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Abstract

Energy released from the Earth’s crust in the form of earthquakes commaonly follows a power-
law gamma type probability distribution. This spontaneous organisation is in apparent contra-
diction to the second law of thermodynamics that states that a system should naturally evolve
to a state of maximum disorder or entropy. However, developments in the field of modern
thermodynamics suggest that some systems can undergo organisation locally, at the expense
of increasing disorganisation (or entropy) globally through a process of entropy production.
The primary aim of this thesis is to investigate self-organisation in the Earth’s seismogenic
lithosphere as a driven, far-from-equilibrium, self-organising ‘dissipative structure’ in a very
near critical steady-state and the underlying general mechanisms involved. The secondary aim
is to test in more detail the applicability of the Bak, Tang and Wiesenfeld (BTW) model of
Self-Organised Criticalitf{SOC) in describing Earth’s seismicity. This is done by: 1. Math-
ematical derivation of analytical solutions for system energy and entropy using the tools of
equilibrium statistical mechanics; 2. The study of conservative and non-conservative versions
of the BTW numerical model and 3. Analysis of temporal and spatial properties of earthquake
data from the Harvard Centroid Moment Tensor catalogue and the Global Heat Flow Database.
The modified gamma distribution predicts analytically that entr§py related to the energy
probability distribution scaling exponem® and the expectation of the logarithm of seismic
energy(ln E) in the form of thegamma entropy equatioti ~ B(ln ). This solution is con-
firmed for both numerical model results and real earthquake data. Phase diagr&nvs.of

(In E) suggest that the universality # need not be maintained for a system to remain critical
provided there is a corresponding changélinE) andS. The power-law systems examined

are different from equilibrium systems since the critical points do not occur at global maxi-
mum entropy. For the dissipative BTW model at a steady-state, the externally radiated energy

follows out-of-equilibrium power-law gamma type statistics, but, the internal energy has two
[



characteristics that are indicative of equilibrium systems; a Gaussian type energy probability
distribution and a Brownian noise power-spectrum for the internal energy fluctuations. This
suggests an observer dependency in assessing criticality. The internal and external entropies
calculated for the model are negatively correlated suggesting that driven systems self-organise
at the expense of increasing entropy globally through a process of dissipation. A power-law
dependency of mean radiated enefgy on dissipatiorl — « is confirmed for a locally driven
dissipative system in the fort&) ~ (1—a)~%975. The BTW model shows spatial heterogene-

ity whilst maintaining universality in contradiction to previous assumptions. The quantitative
analysis of real data reveals that earthquakes are more predictable spatially then temporally.
Regionalisation using the Flinn-Engdahl classification shows that mid-ocean ridges are more
organised (lower entropy) than subduction zones. A regional study of three different scaling
exponents suggests that universality in earthquake scaling is violated, in contradiction to the
original model of SOC. A model of self-organised sub-criticality (SOSC) is proposed as an
alternative model for Earth seismicity. Overall, the results suggest that the tools of equilib-
rium thermodynamics can be applied to a steady-state far-from-equilibrium system such as the
Earth’s seismogenic lithosphere, and that the resulting self-organisation occurs at the expense

of maximising dissipation and hence entropy production.
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Chapter 1

Introduction

“Itis clearly seen that near the critical point we have long-range chemical corre-
lations. Again the system acts as a whole in spite of the short-range character of

the chemical interactions. Chaos gives rise to order.”

The quote above is an excerpt of the Nobel Lecture given by Ilya Prigogine at the prestigious
award ceremony in Stockholm on the 8th of December 1977. Prigogine was awarded the
Nobel Prize in chemistry for his work on organisation in ‘non-equilibrium thermodynamics and
dissipative structures’. Along with his colleagues at the ‘Brussels school’, Prigogine predicted
that under certain conditions, some chemical reactions that are not at equilibrium can show
correlations or ‘patterns’ that span length scales that far exceed the distances at which the
individual molecules interact with each other. From a thermodynamics point of view, this
is somewhat peculiar since the Second Law of thermodynamics states that a system should
naturally evolve to a state of maximum disorder. In other words, the entropy, which is a measure
of disorder, should increase (Kondepudi and Prigogine, 1998). This is why we can make an

omelette from an egg but never an egg from an omelette.

However, Prigogine and his colleagues have shown that certain systems can organise them-

selves locally at the expense of increasing disorganisation of their surroundings globally through

1Speech documented at the Nobel Prize e-museum: http://www.nobel.se/
1



CHAPTER 1. Introduction 2

a process of maximising theémtropy productiof (Nicolis and Prigogine, 1977). This can
seem counter intuitive since it implies the spontaneous emergence of order or pattern through
local processes, which may be random, or chaotic. Self-organisation however can concep-
tually be thought of as a ball rolling up a small hill in order to get to the other side to roll
down a bigger hill. Such systems are referred to as drigsipative structuressince they

are away-from-equilibrium and are interacting with their surroundings through the process of
energy (and/or matter) dissipation (in or out) (Cross and Hohenberg, 1993). Such systems are
different from traditional ‘equilibrium’ thermodynamic systems since they are not at the same
temperaturgsee chapter 2) as their surroundings. The work on dissipative structures was seen
as a big step closer to explaining the emergence of spatial and/or temporal order or patterns in
certain chemical reactions and complex natural systems. These include biological processes
that lead to intricate structures such as DNA (Kondepudi and Prigogine, 1998; Cavanagh and

Akke, 2000).

Precisely a decade later in 1987, Bak, Tang and Wiesenfeld published a seminal paper in the
journal Physical Review Letters title8elf-Organized Criticality: an explanation of 1/f noise’

(Bak et al., 1987). Just as with Prigogine’s chemical experiments, Bak et al. produced a
simple ‘driven’ far-from-equilibrium numerical cellular-automata (computer) model where the
individual components, or ‘cells’, only interact with their closest neighbours. Yet the model as
a whole was found to exhibit a pattern or order that spans the size of the entire system. They
called this observatioself-Organised Criticalityor ‘SOC'. In the literature, their model is
generally referred to as the BTW (from the names of the three authors) model of SOC. The term
‘self-organized’ highlights the fact that the system evolves to a pattern spontaneously without
any external tuning. The term ‘critical’ refers to this pattern being a ‘power-law’ of ‘fractal’
(see below) similar to what is observed in other ‘critical’ systems. More precise definitions of

the terms used here will be given in chapter 2.

Two years after their initial publication, Bak and Tang wrote a follow-up paper entitkendh-
quakes as a Self-Organized Critical Phenomer(@&ak and Tang, 1989). But what does their

somewhat abstract model have to do with earthquakes? The fractal or power-law pattern that

2Defined with example in chapter 2.
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evolves in the BTW model, without any tuning of parameters is in the form (Main, 1995):
p(E) ~ E=P71 (1.1)

wherep(E) is the probability of having an energy stateand B is a scaling exponent. The
radiated energy dissipated by the Earth through the process of earthquakes follows this distri-
bution to a first approximation. This power-law empirically observed for earthquake energy
release is also represented in the form of the famous Gutenberg-Richter law (Gutenberg and
Richter, 1954)

N(m)=a—bm (1.2)

where N (m) is the number of earthquakes that exceed a magnitudeandb are constants

with b found globally to be- 1, and the magnitude: is related to the logarithm of the radiated
seismic energy through ~ %ln E. This relation is maintained globally despite the complex
details of the fault-fault interactions, variations in rock type, differences in tectonic plate set-
tings and the effectively infinite degrees of freedom inherent. It is enchanting that the complex
dynamics of the Earth’s seismicity can be reduced to a single universal scaling law of two sim-
ple variables; frequency and magnitude. These power-law statistics and inherent complexities
suggest that the Earth’s crust is a dynamic self-organising dissipative structure, similar to the

chemical interactions of Prigogine and the BTW model of SOC.

The power-law observed for earthquakes is of great interest since this statistical relation is
shared with other systems found in the fields of statistical physics and thermodynamics and
critical point phenomena undergoingmnase-transitionMain 1996). But what is a critical
system? This is a very wide question that will be addressed in chapters 2 and 3. However, a
simple example of a thermodynamic process at the critical point is a water liquid-gas phase
transition at a very specific ‘critical’ pressure and temperature where the density contrast be-
tween the liquid and gas phases disappears. Atdfiical point, the water-gas molecules
cluster at all length scales, showing power-law statistics (Bruce and Wallace, 1989). These
statistics are similar to the Gutenberg-Richter law mentioned above. The way in which ther-
modynamics or statistical physics address such systems of many components (such as say a
gas) is by reducing them to just a few global parameters without the need to explicitly solve for
minor-scale details. In other words, we are interested in the average or probabilistic attributes

of the system such as its mean energy, pressure or temperature (Mandl, 1988).
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Although the application of statistical physics or thermodynamics to earthquakes statistics is
not new (e.g. Main and Burton, 1984), the work of Prigogine has not been formally applied
to better understanding, assessing or explaining self-organisation and criticality in the Earth’s
crust. Also, many of the approaches used to assess criticality in the crust from a thermody-
namic point of view have done so by assuming equilibrium critical point thermodynamics (e.g.
Bowmann et al., 1998; Robinson, 200®Iér and Hainzl, 2001). As | will clarify, although
critical systems in equilibrium and out of equilibrium thermodynamics do have common char-
acteristics such as power-law statistics, they are fundamentally different both in their dynamics
and predictability. Caution must therefore be taken when applying tools of equilibrium ther-
modynamics to away-from equilibrium-systems. Nonetheless, the application of equilibrium
statistical mechanics and thermodynamics to self-organising far-from-equilibrium systems is a

new and emerging field of physics (Ruelle, 2001).

In this thesis, | examine two main points:

1. Firstly | address Earth’s seismicity from a thermodynamic point of view treating the seis-
mogenic lithosphere as a slowly driven, dissipative structure undergoing self-organisation.
This enables me to formally examine and understand the underlying processes that gov-
ern self-organisation in the crust. More importantly, this is a way to assess the applicabil-
ity of equilibrium thermodynamics to a far-from-equilibrium system such as the Earth.
Although such an approach has only been emerging recently, the application of equi-
librium thermodynamics to non-equilibrium systems under certain conditions has been
successfully demonstrated since the work on this thesis began. These works include and
application to a chaotic magnetic model (Egolf, 2000) and for laboratory experiments
on granular matter (D’Anna et al., 2003) and will be shown in this thesis for crustal

seismicity.

2. Secondly, | question the concept of self-organised criticality (SOC) and its applicability
as a null hypothesis in describing the Earth’s crust. There are two rationales for address-

ing this issue:

a) Despite its application and acceptance in the scientific community, SOC is not pre-

cisely defined in the literature (Jensen, 1998). It is therefore important to first refine



CHAPTER 1. Introduction 5

what is meant by SOC and outline the criteria associated with it, then to find a formal
and quantitative way to establish if these criteria are in harmony with observations of

real earthquake statistics.

b) It is a prediction of the BTW model that a purely SOC system would be virtually
unpredictable in space and time. Questioning the commonly accepted SOC description
of the crust will have an impact on the way we approach the seismicity of the Earth and

seismic hazard analysis in general.

| attempt to address the issues outlined above as follows:

Chapter 2: Here | review three areas of the literature that aid in addressing the goals of this
thesis. Firstly, literature associated with statistical physics, thermodynamics, entropy, the con-
cept of self-organisation and critical point phenomena. This will include illustrations from the
often cited Benard cell convection experiment (Kondepudi and Prigogine, 1998) and the perco-
lation model. Secondly, | define power-laws and fractals and their common link to equilibrium
critical point phenomena (CP) and SOC. | explicitly clarify the differences between CP and
SOC systems. Finally, | cover some earthquake phenomenology such as the observed power-
law distributions relating earthquake frequencies to their magnitudes (or energy release) and

temporal observations such as foreshocks and aftershocks.

Chapter 3. | look at the power-lawngamma distributiorfrom a theoretical perspective and

its relation to criticality and thehree criticality regimes | then use these tools to derive an
analytical model that links the entrogy (level of self-organisation) of a gamma power-law
probability distribution with its expectation logarithmic enerdy F) and its power-law scal-

ing exponentB. Then, | use the analytical solutions to predict the entropy-energy phase-space
for a power-law system at and away from criticality. | propose this as an analytical thermody-

namic method of assessing criticality in the crust.

Chapter 4: | carry out numerical cellular automata modelling to test and verify some of
the aspects of self-organisation and predictions of chapter 3. | formally reintroduce a non-
conservative BTW earthquake model of SOC. | use the model to measure internal and external

thermodynamic properties of a driven self-organising dissipative structure. The rationale for
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using the model is that only external properties such as the radiated seismic energy can be
measured for the earth. More specifically, | look at the effect of dissipation on the internal
and external properties of the system and its influence on the entropies measured and self-

organisation. SOC and its properties are also formally examined in the BTW model.

Chapter 5. | compare the analytical and numerical predictions of chapters 3 and 4 with the
results of analysing earthquake data from the Harvard Centriod Moment Tensor (CMT) cata-
logue. By comparing the theoretical, modelling and 'real’ results, | assess the proximity of the
Earth to criticality. The analysis is on both temporal and spatial earthquake ensembles. | also
investigate the seismic scaling exponents in some detail and their relevance as an indicator for

the degree of self-organisation and their ‘universality’.

Chapter 6: | discuss the results of this thesis in the wider context of self-organising systems
and criticality in general. | also make some suggestions on how the work presented in this

thesis could be built upon and possible directions for further research.

Chapter 7: | give a summary of the main conclusions of this thesis.

In summary, the primary aim of this thesis is to study the Earth’s crust as self-organising dissi-
pative structure in order to better understand and verify its proximity to criticality and any un-
derlying mechanisms that govern self-organisation. This is carried out using a thermodynamic
approach by reference to analytical statistical mechanics and thermodynamics, numerical mod-
elling and the analysis of global earthquake data temporally and spatially. The secondary aim
is to examine self-organised criticality formally in the original BTW model and then assess its

applicability as a model to describe the Earth’s seismicity.



Chapter 2

Background: From

thermodynamics to earthquakes

2.1 Introduction

The main disciplines that shall be used in addressing the issues outlined in this thesis are sta-
tistical physics and thermodynamics of dissipative systems, self-organisation, power-laws in
critical systems and earthquake statistics. | therefore conduct a literature review of some of
the relevant background and terminology used within these disciplines that will assist in the
understanding of this thesis. First | give a general introduction to statistical physics, thermo-
dynamics and the concept of entropy. | also look at critical point phenomena with an example
from percolation theory and their association with fractals and self-organisation. These will
be accompanied with examples found in the laboratory and nature. Then, | introduce the con-
cept of Self-Organised Criticality (SOC) and clarify its association and differences with critical
point phenomena. Finally, | cover earthquake phenomenology observed both in time and space

and their currently understood association with SOC.
7
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2.2 QOverview

Broadly speaking, statistical physics/mechanics and thermodynamics are the branches of physics
that describe the macroscopic state of systems consisting of a large number of particles or
molecules such as a gas. Their power stems from their ability to describe such ‘many body’
systems in terms of just a few parameters such as temperature and pressure (Mandl, 1988). For
example, it would be impossible to describe the motion and interaction of Avogadro’s number
(~ 6 x 10?3) of particles for a gas analytically in the same way one would use Newtonian me-
chanics to describe the trajectory of say, a ball falling off a table. Although the latter scenario
would only require the solution of one or two equations to describe it, the former would require
solving at leastv 6 x 10?3 equations! This ‘microscopic’ approach that requires a complete
description of the system at an atomic scale is usually impossible. The strategy is to address
a problem statistically i.e. what on average will particles be doing and what does this average
tell us about the system as a whole. The key is the prediction of macroscopic properties of the

system when the probability distribution of its energetic micro-states is known.

In statistical physics, for example, the probability that a system is in a given state is often

expressed through its probability distribution (Mandl, 1988) as follows:

p(E,) = —g(E,)e PEr (2.1)

Expressior2.1is commonly known as the Bolzmann Distribution applied for example to the
kinetic theory of gases wheggE,.) is the probability of having a state of energy, g(E,) is
known as thelegeneracyvhich is the number of different states with the same enéigys is

atemperature parametendZ is a normalizing constant know as tpartition functionwhere

Z =Y g(E)e PP (2.2)
E,

The partition function ensures unit sum of probabilities in the Boltzmann distribution. @nce
andZ are known for a system, it is possible for example to calculate other external parameters

such as the mean energywhere

= 0lnZz
E = ;p’I‘ET - 8,8 (23)
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It will be shown that such statistical descriptions are useful in describing earthquake popula-
tions (Chapter 3) given the complexities involved and the large number of degrees of freedom

associated with earthquakes ensembles (Rundle, 1993; Kagan, 1994).

2.3 Systems

Thermodynamic or statistical systems tend to be described based on direct measurements of
macroscopic properties, phenomenological observation and physical experimentation. These
descriptions are of their interaction with the ‘outside world’ or their surroundings. Therefore,
thermodynamic systems can be broadly divided in to three typekated systemihat do not
exchange energy or matter with their extericigsed systemthat exchange energy but not
matter with their exterior and finallppen systemthat exchange both energy and matter with
their exterior (Mandl, 1988; Kondepudi and Prigogine, 1998). A thermodynamic description

is in tune with the statistical approach when addressing Earth seismicity. This is because we
gain our general insight from a statistical description based on our macroscopic observations
of earthquake ensembles rather than on individual seismic events. The seismogenic crust to a
first approximation is best described as ‘closed’ as it predominately exchanges seismic energy
with its surroundings but no matter. However, we can generalise the description as ‘open’ to
account for exchange of matter from the crust in the form of gases, magma etc. although matter

exchange is beyond the scope of this thesis and is only mentioned here for completeness.

2.4 Proximity to equilibrium

The applicability of aspects of statistical physics and thermodynamics can depend on the state
of the system, particularly for evolving or driven systems such as the Earth or systems whose
properties may vary with time. Here | give a summary of the states statistictibcinastic

systems can be in.



CHAPTER 2. Background: From thermodynamics to earthquakes 10

2.4.1 Equilibrium systems

An equilibrium system is one that through irreversible processes (settol) evolves to a

time invariant state where these processes vanish and its physical and chemical properties do
not evolve with time (Kondepudi and Prigogine, 1998; Perrot, 1998). That is, the system has
a uniform “temperature” throughout. Equilibrium is best described by the Zero'th Law of
Thermodynamics which states that if a body A is in equilibrium with body B and body B is in
equilibrium with body C, then body C is in equilibrium with body A (Mandl, 1988).

2.4.2 Non-equilibrium systems

Following from the definition of equilibrium systems, a non-equilibrium or far-from-equilibrium
system therefore can be described as one undergoing an irreversible process and not of uniform
temperature. An example of this is an ice cube in a glass of warm water. There will be hetero-
geneity in the temperature of the system (the water) and through an irreversible process of the
ice melting and the water losing heat, the system will eventually reach a state of equilibrium.
Non-equilibrium systems cannot therefore be defined by a global temperature but rather by lo-
cal or mean temperatures (Kondepudi and Prigogine, 1998). Under certain conditions for both
reversible and irreversible processes, the rate at which the processes occur will be an important
factor since a non-equilibrium system evolving at an effectively infinitely slow rate can resem-
ble an equilibrium system if observed over short time scales. In relation to self-organisation
Alan Turing concluded that ordered patterns usually only occur in driven far-from-equilibrium
open systems (in Ben-Jacob and Levine, 2001). The Earth’s crust fits in to this category of

systems since it is driven and dissipative.

2.4.3 Stationary and steady state

It is sometimes easy to confuse ‘equilibrium’ with ‘steady’ or ‘stationary’ staguilibrium
as defined above will depend on the thermodynamic state of the system and its temperature dis-
tribution. Stationary or steady state systems however are those whose statistical properties or

more specifically, probability density distributions do not alter with time regardless of proxim-



CHAPTER 2. Background: From thermodynamics to earthquakes 11

ity to equilibrium. What mainly distinguishes a stationary system from an equilibrium system
is that stationary systems will have a non-zero entropy production (defined in s2ciién
whereas the entropy production in equilibrium systems is zero since they have a homogonous

temperature distribution.

2.5 Entropy

Entropyis generally defined in the literature asneasure of disordelSince we are interested
in self-organising systems where there can be an evolution towards a more ordered state, it can
be seen why entropy will play an important role in our understanding of such systems. Here |

introduce thermodynamic and statistical type entropies.

2.5.1 Thermodynamic entropy

In 1865, the term entropy (Greek for transformation) was coined by Rudolf Clausius (1822-
1888) who was extending the work of French engineer Sadi Carnot (1796-1832) (Perrot, 1998).
Carnot showed that no real heat engine could be 100% efficient since work would be needed to

transform energy or heat from one state to another. Carnot’s theorem is expressed as

Q1 Q2
?1 < ?2 (2.4)

for a heat engine that absorbs héat from a hot reservoir at absolute temperatiffeand
discards heaf), to a reservoir at absolute temperatlie(Kondepudi and Prigogine, 1998).
The ‘<’ sign in equation2.4 is indicative of anirreversible process or cycle. Aeversible
process on the other hand is defined as one in which<thsign in equation2.4 is replaced

with a ‘="'sign. However, such systems in reality may not exist, as they would have to be 100%

efficient; irreversible processes existing in nature is debated (Bridgman, 1950).

It was Carnot’'s work that would lead the way for Clausius to develop the first two laws of
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thermodynamics for alosedsystem. The first law states that
dE =dQ + dW (2.5)

wheredFE is the change in energy of the systeif) anddWW are the heat exchange or transfer,
and work (through say a mechanical process) exchanged between the system and its surround-
ings (Perrot,1998; Kondepudi and Prigogine, 1998). The seminal ‘Second Law’ states that the

entropies of a reversible and irreversible process are respectively

_dQ
ds = =+ (2.6)
ds > ? 2.7)

where S is thethermodynamic entropgf the system and() is the heat exchange with the
exterior atthermodynamic temperatufg. In words the Second Law is often stated as: ‘The
sum of entropy of a system and its surrounding can never decrease’ (Dugdale, 1996). The
statement that the entropy of a system can only increase can be thought of as a system trying to
minimise itsHelmholtz's free energy’, that is, energy available to do work. This is expressed
as

F=FE-TS (2.8)

Note that when the entropy = 0, the amount of available energy to do work is a maximum.

2.5.2 Statistical entropy

In addition to thermodynamic entropy, there is what is knowstassticalentropy. Boltzmann
proposed an expression for statistical entropy to reconcile the reversibility predicted from the
laws of statistical mechanics and the irreversibility constrained by the Second Law (Kondepudi
and Prigogine, 1998). To clarify this, the following example is given: A container is partitioned

with V; molecules in sided and N, in side B with N1 > N5 (figure2.1)

Although there is no mechanical reason prohibiting molecules from Bide move to side
A once the partition is removed, the more probable state (that of higher entropy) will be one

where more particles from sidé will move to sideB. This will continue until the molecules
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Figure 2.1: Binary system with a heterogeneous distribution of molecules.

are spread homogenously in the container and an equilibrium state reached (just like in the ice

cube in glass example).

Mathematically, Boltzmann expressed the entr8pyf such a system as
S=kyInW (2.9)

wherelV is the number of microstates corresponding to the macrostate with erftrapgk;
is Boltzmann's constantf = 1.381 x 10~23JK~!). For the binary system outlined above,
the laws of probability theory will dictate that the number of microstétewith N; molecules

in one half andV; in the other is

(N1 + Ng)!

W =
NpIN,!

(2.10)

As predicted,IW and thereforeS will be an absolute maximum wheN;=N,. For a more

general system where we do not necessarily know all the microgtatiésve have
S p=1 (2.11)
then the statistical entropyMandl, 1988) is defined as
S = —kZprlnpr (2.12)

For the example given above we can calculate the variatighwith p. Let us simplify the

example as follows: If the probability of having a particle in one half of the containgris p,

The derivation of statistical or shannon entropy can be found in the appendix of this thesis and in Shannon
(1948) and Jaynes (1957).
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then the probability of having it in the other half of the container willlge= 1 — p. Using

equation2.12 and ignoringk, | calculate the phase space ®fversesp; (figure2.2). It can

Figure 2.2: Plot of S against P; for a binary system with maximum S where p; = p».

be seen from the figure that @s — 0.5 i.e. p1 = p9, the entropy is a maximum. The figure
reflects what equatio.10is telling us without having to refer to the equation. Statistical
entropy has been shown to be applicable to both equilibrium and non-equilibrium systems (see
section2.5.3. Statistical entropy is also referred to as ‘generalised’, ‘Gibbs’ or ‘Shannon’

entropy in the literature.

2.5.3 Shannon entropy

In 1948, Claude Shannon published a prolific paper with the Aitathematical Theory of
Communication(Shannon, 1948). The publication deals with a variety of topics related to
information theory including filtering, encryption and the transfer of information. It is said that
when Shannon derived the equation to assess information gain and loss through a transmission

channel, he was told by mathematician Van-Neumann to call it entropy since it had the same
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format as2.12above. Shannorfderivation gave the following result:

i=n

H=-K pilogp (2.13)
=1

Here K is a positive constant that depends on the units of measure. This form of information
entropy was obtained from the constraints that the function should be positive, increase with
increasing uncertainty and additive for independent sources of uncertainty. Equati@ns
and?2.13refer to two different types of systems. The first gives our certainty in the state of a
physical statistical system, and the latter refers to our certainty in the non-physical and perhaps
more abstract concept of information transfer based on partial knowledge of the system, but
are the two entropies analogous? Jaynes (1957) addresses this question elegantly. By freeing
the statistical entropy from any physical constraints and looking at it as a method of statistical
inference -which is essentially what it is as outlined in the container example above- he shows
mathematically that the information and statistical entropies can be regarded as fundamentally
the same. This is based on the simple fact that for both cases, the entropy is maximised as
our uncertainty in the system reaches a maximum (as in figg@ye More importantly, Jaynes
showed that following from this idea of maximizing entropy, the statistical / Shannon entropy
concept may also be applied to systems out of equilibrium, a result recently further verified by

Dewar (2003) (see sectidn5.5.

2.5.4 Configurational entropy

Somewhat related to information entropy is configurational or spatial entropy which takes into
account the actual positioning of particles or bodies in a system. Following the description of
Goltz and Byse (2002), this entropy is used as a form of box counting as follows: For a system
divided to, x L square grids, we choose an area of $izel and count the number of active
cells® N(1) out of a total of N (1) cells (active + inactive) within thex [ grid. The probability

of finding an active cell within the grid is then

_ Ni(1)

) = N (2.14)

2Shannon used the notatidh for entropy rather than the commonly usgd
3In Goltz (2002), the number of active cells are those containing earthquakes.



CHAPTER 2. Background: From thermodynamics to earthquakes 16

so the configurational entropyd is given by

l2
H(l) ==Y pi(l)logpi(l) (2.15)
k=0

Configurational entropy has been widely used in the study of spatial organisation in various
systems including cellular automaton models (Wolfram, 1986), earthquake clustering (Nichol-
son et al., 2000; Goltz and®e, 2002), and in rock fracture experiments (Nanjo et al., 2000).

This form of entropy will not be measured in this thesis but is mentioned here for completeness.

2.5.5 Entropy production and self-organisation

Work on entropy production had begun as a means of understanding irreversible processes
in driven systems (Onsager et al., 1953) and self-organisation (Nicolis and Prigogine, 1977).
Here, entropy production is explained through a classic experiment. The often cited example of
self-organisation is that of@ard cell convection given here in accordance with the description

of Nicolis (1989). The experiment is set up such that there is a thin layer of fluid between two
horizontal plates. Left to itself, the fluid is in a state of equilibrium in the thermodynamic sense
i.e., of homogonous temperature. A temperature gradient, which acts as a driving force, is then
introduced by applying heat to the lower plate. This gradi®iitis increased to some critical
temperature gradiems T precisely at which the fluid undergoes convection and organises its
self into convection or Bnard cells (figur.3). Above the critical temperature, the patterns
disappear and more chaotic fluctuations occur. Below the critical temperature, there is not
enough energy for convection to occur and heat is dissipated by conduction through the fluid.
It can be seen from figuiz 3that the patterns of organisation are at length scales that far exceed
the scales at which the individual molecules interact. Nicolis (1989) describes this emergence
of patterns asymmetry-breakingince the patterns create a notion of space. One can imagine
moving through a homogenous medium (say inside a black box) and not notice the movement
whereby moving in the fluid with the cells there, one can feel the motion since there will be
reference points (the edges of cells) present. Although this experiment is somewhat basic, it

depicts the notion of self-organisation well.

4H is also used rather thafiand is sometimes also given A&nformation’ in the literature.
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Figure 2.3: The spontaneous emergence of pattern in the Bénard cell convection experiment (from Kondepudi and

Prigogine, 1998. No scale is given with the original reference).
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However, it follows from the Second Law of thermodynamics that a system undergoing an
irreversible process should reach a maximum state of entropy or disorder and relax to an equi-
librium state. In nature, however, most systems are neither in equilibrium nor in a state of
maximum disorder i.e. they show organised structures and patterns (e.g. Bak, 1997; Ball,
1999). The work of Prigogine shows however that a system can lower its entropy locally at the

expense of increasing it globally. This is expressed as follows:

dS = deS + d;S; ds > 0 (2.16)

HeredS is the total change in entropy of the systeiyS is the internal change due to irre-
versible processes adsS is the change in external entropy due to exchange of energy and/or

matter with the surroundings. This is depicted in figré

dS

Figure 2.4: Internal entropy change d;S and external change d.S with d;S > 0, (redrawn from Kondepudi and
Prigogine, 1998)

In accordance with the Second Law we must always liage> 0 regardless of whether the
system is open or closedi.S on the other hand is only non-zero for a dissipative structure
and can decrease (implying a decrease in that component of entropy) provided r2lation

is maintained; this is the essence of self-organisation. Note that the system must be driven
far from equilibrium otherwisel;S andd.S would be zero (Nicolis and Prigogine, 1977).
However, one could ask why,.S should be driven to become negative? The property that
has recently been receiving more attention is thag¢rfopy production This, for an open

thermodynamic system, is generally defined as (Kondepudi and Prigogine, 1998)

d;S =) FpdX) >0 (2.17)
k
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and
d
deS = ?Q + dSmatteT (218)
dX is a flow term such ag(Q) for heat ord N for say moles flowing in a timét. F}, here is the
thermodynamic forcesuch as a function of temperature. To show the relation between entropy
and entropy production due to heat flow, we look at a simple example of an isolated container

(d.S = 0) divided in to two halves of temperatufg andT> (figure2.5)

Figure 2.5: Entropy production due to the transfer of heat between two components. The entropy production % is

zero when 77 = T5 and the entropy S is a maximum.

with 71 > T5. Puttingd X = dQ andFj, = (1/T> — 1/T}) we have for timelt that

&S 1 1 .dQ
v = (2.19)

From equatior?.19we can see that the entropy production is greatest when the temperature
difference between the two sides of the container is largest (further away from equilibrium) i.e.
a state ofmaximum entropy productioor MEP. On the other hand, when the system reaches
an equilibrium stately = T3), the entropy production is zero and the entropy is a maximum.

This competition between entropy and entropy production is shown in fiyare

It can be seen from figur2 6that if one assumes that slowly driven systems away from equi-
librium approach a state of maximum entropy production, this will occur at the expense of

decreasing absolute entropy. In thérard cell convection example, the cells emerge at the

SNot to be confused with the free energygiven in equatior2.8 above
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S ds/dt

AT AT

Figure 2.6: Change of entropy .S and entropy production % with temperature difference AT (redrawn from Kondepudi
and Prigogine, 1998 ).

expense of increasing the dissipation of heat away from the system and hence increasing the

entropy globally.

A similar definition of entropy production given by equati®ri 9is used by Lorenz et al (2001)

to address a climate problem. Using a simple model, they show that a state of MEP explains
the observed temperature variations with latitude on Mars and Titan that could not be explained
by more traditional climate models. It seems that these gradients self-organise to a state where

the heat flow (and accordingly the entropy production) is maximized (figiye

Similar approaches of applying MEP to climate models have been proposed by Ohmura and
Ozuma (1997) and Wyant et al. (1988). To my best of knowledge, no such approach has been

applied to better understanding self-organisation in earthquakes, real or synthetic

2.6 Fractals

2.6.1 Introduction

| have spoken abouysatternsand order in systems with the example oféRard cells but is
there a formal definition to what is meant by ‘pattern? In a beautifully illustrated book on

self-organised structures in natufiéhe Self-made TapestryBall (1999) gives examples of

SAfter the initial submission of this thesis, a good review of maximum entropy production and climate was

published by Ozawa et al., (2003).
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Figure 2.7: Figure shows model results of Lorenz et al. (2001). The y-axis normalised temperature and latitude,
and the x-axis denotes D which is a term proportional to the ease at which the system radiates heat. The model
temperatures (solid curves) fit observed average temperatures values on Titan for latitude 10 — 20 and 40 — 60
degrees (shaded areas) at the state of maximum entropy production or MEP (dashed line). Redrawn from Lorenz et

al., 2001.
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self-organisation from the forms of desert sand dunes, to patterns on sea molluscs. However,
in a book that spans over 250 pages, only the following insight is given in his introduction to

what is meant by ‘patterns’ or ‘form’:

"This book is about the development of pattern and form, and so it is well to have
an indication of what | mean when | use these words. | cannot give either term
a definition of mathematical rigour, however, nor can | always maintain a clear

distinction between the two... Form is more an individual affair”

Fortunately for the purpose of this thesis, the ‘pattern’ or ‘form’ seen in earthquakes, is well
defined and known as ‘fractals’ or ‘power-laws’, as referred to in my introduction and are

defined below in more detail.

2.6.2 Whatis a fractal ?

Fractals are ubiquitous in nature. Natural examples of fractals include snowflakes Zfigure
coastlines, various branch structures and faults in rocks (Feder, 1988; Bak, 1997; Turcotte,
1997). The ternfractal was coined by Mandelbrot in 1967 to describe geometries or systems
that were self-similar and had no characteristic scale. Mandelbrot defined a frattalkas
shape made of parts similar to the whole in some waymore formal definition also given by
Mandelbrot was... a set for which the Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension{Feder, 1988). Terms usually associated with fractals are ‘power-law’
(see below), ‘scale-invariant’ and ‘self-similar’ (Turcotte, 1997). Mathematically, these are

defined by the power-law

N(r) = — (2.20)

where N (r) is the number of objects with linear dimensionC' is a proportionality constant
and D is a non-integer ‘power’ or scaling exponent known asfthetal dimensiorusually
found to have value& — 1 < D < E whereE here is the Euclidian dimension. For a

two dimensional spaceF[ = 2), typically 1 < D < 2 (Dubois, 1998). In realityD is
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Figure 2.8: The snowflake; an example of a fractal geometry occurring in nature (from Ball, 1999).
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usually measured using a box counting techniqubere a geometry is divided in to square
grids of sizer and the number of gridd/(r) intersecting the geometry are counted and then

r is varied and the counting process is repeated for that scale and so on (see descriptions by
Feder, 1988 and Turcotte, 1997). Figw® shows a ‘text book’ example of a geometrical
fractal representing the fragmentation of a block into smaller replicas (from Turcotte, 1997).

Notice from the figure how the ‘parts are similar to the whole’ at the different scales. In this

N

|

Figure 2.9: Example of a three-dimensional geometric fractal. From Turcotte, 1997.

example of a fractal, the sizeof the squares scales as a power-law with their relative numbers

N (figure 2.10), consistent with equatioR.20. Such power-laws are used to describe several
scale-invariant geometries in nature including the fault size distributions in the Earth’s crust
(Bonnet et al., 2001) (also see sectibBf.3, climate variations (Bak, 1997), various aspects

of biology (e.g. Ben-Jacob and Levine, 2001; Ball, 1999) and observations as far diverse as
hospital waiting lists (Smethurst and Williams, 2001). It should be noted here that although the
expressior2.20above is boundless can be infinite), this is usually only true for conceptual

or computer generated fractal geometries. In nature howewval, be limited by the smallest
component of the system as a lower bound and by the system size as an upper bound. Such

size limitations may give rise tband-limitedfractals. Also, in some cases, the clustering in

"Other methods used to meast?énclude themass dimensioandmulti-fractal analysis See review by Bonnet

etal., (2001).
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Figure 2.10: Corresponding log-log plot with slope (fractal dimension) D=2.60. From Turcotte, 1997

different vicinities of a fractal can show variation, an example of which is the process of crystal

growth by diffusion-limited aggregation (Feder, 1988; Schroeder, 1991).

2.6.3 Fractals and the critical-point

Now that fractals or power-laws have been defined (referred to just as power-laws hereon), |
return to statistical systems and their association with power-law distributions. A good example
of this is the percolation model. The model is described by Staufer and Aharnoy (1998) and,
in relation to earthquakes, by Main et al. (2000). Here, the model is described as follows: | run
a computational percolation model omax N square grid withV = 100. A site is picked

at random on the grid and is then defined as being ‘broken’. The number of broken sites
divided by the total number of site§? gives us the probability of finding a broken cell so

p = n/N2. A clusteris then defined as the number of connected neighbouring broken cells.

This is shown in figure.11

As n is gradually increased, and therefgrethe number of clusters also increases forming
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Figure 2.11: Clusters in the percolation model. The cluster area A is defined as the number of neighbouring broken
cells. The dashed line indicates the percolation flow path network. The size of the largest cluster determines the

correlation length &.

clusters of different sizes (figur212). However, at someritical point (CP) wherep = p¢
two interesting things occur. Firstly we very suddenly get what is callethfamte clustery
that is, one that connects one side of the system to the other allgeioglationto occur.
The second thing that occurs preciselyatis that the distribution of cluster sizes (or areh)

follow

N(A)~ AP (2.21)

with the number of clusterd/(A) is related by a power-law to the cluster sizewith fractal
dimensionD. Note that this power-law distribution is similar to that seen in other statistical
systems at the critical point such as the magnetic Ising model where there is a sudden change
in magnetization at the Curie Temperature (Bruce and Wallace, 1989), or water at the critical
temperatureq) as outlined in the introduction. The critical point: © for this example is
referred to as thpercolation thresholgince there will be a rapid transition in the size of the

largest cluster or correlation length where ap — pc,

§ox|p—pol™ (2.22)

8The actual value opo will depend on the various parameters such as the dimensions of the system and the

shape of the cells but for the example giver-i$).5927 (see Stauffer and Aharony (1998), pg. 17).
9The correlation length can be defined in different ways depending the system examined. Generally speaking

however,¢ can be regarded as being a measure of the size of the largest clusterin the system with¢ o

\% A'mu,;c .
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wherev is a critical exponent. This rapid increasegior A,,,, is demonstrated for a single

run in figure2.13 Note that wherp > pc, £ = oo by definition since the entire system is

10000
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Figure 2.13: Plot of non-linear increase of maximum cluster size A, With p for a single run of the percolation model
with grid size N = 100 x 100. The dashed line indicates the percolation threshold p = p~ = 0.5927. The size of the

‘infinite’ cluster (Amqz is restricted by the system size at p = 1.

considered broken by the ‘infinite’ percolation cluster. The rapid acceleration in maximum
cluster size as demonstrated by equafio?? is also found in the Ising model as the Curie
temperature is approached (Nicolis, 1989) and has been reported in seismicity for earthquakes
prior to some large events (e.g. Bowman et al., 1998) (see setBohbelow). The critical

point is associated with the procesgbise transitionglue to the rapid change in properties of

the system such as the size of the largest cluster. In the case of a liquid-gas phase transition, the
critical point (CP) corresponds G- (or a critical preasure) where there is a change of phase
from liquid to gas with no change in density. The percolation model is therefore interesting
since it resembles other statistical systems in its statistical properties prior to and at the critical
point regardless of the detailed physics of the system, a property usually associatadiwith
versality(Main, 1996). This has encouraged the application of critical point statistical-physics
or thermodynamics to stochastic systems such as the Earth’s crust (Main, 19ie8;eZ al,

2001). This application must however be done with caution (see setfiai).
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2.7 Self-Organised Criticality (SOC)

2.7.1 Definition?

"There does not exist a clear cut and generally accepted definition of what SOC is.
Nor does a very clear picture exist of the necessary conditions under which SOC

behaviour arises™from the bookSelf-Organised CriticalityJensen (1998).

Despite SOC having been cited in various literature over 2000 times since its publication,
(Hergardten, 2002) the above quote from Jensen (1998) remains true. So far, | have discussed
self-organisation in the light of thermodynamics of ‘dynamic’ dissipative structures and ‘static’
power-laws at the critical point in equilibrium thermodynamics and statistical physics (static).
The great interest in SOC is because it is believed to be a link between critical point systems
and driven dissipative systems. It is proposed as an explanation of the spontaneous emergence

of power-law statistics in driven complex systems such as the Earth (Jensen, 1998; Ball, 1999).

Figure 2.14: The avalanche process in the sand pile model with critical angle ¢¢.

Bak et al. (1987) use the paradigm of sand piles to explain SOC. Sand is added to a pile grain
by grain at a constant rate until the slope of the pile reaches some critical angle of ¢gpose
when an avalanche is triggered as seen in figuid Any surplus sand is allowed to escape

from the edge of the pile. The avalanches frequency-size distribution follows a powér law

191t was found later in laboratory experiments that not all sand piles produce power-law statistics although ex-

periments showed that power-law avalanches were produced by rice grains with an elongated shape (Frette et al.,
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distribution. The current accepted criteria of SOC as suggested from the BTW sand pile model

are as follows:

1. A slowly driven system far from equilibrium that self-organises to a critical steady-state
showing power-law statistics with fluctuations about the critical point of no characteristic

size.

2. Sensitivity to minor perturbations that could trigger large events (avalanches) that can
span the length scale of the system, i.e. one grain of sand could trigger a very large

avalanche.

3. The power-law nature is global and independent of local dynamics (Bak et al., 1987).

Note from figure2.14that the sand leaves or dissipates from the system at the edges when an
avalanche occurs. Dissipatiorin SOC systems is required, otherwise, an infinite event may
be triggered that would go on indefinitely (such as an infinitely large sand pile collapsing).
The interesting point about SOC is the way ‘energy’ enters and leaves the system. The input
driving force or energy is uniform or linear, whereas the output is punctuated in the form of
avalanches of various size that follow a power-law (figuEy. An SOC system can be seen

as a self-regulating power-law generator. The criteria associated with SOC given above can,
to a first approximation, be used to examine if the crust is strictly SOC (see e.g. Main, 1996).

SOC will be discussed in more detail in chapter 4.

2.7.2 Critical differences

| have mentioned the word ‘critical’ in relation to thermodynamic systems at the critical point
(CP) (section2.6.3, and in relation to SOC (sectioh.7). There are important yet subtle
differences between the two systems. Firstly, the CP systems away from the critical point

are generally considered to be at equilibrium since there is no dissipation of energy and no

1996).
Hpissipation as cited in the SOC model literature can refer to two things, dissipation out of the system (at the

edges) and dissipation within the system itself. Models with only dissipation at the edges are sometimes referred to

asconservativeThis is explained in detail in chapter 4.
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Figure 2.15: Figure shows the SOC process with a ’linear’ input of energy and the punctuated power-law output. The

inset boxes show the corresponding energy probability distributions on a log-log scale.

power-law features. However, the SOC systems are usually driven away from equilibrium by
a driving force such as sand entering and dissipating in and out of the sand pile model. Also,
the CP systems only show power-law structures at the critical point. Any perturbations to the
equilibrium systems whilst away from the critical point will not drastically alter their statistics.

It is only at the critical point that a perturbation -say a breaking of a cell in the percolation
model- can alter the system significantly in the form of a phase transition. An example of this
is changing the temperature of a fluid at the critical temperature; a slight increase would cause

an evaporation whereby a slight decrease would cause condensation.

Conversely, in an SOC system, the system sensitivity to a perturbation is in the sense that a
small perturbation may trigger a large event that spans the entire system but the power-law
statistics overall remain resilient to noise (perturbations) provided the amplitude of the per-
turbations do not overshadow the intrinsic system fluctuations (Ceva, 1995; Mousseau, 1996;
Main et al., 2000). Finally, CP systems must be ‘tuned’ to the critical point at which the pat-
terns occur, that is, they will not naturally evolve towards the critical pdipt ¢, etc.). SOC
systems will naturally evolve to the critical point as it is an attractor state. This usually can
occur regardless of the starting conditions (Jensen, 1998). The differences between SOC and

CP systems outlined are summarised in table2
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Property CP SOC
Dynamics Static Driven & dissipative
State At equilibrium when away  Away from equilibrium

from the critical point

Power-law Only at critical point Always (within limits)

Dissipation Not required Essential

Sensitivity to perturbations  Sensitive close to and Robust to perturbations over time
at critical point although a small perturbation can

trigger a large event

Criticality Tuned Attractor state

Table 2.1: Table of qualitative differences between equilibrium systems at the critical point (CP) and systems showing
SOC.

2.8 Earthquakes

2.8.1 General introduction

Earthquakes mainly occur in the Earth’s brittle crust in the proximity of active fault margins
where tectonic plates converge, diverge or slide with one another (figii§e The crust and

the upper mantle broadly consist of the rigid lithosphere, which ‘floats’ over the more ductile
(plastic) asthenosphere. In accordance witistic rebound theorytectonic forces drive the
plates (usually at a slow rate of a few centimetres a year) and energy accumulates in the elastic-
brittle upper crust as they deform and/or rub against one another until a threshold frictional
force is overcome (this is analogousdeg in the SOC model above). When this occurs, the

stored energy is released in the form of heat and radiated seismic energy.

Statistically, earthquakes belong to a class of systems which are very non-linear and away-
from-equilibrium, so much so that their statistics have been likened to those of fluid turbulence
(Kagan, 1994). This non-linearity is evident two fold; firstly in the power-law avalanche type
behaviour observed in their energy release and their spatial and temporal statistics (see section
2.8.3, and on a more practical level in our inability to accurately predict large earthquakes

despite over a century of research into prediction (Geller, 1997). It seems that earthquake
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prediction remains a ‘holy grail’ of geophysics (Main, 1996). It is this predicament that is
thought to have divided the geophysical community into those who use a *holistic’ approach of
data gathering and analysis, and those who concentrate on earthquake physics (Kagan, 1999).
But, it is also these observed non-linearities that have encouraged a more integrated statisti-
cal approach to our understanding of earthquake phenomenology (Kagan, 1994; Main, 1996;

Malamud and Turcotte, 1998; Bird et al., 2002).

2.8.2 Earthquake energy state

A simple ‘thermodynamic’ energy balance equation for seismic energy release can to a first

approximation be written as (Scholz, 2002)
Wf = Q—I—Es—l—Us (2.23)

whereW; is the mechanical work done in faulting (friction + deformatiof)is heat,Es is
the seismic energy release due to earthquaked/amslthesurface energyhich is negligible.

The seismic energy releasg; can be more specifically defined as
1.
Eg = §A0AuA (2.24)

where Ao is the stress change (drop) due to a seismic ewvéris, the fault area, and\u is

the mean slip or displacement along the fault. Referring to the laws of thermodynamics (see
equation2.4), one cannot expect all the woik’; to be converted in to seismic energy and
heat alone as some will be expended through deformation, fluid circulation and so on (Scholz,
2002) . In the case of seismicity, the efficiency of this energy transformationeferred to as

the seismic efficiencge.g. Dobrovol'skiy, 1994) and is defined as

Es
=100—. 2.25
n W, (2.25)

Note thatEs depends on the stress drop due to an earthquakdigndill depend on the
total stress in the crusti¥y is in practical terms difficult to calculate (Main et al., 2000).
Nonetheless, It is known that stress drops due to seismic events are in the order dff@tew
compared to total stresses in the crust that are in the rang@ -ef100M Pa (Abercrombie

and Leary, 1993; Scholz, 2002). This is in agreement with the Second Law since no ‘engine’
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can bel00% efficient. However, the seismic efficiency is sometimes reported as being equal to
unity (e.g. Kagan, 1999) in apparent contradiction to the Second Law. This is due to the great
uncertainties in its calculation (Scholz, 2002).180% efficiency would require a lack of any
deformation or heat flow in a seismic region and cause an earthquake whose radiated energy
would resonate about the globe indefinitely, both requirements of which contradict general
observations. In the light of self-organisation and dissipation, a form of seismic efficiency may
play an important role in self-organisation in the crust since it is related to dissipation of energy.
However, as can be seen from equafio?h realistically calculating) for earthquakes may be

in practice impossible (Scholz, 2002) and therefore, the effects of dissipation are best examined

in theoretical and numerical models of seismicity (chapters 3 and 4).

2.8.3 Earthquakes and power-laws

As mentioned in the introduction of this thesis, earthquakes follow power-law distribution in
the form of the Gutenberg-Richter (GR) relation (Gutenberg and Richter, 1957) over several
orders of magnitude where

log(N) =a—bm (2.26)

m is thescalar magnitudef the seismic event size ands the seismid-value generally~ 1
worldwide (Kagan, 1999). It is this power-law nature of seismicity that leads us to suggest that
the Earth is an SOC system in line with criterion 1 in sectton The GR relation ensures

that while small events are very numerous (several thousand a day <08, larger events are

very infrequent (onen > 8 annually on average). Why this distribution should organise its self

to a power-law as opposed to any other distribution is elusive. This question is addressed by
Kanamori and Anderson (1975) in terms of simple geometry. The magnitude of an earthquake
is proportional to the area of its corresponding fault (equati@dbelow). The problem is then
reduced to a question of accommodation; you can fit many small faults within an active seismic
region but only a few larger ones and accordingly, more smaller earthquakes than large ones.
This explanation does not, however, account for the power-law being robust over several orders
of magnitude despite the complexities involved in the Earth that lead to the SOC hypothesis
as an explanation (secti@nh?). It is also this robustness of the power-law observed for over a

century that validates us addressing the Earth’s seismicity as a ‘stationary’ process (as defined
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in section2.4.3.

As an alternative to the measurementnof a more rigorous measure of earthquake energy
release is known as thmoment magnitudé/,. This magnitude is calculated from solving

the moment tensorsf an event which are the fault orientation and displacements in three
dimensions as measured by multi-component seismograms. This measure of energy (Kanamori

and Anderson, 1975; Fowler, 1990) is given by
Mo = pAuA (2.27)

wherep is the shear modulug\u is the slip andM is in units of Nm. Mo scales directly
with source rupture ared (Kanamori and Anderson, 1975). For a scale invariant source,

Au | constant (Kanamori and Anderson, 1975; Abercrombie, 1995) so with reference to

VA
equation2.27it is found that

Mo ~ A%/? (2.28)

The moment magnitude has been empirically related to the surface wave magdviudeal-
ogous tom above) by

log Mo = gMg +9.1 (2.29)

Mg is measured from the logarithm of the amplitude of the surface wave at a period of 20
sec whereby the scalar magnitud&, is in effect calculated at infinite periods (Kanamori

and Anderson, 1975). Therefore, there will be an apparent attenuation or saturation at higher
maghnitudes of\/g so events of highi/p will be measured at only marginally higiis where

Mg ~ 8 (Reiter, 1991). Finally, given thats = %—ZMO (Kanamori and Anderson, 1975;
Scholz, 2002), we can deduce by substituting it that the energy release radiated by an

earthquake is empirically given by
log Eg = ;MS +4.8 (2.30)

whereEyg is in Joules.

In relation to fractals, it can be noted from equatib@6 above that thé-value is a scaling
exponent similar to the fractal dimensidhin equation2.20above. The exponentsand D

can be related as follows: SubstitutiBd8into 2.29 we have

Mg ~log A (2.31)
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Given thatm = Mg and substituting int@.26we have
N~ A"? (2.32)
Since we are dealing with an are4 & 2), we can rewrite2.20as
N ~ A~DP/? (2.33)
So comparing the powers @f32and2.33we have (Henderson, 1992; Turcotte, 1997)
D =2b (2.34)

This is essentially identical to the result of Kanamori and Anderson (1975) except thabhere,
need not be an integer. This result gives a mathematical link between the power-law observed
for earthquakes and observations of fractal fault scaling found in the crust (e.g. Turcotte, 1997;
Scholz, 1997; Bonnet et al., 2001). However, studies on real data have shown that Beation

doesn't always hold for field data (e.g. Henderson et al., 189el et al., 2001)

The Gutenberg-Richter relation can be written in terms of a true power-law in the form of
an energy probability distribution. Putting ~ Mg we havelog £ ~ %m from 2.30and
log(N(m)) ~ mfrom2.26 The N (m) term can be written as a probability by simply dividing

N (m) by the total number of events for a sample. This gives the incremental energy probability
distribution

p(E)dE ~ E-B~14E (2.35)

whereB is a scaling exponent. Froth26and2.30we can deduce that

B~ b 2.36
- (2.36)

Note that2.35is a power-law at all scales. However, it has been found that earthquake energy
probability distributions deviate from a straight line at higher magnitudes (e.g. Kagan, 1997;
Burroughs and Tebbens, 2002). To take in to account any finite size effects such as the limited
size and/or thickness of tectonic plates and finite rate of energy released seismically per unit
time, a modification oR.35is therefore used in the literature and is known asrtiualified
gamma distributior(Shen and Manshina, 1983; Main and Burton, 1984; Kagan, 1993) in the
form

p(E) ~ E~B71e B/ (2.37)
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wherep(E) is the probability of having an earthquake of enefgyandé is a measure of the

size of the largest possible event (analogous to the correlation length mentioned above). The
gamma distribution will be discussed in detail and derived in chapter 3 (see seé@jioNote
that2.37has energy to the powd? + 1 as is sometimes quoted as having powerhich can

be a source of some confusion. However, the two scaling exponents are the same in the sense
that this will depend on if a probability is incremental, cumulative or a density. Bonnet et al.

(2001) give a good review of the different cases and are also defined by Sornette (2000, p.7-9).

2.8.4 Foreshocks and aftershocks

The GR law however is not the only power-law to be observed from earthquake dynamics.
The second observation is that of the power-law time to/from failure given as Bufe and Varnes,

(1993) and dller et al., (2001) as
E~(to—t)F (2.38)

where¢ here is the correlation length (size of the largest seismic event within a regiisn),
time, t¢ is time of failure, and: is the power-law scaling exponeigthere is often replaced by
the cumulative Benioff ‘strain’ o} [Mo]'/? before a large event (Robinson, 2000; Bowman
et al., 1998) wheré€ is replaced by-M(t) Note that although the term ‘strain’ is used in the
literature in this context (e.g. Vere-Jones et al., 200dlleZ and Hainzl, 2001), this is not a

strain but a function of the stress drop or seismic energy release.

Looking at2.38 one can instantly note the similarities with equatibf2 as a critical point
is approached. Therefore, this observation -when made- is suggested as supporting evidence
that the Earth is a ‘critical point’ system and being in a state of SOC (élert al., 2001).

However, as | have outlined in secti@rv.2 ‘critical point’ and SOC are not the same thing.
A reverse of equatio2.38 above is the famous Omori law. If we swap andt in 2.38we
retrieve the modified Omori Law which is generally give as

n(t)=K({t—tc+c)? (2.39)

wheren(t) is the number of aftershocks per unit time at titnéS’, p andc are constantg is

the time of the main shock artds the time following the main shock. Although38above is
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not always observed prior to large events, the Omori Law has been well documented for real

data for over 100 years (see Utsu et al., 1995).

2.8.5 Earthquakes and SOC?

Where do we currently stand in our assessment of earthquakes as an SOC system? There

appear to be four approaches in addressing SOC in the crust:

1. Observation: With reference to the criteria outlined in secti@rv, the Earth’s crust
is a very slowly driven system with plate motions of only a few cm. a year (Fowler,
1990). Also, power-law statistics are found globally both spatially for the geometric
distribution of Earth’s tectonic plates (Sornette and Pisarenko, 2003) and for earthquake
frequency-size distributions (e.g. Kagan, 1997). Furthermore, the process of small per-
turbations manifesting themselves into large events is also sometimes observed such as
small changes in ground pressure that can trigger seismic events (Grasso and Sornette,

1998).

2. Numerical models: Several computer models of seismicity show power-law behaviour
in their energy-frequency distribution (e.g. Burridge and Knopoff, 1979; Olami et al.,
1992; Kumagai et al., 1999) despite having somewhat different underlying rules (het-
erogeneity, noise, dissipation, etc.). However, one must be cautious when making any
conclusions as to what is occurring in the Earth based on what is being observed in a

simple model. Models will be discussed in detail in Chapter 4.

3. Critical point (CP): As | discussed in sectiof.8.4 above, although the observation
of precursors in the form of a power-law increase in correlation length or cumulative
seismic moment release may be a sign of the Earth acting as a critical point phenomena,
this concept should not be confused with SOC. Temporal changes in the statistics of
avalanche behaviour are not observed in the original BTW model of Bak et al. (1987).
Equilibrium CP phenomena are fundamentally different from the far-from-equilibrium

state of SOC.

4. Theory: There have been attempts at showing that SOC applies to the crust from a the-
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oretical perspective. For example, these have been done using a mean field approach
in deriving the power-law seen in the crust (Sornette et al., 1990). Other attempts have
been made in analytically solving models of seismicity; Helander et al. (1999) analyt-
ically solve a one-dimensional sand pile model and retrieve power-law avalanches in
both space and time. A similar approach is carried out by Lauritsen et al. (1996) using
a generalised mean-field approach with the addition of a dissipation factor. They also
predict power-law statistics in the locally conservative case, consistent with what is seen
in numerical models. The success of an analytical approach indicates that a statistical
mechanics can be useful in determining stationary solutions for systems out of equilib-

rium.

In addition to the second point outlined above, there are also other statistical observations
that are seen in earthquakes that are not seen in the original BTW model such as anomalous
stress diffusion in earthquake transient locations (Marsan et al., 2000). Therefore, if SOC is
to be rejected as null hypothesis for crustal dynamics, one would require a description that:
1. does not contradict what is observed for real data, 2. is theoretically tractable and 3. can
be verifiable though the use of numerical models. Therefore, an integrated approach using
observation, theory and models is perhaps the best approach to address the question of SOC in

the crust.

2.9 Summary

In this chapter | have covered some of the basics of statistical physics and thermodynamics
to assist in the understanding of the lesser known branches of thermodynamics of dissipative
structures and non-equilibrium systems. | then, in light of the thermodynamics, introduced
definitions of entropy including statistical entropy, the important process of maximum entropy
production (MEP) and its role in self-organisation. Although MEP has been used to better

understand climate models, for example, it has not been formally applied to seismicity.

Power-law or fractal organisation in statistical systems was then examined and their link with

the critical point and SOC described. The differences between a thermodynamic system at the
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critical point and SOC systems was also highlighted. Although the general aspects of SOC are
agreed upon amongst the scientific community, a formal definition of SOC remains elusive as
pointed out by Jensen (1998). Finally, | gave a broad description of earthquake statistics and
their current understood association with the concept of SOC and fractals. The GR law has
been found to hold over time worldwide giving a rationale in addressing Earth’s seismicity as

a stationary steady-state process. Recent work on MEP (Dewer, 2003) that extends the work of
Jaynes (1957) confirms that the tools of equilibrium statistical physics and thermodynamics can
be applied to far-from equilibrium systems and systems undergoing SOC. This thesis addresses
the question of self-organisation and criticality directly using analytical theory (chapter 3),

numerical modelling (chapter 4) and analysis on earthquake populations (chapter 5).



CHAPTER 2. Background: From thermodynamics to earthquakes

42




Chapter 3

Entropy and the gamma

distribution

“Statistical mechanics can describe not only the world of the very small and com-
plex but also the very large and complex. It is likely that the application of statis-
tical mechanical problems in the earth sciences will only continue to increase in

the future”-Rundle (1993)

3.1 Introduction

Earthquake populations are observed to be best described by a modified gamma distribution (a
power-law with an exponential tail) in their frequency-energy statistics (segthf). In the
previous two chapters | have covered aspects of thermodynamics, statistical physics and some
of the observed phenomenology associated with earthquakes and self-organisation. Equilib-
rium systems can be tuned through an external variable (e.g. pressure or temperature) to un-
dergo a phase transition via a critical point. In contrast, self-organising critical systems are
spontaneously attracted to a critical attractor state under conditions that are far from equilib-
rium. The term ‘critical’ therefore takes on a different meaning when being applied to equilib-

rium and far-from-equilibrium systems (secti@dry.2.
43
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In this chapter | address the term ‘critical’ theoretically using the tools of thermodynamics and
statistical physics/mechanics described in chapter 2. | concentrate on analytical solutions asso-
ciated with the energy probability distribution observed for SOC systems or more specifically,
earthquakes. | recall the derivation of the modified gamma distribution in accordance with
Shen and Manshina (1983) and Main and Burton (1984) using statistical (Shannon) entropy
and how it varies in the sub-critical, critical and super-critical regimes. The three regimes are
addressed individually in sectiéh3. | then put forward a theoretical derivation of generalised
entropy for the gamma distribution and the thermodynamic variables associated with it. A con-
tinuous version (non-discrete) of this result was derived in collaboration with lan Main and has
been previously published in Main and Al-Kindy (2002). Here a discrete version is derived
to explain differences in calculating entropy by using linear and logarithmic increments. This
was done by Prof. lan Main. We propose that this theoretical framework may be used as a tool
for assessing the proximity to criticality of a system with gamma type statistics. | also use the
theoretical results to produce entropy-energy phase-diagrams for earthquake seismicity in the
three criticality regimes for different power-law exponents. Some of the results of this chapter

are also published in Al-Kindy and Main (2003).

3.2 The gamma distribution (GD)

‘Only the gamma distribution satisfies both conditions: simplicity and satisfactory

approximation of available [earthquake] data’ Kagan (1993).

3.2.1 Overview

We have seen in sectidh6 that power-laws show correlation spanning all length scales as
demonstrated by equatich20 and the Gutenberg-Richter (GR) law. Although this infinity

can be demonstrated for geometrical objects on paper or those generated numerically on a
computer screen, Earth is not infinite in size. This spatial limit at least for higher magnitudes

can be accounted for by the use of a modified gamma function (sécieghthat is in the form
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of a power-law with an exponential tail that rolls off at larger scales (equéatit)n
p(E) ~ E~(B+D) =B/ (3.2)

Here, p(E) is the probability density of a state with energy B is the power-law scaling

exponent and is a temperature term.

The difference between a pure power-law (effectively the Gutenberg-Richter law) and a gamma

distribution (GD) as usually observed from earthquake data is demonstrated inSfityure

A —— power—law

----- gamma

p(E)dE

Figure 3.1: Plot of frequency-energy distribution from equation 3.1 for a pure power-law with 6 = oo (solid line) and

for a gamma distribution with § > 0 (dashed line) which shows a roll-off at larger scales.

The y-axis in figure3.1 denotes the incremental probability; = p(E)SE of an event of a
particular size. Often this is also given as the numbers or frequencies of events. Sometimes
probability is integrated and given as the cumulative number of events (e.g. Burroughs and
Tebbens, 2002). However, taking the cumulative (which is used to ‘smooth’ the data) can often
introduce or indeed obscure factors such as breaks in scaling or noise (Main, 2000). For this

reason | will show incremental frequencies in the rest of this thesis unless explicitly stated

The probabilityp(E)dE is usually calculated by counting the number of events in a particular size range

E+ % and dividing by the total number of events.
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otherwise. Two main features normally observed in data are shown in figuré&irstly, the
cut-off size of the largest event will be smaller for the gamma distribution than for an equivalent
pure-power-la. Secondly, at the larger scales, the likelihood of having an event of a given
size will be smaller for the gamma distribution than for a pure power-law distribution. Note
that the observations in figuBe1are for the critical and sub-critical regimes which are usually
observed from real data. A third case called ‘super-critical’, which is sometimes suggested

from historic and palaeoseismic data, is discussed in segtiba

The GD has been used to describe various natural systems. For example, in the percolation
model described in sectich6.3 the cluster size-frequency distribution will follow a GD bel-

low the critical point to account for the largest cluster not being effectively infinite (Stauffer
and Aharony, 1994). GDs are also represented in the band limiting effect of dissipation in cel-
lular automata models of seismicity (Olami et al, 1992) and system finite size effects in other
earthquake models ddosi and Ke#ész, 1993; Christensen and Olami, 1993). The GD has
also been observed in magnetic domain patterns to account for the size limiting effect of mag-
netic damping at larger length scales (Bak and Flyvbjerg, 1992). These various accounts of the
GD verify its applicability to both geometric (e.g. cluster size) and dynamic (e.g. earthquake

energy release) type systems.

3.2.2 Seismicity: gamma and other distributions

The gamma distribution as applied to earthquake seismicity has its roots in statistical physics
and information theory (see sectidr2.4 and can be thought of as an ‘energy’ distribution as in
equation2.1 (section2.2) but with a geometric power-law degeneracy. It has been extensively
used as a fit to earthquake seismicity data for both real (Main and Burton, 1989; Wu, 2000;
Kagan, 1993; 1997; 1999; 2002) and model (synthetic) earthquake catalogues (Main et al.
2000; Vere-Jones et al., 2001). A gamma distribution fitted to three real earthquake cumulative-
frequency data ensembles from The Harvard Centroid Moment Tensor catalogue (described in
chapter 5) is shown in figure.2 (from Kagan, 1999). The fits shown are for three different

earthquake source depth ranges.

2Although this is what is mostly observed, the opposite is true for the super-critical regime (e8ti®n
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Fig. 1: Harvard catalog 1/1/82--7/1/97: -. shal, —— interm, — deep, : gamma
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Figure 3.2: Cumulative frequency seismic moment distributions for earthquake data for three different depth ranges

with fitted gamma distributions (from Kagan, 1999).

Although the gamma distribution (and variations thereof) currently seems to be the simplest and
most consistent with available earthquake data (see Leonard et al., 2001), there are alternatives
in the literature mentioned here for completeness. For example, it has been suggested that
there may be two scaling regimes within an earthquake population with larger and smaller
earthquakes obeying different scaling laws (Pacheco et al., 1992; Scholz, 1997) which in effect
means fitting two GR laws with differetvalues to a data population. The premise of a break

in slope of the GR law has been criticised on both statistical grounds as such a fit requires
more parameters to be defined (Main et al., 1999) and/or on the grounds of being artefacts of
noise or due to the use of cumulative statistics (e.g. Main, 2000). Sometimes related to the
gamma distribution is theharacteristic earthquake modeihich is discussed in sectidh4.

In summary, it can be said that for a given energy rafige, — F.i», the gamma distribution

is the simplest distribution in terms of the number of free parameters after the pure GR law
that can fit most observed earthquake populations as well as having a statistical physics basis

as derived from information theory (see sectih.4below).
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3.2.3 The ‘temperature’ term 6 and the scaling exponent B

The two main components of equatidri are as follows:

f: This is referred to as thiemperaturderm because it dimensionally replaces the temper-
ature term<T" in Boltzmann’s distribution (equatioh 1in section2.2) and must not be
thought of as an actual temperature in the thermodynamic sense; it merely determines
the magnitude of fluctuations in the system. Thealue is often used to estimate or
predict the size of the largegtobableevent in seismic hazard studies (Main and Burton,
1989; Kagan, 1999). In other wordsjs related to a correlation length. One important
aspect of thé term is that it is analogous to the probabiljityn the percolation model
(section2.6.3 in the sense that it determines whether a system is in the ‘sub-critical’
(9 > 0, ‘critical’ (—! = 0) or ‘super-critical’ ¢ < 0) regime, depending on its value.

These three criticality regimes are discussed in se&iaén

B: The scaling exponen® for earthquake seismicity is reported as being a universal con-
stant (referred to asniversalityin this thesis) withB ~ 0.60 — 0.65 (Kagan, 2002)
although studies have shown thatcan vary in space (Ogata et al., 1991) and/or time
(Smith, 1991; Wyss and Wiemer, 2000). For example, it is apparent from figaiteat
the deep earthquakes have a lower slaBevélue) than the shallower ones. Temporal
variations of B have been studied as possible precursors to large events in seismicity of
earthquakes (Smith, 1981) as well is rock fracture experiments (Sammonds et al., 1992).
Physically B can be indicative of the level of spatial clustering of faulim¢el et al.,

2001) or earthquake epicentres in space (Henderson, 1992) since, at least mathemati-
cally, it is related to the fractal dimensidn (section2.8.3. Variations inB in space

or time might also be symptomatic of changes in the local physical dynamics of a sys-
tem (e.g. Main, 1987, Olami et al., 1992). However, variation®ishould be treated

with some caution because measured values may be influenced by the assumptions or

methods used in obtaining them (Bender, 1983).
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3.2.4 Derivation of the gamma distribution

This derivation is given here in accordance with Shen and Mansinha (1983) and Main and
Burton (1984) and then generalised to include the constraints using the theory summarised by
Jaynes (1957). The derivation of Shannon or statistical entropy is given in Appendix A of
this thesis and defined for an energy probability distribufipr= p(E)dE with incremental

microstates; as:

Emaz

S=- Z piInp; (3.2)

E’min
whereL,,;, and E,,., are the minimum and maximum possible energy states observed in the

system. To ensure unit probability for all states we set

Emam
d pi=1 i=1,..,N. (3.3)

Enmin
The expectation or mean ¢{ E;) for N constraints is

Emaa
< f(B)>= > pif(E) i=1,.,N (3.4)
E

where f(E;) are independent functions of the energy. In accordance with Jaynes (1957), the
maximum entropy distribution is the most likely subject to the information available. We there-
fore look for5S = 0, using the method of Lagrangian undetermined multipliers, subject to
(3.3 and @.4) then

pi = e~ 20~ MF(ED) =X f(B2) == A (EN). (3.5)

The constants\; are Lagrangian undetermined multipliers, to be determined by substituting

(3.5 into (3.3) and @.4). Given the constrains 08(3) we can define
M =InZ (3.6)

whereZ is the partition function defined as

Enlal‘
7 = Z e~ M= Af(E1) =2 f(E2)—..— AN f(EN) (3.7)

Emin

and following from this, it can be shown that (generalised from Main and Burton, 1984)

< f(E) >= —9In Z/d\:. (3.8)
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We can see that oncgis known, all the other macroscopic variabjggan be calculated from
its partial derivative using3(8). One example is the mean energy. One can now put the energy
constraintf; = E, and finite natural log energfs = In(a2E) to obtain

e—)\lE—)\z InasE

~ (3.9)

pi =

Substituting){1 =0, =B+ 1anday = EO*B for dimensional consistency, whekg is is

a reference energy state, we then have

B EOBE—B—le—E/G

i 7 (3.10)
and
E
max Efol
=y 5P (3.11)
E"L’LTL EO

Equation3.10 has the form of the gamma distribution (equatid) but here, the partition
function Z ensures that3(10 has unit total probability. The occurrence of the degeneracy
‘power-law’ term in earthquakes can be thought of in geometrical terms since the energy release
is related to the fault rupture arewhereE ~ A3/2 (section2.8.3 and there are fewer ways

of fitting a large fault to a given area and vice versa for small faults (Kanamori and Anderson,
1975). This geometric constraint is addressed by Main and Burton (1984) in their derivation of
the power-law GD. The approach of maximising entropy subject to information available has
also been used by Nagahama (1992) to derive a formula to calculate shear strain with distance
from a naturally occurring shear zone. More recently, a similar approach has been applied
to derive statistical physical models for strain in fibre bundle models (Pride and Toussaint,
2002; Toussaint and Pride, 2002a; 2002b) using the principles of maximum entropy. | now

re-examine the characteristics of the GD formally in relation to criticality.

3.3 The three criticality regimes

Equation3.10it is composed of a power-law (degeneracy) term with siBmnd a Boltzmann
exponential ‘tail’ at a characteristic ener@yFor statistical systems such as the percolation and

Ising models discussed in secti@rb.3 the system will behave differently below and above
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the critical point (where the system is a pure power-law). The three criticality regimes are

dependent oA in their definition as follows:

3.3.1 The sub-critical regime ( 6 > 0)

If the 6 term is positive, there will be a roll-off at the higher energies with larger energies
less probable than a pure power-law (fig@rg). This is what is observed for the majority of

earthquakes populations (e.g. figir@ after Kagan, 1999; Leonard et al., 2001).
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Figure 3.3: Theoretical probability distribution for the three criticality regimes with # > 0 (sub-critical), §—1 = 0 (critical)

and 6 < 0 (super-critical).

The observation of a sub-critical regime is also predicted from various analytical solutions of
SOC models. For example, in mean-field approximations of the SOC model, sub-criticality is
predicted when finite dissipation is introduced in to the system (Lauritsen et al., 1996). The
dissipation can have the same effect as the system size on limiting the extent or magnitude of

the maximum event size. Again, these observations are more akin to real systems which are
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usually both limited in size and dissipative.

3.3.2 The critical regime ( 67! =61 = 0)

When the temperature terénis effectively infinite, we achieve a pure power-law (fig®.&)

since forf — oo, the exponential term in equati@l0disappears and the Gutenberg-Richter
law is retrieved. The critical regime is what was found in the original BTW model (Bak et al.,
1987) where there is no internal dissipation in the system and is analytically predicted for a

one-dimensional sand pile model (Helander et al., 1999).

An important point regarding the literature on the Earth as a ‘critical system’ must be clarified
here. The power-law observed in the original BTW model was referred tb/fasdise’ since

the relation between the duration of the avalanches and their size was found to be a power-
law®. However, some of the literature addressing Earth’s criticality in associationIvfith

noise refers to a power-law observed in the Fourier analysis frequency-power distribution of
say borehole wire-log data (e.g. Leary, 1991; Bean, 1996; Leary and Al-Kindy, 2002), or in the
Fourier analysis of Earth surface landscape altitude data (Turcotte, 1997). The observed power-
laws in these examples are trllf-noise since they examine the power-frequency content of

a time series. These should neither be confused with the dynamic power-laws observed in
the probability distribution of radiated seismic energy nor with the critical point observations
associated with accelerated seismicity discussed in segtthd The term ‘critical’ is too

often used in the earth science literature to mean ‘power-law’ regardless of what parameters
the observed power-laws are associated with. Just as with the critical point (CP) cdieept,
noise in the crust, despite being self-organised, is a static observation ingrained in the crust
in the form of deformation and fracture asperities, whereas SOC is a dynamic and evolving
process. These are two different faces of criticality that must be better differentiated in the

literature.

3This power-law had a different slope to that found for the avalanche frequency-size distribution. It was later

decided that the terniff noise’ in the BTW publication was not appropriate (Jensen, 1998).
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3.3.3 The super-critical regime ( 6 < 0)

If 6 is negative, the system is said to be super-critical (figuge Vere-Jones (1976) states that
‘no system is likely to survive in a supercritical state’. | highlighted the difference between
equilibrium thermodynamic systems and SOC systems at the critical point in s&cti@nl

now highlight how they are phenomenologically different in the super-critical regime.

1. Let us take an extreme case in the percolation model-ef0.99, one would effectively
get a spike located close to the size of the largest cluster or indeed, the system size (figure
3.4). There is, however, no equivalent statemenp ef 0.99 for § in Earth seismicity;
f can take any value{co < 6 < oo) rather than the boundedl < p < 1 for the

percolation model. Note also that unligep can only have positive values.
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Figure 3.4: Probability distributions for a) gamma distribution with 6 < 6. and b) the percolation model with p > pc.

The dashed line indicates the system size.

2. Also, the super-critical state in the dynamic sense refers to there being an above average
number of largest possible events; this is possible in a dynamic driven system which
is constantly updating itself (e.g. sand entering and leaving a sand pile). However, we
cannot, say in the percolation model, have a super-critical distribution of clusters in the
same way since this would require simultaneously fitting more than one ‘infinite’ cluster

into the system which is impossible.

3. Earthquakes in practice tend not to span the size of the system i.e., there are no faults
whose lengths are the circumference of Earth. So, although the correlation length is

denoted as ‘infinite’ for the percolation model abgyg it is not in practice for Earth
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aboved... A correlation length can perhaps only be regarded as ‘infinite’ if it exceeds the
length scale of an observed sub-region of the system as a whole. Here ‘sub-region’ can
either refer to a geographic location such as Cyprus for example and/or an area defined

by a physical restriction such as seismogenic depth or a plate boundary geometry.

3.4 ‘Characteristic’ earthquakes

Characteristic earthquakes are earthquakes of a particular size or magnitude that occur more
often (a higher recurrence rate) than would be statistically predicted by the standard GR law
(e.g. Schwartz and Coppersmith, 1984). Following from the definition of super-criticality
above (sectior8.3.3, the largest events in the super-critical distribution can be regarded as
‘characteristic’ since there are more of them than expected, but the opposite is not true i.e.

‘characteristic’ does not necessarily mean ‘super-critical’. | demonstrate this in Sigurét
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Figure 3.5: Log-log plots of a) sub-critical and b) super-critical energy probability distributions both showing ‘charac-

teristic’ earthquakes (shaded area).

can be seen in figur@.5 that the deviant, more frequent earthquakes do not necessarily oc-
cur at an energy that correspond9lfmtherwise this would simply be a ‘critical’ case. Also,

the characteristic earthquakes can overprint both a sub-critical and super-critical distribution
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making the resulting distribution difficult to define. Figut& shows an example of real ‘char-
acteristic’ earthquakes for magnitudés < M < 5 in the seismicity of Mount St. Helens

(after Main, 1987). Characteristic earthquakes tend to be observed in isolated cases and are
often criticised as being a by-product of statistical bias or as artefacts of data analysis or qual-
ity (Kagan, 1993). However, characteristic earthquakes have also been observed under certain
conditions in numerical models of seismicity (e.g. Ben-Zion et al., 1999). It is ambiguous to
me as to which of the three criticality regimes characteristic earthquakes should belong to, if

any. Indeed, the characteristic earthquake hypothe$istito be proven{Kagan, 1993).
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Figure 3.6: Incremental frequency-magnitude plot for the Mount St. Helen’s volcano (re-drawn from Main, 1987). The
straight portion of the line represents a power-law at low magnitudes, and the Gaussian peak at larger magnitudes.

The elevated probability away from the power-law trend implies the distribution is ‘characteristic’.

3.5 Apparent super-criticality

| have mentioned that a super-critical regime is one where there is a greater number of large

events than would be expected than a linear extrapolation. | demonstrate a hypothetical scenario



CHAPTER 3. Entropy and the gamma distribution 56

where this is observed despite not being inherent or intrinsic to the system’s dynamics. Because
of the infrequency of large events (recurrence rates in the order of tens to hundreds of years),
these are usually documented historically. However, let us take a hypothetical case that follows
a Gutenberg-Richter law (Figur7) where the largest events are historical ones estimated
from documented human accounts of damage etc. It can be seen inFiguhat if say two

or three events have been underestimated, or indeed smaller events overestimated, these will
shift the distribution from a linear GR trend to a characteristic, or more likely, super-critical
trend. | call thisapparent super-criticalitysince it is a statistical or sampling artefact. In
addition to historically based magnitude estimates, another cause of under or over estimation
of event size can also be due to instrumental saturation in wave energy measurements (Rieter,
1990). A recent example of many super-critical distributions observed for data populations
from the period 550 BC-2000 AD in the Aegean area is given by Koravos et al. (2003). It was
unclear in the Koravos et al. study if the super-criticality observed was real or a by-product
of uncertainties in the historical earthquake magnitude estimates. In this thesis, the earthquake
data analysed (chapter 5) will be from the CMT catalogue that only spans the last 30 years
and measures the moment magnitude; it is therefore free from any historical or instrumental

impediments.

3.6 Gamma entropy

In chapter 2, we saw how entropy plays an important role in the portrayal of the level of
organisation in a system and its proximity to criticality. Here, an analytical solution is derived
for the entropy of the modified gamma distributidin E. Equation46 in Main and Al-Kindy
(2002) should therefore redtl=In Z — Bln Ep + (B + 1)(In E) + (E)/6. This error was
resolved by a submission of a corrigendum to the JouBwdphysical Research Letters
which the derivation was first published (Main and Al-Kindy, 2004). The discrete derivation

by lan Main given here is more appropriate since the data analysed in chapters 4 and 5 are

“pfter the publication of Main and Al-Kindy (2002) -see appendix- and the submission of this thesis, it was
noted that there was an error in this derivation (Chen and Chang, 2004). The incorrect derivation was then subse-
quently removed from this thesis. This error is in equatithof Main and Al-Kindy (2002) which should read

—B —B—-1
- —E/0 1 E —E/0
S =2zt [Jmer(E e In|Z==—c¢
fb,nm ( Eo ) Z Eo
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p(E)dE

Figure 3.7: Apparent super-criticality where erroneous estimation of larger (or smaller) events can lead to an increase
in the frequency of events of a particular size (energy). The arrows point towards the underestimated or overestimated

earthquake energy probabilities.

treated discretely. Fortunately due to the nature of the error, non of the results or conclusions
of this thesis were in any way affected.. The rationale for this derivation is to predict from a
theoretical point of view hows will be influenced by the energ¥, the temperature teri

and the scaling exponet below, at and above the critical point. The mathematical derivation
presented in this section was done by Prof. lan Main. Because the radiated seismic energy is
over several orders of magnitude, it is often binned using logarithmic bin widths) rather

than linear binsdFE) in constructing the frequency-energy plots (chapter 5). Here a discrete
solution is given of the entropy for a gamma distribution as apposed to a continuous one as in

Main and Al-Kindy (2002).

The incremental probability; with energy levelE; and linear bin widthdE is expressed

generally by

pi =p(E)dE (3.12)
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where for the limitd £ — 0, the probability density is defined as

p(E) = dp;/dE. (3.13)

The modified gamma distribution (as in equatih0) for a discrete function can therefore be

expressed as

p(E) = aEi_B_lefEi/e (3.14)

wherea is a constant that insures the summation of all probabilities equals unity. Because the

data is analysed using logarithmic bins, we use the substitution
dlnE = dE/E (3.15)
Combining3.13 3.14and3.15 we now have
pi = aE; Be PO E. (3.16)
Comparing this with equatiod.10we get
E-Be—Ei/o

Pi= (3.17)

whereZ is the partition function and the constant= d1n E/Z. Because
n
> opi=1, (3.18)
i=1
the partition function for increments will be
n
Z =Y EBe Bl (3.19)
=1
Now, for a Discrete functiorf (E), we can define a mean or expectation value as

(F(B) = pif (B:) (3.20)
i=1

and the ‘Shannon’ entropy for a discrete function as

S=-K Zpi In p;. (3.21)
i=1



CHAPTER 3. Entropy and the gamma distribution 59

Putting the constank” = 1, and substitutior3.17into 3.21, we find

n E—Be—Ei/e E—Be—Ei/G
S =— Z; ~ In ~ (3.22)
which can be expanded as
n —-B_—E;/0
S=- Z EeT[ln( By +In(e Ei/g) —InZ] (3.23)

=1
which gives
fB)}E B —E;/0 B —E;/0 [ln Z] B —E;/0

S=— zn: (B Z [Ei/6)E + Z = (3.24)

=1 =1 =1

From3.19 3.20, 3.24reduces to

S=MWnZ+ Bs(lnE) + & (3.25)

| call this gamma entropyor S, for short) since it is derived assuming a gamma distribution.
To avoid confusionB is replaced withBg since it is an inferred scaling exponent and is not
calculated directly by measuring the slope of the linear part of the energy-frequency distribution
(B). For the critical regimé — oo, the last term ir8.25vanishes. So for aritical regime,

equation3.25can be expressed as

S =So+ Bs(lnE) \ (3.26)

wheresSy is a constant equal tm Z. Now we calculate the entropy for linear incremedhis.
We use3.14to get
F-B-1,-Ei/o
Pi = Te (3.27)

Solving as we did to derive equati@i25we find for linear bins that wheth — oo we have

S =50+ (Bs+1)(nE)| (3.28)

Note that the case for the logarithmic bins (equaBia?b) is exactly the same as the case for
linear bins (equatio.28 except that respectively3s is replaced withBg + 1. In summary,

asf — oo, we have for logarithmic increments

8S/9(In E) = Bg (3.29)
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and for linear increments

9S/0(InE) = By + 1 (3.30)

On a plot ofS vs. (In E), we can therefore predict a straight line with slepe3 and intercept
So for data analysed using logarithmic bins. Conversely, because eqGalidis true for the
critical or very near critical regimé&d(— o0), any deviation from it is indicative of a sub-critical

or super-critical regime.

3.6.1 Characteristics and factors

¢ Information content: Let us now consider equatidh26more closely. Equatiofi.26is
a linear equation close to the critical regime that depends on the expectation of the loga-
rithm of the energy(ln ). Bg on the other hand is a constant that will be proportional
to the mearB value of a given data population. This suggests that the entropy measured
(which is a single number) will contain information on the level of organisation in a sys-
tem as a function of the averadg 0 and (In ) with the advantage of only having to
essentially measurg. This ‘boiling down’ of variables to the probability distribution of
energetic microstates, as well as being standard practice in Boltzmann's thermodynamics
(chapter 2), is a useful tool with which to compare the level of self-organisation between

different seismic regions (as will be done in chapter 5).

e Energy expectations There will be at best a weak correlation betwéén and(In E)
in equation3.25 This may seem to be counter intuitive but can be qualitatively ex-
plained thus{ E) will vary over several orders of magnitude due to its power-law nature.
This also means thdt~) will be strongly and almost solely influenced by the size of
the largest energy fluctuations and accordinglyHowever, (In E) to a certain extent
diminishes the effect of the largest events by taking their logarithm&ns®) will be
predominantly affected by the smaller (more numerous) energies in a population. So,
unless there is a correlation between the large and small fluctuations, the assumption that
(E) and(ln E') are not correlated remains true. Mathematicéllyn E') /O(E) ~ 0. The
prior assumption of a lack of correlation has been veriigdsteriorifor real earthquake

data in Chapter 5 of this thesis and by Main and Al-Kindy (2002).
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e Spreadand Shape Entropy in general will depend on two factors for a given popu-
lation’s probability distribution: these ashapeandspread The effects of these two
factors are depicted in figufe8. For the first factor,shapé, the entropy calculated will
depend on how peaked the probability distribution is for a given energy range. A very
peaked distribution means that we are more certain of the outcome of a particular en-
ergy level (lower entropy) whereas a flat distribution will mean more uncertainty (higher
entropy). As can be seen from figure8 a andb, for a gamma distribution$ will be
related tof (figure 3.8z) and B (figure 3.8b). 6 will influence both the spread and the
shape of a gamma distribution; in figuBea, the peakness was increased by having a

negativedd and hence a lower entropy relative to the distribution with a posftive

A higher B value in effect will also increase the peakness of a distribution (figLig.

This is in slight contrast to the entropy of an equilibrium system such as say a gas which
is always a Boltzmann distribution whose ‘peakness’ is dependent on the number of gas
molecules within the system (Mandl, 1988). The second factor is the band-width of the
data or thespreadwhich in the case of earthquakes is effectivély,,. — Enin (figure

3.8c). This makes sense since the broader the energy distribution, the more energy levels
there are to choose from and hence there is a larger degree of freedom (entropy) in the
system. A more quantitative approach to the Wag influenced byB, 6 etc. is given in

section3.7.

3.7 Analytical predictions

3.7.1 Entropy phase-diagrams and the three regimes

In order to illustrate predictions of the analytical theory outlined above, | create synthetic phase-
space plots to show the change of entropy with, (In E) and B in the sub-critical > 0),

critical (9 — o0), and super-criticali{ < 0) regimes. The plots are constructed as follows:

The energies are created using standard energy-magnitude relations (Kanamori and Anderson,
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Figure 3.8: Effect of spread and shape on entropy S: a) Lower 6 increases ‘peakness’, b) higher B increases ‘peak-
ness’ and ¢) higher E,, .. increased spread. For all cases, S1 < Sa.
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1975) for energies in Joules

E =10'5mt48 (3.31)

§ = 10" omot4s (3.32)

by varying the values of the magnitudecorresponding to the range8 < m < 8.5 foragiven

bin width ém. These values af: are chosen because they correspond to the valuesfof

real data that will be analysed in chapter 5. Itis only within this range that the Harvard Centroid
Moment Tensor (CMT) catalogue is considered to be complete over its history (Kagan, 1997).
| then calculate values df for values of7 < m < oo both in the positive (sub-critical) and
negative (super-critical) sense which will include the critical regime for both whisrarge.

The rang&r < m < oo is chosen to constitute to what tend to beldrgestevents. The values
obtained from3.31and3.32are substituted int8.17to calculatep(E) for different values of

B (from —1 to 1) and#. From the different values gf( £'), the corresponding values ¢F)

and(ln E') can be calculated directly using

Emam
(E) =Y piE; (3.33)
E’min
Ema:c
(nE)= > pinE (3.34)
Ern’in

The corresponding values Sfare calculated using

Emaz
S=->Y pp (3.35)
E

min

The phase diagrams for the variation®as a function o8 and(E) and(In E) for the three
criticality regimes can be seen in figuré® and3.10respectively. The solid line corresponds

to 8 — oco. B for real earthquake seismicity can be observed in the rarige: B < 1 (e.g.

Ogata et al., 1991; Kagan, 1997) so the negative values calculated here are unrealistic but are

included to give an overall view.

Both phase diagrams show that the global maximum possible entropy occurs at the regions

close toB ~ 0 which is to be expected since that is where the probability distributions are
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Figure 3.9: B - (E) phase diagram for the three criticality regimes. The solid curve corresponds to the critical regime

(6 — oo) and the brightness is proportional to the entropy S.
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Figure 3.10: B and (In E) phase diagram for the three criticality regimes. The solid curve corresponds to the critical

regime (§ — oo) and the brightness is proportional to the entropy .S.



CHAPTER 3. Entropy and the gamma distribution 66

flattest (least certainty). This is highlighted in figurd 1where searching the phase space for
the maximum entropy for a giveB value occurs aB = 0 for both# > 0 andf < 0. The
figure also confirms the effect @ on the level of organisation in a system; the higherhe

value (negative or positive), the greater the level of organisation.

2.5

15

Figure 3.11: Maximum entropy S,, for a given value of B for both sub-critical (¢ > 0) and super-critical (¢ < 0)

regimes. Note that in both cases, the maximum entropy occurs at B = 0.

3.7.2 Criticality and phase transitions

It is common to refer to where the transition between a sub-critical and super-critical regime
as the criticaboint However, it can be seen from figure® and3.10that the critical point

is in fact a criticalline that is a function ofB and 6 in a two-dimensional phase space. One

can therefore conclude from the phase-space plots that for a given gamma type population, any
momentary change iB must be accompanied by a changélinE) for the system to remain
critical. A change in one and not the other will be indicative of a departure from the criticality,
similar to a phase transition. This is analogous to a fluid pressure-temperature di&grahi) (

(figure 3.12) or a pressure-volume (P-V) phase diagram where a phase transition can occur at
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a given temperature and pressure (or volume) along a defined curve (Mandl, 1988; Kondepudi

and Prigogine, 1998).

point

T

Figure 3.12: Pressure-temperature (P-T) phase-diagram for a fluid with a ‘critical’ line between the different phases.

Redrawn from Kondepudi and Prigogine (1998), pg. 176.

It must be emphasised that the change®iand (In ') mentioned here must be in the short
term or must refer to two separate non interacting systems. Any long-term trends would suggest

that the system is not in a stationary steady-state and would therefore be difficult to define.

To further compare the phase-space of a gamma system with that of an equilibrium system,
| construct horizontal cross-sections of fig® and3.10for B = —2/3, B = 0 (non-

degenerate system) aftl= 2/3 (earthquakes) in figuré.13

We have seen in sectidh5.2in chapter 2 that for a non-degenerate equilibrium system, the
critical point occurs where the entropy is a maximum. This is borne out by figuré.
However, It can be seen from figuBel3that the critical points foB = 2/3 (B = —2/3)

occur below (above) the maxima as indicated by the arrow for g6tkand(In E). Therefore,

for power-law systems that are observed in natiitex( 0), the equivalent of a phase transition
between a sub-critical and a super-critical regime will occur for lower values of mean energy

as highlighted by figur&.13
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Figure 3.13: Cross-sections of S vs (E) and (In E) phase spaces for (a)B = —2/3 (b)B = 0 and (c)B = 2/3.

The solid line indicates the sub-critical regime and the dotted line indicates the super-critical regime with the arrows

indicating the critical regime.
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3.7.3 Effect of bin width

The nature of equatio®.35is that the absolute entropy will depend on the bin width of our dis-
crete elements when calculatipgF;) for each energy level. This is because for a given range
of energies, the more discretised our sample, the more the apparent degrees of freedom. | show
this effect for synthetic data in figui14 by calculatingS for different values of bin width

dm for B =2/3 andB = 0. | assume& — oo to restrict our focus on the effect 6fn. It can

be seen from this figure that the narrower the bin width, the higher the entropy (uncertainty) as
one would expect for a larger number of energy elements. Goltz aad 002) acknowledge

this problem by normalising the spatial entropy for different grid sizes (essentially different bin
widths) for a population of earthquake data. This was useful for comparing the spatial entropy
of the data at different resolutions. | follow a similar procedure and normalise the data by di-
viding the entropies at different bin widths by the maximum entropy for the same bin width
(Si) as shown in figur@.14 It can be seen in figuré.14that although the effect of bin width

is reduced, it is not eliminated for thie = 2/3 case. The effect is as expected, eliminated for
the B = 0 case since the maximum possible entropy for a power-law distribution (for a given

energy range) is for the flat casB & 0).

5 T T T T T T
-8 S/Sm, B=2/3

—~— SIS _, B=0
m

4+ ©-35  B=23
—+ S, B=0

om
Figure 3.14: Plot of calculated S as a function of bin width §m for B = 2/3 and B = 0. The upper two curves

correspond to non-normalised synthetic data and the lower two curves to data normalised by dividing the maximum

entropy for a given bin width S,,,.

To solve this problem, | will fix the bin width to a chosen value throughout my analysis of
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earthquake data in chapterd{ = 0.25). By fixing the value of the bin width, any differences

or changes in entropy calculated will only be influenced by the overall origination of an earth-
quake population (spread and shape) making comparison of data ensembles quantitative. From
a pragmatic point of view, the bin width éfn = 0.25 is chosen similar to the uncertainties

in the magnitude determination for earthquake data available. There would not be enough data
points in each bin if the bins were too narrow. Larger bins on the other hand would constitute
too few values op(E;) which would destabilise the calculation 8f The effect of bin width

will also be discussed in chapter 5.

3.8 Thermodynamics?

| have mentioned in sectich5.1that the free energy of a systefhis a measure of how much
energy the system has available to do work (equati®h Free energy can therefore be an
important factor when examining the Earth’s crust since logically, the more free energy there
is, the more energy available to ‘do work’ in the form of earthquakes. However, can we derive
an analytical expression for the free seismic energy stored in the crust? This is a difficult

guestion to answer for the following reasons:

e It is physically impossible to measure all the energy stored and transported in the crust
be it in the form of strain, heat etc. Therefore, we can only assume some arbitrary values

based on what we observe at the surface.

o Not all the energy released by the Earth’s crust is seismic since some will be aseismic in

the form of heat, deformation, radioactive decay and so on.

e Although we know that the energy released by earthquakes is in the form of a modified
gamma distribution, we do not know independently the form of the distribution of the

stored free energy.

Fortunately we can make some reasonable assumptions based on what we do know. Firstly, it
has been shown for cellular automata models of seismicity that on average, the radiated seismic

energy will be proportional to the internal energy of the system (e.g. Main et al., 2000). This
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is also true in general for open driven SOC systems (Dewar, 2003). Although the concept that
‘the more energy coming out of a system, the more energy there is in the system’ may seem
counter intuitive, this is the norm for driven threshold systems provided they remain driven.
An analogy is that of a house heating radiator system. While the radiator is switched on, it will
acquire a temperature that will eventually warm the room and the room-radiator system as a
whole will reach a steady state. The more heat being emitted from the radiator, the higher the
temperature of the room. Note how this is different from the ice in a glass example (chapter 1)
where the water decreases in temperature and the ice increases in temperature until the entire
system reaches an equilibrium state. Dewar (2003) also derives a mean-field expression for a
SOC sand pile model with the assumption that the average amount of sand entering a pile must
equal the amount of sand leaving it in the form of avalanches. Therefore, we could perhaps
say that in the crust, areas of higher seismicity (bigger events) will have greater free nergy

on averageand accordingly greater potential for further large events. This is a different way

of looking at the idea that what has happened in the past (events) in more likely to recur in the

future.

3.9 Remarks and conclusions

e In this chapter, | examine the modified gamma distribution in the three criticality regimes.
I show how the three regimes differ from critical regimes of equilibrium systems and
those of time-series analysis. Although the gamma distribution is currently the most reli-
able in explaining a variety of systems, it does not in its simple form fit the characteristic
earthquake hypothesis although the hypothesis is yet to be verified. | also show how
super-criticality can be an artefact of historic data rather than some inherent physical

process.

e Following from this, the derivation of the discrete version of entropy for a modified
gamma distribution close to and at the critical regime is given. | calighimma entropy
or S,. The theoretical result shows that the level of organisation for a gamma type
system is related to the expectation of the logarithm of the engngy) and the scaling

exponentB. Any deviation from this equation is indicative of a sub-critical or super-
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critical regime.

e | then construct a series of phase diagrams as a functiéhafd (In E) (¢) and show
that the criticality can be maintained provided that bgtland (In E') are changing. A
deviation from this is also indicative of a departure from the critical regime. This result
predicts that if the crust were close to criticality -at least on a regional level-, we would
observe a higheB value in areas of a lower mean seismicity relative to areas of higher

seismic activity.

e In addition, the phase diagrams show that the global maximum entropy occurs for a
flat distribution B = 0). Also, for power-law systems the critical point occurs below
(above) the expected critical point f& > 0 (B < 0). This predicts that criticality can
be reached at the expense of less mean energy for power-law systeni® withwhich

is always the case for earthquakes and most natural systems.



Chapter 4

Self-organisation in numerical

models of seismicity

4.1 Introduction

In the previous chapter, it has been shown analytically how the entropy and hence de-
gree of self-organisation in a system will be related to the scaling expdhamid the

mean energy of the system. Phase diagrams were also used to demonstrate the relations
between the various thermodynamic variables and the scaling expBramatund criti-

cality. In this chapter | examine self-organisation and its relation with dissipation using
numerical, or more specifically, cellular automata models of seismicity. The investiga-

tions and results of this chapter are divided in to two parts.

— Part |I: Here | treat a cellular automaton model of seismicity as a self-organising
dissipative structure. | measure internal and external thermodynamic variables such
as energy and entropy and investigate their dependence on dissipation. This is in

the hope of extrapolating the results to a real system such as the Earth’s crust.

— Partll : 1then probe SOC,; given thahe lack of a general understanding [of SOC]
prevents the construction of a unifying framewof&ornette, 2000, p.g. 323), |
examine some aspects of the original Bak, Tang and Wiesenfeld (Bak et al., 1987)

model of SOC to pin down some of its characteristics in relation to our assessment
73
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of earthquakes as an SOC system. In particular, | look at spatial and some temporal

characteristics of the original BTW model.

Some of the main results presented in this chapter have been written as a paper to be

submitted.

4.2 Cellular automata (CA)

Cellular Automata are numerical (computer) models commonly used to simulate physi-
cal systems. The models usually consist of an array composed of a large number simple
microscopic ‘elements’, ‘sites’ or ‘cells’ that interact in accordance with a pre-specified
set of rules or algorithms. Despite the very basic rules that govern the way in which the
individual cells interact, CA models are capable of producing complex patterns and dy-
namics similar to physical, biological and turbulent systems found in nature. Examples
of such systems include geomagnetic activity (Chapman and Watkins, 2001) and earth-
quakes (e.g. Anglo-Brown and M@m-Diosdado, 1999; Kumagai et al., 1999) . These
models give impetus for conjecturing simple explanations to very complex phenomena
observed, natural or otherwise. Cellular automata models are also extensively used in
engineering problems. For example, figdré shows an example of the fluid flow over

a cylinder (from Wolfram, 1986). The exact solution of simultaneous flow equations for
such a system would be computationally prohibitive but can be simply calculated on a

cell-to-cell basis using a CA model.

4.3 Why use models of seismicity?

There are many reasons to use numerical models of seismicity and are summarised as

follows:

— Simple cellular automata models of seismicity can reproduce the power-law statis-
tics observed in real earthquake populations such as the Gutenberg-Richter relation
(e.g. Kumagai et al., 1999) and foreshock and aftershock activity @aatral.,
2000).
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Figure 4.1: Fluid flow and resulting vortex around a cylinder in cellular-automata model (from Wolfram, 1986).

— Inthe crust, we can only measure the radiated seismic energy and its corresponding
probability density distribution. Any knowledge of the internal strain energy (or in-
deed any other internal parameters) are difficult to measure and can only be inferred
or guessed through the use of models (Main et al., 2000; Viti et al., 2001). How-
ever, in numerical models, we can measure both the internal and external properties

of the system (e.g. Lu et al., 1998) and test the hypothesis that they are related.

— Complete and reliable earthquake data catalogues only span tens of years or so.
For example, the Harvard Centroid Moment Tensor (CMT) catalogue -which is the
most reliable- only spans the last 30 years. However, with humerical models of
seismicity, the length of the catalogue simply depends on the length of the model
run. We can therefore produce data that would require hundreds to thousands of
years to accumulate naturally. Statistically, we will have data that is both stable and

reliable when compared to natural data.

— Unlike real data, the synthetically-produced data will be free of any noise, or bias in
instrumental saturation or data selection. The synthetic data will therefore be com-
plete over all ‘magnitudes’ in comparison to earthquake data that is usually only
recorded for events bigger than a particular size. Usually this is above magnitudes

4.5 or as high as 5.5 depending on the catalogue. Many catalogues can also satu-
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rate for very large earthquake magnitudes (Kanamori and Anderson, 1975; Reiter,

1991).

However, there are some drawbacks in the use of cellular automata models of seismicity.
For example, CA models are ‘coarse grained’ as they are composed of discrete elements
or cells whereas most natural systems such as the crust are best described as continuous
(non-discretised). Also, CA models are predominantly two-dimensional whereas fault
interactions in the crust at the very least occur in three dimensions. The models also
oversimplify or exclude known laws of elastodynamics that govern fault interaction in

the crust (e.g. Rice, 1993). Nonetheless, CA models remain a useful and powerful
primary tool in reproducing and investigating earthquakes statistics and have been used
in assessing their hazard (e.g. Malamud and Turcotte, 1999). The philosophy is therefore

to make the simplest model possible that can explain or predict general observations.

4.4 Aspects of seismicity models

4.4.1 Driving conditions

Specifically for models of seismicity, there appear to be two main modes of ‘driving’ CA
models (analogous to tectonic loading in the Earth). Driving here refers to the addition

of energy or ‘strain’ or a force to the model. This driving force can be global or local.

Global: A global or ‘homogenous’ or ‘uniform’ driving force as the name may suggest is
when all elements or cells within the model are updated simultaneously. In the case
of earthquakes models, this is whidtime stress at all points on the fault increases
by the same amounfLomnitz-Adler, 1993). Examples include the Olami Feder
and Christensen (OFC) model described below (Olami et al., 1992), and those of
Janosi and Keész (1993) and Main et. al (2000). Although a global driving force
is often used in the literature, it can introduce problems. For example, it was found
that for a low conservation parameter, a global driving force can introduce ‘phase
locking’ between neighbouring elements in a system with open boundary condi-
tions (defined below) @hosi and Ke#ész, 1993; Middelton and Tang, 1995). This

is because we are in effect introducing a spatial correlation to the system causing it
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to produce a periodic or sinusoidal signature in its energy fluctuations that would
not occur under local driving (defined below) conditions (e.g. Bak and Tang, 1989).
A global driving force can also cause more than one site to be activated simultane-
ously (the formation of more than one cluster at a time). This can add considerably
to computation times in the model. This problem has been solved by using a very
slow driving force and the addition of noise (e.g. Mousseau, 1996). This however
required the addition of another parameter and could be considered to be a form of

tuning of the model.

Local: A local or ‘random’ driving force is when only a single cell is randomly selected
and updated at every time step (Lomnitz-Adler, 1993). This insures that we do not
trigger more than one ‘earthquake’ at a time and is what is used in the original BTW
model (Bak et al. 1987) described below. Because sites are selected at random in
space, the driving can be considered on average to be ‘global’ in the long run. The

modelling in this chapter will only use a local ‘random’ driving.

Note that | specifically use the terms ‘local’ and ‘global’ driving to mean ‘random’ and
‘uniform’ not in accordance to what is commonly used in the literature. This is because
one could, in theory, have a uniform driving force that is random (simultaneously updat-
ing all cells with a random value) as well as have a local driving force that is uniform
(updating the same single cell over and over again). However, | do not consider these

possibilities here.

4.4.2 Boundary conditions

The boundary conditions for CA models are the rules that govern what happens at the
edges of our model array or grid. They are also believed to play a critical role in the
observation of critical behaviour of some models (Lise and Paczuski, 2001). For the
purpose of this thesis, they can be divided into two types: ©ped periodic. Figure

4.2 shows the difference between the two. For open boundary conditions, any activated

The terms ‘closed’, 'free’ and ‘fixed’ boundary conditions are also used in the literature. These usually refer
to specific ‘spring-block’ models where there are special rules that govern how the edge springs interact with the
‘outside’ (see article by Lise and Stella, 1998). Here | only give generalised definitions that are sufficient for the

models to be used in this thesis.
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cell at the edge or ‘halo’ will lose energy out of the system (figliga). The edges

can be thought of as infinitely absorbent to energy. However, with periodic boundary
conditions, any energy lost at the edge will be immediately reintroduced from the other
side so energy is conserved. Periodic boundary conditions are used to reduce the edge
effects within a finite size system (e.g. Grassberger, 1994). The boundary conditions will
therefore play a role in the way a system dissipates energy. Periodic boundary conditions
can also be responsible for a system reaching a periodic state ‘with only earthquakes of

one size’ occurring for smaller conservation (Lise and Paczuski, 2001). Open boundary

Figure 4.2: Models with a) open boundary conditions and b) periodic boundary conditions. Energy is dissipated at the
edges under open boundary conditions whereby it is conserved by being reintroduced into the system with periodic

boundary conditions.

conditions are commonly used in the literature and‘arere relevant for real earth-
guakes than simulations with periodic boundary conditig@’assberger, 1994). | shall

therefore only use models with open boundary conditions in this thesis.

4.4.3 Energy conservation

There are two ways in which models of seismicity can lose energy. First is at the bound-
aries as mentioned above and secondly through internal interactions. If a site or cell
breaks in a model and passes all its energy to its neighbouring sites, it is saiddn-be

servative Alternatively, if only a fraction of the energy is passed on, the system is said
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to bedissipative The most common dissipative model of seismicity is that of Olami
et al. (1992) described below (sectidrb.3. The amount of energy lost per break is
usually controlled by theonservatior{or dissipatior) factor commonly denoted hy in

the literature (e.g. Olami et al., 1992; Ceva, 1995; de Carvalho and Prado, 2000).

4.5 Models of seismicity

There are numerous models of seismicity to be found in the literature. For example,
Lomnitz-Adler (1993) creates 40 CA models of seismicity using different combinations
of conservation, driving force, boundary conditions etc. to examine under what condi-
tions the Gutenberg-Richter law is reproduced. Here | summarise what | feel are the three
fundamental models from which most other models in the literature are derived. They are
in chronological order the Burridge and Knopoff model (Burridge and Knopoff, 1967),
The Bak, Tang and Wiesenfeld SOC model (Bak et al., 1987), and the Olami Christensen
and Feder non-conservative model (Olami et al., 1992; Christensen and Olami, 1992).
The three models are summarised as follows using the original publication nétation

where appropriate:

4.5.1 The Burridge and Knopoff (BK) model

The Burridge and Knopoff (1967) model (BK) is not a CA model and is mentioned here
for its historical role in numerical seismicity. Burridge and Knopoff (1967) conducted
both laboratory and numerical spring block model experiments to reproduce some of
the statistics observed for earthquakes such as aftershocks and the Gutenberg-Richter
law. Their model is somewhat more complicated than a simple CA model whereby they
use exact dynamic equations of motion and friction for a one-dimensional driven chain
of blocks connected by springs. An IBM computer was used to solve non-linear dif-
ferential equations governing ten connected driven blocks. The computations included
measuring the internal energy between connecting springs and radiated energy due to

blocks slipping. Details of the model are beyond the scope of this chapter and are only

2The notations quoted in these examples should be considered independent from ‘standard’ notation used

throughout this thesis since they are given in this section ‘as is’ from the original publications.
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partially reproduced for the CA version of the model mentioned below (the OFC model).
Nonetheless, the BK model is seen as a starting point for the use of numerical mod-
els of seismicity and was the inspiration behind models that followed. To my best of
knowledge, it was the first model of any type to demonstrate the origin of the Gutenberg-
Richter law and aftershocks in terms of the non-linear dynamics of a many-body complex

system.

4.5.2 The Bak, Tang and Wiesenfeld (BTW) model

The term ‘Self-Organized Criticality’ was first coined by Bak et al (1987). In their semi-
nal paper, they demonstrated through the use of a ‘sand pile’ numerical model (the BTW
model here on) how a system with ‘extended degrees of spatial freedom’ can naturally
evolve to a critical state with power-law statistics. This model was then proposed as ‘a
general mechanism leading to the power law distribution of earthquakes’ (Bak and Tang,
1989). The BTW model was considered by Bak and Tang (1989) to have the essence
of the Burridge and Knopoff ‘spring block’ model (Burridge and Knopoff, 1967) but
greatly simplified in its dynamics. Their model is described as follows in accordance

with Bak et al.(1987) and Bak and Tang (1989):

— The model consists of two-dimensional arrayi of j particles or cells on a square
grid. The starting conditions are such that the force at each cell in the grid is
Z;; = 0. Then for every time step a cell is selected at random and a driving

force is applied to it according to the rule:
Z(i,j) — Z(i,j) + 1 (4.1)

— Step4.lis repeated until the force on a cell at positign;j) reaches a breaking
point Z¢ where in their modeF- = 4 . For Z(i,j) > Z¢, the cell releases its

‘strain’ to its 4 closest neighbours according to the rule:

Z(i+1,j+1)— Z(i+1,j+1)+1 (4.2)
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If by a domino type effect the neighbouring cells acquire a fot¢e j) > Z¢
due to the redistribution of strain, the process is repeated until all cells have strain
Z < Zc and we return to procegsl Note that for the BTW model? is always

an integer.

— The total number of cells broken for every cycle of procédsdefines a cluster
size or total energy released during an earthgt(@ak and Tang, 1989). Any cells
at the boundary that break will lose their energy out of the system (open boundary
conditions). This form of dissipation at the edges is essential since because the
BTW model is internally conservative (no energy is lost from a broken cell except
to its neighbouring cells), having periodic boundary conditions would results in an
infinite cluster or ‘avalanche’ (repetition of rude2 indefinitely). A steady state is

eventually reached and there is a balance between the system input and output.

— Note that there are therefore two times in the system. The ‘external’ time between
events and the ‘internal’ relaxation time within a given event -i.e., the duration of
an avalanche. The system after some transient time is found to reach a steady state

and the energy released follows a power-law where
p(E)~E™" (4.3)

wherep(E) is the probability of having a cluster of energyand is a scaling
exponent withr ~ 1 for a two-dimensional model similar to what is seen for real
earthquakes (section8.3. The model as well as showing a power-law for the
size distribution of the clusters, also shows a power-law in the internal time for the

durations of the individual events following
p(t) =t (4.4)

wherep(t) is the probability of having an event of duratiomnda ~ 0.42 for a

two-dimensional model.

Despite its simplicity, the BTW model was and is seen as poignant in the ‘self-organization’

literature. However, it was by no means revolutionary. Wolfram (1983) had pioneered

3For real earthquakes, the moment energy reléagefound to be related to the fault rupture atéavhereby

E ~ A3/? (Kanamori and Anderson, 1975). Also see chapter 2, seclidghsand?2.8.3
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the use of cellular automata models and had produced simple algorithms that show both
‘self-organization’ and power-law statistics. Kantz (1986) also produced a simple model
of ‘propagating brittle failure in heterogeneous media’ that showed power-law statistics
from very basic rules. The infamy and success of the BTW CA model may be attributed
to its simplicity both in form and reproducibility. Also, the authors put efforts in propos-
ing SOC as a simple solution to a variety of complex problems including earthquakes to
a wide scientific community. In addition, they to a degree highlight SOC'’s association
with the bigger field of ‘critical point’ systems (secti@n/.2. But perhaps more impor-
tantly, Bak et al. (1987) gave their observation a catchy and apt name, ‘Self-Organized

Criticality’.

4.5.3 The Olami, Feder and Christensen (OFC) model

The BTW model is strictly internally conservative since energy is only lost at the bound-
aries. An investigation into whether criticality can still be achieved if internal dissipation
is introduced was carried out by Olami et al (1992). The model, referred to here as the
OFC model, also has its roots in the Burridge and Knopoff (BK) model (Leung et al.,

1997; Jensen, 1998) and is described as follows:

Just as with the BTW model, the OFC model is defined by a sglarel array with

i andj the integer coordinates of elements within the array whexed j take values
betweenl and L. In accordance with the BK model, the OFC model as shown in figure
4.3 can be thought of as blocks interconnected by springs to their four nearest neigh-
bours. The individual blocks are also connected via springs to a driving plate above
them and frictionally to a fixed plate below them. As one plate moves relative to each
other, the blocks will experience a force. For a block at position) that experiences a

displacemendz; ;, the forceF; ; will be:

Fij = Ki[2dz;j — dvi—1,j — dwiy ]

+K2[2d$i7j — dm‘m'_l — dxi,j—i—l] + KLd{L‘m' (45)

whereK,K5 and Ky, are elastic constants (figude3). As the plates slide with relative

velocity V, the force will increase uniformly in the array by an amo&nt) until a site
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Figure 4.3: The physical representation of the OFC model with elastic constants K, K2 and K, (redrawn from Olami
et al., 1992).

reaches a threshed value. This will trigger an earthquake and the strain will relax to it
four nearest neighbours in a fashion similar to the BTW model as follows:

Fit1; — Fig1j+0F41,
Fijt1 — Fj+1 +0F; j11,

where the increase in force of the nearest neighbours is

K,
§Fii1; = Fij=aF,
i+1,j 2K1+2K2—|—KL 1,J a1ty 4,
K
OF; j41 = 2 F;; = sk ;, (4.7)

2K + 2Ky, + Kp~ Y

Whereq is the ‘elastic’ or conservation (dissipation) parameter. In the case of the OFC
model, it is assumed that the system is isotropieese= oy = «, and the boundaries
are open or ‘fixed’ withF = 0 at the edges. The model is now reduced to only a few

parameters and is run using the following algorithm:

— All sites are assigned a value betwéeand a threshold valugy,.

— For any site withF; ; > Fy;, the force is redistributed following the rule:

Fit1 41 — Figj+1 + ok,

F;; —0 (4.8)
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— Processt.8is repeated until alF; ; < Fy,. note that for a model with four neigh-

bours,a can have valueg < o < 0.25.

— The block with the largest forcE,, ... is located and then all sites are given a force
Fy, — Fr.q: Which will cause another ‘earthquake’ and procésss repeated and

SO on.

The most important results from the model are that(iticality (a power-law) is main-
tained despite the introduction of dissipation ayithe slope of the linear part of the
power-law distribution is dependant of the conservation parametdiis is shown in
figure 4.4 (after Olami et al., 1992). The results questioned the ‘universality’ idea that
the scaling exponents should be independent of microscopic details of a system (Lise
and Paczuski, 2001). This is more in tune with natural systems that are predominantly
dissipative and may show different scaling exponents (Bak, 1997). Also, their findings
suggest that internal conservation of energy is not a requirement for criticality. However,
there is some debate concerning whether ‘criticality’ can exist in the non-conservative
OFC model (e.g. Manna et al., 1999; de Carvalho and Prado, 2000; Christensen et al.,
2001) and regarding the mechanisms responsible for the criticality observed. This is-
sue is an ‘unsettled question’ (Sornette, 2000) yet to be categorically resolved (Jensen,

1998).
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Figure 4.4: Incremental energy probability distributions for (top to bottom) o« = 0.25,0.20, 0.15 and 0.10. From Olami
et al. (1992).
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4.6 A generalized BTW model

In order to investigate thermodynamic aspects of SOC in relation to earthquakes, | use
a generalized model that is a cross between the BTW model and the OFC model. This
model is chosen because it is very close to the original SOC model of Bak et al. (1987)
with the addition of dissipation. A similar model is used to investigate criticality for

non-conservative sand pile models by Ghaffari et al (1997). Here the model is defined as

follows:

— Aswith the BTW and OFC models, the generalized model is composedéfan

square array.

— The model is initialised with the ‘stress’in each cell between some random value

0<o<4.

— For every time step, A random number generator is used to select a point on the

array (, y) to which a stress of is added thus
oy =0(z,y)+1 (4.9)

— Any site witho, , > o fails or ‘breaks’ and redistributed its stress to its 4 nearest

neighbours (figurd.5) following

Optly+l — Oztly+1 +aoc/4

Oy — Opy — QOC (4.10)

where« is the conservation factor with < o < 1. Fora < 1, ¢ can take

non-integer values.
— processt.10is repeated until all sites have < o¢. The total aread effected by

rule 4.10defines the cluster or event size

The model is run with open boundary conditions. Note that we retrieve the BTW model

whena = 1 so | shall refer to the model as the non-conservative BTW model or NBTW

4] have found that the total number of elements that break for a given perturbat®mi¢es not always equal
the cluster size since sites within a cluster can break more than once within a single event (seeZiyurkhis
is especially true for the cagse = 1. | nonetheless for comparison, stick with the BTW definition and equate the

cluster size to the total area affected by an avalanche process.
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Figure 4.5: A site (centre) with stress o failing and redistributing its stress to its four nearest neighbours.

Property BTW OFC NBTW
Driving local global local
Boundaries open open open
Dissipation no yes yes

o values integers continuous continuous
Failedsite o —o0c—0¢c o0—0 o—0—oc

Table 4.1: Table of differences between the BTW, OFC and NBTW models of seismicity.

here on. The main differences between BTW, OFC and NBTW models are summarized

in table4.1. This completes the definition of the NBTW model which is used in this

chapter. Now | shall use the model to address the issues outlined in the introduction of

this chapter.

4.7 Part I: Self-organisation and dissipation

I now use the NBTW model to investigate some of the thermodynamic characteristics of

a self-organising dissipative structure and their dependence on the level of dissipation.

For the NBTW model outlined | measure the following internal and external parameters

as follows:
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4.7.1 Energy

ForaN x N lattice, the externally radiated and internal ‘strain’ enerdigand E; at a

timet and conservation parameteiare defined respectively as:
E.(t,a) =a1A (4.11)

whereA is the cluster ared.e. the number of connected cells effected by an avalanche

process and
N2
E;(t,a) = az Z o2 (4.12)
n=1

over all cells in the array. The mean internal energy at a given time incrensetiten

2

Ei(t, o) = % g:l o2 (4.13)

n—

wherea; andas are arbitrary constants that will depend on the system. For simplicity, |
puta; = as = 1. Note that at any time¢, E. = E, since only one cluster is allowed to
occur at every time increment. Here we can also define the energy dissipated irreversibly
through the factorv. Every cell that fails will dissipate an amoufit — «)o¢ in the
process of redistributing its energy to its neighbours. Since the number of cells that fail
for a given event is proportional 6., we can broadly define the dissipated eneify;
as

E4is ~ (1 — a)ocE, (4.14)
Note thatFy;; here is only an approximate value since it excludes energy lost at the
boundaries and doesn't take into account the arbitrary consiar@ada, in 4.11and
4.12respectively.E4, can be seen as analogous to energy lost irreversibly in the crust

as heat or plastic deformation and so on.

For a model run of length, wheret,, in the steady stafel define the mean external and
internal energies for a givemto be
t
1 n
(Ee(a)) = — ) Ee(t,a) (4.15)

t
=1

5The relationship found between fault rupture area and radiated seismic energy for real earthqliakes is
A3/? (Kanamori and Anderson (1975). However, | take ~ A in accordance with Bak et al. (1987) so results

presented in this thesis may be easily compared to those of the original publication.
5The system is first allowed to run for a period to stabilise and reach a steady-state. All data during this stabili-

sation period is not included if,.
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and "
(Ei(a) = ;- > Filt.a) (4.16)
The expectation of the logarithm of external and internal energies are respectively
(InE,(a)) = — tz (B, (t, )] (4.17)
tn t=1
and "
I Ei(a)) = — 3 (Bt o). (4.18)

t=1

From the energies calculated usihd 1and.12, we can also construct histograms that
will give us energy probability distributions(E.) andp(E;). | do this by binning the
energy data with increments 8F = 1. The data are then normalized such that for both

p we have

Y op=1 (4.19)

4.7.2 Entropy

Fromp(E.) andp(E;) we can, after a transient timg, calculate the external and internal
entropies of our system for a givenas follows:

FEemax

Se(a) ==Y p(Ee)Inp(E.) (4.20)

E.min

and

E;max

Si(a) =— Y p(E)Inp(E;). (4.21)

By measuring both the internal and external entropies, we can test Prigogine’s conjec-
ture that organisation within a system is at the expense of increasing the entropy globally
(Kondepudi and Prigogine, 1998). Although it is generally assumed that the internal
(strain) and radiated energies for the crust are correlated (e.g. Rundle et al., 1993; Dah-
men et al., 1998; Main and Al-Kindy, 2002), the correlation between internal and exter-
nal entropies (or indeed entropy productions) are unknown. Measuring these at least for
a model could shed some light on self-organisation in the crust. As far as | am aware, the
results in this chapter are the first to test this hypothesis formally for a randomly driven

model.
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4.7.3 ‘Temperature’

In section2.5.1(chapter 2) a definition of temperature was given from a thermodynamic
point of view. For the discretised model presented here, a ‘statistical’ definition is more
appropriate. In accordance with Mandl (1988), a temperature can be seen as a measure
of how large the fluctuations in a system’s energy are. It can alsa parameter that
guantifies the degree of stochasticity of the sys{@uirnette, 2000). The magnitude of
these fluctuations is a function of the standard deviation of the en®fgyefined by

(Mandl, 1988):

=5 2

(AE))=(E-EQ?=F2-FE (4.22)
With reference to equatioh 3and differentiatingn Z twice we have
) - _

0Bz a8 dp aT

Where( is the heat capacity andis Boltzmann’s constant. So we can say that for a

given system:

AE ~ Tr (4.24)

| put the statistical temperatufE = T here to distinguish it from thermodynamic
temperature. Therefore, by measuring the standard deviatidiisarfid £; we can also
calculate a form of external and internal ‘temperature’ for our systemnd7;. This
chapter, to my best of knowledge, is the first time these temperatures are measured from
the externahndinternal energy fluctuations for a numerical seismicity model. Statistical
temperature used in the literature is sometimes referred to as ‘effective temperature’
(D’Anna et al., 2003) or ‘tectonic temperature’ (Main et al., 2000) which are both a
measure of the fluctuation amplitudes and therefore predictability of the system rather

than a traditional ‘heat’ temperature.

4.8 Model runs and results

| run the NBTW model fort = 5 x 10°, o = 4 (as in the original BTW model),

and varying the conservation factarfrom 0.05 to 1.0 at increments 06.05 giving a
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total of 20 runs andl0” events. In order to ensure the runs have reached a stationary
‘steady state’, the first0® events are discarded. This cut off value is chosen based on

observation oft; (¢, «) (see below). The results of the runs are as follows:

4.8.1 External energy FE,

The radiated energies are calculated from the cluster sizes of each eventiiising
Figure4.6showsE, (¢, o) for « = 0.1, 0.5 and1.0. Note that for all three cases, the data
are punctuated with no apparent signs of any transient trends such as periodic behaviour
even with high dissipatiom(= 0.1). There is also a very notable contrast between the
size of the largest and smallest events for the conservative @asd ] when compared

to the non-conservative runa (< 1). Then, fromE, | produce probability distribution
plots. Figure4.7 shows the probability distributions fer = 0.1 to 1 on a log-log plot.

A line (dashed) is drawn with a slope equal to unity for reference. The power-law type
distribution can be clearly seen for the case- 1 with scaling exponent 1. This result

as expected, is identical to that of Bak et al. (1987). Note that if | were t&put A3/2

in relation4.11above in accordance with Kanamori and Anderson (1975), the slope of
the exponent forr = 1 in figure4.7would be2/3 (section2.8.3 as found for earthquake

moment data (e.g. Kagan, 1997) rather thas found here for the BTW model.

However, looking at the cases far< 1 in figure 4.7, we can see that the distributions

roll off from a power-law very quickly (low, see chapter 3). The maximum event sizes
are much smaller than the system size (sub-critical) and are systematically related to
The gamma distribution gives a very good fit to the data as | demonstrate for two cases
a = 0.95 and0.55 in figure4.8. Figure4.8 shows a sub-critical distribution for the two
chosen values af and the equations for the corresponding fits. The same can be said
forall 0 < a < 1. This is in agreement with mean field predictions teaticality in

the sand pile model is lost when dissipation is pres@rduritsen et al., 1996) as well as
other similar numerical models (e.g. Ghaffari et al., 1997). The results also show that the
gamma distribution discussed in chapter 3 is best suited to describe such scaling be it in

models or real earthquake data since it can cater for powemlaw ¢o) and exponential

"Note that the entire length of the Harvard CMT catalogue for real earthquake data for which it is complete

consists ok 10000 points.
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Figure 4.6: Radiated energy E. (¢, «) for « = 0.1, 0.5, and 1. Note the large differences in scale in the y-axis for the
three plots.
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(B = 0) distributions or a combinations of both.
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Figure 4.7: Incremental probability distribution for the radiated energy E. from a = 0.1 to @ = 1. The dashed line is

drawn with slope= 1 for reference.

To ensure that the distribution éf(E.) in figure 4.7 does not depend on the grid size,

| calculate P(E.) for another two runs, with grid size x 50 and200 x 200. These
results are shown in figur€.9. It can be seen that the results for the case 1 are
indistinguishable. For the case= 1, the slopes of the distribition are the same however
the cut-off as the higher energies are restricted by the system size. This is highlighted in

the figure with the arrows that mark system size for the three distributions.

4.8.2 Internal energy FE;

The internal energy for different runs is measured ugirig for different values ofx.

The results forE; (¢, o) are shown in figure.10 We can see from figuré.10that the
system reaches a stationary steady state-at 00000 showing Boltzmann type fluctua-
tions similar to an equilibrium system despite it being far-from-equilibrium. The results
reported here for internal energy are very different to those reported for globally 'uni-

formly’ driven systems in that they lack any periodic behaviour such as foundrinsi
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Figure 4.8: Gamma fit on energy probability distributions for runs with o« = 0.55 and o« = 0.95 showing a sub-critical

distribution.
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Figure 4.9: Incremental probability distribution for the radiated energy E. from o = 0.1 to o = 1 for grid size 50 x 50,

100 x 100 and 200 x 200. The dashed line is drawn with slope= 1 for reference.
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and Kerész (1993) and Main et. al. (2000). It is noted however that the fluctuations be-

come less erratic (lower frequency contenthas decreased. To further investigate the

x 10"

a=1

0=0.95

Figure 4.10: plot of internal energy E; (¢, o).

frequency content of; for differenta, | construct time-series Fourier power-frequency
plots for the steady-state regions for different runs as shown in figyieThe power-
frequency plots do not show any peaks that would be indicative of any form of periodic
behaviour i.e. the dominance of a particular frequency. It is also interesting to note from
the power-spectra that they all follow a power-law distribution with a stofe A slope

of 2 in power-spectra is what is usually obtained from the frequency analysis of Brow-
nian noise in gasses or ‘random walk’ simulations (Feder, 1988; Turcotte, 1997). It is
unclear to me at this time why the slopes of the power-spectra appear to be indepen-
dent ofa. In summary, the internal energy fluctuations reported here for a steady-state

far-from-equilibrium system appear to be similar to those of equilibrium systems.

Now | examine the density distribution of the internal energy in the steady-state for dif-
ferent values ofv. My results are shown in figure 12 The figure shows three interesting
characteristics. Firstly, although the radiated energies follow a gamma distribution, the

internal energy is closer to a peaked Gaussian or ‘normal’ distribution which is similar
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Figure 4.11: Fourier power-frequency plots for E; withaw = 1,0.5 and 0.1. The dotted line is drawn with slope ~ 2 for

reference. The plots have been shifted vertically for clarity.

to what is found for an equilibrium system such as a gas (e.g. Mandl, 1988). This is also
true forae = 1. Secondly, it can be seen that as dissipation increases, the average internal
energy decreases; the mean energy of the system is therefore a function of the level of
energy dissipation. Finally, the distributions are more peaked for higher conservation
and broaden as dissipation is increased. Note that this final point is contrary to what
we observe for the radiated energly (figure4.7) where the distributions broaden as

increases.

Finally, | test the assumption that radiated energy (that can be measured for the crust)
and internal energies (that cannot) are correlated by plotfingy)) against E;(«)) for

all runs. It can be seen in figufel3that there is a positive correlation between the two.
This is in agreement with the results of the globally driven model of Main et al. (2000)
but shown here to be also true for a locally random driven system. Although the positive
correlation between internal and radiated energy cannot be conclusively shown for the

crust, the NBTW model does not suggest the contrary.
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Figure 4.12: Incremental probability distribution for the internal energy E; from o = 0.1 to o = 1. The dashed arrow

indicates the direction of increasing dissipation.
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Figure 4.13: Plot of internal energy (F;(«)) against radiated energy (E;(«)) showing a positive correlation between

the two. The plot is done using a log-linear scale for clarity.
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4.8.3 Entropy and effective ‘temperature’

I now measure the external and internal entropies and corresponding temperatures for the
NBTW model and their dependence on dissipation. It must be noted here that the entropy
production of a system approaches zero as the entropy approaches a maximum to achieve
equilibrium (Kondepudi and Prigogine, 1998). However, here we are dealing with a far-
from-equilibrium system. | therefore focus my interest in the change in external and
internal entropy as a function of dissipation (decreasipgrhe aim is to test the notion

that driven dissipative systems self-organisation (lower their entropy internally) is at the
expense of increasing entropy globally. | first examine the effect of dissipation on the
internal and external entropies which are measured on the steady-state part of the runs
using4.20and4.21 Figures4.14q andb shows howS, and.S; depend orx. We can see

that whereby an increase in dissipation (decreasjrigcreased;, it decreases,. This

is a significant result demonstrating how internal and external entropies are negatively
related for a dissipative driven system and how the two vary with the level of dissipation.
This results is further illustrated by plottirg, againstS; in figure 4.15confirming the

negative correlation.

I now examine the predictions of equatir26 (chapter 3) on the correlation between

the external and internal expectation of logarithm of energies and their corresponding
entropies shown in figuré. 16z andb. We can see from figuré. 16 that there is a posi-

tive correlation between the expectation of the logarithm of the radiated efiergy)

and the entropys. confirming the prediction of equatioh26 However, this positive
correlation is curved which, based on the ‘thermodynamic’ criteria outlined in section
3.6 (chapter 3), further suggests that the BTW model in the non conservative regime
(NBTW) is not critical. Conversely, we can see a negative correlation between the ex-
pectation of the internal enerdyn E;) and the entropys;. This is interesting since as
with p(E;), it is more in accordance with what one would expect for an equilibrium
system whereby the system’s increase in entropy is accompanied by a lowering of its
internal energy, like a collapsing house say that will become more disorganised (higher
S) and will lose energy (lowekE)) to its surroundings (higheE, ). This is ‘anti’ self-

organisation.
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Figure 4.14: Plot of external and internal entropies S. and S; as a function of a.
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Figure 4.15: Plot of the external entropy S. against internal entropy S;. The two entropies show a negative correlation

fitted here with linear (solid line) and polynomial (dashed line) least-squares fit. The arrow points towards the direction

of increasing dissipation.
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Figure 4.16: Plot of a) S. against (In E.) showing a positive correlation and b) S; against (In E;) showing a negative

correlation. The dashed arrow points towards the direction of increasing dissipation.



CHAPTER 4. Self-organisation in numerical models of seismicity 100

Moving on to temperature, | follow the definitich24 and measure the standard devi-
ations of E, and E; and to see how external and internal temperatures are related to
entropy, energy and. | show my results in figurd.17. | find that there is a positive
correlation between the entropies of the system and their corresponding temperatures
(figure 4.172). Lower temperatures are usually seen to be a property of ‘ordered’ sys-
tems (lower entropy) such as say a quartz crystal as apposed to a hot ‘disordered’ gas.
Temperature is an important property of self-organising systems because the ‘hotter’ a
system, the larger the energy phase-space it can explore to find a lowest energy state
(Sornette, 2000). Looking at the relation between energy and temperature, we can see in
figures4.17c and4.17d that T; of the system is highest for the lowest energy stte
Finally, looking at the relation between the temperatures and the dissipation, | find as
expected that the correlation between the two for the internal and external temperatures
are different. This is shown in figurésl7e and f. An increase in dissipation therefore
increases the internal temperature of a system whilst decreasing the temperature of the

energy or ‘matter’ radiating from it.

4.8.4 Effect of conservation « on radiated energy (FE.)

We have seen in figuré.7 that the maximum radiated enerdy. will decrease with
decreasingy. This result is also seen for other globally driven models (e.g. Olami et
al, 1992, Main et al., 2000). Lise and Jensen (1996) find that for a random neighbour
version of the OFC model (one where the energy is redistributed to 4 randomly chosen

cells rather than the 4 immediate neighbours) that
£~ (ac—a)™? (4.25)

where¢ is the cut-off in avalanche size (the maximum possible cluster size for agjven

A similar power-law result was found by Christensen and Olami (1993) through a mean
filed approximation although they used a conservative modelatiring a measure of

the number of neighbours to which energy is redistributed. Here | numerically test if the
results also hold for the NBTW model. Plottind’;) againstx in figure4.18, we see

that there is a positive correlation with an exponential increas&ihasa — 1. Note

the similarities with figure€.13(chapter 2). Following the results of equati®r25 | set
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a (BEe) Eemax (InE.) (E;)x10* (E;)x10* (InE;) S S; Te T;

0.05 0263 6 0.179 5.342 5.134 10.886 0.614 7.381 0.471 393421
0.10 0278 6 0.184 5.351 5.144 10.888 0.651 7.568 0.51 484{238
015 0294 7 0.191 5.363 5.154 10.89  0.685 7.595 0.555 489,627
020 0312 8 0.197 5.395 5.186 10.896 0.716 7.607 0.604 501,219
025 0332 12 0.205 5.419 5.209 10.9 0.748 7.594 0662 489265
0.30 0356 11 0.213 5.461 5.249 10.908 0.78 7.541 0722  469.363
0.35 0383 15 0.223 5.5 5.286 10.915 0.812 7.709 0.794 562919
0.40 0414 18 0.234 5.555 5.339 10.925 0.847 7.574 0874 47806

045 0452 15 0.245 5.628 5.409 10.938 0.882 7.571 0.976  481.324
0.50 0.496 22 0.259 5.701 5.48 10.951  0.922 7.449 1.089 420232
055 055 23 0.275 5.793 5.569 10.967 0.965 7.431 1227 412261
0.60 0618 29 0.294 5.898 5.669 10.985 1.014 7.403 14 400,714
0.65 0705 29 0.317 6.014 5.78 11.004 1.07 7.48 1.62 433[138
070 082 38 0.344 6.145 5.906 11.026  1.135 7.416 1914 411857
075 098 49 0.378 6.305 6.06 11.052 1212 7.375 2321 390,817
0.80 1218 56 0.424 6.49 6.238 11.081 1.31  7.225 2.927 335043
0.85 1611 83 0.487 6.704 6.444 11.113  1.439 7.328 3.932  376.163
0.90 238 120 0.583 6.962 6.669 11.151 1.619 7.148 5924  310.393
0.95 4587 254 0.763 7.295 7.011 11.198 1.933 7.031 11.731 274.998
1.00 2266 9122 1.706 7.806 7.503 11.265 3.294 6.76  798.81 209.274

Table 4.2: Summary of results of model runs for o = 0.05 to « = 1.

ac = 1 sinceits is atv = 1 that we get the largest mean energy. PlottiAly) against

1 — ainfigure4.1&, | find that
(Ee(a)) ~ (1 —a) 97 (4.26)

The results of Christensen and Olami (1993) and Lise and Jensen (1996) are therefore
quantitatively confirmed here for a locally driven NBTW model. It is interesting to note
from equationst.25and4.26that o has a similar effect on cluster size as temperature
and percolation probability do on non-driven systems as given by equafidim section

2.6.3(chapter 2). The results of this section are summarised in fable

4.9 Part ll: Investigating SOC in the BTW model

I have outlined that the definition of SOC remains somewhat vague. This is a problem

when trying to assess whether the Earth’s crust is a SOC system or not. Therefore, | now
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examine the BTW model in some detail in relation to earthquakes. | will also extend
this investigation to the NBTW modeb(< 1). The three main questions | attempt to

address are

1. Is spatial heterogeneity present in the BTW model of SOC? This question is impor-
tant because spatial heterogeneity is observed in the statistics of earthquake pop-
ulations (e.g. Ogata et al., 1990ncel et al., 2001). If heterogeneity is found
in the BTW model, then the assumption that SOC systems are unpredictable in
space need not be made as part of its definition. Extrapolating from this, the notion
that the Earth’s crust is at the point of global faileeerywherde.g. Grasso and

Sornette, 1998; dler et al., 2001) also need not be made.

2. Is universality a requirement of SOC? Although universality in a dissipative model
such as the OFC model is a subject of debate (sedtivor® because of the non-
uniqueness of the scaling exponent, it is not the case for the BTW model of SOC
which has a fixed scaling exponent for the energy release. However, if spatial
heterogeneity is found in the BTW model, how will this generally affect the power-

law statistics observed on a subsection of the model?

3. Although the BTW model is inherently unpredictable in time (Bak et al., 1987),
there have been observations of time dependant processes in real earthquake data
such as accelerated seismicity before a large event (seetiohin chapter 2).

Here | ask the question that assuming such an observation happened by complete
coincidence, would it still be compatible with the statistics of the BTW model?
In other words, does the BTW model have the statistical raw material to show

accelerated seismicity before a large event?
By covering these questions, the main aspects of the BTW model and therefore SOC
would have been investigated; space and time.
4.9.1 Spatial variations

I now investigate spatial heterogeneity in the original BTW model by putiing 1 in

the NBTW model. My primary interest is on the recurrence rate of event occurrence in
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space. In order to do this, | define a secendy square lattic€’, ,. This is my ‘counter’

lattice. For every celb,. , that fails due to process 10we have:
Cry=0Cry+1 (4.27)

Note that an event can involve the several failed cells that form a cluster for a given time

stept. Therefore,

Y C>t (4.28)

wheret € [1,t,]. Again, | run the model for 400 x 100 lattice for a total 0f500000
time steps. Finally, | calculate the probabiljty , of a site breaking in a given position

(x,y) for each site in the lattice:

— Cx,y
Pru = 5 (4.29)

The results are shown in figurel19 It can be clearly seen from figure19that the
probability of a cell breaking increases as we get away from the boundapasal
heterogeneity exists in the BTW model This is perhaps somewhat expected because

the edge cells interact with three neighbduséereby all other cells interact with four

25

p(x.y)

0.5

100

Figure 4.19: Probability p.,, of a site breaking in space for a two-dimensional BTW model.

and are therefore on average more likely to receive energy and break. Let us consider this

8Except for the cells at the corners of the array which only have two neighbours.
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schematically in figurel.20 Figure4.20is a simplified one dimensional BTW model
that starts off close to breaking point{ = 2). A cell in the centre is given an ‘energy’
increment (figurel.2Qu). The cell breaks and redistributes its energy to it two neighbours

and so on until the avalanche ends (figar2of).

There are two things we can gather from this example. Firstly we see how from the
counter at the bottom of the schematic that the cells away from the edges break more
frequently. Secondly, for this conservative case, the total number of cells briken (
exceeds the size of the resulting clust&r Although this is an simple example, it does

conceptually explain the result shown in figuré& 9

a) m
e o 00 0 o
b) FN VNN
e o0 Y1)
LX) [ X ) o
d) N VN
° (X} [ °
e) /y\
) o0 M)
f)
e o | o oo | o
total 1 2 3 2 1

Figure 4.20: One dimensional BTW model showing the effect of open boundaries on causing sites to topple more
frequently away from the edges. The dashed squares indicate breaking sites. The number of broken sites (9) exceeds

the resulting cluster size (5).

One could now also ask if the magnitude of a triggered event depends on its initiation
position @, y)? | investigate this by constructing a second counter simil&r which |

call C2. For a an event for energyy triggered due to an update at position (X,y):
02y =02,y + E. (4.30)

so in theory, if larger events are initiated in the centre away from the ed@es, should
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be systematically bigger towards the centre. The results of this are shown in4igare

We can see from figuré.21that there doesn’t appear to be any spatial dependence of

100
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20 40 60 80 100

Figure 4.21: Two dimensional counter showing no dependence of the size of the triggered events on their point of

initiation.

event size on the position of initiation. Larger events are just as likely to be triggered at

the edges as in the centre of the array.

Now | ask the question, is this as suggested by figuz&an artefact of the conservative
case? To answer this, | carry out a similar ‘counter’ analysisoffor 1. | show the
results of this analysis in figure22for « = 0.1toa = 1 . We see in figurd.22that the
spatial signature observed far= 1 disappears when dissipation is present contrary to
what is observed in globally driven dissipative models (e.g. Middleton and Tang, 1995).
The effect of the probability of site failure in thedirection ¢y = 50) for « = 0.1 to

«a = 1 is shown as a composite plot in figureZ3.

To ensure that the distinct spatial variation for the case 1 is not due to the system

size, | calculate it for a further two runs with for grid siZgkx 50 and200 x 200. This is

shown in figure4.24 It can be concluded that this spatial variation is intrinsic to the sys-
tem atl and not due to system finite size effects. Overall, the results suggest that unless
very close the boundary, a dissipative BTW model will not show any spatial heterogene-
ity in contrast to the conservative case £ 1). Nonetheless, spatial heterogeneity in

general appears not to contradict SOC.
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Figure 4.23: Probability p(z) of a site breaking at position x for conservation factor « = 0.1 to « = 1. There is clear

spatial heterogeneity for o = 1 which is absent for o < 1.
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Figure 4.24: Probability p(x) of a site breaking at position x for conservation factor « = 1 for grid size 50 x 50,
100 x 100 and 200 x 200. There is clear spatial heterogeneity for o = 1 despite the variation in system size (shifted =

values and normalised y values are plotted for comparison).
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4.9.2 Testing universality in scaling

| have established that there is a spatial bias in the BTW model. | now investigate whether
this spatial heterogeneity has any effect on the universality within sub regions of the sys-
tem. That is, if we are to subdivide the BWT model spatially, will the sub-regions have
the same statistical characteristics as each other depicted by a constant scaling exponent
B. To do this, | run a BTW model which is sub-divided into two equal atéagnd A2

as can be seen in figure25 The regions are chosen in this way because firstly there

will be more events iM1 than A2 (with reference to figuré.19. Secondly A1 will not

be affected by the size limiting effect of the edges wherdbwill. We would therefore

expect a bigger maximum event size fét. The model is run as with previous runs

A2 A

Al N E
L2791

y

Figure 4.25: BTW model of area A divided into to sub-regions with areas A1 and A2 where A1 = A2 and Al + A2 =
A=1L2

with ¢ = 500000. The cluster sizes formed withiAl and A2 are measured separately

for every time step. From this, | calculate two energy-probability distributions denoted
p(E41) andp(E 42). These are shown in figuke26 Although the two distributions as
expected have different maximum event sizes, they both show an identical scaling ex-
ponentB ~ 1 although the distribution for2 is more gamma than power-law due to
the edge effect of the boundaries. This suggests that for the original BTW model, spa-
tial heterogeneity caused by boundary effects should not influence the universality of the
system (the value oB) although it can influence the shape of our gamma distribution.
In summary, it appears that systems that show a gamma distribution do not contra-

dict SOC. However, systems that show a regional variation in the scaling exponent
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B will be in contradiction to what has been found for the original BTW model of
SOC.

— Al
1 —>— A2

10 10 10 10 10 10

Figure 4.26: Energy probability distributions for region A and sub-regions Al and A2 as illustrated in figure 4.25. The

Al and A2 distributions are shifted to the left along the z-axis for clarity.

4.9.3 Accelerated seismicity and «

The final aspect of the SOC that | test on the BTW model is that of accelerated seismicity.
That is, a time dependant acceleration in the radiated energy preceding a large event in
the form (Zller and Hainzl, 2001)

> VE =A-B(tc—-t)" (4.31)

with A, B andm positive constants ang is the time offailure. Although the issue of
precursors occurring before large events for earthquake populations have been reported
(e.g. Bowman et al., 1998), these remain controversial and are usually only detected
retrospectively after an event has occured (Geller, 1997; Mulargia, 2001). Such pre-

cursory phenomena are not observed in the BTW model although there are models that
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mimic accelerated seismicity (e.g. Jaiet al., 2000). The question | ask here however

is: although accelerated seismicity is not observed in the BTW model of SOC, would
accelerated seismicity contradict it in any way? In other words, can we have an acceler-
ating energy release within a population of events and still have a power-law or gamma

energy-density distribution for the data overall?

To answer this, | také’, (¢, ) for all runs and simply re-shuffle it in order of ascending
energy. In other words, | am forcing an accelerated seismicity for a population of gamma
type data to see if it will follow a power-law increase similar to the reverse Omori law
(equation2.38 chapter 2). It must be noted that the energy probability distributions
for data are independent of their transient properties because we are binning in energy
rather than time. There is therefore no reason to assume that all systems with power-law
statistics are unpredictable in time. Figufe87a andb show the unordered and ordered

data froma = 0.1 to 0.9 (I exclude the case far = 1 from the plots because even
though it shows the same results, it out-scales the remainder of the data and obscures

them due to its much larger energies). It can be seen from fify@re that the data
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Figure 4.27: \/E. against (a) t (unordered) and (b) ordered, (c) against (tc — t) on a log-log plot .

un-ordered closely resemble what is usually found in CA models of seismicity (e.g.
Angulo-Brown and Miioz-Diosdado, 1999). Ordering the data (figdt&%) shows

an exponential type time increase in seismicity as we approach the largest event which
becomes more linear asdecreases. To test equatiérslon the data, | plo§_ vE
against(tc — t) on a log-log plot (figuret.27. It can be seen that the results in figure

4.27c do not follow the predictions of equatiagh31for this model. This results suggest
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that accelerated seismicity is not compatible with SOC at least in a statistical sense.

4.10 An alternative to SOC?

I have shown that although SOC can accommodate for both power law and gamma statis-
tics in the energy release, it cannot accommodate for varying scaling exponents. | there-
fore propose an alternativeelf-organised sub-criticalit¢SOSC). This is simply in ac-
cordance with characteristics of the NBTW model rather than the BTW model. SOSC
is simply a more ‘relaxed’ version of SOC that can include internal dissipation, as most
natural systems will have, as well as variations in the scaling exponents and correlation

length. This is a looser form of SOC that does not rule out any of its characteristics.

4.11 Chapter summary

In this chapter | examined two things: 1. the thermodynamic aspects of self-organisation
in a generalized version of the BTW model of SOC. 2. Spatial and temporal characteris-

tics of SOC. The main conclusions are as follows:

— For the Generalized BTW model (NBTW), | find that when dissipation is present
(o < 1), criticality is lost in the system and the radiated seismic energy is best

described by a sub-critical gamma distribution rather than a pure power-law.

— Unlike the external energy properties;(and P(E;)), the internal energy fluctu-
ations at steady-state resemble those of equilibrium systems in two ways. Firstly,
they show a Gaussian distribution in their fluctuations and secondly, a Brownian
noise signature, as shown from the time series analysis. These two observations
are similar to what is seen in say gasses at equilibrium (D’Anna et al., 2003). This
is an important result that suggests that our perception of the criticality of a driven
system may be observer dependant. That is, if the obseriesidggor outsidethe
system.

— The external and internal entropies are negatively correlated. This is consistent with
the idea that systems self-organise to increase entropy globally (e.g. Bridgman,

1950).
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— The external and internal energies of the locally driven system shown here are found
to be positively correlated. This is what is also found for globally driven CA models
(e.g. Main et al., 2000).

— The relation betweery. and (In E.) was found to follow a curve rather than a
straight line (see sectio® 6, chapter 3). This is further evidence that we are deal-
ing with a sub-critical system when dissipation is present. Conversely, we get a

negative correlation betweef and(In E;)

— For both internal and external cases, the temperafliresas found to correlate
well with their relative entropies. This is in agreement with the notion that statisti-

cally ‘hot’ systems are less predictable (Rinaldo et al., 1996; Sornette, 2000).

— The prediction that the mean radiated energy and conservation paramater
related by a power-law was confirmed for the NBTW model whgte ~ (ac —

a)~997 (noteag = 1).

Moving on to SOC, there are several important results found here that question our cur-

rent understanding of SOC and how it should be applied:

— Spatial heterogeneity exists in the BTW model of SOC. This is in the form of more
cells breaking away from the edges. This observation disappears when dissipation
is present (but so does criticality!). This is due to cells being more likely to break
away from the edges since they have more neighbours to interact with and therefore

statistically more likely to receive energy and fail.

— Despite the spatial bias observed, the size of events do not appear to be related to
their position of initiation. This can explain why we still get a power-law despite

the spatial bias (point above).

— Analysing the BTW model on a regional level, it was found that the energy prob-
ability distributions for the sub-regions follow a power-law in the centre and a
gamma ‘sub-critical’ distribution at the edges. Despite this, the distributions still
show the same slopé3(~ 1). This confirms that for a model of SOC, universality

is conserved.

— From a temporal point of view, the NBTW model was found to be statistically in

disagreement with what is claimed of accelerated seismicity preceding large events.
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— | propose a more lenient version of SOC which | refer to as self-organised sub-
criticality (SOSC). This is simply in accordance with the NBTW model and can
accommodate gamma distributions, internal dissipation and variations in scaling

exponents and correlation lengths; more in tune with natural systems.

4.12 Afterthoughts

Looking at the model from a thermodynamic prospective, what predictions can we make
about the Earth’s lithosphere? We have seen that the internal and external energy here
are correlated reassuring us that for a driven system, the free energy is proportional to
the amount of energy being released. This may appear counter intuitive when compared
to equilibrium systems. We have also seen the dominating effect of even a small amount
dissipation on the system energy and spatial heterogeneity. Dissipation may therefore
strongly influence the amount of energy stored in the crust; the higher the dissipation the
lower the free energy and the higher the energy dissipated irreversibly (such as through
heat). Dissipation also influences the shape of the probability density distribution (and
therefore the entropy) from a power-law to a gamma with increasing energy loss. One
could suggest from this that for seismically active areas, if dissipation is high, the earth-
quakes will follow a gamma distribution with a lofv(and perhaps highds?) and there

will be more heat loss. This will also be represented in dissipative areas having a lower

Se.

On the other hand, spatial variations hvalues would violate what is observed from

the regional study of the BTW model even if we are to relax the definition of SOC to
include gamma type statistics. Ironically, spatial variations in the amount of seismicity
are found not to contradict SOC, this reassures the notion that SOC systems need not be
on the point of global failure everywhere (e.g. Sornette, 2000). The relevance of these

predictions will be investigated on real earthquake populations in the following chapter.
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Chapter 5

Testing criticality in globall

earthguake populations

So far, we have seen the statistical and thermodynamic aspects of self-organisation and
dissipation analytically and through the use of a numerical model. It has been shown
through the gamma entropy equation, relating the mean expectation of the logarithm
of energy(In ) and the entropy5, how one may assess the ‘criticality’ of a gamma
type system. The analytical predictions were then tested on a generalised numerical
model of seismicity in the previous chapter. Self-organised criticality (SOC) in the Bak
et al. (1987) numerical model (BTW) was also examined in some depth to pinpoint

characteristics of SOC.

In this chapter | test some of the predictions and conclusions of the last three chapters
onreal global earthquake data. | do this to attempt to answer some remaining questions
regarding criticality in the crust. | must at the expense of repetition emphasise that when
| use the term ‘critical’, | do not exclusively mean SOC. With ‘critical’ | refer thermo-
dynamically to the criterion outlined in chapter 3. That is, a linear relationship between
the entropyS and its corresponding energin F) (§ — oo0). Conversely, with ‘SOC’,

I refer to the phenomenological characteristics | demonstrated from the original BTW
model of SOC in chapter 4. Keeping this distinction between the two in mind, | accord-
ingly attempt to answer the following questions, as in the last chapter, in two parts. The

first part looks at thermodynamic aspects and investigates the following points:
117
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1. Is the analytical prediction relating entropy and energy applicable to real earth-
quake data? Also, given the thermodynamic criteria encapsulated by the gamma
entropy equation in chapter 3, is the Earth’s crustin a critical state? | assess critical-
ity from a thermodynamic perspective by testing the expression for gamma entropy

derived in chapter 3{ ~ B{(In E)) on real earthquake populations.

2. If the crust is critical, does criticality hold temporabyd spatially? It is important
to address these two separately since any temporal variations, for example, may
be smoothed out by grouping the data spatially and vice-versa. In this chapter, |
test the gamma entropy equation on earthquake populations that are grouped first

temporally and then spatially.

The second part looks at self-organised criticality in relation to earthquakes and ad-

dresses the following issues:

1. Looking at the criteria deduced from the study of the BTW model in chapter 4,
is the crust strictly SOC? | have shown for the BTW model of SOC thatihe
exponent does not change regionally and universality is maintained (sédién

Can the same be said about the crust?

2. Does SOC best describe the crust or are there other hypotheses that are more con-

sistent with the data?

Some of the main results of this chapter are published in Main and Al-Kindy (2002) and
Al-Kindy and Main (2003) (see appendix).

5.1 ‘Critical’?

To reiterate some of the points made in chapters 2 and 3, is the crust ‘critical’? This
appears to depend on what an author means by ‘critical’. There are many studies as-
sessing ‘criticality’ (or ‘self-organised criticality’) in the crust on real data populations,
many of which use ‘critical’ to mean different things. Unfortunately, these are often
conducted using confused or even erroneous assumptions. | highlighted in chapter 2
(section2.7.2 how a driven ‘critical’ system is different from the classical equilibrium

thermodynamic definition of a critical point (CP) system. Howevéilet and Hainzl
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(2001), for example, use a spatial correlation length that grows in a power-law fashion
with time preceding a large earthquake as an indicator to the crust being a critical point
(CP) phenomena. Similar approaches are given by Shaw et al. (1992), Bowman et al.
(1998), Robinson (2001) anddler et al. (2001). However, a growing correlation length
preceding large events is not a property of an open driven or SOC system (Jensen, 1998;
Sornette, 2000). | confirmed this statistically for a numerical model of SOC in section
4.9.3 The growing correlation length approach should only be applied to an equilibrium
system such as the Ising or percolation model that has a specific critical point rather than
the attractor critical state associated with SOC. Therefore, for a driven system, a system-
atically growing correlation length prior to a large event should not be a requisite for a

system to be in a state of SOC.

Another approach used in earthquake ‘prediction’ is thafradture criticality where
variations in time delays associated with shear wave splitting are reported to occur be-
fore large earthquakes (Crampin, 1994; Crampin et al., 1999). The term ‘criticality’
here is used to describe the sensitivity of the rock to breaking (analogous to the per-
colating model close to the percolation threshold (secti@n3. This is more in tune

with equilibrium systems close to the critical point rather than driven dissipative sys-
tems. Similarly, Grasso and Sornette (1998) examine criticality in triggered earthquakes
but correctly define ‘criticality’ in terms of ‘large susceptibility’ and its association with
SOC. ltis this ‘loose’ use of the word ‘critical’ that leads me to emphasise what is meant
by it here and to avoid any confusion. Here | use a thermodynamic approach derived in
chapter 3 in assessing the criticality from the seismic energy release from the crust. In

summary, for logarithmic bins -as used throughout this chapter-:

S=B(lnE) — critical (5.1)

S# B(InE) — non — critical (5.2)
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5.2 The Harvard Centroid Moment Tensor (CMT) Cata-

logue

I mentioned in chapter 2 that earthquakes usually occur when strain energy stored in
the Earth’s lithosphere is suddenly released; a frictional resistance along a fault plane is
overcome and relative motion or ‘slip’ occurs (figusel). The analysis of this motion

can be used to give information on the size and orientation of the fault plane. This anal-
ysis is called docal mechanism solutiofKearey and Vine, 1996). The arrivals of the
seismic waves from the fault are measured by a series of global multi-component seis-
mographs that measure the amplitude of the arriving seismic waves in three dimensions.

The radiated amplitudes of seismic waves along three axis can be reduced to what is

AN ,;’// N\ -

—__d
N _fault™  earthquake
sip- — At

earth

Figure 5.1: Earthquake process in the crust: a) Earth cross-section showing activated fault with radiated seismic
waves (dashed arrows) and b) Seismic process: bl. fault after rupture, b2. accumulation of strain and b3. a slip along

a fault.

known as thescalar seismic momemtr Mo which is measured ivm. The details of

how this is calculated are not relevant here. What is important isttitebest measure

of earthquake size and energy release is the static (or scalar) seismic m{@taintand
Wysession, 2003). This is why | shall primarily use the scalar moment as a measure of

earthquake size in this study.

The primary source of moment data internationally is the Harvard Centroid Moment

Tensor catalogue, usually referred to as the CMT catalogue. From the moment data
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solutions, we can calculate a correspondimgment magnituden using (e.g. Kagan,
2002)
2

and the corresponding seismically radiated endrggan be calculated approximately

using (Kanamori and Anderson, 1975; Scholz, 2002)
log;o £ =1.5m+4.8 (5.4)

whereE' is in Joules. The CMT catalogue’s record begins in 1977 and at the time of

writing this thesis is published at http://www.seismology.harvard.edul/.

5.3 Analysis

In this chapter, the thermodynamic parameters of the data are measured in a similar way
to the methods used in chapter 4. Because of the nature of the crust, internal proper-
ties (those with subscriptin the results section of chapter 4) such as strain cannot be
measured so only external properties derived from the radiated energy are calculated.
However, in the previous chapter, | was dealing with a large synthetic data set with no

notable measuring errors. Here, with real data, more caution is required.

5.3.1 Data and magnitude range

Smaller earthquakes are not recorded in global data sets. To estimate the cut-off mag-
nitude, the incremental probability-magnitude distribution is plotted in figu2e This

shows that the deviation from the Gutenberg-Richter law occurs-at5.5. Data for the
valuesm > 5.5 are therefore considered to be complete for the purposes of this study.
Kagan (1997; 2002) reports that the CMT catalogue is complete only for magnitudes
m > 5.4 for the period 1987 onwards and > 5.6 from 1982 onwards. Figurg.3

shows the number of earthquakes recorded peryéarm > 5.5 1977-2000. It can be

seen that there is a sudden increase in the numbers after 1982. However, | have found
that this does not significantly influence the results calculated here (seeSigamehich

has data for period 1977-2000).

1The moment magnitude is denotad in the literature but for simplicity denoted here.
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Figure 5.2: Incremental magnitude probability distribution for all CMT data 1977-2000 showing data completeness for

m > 5.5. The solid line is of slope —1 for reference.
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Figure 5.3: Number of recorded events per year n for period 1977-2000 inclusive for moment magnitudes m > 5.5.
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In summary, | use the CMT data féd > 5.5 for the period 1977-2000 for all depth

ranges giving a total of 9042 events. All data are shown in figute

5.3.2 Bin widths

The data are binned in the magnitude domain (equivalent to logarithmic bin widths

01n F). Because the data are limited in numbers, the bin width used to produce the
energy incremental probability distribution must be chosen with caution. If it is too
narrow (more bins) there will be more empty bins that will destabilise the calculations
of S, B, etc. This is shown in figuré.5qa. Conversely, if the bin widths are too wide,

we may be filtering out characteristics of the probability distributions. This is depicted
in figure 5.5. By trial and error, | determine that the ideal bin-width for this study is
om = 0.25. From the binned energy data (equatiod), | follow the same procedure in

chapter 4 (sectiod.?) to calculatep(E), S and so on.

5.3.3 Scaling exponents

In addition to the parameters already outlined, | also investigate universality to see if the
earthquake energy probability distributions give a constant scaling expBremtsistent

with requirements of SOC, or if they vary in contradiction to it. Although there are
numerous studies on the variation of scaling exponents with space and time (e.g. Ogata
et al., 1991.0ncel et al. 2001; Cao and Gao, 2003), there are also studies that suggest
it is constant (e.g. Frohlich and Davis, 1993; Kagan, 1999; Godano and Pingue, 2000).
It is difficult to quantitatively compare the results of these studies in terms of scaling

exponents for the following reasons:

1. The studies use different techniques to calculate the scaling exponents that may
cause variations in the results. These include Aki's maximum likelihood method
(Aki, 1965), rank ordering statistics (Sornette et al., 1996), linear least squares fits
(Scholz, 1997; Godano and Pingue, 2000; Al-Kindy and Main, 2003; Amitrano,
2003) and fitting the gamma distribution and variations thereof (Main and Burton,

1986; Kagan, 1997; Koravos et al., 2003).
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Figure 5.4: World map showing all CMT earthquake data locations for A/ > 5.5, 1977-2000.
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Figure 5.5: The effect of bin width §m being a) too narrow, b) too wide.

2. The majority of these studies mentioned calculate the scaling exponent on the cu-
mulative frequency distribution. This smoothes the data and may introduce bias in

the results (Main, 2000). | therefore, as in chapter 4, only use incremental distribu-

tions.

3. Regional studies on the scaling exponents tend to cover a specific area chosen for a
particular study. In this study, | will follow the method of Kagan (1997) regional-

ising the data using the standard Flinn-Engdahl classification (Flinn and Engdahl,
1974) described below.

For these reasons, | use three methods to calculate the scaling exponents in this study.

The results can then be compared with other studies and with one another:

1. I calculateB using alLeast Squares Fit(LSF) through the linear (power-law) part
of the energy probability distributions. | refrain from fitting a gamma fit since my
primary interest here is in the slope of the distribution. Therefore, there is no need
to introduce the extra parametgr B as mentioned in chapter 2 usually takes an

average value of % worldwide (e.g. Frohlich and Davis, 1993)

2. Theb (calledb; hereon) value usingki's maximum likelihood method (1965)
is calculated by measuring the mean magnitude:

by — log;ge

T (5.5)

Here (m) is the mean magnituden¢ is the minimum cut-off magnitudes (5 in

this case) and; ~ 1 globally on average. This method is extensively used in
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the literature and interestingly shares some similarities with the gamma entropy
equation. Note that; depends mainly on the mean of the magnitude, similar to
S.,, which depends ofin E) andm ~ In E (chapter 2). Although we calculate a
scaling exponent, it is not certain from the obtained value that the distributian of

is necessarily a power-law. indeed might follow any distribution. | therefore use
this calculation in conjunction witlB which confirms whether the distribution of

m or E is a power-law. Using this somewhat ‘popular’ method makes comparison

of my results with other published results feasible.

3. Ifinally calculate a scaling exponebit using rank order statistics (ROS). This sta-
tistical method has been used in various disciplines including linguistics and DNA
analysis (Mantegna et al., 1995) and has also been applied to earthquake popula-
tions (Sornette et al., 1996; Sornette, 2000). The method simply involves putting
events in order of their size with the largest event being rank 1 and the second
largest rank 2 and so on. The event sizes are then plotted against their rank. In ac-
cordance with Sornette et al. (1996), if the slope of a power-law scaling exponent
is i, then the slope of the size vs. rank plot will %e For the case of magnitude

data, the slope of the magnitude vs. rank plot Willgge

5.4 The temporal study

I now examine the CMT data in time. | bin the data in yearly intervals and calculate the

external thermodynamic variables | examined in chapter 4.

5.4.1 Testing criticality

The magnitudes and energies are calculated from the moment data using ecuations
and5.4 respectively. The magnitude and energy release data are shown inFigure

Note the similarities between figuse and the numerical results of figu4et. The mean
energies released per year are calculated by taking the annual averages of all values of
In £ and E to give (In E) and (E) respectively. | then bin the yearly data to produce

discretized probability distributions calculatind£') from which | also calculate the
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Figure 5.6: Plot of a) moment magnitude release and b) energy release for all data m > 5.5.

entropy (equatior3.2]). | also measure the maximum energy released in a ¥ear..

The results of this analysis are shown in figré Note from figure5.7 that there is

a good correlation betwees and (In ) as predicted by equatio® 26 (chapter 3). |
then check to see if the temporal data are critical by plotiregainst(ln ') in figure

5.8 Figure5.8firstly confirms thathe prediction of the gamma entropy equation

is applicable to a real earthquake population Because of the linear nature of the fit,
the results also suggest that earthquake seismatyporallyis ‘critical’ or at least very
nearly critical following the criteria outlined in chapter 3. It should also be noted here
that the slope of the linear ling (= 0.6275x — 18.73) gives a slope oBg ~ % which

is in agreement with global estimates (e.g. Kagan, 2002). It must be said that although
the inferred slope is pleasingresult, it is somewhat coincidental. As | demonstrated in
chapter 3 (sectio8.7.3, the calculated value of will depend on the number of bins
used. Keeping everything constant, If | were to increase or decfeasere, this would
alter the calculated value &fs. It was another assumption associated with the derivation
of the gamma entropy equation th@) and (In £/) are not correlated. | tested this in
figure5.9. We can see from figurg.9that there is a negligible correlation between the

two with RZ = 0.09.
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Figure 5.7: Plots of annual variations of thermodynamic parameters (top to bottom) (In E), S, (E) and Eyq. 1977-

2000.
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Figure 5.8: Plot of S against (In E) for temporal data for years 1977-2000. The black line(s) are linear and quadratic

least squares fits that are indistinguishable. The error bars are calculated to one standard error.
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Figure 5.9: Plot of (E) against (In E) showing a negligible correlation (R? = 0.09).
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5.4.2 ‘Tectonic’ temperature Trp

Following the statistical definition of effective/tectonic temperature (dendtetere)

(see sectiod.7.3, | now measurd with time for the radiated energy. | also compare

its temporal variation with the mean energy releasg. This is shown in figur&.10a.

It can be seen that there is a coupling between the tectonic temperature and the mean
energy release. To further demonstrate this, | filotagainst(F) in figure5.10. We

can see from figure.1( that there is a good correlation between the two. This result is

in agreement with that found for the numerical NBTW model (figlire?), suggesting

that areas of higher mean energy release will be of higher ‘temperature’ and therefore
less predictable. This is since higher temperatures are associated with larger more erratic

fluctuations in energy.

15 10" xl%OM x10'°
2 . . . . . b)

12f  y=190.06x - 4E+16
R?=0.878

10

<E> (Joules)
T.

0 . . . . . 0 . . . . . .
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year <E> (Joules) x 10

Figure 5.10: Plot of a) Temporal variation of energy (E) (dashed line) and temperature 7T (solid line) for period

1977-2000. b) T+ against (F) showing a positive correlation between the two.

5.4.3 Three scaling exponents

From the data, | now calculate the three scaling expongnts andb,, defined in section
5.3.3 | calculateB from the probability distribution of the energy release. This is shown
in figure5.11 The figure shows the very close to power-law nature of the annual data.
The results ob; are given in tablé.1 | then calculatés from the rank ordering of the
magnitude data. This is shown in figusel2 A summary of the results of the scaling

exponents with time is shown in figuel3 In chapter 3, it was shown that the scaling



CHAPTER 5. Testing criticality in global earthquake populations

131

log[p(E)] log[p(E)] log[p(E)] log[p(E)]

log[p(E)]

0
Q. 1977 Q. 1978
Q@X -1
3
R, | -2
B= 0.5928 B=0.6511
-3
14 16 14 16
0
o
1982 Q. 1983
-1
-2
B=0.742 B=0.6014
-3
14 16 14 16
Une)
1987 1988
-1
-2
B=0.7723 B=0.7774
-3
14 16 14 16
0
Q1903
-1
-2
B=0.721%
-3
14 16
Oro 0o 05 log(E)
1997 1998 1999 2000
-1 -1 -1
ol -2 -2 © -2 <
B=0.6865°0 B= 0.6560 B=0.6461 B=0.6785
-3 -3 -3
14 16 14 16 14 16 14 16
log(E) log(E) log(E) log(E)

Figure 5.11: Plot of probability distributions for annual energy data 1977-2000 showing slopes of distributions B.
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Figure 5.12: Rank ordering plots showing magnitude against rank for annual moment magnitude data and values of
ba.
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Figure 5.13: Plot of temporal variations of scaling exponents B, b1 and by 1977-2000. The B exponent is rescaled for

comparison with b; and ba.

exponent can have an effect on the mean energy and entropy of a data set since it will
be one of the parameters governing #t@peof a distribution (sectior3.6.7). | now
investigate if there is any correlation between the three scaling exponents calculated and
the main thermodynamic variables measured, nanjelyy), S and(E). These results

are shown in figuré&.14. The results show in almost all cases there is at least a weak
negative correlation between the thermodynamic variables and the scaling exponents
measured. The most notable correlation is seen in figuiré. We can see that there is

a very distinct negative correlation betwegrand(In E). This is not surprising because

m ~ In E' (Kanamori and Anderson, 1975) and giverdepends orim) (equatiorb.5).
However, there is no apparent correlation betw&eand (In E) in figure 5.14a. This

would suggest that either the two are not related for real earthquake populatitra

the B values are on average universal, therefore clustered around a particular value and

not showing any obvious change withn £).

5.4.4 Data check

In chapter 4, every run had the same number of data points. Here, the numbers vary

annually as depicted by figute3. | therefore plot the thermodynamic and scaling expo-
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nent variables against their annual totals to see if there are any systematic dependencies
on data numbers. This is shown in fig@rd 5 The figure shows no obvious dependence
of any of the variables on their numbers. This validates using the pre-1982 data since the

number of points does not influence the results. This concludes the temporal study of the
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Figure 5.15: Plot of a) S on n b) (In E) on n c) (E) onn d) B onn e) by on n f) ba on n for 1977 — 2000 data.

CMT catalogue. The results of the temporal study are summarised intdble

5.5 The spatial (regional) study

5.5.1 Flinn-Engdahl regionalisation

Flinn and Engdahl (1974) developed a standard to subdivide the Earth based on geo-
graphic and geological constraints (referred to here as the FE regionalisation). Although

the classification has several hundred subdivisions, it broadly divides the earth in to 50
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year n (In E) (E)y x 1015 8 Tr x 1016 B b1 b

1977 343 3164 1.11 1.09 1.17 0.59 0.95 0.97
1978 333 3172 0.54 1.15 0.30 0.65 0.90 0.96
1979 322 31.69 0.61 1.16 0.54 0.64 0.92 0.96
1980 341  31.74 0.40 1.20 0.20 0.70 0.89 0.98
1981 322 3162 0.32 1.13 0.14 0.70 0.96 1.00
1982 334 3147 0.23 1.02 0.10 0.74 1.06 1.05
1983 396  31.68 0.45 1.15 0.25 0.60 0.92 1.01
1984 375 3144 0.28 1.02 0.12 0.73 1.08 1.02
1985 367  31.67 0.57 1.14 0.45 0.66 0.93 1.01
1986 382 3148 0.41 1.03 0.34 0.72 1.05 1.08
1987 409  31.64 0.36 1.15 0.23 0.77 0.94 1.00
1988 388 3144 0.27 0.99 0.16 0.78 1.08 1.08
1989 374 3144 0.38 0.99 0.40 0.75 1.08 1.13
1990 405 3152 0.38 1.06 0.19 0.69 1.02 1.01
1991 323 3166 0.35 1.14 0.16 0.66 0.93 0.98
1992 412 3162 0.34 1.10 0.18 0.78 0.95 1.05
1993 374 3158 0.38 1.08 0.23 0.72 0.98 1.03
1994 382 3159 1.20 1.10 1.17 0.59 0.98 0.96
1995 477 31.66 0.70 1.15 0.51 0.60 0.93 0.95
1996 439 3155 0.87 1.05 0.75 0.63 1.00 0.97
1997 373 3147 0.42 1.03 0.25 0.69 1.05 1.00
1998 317 3157 0.61 1.08 0.56 0.66 1.00 0.98
1999 392 3151 0.35 1.03 0.16 0.65 1.04 1.01
2000 351 3145 0.48 1.00 0.35 0.68 1.07 1.04
average 8938 31.58(0.01) 0.50(2.49) 1.09(0.06) 0.37(2.95) 0.68(0.06) 0.99(0.06) 1.01().05)

Table 5.1: Summary of results for annual temporal study. The totals are given in bold and standard deviations are

given in brackets.
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tectonic regions numbered 1 to 50 (called the FE number). These are shown earthquake
locations in figurés.16 The FE coordinates used to construct fighiresand to region-

alise the CMT data in this study were obtained from the United States Geological Survey
(ftp ghtftp.cr.usgs.gov). | then incorporated the FE data into a matlab code to analyse and
subdivide the CMT earthquake data. The FE system predates the CMT catalogue. This
means that there cannot be any spatial retrospective bias in the data selection by using
it (Kagan, 1997; Al-Kindy and Main, 2003a). Also, because the FE classification is
standardised, the results shown here can be reproduced, compared and checked against
results of other authors using the same classification. | group the data into tectonic zones
following Kagan’s grouping irkagan (1997). The four subgroups of Kaga(l.997)

based on tectonic deformation style are as follows and are defined in accordance with

Fowler (1990) and Kearey and Vine (1996):

1. Subduction zones These are areas of tectonic plate destruction where oceanic
lithosphere subducts under continental or oceanic lithosphere. This can generate
earthquakes up to depths of 700 km. Subduction zones are characterised by high
seismic activity, volcanic arcs and large earthquakes. In accordance with Kagan
(1997) these are FE regions 1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23,

24 and 46. Examples include Japan, the Caribbean Loop and Alaska-Aleutian Arc.

2. Collision zones These are areas where continental crust collide. These areas are
characterised by the formation of mountain belts. In accordance with Kagan (1997)
these are FE regions 25, 26, 27, 28, 29, 30, 31, 41, 47 and 48 and include Northern

India and Western and Eastern Asia.

3. Intra-continental zones These are areas where the lithosphere is deformed under
the influence of extensional forces and are found on continents of various settings.
In accordance with Kagan (1997) these are FE regions 34, 35, 36, 37, 38, 42, and

49. The main example is the African Rift Valley.

4. Mid-ocean ridges There are areas in the oceans where new oceanic lithisphere
is constructed as new material rises from the mantle and the plates spread apart.

They are characterised by shallow earthquakes and add to a total length of 60,000

2Kagan has a fifth grouping of ‘others’ which do not fit into any of the four categories given here. Although

these are shown where possible, they are not used in the final spatial analysis.
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Figure 5.16: World map showing Flinn-Engdahl regionalisation that subdivides the world into 50 regions. Earthquakes within regions are also shown.
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km worldwide. Ridges play an important role in the dissipation of heat and are
responsible for approximately 60% of global heat loss (Sclater et al., 1996). In
accordance with Kagan (1997) these are FE regions 4, 32, 33, 40, 43, 44 and 45

that include the Mid-Atlantic and Indian Ocean ridges.

- © b _©_

==&

Figure 5.17: Schematic of the four deformation styles in the crust: a) Subduction zone, b) Collision zone, c) Intra-

continental zone, d) Mid-ocean ridge.

It is important here to note fror.16that the regions are of different size and there may
therefore be a more pronounced variation in the number of earthquakes within each area
bin when compared with the yearly bins of the temporal study (fi§ue | demonstrate

this in figure5.18 We can see from figurg.18that the variation in number of events
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Figure 5.18: Plot of number of points n for FE regions 1-50.

per region is considerable. Therefore, the effect of data numbers on thermodynamic
variables is checked in a similar way as the temporal study in figur& Because

some regions contain no data or too few to calculate any of the thermodynamic variables
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Zone type Number of regions Events
Subduction 17 6047
Collision 9 617
Intra-continental 1 62
Mid-oceanridges 5 963
Total 32 7689

Table 5.2: Number of regions analysed per deformation zone and corresponding total number of events.

accurately, | remove any regions with< 30 to ensure stable estimates$andB etc.
This leaves a total of 32 out of the 50 regions for analysis and a total of 7656 earthquake
events in accordance with Al-Kindy and Main (2003). The quota for each zone style is

shown in table&. 2.

5.5.2 Testing criticality

I now test criticality for the spatial ensemble as | did the temporal enserilifely
plotting S against(In E) for the regionalised data. This is shown in fig&ré&9 In figure

5.191 plot data for the 32 FE regions grouped by deformation type. The figure shows
two things. Firstly, the difference between the linear and quadratic fits is more evident
than the case for the temporal data in figarg This would suggest that in the spatial
sense, the data are sub-critical since they deviate from equafiénThe curvature of

the quadratic curve is also in the right sense as predicted analytically in chapter 3 (figure
3.13. Second, it can be noted that the mid-ocean ridges (mor) are at the lower end of
the curve (lowerS) whereas the subduction zones (sub) are scattered at the higher end
of S. The significance of this curvature is addressed using Akaike Information Criterion
(AIC) (Akaike, 1978).

5.5.3 Akaike information criterion ( AIC)

Figure5.19shows both a linear and quadratic fit wiii? values of 0.93 and 0.95 respec-
tively. A better fit (smaller residual error or high&?) for a quadratic fit model is ex-

pected as it has an extra free parameter. We are therefore required to penalise for the extra
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Figure 5.19: Entropy S against energy (In E) for regionalised data with linear (dashed line) and quadratic (solid line)

fits (modified from Al-Kindy and Main, 2003). The different symbols correspond to 4 different deformation styles:

‘sub’=subduction, ‘col’=collision, ‘intr'=intra-continental and ‘mor’=mid-ocean ridge. Errors bars are calculated to one

standard error.
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free parameter in the quadratic fit in order to compare its fitness to a linear model. The
penalization is done here using Akaike’s Information Criteridid ) (Akaike, 1978;

Draper and Smith, 1998; Main et al., 1999). If data points can be defined by
yi =y(x;) + € (1=1,2,3,...n) (5.6)

where~ is the theoretical modet, is an error term ana is the number of points (here

n = 31), the residual sum of squaréss's is then

=1
RSS = [yi — ()] (5.7)
with 4 the maximum likelihood model estimate and
n
L(y,z*) = 5 In(RSS) (5.8)
The Akaike Information Criterion is then
AIC =L(Y) — ¢ (5.9)

whereq is the number of free parameters. The simplest model consistent with the data
has the highestlIC'. | calculate this criterion on the 32 data points in figbré9 as
shown in figures.20 Figure5.20shows that a quadratic fit (polynomial order =2) gives

a higher value forA7C when compared to a linear fit (polynomial order =1) despite the
penalty for the additional free parameter. The differencelii” of 3.5 between the
linear and quadratic fit is considered significant sidde”,,; — AIC, > 1. That s,

by putting in an extra parameted,/C decreases by 1, but the likelihood increases by
4.5, so the resultant gain of 3.5 is significant. It can be concluded from flg@fghat a
guadratic fit statistically better describes the data than a linear fit and the distribution can

be described as 'sub-critical’. This result is published in Al-Kindy and Main (2003).

5.5.4 Re-examination of Al-Kindy and Main (2003)

After the publication of Main and Al-Kindy (2003) and the submission of this thesis, it
was noted that the curvature 8fvs. (In F) in figure5.19will be influenced by the point

corresponding to Flinn-Engdahl region 47. This is the lowest point on figLirgon
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Figure 5.20: Plot of Akaike information criterion (AIC) for polynomials of different powers with a quadratic distribution
(n=2) giving the best fit (from Al-Kindy and Main, 2003).

both thex andy axis. Therefore, a repetition &fvs. (In £) plot and theA/C analysis

is done here excluding this point to assess its influence on the final results.

First | compare the difference in the linear and polynomial (quadratic) fits to the data
with and without region 47 in figurB.21 It can be seen from the dashed lines in figure
5.21that there is a decrease in slope of the linear fit and the curvature of the polyno-
mial fit when FE region 47 is excluded although the curvature is still in the right sense.
Therefore, the inclusion of the point has a notable influence on the curvature. To further
compare the results of the curved fit to the linear fit excluding region 47, | recalculate
the AIC as shown in figuré.22 and compare it with the AIC including region 47. It
can be seen from the figure that although there was previously a significant difference
in the AIC between the linear and quadratic fit$/(Cy1 — AIC, ~ 4.5), this differ-

ence becomes insignificant when region 47 is removed\, . ; — AIC, ~ 0.25). The

AIC results tell us that a linear relation is the simplest fit to the data when region 47 is
excluded. This means that the data is closer to being ‘critical’ with region 47 removed

similar to the temporal data (figue8).

In summary, it has been found after the publication of the Al-Kindy and Main (2003) that
FE region 47 will influence the curvature of thevs. (In E) plot for regional data. The
inclusion of this point suggests sub-criticality whereas its exclusion suggests criticality

following the criterion of chapter 3. The curvature is also in the right sense. However,
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Figure 5.21: Plot of polynomial fits with (solid line) and without (dashed line) FE region 47 (arrow). The error bars are

calculated to one standard error.
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Figure 5.22: AIC plots with and without region 47.
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this finding does not change the conclusion that the data analysed are more predictable in
space than they are in time given the differences between different deformation zones as
verified in sectiorb.5.7below. In other words, we are more certain of the differences in
space over a given time than we are of changes in time over a given space. All subsequent
analyses in this chapter will exclude region 47 leaving a total of 7656 events over 31
regions. It can also be noted from figuse23 below that region 47 does not contain

sufficient data to produce a reliable energy-probability plot.

5.5.5 Scaling exponents B, b; and b,

It was shown in the temporal study that the scaling expongnts, and b, did vary
somewhat annually as was summarised in tabdleHere | carry out the same analysis on

the regional data to see if the change in scaling exponents is also present in the spatially
divided data. First | calculate the values Bffor all regions. This is shown in figure
5.23 | also calculateé, for all regions as shown in figure24 Note that although |

have included all 50 regions here, only regions with more that 40 recorded events are
now used in the final analysis. The values éf are also calculated from the mean
moment magnitude data for every region. A summary of the variation of the scaling
exponents with region is shown in figuse25 It is clearly seen from figuré.25that

there is a far better correlation between the scaling exponents with each other for the
spatial case when compared to the temporal case (figf: This supports the claim

that regional variations are more amplified than temporal ones The deformation

style will therefore have an influence on the general seismicity statistics.

Following from this, | now re-examine the question whether there is a more pronounced
dependence of the thermodynamic variables on the scaling exponents inHigare

The figure shows a good negative correlation betwge®), (E) andS and all three

scaling exponents despite the different ways in which they are calculated. This suggests
that these scaling exponents may be used as a measure of self-organisation since they
are negatively correlated wit. This is particularly true fob; as was found for the
temporal ensemble. This transpires that the higher the scaling exponent, the more the

organisation (lower entropy). Also, the scaling exponents can be an indicator of what

3Kagan (1997) in his regional study uses regions with as few as 6 events.
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Figure 5.23: Plot of log[p(FE)] against log F for FE regions 1-50 with corresponding values of B.
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Figure 5.25: Plot of variation of scaling exponents B, b; and b2 with FE region. The B value is rescaled for comparison

with b and ba.

the expectation of the radiated energy is for a given region; the higher the exponents, the
lower the mean energy as seen in figbrd6 This is in agreement with Godano and
Pingue (2000) who find a negative correlation between the maximum moment release
and the scaling exponer. The results here are also in agreement with models of

seismicity (e.g. Olami et al., 1992; Main et al. 2000).

5.5.6 Data check

As | have demonstrated in figuEel8 the number of events in each region varies con-
siderably. A check is therefore performed to see if any of the variables measured are
dependent om as shown in figur&.27. The figure shows that there is no obvious cor-
relation between the parameters measured although the scatter decreases slightly with
increasingn. Again, this justifies comparing data of different regions despite the dif-
ference in event numbers. This is done keeping in mind the exclusion of regions with

n < 40 that could give scattered results.
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5.5.7 Spatial study results

The results of the spatial study are summarised in taldelt can be seen that there is a
notable difference between the results of the subduction zones and the mid-ocean ridges.
For example, all scaling exponents are higher for mid-ocean ridges (0.94, b; =

1.24, by = 1.27) relative to the subduction zoneB (= 0.67, by = 0.95, by = 0.96).

Kagan (1997) finds a similar result with = 0.92 for mid-ocean ridges ang = 0.63

for subduction zones. Here, | confirm the result for a further two scaling expomegnts,
andb,. Kagan also bases his results on the cumulative frequency of events whereas |
show results for incremental probability distributions. Variations of scaling exponents
can be attributed to several factors including an increase in tectonic plate velocity (Cao
and Gao, 2002) rheology (Lyakhovsky et al., 2001; Amitrano, 2003) and temperature
(Wiens and Gilbert, 1996) both in space and time.

I also find that the entropy for the mid-ocean ridges is lowfer=f 0.88) than for the
subduction zonesS( = 1.11). Although this entropy is measured on the ‘dynamic’
energy release, the result can be compared with that of Nicholson et al. (2000) who also
find a lower ‘spatial’ entropy for mid-ocean ridges when compared to subduction zones.
However, they do find that intra-continental zones have the highest spatial entropy. As |
only have one zone representing intra-continental regions (FE=37), it is not possible to
fully compare my results with theirs. Nonetheless, the results here, and those found by
Kagan (1997) and Nicholson et al. (2000) all indicate a higher level of organisation in
mid-ocean ridges relative to subduction zones. The results here for the collision zones
are somewhat mixed as they are scattered between the two extremities of energy and

entropy.

To confirm that the regional variations are real, | now conduct a check by randomising
the data to see if the variations observed still remain. | do this by shuffling all magni-
tude data then repeating the analysis as | did above. | repeat this randomisation 20 times
calculating the thermodynamic values for every region/zone. | then compare the mean
of the randomised runs with the original un-shuffled results. These are shown in table
5.4. We can see from tab4that the variations in mean values between different zones

become less evident in the randomised data when compared to the ‘real’ data. For exam-
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FE n (In E) (B) x 1015 S B b1 bo
Subduction zones

1 340 31.71 0.69 1.16 0.63 0.91 0.96
5 249 31.82 1.06 1.22 0.54 0.85 0.83
6 200 31.67 0.44 1.13 0.66 0.93 0.98
7 83 31.58 0.18 1.09 0.68 0.98 1.02
12 927 31.44 0.42 1.01 0.75 1.08 1.06
13 367 31.38 0.26 0.93 0.81 1.13 1.16
14 595 31.83 0.47 1.23 0.64 0.85 0.95
15 579 31.69 0.39 1.18 0.69 0.91 0.98
16 318 31.71 0.29 1.18 0.76 0.90 1.03
18 232 31.72 0.46 1.16 0.68 0.90 0.96
19 606 31.66 0.91 1.14 0.62 0.93 0.94
20 107 31.59 0.20 1.04 0.64 0.97 1.02
21 121 31.70 0.45 1.13 0.64 0.91 0.96
22 395 31.73 0.53 1.17 0.68 0.90 0.94
23 422 31.53 0.43 1.04 0.64 1.02 1.05
24 423 31.62 1.01 1.12 0.63 0.96 0.96
46 83 31.44 0.15 0.94 0.75 1.08 1.13
average 6047 31.64(0.13) 0.49(0.28)  1.11(0.09) 0.67 (0.06) 0.95(0.08) 0.96 (0|
collision zones

25 53 31.79 0.27 1.19 0.61 0.86 0.93
26 62 31.90 0.36 1.19 0.52 0.85 0.95
27 52 31.44 0.10 0.96 0.81 1.08 1.30
29 107 31.80 0.38 1.20 0.57 0.86 0.90
30 108 31.73 0.50 1.17 0.51 0.90 0.83
31 52 31.37 0.17 0.93 0.70 1.15 1.05
41 57 32.09 0.73 1.33 0.45 0.74 0.73
47 31 31.09 0.12 0.59 0.70 1.46 1.26
48 93 31.69 0.35 1.13 0.66 0.94 0.94
average 584  31.73(0.23) 0.39(0.20) 1.14(0.13) 0.60(0.16) 0.92(0.13) 0.95(0
intra-continental

37 62 31.62 0.23 1.08 0.61 1.00 0.98
mid-ocean ridges

32 287 31.32 0.12 0.88 0.81 1.18 1.22
33 251 31.45 0.37 1.01 0.66 1.09 1.15
40 41 31.07 0.07 0.79 0.89 1.55 1.22
43 276 31.22 0.07 0.81 1.15 1.28 1.54
45 108 31.41 0.96 0.92 1.17 1.12 1.21
average 963  31.29(0.16) 0.32(0.38)  0.88(0.09) 0.94(0.22) 1.24(0.19) 1.27 (0|

08)

17)

15)

Table 5.3: Summary of results for spatial study. The standard deviations are given in brackets and the total numbers

of events per region are given in bold. Region 47 given in italics is not included in the calculation of the averages and

n.
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real subduction zones  collision zones  mid-ocean ridges
(In E) 31.64 (0.13) 31.73(0.23) 31.29 (0.16)

S 1.11 (0.09) 1.14 (0.13) 0.88 (0.09)

B 0.67 (0.06) 0.60 (0.16) 0.94 (0.22)

by 0.95 (0.08) 0.92 (0.13) 1.24 (0.19)

by 0.99 (0.08) 0.95 (0.17) 1.27 (0.15)

randomised  subduction zones  collision zones  mid-ocean ridge

2]

(In E) 31.60 (0.10) 31.59 (0.17) 31.59 (0.09)
s 1.09 (0.07) 1.06 (0.04) 1.08 (0.04)
B 0.67 (0.09) 0.60 (0.13) 0.64 (0.08)
by 0.98 (0.01) 1.00 (0.04) 0.99 (0.04)
bo 0.97 (0.02) 0.97 (0.05) 0.98 (0.04)

Table 5.4: Summary of mean results for real and randomised data sets. The standard deviations are given in brackets.

ple, note how all the scaling exponents for the randomised data become similar between
zones. What is more interesting is that the results are closest to what is calculated for
‘real’ un-randomised subduction zones. Why is this happening? We can see from tables
5.2 and5.3 that the largest number of data points are for subduction zene®{ of
analysed data) compared to say mid-ocean ridgg% (of data). These therefore will
overprint and smooth out the variations in the temporal data as well as the randomised
data. In summary, the regional study shows systematic variations between deformation
zones that are real. These are evident in the higher organisation (larger scaling expo-
nents and lowelS) and lower energy release for mid-ocean ridges when compared to

subduction zones.

5.6 Comparison of results with theoretical phase dia-

grams

In chapter 3, | used analytical thermodynamic results to construct energy entropy phase
diagrams that show how entropy varies with scaling expoigrin £) and (E) in the
sub-critical, critical and super-critical regimes. | now make a direct comparison of both
temporal and regional data with the theoretical curves to establish their state of criticality.

The phase diagrams are shown in figusea3 and 5.30 with zooms respectively in
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Figure 5.28: B vs (E) phase diagram with super-imposed results of temporal (circles) and spatial (dots) studies. Note
the proximity of the data to the ‘critical’ solid curve.
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Figure 5.29: Close up B vs (F) phase diagram with super-imposed results of temporal (circles) and spatial (dots)
studies.



CHAPTER 5. Testing criticality in global earthquake populations 155

3.5

32 34 36 38 40
<InE>

Figure 5.30: B vs (In E) phase diagram with super-imposed results of temporal (circles) and spatial (dots) studies.

Note the proximity of the data to the ‘critical’ solid curve.
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Figure 5.31: Close up of B vs (In E) phase diagram with super-imposed results of temporal (circles) and spatial (dots)

studies.
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figures5.29and5.31 It can be seen from the four figures that the temporal data (circles)
are clustered very close to the ‘critical’ line with the data mostly in the sub-critical regime
for (F) (figure5.29 and in the super-critical regime for then F) (figure 5.31). The
spatial data (circles) are more scattered compared to the temporal data for both cases and
lie in both the sub-critical and super-critical regimes. It is unclear to me whylth&)

data predominantly plot in the super-critical regime. However, they are with one standard
deviation of the ‘critical’ line as shown by the error bars in figargl We know from the
energy density distributions and tfi@ E') vs S plots (figuress.8and5.19) that the data

are critical to sub-critical. Nonetheless, it is reassuring that the data follow the trend of
the critical line and are almost parallel to it for bdth) vs S and(In E) vs S plots. This
further confirms that data (in theory) can maintain a criticality state (be it critical, sub-
critical or super-critical) by varying the scaling exponantd mean energy. Therefore,
universality can be violated without criticality necessarily being affected according to

the thermodynamic definition outlined in this thesis.

5.7 Self-organised criticality?

In this brief second part, | look at the earthquake data in light of the results from the
numerical model of chapter 4. Based on the results presented in this chapter, and the
results deduced from the study of the numerical Bak et al. (1987) BTW model of self-
organised criticality (SOC) (sectiofi9), | now try establish if the Earth is indeed in

a strict state of SOC. | have shown in the previous chapter that the conservative BTW
model does show regional variations in the level of ‘seismic’ activity with it being most
active away from the boundaries. Looking at figtré, we see that the Earth too is more
seismically active in some areas than others. Also demonstrated in the regional study of
the BTW model was that we can get two different types of distributions, one of which
was a power-law and the other a gamma distribution (figu2€), so any variations in
distributions observed in figurés1land5.23need not contradict SOC. However, there

are two crucial contradictory factors:

1. The breakdown of universality: this was not seen in the BTW model but seen here

for all three scaling exponents as summarised in tahlkand5.3. A regional vari-
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property SOC data
spatial variability yes  yes
conservative yes no

power-law and gamma yes  yes

universality yes  no

SOC yes no

Table 5.5: Comparison of model of SOC and results of earthquake data analysis.

ation in scaling suggests a form of correlation length and a variation in the system
dynamics with space on a fundamental level (e.g. ocean-ridges vs. subduction-
zones).This vital difference suggests that the Earth cannot be best described

by a pure state of self-organised criticality

2. The BTW model is internally conservative which allows for avalanche events to
cascade to length-scales approaching the system size. We know however from the
laws of thermodynamics and general observation that the Earth’s lithosphere must
be dissipative. Also, earthquake ruptures spanning the size of the entire crust have

not been observed.

I summarise my findings in table.5. | hope this very briefly and hopefully conclu-
sively ends the ongoing debate on whether Earth seismicity is a SOC process; it is not.
The Earth’s seismicity may be described as a process undergoing self-organised sub-
criticality or (SOSC) as proposed by Al-Kindy and Main (2003a). This is simply a
dissipative SOC model in accordance with the NBTW model -or similar models- shown
in chapter 4. An SOSC model can accommodate for all the aspects outlined ib.table

and because it is dissipative, it is more in tune with natural systems.

5.8 Entropy production and heat flow

There are two thermodynamic assumptions or predictions that can be made about driven
dissipative structures. These, in accordance with Kondepudi and Prigogine (1998) (see

chapter 2), are as follows:
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1. Keeping everything constant, an increase in entropy will be accompanied by a de-

crease in entropy production.

2. Entropy production is related to heat flow

Based on this, | attempted to conduct a simplified study to see if areas of higher (lower)
entropy will show lower (higher) heat flow. Following my viva examination, this study
was subsequently removed from the main body of this thesis since it proved inconclusive
and was not rigorous enough. However, to my best of knowledge, no such attempt at
relating entropy as derived from seismic energy release (or self-organisation) to heat
flow has ever been made. | have therefore included this study in the appendix of this
thesis for the curious reader. On an encouraging note, it should be mentioned here that
based on available evidence, mid-ocean ridges have a higher heat flow and, as shown in

this chapter, lower entropy when compared to subduction zones and vice-versa.

5.9 Chapter summary

This chapter examined criticality and self-organised criticality in the crust through tem-
poral and spatial analysis of data from the Harvard Centroid Moment Tensor catalogue.
The regional study was also extended to The Global Heat Flow Database. The following

results were found:

1. The gamma entropy equation derived in chapter 3 is found to be applicable and in
agreement with real earthquake populations. The temporal study suggests that in a
thermodynamic sense the Earth is critical or very close to critical. The spatial study
on the other hand shows that the Earth is best described as a sub-critical system.
This quantitatively shows that earthquakes are more predictable in space then they
are in time. However, if we are to exclude FE region 47, the spatial data are then
also best described as ’critical’. Overall however, the data show more variation

spatially than temporally.

2. A study of three different scaling exponerits b, andb, shows that scaling vari-
ability exists for a spatial ensemble of earthquake data. This contradicts the premise

of universality for earthquake populations.
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3. The weak to strong negative correlation between the scaling exponents and the
thermodynamic variables suggests that scaling exponents can be used as a proxy
for variables such as the entropyand the mean energi€®) and (In E). This
is in agreement with Godano and Pingue (2000) who find a negative correlation

between the maximum cut-off seismic moment and the scaling expéhent

4. The spatial study shows that mid-ocean ridges are more organised (lower entropy)
than the continental subduction (and collision) zones. In accordance with the back-
ground presented in chapter 2 and the prediction of chapter 3, this might suggest
that mid-ocean ridges should be of higher entropy production and therefore higher
heat flow. This qualitative inference is found to be in agreement with studies of heat
flow data (e.g. Pollack et al., 1993) that show higher heat flow for oceanic regions
compared to continents. This study however proved inconclusive and is included

in the appendix of this thesis.

5. In relation to SOC and point 2 above, the violation of universality as shown by the
variations in regional measurements of three scaling exporgrts andb, con-
tradicts self-organised criticality. This gives impetus to describe Earth seismicity
using self-organised sub-criticality in accordance with the NBTW model described

in chapter 4.
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Chapter 6

Discussions and prospects

“The laws of thermodynamics have a different feel from most of the other laws
of physics. There is something more palpably verbal about them - they smell

of their human origin”-Percy W. Bridgmah

6.1 Introduction

In this thesis, it has been shown that the tools of equilibrium thermodynamics/statistical
mechanics can be used to better understand self-organisation in dissipative out-of-equilibrium
power-law systems. The systems | examined in this thesis were the conservative and
non-conservative BTW numerical models and seismicity of real earthquake populations.

| ended the previous main chapters with a discussion/summary of the their respective
results. In this chapter, | discuss some issues and questions raised by the results from the
previous chapters. | also attempt to give a ‘bigger picture’ discussion pointing out the
relevance of the work done here with thermodynamics and self-organisation in general.

| also make suggestions on directions particular areas could be built upon and further
advanced. | try where possible to discuss the issues in the order they first appear in this

thesis.

!Physics Nobel Prize winner, 1946. As quoted by Kirkaldy (1985).
161
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6.2 The gamma entropy equation

6.2.1 Scaling exponent B

The gamma entropy equation derived in chapter 3 for logarithmic bins is given here once

more for reference:

S~ B(InE) (6.1)

The equation was successfully applied to both numerical model data in chapter 4 and
temporal and spatial earthquake data in chapter 5. However, there are some questions
that can be raised here. For example, why igroportional toB? | have shown that the
entropy is inversely proportional tB8 in the phase diagrams in chapter 3 (figGré1)

and results of chapter 5 (figuke26). However, as it can be seen from figlr@6 B is

also inversely proportional tdn £) so if we take the extreme caseBf— 0, (In £) —

large compensating for the reduction &. The gamma entropy foB = 0 reduces

to a pure Boltzmann exponential. It is also stressed that the derivation of the gamma
entropy equation was done integrating with respect to energy and.ngonetheless, it

is interesting to have an equation that combines energy, entropy and a power-law scaling
exponent all in one expression. What would be interesting if possible is to derive an

expression with respect 8 assuming a fixed energy.

6.2.2 Applicability

There has been debate in the literature on whether equilibrium statistical mechanics and
thermodynamics can be applied to far-from-equilibrium systems (Bridgman, 1950, Sor-
nette, 2000). A clear result from this thesis is that they are indeed applicable to a dynamic
ensemble of synthetic and real earthquake data. The application of equilibrium thermo-
dynamics and statistical mechanics to non-equilibrium systems is currently of great inter-
est to many branches of physical and biological science. In relation to seismicity models,
Rundle et al. (1995) suggest for a numerical model tBaltzmann fluctuations will be
important in these systems, and that these may be the origin of extended spatial cor-
relation observed in real earthquake fault system@ijuring that standard techniques

of equilibrium statistics may be used in the interpretation of at least some far-from-
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equilibrium dynamic systems. In addition, Rundle (1993) uses a statistical-mechanics
approach to explain deviations from the Gutenberg-Richter law at lower magnitudes.
This is done using a similar approach to Main and Burton (1984) as outlined in chapter

3.

Looking at a chaotic model, Egolf (2000) states thatne far-from-equilibrium systems
might be understood in terms of equilibrium statistical mechaniggjolf continues to

prove this statement for a far-from-equilibrium chaotic model. Similarly, Klimontovich
(1999) shows theoretically the applicability of statistical mechanics and Shannon infor-
mation theory to open biological and quantum systems. The applications of equilibrium
thermodynamics and information theory have even been applied to power-law numeric
‘sequences’ that have been contaminated by noise (Freund et al., 1996). The use of
equilibrium thermodynamics has also been applied to better understand self-organisation
away from equilibrium in the laboratory. For example, statistical entropy has been suc-
cessfully measured to quantify the level of chaos inéa&d cell type experiment (Ca-

puto and Atten, 1987), in quantifying transient spatial distribution of fractures in a rock
physics experiment (Nanjo et al., 2000) and very recently to vibration-fluidised granular
matter (D’Anna et al., 2003). Studies extending to dissipative climate models include

Lorenz et al. (2001) and Ozawa et al. (2001).

Applications in the field include spatial entropy (configurational entropy) such as to dis-
tributions of earthquakes locations (Nicholson et al., 2000; Goltz d@s#B2002). Al-
though the application of entropy (information and statistical mechanical) to quantifying
spatial distribution is common practice (e.g. Goltz, 1997), the application to open driven
systems remains somewhat controversial sith@sy appear to have little in common with
equilibrium systemgEgolf, 2000). It is emphasised that in the majority of the examples
outlined, a stationary steady-state is normally the underlying assumption to the applica-
tion of equilibrium thermodynamics and statistical mechanics to these problems. In sum-
mary, although the application of equilibrium thermodynamics and statistical physics to
far-from equilibrium is emerging in the literature (as outlined in the references above),
this area of physics/thermodynamics is in its infancy leaving a lot of scope for further re-
search. This thesis, to my best of knowledge, is a first formal attempt at applying such an

approach to understand self-organisation in energy released from the Earth’s crust in the
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form of earthquakes. This is encouraging for further application to other natural systems

(biology, ecology, hydrology etc.).

6.3 Lessons from SOC and numerical modelling

6.3.1 Dissipation

Regarding SOC, the reoccurring theme seems tit sestill fair to say that the appear-

ance of large scale power-law scaling ranges in the dynamics of these [SOC] systems
remains an important unexplained effe@€ross and Hohenberg, 1993). But, what can
we learn from SOC based on the results presented in this thesis? | have shown through
analysis of the conservative BTW numerical model that there is heterogeneity in the
spatial occurrence of site failures with distance from the edges (figBe This is be-

cause dissipation is only allowed to occur at the edges in the BTW model. Once internal
dissipation is introduced, the spatial heterogeneity disappears (fig2@e However,

once internal dissipation is present, the pure power-law in the energy probability distri-
bution also disappears and we are left with gamma type distributions (f#greSo,
dissipation at the edges in the BTW model is essential to achieve SOC whereby inter-
nal dissipation destroys pure SOC. This destruction of pure SOC is very sensitive to

dissipation as exhibited by equatidr?a

What can this tell us about real systems? Nicolis and Prigogine (1977) suggest dis-
sipation is a primary cause behind symmetry breaking (defined in chapter 2) and the
occurrence of spatial patterria:symmetry-breaking instability induced by diffusion im-
plies that that the primary pattern is necessarily a spatial dissipative struc{Nieblis

and Prigogine, 1977, p.g 416). In that particular example, the process of dissipation was
diffusion as opposed to say convection as in tlea&d cell experiment. It is therefore

not only important how much a driven system is dissipative to self-organtsereand

how it dissipates energy is also important. Therefore, dissipation may have a quanti-
tative element (the percentage of energy lost say) as well as a qualitative one (where
from the system it occurs say) which must be taken in to accolihts may be an

underlying factor as to why different driven systems show different forms of organ-
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isation such as Bnard cells (Cakmur et al., 1997) power-laws (Bak et al., 1987) and
periodic chemical reactions (Cross and Hohenhet§93; Kondepudi and Prigogine,
1998), biomolecular processes (Cavanagh and Akke, 2000) and ecological interaction

(Visscher, 2003).

Qualitative dissipation could be an interesting and general area of further study that is
beyond the scope of this thesis. For example, shallow earthquakes are closer to a dissi-
pative boundary (the surface) than deeper ones. Following from the results of the BTW
model, should one predict a difference in the statistical properties of deeper earthquakes
compared to shallower ones? This is found to be the case (e.g. Ogata et al., 1991; Wiens
and Gilbert, 1996) although many other factors must be taking into account such as tem-
perature, pressure and chemical processes that vary with depth. Also for scope of further
study, numerical models could be created with different modes of dissipation. These
models could be set up with say a fixed level of dissipation but changing the mode of
dissipation between different runs (changing geometry etc.). One may then establish the

controlling factors on the level of self-organisation.

Generally speaking, | cannot think of any driven systems showing patterns thaitare
dissipative. The BTW model for example would produce an unobservable ‘infinite’
avalanche if no dissipation were present at the boundaries. In the Earth’s lithosphere,
there are several candidates for dissipation that are quantitatively and qualitatively dif-
ferent, both internally and external. These include seismic efficiency, heat flow, fluid
convection, radioactivity and so on although the most significant of these are seismicity
and heat flow (Keary and Vine, 1996; Scholz, 2000). Indeed, Kirkaldy (1985) simply
looks at the issue of self-organisation‘as tendency for dissipative systems subject to
strong driving forces to simultaneously seek saturation of the available energy source
and an equilibrium with the heat sink’lt is this path to equilibrium and hence the
minimisation of free energy through dissipation that therefore probably distinguishes
between the types of self-organisation in driven systems, power-law or otherwise as de-
picted in figure6.1l Being able to predict the patterns a system would evolve to have

by somehow solving for its level or mode of dissipation is a great challenge that even

2Cross and Hohenberg (1993) give a very extensive review of pattern formation away from equilibrium. How-

ever, only a scintilla of their review touches on power-law statistics.
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Prigogine and colleagues had failed to achieve (Ball, 1999). This renders the issue of

dissipation modean interesting area for further study (see below).

6.3.2 Attractors

The main property that distinguishes SOC systems from critical point (CP) equilibrium
systems as outlined in chapter 2 (sectton.? is that power-law statistics only appear at

the critical point in CP systems whereby they are an attractor state in SOC systems. What
this means is that although CP system statistics are very susceptible to perturbations,
SOC systems are riot Sethna et al. (2001) study the ‘crackling nofsibm various
systems such as earthquakes, sand piles, magnets and paper crumbling and show that
they all belong to ainiversality clasof power-law systems regardless of the different
microscopic properties governing them. There appears to be an underlying attractor
state to all these systems. Sethna et al. (2001) also distinguish between criticality in
self-organised critical systems and CP systems in the sense that the critical points in CP
systems are normally phase-transitions whereby for SOC systems they are simply phases
out of a possibility of many in a phase space. The noise element in a dynamic power-
law systems allows it tameander through and explore the phase space of its variables’

(Ball, 1999).

From the results outlined in chapter 5, Earth seismicity as we see it ‘meanders’ the vari-
ous functions, scaling exponents and energy states to an attractor state that is defined by
a gamma type distribution as depicted in figéra Figure6.2is a simplification of the

S vs (In F) phase diagrams shown in chapters 3 and 5. We can see in figitteat out

of the myriad of possibilities, the data are circumambient about a relatively specific area
alongside the ‘critical’ line. The mechanisms behind why and how earthquakes globally
should all be attracted to thhasemust be universal. The results outlined in chapter 5
show that subduction and ocean-ridges zones have different energy probability scaling
exponents withB = 0.67 (subduction) andB = 0.94 (ridges) so strict universality is

violated. However, both systems belong to the same geueniersality clas®f power-

Note that susceptibility here refers to the deviation from a state (such as a power-law) rather that the ‘sensitivity’

in SOC systems that refers to the possibility for a small fluctuation cascading in to a very large one.
4Sethna et al. (2001) use the term ‘crackling noise’ as a general term for power-law noise.
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Figure 6.1: Schematic diagram of possible phase path ways systems can acquire to dissipate energy.
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Figure 6.2: Schematic diagram illustrating possible phase evolution paths (dashed line) for subduction and ocean-

ridge earthquake populations.
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Figure 6.3: Internal and external observation of energy distributions.

law gamma type systems. That is, the data are all attracted to the upper end of the critical

line in the B vs (In E) phase diagram.

6.3.3 Observer dependent criticality

One of the most interesting things learned from the modelling in chapter 4 is the differ-
ence between the external and internal energy probability distribyt{dnig andp(E;).

While p(E.) was a power-law/gamma as observed for earthquaké%s) was closer to

an equilibrium normal or Gaussian distribution (figdré2 similar to what is seen for

say a gas (Mandl, 1988). This occurs over all dissipation levels and despite there being a
positive correlation between the internal and external energies measured. It may be diffi-
cult to test this for real systems such as the Earth’s crust since measuring internal energy
is not an easy or realistic task (Vitti et al., 2001). The results non-the-less are reminiscent
of some recent laboratory experiments on granular media (D’Anna et al., 2003) showing
both Guassian statistics and a Brownian noise signature (figlifin internal energy
fluctuations away from equilibrium. Similar ‘Boltzmann’ fluctuations were also found in

a simple slider-block model (Rundle et al., 1995). It would be interesting non-the-less to
investigate other systems that may show bi-modal statistics in their internal and external
energy probability distributions sindkeir criticality will depend on if the observer is

‘inside’ or ‘outside’ the systemas depicted in figuré.3.
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6.3.4 Defining SOC?

My examination of SOC through models and an extensive review of literature draws me
to the belief that SOC is still not well defined. Perhaps the reason this is the case is
becauseSOC is a phenomenological definition rather than a constructive Greisen,
1998). The definitions will therefore stem from observation rather than some underlying
theory or formulism. Thus, for now, the very general definition of ‘a slowly driven
system-away-from equilibrium showing power-laws with no tuning from the outside’ is
the one likely to remain. To extend this definition to similar systems that show gamma
type statistics and variations in the scaling exponent, | have proposed the term ‘self-

organised sub-critical’ in chapter 4 (as in Al-Kindy and Main, 2003).

6.4 Summary

General

— In this brief chapter, | first discussed the gamma entropy equation and some of the
guestions it raised. | also state how it adds to the newly emerging field of apply-
ing statistical mechanics and thermodynamics traditionally applied to equilibriums

systems to far-from equilibrium systems.

— Several lessons have been learned from SOC and numerical modelling. First that
not only is dissipation important in the level of self-organisation in a system, the
method orguality in which this dissipation occurs is also important. This could be
one explanation to why dissipative systems can show different patterns (power-law,
sinusoidal, etc.). The modelling has also shown that the statistics of systems can be
bi-modal. That is, have one energy probability distribution internally and another
one as observed externally. This observer dependency may have implications on

our assessment of the criticality of systems in nature
Prospects

— Testing the application of the gamma entropy equation to other power-law gamma

type systems.
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— Aformal study of dissipation specifically. This can be done both on the quantitative
and qualitative aspects on real and numerical systems. Cellular automata models
similar to those outlined and used in chapter 4 can be used to investigatisthe
sipation mode For example, how does allowing dissipation at only one edge, two
edges etc affect the energy probability distributions and level of organisation. Ex-
perimentation with different geometrical dissipation sinks within the models could
be tested such as braded, periodic and random modes of dissipation and the influ-
ences they might have.

On a biological level, what modes of dissipation give rise to what patterns observed

such as 3, and 5 and 6 fold symmetries observed in some micro-organisms and
flora and spiral and sinusoidal geometries found in DNA and cells (see examples in
Nicolis and Prigogine, 1977 and Ball, 1999). That is, what is the energy exchange

mechanisms between thieside and outsideof these systems and are there any

systematic dependencies between these mechanisms and the resulting patterns?



Chapter 7

Conclusions

‘Begin at the beginning’ the King said, very gravely, ‘and go on till you come
to the end: then stop: From Lewis Carroll'sAlice’s Adventures in Wonder-

land.

The primary aim of this thesis was to study the Earth’s crust as a self-organising dis-
sipative structure. This was done to examine its level of self-organisation, proximity
to criticality and to test Prigogine and colleague’s prediction on self-organisation and
entropy production. The investigations were carried out with reference to analytical sta-
tistical mechanics and thermodynamics, nhumerical models and earthquake data from the
Harvard Centroid Moment Tensor Catalogue. The secondary aim was to further probe

the concept of Self-Organised Criticality and its applicability to Earth seismicity.
The following main conclusions were drawn from my investigations:

Although equilibrium systems at the critical point and non-equilibrium self-organised
critical systems share a power-law, they are different. For equilibriums systems, the

critical point is fixed whereby for driven self-organising systems, it is an attractor state.

The gamma entropy equation for the gamma distribution is derived in the $orm

B(ln E)). This equation is indicative of a system very near to or at a critical state. The
equation was found to be in general agreement with numerical as well as temporal and
spatial earthquake data. This successful application of concepts developed from equi-

librium statistical mechanics to a non-equilibrium steady-state system shows parallels
171
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with recent studies of other physical systems (e.g. fluidised granular media). Criticality
phase diagrams are also found to agree with the regional and temporal earthquake data
in general. The phase diagrams suggest that criticality can be maintained if there is a
change in the scaling exponeBtprovided there is also a corresponding change in the

mean energy release.

It is known that the critical point is at the state of global maximum entropy for equilib-

rium systems®B = 0), this is not the case for power-law gamma systems. This is because
the critical point for gamma systems occurs below the state of maximum entropy for a
sub-critical system and beyond the maximum entropy point for a super-critical system.
This distinction should also be taken in to account when comparing equilibrium and

non-equilibrium systems.

For the locally driven, dissipative BTW numerical model, the internal properties show
two characteristics that are indicative of an equilibrium system: Gaussian type statistics
in its internal energy distribution, and Brownian noise in its internal energy fluctuation
signature. In contrast, the radiated energy follows power-law gamma type statistics.
Although simple, the questions these results raise are important because they suggest that
our definition of ‘criticality’ may be observer dependant. If the observer -or observation
tool- is in the system owout of it will vary our assessment of criticality. The model

also shows that the organisation occurs at the expense of increasing entropy production
(dissipation) globally. The model is more organised externally (low entropy) and more
disorganised internally (high entropy) with increasing dissipation. Also, a locally driven
NBTW model shows the relation between mean radiated engigynd dissipation to

be (E) ~ (1 — a)~%975 wherea is the conservation factor. This relation demonstrates

the non-linear sensitivity of a self-organising system to the level of dissipation.

The BTW model does show spatial heterogeneity in contrast to the original notion of
SOC. In the regional study, a gamma distribution does not contradict the BTW model and
therefore is included within the framework of SOC. Also, the model shows universality (a
global constant scaling exponent) despite the edge effect of dissipation at the boundaries.
This final finding contradicts what was found for real earthquake populations that showed
regional variations in the scaling exponest This is the main factor in concluding

that earthquake seismicity is not SOC but what | describe as self-organised sub-critical
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(SOSC). SOSC is alooser form of SOC that allows for variations in the scaling exponent
and internal dissipation, more in tune with natural systems. The BTW model also shows

no spatial correlation between the point of origin of an avalanche and its relative size.

Earthquake populations are more predictable spatially than they are temporally. The
spatial variations are mainly evident in the differences between ocean-ridges and sub-
duction zones. The lower entropy of the mid-ocean ridges when compared to subduction
zones is in agreement with the studies of earthquake spatial organisation (configurational
entropy). The scaling exponents vary systematically in space with ocean-ridges having
relatively higher exponents. The variations were confirmed for three different scaling
exponents using a least-squaresM),(Aki's maximum likelihood methodd) and us-

ing rank-order statistic®{). This variation in scaling strongly question ‘universality’ in

earthquake seismicity.

The scaling exponenB, b; and by are negatively correlated with entropy and hence

the level of self-organisation of power-law gamma type systems. This is highlighted in
the constructed phase-diagrams and in the analysis of real earthquake populations. This
suggests that scaling exponents could be used as a proxy for the level of self-organisation

in power-law gamma type systems.

To conclude, the results of this thesis are hopefully a step forward in our quest to un-
derstand self-organisation in dissipative structures. However, many questions remain.
For example, is heat flow in the crust the best proxy for entropy production? What are
the underlying dissipation mechanisms driving the Earth or other similar systems to a
power-law gamma type attractor state as opposed to any other? What other examples in
nature are there of observer dependent criticality? Is there a related underlying cause for
B varying globally? There is therefore a plethora of scope for further investigation into
this emerging and fascinating field of physics. This chapter may be the end of this thesis,

but it is refreshingly by no meanste end.

Fahad Al-Kindy,
University of Edinburgh,

September 2003.
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Derivation of Shannon entropy
H

The following derivation of Shannon entrogy is given by inference to the appendices

of Shannon (1948) and Jaynes (1957) :

Derivation of H = — " p; log pi:

H is a continuous function of probabilify;.. For equal probabilitieg;,

) = A(n) 1

and is a monotonically increasing functionraf A choice ofs™ equally likely possibil-
ities can be decomposed into a seriesothoices froms equally likely possibilities to
give

As™ =mAs 2
and similarly for another choice

At" = nAt (3)

n is made large anth is chosen to satisfy:

s < < s 4

Taking logarithms and dividing by log s:

m _logt m+1

—< < (5)
n ~ logs n
or
logt 1
= - 2o (6)
logs n n
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Now givens™ = mA(s), A(t") = nA(t) andA(s™ 1) = (m + 1) A(s) we can write4
as:

mA(s) < nA(t) < (m+1)A(s) (7)

Dividing by nA(s) we have:

m _ At) m+1
—<
n — A(s) < ®
or
At) m 1
‘A(s) “n|h ©
From6 and9 we get
logt  A(t) 2
logs  A(s) <% (10)
For largen we have
A(S) = Klog S (11)

Now, we putp; = Znn We can break this down to a choicermfsymbols subdivided

in to a choice of: symbols. So foll = H(sq, s2, ..., S, ) We have:

Kloani:H—kKZpilogni (12)

hence
H=K|Y pilogd ni—> pilogni] (13)

and given) p; =1

H=-K [Zpilog i

> nj (1)

giving the Shannon entropy:

~K> pilogpi (15)
=1



Entropy and heat flow

During the course of this thesis, | attempted to investigate the relationship between heat
flow and seismicity. The rational behind this was that because entropy is related to en-
tropy production (chapter 2) and entropy production to heat flow, one would expect there
perhaps to be a correlation between the level of self-organizatias measured from
seismicity and the corresponding heat flQw However it was noted that the analysis

| carried out was on the total heat rather than the heat due to seismic activity and the
results subsequently removed. Nonetheless, because the analysis uses the Flinn-Engdahl
regionalisation on global heat flow data, these results may be of some interests and are

therefore included here.

| use the Global Heat Flow Database described by Pollack et al. (1993) that contains
over 24,774 observations of heat flow worldwide. The database is provided by the In-
ternational Heat Flow Commission whose website is maintained by the University of
North Dakota (http://www.heatflow.und.edu/index2.html). In accordance with Pollack
et al. (1993), | only include data witf) < 250mWWm 2 since data above this value are
considered spurious. The locations of data measurements are shown iriLfigidinen

use the same code | wrote to perform Flinn-Engdhal regionalisation used for earthquakes
to calculate the average heat flo@) for each FE region. My results are summarised in
tablel. | also plot the thermodynamic variables and scaling exponents calculated from
the radiated seismic energy against the heat flow Qaita figures2 and 3 respectivly

showing no correlation.
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Global Heat Flow Database data

Figure 1: Map of Global Heat Flow Database data
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FE no. (@) n
subduction zones

1 74.92 60
5 100.04 157
6 76.84 121
7 68.51 151
12 57.37 37
13 84.38 48
14 84.22 48
15 60.23 40
16 81.12 55
18 65.39 126
19 85.88 572
20 74.19 255
21 77.83 a7
22 61.56 45
23 66.55 114
24 77.11 287
46 118.39 267
average 77.32(15.16) 243
collision zones

25 73.35 241
26 76.43 244
27 61.00 25
29 49.56 829
30 57.21 1523
31 87.32 740
41 73.36 654
48 56.56 259
average 66.85 (12.69) 4515

intra-continental
37 63.48 611

mid-ocean ridges

32 62.51 1755
33 62.16 507
40 87.51 222
43 80.62 128
45 74.60 8
average 73.48 (11.16) 2620

Table 1: Summary of results for regional study of the Global Heat Flow Database. The standard deviations are given
in brackets and the totals in bold.
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Figure 2: Plot of thermodynamic variables (In E), (E) and S against heat flow @ showing no correlation.
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Figure 3: Plot of heat flow @ against scaling exponents B, b; and by showing no correlation.



List of Symbols

mE g HE O
3

o &
SIS

N O

S R T S me

Cluster/fault area

Seismic b-value (Gutenberg and Richter)
Magnitude power-law scaling exponent (Aki’'s method)
Rank-order statistics scaling exponent
Energy-probability power-paw scaling exponent
Inferred B from gamma entropy equation
Fractal dimension

Energy

Mean energy (model)

Energy expectation

Logarithmic energy expectation

External energy (model)

Internal energy (model)

Seismic energy release

Frequency

Free energy

Degeneracy term

Configurational entropy

Joules (measure of energy)

Bolzmann’s constantl(38066 x 10~22.J/K) and thermal conductivity
Kelvin

Earthquake (moment) magnitude
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»n »n

Seismic moment

Surface wave magnitude

Newton.meter (Measure of seismic moment)
Probability

Percolation threshold

Pressure

Heat (flow)

Total heat

Entropy

External entropy (model)

Internal entropy (model)

Gamma entropy (theoretical)

Time

Critical time

Temperature

Critical temperature

External temperature (model)

Internal temperature (model)
Tectonic/effective/statistical temperature
Slip

Work

Tectonic work

Partition function

Conservation parameter (model)

Critical conservation parameter (model)
Temperature parameter (thermodynamics)
Seismic efficiency

Temperature parameter (gamma distribution)
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fc  Critical ‘temperature’
o Stress
oc Critical stress

13 Correlation length
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