inorganic 

carbon between 1500 and 2300cm. Calcite has also been identified by XRD in the top 40cm 

of the core and in a few other locations, some of which are connected with tephra layers. 

These areas are also characterised by elevations in excess Ca and inorganic carbon (eg. at 

25cm and at 3040cm depth), but of a lower magnitude than the main zone of calcite 

occurrence. It can be seen from Fig 4.36. that most of the sample points above 2300cm 

containing significant inorganic carbon are matched by corresponding increases in excess 

Ca which suggests the presence of calcite. On the other hand, a few spikes above 2300cm 

depth and the majority of positive zones below 2300cm do not correspond to excess Ca 

peaks. These other zones are dominated by siderite and will be discussed in the next 

section. 

The principal zone of calcite occurrence is shown in more detail in Fig. 4.37. This plot also 

includes 513C and 5180 values determined on selected bulk calcite samples using a 

sequential acid attack (see Appendix 1). The highest calcite concentrations appear to lie 

between 1700 and 1900cm depth where 3wt% inorganic carbon and 1 Owt% excess Ca are 

reached. This is roughly equivalent to around 25wt% CaCO 3  in the sediments. This area is 

interrupted by two minima at 1750 and 1830cm depth where concentrations decrease to near 

zero. Outside the 1700 to 1900cm zone, lwt% inorganic carbon is more typical (reflecting 

<1 Owt% CaCO3). 

There appears to be some relationship between the presence of calcite and the clastic 

sedimentation discussed in Chap 4b. The first sharp increase in excess Ca and inorganic 

carbon coincides with the base of the mineral-rich turbidite sequence where a coarse sand 

and slump unit occur. The following sequence of turbidites is characterised by consistent 

inorganic carbon values between 0.5 and 1 .Owt%. Inorganic carbon (calcite) begins to rise to 

higher levels above 1950cm which is coincident with the decline in turbidite deposition and a 

return to normal finely laminated sediments. The laminated sediments throughout the next 

three metres are typified by high calcite concentrations, but calcite decreases significantly 

around 1640cm depth. Above this, relatively low calcite concentrations are found with 

occasional peaks of <lwt% inorganic carbon. 
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Sketches from thin sections prepared for varve analysis (e.g. Fig. 4.38.) show two main 

forms of calcite to be present throughout this zone: 1) irregular shaped lumps included within 

actual turbidite layers and presumed to be of detrital origin, and 2) subhedral calcite rhombs 

occurring in discrete laminae (i.e. solid layers). These layers of calcite crystals may be up to 

0.5mm thick and occur both between successive turbidite layers in the lower section and 

within the laminated muds above. It is believed that they represent primary inorganic 

precipitation within the lake (B. Zolitschka, unpubl. work). 
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Fig. 4.38. Typical occurrences of calcite. 

Ostracods are also found in small quantities between 1450 and 1800cm (Wansard, unpubi. 

work), but outside this area no evidence for them is preserved. Ostracods reach a maximum 

in abundance between 1650 and 1735cm which corresponds to the last zone of high calcite 

concentration, but they are virtually absent in the earlier calcite maxima of 1800 and 1900cm 

depth. 

The low amounts of calcite present in other parts of the core have not been examined in 

detail, but this calcite is probably typified by thin layers of subhedral crystals/microspar. In 

some cases dispersed sidente is also present, underlying the calcite level (B. Zolitschka, 

unpubl. work). 

Discussion and interpretation 

Reviews (Kelts and HsU, 1978; Dean and Fouch, 1983) have generally considered lacustrine 

calcite to be of four possible origins: 1) detrital, 2) biogenic, 3) primary inorganic precipitate, 

and 4) diagenetic. Primary inorganic precipitation is the most common mode of occurrence 
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for many lake settings, in contrast to the skeletal (i.e. biogenic) dominated sediments of the 

marine realm. From the above observations, the Monticchio sediments show evidence for at 

least three of these calcite origins. 

The detrital grains of calcite found within turbidite layers are presumed to have either been 

transported from littoral areas of the lake or to have been eroded from the terrestrial 

catchment environment. It has been noted by Fiore et. al. (1992) that calcite "pervades" the 

Vulture volcaniclastic sequence in the form of veins and layers. This calcite is believed to be 

of secondary origin precipitated from circulating solutions of "deep origin". It is possible that 

the increased erosional disturbance associated with the onset of turbidite deposition caused 

calcite present in deeper layers of the weathering profile to be transported to the lake 

sediments intact or with partial dissolution. Alternatively, an increase in carbonate alkalinity 

by leaching of newly exposed pyroclastic layers at this time could promote the precipitation of 

calcite in the littoral zone (perhaps by macrophytes such as Chara). These carbonate crusts 

or intraclasts could subsequently be broken up and redeposited onto the lake shelf by 

turbidity currents. 

The layers of calcite rhombs probably formed as inorganic precipitates in the surface lake 

waters and settled to the lake floor. This could represent a secondary response to the 

increase in alkalinity or carbonate saturation brought about by leaching or dissolution of the 

new calcitic catchment supply. The two principal mechanisms for inducing calcite 

precipitation are enhanced algal productivity and temperature increase (Kelts and Hsü, 

1978). Both these processes involve the removal of carbon dioxide from the surface waters 

and tend to be most effective in summer, which is when calcite typically forms. For example, 

Kelts and Hsü (1978) found that peak formation of calcite occurred between June and 

August in Lake Zurich, and evidence for this was preserved in the varved sediment 

sequence. The calcite layers present at Monticchio probably developed during summer also. 

It is possible that in the early stage (2100 to 1900cm), dominated by turbidites and organic-

poor sediments, temperature increase played the dominant role in precipitation. Perhaps the 

individual turbidite layers were deposited during an autumn or winter season of heavy rainfall 

and the overlying calcite layer accumulated during the following summer. As organic 

productivity increased (above 1900cm) it is likely that photosynthetic CO 2  uptake played a 

greater role in carbonate formation. 

Once precipitated, the preservation of calcite depends on the balance between further 

precipitation and dissolution in the depositional environment. Calcite may dissolve in the 

hypolimnion/monimolimnion if large amounts of respired CO 2  have decreased the pH 
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balance of the waters. Once buried in the sediment, further stages of dissolution may take 

place (with possible diagenetic replacement) or the calcite may be permanently preserved. 

Although the calcite layers in the Monticchio sediments are thought to represent primary 

precipitates, it is not totally certain that they did not experience dissolution and replacement 

by a later mineral phase during their post depositional history. 

The presence of ostracods provides evidence for biogenic calcite formation in Monticchio. 

Ostracods suggest oxygenated conditions in the benthic regions of the lake. However, it is 

not known whether the ostracods present developed in situ or were transported from more 

littoral regions. More important is likely to be the improved supply of Ca at this time which 

enabled ostracods to develop and calcify sufficiently so as not to be dissolved after death. 

Their absence from other parts of the record suggests that Ca in the waters was generally in 

low abundance for much of the lake's history. In gross terms the ostracods probably 

represent a minor contribution to the calcium carbonate present. 

The minor amounts of calcite present in other parts of the core may sometimes be related to 

potential alkalinity increases induced by tephra inputs into the system, such as at 630cm 

depth. Again, calcite formation probably occurred in summer by primary inorganic 

precipitation and this may have persisted for a short period following the tephra event. In 

other calcitic areas where there is no tephra association, the formation probably relects 

change in the evaporative balance of the lake favouring limited carbonate precipitation. The 

top 50cm of the Monticchio record may reflect an interval when the lake level was artificially 

lowered (Chap. 2). This may have increased the concentration of alkaline cations or the 

HCO3 /CO2  balance allowing calcite to form. At other times calcite may have formed in the 

surface waters, but later suffered complete dissolution, and thus did not survive burial below 

the upper few decimetres of the sediment pile. 

Isotopic evidence 

The factors influencing the isotopic composition of primary and diagenetic carbonates have 

recently been reviewed by Talbot and Kelts (1990) and Talbot (1990). The stable carbon and 

oxygen values measured on the Monticchio calcites (relative to the PDB standard) range 

from 7.738 to 9.254%o and from -5.705 to -3.887%o respectively. In the discussion of stable 

isotopic trends it is assumed that Lago Grande di Monticchio represents a closed basin. At 

present this is correct since the lake is not drained by any outlets, although in the past the 

lake may have at times drained westwards into a valley (Chap. 2). 
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In a closed basin it is thought that local effects outweigh direct variations caused by change 

in global climate since the long residence time of the waters in such lakes permits substantial 

isotopic evolution to occur (Talbot and Kelts, 1990). In other words, changes in global 

temperature (which affects the isotopic composition of rainwater and the equilibrium 

carbonate fractionation factor) are secondary to changes in the local evaporative regime of 

an individual hydrological system. This seriously prohibits the reconstruction of a climatic 

index comparable to the marine oxygen isotope curve. However, information may be derived 

concerning the local evaporative balance or organic carbon cycle if the catchment hydrology 

has remained constant. 

The 6180  values of primary inorganic calcite depend mainly on the lake water 6180  values 

and to a much lesser extent on the temperaure of carbonate precipitation (Talbot, 1990). 

Lake water 8180 composition is influenced by both the composition of the inflow supplies 

(direct rainfall, surface water and groundwater) and by the evaporative balance. Over long 

periods of time it is possible for closed lakes to develop high 6180  values, particularly under 

a pronounced evaporative regime. The 6180  of diagenetic calcite also is influenced by the 

same factors. It is assumed here that the porewaters in shallow early diagenetic 

environments are approximately equal to those of the overlying lake waters. 

The ö'C values of primary inorganic calcite are influenced by the dissolved inorganic 

carbon (DIC) composition in the upper water column. This in turn is influenced by a range of 

factors including the water residence time, lake productivity, inflow composition and the 

degree of isotopic exchange with the atmospheric CO2  reservoir. Talbot and Kelts (1990) 

considered that the first of these factors was the most significant in the case of their African 

lakes studied. They suggested that preferential outgassing of 12C-rich carbon dioxide from 

the lake waters over long periods of time would cause the waters to evolve towards 

progressively higher 613C  values. This was seen through the covariance of 8 13C and 6180 

values for individual closed basins when suites of primary inorganic carbonates from a 

particular setting were analysed. In these settings, high 613C and 6180  values were attributed 

to periods of evaporative enrichment, which had caused both preferential H 2 160 removal and 

12CO2  degassing. Other authors have considered the photosynthetic removal of isotopically 

light CO2  from the upper waters to be the main influence on carbonate isotopic composition 

(McKenzie, 1985; Botz et. al., 1988). 

Diagenetic calcites may differ from primary inorganic calcites in their 8 13C values, which 

principally reflect the microbial processes dominant during the early diagenesis of organic 

matter (Talbot and Kelts, 1990; Irwin et. al., 1977). Processes such as methanogenesis and 
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sulphate reduction can lead to much higher (Talbot and Kelts, 1986) or lower 813C  values 

than those produced in primary precipitates, although the 8 180 values will remain much the 

same. The 513C  and 8180 values of diagenetic carbonates do not follow a covariant trend like 

those of primary precipitates (Talbot and Kelts, 1990). Instead, 813C  values are often highly 

dispersed and commonly lie outside the -5%o to +5%o range. 

Interpretation 

The 813C and 3180 values of the calcite samples from Monticchio have been plotted on the 

same axes as primary and diagenetic carbonates from Lake Bosumtwi for comparison (Fig. 

4.39.). The Monticchio 8 180 values show a range of 2%o which is modest in comparison to 

certain other studies (Talbot and Kelts, 1990). For Lake Bosumtwi, which experienced 

dramatic lake level fluctuations, the 5180  values vary by over 1 0%. It is assumed that the 

changes in 8180  mainly reflect the evaporative balance and hence the ratio of incoming 

rainfall to evaporative losses. From the trend observed in 8 180 values (Fig. 4.37.) it would 

appear that the lake level or precipitation/evaporation balance may have decreased between 

1898 and 1475cm depth. This is suggested by the upwards increase in 8 180 from -5.705%o 

to -3.887%o. It is possible that the earlier turbidite deposition took place under conditions of 

higher rainfall and lake level, and that an upwards decrease in rainfall is connected with a 

decline in turbiditic transportation processes. 6180  values which lie in the positive field 

appear to be common in and or strongly evaporitic settings such as tropical Africa, although 

latitude and altitude exert additional influences in all cases. The absence of positive 8 180 

values in Monticchio and the modest 2%o variation suggest that any changes in water 

balance or lake level have not been dramatic over this period. Indeed, there is no other 

evidence to suggest severe lake level drops elsewhere in the Monticchio record. 

The original aim of the isotopic carbonate study was to examine the 8 13C values and 

compare/contrast these with the 813C  values of the organic matter. However, results have 

revealed the possibility of reconstructing past precipitation/evaporation changes and this may 

be worth pursuing in future work. Further examination might be carried out in particular detail 

on the zone between 2300 and 1500cm, although it could not be extended to all parts of the 

record due to the absence of carbonates. 

In the interpretation of the 813C  values it is essential to distinguish between a primary or 

diagenetic origin for the carbonates. As discussed from morphological evidence, it is believed 

that the calcite layers represent primary precipitates, but the possibility of replacement of a 

primary precursor calcite by a diagenetic phase cannot be entirely eliminated. 
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Assuming a primary origin, the 813C values are expected to reflect the 6C composition of 

the DIC in the upper lake waters. The measured values of +7.738 to +9.254%o are 

significantly higher than any of the values compiled in a review by Talbot and Kelts (1990). 

These authors did not find primary carbonate 6 13C values higher than +5%. Assuming the 

Monticchio calcites to represent primary precipitates, they display to my knowledge some of 

the highest recorded 613C values in the literature. If the isotopic values are examined on a 

scatter plot of 813C against 6180  (Fig. 4.39.) the calcite samples appear relatively clustered. 

This is in contrast to the diagenetic carbonates from Lake Bosumtwi shown on the same 

axes. It also contrasts with isotopic values for siderite samples (of probable diagenetic origin) 

from Monticchio which appear to be highly scattered. Talbot and Kelts (1990) observed 

primary carbonates to be relatively clustered and to show a significant covariance between 

613C and 6180  values (r>0.7). The six calcite samples measured from Monticchio show a 

positive correlation of 0.4 (Fig. 4.39.), although this would be better clarified by including a 

larger number of samples. In general the above evidence favours a primary carbonate origin 

more than a diagenetic origin. 

The high 613C  values in primary calcites are unlikely to reflect just the evolution of the 

Monticchio lake waters. This would require intense 12CO2  degassing and would be 

associated with a highly evolved evaporitic trend. The 6180  enrichments previously 

described do not support this idea of intense evaporative evolution. It is perhaps more likely 

that high surface productivity could account for the removal of large fractions of 12C-rich DIG 

immediately prior to calcite precipitation. This could cause isotopically heavy calcites to form 

during the mid and late summer season. Such an effect requires extremely limited 

equilibrium exchange between the lake waters and the atmospheric carbon dioxide reservoir 

(Schindler, 1975). This may be a reflection of the lake's morphology (e.g. its relatively small 

surface area). The viability of this hypothesis might be tested by carrying out present day 

measurements of CO2  levels and 8 13C values in the DIG pool, both in summer and at other 

times of the year. 

If diagenetic replacement has taken place, it would be most likely that the diagenetic calcite 

incorporated carbon from a 13C-enriched methanogenic source (Talbot and Kelts, 1990; 

Bahrig, 1989). Talbot and Kelts (1986) found diagenetic carbonates with 8 13C values as high 

as +27%o to be related to pronounced methane formation in the porewaters of Lake 

Bosumtwi. Both acetate fermentation and CO 2  reduction processes were thought to be 

participant in this diagenetic environment. Other diagenetic processes such as aerobic 

oxidation or sulphate reduction would be expected to impart an isotopically light signal from 

the organic matter to the carbonates and give typically negative 8 3C values. Therefore, the 
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isotopically heavy composition of the Monticchio calcites would suggest the dominance of 

methanogenesis in the post-depositional environment. This is somewhat contradicted by the 

evidence for pyrite and high sulphur enrichments (discussed later in this chapter) which 

suggest that significant sulphate reduction may occur in the sediment zone or in the water 

column. It would be necessary for this sulphate to become rapidly consumed in the 

uppermost sediment zone and to be replaced by methanogenesis below to account for the 

observed &'C values. If this was the case, it could be that primary calcite layers survived 

intact through the sulphate reducing zone and then suffered dissolution on entering the zone 

of methane production (perhaps due to increased CO 2  levels lowering pH), but were soon 

after replaced by a new calcium carbonate phase incorporating CO2  by-products of methane 

formation. This precipitation might be favoured by a subsequent increase in alkalinity brought 

about by either microbial CO2  reduction or the concomitant reduction of Fe and Mn oxides. 

However, there is no positive evidence of sediment displacement, pore filling, disturbance by 

nodule growth etc. to suggest that diagenetic formation actually occurred. 

It is worth remembering that the samples measured for stable isotopic values represent bulk 

calcite contents and thus both layered and detrital calcite are included. In general, the 

layered carbonate phase is likely to represent the largest component. The isotope values 

presented reflect an average for this mixture while the individual phases may be isotopically 

different. In a study of the Vulture pyroclastic sequences, Fiore et al. (1992) found 8 1 C 

values of -3.514 to -0.490% in calcite material. If such isotopic signatures survived into the 

sediment record, as the detrital grains, they would have lowered the bulk isotopic values 

shown, implying that the carbonate layers may have even higher 813C  values. However, this 

original calcite may well have dissolved and reformed within the lake environment. Whatever 

process occurred, it is clear that the lake system has profoundly altered the isotopic 

composition of any calcite derived from the catchment pyroclastic sequence. It might be 

possible to further investigate this by extracting individual detrital fragments and material 

from calcite layers for separate analysis. 

SIDERITE 

Siderite (FeCO 3) was largely unrecognised in the literature on modern lake sediments until 

the late 1970's (Jones and Bowser, 1978; Anthony, 1977). It was, however, known to be a 

reasonably common diagenetic phase in ancient lake settings (Fritz et. al., 1971). More 

recently siderite has been increasingly noticed in modern lakes, most commonly as an early 

diagenetic mineral although occasionally as an endogenic precipitate in anoxic bottom 

waters (Bernard and Symonds, 1989). This appreciation of siderite probably reflects both an 
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increase in the type of lakes studied and improvements in analytical and investigation 

techniques. 

In Lago Grande di Monticchio siderite has been identified from preliminary thin section and 

XRD studies to be widespread over major sections of the profile, particularly during the 

glacial period(s). Siderite is indicated geochemically by the concentration of inorganic carbon 

in connection with peaks in excess Fe. It is known that complete solid solution exists 

between siderite and rhodochrosite MnCO3  (Deer et. al., 1985). The likely presence of 

Manganoan siderite from XRD diffraction trace matches and the high Mn/Fe ratios in certain 

siderite zones suggest that considerable Mn substitution may be occurring over some 

periods. 

The profiles for inorganic carbon and excess Fe are shown together in Fig. 4.40. The excess 

Fe parameter is estimated from XRF data by a normative calculation: 

excess Fe= Fe- 0.4*  Al 

As with excess Ca, this is thought to provide a good indicator of major siderite and other 

diagenetic iron enrichments, but to be innaccurate at low levels of Fe enrichment. 

The upper 10 metres of the profile is thought to be essentially devoid of siderite. Siderite has 

not been seen in thin section preparations (B. Zolitschka, pers. comm.) or in XRD 

investigations. This area contains very little inorganic carbon (Fig. 4.40.), but does show 

noticeable enrichments in excess Fe. It is thought that the minor inorganic carbon peaks 

present are related to calcite (discussed in the last section) and that the excess Fe maxima 

(e.g. at 600 and 825cm depth) are attributable to vivianite and iron sulphide associations 

rather than iron carbonate. This will be described further in the next two sections. 

The first occurrence of siderite (identified by XRD) is at around 1120cm depth and from here 

downwards the mineral is present in greater or lesser amounts for much of the remaining 

record. 

Siderite content increases somewhat from 1120cm towards a first maximum between 1680 

and 1880cm depth (Fig. 4.40.). This zone also contains some excess Fe in the form of 

sulphides. During the preceding turbidite zone between 1900 and 2250cm depth siderite 

appears to be absent. Carbonate mineralogy in this zone is dominated by calcite. Siderite 

reappears below 2250cm depth and is found both in minor background concentrations and 
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local zones of major enrichment. Areas containing up to 2.5wt% inorganic carbon and 12wt% 

excess Fe occur. This represents approximately 25wt% siderite content in the most enriched 

samples. Notable zones of high siderite occur between 2500 and 3200cm and between 3950 

and 4370cm. The biogenic silica dominated sediments between 3200 and 3450cm depth are 

one of the few areas devoid of siderite in the lower profile. This is the interglacial or 

interstadial period where relative concentrations of clastic mineral material reach a minimum 

(Chap. 4b). Below 3450cm siderite returns and appears to be reasonably common except for 

a low around 4700 to 4880cm. It reaches moderate or high values during the 

interglacial/interstadial period at 4900cm and in the glacial zone below. 

Thin section observations 

Preliminary examination of the siderite in thin section preparations suggests two main forms: 

1) dispersed individual crystals or small granules (<5pm in size), and 2) thin dark horizons 

(<100pm thick) rich in micritic siderite material and sometimes adjacent to calcite layers (B. 

Zolitschka, unpubi. work). Sediments containing the diffuse siderite generally have a cloudy 

yellowish appearance under the microscope. 

Mn enrichments 

The geochemical indicators for siderite are plotted in more detail in Figs. 4.41. and 4.42. in 

order to examine the relationship between siderite occurrence and high Mn concentrations. 

Between 1680 and 1880cm, Mn concentrations are consistently around 1 .Owt% and 

occasionally as high as 3.8wt%. These are extremely high values for a typical mudrock 

(Turekian and Wedepohl, 1961) and must reflect diagenetic enrichment. The blue shading 

helps indicate that the Mn peaks are correlated with high inorganic carbon and to some 

degree with high excess Fe (Fig. 4.41.). It seems possible that up to 25wt% or more 

manganese carbonate could be substituting in a solid solution with siderite. This situation is 

complicated by the fact that some excess Fe resides in pyrite and some inorganic carbon is 

hosted by calcite in this zone. However, it seems most likely that the Mn is principally 

associated with iron carbonate. This is supported by the XRD evidence suggesting that 

manganoan siderite is a more likely carbonate phase than pure siderite in these sediments. 

Further examination by microprobe would provide clearer quantitative information on this 

association. 

In lower parts of the core (Fig. 4.42.) siderite peaks are also associated with some Mn 

enrichment (examples are illustrated by blue shading), but to much lower levels than in the 

1680 to 1880cm zone. XRD mineralogy on samples from these areas primarily identified 

pure siderite as the likely carbonate phase. 
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Stable isotope observations 

Siderite 6 1 C values determined on a small number of samples are shown in Fig. 4.41. and 

4.42. beside the relevant sample points. The 813C  values vary between +4.32 and +14.56%o. 

This represents a relatively broad range (10%o), although all the values lie within the 

isotopically positive domain. Only seven samples were measured and these come from 

widely separated areas of the core. This makes comparison of stratigraphic relationships 

between values difficult and therefore the isotopic data will only be used to make general 

inferences about carbon sources utilised in carbonate formation. Also, the trends in 5180 

values will not be discussed. 

Discussion 

The conditions required for siderite formation have been described by many authors (Bahrig, 

1989; Postma, 1981; Berner, 1971). The main requirements are: 

low Eh: reducing conditions are necessary for the thermodynamic stabilisation of siderite 

and for mobilisation of a sufficient amount of Fe2+ 

low dissolved sulphur (5042,  H2S) concentrations: if sulphur is available iron sulphides will 

be formed in preference to siderite 

high pCO2  and/or increased alkalinity 

high Fe/Ca ratios (>0.05) in the formation waters 

Increase in the availability of the main ingredients (i.e. Fe and CO32)  is one obvious way in 

which siderite formation might be favoured. In the Monticchio environment it is likely that iron 

oxyhydroxides in the catchment zone provide the main Fe source. These are predicted to 

exist in the soil zone as weathering products of the underlying pyroclastic rocks. Primary 

igneous minerals such as pyroxene which may also contain iron are generally considered to 

represent a secondary source (Curtis et. al., 1986). They are much less available towards 

microbial activity in the diagenetic zone and unlikely to mobilise significant Fe 2+  in 

comparison with the oxyhydroxide phases. Fe bearing components may be transported to 

the lake sediments in particulate form by erosion or in solution through leaching processes 

and possible subsurface water movement. It is possible for an increase in Fe supply to arise 

either through increased erosional intensity or through increased leaching from a soil 

horizon. The latter may take place if the soil humus content develops and the soil 

environment changes to a more reducing one (Engstrom and Wright, 1984). Bicarbonate is 

most likely to be supplied from the decomposition of organic matter either in the lake waters 

or in the buried sediments. Increase in bicarbonate supply could arise through increased 

microbial degradation (perhaps in response to increased organic deposition). The resultant 



pCO2  increase alone would tend to lower pH and discourage carbonate precipitation. 

However, accompanying microbial processes such as sulphate reduction or Fe(III) reduction 

cause alkalinity to increase and offset this trend. 

As well as changes in Fe and bicarbonate supply, a change in siderite occurrence could also 

be related to change in the biochemical conditions within the lake. Siderite formation may be 

favoured by redox, pH or sedimentation rate changes. Such factors represent a complex 

interplay between catchment inputs and the internal dynamics of an individual lake. 

Most palaeolimno!ogical studies have interpreted siderite as an early diagenetic mineral 

forming within the upper few centimetres of the sediment column (Truze, 1990; Giresse et. 

al., 1991). Reconstructions generally describe the reduction of a surface layer of ferric 

oxyhydroxides (supplied from external sources) which undergoes burial below a redox 

boundary (e.g. Fig. 4.43.). The subsequent ferrous iron which becomes mobilised and 

concentrated in porewaters reacts with bicarbonate produced by decay of organic matter in 

the sediments and precipitates as a carbonate mineral. The process is aided by the 

attendant increase in alkalinity caused by Fe(III) or sulphate reduction. 

Truze (1990) associated the occurrence of siderite with intermediate climatic conditions in 

Lac du Bouchet. During interstadial periods vegetation cover was reduced enabling high 

rainfall events to wash iron oxyhydroxides into the lake from the catchment soils. These 

became reduced within the sediment zone and formed siderite with carbon produced from 

organic matter decomposition. In contrast, during glacial times soil erosion events also 

occurred, but sedimentary organic matter may have been too low to generate sufficient 

bicarbonate and so the iron was preserved as a ferruginous layer. During vegetated 

interglacial periods the catchment slopes were relatively stabilised and Fe supply from 

detrital inwash may have been too low. 

A few studies have interpreted siderite as an endogenic precipitate forming in anoxic lake 

waters. This is usually connected with conditions of high dissolved Fe2+  in monimolimnion 

waters ('iron meromixis'). Formation occurs when the solubility product of siderite is 

exceeded either by increase in [Fe24] or [HCO3 ]. In the case of Lake Nyos siderite 

precipitation was assumed to have occurred after catastrophic CO 2  degassing from the 

monimolininion. This caused a sharp rise in alkalinity under conditions in which high 

concentrations of dissolved iron had built up (Bernard and Symonds, 1989). 
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Since siderite does not form under oxidising conditions it is unlikely that the mineral would 

reflect the &C value of DIC in the suface oxygenated waters. The 813C values of siderite 

are likely to reflect either the composition of the DIC in a the hypolimnion/monimolimnion 

environment or the DIG in the sediment porewaters. Under more unusual conditions volcanic 

G02  emissions can contribute to the DIG in these zones (Schoell et. al., 1988). The 

possibility of this process is suggested by preliminary field observations at Lago Grande di 

Monticchio (Chap. 2), but requires further investigation to justify in this case. For the moment, 

the 513C  values of the siderite will be interpreted in terms of the DIG supplied by organic 

matter decomposition and the dominant microbial processes involved in this supply. As with 

the discussion of 813C  values for diagenetic calcites (last section) the same processes are 

thought to govern the isotopic composition of siderites (Talbot and Kelts, 1990; Curtis et. al., 

1986). The positive 513C  values of the siderites measured suggest that methanogenesis 

provides the dominant supply of bicarbonate in this setting. Aerobic oxidation or sulphate 

reduction dominated bicarbonate supply would lead to characteristically negative isotopic 

compositions. In oxygenated lakes methanogenesis normally occurs at some depth below 

the sediment water interface and thus carbonates incorporating methanogenic DIG products 

would normally be associated with formation after sediment burial (i.e. in the early diagenetic 

environment). Methanogenesis might take place under anoxic conditions within the actual 

lake waters, or methanogenic products could diffuse upwards into the overlying lake waters 

under conditions of stratification (Kelly et. al., 1988; Schoell et. al., 1988). This might enable 

siderite to form in the lake waters or on the sediment water interlace with the incorporation of 

methanogenic carbon. In the Monticchio sediments, the often dispersed or diffuse-horizon 

form of the siderite and the presence of significant pyrite in some zones (particularly around 

1800cm depth) suggests that formation occurred after burial and that methanogenesis is 

more significant below the sediment surface. 

Most siderites are known to show some degree of Mn substitution. Fe and Mn have very 

similar ionic radii (0.75A and 0.80A respectively) and substitution should be expected. It is 

thought that Mn substitutes into FeG03  in preference to the crystal stuctures of either 

vivianite or iron sulphide (Postma, 1981). Therefore, in the absence of a separate Mn phase, 

siderite is most likely to be the host in this environment. Most lacustrine sediment studies 

have found only limited Mn-substitution (<5% MnCO 3) in siderites (Bahrig, 1989; Singer and 

Ehrlich, 1978). This is particularly the case for siderites assumed to have formed under 

conditions of anoxic stratification (Dickinson, 1988; Bernard and Symonds, 1989). 

It is generally believed that the enrichment of Mn in sediments requires the presence of an 

aerobic environment above the sediment zone (Wersin et. al., 1991; Pedersen and Calvert, 
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1990). This is because particulate bound Mn(IV) is preferentially reduced to Mn(lI) as soon 

as oxygen disappears from the environment and will remain in solution (not precipitating as a 

solid phase) in oxygen deficient waters. Therefore the presence of Mn enrichments has been 

taken to imply oxic conditions within the overlying water -conditions which must extend to at 

least a thin layer of the surface sediments. With an oxic top Fe(III) and Mn(lV) oxyhydroxides 

are concentrated or precipitated in the surface layer and the loss of Mn2+  or  Fe2+  from the 

sediments by upward porewater diffusion is impeded. This enables high concentrations of 

dissolved Mn2+  (and  Fe2+)  to build up in the zone immediately below the oxic surface layer 

(Fig. 4.44a.). Since Mn(lV) is predicted as the next electron acceptor to be utilised after free 

oxygen (Kelly et. al., 1988; Froelich et. al., 1979) Mn 2  will preferentially accumulate over 

Fe2+ immediately below the oxic boundary. In this environment, bicarbonate (or other 

ligands) can combine with the dissolved Mn and Fe and form a diagenetic precipitate (Fig. 

4.44a.). The newly stabilised Mn-rich phase may then survive continued burial into the anoxic 

zone. Studies of diagenetic minerals classically associate Mn-rich concretions or horizons 

with early diagenetic formation under oxic bottom waters (Curtis et. al., 1986). This is 

illustrated in Fig. 4.43. 

Interpretation 

The presence of siderite over much of the lower part of the Monticchio record indicates that 

the conditions for siderite formation were appropriate for much of this time period. This 

probably included the low availability of dissolved sulphur (Postma, 1982), if not in the lake 

waters then at least rapid consumption of sulphate in the uppermost sediment layers. The 

high 813C  values suggest that methanogenesis was the dominant mechanism of organic 

matter breakdown within the sediment zone where siderite formed. The absence or very low 

abundances of pyrite in these sediments (B. Zolitschka, unpubl. work) agree with this trend. 

Both organic matter and iron oxyhydroxides supplied by the catchment soils were in 

reasonable availability. Occasional siderite enrichments might reflect periodic inwashing of 

higher quantities of soil material increasing the supply of Fe. This could also provide more 

associated organic matter of terrestrial origin, thought by some authors to provide favourable 

substrates for siderite formation (Bahrig, 1989). It is less probable that increased productivity 

(leading to increased methanogenesis) drove the peaks in siderite as the organic carbon 

record is essentially low and constant throughout this time. 

The absence of siderite in the biogenic rich sediments around 3300cm depth could reflect a 

reduced supply of catchment eroded Fe due to vegetation rise and soil stabilisation. This 

might be expected to favour an increase in leached Fe due to the soil environment becoming 



Fig. 4.44. Models for siderite formation 
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more reductive through a build up in surface humus. However, increased Fe supply by 

leaching does not appear to be the main influence on siderite formation in this case. 

The lack of siderite at 21 00cm in the turbiditic zone is probably related to decreased 

Fe2+/Ca2+ ratios induced by the external loading of calcite onto the lake system (c.f. Singer 

and Ehrlich, 1978). This would influence the lake water environment and probably also the 

early diagenetic environment through downwards diffusion of Ca2+  (and possibly also partial 

dissolution of calcite within the sediments). At the same time, the catchment may have been 

stripped of soil oxyhydroxides by severe erosion and may have required time to recover from 

a primary state. Gradually the calcite loading to the system may have been fixed in the 

sediments and renewed supplies of oxyhydroxides begun through a return to soil 

development and weathering. This would have promoted the reappearance of siderite above 

1900cm. 

The siderites between 1880 and 1680cm which show large Mn-enrichments are assumed to 

have developed under at least periodically oxic lake water conditions. The fact that sub-

millimetre horizons of siderite and also pyrite occur in alternation suggests that seasonally 

related changes in redox conditions may be operating. It is suggested that the lake may have 

been holomictic during this time. In this situation the lake waters may have undergone 

circulation in the winter months causing oxygenation of the hypolimnion. This would allow a 

thin layer of ferric oxyhydroxides and associated Mn(IV) to form on the sediment surface 

(Anthony, 1977). Immediately below this surface layer high concentrations of Fe 2  and Mn2  

might develop in the porewaters (Fig. 4.44b.). If methanogenic CO 2  was being produced 

within the underlying sediments it is possible that the HCO3  availability permitted the rapid 

fixation of a sideritic horizon along this boundary zone (i.e. before the Fe and Mn had time to 

be recycled upwards). It might be expected that an intervening zone of sulphate reducton 

would occur between the oxic surface and the methanogenesis dominated sediments below. 

This would be supported by a diffusive flux of sulphate from the overlying waters. Thus iron 

sulphide formation might occur immediately prior to siderite precipitation (Fig. 4.44b.). The 

fact that siderite also exists suggests that the dissolved sulphate was consumed before all 

the iron had been removed and so further reactions (with HCO 3 ) were possible. Mn2+  does 

not form a stable sulphide phase under normal lake conditions (Wetzel, 1975) and so would 

not have been incorporated until the carbonate forming stage. 

As increased surface productivity supplied organic matter to the hypolimnion during the 

summer months the surface oxic layer would decay due to oxygen depletion in the bottom 

waters. It would at the same time become buried by new sediment and move towards the 
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reduced environment. The disappearance of this oxidised layer would be associated with the 

loss of Mn2  (and Fe2 ) from the sediments to the hypolimnion waters (Moss, 1988; Wetzel, 

1975) and further precipitation of Mn bearing phases would cease. It is possible that as 

anoxic conditions developed, organic degradation in the hypolimnion zone continued by 

sulphate reduction. This might cause H 2  to accumulate in the hypolimnion and precipitate a 

small quantity of pyrite crystals in the water or at the sediment surface during the summer 

(Fig. 4.44b.). There could also be a periodic fallout of calcite crystals precipitated in the 

surface waters, adding another component to the sediment accumulation. These layers 

would then become preserved in the sediment above the earlier subsurface siderite 

formation and development of another microsequence commence the following year. 

Such processes require narrow boundary zones (<0.25mm) containing sharp chemical 

gradients to exist (Davison, 1981) and minimal surface disturbance in order to be preserved 

in the sediment record. The presence of ferrogenic varves in lake sediments (O'Sullivan, 

1983 and refs. therein) supports the possibility for seasonal cycles in lake biochemistry being 

recorded in such ways. 

The absence of siderite from the upper 1 100c may reflect a reduced supply of Fe from soil 

erosion or the increasing productivity of the lake system. The latter may have, through 

increased P levels, favoured vivianite development in preference to siderite or altered the 

redox or pH (too acidic?) conditions discouraging the formation of siderite. This may simply 

reflect the imbalance between large amounts of organic matter in the sediments, but 

insufficient ferric oxyhydroxides. 

Further discussion 

It is possible that the seasonally controlled redox mechanism presented to explain the 

occurrence of Mn-enriched siderites may have a general association with high siderite 

content and with siderite in the form of concentrated horizons. This mechanism may have 

prevailed both at 1680 to 1880cm depth and in other parts of the core which display elevated 

siderite contents. The amount of Mn-enrichment at these times may have varied due to other 

factors, such as catchment supply. Siderite enrichment periods interpreted in terms of 

increased inwash of soil detritus may have also benefited from the increased water 

circulation connected with the rainfall or erosional activity. This may have prolonged the 

establishment of a surface oxidising layer and sustained rapid siderite formation below. In 

contrast, the diffuse (<5pm) granular form of siderite may reflect slower continued nucleation 

and growth in microenvironments below the most active diagenetic zone (Fig. 4.44c.). Micro-

environments favourable to siderite formation might arise due to local centres of Fe(II) 
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reduction. It is possible that this more dispersed type of growth continued after early rapid 

formation of a sideite horizon or it may have represented the only form of siderite formation 

for some periods. The process might have operated under both oxic and anoxic surface 

conditions. At the moment more investigation of the thin sections and mineral chemistry is 

required to test these ideas. 

VIVIANITE 

Vivianite Fe3[PO4] 2.8H20 has been documented as an early diagenetic mineral in lacustrine 

sediments where reducing conditions prevail (Nriagu and Dell, 1974; Rosenqvist et. al., 

1970; Mackereth, 1966). Interest in its occurrence has been enhanced by the role that iron-

phosphorus associations play in regulating nutrient regeneration between sediment and the 

overlying lake waters (Paalman et. al., 1993; Manning et. al., 1991): a subject of increasing 

relevance due to the problems of man-made (and natural) eutrophication in lake 

environments (Moss, 1988). 

Observations 

The occurrence of vivianite in the Monticchio sediment record was immediately apparent 

from visual examination following extrusion of the core sections. The blue partially oxidised 

form of the mineral was observed between 560 and 710cm depth in the organic rich 

Holocene section and around 4930cm depth in a deeper part of the record. Deep blue 

patches (<5mm in size) were seen sparingly distributed on the exposed core surfaces. 

Interpretation of these masses as concretions of primary origin requires care: it has been 

found in some studies that vivianite may crystallise in voids after sediment cores have been 

collected (Giresse et. al., 1991). 

Vivianite is indicated in the geochemical profiles by high P enrichments which correlate with 

high excess Fe values (Fig. 4.45.). The outstanding feature of the P record is the 

pronounced peak between 500 and 750cm depth during the early Holocene. In this zone 

total P contents of up to 2.5wt% are matched by excess Fe values reaching lOwt% (Fig 

4.45.). This trend in the chemical stratigraphy corresponds broadly with the visual 

observations just described. Above and below this zone P remains at what appears to be a 

background level. The P profile for the rest of the core is probably dominated by detrital 

contributions in the form of apatite. This appears to be a prevalent phase in the sediment 

record (Chap. 4b). P contents for the later Holocene are around 0.1wt% while the higher 

values for the glacial sections (0.2-0.5wt%) probably reflect increased contents of detrital 

apatite. 
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The vivianite observed around 4930cm is not highlighted by enhanced P concentrations. It 

was neither seen in the P/Al profile which might exaggerate the presence of P enriched 

samples. On the other hand, a slight elevation in P around 3400cm may be associated with 

the presence of vivianite. It would seem that the two interglaciaVinterstadial zones of 3400 

and 4900cm depth show only weak concentrations of vivianite in comparison with the early 

Holocene. 

The Holocene section is examined in more detail in Figs. 4.46 and 4.47. The profiles shown 

here represent P, Fe, Mn and Mg as ratios to aluminium. This has been used to remove the 

variations caused by clastic tephra additions. The P/Al ratio is characterised by a principal 

peak around 560cm and a secondary maximum around 700cm. A slight maximum also 

occurs around 825cm depth in what might be a late-glacial interstadial period. Outside these 

areas the P/Al ratio is at a base level suggesting that only minor amounts of vivianite may be 

present elsewhere. The Fe/Al ratio shows corresponding trends to the P/Al profile (Fig. 

4.46.). Also Mn/Al and Mg/Al ratios show parallels with the P/Al profile suggesting that these 

elements may be substituting in a vivianite phase. Their relative contribution, however, is 

greatly exaggerated by using ratios to aluminium. It is thought that <0.lwt% excess Mg and 

<0.5wt% excess Mn are present in comparison with lOwt% excess Fe during the vivianite 

maximum. The approximate excess Fe/P ratio here appears to be 4 which is somewhat 

higher than the predicted Fe/P ratio for vivianite of 2.7. This suggests that some excess iron 

may be present in the form of iron sulphides and perhaps also unreduced Fe(III) 

components. 

In Fig. 4.47. P/Al, as an indicator of vivianite, is compared with organic carbon and aluminium 

contents. The P/Al and organic carbon profiles show approximately similar trends (r=0.405) 

between 1000 and 525cm, with peaks in P/Al corresponding to the highest organic contents. 

However, above 525cm organic carbon rises to further high contents, but P/Al drops to a 

base level and remains low for the rest of the Holocene. This suggests a possible 

relationship between vivianite formation and high organic productivity (or nutrient status) 

during earlier times, but later on organic-rich accumulation was not accompanied by 

abundant vivianite. 

The Al content is used to examine possible relationships between tephra zones (high Al 

content) and vivianite concentration. It can be seen that the two main P/Al peaks are 

separated by a tephra rich zone between 620 and 680cm (Fig. 4.47.). It was wondered 

whether the deposition of coarse unweathered clastic material into the lake might stimulate 

subsequent vivianite formation. Although there is an alternation of clastic rich periods and 
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major vivianite occurrence below 500cm there appear to be no vivianite enhancements 

associated with later tephra zones, such as at 320cm. Thus there does not appear to be a 

consistent relationship with tephra deposition, and this is supported by the evidence from thin 

section examination described below. 

XRD examination of two samples from 580 and 650cm depth found that the blue mineral 

analysed most closely matched vivianite or baricite (Mg,Fe) 3[PO4]2 .8H20. The possibility of 

two phosphatic phases being present cannot be ruled out, but the two minerals identified 

have very similar diffraction spectra (Sameshima et. al., 1985). It is more likely that a single 

mixed cation phase, such as (Fe,Mn,Mg) 31P0J2.nH20 1  may account for the observed 

diffraction traces. Pyrite was also identified in these samples suggesting that vivianite 

formation and sulphate reduction may be occurring in close associaton. 

Examination of thin section preparations has shown vivianite to be present "almost all over' 

the profile (B. Zolitschka, unpubl. work), but usually in small quantities. It is observed to be 

more abundant around 4920cm and above 1500cm depth, reaching highest concentrations 

during the early Holocene. The vivianite tends to occur as discrete layers of euhedral to 

anhedral crystals. These are in the form of both individual tablets or needles (<50pm) and 

rosette-like aggregates containing many crystals (<100pm). Their occurrence in narrow 

zones or layers suggests formation during short intervals of time, rather than slow growth of 

concretionary nature. No direct association is seen between the vivianite crystals and any 

tephra layers; instead the crystals occur in many locations throughout the gyttja. 

Discussion 

The conditions for vivianite precipitation are similar to those for siderite, although high pQ43-

concentrations relative to HCO3  are required (Postma, 1981). Vivianite may also be 

favoured by decreased pH. This is illustrated by a phase stablity diagram (Fig. 4.48.). The 

formation of vivianite may be discussed in terms of Fe and P supply and the conditions 

favourable to its precipitation in lacustrine environments. 

Increased supply of Fe and/or PO4 
 3- from the catchment would be expected to favour the 

formation of vivianite. Supply of Fe is probably governed by the same factors as discussed 

for siderite. That is, input of soil oxyhydroxides from catchment erosion (and perhaps 

leaching) may provide the major source. Phosphate may be supplied by direct leaching 

releasing dissolved P0 43  to the lake or it may be transported bound to soil oxyhydroxides or 

humic complexes (Engstrom and Wright, 1984). Detrital apatite will also supply particulate P 
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to the lake sediments, but this is normally unavailable to diagenetic processes (Manning et. 

al., 1991; Krauskopf, 1967). During the Holocene, stabilisation of the catchment by increased 

vegetation cover may have reduced the supply of Fe and PO43-  by erosion and so leaching 

may have provided the main supply route. 

Vivianite formation requires elevated concentrations of Fe and PO 4  in the sediment pore 

waters (Nnagu and Dell, 1974). However, dissolved PO4 
 3- is often found to be rapidly 

recycled from the sediments to the lake waters by organic decomposition (Gale et. al., 1992). 

Emerson and Widmer (1978) found in Greifensee that >85% of the PO4  3- released by the 

mineralisation of organic matter was returned to the overlying lake waters. In such cases it 

may be difficult for sufficient interstitial concentrations of PO 4  to build up in order to allow 

vivianite precipitation. 

It is believed that PO 4  3- retention in lake sediments is strongly regulated by the presence of 

Fe (Bortelson and Lee, 1974). In particular iron oxyhydroxides, if present, can efficiently bind 

large quantities of P0 43  ions by surface adsorption. This commonly occurs in oxic lake 

environments where a surface Fe-oxyhydroxide layer exists. This layer will minimise pQ43-

losses from the sediments by upward diffusion and may be associated with a pore water 

build up of Fe2  and PO4 
 3- in the reducing boundary zone immediately below (Carignan and 

Flett, 1981). Under conditions of high pQ43-  concentration vivianite is thought to form, 
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perhaps acting as a buffer which regulates P levels in the interstitial waters (Nriagu and Dell, 

1974). 

It is normally considered that vivianite precipitates from Fe 2  and PO4 
 3- in solution, although 

some authors have argued for the possibility of solid state conversion (reduction) of a 

surface Fe(Ill)-P043  layer to vivianite (Nembrini et. al., 1988). 

It is possible that in a seasonally anoxic lake, periods of overturn and oxygenation are 

associated with the development of a ferric layer in the surface sediments preventing P0 43  

removal. Subsurface vivianite formation might occur during or immediately after these 

periods. When periods of stagnation and anoxia follow the Fe(III) layer may dissolve allowing 

ferrous iron and PO to leave the sediments and occupy the hypolimnion. This trend may 

be readily reversible on a yearly timescale and might be recorded in the sediments under 

suitable conditions. 

Despite conditions of high pore water supersatu ration, vivianite may fail to precipitate or may 

grow very slowly due to low surface reaction rates (Emerson and Widmer, 1978). Nucleation 

and crystal growth can be enhanced in organic-poor coarse grained sediments due to their 

higher porosities (Pedersen, 1979). The tephra sand and silt layers might offer such a 

substrate in the Holocene sediments, but vivianite is not found to be associated with these 

zones. Zelibor et. al. (1988) showed that gelatinous media such as lacustrine gyttjas which 

form under high organic matter deposition are beneficial to vivianite formation. In such media 

well-formed aggregates of vivianite can rapidly develop and this situation may apply in the 

case of the organic-rich Holocene sediments. 

Interpretation 

The occurrence of vivianite appears to be associated with periods of high organic 

productivity. This contrasts with siderite occurrences which seem to provide the dominant 

form of Fe enrichment during glacial and interstadial periods. Vivianite is found mainly during 

the early Holocene, although minor elevations probably exist during the 3400 and 4900cm 

interglacial/interstadial periods. Sedimentation at these times was probably influenced by 

high nutrient supply from the catchment (Chap. 4a) and resulted in high depositional rates of 

organic matter. Vivianite may have been favoured by the increased pQ43-  fluxes arising from 

the decomposing sedimented matter. The formation of vivianite may also have been 

favoured over siderite by the balance between organic matter decay (generating CO 2  and 

lowering pH) and Fe(III) reduction (generating alkalinity). Much higher levels of organic 

matter generated acidity in comparison to modest Fe(III) contents available for reduction 
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would be unfavourable to carbonate precipitation (Morse et. al., 1992). However sufficient Fe 

was available to allow P0 43  to be retained, probably under at least seasonally oxygenated 

conditions. This would have enabled vivianite to precipitate just below the sediment surface. 

Thus catchment nutrient (P043)  supply ultimately drove vivianite formation and the less 

organic rich (lower nutrient input) periods of 3400 and 4900cm depth (Chap. 4a) are reflected 

by lower amounts of vivianite. Dissolved sulphur must have been in low availability during 

these times or did not diffuse far into the sediment profile if available in the lake waters. The 

trace quantities of vivianite found in other parts of the core, such as between 1500 and 

850cm, may reflect local microenvironments favourable to vivianite formation which did not 

prove to be extensive. Individual or diffuse occurrences of vivianite may typify these areas 

(B. Zolitschka, unpubl. work). 

The early Holocene Mn-enrichments associated with vivianite suggest the presence of oxic 

conditions at least seasonally in the lake waters. It was found in Lake Erie that Mn-enriched 

vivianite occurred below ferromanganese oxide surface sediments (Nriagu and Dell, 1974). 

The degree of Mn-enrichment is not as high as in the siderites between 1680 and 1880cm 

depth and this may reflect the more limited solid solution thought to be possible between Fe 

and Mn phosphates (Postma, 1981). Alternatively, the ratio of Mn to Fe supplied from the 

catchment may have been lower or the oxygenation conditions in the lake less supportive 

towards Mn-enrichment. The presence of possibly annual vivianite layers showing Mn-

enrichment may be explained in a similar way to the case for siderite (last section). During 

winter overturn an Fe oxyhydroxide layer may have developed in the surface layer allowing 

vivianite to form immediately below while conditions of oxygenation prevailed. A narrow zone 

of sulphide reduction may have existed between the oxic layer and the vivianite precipitating 

zone below. Alternatively, Fe sulphides may have formed during the subsequent period of 

stagnation and anoxia. Varve subunits with vivianite-rich horizons have been documented 

from autumn and winter couplets in a number of lakes (Negendank et. al., 1990; Simola et. 

al., 1981). 

The presence of vivianite in the early post-glacial sediments of the Lake District, but not in 

later sediments was observed by Mackereth and interpreted as reflecting slow diagenetic 

growth rates. This was later disputed by Rosenqvist (1970), and many other studies have 

suggested that vivianite may develop under much shorter time intervals. The presence of 

vivianite in the early Holocene of Monticchio in what would appear to be seasonal growth 

horizons suggests that the absence of this mineral from later sediments is not due to the 

slow rate of formation, but rather the lack of favourable conditions. The most obvious 
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explanations for this seem to be: 1) reduced Fe supply from the catchment, or 2) a change to 

permanently anoxic conditions preventing sufficient interstitial pQ43-  build up. The fact that Fe 

(as vivianite) has been fixed to the sediments in high quantity during the early Holocene is 

clear from the elevated Fe profile. It is therefore necessary to balance the Fe buried to the 

sediments with new Fe from the catchment for continued vivianite formation (Manning et. al., 

1991). However, the change to a catchment dominated by leaching processes may have 

prohibited the continued supply of significant Fe. It may be the case that Fe is carried into the 

lake more effectively by soil erosion than by solution, or perhaps the exposed soil layers 

have become progressively depleted in Fe. Therefore although high phosphorus fluxes still 

exist from the sediment to the lake there is no agent to retain this migration. On the other 

hand, if Fe availability had remained the same, but oxygenation of the hypolimnion had 

decreased, a ferric layer would no longer form on the sediment surface and the bottom 

waters would hold high concentrations of Fe2+  and P043-  rather than the sediments. 

Prolonged anoxicity has implications for other aspects of the sedimentation and evidence for 

this might be looked for in the presence or absence of benthic microfossils. 

SULPHIDE MINERALS AND SULPHUR ASSOCIATIONS 

In non-evaporitic lakes sedimentary sulphur tends to be present in the form of Fe sulphide 

phases and organic-bound sulphur (Rudd et. al., 1986). There has recently been 

considerable debate as to the relative importance of organic sulphur and iron sulphides as 

sinks for this element (Carignan and Tessier, 1988 and refs. therein). Conditions of sulphur 

fixation appear to be significantly different for individual lakes and appear to be particularly 

dependent upon the availability of reactive iron and the redox regime(s) in the sediments and 

lake waters. Further geochemical and isotopic studies seem to be necessary before this 

question is fully resolved. 

Observations 

A strong black colour was observed in the sediments between 500 and 850cm depth when 

the core sections were freshly extruded (c.f. Plate 3.). This colouration has often been 

attributed to the presence of iron monosulphides (Davison et. al., 1985; Jones and Bowser, 

1978; Emerson, 1976). It is thought that only a minor amount of sulphide is required to impart 

a black colour to fine grained sediments (Kelly et. al., 1991). In contrast, other sections of the 

core such as the glacial periods and the Holocene above 500cm are greyish or brown in 

colour suggesting that little Fe monosulphide is present. Since.being in storage the core 

sections have lost their black colour and are stained with reddish brown iron oxides. No 

samples from the Monticchio record were found to produce a pronounced H 2  odour when 



warmed with acid, although a vague hint of H 2S was provided by some of the sediment 

samples from the early Holocene. This suggests that Fe monosuiphides are only present in 

minor quantities in the record. 

Measurement of sulphur 

Sulphur was measured by Carlo Erba®  CNS analyser and by XRF on pressed powder discs. 

Both results profiles show similar trends (Fig 4.49.) although there is considerable doubt as 

to the accuracy of the Carlo Erba values (see Appendix 1). Therefore the XRF data will be 

used in the following discussion. 

The S profile is shown beside the organic carbon profile in Fig 4.50. There appears to be a 

good correlation between the two elements (r=0.748). This is considerably higher than the 

correlation between S and excess Fe (r=0.428). Indeed, if the area between 1000 and 

2000cm is excluded the correlation between S and organic carbon increases to r=0.828. 

These results suggest the possibility of an organic sulphur association in the sediments and 

this is supported by evidence discussed below. However, between 1000 and 2000cm there 

is an elevation in the S profile which does not appear to be matched by organic carbon. 

Sulphur content here reaches a peak of 7wt% around 1800cm depth. It is thought that in this 

zone the presence of iron sulphides (pyrite) is significant. This is further illustrated by the 

similarities between total sulphur/organic carbon (S/CORG)  ratio and excess Fe (Fig. 4.52). 

The correlation between S and excess Fe in this zone is much higher (r=0.838). 

In Fig 4.51. the ratios of S/CORG  and  CORG/S  are shown. The high values (>0.5) on the S/C OnG 

profile immediately highlight the zone thought to be influenced pyrite S. In particular, values 

are elevated between 1150 and 1900cm, but the positive spike at 2250cm is more 

attributable to the low organic carbon content of this sample. Above 11 50c and below 

2300cm S/COnG  values are typically below 0.5. Tephra layers which are very low in organic 

carbon content, but have modest sulphur contents provide occasional positive spikes to the 

record. If the inverse COnG/S  ratio is examined it can be seen that none of the samples 

measured has a value greater than 11. The Holocene and late-glacial period are associated 

with COnG/S  ratios between 4 and 10, showing considerable fluctuations. In contrast, samples 

from early parts of the record (below 2250cm depth) are predominantly associated with 

COnG/S ratios between 2 and 6. Thus, if these areas are assumed to be dominated by organic 

sulphur, it would seem that the earlier organic matter zone contains higher S contents than 

that of the Holocene. Nevertheless, both areas have unusually S-rich compositions. 
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Fig. 4.50. Organic carbon and sulphur 
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In Fig. 4.52. a comparison is made between the S/CORG  ratio and excess Fe profiles for the 

upper 2250cm. High S/CORG  values can be seen to correspond broadly with high excess Fe 

between 1900 and 11 50cm.  This correspondence is complicated by the fact that some of the 

excess Fe is present in siderite here. However, a maximum in iron sulphide (pyrite) content 

might be predicted between 1800 and 1740cm depth and this is in agreement with the thin 

section observations described below. Outside this zone, high excess Fe values are mostly 

thought to reflect vivianite, although some Fe sulphides are likely to be present at 825cm and 

30cm depth. The high S/C0RG  ratios above 11 50c are clearly associated with tephra layers 

and the elevated values between 1900 and 2250cm depth are connected with the organic-

poor turbidites and basal sand layer (see Chap. 4b). These samples contain little organic 

carbon, but are relatively unweathered and may hold moderate amounts of S in the silicate 

mineral fraction. 

XRD examination 

Bulk sediment XRD analysis detected pyrite in a number of regions of the profile, most 

particularly between and 1680 and 181 0cm depth where strong diffraction spectra were 

observed. Pyrite was also detected at 4923cm, 2239cm, 1480cm, 825cm, 650cm and in the 

upper 50cm of the profile. No other forms of crystalline sulphide mineral were discovered, 

although amorphous Fe monosuiphides would not be recognised by this technique. 

Thin section examination 

One of the most striking features from the microscopic record is the presence of numerous 

pyrite-rich layers in the sediments between 1600 and 1850cm depth (B.Zolitschka, unpubl. 

work). The pyrite appears as rounded grains (perhaps framboidal aggregates) and forms 

dense horizons up to SOpm thick which may or may not be of annual nature. In other parts of 

the core smaller (generally sub-micron sized) black grains are visible, but it is not possible to 

determine whether these are sulphide minerals or oxides of iron. 

Discussion 

Sulphur may be supplied to lakes through the weathering or erosion of catchment rocks and 

by atmospheric deposition of S0 42  (Drever, 1982). In many settings the catchment 

lithologies contain little sulphur and the influence of acid rain S042  deposition has been 

studied in detail (Rudd et. al., 1986; Nriagu and Soon, 1985). In Lac du Bouchet where the 

basaltic and granitic catchment rocks contain 'little sulphur or chlorine' the atmospheric 

supply was judged to be dominant (Truze, 1990). However, certain crater lakes have been 

associated with extremely high levels of sulphur attributed to local sources. For example, 

Lein et. al. (1970) describe sediments containing over SOwt% S in lakes where hydrothermal 



supply is particularly important. In Lago Grande di Monticchio it was shown in Chap. 2 that 

the catchment rocks contain substantial S (in the form of sodalite-hauyne minerals and 

perhaps groundmass material). It is believed here that catchment supply represents the 

dominant source and that this has often led to high S concentrations in the lake. 

Sulphur might be transported from the catchment in solution (as dissolved S042)  or in 

connection with particulate material. The latter might include S bound in terrestrial organic 

matter (either through primary assimilation or by secondary complexation) or possibly 

sulphide minerals (such as pyrite) which may have formed under reducing conditions in the 

soil. The S supplied in these ways could either be 'locked away' in the sediment on 

deposition or be available for further reactions in the lake waters. 

Sulphate reduction appears to represent the most important process for removing sulphur 

from aquatic systems and fixing it to the sediments (Rudd et. al., 1986). This may occur 

through the formation of iron sulphides and/or the formation of organic sulphur compounds. 

These two pathways will be discussed in turn. 

The formation of pyrite and Fe monosulphides has been described by many authors (Berner 

and Raiswell, 1984 and refs. therein). The process occurs under anoxic conditions either 

within reducing sediments (Morse et. al., 1992) or in anoxic bottom waters with subsequent 

depositional settling (Lyons and Berner, 1992). As a generalisation, freshwater sediments 

tend to contain lower amounts of sulphide minerals than marine or hypersaline settings due 

to the lower availability of dissolved sulphate (Postma, 1982; Jones and Bowser, 1978). This 

represents just one factor limiting the amount of Fe sulphides that can form. The other main 

factors are the availability of Fe and the presence of reactive organic matter. Freshwater 

sediments have been classified as environments where the availability of dissolved sulphate 

is the key limiting factor (Berner and Raiswell, 1984). These authors proposed the use of 

CORG/S ratios, albeit with some assumptions, as a palaeosalinity index. This notion was later 

re-examined by Davison et. al. (1985) who recommended the usage of C 0 /pyrite S ratios 

as a more sensitive indicator. 

Fe monosuiphides (otherwise known as acid volatile sulphide or AVS) represent a 

thermodynamically unstable phase relative to pyrite (Emerson, 1976). Many studies have 

found that AVS may be abundant in the near-surface sediment zone, but is rare or absent at 

depth (Rudd et. al., 1986; Davison et. al., 1985). It is possible that either diagenetic 

conversion to pyrite takes place during continued burial or the AVS becomes recycled 

through sulphide oxidation processes (Toran and Harris, 1989). In the English Lake District, 
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AVS was found to form under summer anoxic stratification when high levels of Fe2+  and H2S 

existed in the bottom waters (Davison et. al., 1985). Pyrite formation might take place 

through replacement of this early AVS phase or may occur directly, usually under moderately 

reducing conditions (Zaback and Pratt, 1992). In the Lake District, formation of primary pyrite 

has been associated with the lower supply of Fe2+  and/or H2S during periods of overturn or 

02 influx (Davison et. al., 1985). Dickman (1985) and O'Sullivan (1983) have described 

mechanisms by which varve sequences containing pyrite-rich subunits may develop in small 

overdeep lakes in response to seasonal redox changes. The relative importance of direct 

and secondary pyrite formation still appears to be a subject under review. 

Organic sulphur is generally considered to be of two forms: 1) sulphate esters, and 2) carbon 

bonded sulphur (Rudd et. al., 1986). Sulphur may become incorporated in plants during their 

lifetime through biosynthesis (Francois, 1987), although this will not normally lead to high S 

contents. Typically living organisms contain <2wt% S on a dry weight basis (Jorgensen, 

1977). Diagenetic enrichment is thought to be responsible for the higher S contents that 

occur in some types of organic matter. Stable isotopic and organic geochemical evidence 

indicate that the processes of enrichment operate by the reaction of reduced forms of 

sulphur (H2  S, polysulphides) with suitable organic matter (Mossmann et. al., 1991; Kohnen 

et. al., 1989; Nissenbaum and Kaplan, 1972). Humic and fulvic acids may represent the main 

organic phases involved, although other classes of organic compound are also capable of 

incorporating sulphur (Nriagu and Soon, 1985 and refs. therein). Diagenetic enrichment 

could take place both in the catchment soil environment and in the lake waters or sediments 

under conditions of oxygen depletion. However, most studies indicate that the main focus for 

S-enrichment is within the lake sediment zone. For example, Nriagu and Soon (1985) found 

that the CORG/S  ratio of lake seston was 23, but the CORG/S  ratio of the surface sediments was 

as low as 3.3 for McFarlane Lake, Ontario. (In this setting total sulphur was believed to 

reflect mainly organic S.) 

Many (but not all) of the recent studies have emphasised the importance of organic sulphur 

as a long term sink in sedimentary environments. The presence of over 50% of total sulphur 

in organic forms has been noted (Ferdelman et. al., 1991; Nriagu and Soon, 1985). A more 

critical view is taken by Carignan and Tessier (1988) who suggest that reactive Fe is an 

abundant element in many anoxic environments and should preferentially utilise reduced 

sulphur. The formation of iron sulphides and organic sulphur may reflect two competing 

processes. It appears, hovever, that Fe sulphides and organic sulphur may develop at similar 

times in some lake environments (Rudd et. al., 1986). The latter authors found that higher 

percentages of Fe sulphide (particularly AVS) became remobilised during a subsequent 
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overturn event and organic sulphur was found to dominate the long term sediment record 

because of its higher preservation potential. 

Interpretation 

The unusually high sulphur contents of the Monticchio sediments are attributed to the S-rich 

volcanic catchment zone. This has led to high levels of S in the organic matter throughout the 

record and in some periods high contents of pyrite too. 

The develpment of sulphur-rich organic matter is thought to have taken place mainly by 

diagenetic enrichment with primary biosynthetic incorporation of secondary importance. The 

CORG/S ratios for the Holocene period are thought to be dominated by contributions from the 

organic matter as evidence suggests low Fe sulphide contents. In this area the CORG/S  ratios 

of between 4 and 6 may represent the sulphur saturation capacity for the organic matter. It is 

thought that organic matter may incorporate S to a minimum C/S of around 5 (Bein et. al., 

1990). The Holocene values are therefore close to this limit. The even lower CORG/S  ratios 

between 1150 and 1900cm depth are clearly influenced by varying amounts of inorganic 

sulphur. It is also thought that CORG/S  ratios of between 2 and 6 for the sediments below 

2250cm depth are influenced by some contribution from inorganic sulphur, perhaps minor 

amounts of pyrite. 

The formation of diagenetically enriched organic matter is thought to have taken place in the 

hypolimnion environment and/or in the surface microlayers. Formation of H 2S from sulphate 

reduction in deeper burial zones conflicts with the presence of early formed vivianite and 

siderite in several areas, the latter associated with Mn-enrichments. It is thought that an 

alternation of oxic and reducing conditions provides the most likely explanation for this trend. 

Sulphate reduction is predicted as being confined to a very shallow zone above the region of 

siderite or vivianite formation at these times. The process of organic sulphur enrichment was 

probably most active close to the sediment-water interface during periods of anoxic 

stratification. 

The existence of this process has implications for the process of diagenetic nitrogen 

enrichment which may also have operated. It is possible that the lake waters contain 

reasonably high levels of dissolved NO 3-  , also a result of the unusual catchment 

geochemistry (Chap. 2). This may have enabled ammonium to be produced by microbial 

activity and incorporated into the organic matter. This process is not considered to be as 

dramatic as that for 5, but it may explain some of the low C/N trends described in Chap. 4a. 
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If this is correct, the C/N ratios reflect a combination of primary source characteristics and 

diagenetic enrichment, precluding a straightforward source dominated interpretation. 

The presence of substantial excess Fe contents during various parts of the record suggests 

that reactive Fe is probably available in the sulphate reducing environment. It might be 

expected that Fe sulphides would form in preference to organic S under such conditions. 

Perhaps significant quantities of labile Fe sulphides formed rapidly during the H 2  production 

periods. This may have depleted the levels of Fe available encouraging organic sulphur to 

develop as well. It is proposed that if this did occur then almost all of the Fe sulphides tended 

to be recycled leaving organic S preserved. The black sediments between 500 and 850cm 

would represent a time when some of the AVS was preserved. Pyrite may be present almost 

continuously in the sediment record, but it must often occur in trace amounts. This might 

represent low rates of formation within the lake or limited transport of the mineral from 

catchment soils. On the other hand, the apparent pyrite dominated zone around 1800cm 

reflects a time when Fe sulphide formation was greater in terms of production and/or 

preservation. It is not certain whether this was promoted by increased loadings of Fe and S 

to the lake system or by variations in redox regime. 

The high sulphur contents between 1900 and 11 50c depth succeed the period of turbidite 

deposition thought to reflect a major disturbance to the catchment (Chap. 4b). This temporal 

relationship suggests that a large scale erosion of the catchment may have exposed new S-

rich pyroclastic material for weathering. At first, conditions may have been too oxygenated or 

the presence of organic matter too low for sulphate reduction. As the turbidite deposition 

period declined, it is possible that increased weathering processes released increasing levels 

of sulphur (and probably Fe) to the lake. At the same time, renewed organic productivity may 

have created a diagenetic environment conducive to high rates of sulphate reduction during 

certain seasons. This prompted the formation of layers rich in pyrite at this time. The decline 

in sulphur between 1740 and 1150cm is thought to reflect the removal of much of this Sand 

Fe loading to the sediment system. Also, decreased accumulation of organic matter (Chap. 

4a) may have caused a decline in the rate of sulphate reduction and discouraged pyrite 

formation. A return to much higher productivity during the post-glacial period is reflected by 

organic S dominated sulphur removal. Excess Fe accumulation at this time seems to have 

been controlled by vivianite formation rather than significant sulphide formation. 

In order to fit with the mechanism for Mn-rich siderite formation described earlier in this 

chapter it is necessary for pyrite formation (and S-enrichment of organic matter) to take place 

either in the hypolimnion and sediment-water interlace layer during periods of oxygen 
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deficiency OR in a narrow zone between an Fe oxyhydroxide surface layer and underlying 

horizon of siderite formation during aerobic periods. The latter requires a strong diffusional 

limit on the depth of sulphate penetration and resulting sulphate reduction. It is unclear which 

of these mechanisms is responsible from the generally low resolution information available at 

present. 

There seems to be considerable scope for further work on the behaviour of sulphur in this 

geochemically unusual setting. This might include the use of 35S as a tracer of recent 

processes and examination of 834S ratios in the sediment system. It will also be necessary to 

fully investigate the sub-millimetre relationships between iron sulphides and other Fe phases, 

such as siderite, to better constrain their formation mechanisms. 

GYPSUM 

XRD examination of sediments from 1750 to 1800cm depth and from the uppermost 50cm of 

the core revealed the presence of gypsum. Calcite and pyrite also occur in both these zones 

and an assemblage of gypsum with calcite might be taken to imply the early development of 

an evaporitic system (Eugster and Hardie, 1978). However, no evidence for gypsum appears 

in the thin sections which were prepared from freshly extruded core material and it is known 

that gypsum can form through sulphide oxidation and the resulting consumption of calcite in 

sediment cores during storage (P. Francus, pers. comm.). This is believed to have occurred 

here and the gypsum will not be treated as an original mineral. 

TRACE METAL ENRICHMENTS 

According to Wetzel (1975) the understanding of trace metals in lake systems is at an early 

stage. Recent studies have improved this understanding of trace metal behaviour (Hilton et. 

al., 1988). However, most of the new data is centred on historic time scales and the 

identification of anthropogenic pollution (Hamilton-Taylor and Willis, 1990; Tessier et. al., 

1989). Studies of longer sediment records have described trace metal enrichments, but often 

do not relate the processes involved in these enrichments to palaeoenvi ro n mental change in 

a clear way (Hone, 1972-1981). Many trace metals are known to be essential as 

micronutrients (in small quantities), however the large enrichments often observed in organic 

sediments are normally attributed to diagenetic processes rather than the straightforward 

incorporation of primary biosynthetic contributions alone (Wedepohl et. al., 1978). There are 

many possible enrichment mechanisms including the precipitation of discrete mineral phases 

(e.g. sulphides or carbonates), surface adsorption (e.g. onto Fe-Mn oxides, organic matter or 
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clays) and complexing into organic compounds (Krauskopf, 1967). It can often be difficult 

distinguishing which of these pathways predominates and this may hinder the recovery of 

detailed palaeoenvironmental information, particularly from older records. In addition to the 

mechanisms of enrichment or fixation it is also ncessary to consider the supply of these 

elements. This will be related to their availability in the catchment zone and the effectiveness 

of weathering or erosional processes. 

As stated in the multivariate data summary (Chap. 3) a number of trace metals in the 

Monticchio profile are thought to be influenced by diagenetic mobilisation at certain times. 

Enrichments appear to be associated with the presence of high organic matter or excess Fe 

contents. For example, the Mo profile (Fig. 4.53.) shows a pronounced enrichment of 

<90ppm between 850cm and 800cm depth. Above this horizon the Mo concentration 

declines exponentially towards the loppm level. Below 850cm, concentrations are usually 

low (<1 5ppm), although secondary maxima appear to be present at 1750, 3400 and 4900cm 

depth. These maxima correspond with both organic carbon maxima (Fig. 4.1.) and certain of 

the excess Fe maxima (see blue shading in Fig. 4.53.). However, the spikes in excess Fe 

reflecting siderite rich areas are not matched by Mo peaks and it would at least seem likely 

that the Mo is not associated with an iron carbonate phase. 

Mo is known to accumulate in living plants owing to its physiological benefits, particularly as 

a biocatalyser for nitrogen fixation (Bortels, 1930). Nevertheless, the form of enrichment 

observed suggests that diagenetic processes have played a role in enhancing Mo content. 

Two of the major mechanisms of uptake are coprecipitation with Fe sulphides and fixation by 

adsorption or complexation in organic rich sediments (Pedersen et. al., 1988). Both 

mechanisms would seem possible since the areas of enrichment are ones of elevated 

organic carbon content and are believed to contain Fe sulphides from XRD studies (i.e. 

samples at 825, 1680-1800 and 4923cm depth showed pyrite). King (1991) also found a 

peak in Mo associated with the onset of high productivity and seasonal anoxia in a lake 

undergoing brackish to freshwater evolution in Canada. It was claimed that these conditions 

led to the precipitation of MoS 2  in a black AVS bearing horizon. A change to more reducing 

conditions in the zones of Mo-enrichment at Monticchio might also be envoked. It is possible 

that during the initial period of high organic productivity (at 825cm depth) there was a relative 

abundance of Mo which had been released from the catchment. The reducing nature of 

these sediments and/or the presence of sulphate reduction would have promoted Mo to be 

enriched at this time. 
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The exponential decline in Mo above 800cm depth may be related to a gradual decline in Mo 

supply from the catchment, either through reduced erosion or general depletion from 

leaching. This follows a similar explanation to that for early Holocene vivianite maximum 

discussed in a previous section. It is interesting to note that the zones of maximum vivianite 

and molybdenum concentration occur in different time planes illustrating how elements may 

respond differently to the conditions of diagenesis. Mo has been considered to be a relatively 

mobile component (Wetzel, 1975) and may have been removed from the catchment more 

rapidly than Fe (which is thought to control the vivianite enrichment trend). It is also possible 

that Mo was in demand by nitrogen fixing organisms, such as blue-green algae, during the 

onset of high organic productivity. At this time nitrogen may have rivalled phosphorus as the 

limiting macronutrient. Perhaps, after the Mo supply declined, it was possible for later 

photosynthetic organisms to switch to alternative micronutrients for support of their N 2  fixing 

requirements. 

The trends shown by Mo are followed to some extent by Zn, V, and U although these 

elements are more conservative and tend to be dominated by changes in terrigenous clastic 

sedimentation. Zn and V are often associated with Fe, and U with organic matter during 

diagenetic enrichment (Wedepohl et. al., 1978), but it is difficult to determine the exact 

associations. When ratios to Al are examined these elements all show primary enrichments 

during the early Holocene and secondary maxima around 1750, 3400 and 4900cm depth. 

The upper 1 000c of the Monticchio record is examined in more detail for a number of trace 

elements in Fig. 4.54. and Fig. 4.55. This zone includes the sharp diagenetic enrichments of 

the late-glacial to early Holocene period and possible anthropogenic enrichments during the 

late Holocene. The elements are presented as ratios to Al, and the Fe/Al ratio is also shown 

for comparison. It can be seen that Mo, V, U, Zn, and to a lesser extent Pb, Cu and Cr show 

enrichments parallel to that for Fe between 850 and 500cm depth. The enrichments for Pb, 

Cu and Cr are very much exaggerated by using ratios to Al, and if normal concentration plots 

are shown (Fig. 4.56.), the trends of these elements appear virtually indistinguishable from 

those of other clastic indicators. This is also indicated by the PCA examination (Fig. 3.3.). It 

can be seen here that Pb, Cu and Cr are situated within or close to the group of conservative 

mineral clastic elements. 

Possibilities exist that the elements shown may be incorporated into the vivianite lattice, be 

present as trace sulphide minerals, occur adsorbed onto other forms of Fe (such as 

unreduced Fe(Ill) phases), or be complexed with organic matter. It is difficult to recognise the 

precise association mechanism(s) without extractive chemical analysis. Although similar in 
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overall trends, certain differences in mobility seem to exist. For example, Mo/Al has a 

relatively high enrichment during the earliest maximum around 825cm. This is illustrated 

more clearly by the Mo concentration profile in Fig. 4.53. In constrast, the Zn/Al ratio shows 

little increase at 825cm, but appears significantly elevated at 550cm depth and persists until 

350cm. This contrasts with the other elements which fall sharply towards background levels 

after 450cm. 

The upper 300cm contains notable elevations in Pb/Al (220-115cm), Cr/Al (310-270cm) and 

Cu/Al (95-50cm). Ratios of elements such as Pb/Al have been used in palaeoenvi ron mental 

studies to identify anthropogenic effects (Brenner et. al, 1991; Bruland et. al., 1974). It is 

thought that the enhanced ratios, particularly that of Pb, may reflect cultural activity at Lago 

Grande di Monticchio since they are not readily correlated with tephra layers or diagenetic 

phases. It has been speculated that the tephra layer around 11 5c depth may represent the 

eruption of Mt Vesuvius in A.D. 79 (A. Newton, pers. comm.). If this is taken to be correct, 

and the Holocene boundary assumed to lie at 750cm depth, the period of Pb enrichment 

interpolates at around 3000 to 2000 years B.P. (i.e. 1000 to 0 years B.C.). This may be 

coincident with the rise in Roman civilisation. However no other evidence is yet available to 

demonstrate activities such as metal smelting in the Monticchio catchment and it is not clear 

whether a local source of ore material would be available for these purposes. The Cr peak 

would equate at around 2000 years B.C. using this timescale and perhaps be related to 

human activities in the Bronze Age. The presence of local Bronze Age sites was desribed in 

Chap. 2 and it is possible that Cr was present in metals that were again introduced to the 

catchment. The Cr peak follows a tephra zone at 325cm depth and might alternatively be 

connected with Cr supplied this way, but it is thought that the tephra layers are in general 

relatively Cr-poor. The Cu peak equates to an early Medieval or Dark Ages period using the 

above estimations. This may have reflected another phase of human occupation. Hopefully 

varve counting work and observations of charcoal in the thin section record will improve the 

correlation of these proposed events. 

The last few 100 years are absent from the top of this record, but it is predicted that these 

sediments would show a renewed increase in the content of certain trace metals, particularly 

pollutants. The 0cm level of this core may therefore terminate in the late Middle Ages or 

Elizabethan period (i.e. within the pre-Industrial Revolution era). 
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SUMMARY OF MAJOR DIAGENETIC REGIONS 

The following divisions are made as a broad diagenetic characterisation of the sediment 

record: 

5100 to 2250cm 

mainly siderite in minor quantities, but locally high 

traces of calcite and pyrite 

minor vivianite, particularly during biogenic dominated periods (3400 and 4900cm) 

2250 to 1900cm 

mainly calcite in moderate to high quantities 

traces of pyrite 

1900 to 1650cm 

high contents of calcite, siderite and pyrite 

minor vivianite 

1650 to 850cm 

minor vivianite, pyrite and locally calcite 

minor siderite below 11 00c 

850 to 500cm 

high contents of vivianite 

some pyrite and AVS also present 

500 to 0cm 

minor pyrite and traces of vivianite 

minor calcite in upper 50cm 

Brief comments: 

The zone between 5100 and 2250cm is thought to represent a relatively stable environment 

prior to the catchment disturbance event at 2250cm. Siderite appears to be the normal 

diagenetic phase, particularly during glacial or intermediate periods It may be elevated due to 

short term events such as periodic high rainfall and erosion. The postulated climatic optima 

of 3400 and 4900cm depth (Chap. 4a) are more associated with vivianite and perhaps pyrite. 



The zone between 2250 and 1900cm is related to the early period following catchment 

disturbance when biogenic sedimentation was low, but conditions favourable to calcite 

precipitation. Calcite may have precipitated periodically in response to temperature changes 

and later renewed surface productivity. Aerobic decomposition and sulphate reduction 

processes may have effectively mineralised the majority of organic matter sedimented at this 

time. 

This was followed by a period of greater stability between 1900 and 1650cm when enhanced 

organic matter accumulation took place. This was connected with the greater supply of Fe, 

Mn and nutrients from renewed catchment weathering and perhaps a more stable water 

body. Precipitation of diagenetic Fe phases was driven by organic decomposition in a 

seasonally fluctuating (oxic/anoxic) hyplolimnion. Ostracods were able to develop in the 

temporarily nutrient and calcium rich waters. Eventually much of the leached Fe, Mn, S and 

calcium carbonate became removed to the sediments and organic productivity declined 

(probably due to climatic detrioration). 

The zone between 1650 and 850cm has similarities with the lowest zone, in that organic 

productivity was relatively low and the supply of reactive elements subdued. Local periods of 

diagenetic enhancement may reflect temporary climatic changes or possibly effects from 

tephra loadings to the catchment. 

The abrupt rise in organic accumulation above 850cm (probably in response to increased 

weathering and nutrient release) led to a high rate of organic matter turnover in the sediment 

zone. Large fluxes of phosphate favoured vivianite formation, and sulphate reduction led to 

the preservation of some Fe sulphides along with large amounts of organic matter S-

enrichment. Again conditions appear to have alternated between oxic and anoxic in the lake. 

The formation of diagenetic Fe phases appears to have come to an end around 500cm, 

probably due to reduced supply from the catchment. 

The upper 500cm is associated with high levels of CO 2  fixation as organic matter and 

probably high rates of nutrient turnover. Diatom sedimentation was also high and this may 

not have suffered from the reduced catchment supply (of dissolved silica) as much as the 

Fe-mineral forming processes. Calcite may have been favoured by a lowering in lake level 

near the top of the record and perhaps by secondary alkalinity caused by tephra events. 
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CHAPTER 5 

FURTHER INVESTIGATION OF THE ORGANIC MATTER 
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Introduction 

At the time of writing, a study is being made on the lipid fractions from 10 samples in the 

Monticchio profile. This work involves determination of the abundance and distribution of 

identifiable aliphatic hydrocarbons, aromatic hydrocarbons, alcohol and sterol compounds, 

using the techniques of gas chromatography (GC) and gas chromatography coupled with 

mass spectrometry (GC-MS). In addition, compound-specific isotope ratio mass spectrometry 

(GC-IRMS) is in progress on selected classes of lipids. An attempt may also be made to carry 

out a.m.s. radiocarbon dating on certain of the lipid fractions. To compliment this geochemical 

information (as recommended by Durand, 1980), the palynofacies character of the organic 

matter has been investigated under the microscope. 

PALYNOFACIES INVESTIGATIONS 

The palynofacies technique involves the identification and quantification of all forms of 

particulate organic matter present in a sediment using transmitted light microscopy. This 

organic matter includes palynomorphs, such as pollen grains and insect remains which may 

be studied in their own right, together with fragments of structureless/amorphous matter and 

other plant material (phytoclasts). The palynofacies approach was pioneered by palynologists 

and has mainly been concerned with ancient sedimentary sequences, especially in the context 

of hydrocarbon source rocks (Combaz, 1980), and with Cenozoic marine sequences (Bertrand 

et. al., 1991). However, in afew studies it has been applied to palaeoenvi ron mental 

reconstructions of late-Quaternary lake sediment records (Bertrand et. al., 1992; Talbot and 

Livingstone, 1986). 

A set of 10 unground sediment samples from key areas of the profile were prepared for 

palynofacies investigation (see Appendix 1). The sample locations are shown for reference on 

the organic carbon profile in Fig. 5.1. Basic point counting work (of between 140 and 500 

counts per sample) on the material suggests various trends which have been expressed as a 

percentage chart (Table 5.1.). From these results some simple qualitative observations and 

interpretations may be made concerning the source and state of preservation of the organic 

matter. These can be compared with the bulk geochemical parameters previously determined 

on each sample (Table 5.2.). Absolute concentrations of the palynofacies components have 

not been determined and so trends in Table 5.1. reflect relative changes in the material 

present. 

The two most abundant components of the organic matter assemblage are amorphous 

organic matter and 'plant material'. The former is generally linked to algal sources and the 
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Sam AOM plant gel am'd polSp fung zooCl chir clad ped bt 

185 46 15.5 2.4 6.9 9.6 4.1 12.4 0.3 2.1 

450 37 20.0 8.0 10.3 13.7 4.0 6.6 ---- 0.3 

790 41 14.0 0.9 7.2 9.5 3.6 18.0 0.9 0.9 3.2 0.5 

1230 38 11.5 2.8 19.1 8.1 2.2 15.2 0.4 0.6 0.4 1.8 

1765 58 7.0 1.5 5.6 13.0 1.9 9.6 0.9 0.9 ---- 1.5 

2000 80 8.5 0.7 4.9 2.8 1.4 1.4 ---- ---- 

2495 64 7.0 2.4 12.2 6.9 3.7 2.0 ---- 0.4 ---- 1.2 

2754 60 12.0 0.4 8.0 10.5 3.8 4.6 0.4 ---- 0.4 0.4 

3402 49 19.5 0.9 4.0 11.1 3.4 7.1 2.0 1.7 0.6 0.6 

3987 74 6.5 3.3 3.8 5.8 2.5 3.3 0.4 0.4 

Table 5.1. Percentages of palynofacies components (based on 140-500 counts/sample) 

AOM=amorphous organic matter 

gel=gel-like degraded matter 

polSp=(pol len+spores) 

zooCl=zooclasts (e.g. insect leg fragments) 

clad=Cladocera 

bt=Botryococcus 

plant=(wood+cuticle+plant tissue) 

amd=amorphous degraded matter 

fung=fungal material (hyphae) 

chir=chironomid remains 

ped=Pediastrum 

Sam TOC C/N HI BSil 

185 16.75 9.4 408 54 

450 31.66 10.9 380 28 

790 13.58 4.5 267 41 

1230 3.19 10.3 316 29 

1765 2.62 9.7 120 17 

2000 0.68 4.8 68 

2495 1.42 6.9 135 9 

2754 3.22 8.9 183 44 

3402 3.13 13.6 192 67 

3987 0.76 4.5 95 

TOC=wt% organic carbon 

C/N=C/N weight ratio 

Hl=hydrogen index 

BSil=wt% biogenic silica 

Table 5.2. Bulk geochemistry of palynofacies samples. 
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latter to terrestrial or aquatic macrophyte sources (Bertrand et. al., 1992). The plant 

component percentage is highest during the Holocene samples (>15%) and also at 3402cm 

which may be an earlier interglacial period. Comparison with Table 5.2. shows that these 

samples generally possess the highest C/N ratios (>10). These observations are in 

accordance with the discussion of C/N ratios and HI values in Chap. 4a. Interglacial-type 

periods tend to be associated with a relatively high contribution of terrestrial and/or aquatic 

macrophyte organic matter displaying a good state of preservation. Well preserved 

amorphous (algal) matter may also be abundant at these times, but not as high in relative 

terms. In contrast, the glacial periods are associated with lower proportions of terrestrial 

organic matter (and much lower absolute concentrations) and by a moderate amount of 

amorphous organic matter which may be in a more degraded state. Hence the increased HI 

values that would be predicted by the greater contribution from planktonic kerogen types are 

offset by the overall degraded and poorer quality of the organic matter. This can be 

appreciated visually by comparing the fresh-looking organic matter in samples 185 and 450 

from the Holocene with other samples from lower in the profile (Plates 7-9.). The Holocene 

samples have HI values around 400 while other samples are generally below 200. Qualitative 

examination shows the possible Eemian interglacial (covered by the sample at 3402cm) to 

have a poorer quality state of preservation than the Holocene, but much better preservation 

than its neighbouring samples. The 1230cm sample contains reasonably high values of C/N 

and HI together with a relatively high plant component and may reflect an interstadial period 

during the last glacial cycle. 

The lowest percentage of amorphous organic matter is 37%, for the early Holocene sample at 

450cm. The generally >40% contribution from AOM suggests that planktonic contributions 

have been a significant component throughout most of the profile. The lower percentages 

which often occur in samples with high organic carbon suggest that the main influence has 

been a dilution effect caused by increased contributions of plant material. The highest 

amorphous content occurs in a sample from the turbidite zone at 2000cm which contains 80% 

AOM. This sample should be treated with caution because only half as many 'grains' as 

normal were available for counting (142 counts were made) and some of the pale 'amorphous 

material' counted may have wrongly included mineral grains (Plate 8.). Assuming that the 

value of 80% is accurate, it is suggested that low rates of algal productivity took place at this 

time and that the organic matter was strongly degraded. Perhaps some fraction of this 

material survived related to the rapid burial phases of turbidite deposition. 

The presence of gel-like organic matter has been interpreted as reflecting the transformation 

of plant tissue by hydrolysis under reducing conditions (Durand, 1980). This component 
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appears to be most common in the 450cm sample and may indicate appreciable breakdown 

under anaerobic conditions, perhaps near the sediment surface, during the early Holocene. It 

is possible that high deposition rates of reactive terrestrial and algal organic matter rapidly 

consumed oxygen (perhaps during the summer season) and led to significant further 

degradation by this process. The gelified particles cannot be definitely related to a source, 

although many of the grain shapes are externally reminiscent of plant fragments such as 

cuticle pieces. Some gel-like matter is evident in the other samples from the profile, but it is 

difficult to relate this to environmental change with the small percentage values recorded. 

Likewise the presence of amorphous degraded matter (i.e. fragments which appear to have 

been structured at one stage, but now obliterated) is observed, but this is difficult to interpret 

clearly. It is possible that much of this amorphous material was originally from plant sources. 

This might perhaps account for the relatively high C/N ratio of the 1230cm sample which 

contains 19% amorphous degraded matter. The possible relationship with a primary plant 

source is illustrated by the sample from 2754cm in Plate 8. which shows a fragment of plant 

tissue at a stage of partial degradation. 

The percentage of pollen and spores is generally highest in the interglacial or interstadial 

periods. This might be expected as vegetation cover is believed to be richer in the catchment 

region. Values of 10% or more are found at 450, 1765, 2754 and 3402cm depth. The 450 and 

3402cm samples are particularly noted for their high levels of bisaccate grains attributed to 

conifer pollen. It is possible that the pollen and spore figures reflect both the vegetation within 

the lake catchment and also a contribution from the average regional pollen introduced by 

atmospheric processes. Detailed palynological information on this record will be provided in 

the forthcoming publication of work by Watts, Allen and Huntley. 

Fungal material, mainly resistant hyphal filaments, is slightly higher during interglacial 

samples, but does not exhibit a strong trend. Zooclast fragments probably reflect the level of 

insect life in the lake waters and thus may provide indications on overall trophic status. There 

is a general trend for higher percentages within the younger part of the record (i.e. the 

uppermost 2000cm) and a maximum lower in the profile at 3402cm. At these times nutrients 

may have been elevated and more favourable to supporting a rich community of insect life. 

More specific indications are provided by the record from chironomid (midge larvae) and 

Cladocera (water flea) remains. Again there is an overall high level in the upper part of the 

core and in general during interglacial or interstadial periods. The sample at 3402cm is notable 

for its high percentages of chironomid and cladocera components. The abundance of these 

has previously been correlated with interglacial transitions in sediment records from the Eifel 
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maar lakes (Hofmann, 1993). However, without species identification this must be interpreted 

cautiously because certain taxa are more abundant under conditions of low trophic status. 

Although most algal material is relatively vulnerable to early degradation and removal, a few 

algal groups have cell walls made from resistant algaenone compounds, as is the case with 

the colonial green algae Pediastrum and Botryococcus. The percentages of these algae have 

been noted in the palynofacies examination and appear to be highest during periods of 

moderate productivity (i.e. outside the highly organic Holocene period and the particularly 

organic-poor intervals at 2000 and 3987cm). The presence of these genera have been used to 

reconstruct trophic status and salinity by some authors (e.g. Hutchinson, 1970). In general 

Botryococcus is associated with oligotrophic conditions and most species of Pediastrum with a 

eutrophic state. However, without detailed species identification it is difficult to interpret too far. 

On the other hand, it is interesting to note that both algae appear related to periods of the 

Monticchio record where intermediate levels of productivity are thought to have taken place. 

In summary, the palynofacies examination has highlighted some preliminary trends which 

provide a useful comparison with the bulk geoähemical information. Enhanced levels of plant 

material, pollen and aquatic insect life appear to be associated with interglacial/interstadial 

periods and glacial periods appear to be dominated by amorphous organic matter of a 

degraded nature. The presence of brown gel-like particles and black fusinitic fragments 

(charcoal?) probably indicate the contribution of allochthonous degraded material. However, it 

is difficult to reconstruct the relative importance of lacustrine processes from the modest 

number of samples observed. More information would require a larger number of samples and 

recounting ot the minor palynomorph components. 

The Holocene samples and the sample at 3402cm appear to contain 'fresher or better 

preserved organic matter. The amorphous component in these cases is pale yellow or 

brownish and consists of clean flakes or lumps. In other parts of the record the amorphous 

matter is more finely divided/granular and dirtier in appearance. Also in these samples other 

components such as pollen grains and plant tissue more frequently show marked degradative 

alteration. These differences may be seen in Plates 7-9. The sample from 1765cm shows 

frequent opaque particles which may be pyritic masses. It would be necessary to produced a 

polished thin section or apply oblique reflected illumination to confirm this as the black grains 

do not have classic framboidal aggregate shapes, although they appear irregular in 

comparison with normal dark woody material. It is thought likely that they do mainly represent 

pyrite since the geochemical information shown in Chap. 4c indicates that this is a major zone 

of pyrite occurrence. 
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ORGANIC GEOCHEMICAL MOLECULAR INVESTIGATIONS 

Organic compound classes such as the n-alkanes have long been measured by organic 

geochemists in order to obtain information concerning the source(s) and diagenetic state of 

sedimentary organic matter (Eglinton and Murphy, 1969). A number of studies have been 

made on relatively young Holocene lake sediments, but records extending beyond this are 

uncommon (Walker, 1990; Cranwell, 1988; Ishiwatari and Ogura, 1984). Where studies have 

been made logistics usually permit only a limited number of sample points to be investigated in 

detail due to the lengthy preparation procedures required. In this section some results from the 

aliphatic fraction (in particular the n-alkanes) are presented and interpretation made in 

connection with the bulk geochemical data and possible environmental changes. In future 

additional information will become available on the aromatic hydrocarbon, alcohol and sterol 

fractions in the same samples. This will assist in an overall interpretation. 

Sam TOC EOM eomC CPI C/N HI BSiI 

183 16.75 41.63 248.6 24.3 9.4 408 54 

457 31.66 62.34 197.0 10.2 10.9 380 28 

785 2.47 3.74 151.6 8.3 2.4 142 9 

877 6.64 6.84 102.9 12.3 7.8 280 34 

951 6.79 12.55 184.8 7.4 8.3 237 26 

1236 3.19 5.60 175.6 8.4 10.3 316 29 

1794 2.86 5.27 184.3 8.2 9.2 172 22 

2445 1.15 0.44 38.6 9.1 9.6 111 

3317 2.93 9.17 312.9 5.4 16.3 310 66 

3412 4.02 4.74 117.9 6.7 14.9 260 63 

Table 5.3. Bulk geochemistry of samples studied for lipids including CPI's 

for alkane fractions. 

TOC=wt% organic carbon 

EOM=extractable organic matter (mg total lipid/g dry sediment) 

eomC=EOM/TOC (mg total lipid/g organic carbon) 

CPI=Carbon Preference Index (after Bray and Evans, 1961) 

C/N=C/N weight ratio 

Hl=hydrogen index 

BSiI=wt% biogenic silica 
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Ten samples were selected for organic geochemical analysis and their locations are shown in 

relation to the organic carbon profile in Fig. 5.2. These points are generally comparable to the 

sample points chosen for palynofacies examination, although a slightly different strategy was 

adopted. The procedures for extraction and determination of the alkane components are 

described in Appendix 1. Some basic parameters are shown for each sample in Table 5.3. 

and the n-alkane distributions are represented in Fig. 5.3 (as pg/g dry sediment). 

The EOM content of the samples is broadly proportional to the organic carbon content (Table 

5.3.) with r=0.983. The concentration of total extractable matter per gramme of organic carbon 

is shown by eomC. It can be seen that most samples have between 100 and 200mg of 

extractable organic matter (i.e. lipids) per gramme of organic carbon. However variations exist 

which must reflect the quality of organic matter in terms of its source components and/or 

degree of preservation (e.g. Wünsche et. al., 1987). The samples from the Holocene (183 and 

457cm) and from 3317cm depth show the highest specific concentrations. This might reflect 

either higher contributions from (lipid-rich) planktoinic material or enhanced preservation of the 

lipid fraction. It is believed that lipids are more resistant to diagenetic removal than proteins 

and carbohydrates, but degrade more readily than kerogen (Ishiwatari and Ogura, 1984). It is 

not though that original proteins and carbohydrates are present in significant quantities after 

early burial and so preservation relative to kerogen may be the main diagenetic influence. 

There does not appear to be a simple downwards decrease in lipid content in the organic 

matter and this is another indicator of non steady state accumulation processes. It will be 

shown in over the next section that the main presence of alkanes is thought to be derived from 

higher plant material, such as leaf waxes. If this was extrapolated to the total lipid content, it 

may be the case that the high values for the Holocene and the sample at 3317cm reflect high 

contributions from terrestrial input together with some increased supply from planktonic matter 

in response to climatic amelioration and increased productivity. In turn, higher deposition rates 

of organic matter would have favoured preservation of the lipid components from microbial 

attack. 

The carbon preference index (CPI) is a measure of the odd over even numbered dominance 

for n-alkane distributions. The dominance of odd numbered homologues such as C 271  C29  and 

C31  can be seen clearly in Fig. 5.3. CPI's were calculated according to Bray and Evans (1961) 

and range between 5 and 25. These high values are typical for immature organic matter 

containing a dominant contribution from primary higher plant and/or algal sources. Values up 

to 28 have been reported for contemporary vegetation in the Ellesmere region (Rieley et. al., 

1991). In contrast, organic matter with a major contribution from bacterial alteration product n-

alkanes would show a CPI value closer to 1 under most circumstances (Barnes and Barnes, 
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1978). There appears to be some trend in CPI values in the profile, with the upper Holocene 

sample at 183cm showing the highest index and thus possibly the least bacterial reworking. 

Samples from lower in the profile typically show values of 10 or less, but the trend within these 

is not clear. The main point to note is the large difference between the sample at 183cm and 

those below. This may reflect more effective microbial reworking of the older samples either 

over an increased time period or more likely a change in the processes occurring in the 

uppermost zone of early diagenesis. 

The n-alkane distributions (Fig. 5.3.) show the samples to be dominated by higher n-alkanes 

(>C20) which probably reflect terrestrial plant contributions of wax, cutin and suberin. This 

conflicts somewhat with the pattern anticipated from C/N ratios and biogenic silica content 

values which would predict a bimodal distribution including an algal related maximum around 

C 17  (Barnes and Barnes, 1978). It is most likely that the low abundance of shorter chain n-

alkanes is related to their greater susceptibility to diagenetic removal. This has been shown in 

a number of studies where both sediments and living source matter (i.e. plants and aquatic 

organisms) have been analysed (Goossens et. al., 1989; Cranwell et. al., 1987). It seems that 

in many oxic and anoxic sedimentary environments the higher alkanes are less accessible to 

bacterial decomposers and so the sediments may under-represent the planktonic contribution. 

This prohibits the reliable use of ratios such as C 17/C27  which have been applied by some 

authors to assess the relative contribution of autochthonous versus allochthonous organic 

matter (Meyers et. al., 1984). It also contradicts earlier models suggesting that productive 

lakes should exhibit bimodal alkane distributions (Barnes and Barnes, 1978). It is possible that 

other classes of lipid planned for future analysis may reveal the contribution of algae more 

reliably. For example, algal-derived sterol compounds have been found to show a higher 

preservation potential than their alkane counterparts (Cranwell, 1988). 

Amongst the higher alkanes, changes in patterns of dominance are found to occur. If it is 

assumed that the relative amounts of higher alkanes in the C 23  to C33  range have not been 

altered by varying preservation potential (which may be reasonable), these patterns might 

reflect changes in higher plant source contributors. Firstly, if compounds >C 25  are examined it 

can be seen that the late Holocene sample at 183cm is dominated by C 27  and this is also a 

major component in the three samples below. However, C 29  is the dominant alkane in deeper 

samples (i.e. 951, 1236, 3317 and 341 2cm). A third compound, C 31 , forms a maximum in the 

samples at 1794 and 2445cm depth. These are the two samples with the lowest overall 

concentrations of n-alkane where no individual homologue exceeds 2pg/g in the sediment. A 

certain amount of data exists in the literature characterising living plants in terms of their n-

alkane distributions. It is known, for example, that beech leaves are dominated by the C 27  

homologue (Rieley et. al., 1991). It might be possible that the sample at 183cm reflects a 



major contribution from the seasonal shedding of beech leaves, since beech is an abundant 

tree species in the present day catchment. Also, the C 31  dominated samples at 1794 and 

2445cm might reflect contributions from a more acidic or conifer influenced terrestrial 

vegetation as suggested by Cranwell (1990). However, the literature on individual plant and 

animal matter is still inadequate and regardless shows serious problems from overlap 

prohibiting simple relationships like this to be made securely. It is the case, for example, that 

many other trees bear a fingerprint with significant C 27  presence. Further growth of the 

biochemical data base will be required to improve the potential for biomarker source 

correlation. Rieley et. al. (1991) advocate the use of a multivariate fitting technique using a 

wide range of measured compounds for matching purposes. 

It is also evident from the distribution diagrams that certain samples contain a pronounced 

maximum centred on the C 21  or C23  alkanes in addition to the maximum around 027  or C29 • 

This is most marked in the 457cm sample, although most of the other samples contain a 

relatively significant level of C 21  and C23  compounds. It is not certain whether this represents a 

primary source contribution or not. Bacterial alteration products are known to lie in this range, 

but they typically possess significant even numbered distributions (Cranwell, 1990) and the 

samples observed here have a strong odd dominance. Most alkane distributions classically 

display a C 17  peak for algae (if present in any quantity) and a peak beyond C25  for higher 

plants (e.g. Farr et. al., 1990). However, other aquatic plants (perhaps macrophytes) may 

display a peak in the 021  to  023  range (Barnes and Barnes, 1978). Investigations have shown 

that sphagnum moss contains a dominant signal from C 21  and C23  alkanes (Corrigan et. at., 

1973) and this may be the case for other mosses or lower plants growing at Monticchio. Not 

enough information is yet known to attribute these peaks to a particular source unequivocably. 

In summary, the samples analysed show a maximum in the C 25-C33  range which is attributable 

to higher plant contributions and second maximum around C 21 -C23  which as yet cannot be 

attributed with certainty. The latter is found in all the samples except perhaps that at 2445cm. 

None of the samples show a significant 017  peak attributable to algal sources. 

In addition to straightforward n-alkanes, a number of other compounds were present in the 

aliphatic fraction analysed. Of particular importance appears to be a pair of compounds initially 

named as 'X and Y which are very abundant in samples 785, 877 and 951. These 

compounds are illustrated in Fig. 5.4. which shows a GC trace for the 877cm sample. 

Subsequent analysis by GC-MS determined that X and 'Y are monoenes (i.e. single 

unsaturated relatives) of 2,6,1 0-trimethyl-7-(3-methylbutyl)-dodecane -a highly branched 

aliphatic compound. This has been previously documented by Rowland et. al. (1985) as 
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occurring in certain green algae. It may therefore be the case that this is an indicator of a 

significant source contribution from algae. Branched chain compounds are perhaps more 

likely to survive bacterial degradation than their straight chain equivalents. At the moment its 

presence cannot be related to any specific contributor, although it is interesting to note its 

location dominantly in the 785 to 951 cm area of this limited study. 
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CHAPTER 6 

CONCLUDING REMARKS AND RELATIONSHIPS TO PALAEOENVIRONMENT 



In the previous chapters the sediment geochemistry has been related to the possible 

influences of climate, volcanism, human effects and morphometric change in the lake 

system. This chapter will offer some concluding remarks on each of these influences, 

beginning with climate. At the end of the chapter the results anticipated from ongoing studies 

are summarised and some recommendations are made for further work. 

CLIMATE 

1) Long time scale changes 

The main feature of the record over a long time scale is the presence of two broad cycles 

between <700 and 3400cm depth and between 3400 and 4900cm depth. These are shaped 

by changes between biogenic dominated and minerogenic dominated sediment zones. The 

changes have been described in Chaps. 4a and 4b and are restated by the profiles for Mg 

and organic carbon shown in Fig. 6.1. This overall pattern is considered to correspond 

strongly with the pollen record, such that biogenic dominated sediment zones are generally 

matched by maxima in arboreal or thermophilous pollen (c.f. Fig. 3.10.). These consistent 

trends which provide the major cycles in the Monticchio record are probably related to long 

term climatic variations. The trends are also summarised by multivariate evaluation of the 

chemical data (see Chap. 3) in terms of PCi sample scores plotted against depth. This 

parameter will now be used as a proxy indicator of climate to illustrate possible correlations 

for the core with other well known climatic records. Such correlations permit ages to be 

inferred for the sediment record. 

In Fig. 6.2. and Fig. 6.3. possible correlations are shown between the PCi parameter and a 

detailed oxygen isotope record from the SW Indian Ocean (Martinson et. al., 1987). In Fig. 

6.2. the older age model approach is taken while in Fig. 6.3. an attempt is made at a young 

age model fit. The correlation is made visually and is primarily based on fitting the major 

periods of climatic amelioraton (suggested by high PCi values) to periods of low 8180  value 

on the marine profile. This approach represents a somewhat subjective, but preliminary 

dating effort for the Monticchio profile using the geochemical record. 

The older interpretation (Fig. 6.2.) is presently favoured, as has been discussed in preceding 

chapters. In this interpretation, the major peaks are thought to match well in the suggested 

stage 5 area. The earlier optimal period around 4900cm depth has been correlated with 

stage 7c, although it might alternatively represent stage 7a. The stage 7 period has been 

linked by some authors to the Holstein interglacial (Dansgaard et. al., 1993), but others have 

suggested that the Holstein is related to an earlier period such as isotope stage 9 or ii 
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(Sarnthein et. al., 1986 and refs. therein). Regardless of the age for the Holstein, the base of 

the Monticchio record is here related to stage 7 and an approximate age of 225,000 years 

B.P. The alternative 'young correlation suggested in Fig. 6.3. is considered to be weaker, 

although the marine isotopic curve illustrated represents just one possible record to correlate 

against. Visual attempts to correlate the young interpretation (i.e. a 60-70,000 year age for 

the base of the core) with other profiles such as the marine record of Heinrich events (Bond 

et. al., 1992) and the Greenland ice core record (Johnsen et. al., 1992) did not provide any 

obvious fit. 

In adopting a 225,000 year age model for Monticchio a fundamental difficulty is recognised: 

the need to account for the reduced magnitude of the Eemian and stage 7 interglacial signals 

in comparison with the Holocene. If anything, the Eemian may have been some 2-4°C 

warmer and also moister than the Holocene (Guiot et. al., 1989; Dansgaard and Duplessey, 

1981). The evidence from both sediment geochemistry reflecting biogenic productivity in the 

lake system and from pollen reflecting more directly climate as experienced by the 

surrounding terrestrial environment shows peaks of lesser magnitude at 3400 and at 

4900cm. It might be reasonable to explain the former as a reflection of the idiosyncrasies 

often found in the local environment of a lake system. However, the pollen record is more 

difficult to explain since most pollen records are believed to reflect climate reliably and 

differences between the Holocene and Eemian are not found like in this situation. Typically, 

other documented long pollen records from the region show peaks in arboreal and 

thermophilous taxa during the Eemian that are as high or higher than during the Holocene 

(van der Hammen et. al., 1971; Pons et. al., 1992; Follieri et. al., 1993; 1988; Francus et. al., 

1993). 

The fundamental control on the biogenic content of the sediments (or productivity) was 

suggested to be nutrient levels (Chap. 4a). This may be regulated through leaching of macro-

nutrients such as P and other components from the catchment soil-weathering system. The 

model for interglacial to glacial changes in maar productivity which involves a changing 

vegetation cover (Truze, 1990) has already been mentioned. It is thought that climate 

(particularly available moisture) has a dominant and underlying influence on this whole 

process by regulating the vegetation development and the amount of water movement 

through the catchment weathering zone. Increased vegetation cover and soil moisture may 

cause a build up of soil organic matter and acidity encouraging leaching (Duchaufour, 1982). 

Such processes might be loosely connected to the theories developed in Scandinavia by 

Iversen (1958) and Andersen (1966). 
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The Scandinavian approach included division of the glacial-interglacial cycle into four phases 

(Fig. 6.4.). Solifluction and periglacial processes were thought to remove soil and provide a 

fresh base-rich substrate for colonisation once climate improved during an interglacial. As 

vegetation developed on this soil it progressively changed the composition through removal 

of components, chemical differentiation and the input of organic compounds. This led to a 

decline in soil fertility during the later stages of the glacial. This was a time when climate was 

also deteriorating, but the change in soil was considered to be independent of that in climate. 

Interglacial 	 Intergiociol 

Glacial 	 Glacial 

Fig. 6.4. Iversen based theory of glacial-interglacial cycles 

(from van der Hammen et. al., 1971) 

In a Mediterranean lake catchment it may not be likely that solifluction processes operated in 

a comparable way to the high latitude periglacial zones (Birks, 1986). To remove old 

(acidified?) soil layers and provide a fresh inorganic starting material would normally require 

an adequate level of catchment erosion during the glacial. If the rate of erosion was low, little 

new base-rich mineral matter would become available. On the other hand, external supply 

from tephra falls or local disturbances (seismic or eruptive) could alter the balance in place of 

solifluction. This has been suggested as a possible mechanism in Chaps. 4a and 4b. 

An alternative control on sedimentation (i.e. depositional fades) by changing lake levels has 

been reconstructed in some studies (Street and Grove, 1976; 1979; Lamb et. al., 1989; 

Harrison et. al., 1991). Such reconstructions are often compiled from multiple sites to 

produce a regional palaeohydrological and henceforth climatic record. Lakes in Africa have 

been particularly amenable to this approach due to their often strong changes in water 

balance and regional drops have been interpreted in terms of and climatic periods. No 
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concrete evidence appears to be available for strong lake level fluctuations in the 1990 

Monticchio core. It may be the case that the groundwater reservoir has always remained 

relatively stable with no great rises or falls in level. It is to be expected that the shelf location 

cored would not represent the most sensitive site to record such changes in lake level, and 

that perhaps nearshore sediment cores would reveal more evidence. The presence of moss 

layers which may not be in situ, and of high level terraces provide only speculative evidence 

at present (Chap. 2). It has been suggested that the 5180  changes in calcite precipitated 

between 1900 and 1600cm in the sediment record may indicate a period of decreasing water 

balance, but more sampling is required in this area (Chap. 4c). A nearshore core together 

with more detailed geomorphological fieldwork might provide better indications of lake level 

changes. Thus the main arguments for changing sediment geochemistry in this discussion 

have concentrated on the changing catchment soil and vegetational regime. 

In attempting to explain the difference between the Holocene and earlier interglacial signals 

five possible factors are suggested: 

climate was different during the Eemian (less available moisture?) 

the pollen record is not representative of the vegetation in a consistent way 

soils have changed due to the long term evolution of vegetational systems and through the 

effects of tephra blanketing and perhaps earthquake/local eruptive disturbance 

the lake has gone through a succession towards increased trophic status and biogenic 

dominated sedimentation associated with gradual infilling 

local hydrology has changed (towards a moister soil regime) during the disturbance 

associated with turbidite deposition 

Of these factors the first is a regional or global effect while the rest are more local in nature. It 

is not thought that the first possiblity is likely (as discussed above) since evidence from other 

sites does not support the existence of a poorer climate during the last interglacial. Pollen 

might show unrepresentative behaviour if for example selective preservation of certain 

genera took place during the Eemian or an irregular pattern of pollen distribution or reworking 

occurred. None of these processes appear immediately obvious from the palynological work 

(B. Huntley, pers. comm.). 

The third and fourth factors have already been proposed in Chaps. 4a and 4b as an 

explanation for the sediment geochemistry. The soil change hypothesis is also offered as an 

explanation for the pollen record. This may be debatable since arboreal vegetation might be 

capable of reaching adequate nutrient and moisture reservoirs through deep root systems 

zt 



and might not suffer from surf icial degraded soil layers. It may be the case that chemical 

differentiation establishes a recyclable nutrient-rich layer below the surface which could 

sustain arboreal vegetation indefinitely and therefore only climate (in particular available 

moisture) would be an influential factor. Nevertheless, the Scandinavian theories discussed 

previously show that soils may become depleted through long periods of vegetation cover, 

leading to a deterioration in the quality of vegetation. This would need to be a local effect, 

however, since other sites in the region do not show indications of a similar process (B. 

Huntley, pers. comm.). 

Hydrological change might lead to a moister regime in the catchment soil zone and thus 

encourage vegetation growth and nutrient leaching. This sort of change has been envoked in 

the case of Lago di Monterosi where construction of a Roman road caused a major 

redirection of spring systems into the lake (Moss, 1988; Hutchinson, 1970). It is possible that 

a major tectonic disturbance such as an earthquake or phreatomagmatic eruption event 

could cause such a shift. However, this is speculative and difficult to prove. It remains as a 

possibility which is not easily tested. 

If it is assumed that an old age model is correct for the Monticchio record, this interpretation 

might be extended to estimate the sediment accumulation rates for some broad time 

windows (Table 6.1.). 

depth interval mean sed. rate time window (years) 

0-750cm 0.75mm/year (0-10,000) 

750-1800cm 0.27mm/year (10,000-48,000) 

3)1800-2700cm 0.33mm/year (48,000-75,000) 

2700-3350cm 0.1 3mm/year (75,000-123,000) 

3350-4350cm 0.20mm/year (123,000-173,000) 

4350-4900cm 0.12mm/year (173,000-217,000) 

4900-5100cm 0.25mm/year (217,000-225,000) 

Table 6.1. Estimated mean linear sedimentation rates for selected time windows 

based on the assumption of an old age model. 

These figures show a high accumulation rate for the Holocene sediment record which has 

already been described as an uncompacted zone associated with high contributions of 

autochthonous biogenic matter (Chaps. 3 and 4a). In contrast, accumulation rates some 3-6 

times lower are found for the other parts of the core. Although biogenic productivity may be 
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responsible for the difference between the Holocene and earlier sediments, it may be the 

case that clastic erosion is more important in regulating the differences within the earlier 

parts of the core. Clastic deposition is obviously the dominant factor in the case of tephra and 

turbidite depositional events. It will require objective sedimentation rate data to evaluate the 

long term influences of autochthonous productivity versus clastic erosion in controlling these 

rates for the lower zones. It should be noted that the mean rate of 0.33mm/year for the zone 

between 1800 and 2700cm includes the turbidite sequence where occasional rates of 

1 mm/year or even 1 0mm/year may have existed (Zolitschka and Negendank, in prep.). 

Therefore the normal fine grained sediments in this zone are probably associated with 

accumulation rates closer to 0.2mm/year or less. 

Relationship with generally accepted climate models for S. Europe 

The general climatic model for low to middle elevation S. Europe during the glacial period is 

one of a cool and semi-arid steppe environment dominated by sage brush, grasses and 

weeds. This was reconstructed by early pollen studies (e.g. Bonatti, 1 966) and for a time 

superceded a previous theory of pluvial conditions during the glacial period. It was suggested 

that a cooler N Atlantic provided less evaporative moisture pick up for the wind belts and 

consequently less rainfall. 

Later evidence from N Mediterranean sites supported the idea of a semi-arid and treeless 

vegetation type (Bertolani-Marchetti, 1985), but it was also recognised that higher rainfall 

totals and higher lake levels may have existed during the glacial period (e.g. Giraudi, 1989). 

These observations are reconciled if the majority of rainfall occurs during the winter months 

i.e. outside the crucial growing season for plants (Prentice et. al., 1992). In this situation, 

enhanced total rainfall providing high surface runoff can exist in conjunction with an and flora 

because of the cool dry summer season. The higher winter rainfall totals might be governed 

by increased storm frequency under a southward shifted and intensified jet stream. 

This pattern may be typical for the Mediterranean region and for high latitude deserts in other 

parts of the world (Spaulding, 1991). It contrasts with a belt further to the south (e.g. most of 

N Africa) which experienced pluvial conditions during optimal interglacial periods. This latter 

zone may reflect the poleward displacement of the summer monsoon system during the 

interglacial and is marked by a strong summer seasonality of precipitation. 

In summary, Lago Grande di Monticchio is predicted to have experienced markedly drier and 

perhaps cooler summers during the glacial period and winters which were wetter and 

substantially cooler. Rossignol-Strick et. al. (1992) suggest that at low to middle elevations 
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both temperature and rainfall have an influence on vegetation dynamics in the Italian region, 

but that rainfall is the more critical. The result of a steppe vegetation cover would influence 

the lake sedimentation through perhaps a reduction in leaching activity and consequently 

nutrient inputs to the lake. The glacial environment may also have experienced sporadic 

periods of increased erosion associated with higher winter rainfall. If the overall water 

balance during the glacial was not much lower than at present, this would explain the 

absence of severe lake level drops or desiccation features in the sediment record. It might be 

the case that the lake level was actually higher than during the Holocene. 

2)1000 to 10.000 year patterns of change 

A number of shorter duration variations are seen in profiles such as PCi or organic carbon 

content (and also in the pollen record). These may be related to minor climatic oscillations 

such as stadial-interstadial events: One particular example is indicated by the marked 

increase in organic carbon content between 1340 and 1390cm depth (see Fig. 4.2.). This 

may represent a period of up to 2000 years extent, although independent dating and more 

detailed pollen coverage would be useful before further interpretation is made. There are 

also significant peaks at 1800cm and 2300cm separated by the turbidite zone, and a peak at 

2550cm depth. These either represent limited regional oscillations (possibly influenced by the 

sensitivity of the particular site) or changes which can be correlated over long distances. 

Attempts were made to correlate the record between 750 and 1800cm (which might 

represent the time interval from 10,000 to 48,000 years B. P.) with data from the polar ice 

core records (Johnsen et. al., 1992) and from Heinrich event records in the NW Atlantic 

Ocean (Bond et. al., 1992). Neither of these comparisons could be seen to match and it was 

concluded that no firm or visually obvious correlations exist between these shorter term 

oscillations and trends in the geochemical record. An illustration of this is provided by Fig. 

6.5. which shows how the more recent Younger Dryas and Bolling-Allerød periods might 

correlate between PCi and the Greenland ice record, but shows the absence of a clear 

match in the 14,000 to 40,000 years range. Neither was any reasonable match possible with 

these records on a younger age model basis. (This incorporated the periods of climatic 

amelioration at 2700, 3050 and 3400cm as reflecting interstadials of <50,000 years age.) 

It would be easy to conclude from this that the finer oscillations seen in different global 

records are local phenomena rather than widespread features. This has been argued for to 

some extent by Behre (1989), Kukla (1989) and Broecker et. al. (1988). On the other hand 

the dating controls are presently not adequate both for the ice and marine records and more 

so for the Monticchio record to attempt such links and to imply their genetic relationships. 
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Younger Dryas period 

The presence of the Younger Dryas in the Italian region has recently been highlighted by 

palynological evidence (Lowe, 1992; Rossignol-Strick and Planchais, 1989). This follows 

earlier work which suggested that the Mediterranean may not have responded sensitively to 

such an event (e.g. Bertolani-Marchetti, 1985). 

It appears that the Younger Dryas may well be present in the geochemical record at 750 to 

800cm depth and therefore that Lago Grande di Monticchio has been sensitive towards what 

is known to be an abrupt climatic change (Berger and Labeyrie, 1987). As a reminder, some 

trends in the geochemistry across this zone are compiled in Fig. 6.6. The main features of 

this interval appear to be a sharp drop in terrestrial organic matter as evidenced by organic 

carbon and C/N ratio decreases and a corresponding rise in the relative amount of lithogenic 

components such as Al. This may reflect a simple dilution-enhancement or perhaps a real 

rise in the rate of mineral erosion. The geochemical changes may be driven by a climate 

induced decrease in catchment vegetation cover and its secondary effects. More information 

will become available when varve counting and detailed pollen examination across this zone 

have been completed. It will probably be difficult to acquire accurate radiocarbon ages for 

this period due to the problems discussed in Chap. 3. 

The Holocene period 

The main features of the Holocene are the decrease in organic carbon content in the upper 

500cm as compared to the early Holocene/post-glacial zone at 500 to 850cm depth and the 

concentration of diagenetic phases (in particular vivianite) in the early Holocene zone. This 

contrasts with the upper 400 or 500cm where diagenetic Fe phases appear to be virtually 

absent. These changes are thought to reflect either: 

impoverishment of the catchment soils by one way leaching removal of nutrients, Fe, Mn 

and bases 

human interference such as clearance upsetting the sedimentation regime 

The second alternative does not bear substantial supporting evidence so far. No abrupt rises 

in pollen indicators such as vine or walnut which might indicate Neolithic/Bronze Age 

cultivation activity and clearance have been found in the record around 500cm and there is 

no other archaeological evidence available for increased cultural activity. The first 

explanation is considered possible and has already been envoked in the interpretation of 

vivianite occurrence (Chap. 4c). This process might be similar to Iversen's protocratic to 

mesocratic succession (Fig. 6.4.) already discussed for the longer time scale changes. In this 
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case, over a period of 10,000 years in which the Monticchio catchment has probably seen a 

forest vegetation cover (Watts, 1985), the soil system may have been depleted sufficiently to 

provide lower input levels of key nutrients to the lake. Other components such as Fe may 

also have been depleted. Extrapolation of this process would predict an even lower 

productive state and supply of metals over the next 10,000 years (all other things being 

equal). However this will probably have been offset by anthropogenic pollution during the last 

few decades distorting the limnological system. There exists a good possibility of 

reconstructing the Holocene period at an annual resolution following varve analysis that is in 

progress (Zolitshcka and Negendank, in prep.). 

VOLCANISM (tephra) 

The impact of tephra contributions has been described in Chaps. 4a and 4b. The relationship 

between a histogram of tephra thickness per unit depth and PC2 (see Chap. 3) reflecting 

samples rich in tephra material is clear from Fig. 6.7. This study highlights the influence of 

the tephra on the sediment geochemistry of the Monticchio profile. The influence of tephra 

input and its secondary effects from blanketing the catchment are becoming increasingly 

recognised in parts of the world such as Iceland where volcanic activity has been prevalent 

during the last few thousand years (Einarsson et. al., 1993). The situation here may 

represent similar processes over a longer time scale during which the independent factor of 

climatic change has played a key role in shaping the sediments too. The apparent peaks in 

activity during the upper 1700cm (40,000 years?) of the record and locally in deeper regions 

of the core (such as at 3850cm) are thought to have regional implications for volcanism, but 

this is another study in itself. There is scope for much further work to be done by the groups 

at Edinburgh and Rome in characterising this detailed record of eruptions. 

With the 10cm sampling resolution adopted it is not possible to accurately evaluate the 

extent of secondary inwash from the tephra fall events. This has been modelled by some 

workers as an exponentially decreasing content of ash above the visible tephra layer 

(Thompson et. al., 1986). It would appear that the samples immediately adjacent to most 

tephra layers return to background sedimentation levels rapidly. This is illustrated in Fig. 6.8. 

by the short duration of Al peaks and their return to 'base level' within 10 or 20cm. In such 

cases it is possible to estimate the length of catchment recovery time (from the mean 

sedimentation rates in Table 6.1.) as being typically no more than 500 years and perhaps 

much less than this. Of course, this is only a crude measure of the decline in secondary 

catchment material washed into the lake. It has been suggested in this thesis that the effects 

from weathering or leaching of catchment bound tephra over a longer time scale could be 
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very significant. It is probably impossible to reconstruct how important the tephra factor was 

towards causing productivity changes. Only a quantitative suggestion that this has been a 

significant process is stated. 

MORPHOMETRIC EVOLUTION 

Lago Grande di Monticchio is essentially a shallow (<1 2m deep) lake at present, although a 

localised deep pit occurs. In perspective this probably represents a late stage in the lake's 

evolutionary history. It is known for maar lakes of comparable surface area to have water 

depths of 60 metres or more during a less filled stage (Negendank and Zolitschka, 1993b). 

Perhaps the water depth at Monticchio was considerably greater than 60 metres initially. A 

natural succession may have taken place towards more biogenic dominated sediments 

which are often associated with the late stages in a lake's ontogeny (Moss, 1988). Perhaps a 

gradual infilling has occurred in the absence of strong lake level changes. The rate of this 

shallowing process may be difficult to evaluate independently, although it would be 

interesting to see how results from diatom analysis fitted in with the sediment history. If the 

present sediment accumulation rate continues it would appear likely that the lake will emerge 

into a mire within 20,000 years or so. Plans to dredge the uppermost sediments (Stefanon, 

1993) would of course delay this progression. Further fieldwork is necessary to understand 

the significance of the deep cauldron feature in relation to the overall setting. 

HUMAN EFFECTS 

The upper 300cm have been suggested as reflecting approximately the last 4000 years with 

the top few centuries of sediment record known to be missing (Chap. 4c). In this part of the 

profile trace metal enrichments are observed and tentatively related to Bronze Age or Roman 

cultural activity (Chap. 4c). Further work is required if the significance of these effects is to be 

interpreted in more detail. With the exception of artificial drainage and lowering, it might be 

reasonable to conclude that human activity does not appear to have caused any dramatic 

changes in the Monticchio catchment as has been the case for certain other lakes. For 

example, in Lago di Monterosi the construction of a road during Roman times caused 

profound increases in sedimentation rate and productivity for a period of approximately 500 

years afterwards (Moss, 1988; Hutchinson, 1970). Recent tourism may be responsible for a 

current intensification of disturbance through sewage inputs. The current lack of available 

documentation for events prior to the Middle Ages and of a detailed sediment chronology 

makes it difficult to reconstruct what are possibly subtle changes caused by man. 



RESULTS ANTICIPATED 

Ar-Ar dates from four tephra layers between 1100 and 3850cm depth. This may provide 

the much needed objective data to answer the main age interpretation problem. 

varve thin section analysis over the next two years should provide complimentary details 

on the make up of the sediments and estimates of sedimentation rates and sedimentary 

processes in general. Archaeological information might be deduced from the presence of 

charcoal particles. 

ongoing organic geochemical work will provide an unusually detailed account of the 

organic matter composition from a long lacustrine record. GC-IRMS work may eliminate 

some of the possible explanations for the variaition of stable carbon isotopic ratios in the 

organic matter and lead to a better understanding of the local and/or regional significance of 

this isotopic parameter. 

FURTHER WORK 

more bulk radiocarbon dates would be desirable, perhaps a sequence of half a dozen 

samples in an attempt to recover some indication of sedimentation rates. Obviously the 

carbon dating work requires the commitment of significant resources and any bulk dates 

obtained would provide imperfect data to evaluate (see Chap. 3). Macrofossil a.m.s. dating of 

bryophyte samples should be avoided, although dating of birch fruits might be attempted. 

Although not 100% secure, birch fruits should possess a lower risk of reworking (B. Huntley, 

pers. comm.). 

soil studies in the catchment including core profiles down to the primary volcanic material 

below. This should reveal whether the soils are thick and multilayered (e.g. influenced by 

sequential tephra blanketing) and also the current chemical status of the soil would provide 

useful boundary condition information. 

sampling and analysis of the 513C ratios in modern aquatic organisms, land plants and 

surface sediment material would help in constraining the interpretation of the 513C record, 

especially for the Holocene period. 

particle size analysis of the sediment zones around tephra layers and on the turbidite 

sequence in conjunction with thin section examination would improve our insight into the 

processes of sedimentation in the system and their link with climate. 

a more detailed stable isotopic study of the calcite layers might yield interesting 

palaeohydrological information. 

study of the diatom record would greatly compliment the pollen and geochemical records 

in terms of reconstructing the chemical and physical conditions of the lake waters. Samples 
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have already been rescued for this at Durham and are awaiting financial support for a 

student or research assistant to carry out the work. 

a recent study into the possible processes of diagenetic sulphur and nitrogen enrichment 

using stable isotope and radio-tracer techniques would document what may be a relatively 

pronounced diagenetic phenomena connected with this type of volcanic setting. 

ultimately it would be nice to recover a core to the base of the maar sediment sequence in 

order to thoroughly appreciate the history of this depositional environment. Logistically this 

would be easier to accomplish using a civil engineering type drilling rig at the lake edge, 

although a high quality piston core taken below the central part of the lake would be more 

desirable given the resources. In addition, there is scope for more field investigation into the 

nature of the deep cauldron feature perhaps using sonar equipment and diving operations. 
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APPENDIX 1 

PROCEDURES 



SAMPLING 

Sampling began on Core C which covers the upper part of the record, to be exact from 

168cm to 1542cm depth. It was originally intended to sample every 5cm or 10cm using 

plastic cylinders to remove a plug of material at regular intervals. However, due to the high 

water content of the sediments in this part of the profile, it became clear that this would not 

provide sufficient dry material to carry out the planned analyses (most particularly X-ray 

fluorescence spectroscopy). Therefore the coarser 10cm resolution was adopted and 

moreover it was necessary to excavate entire quadrants from the half-cores available. 

Typically, bOg of wet sediment was being taken and, on drying, was providing 1 O of solid to 

work with. There is a potential risk concerning contamination of the sample by using its 'outer 

skin'. For example, the coring tubes had been lightly lubricated with an oil. This effect was 

taken into consideration when carrying out organic geochemical work later on, but was not 

felt to be a significant cause of error for most of the measurements that were to be made. 

Thus 10cm continuous sampling provided an initial 141 data points. 

The wet sediment removed was placed on a watch glass and weighed. It was then dried in 

an oven at 50°C for 48 hours. This relatively low temperature was used to minimise the loss 

of any labile/volatile organics etc.. When the sample had been dried it was weighed again, 

enabling the water content to be calculated. 

The next step involved grinding the dry sediment brick for 75 seconds in a Tema®  tungsten 

carbide mill. This provided a well-blended and homogeneous fine powder on which 

subsequent analyses were based. The grinding step should be carried out for as short a time 

as is possible since the process may cause possible damage to certain mineral structures 

(e.g. clays) and generates heat which could have an undesirable effect on the more sensitive 

chemical constituents in the sample (Fairchild et. al., 1988). It may be preferable to grind the 

sample by hand in an agate pestle and mortar, though the amount of time that would be 

required to handle the sample quantities in this study lead to a compromise. 

The ground powders were stored in labelled plastic jars with the lids screwed down tightly. 

Samples were given names relating to their absolute depth from the top of the sediment 

sequence. The mid-point depth of each 10cm chunk was chosen for this categorisation. 

Later in the project, when palaeomagnetic work had been completed on sample cubes from 

Core D, it became possible to extend the geochemical investigations to the whole 51 m of 

profile. Material from these palaeomag sample cubes would provide fairly complete coverage 
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of the interval from 16m depth down to the base at 51 m. It was decided to continue working 

with an approximately 10cm sampling resolution. This strategy had brought out clear and 

often detailed trends from the results on the upper section, and represented a reasonable 

maximum quantity of samples that could be submitted for XRF work. 

Firstly the new material (inside perspex cubes) was weighed and dried out under similar 

conditions to above. The sample lids were removed to facilitate the drying process. In order 

to provide a comparable spacing, batches of four or five adjacent sample cubes were 

combined, after drying, by grinding together in the Tema mill. Due to the size of these cubes 

(-2.25cm), this scheme provided adequate quantities of dry material at a 9 or 10cm 

resolution. Again, the resultant 286 jars of ground sample were labelled with a mid-point 

depth calculated by averaging the depths of the component sample cubes incorporated. 

It was necessary to use material from Core E to complete the top 170cm of the profile. This 

was kindly provided by Bernd Zolitschka, who removed 17 samples from a half-core in Trier 

University. The samples consisted effectively of 10cm chunks/quadrants similar in nature to 

the samples removed from Core C initially. They were sealed in polythene bags and sent to 

Edinburgh whereupon they were weighed, dried and ground in similar fashion to above. 

These preparations resulted in a data set containing 444 samples of bulk sediment at well-

spaced intervals through the entire 51m profile, with only a few minor gaps present. The 

following analyses were made on either the entire data set or on a representative selection of 

points. 

CHEMICAL ANALYSES 

XRF 

To begin with, it was decided to measure a range of major and trace element concentrations 

in the samples using X-ray fluorescence (XRF) spectroscopy. This is a highly automated 

technique which is ideal for the multi-elemental analysis of many geological materials. 

Sample preparation involved the manufacture of pressed powder discs for trace element 

analysis and fused glass discs for the major elements. Small-diameter pressed powder discs 

were made using 3.3 to 3.4g of sample powder and boric acid as a surrounding case. It was 

not necessary to add a binding agent as clay and other constituents in the sample adequately 

held the disc together. While awaiting measurement, the discs were stored in a desiccator to 
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prevent clay swelling and damage. The pressed powder discs were run through the BRIMO 

and RHSMALL analysis programmes (see Table A.1.) on a Philips PW 1480 spectrometer. 

This allowed the measurement of 21 trace elements and also gave a crude estimate of the 10 

major elements' concentrations. The BRIMO run was executed first because it involved the 

determination of iodine which is particularly volatile and may undergo progressive loss as X-

ray bombardment heats up the sample surface. 

BRIMO 

I 	±7ppm 

Br 	±2ppm 

Mo 	±lppm 

Zr 	±4ppm 

RHSMALL 

Sc 

Ba 	±27ppm 

V 
	

±7ppm 

La 	±8.5ppm 

Nd 
	

±5.5ppm 

Ce 	±l4ppm 

Cr 	±2.2ppm 

Ni 
	

±2ppm 

Cu 	±1.lppm 

Zn 	±2.2ppm 

Pb 
	

±2.4ppm 

Th 
	

±2.1 ppm 

Rb 
	

±2ppm 

U 
	

±2.3ppm 

Sr 	±3.3ppm 

Y 
	

±1.lppm 

Zr 	±3.5ppm 

±1 .2ppm 

SCL 

S 
	

±0.O8wt% 

Cl 
	

±31 ppm 

Table A.1. Precision data (as 2c std deviations) for XRF analysis programmes 

At a later stage, the pressed powder discs were run through a third analysis programme 

(SCL) to measure sulphur and chlorine. For sulphur, count rates were normalised to the Rh 

La  tube line to make a rough compensation for mass absorption phenomena (Williams, 

1987). It is thought that wavelength shifts of the S Ka  doublet (due to variable oxidation states 

of sulphur) could cause error in quantitative analysis (Elsheimer and Fabbi, 1974). This may 
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be due to overlap of spectral lines leading to increases in emission line intensity. These 

effects were not considered significant for the comparative data being sought in this study. 

Gohshi et. al. (1975) succeeded in resolving sulphate sulphur from sulphide sulphur in 

samples using a high resolution spectrometer. However, in this study the collimator used is 

relatively coarse and a single peak (representative of total sulphur) was measured. 

For chlorine the calibration line was composed of a number of low-Cl rock standards, but 

contained only one standard with high Cl content. Effectively, a two point calibration was 

being used to compare sample counts against. Thus the possibility of the line being poorly 

defined (and .. providing less accurate measurements) was higher. 

Machine precision is easily checked by running selected discs six times in succession. The 

2a standard deviations in ppm are presented in Table A.1. Machine precision is generally 

very high, with the exception of iodine and chlorine. Chlorine suffers from the same atomic 

effects associated other light elements such as Na and Mg (Williams, 1987). Since it is only 

present in trace amounts, these effects have a more serious influence on its measurement 

problems. Iodine is present in very low concentrations (<lOppm). Although it is a heavy 

element, its measurable peak is situated in an area of high background counts. Therefore the 

error associated with subtracting one large number from another is high in comparison with 

the value being determined. 

In order to estimate the manufacturing precision it would have been necessary to produce 

five or more discs from the same sample powder for measurement. However, with the limited 

material available it was only possible to prepare single discs and so this was not calculated. 

It is thought that errors arising from sample preparation would be similar to or possibly larger 

than machine errors, though not large enough to significantly affect data interpretation. As the 

data obtained in this study are being used to examine trends and changes rather than to 

model and quantify processes, accuracy was not evaluated. Accuracy is generally 

considered to be better than ±5% relative to the measured value (D. James, pers. comm.). 

Later investigations of sulphur, chlorine and silica by wet chemistry provided results that 

corresponded satisfactorily with the XRF concentration data. 

Manufacture of fused glass discs involved a 'pre-ignition stage. This is advisable when 

sample materials contain appreciable concentrations of organic carbon which could destroy 

the platinum crucibles that are used. A few grammes of sample powder was thoroughly dried 

in an oven at 110°C for 4 hours before being placed in a silica crucible and weighed. The 

crucible was placed in a furnace at 1100°C for 25 minutes. During this time volatile 
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components (organic matter, inorganic nitrogen, bound H 20, iodine, sulphur, etc.) were lost 

from the sample. The resultant ash was cooled in a desiccator and reweighed allowing the 

loss on ignition (LOl) to be calculated. Between 0.9 and 1.0g of the ash was placed in a 

platinum crucible and diluted with a 5:1 ratio of Spectroflux 105 0  (a mixture of lithium 

tetraborate, lithium carbonate and lanthanum oxide). Flux and sample were well mixed with a 

platinum stirring rod before being fused in a furnace at 1100°C for 20 minutes. It was 

necessary to add a further small amount of flux after this stage because the original body of 

flux loses water vapour that it has earlier absorbed while in the furnace. With the now 

accurately diluted sample the crucible was reheated on a Bunsen and swirled to ensure 

complete mixing. The molten glass was then cast into a disc which required annealing for 15 

minutes on a 220°C hotplate. In general, the discs formed cleanly on their first casting. 

Occasionally it was necessary to recast a disc that had shattered while cooling. 

The glass discs (stored in a desiccator while awaiting measurement) were analysed by the 

MAJORS programme (see Table A.2.). The machine precisions shown in the table (2cr  

standard deviations in wt%) are very high. It is thought that manufacturing processes in the 

fusion stage would represent a greater source of error, but not significant enough to affect the 

data interpretation. 

MAJORS 

Si02 	±0.1wt% 

A1203 ±0.02wt% 

Fe2O3 ±0.01wt% 

MgO <±0.01wt% 

CaO ±0.01wt% 

Na20 <±0.01wt% 

K20 <±0.01wt% 

TiO2 <±0.01wt% 

MnO <±0.01wt% 

P205 <±0.01wt% 

Table. A.2. XRF precision data (as 2a std deviations) for major elements 

Total C & N and Total S 

Total carbon and total nitrogen were determined on a Carlo Erba®  NA-1 500 elemental 

analyser. The arrangement used involved an oxidation column packed with chromium trioxide 

and silvered colbaltous cobaltic oxide, a reduction column packed with copper wire and a 

furnace temperature of 1050°C (see Verardo et. al., 1990). The GC column oven was set at 

45°C. Between 5 and 25mg (but less than 10mg if more organic-rich) of sample powder was 

weighed into a tin foil capsule and presented to the machine. Results regularly have a 

precision (percent relative standard deviation, 1) of ±1.5% for carbon and ±4% for nitrogen. 
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Precision was marginally higher for samples with higher concentrations (>5wt% C) of organic 

matter. Acetanilide and Sulfanilamide synthetic standards were used to calibrate the 

machine. 

The measurement of total sulphur was later attempted on the same machine. Total sulphur 

had not previously been attempted on the Carlo Erba at Edinburgh, though other Carlo Erba 

users have successfully carried out the analysis (e.g. Leeder et. al., 1990). Firstly the 

oxidation and reduction columns were replaced with a single tube packed with tungstic 

anhydride, tungstic anhydride on alumina and copper wire. This was connected to the 

chromatographic separation column. The chromatographic column oven was this time set at 

85°C while the furnace remained at 1050°C. Between 5 and 25mg of sample powder was 

weighed into a tin-foil capsule and presented to the machine. 

After some intitial adjustment to the experimental conditions, the analysis appeared to be 

running well. To begin with chromatograms with well-defined sulphur peaks and stable, low 

baselines were observed. However, after the first few sample runs the results began to look 

unreliable. Also standards such as Mag-1 were giving values far too high. Double peaks were 

appearing and baselines drifting strongly. It was thought that the combustion reaction was not 

occurring properly and that perhaps the sulphur dioxide was being liberated gradually, or that 

somehow sulphur trioxide was being allowed to enter the column. Vanadium pentoxide, 

which is a routine accelerator for total sulphur analysis (e.g. Hall and Vaive, 1989), was 

added to the samples before combustion, though this did not lead to an improvement. After 

several more unsuccessful attempts to return to a clear signal the analysis was abandoned. 

Later, when sulphur had been analysed by XRF, it was found that a reasonable match 

existed between the XRF results and the early results obtained by the Carlo Erba, apart from 

differences in absolute values. This gave confidence that both techniques were identifying 

the correct trends in the sediment profile. 

Inorganic carbon 

A simple pressometric technique similar to that described by Jones and Kaiteris (1983) or 

Presley (1975) was employed to measure inorganic (carbonate) carbon content. Between 

100 and 330mg of sample powder was reacted with 50% phosphoric acid and the amount of 

carbon dioxide evolved measured by manometer. The manometer scale was calibrated using 

ANALR® anhydrous CaCO3  as a standard. All sample-acid mixtures were brought to boiling 

point several times with a small Bunsen to ensure complete reaction of the carbonate 

minerals present. It was noted that samples from 13m to 23m depth typically showed a 

2.3Z 



strong reaction as soon as the cold acid was tipped over. On the other hand, many of the 

samples below 23m depth showed no reaction with cold acid, but reacted vigorously when 

warmed. These observations suggest the respective dominance of calcite and siderite as the 

main carbonate phases in the sample (Hillebrand, 1953). Most samples covering the top 12m 

were thought to contain little or no inorganic carbon and were dealt with more rapidly. 

Generally no reaction was observed and the manometer was not deflected beyond the 

normal blank displacement. Therefore these samples contain quantities below the detection 

limit of 0.06wt% C, or are carbonate-free. Selected samples were run five times in order to 

assess precision. This was calculated to be ±1.7% or better, relative to the measured value. 

Such values compare favourably with the precisions for total carbon measurements obtained 

on the Carlo Erba. A kimberlite standard run as an unknown indicated that accuracy was 

around ±1.5% relative to the real value. 

The acid reaction is capable of liberating H 2  gas from any monosulphides of iron present in 

the sample (Hillebrand, 1953). This could cause carbon dioxide values to be overestimated 

through extra deflection to the manometer reading. None of the samples when treated with 

acid displayed an obvious smell suggesting the presence of significant hydrogen sulphide. 

However, some samples in the upper part of the core gave a weak suggestion of the gas 

being present and so may have liberated a minor amount of H 2S. It is believed that effects of 

this on the carbon dioxide measurements would be minimal and in the sub-detection level 

range. 

Organic carbon 

By subtracting the values for inorganic carbon content from total carbon a measure of the 

organic carbon content was found. 

Biogenic silica 

Biogenic silica was analysed by wet chemistry using an alkaline leaching technique and 

colourimetric determination of the resulting silica solution. The method was based on that 

described by Eggimann et. al. (1980), being adapted at Edinburgh by Mike Saunders. 

Between 45 and 60mg of sample powder was weighed into a 40ml PTFE digestion cup and 

20m1 of saturated (2M) sodium carbonate solution added. The cup was sealed inside a 

stainless steel bomb and placed in a 100°C oven for 4 hours. These conditions ensured a 

thorough reaction digesting all of the amorphous silica present in the sample, but with 

minimum digestion of quartz or silicate minerals present. The resulting solution was passed 



through a 0.45p filter and the filtrate plus washings collected and made up to 1 OOml with 

distilled water. 

Solutions were analysed for silica content and later for alumina content (to provide a 

correction for small amounts of aluminosilicate that may have been leached from the 

sample). Silica was determined by formation of the molybdenum blue complex (method 

modified from Strickland and Parsons, 1968) and measured in 2cm spectrophotometer cells 

at a wavelength of 81 2nm. Aluminium was determined through formation of the catechol 

violet complex (method modified from Dougan and Wilson, 1974) and measured at 585nm in 

1cm cells. 

Apparent biogenic silica (i.e. the silica value measured) was converted to actual biogenic 

silica using the following correction: 

actual biogenic silica (wt%) = silica measured (wt%) - n *a lum i na  (wt%) 

(n=2.8) 

The value for n is chosen to reflect the likely silica/alumina ratio of the mineral fraction in the 

sediments. This generally lies between 2 and 3. The value of 2.8 was selected after 

examining the XRF data for variations in the range of total silica/alumina ratios. It is likely that 

such a ratio will never be identical for any two samples, but as this calculation only makes a 

small correction to the apparent silica value, such variations will not affect the final results 

significantly. 

After completing an initial batch of measurements on the top 99 samples in the profile, a later 

batch of samples was taken from 60 selected positions covering the rest of the profile. A 

number of the samples were repeated five times to assess precision. This was calculated to 

be ±2% or better, relative to the measured value. Some of the discrepancy in values could be 

attributed to sample inhomogeneity (Mortlock and FrOelich, 1989). This is due to the small 

sample quantity being taken for the measurement. 

It had been found that the initial results matched very well with values predicted by 

normalising the XRF data for "excess silica." (see Chap4a). The later set of 60 samples did 

not correspond quite as well to their XRF predicted values, but a good overall correlation still 

existed. From this it was decided that the XRF data could be used to provide a reliable guide 

to trends in the biogenic silica content of the core sequence. 
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Stable carbon isotopic ratio of bulk organic matter 

Around 30 samples were initially selected for isotopic analysis of the organic carbon present. 

A quantity of sample powder (2-3g) was washed with an excess of 1 M HCI to remove all 

inorganic carbon present. This involved adding the dilute acid with a pipette until no further 

effervescence occurs. To encourage a complete reaction, the sample was placed in a 

vacuum oven at room temperatue for 25 minutes and later evaporated to dryness in a 

conventional oven at 50°C. Up to 1 00m of dry and treated sample was placed in a silica 

tube together with an excess of copper oxide. The tube was evacuated and roasted overnight 

at 850°C to oxidise the organic matter. The carbon dioxide produced was purified on a 

vacuum line apparatus by means of cryogenic distillation. The purified gas was collected in 

another tube and transferred to a VG Isogas SIRA100  mass spectrometer for isotopic 

determination. The 813C ratios measured are equated relative to the PDB standard. This work 

was carried out at SURRC in East Kilbride. 

Later in the study, further sample batches were analysed to produce a more detailed isotopic 

profile. For some of this work a slightly different technique was applied to remove inorganic 

carbon. It had become clear that siderite was present in some parts of the core and that this 

requires warming of the acid-sample mixture to near boiling point to ensure complete removal 

(Hillebrand, 1953). Therefore later samples were treated with dilute hydrochloric or 

phosphoric acid and warmed on an electrically heated sandbath at approximately 80°C. For 

comparison, some of the earlier samples were redone under these more intense reaction 

conditions. It was found that most of these gave the same isotopic value, although a few 

samples produced a lighter 8 1 C value which might be expected if some heavy' carbonate 

carbon had previously remained. 

Over four visits to SURRC it was possible to construct a 8 13C record containing 110 data 

points. Throughout the study triplicate samples were run to check precision. This worked out 

at being ±0.2%o or better. Accuracy was assessed by running an in-house graphite standard 

between samples and was evaluated at being ±0.2%. 

Carbonate stable isotopic studies 

A short study was made of the stable isotopic compostion ( 13C and 180)  of some carbonate 

minerals in the profile. Both calcite and siderite were known to occur from X-ray diffraction. 

Although either calcite or siderite is dominant in most of the carbonate areas, it is desirable to 

apply some segregation technique to allow isotopic values to be determined on pure 

individual phases. To begin with, mineral separation using a heavy liquid and centrifugation 

was applied. Tetrabromoethane ('TBE', sp. gr . 2.96) was judged to be an appropriate liquid to 



use since the densities of calcite and siderite are 2.7 and 3.7-3.9gcm 3  respectively. Several 

grammes of a sample with high carbonate content was tested using a Hutton tube 

arrangement (Allman and Lawrence, 1972). After centrifugation at 2600rpm, a small quantity 

of heavy fraction was observed in the bottom chamber of the Hutton tube. This was 

recovered and examined by XRD. Results showed that the dominant minerals present were 

siderite (as anticipated) and augite. However the heavy fraction appeared excessively small 

and, when the larger 'light fraction' was examined with XRD, it was found to still contain a 

large proportion of the siderite. The light fraction was reprocessed using more prolonged 

centrifugation, but this separated out virtually no further siderite. Therefore it was possible to 

isolate a pure quantity of the siderite fraction (N.B. this might not be isotopically 

representative of the whole), but it had not been possible to separate pure calcite into the 

light fraction. It is thought that the very fine grain size of the sample material and perhaps 

also the cohesive properties of components within, such as organic matter and clays, might 

be holding some of the siderite among the light fraction. This material may be very difficult to 

disaggregate and thus to wet all grains with the separating liquid. In theory, using long 

centrifuge runs at much higher rotating speeds (Allman and Lawrence, 1972) might permit a 

quantitative separation to be made, though this was not possible with the equipment 

available. 

As an alternative, bulk samples were run through a sequential reaction programme with 

100% phosphoric acid, based on Rosenbaum and Sheppard (1986). Firstly, samples were 

reacted with 'cold' acid at 25°C for 3 hours. Reactions involved 50 to 200mg of sample 

powder in an evacuated glass tube. This allows quantitative conversion of calcite to CO 2, but 

has a minimum effect on siderite present. The carbon dioxide formed at this stage was 

released into a vacuum-line apparatus for purification. A similar cryogenic distillation 

technique to that used for the organic 513C study was applied. The purified gas was collected 

in a sample tube and transferred to a VG Isogas SIRA100  mass spectrometer. The 5 13C and 

8180 values measured are relative to the PDB standard. 

After collection of the gases, the re-evacuated tube was sealed and placed in a water bath at 

98°C. Acid and sample were allowed to react at this temperature for 45 hours. Under these 

conditions the siderite present was quantitatively converted to CO2.  . This new yield of carbon 

dioxide was purified and measured on the mass spectrometer as previously. 

For comparison, a few samples were run through a single 17 hour reaction with the water 

bath at 140°C. This causes all carbonate phases to react, the resultant carbon dioxide having 

multiple origins. Also, two extracts of siderite produced by the heavy liquid separation 
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contained sufficient carbonate material for an analysis and so were run through this reaction. 

Isotopic ratios were determined as before. 

During the sample reactions an in-house calcite standard was run to check accuracy. This 

was calculated to be ±0.2% or better. Samples run in triplicate gave an estimate of precision 

of ±0.2% or better. 

Chlorine 

A small number of samples were analysed for chlorine by a wet-chemical technique This is a 

relatively accurate analysis and should thus assess the accuracy of the XRF results. The 

technique involved an alkaline fusion (Jeffery, 1970), using a flux mixture of Aristar sodium 

carbonate and zinc oxide, followed by spectrophotometric determination using the 

mercury(Il)thiocyanate method (Florence and Farrar, 1971). The U.S. granodiorite standard 

GSP-1 (400ppm Cl) was also run as a check. Results obtained are shown in Table A.3. 

below: 

Sample Cl ppm Cl ppm (XRF) 

65 270 275.0 

1746 140/160 95.2 

4496 230 177.0 

1453 3600 4524.8 

2470 3500 4076.9 

VUL2 4500/4500 5892.2 

GSP-1 390 

Table A.3. Wet chemical determinations of chlorine content 

The concentration figures for the six samples are similar in magnitude to the corresponding 

XRF results, although Cl-rich samples show a tendency to be over-estimated by the XRF 

method. This may be due to calibration problems previously explained. At the lower 

concentration end, discrepancies may arise due to the limits in sensitivity of the XRF 

measurement. However, although the discrepancies are often appreciable, they are unlikely 

to affect the basic trends that chlorine is displaying in the core profile. 
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Iodine 

Due to the low iodine content of these freshwater sediments, and the difficulty in obtaining 

accuracy with the XRF measurement, it was decided to investigate a small number of the 

samples with a more sensitive wet chemical technique. This involved alkali fusion of the bulk 

sample followed by colourimetric determination of the iodine content by absorbance (Grimaldi 

and Schnepfe, 1971). A flux of sodium carbonate, potassium carbonate and magnesium 

oxide (in the ratio 4:4:1) was made up and mixed together thoroughly. Approximately 1  of 

sample powder and 4.5g of the flux were blended together in a nickel crucible. This was 

fused at 750°C in a furnace for one and a half hours. The sinter produced was covered with 

water and left overnight, allowing complete disintegration. The leached solution was filtered 

and made up to fixed volume (1 OOmI). The iodine in this solution was converted to the 

elemental form and taken up in 3m1 of carbon tetrachloride following Grimaldi and Schnepfe 

(1971). The absorbance of the resulting solution was measured by spectrophotometer in 4cm 

cells at 517nm. A series of potassium iodide standard solutions were prepared for calibration 

purposes. 

Unfortunately the results obtained were spurious, probably due to the ideal photometric cell 

type being unavailable. However, comparison of the values recorded and also visual 

comparison of the colour intensity of solutions before measurement suggested that the 

sample solutions contained somewhat lower iodine contents than the weakest standard. 

Consequently, these samples are believed to contain less than loppm iodine. In future it 

might be possible to measure this type of sample more accurately with a newly produced set 

of photometric cells that are available (M. Saunders, pers. comm.). 

Pyrolysis 

Around 150 samples were analysed by pyrolysis on a LECO®  THA-200 "Thermolytic 

hydrocarbon analyzer". This is a routine technique developed to assess the concentrations of 

free and bound hydrocarbons in whole-rock samples (Espitalié et. at., 1977). Typically, 

1 00m of sample powder was loaded into a crucible and presented to the machine, but for 

organic-rich material 30-40mg was used. During a progressive heating programme, free 

hydrocarbons (the 51 peak) are released between temperatures of 100 and 300°C. Between 

300 and 550°C further hydrocarbons (the S2 peak) are released through cracking of the 

kerogen component. The quantities of hydrocarbon released are determined by a flame 

ionisation detector. A standard oil shale, KC8, was used to calibrate the machine. Samples 

replicated five times showed that precision was around ±5% relative to the measured value. 



By normalising the content of kerogen-derived hydrocarbons to total organic carbon, the 

hydrogen index (HI) of the samples was calculated. This parameter is strongly related to the 

elemental H/C ratio of the kerogen (Miles, 1989) although the latter would be much more time 

consuming to measure. 

Organic geochemical molecular investigations 

Ground, dried sediment was again required for the initial lipid extraction stage of this work. 

For sample points produced from the palaeomag cubes of Core D, direct use was made of 

the dried ground powder from the sample jars. However, for samples in the upper 15m of the 

profile which had been produced from entire quadrants in the sediment core, it was thought 

that the inclusion of the outer skin in the sample might seriously contaminate the small 

quantities of lipids being analysed. Therefore, new samples were made up for these points by 

taking new wet sediment (available from spare palaeomag cubes covering this depth range). 

Cubes from both Core C and Core D were used. After the sediment in the cubes had been 

dried out at 50°C it was ground (on this occasion by an agate pestle and mortar) into a 

powder ready for the following extraction. 

Between 5 and 30g of sediment powder was weighed into a cellulose (compressed paper) 

thimble, plugged with cotton wool and suspended in a glass beaker. The beaker was filled up 

with a solvent mixture (93:7) of dichloromethane (DCM) and methanol and placed into a 

Soxtherm® apparatus. The contents of the beaker was heated from below by an oil bath and 

allowed to boil/ref lux at 45°C for 4 hours. During this time, extractable components within the 

sediment organic matter (i.e. free lipids) were liberated. The solvent+extract was 

subsequently reduced down to a small volume and quantitatively transferred to a glass vial. 

Throughout these procedures, all of the glassware used had been previously cleaned in 

chromic acid and washed with pure DCM to avoid contamination. The cellulose thimbles and 

cotton wool were also ref luxed thoroughly with pure solvent beforehand. The solvents used 

had been purified by double distillation. 

The total extract obtained by the above process was next separated into three fractions by 

column chromatography on activated silica gel and alumina. The aliphatic hydrocarbon 

fraction discussed in Chap. 5 was eluted with 1 20m1 of petroleum ether. (Further fractions 

were eluted in sequence with petroleum ether/DCM (50:50) and DCM/methanol (50:50) to 

recover respectively the aromatic hydrocarbon and polar groups.) Gas chromatographic 

analysis of the aliphatic fraction was carried out on a HP 5890 GC fitted with a 30m J&B DB5 

fused silica capillary column. On-column injection was used and hydrogen acted as a carrier 
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determined by flame ionisation detection (FID). Most of the GC analytical work on these 

samples was carried out by Bernie Bowler at the organic geochemistry department (NAG) of 

Newcastle University. The author gratefully acknowledges this work. 

Investigation of samples of volcanic rock from the catchment 

A suite of ten rock samples was collected with the help of Giuseppe Dai Pra during the coring 

fieldwork. These originate from roadside exposures within the Monticchio crater or from the 

surrounding Vulture mountains a few kilometres away. Thin sections of the rocks were 

prepared by Simon Harley and Jane Foster. The sections were examined with a petrographic 

microscope. 

It was considered that these lithologies should reflect the typical catchment rock which, 

through processes of weathering etc., will eventually enter the lake sediment system as the 

terrigenous minerogenic fraction. Thus, it was decided to investigate the chemical 

composition of this material for comparison with the compositions found in the lake 

sediments. After examining the ten thin sections, two samples (known as VUL2 and VUL4) 

were selected due to their relatively unaltered appearance. The outer skins of the samples 

were trimmed off and the samples crushed manually before being ground for four minutes in 

a Tema mill. The ground sample powders were subjected to XRF, Total C and N, and 

inorganic carbon determinations in the same way as the sediments. 

XRD Mineralogy 

Samples were examined on a Philips PW 1800 X-ray diffractometer to assess their 

minerological compositions. In most cases, =1g of sample powder was compressed into a 

powder disc and presented to the machine embedded in a sample holder. Occasionally, 

smaller quantities of sample were extracted from fresh core material, taken up as a 

suspension in acetone or distilled water and coated on a glass disc. On drying, the disc was 

placed in a larger sample holder and presented to the machine. An on-line mineral reference 

library was used to qualify the likely minerals present from the raw diffraction trace data. 

Optical examination of diagenetic minerals 

Thin sections prepared for varve analysis were examined with advice from Bernd Zolitschka 

while on a visit to Trier University. Notes and observations made during this visit form part of 

the discussion in Chap 4c. 

Palynofacies organic matter studies 



Microscope slides were prepared from various regions of the core in order to examine the 

nature and quality of the organic matter present. The preparation techniques are similar to 

those used in palynolgical investigations (e.g. Traverse, 1988). 

Approximately 5g of unground, wet sediment was placed in a large plastic beaker and 

dispersed into small fragments. An excess of hydrochloric acid was added to remove 

carbonates. After rinsing the sample with distilled water, 40% hydrofluoric acid was added 

and the beaker allowed to stand for 48 hours. During this time most of the inorganic mineral 

components and the biogenic silica were digested. After several more rinses a further 

quantity of hydrochloric acid was added to remove any fluoride minerals that may have 

formed. The residue, consisting mostly of organic matter, was washed through in a 1 O mesh 

sieve. This removed very fine, undefined organic material which cannot be identified. The 

organic concentrate was stored as a slurry in distilled water. 

To make up a slide, 1 5ml of slurry was pipetted into a small quantity of hot glycerol (at 65°C) 

and mixed together. A fraction of this was coated onto a glass cover slip and, after drying, 

stuck down onto a microscope slide. The slides were examined with a petrographic 

microscope under normal transmitted light and u.v. stimulated fluorescence illumination. 

Identifications were made with assistance from Richard Tyson and from consulting standard 

texts (Combaz, 1981; Berglund, 1986; Faegri and Iversen, 1965; Bold and Wynne, 1985; 

Gray, 1960). Preliminary point counts were made on a rectangular stage. 

Electron microscopy 

Representative samples of unground core material were selected for examination by 

scanning electron microscopy. Small sections of wet sediment were removed and dried 

overnight in an oven at 50°C. The dried 'brick' was carefully broken open to reveal a fresh 

surface and mounted on an aluminium stubb using araldite. The base region of the sample 

and stubb were coated with a silver paint to reduce charge build-up while inside the 

microscope. The entire sample surface was also gold coated for similar reasons. The 

samples were then examined by a Cambridge Instruments®  590b scanning electron 

microscope in the Department of Botany at Edinburgh University. Photographic images were 

made of specimens by means of an attached camera. 

Radiocarbon dating of plant macrofossil and bulk samples 

While the cores were being extruded and subsampled during Sept 1990, a number of layers 

containing plant macrofossil material were observed. These were between 0.3 and 4cm in 

thickness and either consisted of bryophytic mats or more heterogeneous terrestrial plant 
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matter that was often associated with tephra horizons. Material from such layers was 

removed and placed in sealed polythene bags for possible radiocarbon dating. After the 

sample bags had been returned to Edinburgh they were kept in a dry refrigerated store at 

4°C. 

During October 1992 selected samples were examined by Brian Huntley and Judy Allen at 

Durham University. Appropriate material was extracted (mosses of terrestrial/fen origin and 

definite terrestrial plant remains) and submitted for a.m.s. radiocarbon dating. The dating was 

carried out at Tuscon (USA) after pre-treatment work at the NERC laboratory in East Kilbride. 

The samples dated are shown with error margins in Table A.4. below. Also included at the 

bottom of this table are a series of three conventional bulk dates made on the sequence by 

W Watts. 

Sample Depth Age (yr) Error 

LGM7 945cm 32,630 630 

LGM10 1073cm 29,900 410 

LGM21 1403cm 33,350 620 

LGM12 1618cm 31,830 550 

LGM16 1853cm 34,775 725 

LGM18 2351 cm 25,200 250 

MONT1 724-740cm 30,460 510 

MONT2 653-663cm 23,670 230 

561220 398-403cm 7,130 120 

561221 820-825cm 15,380 150 

561225 1316-1320cm 19,580 730 

Table A.4. Radiocarbon dates for Monticchio samples and associated error margins 



APPENDIX 2 
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Tabulated data 

The following pages present chemical data in a tabulated form. The concentration values 

shown are related to sample depths in the far left hand column. The measurement 

techniques and error bars have been described in Appendix 1. The following abbreviations 

and concentration units apply: 

depth cm 

Si wt% Pb 	 ppm 

Al wt% Th 	 ppm 

Fe wt% U 	 ppm 

Mg wt% Rb 	 ppm 

Ca wt% Sr 	 ppm 

Na wt% Y 	 ppm 

K wt% Zr 	 ppm 

Ti wt% Nb 	 ppm 

Mn wt% Cl 	 ppm 

P wt% S (by XRF) 	wt% 

Sc ppm Ctot (total carbon) 	wt% 

Ba ppm Ntot (total nitrogen) 	wt% 

V ppm Suip (Carlo-Erba 5) 	wt% 

La ppm Cinorg (inorganic C) wt% 

Ce ppm LOl (loss on ignition) wt% 

Nd ppm water (content) 	wt% 

Cr ppm I 	 ppm 

Ni ppm Br 	 ppm 

Cu ppm Mo 	 ppm 

Zn ppm 

del C-13 	51 3C value on bulk organic matter (%o relative to PDB standard) 

Bsilica 	biogenic silica (wt%) 

HI 	 Hydrogen Index (mg hydrocarbon/g total organic carbon) 
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depth Si Al Fe Mg Ca Na K Ti Mn P 

5.0 22.76 5.86 4.22 2.25 5.98 1.05 3.275 0.361 0.110 0.236 

15.0 19.93 1.38 2.83 0.30 2.11 0.20 0.473 0.080 0.242 0.150 

25.0 16.72 1.34 2.59 0.30 6.59 0.15 0.384 0.073 0.161 0.121 

35.0 19.27 1.43 2.71 0.28 6.02 0.14 0.368 0.078 0.166 0.150 

45.0 22.76 1.14 3.31 0.19 2.09 0.11 0.306 0.063 0.127 0.219 

55.0 28.99 0.92 1.93 0.18 0.79 0.11 0.344 0.055 0.040 0.081 

65.0 30.58 0.86 2.13 0.20 0.71 0.14 0.346 0.055 0.053 0.086 

75.0 26.25 1.40 2.75 0.30 0.70 0.17 0.587 0.091 0.068 0.101 

85.0 24.76 1.13 2.59 0.24 0.57 0.12 0.414 0.061 0.091 0.102 

95.0 25.77 0.69 2.68 0.29 1.12 0.14 0.236 0.035 0.287 0.187 
105.0 27.21 4.38 2.94 1.03 2.85 0.82 2.604 0.226 0.093 0.164 
115.0 23.60 8.14 4.15 2.15 5.70 1.70 5.176 0.400 0.109 0.281 

125.0 26.33 1.72 2.34 0.58 1.62 0.31 0.822 0.097 0.059 0.111 

135.0 29.92 0.74 1.79 0.17 0.58 0.12 0.206 0.041 0.057 0.074 
145.0 30.41 0.71 1.48 0.17 0.53 0.12 0.204 0.041 0.055 0.069 

155.0 28.64 0.78 1.57 0.17 0.48 0.11 0.225 0.046 0.042 0.074 

165.0 29.20 0.90 1.58 0.19 0.49 0.11 0.295 0.052 0.036 0.075 

183.0 27.54 0.88 1.77 0.20 0.55 0.10 0.264 0.050 0.031 0.068 

193.0 26.56 0.95 1.59 0.21 0.55 0.11 0.257 0.056 0.035 0.066 

203.0 29.20 0.80 1.62 0.16 0.49 0.11 0.213 0.050 0.029 0.062 

213.0 30.29 0.67 1.50 0.19 0.42 0.10 0.202 0.039 0.024 0.054 

223.0 25.25 1.33 2.30 0.24 0.59 0.14 0.397 0.072 0.041 0.072 

233.0 25.47 1.77 2.56 0.28 0.64 0.18 0.518 0.094 0.077 0.085 

243.0 26.04 2.43 2.42 0.26 0.63 0.63 1.019 0.112 0.052 0.075 

253.0 25.04 1.24 2.37 0.24 0.58 0.12 0.374 0.068 0.042 0.077 

263.0 25.97 1.12 2.10 0.21 0.51 0.11 0.333 0.063 0.035 0.068 
273.0 22.34 0.92 2.44 0.22 0.55 0.07 0.254 0.053 0.034 0.072 

283.0 22.87 0.88 1.96 0.19 0.48 0.09 0.243 0.052 0.028 0.053 

293.0 25.69 0.84 1.27 0.19 0.43 0.08 0.253 0.049 0.023 0.050 

303.0 27.67 1.33 1.65 0.22 0.54 0.14 0.493 0.069 0.027 0.062 

310.5 24.43 5.08 3.41 0.68 1.97 0.90 2.689 0.213 0.051 0.213 

315.5 24.16 9.82 3.47 1.30 3.89 2.14 5.743 0.396 0.085 0.260 

320.5 24.51 9.76 3.65 1.53 3.84 2.30 5.606 0.379 0.087 0.222 

327.5 27.09 2.49 1.44 0.39 0.89 0.45 1.176 0.100 0.031 0.118 

335.5 24.50 9.60 3.34 1.84 4.09 2.06 5.520 0.373 0.078 0.249 
343.0 22.85 1.36 1.73 0.26 0.68 0.16 0.438 0.064 0.028 0.080 

353.0 23.26 3.26 2.12 0.50 1.27 0.75 1.576 0.105 0.041 0.145 

362.5 18.36 1.76 2.45 0.24 0.70 0.24 0.655 0.077 0.033 0.085 
377.0 21.33 5.09 2.59 0.65 1.71 1.12 2.972 0.189 0.054 0.143 
387.0 16.80 1.74 1.70 0.25 0.76 0.28 0.670 0.078 0.034 0.084 

397.0 20.75 1.00 2.23 0.21 0.67 0.16 0.346 0.049 0.030 0.075 
407.0 22.96 1.39 3.92 0.26 0.92 0.16 0.408 0.077 0.041 0.107 
417.0 14.36 0.99 3.47 0.19 0.65 0.10 0.261 0.052 0.029 0.085 
427.0 16.30 2.27 2.36 0.30 0.95 0.38 1.101 0.103 0.035 0.087 
437.0 23.05 0.82 1.20 0.15 0.49 0.12 0.278 0.040 0.020 0.060 
447.0 24.82 3.73 1.74 0.31 0.99 0.91 2.286 0.135 0.041 0.078 
457.0 15.01 0.76 2.95 0.26 0.71 0.08 0.182 0.039 0.028 0.074 
467.0 18.86 0.60 1.85 0.19 0.64 0.08 0.155 0.034 0.024 0.068 
477.0 14.06 1.23 4.18 0.21 0.74 0.26 0.615 0.055 0.030 0.072 
487.0 17.41 0.49 2.68 0.15 0.54 0.09 0.164 0.026 0.041 0.069 
497.0 15.64 0.59 2.98 0.15 0.59 0.13 0.209 0.030 0.051 0.083 
507.0 17.68 3.84 2.60 0.28 0.83 1.48 1.955 0.152 0.082 0.084 
517.0 15.72 0.32 4.27 0.15 0.63 0.07 0.107 0.019 0.060 0.523 
527.0 24.16 0.25 2.80 0.12 0.42 0.06 0.079 0.016 0.055 0.089 
537.0 29.43 0.17 3.40 0.11 0.32 0.04 0.065 0.016 0.123 0.534 

547.0 23.70 0.20 5.23 0.11 0.34 0.04 0.073 0.017 0.202 1.152 

555.0 22.24 0.24 4.87 0.11 0.39 0.05 0.085 0.019 0.252 0.999 

562.0 17.33 0.24 7.52 0.13 0.45 0.05 0.076 0.015 0.216 1.681 

577.0 15.81 0.82 10.19 0.19 0.64 0.18 0.397 0.034 0.259 2.498 

587.0 16.73 0.50 6.39 0.16 0.57 0.14 0.212 0.020 0.306 1.175 

597.0 18.54 0.65 4.93 0.17 0.60 0.15 0.272 0.026 0.463 0.507 
607.0 16.80 0.88 8.57 0.18 0.65 0.19 0.344 0.027 0.563 1.636 
617.0 16.78 1.44 10.56 0.20 0.79 0.28 0.653 0.042 0.445 2.502 

626.0 21.38 6.82 4.31 0.82 3.20 1.66 4.069 0.203 0.216 1.070 
634.0 20.47 2.73 5.01 0.28 1.12 0.72 1.207 0.069 0.392 1.144 

	

642.0 20.86 	5.81 	4.04 	0.69 	2.53 	1.83 2.987 0.149 0.230 0.912 

	

649.5 24.82 	9.70 	2.70 	0.72 	2.63 	3.95 5.005 0.205 0.109 0.267 

	

657.5 22.86 	7.10 	4.59 	0.74 	2.26 	2.70 3.520 0.184 0.162 0.793 

	

667.0 20.45 	2.61 	5.89 	0.24 	0.79 	0.66 1.498 0.084 0.233 1.128 

	

677.0 21.50 	4.92 	6.16 	0.34 	1.03 	1.27 3.217 0.153 0.136 1.284 

	

687.0 15.78 	0.37 	3.21 	0.15 	0.55 	0.08 0.121 0.020 0.120 0.130 

	

697.0 16.38 	0.35 	4.92 	0.16 	0.52 	0.11 0.120 0.022 0.168 0.523 

	

707.0 19.18 	0.46 	5.32 	0.15 	0.49 	0.07 0.116 0.027 0.169 0.425 

	

717.0 21.95 	0.52 	5.32 	0.15 	0.47 	0.07 0.149 0.031 0.133 0.136 

	

727.0 24.03 	0.64 	4.26 	0.15 	0.43 	0.07 	0.177 	0.035 0.066 	0.088 

	

737.0 26.92 	0.86 	2.69 	0.16 	0.43 	0.11 0.301 0.047 0.045 0.085 

	

747.0 27.91 	3.36 	2.37 	0.34 	0.91 	0.62 1.549 0.152 0.044 0.396 

	

756.5 27.91 	4.16 	2.89 	0.40 	0.98 	0.51 1.561 0.222 0.046 0.369 

	

776.5 27.50 	5.80 	2.55 	0.63 	1.47 	0.98 2.807 0.256 0.042 0.322 

	

785.0 25.93 	8.80 	3.14 	0.87 	2.50 	1.83 5.628 0.313 0.075 0.274 

	

794.0 27.80 	3.42 	2.53 	0.40 	0.76 	0.41 1.243 0.174 0.048 0.155 

	

804.0 25.29 	3.50 	3.19 	0.46 	0.71 	0.29 1.001 0.189 0.083 0.231 

	

814.5 22.03 	3.74 	4.52 	0.49 	0.91 	0.40 1.316 0.174 0.225 0.419 

	

825.0 17.65 	1.91 	7.22 	0.37 	0.74 	0.18 0.529 0.103 0.281 0.274 

	

835.0 20.59 	1.80 	6.68 	0.33 	0.63 	0.17 0.482 0.100 0.157 0.211 

	

845.0 27.85 	2.60 	1.67 	0.28 	0.50 	0.53 0.895 0.133 	0.067 0.133 

	

855.0 29.96 	3.28 	1.36 	0.34 	0.59 	0.35 1.033 0.169 0.021 0.235 

	

865.0 28.54 	6.98 	2.33 	0.45 	1.31 	1.47 4.321 0.229 0.069 0.190 

	

877.0 29.88 	5.62 	1.43 	0.32 	0.81 	1.30 3.100 0.210 0.032 0.127 

	

887.0 29.55 	5.77 	1.92 	0.38 	0.86 	1.22 2.896 0.239 0.040 0.145 

	

897.0 29.59 	5.40 	1.56 	0.46 	0.80 	0.80 2.314 0.271 0.029 0.154 

	

906.0 29.14 	7.17 	1.74 	0.43 	1.01 	1.59 4.179 0.267 0.038 0.135 

	

915.0 29.21 	5.80 	2.22 	0.54 	0.73 	0.55 1.674 0.347 0.018 0.180 

	

924.5 28.10 	6.71 	2.16 	0.64 	0.76 	0.61 1.925 0.378 0.023 0.195 

	

932.5 28.60 	7.26 	2.17 	0.49 	0.63 	2.33 3.188 0.292 0.091 0.131 

	

941.0 28.90 	5.25 	2.85 	0.57 	0.68 	0.39 1.227 0.341 0.024 0.178 

	

951.0 28.20 	6.46 	2.06 	0.58 	0.75 	0.79 1.897 0.389 0.031 0.182 

	

961.0 29.17 	6.32 	1.94 	0.63 	0.69 	0.55 1.502 0.413 0.019 0.185 

	

977.0 29.18 	7.30 	2.26 	0.74 	0.80 	0.50 1.560 0.469 0.018 0.227 

	

987.0 29.03 	5.84 	1.89 	0.68 	0.72 	0.49 1.478 0.376 0.017 0.165 

	

997.0 27.95 	7.38 	2.20 	0.75 	0.89 	0.60 1.852 0.434 0.019 0.216 

	

1007.0 26.90 	8.86 	2.46 	1.00 	2.63 	1.58 5.093 0.354 0.053 0.275 

	

1017.0 28.12 	7.75 	2.30 	0.86 	2.02 	1.27 3.960 0.341 0.041 0.204 

	

1027.0 30.07 	6.33 	2.07 	0.70 	1.00 	0.63 1.677 0.422 0.025 0.202 

	

1037.0 30.06 	6.56 	2.15 	0.67 	0.83 	0.50 1.417 	0.422 	0.050 	0.196 

	

1047.0 28.14 	7.55 	2.60 	0.74 	1.08 	0.51 1.410 0.476 0.093 0.255 

	

1057.0 28.90 	6.14 	2.72 	0.67 	0.78 	0.43 1.317 0.421 0.075 0.192 

	

1067.0 30.13 	5.87 	2.19 	0.64 	0.76 	0.39 1.215 0.415 0.033 0.194 

	

1077.0 30.65 	5.82 	2.11 	0.64 	0.80 	0.39 1.195 0.414 0.051 0.194 

	

1087.0 29.47 	6.76 	2.35 	0.77 	1.15 	0.48 1.445 0.457 0.158 0.221 

	

1097.0 25.56 	9.63 	3.30 	1.24 	2.35 	0.87 2.608 0.581 0.175 0.285 

	

1105.5 23.86 	8.83 	3.78 	1.56 	4.65 	1.95 4.733 0.403 0.097 0.225 

	

1112.0 25.61 	9.09 	3.28 	1.16 	3.95 	2.16 5.274 0.355 0.100 0.193 

	

1118.5 25.41 	9.27 	3.57 	1.25 	4.38 	2.14 5.333 0.376 0.097 0.206 

	

1127.0 29.86 	5.58 	3.47 	0.86 	1.41 	0.51 1.419 0.361 0.444 0.158 

	

1137.0 31.17 	5.33 	2.61 	0.75 	0.98 	0.40 1.177 0.372 0.183 0.161 

	

1147.0 31.91 	5.45 	2.34 	0.72 	0.84 	0.40 1.117 0.377 0.095 0.163 

	

1156.0 31.35 	6.30 	2.31 	0.74 	0.86 	0.39 1.228 0.435 0.025 0.195 

	

1161.0 30.49 	6.83 	2.57 	0.75 	1.22 	0.75 1.636 0.469 0.033 0.216 

	

1171.0 31.33 	5.72 	2.81 	0.70 	1.16 	0.57 1.266 0.401 0.043 0.214 

	

1181.0 31.94 	4.28 	3.25 	0.61 	0.81 	0.29 0.862 0.301 0.093 0.233 

	

1191.0 31.77 	4.85 	3.08 	0.65 	0.89 	0.33 0.976 0.333 0.061 0.203 

	

1201.0 29.16 	6.97 	3.14 	0.98 	1.50 	0.51 1.461 0.485 0.040 0.247 

	

1211.0 28.54 	7.55 	3.38 	0.96 	1.27 	0.45 1.446 0.540 0.040 0.300 

	

1221.0 27.46 	8.38 	3.72 	1.00 	1.21 	0.49 1.536 0.592 0.049 0.332 

	

1236.0 30.64 	6.84 	2.35 	0.76 	0.88 	0.47 1.353 0.493 0.015 0.215 

	

1246.0 27.48 	8.99 	2.94 	0.87 	1.03 	0.50 1.534 0.631 0.023 	0.299 

	

1255.0 29.43 	7.86 	2.46 	0.81 	1.02 	0.51 1.494 0.513 0.022 0.260 

	

1264.0 29.70 	7.38 	2.57 	0.80 	1.02 	0.53 1.514 0.501 0.026 0.264 

	

1274.0 25.46 	9.41 	3.65 	1.35 	2.10 	0.64 1.842 0.624 0.054 0.374 

	

1281.0 29.73 	7.56 	3.24 	0.92 	1.12 	0.52 1.513 0.506 0.056 0.255 
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28.20 7.75 3.43 0.91 1.35 0.65 1.797 0.493 0.057 0.277 2015.5 22.35 9.87 4.58 2.33 4.67 0.62 2.776 0.721 0.100 0.397 

27.70 7.52 4.31 0.95 1.20 0.47 1.422 0.476 0.069 0.391 2026.0 21.91 10.03 5.08 2.22 4.30 0.59 2.758 0.710 0.107 0.394 

26.82 8.88 3.69 0.88 1.31 0.46 1.296 0.496 0.041 0.353 2035.0 21.32 9.66 6.33 2.29 4.41 0.57 2.676 0.718 0.138 0.388 

25.61 10.14 3.40 0.99 1.57 0.60 1.767 0.549 0.038 0.319 2044.0 21.68 9.86 5.79 2.37 4.41 0.57 2.809 0.732 0.131 0.394 

29.98 6.66 3.13 0.92 1.45 0.55 1.634 0.420 0.029 0.219 2053.5 21.77 9.60 5.25 2.42 4.94 0.59 2.725 0.725 0.116 0.399 

30.24 6.63 3.19 0.76 1.06 0.35 1.172 0.438 0.025 0.223 2064.0 21.04 9.68 5.27 2.45 4.93 0.54 2.795 0.712 0.134 0.382 

27.25 6.99 5.63 0.73 1.29 0.54 1.415 0.454 0.234 0.251 2080.0 20.75 9.36 5.45 2.53 5.46 0.52 2.760 0.722 0.139 0.376 

27.67 7.21 3.96 0.78 1.20 0.55 1.706 0.461 0.032 0.231 2096.0 21.26 9.27 4.96 2.49 5.59 0.55 2.841 0.689 0.134 0.379 

28.02 5.21 4.26 0.60 0.91 0.37 1.077 0.327 0.020 0.244 2114.0 21.04 9.98 4.95 2.45 5.09 0.60 2.664 0.675 0.131 0.388 

26.27 8.32 4.35 0.95 1.28 0.51 1.541 0.495 0.041 0.383 2239.5 22.39 7.72 5.34 2.70 6.29 0.59 2.801 0.629 0.132 0.295 

24.90 7.13 6.62 0.86 1.24 0.40 1.309 0.447 0.383 0.451 2248.5 24.20 5.83 6.67 0.79 5.18 0.42 1.125 0.400 0.256 0.274 

24.33 7.37 6.67 0.93 1.98 0.49 1.547 0.472 0.793 0.417 2258.0 31.87 3.85 5.20 0.36 0.86 0.60 1.075 0.212 0.143 0.196 

24.81 8.88 4.58 1.00 2.60 0.80 2.260 0.543 0.293 0.327 2267.0 30.53 5.08 4.83 0.41 0.96 1.19 1.784 0.247 0.151 0.181 

24.93 9.59 4.73 1.06 1.71 0.85 2.136 0.556 0.259 0.392 2276.0 28.95 5.40 5.29 0.74 1.94 0.50 1.146 0.345 0.181 0.243 

24.39 11.18 3.90 1.14 1.84 0.81 2.315 0.649 0.074 0.316 2285.5 29.57 2.01 10.78 0.26 0.83 0.14 0.392 0.141 0.454 0.189 

25.50 10.24 3.44 1.04 1.94 1.19 3.285 0.538 0.067 0.236 2294.5 29.23 2.24 10.73 0.28 0.85 0.13 0.428 0.155 0.427 0.186 

27.15 9.34 2.64 0.54 1.71 2.27 6.115 0.286 0.090 0.087 2303.5 24.73 5.86 8.07 0.68 2.87 1.02 2.411 0.255 0.361 0.159 

25.76 8.71 4.72 0.49 1.83 2.22 6.006 0.245 0.158 0.087 2313.0 29.99 5.63 4.23 0.62 1.50 0.56 1.302 0.358 0.263 0.231 

27.45 9.21 2.47 0.49 1.75 2.39 6.445 0.250 0.094 0.060 2349.5 25.58 8.77 4.19 1.44 2.78 0.74 1.925 0.611 0.074 0.324 

26.70 7.40 4.88 0.96 1.74 0.64 1.886 0.446 0.500 0.235 2360.0 24.50 8.55 5.12 1.22 3.09 0.61 1.711 0.618 0.133 0.324 

24.01 8.08 4.99 1.08 3.72 0.53 1.652 0.543 0.596 0.318 2370.0 24.90 7.33 4.00 1.69 4.21 0.96 2.043 0.503 0.089 0.206 

23.68 9.22 4.85 1.16 2.97 0.52 1.488 0.613 0.537 0.370 2379.0 25.70 8.07 4.54 1.28 2.72 0.66 1.759 0.584 0.089 0.258 

24.42 9.78 4.83 1.14 2.23 0.49 1.531 0.664 0.287 0.404 2389.0 24.80 8.82 5.28 1.13 2.40 0.57 1.708 0.619 0.106 0.309 

23.91 8.43 7.03 1.08 2.29 0.39 1.292 0.564 0.606 0.385 2399.0 25.30 8.88 4.81 1.17 2.40 0.61 1.854 0.618 0.094 0.323 

22.75 8.34 8.85 0.97 2.01 0.41 1.260 0.551 0.491 0.352 2413.5 23.80 9.65 5.31 1.18 2.59 0.74 1.999 0.656 0.176 0.335 

25.44 9.54 4.53 1.06 1.71 0.42 1.502 0.700 0.074 0.384 2423.0 23.84 9.68 5.20 1.19 2.69 0.82 2.050 0.661 0.155 0.326 

24.96 9.30 5.14 1.03 1.87 0.43 1.426 0.666 0.186 0.365 2432.5 23.37 10.56 4.60 1.17 2.36 0.86 2.100 0.720 0.109 0.330 

23.27 9.21 4.37 1.08 4.75 0.97 2.300 0.551 0.265 0.280 2445.5 24.86 10.28 3.47 1.04 2.07 1.55 3.001 0.578 0.084 0.210 

23.40 9.81 4.84 1.25 3.88 0.91 2.242 0.622 0.191 0.343 2457.5 26.09 9.63 2.91 0.69 1.75 2.33 4.279 0.425 0.117 0.133 

23.49 8.31 5.33 1.18 4.17 0.73 1.916 0.539 0.278 0.271 2470.0 27.13 9.52 2.62 0.59 2.05 3.34 5.514 0.289 0.125 0.063 

22.87 10.59 4.22 1.29 3.20 0.68 1.767 0.744 0.093 0.399 2480.0 25.07 9.91 3.58 0.81 2.05 1.97 3.390 0.515 0.125 0.225 

22.69 8.05 5.99 1.13 3.93 0.60 1.498 0.529 0.455 0.298 2490.0 25.40 9.68 3.79 0.84 1.91 1.78 3.083 0.527 0.127 0.217 

22.09 7.40 4.24 1.58 9.03 1.28 2.906 0.390 0.169 0.181 2499.5 27.67 8.29 3.36 0.86 1.66 1.11 2.178 0.471 0.065 0.207 

22.20 6.63 5.86 0.83 5.68 0.41 1.052 0.469 0.205 0.222 2508.5 28.23 6.34 5.54 0.63 1.51 0.97 1.815 0.331 0.142 0.178 

22.21 7.33 4.28 0.91 6.27 0.46 1.147 0.534 0.205 0.255 2518.0 27.33 7.01 5.54 0.94 2.05 0.56 1.230 0.428 0.134 0.214 

23.45 8.49 4.24 1.76 7.40 1.35 3.878 0.406 0.156 0.189 2527.0 27.85 7.52 3.86 1.02 2.21 0.57 1.397 0.475 0.084 0.224 

19.96 5.59 6.01 0.71 6.21 0.32 0.804 0.411 2.722 0.262 2549.5 29.60 6.08 4.35 0.84 1.50 0.44 1.216 0.408 0.096 0.290 

21.96 8.65 4.12 0.98 5.02 0.49 1.316 0.636 0.681 0.299 2561.0 27.35 6.63 5.66 0.82 1.96 0.86 1.723 0.367 0.201 0.257 

16.20 3.76 10.01 0.55 7.38 0.20 0.560 0.349 3.856 0.265 2570.0 21.69 4.21 14.65 0.53 1.61 0.27 0.775 0.276 0.898 0.235 

21.04 9.04 4.81 1.51 6.55 0.69 1.514 0.561 0.251 0.362 2579.0 27.74 7.30 4.30 1.01 2.18 0.37 1.207 0.474 0.220 0.322 

22.78 4.75 8.98 0.73 3.12 0.36 0.933 0.354 0.857 0.328 2588.0 25.84 7.87 4.81 1.14 2.49 0.55 1.393 0.533 0.272 0.350 

22.83 7.20 6.95 1.03 3.40 0.57 1.922 0.594 0.379 0.347 2609.5 22.74 9.57 6.09 1.19 2.63 0.53 1.524 0.615 0.769 0.427 

19.35 4.56 9.03 0.70 7.13 0.35 0.699 0.269 1.014 0.300 2620.0 23.08 8.76 7.19 1.01 2.14 0.80 1.651 0.576 0.622 0.332 

15.37 4.69 10.24 0.78 9.15 0.34 0.591 0.250 1.515 0.346 2631.5 25.36 9.51 3.97 0.92 1.96 1.60 2.486 0.539 0.160 0.292 

14.19 1.48 11.47 0.37 9.53 0.11 0.238 0.094 1.476 0.378 2645.0 28.61 7.09 3.95 0.89 1.45 0.50 1.336 0.482 0.086 0.323 

16.87 2.73 8.59 0.51 9.50 0.17 0.399 0.161 1.008 0.391 2654.0 26.47 8.64 4.01 1.03 2.14 1.04 2.083 0.519 0.127 0.326 

16.49 1.33 12.78 0.30 7.95 0.11 0.230 0.101 1.881 0.217 2663.5 29.69 6.64 3.40 0.72 1.33 1.06 1.973 0.380 0.137 0.222 

21.33 6.39 6.68 0.92 5.97 0.38 1.126 0.481 0.526 0.268 2672.5 22.26 4.34 13.21 0.50 1.74 0.58 1.054 0.257 1.185 0.237 

23.97 7.71 6.66 0.99 2.40 0.41 1.316 0.633 0.328 0.303 2681.5 31.14 5.44 3.30 0.68 1.22 0.36 0.923 0.368 0.313 0.253 

22.43 9.47 5.17 1.12 3.93 0.51 1.483 0.780 0.201 0.372 2690.5 29.68 5.88 3.83 0.77 1.56 0.41 0.959 0.387 0.427 0.330 

21.72 8.82 5.45 1.21 4.99 0.52 1.566 0.650 0.371 0.350 2699.5 29.01 4.07 6.17 0.56 1.32 0.30 0.745 0.272 1.154 0.359 

17.58 6.33 5.41 1.19 10.91 0.39 1.386 0.486 0.718 0.266 2708.0 27.25 4.38 7.62 0.75 1.70 0.39 0.863 0.317 1.242 0.354 

16.51 6.13 4.66 1.20 12.63 0.39 1.377 0.450 0.841 0.250 2717.5 30.21 4.08 5.28 0.55 1.18 0.29 0.712 0.272 0.714 0.388 

18.81 8.26 5.99 1.40 7.93 0.42 1.735 0.621 0.375 0.345 2729.0 31.29 4.57 3.24 0.62 1.24 0.28 0.759 0.301 0.105 0.393 

16.77 7.80 8.29 1.34 8.62 0.48 1.634 0.534 0.457 0.323 2748.0 31.48 4.44 3.02 0.72 1.36 0.28 0.731 0.291 0.091 0.365 

18.02 8.64 5.16 1.49 8.96 0.44 1.849 0.600 0.324 0.341 2826.5 28.76 5.79 4.02 0.92 2.15 0.44 1.009 0.385 0.136 0.325 

19.33 9.83 5.25 1.61 6.96 0.52 1.961 0.639 0.182 0.383 2855.5 30.67 5.85 2.85 0.53 1.25 1.04 1.930 0.297 0.101 0.351 

20.69 9.59 4.91 1.74 6.85 0.83 2.350 0.576 0.153 0.337 2874.0 32.19 4.58 2.81 0.77 1.62 0.40 1.031 0.298 0.077 0.297 

19.14 9.52 6.18 1.72 6.67 0.53 2.099 0.623 0.177 0.373 2883.0 26.12 2.72 11.62 0.34 1.22 0.15 0.454 0.181 0.789 0.236 

21.39 10.53 4.36 1.89 5.33 0.67 2.356 0.663 0.111 0.394 2892.5 32.46 4.95 2.28 0.52 0.85 0.29 0.812 0.311 0.055 0.180 

21.42 10.03 5.29 1.88 5.40 0.79 2.654 0.620 0.126 0.361 2902.0 29.99 6.37 2.81 0.57 1.12 0.85 1.562 0.355 0.072 0.208 

20.93 10.28 5.35 1.94 4.88 0.58 2.385 0.705 0.111 0.390 2911.0 30.33 6.22 2.79 0.69 1.17 0.73 1.491 0.353 0.159 0.186 

20.51 9.86 6.45 1.94 5.23 0.62 2.291 0.567 0.153 0.384 2920.5 25.87 8.82 3.66 1.19 2.50 0.60 1.297 0.506 0.062 0.298 

20.58 9.30 6.02 2.21 6.15 0.59 2.312 0.683 0.138 0.384 2930.5 28.36 7.16 3.61 0.90 1.42 0.47 1.268 0.465 0.152 0.238 

20.73 10.06 5.81 1.95 5.00 0.62 2.366 0.672 0.124 0.384 2952.5 25.68 9.04 3.94 1.09 2.15 0.59 1.312 0.525 0.079 0.340 

20.94 10.08 5.76 2.05 4.60 0.59 2.506 0.685 0.119 0.387 2964.0 29.27 6.67 3.42 0.79 1.26 0.69 1.489 0.399 0.128 0.232 
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2976.5 32.02 	4.88 	3.15 	0.57 	0.96 	0.58 1.224 0.284 0.075 0.198 

	

2989.5 31.71 	4.45 	3.67 	0.51 	0.94 	0.29 0.774 0.268 0.187 0.238 

	

3000.0 31.51 	4.15 	4.22 	0.54 	1.08 	0.30 0.737 0.272 0.248 0.235 

	

3011.5 33.71 	3.32 	3.19 	0.40 	0.73 	0.20 0.556 0.205 0.207 	0.212 

	

3021.5 34.95 	2.63 	2.81 	0.35 	0.58 	0.17 0.466 0.172 	0.242 	0.166 

	

3031.5 35.38 	2.21 	2.95 	0.29 	0.58 	0.16 0.445 0.136 0.342 	0.141 

	

3044.5 34.59 	1.48 	3.58 	0.24 	1.34 	0.09 0.275 0.095 0.508 0.121 

	

3056.0 28.41 	1.92 	7.40 	0.29 	3.83 	0.11 0.329 0.117 0.494 0.222 

	

3067.5 28.29 	1.74 11.01 	0.26 	0.98 	0.12 0.320 0.115 0.503 	0.195 

	

3078.0 32.56 	3.79 	3.37 	0.44 	0.73 	0.21 0.615 0.229 0.109 0.225 

	

3088.0 28.17 	5.42 	6.10 	0.65 	1.22 	0.31 0.931 0.332 0.220 0.225 

	

3098.5 26.49 	7.00 	5.59 	0.91 	1.69 	0.47 1.218 0.436 0.193 0.250 

	

3110.0 27.71 	7.50 	3.75 	1.01 	1.64 	0.60 1.424 0.465 0.061 0.224 

	

3122.0 27.19 	8.25 	3.78 	1.03 	1.49 	0.53 1.462 0.542 0.066 0.249 

	

3155.5 28.62 	6.83 	3.63 	0.93 	1.55 	0.55 1.349 0.450 0.078 0.275 

	

3166.0 29.30 	6.71 	3.13 	0.63 	1.27 	1.06 1.870 0.349 0.102 0.255 

	

3176.5 30.40 	5.70 	3.25 	0.59 	0.98 	0.36 0.948 0.363 0.087 0.267 

	

3187.0 29.99 	4.58 	5.23 	0.52 	1.02 	0.28 0.787 0.300 0.214 0.271 

	

3197.0 27.58 	3.33 	9.20 	0.44 	1.28 	0.23 0.596 0.223 0.370 0.288 

	

3207.0 32.31 	4.44 	3.00 	0.53 	0.98 	0.33 0.862 0.273 0.132 0.351 

	

3217.5 29.69 	6.50 	2.99 	0.71 	1.20 	0.40 1.121 0.406 0.093 0.339 

	

3226.5 28.98 	6.92 	3.05 	0.71 	1.24 	0.41 1.090 0.396 0.095 0.326 

	

3236.5 31.23 	5.22 	2.90 	0.58 	1.11 	0.37 1.058 0.308 0.107 	0.339 

	

3249.5 31.91 	4.47 	3.31 	0.50 	0.80 	0.26 0.743 0.288 0.104 0.280 

	

3258.5 29.39 	4.89 	5.16 	0.63 	1.27 	0.34 0.861 0.330 0.315 0.317 

	

3268.0 31.92 	4.55 	3.02 	0.52 	0.93 	0.29 0.752 0.298 0.134 0.444 

	

3277.0 31.37 	4.90 	2.90 	0.56 	1.07 	0.38 0.920 0.355 0.141 0.441 

	

3286.5 31.33 	4.32 	3.09 	0.97 	1.95 	0.60 1.229 0.311 0.144 0.399 

	

3297.5 30.28 	5.75 	2.72 	0.59 	1.54 	0.88 1.756 0.255 0.121 0.338 

	

3307.5 33.01 	3.34 	2.80 	0.44 	0.93 	0.24 0.488 0.194 0.181 0.517 

	

3317.0 35.37 	1.85 	2.55 	0.27 	0.42 	0.16 0.357 0.118 0.190 0.508 

	

3326.0 33.63 	3.23 	2.59 	0.41 	0.78 	0.42 0.890 0.193 0.133 0.395 

	

3337.0 34.53 	2.59 	2.57 	0.35 	0.59 	0.22 0.530 0.160 0.162 0.409 

	

3356.5 35.81 	1.63 	2.70 	0.23 	0.42 	0.12 0.290 0.105 0.194 0.506 

	

3367.0 34.95 	1.86 	3.53 	0.26 	0.54 	0.12 0.342 0.127 0.202 	0.443 

	

3378.5 31.84 	3.71 	3.58 	0.51 	1.17 	0.27 0.615 0.217 0.171 0.373 

	

3390.0 34.42 	1.78 	3.60 	0.22 	0.47 	0.23 0.493 0.102 0.243 	0.512 

	

3402.5 35.06 	1.42 	3.88 	0.20 	0.41 	0.09 0.229 0.090 0.190 0.549 

	

3412.0 34.11 	1.98 	2.89 	0.30 	0.64 	0.43 0.396 0.135 0.180 0.429 

	

3422.5 33.31 	2.56 	3.11 	0.35 	0.75 	0.19 0.527 0.172 0.184 0.508 

	

3433.5 32.55 	3.13 	3.11 	0.56 	1.13 	0.26 0.585 0.211 0.198 0.508 

	

3444.0 31.10 	4.69 	3.52 	0.45 	0.94 	0.59 1.276 0.276 0.181 0.432 

	

3454.0 28.16 	6.69 	4.22 	0.81 	1.58 	0.40 1.100 0.482 0.133 0.415 

	

3464.0 28.41 	5.44 	5.21 	0.67 	1.59 	0.28 0.774 0.353 0.284 0.403 

	

3474.5 28.55 	6.29 	3.85 	0.78 	1.39 	0.36 1.012 0.400 0.130 0.411 

	

3485.0 27.79 	6.80 	3.59 	0.88 	2.04 	0.45 0.967 0.413 0.128 0.427 

	

3495.5 29.42 	6.09 	3.47 	0.81 	1.42 	0.45 1.066 0.382 0.123 0.377 

	

3504.5 28.05 	6.49 	4.20 	0.87 	1.46 	0.46 1.239 0.413 0.145 0.445 

	

3514.5 27.82 	6.76 	4.46 	0.85 	1.56 	0.55 1.371 0.411 0.174 0.397 

	

3524.5 26.12 	8.06 	4.65 	0.87 	1.80 	1.20 2.304 0.422 0.198 0.334 

	

3534.0 25.37 	7.83 	5.36 	1.01 	2.09 	0.43 1.224 0.470 0.222 0.458 

	

3543.0 27.01 	7.20 	4.16 	1.11 	2.15 	0.51 1.177 0.452 0.112 0.386 

	

3561.0 28.64 	5.95 	4.16 	0.80 	1.40 	0.37 1.040 0.380 0.124 0.483 

	

3571.5 29.41 	5.86 	3.57 	0.74 	1.52 	0.38 0.949 0.342 0.134 0.445 

	

3581.5 32.02 	4.14 	3.47 	0.52 	0.98 	0.24 0.694 0.276 0.162 0.430 

	

3591.0 27.79 	7.42 	3.76 	0.95 	2.20 	0.41 1.093 0.435 0.117 0.457 

	

3600.0 27.13 	7.72 	3.96 	1.01 	2.18 	0.99 1.872 0.445 0.130 0.353 

	

3609.0 26.93 	7.49 	4.51 	0.99 	1.79 	0.66 1.499 0.484 0.167 0.360 

	

3619.5 26.35 	7.67 	5.13 	1.00 	1.85 	0.55 1.390 0.483 0.200 0.394 

	

3630.0 26.80 	7.54 	4.65 	1.00 	1.77 	0.60 1.426 0.475 0.170 0.387 

	

3642.0 27.64 	6.94 	4.50 	0.87 	1.43 	0.59 1.418 0.441 0.172 0.345 

	

3666.0 26.19 	7.91 	4.50 	1.03 	2.39 	0.46 1.126 0.499 0.138 0.524 

	

3677.5 26.20 	7.81 	5.33 	0.88 	1.93 	0.44 1.098 0.473 0.188 0.445 

	

3705.5 28.04 	7.95 	3.55 	0.83 	1.68 	0.91 1.800 0.428 0.097 0.330 

	

3717.0 27.58 	7.62 	3.82 	0.95 	1.98 	0.69 1.359 0.460 0.153 0.324 

	

3727.5 25.21 	8.06 	5.08 	1.61 	3.48 	0.77 1.384 0.565 0.174 0.382 

3738.0 28.36 	7.16 	3.75 	0.81 	1.57 	0.51 1.124 0.429 0.092 0.403 
3768.0 26.28 	9.01 	3.64 	1.05 	2.25 	1.12 1.819 0.499 0.092 0.299 
3779.5 26.09 	8.59 	3.92 	1.23 	2.75 	1.30 1.988 0.524 0.119 0.327 
3790.0 27.51 	8.11 	3.41 	0.80 	1.62 	1.08 1.815 0.453 0.114 0.326 
3800.0 27.33 	7.96 	3.74 	0.84 	1.60 	0.70 1.460 0.465 0.099 0.386 
3810.5 27.39 	7.71 	3.84 	0.85 	1.65 	0.60 1.357 0.470 0.079 0.384 
3854.0 28.00 	6.91 	4.21 	0.84 	1.79 	0.43 1.098 0.426 0.189 0.365 
3864.0 23.92 	9.83 	4.79 	1.38 	3.10 	0.84 	1.715 0.591 0.147 0.390 
3876.0 23.88 	9.46 	5.21 	1.45 	3.09 	0.58 1.450 0.655 0.157 0.409 
3886.0 25.61 	8.46 	4.73 	1.21 	2.52 	0.52 1.396 0.567 0.159 0.407 
3896.5 23.28 	9.86 	4.83 	1.67 	4.13 	0.74 1.404 0.645 0.111 0.463 
3908.5 23.92 	9.62 	5.08 	1.37 	2.89 	0.54 1.468 0.673 0.121 0.411 
3919.5 23.97 	9.66 	4.99 	1.36 	2.72 	0.58 1.560 0.664 0.123 0.403 
3938.5 23.37 	9.57 	5.79 	1.17 	2.60 	1.10 1.957 0.613 0.202 0.359 
3948.0 24.14 	9.53 	5.03 	1.19 	2.52 	0.45 1.385 0.658 0.120 0.443 
3957.0 23.45 10.47 	4.96 	1.32 	2.76 	0.53 1.466 0.730 0.110 0.452 
3967.0 24.53 	9.92 	4.78 	1.15 	2.34 	0.38 1.383 0.664 0.110 0.436 
3977.5 23.56 10.53 	5.14 	1.18 	2.37 	0.42 1.358 0.681 0.131 0.401 
3988.0 21.26 10.37 	7.56 	1.20 	2.81 	0.41 1.400 0.712 0.299 0.452 
3998.0 21.10 10.53 	7.76 	1.18 	2.73 	0.43 1.346 0.704 0.292 0.435 
4008.5 22.42 11.46 	5.12 	1.32 	2.96 	0.47 1.468 0.786 0.129 0.458 
4017.5 22.96 11.32 	4.64 	1.23 	2.72 	0.50 1.371 0.748 0.090 0.424 
4029.0 22.37 10.84 	5.69 	1.40 	3.22 	0.52 1.442 0.755 0.174 0.460 
4052.0 23.44 	9.78 	5.58 	1.30 	2.92 	0.47 1.452 0.683 0.174 0.423 
4062.5 22.03 	8.49 	8.49 	1.16 	2.86 	0.49 1.365 0.567 0.343 0.374 
4073.0 24.81 	9.02 	4.81 	1.35 	3.07 	0.74 1.828 0.614 0.169 0.348 
4083.5 25.34 	9.20 	4.20 	1.24 	2.60 	0.92 1.857 0.621 0.093 0.399 
4097.0 22.89 	9.58 	6.20 	1.30 	3.02 	0.43 1.379 0.656 0.258 0.433 
4106.5 23.59 	8.53 	6.47 	1.16 	2.58 	0.43 1.340 0.583 0.313 0.389 
4120.0 25.14 	8.59 	4.35 	1.35 	2.93 	0.91 1.815 0.591 0.105 0.320 
4130.5 25.89 	8.51 	4.26 	1.11 	2.24 	0.87 	1.779 0.548 0.111 0.380 
4139.5 25.46 	8.39 	4.87 	1.22 	2.49 	0.43 	1.407 0.571 0.112 0.394 
4149.0 22.91 	8.04 	7.02 	1.27 	3.30 	0.44 1.363 0.578 0.227 0.350 
4158.0 24.59 	9.40 	4.76 	1.40 	2.87 	0.48 1.485 0.645 0.086 0.414 
4167.5 24.98 	9.31 	4.46 	1.34 	2.66 	0.46 1.527 0.639 0.073 0.434 
4176.5 24.36 10.01 	4.51 	1.42 	2.71 	0.52 1.541 0.692 0.067 0.402 
4185.5 20.54 	8.76 	9.34 	1.28 	3.34 	0.48 1.340 0.621 0.292 0.387 
4210.0 24.43 	9.56 	4.54 	1.62 	3.44 	0.47 1.576 0.706 0.064 0.387 
4220.5 24.62 	9.00 	4.58 	1.63 	3.95 	0.60 1.518 0.639 0.086 0.381 
4231.0 21.09 	5.89 12.15 	0.91 	2.85 	0.28 1.100 0.442 0.466 0.287 
4241.0 24.90 	8.11 	4.81 	1.23 	3.38 	0.41 1.443 0.637 0.120 0.340 
4251.5 25.65 	8.24 	4.30 	1.94 	3.60 	0.99 1.499 0.679 0.058 0.348 
4262.0 26.46 	8.78 	3.86 	1.15 	2.23 	0.44 1.528 0.627 0.046 0.312 
4272.5 27.62 	7.40 	4.10 	1.02 	2.18 	0.41 1.410 0.520 0.264 0.273 
4281.5 23.61 	9.13 	6.30 	1.33 	2.63 	0.46 1.517 0.694 0.205 0.394 
4290.5 26.07 	8.98 	4.24 	1.12 	1.83 	0.47 1.621 0.637 0.086 0.415 
4303.5 24.22 	8.57 	5.78 	1.75 	3.42 	0.46 1.592 0.727 0.146 0.407 
4312.5 25.65 	8.29 	4.81 	1.55 	2.62 	0.46 1.531 0.686 0.108 0.393 
4323.0 24.46 	9.79 	4.53 	1.42 	2.77 	0.47 1.624 0.783 0.081 0.431 
4333.0 24.87 	9.45 	4.30 	1.42 	2.72 	0.50 1.686 0.669 0.072 0.405 
4342.0 25.76 	8.70 	4.51 	1.28 	2.36 	0.59 1.782 0.618 0.100 0.329 
4351.0 19.32 	6.85 13.27 	1.42 	3.36 	0.48 1.389 0.531 0.433 0.349 
4361.0 26.27 	8.86 	4.01 	1.13 	2.05 	0.72 2.187 0.561 0.078 0.372 
4371.0 26.49 	8.40 	4.26 	1.20 	2.00 	0.42 1.508 0.570 0.081 0.440 
4380.0 28.53 	7.15 	3.81 	0.98 	1.51 	0.42 1.390 0.475 0.074 0.399 
4390.0 28.49 	6.94 	3.84 	0.99 	1.67 	0.41 1.353 0.467 0.087 0.422 
4412.0 25.12 	9.05 	4.29 	1.25 	2.58 	0.47 1.491 0.626 0.056 0.455 
4421.0 27.01 	8.17 	3.94 	0.98 	1.87 	0.55 1.529 0.553 0.091 0.321 
4437.5 26.18 	8.86 	4.04 	1.13 	2.26 	0.44 1.401 0.592 0.077 0.419 
4446.5 26.45 	8.73 	3.97 	1.13 	2.09 	0.48 1.492 0.591 0.063 0.387 
4456.0 26.68 	8.46 	3.94 	1.09 	2.19 	0.82 2.213 0.519 0.096 0.334 
4465.0 27.63 	7.62 	4.42 	0.95 	1.60 	0.46 1.348 0.510 0.122 0.393 
4473.5 27.21 	7.92 	4.39 	0.95 	1.59 	0.53 1.531 0.504 0.115 0.415 
4486.0 26.18 	8.20 	4.48 	1.63 	2.65 	0.49 1.533 0.605 0.077 0.407 
4496.0 27.15 	8.23 	3.88 	1.11 	1.81 	0.49 1.508 0.581 0.069 0.357 
4509.5 27.76 	8.13 	3.46 	0.92 	1.56 	0.45 1.434 0.548 0.045 0.360 
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4519.0 26.99 	8.61 	3.46 	0.96 	1.57 	0.54 1.567 0.598 0.060 0.283 

	

4528.0 24.27 	8.20 	6.74 	0.97 	1.96 	0.54 1.525 0.572 0.234 0.307 

	

4548.0 26.17 	8.04 	4.05 	2.01 	3.22 	0.48 1.531 0.635 0.056 0.333 

	

4556.0 25.49 	9.03 	4.18 	1.20 	2.03 	0.47 1.573 0.649 0.080 0.362 

	

4564.0 26.35 	9.07 	3.84 	1.08 	1.78 	0.49 1.604 0.585 0.066 0.363 

	

4577.0 23.99 	8.96 	5.43 	2.23 	4.02 	0.62 1.621 0.717 0.113 	0.358 

	

4588.0 24.96 	8.34 	6.02 	1.28 	2.31 	0.65 1.860 0.546 0.154 0.343 

	

4597.5 23.73 	8.67 	6.94 	1.23 	2.20 	0.50 1.609 0.590 0.172 0.357 

	

4607.0 24.68 10.18 	4.25 	1.30 	2.22 	0.55 1.646 0.733 0.058 0.393 

	

4618.0 26.30 	9.09 	3.81 	1.09 	1.87 	0.68 1.660 	0.573 	0.074 	0.338 

	

4630.5 28.69 	7.21 	3.61 	1.11 	1.71 	0.42 	1.326 0.487 0.062 	0.310 

	

4641.0 28.15 	7.92 	3.44 	1.02 	1.66 	0.45 1.383 0.502 0.053 0.297 

	

4651.0 28.11 	7.51 	4.06 	0.92 	1.48 	0.41 1.295 0.484 0.080 0.297 

	

4661.0 25.38 	6.94 	6.38 	2.08 	3.76 	0.47 1.342 0.558 0.153 	0.311 

	

4671.5 30.65 	6.18 	2.94 	0.80 	1.23 	0.32 	1.118 0.407 0.044 	0.295 

	

4681.5 27.51 	8.55 	3.59 	0.98 	1.54 	0.44 1.448 0.530 0.062 0.371 

	

4691.5 25.25 	8.95 	4.37 	1.85 	3.17 	0.63 1.688 0.756 0.088 0.354 

	

4710.0 26.43 	8.22 	3.87 	1.32 	2.52 	0.51 	1.415 0.562 	0.061 0.355 

	

4718.5 29.54 	6.99 	3.24 	0.85 	1.38 	0.30 1.277 0.459 0.063 0.356 

	

4730.0 28.75 	7.32 	3.24 	1.01 	1.86 	0.38 1.335 0.473 0.051 0.347 

	

4740.0 27.16 	7.90 	3.84 	1.02 	2.11 	0.44 1.470 0.497 0.088 0.373 

	

4751.5 28.18 	7.56 	3.34 	0.79 	1.75 	1.19 2.468 0.403 0.127 0.249 

	

4763.0 29.22 	7.45 	2.83 	0.67 	1.44 	1.28 2.611 0.373 0.080 0.232 

	

4773.0 27.26 	8.50 	3.43 	0.95 	1.62 	0.46 1.456 0.629 0.060 0.313 

	

4822.5 23.68 10.59 	4.13 	1.58 	3.52 	0.45 1.398 0.648 0.065 0.407 

	

4839.0 24.63 	9.62 	4.26 	1.83 	3.41 	0.49 1.535 0.658 0.058 0.383 

	

4849.5 25.37 	9.82 	3.97 	1.17 	2.30 	0.44 1.490 0.610 0.060 0.394 

	

4859.5 27.10 	8.37 	3.35 	0.98 	2.07 	0.46 1.416 0.501 0.049 0.337 

	

4870.0 31.68 	5.35 	2.68 	0.61 	1.10 	0.20 0.869 0.372 0.033 	0.287 

	

4880.0 30.12 	6.17 	2.64 	0.69 	1.72 	0.30 0.835 0.348 0.063 	0.283 

	

4893.0 30.61 	4.81 	3.09 	0.93 	2.05 	0.24 0.764 0.330 0.067 0.266 

	

4902.5 30.30 	3.78 	5.12 	0.48 	1.06 	0.18 0.685 0.253 0.360 0.259 

	

4913.0 31.09 	3.95 	4.48 	0.60 	1.42 	0.24 0.659 0.238 0.285 0.267 

	

4923.5 34.72 	2.43 	3.02 	0.29 	0.65 	0.13 0.440 0.138 0.294 0.220 

	

4933.0 29.97 	3.42 	6.90 	0.41 	1.04 	0.15 0.607 0.200 0.310 0.246 

	

4943.0 29.72 	5.89 	3.25 	0.73 	1.72 	0.32 0.928 0.343 	0.332 	0.273 

	

4953.5 29.48 	6.33 	3.49 	0.67 	1.41 	0.23 0.883 0.352 0.146 0.297 

	

4962.5 22.42 	6.99 10.34 	0.77 	1.69 	0.32 1.056 0.413 0.451 0.310 

	

4971.5 25.46 	9.73 	3.79 	0.87 	1.36 	0.52 1.551 0.578 0.096 0.280 

	

5006.5 27.27 	8.03 	3.72 	0.99 	1.78 	0.40 1.395 0.515 0.057 0.324 

	

5015.5 24.25 	7.84 	6.81 	1.66 	2.97 	0.48 1.424 0.577 0.154 0.334 

	

5025.0 25.49 	9.10 	3.94 	1.20 	2.46 	0.49 1.558 0.563 0.068 0.351 

	

5034.0 24.56 	9.16 	5.33 	1.15 	2.29 	0.46 1.597 0.565 0.093 0.360 

	

5043.0 22.96 10.21 	5.86 	1.20 	2.47 	0.61 1.778 0.652 0.125 0.375 

	

5052.0 22.79 10.93 	5.12 	1.19 	2.45 	Q.62 1.759 0.696 0.091 0.406 

	

5061.0 23.06 11.01 	4.76 	1.07 	2.59 	1.15 2.691 0.602 0.115 0.349 

	

5070.0 21.92 12.02 	4.72 	1.24 	2.74 	0.63 1.436 0.744 0.092 0.429 

	

5079.0 22.36 11.05 	4.44 	1.46 	3.33 	0.61 1.440 0.701 0.089 0.410 

	

5089.0 21.79 	8.61 	9.08 	1.00 	2.24 	0.39 1.414 0.565 0.218 0.354 
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depth 	Sc 	Ba 	V 	La 	Ce 	Nd 	Cr 	Ni 	Cu 	Zn 

	

5.0 	11.8 1132.1 167.0 	40.5 	71.5 	36.1 	55.7 	23.1 	31.7 	51.4 

	

15.0 	1.1 	233.7 102.5 	13.7 	20.7 	11.9 	13.0 	7.8 	4.8 	25.4 

	

25.0 	1.1 	286.3 	85.0 	12.7 	26.6 	11.1 	11.7 	7.7 	6.7 	21.8 

	

35.0 	1.2 	260.7 	70.7 	15.1 	25.9 	13.8 	11.6 	6.2 	7.5 	22.8 

	

45.0 	-0.1 	167.5 	85.7 	13.9 	22.0 	14.4 	8.5 	5.2 	5.0 	16.6 

	

55.0 	3.6 	111.5 	97.4 	4.5 	6.5 	5.2 	10.8 	3.3 	6.6 	8.8 

	

65.0 	3.4 	108.6 	97.1 	5.8 	3.8 	4.1 	8.6 	3.3 	10.5 	10.6 

	

75.0 	3.9 	160.1 	74.6 	7.4 	9.9 	6.3 	11.5 	5.0 	14.6 	15.4 

	

85.0 	2.7 	106.7 	85.8 	11.4 	5.1 	5.6 	8.8 	4.7 	7.0 	15.3 

	

95.0 	-0.9 	63.3 	87.5 	8.5 	9.0 	5.7 	4.0 	5.3 	2.9 	22.6 

	

105.0 	6.0 	840.6 123.1 	36.0 	49.7 	25.3 	28.7 	12.7 	29.5 	36.9 

	

115.0 	14.0 1818.6 168.0 	67.6 100.5 	46.4 	63.5 	21.7 	38.2 	71.7 

	

125.0 	3.9 	265.3 109.8 	12.1 	18.2 	12.0 	26.3 	8.2 	7.0 	15.4 

	

135.0 	3.7 	42.0 115.5 	4.8 	6.7 	7.1 	10.1 	3.4 	2.7 	12.1 

	

145.0 	3.8 	61.3 	104.4 	6.2 	2.3 	5.7 	7.9 	3.0 	3.2 	11.4 

	

155.0 	1.3 	53.9 	99.3 	6.5 	1.0 	6.0 	10.1 	3.0 	2.6 	12.6 

	

165.0 	3.9 	65.4 	100.3 	5.5 	8.3 	3.7 	10.6 	4.3 	4.2 	15.3 

	

183.0 	1.5 	81.5 	101.4 	21.5 	18.6 	8.2 	13.3 	6.2 	4.2 	19.9 

	

193.0 	1.4 	86.1 	97.5 	20.0 	12.5 	6.7 	12.2 	7.8 	2.7 	21.5 

	

203.0 	1.3 	71.4 	75.4 	2.2 	20.1 	12.0 	9.7 	5.3 	2.6 	18.0 

	

213.0 	-1.9 	77.9 	78.6 	12.4 	10.4 	10.6 	8.8 	5.9 	3.4 	17.5 

	

223.0 	1.7 	131.0 	89.5 	13.0 	26.5 	13.5 	14.8 	7.8 	4.9 	23.3 

	

233.0 	-0.6 	166.9 110.5 	15.8 	37.4 	13.4 	16.3 	8.6 	4.8 	27.8 

	

243.0 	3.0 	120.1 	89.9 	20.1 	42.5 	13.8 	12.9 	7.8 	4.8 	31.2 

	

253.0 	2.6 	110.9 102.2 	17.6 	26.1 	7.8 	14.2 	6.8 	3.3 	23.0 

	

263.0 	1.4 	94.9 	114.4 	8.6 	13.5 	7.0 	11.9 	7.7 	3.0 	29.3 

	

273.0 	-0.4 	63.7 	165.0 	31.7 	0.4 	3.2 271.5 	10.0 	1.7 	39.8 

	

283.0 	-0.1 	69.0 167.1 	15.0 	15.2 	5.8 	76.4 	6.9 	0.7 	43.5 

	

293.0 	2.3 	77.3 	142.4 	5.3 	16.4 	7.6 	52.8 	5.9 	3.7 	37.4 

	

303.0 	3.2 	139.3 	152.5 	9.2 	21.9 	8.7 	64.0 	6.4 	4.9 	37.0 

	

310.5 	3.6 	888.8 156.8 	48.4 	76.1 	30.1 106.8 	10.5 	17.8 	67.1 

	

315.5 	5.2 1722.6 159.8 	83.5 143.4 	65.5 	26.7 	12.7 	33.1 	84.8 

	

320.5 	8.2 1513.1 154.6 	84.4 151.9 	50.5 	44.2 	17.5 	33.5 	81.7 

	

327.5 	0.9 	344.3 	127.7 	26.9 	42.8 	23.2 	55.4 	6.6 	8.2 	38.6 

	

335.5 	1.5 1479.2 133.5 	85.7 161.9 	53.5 	42.4 	21.1 	35.4 	80.0 

	

343.0 	5.0 	127.6 194.7 	30.6 	35.2 	13.0 	33.8 	6.8 	2.1 	35.3 

	

353.0 	0.1 	393.1 126.5 	54.9 	58.1 	19.8 	48.6 	9.0 	6.1 	50.4 

	

362.5 	1.9 	172.6 189.5 	68.2 	33.7 	18.0 	21.6 	7.1 	-1.3 	41.8 

	

377.0 	5.6 	747.9 161.9 	60.7 	85.6 	34.1 	22.5 	10.2 	10.7 256.2 

	

387.0 	2.2 	222.6 233.0 	23.7 	36.8 	17.5 	22.7 	10.3 	2.8 312.7 

	

397.0 	3.2 	137.2 	182.9 	13.6 	19.2 	8.5 	24.0 	10.6 	1.3 	405.4 

	

407.0 	1.9 	148.7 194.2 	15.7 	31.0 	13.3 	17.7 	9.5 	2.4 388.1 

	

417.0 	2.9 	125.0 248.9 	12.7 	22.2 	7.7 	20.8 	9.6 	0.0 348.4 

	

427.0 	4.5 	351.2 207.8 	22.4 	37.9 	16.1 	15.9 	7.6 	1.5 180.6 

	

437.0 	2.0 	115.2 	189.8 	18.0 	19.9 	7.9 	14.2 	6.5 	2.4 215.3 

	

447.0 	3.3 	800.6 	136.3 	33.1 	61.4 	26.4 	11.0 	6.9 	4.1 	163.6 

	

457.0 	0.5 	90.0 257.3 	14.1 	14.5 	6.3 	14.7 	8.2 	-4.2 	160.1 

	

467.0 	1.8 	84.3 254.8 	19.0 	8.5 	7.4 	14.8 	5.2 	-4.7 	192.8 

	

477.0 	-0.5 	206.5 208.9 	11.8 	15.9 	8.0 	11.4 	5.3 	-6.6 156.5 

	

487.0 	1.1 	76.7 258.2 	7.5 	6.8 	3.6 	14.7 	5.3 	-2.8 200.3 

	

497.0 	0.9 	81.4 272.4 	11.2 	7.5 	4.7 	16.6 	5.4 	-2.6 206.6 

	

507.0 	3.6 	213.3 206.4 	48.2 	88.4 	28.6 	15.0 	5.7 	-3.9 122.6 

	

517.0 	-2.3 	75.9 310.1 	6.1 	11.0 	6.2 	17.0 	5.4 	-0.7 	171.8 

	

527.0 	1.1 	59.7 225.5 	12.6 	8.8 	0.9 	13.9 	6.6 	-0.1 146.5 

	

537.0 	2.1 	40.4 	140.1 	12.1 	10.5 	9.6 	12.1 	3.3 	6.4 	134.8 

	

547.0 	0.8 	51.8 231.7 	14.4 	3.2 	4.2 	16.3 	2.6 	5.5 114.6 

	

555.0 	0.9 	51.1 291.1 	5.8 	9.7 	2.4 	18.0 	5.0 	6.1 	120.2 

	

562.0 	-0.4 	67.6 330.8 	8.4 	5.0 	-0.1 	17.1 	5.9 	5.4 	99.0 

	

577.0 	0.5 	263.5 206.3 	12.0 	28.8 	4.8 	13.5 	10.5 	10.7 248.8 

	

587.0 	1.6 	227.6 240.9 	6.4 	13.4 	5.1 	14.5 	8.6 	5.1 198.8 

	

597.0 	-1.0 	417.3 260.5 	-2.6 	16.1 	8.9 	14.7 	15.4 	2.4 235.1 

	

607.0 	-0.5 1814.9 268.2 	5.1 	5.0 	9.9 	15.7 	18.5 	6.1 136.8 

	

617.0 	-1.3 2530.7 261.1 	11.7 	26.4 	10.7 	16.1 	18.1 	12.7 122.8 

	

626.0 	3.7 2725.0 173.7 	60.3 	99.7 	35.7 	21.3 	13.9 	16.6 112.1 

	

634.0 	2.2 3948.7 253.6 	26.5 	52.2 	20.9 	18.8 	14.0 	9.8 212.3  
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642.0 	3.1 2603.6 164.6 	55.2 114.9 	35.7 	21.1 	12.6 	13.5 168.7 
649.5 	2.5 	892.6 	69.2 	91.1 169.7 	49.1 	19.7 	9.6 	16.7 151.2 
657.5 	1.7 	878.0 	90.2 	71.0 123.6 	31.2 	24.6 	12.9 	13.8 145.5 
667.0 	0.9 1885.5 143.1 	27.0 	48.0 	19.4 	8.1 	12.8 	4.2 118.7 
677.0 	0.9 	1705.4 	115.5 	35.0 	76.6 	31.9 	7.5 	7.9 	3.8 105.6 
687.0 	-0.8 	286.7 228.7 	8.5 	12.9 	7.6 	11.7 	15.6 	-5.0 	79.6 
697.0 	-1.8 	155.3 274.5 	-1.7 	2.5 	5.5 	14.0 	9.8 	0.4 	65.0 
707.0 	0.0 	140.9 	240.8 	14.7 	18.1 	2.0 	13.1 	11.1 	4.5 	52.5 
717.0 	1.1 	390.7 	234.4 	15.1 	8.2 	7.2 	14.6 	8.7 	6.4 	69.8 
727.0 	1.0 	370.0 231.1 	4.8 	8.6 	3.6 	14.5 	7.9 	6.7 	86.3 
737.0 	-0.6 	293.6 214.5 	4.5 	9.9 	4.5 	14.8 	7.6 	4.6 	74.2 
747.0 	0.4 	1163.7 	153.4 	26.9 	63.0 	29.5 	14.6 	7.8 	6.9 	87.0 
756.5 	4.0 	984.2 150.8 	60.8 127.2 	39.3 	20.9 	10.0 	14.7 	72.0 
776.5 	2.2 1111.0 123.4 	48.6 101.5 	41.7 	27.3 	13.8 	17.3 	70.9 
785.0 	5.1 2037.2 	122.0 	66.8 132.8 	54.8 	24.1 	8.5 	14.6 	82.4 
794.0 	0.2 	556.2 144.5 	32.7 	88.3 	27.6 	34.6 	19.7 	16.0 	59.1 
804.0 	4.2 	848.9 181.3 	30.4 	83.3 	37.4 	38.2 	22.6 	17.2 	63.5 
814.5 	4.1 1539.4 231.5 	34.5 	80.2 	29.3 	35.1 	20.1 	13.1 	58.1 
825.0 	1.4 	580.1 	339.0 	23.7 	36.5 	21.3 	32.4 	27.7 	11.2 	56.5 
835.0 	4.4 	344.0 350.9 	21.5 	52.9 	19.9 	35.9 	33.1 	13.4 	56.1 
845.0 	4.2 	321.6 267.9 	26.3 	65.0 	26.9 	31.0 	18.6 	10.2 	55.7 
855.0 	7.6 	608.0 221.1 	47.5 	92.8 	33.4 	31.1 	17.2 	15.6 	56.2 
865.0 	5.9 	959.9 141.4 	65.9 147.2 	55.6 	19.1 	9.9 	9.9 	73.0 
877.0 	4.2 	391.8 144.3 	53.1 133.9 	42.7 	32.3 	13.4 	12.3 	65.7 
887.0 	5.5 	458.9 136.5 	70.0 154.8 	54.4 	28.4 	15.4 	11.3 	66.1 
897.0 	7.4 	547.3 156.3 	72.0 143.6 	49.5 	43.8 	16.2 	18.0 	60.6 
906.0 	5.4 	683.7 113.7 	68.0 141.9 	44.8 128.4 	26.2 	11.9 	72.7 
915.0 	7.6 	580.6 170.7 	90.5 185.2 	62.3 	54.3 	28.6 	27.0 	77.6 
924.5 	9.0 	689.1 174.9 	98.6 173.4 	57.5 	60.6 	27.9 	31.6 	90.6 
932.5 	5.1 	523.2 	94.6 123.0 242.3 	68.4 	24.7 	12.8 	12.3 106.2 
941.0 	6.6 	584.0 184.6 	84.8 173.3 	59.6 	60.0 	29.8 	33.4 	68.7 
951.0 	7.2 	665.8 242.7 113.9 231.2 	70.4 	64.5 	27.7 	32.7 	86.8 
961.0 	10.6 	612.2 205.2 	109.8 216.9 	73.2 	72.4 	30.6 	37.5 	74.7 
977.0 	15.6 	816.1 219.5 129.5 233.0 	80.0 	87.0 	41.2 	43.6 216.4 
987.0 	11.6 	590.1 241.8 	85.0 189.4 	62.3 	80.9 	34.9 	33.6 157.5 
997.0 	10.1 	825.4 231.0 110.5 236.3 	80.3 	80.2 	35.5 	43.9 189.9 

1007.0 	7.2 1328.3 131.2 	76.3 153.7 	54.5 	39.6 	20.2 	32.8 162.2 
1017.0 	5.2 1033.2 142.6 	79.6 149.4 	54.7 	53.5 	23.8 	28.4 175.6 
1027.0 	10.5 	785.4 186.2 105.2 217.6 	76.6 	67.5 	34.7 	36.6 246.9 
1037.0 	8.4 	784.4 176.5 123.3 244.5 	77.4 	71.1 	39.8 	40.9 220.8 
1047.0 	11.2 1026.1 202.7 141.0 278.2 	92.8 	69.4 	44.7 	47.9 229.4 
1057.0 	9.7 	727.1 206.4 119.4 214.3 	74.0 	75.6 	41.0 	42.1 194.7 
1067.0 	11.2 	729.1 207.1 113.7 217.6 	71.2 	73.8 	39.8 	40.2 197.1 
1077.0 	9.3 	744.3 189.8 117.5 215.1 	72.1 	69.4 	37.1 	40.4 173.6 
1087.0 	11.8 	932.1 181.2 127.6 237.9 	78.4 	69.5 	37.8 	45.6 201.4 
1097.0 	14.5 1372.4 205.5 153.5 283.8 	97.1 	84.9 	43.7 	49.9 184.2 
1105.5 	7.3 1764.0 146.4 	63.3 150.0 	53.8 	43.4 	19.5 	28.5 132.5 
1112.0 	5.9 1563.0 113.7 	60.7 138.0 	54.5 	34.0 	15.0 	23.4 158.2 
1118.5 	6.1 1751.4 124.9 	58.3 131.5 	51.6 	30.3 	11.5 	23.5 126.5 
1127.0 	10.1 	700.3 178.1 	96.5 162.2 	57.9 	72.1 	43.7 	32.8 208.5 
1137.0 	12.0 	748.5 196.9 	82.2 169.4 	56.6 	74.0 	45.8 	37.3 	174.1 
1147.0 	10.2 	719.7 200.0 	93.6 165.8 	59.4 	79.9 	51.8 	33.4 148.3 
1156.0 	9.8 	841.4 233.9 114.2 210.1 	75.6 	92.4 	55.6 	40.4 129.0 
1161.0 	11.7 1038.6 206.3 119.0 207.4 	75.6 	70.0 	51.7 	39.1 	99.3 
1171.0 	9.8 	841.8 201.4 105.6 173.6 	66.2 	71.0 	45.0 	38.2 107.8 
1181.0 	8.9 	602.9 193.4 	81.1 127.2 	53.2 	61.3 	42.1 	35.3 104.6 
1191.0 	9.1 	700.9 189.0 	96.6 150.3 	58.7 	62.7 	43.8 	38.4 113.8 
1201.0 	10.9 1057.8 194.6 133.9 218.9 	80.4 	87.1 	57.7 	50.4 121.8 
1211.0 	13.8 1152.1 225.1 151.3 262.3 	93.8 	97.1 	63.4 	60.8 125.7 
1221.0 	15.9 1224.9 246.7 167.6 283.0 108.0 102.4 	71.1 	63.6 132.8 
1236.0 	15.0 	960.8 212.8 137.7 229.9 	87.4 	88.4 	44.3 	53.1 100.3 
1246.0 	16.5 1428.7 243.5 185.3 319.3 115.7 109.8 	63.3 	66.9 121.8 
1255.0 	12.9 1174.2 212.5 158.3 252.5 	94.3 	83.0 	38.8 	62.3 110.3 
1264.0 	11.9 1241.3 221.6 146.2 244.1 	92.0 	82.6 	48.2 	57.6 106.1 
1274.0 	16.1 1207.5 233.5 141.9 238.2 	91.0 	91.0 	55.5 	54.4 103.7 
1281.0 	17.8 1824.8 247.8 200.2 308.8 117.4 116.5 	58.2 	59.3 123.1 



CN 

	
Aug 22 	1993 18:08:34 	 tracel 	 i-age i 

	

1288.0 	10.1 1272.1 226.2 146.5 249.2 	90.7 	78.7 	48.4 	57.7 105.6 

	

1298.0 	12.7 1103.0 228.9 146.4 232.5 	87.5 	81.1 	45.2 	62.8 	99.8 

	

1308.0 	10.4 1392.5 217.9 182.1 306.0 106.7 	68.0 	40.7 	73.8 109.4 

	

1320.0 	13.3 1708.2 226.0 196.0 315.7 110.5 	76.4 	41.1 	61.8 117.1 

	

1327.0 	11.2 1134.8 191.0 118.8 196.7 	77.8 	59.4 	36.3 	59.5 	86.0 

	

1335.0 	9.3 1066.7 202.5 147.9 240.7 	89.1 	71.3 	40.9 	55.3 	88.3 

	

1344.0 	8.0 1299.1 238.1 164.0 266.4 	96.6 	65.9 	39.9 	62.6 	99.3 

	

1349.0 	9.4 1139.9 252.4 	146.3 	242.8 	88.0 	66.9 	38.0 	57.0 	96.0 

	

1359.0 	7.1 	739.9 265.3 	96.1 169.3 	61.4 	56.3 	28.1 	46.2 	60.6 

	

1369.0 	11.0 1348.3 309.3 160.3 256.6 	94.0 	79.0 	41.5 	63.2 	96.5 

	

1379.0 	8.6 1127.7 285.0 133.5 217.9 	76.7 	69.3 	40.5 	61.4 107.8 

	

1389.0 	9.8 1219.4 252.4 151.3 251.4 	88.9 	65.0 	40.7 	63.3 112.1 

	

1398.0 	11.3 1805.4 225.4 189.4 301.9 105.8 	61.8 	35.8 	72.4 110.2 

	

1410.0 	15.2 1632.5 208.7 201.6 320.8 109.8 	74.7 	46.9 	66.2 118.0 

	

1420.0 	16.4 1973.7 203.9 228.0 372.1 136.6 	84.8 	49.8 	73.2 126.6 

	

1430.0 	8.3 1518.4 162.1 168.5 273.5 101.5 	78.7 	40.7 	51.9 112.2 

	

1438.5 	4.0 	817.3 	70.5 	92.6 158.3 	61.6 	12.3 	9.1 	13.0 	86.9 

	

1446.0 	3.8 	721.0 	68.1 	74.2 131.0 	47.0 	8.7 	4.3 	10.2 	77.4 

	

1453.0 	4.9 	694.0 	52.1 	80.0 	135.8 	51.2 	6.4 	5.6 	8.2 	78.3 

	

1464.0 	10.7 1211.9 216.6 135.0 228.9 	83.1 	68.3 	45.4 	57.5 110.0 

	

1475.0 	12.5 1651.6 238.8 189.1 301.7 106.6 	77.8 	50.9 	71.4 117.3 

	

1486.0 	11.4 2245.1 259.6 232.4 388.6 130.7 	74.7 	48.2 	88.2 142.5 

	

1496.5 	10.1 2152.8 274.9 243.4 405.9 141.2 	73.3 	44.2 	92.1 149.9 

	

1507.0 	9.9 1855.2 272.5 199.7 335.2 117.6 	70.4 	42.9 	85.9 139.6 

	

1517.0 	13.0 1874.0 294.8 215.8 337.9 117.5 	74.8 	44.5 	87.9 125.8 

	

1527.0 	12.9 2489.5 288.8 274.9 424.2 149.5 	80.5 	48.7 	85.4 142.4 

	

1537.0 	12.9 2247.5 280.6 259.5 409.9 144.5 	76.9 	48.5 	89.8 143.8 

	

1595.5 	9.8 2436.7 208.0 183.6 285.9 111.1 	46.8 	29.1 	70.1 131.0 

	

1605.5 	9.9 2751.7 247.1 213.9 326.6 124.4 	54.3 	33.6 	73.5 123.1 

	

1618.0 	11.8 2429.0 239.4 205.0 293.7 109.6 	64.3 	38.0 	58.5 138.1 

	

1627.0 	13.1 3141.5 282.3 339.8 502.5 178.8 	77.6 	40.6 	87.1 144.2 

	

1636.5 	9.7 2020.6 235.5 207.4 308.8 118.7 	63.0 	41.0 	69.5 128.1 

	

1645.5 	11.0 1794.1 158.9 	77.3 118.0 	64.6 	52.0 	23.8 	29.7 	78.6 

	

1654.5 	9.6 1248.1 205.2 157.6 236.0 	95.6 	48.5 	37.6 	56.6 122.9 

	

1664.5 	12.5 1384.5 235.0 180.4 283.4 106.6 	68.2 	41.8 	60.6 113.8 

	

1674.5 	10.7 2216.9 166.9 	65.8 106.3 	64.9 	60.0 	17.8 	27.3 	79.3 

	

1685.0 	5.3 1202.3 192.2 140.2 211.3 	84.3 	39.0 	35.8 	60.5 117.0 

	

1695.0 	12.9 1605.9 233.7 211.4 349.7 134.2 	72.9 	43.6 	70.8 116.6 

	

1704.0 	3.2 	948.6 220.8 112.0 160.4 	68.8 	38.3 	31.4 	47.7 	95.0 

	

1727.0 	11.6 2246.4 214.4 218.6 348.2 132.9 	53.1 	30.6 	87.5 111.2 

	

1746.0 	11.1 	820.3 215.7 106.4 147.6 	57.5 	49.0 	65.5 	39.8 104.3 

	

1756.5 	6.7 1636.4 279.0 196.0 297.2 110.7 	54.6 	45.8 	67.4 118.8 

	

1765.5 	3.3 	879.1 183.9 	99.3 139.6 	58.9 	32.6 	37.7 	46.2 	87.8 

	

1774.5 	2.5 	988.9 176.4 	99.6 162.2 	62.2 	22.4 	22.2 	56.2 	70.2 

	

1783.5 	-0.3 	363.6 139.8 	33.2 	25.2 	20.7 	12.9 	22.2 	22.0 	46.3 

	

1794.0 	-0.1 	614.2 136.1 	59.7 	86.2 	40.1 	17.2 	27.5 	32.4 	61.6 

	

1804.5 	-1.6 	356.1 149.0 	32.4 	23.8 	23.9 	20.6 	29.8 	23.8 	56.9 

	

1821.5 	7.8 1630.0 222.9 182.5 266.0 	98.9 	60.9 	49.0 	62.0 114.8 

	

1832.0 	12.0 1700.8 238.5 200.2 308.3 116.4 	64.4 	59.3 	64.6 146.4 

	

1842.0 	9.1 2306.0 261.8 268.1 412.9 146.9 	79.4 	55.9 	72.5 151.2 

	

1851.0 	10.3 3010.2 239.7 270.2 395.7 143.5 	61.2 	50.5 	74.7 147.9 

	

1860.0 	10.3 2146.0 203.5 194.6 288.1 107.1 	63.9 	46.4 	62.8 115.5 

	

1869.0 	12.1 2168.3 195.1 186.6 277.2 107.3 	62.5 	43.8 	63.7 115.2 

	

1878.5 	10.0 2851.3 226.1 241.4 386.9 146.1 	76.4 	42.0 	84.2 127.3 

	

1888.0 	6.5 2502.4 227.0 220.1 337.4 132.4 	64.2 	35.2 	83.5 119.0 

	

1898.0 	16.4 3041.5 240.6 263.6 411.1 150.4 	75.1 	40.6 	91.3 135.3 

	

1909.0 	9.7 3215.1 235.4 287.9 444.8 162.4 	74.6 	32.4 	98.5 134.0 

	

1929.0 	10.7 2757.8 212.4 220.6 355.9 131.1 	65.7 	33.0 	86.4 120.5 

	

1940.5 	7.6 3320.8 249.5 279.6 444.3 159.1 	86.7 	37.6 	97.1 140.0 

	

1949.5 	12.5 3472.6 228.0 290.6 457.6 169.3 	80.9 	34.5 	100.1 140.2 

	

1959.0 	10.6 3383.8 222.9 255.4 404.7 148.8 	82.7 	33.1 	91.0 133.2 

	

1969.0 	13.4 3598.6 248.0 299.3 471.3 168.8 	95.2 	40.4 	98.5 150.9 

	

1979.0 	13.8 3484.4 238.9 281.3 445.4 153.7 	85.0 	32.8 	98.2 132.5 

	

1988.0 	9.7 3293.4 249.1 276.0 426.7 156.8 	97.7 	39.4 	92.1 137.4 

	

1997.5 	13.7 3513.0 245.5 291.9 462.7 161.1 	90.7 	38.1 	101.4 151.0 

	

2006.5 	14.7 3757.0 250.1 293.0 463.9 166.6 	106.0 	39.5 	97.4 147.0  
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2015.5 	17.1 3775.1 254.9 291.3 455.7 161.1 110.0 	48.9 	89.8 155.8 

	

2026.0 	11.8 3811.4 252.4 298.8 450.4 165.6 114.2 	45.3 	91.4 145.6 

	

2035.0 	9.1 3659.8 261.5 298.2 460.3 167.8 114.5 	44.1 	88.6 169.5 

	

2044.0 	14.6 3828.9 258.2 294.0 469.2 170.3 119.0 	48.1 	88.9 151.4 

	

2053.5 	14.2 3772.6 251.7 290.9 449.5 166.7 117.1 	47.3 	83.1 155.6 

	

2064.0 	14.3 3995.3 271.6 316.8 474.0 166.9 119.1 	46.9 	88.8 164.5 

	

2080.0 	15.2 3864.8 272.4 308.4 459.2 	164.0 121.2 	48.0 	85.1 148.6 

	

2096.0 	12.3 3811.7 250.7 303.3 445.7 	161.6 125.1 	53.2 	80.1 159.5 

	

2114.0 	8.8 4104.3 238.7 310.9 470.2 	164.3 110.2 	38.7 	93.7 152.2 

	

2239.5 	15.4 2606.3 236.2 209.0 320.9 128.8 157.9 	54.0 	56.6 123.0 

	

2248.5 	6.6 1763.8 242.5 176.0 269.2 	102.8 	50.9 	39.5 	67.5 	96.9 

	

2258.0 	6.8 	536.2 184.9 	84.3 139.0 	56.3 	31.2 	29.9 	34.0 	65.7 

	

2267.0 	7.1 	697.9 166.7 	96.4 160.6 	66.3 	36.6 	28.7 	31.8 	74.3 

	

2276.0 	6.2 	964.6 201.8 136.6 208.8 	82.7 	48.6 	40.0 	46.9 	82.2 

	

2285.5 	1.0 	443.8 184.3 	62.6 	88.9 	37.5 	26.7 	40.0 	43.6 	59.7 

	

2294.5 	2.6 	521.6 172.3 	69.7 	87.0 	41.2 	28.4 	40.2 	47.7 	66.5 

	

2303.5 	6.0 1068.4 138.8 109.2 153.3 	55.1 	29.8 	27.1 	40.7 	77.0 

	

2313.0 	9.2 1060.7 189.8 127.5 208.4 	79.5 	49.5 	45.8 	49.9 	82.3 

	

2349.5 	14.2 2105.3 217.5 207.9 340.5 134.5 	92.2 	53.1 	68.4 116.4 

	

2360.0 	15.5 1930.0 221.1 223.4 337.5 127.4 	77.2 	45.0 	73.9 119.7 

	

2370.0 	14.5 1070.6 209.7 153.3 259.5 104.4 	107.2 	59.9 	46.4 	99.8 

	

2379.0 	11.0 1461.0 218.7 190.2 296.7 115.2 	82.8 	51.4 	65.6 114.3 

	

2389.0 	12.8 1955.1 236.0 217.8 345.8 136.5 	68.2 	41.9 	81.9 123.0 

	

2399.0 	7.8 2334.0 217.1 218.7 349.5 134.9 	62.2 	42.2 	79.2 121.2 

	

2413.5 	9.6 2482.9 216.4 235.3 378.9 143.4 	65.1 	38.9 	83.6 127.4 

	

2423.0 	15.8 2020.4 223.2 243.4 381.6 146.7 	73.7 	41.1 	78.0 128.0 

	

2432.5 	14.5 2156.0 225.0 294.1 433.7 155.9 	78.1 	44.6 	77.3 135.0 

	

2445.5 	10.6 1428.9 160.5 212.6 340.8 128.1 	81.2 	39.3 	47.0 127.9 

	

2457.5 	11.3 1188.1 	97.3 157.3 262.3 103.8 	37.2 	18.9 	27.0 126.1 

	

2470.0 	8.1 	962.3 	53.6 116.3 191.7 	78.4 	15.2 	5.2 	8.3 110.4 

	

2480.0 	7.0 1487.2 162.7 203.2 341.1 125.9 	46.3 	25.6 	53.1 128.3 

	

2490.0 	9.4 1305.0 171.5 208.9 336.8 120.1 	54.9 	33.1 	52.4 127.4 

	

2499.5 	11.0 1396.9 188.2 170.0 280.7 107.1 	61.0 	41.2 	56.3 110.3 

	

2508.5 	5.4 1188.7 175.9 136.3 228.4 	89.4 	44.0 	31.0 	52.6 	95.2 

	

2518.0 	5.4 1191.1 219.0 155.7 254.8 	99.2 	67.6 	47.0 	59.4 	96.1 

	

2527.0 	11.2 1406.7 220.1 174.1 284.0 112.3 	67.4 	49.4 	60.7 101.8 

	

2549.5 	9.4 1129.8 200.8 146.0 225.2 	86.4 	73.8 	52.7 	52.0 	97.2 

	

2561.0 	7.3 1881.2 181.4 144.7 233.8 	92.7 	43.1 	29.3 	57.6 	87.9 

	

2570.0 	9.2 1173.0 269.7 115.2 177.6 	72.1 	52.6 	52.6 	70.9 	74.3 

	

2579.0 	11.7 2538.4 239.3 187.6 312.3 	123.5 	56.6 	48.3 	76.5 	98.5 

	

2588.0 	9.6 2418.2 235.1 197.4 327.7 121.3 	80.3 	54.5 	74.7 107.0 

	

2609.5 	9.3 3330.2 227.5 260.7 432.8 160.8 	60.1 	38.5 100.2 120.3 

	

2620.0 	10.2 1712.8 218.1 223.2 346.9 128.8 	66.2 	49.6 	76.4 122.5 

	

2631.5 	11.0 1797.5 188.8 223.4 356.5 132.1 	57.9 	40.4 	64.5 126.9 

	

2645.0 	12.2 1202.7 242.2 164.1 262.7 	97.6 	85.7 	63.9 	59.0 	96.4 

	

2654.0 	12.4 2106.8 216.3 196.0 316.5 119.3 	58.0 	44.8 	65.5 102.5 

	

2663.5 	13.1 	967.9 196.8 131.6 211.5 	83.1 	62.8 	55.7 	39.1 	88.5 

	

2672.5 	1.7 1213.3 292.3 119.1 160.7 	67.9 	50.7 	56.8 	60.0 	74.3 

	

2681.5 	8.3 	975.9 280.3 138.4 203.8 	83.4 	76.3 	70.3 	43.7 	81.2 

	

2690.5 	9.2 1097.6 326.7 145.3 226.2 	89.0 	77.7 	71.1 	49.6 	81.3 

	

2699.5 	5.3 	886.4 371.2 102.8 159.1 	72.7 	64.5 	69.1 	43.4 	68.7 

	

2708.0 	10.1 	945.6 371.3 111.1 171.5 	72.4 	94.1 	81.1 	44.9 	75.2 

	

2717.5 	5.2 	829.5 422.2 100.0 163.0 	65.2 	65.8 	61.0 	45.1 	66.3 

	

2729.0 	7.3 	953.4 469.2 123.5 194.0 	75.2 	60.6 	28.2 	45.8 	57.0 

	

2748.0 	8.3 	890.3 445.7 116.0 170.1 	69.3 	64.0 	34.3 	43.3 	85.2 

	

2826.5 	5.9 1137.3 383.1 141.7 217.2 	90.1 	83.0 	45.4 	53.8 	79.3 

	

2855.5 	6.0 	914.6 316.9 136.4 210.3 	80.2 	42.0 	23.1 	38.5 	97.3 

	

2874.0 	7.2 	776.4 283.7 	96.2 153.7 	64.0 	72.2 	36.5 	35.2 114.0 

	

2883.0 	0.4 	577.9 381.7 	74.7 	89.3 	44.0 	54.3 	36.1 	55.8 	97.0 

	

2892.5 	7.4 	785.5 275.7 106.1 170.0 	67.4 	59.8 	52.0 	43.7 	89.1 

	

2902.0 	8.4 	874.0 254.7 135.0 212.4 	79.6 	61.1 	43.8 	41.8 	82.1 

	

2911.0 	9.1 	829.1 237.7 126.1 209.5 	86.8 	62.4 	42.9 	43.3 	94.4 

	

2920.5 	8.7 1626.4 261.3 194.2 321.6 115.4 	66.0 	38.3 	71.7 101.0 

	

2930.5 	11.0 1103.9 243.3 158.3 253.4 	97.8 	87.7 	60.3 	54.3 104.3 

	

2952.5 	12.2 2081.7 236.8 217.6 361.6 119.2 	63.9 	38.7 	78.9 105.9 

	

2964.0 	9.0 1038.0 230.0 139.0 220.3 	79.9 	73.4 	48.0 	48.2 	86.6 
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2976.5 	7.4 	750.8 215.8 	98.4 156.0 	60.3 	56.3 	47.0 	36.1 	84.7 

	

2989.5 	11.6 	798.3 247.8 101.3 158.5 	61.8 	52.1 	47.5 	43.9 101.2 

	

3000.0 	5.6 	714.0 267.3 	94.0 161.6 	59.6 	66.6 	52.1 	39.8 104.9 

	

3011.5 	7.1 	638.5 228.1 	69.9 122.0 	43.7 	39.2 	44.2 	37.6 	70.0 

	

3021.5 	1.9 	399.6 214.5 	57.0 	84.2 	33.6 	46.0 	45.5 	28.1 	64.7 

	

3031.5 	4.7 	331.1 202.2 	42.7 	59.9 	23.3 	33.7 	46.3 	23.7 	68.2 

	

3044.5 	4.3 	259.1 162.9 	28.3 	45.3 	15.0 	23.5 	43.8 	19.9 	57.2 

	

3056.0 	-2.7 	425.6 192.1 	52.0 	65.3 	26.3 	32.7 	40.2 	36.0 	54.7 

	

3067.5 	0.8 	359.4 267.6 	39.8 	63.2 	26.0 	36.6 	33.3 	37.7 	64.4 

	

3078.0 	6.7 	641.7 206.3 	83.9 140.0 	49.4 	41.6 	42.2 	38.2 	87.0 

	

3088.0 	5.9 	896.5 229.8 118.4 192.5 	67.1 	59.7 	48.4 	53.0 	86.1 

	

3098.5 	7.1 1299.2 241.1 	153.3 251.6 	91.5 	79.3 	47.1 	62.4 	86.1 

	

3110.0 	13.6 1280.4 235.5 158.7 269.0 	95.7 	92.2 	55.4 	55.8 	92.6 

	

3122.0 	12.7 1223.4 269.9 178.9 296.6 108.9 112.5 	65.0 	58.8 	99.9 

	

3155.5 	9.3 1032.9 260.0 152.1 247.5 	96.1 102.9 	60.8 	48.0 	90.9 

	

3166.0 	6.9 	817.2 215.0 131.5 224.3 	74.7 	54.4 	40.8 	41.5 	92.7 

	

3176.5 	9.9 	871.5 268.8 131.5 211.0 	79.9 	67.1 	56.4 	47.8 	79.5 

	

3187.0 	7.2 	711.8 304.7 	99.5 173.5 	63.1 	64.9 	51.5 	41.3 	79.6 

	

3197.0 	4.9 	612.9 388.7 	83.5 119.5 	43.4 	57.1 	39.6 	44.1 	68.1 

	

3207.0 	5.5 	695.1 290.8 	99.8 154.4 	57.9 	54.1 	44.6 	38.1 	72.0 

	

3217.5 	7.1 1095.5 359.0 147.6 251.7 	81.9 	81.3 	53.7 	51.2 	79.2 

	

3226.5 	9.4 1153.8 349.6 147.2 263.7 	87.5 	69.6 	46.9 	58.8 	79.9 

	

3236.5 	7.9 	987.0 323.9 114.3 189.8 	64.7 	59.3 	39.0 	43.5 	69.0 

	

3249.5 	7.1 	647.9 361.7 	93.8 161.0 	55.5 	63.1 	55.8 	41.0 	85.4 

	

3258.5 	7.9 	827.3 409.1 113.8 191.5 	71.5 	78.7 	44.5 	42.1 	92.2 

	

3268.0 	7.7 	703.7 365.6 	95.7 	174.6 	60.7 	56.1 	37.1 	42.1 	83.3 

	

3277.0 	9.3 	746.9 383.5 109.9 180.6 	72.0 	69.9 	35.8 	35.5 	91.5 

	

3286.5 	7.3 	699.4 353.6 	87.0 159.2 	64.4 102.0 	39.4 	25.5 108.9 

	

3297.5 	7.3 1003.4 349.9 111.1 188.0 	65.7 	36.0 	18.3 	38.3 	103.5 

	

3307.5 	8.0 	563.2 417.5 	73.2 132.2 	46.0 	40.8 	30.1 	39.2 	137.0 

	

3317.0 	4.3 	256.3 388.8 	37.4 	63.5 	24.9 	34.3 	37.0 	23.7 146.7 

	

3326.0 	4.3 	445.2 401.4 	65.0 120.1 	35.5 	58.9 	35.2 	23.2 108.6 

	

3337.0 	3.5 	397.2 407.5 	50.3 	95.3 	34.5 	47.8 	42.5 	25.1 143.4 

	

3356.5 	1.5 	263.5 422.0 	38.4 	56.7 	26.6 	36.4 	24.4 	23.6 	101.6 

	

3367.0 	2.9 	306.4 458.9 	49.5 	74.7 	24.5 	46.2 	35.6 	24.0 167.0 

	

3378.5 	1.2 	985.5 468.2 	89.1 147.5 	53.2 	47.7 	30.4 	41.9 187.2 

	

3390.0 	2.6 	304.6 475.5 	38.3 	58.6 	22.9 	36.8 	25.3 	21.2 	142.8 

	

3402.5 	0.5 	237.7 464.1 	32.6 	55.5 	19.8 	34.0 	18.3 	22.2 	47.1 

	

3412.0 	3.0 	341.9 492.3 	49.6 	82.9 	31.5 	52.4 	27.3 	22.5 	53.9 

	

3422.5 	3.1 	512.6 424.7 	69.9 110.3 	39.7 	41.8 	23.4 	26.3 	68.0 

	

3433.5 	4.8 	634.8 393.4 	80.5 130.4 	50.4 	52.3 	26.4 	33.3 	63.9 

	

3444.0 	7.8 	723.3 370.2 126.7 201.8 	66.6 	40.5 	24.5 	39.7 	102.7 

	

3454.0 	7.3 	1345.6 391.3 	199.6 332.1 116.1 	69.1 	32.6 	62.5 	93.1 

	

3464.0 	5.0 1314.2 370.9 159.5 255.4 	92.3 	47.7 	28.5 	65.1 105.3 

	

3474.5 	7.7 1117.7 354.0 159.5 264.8 	95.5 	67.4 	37.0 	54.7 110.4 

	

3485.0 	8.4 1417.5 333.5 174.9 293.8 100.8 	56.4 	29.5 	71.9 135.8 

	

3495.5 	9.1 1005.6 333.8 142.5 241.1 	87.7 	79.7 	37.8 	49.5 	71.4 

	

3504.5 	8.0 1258.0 323.4 147.7 250.7 	89.7 	84.5 	47.5 	53.0 	78.2 

	

3514.5 	10.5 1412.2 301.2 152.6 245.7 	92.3 	69.0 	38.3 	58.1 	79.0 

	

3524.5 	4.2 1538.9 253.7 166.5 276.3 	94.9 	52.8 	27.6 	54.6 	85.7 

	

3534.0 	6.1 1988.7 318.4 192.5 324.6 112.7 	63.2 	34.3 	81.6 	91.4 

	

3543.0 	8.7 1377.8 314.5 165.9 289.3 	98.0 	83.3 	39.0 	60.4 	84.2 

	

3561.0 	4.1 1211.6 362.2 142.9 251.0 	87.8 	70.1 	40.4 	57.5 	74.2 

	

3571.5 	2.5 1297.4 343.6 140.9 249.8 	84.1 	51.0 	25.6 	57.1 	67.3 

	

3581.5 	7.4 	879.8 349.8 118.0 194.4 	68.0 	49.6 	26.4 	45.1 	52.0 

	

3591.0 	9.7 2206.5 322.8 198.5 332.7 116.0 	44.5 	23.2 	83.3 	79.6 

	

3600.0 	9.6 1889.2 272.7 170.8 298.6 110.4 	63.0 	30.4 	62.0 	93.9 

	

3609.0 	7.5 1424.8 322.0 174.6 285.5 103.2 	85.1 	44.1 	60.2 	91.5 

	

3619.5 	10.4 1537.2 328.2 188.1 305.1 107.1 	80.0 	41.1 	72.1 	91.6 

	

3630.0 	9.5 1452.6 312.8 181.4 299.4 103.7 	73.3 	39.2 	66.5 	90.2 

	

3642.0 	9.5 1005.0 318.7 156.6 255.6 	87.2 	83.8 	43.1 	53.3 	87.9 

	

3666.0 	6.1 2054.7 319.1 234.4 369.8 126.0 	54.0 	28.8 	85.3 	91.3 

	

3677.5 	11.5 1528.7 344.9 228.6 373.6 127.4 	58.8 	28.6 	83.4 	89.9 

	

3705.5 	9.7 1247.1 250.5 201.0 321.2 107.4 	49.9 	28.4 	62.5 	84.1 

	

3717.0 	5.6 1352.9 296.2 201.3 323.5 105.3 	64.0 	35.2 	63.8 	89.3 

	

3727.5 	13.7 1623.0 316.9 218.1 351.9 130.4 	72.3 	38.4 	69.5 	99.4  
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3738.0 	6.7 1260.7 282.9 201.0 315.3 104.4 	54.6 	37.6 	68.7 	87.7 

3768.0 	5.8 1402.0 237.6 219.7 349.2 123.9 	49.6 	26.7 	73.5 105.5 

3779.5 	7.0 1445.1 249.7 210.8 347.2 121.1 	57.6 	26.4 	59.9 105.3 

3790.0 	7.1 1355.4 260.7 207.5 344.1 117.1 	44.0 	26.7 	63.9 100.6 

3800.0 	9.3 	1612.1 290.1 215.1 344.6 	119.5 	48.2 	32.7 	72.2 	107.5 

3810.5 	10.0 1633.4 294.2 217.9 343.4 116.2 	52.3 	35.3 	68.5 104.5 

3854.0 	7.7 1607.2 260.3 	187.6 304.2 106.6 	49.4 	28.7 	72.7 	83.3 

3864.0 	8.4 2350.6 254.8 249.8 402.3 147.3 	57.1 	29.0 	89.3 115.2 

3876.0 	11.1 2157.8 288.5 261.0 411.0 146.2 	77.7 	36.2 	90.1 116.1 

3886.0 	6.0 2216.5 288.3 241.4 382.1 133.4 	66.8 	31.6 	86.1 103.6 

3896.5 	7.6 2780.9 268.5 263.2 428.0 151.4 	58.0 	26.2 100.6 114.7 
3908.5 	8.6 2465.8 286.1 261.3 427.1 143.3 	73.4 	38.0 	94.4 118.8 
3919.5 	8.2 2598.9 276.8 268.5 424.0 151.5 	71.4 	38.3 	96.6 120.5 
3938.5 	8.4 1939.4 264.4 247.1 393.7 	139.7 	58.6 	27.8 	83.9 119.2 
3948.0 	9.5 2452.7 303.4 278.7 451.1 158.3 	63.0 	33.8 	94.3 115.5 

3957.0 	12.2 2337.0 305.7 304.5 485.8 170.4 	76.5 	37.5 	99.4 124.8 
3967.0 	13.5 2257.1 288.0 284.1 459.7 154.2 	65.7 	34.7 	95.9 119.8 
3977.5 	11.8 2216.8 277.9 305.8 476.5 164.5 	67.8 	36.5 100.6 122.6 
3988.0 	8.4 2593.9 303.6 314.6 489.1 172.6 	67.0 	32.5 106.7 126.3 
3998.0 	9.8 2481.3 289.9 313.4 476.1 164.8 	68.1 	31.5 105.7 125.4 
4008.5 	11.3 2650.1 268.3 332.4 507.9 177.8 	66.7 	33.1 105.2 133.7 
4017.5 	9.9 2335.3 272.3 313.2 493.1 172.3 	61.1 	33.9 104.6 129.1 
4029.0 	13.6 2563.1 268.0 299.7 467.7 166.3 	64.0 	32.3 101.9 130.6 
4052.0 	14.3 2445.4 274.0 265.4 438.6 151.9 	65.1 	35.4 	94.6 123.0 
4062.5 	10.2 2149.9 308.4 218.8 359.2 	125.3 	63.5 	33.6 	86.6 107.9 
4073.0 	10.5 2013.8 245.7 206.4 348.0 121.9 	66.2 	37.2 	75.6 109.1 
4083.5 	8.7 2136.0 233.6 234.8 387.9 134.3 	61.1 	35.2 	78.2 112.6 
4097.0 	7.7 2624.1 269.4 267.3 430.0 148.8 	63.5 	32.1 	97.4 116.1 
4106.5 	6.0 2281.3 262.7 238.5 375.8 134.1 	62.5 	37.8 	85.5 106.6 
4120.0 	9.7 1715.3 227.6 212.9 343.0 127.1 	78.0 	42.6 	66.3 107.7 
4130.5 	13.4 1757.3 220.8 207.7 343.1 122.5 	64.7 	35.3 	70.8 103.6 
4139.5 	7.7 1980.7 236.3 217.5 343.7 120.6 	80.4 	44.8 	81.5 104.4 
4149.0 	11.1 1595.2 279.0 213.0 336.2 118.6 	92.9 	52.4 	79.0 103.7 
4158.0 	9.9 2360.2 244.4 252.4 391.0 135.0 	77.3 	42.0 	89.9 116.5 
4167.5 	14.2 2275.1 239.9 249.1 388.6 137.6 	76.9 	43.1 	88.3 115.4 
4176.5 	9.7 2116.8 245.0 262.8 423.1 149.3 	85.6 	43.1 	91.0 121.8 
4185.5 	9.4 2125.9 274.9 239.3 383.0 136.8 	75.6 	37.9 	94.7 111.3 
4210.0 	16.5 2200.9 250.8 252.8 393.9 144.7 	82.5 	45.8 	85.5 120.3 
4220.5 	8.2 2414.3 224.2 229.7 384.5 137.6 	68.3 	35.6 	82.4 114.7 
4231.0 	10.1 1136.9 295.4 151.7 237.4 	89.0 	80.0 	44.0 	73.0 	86.5 
4241.0 	13.5 1707.3 240.4 204.4 334.8 119.2 	80.1 	46.7 	72.4 109.7 
4251.5 	19.3 1738.6 255.2 228.5 371.1 135.7 140.6 	75.8 	66.0 117.2 
4262.0 	11.5 1749.1 249.6 221.8 363.5 126.8 	73.7 	45.9 	76.6 118.3 
4272.5 	12.2 1182.8 234.3 165.7 277.8 	99.2 	73.5 	48.1 	65.3 103.9 
4281.5 	14.3 2028.9 274.8 237.8 381.4 135.4 	85.9 	48.4 	80.1 128.9 
4290.5 	13.5 1698.5 259.6 217.7 357.2 128.2 	89.2 	58.2 	74.8 116.6 
4303.5 	17.6 1728.6 265.3 223.7 364.9 135.8 	96.2 	48.4 	66.9 120.4 
4312.5 	16.6 1485.5 263.4 207.9 348.7 132.1 132.7 	63.1 	63.7 112.5 
4323.0 	13.6 2057.8 275.0 262.0 427.2 152.0 	96.1 	46.0 	83.2 129.6 
4333.0 	13.8 2378.1 254.9 235.2 390.5 133.9 	90.1 	47.0 	81.5 119.6 
4342.0 	9.7 1671.0 240.1 197.2 331.3 120.0 	95.2 	48.2 	65.1 111.5 
4351.0 	9.2 1501.4 301.7 168.9 257.7 100.4 	97.8 	52.3 	63.1 	93.8 
4361.0 	10.1 1667.2 223.7 204.0 325.0 113.0 	73.3 	37.8 	66.3 111.3 
4371.0 	16.2 1783.4 268.9 209.0 340.7 117.6 	89.1 	49.0 	75.9 110.2 
4380.0 	10.8 1159.7 295.9 163.7 262.2 	92.0 100.6 	64.3 	56.3 107.2 
4390.0 	11.1 1322.0 297.3 153.9 255.6 	92.5 	92.4 	66.7 	58.8 116.1 
4412.0 	9.2 2423.5 293.6 237.4 381.2 142.1 	83.0 	53.9 	83.0 124.9 
4421.0 	8.2 1513.3 279.1 198.8 316.2 123.9 	97.0 	65.2 	60.8 111.0 
4437.5 	10.3 2335.6 277.2 238.2 390.8 148.6 	78.7 	47.6 	81.3 115.2 
4446.5 	13.5 1990.2 279.3 225.9 356.2 135.7 	96.2 	65.0 	73.6 109.3 
4456.0 	12.6 2015.2 241.6 194.2 304.8 121.6 	84.2 	51.2 	61.7 102.6 
4465.0 	12.4 1279.3 296.2 183.8 284.7 107.2 102.3 	68.8 	63.7 101.0 
4473.5 	16.4 1272.4 268.3 175.1 277.0 110.8 	85.9 	64.5 	66.9 109.1 
4486.0 	18.9 1658.1 266.7 109.9 315.7 127.0 159.9 	82.6 	61.8 108.0 
4496.0 	14.8 1444.2 283.7 201.1 296.7 119.3 121.8 	76.6 	62.3 106.7 
4509.5 	13.6 1565.4 257.7 184.2 310.3 120.1 	98.2 	72.0 	67.6 108.2 
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4519.0 	13.8 1463.5 261.9 194.3 320.7 127.3 121.1 	80.7 	59.5 111.6 

4528.0 	16.4 1483.0 272.2 191.3 298.6 119.6 119.0 	83.4 	62.6 103.9 

4548.0 	14.4 1742.9 255.4 190.1 314.9 127.3 183.0 117.7 	55.8 179.7 

4556.0 	16.9 1966.0 276.5 204.6 344.4 138.5 131.5 	97.8 	69.6 117.3 

4564.0 	14.2 1766.9 255.5 196.9 325.3 125.5 100.9 	72.5 	71.9 111.2 

4577.0 	18.2 1659.4 261.6 226.6 360.6 144.3 132.2 	67.2 	67.0 122.7 

4588.0 	13.6 1954.4 245.8 184.4 290.6 112.6 	95.9 	57.4 	66.5 109.7 

4597.5 	14.3 1947.8 268.0 201.4 317.5 124.7 111.0 	65.7 	71.8 115.0 

4607.0 	16.9 1929.2 268.5 269.8 422.0 152.3 101.5 	54.3 	82.5 127.0 

4618.0 	14.4 1597.0 247.2 217.8 351.5 121.1 	88.9 	50.8 	69.5 113.8 

4630.5 	14.2 1178.7 274.7 163.8 260.0 	98.2 118.2 	67.5 	56.8 104.9 
4641.0 	9.7 1446.9 269.7 178.4 295.7 108.5 100.5 	54.9 	64.4 102.1 
4651.0 	12.1 1199.4 275.2 163.6 264.1 	99.3 	92.5 	57.1 	58.9 101.0 

4661.0 	13.3 1212.0 286.7 156.3 265.1 100.2 189.6 	84.8 	48.9 	94.4 

4671.5 	12.7 	868.1 260.6 128.8 212.2 	79.9 	91.4 	57.6 	50.0 	92.4 

4681.5 	9.4 1456.0 274.4 192.0 309.5 107.8 	94.5 	59.5 	69.2 	99.4 

4691.5 	20.6 1464.6 320.3 227.0 366.5 141.1 256.6 122.0 	51.7 113.5 

4710.0 	15.1 1807.9 297.0 198.9 316.0 114.5 109.6 	56.5 	61.7 108.7 

4718.5 	7.2 1589.4 248.7 160.3 260.0 	90.8 	81.9 	58.6 	60.5 	98.7 

4730.0 	11.8 1995.9 250.6 168.1 283.7 101.7 	77.9 	51.3 	63.4 101.6 

4740.0 	10.6 2337.0 262.6 189.1 318.2 112.7 	68.6 	46.9 	69.8 100.9 

4751.5 	3.9 1061.2 200.0 149.9 246.5 	86.6 	55.7 	40.1 	42.1 102.2 

4763.0 	7.9 	875.4 176.5 144.9 246.3 	89.9 	59.5 	43.5 	38.0 104.0 

4773.0 	15.0 1319.8 285.3 201.9 333.2 124.9 137.8 	78.2 	60.8 112.5 

4822.5 	16.6 1951.8 285.2 244.9 383.2 144.1 	84.2 	42.7 	88.0 120.6 

4839.0 	15.8 2307.8 259.0 224.9 366.9 140.4 137.1 	71.2 	78.6 113.7 

4849.5 	11.1 2100.1 255.0 237.3 366.7 138.4 	69.9 	44.5 	82.9 114.6 

4859.5 	8.4 2066.9 279.8 192.7 318.2 105.2 	63.7 	43.7 	72.7 107.7 

4870.0 	7.7 	867.9 259.6 129.2 212.9 	78.2 	68.0 	54.1 	45.6 	97.9 

4880.0 	9.6 1174.6 271.6 144.0 251.3 	86.9 	46.5 	37.7 	65.8 	93.7 

4893.0 	7.8 	831.9 262.7 108.7 190.4 	69.3 	78.0 	41.9 	43.3 106.5 

4902.5 	6.9 	635.8 321.3 	80.8 144.6 	55.2 	67.0 	54.5 	31.3 	87.8 

4913.0 	6.5 	678.1 247.7 	95.6 159.7 	60.5 	55.0 	47.6 	43.4 103.3 

4923.5 	3.8 	365.4 	191.8 	49.9 	84.0 	32.5 	30.6 	44.2 	29.1 111.2 

4933.0 	0.8 	649.5 237.4 	82.8 136.1 	51.8 	43.8 	48.2 	48.0 	84.1 

4943.0 	6.9 1052.9 247.4 128.9 225.0 	81.5 	49.0 	49.5 	59.2 	95.6 

4953.5 	4.5 1081.5 219.0 150.0 233.0 	85.0 	46.4 	44.2 	59.6 	89.2 

4962.5 	7.8 1154.6 271.5 164.8 259.2 	93.7 	70.7 	52.3 	72.7 	91.2 

4971.5 	16.7 1433.3 242.2 210.6 337.7 118.0 	89.8 	58.9 	64.3 110.1 

5006.5 	13.1 1688.0 224.8 176.5 293.0 114.3 	91.6 	60.8 	64.7 100.3 

5015.5 	12.4 1455.1 255.7 189.6 297.2 116.7 146.9 	80.9 	60.2 104.6 

5025.0 	13.1 2565.5 227.0 209.6 349.8 128.9 	74.8 	44.3 	84.2 108.6 

5034.0 	11.3 2690.6 230.7 210.3 350.4 136.7 	81.1 	50.8 	84.3 108.6 

5043.0 	15.8 2229.9 248.6 254.1 397.3 145.5 	92.4 	61.0 	85.9 120.4 

5052.0 	14.1 2255.9 239.4 284.8 447.7 165.4 	85.8 	54.8 	89.8 130.0 

5061.0 	7.4 2065.1 184.3 265.5 412.8 156.1 	53.5 	32.2 	78.4 125.7 

5070.0 	'9.2 2417.5 228.9 319.4 502.4 182.6 	67.2 	35.9 101.0 126.4 

5079.0 	13.8 2215.6 219.0 271.1 442.3 159.5 	68.0 	38.7 	87.5 121.2 

5089.0 	9.5 2116.3 250.9 229.7 361.0 137.3 	80.8 	56.1 	84.6 107.4 
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1288.0 	51.5 	36.9 	8.4 113.8 	553.3 	36.8 286.9 	58.0 	379.5 1.09 

1298.0 	48.5 	35.2 	7.3 	98.8 	518.9 	36.4 262.7 	56.0 	129.1 1.40 

1308.0 	63.9 	52.2 	9.4 	93.5 	702.3 	41.5 309.4 	69.3 	128.6 1.08 

1320.0 	70.6 	56.1 	11.0 128.0 	829.2 	44.5 380.8 	76.3 	222.6 0.65 

1327.0 	46.6 	31.7 	6.6 	98.1 	512.3 	30.0 222.9 	48.2 	341.9 	1.19 

1335.0 	47.6 	35.1 	9.4 	80.0 	497.2 	33.3 	241.3 	55.6 	118.3 	1.35 

1344.0 	56.4 	39.4 	11.4 	92.9 	587.8 	40.9 273.6 	63.9 	373.4 1.30 

1349.0 	48.2 	36.0 	12.3 	99.1 	525.9 	35.3 260.1 	55.9 	413.3 2.02 

1359.0 	35.3 	25.1 	3.3 	63.4 	366.7 	24.3 	180.3 	39.1 	181.5 3.52 

1369.0 	55.6 	42.1 	10.3 	100.2 	619.9 	37.2 	289.2 	59.7 	183.9 	1.80 

1379.0 	48.5 	35.5 	8.2 	83.4 	524.2 	34.5 253.1 	53.8 	136.5 4.39 
1389.0 	51.6 	38.1 	10.7 	97.4 	624.3 	38.3 267.6 	59.9 	288.6 2.27 

1398.0 	64.9 	47.6 	12.6 135.1 	832.5 	41.9 335.1 	73.0 	744.1 1.25 

1410.0 	68.2 	51.2 	11.6 152.3 	720.8 	45.9 367.4 	76.8 	568.4 1.50 

1420.0 	78.4 	59.9 	8.0 172.9 	851.9 	53.2 411.4 	89.8 	467.5 0.32 

1430.0 	65.3 	46.5 	9.4 204.2 	714.4 	44.7 364.7 	70.8 1275.9 0.19 

1438.5 	49.7 	31.7 	8.1 279.6 	433.4 	32.1 327.2 	47.1 4153.4 0.11 

1446.0 	45.6 	29.2 	9.4 270.8 	392.2 	29.4 313.4 	42.7 3993.6 0.10 

1453.0 	47.2 	29.4 	7.2 289.5 	389.1 	29.9 324.6 	45.7 4524.8 0.13 

1464.0 	48.2 	35.2 	10.4 114.1 	550.4 	36.1 259.1 	55.4 	470.0 1.89 

1475.0 	60.2 	43.7 	10.6 107.8 	785.1 	42.6 305.7 	70.0 	241.7 1.17 

1486.0 	74.1 	55.9 	10.8 107.9 	979.1 	49.9 354.4 	83.8 	158.2 1.16 

1496.5 	77.0 	58.9 	14.4 103.9 	932.3 	52.0 368.9 	88.9 	147.7 1.38 

1507.0 	69.8 	51.0 	11.9 	84.5 	911.3 	44.7 316.5 	77.0 	121.8 2.27 

1517.0 	65.9 	47.2 	13.4 	92.1 	809.7 	42.9 317.2 	75.6 	96.0 3.03 

1527.0 	80.0 	57.5 	11.2 112.9 	901.1 	53.7 382.3 	93.7 	114.1 1.87 

1537.0 	76.0 	56.4 	13.2 106.8 	903.7 	54.0 372.4 	92.5 	107.8 1.07 

1595.5 	61.0 	45.8 	9.8 164.5 1066.4 	37.5 302.3 	70.9 1063.9 1.33 

1605.5 	65.9 	50.9 	10.4 176.0 1099.1 	44.3 336.4 	78.9 	768.6 1.02 

1618.0 	56.5 	39.6 	11.7 142.9 	840.0 	42.4 285.1 	68.2 	527.2 2.21 

1627.0 	88.6 	68.4 	12.8 128.6 1259.7 	55.6 417.9 105.2 	172.1 0.64 

1636.5 	58.6 	47.4 	11.5 100.3 	970.2 	43.7 306.2 	71.4 	212.9 2.60 

1645.5 	34.4 	23.6 	7.5 181.9 1123.1 	28.2 236.0 	41.3 	770.7 0.97 

1654.5 	47.8 	39.1 	9.4 	78.3 	780.8 	34.4 261.2 	63.1 	105.0 	3.94 

1664.5 	53.0 	45.4 	9.3 	86.7 	877.1 	37.8 295.9 	71.9 	116.6 1.84 

1674.5 	34.5 	21.4 	7.3 240.0 1168.7 	28.3 247.1 	39.9 1300.1 0.52 

1685.0 	44.0 	38.4 	12.7 	59.9 	818.9 	33.1 230.7 	58.9 	98.3 3.49 

1695.0 	61.7 	53.4 	9.7 102.6 	925.3 	41.4 346.6 	83.8 	138.8 1.24 

1704.0 	31.3 	23.3 	10.0 	36.9 	661.3 	29.0 190.6 	45.8 	45.6 3.05 

1727.0 	72.8 	57.7 	13.2 105.1 1566.2 	44.5 355.1 	80.6 	195.3 0.78 

1746.0 	35.2 	26.6 	12.3 	69.3 	534.3 	26.4 187.6 	44.6 	95.2 6.62 

1756.5 	58.0 	45.3 	13.3 154.6 	923.7 	39.1 311.5 	73.4 	175.6 4.46 

1765.5 	33.6 	28.1 	12.5 	53.3 	816.4 	21.0 168.1 	40.5 	108.5 5.13 

1774.5 	36.9 	29.2 	13.6 	49.6 1073.3 	21.5 176.9 	40.8 	97.5 4.38 

1783.5 	11.3 	6.8 	15.8 	18.5 	630.2 	9.0 	68.3 	16.2 	61.1 7.82 

1794.0 	20.1 	16.4 	13.8 	33.9 	762.3 	13.8 107.9 	26.5 	58.6 5.89 

1804.5 	10.1 	5.6 	13.0 	18.3 	496.9 	8.1 	65.2 	15.0 	32.0 6.15 

1821.5 	48.9 	36.8 	11.8 	86.0 	888.4 	37.4 260.3 	62.6 	95.8 3.18 

1832.0 	60.4 	46.6 	14.3 102.4 	767.9 	45.0 324.9 	77.7 	116.7 5.44 

1842.0 	76.1 	60.1 	15.9 117.0 1000.7 	55.6 410.0 	99.2 	152.8 2.39 

1851.0 	76.8 	55.1 	16.1 114.9 1219.8 	49.5 362.1 	89.7 	144.3 2.60 

1860.0 	60.4 	41.8 	14.0 	87.6 1358.9 	37.8 268.5 	66.4 	108.2 1.55 

1869.0 	62.5 	40.0 	13.1 	82.7 1469.2 	35.6 252.4 	64.7 	107.8 1.22 

1878.5 	84.9 	55.3 	19.7 103.6 1439.0 	44.2 339.5 	88.4 	104.3 	1.02 

1888.0 	76.2 	53.0 	16.9 	97.4 1482.3 	42.3 316.2 	78.4 	184.0 0.61 

1898.0 	96.2 	60.0 	16.5 101.1 1582.5 	47.9 351.6 	92.2 	115.6 0.35 

1909.0 101.9 	66.8 	19.9 109.8 1773.4 	50.5 396.8 105.1 	125.3 0.33 

1929.0 	86.6 	57.4 	16.5 136.4 1665.0 	44.6 355.5 	84.9 	564.9 0.44 

1940.5 108.6 	67.9 	18.2 114.5 1739.9 	51.0 387.7 103.5 	99.3 0.31 

1949.5 112.9 	72.2 	15.2 140.6 1860.9 	51.1 417.8 105.8 	194.8 0.29 

1959.0 107.6 	64.9 	13.0 149.1 1751.9 	48.7 388.2 	97.3 	306.9 0.33 

1969.0 125.0 	74.2 	15.9 128.1 1761.2 	53.9 423.7 112.8 	119.8 0.30 

1979.0 111.7 	69.6 	12.9 135.9 1842.0 	52.2 408.1 101.9 	127.1 0.29 

1988.0 108.5 	63.1 	13.4 130.4 1757.4 	51.9 408.1 	99.4 	110.1 0.33 

1997.5 121.1 	70.3 	17.3 136.9 1771.5 	53.2 413.6 105.5 	118.1 0.31 

2006.5 126.4 	72.2 	13.3 139.6 1736.8 	51.6 415.6 107.9 	96.2 	0.32 

2015.5 125.1 	67.3 	14.7 140.5 1770.3 	53.7 423.6 105.9 	115.1 0.42 

2026.0 130.5 	70.5 	14.6 142.1 1724.1 	51.0 416.9 107.0 	109.5 0.37 

2035.0 125.3 	67.4 	15.5 137.4 1583.5 	54.3 409.3 105.0 	97.4 0.43 

2044.0 132.8 	70.1 	14.0 142.0 1620.8 	52.7 413.7 107.8 	79.5 0.43 

2053.5 122.3 	65.7 	14.5 141.9 1724.9 	51.5 411.7 102.2 	92.8 0.45 

2064.0 143.0 	68.1 	16.5 141.2 1655.5 	54.2 403.4 108.4 	79.3 0.45 

2080.0 134.0 	66.1 	11.3 	137.6 1710.1 	52.4 402.0 103.9 	79.5 0.57 

2096.0 132.5 	64.8 	14.6 139.4 1786.2 	50.8 393.4 102.2 	100.7 	0.66 

2114.0 140.7 	70.9 	14.7 161.7 1817.2 	51.9 395.7 106.8 	151.9 0.40 

2239.5 	85.8 	49.6 	9.9 122.4 1427.5 	43.1 345.4 	81.4 	90.8 1.60 

2248.5 	50.5 	38.3 	14.3 	78.2 1056.5 	34.1 244.3 	57.1 	215.4 0.35 

2258.0 	27.7 	23.7 	6.3 	74.2 	336.0 	20.8 173.1 	34.9 	449.9 0.57 
2267.0 	34.4 	28.4 	6.0 123.3 	340.1 	27.8 243.9 	44.5 1170.7 0.46 
2276.0 	40.1 	33.2 	7.0 	78.6 	615.6 	28.4 230.4 	49.9 	340.6 0.60 
2285.5 	17.7 	12.8 	4.6 	26.3 	263.5 	14.8 	87.1 	21.0 	65.8 0.59 

2294.5 	16.9 	14.4 	8.5 	28.8 	297.0 	15.0 	90.7 	23.0 	56.1 0.70 
2303.5 	40.3 	34.0 	14.3 156.8 	606.7 	25.9 233.7 	42.2 1203.1 0.89 
2313.0 	40.6 	33.5 	6.7 	92.5 	609.9 	27.5 232.9 	52.1 	469.0 0.64 

2349.5 	66.5 	50.6 	9.7 144.3 	1152.3 	46.7 375.1 	79.0 	527.2 0.47 

2360.0 	64.7 	49.9 	8.1 134.1 1065.7 	47.2 359.0 	79.3 	298.3 0.56 
2370.0 	48.2 	38.5 	7.3 139.8 	693.5 	40.2 341.6 	62.7 	852.9 0.76 
2379.0 	58.2 	45.5 	8.3 131.4 	787.9 	44.2 338.2 	71.6 	411.8 0.73 

2389.0 	68.2 	51.6 	9.5 129.5 1029.0 	48.5 360.6 	82.1 	274.1 0.79 
2399.0 	71.3 	55.8 	9.5 134.0 1155.6 	47.1 358.6 	82.1 	327.7 0.68 
2413.5 	74.6 	59.8 	12.4 147.6 1214.9 	50.0 405.3 	91.9 	447.8 0.39 
2423.0 	73.5 	57.9 	12.8 147.9 1035.0 	52.3 421.2 	94.3 	539.4 0.34 
2432.5 	80.9 	65.4 	13.0 160.4 	956.9 	58.1 461.7 	105.4 	591.3 0.24 
2445.5 	69.2 	56.2 	9.1 227.4 	702.1 	52.4 482.5 	91.7 	1725.2 0.21 
2457.5 	59.9 	50.6 	10.6 294.4 	470.4 	49.6 503.9 	87.3 3401.0 0.10 
2470.0 	49.4 	43.3 	14.6 347.3 	336.1 	44.3 487.8 	76.3 4076.9 0.38 
2480.0 	73.8 	60.5 	13.6 241.7 	842.0 	53.5 503.4 	99.0 2653.7 0.39 
2490.0 	71.5 	58.4 	12.0 229.5 	713.1 	53.9 484.2 	95.5 2309.4 0.23 
2499.5 	59.8 	49.2 	10.0 157.6 	742.6 	42.8 364.8 	75.9 1129.3 0.58 
2508.5 	48.6 	39.1 	9.7 128.2 	619.0 	34.4 299.0 	63.0 1198.7 0.41 
2518.0 	51.2 	42.7 	10.4 	90.0 	758.1 	34.4 285.0 	62.0 	259.0 0.45 
2527.0 	53.0 	44.4 	9.8 100.6 	821.7 	38.1 315.6 	68.2 	318.4 0.50 
2549.5 	44.4 	34.2 	6.0 	86.8 	612.6 	30.2 238.7 	55.1 	199.9 0.46 
2561.0 	49.8 	38.8 	7.9 105.7 	888.3 	32.2 254.0 	55.7 	607.8 0.45 
2570.0 	34.6 	24.6 	11.0 	50.7 	539.8 	23.2 179.1 	42.1 	149.2 0.37 
2579.0 	63.7 	48.3 	6.5 	75.1 1170.5 	37.7 295.6 	71.3 	159.6 0.57 
2588.0 	63.6 	52.6 	12.7 	91.9 1133.8 	42.4 334.5 	76.8 	291.9 0.55 
2609.5 	87.3 	66.6 	16.3 102.8 1378.2 	52.1 392.1 	98.6 	198.9 0.13 
2620.0 	70.4 	57.0 	10.7 133.4 	857.2 	49.0 402.1 	89.4 	599.3 	0.25 
2631.5 	74.3 	64.8 	15.8 203.8 	804.0 	55.5 512.7 104.0 1940.1 0.51 
2645.0 	50.5 	38.9 	6.2 	94.4 	614.4 	36.1 276.6 	61.9 	224.9 0.67 
2654.0 	64.4 	52.4 	7.9 128.2 	924.4 	43.9 356.9 	76.5 	920.5 0.33 
2663.5 	42.9 	34.3 	6.8 125.8 	484.8 	31.9 271.3 	54.3 	921.1 0.45 
2672.5 	35.6 	29.6 	7.6 	77.8 	483.7 	27.5 219.6 	43.3 	518.4 0.24 
2681.5 	39.8 	32.5 	6.7 	66.7 	549.0 	27.4 215.8 	49.6 	151.7 0.36 
2690.5 	42.6 	35.1 	5.9 	64.2 	627.5 	29.2 230.4 	53.3 	181.5 0.44 
2699.5 	27.5 	25.4 	3.7 	48.8 	471.9 	22.3 173.3 	38.2 	157.7 0.29 
2708.0 	31.1 	25.8 	9.1 	57.5 	506.3 	25.2 197.9 	42.1 	233.3 0.38 
2717.5 	30.3 	26.0 	4.2 	47.2 	434.1 	22.3 169.9 	38.9 	165.2 0.49 
2729.0 	35.7 	29.5 	7.8 	50.9 	498.6 	23.6 181.7 	43.5 	160.9 0.78 
2748.0 	31.0 	25.9 	6.7 	50.3 	493.2 	23.0 175.7 	39.9 	120.3 0.86 
2826.5 	44.3 	35.3 	6.1 	70.8 	635.2 	28.1 234.9 	50.8 	219.9 0.66 
2855.5 	42.6 	33.9 	7.5 114.1 	415.4 	30.4 261.0 	54.7 1488.3 	0.50 
2874.0 	29.3 	23.4 	5.5 	58.5 	448.9 	20.8 173.3 	33.9 	301.6 0.71 
2883.0 	19.6 	14.2 	8.2 	30.3 	272.1 	19.1 123.9 	25.8 	36.3 	0.58 
2892.5 	31.7 	27.8 	5.0 	55.5 	394.1 	22.9 185.9 	43.0 	126.9 0.78 
2902.0 	42.3 	37.6 	7.7 103.1 	459.2 	30.3 268.6 	56.9 	870.7 1.04 
2911.0 	39.7 	34.2 	6.1 101.7 	457.0 	30.4 257.5 	54.6 	778.7 0.74 
2920.5 	62.9 	54.0 	9.7 	86.4 	985.2 	39.8 334.1 	72.1 	269.1 0.63 
2930.5 	46.6 	38.9 	9.6 	94.2 	581.6 	34.4 275.5 	62.0 	199.0 0.81 
2952.5 	70.5 	57.8 	12.0 	99.2 1073.5 	42.0 334.5 	78.9 	180.8 0.49 
2964.0 	45.0 	35.3 	7.6 102.3 	547.8 	32.5 253.2 	55.9 	345.7 0.66 
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2976.5 	30.5 	23.5 	4.3 	80.1 	369.1 	24.4 190.2 	39.9 	349.6 1.12 

	

2989.5 	28.5 	24.2 	5.7 	52.5 	415.6 	22.5 167.0 	38.3 	128.4 0.84 

	

3000.0 	27.4 	23.9 	6.8 	51.6 	414.6 	22.4 165.2 	36.1 	98.5 0.77 

	

3011.5 	21.4 	18.3 	5.5 	38.8 	319.5 	18.5 121.6 	27.7 	72.9 1.00 

	

3021.5 	16.0 	14.1 	4.0 	32.0 	229.8 	13.8 	99.3 	23.0 	53.0 1.15 

	

3031.5 	11.4 	10.8 	5.3 	30.2 	193.7 	11.6 	85.6 	19.9 	113.4 1.02 

	

3044.5 	9.2 	8.5 	8.2 	19.3 	174.4 	7.1 	57.7 	14.0 	54.6 1.41 

	

3056.0 	13.0 	8.7 	14.3 	24.6 	344.3 	9.9 	76.8 	17.7 	37.2 	1.09 

	

3067.5 	12.8 	7.0 	10.2 	23.7 	195.0 	11.7 	81.3 	16.8 	34.1 0.94 

	

3078.0 	26.4 	22.5 	5.5 	41.3 	350.6 	16.9 	144.0 	34.3 	78.7 1.62 

	

3088.0 	36.6 	29.4 	7.0 	65.0 	481.0 	27.1 204.3 	45.9 	152.5 1.33 

	

3098.5 	49.3 	38.0 	9.1 	90.9 	685.6 	34.2 263.6 	58.3 	151.3 0.90 

	

3110.0 	51.4 	39.6 	9.7 	104.4 	690.1 	35.8 286.7 	60.1 	301.2 0.99 

	

3122.0 	53.9 	41.8 	6.8 	114.4 	671.4 	39.4 317.0 	67.2 	196.0 0.72 

	

3155.5 	46.4 	33.9 	6.5 	93.7 	606.5 	33.3 274.7 	58.7 	289.4 0.76 

	

3166.0 	46.6 	38.5 	9.3 	124.1 	478.9 	32.5 298.2 	60.2 1295.4 0.70 

	

3176.5 	37.9 	31.6 	8.2 	64.7 	477.1 	27.3 216.3 	48.7 	150.6 1.10 

	

3187.0 	29.9 	23.1 	7.5 	54.5 	390.4 	23.8 189.3 	41.0 	111.7 0.86 

	

3197.0 	23.5 	17.0 	8.4 	40.8 	339.8 	20.1 151.8 	31.1 	86.8 0.99 

	

3207.0 	29.4 	24.2 	3.3 	53.5 	418.2 	19.8 167.8 	35.9 	185.2 0.88 

	

3217.5 	45.5 	36.1 	7.3 	74.3 	598.2 	30.9 238.4 	52.0 	157.8 0.71 

	

3226.5 	50.0 	41.6 	9.1 	74.2 	618.6 	32.6 246.8 	54.3 	161.6 0.78 

	

3236.5 	34.2 	28.9 	7.4 	63.5 	498.0 	24.5 189.9 	40.9 	250.2 0.75 

	

3249.5 	29.7 	23.9 	4.9 	51.8 	380.8 	21.4 176.6 	38.2 	91.0 1.19 

	

3258.5 	34.8 	27.3 	6.3 	57.5 	502.4 	29.3 205.6 	42.9 	130.7 0.98 

	

3268.0 	30.7 	25.2 	5.2 	52.1 	414.0 	21.7 178.7 	38.1 	106.2 0.84 

	

3277.0 	31.5 	25.6 	4.6 	61.8 	466.2 	24.8 204.7 	42.4 	221.8 0.79 

	

3286.5 	24.5 	21.5 	2.5 	70.4 	405.3 	23.6 201.6 	35.3 	624.8 0.68 

	

3297.5 	37.7 	31.1 	7.3 	99.8 	535.8 	27.2 230.9 	44.7 1185.9 0.61 

	

3307.5 	25.2 	20.7 	3.8 	33.1 	387.4 	16.0 127.1 	27.8 	96.9 0.77 

	

3317.0 	11.1 	10.0 	0.6 	23.4 	166.4 	9.9 	72.4 	15.6 	70.0 0.99 

	

3326.0 	20.5 	16.0 	2.3 	52.5 	281.9 	15.4 130.3 	25.1 	304.4 0.90 

	

3337.0 	15.5 	13.8 	1.1 	34.0 	243.7 	12.5 	97.5 	21.0 	136.1 0.88 

	

3356.5 	13.1 	9.0 	1.0 	19.7 	171.2 	8.2 	66.4 	15.2 	46.6 0.87 

	

3367.0 	12.7 	10.4 	3.1 	21.8 	211.6 	10.8 	76.4 	16.8 	75.2 	0.96 

	

3378.5 	28.8 	24.5 	4.8 	41.5 	513.7 	17.0 139.4 	31.0 	157.7 0.81 

	

3390.0 	10.5 	10.6 	3.4 	30.5 	160.7 	9.0 	81.2 	17.2 	276.4 1.17 

	

3402.5 	10.5 	9.1 	3.2 	16.1 	171.0 	6.8 	61.9 	15.1 	63.6 1.28 

	

3412.0 	12.8 	12.0 	1.5 	24.3 	237.5 	14.7 	88.9 	19.5 	81.8 1.07 

	

3422.5 	20.6 	15.7 	1.7 	33.1 	297.4 	13.3 109.1 	25.3 	164.2 1.02 

	

3433.5 	25.0 	18.6 	2.4 	39.2 	386.0 	16.7 131.2 	27.7 	150.3 0.91 

	

3444.0 	37.0 	27.6 	4.9 	78.4 	371.6 	26.5 201.2 	46.5 	830.0 0.85 

	

3454.0 	56.0 	44.5 	11.4 	78.1 	736.5 	36.2 265.0 	67.5 	216.1 0.86 

	

3464.0 	45.7 	35.7 	9.0 	54.5 	727.8 	29.4 218.6 	56.0 	121.5 0.82 

	

3474.5 	47.4 	39.4 	8.4 	76.5 	637.6 	29.8 240.3 	57.6 	153.9 0.85 

	

3485.0 	52.0 	43.3 	11.2 	74.6 	921.1 	32.0 262.1 	62.1 	180.1 0.72 

	

3495.5 	43.3 	33.6 	6.7 	75.3 	632.3 	28.6 237.5 	52.2 	172.2 0.72 

	

3504.5 	46.2 	34.6 	8.8 	85.4 	672.8 	34.5 249.2 	56.9 	174.7 0.84 

	

3514.5 	47.5 	35.6 	9.5 	88.4 	731.4 	33.9 254.6 	56.9 	291.5 0.74 

	

3524.5 	56.4 	40.3 	9.2 	131.1 	771.4 	38.1 305.3 	63.7 1041.6 0.45 

	

3534.0 	62.0 	47.7 	11.7 	85.2 	1052.2 	39.1 295.9 	69.7 	133.0 0.42 

	

3543.0 	52.9 	42.9 	7.6 	82.3 	856.0 	33.6 284.3 	62.5 	174.5 0.89 

	

3561.0 	43.0 	35.6 	6.5 	70.0 	659.2 	29.1 229.8 	53.9 	143.9 1.06 

	

3571.5 	44.8 	36.4 	5.9 	63.9 	731.6 	28.1 231.1 	53.7 	182.5 0.69 

	

3581.5 	32.0 	25.3 	4.5 	44.8 	459.1 	21.7 176.6 	42.6 	127.6 1.04 

	

3591.0 	60.5 	50.4 	11.8 	79.4 	1120.7 	35.2 282.8 	70.2 	212.4 0.58 

	

3600.0 	57.5 	45.8 	10.2 	129.0 	928.0 	40.0 350.6 	73.8 1158.3 0.61 

	

3609.0 	53.3 	40.4 	8.9 	103.3 	778.6 	38.0 303.6 	66.5 	329.8 0.72 

	

3619.5 	57.7 	44.0 	9.0 	100.7 	804.2 	39.2 307.2 	68.7 	277.4 0.43 

	

3630.0 	55.3 	42.7 	9.2 	106.1 	766.4 	37.5 300.4 	67.3 	279.7 0.37 

	

3642.0 	47.8 	37.0 	7.5 	106.3 	577.1 	36.0 281.5 	59.1 	312.8 0.44 

	

3666.0 	70.5 	53.7 	12.5 	84.1 	1126.9 	41.1 319.4 	78.8 	192.3 0.52 

	

3677.5 	65.7 	52.0 	10.0 	83.9 	901.8 	41.3 311.6 	79.4 	214.3 0.71 

	

3705.5 	62.4 	46.6 	10.1 	111.9 	732.1 	37.8 303.2 	69.3 	648.5 0.52 

	

3717.0 	62.0 	47.4 	9.8 	99.0 	881.6 	40.4 320.7 	73.5 	457.4 0.43 

	

3727.5 	65.1 	50.5 	11.0 	99.0 	1147.0 	44.6 365.9 	77.0 	401.8 0.60 
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3738.0 	58.7 	46.7 	9.5 	83.4 	730.3 	35.7 287.2 	70.4 	305.0 0.72 

	

3768.0 	70.5 	60.0 	13.8 135.0 	909.3 	46.4 388.4 	85.3 	927.9 0.59 

	

3779.5 	64.4 	51.8 	12.3 145.5 	979.1 	47.4 401.3 	81.6 1126.8 0.47 

	

3790.0 	63.0 	51.7 	11.6 132.7 	738.1 	44.1 355.7 	79.2 	969.3 0.55 

	

3800.0 	66.2 	51.5 	9.0 104.2 	795.7 	41.9 329.5 	80.8 	520.4 	0.71 

	

3810.5 	66.0 	49.8 	9.2 	97.1 	802.6 	39.2 312.9 	78.1 	437.3 	0.88 

	

3854.0 	57.2 	44.8 	9.9 	78.6 	832.7 	35.8 274.3 	68.8 	266.4 0.86 

	

3864.0 	79.6 	64.4 	15.6 125.3 1322.0 	48.3 412.7 	95.9 	694.4 0.56 

	

3876.0 	81.2 	59.9 	12.8 101.6 1267.8 	49.5 390.3 	94.5 	190.9 0.65 

	

3886.0 	72.7 	54.5 	13.0 	95.3 	1097.0 	45.4 348.8 	87.2 	303.7 0.63 

	

3896.5 	82.5 	65.4 	15.6 117.4 	1714.1 	48.7 408.7 	93.4 	273.0 0.34 

	

3908.5 	83.9 	62.3 	14.3 107.4 1303.9 	50.6 396.7 	97.7 	163.7 0.59 

	

3919.5 	82.8 	63.0 	12.6 117.5 1254.6 	51.2 398.8 	97.8 	217.9 0.42 

	

3938.5 	77.5 	57.9 	11.8 147.5 1032.5 	53.6 426.5 	93.5 	842.2 0.41 

	

3948.0 	84.4 	66.1 	17.0 	93.3 1224.9 	50.9 389.9 100.5 	120.2 0.78 

	

3957.0 	91.2 	71.8 	16.2 101.6 1277.2 	54.6 430.9 110.2 	141.6 0.54 

	

3967.0 	87.8 	68.5 	14.5 	96.8 1117.6 	52.6 393.8 101.1 	127.0 0.55 

	

3977.5 	90.8 	72.0 	17.8 100.2 	1154.0 	53.7 408.3 105.8 	109.3 	0.45 

	

3988.0 	93.4 	71.3 	18.5 	96.1 1285.4 	55.0 427.3 110.7 	123.6 0.27 

	

3998.0 	90.9 	70.4 	19.2 	96.1 1241.3 	55.1 428.2 110.0 	95.4 0.31 

	

4008.5 100.6 	77.9 	18.9 106.5 1414.7 	59.4 462.1 120.2 	125.7 0.23 

	

4017.5 	92.9 	74.7 	16.4 107.3 1286.5 	57.3 450.6 114.3 	145.0 0.33 

	

4029.0 	91.7 	71.6 	15.6 101.5 1425.3 	57.1 445.7 110.4 	155.5 0.34 

	

4052.0 	81.8 	64.3 	13.3 	98.6 1276.5 	48.7 396.9 	98.8 	192.8 0.33 

	

4062.5 	68.4 	50.4 	11.5 	97.2 1125.2 	44.0 353.0 	79.6 	221.7 0.45 

	

4073.0 	63.4 	50.8 	14.1 123.7 1008.4 	44.2 348.7 	78.5 	507.1 0.40 

	

4083.5 	74.3 	55.2 	9.0 136.9 1112.5 	47.8 391.7 	88.6 	630.5 0.59 

	

4097.0 	84.6 	64.2 	16.0 	98.3 1362.9 	48.3 384.0 	97.1 	152.9 0.73 

	

4106.5 	73.0 	55.3 	12.9 	96.1 1133.4 	41.6 344.0 	86.0 	168.3 0.93 

	

4120.0 	64.3 	48.5 	11.2 136.4 1002.2 	42.9 365.9 	79.4 	608.8 0.74 

	

4130.5 	68.0 	50.1 	11.9 135.3 	965.1 	43.2 349.3 	80.1 	599.2 0.73 

	

4139.5 	66.9 	47.4 	10.6 108.1 1050.9 	40.9 322.2 	78.0 	126.8 0.61 

	

4149.0 	62.3 	46.9 	14.1 107.9 	966.7 	43.7 328.4 	75.2 	105.7 0.38 

	

4158.0 	76.3 	56.7 	12.6 113.8 1253.1 	46.8 365.1 	88.0 	118.1 0.52 

	

4167.5 	74.9 	56.3 	11.8 115.3 1175.2 	46.6 362.8 	87.6 	125.1 0.50 

	

4176.5 	80.7 	59.0 	10.7 120.7 1176.3 	51.1 387.2 	94.8 	135.4 0.41 

	

4185.5 	75.1 	54.6 	15.3 106.5 1203.8 	48.2 366.2 	85.5 	111.2 0.29 

	

4210.0 	76.0 	56.2 	13.4 115.3 1205.7 	47.5 385.4 	89.9 	146.2 0.51 

	

4220.5 	69.3 	53.9 	10.3 116.7 1436.3 	44.9 367.9 	81.7 	261.7 0.55 

	

4231.0 	42.7 	29.7 	14.6 	86.6 	632.8 	34.5 260.7 	53.8 	82.6 0.25 

	

4241.0 	63.5 	47.2 	11.0 103.4 	965.9 	43.3 330.2 	77.5 	133.6 0.52 

	

4251.5 	62.1 	47.3 	12.4 104.6 1006.5 	47.4 376.1 	79.0 	136.5 0.66 

	

4262.0 	65.5 	50.6 	12.8 112.5 	890.2 	44.4 337.4 	80.4 	178.8 0.59 

	

4272.5 	53.8 	38.1 	9.9 102.3 	664.9 	37.6 280.2 	62.9 	178.4 0.55 

	

4281.5 	73.3 	54.0 	14.7 111.3 1049.0 	49.5 380.7 	86.7 	169.5 0.83 

	

4290.5 	67.0 	49.3 	9.5 119.7 	824.5 	43.7 344.5 	80.5 	196.9 0.43 

	

4303.5 	61.2 	45.9 	10.7 104.1 1001.0 	46.1 379.5 	81.9 	160.7 0.79 

	

4312.5 	60.1 	45.6 	11.9 109.0 	834.4 	45.2 350.6 	77.6 	184.4 0.51 

	

4323.0 	77.3 	57.3 	13.0 119.5 1065.8 	54.1 405.3 	94.3 	159.3 0.33 

	

4333.0 	75.6 	55.0 	12.2 120.2 1133.4 	47.4 368.5 	86.7 	185.8 0.36 

	

4342.0 	61.7 	46.3 	10.4 121.7 	910.8 	41.8 338.5 	75.0 	388.2 0.46 

	

4351.0 	49.6 	34.4 	17.1 	93.1 	868.2 	39.0 318.9 	61.1 	248.4 0.30 

	

4361.0 	65.4 	47.4 	11.4 138.2 	863.8 	41.6 336.2 	76.0 	747.2 0.47 

	

4371.0 	64.3 	46.9 	10.5 113.4 	879.7 	42.9 315.6 	72.7 	156.1 0.56 

	

4380.0 	49.0 	36.8 	6.5 	97.4 	662.3 	34.8 263.9 	58.6 	193.7 0.76 

	

4390.0 	48.6 	36.4 	10.6 	91.1 	708.6 	34.7 264.3 	58.4 	193.7 0.79 

	

4412.0 	75.7 	56.4 	12.5 104.2 1178.8 	45.1 363.4 	84.0 	186.1 0.76 

	

4421.0 	60.8 	47.3 	8.3 	98.7 	824.9 	40.5 324.2 	73.1 	362.7 0.71 

	

4437.5 	74.7 	57.4 	11.6 	94.5 1111.2 	43.2 344.5 	83.0 	169.4 0.73 

	

4446.5 	67.9 	53.1 	12.2 100.8 	972.5 	43.4 345.1 	78.5 	218.2 0.76 

	

4456.0 	62.1 	46.2 	8.1 130.9 	904.6 	40.6 339.6 	71.9 	927.2 0.40 

	

4465.0 	56.1 	41.9 	6.4 	95.6 	715.0 	41.4 291.7 	63.8 	151.7 0.46 

	

4473.5 	54.7 	42.6 	8.4 106.1 	685.6 	39.2 288.6 	62.6 	280.3 0.61 

	

4486.0 	57.0 	43.6 	9.0 100.3 	872.6 	43.4 339.0 	67.6 	158.6 0.74 

	

4496.0 	58.0 	44.7 	7.5 101.9 	773.3 	42.0 327.1 	67.7 	177.0 0.43 

	

4509.5 	59.0 	44.7 	10.0 	98.6 	760.0 	39.4 308.1 	67.6 	210.9 0.58 
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4519.0 	59.4 	46.5 	9.9 108.8 	762.5 	42.8 341.7 	72.4 	263.4 0.46 

	

4528.0 	56.6 	44.0 	9.8 103.2 	778.2 	44.7 338.5 	69.5 	253.7 0.41 

	

4548.0 	54.5 	42.1 	8.0 	91.1 	890.1 	42.0 347.2 	66.6 	142.3 	0.83 

	

4556.0 	65.6 	50.0 	6.9 104.4 	903.6 	47.2 365.8 	78.0 	162.3 0.56 

	

4564.0 	65.1 	49.7 	8.4 116.0 	845.5 	44.0 344.1 	73.3 	176.7 0.40 

	

4577.0 	65.3 	51.1 	8.9 112.6 1002.0 	49.1 408.5 	78.0 	293.1 0.44 

	

4588.0 	60.2 	44.5 	10.3 122.7 	901.0 	42.1 328.3 	68.7 	391.6 0.34 

	

4597.5 	59.6 	46.7 	10.1 116.4 	866.4 	44.2 345.5 	72.4 	159.7 0.30 

	

4607.0 	75.9 	58.3 	14.5 130.9 	958.8 	52.0 412.1 	93.3 	200.6 0.28 

	

4618.0 	63.7 	50.1 	10.0 129.8 	825.8 	46.5 367.3 	76.7 	416.2 0.34 

	

4630.5 	47.3 	37.1 	7.2 	92.6 	671.6 	36.7 	272.0 	57.7 	132.5 0.59 

	

4641.0 	55.7 	42.3 	7.3 101.5 	762.4 	36.5 293.5 	63.1 	132.8 0.49 

	

4651.0 	49.8 	37.7 	8.1 	94.5 	671.5 	34.9 274.3 	58.6 	122.0 0.46 

	

4661.0 	42.2 	33.0 	8.8 	82.9 	772.1 	41.0 313.3 	52.9 	134.7 	0.69 

	

4671.5 	38.8 	32.4 	6.1 	79.7 	522.3 	28.4 225.4 	45.8 	92.9 0.59 

	

4681.5 	59.0 	45.4 	9.6 102.9 	787.2 	40.1 307.4 	66.8 	125.9 0.41 

	

4691.5 	57.9 	46.6 	12.8 100.7 	887.3 	47.5 416.6 	80.0 	172.2 0.87 

	

4710.0 	59.2 	46.0 	11.2 	96.2 	985.3 	41.0 329.2 	68.1 	218.3 0.58 

	

4718.5 	48.0 	36.8 	7.5 	90.2 	752.8 	34.1 256.5 	57.6 	108.0 0.47 

	

4730.0 	51.7 	42.0 	8.0 	88.9 	932.4 	35.7 275.3 	61.4 	170.9 0.58 

	

4740.0 	61.4 	46.7 	9.3 	95.7 1094.0 	40.8 307.1 	67.9 	293.3 0.59 

	

4751.5 	51.3 	42.6 	10.8 152.8 	599.8 	41.5 351.4 	66.6 1816.7 0.49 

	

4763.0 	48.9 	39.2 	6.6 161.1 	500.3 	35.4 341.7 	63.7 1946.2 0.46 

	

4773.0 	59.9 	45.6 	10.1 109.2 	740.0 	43.4 352.2 	71.6 	148.4 0.69 

	

4822.5 	78.7 	63.1 	16.8 102.4 1141.3 	45.6 399.3 	86.6 	169.8 0.45 

	

4839.0 	67.1 	56.9 	10.8 101.2 1193.5 	46.0 391.5 	84.2 	108.2 0.31 

	

4849.5 	73.0 	60.9 	11.1 105.0 1103.1 	46.8 369.0 	87.1 	124.6 0.43 

	

4859.5 	61.5 	49.0 	9.7 	99.1 1057.5 	37.5 321.8 	69.9 	224.9 0.54 

	

4870.0 	36.8 	27.9 	5.9 	61.0 	495.6 	28.3 	203.4 	47.9 	93.7 	0.89 

	

4880.0 	46.4 	38.6 	9.1 	64.6 	785.0 	27.5 224.2 	50.3 	135.4 0.85 

	

4893.0 	35.2 	27.9 	6.3 	48.7 	581.0 	22.8 203.6 	41.3 	129.2 1.46 

	

4902.5 	24.2 	19.4 	2.9 	44.4 	403.2 	23.6 153.4 	34.7 	96.3 0.67 

	

4913.0 	25.7 	21.3 	6.2 	46.7 	495.1 	19.1 153.8 	33.0 	142.0 1.01 

	

4923.5 	15.4 	12.7 	4.7 	30.4 	248.7 	12.5 	90.9 	19.8 	109.6 1.04 

	

4933.0 	22.4 	17.7 	5.3 	41.5 	385.5 	18.7 128.1 	28.8 	124.8 0.86 

	

4943.0 	42.8 	35.3 	8.9 	66.0 	696.7 	26.4 	221.7 	48.5 	225.7 1.25 

	

4953.5 	44.3 	38.8 	6.8 	63.4 	651.9 	25.6 223.4 	53.2 	123.6 1.08 

	

4962.5 	49.5 	39.9 	11.5 	77.8 	655.2 	38.9 266.9 	60.0 	141.7 0.63 

	

4971.5 	64.4 	53.1 	9.6 123.9 	733.6 	39.4 358.2 	79.8 	203.9 0.50 

	

5006.5 	55.7 	45.6 	6.7 	95.6 	864.5 	37.5 303.1 	67.9 	160.1 0.66 

	

5015.5 	54.0 	42.3 	9.9 	97.2 	880.5 	42.9 334.5 	67.3 	147.5 0.53 

	

5025.0 	69.4 	54.5 	8.8 106.5 1249.1 	40.8 342.9 	76.2 	215.0 0.50 

	

5034.0 	69.6 	54.9 	14.7 104.6 1226.3 	44.8 348.9 	81.5 	170.6 0.56 

	

5043.0 	80.0 	63.9 	11.7 116.7 1177.2 	51.8 412.8 	95.0 	443.7 0.35 

	

5052.0 	88.2 	70.4 	12.3 	116.5 1216.4 	54.5 438.7 104.8 	419.0 0.31 

	

5061.0 	86.8 	70.3 	16.1 161.4 1160.8 	54.5 474.0 105.1 1854.1 0.14 

	

5070.0 	97.4 	79.8 	14.1 100.6 1433.5 	55.4 470.7 115.6 	104.4 0.14 

	

5079.0 	84.7 	70.1 	11.8 	96.1 1404.2 	49.3 451.6 101.5 	163.3 0.33 

	

5089.0 	69.9 	53.6 	12.2 	93.1 1051.1 	47.4 346.5 	83.9 	159.5 0.37 
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depth Ctot Ntot Sulp Cinorg LOl water I Br Mo 

5.0 6.77 0.64 0.70 0.000 14.26 69.5 2.6 23.3 4.2 

15.0 21.57 1.95 2.50 0.037 44.06 85.6 5.5 86.3 5.7 

25.0 21.03 1.60 2.30 0.932 43.90 82.0 10.4 78.7 3.1 

35.0 18.94 1.50 2.14 1.119 38.96 82.2 9.9 79.9 5.2 

45.0 17.58 1.52 2.54 0.103 38.34 86.2 4.5 79.9 8.2 

55.0 13.50 1.15 1.34 0.034 30.39 90.0 2.3 55.5 7.2 

65.0 11.02 0.93 1.72 0.000 26.92 89.5 -5.0 44.4 7.6 

75.0 14.58 1.28 2.32 0.000 33.80 87.5 6.4 53.8 7.1 

85.0 16.83 1.45 2.26 0.000 38.45 87.8 6.3 61.0 10.0 

95.0 13.62 1.18 3.01 0.000 35.80 86.9 5.5 50.8 8.2 
105.0 7.05 0.72 0.96 0.000 17.10 86.6 2.6 30.2 7.3 
115.0 2.05 0.23 0.41 0.082 5.36 57.6 -1.7 10.6 4.6 

125.0 14.36 1.31 1.43 0.000 31.06 89.4 1.3 60.7 7.5 

135.0 13.03 1.17 1.42 0.000 29.72 91.2 6.8 50.8 7.3 

145.0 13.01 1.18 3.35 0.000 29.31 91.6 3.1 52.3 6.8 

155.0 15.35 1.34 1.45 0.000 32.83 91.5 3.4 49.6 5.3 

165.0 14.35 1.24 1.39 0.000 31.15 91.2 2.5 45.5 4.5 

183.0 16.75 1.79 1.94 0.000 34.65 91.6 3.1 48.3 6.2 

193.0 18.24 1.87 1.79 0.000 36.37 91.6 3.9 51.8 6.2 

203.0 15.03 1.66 1.66 0.000 31.81 92.5 8.5 55.5 6.3 
213.0 13.58 1.40 1.66 0.000 29.42 91.4 6.3 51.7 5.5 

223.0 16.67 1.87 2.43 0.000 37.05 89.6 5.9 53.9 6.6 

233.0 15.33 1.75 2.50 0.000 35.04 88.4 10.4 59.2 7.8 

243.0 14.47 1.65 2.51 0.000 31.64 85.8 7.2 48.4 7.1 

253.0 17.24 1.87 2.43 0.000 37.86 87.6 6.3 63.2 5.8 

263.0 17.17 1.83 2.07 0.000 36.87 88.2 2.4 62.7 7.5 

273.0 21.58 2.18 2.61 0.000 44.35 88.1 5.0 71.1 11.4 

283.0 22.37 1.94 1.98 0.000 44.44 87.7 2.0 57.7 13.4 

293.0 19.79 1.82 1.22 0.000 39.55 87.9 3.9 51.8 8.6 

303.0 15.10 1.52 1.57 0.000 33.09 87.5 5.6 56.1 10.1 

310.5 11.21 1.28 2.37 0.000 22.80 85.5 5.2 42.0 15.1 

315.5 1.33 0.54 0.22 0.000 4.28 43.2 2.3 8.7 5.5 

320.5 0.64 0.48 0.41 0.000 3.23 37.8 2.2 3.9 4.4 

327.5 14.71 1.46 1.10 0.000 29.82 88.3 8.7 45.4 10.3 

335.5 0.65 0.42 0.29 0.085 3.50 30.9 -1.0 4.0 2.3 

343.0 21.24 2.38 2.26 0.000 42.67 89.4 4.7 69.7 15.1 

353.0 16.17 1.77 1.62 0.000 34.23 88.5 11.3 49.6 11.3 

362.5 24.20 2.44 2.13 0.000 49.55 87.2 5.5 65.2 16.9 
377.0 15.19 1.73 1.22 0.000 30.96 82.6 6.5 44.8 12.2 

387.0 28.11 2.75 1.81 0.000 54.79 87.4 2.2 81.3 19.6 

397.0 22.57 2.18 1.85 0.000 47.27 86.4 8.5 64.8 16.8 

407.0 26.07 2.55 2.62 0.000 38.59 87.3 6.4 61.2 19.4 

417.0 30.10 2.75 4.23 0.000 59.28 86.7 9.5 78.5 26.2 

427.0 26.98 2.62 2.92 0.000 51.90 85.0 9.3 80.7 21.8 
437.0 24.05 2.44 2.16 0.000 44.52 87.3 4.1 79.6 14.7 

447.0 15.58 1.68 1.64 0.000 30.13 82.7 8.3 56.6 11.5 
457.0 31.66 2.91 3.58 0.000 60.08 86.1 4.3 98.6 24.0 
467.0 29.99 2.74 2.40 0.000 53.85 85.7 6.3 105.8 23.7 
477.0 29.33 2.73 4.29 0.000 58.58 85.0 8.4 85.7 20.1 
487.0 28.64 2.90 2.95 0.000 55.88 86.2 6.3 100.2 23.3 
497.0 30.23 3.01 3.11 0.000 58.20 86.3 3.6 96.0 28.8 
507.0 22.22 2.14 1.94 0.000 43.09 80.4 8.0 65.4 24.1 

517.0 27.77 2.76 2.99 0.000 56.44 86.8 7.1 76.0 26.2 

527.0 19.74 2.29 2.82 0.000 41.94 86.1 5.4 63.6 18.2 

537.0 13.11 1.74 3.96 0.000 29.04 86.4 6.3 40.9 13.1 

547.0 17.28 1.85 2.38 0.000 37.00 83.0 -0.8 63.5 20.7 

555.0 19.29 2.06 2.37 0.000 40.78 83.3 0.8 80.3 32.3 

562.0 20.92 2.15 3.17 0.000 45.44 82.6 6.3 65.0 37.2 

577.0 18.70 1.87 3.05 0.000 40.30 82.8 9.5 50.4 25.9 

587.0 23.47 2.38 2.97 0.000 48.44 85.7 7.2 109.1 28.7 

597.0 24.45 1.97 3.27 0.057 48.19 84.3 9.9 127.3 27.6 

607.0 20.72 1.73 5.97 0.035 42.98 83.6 1.9 68.0 31.4 
617.0 15.26 1.52 2.96 0.029 35.96 82.8 12.4 58.8 26.5 

626.0 6.99 0.84 0.96 0.361 17.31 66.5 7.3 24.3 11.8 
634.0 15.65 1.73 2.39 0.108 34.68 82.9 5.9 53.8 21.1 

	

642.0 10.13 	1.01 	1.48 0.298 23.56 74.1 	1.8 	29.4 	16.9 

649.5 	1.37 	0.39 	0.86 0.190 	5.22 43.4 	6.1 	5.7 	5.5 
657.5 	6.09 	0.83 	2.15 0.105 14.83 63.2 	5.4 	18.4 	10.1 

	

667.0 17.33 	1.68 	5.23 0.000 35.06 80.1 	8.0 	36.0 	18.5 

	

677.0 10.34 	1.16 	3.44 0.000 23.58 73.6 	5.5 	25.1 	14.0 

	

687.0 30.39 	3.02 	6.48 0.000 58.85 87.6 	2.5 	60.2 	29.1 

	

697.0 27.73 	2.57 	6.60 0.000 53.89 85.8 	9.7 101.7 	36.1 

	

707.0 22.28 	2.30 	5.55 0.070 47.51 84.7 	6.4 100.7 	37.0 

	

717.0 16.13 	1.61 	5.25 0.091 42.08 83.7 	6.7 	61.2 	35.5 

	

727.0 17.84 	1.84 	4.95 0.000 39.12 	82.3 	3.9 	71.6 	42.3 

	

737.0 15.92 	1.51 	3.49 0.000 34.57 80.6 	6.6 	65.2 	40.4 

	

747.0 10.02 	1.24 	2.75 0.000 23.66 75.2 	12.5 	38.9 	26.3 

	

756.5 10.06 	2.07 	2.93 	0.000 21.23 73.6 	6.4 	31.7 	22.7 
776.5 	8.60 	2.06 	2.36 0.000 16.50 68.6 	4.0 	24.0 	16.9 
785.0 	2.47 	1.04 	1.04 	0.000 	6.47 48.5 	2.9 	11.5 	7. 

	

794.0 13.58 	3.00 	3.72 0.000 24.85 82.1 	0.3 	41.8 	27. 
804.0 	13.97 	2.19 	3.79 	0.000 29.82 78.3 	6.7 	42.6 	38. 

	

814.5 14.92 	2.06 	4.37 0.000 32.79 79.5 	9.6 	42.4 	39. 

	

825.0 18.95 	2.06 	6.18 0.000 43.75 83.6 	9.4 	49.1 	74. 

	

835.0 17.82 	2.47 	5.69 0.000 39.47 82.9 	13.3 	43.2 	92. 

	

845.0 13.81 	1.34 	3.60 	0.000 29.21 77.4 	6.1 	40.3 	82. 

	

855.0 10.60 	1.21 	2.73 0.000 23.46 75.6 	2.9 	31.2 	50. 
865.0 	4.12 	0.72 	1.70 0.000 11.39 60.6 	6.0 	18.7 	22.6 
877.0 	6.64 	0.85 	2.02 0.000 15.21 67.8 	6.6 	26.5 	27.0 
887.0 	6.17 	1.04 	2.13 0.000 15.08 67.8 	-3.2 	23.6 	17.5 
897.0 	7.26 	0.92 	2.09 0.000 17.27 68.7 	4.8 	26.6 	16.5 
906.0 	4.29 	0.55 	1.45 0.000 11.25 58.9 	2.8 	18.3 	15.1 
915.0 	6.92 	1.04 	2.45 0.000 17.44 69.5 	6.3 	29.7 	15.9 
924.5 	6.96 	0.93 	2.09 0.000 17.28 65.7 	0.1 	25.0 	14.0 
932.5 	4.27 	0.94 	1.58 0.000 	12.03 	60.1 	0.2 	19.2 	12.2 
941.0 	7.49 	0.84 	2.48 0.000 19.11 72.9 	5.4 	38.4 	19.4 
951.0 	6.79 	0.82 	1.93 0.000 17.68 68.8 	1.5 	63.8 	13.6 
961.0 	6.53 	0.71 	1.89 0.000 16.68 67.0 	5.3 	32.1 	16.2 
977.0 	4.83 	0.77 	1.72 0.000 13.97 62.9 	1.9 	20.4 	10.5 
987.0 	7.80 	1.11 	2.02 0.000 18.19 68.0 	1.6 	28.9 	20.1 
997.0 	6.21 	0.76 	1.81 0.000 15.93 63.9 	0.7 	21.9 	16.7 

1007.0 	2.09 	0.64 	1.09 0.000 	6.89 45.7 	6.7 	7.8 	10.4 
1017.0 	3.40 	0.73 	1.40 0.000 	9.83 	56.8 	3.1 	13.9 	8.5 
1027.0 	5.32 	1.09 	1.28 0.000 13.68 	63.5 	6.4 	23.4 	7.3 
1037.0 	4.84 	0.75 	1.98 0.000 14.01 63.6 	3.7 	22.3 	7.5 
1047.0 	4.94 	0.81 	1.38 0.000 14.75 62.2 	6.1 	23.1 	7.5 
1057.0 	6.03 	0.89 	2.22 	0.000 16.74 	65.7 	3.2 	31.8 	15.8 
1067.0 	5.68 	0.74 	1.59 0.000 15.71 65.3 	4.0 	33.9 	13.5 
1077.0 	5.51 	0.86 	1.46 0.000 14.69 64.3 	7.4 	25.8 	12.1 
1087.0 	4.77 	0.75 	1.31 0.037 13.55 61.8 	5.6 	18.1 	7.9 
1097.0 	2.51 	0.60 	0.95 0.116 10.13 	47.0 	4.7 	8.5 	1.9 
1105.5 	0.69 	0.66 	0.43 	0.082 	2.41 42.0 	5.4 	1.6 	1.5 
1112.0 	0.57 	0.41 	0.34 	0.090 	2.71 36.2 	4.8 	5.8 	2.2 
1118.5 	0.67 	0.54 	0.31 	0.040 	2.12 	35.4 	-2.5 	4.6 	2.7 
1127.0 	4.35 	0.87 	0.91 0.468 12.95 67.7 	8.7 	23.0 	3.2 
1137.0 	4.69 	0.82 	1.94 0.138 13.36 65.9 	5.1 	22.4 	8.7 
1147.0 	4.16 	0.84 	1.26 0.000 12.38 65.8 	3.0 	20.3 	7.7 
1156.0 	3.72 	0.86 	1.14 	0.000 	11.65 64.6 	7.0 	18.0 	3.9 
1161.0 	2.29 	0.33 	0.99 0.000 	10.23 	60.6 	-1.7 	10.6 	6.2 
1171.0 	3.08 	0.36 	1.49 0.036 11.45 64.8 	1.1 	14.5 	9.4 
1181.0 	4.14 	0.44 	2.03 0.030 13.73 67.7 	-0.6 	21.2 	17.2 
1191.0 	3.72 	0.38 	2.05 0.034 12.74 	66.0 	1.4 	20.5 	14.3 
1201.0 	2.78 	0.34 	1.26 0.154 11.57 63.1 	-0.2 	15.0 	5.3 
1211.0 	2.64 	0.38 	1.44 0.056 11.66 63.9 	1.5 	14.9 	6.7 
1221.0 	2.39 	0.32 	1.48 0.037 11.49 60.7 	4.3 	13.3 	11.5 
1236.0 	3.19 	0.31 	1.21 0.000 	11.55 62.5 	11.2 	13.7 	17.3 
1246.0 	2.64 	0.27 	1.25 0.000 12.03 56.7 	0.7 	11.6 	13.8 
1255.0 	3.07 	0.28 	1.21 0.000 11.60 58.4 	-0.3 	11.8 	17.9 
1264.0 	3.01 	0.29 	1.29 0.000 11.46 58.6 	1.5 	16.1 	20.7 
1274.0 	2.49 	0.27 	2.08 0.039 11.33 59.5 	1.1 	14.6 	16.7 
1281.0 	1.59 	0.19 	1.16 0.000 	9.84 46.4 	-1.8 	8.9 	7.2 
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1288.0 	2.45 	0.30 	1.47 0.000 	11.31 58.4 	-0.6 	14.2 	8.7 

1298.0 	2.62 	0.32 	1.90 0.034 12.18 62.4 	0.1 	10.5 	9.5 

1308.0 	2.35 	0.32 	1.77 0.024 12.46 60.6 	-4.7 	10.3 	6.4 

1320.0 	2.08 	0.26 	1.18 0.000 11.55 51.7 	-1.6 	10.9 	4.8 

1327.0 	2.26 	0.32 	1.49 	0.027 	10.48 63.6 	0.2 	10.5 	9.7 

1335.0 	2.38 	0.31 	2.30 	0.000 	11.50 	63.7 	-1.7 	12.3 	12.0 

1344.0 	2.50 	0.28 	1.53 0.529 12.45 59.5 	-0.8 	10.2 	12.0 

1349.0 	3.55 	0.34 	2.17 0.000 13.45 60.8 	-5.3 	23.8 	17.2 

1359.0 	6.18 	0.49 	3.07 	0.000 	18.20 70.3 	-5.2 	37.1 	24.1 

1369.0 	3.33 	0.31 	2.24 	0.000 13.24 58.2 	-3.0 	18.3 	20.5 

1379.0 	3.41 	0.33 	3.31 0.175 15.08 63.2 	-0.4 	16.9 	30.9 
1389.0 	2.46 	0.25 	2.27 0.666 13.94 58.9 	-10.6 	13.2 	17.6 
1398.0 	1.84 	0.24 	1.44 	0.374 	11.30 51.7 	0.8 	11.9 	12.9 

1410.0 	1.34 	0.22 	2.11 	0.073 	10.78 50.9 	-4.1 	6.6 	14.2 

1420.0 	1.07 	0.20 	1.56 0.053 	9.82 41.6 	2.0 	5.3 	4.3 

1430.0 	1.34 	0.18 	1.44 	0.046 	8.87 36.7 	-3.3 	6.6 	3.7 

1438.5 	0.13 	0.06 	0.88 0.050 	5.17 31.3 	-7.9 	8.8 	6.2 

1446.0 	0.58 	0.05 	0.85 0.580 	6.38 27.6 	-8.9 	7.9 	6.7 

1453.0 	0.19 	0.04 	0.89 0.059 	4.60 29.5 	-4.4 	6.8 	5.7 

1464.0 	2.35 	0.28 	2.25 0.339 	12.06 56.5 	-6.6 	9.2 	33.3 

1475.0 	2.43 	0.26 	1.56 0.961 12.98 52.5 	-0.5 	4.0 	14.6 

1486.0 	1.96 	0.29 	1.62 0.488 12.11 51.9 	-0.5 	5.7 	12.2 

1496.5 	1.65 	0.28 	2.06 0.147 11.48 54.9 	-5.3 	4.5 	10.8 

1507.0 	2.22 	0.28 	2.04 	0.649 	12.73 56.4 	-1.4 	5.8 	11.0 

1517.0 	2.51 	0.25 	2.08 1.063 	14.04 54.3 	-4.6 	5.4 	12.3 

1527.0 	1.35 	0.26 	2.13 0.000 10.98 55.0 	-7.3 	5.0 	10.4 

1537.0 	1.64 	0.27 	2.05 0.240 11.62 52.7 	-3.5 	4.7 	9.9 

1595.5 	1.30 	0.32 	1.61 0.425 10.29 49.8 	-3.5 	5.3 	9.1 

1605.5 	0.95 	0.35 	1.51 0.246 	9.46 44.7 	-1.5 	4.0 	8.8 

1618.0 	1.75 	0.32 	2.48 0.374 11.63 52.9 	5.2 	7.0 	13.0 

1627.0 	1.75 	0.21 	1.52 	0.102 	11.66 43.8 	4.4 	5.1 	8.8 

1636.5 	2.14 	0.23 	2.79 	0.509 	13.93 53.1 	-2.7 	10.4 	14.8 

1645.5 	2.03 	0.39 	1.01 1.502 	7.90 37.1 	-3.1 	4.3 	5.8 

1654.5 	3.26 	0.26 	4.37 0.945 16.85 60.7 	4.7 	12.8 	15.7 

1664.5 	3.67 	0.23 	2.41 1.176 15.58 56.5 -13.3 	11.6 	8.4 

1674.5 	0.74 	0.42 	0.28 0.486 	3.95 24.0 	-1.1 	1.1 	3.6 

1685.0 	3.94 	0.24 	3.59 1.722 18.92 62.3 	-3.7 	14.5 	21.8 

1695.0 	2.96 	0.20 	1.78 0.801 	14.61 51.8 	-6.2 	6.4 	8.5 

1704.0 	5.46 	0.18 	3.60 3.238 21.45 59.7 	-2.4 	12.2 	16.5 

1727.0 	2.37 	0.22 	1.24 	0.964 	11.78 43.3 	-2.3 	7.4 	6.0 

1746.0 	2.47 	0.22 	5.57 0.107 18.33 63.5 	6.2 	12.2 	39.8 

1756.5 	2.90 	0.38 	3.95 0.105 14.08 58.3 	2.6 	7.5 	27.8 

1765.5 	4.20 	0.27 	5.15 1.585 18.26 59.3 	-6.5 	7.7 	28.1 

1774.5 	4.68 	0.31 	3.15 2.392 17.60 52.4 	-1.2 	8.9 	15.2 

1783.5 	5.31 	0.27 	6.57 2.361 20.63 58.1 -14.2 	10.7 	29.6 

1794.0 	4.99 	0.31 	4.28 2.133 18.85 58.2 -10.7 	11.2 	19.8 

1804.5 	5.01 	0.27 	3.91 2.130 18.83 56.5 -11.2 	8.7 	25.1 

1821.5 	3.92 	0.27 	2.61 1.584 15.80 55.6 	-8.5 	12.3 	34.5 

1832.0 	2.51 	0.31 	3.88 0.089 14.02 54.6 	1.9 	10.2 	25.9 

1842.0 	2.43 	0.25 	2.33 	0.440 12.42 46.8 	-3.9 	5.6 	13.2 

1851.0 	2.72 	0.29 	2.39 0.641 13.26 47.8 	1.8 	3.5 	10.9 

1860.0 	4.43 	0.19 	1.40 2.988 16.51 45.8 	-3.6 	3.5 	11.4 

1869.0 	5.02 	0.21 	1.09 3.518 18.78 44.8 -11.4 	1.3 	10.0 

1878.5 	3.11 	0.16 	1.12 2.126 14.49 38.2 	2.0 	1.0 	12.0 

1888.0 	3.88 	0.21 	0.94 2.637 16.45 35.3 	-2.3 	-0.9 	11.4 

1898.0 	3.39 	0.17 	1.00 2.251 15.92 34.3 	-9.2 	-1.0 	13.4 

1909.0 	2.30 	0.16 	1.07 1.577 13.13 31.8 	-2.6 	-2.7 	10.4 

1929.0 	2.14 	0.22 	0.89 1.135 10.85 33.1 	-6.8 	-0.3 	8.6 

1940.5 	2.53 	0.15 	0.92 1.755 13.53 34.5 -16.4 	-3.5 	12.7 

1949.5 	1.34 	0.20 	0.96 0.601 10.06 34.0 	1.6 	-2.3 	10.2 

1959.0 	1.51 	0.15 	1.00 0.902 10.27 33.4 	-7.2 	-3.6 	12.2 

1969.0 	1.56 	0.14 	0.93 0.755 10.65 35.2 	4.6 	0.2 	11.0 

1979.0 	1.71 	0.18 	0.93 1.003 10.74 32.0 	-6.0 	-2.8 	8.6 
1988.0 	1.63 	0.16 	0.85 1.073 10.25 31.7 	-5.5 	-1.9 	10.2 

1997.5 	1.60 	0.16 	1.07 0.886 10.77 33.9 	0.4 	-2.0 	12.2 

2006.5 	1.47 	0.14 	1.02 	0.790 10.40 33.8 	4.8 	-3.5 	13.2 

2015.5 	1.02 	0.14 	1.02 	0.477 	8.51 	32.3 	2.7 	-3.5 	17.6 

2026.0 	1.19 	0.13 	1.34 0.527 	8.92 33.3 	0.6 	-4.3 	11.1 
2035.0 	1.42 	0.13 	1.31 0.603 	9.51 33.2 	-1.3 	-2.3 	14.3 
2044.0 	1.32 	0.14 	1.37 	0.682 	9.30 33.8 	8.5 	-5.6 	11.8 

2053.5 	1.22 	0.12 	1.22 0.652 	8.82 	32.2 	-1.3 	-3.4 	10.4 

2064.0 	1.45 	0.11 	1.28 0.896 	9.97 	35.2 	-2.4 	-3.4 	16.8 

2080.0 	1.49 	0.09 	1.30 	0.907 	9.81 	35.4 	2.2 	-3.4 	14.2 

2096.0 	1.33 	0.10 	1.24 0.846 	9.16 34.4 	-0.6 	-1.6 	21.2 
2114.0 	1.32 	0.15 	1.28 0.829 	9.87 	37.5 	-2.1 	-2.7 	7.5 
2239.5 	1.33 	0.09 	1.27 0.953 	6.94 25.1 	-0.2 	-0.5 	10.4 
2248.5 	3.55 	0.24 	1.40 1.716 14.50 50.8 	-0.8 	6.3 	8.3 
2258.0 	1.95 	0.17 	1.73 0.329 10.58 59.9 	-2.1 	7.8 	12.8 
2267.0 	1.58 	0.14 	1.44 0.225 	9.56 56.0 	-0.8 	7.8 	11.8 
2276.0 	2.01 	0.16 	1.61 0.337 	10.82 	55.9 	-6.9 	9.5 	10.9 
2285.5 	2.72 	0.16 	1.33 0.842 12.77 	59.7 	-9.4 	9.5 	10.4 

2294.5 	2.62 	0.14 	1.75 1.064 12.92 58.1 	-8.5 	7.9 	11.5 
2303.5 	2.04 	0.10 	1.38 1.197 	11.05 43.3 	-15.5 	4.5 	8.5 
2313.0 	1.63 	0.16 	1.79 0.202 	10.56 57.6 	-3.0 	9.1 	9.5 
2349.5 	0.73 	0.14 	1.45 0.000 	9.02 47.2 	-1.3 	4.0 	6.1 
2360.0 	1.29 	0.14 	1.55 0.312 10.38 49.5 	-2.7 	4.0 	5.3 
2370.0 	2.33 	0.15 	1.94 0.364 11.16 51.4 	0.4 	19.4 	8.0 
2379.0 	1.49 	0.15 	2.13 	0.199 	10.61 	52.7 	0.6 	8.1 	5.0 
2389.0 	1.27 	0.16 	2.14 0.187 10.96 51.9 	-3.0 	3.8 	4.1 
2399.0 	0.86 	0.14 	2.12 	0.086 	10.03 	50.6 	-0.8 	2.9 	5.0 
2413.5 	0.84 	0.14 	1.91 0.264 10.31 45.6 	-1.1 	3.5 	5.7 
2423.0 	0.89 	0.11 	1.88 0.286 10.00 43.7 	-2.9 	3.5 	4.1 
2432.5 	0.81 	0.10 	1.94 0.146 10.04 	39.1 	-6.2 	1.5 	4.0 
2445.5 	1.15 	0.12 	1.66 0.000 	8.80 	36.2 	-4.7 	4.8 	3.4 
2457.5 	0.69 	0.09 	1.43 0.000 	7.11 34.3 	-8.0 	5.1 	4.6 
2470.0 	0.00 	0.05 	0.99 0.000 	3.70 46.1 -11.9 	5.4 	5.6 
2480.0 	0.53 	0.08 	1.56 0.038 	8.16 40.8 	-1.7 	4.4 	6.7 
2490.0 	1.08 	0.15 	1.60 0.076 	8.62 40.3 	7.6 	6.8 	4.9 
2499.5 	1.40 	0.20 	1.99 0.000 	9.48 51.7 	-8.3 	7.0 	4.8 
2508.5 	1.83 	0.19 	* 0.436 10.19 56.8 -11.6 	6.1 	5.2 
2518.0 	1.96 	0.19 	* 0.368 10.74 55.2 	-7.1 	6.3 	6.4 
2527.0 	1.80 	0.21 	* 0.079 10.43 55.9 	-6.3 	8.3 	4.9 
2549.5 	1.75 	0.19 	* 0.082 10.27 59.7 	-5.0 	7.2 	5.7 
2561.0 	1.77 	0.21 	* 	0.457 	10.39 	53.6 	-4.9 	4.4 	6.4 
2570.0 	3.91 	0.17 	* 2.130 16.66 56.4 -15.4 	8.3 	11.4 
2579.0 	1.48 	0.23 	* 0.063 10.42 58.8 	0.6 	6.4 	12.4 
2588.0 	1.75 	0.20 	* 0.199 11.20 54.6 	2.0 	6.9 	6.8 
2609.5 	1.32 	0.20 	* 0.500 11.40 48.5 	-4.9 	0.1 	3.8 
2620.0 	1.75 	0.17 	* 0.724 11.82 46.9 	-3.5 	2.9 	5.9 
2631.5 	1.07 	0.18 	* 0.066 	9.13 44.4 	-5.2 	4.8 	7.5 
2645.0 	1.91 	0.23 	* 0.000 10.78 58.9 	1.4 	10.8 	7.3 
2654.0 	1.16 	0.21 	* 0.000 	9.18 53.2 	-3.7 	4.5 	4.6 
2663.5 	1.69 	0.23 	* 0.000 	9.06 58.8 	3.2 	10.5 	6.1 
2672.5 	3.80 	0.19 	* 2.436 15.88 55.9 	-1.4 	9.7 	5.8 
2681.5 	2.25 	0.25 	* 0.100 10.84 62.9 	-2.5 	10.6 	9.3 
2690.5 	2.55 	0.27 	* 0.171 11.47 61.3 	-1.2 	14.5 	11.3 
2699.5 	3.32 	0.27 	* 0.829 13.19 62.3 	5.5 	12.6 	9.2 
2708.0 	3.12 	0.23 	* 1.155 12.95 58.7 	-9.7 	10.3 	11.9 
2717.5 	3.12 	0.29 	* 0.573 12.63 63.5 	-4.7 	18.2 	13.3 
2729.0 	3.23 	0.34 	* 0.051 12.56 62.2 	-5.7 	23.4 	16.9 
2748.0 	3.22 	0.36 	* 0.000 12.56 62.0 	-7.1 	26.6 	15.5 
2826.5 	3.06 	0.31 	* 0.239 12.36 58.0 	-3.3 	21.1 	10.8 
2855.5 	2.06 	0.27 	* 0.000 	9.97 55.2 	-2.8 	19.8 	15.7 
2874.0 	2.42 	0.30 	* 0.000 10.26 57.9 	-3.8 	12.9 	10.6 
2883.0 	4.38 	0.25 	* 2.089 15.99 57.1 	-3.6 	10.5 	10.0 
2892.5 	2.79 	0.31 	* 0.000 11.87 59.9 	-1.2 	13.1 	12.7 
2902.0 	2.41 	0.29 	* 0.000 11.25 56.6 	2.7 	13.6 	9.7 
2911.0 	2.41 	0.30 	* 	0.000 	11.01 56.5 	4.6 	12.4 	8.8 
2920.5 	2.17 	0.28 	* 0.000 11.48 47.8 	2.5 	9.6 	5.8 
2930.5 	2.29 	0.28 	* 0.032 11.80 52.6 	-6.9 	12.8 	8.3 
2952.5 	2.06 	0.29 	* 0.000 11.63 48.3 	3.2 	6.7 	3.6 
2964.0 	2.27 	0.30 	* 	0.000 11.12 55.7 	-2.4 	11.3 	4.3 
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2976.5 2.36 0.30 * 	0.000 11.08 58.8 6.0 12.8 7.2 

2989.5 2.67 0.29 * 	0.151 12.12 62.4 4.0 13.2 6.2 

3000.0 2.87 0.27 * 	0.309 12.22 61.2 -2.5 11.7 7.4 

3011.5 2.82 0.28 * 	0.000 12.02 60.9 8.1 13.2 8.9 

3021.5 2.81 0.27 * 	0.062 11.61 61.7 1.0 14.1 9.0 

3031.5 2.84 0.24 * 	0.115 11.37 52.4 -5.2 13.0 7.7 

3044.5 2.95 0.25 * 	0.376 11.74 61.8 -1.7 12.6 10.3 

3056.0 3.81 0.20 * 	1.617 13.65 56.7 0.4 10.8 6.7 

3067.5 4.03 0.22 * 	1.563 15.27 60.0 8.6 13.3 7.2 

3078.0 2.56 0.28 * 	0.000 12.94 62.0 5.4 16.9 7.5 

3088.0 2.47 0.24 * 	0.322 12.97 57.4 -1.2 13.6 6.5 
3098.5 2.44 0.23 * 	0.399 12.79 53.5 -1.6 14.3 4.8 
3110.0 1.91 0.20 * 	0.000 11.48 51.8 2.8 12.6 6.8 

3122.0 1.90 0.17 * 	0.000 11.72 50.5 5.6 11.3 7.1 

3155.5 1.99 0.18 * 	0.000 11.57 55.8 -4.2 10.5 4.5 
3166.0 1.92 0.20 * 	0.000 10.88 56.8 1.1 12.5 8.2 

3176.5 2.22 0.17 * 	0.000 12.74 59.9 1.6 14.0 7.1 

3187.0 2.88 0.20 * 	0.299 13.50 61.1 6.9 12.3 6.8 
3197.0 3.32 0.20 * 	0.970 14.93 59.5 6.7 12.4 7.0 

3207.0 2.13 0.16 * 	0.000 11.75 60.7 1.5 13.5 14.9 

3217.5 2.22 0.19 * 	0.000 12.16 56.5 -1.9 13.5 9.6 
3226.5 2.20 0.20 * 	0.000 12.64 56.5 3.8 11.2 10.2 

3236.5 2.50 0.20 * 	0.000 11.98 57.1 1.3 10.3 14.0 

3249.5 2.28 0.15 * 	0.000 12.94 63.0 5.9 12.8 12.1 
3258.5 2.79 0.20 * 	0.137 12.84 56.5 -1.1 11.5 10.8 
3268.0 2.64 0.17 * 	0.000 12.31 59.0 10.5 11.8 17.3 

3277.0 2.51 0.16 * 	0.000 12.11 58.7 -2.0 13.3 13.0 
3286.5 2.44 0.16 * 	0.000 10.89 60.1 0.5 13.1 11.8 
3297.5 2.43 0.27 * 	0.000 11.22 57.1 1.2 11.9 11.3 
3307.5 3.06 0.24 * 	0.000 13.00 63.0 -1.3 14.4 15.4 
3317.0 2.93 0.18 * 	0.000 12.97 64.1 3.8 16.1 20.4 

3326.0 3.14 0.23 * 	0.000 12.48 63.9 1.1 20.3 11.6 
3337.0 2.86 0.20 * 	0.000 12.53 63.6 0.4 17.3 13.9 
3356.5 2.91 0.18 * 	0.000 12.29 62.5 3.1 16.1 18.1 

3367.0 3.00 0.19 * 	0.000 12.37 62.6 -3.6 17.4 19.5 
3378.5 3.19 0.27 * 	0.051 13.27 61.6 -4.9 17.9 11.7 
3390.0 2.48 0.14 * 	0.000 12.96 62.4 -1.4 20.5 26.0 
3402.5 3.13 0.23 * 	0.000 12.63 63.8 -11.5 19.9 27.9 

3412.0 4.02 0.27 * 	0.000 14.11 65.3 -5.5 26.6 20.3 
3422.5 3.45 0.24 * 	0.000 13.78 64.6 3.0 22.4 20.8 
3433.5 3.20 0.23 * 	0.000 13.32 63.3 -2.4 22.5 19.0 

3444.0 2.27 0.15 * 	0.000 12.00 59.0 -0.5 19.2 21.3 
3454.0 2.03 0.17 * 	0.000 12.04 54.3 3.1 14.5 14.7 
3464.0 2.46 0.18 * 	0.254 13.44 56.2 4.2 15.7 16.4 

3474.5 2.62 0.17 * 	0.000 13.33 55.6 -0.8 19.2 19.1 
3485.0 2.22 0.19 * 	0.000 12.88 53.1 -4.3 22.6 11.7 
3495.5 2.75 0.30 * 	0.000 12.12 58.3 4.7 19.7 12.3 

3504.5 2.97 0.30 * 	0.044 12.66 56.9 -1.0 17.9 8.8 
3514.5 2.62 0.28 * 	0.044 12.10 55.9 0.8 15.0 9.7 
3524.5 1.62 0.23 * 	0.166 10.76 48.5 -2.1 11.6 8.4 

3534.0 2.34 0.30 * 	0.294 12.81 52.9 1.2 11.5 7.2 
3543.0 2.38 0.28 * 	0.000 12.30 54.4 7.5 14.7 9.4 
3561.0 2.98 0.30 * 	0.000 13.17 59.5 6.8 18.5 16.3 
3571.5 2.69 0.30 * 	0.000 12.62 60.2 6.0 13.8 14.2 
3581.5 2.75 0.28 * 	0.000 12.32 63.8 3.3 20.2 20.4 
3591.0 1.57 0.32 * 	0.000 10.84 55.9 -6.3 8.7 13.6 
3600.0 1.47 0.27 * 	0.056 10.07 51.8 -8.2 11.3 8.9 
3609.0 2.01 0.25 * 	0.176 11.60 54.4 2.9 16.9 9.3 
3619.5 1.96 0.25 * 	0.274 11.47 51.7 -1.3 10.6 9.6 
3630.0 2.13 0.24 * 	0.199 11.82 52.1 0.2 10.9 8.1 
3642.0 2.52 0.25 * 	0.231 12.36 54.6 2.3 13.5 10.5 
3666.0 1.50 0.28 * 	0.056 11.63 48.8 9.2 10.2 10.2 
3677.5 1.49 0.23 * 	0.255 11.84 49.1 -9.3 9.7 13.0 
3705.5 1.21 0.22 * 	0.000 10.34 50.5 -4.7 7.7 10.7 

3717.0 2.01 0.27 * 	0.038 11.08 53.9 -3.4 12.7 6.0 
3727.5 1.51 0.24 * 	0.097 9.66 44.9 -3.6 5.9 7.0 
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3738.0 2.04 0.27 * 	0.000 11.57 51.0 -0.2 9.6 16.1 
3768.0 1.21 0.22 * 	0.029 9.63 44.9 -1.1 4.1 11.5 
3779.5 1.19 0.22 * 	0.000 8.89 44.5 -2.9 7.6 7.2 
3790.0 1.57 0.25 * 	0.000 10.41 50.9 -9.7 7.6 13.0 
3800.0 1.73 0.25 * 	0.000 11.28 51.0 -1.7 8.1 15.5 
3810.5 1.96 0.27 * 	0.000 11.71 51.3 1.6 9.9 16.1 
3854.0 2.07 0.29 * 	0.086 11.75 57.5 0.3 9.2 17.4 
3864.0 1.12 0.27 * 	0.056 9.84 42.2 6.3 3.3 7.0 
3876.0 1.47 0.25 * 	0.138 10.50 44.1 -3.1 6.3 7.8 
3886.0 1.54 0.26 * 	0.119 10.70 49.6 -2.8 8.7 10.7 
3896.5 1.07 0.37 * 	0.042 9.34 40.1 -1.2 2.6 5.2 
3908.5 1.30 0.24 * 	0.135 10.54 43.5 4.7 3.9 6.6 
3919.5 1.28 0.27 * 	0.141 10.50 43.3 -3.1 5.4 10.3 
3938.5 1.32 0.21 * 	0.332 10.30 41.3 0.8 2.5 6.8 
3948.0 1.44 0.25 * 	0.099 11.32 48.2 -1.1 5.6 11.2 
3957.0 1.03 0.19 * 	0.050 10.38 43.5 3.3 4.4 7.9 
3967.0 1.36 0.23 * 	0.063 11.04 48.1 5.2 5.0 10.8 
3977.5 1.32 0.21 * 	0.191 11.13 45.3 -4.6 3.6 8.4 
3988.0 1.44 0.17 * 	0.679 11.86 40.4 -5.2 -1.0 6.4 
3998.0 1.48 0.16 * 	0.761 12.11 40.0 2.6 0.7 5.1 
4008.5 0.87 0.18 * 	0.101 10.35 38.4 4.7 1.4 3.8 
4017.5 1.28 0.23 * 	0.000 11.13 42.1 -1.3 5.3 5.1 
4029.0 1.03 0.19 * 	0.217 10.42 38.4 3.8 1.7 6.2 
4052.0 1.44 0.22 * 	0.274 10.97 46.1 -5.8 5.0 7.0 
4062.5 2.21 0.21 * 	0.993 12.76 42.9 1.9 5.8 8.5 
4073.0 1.39 0.24 * 	0.216 9.66 42.9 8.9 5.3 6.3 
4083.5 1.26 0.25 * 	0.000 9.68 42.4 -2.4 5.9 5.5 
4097.0 1.40 0.23 * 	0.278 11.32 40.8 -2.9 5.1 7.2 
4106.5 1.81 0.25 * 	0.359 12.62 44.9 -4.8 5.3 10.0 
4120.0 1.72 0.25 * 	0.069 10.72 43.4 -2.3 14.1 5.5 
4130.5 1.63 0.25 * 	0.056 10.73 44.5 -2.7 8.3 6.3 
4139.5 1.79 0.25 * 	0.178 11.46 46.2 0.5 10.6 4.8 
4149.0 2.61 0.22 * 	0.985 13.22 45.1 2.6 15.3 4.3 
4158.0 1.30 0.25 * 	0.065 10.46 41.1 1.1 4.4 3.9 
4167.5 1.38 0.24 * 	0.000 10.56 42.2 7.0 6.0 4.9 
4176.5 1.24 0.22 * 	0.000 10.28 39.5 -7.0 5.2 4.4 
4185.5 2.50 0.21 * 	1.309 13.49 35.6 -2.0 5.6 4.8 
4210.0 1.31 0.24 * 	0.065 9.89 39.2 6.5 6.1 4.5 
4220.5 1.40 0.33 * 	0.045 9.40 43.5 -3.5 8.8 3.5 
4231.0 3.90 0.20 * 	2.295 16.07 47.9 -5.0 15.9 5.2 
4241.0 2.06 0.23 * 	0.486 11.12 46.9 6.1 11.8 6.9 
4251.5 1.00 0.17 * 	0.000 8.23 38.5 -6.7 1.8 4.5 
4262.0 1.73 0.25 * 	0.063 10.64 45.7 0.0 9.6 6.5 
4272.5 2.05 0.25 * 	0.341 10.92 48.6 -8.2 11.5 4.4 
4281.5 1.51 0.20 * 	0.342 10.93 38.2 -6.2 6.5 5.7 
4290.5 1.76 0.26 * 	0.031 10.83 45.1 -5.5 8.3 7.7 
4303.5 1.42 0.20 * 	0.224 9.93 38.3 -6.0 5.2 5.7 
4312.5 1.58 0.21 * 	0.131 10.71 44.0 -1.4 10.6 4.5 
4323.0 1.32 0.23 * 	0.031 10.32 40.0 -1.1 7.7 5.2 
4333.0 1.56 0.27 * 	0.026 10.55 42.3 -4.7 11.7 6.4 
4342.0 1.87 0.26 * 	0.086 10.61 46.1 -3.3 16.0 6.7 
4351.0 3.28 0.18 * 	2.111 14.51 37.4 -7.6 10.9 5.7 
4361.0 1.57 0.26 * 	0.000 9.88 43.6 7.5 9.3 5.1 
4371.0 1.74 0.28 * 	0.035 10.72 46.3 0.4 8.7 6.5 
4380.0 2.10 0.27 * 	0.000 11.01 51.4 -9.6 13.2 9.7 
4390.0 2.28 0.29 * 	0.000 11.41 51.6 -0.4 13.2 8.5 
4412.0 1.88 0.27 * 	0.000 11.38 46.6 -3.6 5.5 8.0 
4421.0 2.25 0.30 * 	0.069 11.40 51.0 5.1 13.4 9.6 
4437.5 1.56 0.26 * 	0.000 10.78 46.4 -9.9 5.3 10.7 
4446.5 1.91 0.28 * 	0.034 10.96 46.6 0.5 6.9 9.8 
4456.0 1.63 0.27 * 	0.082 9.74 45.6 5.3 9.9 8.1 
4465.0 2.35 0.31 * 	0.174 11.30 52.2 -5.4 11.9 8.6 
4473.5 2.26 0.31 * 	0.111 11.33 50.2 -2.7 10.1 9.5 
4486.0 1.79 0.25 * 	0.040 10.02 42.8 0.3 6.4 5.8 
4496.0 2.41 0.28 * 	0.064 11.21 50.0 -1.4 15.2 6.5 
4509.5 2.34 0.30 * 	0.000 11.49 50.2 -2.6 13.1 8.6 
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4519.0 2.50 0.27 * 	0.028 11.69 49.6 2.1 19.7 6.7 

4528.0 3.03 0.25 * 	0.709 13.08 46.2 -4.0 18.3 7.2 

4548.0 1.68 0.21 * 	0.000 9.22 38.4 -11.1 7.9 8.8 

4556.0 2.37 0.26 * 	0.081 11.61 43.4 -15.8 8.4 6.6 

4564.0 2.17 0.31 * 	0.076 11.07 45.3 -6.5 10.2 6.2 

4577.0 1.39 0.20 * 	0.083 8.48 32.9 -12.9 5.8 4.3 

4588.0 2.13 0.28 * 	0.476 10.72 41.5 -0.6 10.1 7.2 

4597.5 2.42 0.26 * 	0.669 11.92 38.8 -1.2 9.0 6.6 

4607.0 1.62 0.25 * 	0.022 10.31 39.8 -8.1 5.7 4.6 

4618.0 1.97 0.26 * 	0.000 10.71 44.9 -2.3 8.3 5.9 

4630.5 2.25 0.25 * 	0.050 10.51 49.7 -5.2 13.4 7.6 
4641.0 2.21 0.28 * 	0.000 10.70 48.3 -6.3 10.5 9.0 
4651.0 2.75 0.27 * 	0.168 11.90 51.4 7.7 16.0 7.7 

4661.0 2.41 0.20 * 	0.501 10.36 40.7 -2.8 12.4 5.3 

4671.5 2.93 0.27 * 	0.000 11.49 52.9 1.1 13.4 7.4 
4681.5 2.20 0.28 * 	0.000 11.00 49.1 -0.9 12.8 6.3 

4691.5 1.62 0.14 * 	0.089 9.37 31.5 -2.3 5.4 4.7 

4710.0 2.70 0.29 * 	0.000 11.43 45.8 0.0 11.1 5.8 
4718.5 2.31 0.31 * 	0.000 10.85 54.9 -5.1 11.9 6.5 

4730.0 2.13 0.30 * 	0.000 10.79 50.4 3.9 11.1 8.9 

4740.0 2.19 0.31 * 	0.061 11.40 50.7 4.2 12.1 6.2 

4751.5 1.99 0.25 * 	0.055 9.83 49.0 3.0 15.4 7.8 

4763.0 1.79 0.23 * 	0.000 9.09 49.1 -6.9 11.2 7.8 

4773.0 2.38 0.24 * 	0.000 11.63 46.8 -0.3 10.8 8.3 
4822.5 1.29 0.21 * 	0.055 10.35 38.6 -0.5 4.9 6.6 

4839.0 1.51 0.19 * 	0.000 9.43 36.0 -2.4 3.5 3.1 

4849.5 1.68 0.22 * 	0.000 10.64 42.3 -4.5 6.4 2.3 

4859.5 2.59 0.33 * 	0.000 11.81 47.2 5.4 8.9 5.5 

4870.0 3.10 0.30 * 	0.000 12.13 54.8 1.2 13.1 9.9 

4880.0 3.14 0.35 * 	0.000 12.83 54.5 -4.7 13.0 10.8 

4893.0 3.54 0.29 * 	0.000 13.19 54.7 -7.0 18.5 17.5 

4902.5 4.58 0.30 * 	0.536 15.01 59.4 2.4 21.1 10.6 

4913.0 3.74 0.31 * 	0.218 13.27 55.9 0.2 15.2 18.0 

4923.5 3.77 0.27 * 	0.131 12.87 58.1 -0.2 15.2 19.6 

4933.0 4.12 0.27 * 	0.773 14.60 55.4 -3.6 15.3 12.8 

4943.0 3.24 0.31 * 	0.045 12.96 52.5 -4.1 16.3 15.1 

4953.5 3.20 0.28 * 	0.030 12.94 52.8 3.8 20.7 14.4 

4962.5 3.93 0.19 * 	1.472 15.86 46.5 -4.9 19.2 6.3 

4971.5 2.95 0.22 * 	0.043 13.17 45.5 3.5 21.6 5.3 

5006.5 2.47 0.25 * 	0.075 12.10 48.9 -9.0 15.3 6.7 

5015.5 2.47 0.16 * 	0.573 11.75 41.0 -9.9 10.9 5.0 

5025.0 2.22 0.30 * 	0.039 11.89 45.7 2.3 14.7 5.1 

5034.0 1.97 0.26 * 	0.299 11.90 44.4 -4.8 7.7 5.8 

5043.0 1.70 0.19 * 	0.348 11.46 37.4 -3.2 6.5 4.9 

5052.0 1.50 0.17 * 	0.241 11.29 36.5 -3.8 3.8 5.1 

5061.0 1.04 0.17 * 	0.217 9.58 31.8 -15.5 4.3 5.4 

5070.0 1.53 0.12 * 	0.127 11.53 31.6 -6.5 2.6 3.5 

5079.0 2.44 0.24 * 	0.052 11.93 34.7 4.2 6.2 4.6 

5089.0 3.07 0.15 * 	1.212 14.18 41.2 -1.8 4.8 5.6 
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depth del C-13 depth Bsilica depth HI 

5.0 -22.594 5.0 16.06 5.0 292.0 

15.0 -22.952 15.0 30.14 15.0 324.8 

95.0 -24.614 25.0 29.09 55.0 291.0 

183.0 -24.556 35.0 33.52 65.0 286.7 

223.0 -25.044 45.0 40.81 95.0 272.0 

283.0 -25.111 55.0 56.22 115.0 276.4 

362.5 -23.441 65.0 63.46 155.0 326.1 

417.0 -23.833 75.0 53.42 183.0 408.0 

457.0 -23.197 85.0 50.82 193.0 436.1 
517.0 -24.444 95.0 52.60 223.0 426.4 
555.0 -24.607 105.0 41.80 283.0 533.3 
562.0 -24.624 115.0 6.80 320.5 153.1 

577.0 -24.712 125.0 49.51 362.5 337.7 

597.0 -25.567 135.0 60.85 417.0 325.8 
634.0 -24.439 145.0 59.26 457.0 380.6 

667.0 -24.187 155.0 57.71 517.0 329.9 

677.0 -22.464 165.0 53.20 537.0 325.2 
687.0 -22.155 183.0 53.95 562.0 342.6 

697.0 -23.812 193.0 50.63 597.0 444.2 
707.0 -23.718 203.0 56.76 634.0 327.3 
717.0 -24.018 213.0 61.24 657.5 379.4 

727.0 -24.288 223.0 48.99 667.0 422.7 

737.0 -23.839 233.0 44.20 677.0 342.6 
747.0 -24.224 243.0 41.30 687.0 363.0 
756.5 -25.237 253.0 47.86 697.0 393.0 

776.5 -25.056 263.0 39.95 707.0 365.2 

785.0 -25.345 273.0 41.86 717.0 384.2 

794.0 -24.990 283.0 45.18 727.0 289.0 
804.0 -24.375 293.0 51.26 737.0 310.9 
814.5 -24.969 303.0 53.88 747.0 300.4 
825.0 -24.217 310.5 27.94 756.5 285.5 

835.0 -23.839 315.5 0.87 776.5 313.8 
845.0 -23.950 320.5 1.39 785.0 142.1 

855.0 -23.481 327.5 45.33 794.0 267.1 
865.0 -23.934 335.5 0.04 804.0 298.8 
877.0 -23.498 343.0 35.67 814.5 312.6 
887.0 -23.188 353.0 31.96 825.0 294.2 
897.0 -24.156 362.5 29.91 835.0 249.8 
906.0 -24.049 377.0 18.19 845.0 294.8 
915.0 -23.862 387.0 27.68 855.0 311.1 

924.5 -23.987 397.0 39.02 865.0 297.6 
932.5 -22.899 407.0 32.44 877.0 279.5 
941.0 -22.725 417.0 26.29 887.0 276.3 
951.0 -22.079 427.0 24.25 897.0 314.5 
961.0 -22.788 437.0 46.11 906.0 294.6 
977.0 -22.971 447.0 33.47 915.0 270.5 
987.0 -23.295 457.0 25.96 924.5 327.9 

1057.0 -23.966 467.0 26.43 932.5 282.4 
1137.0 -23.830 477.0 23.05 941.0 280.6 
1181.0 -23.637 487.0 35.31 951.0 236.5 
1236.0 -24.187 497.0 31.11 987.0 327.6 
1298.0 -25.080 507.0 15.02 1057.0 296.2 
1359.0 -25.430 517.0 31.85 1097.0 148.3 
1398.0 -22.393 527.0 52.11 1112.0 68.7 
1464.0 -25.463 537.0 63.43 1118.5 31.7 
1537.0 -24.000 547.0 51.43 1137.0 324.5 
1605.5 -24.276 555.0 46.57 1181.0 348.9 
1695.0 -24.153 562.0 36.41 1236.0 316.3 
1794.0 -24.238 577.0 28.40 1298.0 238.6 
1832.0 -24.091 587.0 34.33 1344.0 210.0 
1898.0 -24.000 597.0 34.23 1359.0 324.4 
2044.0 -24.373 607.0 30.46 1398.0 183.5 
2239.5 -23.953 617.0 27.71 1464.0 210.3 
2258.0 -22.871 626.0 7.39 1537.0 145.7 
2285.5 -22.275 634.0 30.60 1605.5 160.5 

l , ,uu1u 

2349.5 -23.892 642.0 13.86 1695.0 124.1 
2423.0 -25.089 649.5 3.47 1704.0 237.6 
2561.0 -24.503 657.5 10.37 1756.5 108.4 
2663.5 -22.756 667.0 28.89 1783.5 189.2 
2883.0 -23.735 677.0 18.43 1794.0 172.6 
2920.5 -24.932 687.0 30.64 1804.5 171.2 
3044.5 -24.524 697.0 32.00 1832.0 85.5 
3056.0 -24.156 707.0 32.85 1851.0 78.4 
3122.0 -24.971 717.0 42.67 1878.5 92.5 
3207.0 -25.351 727.0 47.60 1940.5 64.5 
3226.5 -25.742 737.0 49.83 1997.5 68.6 
3268.0 -26.840 747.0 41.85 2044.0 48.6 
3307.5 -26.173 756.5 41.23 2114.0 67.2 
3317.0 -26.979 776.5 29.16 2239.5 61.0 
3326.0 -26.173 785.0 6.19 2258.0 211.6 
3337.0 -25.653 794.0 43.70 2285.5 226.3 
3356.5 -25.700 804.0 34.47 2423.0 155.6 
3367.0 -24.658 814.5 25.92 2432.5 114.5 
3378.5 -24.194 825.0 25.49 2445.5 111.3 
3390.0 -24.647 835.0 32.76 2527.0 148.2 
3402.5 -25.436 845.0 45.18 2561.0 166.0 
3412.0 -23.699 855.0 46.41 2588.0 143.8 
3422.5 -24.099 865.0 21.19 2681.5 186.5 
3433.5 -23.723 877.0 33.35 2717.5 209.7 
3444.0 -23.902 887.0 31.49 2729.0 183.1 
3454.0 -23.125 897.0 33.78 2883.0 247.1 
3485.0 -21.887 906.0 21.82 2920.5 141.9 
3591.0 -21.660 915.0 33.67 2952.5 134.5 
3768.0 -23.071 924.5 26.63 3011.5 189.4 
4017.5 -21.066 932.5 19.09 3044.5 218.3 
4185.5 -24.415 941.0 35.54 3056.0 233.0 
4380.0 -23.405 951.0 28.24 3122.0 219.5 
4548.0 -23.322 961.0 31.17 3166.0 222.9 
4671.5 -24.045 1087.0 25.02 3207.0 262.9 
4822.5 -22.298 1097.0 5.44 3226.5 233.2 
4859.5 -24.901 1288.0 21.88 3268.0 281.1 
4893.0 -24.126 1298.0 22.07 3307.5 329.1 
4902.5 -23.619 1389.0 13.87 3317.0 309.9 
4913.0 -23.825 1464.0 17.54 3326.0 279.6 
4923.5 -24.080 1595.5 12.20 3356.5 280.1 
4933.0 -24.206 1685.0 15.34 3378.5 224.0 
4953.5 -23.516 1765.5 16.95 3402.5 192.0 
5015.5 -23.194 1774.5 10.98 3412.0 260.4 
5052.0 -25.093 1794.0 20.52 3422.5 258.6 
5089.0 -24.523 1804.5 20.01 3433.5 259.4 

* * 1821.5 13.79 3444.0 229.5 
* * 1959.0 -0.58 3454.0 168.0 
* * 1969.0 -0.58 3464.0 223.5 
* * 1997.5 -1.17 3474.5 196.9 
* * 2006.5 -0.98 3485.0 227.0 
* * 2096.0 -0.85 3495.5 198.5 
* * 2114.0 -0.71 3543.0 169.7 
* * 2285.5 44.13 3600.0 201.6 
* * 2294.5 54.25 3666.0 197.4 
* * 2303.5 12.21 3768.0 145.6 
* * 2445.5 -0.09 3864.0 122.2 
* * 2457.5 0.92 3919.5 118.5 
* * 2729.0 37.23 3998.0 94.6 
* * 2930.5 22.47 4052.0 139.8 
* * 2976.5 36.23 4130.5 165.8 
* * 2989.5 39.34 4185.5 143.6 
* * 3031.5 51.97 4281.5 112.2 
* * 3044.5 53.18 4342.0 164.8 
* * 3110.0 20.85 4412.0 148.9 
* * 3307.5 45.79 4473.5 170.3 
* * 3317.0 52.95 4548.0 116.1 





Palynofacies counts 

The samples (A-H) are related to depth as follows: 

A=185cm B=450cm BC=790cm C=1230cm 0=1765 

E=2000cm F=2495cm G=2754cm G1=3402cm H=3987cm 

Sam amo gel pin poi cut lwd dwd spo ped bot fun chi cia zoo aznd Tot 
A 135 7 0 17 38 5 2 11 1 0 12 1 6 36 20 291 
B 131 28 10 25 44 7 19 13 0 0 14 0 1 23 36 351 
BC 92 2 1 17 20 3 8 3 7 1 8 2 2 40 16222 
C 192 14 9 29 52 1 6 3 2 9 ii 2 3 77 97 507 
D 189 5 7 32 16 1 5 3 0 5 6 3 3 31 18 324 
E 114 1 2 1 7 0 5 1 0 0 2 0 0 2 7142 
F 158 6 1 13 13 0 4 3 0 3 9 0 1 5 30246 
G 142 1 5 16 25 0 3 4 1 1 9 1 0 11 19238 
Gi 172 3 12 23 52 1 16 4 2 2 12 7 6 25 14 351 
H 177 8 0 13 13 0 3 1 0 0 6 1 1 8 9240 

amo=amorphous organic matter 

gel=gel-like organic matter 

pin=conifer pollen 

pol=other pollen types 

cut=cuticle and plant tissue 

lwd=pale woody material 

dwd=dark woody material or charcoal 

spo=spores 

ALiZirAl 

fun=fungal hyphae 

chi=chironomids 

cla=Cladocera 

zoo=zooclasts (e.g. insect remains) 

amd=amorphous degraded matter 

Tot=total number of points counted 

N-alkane concentrations 

The n-alkane concentrations (nO 17  to nC) are shown below (in jig alkane/g dry sediment) 

for the 10 samples analysed: 

nC 183cm 457cm 785cm 877cm 951cm 1236cm 1794cm 2445cm 3317cm 3412cm 
17 0.89 0.00 0.16 0.20 0.23 0.20 0.25 0.13 0.35 0.20 
18 0.00 0.21 0.05 0.17 0.04 0.03 0.03 0.00 0.04 0.02 
19 0.00 2.47 0.31 1.07 1.42 1.06 0.06 0.00 0.45 0.27 
20 0.00 2.09 0.25 0.70 0.94 0.87 0.06 0.00 0.39 0.22 
21 9.75 24.66 2.72 5.69 7.81 10.28 0.00 0.00 3.59 2.05 
22 1.30 2.89 0.67 0.87 2.03 1.02 0.00 0.00 0.62 0.42 
23 40.45 61.58 2.30 6.11 8.53 3.35 0.43 0.15 3.09 2.12 
24 0.78 1.17 0.52 0.85 1.62 1.33 0.10 0.08 0.85 0.71 
25 2.55 3.06 4.74 8.96 7.03 3.04 0.59 0.29 2.31 3.56 
26 0.52 0.63 0.52 0.63 1.08 0.74 0.16 0.10 0.47 0.90 
27 74.12 33.28 8.99 24.22 5.20 6.31 1.01 0.64 1.32 4.97 
28 0.26 1.30 1.43 2.11 1.70 1.15 0.20 0.26 0.83 0.81 
29 14.07 28.93 8.23 14.52 13.60 11.01 2.01 1.99 5.34 6.16 
30 1.46 1.88 0.49 0.96 0.93 0.79 0.17 0.16 0.43 0.50 
31 8.18 14.32 4.60 9.68 11.59 10.23 2.28 2.45 4.08 4.90 
32 0.89 1.42 0.51 0.46 0.68 0.40 0.10 0.09 0.19 0.25 
33 1.93 2.89 0.88 1.81 3.0.2 2.48 0.36 0.46 0.76 1.10 
34 1.30 5.99 0.23 0.45 0.70 0.48 0.17 0.00 0.47 0.53 
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GEOCHEMISTRY OF LAGO GRANDE DI MONTICCHIO, S. ITALY 

C. Robinson, G.B. Shimmield & K.M. Creer 

Dept. of Geology and Geophysics, Edinburgh University, King's Buildngs 
EDINBURGH EH9 MW 

ABSTRACT 

This account describes the results of bulk geochemical analysis on the uppermost 15m of 
a 51m profile obtained from Lago Grande di Monticchio. This section is thought to 
extend from historic times back into the late Pleistocene, hence including the glacial- 

Holocene transition. 
One of the clearest changes seen occurs in the organic carbon content of the sediment, 
rising from modest values in lower parts of the core to values as high as 30wt% at 
around 8m depth. In this zone, thought to be correlated with the glacial-Holocene 
transition, other elements vary directly (Br) or inversely (Al, Y) with organic carbon 
concentration. Multivariate techniques such as principal components analysis have been 
used to help identify these elemental associations. Such groupings are suggested as 
reflecting different contributors to the sediments (eg. plant matter, clays, residual 
minerals.) The stable isotopic composition of organic carbon displays something of a 
shift towards lighter values across the glacial-Holocene transition zone, but the profile as 
a whole is difficult to interpret without further information on the nature of the organic 
matter. Several elements (P, Mn, Mo) exhibit enrichments in discrete temporal zones 
and it is thought that these are indicative of diagenetic processes occuring in the 

sediment. 

INTRODUCTION 

Lake sediments can provide a detailed record of environmental change. The physical 
and chemical properties of the sediment reflect developments in the lake ecosystem and 
changes in rates of process (eg. weathering) around the lake catchment. Also, biotic 
material contained within the sediments provides indications of change in the local 
ecology. Lake sediment geochemical studies concerned with long records of deposition 
(>100,000 years) are relatively unusual in the literature. Exceptions include work on 
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Lac du Bouchet in France (Truze, 1990) and on Lake Biwa in Japan (Hone, 1972- 
198 1). 
Lago Grande di Monticchio lies at 650m altitude in the Vulture region, east of Naples. 
Sediment cores covering a 51m deep profile were recovered from the site during 
September 1990. The material obtained is well preserved. 
It is possible that the sequence from Lago Grande di Monticchio covers the last 250,000 
years, almost continuously (Watts & Huntley, unpubl. work), though more lines of 
evidence would be desirable for confirming this age. This work forms part of an 
ongoing Phil) project, the aim of which is to undertake a comprehensive geochemical 
study of the whole sequence. In the future this can be integrated with parallel studies 
(incl. diatoms, paleomagnetism, palynology and sedimentology) to recreate an overall 
picture. 

GENERAL LITHOLOGY 

The uppermost 15m broadly consists of laminated muds and gyttjas. A brown diatom 
gyttja (0-5m) passes down into black, highly organic mud (5-8.4m.) The, latter contains 
localised patches of vivianite up to 1cm in size. Below 8.4m the sequence continues with 
laminated olive-grey muds. Occasional horizons rich in plant material (mostly mosses) 
occur here and are up to 2cm in thickness. 
Tephra layers are found throughout and provide useful stratigraphic markers. They are 
of varied compositional nature and range from >20cm in thickness to microscopic 
horizons not readily detectable. 

SAMPLING AND ANALYSIS 

Material was taken from Cores C and E which cover the first 15m. Sampling was made 
at approximately 10cm resolution, proyiding 159 data points. Owing to the high water 
content of the top sediments, large continuous quadrants had to be removed from the 
cores in order to provide sufficient material for all analyses. The sediment was dried 
for several days at 50'C and ground for 75 seconds in a tungsten carbide mill. This 
provided a homogeneous fine powder on which subsequent analyses were based. 
X-ray fluorescence (XRF) was carried out using pressed powder and fused glass discs to 
measure trace and major element concentrations respectively. Total carbon and nitrogen 
were determined on a Carlo Erba element analyser. The samples were boiled with 
phosphoric acid and the amount of carbon dioxide evolved measured pressometrically. 
This provided a measure of the inorganic (carbonate) carbon content. By subtracting 
these values from total carbon a measure of the organic carbon content was found. 
Biogenic silica was determined using an alkaline wet-chemical leaching technique 
(Eggimann et al, 1980.) The silica content of the resulting solution was found using a 
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modified colorimetric method (based on Eggimaun ci al, 1980.) 
Around 30 samples were selected for isotopic analysis of the organic carbon present. A 
quantity of ground sediment was washed with an excess of 1M HC1 to remove inorganic 
carbon present. Up to 60mg of a treated sample was placed in a silica tube together with 
an excess of copper oxide. The tube was evacuated and roasted overnight at 850'C. The 
carbon dioxide produced was purified on a vacuum line apparatus by means of 
cryogenic distillation. The purified gas was collected in another tube and transferred to 
a gas-source mass spectrometer. The ratios measured are relative to the PDB standard. 

DATA ANALYSIS 

With over 30 parameters determined on each sample, it would be convenient to reduce 
the amount of data viewed while maintaining maximum information on how the 
complete data set varies. For example, organic carbon and bromine (Fig. 2) show very 
similar profiles and could perhaps be grouped together into an association reflecting 
organic matter in the sediments. Multivariate methods of data analysis, principal 
components analysis (PCA) and correspondence analysis (basic and detrended), were 
applied in an attempt to eliminate redundancy in the data and to identify a smaller 
number of associations. The results obtained are best displayed graphically (Fig. 1.) 
This is an example of R-mode analysis using the PCA method. It shows how the two 
main axes of variance divide elements measured on Cores C and E into fields and 
groupings. A number of possible associations can be stated: 

-the tight clustering of C, N and Br is related to organic matter (plants and 
animal soft parts) 

-a band or arch of elements extending from Mg to Ba may represent 
incompletely weathered igneous minerals (eg. pyroxene), clays and heavy 
minerals (eg. zircon) 

-biogenic silica represents contributions from diatom productivity 
-inorganic carbon reflecting the presence of calcite and/or siderite 
-Rb, K and Na may be associated with feldspars/feldspathoids, especially in 

tephra derived material 
-a broad group of elements (U, Zn, Mn, P. Fe, V, Mo) are largely derived 

from minerals locally, but show an association with organic matter and may 
reflect the influence of diagenesis upon the sediment 

Axis 1 accounts for 54% of the variance exhibited by the dataset and appears to separate 
biological vs. minerogenic inputs to the sediment. Thus, the largest differences in 
sediment nature depend on the relative contributions from these two sources. Axis 2 
accounts for 12% of total variance and appears to divide elements strongly influenced 
by diagenesis from more residual or immobile elements. 

•1 
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PCA analysis 
Clastic material is mainly supplied by surface runoff and mass movement within the 
crater area. This is augmented by sporadic inputs of volcanic material or tephra fallout. 
There may be some elastic material transported from further afield by aeolian 
processes, for example during the more and glacial times. Productivity within the lake 
(diatoms, algae, macrophytes, ostracods, etc.) and terrestrial inputs of plant debris and 
pollen contribute to the biological aspect of sedimentation. These primary inputs may be 
affected by diagenetic processes such as the degradation of organic matter and the 
release/enrichment of trace metals. Obvious examples of this are the presence of 
vivianite and siderite. 
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Fig. 1. Results of PCA analysis on the data 
1. 

The three techniques used on the data all produce similar groupings, albeit with some 
minor variations. In Q-mode it is possible to classify the samples into different fades 
with moderate success. Without pushing interpretations too far, it is apparent that the 
elements measured show potential for tracing different sedimentary factors. 

RESULTS AND DISCUSSION 

The sediment geochemistry may be discussed in terms of terrigenous clastic, biological 
and diagenetic aspects, with some overlap. 

-i 

BIOLOGICAL MATTER 

Many lake sediment studies have considered organic carbon to be the most important 
geochemical variable. Mackereth (1965; 1966) was one of the first to measure a wide 
range of elements on sediments from the English Lake District. In a series of lakes he 
found that the carbon content rose rapidly after the cessation of glaciation to reach a 
maximum in the first half of the post-glacial period. Similar patterns have been found in 
many other settings (Brown, 1991; Truze, 1990.) 
Organic carbon values (Fig. 2) are relatively low, but increasing gradually, between the 
oldest sediments at 1500cm and 850cm. Around 850cm values increase sharply, 
reaching a maximum at 450cm, before decreasing somewhat towards the top (most 
recent) part of the profile. The negative spikes are samples rich in tephra and are 
organic poor. These pervasive tephra layers add noise to underlying climatic signals. 
The rise in carbon around 850cm probably reflects increased productivity or vegetation 
growth in and around the lake, in response to a more humid and perhaps warmer 
climate. Terrestrial vegetation development will at the same time stabilise the crater 
slopes. Reduced erosional activity dilutes the amount of elastic input which will also be 
seen as an apparent rise in organic content. Thirdly, as phyical sedimentation declines 
the lake waters will stratify more easily (Truze, 1990.) With nutrient enrichment due to 
enhanced weathering, high internal productivity could lead to anoxic conditions. This 
too could cause higher organic contents through favoured preservation of matter. 
Initial discussions with other groups working on Monticchio suggests that 850cm may be 
close to the start of the Holocene. This depth is comparable to that found for the 
Holocene boundary in an earlier palynological study (Watts, 1985) made on a littoral 
core. It is possible that the actual transition is near 750cm. In this case, the area from 
850cm to 790cm is reflecting a late-glacial interstadial, with an intervening period of 
climatic deterioration between 790cm and 750cm. Such an interpretation requires 
palynological and dating evidence for support. 
C/N ratios can assist in defining the nature of the organic matter (Stuerrner et al, 1978.) 
The C/N values (Fig. 3) rise from around 5 at 1500cm to a maximum of 12 at 1350cm, 
before dropping back to 5 at 1150cm (with some fluctuation.) From 1150cm to 7 50cm 
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Fig. 3. Carbon/nitrogen ratio, biogenic silica and stable carbon isotopes. 
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the ratio rises gradually towards 10. Above this depth, values remain high at between 9 
and 12. Again, tephra-rich samples impose negative spikes on the overall trend. 
The shifts to lower ratios could indicate a change to organic sedimentation dominated by 
algae and diatoms (Hone, 197211977). Lower organisms have ratios of 6-7 as they are 
rich in proteins. Subsequent rises could signify an increasing influence from higher 
plant material.This is more cellulose-rich and can have ratios >20. It is likely that the 
organic matter present is a complex mixture from more than one source. It is not clear 
why the tephra samples should drag the ratio to such low values. An organic-poor 
component should dilute organic C and N to similar degrees. 
Such interpretations are complicated by the possibility of diagenesis preferentially 
removing nitrogen during organic degradation. This has been observed in marine 
environments (Stevenson & Cheng, 1972.) Conversely, as total N is being measured, the 
presence of inorganic nitrogen, can create artificially low ratios (Mackereth, 1966; 
Muller, 1977.) Therefore if a sediment is organic poor, but contains a small quantity of 
inorganic N, for example in the form of fixed ammonium, a low ratio would be 
detected. This could explain the negative tephra spikes although further investigation is 
needed. 
Bromine and organic carbon are strongly correlated (r=0.938). It is known that 
sediments are enriched in Br due to the presence of plant material (Cosgrove, 1970) and 
that the element is concentrated in humic layers of soils (Vinogradov, 1959.) Since most 
Br is believed to arrive through ocean-derived aerosols, the Br/C ratio has been thought 
to reflect "oceanicity" (wind conditions, etc.) of the atmospheric/climatic system by 
some workers (Mackereth, 1966.) It could also reflect change in the type of organic 
matter deposited or processes of diagenesis and recycling. Examination of the Br/C 
ratios on the material under study (Fig.2) shows that marginally higher ratios occur 
between 850cm and 1450cm. Thus, if the ratio depended only on rate of halogen supply 
from rainfall, the ocean may have had more influence on local climate during this 
earlier period. Positive spikes associated with tephra samples show that these layers have 
excessively high bromine contents in proportion to their low organic carbon values. 
Actual biogenic silica results correlate well with a normative biogenic silica calculated 
using XRF major element oxide data: 

biogenic silica=Si022.8*Al203 

This calculation assumes that total silica is composed of a biogenic component and a 
minerogenic/aluminosilicate component. The factor of 2.8 selected is lower than an 
average shale silica:alumina ratio of 3.4 (Turekian & Wedepohl, 1961), but fits the 
sediment type from these cores better. Actual and normative values are plotted on the 
same axes for comparison (Fig. 3.) As the actual measurement of biogenic silica is time 
consuming it was decided to continue with a smaller number of selected samples below 
970cm in order to verify the accuracy of the XRF estimation. 
Results bear some comparison with elements reflecting organic matter. From 1500cm to 

750cm there is a rise from 5% to 50% total sediment composed of biogenic silica, with 
local troughs (tephra layers) and peaks present. Above 750cm values peak briefly at 
540cm and are high for a longer phase between 300cm and 50cm. 
It seems likely that diatom productivity has contributed appreciably to the sedimentation 
throughout most of the time period covered by these cores. Over the upper half of the 
sequence the sediment is almost entirely made up of amorphous silica and organic 
matter. Here, the relative dominance of these two components varies with time. This 

may result from the changing role of diatoms and other plant and algal life in the lake 
productive system. 
Fig. 3 shows the results of stable isotopic analysis on bulk organic carbon in the 
sediments. Since the 1960's possible relationships with environmental changes have been 
investigated. HAkansson (1985) reviews a series of factors which could contribute to 
variation in the isotopic ratio and presents results from Swedish lakes. In these 
sediments a marked decrease in 13C/12C coincided with the glacial to post-glacial 
transition. This shift to isotopically lighter carbon has also been found in 
Meerfeldermaar, Germany (Brown, 1991) and to some extent in Lac du Boucher 
(Truze, 1990.) On the other hand Nakai (1972) associated more temperate periods with 
heavier isotopic ratios, as did Stuiver (1975.) Harkness and Walker (1991) observe a 
superficial correlation between 13C enrichment and climatic change, but identify 
features which do not correlate with a simple climatic relationship. 
The carbon isotope values determined on Lago Grande di Monticchio vary between 
-25.5 and -22 01b. This could be said to typify a fairly average mix of lacustrine organic 
matter. When compared with the element information it is sometimes difficult to relate 
the fluctuations seen with apparent environmental changes. For example, between 
950cm and 750cm there appears to be a pronounced shift, but beyond this values 
fluctuate without clear explanation. The probable Holocene section contains both high 
and low points. Further study of the organic matter and palaeobotanical data would help 
with the interpretation. Ideally it would be more informative to look at isotopic 
variations within individual organic compounds (Rieley et al., 1991.) 
The lack of a coherent shift in isotopic values could result from the lake's southerly 
location. Perhaps the vegetation associated with some of the northern European sites 
suffered more climatic stress between glacial and interglacial periods. It is also possible 
that autochthonous organic matter is profoundly influenced by the lake water 
bicarbonate reservoir. This could modify the expected ratios if a majority of plants are 
assimilating carbon from this source. These results emphasise the local differences 
between individual lakes. 

TERRIGENOUS CLASTIC MATERIAL 

Many of the elements measured are associated almost exclusively with the minerogenic 
sediment fraction (Al, Zr, K, etc.) Fig. 4 shows how Al and Y contents vary. Between 

Cri 
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1500cm and 850cm concentrations are decreasing gradually, with a slight step 
downwards at 1200cm. At 850cm values drop sharply, but return a brief maximum 
over the next 100cm. From 750cm to the top the concentrations are very low, but 
tephra layers add positive spikes to the general pattern. A minimum seems to be reached 
at 540cm after which there is a gentle increase towards more recent times. 
If the amount of clastic material sedimented has fallen this could be interpreted as being 
due to: (1) reduced erosional and transportational processes and (2) a dilution effect 
from increased organic sedimentation. The major control on this is believed to be slope 
binding or stabilisation arising from terrestrial vegetation development. 
The surrounding volcanic rocks are composed of pyroxenes and feldspathoid minerals 
with smaller quantities of apatite and oxides present. X-ray diffraction analysis suggests 
that a certain amount of pyroxene and apatite finds its way into the sediment. 
Mineralogical analysis is difficult where the material is so dominated by organic matter 
and amorphous silica. Clay minerals are probably present too, though they are proving 
difficult to extract for identification. Quartz has been identified in a few samples from 
the lower parts of the sequence. This mineral may be derived from outside the crater 
area. The tephra layers tend to include feldspars, such as sanidine, along with some 

pyroxene and apatite. 
Ratios such as Zr/Rb have been used to identify change in grain size (silt/clay) of the 
clastic material sedimented (O'Donnell, 1987.) Results (Fig. 4) show a decrease from 
Zr/Rb ratios of 3.5 at 1500cm to 1.5 at 700cm. From 700cm upwards the ratio remains 
steady at close to 1.5. This suggests a gradual coarsening of grain size below the 
probable Holocene base. Some tephra layers give negative spikes which could reflect 
their geochemical nature (relatively alkali-rich compared to zircon content.) Since the 
tephra represent coarse grained layers they might otherwise be expected to add strong 

positive spikes to the curve. 
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DIAGENETIC FEATURES 

Some examples of diagenetic effects are touched on in this section. An immediate 
feature from visual examination is the presence of vivianite at around 600cm depth in 
the black gyttja. This has been recognised as a diagenetic precipitate in a wide range of 
lake sediments (Mackereth, 1966; Nriagu & Dell, 1974; Truze, 1990.) Fig. 5 shows 
enrichments in P. Fe and Mn between 500cm and 700cm. Thus vivianite appears to be 
concentrated in a discrete time zone, thought to represent the early Holocene, rather 
than being found throughout the Holocene. Nriagu & Dell (1974) considered the 
precipitation or dissolution of phosphate to act as a buffer, regulating phosphorus levels 
in the interstitial waters and release to the overlying lake waters. Formation is often 
associated with anaerobic decay in organic-rich sediments. Phosphorus might be derived 
from organic matter releasing nutrient phosphate or from mineral/skeletal apatite 
decomposition. During the early Holocene conditions within the sediment may have 

 

Fig. 4. Aluminium, yttrium and zirconium/rubidium ratio. 
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changed to reducing in nature and this might have converted large quantities of ferric 
iron to the more soluble ferrous form. Upwards migration of pore waters (aided by 
sediment compaction) could lead to high concentrations of both Fe 2  and phosphate in 

near surface sediments and cause vivianite to precipitate. Perhaps after this boundary 
period later organic accumulations have not had access to sufficient iron to allow more 
vivianite formation. Other mechanisms are undoubtedly possible. 
The Mo profile (Fig. 6) shows a pronounced enrichment (<90ppm) between 850cm and 
800cm. Above this horizon concentrations decline exponentially towards the lOppm 
level. The element is known to accumulate in living plants owing to its physiological 
properties, such as biocatalysing nitrogen fixation (Bortels, 1930.) However, the 
enrichment observed has probably been enhanced through diagenetic processes. Two of 
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Fig. 5. Phosphorus, iron and manganese. 
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the major mechanisms of uptake are coprecipitation with Fe sulphides and fixation by 
adsorption or reduction in organic rich sediments. The former is possible as sulphide 
contents are believed to be elevated (from preliminary investigations.) The area of 
enrichment is also one of high organic carbon content and was earlier suggested to 
represent a late-glacial interstadial event. A change to reducing conditions in the 
sediment at this boundary zone (and resulting migration/fixation of Mo from underlying 
sediments) might be invoked in similar manner to the early Holocene-vivianite 
explanation. The zones of phosphate and molybdenum enrichment occur in different 
time planes illustrating how elements may respond differently to the conditions of 
diagenesis. 
Carbonate carbon (Fig. 6) is present at certain levels, with XRD analysis identifyng the 
presence of both calcite and siderite. These are probably of diagenetic origin, although 
ostracods found below 1500cm (Wansard, pers. corn.) show that skeletal bioclastic 
carbonate occurs lower in the sediment column. XRD results suggest that the area 
between 10cm and 50cm contains calcite along with some gypsum. Between 100cm and 
1150cm in the sequence the carbonate occurrences tend to be associated with tephra 
samples. It is not clear whether carbonate minerals have arrived with the tephra fall or 
whether the influxes of alkaline volcanic material have increased the pH value of the 
lake water favouring temporary carbonate precipitation. Towards 1500cm carbonate 
contents are not associated with tephra inputs and must reflect longer term physico-
chemical conditions in the lake, such as evaporation and Pco2. Elevated Fe 
concentrations occur in this lower region, where siderite is more prevalent. Mn is also 
higher and is probably substituted in the carbonate. This contrasts with the Fe and Mn 
enrichment associated with phophate at higher levels. 

CONCLUSIONS 

These initial geochemical results reveal a wide variety of trends with much opportunity 
for further explanation. A basic division can be made between the upper half of the 
section (rich in organic matter and biogenic silica) and the lower half (containing 
modest amounts of the latter two components and an increasing amount of clastic 
material.) The added presence of diagenetic phases (vivianite, siderite, etc.) in discrete 
temporal zones could further help in reconstructing environmental conditions. Influxes 
of tephra could have a marked impact on what otherwise may be a climatically 
controlled regime. 
It is hoped to continue this characterisation through the whole 51 metres of succession. 
Investigation of specific components of the sediment, such as organic geochemical 
studies, will give insight into problems less readily explained by bulk analysis. Dating 
methods are now required to aid the interpretations made. 
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