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Abstract

Energy released from the Earth’s crust in the form of earthquakes commonly follows a power-

law gamma type probability distribution. This spontaneous organisation is in apparent contra-

diction to the second law of thermodynamics that states that a system should naturally evolve

to a state of maximum disorder or entropy. However, developments in the field of modern

thermodynamics suggest that some systems can undergo organisation locally, at the expense

of increasing disorganisation (or entropy) globally through a process of entropy production.

The primary aim of this thesis is to investigate self-organisation in the Earth’s seismogenic

lithosphere as a driven, far-from-equilibrium, self-organising ‘dissipative structure’ in a very

near critical steady-state and the underlying general mechanisms involved. The secondary aim

is to test in more detail the applicability of the Bak, Tang and Wiesenfeld (BTW) model of

Self-Organised Criticality(SOC) in describing Earth’s seismicity. This is done by: 1. Math-

ematical derivation of analytical solutions for system energy and entropy using the tools of

equilibrium statistical mechanics; 2. The study of conservative and non-conservative versions

of the BTW numerical model and 3. Analysis of temporal and spatial properties of earthquake

data from the Harvard Centroid Moment Tensor catalogue and the Global Heat Flow Database.

The modified gamma distribution predicts analytically that entropyS is related to the energy

probability distribution scaling exponentB and the expectation of the logarithm of seismic

energy〈lnE〉 in the form of thegamma entropy equationS ∼ B〈lnE〉. This solution is con-

firmed for both numerical model results and real earthquake data. Phase diagrams ofB vs.

〈ln E〉 suggest that the universality inB need not be maintained for a system to remain critical

provided there is a corresponding change in〈ln E〉 andS. The power-law systems examined

are different from equilibrium systems since the critical points do not occur at global maxi-

mum entropy. For the dissipative BTW model at a steady-state, the externally radiated energy

follows out-of-equilibrium power-law gamma type statistics, but, the internal energy has two
i
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characteristics that are indicative of equilibrium systems; a Gaussian type energy probability

distribution and a Brownian noise power-spectrum for the internal energy fluctuations. This

suggests an observer dependency in assessing criticality. The internal and external entropies

calculated for the model are negatively correlated suggesting that driven systems self-organise

at the expense of increasing entropy globally through a process of dissipation. A power-law

dependency of mean radiated energy〈E〉 on dissipation1−α is confirmed for a locally driven

dissipative system in the form〈E〉 ∼ (1−α)−0.975. The BTW model shows spatial heterogene-

ity whilst maintaining universality in contradiction to previous assumptions. The quantitative

analysis of real data reveals that earthquakes are more predictable spatially then temporally.

Regionalisation using the Flinn-Engdahl classification shows that mid-ocean ridges are more

organised (lower entropy) than subduction zones. A regional study of three different scaling

exponents suggests that universality in earthquake scaling is violated, in contradiction to the

original model of SOC. A model of self-organised sub-criticality (SOSC) is proposed as an

alternative model for Earth seismicity. Overall, the results suggest that the tools of equilib-

rium thermodynamics can be applied to a steady-state far-from-equilibrium system such as the

Earth’s seismogenic lithosphere, and that the resulting self-organisation occurs at the expense

of maximising dissipation and hence entropy production.
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Chapter 1

Introduction

“It is clearly seen that near the critical point we have long-range chemical corre-

lations. Again the system acts as a whole in spite of the short-range character of

the chemical interactions. Chaos gives rise to order.”1

The quote above is an excerpt of the Nobel Lecture given by Ilya Prigogine at the prestigious

award ceremony in Stockholm on the 8th of December 1977. Prigogine was awarded the

Nobel Prize in chemistry for his work on organisation in ‘non-equilibrium thermodynamics and

dissipative structures’. Along with his colleagues at the ‘Brussels school’, Prigogine predicted

that under certain conditions, some chemical reactions that are not at equilibrium can show

correlations or ‘patterns’ that span length scales that far exceed the distances at which the

individual molecules interact with each other. From a thermodynamics point of view, this

is somewhat peculiar since the Second Law of thermodynamics states that a system should

naturally evolve to a state of maximum disorder. In other words, the entropy, which is a measure

of disorder, should increase (Kondepudi and Prigogine, 1998). This is why we can make an

omelette from an egg but never an egg from an omelette.

However, Prigogine and his colleagues have shown that certain systems can organise them-

selves locally at the expense of increasing disorganisation of their surroundings globally through

1Speech documented at the Nobel Prize e-museum: http://www.nobel.se/

1
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a process of maximising theirentropy production2 (Nicolis and Prigogine, 1977). This can

seem counter intuitive since it implies the spontaneous emergence of order or pattern through

local processes, which may be random, or chaotic. Self-organisation however can concep-

tually be thought of as a ball rolling up a small hill in order to get to the other side to roll

down a bigger hill. Such systems are referred to as driven‘dissipative structures’since they

are away-from-equilibrium and are interacting with their surroundings through the process of

energy (and/or matter) dissipation (in or out) (Cross and Hohenberg, 1993). Such systems are

different from traditional ‘equilibrium’ thermodynamic systems since they are not at the same

temperature(see chapter 2) as their surroundings. The work on dissipative structures was seen

as a big step closer to explaining the emergence of spatial and/or temporal order or patterns in

certain chemical reactions and complex natural systems. These include biological processes

that lead to intricate structures such as DNA (Kondepudi and Prigogine, 1998; Cavanagh and

Akke, 2000).

Precisely a decade later in 1987, Bak, Tang and Wiesenfeld published a seminal paper in the

journal Physical Review Letters titled’Self-Organized Criticality: an explanation of 1/f noise’

(Bak et al., 1987). Just as with Prigogine’s chemical experiments, Bak et al. produced a

simple ‘driven’ far-from-equilibrium numerical cellular-automata (computer) model where the

individual components, or ‘cells’, only interact with their closest neighbours. Yet the model as

a whole was found to exhibit a pattern or order that spans the size of the entire system. They

called this observationSelf-Organised Criticalityor ‘SOC’. In the literature, their model is

generally referred to as the BTW (from the names of the three authors) model of SOC. The term

‘self-organized’ highlights the fact that the system evolves to a pattern spontaneously without

any external tuning. The term ‘critical’ refers to this pattern being a ‘power-law’ of ‘fractal’

(see below) similar to what is observed in other ‘critical’ systems. More precise definitions of

the terms used here will be given in chapter 2.

Two years after their initial publication, Bak and Tang wrote a follow-up paper entitled’Earth-

quakes as a Self-Organized Critical Phenomenon’(Bak and Tang, 1989). But what does their

somewhat abstract model have to do with earthquakes? The fractal or power-law pattern that

2Defined with example in chapter 2.
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evolves in the BTW model, without any tuning of parameters is in the form (Main, 1995):

p(E) ∼ E−B−1 (1.1)

wherep(E) is the probability of having an energy stateE andB is a scaling exponent. The

radiated energy dissipated by the Earth through the process of earthquakes follows this distri-

bution to a first approximation. This power-law empirically observed for earthquake energy

release is also represented in the form of the famous Gutenberg-Richter law (Gutenberg and

Richter, 1954)

N(m) = a− bm (1.2)

whereN(m) is the number of earthquakes that exceed a magnitudem, a andb are constants

with b found globally to be∼ 1, and the magnitudem is related to the logarithm of the radiated

seismic energy throughm ∼ 2
3 ln E. This relation is maintained globally despite the complex

details of the fault-fault interactions, variations in rock type, differences in tectonic plate set-

tings and the effectively infinite degrees of freedom inherent. It is enchanting that the complex

dynamics of the Earth’s seismicity can be reduced to a single universal scaling law of two sim-

ple variables; frequency and magnitude. These power-law statistics and inherent complexities

suggest that the Earth’s crust is a dynamic self-organising dissipative structure, similar to the

chemical interactions of Prigogine and the BTW model of SOC.

The power-law observed for earthquakes is of great interest since this statistical relation is

shared with other systems found in the fields of statistical physics and thermodynamics and

critical point phenomena undergoing aphase-transition(Main 1996). But what is a critical

system? This is a very wide question that will be addressed in chapters 2 and 3. However, a

simple example of a thermodynamic process at the critical point is a water liquid-gas phase

transition at a very specific ‘critical’ pressure and temperature where the density contrast be-

tween the liquid and gas phases disappears. At thiscritical point, the water-gas molecules

cluster at all length scales, showing power-law statistics (Bruce and Wallace, 1989). These

statistics are similar to the Gutenberg-Richter law mentioned above. The way in which ther-

modynamics or statistical physics address such systems of many components (such as say a

gas) is by reducing them to just a few global parameters without the need to explicitly solve for

minor-scale details. In other words, we are interested in the average or probabilistic attributes

of the system such as its mean energy, pressure or temperature (Mandl, 1988).
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Although the application of statistical physics or thermodynamics to earthquakes statistics is

not new (e.g. Main and Burton, 1984), the work of Prigogine has not been formally applied

to better understanding, assessing or explaining self-organisation and criticality in the Earth’s

crust. Also, many of the approaches used to assess criticality in the crust from a thermody-

namic point of view have done so by assuming equilibrium critical point thermodynamics (e.g.

Bowmann et al., 1998; Robinson, 2000; Zöller and Hainzl, 2001). As I will clarify, although

critical systems in equilibrium and out of equilibrium thermodynamics do have common char-

acteristics such as power-law statistics, they are fundamentally different both in their dynamics

and predictability. Caution must therefore be taken when applying tools of equilibrium ther-

modynamics to away-from equilibrium-systems. Nonetheless, the application of equilibrium

statistical mechanics and thermodynamics to self-organising far-from-equilibrium systems is a

new and emerging field of physics (Ruelle, 2001).

In this thesis, I examine two main points:

1. Firstly I address Earth’s seismicity from a thermodynamic point of view treating the seis-

mogenic lithosphere as a slowly driven, dissipative structure undergoing self-organisation.

This enables me to formally examine and understand the underlying processes that gov-

ern self-organisation in the crust. More importantly, this is a way to assess the applicabil-

ity of equilibrium thermodynamics to a far-from-equilibrium system such as the Earth.

Although such an approach has only been emerging recently, the application of equi-

librium thermodynamics to non-equilibrium systems under certain conditions has been

successfully demonstrated since the work on this thesis began. These works include and

application to a chaotic magnetic model (Egolf, 2000) and for laboratory experiments

on granular matter (D’Anna et al., 2003) and will be shown in this thesis for crustal

seismicity.

2. Secondly, I question the concept of self-organised criticality (SOC) and its applicability

as a null hypothesis in describing the Earth’s crust. There are two rationales for address-

ing this issue:

a) Despite its application and acceptance in the scientific community, SOC is not pre-

cisely defined in the literature (Jensen, 1998). It is therefore important to first refine
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what is meant by SOC and outline the criteria associated with it, then to find a formal

and quantitative way to establish if these criteria are in harmony with observations of

real earthquake statistics.

b) It is a prediction of the BTW model that a purely SOC system would be virtually

unpredictable in space and time. Questioning the commonly accepted SOC description

of the crust will have an impact on the way we approach the seismicity of the Earth and

seismic hazard analysis in general.

I attempt to address the issues outlined above as follows:

Chapter 2: Here I review three areas of the literature that aid in addressing the goals of this

thesis. Firstly, literature associated with statistical physics, thermodynamics, entropy, the con-

cept of self-organisation and critical point phenomena. This will include illustrations from the

often cited B́enard cell convection experiment (Kondepudi and Prigogine, 1998) and the perco-

lation model. Secondly, I define power-laws and fractals and their common link to equilibrium

critical point phenomena (CP) and SOC. I explicitly clarify the differences between CP and

SOC systems. Finally, I cover some earthquake phenomenology such as the observed power-

law distributions relating earthquake frequencies to their magnitudes (or energy release) and

temporal observations such as foreshocks and aftershocks.

Chapter 3: I look at the power-lawgamma distributionfrom a theoretical perspective and

its relation to criticality and thethree criticality regimes. I then use these tools to derive an

analytical model that links the entropyS (level of self-organisation) of a gamma power-law

probability distribution with its expectation logarithmic energy〈ln E〉 and its power-law scal-

ing exponentB. Then, I use the analytical solutions to predict the entropy-energy phase-space

for a power-law system at and away from criticality. I propose this as an analytical thermody-

namic method of assessing criticality in the crust.

Chapter 4: I carry out numerical cellular automata modelling to test and verify some of

the aspects of self-organisation and predictions of chapter 3. I formally reintroduce a non-

conservative BTW earthquake model of SOC. I use the model to measure internal and external

thermodynamic properties of a driven self-organising dissipative structure. The rationale for
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using the model is that only external properties such as the radiated seismic energy can be

measured for the earth. More specifically, I look at the effect of dissipation on the internal

and external properties of the system and its influence on the entropies measured and self-

organisation. SOC and its properties are also formally examined in the BTW model.

Chapter 5: I compare the analytical and numerical predictions of chapters 3 and 4 with the

results of analysing earthquake data from the Harvard Centriod Moment Tensor (CMT) cata-

logue. By comparing the theoretical, modelling and ’real’ results, I assess the proximity of the

Earth to criticality. The analysis is on both temporal and spatial earthquake ensembles. I also

investigate the seismic scaling exponents in some detail and their relevance as an indicator for

the degree of self-organisation and their ‘universality’.

Chapter 6: I discuss the results of this thesis in the wider context of self-organising systems

and criticality in general. I also make some suggestions on how the work presented in this

thesis could be built upon and possible directions for further research.

Chapter 7: I give a summary of the main conclusions of this thesis.

In summary, the primary aim of this thesis is to study the Earth’s crust as self-organising dissi-

pative structure in order to better understand and verify its proximity to criticality and any un-

derlying mechanisms that govern self-organisation. This is carried out using a thermodynamic

approach by reference to analytical statistical mechanics and thermodynamics, numerical mod-

elling and the analysis of global earthquake data temporally and spatially. The secondary aim

is to examine self-organised criticality formally in the original BTW model and then assess its

applicability as a model to describe the Earth’s seismicity.



Chapter 2

Background: From

thermodynamics to earthquakes

2.1 Introduction

The main disciplines that shall be used in addressing the issues outlined in this thesis are sta-

tistical physics and thermodynamics of dissipative systems, self-organisation, power-laws in

critical systems and earthquake statistics. I therefore conduct a literature review of some of

the relevant background and terminology used within these disciplines that will assist in the

understanding of this thesis. First I give a general introduction to statistical physics, thermo-

dynamics and the concept of entropy. I also look at critical point phenomena with an example

from percolation theory and their association with fractals and self-organisation. These will

be accompanied with examples found in the laboratory and nature. Then, I introduce the con-

cept of Self-Organised Criticality (SOC) and clarify its association and differences with critical

point phenomena. Finally, I cover earthquake phenomenology observed both in time and space

and their currently understood association with SOC.
7
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2.2 Overview

Broadly speaking, statistical physics/mechanics and thermodynamics are the branches of physics

that describe the macroscopic state of systems consisting of a large number of particles or

molecules such as a gas. Their power stems from their ability to describe such ‘many body’

systems in terms of just a few parameters such as temperature and pressure (Mandl, 1988). For

example, it would be impossible to describe the motion and interaction of Avogadro’s number

(∼ 6× 1023) of particles for a gas analytically in the same way one would use Newtonian me-

chanics to describe the trajectory of say, a ball falling off a table. Although the latter scenario

would only require the solution of one or two equations to describe it, the former would require

solving at least∼ 6 × 1023 equations! This ‘microscopic’ approach that requires a complete

description of the system at an atomic scale is usually impossible. The strategy is to address

a problem statistically i.e. what on average will particles be doing and what does this average

tell us about the system as a whole. The key is the prediction of macroscopic properties of the

system when the probability distribution of its energetic micro-states is known.

In statistical physics, for example, the probability that a system is in a given state is often

expressed through its probability distribution (Mandl, 1988) as follows:

p(Er) =
1
Z

g(Er)e−βEr (2.1)

Expression2.1 is commonly known as the Bolzmann Distribution applied for example to the

kinetic theory of gases wherep(Er) is the probability of having a state of energyEr, g(Er) is

known as thedegeneracywhich is the number of different states with the same energyEr, β is

a temperature parameterandZ is a normalizing constant know as thepartition functionwhere

Z =
∑

Er

g(Er)e−βEr (2.2)

The partition function ensures unit sum of probabilities in the Boltzmann distribution. Oncep

andZ are known for a system, it is possible for example to calculate other external parameters

such as the mean energyE where

E =
∑

r

prEr = −∂ ln Z

∂β
(2.3)
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It will be shown that such statistical descriptions are useful in describing earthquake popula-

tions (Chapter 3) given the complexities involved and the large number of degrees of freedom

associated with earthquakes ensembles (Rundle, 1993; Kagan, 1994).

2.3 Systems

Thermodynamic or statistical systems tend to be described based on direct measurements of

macroscopic properties, phenomenological observation and physical experimentation. These

descriptions are of their interaction with the ‘outside world’ or their surroundings. Therefore,

thermodynamic systems can be broadly divided in to three types:Isolated systemsthat do not

exchange energy or matter with their exterior,closed systemsthat exchange energy but not

matter with their exterior and finally,open systemsthat exchange both energy and matter with

their exterior (Mandl, 1988; Kondepudi and Prigogine, 1998). A thermodynamic description

is in tune with the statistical approach when addressing Earth seismicity. This is because we

gain our general insight from a statistical description based on our macroscopic observations

of earthquake ensembles rather than on individual seismic events. The seismogenic crust to a

first approximation is best described as ‘closed’ as it predominately exchanges seismic energy

with its surroundings but no matter. However, we can generalise the description as ‘open’ to

account for exchange of matter from the crust in the form of gases, magma etc. although matter

exchange is beyond the scope of this thesis and is only mentioned here for completeness.

2.4 Proximity to equilibrium

The applicability of aspects of statistical physics and thermodynamics can depend on the state

of the system, particularly for evolving or driven systems such as the Earth or systems whose

properties may vary with time. Here I give a summary of the states statistical orstochastic

systems can be in.
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2.4.1 Equilibrium systems

An equilibrium system is one that through irreversible processes (section2.5.1) evolves to a

time invariant state where these processes vanish and its physical and chemical properties do

not evolve with time (Kondepudi and Prigogine, 1998; Perrot, 1998). That is, the system has

a uniform “temperature” throughout. Equilibrium is best described by the Zero’th Law of

Thermodynamics which states that if a body A is in equilibrium with body B and body B is in

equilibrium with body C, then body C is in equilibrium with body A (Mandl, 1988).

2.4.2 Non-equilibrium systems

Following from the definition of equilibrium systems, a non-equilibrium or far-from-equilibrium

system therefore can be described as one undergoing an irreversible process and not of uniform

temperature. An example of this is an ice cube in a glass of warm water. There will be hetero-

geneity in the temperature of the system (the water) and through an irreversible process of the

ice melting and the water losing heat, the system will eventually reach a state of equilibrium.

Non-equilibrium systems cannot therefore be defined by a global temperature but rather by lo-

cal or mean temperatures (Kondepudi and Prigogine, 1998). Under certain conditions for both

reversible and irreversible processes, the rate at which the processes occur will be an important

factor since a non-equilibrium system evolving at an effectively infinitely slow rate can resem-

ble an equilibrium system if observed over short time scales. In relation to self-organisation

Alan Turing concluded that ordered patterns usually only occur in driven far-from-equilibrium

open systems (in Ben-Jacob and Levine, 2001). The Earth’s crust fits in to this category of

systems since it is driven and dissipative.

2.4.3 Stationary and steady state

It is sometimes easy to confuse ‘equilibrium’ with ‘steady’ or ‘stationary’ states.Equilibrium

as defined above will depend on the thermodynamic state of the system and its temperature dis-

tribution. Stationary or steady state systems however are those whose statistical properties or

more specifically, probability density distributions do not alter with time regardless of proxim-
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ity to equilibrium. What mainly distinguishes a stationary system from an equilibrium system

is that stationary systems will have a non-zero entropy production (defined in section2.5.5),

whereas the entropy production in equilibrium systems is zero since they have a homogonous

temperature distribution.

2.5 Entropy

Entropyis generally defined in the literature asa measure of disorder. Since we are interested

in self-organising systems where there can be an evolution towards a more ordered state, it can

be seen why entropy will play an important role in our understanding of such systems. Here I

introduce thermodynamic and statistical type entropies.

2.5.1 Thermodynamic entropy

In 1865, the term entropy (Greek for transformation) was coined by Rudolf Clausius (1822-

1888) who was extending the work of French engineer Sadi Carnot (1796-1832) (Perrot, 1998).

Carnot showed that no real heat engine could be 100% efficient since work would be needed to

transform energy or heat from one state to another. Carnot’s theorem is expressed as

Q1

T1
<

Q2

T2
(2.4)

for a heat engine that absorbs heatQ1 from a hot reservoir at absolute temperatureT1 and

discards heatQ2 to a reservoir at absolute temperatureT2 (Kondepudi and Prigogine, 1998).

The ‘<’ sign in equation2.4 is indicative of anirreversibleprocess or cycle. Areversible

process on the other hand is defined as one in which the ‘<’ sign in equation2.4 is replaced

with a ‘=’ sign. However, such systems in reality may not exist, as they would have to be 100%

efficient; irreversible processes existing in nature is debated (Bridgman, 1950).

It was Carnot’s work that would lead the way for Clausius to develop the first two laws of
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thermodynamics for aclosedsystem. The first law states that

dE = dQ + dW (2.5)

wheredE is the change in energy of the system,dQ anddW are the heat exchange or transfer,

and work (through say a mechanical process) exchanged between the system and its surround-

ings (Perrot,1998; Kondepudi and Prigogine, 1998). The seminal ‘Second Law’ states that the

entropies of a reversible and irreversible process are respectively

dS =
dQ

T
(2.6)

dS ≥ dQ

T
(2.7)

whereS is the thermodynamic entropyof the system anddQ is the heat exchange with the

exterior atthermodynamic temperatureT . In words the Second Law is often stated as: ‘The

sum of entropy of a system and its surrounding can never decrease’ (Dugdale, 1996). The

statement that the entropy of a system can only increase can be thought of as a system trying to

minimise itsHelmholtz’s free energyF , that is, energy available to do work. This is expressed

as

F = E − TS (2.8)

Note that when the entropyS = 0, the amount of available energy to do work is a maximum.

2.5.2 Statistical entropy

In addition to thermodynamic entropy, there is what is known asstatisticalentropy. Boltzmann

proposed an expression for statistical entropy to reconcile the reversibility predicted from the

laws of statistical mechanics and the irreversibility constrained by the Second Law (Kondepudi

and Prigogine, 1998). To clarify this, the following example is given: A container is partitioned

with N1 molecules in sideA andN2 in sideB with N1 > N2 (figure2.1)

Although there is no mechanical reason prohibiting molecules from sideB to move to side

A once the partition is removed, the more probable state (that of higher entropy) will be one

where more particles from sideA will move to sideB. This will continue until the molecules
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  N   N1 2

A B

Figure 2.1: Binary system with a heterogeneous distribution of molecules.

are spread homogenously in the container and an equilibrium state reached (just like in the ice

cube in glass example).

Mathematically, Boltzmann expressed the entropyS of such a system as

S = kb ln W (2.9)

whereW is the number of microstates corresponding to the macrostate with entropyS andkb

is Boltzmann’s constant (kb = 1.381 × 10−23JK−1). For the binary system outlined above,

the laws of probability theory will dictate that the number of microstatesW with N1 molecules

in one half andN2 in the other is

W =
(N1 + N2)!

N1!N2!
(2.10)

As predicted,W and thereforeS will be an absolute maximum whenN1=N2. For a more

general system where we do not necessarily know all the microstatespr, if we have

∑
r

pr = 1 (2.11)

then the statistical entropy1 (Mandl, 1988) is defined as

S = −k
∑

r

pr ln pr (2.12)

For the example given above we can calculate the variation ofS with p. Let us simplify the

example as follows: If the probability of having a particle in one half of the container isp1 = p,

1The derivation of statistical or shannon entropy can be found in the appendix of this thesis and in Shannon

(1948) and Jaynes (1957).
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then the probability of having it in the other half of the container will bep2 = 1 − p. Using

equation2.12and ignoringk, I calculate the phase space ofS versesp1 (figure 2.2). It can

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
1

S

Figure 2.2: Plot of S against P1 for a binary system with maximum S where p1 = p2.

be seen from the figure that asp1 → 0.5 i.e. p1 = p2, the entropy is a maximum. The figure

reflects what equation2.10 is telling us without having to refer to the equation. Statistical

entropy has been shown to be applicable to both equilibrium and non-equilibrium systems (see

section2.5.3). Statistical entropy is also referred to as ‘generalised’, ‘Gibbs’ or ‘Shannon’

entropy in the literature.

2.5.3 Shannon entropy

In 1948, Claude Shannon published a prolific paper with the titleA Mathematical Theory of

Communication(Shannon, 1948). The publication deals with a variety of topics related to

information theory including filtering, encryption and the transfer of information. It is said that

when Shannon derived the equation to assess information gain and loss through a transmission

channel, he was told by mathematician Van-Neumann to call it entropy since it had the same
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format as2.12above. Shannon’s2 derivation gave the following result:

H = −K
i=n∑

i=1

pi log pi (2.13)

HereK is a positive constant that depends on the units of measure. This form of information

entropy was obtained from the constraints that the function should be positive, increase with

increasing uncertainty and additive for independent sources of uncertainty. Equations2.12

and2.13refer to two different types of systems. The first gives our certainty in the state of a

physical statistical system, and the latter refers to our certainty in the non-physical and perhaps

more abstract concept of information transfer based on partial knowledge of the system, but

are the two entropies analogous? Jaynes (1957) addresses this question elegantly. By freeing

the statistical entropy from any physical constraints and looking at it as a method of statistical

inference -which is essentially what it is as outlined in the container example above- he shows

mathematically that the information and statistical entropies can be regarded as fundamentally

the same. This is based on the simple fact that for both cases, the entropy is maximised as

our uncertainty in the system reaches a maximum (as in figure2.2). More importantly, Jaynes

showed that following from this idea of maximizing entropy, the statistical / Shannon entropy

concept may also be applied to systems out of equilibrium, a result recently further verified by

Dewar (2003) (see section2.5.5).

2.5.4 Configurational entropy

Somewhat related to information entropy is configurational or spatial entropy which takes into

account the actual positioning of particles or bodies in a system. Following the description of

Goltz and B̈ose (2002), this entropy is used as a form of box counting as follows: For a system

divided toL× L square grids, we choose an area of sizel × l and count the number of active

cells3 Nk(l) out of a total ofN(l) cells (active + inactive) within thel× l grid. The probability

of finding an active cell within the grid is then

pk(l) =
Nk(l)
N(l)

(2.14)

2Shannon used the notationH for entropy rather than the commonly usedS.
3In Goltz (2002), the number of active cells are those containing earthquakes.
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so the configurational entropy4 H is given by

H(l) = −
l2∑

k=0

pi(l) log pi(l) (2.15)

Configurational entropy has been widely used in the study of spatial organisation in various

systems including cellular automaton models (Wolfram, 1986), earthquake clustering (Nichol-

son et al., 2000; Goltz and Böse, 2002), and in rock fracture experiments (Nanjo et al., 2000).

This form of entropy will not be measured in this thesis but is mentioned here for completeness.

2.5.5 Entropy production and self-organisation

Work on entropy production had begun as a means of understanding irreversible processes

in driven systems (Onsager et al., 1953) and self-organisation (Nicolis and Prigogine, 1977).

Here, entropy production is explained through a classic experiment. The often cited example of

self-organisation is that of B́enard cell convection given here in accordance with the description

of Nicolis (1989). The experiment is set up such that there is a thin layer of fluid between two

horizontal plates. Left to itself, the fluid is in a state of equilibrium in the thermodynamic sense

i.e., of homogonous temperature. A temperature gradient, which acts as a driving force, is then

introduced by applying heat to the lower plate. This gradient∆T is increased to some critical

temperature gradient∆TC precisely at which the fluid undergoes convection and organises its

self into convection or B́enard cells (figure2.3). Above the critical temperature, the patterns

disappear and more chaotic fluctuations occur. Below the critical temperature, there is not

enough energy for convection to occur and heat is dissipated by conduction through the fluid.

It can be seen from figure2.3that the patterns of organisation are at length scales that far exceed

the scales at which the individual molecules interact. Nicolis (1989) describes this emergence

of patterns assymmetry-breakingsince the patterns create a notion of space. One can imagine

moving through a homogenous medium (say inside a black box) and not notice the movement

whereby moving in the fluid with the cells there, one can feel the motion since there will be

reference points (the edges of cells) present. Although this experiment is somewhat basic, it

depicts the notion of self-organisation well.

4H is also used rather thanS and is sometimes also given asI ‘information’ in the literature.
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Figure 2.3: The spontaneous emergence of pattern in the Bénard cell convection experiment (from Kondepudi and

Prigogine, 1998. No scale is given with the original reference).
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However, it follows from the Second Law of thermodynamics that a system undergoing an

irreversible process should reach a maximum state of entropy or disorder and relax to an equi-

librium state. In nature, however, most systems are neither in equilibrium nor in a state of

maximum disorder i.e. they show organised structures and patterns (e.g. Bak, 1997; Ball,

1999). The work of Prigogine shows however that a system can lower its entropy locally at the

expense of increasing it globally. This is expressed as follows:

dS = deS + diS; dS > 0 (2.16)

HeredS is the total change in entropy of the system,diS is the internal change due to irre-

versible processes anddeS is the change in external entropy due to exchange of energy and/or

matter with the surroundings. This is depicted in figure2.4.

d S

d S

i

e

Figure 2.4: Internal entropy change diS and external change deS with diS ≥ 0, (redrawn from Kondepudi and

Prigogine, 1998)

In accordance with the Second Law we must always havediS > 0 regardless of whether the

system is open or closed.deS on the other hand is only non-zero for a dissipative structure

and can decrease (implying a decrease in that component of entropy) provided relation2.16

is maintained; this is the essence of self-organisation. Note that the system must be driven

far from equilibrium otherwisediS and deS would be zero (Nicolis and Prigogine, 1977).

However, one could ask whydeS should be driven to become negative? The property that

has recently been receiving more attention is that ofentropy production. This, for an open

thermodynamic system, is generally defined as (Kondepudi and Prigogine, 1998)

diS =
∑

k

FkdXk ≥ 0 (2.17)
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and

deS =
dQ

T
+ dSmatter (2.18)

dX is a flow term such asdQ for heat ordN for say moles flowing in a timedt. Fk here is the

thermodynamic force5 such as a function of temperature. To show the relation between entropy

and entropy production due to heat flow, we look at a simple example of an isolated container

(deS = 0) divided in to two halves of temperatureT1 andT2 (figure2.5)

dQ

1T T2

Figure 2.5: Entropy production due to the transfer of heat between two components. The entropy production dS
dT

is

zero when T1 = T2 and the entropy S is a maximum.

with T1 > T2. PuttingdX = dQ andFk = (1/T2 − 1/T1) we have for timedt that

diS

dt
= (

1
T2
− 1

T1
)
dQ

dt
(2.19)

From equation2.19we can see that the entropy production is greatest when the temperature

difference between the two sides of the container is largest (further away from equilibrium) i.e.

a state ofmaximum entropy productionor MEP. On the other hand, when the system reaches

an equilibrium state (T1 = T2), the entropy production is zero and the entropy is a maximum.

This competition between entropy and entropy production is shown in figure2.6.

It can be seen from figure2.6 that if one assumes that slowly driven systems away from equi-

librium approach a state of maximum entropy production, this will occur at the expense of

decreasing absolute entropy. In the Bénard cell convection example, the cells emerge at the

5Not to be confused with the free energyF given in equation2.8above
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T∆ T∆ 

S dS/dt

Figure 2.6: Change of entropy S and entropy production dS
dt

with temperature difference ∆T (redrawn from Kondepudi

and Prigogine, 1998 ).

expense of increasing the dissipation of heat away from the system and hence increasing the

entropy globally.

A similar definition of entropy production given by equation2.19is used by Lorenz et al (2001)

to address a climate problem. Using a simple model, they show that a state of MEP explains

the observed temperature variations with latitude on Mars and Titan that could not be explained

by more traditional climate models. It seems that these gradients self-organise to a state where

the heat flow (and accordingly the entropy production) is maximized (figure2.7).

Similar approaches of applying MEP to climate models have been proposed by Ohmura and

Ozuma (1997) and Wyant et al. (1988). To my best of knowledge, no such approach has been

applied to better understanding self-organisation in earthquakes, real or synthetic6.

2.6 Fractals

2.6.1 Introduction

I have spoken aboutpatternsandorder in systems with the example of Bénard cells but is

there a formal definition to what is meant by ‘pattern’? In a beautifully illustrated book on

self-organised structures in nature‘The Self-made Tapestry’, Ball (1999) gives examples of

6After the initial submission of this thesis, a good review of maximum entropy production and climate was

published by Ozawa et al., (2003).
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Figure 2.7: Figure shows model results of Lorenz et al. (2001). The y-axis normalised temperature and latitude,

and the x-axis denotes D which is a term proportional to the ease at which the system radiates heat. The model

temperatures (solid curves) fit observed average temperatures values on Titan for latitude 10 − 20 and 40 − 60

degrees (shaded areas) at the state of maximum entropy production or MEP (dashed line). Redrawn from Lorenz et

al., 2001.
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self-organisation from the forms of desert sand dunes, to patterns on sea molluscs. However,

in a book that spans over 250 pages, only the following insight is given in his introduction to

what is meant by ‘patterns’ or ‘form’:

”This book is about the development of pattern and form, and so it is well to have

an indication of what I mean when I use these words. I cannot give either term

a definition of mathematical rigour, however, nor can I always maintain a clear

distinction between the two... Form is more an individual affair.”

Fortunately for the purpose of this thesis, the ‘pattern’ or ‘form’ seen in earthquakes, is well

defined and known as ‘fractals’ or ‘power-laws’, as referred to in my introduction and are

defined below in more detail.

2.6.2 What is a fractal ?

Fractals are ubiquitous in nature. Natural examples of fractals include snowflakes (figure2.8),

coastlines, various branch structures and faults in rocks (Feder, 1988; Bak, 1997; Turcotte,

1997). The termfractal was coined by Mandelbrot in 1967 to describe geometries or systems

that were self-similar and had no characteristic scale. Mandelbrot defined a fractal as‘ ...a

shape made of parts similar to the whole in some way’, a more formal definition also given by

Mandelbrot was‘... a set for which the Hausdorff-Besicovitch dimension strictly exceeds the

topological dimension’(Feder, 1988). Terms usually associated with fractals are ‘power-law’

(see below), ‘scale-invariant’ and ‘self-similar’ (Turcotte, 1997). Mathematically, these are

defined by the power-law

N(r) =
C

rD
(2.20)

whereN(r) is the number of objects with linear dimensionr, C is a proportionality constant

andD is a non-integer ‘power’ or scaling exponent known as thefractal dimensionusually

found to have valuesE − 1 < D < E whereE here is the Euclidian dimension. For a

two dimensional space (E = 2), typically 1 < D < 2 (Dubois, 1998). In reality,D is
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Figure 2.8: The snowflake; an example of a fractal geometry occurring in nature (from Ball, 1999).
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usually measured using a box counting technique7 where a geometry is divided in to square

grids of sizer and the number of gridsN(r) intersecting the geometry are counted and then

r is varied and the counting process is repeated for that scale and so on (see descriptions by

Feder, 1988 and Turcotte, 1997). Figure2.9 shows a ‘text book’ example of a geometrical

fractal representing the fragmentation of a block into smaller replicas (from Turcotte, 1997).

Notice from the figure how the ‘parts are similar to the whole’ at the different scales. In this

Figure 2.9: Example of a three-dimensional geometric fractal. From Turcotte, 1997.

example of a fractal, the sizer of the squares scales as a power-law with their relative numbers

N (figure2.10), consistent with equation2.20. Such power-laws are used to describe several

scale-invariant geometries in nature including the fault size distributions in the Earth’s crust

(Bonnet et al., 2001) (also see section2.8.3), climate variations (Bak, 1997), various aspects

of biology (e.g. Ben-Jacob and Levine, 2001; Ball, 1999) and observations as far diverse as

hospital waiting lists (Smethurst and Williams, 2001). It should be noted here that although the

expression2.20above is boundless (r can be infinite), this is usually only true for conceptual

or computer generated fractal geometries. In nature however,r will be limited by the smallest

component of the system as a lower bound and by the system size as an upper bound. Such

size limitations may give rise toband-limitedfractals. Also, in some cases, the clustering in

7Other methods used to measureD include themass dimensionandmulti-fractal analysis. See review by Bonnet

et al., (2001).
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Figure 2.10: Corresponding log-log plot with slope (fractal dimension) D=2.60. From Turcotte, 1997

different vicinities of a fractal can show variation, an example of which is the process of crystal

growth by diffusion-limited aggregation (Feder, 1988; Schroeder, 1991).

2.6.3 Fractals and the critical-point

Now that fractals or power-laws have been defined (referred to just as power-laws hereon), I

return to statistical systems and their association with power-law distributions. A good example

of this is the percolation model. The model is described by Staufer and Aharnoy (1998) and,

in relation to earthquakes, by Main et al. (2000). Here, the model is described as follows: I run

a computational percolation model on aN × N square grid withN = 100. A site is picked

at random on the grid and is then defined as being ‘broken’. The number of broken sitesn

divided by the total number of sitesN2 gives us the probabilityp of finding a broken cell so

p = n/N2. A cluster is then defined as the number of connected neighbouring broken cells.

This is shown in figure2.11.

As n is gradually increased, and thereforep, the number of clusters also increases forming
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Figure 2.11: Clusters in the percolation model. The cluster area A is defined as the number of neighbouring broken

cells. The dashed line indicates the percolation flow path network. The size of the largest cluster determines the

correlation length ξ.

clusters of different sizes (figure2.12). However, at somecritical point (CP) wherep = pC

two interesting things occur. Firstly we very suddenly get what is called aninfinite cluster,

that is, one that connects one side of the system to the other allowingpercolationto occur.

The second thing that occurs precisely atpC is that the distribution of cluster sizes (or area)A

follow

N(A) ∼ A−D (2.21)

with the number of clustersN(A) is related by a power-law to the cluster sizeA with fractal

dimensionD. Note that this power-law distribution is similar to that seen in other statistical

systems at the critical point such as the magnetic Ising model where there is a sudden change

in magnetization at the Curie Temperature (Bruce and Wallace, 1989), or water at the critical

temperature (TC) as outlined in the introduction. The critical pointpC
8 for this example is

referred to as thepercolation thresholdsince there will be a rapid transition in the size of the

largest cluster or correlation length9 ξ where asp → pC ,

ξ ∝ |p− pC |−ν (2.22)

8The actual value ofpC will depend on the various parameters such as the dimensions of the system and the

shape of the cells but for the example given is∼ 0.5927 (see Stauffer and Aharony (1998), pg. 17).
9The correlation length can be defined in different ways depending the system examined. Generally speaking

however,ξ can be regarded as being a measure of the size of the largest clusterAmax in the system withξ ∝
√

Amax.
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whereν is a critical exponent. This rapid increase inξ or Amax is demonstrated for a single

run in figure2.13. Note that whenp > pC , ξ = ∞ by definition since the entire system is
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Figure 2.13: Plot of non-linear increase of maximum cluster size Amax with p for a single run of the percolation model

with grid size N = 100× 100. The dashed line indicates the percolation threshold p = pC = 0.5927. The size of the

‘infinite’ cluster (Amax is restricted by the system size at p = 1.

considered broken by the ‘infinite’ percolation cluster. The rapid acceleration in maximum

cluster size as demonstrated by equation2.22 is also found in the Ising model as the Curie

temperature is approached (Nicolis, 1989) and has been reported in seismicity for earthquakes

prior to some large events (e.g. Bowman et al., 1998) (see section2.8.4below). The critical

point is associated with the process ofphase transitionsdue to the rapid change in properties of

the system such as the size of the largest cluster. In the case of a liquid-gas phase transition, the

critical point (CP) corresponds toTC (or a critical preasure) where there is a change of phase

from liquid to gas with no change in density. The percolation model is therefore interesting

since it resembles other statistical systems in its statistical properties prior to and at the critical

point regardless of the detailed physics of the system, a property usually associated withuni-

versality(Main, 1996). This has encouraged the application of critical point statistical-physics

or thermodynamics to stochastic systems such as the Earth’s crust (Main, 1986; Zöller et al,

2001). This application must however be done with caution (see section2.7.2).
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2.7 Self-Organised Criticality (SOC)

2.7.1 Definition?

”There does not exist a clear cut and generally accepted definition of what SOC is.

Nor does a very clear picture exist of the necessary conditions under which SOC

behaviour arises”-from the bookSelf-Organised Criticality, Jensen (1998).

Despite SOC having been cited in various literature over 2000 times since its publication,

(Hergardten, 2002) the above quote from Jensen (1998) remains true. So far, I have discussed

self-organisation in the light of thermodynamics of ‘dynamic’ dissipative structures and ‘static’

power-laws at the critical point in equilibrium thermodynamics and statistical physics (static).

The great interest in SOC is because it is believed to be a link between critical point systems

and driven dissipative systems. It is proposed as an explanation of the spontaneous emergence

of power-law statistics in driven complex systems such as the Earth (Jensen, 1998; Ball, 1999).
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Figure 2.14: The avalanche process in the sand pile model with critical angle φC .

Bak et al. (1987) use the paradigm of sand piles to explain SOC. Sand is added to a pile grain

by grain at a constant rate until the slope of the pile reaches some critical angle of reposeφC

when an avalanche is triggered as seen in figure2.14. Any surplus sand is allowed to escape

from the edge of the pile. The avalanches frequency-size distribution follows a power law10

10It was found later in laboratory experiments that not all sand piles produce power-law statistics although ex-

periments showed that power-law avalanches were produced by rice grains with an elongated shape (Frette et al.,
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distribution. The current accepted criteria of SOC as suggested from the BTW sand pile model

are as follows:

1. A slowly driven system far from equilibrium that self-organises to a critical steady-state

showing power-law statistics with fluctuations about the critical point of no characteristic

size.

2. Sensitivity to minor perturbations that could trigger large events (avalanches) that can

span the length scale of the system, i.e. one grain of sand could trigger a very large

avalanche.

3. The power-law nature is global and independent of local dynamics (Bak et al., 1987).

Note from figure2.14that the sand leaves or dissipates from the system at the edges when an

avalanche occurs. Dissipation11 in SOC systems is required, otherwise, an infinite event may

be triggered that would go on indefinitely (such as an infinitely large sand pile collapsing).

The interesting point about SOC is the way ‘energy’ enters and leaves the system. The input

driving force or energy is uniform or linear, whereas the output is punctuated in the form of

avalanches of various size that follow a power-law (figure2.15). An SOC system can be seen

as a self-regulating power-law generator. The criteria associated with SOC given above can,

to a first approximation, be used to examine if the crust is strictly SOC (see e.g. Main, 1996).

SOC will be discussed in more detail in chapter 4.

2.7.2 Critical differences

I have mentioned the word ‘critical’ in relation to thermodynamic systems at the critical point

(CP) (section2.6.3), and in relation to SOC (section2.7). There are important yet subtle

differences between the two systems. Firstly, the CP systems away from the critical point

are generally considered to be at equilibrium since there is no dissipation of energy and no

1996).
11Dissipation as cited in the SOC model literature can refer to two things, dissipation out of the system (at the

edges) and dissipation within the system itself. Models with only dissipation at the edges are sometimes referred to

asconservative. This is explained in detail in chapter 4.
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Figure 2.15: Figure shows the SOC process with a ’linear’ input of energy and the punctuated power-law output. The

inset boxes show the corresponding energy probability distributions on a log-log scale.

power-law features. However, the SOC systems are usually driven away from equilibrium by

a driving force such as sand entering and dissipating in and out of the sand pile model. Also,

the CP systems only show power-law structures at the critical point. Any perturbations to the

equilibrium systems whilst away from the critical point will not drastically alter their statistics.

It is only at the critical point that a perturbation -say a breaking of a cell in the percolation

model- can alter the system significantly in the form of a phase transition. An example of this

is changing the temperature of a fluid at the critical temperature; a slight increase would cause

an evaporation whereby a slight decrease would cause condensation.

Conversely, in an SOC system, the system sensitivity to a perturbation is in the sense that a

small perturbation may trigger a large event that spans the entire system but the power-law

statistics overall remain resilient to noise (perturbations) provided the amplitude of the per-

turbations do not overshadow the intrinsic system fluctuations (Ceva, 1995; Mousseau, 1996;

Main et al., 2000). Finally, CP systems must be ‘tuned’ to the critical point at which the pat-

terns occur, that is, they will not naturally evolve towards the critical point (TC , pC , etc.). SOC

systems will naturally evolve to the critical point as it is an attractor state. This usually can

occur regardless of the starting conditions (Jensen, 1998). The differences between SOC and

CP systems outlined are summarised in table2.7.2.
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Property CP SOC

Dynamics Static Driven & dissipative

State At equilibrium when away Away from equilibrium

from the critical point

Power-law Only at critical point Always (within limits)

Dissipation Not required Essential

Sensitivity to perturbations Sensitive close to and Robust to perturbations over time

at critical point although a small perturbation can

trigger a large event

Criticality Tuned Attractor state

Table 2.1: Table of qualitative differences between equilibrium systems at the critical point (CP) and systems showing

SOC.

2.8 Earthquakes

2.8.1 General introduction

Earthquakes mainly occur in the Earth’s brittle crust in the proximity of active fault margins

where tectonic plates converge, diverge or slide with one another (figure2.16). The crust and

the upper mantle broadly consist of the rigid lithosphere, which ‘floats’ over the more ductile

(plastic) asthenosphere. In accordance withelastic rebound theory, tectonic forces drive the

plates (usually at a slow rate of a few centimetres a year) and energy accumulates in the elastic-

brittle upper crust as they deform and/or rub against one another until a threshold frictional

force is overcome (this is analogous toφC in the SOC model above). When this occurs, the

stored energy is released in the form of heat and radiated seismic energy.

Statistically, earthquakes belong to a class of systems which are very non-linear and away-

from-equilibrium, so much so that their statistics have been likened to those of fluid turbulence

(Kagan, 1994). This non-linearity is evident two fold; firstly in the power-law avalanche type

behaviour observed in their energy release and their spatial and temporal statistics (see section

2.8.3), and on a more practical level in our inability to accurately predict large earthquakes

despite over a century of research into prediction (Geller, 1997). It seems that earthquake
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prediction remains a ‘holy grail’ of geophysics (Main, 1996). It is this predicament that is

thought to have divided the geophysical community into those who use a ‘holistic’ approach of

data gathering and analysis, and those who concentrate on earthquake physics (Kagan, 1999).

But, it is also these observed non-linearities that have encouraged a more integrated statisti-

cal approach to our understanding of earthquake phenomenology (Kagan, 1994; Main, 1996;

Malamud and Turcotte, 1998; Bird et al., 2002).

2.8.2 Earthquake energy state

A simple ‘thermodynamic’ energy balance equation for seismic energy release can to a first

approximation be written as (Scholz, 2002)

Wf = Q + ES + US (2.23)

whereWf is the mechanical work done in faulting (friction + deformation),Q is heat,ES is

the seismic energy release due to earthquakes, andUS is thesurface energywhich is negligible.

The seismic energy releaseES can be more specifically defined as

ES =
1
2
∆σ∆uA (2.24)

where∆σ is the stress change (drop) due to a seismic event,A is the fault area, and∆u is

the mean slip or displacement along the fault. Referring to the laws of thermodynamics (see

equation2.4), one cannot expect all the workWf to be converted in to seismic energy and

heat alone as some will be expended through deformation, fluid circulation and so on (Scholz,

2002) . In the case of seismicity, the efficiency of this energy transformationη is referred to as

theseismic efficiency(e.g. Dobrovol’skiy, 1994) and is defined as

η = 100
ES

Wf
. (2.25)

Note thatES depends on the stress drop due to an earthquake andWf will depend on the

total stress in the crust.Wf is in practical terms difficult to calculate (Main et al., 2000).

Nonetheless, It is known that stress drops due to seismic events are in the order of a fewMPa

compared to total stresses in the crust that are in the range of10 − 100MPa (Abercrombie

and Leary, 1993; Scholz, 2002). This is in agreement with the Second Law since no ‘engine’
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can be100% efficient. However, the seismic efficiency is sometimes reported as being equal to

unity (e.g. Kagan, 1999) in apparent contradiction to the Second Law. This is due to the great

uncertainties in its calculation (Scholz, 2002). A100% efficiency would require a lack of any

deformation or heat flow in a seismic region and cause an earthquake whose radiated energy

would resonate about the globe indefinitely, both requirements of which contradict general

observations. In the light of self-organisation and dissipation, a form of seismic efficiency may

play an important role in self-organisation in the crust since it is related to dissipation of energy.

However, as can be seen from equation2.25, realistically calculatingη for earthquakes may be

in practice impossible (Scholz, 2002) and therefore, the effects of dissipation are best examined

in theoretical and numerical models of seismicity (chapters 3 and 4).

2.8.3 Earthquakes and power-laws

As mentioned in the introduction of this thesis, earthquakes follow power-law distribution in

the form of the Gutenberg-Richter (GR) relation (Gutenberg and Richter, 1957) over several

orders of magnitude where

log(N) = a− bm (2.26)

m is thescalar magnitudeof the seismic event size andb is the seismicb-value generally∼ 1

worldwide (Kagan, 1999). It is this power-law nature of seismicity that leads us to suggest that

the Earth is an SOC system in line with criterion 1 in section2.7. The GR relation ensures

that while small events are very numerous (several thousand a day form < 3, larger events are

very infrequent (onem > 8 annually on average). Why this distribution should organise its self

to a power-law as opposed to any other distribution is elusive. This question is addressed by

Kanamori and Anderson (1975) in terms of simple geometry. The magnitude of an earthquake

is proportional to the area of its corresponding fault (equation2.29below). The problem is then

reduced to a question of accommodation; you can fit many small faults within an active seismic

region but only a few larger ones and accordingly, more smaller earthquakes than large ones.

This explanation does not, however, account for the power-law being robust over several orders

of magnitude despite the complexities involved in the Earth that lead to the SOC hypothesis

as an explanation (section2.7). It is also this robustness of the power-law observed for over a

century that validates us addressing the Earth’s seismicity as a ‘stationary’ process (as defined



CHAPTER 2. Background: From thermodynamics to earthquakes 36

in section2.4.3).

As an alternative to the measurement ofm, a more rigorous measure of earthquake energy

release is known as themoment magnitudeMO. This magnitude is calculated from solving

the moment tensorsof an event which are the fault orientation and displacements in three

dimensions as measured by multi-component seismograms. This measure of energy (Kanamori

and Anderson, 1975; Fowler, 1990) is given by

MO = µ∆uA (2.27)

whereµ is the shear modulus,∆u is the slip andMO is in units ofNm. MO scales directly

with source rupture areaA (Kanamori and Anderson, 1975). For a scale invariant source,

∆u√
A
∼ constant (Kanamori and Anderson, 1975; Abercrombie, 1995) so with reference to

equation2.27it is found that

MO ∼ A3/2 (2.28)

The moment magnitude has been empirically related to the surface wave magnitudeMS (anal-

ogous tom above) by

log MO =
3
2
MS + 9.1 (2.29)

MS is measured from the logarithm of the amplitude of the surface wave at a period of 20

sec whereby the scalar magnitudeMO is in effect calculated at infinite periods (Kanamori

and Anderson, 1975). Therefore, there will be an apparent attenuation or saturation at higher

magnitudes ofMS so events of highMO will be measured at only marginally highMS where

MS ∼ 8 (Reiter, 1991). Finally, given thatES = ∆σ
2µ MO (Kanamori and Anderson, 1975;

Scholz, 2002), we can deduce by substituting into2.26that the energy release radiated by an

earthquake is empirically given by

log ES =
3
2
MS + 4.8 (2.30)

whereES is in Joules.

In relation to fractals, it can be noted from equation2.26above that theb-value is a scaling

exponent similar to the fractal dimensionD in equation2.20above. The exponentsb andD

can be related as follows: Substituting2.28into 2.29, we have

MS ∼ log A (2.31)
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Given thatm = MS and substituting into2.26we have

N ∼ A−b (2.32)

Since we are dealing with an area (A ∼ r2), we can rewrite2.20as

N ∼ A−D/2 (2.33)

So comparing the powers of2.32and2.33we have (Henderson, 1992; Turcotte, 1997)

D = 2b (2.34)

This is essentially identical to the result of Kanamori and Anderson (1975) except that here,D

need not be an integer. This result gives a mathematical link between the power-law observed

for earthquakes and observations of fractal fault scaling found in the crust (e.g. Turcotte, 1997;

Scholz, 1997; Bonnet et al., 2001). However, studies on real data have shown that relation2.34

doesn’t always hold for field data (e.g. Henderson et al., 1994;Öncel et al., 2001)

The Gutenberg-Richter relation can be written in terms of a true power-law in the form of

an energy probability distribution. Puttingm ∼ MS we havelog E ∼ 3
2m from 2.30 and

log(N(m)) ∼ m from 2.26. TheN(m) term can be written as a probability by simply dividing

N(m) by the total number of events for a sample. This gives the incremental energy probability

distribution

p(E)dE ∼ E−B−1dE (2.35)

whereB is a scaling exponent. From2.26and2.30we can deduce that

B ∼ 2
3
b (2.36)

Note that2.35is a power-law at all scales. However, it has been found that earthquake energy

probability distributions deviate from a straight line at higher magnitudes (e.g. Kagan, 1997;

Burroughs and Tebbens, 2002). To take in to account any finite size effects such as the limited

size and/or thickness of tectonic plates and finite rate of energy released seismically per unit

time, a modification of2.35 is therefore used in the literature and is known as themodified

gamma distribution(Shen and Manshina, 1983; Main and Burton, 1984; Kagan, 1993) in the

form

p(E) ∼ E−B−1e−E/θ (2.37)
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wherep(E) is the probability of having an earthquake of energyE andθ is a measure of the

size of the largest possible event (analogous to the correlation length mentioned above). The

gamma distribution will be discussed in detail and derived in chapter 3 (see section3.2). Note

that2.37has energy to the powerB + 1 as is sometimes quoted as having powerB which can

be a source of some confusion. However, the two scaling exponents are the same in the sense

that this will depend on if a probability is incremental, cumulative or a density. Bonnet et al.

(2001) give a good review of the different cases and are also defined by Sornette (2000, p.7-9).

2.8.4 Foreshocks and aftershocks

The GR law however is not the only power-law to be observed from earthquake dynamics.

The second observation is that of the power-law time to/from failure given as Bufe and Varnes,

(1993) and Z̈oller et al., (2001) as

ξ ∼ (tC − t)−k (2.38)

whereξ here is the correlation length (size of the largest seismic event within a region),t is

time,tC is time of failure, andk is the power-law scaling exponent.ξ here is often replaced by

the cumulative Benioff ‘strain’ or
∑

[MO]1/2 before a large event (Robinson, 2000; Bowman

et al., 1998) whereξ is replaced byΣMO(t) Note that although the term ‘strain’ is used in the

literature in this context (e.g. Vere-Jones et al., 2001; Zöller and Hainzl, 2001), this is not a

strain but a function of the stress drop or seismic energy release.

Looking at2.38, one can instantly note the similarities with equation2.22as a critical point

is approached. Therefore, this observation -when made- is suggested as supporting evidence

that the Earth is a ‘critical point’ system and being in a state of SOC (e.g. Zöller et al., 2001).

However, as I have outlined in section2.7.2, ‘critical point’ and SOC are not the same thing.

A reverse of equation2.38above is the famous Omori law. If we swaptC andt in 2.38we

retrieve the modified Omori Law which is generally give as

n(t) = K(t− tC + c)−p (2.39)

wheren(t) is the number of aftershocks per unit time at timet; K, p andc are constants,tC is

the time of the main shock andt is the time following the main shock. Although2.38above is
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not always observed prior to large events, the Omori Law has been well documented for real

data for over 100 years (see Utsu et al., 1995).

2.8.5 Earthquakes and SOC?

Where do we currently stand in our assessment of earthquakes as an SOC system? There

appear to be four approaches in addressing SOC in the crust:

1. Observation: With reference to the criteria outlined in section2.7, the Earth’s crust

is a very slowly driven system with plate motions of only a few cm. a year (Fowler,

1990). Also, power-law statistics are found globally both spatially for the geometric

distribution of Earth’s tectonic plates (Sornette and Pisarenko, 2003) and for earthquake

frequency-size distributions (e.g. Kagan, 1997). Furthermore, the process of small per-

turbations manifesting themselves into large events is also sometimes observed such as

small changes in ground pressure that can trigger seismic events (Grasso and Sornette,

1998).

2. Numerical models: Several computer models of seismicity show power-law behaviour

in their energy-frequency distribution (e.g. Burridge and Knopoff, 1979; Olami et al.,

1992; Kumagai et al., 1999) despite having somewhat different underlying rules (het-

erogeneity, noise, dissipation, etc.). However, one must be cautious when making any

conclusions as to what is occurring in the Earth based on what is being observed in a

simple model. Models will be discussed in detail in Chapter 4.

3. Critical point (CP): As I discussed in section2.8.4 above, although the observation

of precursors in the form of a power-law increase in correlation length or cumulative

seismic moment release may be a sign of the Earth acting as a critical point phenomena,

this concept should not be confused with SOC. Temporal changes in the statistics of

avalanche behaviour are not observed in the original BTW model of Bak et al. (1987).

Equilibrium CP phenomena are fundamentally different from the far-from-equilibrium

state of SOC.

4. Theory: There have been attempts at showing that SOC applies to the crust from a the-
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oretical perspective. For example, these have been done using a mean field approach

in deriving the power-law seen in the crust (Sornette et al., 1990). Other attempts have

been made in analytically solving models of seismicity; Helander et al. (1999) analyt-

ically solve a one-dimensional sand pile model and retrieve power-law avalanches in

both space and time. A similar approach is carried out by Lauritsen et al. (1996) using

a generalised mean-field approach with the addition of a dissipation factor. They also

predict power-law statistics in the locally conservative case, consistent with what is seen

in numerical models. The success of an analytical approach indicates that a statistical

mechanics can be useful in determining stationary solutions for systems out of equilib-

rium.

In addition to the second point outlined above, there are also other statistical observations

that are seen in earthquakes that are not seen in the original BTW model such as anomalous

stress diffusion in earthquake transient locations (Marsan et al., 2000). Therefore, if SOC is

to be rejected as null hypothesis for crustal dynamics, one would require a description that:

1. does not contradict what is observed for real data, 2. is theoretically tractable and 3. can

be verifiable though the use of numerical models. Therefore, an integrated approach using

observation, theory and models is perhaps the best approach to address the question of SOC in

the crust.

2.9 Summary

In this chapter I have covered some of the basics of statistical physics and thermodynamics

to assist in the understanding of the lesser known branches of thermodynamics of dissipative

structures and non-equilibrium systems. I then, in light of the thermodynamics, introduced

definitions of entropy including statistical entropy, the important process of maximum entropy

production (MEP) and its role in self-organisation. Although MEP has been used to better

understand climate models, for example, it has not been formally applied to seismicity.

Power-law or fractal organisation in statistical systems was then examined and their link with

the critical point and SOC described. The differences between a thermodynamic system at the



CHAPTER 2. Background: From thermodynamics to earthquakes 41

critical point and SOC systems was also highlighted. Although the general aspects of SOC are

agreed upon amongst the scientific community, a formal definition of SOC remains elusive as

pointed out by Jensen (1998). Finally, I gave a broad description of earthquake statistics and

their current understood association with the concept of SOC and fractals. The GR law has

been found to hold over time worldwide giving a rationale in addressing Earth’s seismicity as

a stationary steady-state process. Recent work on MEP (Dewer, 2003) that extends the work of

Jaynes (1957) confirms that the tools of equilibrium statistical physics and thermodynamics can

be applied to far-from equilibrium systems and systems undergoing SOC. This thesis addresses

the question of self-organisation and criticality directly using analytical theory (chapter 3),

numerical modelling (chapter 4) and analysis on earthquake populations (chapter 5).
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Chapter 3

Entropy and the gamma

distribution

“Statistical mechanics can describe not only the world of the very small and com-

plex but also the very large and complex. It is likely that the application of statis-

tical mechanical problems in the earth sciences will only continue to increase in

the future” -Rundle (1993)

3.1 Introduction

Earthquake populations are observed to be best described by a modified gamma distribution (a

power-law with an exponential tail) in their frequency-energy statistics (section2.8.3). In the

previous two chapters I have covered aspects of thermodynamics, statistical physics and some

of the observed phenomenology associated with earthquakes and self-organisation. Equilib-

rium systems can be tuned through an external variable (e.g. pressure or temperature) to un-

dergo a phase transition via a critical point. In contrast, self-organising critical systems are

spontaneously attracted to a critical attractor state under conditions that are far from equilib-

rium. The term ‘critical’ therefore takes on a different meaning when being applied to equilib-

rium and far-from-equilibrium systems (section2.7.2).
43
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In this chapter I address the term ‘critical’ theoretically using the tools of thermodynamics and

statistical physics/mechanics described in chapter 2. I concentrate on analytical solutions asso-

ciated with the energy probability distribution observed for SOC systems or more specifically,

earthquakes. I recall the derivation of the modified gamma distribution in accordance with

Shen and Manshina (1983) and Main and Burton (1984) using statistical (Shannon) entropy

and how it varies in the sub-critical, critical and super-critical regimes. The three regimes are

addressed individually in section3.3. I then put forward a theoretical derivation of generalised

entropy for the gamma distribution and the thermodynamic variables associated with it. A con-

tinuous version (non-discrete) of this result was derived in collaboration with Ian Main and has

been previously published in Main and Al-Kindy (2002). Here a discrete version is derived

to explain differences in calculating entropy by using linear and logarithmic increments. This

was done by Prof. Ian Main. We propose that this theoretical framework may be used as a tool

for assessing the proximity to criticality of a system with gamma type statistics. I also use the

theoretical results to produce entropy-energy phase-diagrams for earthquake seismicity in the

three criticality regimes for different power-law exponents. Some of the results of this chapter

are also published in Al-Kindy and Main (2003).

3.2 The gamma distribution (GD)

‘Only the gamma distribution satisfies both conditions: simplicity and satisfactory

approximation of available [earthquake] data’- Kagan (1993).

3.2.1 Overview

We have seen in section2.6 that power-laws show correlation spanning all length scales as

demonstrated by equation2.20 and the Gutenberg-Richter (GR) law. Although this infinity

can be demonstrated for geometrical objects on paper or those generated numerically on a

computer screen, Earth is not infinite in size. This spatial limit at least for higher magnitudes

can be accounted for by the use of a modified gamma function (section3.2.4) that is in the form
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of a power-law with an exponential tail that rolls off at larger scales (equation3.1).

p(E) ∼ E−(B+1)e−E/θ (3.1)

Here,p(E) is the probability density of a state with energyE, B is the power-law scaling

exponent andθ is a temperature term.

The difference between a pure power-law (effectively the Gutenberg-Richter law) and a gamma

distribution (GD) as usually observed from earthquake data is demonstrated in figure3.1.

p(
E

)d
E

E

gamma
power−law

Figure 3.1: Plot of frequency-energy distribution from equation 3.1 for a pure power-law with θ = ∞ (solid line) and

for a gamma distribution with θ > 0 (dashed line) which shows a roll-off at larger scales.

The y-axis in figure3.1 denotes the incremental probability1 pi = p(E)δE of an event of a

particular size. Often this is also given as the numbers or frequencies of events. Sometimes

probability is integrated and given as the cumulative number of events (e.g. Burroughs and

Tebbens, 2002). However, taking the cumulative (which is used to ‘smooth’ the data) can often

introduce or indeed obscure factors such as breaks in scaling or noise (Main, 2000). For this

reason I will show incremental frequencies in the rest of this thesis unless explicitly stated

1The probabilityp(E)dE is usually calculated by counting the number of events in a particular size range

E ± δE
2

and dividing by the total number of events.
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otherwise. Two main features normally observed in data are shown in figure3.1. Firstly, the

cut-off size of the largest event will be smaller for the gamma distribution than for an equivalent

pure-power-law2. Secondly, at the larger scales, the likelihood of having an event of a given

size will be smaller for the gamma distribution than for a pure power-law distribution. Note

that the observations in figure3.1are for the critical and sub-critical regimes which are usually

observed from real data. A third case called ‘super-critical’, which is sometimes suggested

from historic and palaeoseismic data, is discussed in section3.3.3.

The GD has been used to describe various natural systems. For example, in the percolation

model described in section2.6.3, the cluster size-frequency distribution will follow a GD bel-

low the critical point to account for the largest cluster not being effectively infinite (Stauffer

and Aharony, 1994). GDs are also represented in the band limiting effect of dissipation in cel-

lular automata models of seismicity (Olami et al, 1992) and system finite size effects in other

earthquake models (Jánosi and Kert́esz, 1993; Christensen and Olami, 1993). The GD has

also been observed in magnetic domain patterns to account for the size limiting effect of mag-

netic damping at larger length scales (Bak and Flyvbjerg, 1992). These various accounts of the

GD verify its applicability to both geometric (e.g. cluster size) and dynamic (e.g. earthquake

energy release) type systems.

3.2.2 Seismicity: gamma and other distributions

The gamma distribution as applied to earthquake seismicity has its roots in statistical physics

and information theory (see section3.2.4) and can be thought of as an ‘energy’ distribution as in

equation2.1 (section2.2) but with a geometric power-law degeneracy. It has been extensively

used as a fit to earthquake seismicity data for both real (Main and Burton, 1989; Wu, 2000;

Kagan, 1993; 1997; 1999; 2002) and model (synthetic) earthquake catalogues (Main et al.

2000; Vere-Jones et al., 2001). A gamma distribution fitted to three real earthquake cumulative-

frequency data ensembles from The Harvard Centroid Moment Tensor catalogue (described in

chapter 5) is shown in figure3.2 (from Kagan, 1999). The fits shown are for three different

earthquake source depth ranges.

2Although this is what is mostly observed, the opposite is true for the super-critical regime (section3.3.3).
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Figure 3.2: Cumulative frequency seismic moment distributions for earthquake data for three different depth ranges

with fitted gamma distributions (from Kagan, 1999).

Although the gamma distribution (and variations thereof) currently seems to be the simplest and

most consistent with available earthquake data (see Leonard et al., 2001), there are alternatives

in the literature mentioned here for completeness. For example, it has been suggested that

there may be two scaling regimes within an earthquake population with larger and smaller

earthquakes obeying different scaling laws (Pacheco et al., 1992; Scholz, 1997) which in effect

means fitting two GR laws with differentb values to a data population. The premise of a break

in slope of the GR law has been criticised on both statistical grounds as such a fit requires

more parameters to be defined (Main et al., 1999) and/or on the grounds of being artefacts of

noise or due to the use of cumulative statistics (e.g. Main, 2000). Sometimes related to the

gamma distribution is thecharacteristic earthquake modelwhich is discussed in section3.4.

In summary, it can be said that for a given energy rangeEmax−Emin, the gamma distribution

is the simplest distribution in terms of the number of free parameters after the pure GR law

that can fit most observed earthquake populations as well as having a statistical physics basis

as derived from information theory (see section3.2.4below).
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3.2.3 The ‘temperature’ term θ and the scaling exponent B

The two main components of equation3.1are as follows:

θ: This is referred to as thetemperatureterm because it dimensionally replaces the temper-

ature termskT in Boltzmann’s distribution (equation2.1in section2.2) and must not be

thought of as an actual temperature in the thermodynamic sense; it merely determines

the magnitude of fluctuations in the system. Theθ value is often used to estimate or

predict the size of the largestprobableevent in seismic hazard studies (Main and Burton,

1989; Kagan, 1999). In other words,θ is related to a correlation length. One important

aspect of theθ term is that it is analogous to the probabilityp in the percolation model

(section2.6.3) in the sense that it determines whether a system is in the ‘sub-critical’

(θ > 0, ‘critical’ (θ−1 = 0) or ‘super-critical’ (θ < 0) regime, depending on its value.

These three criticality regimes are discussed in section3.3.

B: The scaling exponentB for earthquake seismicity is reported as being a universal con-

stant (referred to asuniversality in this thesis) withB ∼ 0.60 − 0.65 (Kagan, 2002)

although studies have shown thatB can vary in space (Ogata et al., 1991) and/or time

(Smith, 1991; Wyss and Wiemer, 2000). For example, it is apparent from figure3.2 that

the deep earthquakes have a lower slope (B value) than the shallower ones. Temporal

variations ofB have been studied as possible precursors to large events in seismicity of

earthquakes (Smith, 1981) as well is rock fracture experiments (Sammonds et al., 1992).

PhysicallyB can be indicative of the level of spatial clustering of faults (Öncel et al.,

2001) or earthquake epicentres in space (Henderson, 1992) since, at least mathemati-

cally, it is related to the fractal dimensionD (section2.8.3). Variations inB in space

or time might also be symptomatic of changes in the local physical dynamics of a sys-

tem (e.g. Main, 1987, Olami et al., 1992). However, variations inB should be treated

with some caution because measured values may be influenced by the assumptions or

methods used in obtaining them (Bender, 1983).



CHAPTER 3. Entropy and the gamma distribution 49

3.2.4 Derivation of the gamma distribution

This derivation is given here in accordance with Shen and Mansinha (1983) and Main and

Burton (1984) and then generalised to include the constraints using the theory summarised by

Jaynes (1957). The derivation of Shannon or statistical entropy is given in Appendix A of

this thesis and defined for an energy probability distributionpi = p(E)dE with incremental

microstatesEi as:

S = −
Emax∑

Emin

pi ln pi (3.2)

whereEmin andEmax are the minimum and maximum possible energy states observed in the

system. To ensure unit probability for all states we set

Emax∑

Emin

pi = 1 i = 1, ..., N. (3.3)

The expectation or mean off(Ei) for N constraints is

< f(E) >=
Emax∑

Emin

pif(Ei) i = 1, ..., N (3.4)

wheref(Ei) are independent functions of the energy. In accordance with Jaynes (1957), the

maximum entropy distribution is the most likely subject to the information available. We there-

fore look for δS = 0, using the method of Lagrangian undetermined multipliers, subject to

(3.3) and (3.4) then

pi = e−λ0−λ1f(E1)−λ2f(E2)−...−λNf(EN ). (3.5)

The constantsλi are Lagrangian undetermined multipliers, to be determined by substituting

(3.5) into (3.3) and (3.4). Given the constrains of (3.3) we can define

λ0 = lnZ (3.6)

whereZ is the partition function defined as

Z =
Emax∑

Emin

e−λ0−λ1f(E1)−λ2f(E2)−...−λNf(EN ) (3.7)

and following from this, it can be shown that (generalised from Main and Burton, 1984)

< f(E) >= −∂ lnZ/∂λi. (3.8)
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We can see that onceZ is known, all the other macroscopic variablesfi can be calculated from

its partial derivative using (3.8). One example is the mean energy. One can now put the energy

constraintf1 = E, and finite natural log energyf2 = ln(a2E) to obtain

pi =
e−λ1E−λ2 ln a2E

Z
. (3.9)

Substitutingλ−1
1 = θ, λ2 = B + 1 anda2 = E−B

0 for dimensional consistency, whereE0 is is

a reference energy state, we then have

pi =
EB

0 E−B−1e−E/θ

Z
(3.10)

and

Z =
Emax∑

Emin

E−B−1

E−B
0

e−E/θ. (3.11)

Equation3.10 has the form of the gamma distribution (equation3.1) but here, the partition

function Z ensures that (3.10) has unit total probability. The occurrence of the degeneracy

‘power-law’ term in earthquakes can be thought of in geometrical terms since the energy release

is related to the fault rupture areaA whereE ∼ A3/2 (section2.8.3) and there are fewer ways

of fitting a large fault to a given area and vice versa for small faults (Kanamori and Anderson,

1975). This geometric constraint is addressed by Main and Burton (1984) in their derivation of

the power-law GD. The approach of maximising entropy subject to information available has

also been used by Nagahama (1992) to derive a formula to calculate shear strain with distance

from a naturally occurring shear zone. More recently, a similar approach has been applied

to derive statistical physical models for strain in fibre bundle models (Pride and Toussaint,

2002; Toussaint and Pride, 2002a; 2002b) using the principles of maximum entropy. I now

re-examine the characteristics of the GD formally in relation to criticality.

3.3 The three criticality regimes

Equation3.10it is composed of a power-law (degeneracy) term with slopeB and a Boltzmann

exponential ‘tail’ at a characteristic energyθ. For statistical systems such as the percolation and

Ising models discussed in section2.6.3, the system will behave differently below and above
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the critical point (where the system is a pure power-law). The three criticality regimes are

dependent onθ in their definition as follows:

3.3.1 The sub-critical regime ( θ > 0)

If the θ term is positive, there will be a roll-off at the higher energies with larger energies

less probable than a pure power-law (figure3.3). This is what is observed for the majority of

earthquakes populations (e.g. figure3.2after Kagan, 1999; Leonard et al., 2001).
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Figure 3.3: Theoretical probability distribution for the three criticality regimes with θ > 0 (sub-critical), θ−1 = 0 (critical)

and θ < 0 (super-critical).

The observation of a sub-critical regime is also predicted from various analytical solutions of

SOC models. For example, in mean-field approximations of the SOC model, sub-criticality is

predicted when finite dissipation is introduced in to the system (Lauritsen et al., 1996). The

dissipation can have the same effect as the system size on limiting the extent or magnitude of

the maximum event size. Again, these observations are more akin to real systems which are
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usually both limited in size and dissipative.

3.3.2 The critical regime ( θ−1 = θ−1
c = 0)

When the temperature termθ is effectively infinite, we achieve a pure power-law (figure3.3)

since forθ →∞, the exponential term in equation3.10disappears and the Gutenberg-Richter

law is retrieved. The critical regime is what was found in the original BTW model (Bak et al.,

1987) where there is no internal dissipation in the system and is analytically predicted for a

one-dimensional sand pile model (Helander et al., 1999).

An important point regarding the literature on the Earth as a ‘critical system’ must be clarified

here. The power-law observed in the original BTW model was referred to as ‘1/f-noise’ since

the relation between the duration of the avalanches and their size was found to be a power-

law3. However, some of the literature addressing Earth’s criticality in association with1/f-

noise refers to a power-law observed in the Fourier analysis frequency-power distribution of

say borehole wire-log data (e.g. Leary, 1991; Bean, 1996; Leary and Al-Kindy, 2002), or in the

Fourier analysis of Earth surface landscape altitude data (Turcotte, 1997). The observed power-

laws in these examples are true1/f-noise since they examine the power-frequency content of

a time series. These should neither be confused with the dynamic power-laws observed in

the probability distribution of radiated seismic energy nor with the critical point observations

associated with accelerated seismicity discussed in section2.8.4. The term ‘critical’ is too

often used in the earth science literature to mean ‘power-law’ regardless of what parameters

the observed power-laws are associated with. Just as with the critical point (CP) concept,1/f-

noise in the crust, despite being self-organised, is a static observation ingrained in the crust

in the form of deformation and fracture asperities, whereas SOC is a dynamic and evolving

process. These are two different faces of criticality that must be better differentiated in the

literature.

3This power-law had a different slope to that found for the avalanche frequency-size distribution. It was later

decided that the term ‘1/f noise’ in the BTW publication was not appropriate (Jensen, 1998).
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3.3.3 The super-critical regime ( θ < 0)

If θ is negative, the system is said to be super-critical (figure3.3). Vere-Jones (1976) states that

‘no system is likely to survive in a supercritical state’. I highlighted the difference between

equilibrium thermodynamic systems and SOC systems at the critical point in section2.7.2. I

now highlight how they are phenomenologically different in the super-critical regime.

1. Let us take an extreme case in the percolation model ofp → 0.99, one would effectively

get a spike located close to the size of the largest cluster or indeed, the system size (figure

3.4). There is, however, no equivalent statement ofp → 0.99 for θ in Earth seismicity;

θ can take any value (−∞ < θ < ∞) rather than the bounded0 < p < 1 for the

percolation model. Note also that unlikeθ, p can only have positive values.
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Figure 3.4: Probability distributions for a) gamma distribution with θ < θc and b) the percolation model with p > pc.

The dashed line indicates the system size.

2. Also, the super-critical state in the dynamic sense refers to there being an above average

number of largest possible events; this is possible in a dynamic driven system which

is constantly updating itself (e.g. sand entering and leaving a sand pile). However, we

cannot, say in the percolation model, have a super-critical distribution of clusters in the

same way since this would require simultaneously fitting more than one ‘infinite’ cluster

into the system which is impossible.

3. Earthquakes in practice tend not to span the size of the system i.e., there are no faults

whose lengths are the circumference of Earth. So, although the correlation length is

denoted as ‘infinite’ for the percolation model abovepc, it is not in practice for Earth
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aboveθc. A correlation length can perhaps only be regarded as ‘infinite’ if it exceeds the

length scale of an observed sub-region of the system as a whole. Here ‘sub-region’ can

either refer to a geographic location such as Cyprus for example and/or an area defined

by a physical restriction such as seismogenic depth or a plate boundary geometry.

3.4 ‘Characteristic’ earthquakes

Characteristic earthquakes are earthquakes of a particular size or magnitude that occur more

often (a higher recurrence rate) than would be statistically predicted by the standard GR law

(e.g. Schwartz and Coppersmith, 1984). Following from the definition of super-criticality

above (section3.3.3), the largest events in the super-critical distribution can be regarded as

‘characteristic’ since there are more of them than expected, but the opposite is not true i.e.

‘characteristic’ does not necessarily mean ‘super-critical’. I demonstrate this in figure3.5. It
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Figure 3.5: Log-log plots of a) sub-critical and b) super-critical energy probability distributions both showing ‘charac-

teristic’ earthquakes (shaded area).

can be seen in figure3.5 that the deviant, more frequent earthquakes do not necessarily oc-

cur at an energy that corresponds toθ, otherwise this would simply be a ‘critical’ case. Also,

the characteristic earthquakes can overprint both a sub-critical and super-critical distribution
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making the resulting distribution difficult to define. Figure3.6shows an example of real ‘char-

acteristic’ earthquakes for magnitudes4.5 < M < 5 in the seismicity of Mount St. Helens

(after Main, 1987). Characteristic earthquakes tend to be observed in isolated cases and are

often criticised as being a by-product of statistical bias or as artefacts of data analysis or qual-

ity (Kagan, 1993). However, characteristic earthquakes have also been observed under certain

conditions in numerical models of seismicity (e.g. Ben-Zion et al., 1999). It is ambiguous to

me as to which of the three criticality regimes characteristic earthquakes should belong to, if

any. Indeed, the characteristic earthquake hypothesis is‘yet to be proven’(Kagan, 1993).
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Figure 3.6: Incremental frequency-magnitude plot for the Mount St. Helen’s volcano (re-drawn from Main, 1987). The

straight portion of the line represents a power-law at low magnitudes, and the Gaussian peak at larger magnitudes.

The elevated probability away from the power-law trend implies the distribution is ‘characteristic’.

3.5 Apparent super-criticality

I have mentioned that a super-critical regime is one where there is a greater number of large

events than would be expected than a linear extrapolation. I demonstrate a hypothetical scenario
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where this is observed despite not being inherent or intrinsic to the system’s dynamics. Because

of the infrequency of large events (recurrence rates in the order of tens to hundreds of years),

these are usually documented historically. However, let us take a hypothetical case that follows

a Gutenberg-Richter law (Figure3.7) where the largest events are historical ones estimated

from documented human accounts of damage etc. It can be seen in figure3.7 that if say two

or three events have been underestimated, or indeed smaller events overestimated, these will

shift the distribution from a linear GR trend to a characteristic, or more likely, super-critical

trend. I call thisapparent super-criticalitysince it is a statistical or sampling artefact. In

addition to historically based magnitude estimates, another cause of under or over estimation

of event size can also be due to instrumental saturation in wave energy measurements (Rieter,

1990). A recent example of many super-critical distributions observed for data populations

from the period 550 BC-2000 AD in the Aegean area is given by Koravos et al. (2003). It was

unclear in the Koravos et al. study if the super-criticality observed was real or a by-product

of uncertainties in the historical earthquake magnitude estimates. In this thesis, the earthquake

data analysed (chapter 5) will be from the CMT catalogue that only spans the last 30 years

and measures the moment magnitude; it is therefore free from any historical or instrumental

impediments.

3.6 Gamma entropy

In chapter 2, we saw how entropy plays an important role in the portrayal of the level of

organisation in a system and its proximity to criticality. Here, an analytical solution is derived

for the entropy of the modified gamma distribution4d lnE. EquationA6 in Main and Al-Kindy

(2002) should therefore readS = lnZ − B lnEO + (B + 1)〈ln E〉 + 〈E〉/θ. This error was

resolved by a submission of a corrigendum to the JournalGeophysical Research Lettersin

which the derivation was first published (Main and Al-Kindy, 2004). The discrete derivation

by Ian Main given here is more appropriate since the data analysed in chapters 4 and 5 are

4After the publication of Main and Al-Kindy (2002) -see appendix- and the submission of this thesis, it was

noted that there was an error in this derivation (Chen and Chang, 2004). The incorrect derivation was then subse-

quently removed from this thesis. This error is in equationA5 of Main and Al-Kindy (2002) which should read

S = Z−1
R Emax

Emin
(E−B

EO
)e−E/θ ln

h
1
Z

E−B−1

EO
e−E/θ
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Figure 3.7: Apparent super-criticality where erroneous estimation of larger (or smaller) events can lead to an increase

in the frequency of events of a particular size (energy). The arrows point towards the underestimated or overestimated

earthquake energy probabilities.

treated discretely. Fortunately due to the nature of the error, non of the results or conclusions

of this thesis were in any way affected.. The rationale for this derivation is to predict from a

theoretical point of view howS will be influenced by the energyE, the temperature termθ

and the scaling exponentB below, at and above the critical point. The mathematical derivation

presented in this section was done by Prof. Ian Main. Because the radiated seismic energy is

over several orders of magnitude, it is often binned using logarithmic bin widths (d ln E) rather

than linear bins (dE) in constructing the frequency-energy plots (chapter 5). Here a discrete

solution is given of the entropy for a gamma distribution as apposed to a continuous one as in

Main and Al-Kindy (2002).

The incremental probabilitypi with energy levelEi and linear bin widthdE is expressed

generally by

pi = p(E)dE (3.12)
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where for the limitdE → 0, the probability density is defined as

p(E) = dpi/dE. (3.13)

The modified gamma distribution (as in equation3.10) for a discrete function can therefore be

expressed as

p(E) = αE−B−1
i e−Ei/θ (3.14)

whereα is a constant that insures the summation of all probabilities equals unity. Because the

data is analysed using logarithmic bins, we use the substitution

d ln E = dE/E (3.15)

Combining3.13, 3.14and3.15, we now have

pi = αE−B
i e−Ei/θd lnE. (3.16)

Comparing this with equation3.10we get

pi =
E−Be−Ei/θ

Z
(3.17)

whereZ is the partition function and the constantα = d ln E/Z. Because

n∑

i=1

pi = 1, (3.18)

the partition function forn increments will be

Z =
n∑

i=1

E−B
i e−Ei/θ. (3.19)

Now, for a Discrete functionf(E), we can define a mean or expectation value as

〈f(E)〉 =
n∑

i=1

pif(Ei) (3.20)

and the ‘Shannon’ entropy for a discrete function as

S = −K
n∑

i=1

pi ln pi. (3.21)
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Putting the constantK = 1, and substitution3.17into 3.21, we find

S = −
n∑

i=1

E−Be−Ei/θ

Z
ln

[
E−Be−Ei/θ

Z

]
(3.22)

which can be expanded as

S = −
n∑

i=1

E−Be−Ei/θ

Z
[ln(E−B

i ) + ln(e−Ei/θ)− lnZ] (3.23)

which gives

S = −
n∑

i=1

[ln(E−B
i )]E−B

i e−Ei/θ

Z
+

n∑

i=1

[Ei/θ]E−B
i e−Ei/θ

Z
+

n∑

i=1

[ln Z]E−B
i e−Ei/θ

Z
(3.24)

From3.19, 3.20, 3.24reduces to

S = ln Z + BS〈lnE〉+ 〈E〉
θ (3.25)

I call this gamma entropy(or Sγ for short) since it is derived assuming a gamma distribution.

To avoid confusion,B is replaced withBS since it is an inferred scaling exponent and is not

calculated directly by measuring the slope of the linear part of the energy-frequency distribution

(B). For the critical regimeθ → ∞, the last term in3.25vanishes. So for acritical regime,

equation3.25can be expressed as

S = SO + BS〈ln E〉 (3.26)

whereSO is a constant equal tolnZ. Now we calculate the entropy for linear incrementsdE.

We use3.14to get

pi =
E−B−1

i e−Ei/θ

Z
. (3.27)

Solving as we did to derive equation3.25we find for linear bins that whenθ →∞ we have

S = SO + (BS + 1)〈lnE〉 (3.28)

Note that the case for the logarithmic bins (equation3.25) is exactly the same as the case for

linear bins (equation3.28) except that respectively,BS is replaced withBS + 1. In summary,

asθ →∞, we have for logarithmic increments

∂S/∂〈ln E〉 = BS (3.29)
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and for linear increments

∂S/∂〈ln E〉 = BS + 1 (3.30)

On a plot ofS vs. 〈ln E〉, we can therefore predict a straight line with slope∼ B and intercept

SO for data analysed using logarithmic bins. Conversely, because equation3.26is true for the

critical or very near critical regime (θ →∞), any deviation from it is indicative of a sub-critical

or super-critical regime.

3.6.1 Characteristics and factors

• Information content : Let us now consider equation3.26more closely. Equation3.26is

a linear equation close to the critical regime that depends on the expectation of the loga-

rithm of the energy〈lnE〉. BS on the other hand is a constant that will be proportional

to the meanB value of a given data population. This suggests that the entropy measured

(which is a single number) will contain information on the level of organisation in a sys-

tem as a function of the averageB, θ and〈lnE〉 with the advantage of only having to

essentially measurepi. This ‘boiling down’ of variables to the probability distribution of

energetic microstates, as well as being standard practice in Boltzmann’s thermodynamics

(chapter 2), is a useful tool with which to compare the level of self-organisation between

different seismic regions (as will be done in chapter 5).

• Energy expectations: There will be at best a weak correlation between〈E〉 and〈ln E〉
in equation3.25. This may seem to be counter intuitive but can be qualitatively ex-

plained thus:〈E〉 will vary over several orders of magnitude due to its power-law nature.

This also means that〈E〉 will be strongly and almost solely influenced by the size of

the largest energy fluctuations and accordinglyθ. However,〈ln E〉 to a certain extent

diminishes the effect of the largest events by taking their logarithms so〈lnE〉 will be

predominantly affected by the smaller (more numerous) energies in a population. So,

unless there is a correlation between the large and small fluctuations, the assumption that

〈E〉 and〈ln E〉 are not correlated remains true. Mathematically∂〈ln E〉/∂〈E〉 ∼ 0. The

prior assumption of a lack of correlation has been verifieda posteriorifor real earthquake

data in Chapter 5 of this thesis and by Main and Al-Kindy (2002).
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• Spreadand Shape: Entropy in general will depend on two factors for a given popu-

lation’s probability distribution: these areshapeandspread. The effects of these two

factors are depicted in figure3.8. For the first factor, ‘shape’, the entropy calculated will

depend on how peaked the probability distribution is for a given energy range. A very

peaked distribution means that we are more certain of the outcome of a particular en-

ergy level (lower entropy) whereas a flat distribution will mean more uncertainty (higher

entropy). As can be seen from figures3.8 a andb, for a gamma distribution,S will be

related toθ (figure 3.8a) andB (figure 3.8b). θ will influence both the spread and the

shape of a gamma distribution; in figure3.8a, the peakness was increased by having a

negativeθ and hence a lower entropy relative to the distribution with a positiveθ.

A higherB value in effect will also increase the peakness of a distribution (figure3.8b).

This is in slight contrast to the entropy of an equilibrium system such as say a gas which

is always a Boltzmann distribution whose ‘peakness’ is dependent on the number of gas

molecules within the system (Mandl, 1988). The second factor is the band-width of the

data or thespreadwhich in the case of earthquakes is effectivelyEmax − Emin (figure

3.8c). This makes sense since the broader the energy distribution, the more energy levels

there are to choose from and hence there is a larger degree of freedom (entropy) in the

system. A more quantitative approach to the wayS is influenced byB, θ etc. is given in

section3.7.

3.7 Analytical predictions

3.7.1 Entropy phase-diagrams and the three regimes

In order to illustrate predictions of the analytical theory outlined above, I create synthetic phase-

space plots to show the change of entropy with〈E〉, 〈ln E〉 andB in the sub-critical (θ > 0),

critical (θ →∞), and super-critical (θ < 0) regimes. The plots are constructed as follows:

The energies are created using standard energy-magnitude relations (Kanamori and Anderson,



CHAPTER 3. Entropy and the gamma distribution 62

S1

S1 S2

S2

S2S1

EE

a)

b)

c)

p(
E

)d
E

EE

EE

EE

EE

EE

p(
E

)d
E

p(
E

)d
E

p(
E

)d
E

p(
E

)d
E

p(
E

)d
E

Figure 3.8: Effect of spread and shape on entropy S: a) Lower θ increases ‘peakness’, b) higher B increases ‘peak-

ness’ and c) higher Emax increased spread. For all cases, S1 < S2.
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1975) for energies in Joules

E = 101.5m+4.8 (3.31)

θ = 101.5mθ+4.8 (3.32)

by varying the values of the magnitudem corresponding to the range5.8 < m < 8.5 for a given

bin width δm. These values ofm are chosen because they correspond to the values ofm for

real data that will be analysed in chapter 5. It is only within this range that the Harvard Centroid

Moment Tensor (CMT) catalogue is considered to be complete over its history (Kagan, 1997).

I then calculate values ofθ for values of7 < m < ∞ both in the positive (sub-critical) and

negative (super-critical) sense which will include the critical regime for both whenθ is large.

The range7 < m < ∞ is chosen to constitute to what tend to be thelargestevents. The values

obtained from3.31and3.32are substituted into3.17to calculatep(E) for different values of

B (from −1 to 1) andθ. From the different values ofp(E), the corresponding values of〈E〉
and〈lnE〉 can be calculated directly using

〈E〉 =
Emax∑

Emin

piEi (3.33)

〈ln E〉 =
Emax∑

Emin

pi lnEi (3.34)

The corresponding values ofS are calculated using

S = −
Emax∑

Emin

pi ln pi (3.35)

The phase diagrams for the variation ofS as a function ofB and〈E〉 and〈lnE〉 for the three

criticality regimes can be seen in figures3.9and3.10respectively. The solid line corresponds

to θ → ∞. B for real earthquake seismicity can be observed in the range0.5 < B < 1 (e.g.

Ogata et al., 1991; Kagan, 1997) so the negative values calculated here are unrealistic but are

included to give an overall view.

Both phase diagrams show that the global maximum possible entropy occurs at the regions

close toB ∼ 0 which is to be expected since that is where the probability distributions are
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Figure 3.9: B - 〈E〉 phase diagram for the three criticality regimes. The solid curve corresponds to the critical regime

(θ →∞) and the brightness is proportional to the entropy S.
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Figure 3.10: B and 〈ln E〉 phase diagram for the three criticality regimes. The solid curve corresponds to the critical

regime (θ →∞) and the brightness is proportional to the entropy S.
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flattest (least certainty). This is highlighted in figure3.11where searching the phase space for

the maximum entropy for a givenB value occurs atB = 0 for bothθ > 0 andθ < 0. The

figure also confirms the effect ofB on the level of organisation in a system; the higher theB

value (negative or positive), the greater the level of organisation.

−1 −0.5 0 0.5 1
1

1.5

2

2.5
S

m

B

θ<0
θ>0

Figure 3.11: Maximum entropy Sm for a given value of B for both sub-critical (θ > 0) and super-critical (θ < 0)

regimes. Note that in both cases, the maximum entropy occurs at B = 0.

3.7.2 Criticality and phase transitions

It is common to refer to where the transition between a sub-critical and super-critical regime

as the criticalpoint. However, it can be seen from figures3.9 and3.10that the critical point

is in fact a criticalline that is a function ofB and θ in a two-dimensional phase space. One

can therefore conclude from the phase-space plots that for a given gamma type population, any

momentary change inB must be accompanied by a change in〈ln E〉 for the system to remain

critical. A change in one and not the other will be indicative of a departure from the criticality,

similar to a phase transition. This is analogous to a fluid pressure-temperature diagram (P −T )

(figure3.12) or a pressure-volume (P-V) phase diagram where a phase transition can occur at
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a given temperature and pressure (or volume) along a defined curve (Mandl, 1988; Kondepudi

and Prigogine, 1998).

Solid
Liquid

Gas

p

T

triple
point

Figure 3.12: Pressure-temperature (P-T) phase-diagram for a fluid with a ‘critical’ line between the different phases.

Redrawn from Kondepudi and Prigogine (1998), pg. 176.

It must be emphasised that the changes inB and〈ln E〉 mentioned here must be in the short

term or must refer to two separate non interacting systems. Any long-term trends would suggest

that the system is not in a stationary steady-state and would therefore be difficult to define.

To further compare the phase-space of a gamma system with that of an equilibrium system,

I construct horizontal cross-sections of figure3.9 and 3.10 for B = −2/3, B = 0 (non-

degenerate system) andB = 2/3 (earthquakes) in figure3.13.

We have seen in section2.5.2in chapter 2 that for a non-degenerate equilibrium system, the

critical point occurs where the entropy is a maximum. This is borne out by figure3.13b.

However, It can be seen from figure3.13 that the critical points forB = 2/3 (B = −2/3)

occur below (above) the maxima as indicated by the arrow for both〈E〉 and〈ln E〉. Therefore,

for power-law systems that are observed in nature (B > 0), the equivalent of a phase transition

between a sub-critical and a super-critical regime will occur for lower values of mean energy

as highlighted by figure3.13.
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Figure 3.13: Cross-sections of S vs 〈E〉 and 〈ln E〉 phase spaces for (a)B = −2/3 (b)B = 0 and (c)B = 2/3.

The solid line indicates the sub-critical regime and the dotted line indicates the super-critical regime with the arrows

indicating the critical regime.
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3.7.3 Effect of bin width

The nature of equation3.35is that the absolute entropy will depend on the bin width of our dis-

crete elements when calculatingp(Ei) for each energy level. This is because for a given range

of energies, the more discretised our sample, the more the apparent degrees of freedom. I show

this effect for synthetic data in figure3.14by calculatingS for different values of bin width

δm for B = 2/3 andB = 0. I assumeθ →∞ to restrict our focus on the effect ofδm. It can

be seen from this figure that the narrower the bin width, the higher the entropy (uncertainty) as

one would expect for a larger number of energy elements. Goltz and Böse (2002) acknowledge

this problem by normalising the spatial entropy for different grid sizes (essentially different bin

widths) for a population of earthquake data. This was useful for comparing the spatial entropy

of the data at different resolutions. I follow a similar procedure and normalise the data by di-

viding the entropies at different bin widths by the maximum entropy for the same bin width

(Sm) as shown in figure3.14. It can be seen in figure3.14that although the effect of bin width

is reduced, it is not eliminated for theB = 2/3 case. The effect is as expected, eliminated for

theB = 0 case since the maximum possible entropy for a power-law distribution (for a given

energy range) is for the flat case (B = 0).
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Figure 3.14: Plot of calculated S as a function of bin width δm for B = 2/3 and B = 0. The upper two curves

correspond to non-normalised synthetic data and the lower two curves to data normalised by dividing the maximum

entropy for a given bin width Sm.

To solve this problem, I will fix the bin width to a chosen value throughout my analysis of
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earthquake data in chapter 5 (δm = 0.25). By fixing the value of the bin width, any differences

or changes in entropy calculated will only be influenced by the overall origination of an earth-

quake population (spread and shape) making comparison of data ensembles quantitative. From

a pragmatic point of view, the bin width ofδm = 0.25 is chosen similar to the uncertainties

in the magnitude determination for earthquake data available. There would not be enough data

points in each bin if the bins were too narrow. Larger bins on the other hand would constitute

too few values ofp(Ei) which would destabilise the calculation ofS. The effect of bin width

will also be discussed in chapter 5.

3.8 Thermodynamics?

I have mentioned in section2.5.1that the free energy of a systemF is a measure of how much

energy the system has available to do work (equation2.8). Free energy can therefore be an

important factor when examining the Earth’s crust since logically, the more free energy there

is, the more energy available to ‘do work’ in the form of earthquakes. However, can we derive

an analytical expression for the free seismic energy stored in the crust? This is a difficult

question to answer for the following reasons:

• It is physically impossible to measure all the energy stored and transported in the crust

be it in the form of strain, heat etc. Therefore, we can only assume some arbitrary values

based on what we observe at the surface.

• Not all the energy released by the Earth’s crust is seismic since some will be aseismic in

the form of heat, deformation, radioactive decay and so on.

• Although we know that the energy released by earthquakes is in the form of a modified

gamma distribution, we do not know independently the form of the distribution of the

stored free energy.

Fortunately we can make some reasonable assumptions based on what we do know. Firstly, it

has been shown for cellular automata models of seismicity that on average, the radiated seismic

energy will be proportional to the internal energy of the system (e.g. Main et al., 2000). This
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is also true in general for open driven SOC systems (Dewar, 2003). Although the concept that

‘the more energy coming out of a system, the more energy there is in the system’ may seem

counter intuitive, this is the norm for driven threshold systems provided they remain driven.

An analogy is that of a house heating radiator system. While the radiator is switched on, it will

acquire a temperature that will eventually warm the room and the room-radiator system as a

whole will reach a steady state. The more heat being emitted from the radiator, the higher the

temperature of the room. Note how this is different from the ice in a glass example (chapter 1)

where the water decreases in temperature and the ice increases in temperature until the entire

system reaches an equilibrium state. Dewar (2003) also derives a mean-field expression for a

SOC sand pile model with the assumption that the average amount of sand entering a pile must

equal the amount of sand leaving it in the form of avalanches. Therefore, we could perhaps

say that in the crust, areas of higher seismicity (bigger events) will have greater free energyF

on averageand accordingly greater potential for further large events. This is a different way

of looking at the idea that what has happened in the past (events) in more likely to recur in the

future.

3.9 Remarks and conclusions

• In this chapter, I examine the modified gamma distribution in the three criticality regimes.

I show how the three regimes differ from critical regimes of equilibrium systems and

those of time-series analysis. Although the gamma distribution is currently the most reli-

able in explaining a variety of systems, it does not in its simple form fit the characteristic

earthquake hypothesis although the hypothesis is yet to be verified. I also show how

super-criticality can be an artefact of historic data rather than some inherent physical

process.

• Following from this, the derivation of the discrete version of entropy for a modified

gamma distribution close to and at the critical regime is given. I call thisgamma entropy

or Sγ . The theoretical result shows that the level of organisation for a gamma type

system is related to the expectation of the logarithm of the energy〈ln E〉 and the scaling

exponentB. Any deviation from this equation is indicative of a sub-critical or super-
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critical regime.

• I then construct a series of phase diagrams as a function ofB and〈ln E〉 (θ) and show

that the criticality can be maintained provided that bothB and〈ln E〉 are changing. A

deviation from this is also indicative of a departure from the critical regime. This result

predicts that if the crust were close to criticality -at least on a regional level-, we would

observe a higherB value in areas of a lower mean seismicity relative to areas of higher

seismic activity.

• In addition, the phase diagrams show that the global maximum entropy occurs for a

flat distribution (B = 0). Also, for power-law systems the critical point occurs below

(above) the expected critical point forB > 0 (B < 0). This predicts that criticality can

be reached at the expense of less mean energy for power-law systems withB > 0 which

is always the case for earthquakes and most natural systems.



Chapter 4

Self-organisation in numerical

models of seismicity

4.1 Introduction

In the previous chapter, it has been shown analytically how the entropy and hence de-

gree of self-organisation in a system will be related to the scaling exponentB and the

mean energy of the system. Phase diagrams were also used to demonstrate the relations

between the various thermodynamic variables and the scaling exponentB around criti-

cality. In this chapter I examine self-organisation and its relation with dissipation using

numerical, or more specifically, cellular automata models of seismicity. The investiga-

tions and results of this chapter are divided in to two parts.

– Part I : Here I treat a cellular automaton model of seismicity as a self-organising

dissipative structure. I measure internal and external thermodynamic variables such

as energy and entropy and investigate their dependence on dissipation. This is in

the hope of extrapolating the results to a real system such as the Earth’s crust.

– Part II : I then probe SOC; given that‘the lack of a general understanding [of SOC]

prevents the construction of a unifying framework’(Sornette, 2000, p.g. 323), I

examine some aspects of the original Bak, Tang and Wiesenfeld (Bak et al., 1987)

model of SOC to pin down some of its characteristics in relation to our assessment
73
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of earthquakes as an SOC system. In particular, I look at spatial and some temporal

characteristics of the original BTW model.

Some of the main results presented in this chapter have been written as a paper to be

submitted.

4.2 Cellular automata (CA)

Cellular Automata are numerical (computer) models commonly used to simulate physi-

cal systems. The models usually consist of an array composed of a large number simple

microscopic ‘elements’, ‘sites’ or ‘cells’ that interact in accordance with a pre-specified

set of rules or algorithms. Despite the very basic rules that govern the way in which the

individual cells interact, CA models are capable of producing complex patterns and dy-

namics similar to physical, biological and turbulent systems found in nature. Examples

of such systems include geomagnetic activity (Chapman and Watkins, 2001) and earth-

quakes (e.g. Anglo-Brown and Munõz-Diosdado, 1999; Kumagai et al., 1999) . These

models give impetus for conjecturing simple explanations to very complex phenomena

observed, natural or otherwise. Cellular automata models are also extensively used in

engineering problems. For example, figure4.1shows an example of the fluid flow over

a cylinder (from Wolfram, 1986). The exact solution of simultaneous flow equations for

such a system would be computationally prohibitive but can be simply calculated on a

cell-to-cell basis using a CA model.

4.3 Why use models of seismicity?

There are many reasons to use numerical models of seismicity and are summarised as

follows:

– Simple cellular automata models of seismicity can reproduce the power-law statis-

tics observed in real earthquake populations such as the Gutenberg-Richter relation

(e.g. Kumagai et al., 1999) and foreshock and aftershock activity (Jaumé et al.,

2000).
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Figure 4.1: Fluid flow and resulting vortex around a cylinder in cellular-automata model (from Wolfram, 1986).

– In the crust, we can only measure the radiated seismic energy and its corresponding

probability density distribution. Any knowledge of the internal strain energy (or in-

deed any other internal parameters) are difficult to measure and can only be inferred

or guessed through the use of models (Main et al., 2000; Viti et al., 2001). How-

ever, in numerical models, we can measure both the internal and external properties

of the system (e.g. Lu et al., 1998) and test the hypothesis that they are related.

– Complete and reliable earthquake data catalogues only span tens of years or so.

For example, the Harvard Centroid Moment Tensor (CMT) catalogue -which is the

most reliable- only spans the last 30 years. However, with numerical models of

seismicity, the length of the catalogue simply depends on the length of the model

run. We can therefore produce data that would require hundreds to thousands of

years to accumulate naturally. Statistically, we will have data that is both stable and

reliable when compared to natural data.

– Unlike real data, the synthetically-produced data will be free of any noise, or bias in

instrumental saturation or data selection. The synthetic data will therefore be com-

plete over all ‘magnitudes’ in comparison to earthquake data that is usually only

recorded for events bigger than a particular size. Usually this is above magnitudes

4.5 or as high as 5.5 depending on the catalogue. Many catalogues can also satu-
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rate for very large earthquake magnitudes (Kanamori and Anderson, 1975; Reiter,

1991).

However, there are some drawbacks in the use of cellular automata models of seismicity.

For example, CA models are ‘coarse grained’ as they are composed of discrete elements

or cells whereas most natural systems such as the crust are best described as continuous

(non-discretised). Also, CA models are predominantly two-dimensional whereas fault

interactions in the crust at the very least occur in three dimensions. The models also

oversimplify or exclude known laws of elastodynamics that govern fault interaction in

the crust (e.g. Rice, 1993). Nonetheless, CA models remain a useful and powerful

primary tool in reproducing and investigating earthquakes statistics and have been used

in assessing their hazard (e.g. Malamud and Turcotte, 1999). The philosophy is therefore

to make the simplest model possible that can explain or predict general observations.

4.4 Aspects of seismicity models

4.4.1 Driving conditions

Specifically for models of seismicity, there appear to be two main modes of ‘driving’ CA

models (analogous to tectonic loading in the Earth). Driving here refers to the addition

of energy or ‘strain’ or a force to the model. This driving force can be global or local.

Global: A global or ‘homogenous’ or ‘uniform’ driving force as the name may suggest is

when all elements or cells within the model are updated simultaneously. In the case

of earthquakes models, this is when‘the stress at all points on the fault increases

by the same amount’(Lomnitz-Adler, 1993). Examples include the Olami Feder

and Christensen (OFC) model described below (Olami et al., 1992), and those of

Jánosi and Kert́esz (1993) and Main et. al (2000). Although a global driving force

is often used in the literature, it can introduce problems. For example, it was found

that for a low conservation parameter, a global driving force can introduce ‘phase

locking’ between neighbouring elements in a system with open boundary condi-

tions (defined below) (J́anosi and Kert́esz, 1993; Middelton and Tang, 1995). This

is because we are in effect introducing a spatial correlation to the system causing it
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to produce a periodic or sinusoidal signature in its energy fluctuations that would

not occur under local driving (defined below) conditions (e.g. Bak and Tang, 1989).

A global driving force can also cause more than one site to be activated simultane-

ously (the formation of more than one cluster at a time). This can add considerably

to computation times in the model. This problem has been solved by using a very

slow driving force and the addition of noise (e.g. Mousseau, 1996). This however

required the addition of another parameter and could be considered to be a form of

tuning of the model.

Local: A local or ‘random’ driving force is when only a single cell is randomly selected

and updated at every time step (Lomnitz-Adler, 1993). This insures that we do not

trigger more than one ‘earthquake’ at a time and is what is used in the original BTW

model (Bak et al. 1987) described below. Because sites are selected at random in

space, the driving can be considered on average to be ‘global’ in the long run. The

modelling in this chapter will only use a local ‘random’ driving.

Note that I specifically use the terms ‘local’ and ‘global’ driving to mean ‘random’ and

‘uniform’ not in accordance to what is commonly used in the literature. This is because

one could, in theory, have a uniform driving force that is random (simultaneously updat-

ing all cells with a random value) as well as have a local driving force that is uniform

(updating the same single cell over and over again). However, I do not consider these

possibilities here.

4.4.2 Boundary conditions

The boundary conditions for CA models are the rules that govern what happens at the

edges of our model array or grid. They are also believed to play a critical role in the

observation of critical behaviour of some models (Lise and Paczuski, 2001). For the

purpose of this thesis, they can be divided into two types: Open1 and periodic. Figure

4.2shows the difference between the two. For open boundary conditions, any activated

1The terms ‘closed’, ’free’ and ‘fixed’ boundary conditions are also used in the literature. These usually refer

to specific ‘spring-block‘ models where there are special rules that govern how the edge springs interact with the

‘outside’ (see article by Lise and Stella, 1998). Here I only give generalised definitions that are sufficient for the

models to be used in this thesis.
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cell at the edge or ‘halo’ will lose energy out of the system (figure4.2a). The edges

can be thought of as infinitely absorbent to energy. However, with periodic boundary

conditions, any energy lost at the edge will be immediately reintroduced from the other

side so energy is conserved. Periodic boundary conditions are used to reduce the edge

effects within a finite size system (e.g. Grassberger, 1994). The boundary conditions will

therefore play a role in the way a system dissipates energy. Periodic boundary conditions

can also be responsible for a system reaching a periodic state ‘with only earthquakes of

one size’ occurring for smaller conservation (Lise and Paczuski, 2001). Open boundary
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Figure 4.2: Models with a) open boundary conditions and b) periodic boundary conditions. Energy is dissipated at the

edges under open boundary conditions whereby it is conserved by being reintroduced into the system with periodic

boundary conditions.

conditions are commonly used in the literature and are‘more relevant for real earth-

quakes than simulations with periodic boundary conditions’(Grassberger, 1994). I shall

therefore only use models with open boundary conditions in this thesis.

4.4.3 Energy conservation

There are two ways in which models of seismicity can lose energy. First is at the bound-

aries as mentioned above and secondly through internal interactions. If a site or cell

breaks in a model and passes all its energy to its neighbouring sites, it is said to becon-

servative. Alternatively, if only a fraction of the energy is passed on, the system is said
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to bedissipative. The most common dissipative model of seismicity is that of Olami

et al. (1992) described below (section4.5.3). The amount of energy lost per break is

usually controlled by theconservation(or dissipation) factor commonly denoted byα in

the literature (e.g. Olami et al., 1992; Ceva, 1995; de Carvalho and Prado, 2000).

4.5 Models of seismicity

There are numerous models of seismicity to be found in the literature. For example,

Lomnitz-Adler (1993) creates 40 CA models of seismicity using different combinations

of conservation, driving force, boundary conditions etc. to examine under what condi-

tions the Gutenberg-Richter law is reproduced. Here I summarise what I feel are the three

fundamental models from which most other models in the literature are derived. They are

in chronological order the Burridge and Knopoff model (Burridge and Knopoff, 1967),

The Bak, Tang and Wiesenfeld SOC model (Bak et al., 1987), and the Olami Christensen

and Feder non-conservative model (Olami et al., 1992; Christensen and Olami, 1992).

The three models are summarised as follows using the original publication notation2

where appropriate:

4.5.1 The Burridge and Knopoff (BK) model

The Burridge and Knopoff (1967) model (BK) is not a CA model and is mentioned here

for its historical role in numerical seismicity. Burridge and Knopoff (1967) conducted

both laboratory and numerical spring block model experiments to reproduce some of

the statistics observed for earthquakes such as aftershocks and the Gutenberg-Richter

law. Their model is somewhat more complicated than a simple CA model whereby they

use exact dynamic equations of motion and friction for a one-dimensional driven chain

of blocks connected by springs. An IBM computer was used to solve non-linear dif-

ferential equations governing ten connected driven blocks. The computations included

measuring the internal energy between connecting springs and radiated energy due to

blocks slipping. Details of the model are beyond the scope of this chapter and are only

2The notations quoted in these examples should be considered independent from ‘standard’ notation used

throughout this thesis since they are given in this section ‘as is’ from the original publications.
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partially reproduced for the CA version of the model mentioned below (the OFC model).

Nonetheless, the BK model is seen as a starting point for the use of numerical mod-

els of seismicity and was the inspiration behind models that followed. To my best of

knowledge, it was the first model of any type to demonstrate the origin of the Gutenberg-

Richter law and aftershocks in terms of the non-linear dynamics of a many-body complex

system.

4.5.2 The Bak, Tang and Wiesenfeld (BTW) model

The term ‘Self-Organized Criticality’ was first coined by Bak et al (1987). In their semi-

nal paper, they demonstrated through the use of a ‘sand pile’ numerical model (the BTW

model here on) how a system with ‘extended degrees of spatial freedom’ can naturally

evolve to a critical state with power-law statistics. This model was then proposed as ‘a

general mechanism leading to the power law distribution of earthquakes’ (Bak and Tang,

1989). The BTW model was considered by Bak and Tang (1989) to have the essence

of the Burridge and Knopoff ‘spring block’ model (Burridge and Knopoff, 1967) but

greatly simplified in its dynamics. Their model is described as follows in accordance

with Bak et al.(1987) and Bak and Tang (1989):

– The model consists of two-dimensional array ofi× j particles or cells on a square

grid. The starting conditions are such that the force at each cell in the grid is

Zi,j = 0. Then for every time stept, a cell is selected at random and a driving

force is applied to it according to the rule:

Z(i, j) → Z(i, j) + 1 (4.1)

– Step4.1 is repeated until the force on a cell at position(i, j) reaches a breaking

point ZC where in their modelZC = 4 . For Z(i, j) > ZC , the cell releases its

‘strain’ to its 4 closest neighbours according to the rule:

Z(i, j) → Z(i, j)− 4

Z(i± 1, j ± 1) → Z(i± 1, j ± 1) + 1 (4.2)
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If by a domino type effect the neighbouring cells acquire a forceZ(i, j) > ZC

due to the redistribution of strain, the process is repeated until all cells have strain

Z ≤ ZC and we return to process4.1. Note that for the BTW model,Z is always

an integer.

– The total number of cells broken for every cycle of process4.1 defines a cluster

size or total energy released during an earthquake3(Bak and Tang, 1989). Any cells

at the boundary that break will lose their energy out of the system (open boundary

conditions). This form of dissipation at the edges is essential since because the

BTW model is internally conservative (no energy is lost from a broken cell except

to its neighbouring cells), having periodic boundary conditions would results in an

infinite cluster or ‘avalanche’ (repetition of rule4.2 indefinitely). A steady state is

eventually reached and there is a balance between the system input and output.

– Note that there are therefore two times in the system. The ‘external’ time between

events and the ‘internal’ relaxation time within a given event -i.e., the duration of

an avalanche. The system after some transient time is found to reach a steady state

and the energy released follows a power-law where

p(E) ≈ E−τ (4.3)

wherep(E) is the probability of having a cluster of energyE andτ is a scaling

exponent withτ ≈ 1 for a two-dimensional model similar to what is seen for real

earthquakes (section2.8.3). The model as well as showing a power-law for the

size distribution of the clusters, also shows a power-law in the internal time for the

durations of the individual events following

p(t) ≈ t−a (4.4)

wherep(t) is the probability of having an event of durationt anda ≈ 0.42 for a

two-dimensional model.

Despite its simplicity, the BTW model was and is seen as poignant in the ‘self-organization’

literature. However, it was by no means revolutionary. Wolfram (1983) had pioneered

3For real earthquakes, the moment energy releaseE is found to be related to the fault rupture areaA whereby

E ∼ A3/2 (Kanamori and Anderson, 1975). Also see chapter 2, sections2.8.1and2.8.3
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the use of cellular automata models and had produced simple algorithms that show both

‘self-organization’ and power-law statistics. Kantz (1986) also produced a simple model

of ‘propagating brittle failure in heterogeneous media’ that showed power-law statistics

from very basic rules. The infamy and success of the BTW CA model may be attributed

to its simplicity both in form and reproducibility. Also, the authors put efforts in propos-

ing SOC as a simple solution to a variety of complex problems including earthquakes to

a wide scientific community. In addition, they to a degree highlight SOC’s association

with the bigger field of ‘critical point’ systems (section2.7.2). But perhaps more impor-

tantly, Bak et al. (1987) gave their observation a catchy and apt name, ‘Self-Organized

Criticality’.

4.5.3 The Olami, Feder and Christensen (OFC) model

The BTW model is strictly internally conservative since energy is only lost at the bound-

aries. An investigation into whether criticality can still be achieved if internal dissipation

is introduced was carried out by Olami et al (1992). The model, referred to here as the

OFC model, also has its roots in the Burridge and Knopoff (BK) model (Leung et al.,

1997; Jensen, 1998) and is described as follows:

Just as with the BTW model, the OFC model is defined by a squareL × L array with

i andj the integer coordinates of elements within the array wherei andj take values

between1 andL. In accordance with the BK model, the OFC model as shown in figure

4.3 can be thought of as blocks interconnected by springs to their four nearest neigh-

bours. The individual blocks are also connected via springs to a driving plate above

them and frictionally to a fixed plate below them. As one plate moves relative to each

other, the blocks will experience a force. For a block at position(i, j) that experiences a

displacementdxi,j , the forceFi,j will be:

Fi,j = K1[2dxi,j − dxi−1,j − dxi+1,j ]

+K2[2dxi,j − dxi,j−1 − dxi,j+1] + KLdxi,j (4.5)

whereK1,K2 andKL are elastic constants (figure4.3). As the plates slide with relative

velocityV , the force will increase uniformly in the array by an amountKLV until a site
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Figure 4.3: The physical representation of the OFC model with elastic constants K1, K2 and KL (redrawn from Olami

et al., 1992).

reaches a threshed value. This will trigger an earthquake and the strain will relax to it

four nearest neighbours in a fashion similar to the BTW model as follows:

Fi±1,j → Fi±1,j + δFi±1,j ,

Fi,j±1 → Fi,j±1 + δFi,j±1,

Fi,j → 0 (4.6)

where the increase in force of the nearest neighbours is

δFi±1,j =
K1

2K1 + 2K2 + KL
Fi,j = α1Fi,j ,

δFi,j±1 =
K2

2K1 + 2K2 + KL
Fi,j = α2Fi,j , (4.7)

Whereα is the ‘elastic’ or conservation (dissipation) parameter. In the case of the OFC

model, it is assumed that the system is isotropic soα1 = α2 = α, and the boundaries

are open or ‘fixed’ withF = 0 at the edges. The model is now reduced to only a few

parameters and is run using the following algorithm:

– All sites are assigned a value between0 and a threshold valueFth.

– For any site withFi,j ≥ Fth, the force is redistributed following the rule:

Fi±1,j±1 → Fi±1,j±1 + αFi,j ,

Fi,j → 0 (4.8)
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– Process4.8 is repeated until allFi,j < Fth. note that for a model with four neigh-

bours,α can have values0 ≤ α ≤ 0.25.

– The block with the largest forceFmax is located and then all sites are given a force

Fth − Fmax which will cause another ‘earthquake’ and process4.8is repeated and

so on.

The most important results from the model are that (1) criticality (a power-law) is main-

tained despite the introduction of dissipation and (2) the slope of the linear part of the

power-law distribution is dependant of the conservation parameterα. This is shown in

figure4.4 (after Olami et al., 1992). The results questioned the ‘universality’ idea that

the scaling exponents should be independent of microscopic details of a system (Lise

and Paczuski, 2001). This is more in tune with natural systems that are predominantly

dissipative and may show different scaling exponents (Bak, 1997). Also, their findings

suggest that internal conservation of energy is not a requirement for criticality. However,

there is some debate concerning whether ‘criticality’ can exist in the non-conservative

OFC model (e.g. Manna et al., 1999; de Carvalho and Prado, 2000; Christensen et al.,

2001) and regarding the mechanisms responsible for the criticality observed. This is-

sue is an ‘unsettled question’ (Sornette, 2000) yet to be categorically resolved (Jensen,

1998).

Figure 4.4: Incremental energy probability distributions for (top to bottom) α = 0.25, 0.20, 0.15 and 0.10. From Olami

et al. (1992).
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4.6 A generalized BTW model

In order to investigate thermodynamic aspects of SOC in relation to earthquakes, I use

a generalized model that is a cross between the BTW model and the OFC model. This

model is chosen because it is very close to the original SOC model of Bak et al. (1987)

with the addition of dissipation. A similar model is used to investigate criticality for

non-conservative sand pile models by Ghaffari et al (1997). Here the model is defined as

follows:

– As with the BTW and OFC models, the generalized model is composed of anN×N

square array.

– The model is initialised with the ‘stress’σ in each cell between some random value

0 < σ < 4.

– For every time stept, A random number generator is used to select a point on the

array (x, y) to which a stress of1 is added thus

σx,y = σ(x, y) + 1 (4.9)

– Any site withσx,y ≥ σC fails or ‘breaks’ and redistributed its stress to its 4 nearest

neighbours (figure4.5) following

σx±1,y±1 → σx±1,y±1 + ασC/4

σx,y → σx,y − ασC (4.10)

whereα is the conservation factor with0 ≤ α ≤ 1. For α < 1, σ can take

non-integer values.

– process4.10is repeated until all sites haveσ < σC . The total areaA effected by

rule4.10defines the cluster or event size4.

The model is run with open boundary conditions. Note that we retrieve the BTW model

whenα = 1 so I shall refer to the model as the non-conservative BTW model or NBTW
4I have found that the total number of elements that break for a given perturbation (4.9) does not always equal

the cluster size since sites within a cluster can break more than once within a single event (see figure4.20). This

is especially true for the caseα = 1. I nonetheless for comparison, stick with the BTW definition and equate the

cluster size to the total area affected by an avalanche process.
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Figure 4.5: A site (centre) with stress σ failing and redistributing its stress to its four nearest neighbours.

Property BTW OFC NBTW

Driving local global local

Boundaries open open open

Dissipation no yes yes

σ values integers continuous continuous

Failed site σ → σ − σC σ → 0 σ → σ − σC

Table 4.1: Table of differences between the BTW, OFC and NBTW models of seismicity.

here on. The main differences between BTW, OFC and NBTW models are summarized

in table4.1. This completes the definition of the NBTW model which is used in this

chapter. Now I shall use the model to address the issues outlined in the introduction of

this chapter.

4.7 Part I: Self-organisation and dissipation

I now use the NBTW model to investigate some of the thermodynamic characteristics of

a self-organising dissipative structure and their dependence on the level of dissipation.

For the NBTW model outlined I measure the following internal and external parameters

as follows:
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4.7.1 Energy

For aN ×N lattice, the externally radiated and internal ‘strain’ energiesEe andEi at a

time t and conservation parameterα are defined respectively as:

Ee(t, α) = a1A (4.11)

whereA is the cluster area5 i.e. the number of connected cells effected by an avalanche

process and

Ei(t, α) = a2

N2∑

n=1

σ2
n (4.12)

over all cells in the array. The mean internal energy at a given time incrementt is then

Ei(t, α) =
a2

N2

N2∑

n=1

σ2
n (4.13)

wherea1 anda2 are arbitrary constants that will depend on the system. For simplicity, I

put a1 = a2 = 1. Note that at any timet, Ee = Ee since only one cluster is allowed to

occur at every time increment. Here we can also define the energy dissipated irreversibly

through the factorα. Every cell that fails will dissipate an amount(1 − α)σC in the

process of redistributing its energy to its neighbours. Since the number of cells that fail

for a given event is proportional toEe, we can broadly define the dissipated energyEdis

as

Edis ∼ (1− α)σCEe (4.14)

Note thatEdis here is only an approximate value since it excludes energy lost at the

boundaries and doesn’t take into account the arbitrary constantsa1 anda2 in 4.11and

4.12respectively.Edis can be seen as analogous to energy lost irreversibly in the crust

as heat or plastic deformation and so on.

For a model run of lengthtn wheretn in the steady state6, I define the mean external and

internal energies for a givenα to be

〈Ee(α)〉 =
1
tn

tn∑

t=1

Ee(t, α) (4.15)

5The relationship found between fault rupture area and radiated seismic energy for real earthquakes isEe ∼
A3/2 (Kanamori and Anderson (1975). However, I takeEe ∼ A in accordance with Bak et al. (1987) so results

presented in this thesis may be easily compared to those of the original publication.
6The system is first allowed to run for a period to stabilise and reach a steady-state. All data during this stabili-

sation period is not included intn.
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and

〈Ei(α)〉 =
1
tn

tn∑

t=1

Ei(t, α). (4.16)

The expectation of the logarithm of external and internal energies are respectively

〈ln Ee(α)〉 =
1
tn

tn∑

t=1

ln[Ee(t, α)] (4.17)

and

〈ln Ei(α)〉 =
1
tn

tn∑

t=1

ln[Ei(t, α)]. (4.18)

From the energies calculated using4.11and4.12, we can also construct histograms that

will give us energy probability distributionsp(Ee) andp(Ei). I do this by binning the

energy data with increments ofδE = 1. The data are then normalized such that for both

p we have
∑

p = 1 (4.19)

4.7.2 Entropy

Fromp(Ee) andp(Ei) we can, after a transient timetn, calculate the external and internal

entropies of our system for a givenα as follows:

Se(α) = −
Eemax∑

Eemin

p(Ee) ln p(Ee) (4.20)

and

Si(α) = −
Eimax∑

Eimin

p(Ei) ln p(Ei). (4.21)

By measuring both the internal and external entropies, we can test Prigogine’s conjec-

ture that organisation within a system is at the expense of increasing the entropy globally

(Kondepudi and Prigogine, 1998). Although it is generally assumed that the internal

(strain) and radiated energies for the crust are correlated (e.g. Rundle et al., 1993; Dah-

men et al., 1998; Main and Al-Kindy, 2002), the correlation between internal and exter-

nal entropies (or indeed entropy productions) are unknown. Measuring these at least for

a model could shed some light on self-organisation in the crust. As far as I am aware, the

results in this chapter are the first to test this hypothesis formally for a randomly driven

model.
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4.7.3 ‘Temperature’

In section2.5.1(chapter 2) a definition of temperature was given from a thermodynamic

point of view. For the discretised model presented here, a ‘statistical’ definition is more

appropriate. In accordance with Mandl (1988), a temperature can be seen as a measure

of how large the fluctuations in a system’s energy are. It can also be‘a parameter that

quantifies the degree of stochasticity of the system’(Sornette, 2000). The magnitude of

these fluctuations is a function of the standard deviation of the energy∆E defined by

(Mandl, 1988):

(∆E)2 = (E −E)2 = E2 − E
2

(4.22)

With reference to equation2.3and differentiatingln Z twice we have

(∆E)2 =
∂2 ln Z

∂β2
= −∂E

∂β
= −dT

dβ

∂E

∂T
= kT 2C (4.23)

WhereC is the heat capacity andk is Boltzmann’s constant. So we can say that for a

given system:

∆E ∼ TT (4.24)

I put the statistical temperatureT = TT here to distinguish it from thermodynamic

temperature. Therefore, by measuring the standard deviations ofEe andEi we can also

calculate a form of external and internal ‘temperature’ for our systemTe andTi. This

chapter, to my best of knowledge, is the first time these temperatures are measured from

the externaland internal energy fluctuations for a numerical seismicity model. Statistical

temperature used in the literature is sometimes referred to as ‘effective temperature’

(D’Anna et al., 2003) or ‘tectonic temperature’ (Main et al., 2000) which are both a

measure of the fluctuation amplitudes and therefore predictability of the system rather

than a traditional ‘heat’ temperature.

4.8 Model runs and results

I run the NBTW model fort = 5 × 105, σC = 4 (as in the original BTW model),

and varying the conservation factorα from 0.05 to 1.0 at increments of0.05 giving a
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total of 20 runs and107 events7. In order to ensure the runs have reached a stationary

‘steady state’, the first105 events are discarded. This cut off value is chosen based on

observation ofEi(t, α) (see below). The results of the runs are as follows:

4.8.1 External energy Ee

The radiated energies are calculated from the cluster sizes of each event using4.11.

Figure4.6showsEe(t, α) for α = 0.1, 0.5 and1.0. Note that for all three cases, the data

are punctuated with no apparent signs of any transient trends such as periodic behaviour

even with high dissipation (α = 0.1). There is also a very notable contrast between the

size of the largest and smallest events for the conservative case (α = 1) when compared

to the non-conservative runs (α < 1). Then, fromEe I produce probability distribution

plots. Figure4.7 shows the probability distributions forα = 0.1 to 1 on a log-log plot.

A line (dashed) is drawn with a slope equal to unity for reference. The power-law type

distribution can be clearly seen for the caseα = 1 with scaling exponent∼ 1. This result

as expected, is identical to that of Bak et al. (1987). Note that if I were to putEe ∼ A3/2

in relation4.11above in accordance with Kanamori and Anderson (1975), the slope of

the exponent forα = 1 in figure4.7would be2/3 (section2.8.3) as found for earthquake

moment data (e.g. Kagan, 1997) rather than1 as found here for the BTW model.

However, looking at the cases forα < 1 in figure4.7, we can see that the distributions

roll off from a power-law very quickly (lowθ, see chapter 3). The maximum event sizes

are much smaller than the system size (sub-critical) and are systematically related toα.

The gamma distribution gives a very good fit to the data as I demonstrate for two cases

α = 0.95 and0.55 in figure4.8. Figure4.8shows a sub-critical distribution for the two

chosen values ofα and the equations for the corresponding fits. The same can be said

for all 0 < α < 1. This is in agreement with mean field predictions that‘criticality in

the sand pile model is lost when dissipation is present’(Lauritsen et al., 1996) as well as

other similar numerical models (e.g. Ghaffari et al., 1997). The results also show that the

gamma distribution discussed in chapter 3 is best suited to describe such scaling be it in

models or real earthquake data since it can cater for power-law (θ →∞) and exponential

7Note that the entire length of the Harvard CMT catalogue for real earthquake data for which it is complete

consists of< 10000 points.
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Figure 4.6: Radiated energy Ee(t, α) for α = 0.1, 0.5, and 1. Note the large differences in scale in the y-axis for the

three plots.
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(B = 0) distributions or a combinations of both.
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Figure 4.7: Incremental probability distribution for the radiated energy Ee from α = 0.1 to α = 1. The dashed line is

drawn with slope= 1 for reference.

To ensure that the distribution ofP (Ee) in figure4.7 does not depend on the grid size,

I calculateP (Ee) for another two runs, with grid size5 × 50 and200 × 200. These

results are shown in figure4.9. It can be seen that the results for the caseα < 1 are

indistinguishable. For the caseα = 1, the slopes of the distribition are the same however

the cut-off as the higher energies are restricted by the system size. This is highlighted in

the figure with the arrows that mark system size for the three distributions.

4.8.2 Internal energy Ei

The internal energy for different runs is measured using4.12for different values ofα.

The results forEi(t, α) are shown in figure4.10. We can see from figure4.10that the

system reaches a stationary steady state att > 100000 showing Boltzmann type fluctua-

tions similar to an equilibrium system despite it being far-from-equilibrium. The results

reported here for internal energy are very different to those reported for globally ’uni-

formly’ driven systems in that they lack any periodic behaviour such as found by Jánosi
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100× 100 and 200× 200. The dashed line is drawn with slope= 1 for reference.
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and Kert́esz (1993) and Main et. al. (2000). It is noted however that the fluctuations be-

come less erratic (lower frequency content) asα is decreased. To further investigate the
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Figure 4.10: plot of internal energy Ei(t, α).

frequency content ofEi for differentα, I construct time-series Fourier power-frequency

plots for the steady-state regions for different runs as shown in figure4.11The power-

frequency plots do not show any peaks that would be indicative of any form of periodic

behaviour i.e. the dominance of a particular frequency. It is also interesting to note from

the power-spectra that they all follow a power-law distribution with a slope∼ 2. A slope

of 2 in power-spectra is what is usually obtained from the frequency analysis of Brow-

nian noise in gasses or ‘random walk’ simulations (Feder, 1988; Turcotte, 1997). It is

unclear to me at this time why the slopes of the power-spectra appear to be indepen-

dent ofα. In summary, the internal energy fluctuations reported here for a steady-state

far-from-equilibrium system appear to be similar to those of equilibrium systems.

Now I examine the density distribution of the internal energy in the steady-state for dif-

ferent values ofα. My results are shown in figure4.12. The figure shows three interesting

characteristics. Firstly, although the radiated energies follow a gamma distribution, the

internal energy is closer to a peaked Gaussian or ‘normal’ distribution which is similar
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Figure 4.11: Fourier power-frequency plots for Ei withα = 1, 0.5 and 0.1. The dotted line is drawn with slope ∼ 2 for

reference. The plots have been shifted vertically for clarity.

to what is found for an equilibrium system such as a gas (e.g. Mandl, 1988). This is also

true forα = 1. Secondly, it can be seen that as dissipation increases, the average internal

energy decreases; the mean energy of the system is therefore a function of the level of

energy dissipation. Finally, the distributions are more peaked for higher conservation

and broaden as dissipation is increased. Note that this final point is contrary to what

we observe for the radiated energyEe (figure4.7) where the distributions broaden asα

increases.

Finally, I test the assumption that radiated energy (that can be measured for the crust)

and internal energies (that cannot) are correlated by plotting〈Ei(α)〉 against〈Ei(α)〉 for

all runs. It can be seen in figure4.13that there is a positive correlation between the two.

This is in agreement with the results of the globally driven model of Main et al. (2000)

but shown here to be also true for a locally random driven system. Although the positive

correlation between internal and radiated energy cannot be conclusively shown for the

crust, the NBTW model does not suggest the contrary.
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Figure 4.13: Plot of internal energy 〈Ei(α)〉 against radiated energy 〈Ei(α)〉 showing a positive correlation between

the two. The plot is done using a log-linear scale for clarity.
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4.8.3 Entropy and effective ‘temperature’

I now measure the external and internal entropies and corresponding temperatures for the

NBTW model and their dependence on dissipation. It must be noted here that the entropy

production of a system approaches zero as the entropy approaches a maximum to achieve

equilibrium (Kondepudi and Prigogine, 1998). However, here we are dealing with a far-

from-equilibrium system. I therefore focus my interest in the change in external and

internal entropy as a function of dissipation (decreasingα). The aim is to test the notion

that driven dissipative systems self-organisation (lower their entropy internally) is at the

expense of increasing entropy globally. I first examine the effect of dissipation on the

internal and external entropies which are measured on the steady-state part of the runs

using4.20and4.21. Figures4.14a andb shows howSe andSi depend onα. We can see

that whereby an increase in dissipation (decreasingα) increasedSi, it decreasesSe. This

is a significant result demonstrating how internal and external entropies are negatively

related for a dissipative driven system and how the two vary with the level of dissipation.

This results is further illustrated by plottingSe againstSi in figure4.15confirming the

negative correlation.

I now examine the predictions of equation3.26(chapter 3) on the correlation between

the external and internal expectation of logarithm of energies and their corresponding

entropies shown in figure4.16a andb. We can see from figure4.16a that there is a posi-

tive correlation between the expectation of the logarithm of the radiated energy〈lnEe〉
and the entropySe confirming the prediction of equation3.26. However, this positive

correlation is curved which, based on the ‘thermodynamic’ criteria outlined in section

3.6 (chapter 3), further suggests that the BTW model in the non conservative regime

(NBTW) is not critical. Conversely, we can see a negative correlation between the ex-

pectation of the internal energy〈lnEi〉 and the entropySi. This is interesting since as

with p(Ei), it is more in accordance with what one would expect for an equilibrium

system whereby the system’s increase in entropy is accompanied by a lowering of its

internal energy, like a collapsing house say that will become more disorganised (higher

S) and will lose energy (lowerEi) to its surroundings (higherEe). This is ‘anti’ self-

organisation.
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CHAPTER 4. Self-organisation in numerical models of seismicity 99

6.6 6.8 7 7.2 7.4 7.6 7.8 8
0

0.5

1

1.5

2

2.5

3

3.5

y = −2.4981x + 19.641

R2 = 0.8498

y = 2.7844x2 − 42.931x + 166.23

S
i

S
e

R2 = 0.9415

α=1

α=0.05

Figure 4.15: Plot of the external entropy Se against internal entropy Si. The two entropies show a negative correlation

fitted here with linear (solid line) and polynomial (dashed line) least-squares fit. The arrow points towards the direction

of increasing dissipation.
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correlation. The dashed arrow points towards the direction of increasing dissipation.
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Moving on to temperature, I follow the definition4.24and measure the standard devi-

ations ofEe andEi and to see how external and internal temperatures are related to

entropy, energy andα. I show my results in figure4.17. I find that there is a positive

correlation between the entropies of the system and their corresponding temperatures

(figure 4.17a). Lower temperatures are usually seen to be a property of ‘ordered’ sys-

tems (lower entropy) such as say a quartz crystal as apposed to a hot ‘disordered’ gas.

Temperature is an important property of self-organising systems because the ‘hotter’ a

system, the larger the energy phase-space it can explore to find a lowest energy state

(Sornette, 2000). Looking at the relation between energy and temperature, we can see in

figures4.17c and4.17d thatTi of the system is highest for the lowest energy stateEi.

Finally, looking at the relation between the temperatures and the dissipation, I find as

expected that the correlation between the two for the internal and external temperatures

are different. This is shown in figures4.17e andf . An increase in dissipation therefore

increases the internal temperature of a system whilst decreasing the temperature of the

energy or ‘matter’ radiating from it.

4.8.4 Effect of conservation α on radiated energy 〈Ee〉

We have seen in figure4.7 that the maximum radiated energyEe will decrease with

decreasingα. This result is also seen for other globally driven models (e.g. Olami et

al, 1992, Main et al., 2000). Lise and Jensen (1996) find that for a random neighbour

version of the OFC model (one where the energy is redistributed to 4 randomly chosen

cells rather than the 4 immediate neighbours) that

ξ ∼ (αC − α)−1.5 (4.25)

whereξ is the cut-off in avalanche size (the maximum possible cluster size for a givenα).

A similar power-law result was found by Christensen and Olami (1993) through a mean

filed approximation although they used a conservative model withα being a measure of

the number of neighbours to which energy is redistributed. Here I numerically test if the

results also hold for the NBTW model. Plotting〈Ei〉 againstα in figure4.18a, we see

that there is a positive correlation with an exponential increase in〈Ee〉 asα → 1. Note

the similarities with figure2.13(chapter 2). Following the results of equation4.25, I set
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α 〈Ee〉 Eemax 〈ln Ee〉 〈Ei〉 × 104 〈Ei〉 × 104 〈ln Ei〉 Se Si Te Ti

0.05 0.263 6 0.179 5.342 5.134 10.886 0.614 7.381 0.471 393.421

0.10 0.278 6 0.184 5.351 5.144 10.888 0.651 7.568 0.51 484.238

0.15 0.294 7 0.191 5.363 5.154 10.89 0.685 7.595 0.555 489.627

0.20 0.312 8 0.197 5.395 5.186 10.896 0.716 7.607 0.604 501.219

0.25 0.332 12 0.205 5.419 5.209 10.9 0.748 7.594 0.662 489.265

0.30 0.356 11 0.213 5.461 5.249 10.908 0.78 7.541 0.722 469.363

0.35 0.383 15 0.223 5.5 5.286 10.915 0.812 7.709 0.794 562.919

0.40 0.414 18 0.234 5.555 5.339 10.925 0.847 7.574 0.874 478.06

0.45 0.452 15 0.245 5.628 5.409 10.938 0.882 7.571 0.976 481.324

0.50 0.496 22 0.259 5.701 5.48 10.951 0.922 7.449 1.089 420.232

0.55 0.55 23 0.275 5.793 5.569 10.967 0.965 7.431 1.227 412.261

0.60 0.618 29 0.294 5.898 5.669 10.985 1.014 7.403 1.4 400.714

0.65 0.705 29 0.317 6.014 5.78 11.004 1.07 7.48 1.62 433.138

0.70 0.82 38 0.344 6.145 5.906 11.026 1.135 7.416 1.914 411.857

0.75 0.98 49 0.378 6.305 6.06 11.052 1.212 7.375 2.321 390.817

0.80 1.218 56 0.424 6.49 6.238 11.081 1.31 7.225 2.927 335.043

0.85 1.611 83 0.487 6.704 6.444 11.113 1.439 7.328 3.932 376.163

0.90 2.38 120 0.583 6.962 6.669 11.151 1.619 7.148 5.924 310.393

0.95 4.587 254 0.763 7.295 7.011 11.198 1.933 7.031 11.731 274.998

1.00 226.6 9122 1.706 7.806 7.503 11.265 3.294 6.76 798.81 209.274

Table 4.2: Summary of results of model runs for α = 0.05 to α = 1.

αC = 1 since its is atα = 1 that we get the largest mean energy. Plotting〈Ee〉 against

1− α in figure4.18b, I find that

〈Ee(α)〉 ∼ (1− α)−0.975 (4.26)

The results of Christensen and Olami (1993) and Lise and Jensen (1996) are therefore

quantitatively confirmed here for a locally driven NBTW model. It is interesting to note

from equations4.25and4.26thatα has a similar effect on cluster size as temperature

and percolation probability do on non-driven systems as given by equation2.22in section

2.6.3(chapter 2). The results of this section are summarised in table4.2

4.9 Part II: Investigating SOC in the BTW model

I have outlined that the definition of SOC remains somewhat vague. This is a problem

when trying to assess whether the Earth’s crust is a SOC system or not. Therefore, I now
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examine the BTW model in some detail in relation to earthquakes. I will also extend

this investigation to the NBTW model (α < 1). The three main questions I attempt to

address are

1. Is spatial heterogeneity present in the BTW model of SOC? This question is impor-

tant because spatial heterogeneity is observed in the statistics of earthquake pop-

ulations (e.g. Ogata et al., 1991;Öncel et al., 2001). If heterogeneity is found

in the BTW model, then the assumption that SOC systems are unpredictable in

space need not be made as part of its definition. Extrapolating from this, the notion

that the Earth’s crust is at the point of global failureeverywhere(e.g. Grasso and

Sornette, 1998; Z̈oller et al., 2001) also need not be made.

2. Is universality a requirement of SOC? Although universality in a dissipative model

such as the OFC model is a subject of debate (section4.5.3) because of the non-

uniqueness of the scaling exponent, it is not the case for the BTW model of SOC

which has a fixed scaling exponent for the energy release. However, if spatial

heterogeneity is found in the BTW model, how will this generally affect the power-

law statistics observed on a subsection of the model?

3. Although the BTW model is inherently unpredictable in time (Bak et al., 1987),

there have been observations of time dependant processes in real earthquake data

such as accelerated seismicity before a large event (section2.8.4 in chapter 2).

Here I ask the question that assuming such an observation happened by complete

coincidence, would it still be compatible with the statistics of the BTW model?

In other words, does the BTW model have the statistical raw material to show

accelerated seismicity before a large event?

By covering these questions, the main aspects of the BTW model and therefore SOC

would have been investigated; space and time.

4.9.1 Spatial variations

I now investigate spatial heterogeneity in the original BTW model by puttingα = 1 in

the NBTW model. My primary interest is on the recurrence rate of event occurrence in
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space. In order to do this, I define a secondx×y square latticeCx,y. This is my ‘counter’

lattice. For every cellσx,y that fails due to process4.10we have:

Cx,y = Cx,y + 1 (4.27)

Note that an event can involve the several failed cells that form a cluster for a given time

stept. Therefore,
∑

C > t (4.28)

wheret ∈ [1, tn]. Again, I run the model for a100 × 100 lattice for a total of500000

time steps. Finally, I calculate the probabilitypx,y of a site breaking in a given position

(x, y) for each site in the lattice:

px,y =
Cx,y∑

C
(4.29)

The results are shown in figure4.19. It can be clearly seen from figure4.19 that the

probability of a cell breaking increases as we get away from the boundaries;spatial

heterogeneity exists in the BTW model. This is perhaps somewhat expected because

the edge cells interact with three neighbours8 whereby all other cells interact with four
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Figure 4.19: Probability px,y of a site breaking in space for a two-dimensional BTW model.

and are therefore on average more likely to receive energy and break. Let us consider this

8Except for the cells at the corners of the array which only have two neighbours.
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schematically in figure4.20. Figure4.20 is a simplified one dimensional BTW model

that starts off close to breaking point (σC = 2). A cell in the centre is given an ‘energy’

increment (figure4.20a). The cell breaks and redistributes its energy to it two neighbours

and so on until the avalanche ends (figure4.20f ).

There are two things we can gather from this example. Firstly we see how from the

counter at the bottom of the schematic that the cells away from the edges break more

frequently. Secondly, for this conservative case, the total number of cells broken (9)

exceeds the size of the resulting cluster (5). Although this is an simple example, it does

conceptually explain the result shown in figure4.19.

1 2 3 2 1total

e)

d)

c)

b)

a)

f)

Figure 4.20: One dimensional BTW model showing the effect of open boundaries on causing sites to topple more

frequently away from the edges. The dashed squares indicate breaking sites. The number of broken sites (9) exceeds

the resulting cluster size (5).

One could now also ask if the magnitude of a triggered event depends on its initiation

position (x, y)? I investigate this by constructing a second counter similar toC which I

call C2. For a an event for energyEE triggered due to an update at position (x,y):

C2x,y = C2x,y + Ee (4.30)

so in theory, if larger events are initiated in the centre away from the edges,C2x,y should
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be systematically bigger towards the centre. The results of this are shown in figure4.21

We can see from figure4.21 that there doesn’t appear to be any spatial dependence of
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Figure 4.21: Two dimensional counter showing no dependence of the size of the triggered events on their point of

initiation.

event size on the position of initiation. Larger events are just as likely to be triggered at

the edges as in the centre of the array.

Now I ask the question, is this as suggested by figure4.20an artefact of the conservative

case? To answer this, I carry out a similar ‘counter’ analysis forα < 1. I show the

results of this analysis in figure4.22for α = 0.1 to α = 1 . We see in figure4.22that the

spatial signature observed forα = 1 disappears when dissipation is present contrary to

what is observed in globally driven dissipative models (e.g. Middleton and Tang, 1995).

The effect of the probability of site failure in thex direction (y = 50) for α = 0.1 to

α = 1 is shown as a composite plot in figure (4.23).

To ensure that the distinct spatial variation for the caseα = 1 is not due to the system

size, I calculate it for a further two runs with for grid sizes50×50 and200×200. This is

shown in figure4.24. It can be concluded that this spatial variation is intrinsic to the sys-

tem at1 and not due to system finite size effects. Overall, the results suggest that unless

very close the boundary, a dissipative BTW model will not show any spatial heterogene-

ity in contrast to the conservative case (α = 1). Nonetheless, spatial heterogeneity in

general appears not to contradict SOC.
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spatial heterogeneity for α = 1 which is absent for α < 1.
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Figure 4.24: Probability p(x) of a site breaking at position x for conservation factor α = 1 for grid size 50 × 50,

100× 100 and 200× 200. There is clear spatial heterogeneity for α = 1 despite the variation in system size (shifted x

values and normalised y values are plotted for comparison).
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4.9.2 Testing universality in scaling

I have established that there is a spatial bias in the BTW model. I now investigate whether

this spatial heterogeneity has any effect on the universality within sub regions of the sys-

tem. That is, if we are to subdivide the BWT model spatially, will the sub-regions have

the same statistical characteristics as each other depicted by a constant scaling exponent

B. To do this, I run a BTW model which is sub-divided into two equal areasA1 andA2

as can be seen in figure4.25. The regions are chosen in this way because firstly there

will be more events inA1 thanA2 (with reference to figure4.19). Secondly,A1 will not

be affected by the size limiting effect of the edges wherebyA2 will. We would therefore

expect a bigger maximum event size forA1. The model is run as with previous runs

L/2
1/2

A1

A2

L

Figure 4.25: BTW model of area A divided into to sub-regions with areas A1 and A2 where A1 = A2 and A1 + A2 =

A = L2.

with t = 500000. The cluster sizes formed withinA1 andA2 are measured separately

for every time stept. From this, I calculate two energy-probability distributions denoted

p(EA1) andp(EA2). These are shown in figure4.26. Although the two distributions as

expected have different maximum event sizes, they both show an identical scaling ex-

ponentB ∼ 1 although the distribution forA2 is more gamma than power-law due to

the edge effect of the boundaries. This suggests that for the original BTW model, spa-

tial heterogeneity caused by boundary effects should not influence the universality of the

system (the value ofB) although it can influence the shape of our gamma distribution.

In summary, it appears that systems that show a gamma distribution do not contra-

dict SOC. However, systems that show a regional variation in the scaling exponent
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B will be in contradiction to what has been found for the original BTW model of

SOC.
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Figure 4.26: Energy probability distributions for region A and sub-regions A1 and A2 as illustrated in figure 4.25. The

A1 and A2 distributions are shifted to the left along the x-axis for clarity.

4.9.3 Accelerated seismicity and α

The final aspect of the SOC that I test on the BTW model is that of accelerated seismicity.

That is, a time dependant acceleration in the radiated energy preceding a large event in

the form (Z̈oller and Hainzl, 2001)

∑√
Et = A−B(tC − t)m (4.31)

with A, B andm positive constants andtC is the time offailure. Although the issue of

precursors occurring before large events for earthquake populations have been reported

(e.g. Bowman et al., 1998), these remain controversial and are usually only detected

retrospectively after an event has occured (Geller, 1997; Mulargia, 2001). Such pre-

cursory phenomena are not observed in the BTW model although there are models that
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mimic accelerated seismicity (e.g. Jaumé et al., 2000). The question I ask here however

is: although accelerated seismicity is not observed in the BTW model of SOC, would

accelerated seismicity contradict it in any way? In other words, can we have an acceler-

ating energy release within a population of events and still have a power-law or gamma

energy-density distribution for the data overall?

To answer this, I takeEe(t, α) for all runs and simply re-shuffle it in order of ascending

energy. In other words, I am forcing an accelerated seismicity for a population of gamma

type data to see if it will follow a power-law increase similar to the reverse Omori law

(equation2.38, chapter 2). It must be noted that the energy probability distributions

for data are independent of their transient properties because we are binning in energy

rather than time. There is therefore no reason to assume that all systems with power-law

statistics are unpredictable in time. Figures4.27a andb show the unordered and ordered

data fromα = 0.1 to 0.9 (I exclude the case forα = 1 from the plots because even

though it shows the same results, it out-scales the remainder of the data and obscures

them due to its much larger energies). It can be seen from figure4.27a that the data
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Figure 4.27:
√

Ee against (a) t (unordered) and (b) ordered, (c) against (tC − t) on a log-log plot .

un-ordered closely resemble what is usually found in CA models of seismicity (e.g.

Angulo-Brown and Mũnoz-Diosdado, 1999). Ordering the data (figure4.27b) shows

an exponential type time increase in seismicity as we approach the largest event which

becomes more linear asα decreases. To test equation4.31 on the data, I plot
∑√

E

against(tC − t) on a log-log plot (figure4.27c. It can be seen that the results in figure

4.27c do not follow the predictions of equation4.31for this model. This results suggest
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that accelerated seismicity is not compatible with SOC at least in a statistical sense.

4.10 An alternative to SOC?

I have shown that although SOC can accommodate for both power law and gamma statis-

tics in the energy release, it cannot accommodate for varying scaling exponents. I there-

fore propose an alternative;self-organised sub-criticality(SOSC). This is simply in ac-

cordance with characteristics of the NBTW model rather than the BTW model. SOSC

is simply a more ‘relaxed’ version of SOC that can include internal dissipation, as most

natural systems will have, as well as variations in the scaling exponents and correlation

length. This is a looser form of SOC that does not rule out any of its characteristics.

4.11 Chapter summary

In this chapter I examined two things: 1. the thermodynamic aspects of self-organisation

in a generalized version of the BTW model of SOC. 2. Spatial and temporal characteris-

tics of SOC. The main conclusions are as follows:

– For the Generalized BTW model (NBTW), I find that when dissipation is present

(α < 1), criticality is lost in the system and the radiated seismic energy is best

described by a sub-critical gamma distribution rather than a pure power-law.

– Unlike the external energy properties (Ei andP (Ei)), the internal energy fluctu-

ations at steady-state resemble those of equilibrium systems in two ways. Firstly,

they show a Gaussian distribution in their fluctuations and secondly, a Brownian

noise signature, as shown from the time series analysis. These two observations

are similar to what is seen in say gasses at equilibrium (D’Anna et al., 2003). This

is an important result that suggests that our perception of the criticality of a driven

system may be observer dependant. That is, if the observer isinsideor outsidethe

system.

– The external and internal entropies are negatively correlated. This is consistent with

the idea that systems self-organise to increase entropy globally (e.g. Bridgman,

1950).
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– The external and internal energies of the locally driven system shown here are found

to be positively correlated. This is what is also found for globally driven CA models

(e.g. Main et al., 2000).

– The relation betweenSe and 〈ln Ee〉 was found to follow a curve rather than a

straight line (see section3.6, chapter 3). This is further evidence that we are deal-

ing with a sub-critical system when dissipation is present. Conversely, we get a

negative correlation betweenSi and〈lnEi〉

– For both internal and external cases, the temperaturesTT was found to correlate

well with their relative entropies. This is in agreement with the notion that statisti-

cally ‘hot’ systems are less predictable (Rinaldo et al., 1996; Sornette, 2000).

– The prediction that the mean radiated energy and conservation parameterα are

related by a power-law was confirmed for the NBTW model where〈Ee〉 ∼ (αC −
α)−0.975 (noteαC = 1).

Moving on to SOC, there are several important results found here that question our cur-

rent understanding of SOC and how it should be applied:

– Spatial heterogeneity exists in the BTW model of SOC. This is in the form of more

cells breaking away from the edges. This observation disappears when dissipation

is present (but so does criticality!). This is due to cells being more likely to break

away from the edges since they have more neighbours to interact with and therefore

statistically more likely to receive energy and fail.

– Despite the spatial bias observed, the size of events do not appear to be related to

their position of initiation. This can explain why we still get a power-law despite

the spatial bias (point above).

– Analysing the BTW model on a regional level, it was found that the energy prob-

ability distributions for the sub-regions follow a power-law in the centre and a

gamma ‘sub-critical’ distribution at the edges. Despite this, the distributions still

show the same slope (B ∼ 1). This confirms that for a model of SOC, universality

is conserved.

– From a temporal point of view, the NBTW model was found to be statistically in

disagreement with what is claimed of accelerated seismicity preceding large events.
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– I propose a more lenient version of SOC which I refer to as self-organised sub-

criticality (SOSC). This is simply in accordance with the NBTW model and can

accommodate gamma distributions, internal dissipation and variations in scaling

exponents and correlation lengths; more in tune with natural systems.

4.12 Afterthoughts

Looking at the model from a thermodynamic prospective, what predictions can we make

about the Earth’s lithosphere? We have seen that the internal and external energy here

are correlated reassuring us that for a driven system, the free energy is proportional to

the amount of energy being released. This may appear counter intuitive when compared

to equilibrium systems. We have also seen the dominating effect of even a small amount

dissipation on the system energy and spatial heterogeneity. Dissipation may therefore

strongly influence the amount of energy stored in the crust; the higher the dissipation the

lower the free energy and the higher the energy dissipated irreversibly (such as through

heat). Dissipation also influences the shape of the probability density distribution (and

therefore the entropy) from a power-law to a gamma with increasing energy loss. One

could suggest from this that for seismically active areas, if dissipation is high, the earth-

quakes will follow a gamma distribution with a lowθ (and perhaps higherB?) and there

will be more heat loss. This will also be represented in dissipative areas having a lower

Se.

On the other hand, spatial variations inB values would violate what is observed from

the regional study of the BTW model even if we are to relax the definition of SOC to

include gamma type statistics. Ironically, spatial variations in the amount of seismicity

are found not to contradict SOC, this reassures the notion that SOC systems need not be

on the point of global failure everywhere (e.g. Sornette, 2000). The relevance of these

predictions will be investigated on real earthquake populations in the following chapter.
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Chapter 5

Testing criticality in global

earthquake populations

So far, we have seen the statistical and thermodynamic aspects of self-organisation and

dissipation analytically and through the use of a numerical model. It has been shown

through the gamma entropy equation, relating the mean expectation of the logarithm

of energy〈ln E〉 and the entropyS, how one may assess the ‘criticality’ of a gamma

type system. The analytical predictions were then tested on a generalised numerical

model of seismicity in the previous chapter. Self-organised criticality (SOC) in the Bak

et al. (1987) numerical model (BTW) was also examined in some depth to pinpoint

characteristics of SOC.

In this chapter I test some of the predictions and conclusions of the last three chapters

on real global earthquake data. I do this to attempt to answer some remaining questions

regarding criticality in the crust. I must at the expense of repetition emphasise that when

I use the term ‘critical’, I do not exclusively mean SOC. With ‘critical’ I refer thermo-

dynamically to the criterion outlined in chapter 3. That is, a linear relationship between

the entropyS and its corresponding energy〈ln E〉 (θ → ∞). Conversely, with ‘SOC’,

I refer to the phenomenological characteristics I demonstrated from the original BTW

model of SOC in chapter 4. Keeping this distinction between the two in mind, I accord-

ingly attempt to answer the following questions, as in the last chapter, in two parts. The

first part looks at thermodynamic aspects and investigates the following points:
117
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1. Is the analytical prediction relating entropy and energy applicable to real earth-

quake data? Also, given the thermodynamic criteria encapsulated by the gamma

entropy equation in chapter 3, is the Earth’s crust in a critical state? I assess critical-

ity from a thermodynamic perspective by testing the expression for gamma entropy

derived in chapter 3 (S ∼ B〈lnE〉) on real earthquake populations.

2. If the crust is critical, does criticality hold temporallyandspatially? It is important

to address these two separately since any temporal variations, for example, may

be smoothed out by grouping the data spatially and vice-versa. In this chapter, I

test the gamma entropy equation on earthquake populations that are grouped first

temporally and then spatially.

The second part looks at self-organised criticality in relation to earthquakes and ad-

dresses the following issues:

1. Looking at the criteria deduced from the study of the BTW model in chapter 4,

is the crust strictly SOC? I have shown for the BTW model of SOC that theB

exponent does not change regionally and universality is maintained (section4.9.2).

Can the same be said about the crust?

2. Does SOC best describe the crust or are there other hypotheses that are more con-

sistent with the data?

Some of the main results of this chapter are published in Main and Al-Kindy (2002) and

Al-Kindy and Main (2003) (see appendix).

5.1 ‘Critical’?

To reiterate some of the points made in chapters 2 and 3, is the crust ‘critical’? This

appears to depend on what an author means by ‘critical’. There are many studies as-

sessing ‘criticality’ (or ‘self-organised criticality’) in the crust on real data populations,

many of which use ‘critical’ to mean different things. Unfortunately, these are often

conducted using confused or even erroneous assumptions. I highlighted in chapter 2

(section2.7.2) how a driven ‘critical’ system is different from the classical equilibrium

thermodynamic definition of a critical point (CP) system. However, Zöller and Hainzl
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(2001), for example, use a spatial correlation length that grows in a power-law fashion

with time preceding a large earthquake as an indicator to the crust being a critical point

(CP) phenomena. Similar approaches are given by Shaw et al. (1992), Bowman et al.

(1998), Robinson (2001) and Zöller et al. (2001). However, a growing correlation length

preceding large events is not a property of an open driven or SOC system (Jensen, 1998;

Sornette, 2000). I confirmed this statistically for a numerical model of SOC in section

4.9.3. The growing correlation length approach should only be applied to an equilibrium

system such as the Ising or percolation model that has a specific critical point rather than

the attractor critical state associated with SOC. Therefore, for a driven system, a system-

atically growing correlation length prior to a large event should not be a requisite for a

system to be in a state of SOC.

Another approach used in earthquake ‘prediction’ is that offracture criticality where

variations in time delays associated with shear wave splitting are reported to occur be-

fore large earthquakes (Crampin, 1994; Crampin et al., 1999). The term ‘criticality’

here is used to describe the sensitivity of the rock to breaking (analogous to the per-

colating model close to the percolation threshold (section2.6.3). This is more in tune

with equilibrium systems close to the critical point rather than driven dissipative sys-

tems. Similarly, Grasso and Sornette (1998) examine criticality in triggered earthquakes

but correctly define ‘criticality’ in terms of ‘large susceptibility’ and its association with

SOC. It is this ‘loose’ use of the word ‘critical’ that leads me to emphasise what is meant

by it here and to avoid any confusion. Here I use a thermodynamic approach derived in

chapter 3 in assessing the criticality from the seismic energy release from the crust. In

summary, for logarithmic bins -as used throughout this chapter-:

S = B〈ln E〉 → critical (5.1)

S 6= B〈ln E〉 → non− critical (5.2)
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5.2 The Harvard Centroid Moment Tensor (CMT) Cata-

logue

I mentioned in chapter 2 that earthquakes usually occur when strain energy stored in

the Earth’s lithosphere is suddenly released; a frictional resistance along a fault plane is

overcome and relative motion or ‘slip’ occurs (figure5.1). The analysis of this motion

can be used to give information on the size and orientation of the fault plane. This anal-

ysis is called afocal mechanism solution(Kearey and Vine, 1996). The arrivals of the

seismic waves from the fault are measured by a series of global multi-component seis-

mographs that measure the amplitude of the arriving seismic waves in three dimensions.

The radiated amplitudes of seismic waves along three axis can be reduced to what is

fault
slip

strain
accumulation

slip

earthquake 

earth

a

b1 b2 b3

Figure 5.1: Earthquake process in the crust: a) Earth cross-section showing activated fault with radiated seismic

waves (dashed arrows) and b) Seismic process: b1. fault after rupture, b2. accumulation of strain and b3. a slip along

a fault.

known as thescalar seismic momentor MO which is measured inNm. The details of

how this is calculated are not relevant here. What is important is that‘the best measure

of earthquake size and energy release is the static (or scalar) seismic moment(Stein and

Wysession, 2003). This is why I shall primarily use the scalar moment as a measure of

earthquake size in this study.

The primary source of moment data internationally is the Harvard Centroid Moment

Tensor catalogue, usually referred to as the CMT catalogue. From the moment data
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solutions, we can calculate a correspondingmoment magnitude1 m using (e.g. Kagan,

2002)

m =
2
3

log10 M − 6.0 (5.3)

and the corresponding seismically radiated energyE can be calculated approximately

using (Kanamori and Anderson, 1975; Scholz, 2002)

log10 E = 1.5m + 4.8 (5.4)

whereE is in Joules. The CMT catalogue’s record begins in 1977 and at the time of

writing this thesis is published at http://www.seismology.harvard.edu/.

5.3 Analysis

In this chapter, the thermodynamic parameters of the data are measured in a similar way

to the methods used in chapter 4. Because of the nature of the crust, internal proper-

ties (those with subscripti in the results section of chapter 4) such as strain cannot be

measured so only external properties derived from the radiated energy are calculated.

However, in the previous chapter, I was dealing with a large synthetic data set with no

notable measuring errors. Here, with real data, more caution is required.

5.3.1 Data and magnitude range

Smaller earthquakes are not recorded in global data sets. To estimate the cut-off mag-

nitude, the incremental probability-magnitude distribution is plotted in figure5.2. This

shows that the deviation from the Gutenberg-Richter law occurs atm ∼ 5.5. Data for the

valuesm ≥ 5.5 are therefore considered to be complete for the purposes of this study.

Kagan (1997; 2002) reports that the CMT catalogue is complete only for magnitudes

m ≥ 5.4 for the period 1987 onwards andm ≥ 5.6 from 1982 onwards. Figure5.3

shows the number of earthquakes recorded per yearn for m ≥ 5.5 1977-2000. It can be

seen that there is a sudden increase in the numbers after 1982. However, I have found

that this does not significantly influence the results calculated here (see figure5.15which

has data for period 1977-2000).

1The moment magnitude is denotedMW in the literature but for simplicity denotedm here.
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Figure 5.2: Incremental magnitude probability distribution for all CMT data 1977-2000 showing data completeness for

m ≥ 5.5. The solid line is of slope −1 for reference.
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Figure 5.3: Number of recorded events per year n for period 1977-2000 inclusive for moment magnitudes m ≥ 5.5.
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In summary, I use the CMT data forM ≥ 5.5 for the period 1977-2000 for all depth

ranges giving a total of 9042 events. All data are shown in figure5.4.

5.3.2 Bin widths

The data are binned in the magnitude domainδm (equivalent to logarithmic bin widths

δ lnE). Because the data are limited in numbers, the bin width used to produce the

energy incremental probability distribution must be chosen with caution. If it is too

narrow (more bins) there will be more empty bins that will destabilise the calculations

of S, B, etc. This is shown in figure5.5a. Conversely, if the bin widths are too wide,

we may be filtering out characteristics of the probability distributions. This is depicted

in figure 5.5b. By trial and error, I determine that the ideal bin-width for this study is

δm = 0.25. From the binned energy data (equation5.4), I follow the same procedure in

chapter 4 (section4.7) to calculatep(E), S and so on.

5.3.3 Scaling exponents

In addition to the parameters already outlined, I also investigate universality to see if the

earthquake energy probability distributions give a constant scaling exponentB consistent

with requirements of SOC, or if they vary in contradiction to it. Although there are

numerous studies on the variation of scaling exponents with space and time (e.g. Ogata

et al., 1991;Öncel et al. 2001; Cao and Gao, 2003), there are also studies that suggest

it is constant (e.g. Frohlich and Davis, 1993; Kagan, 1999; Godano and Pingue, 2000).

It is difficult to quantitatively compare the results of these studies in terms of scaling

exponents for the following reasons:

1. The studies use different techniques to calculate the scaling exponents that may

cause variations in the results. These include Aki’s maximum likelihood method

(Aki, 1965), rank ordering statistics (Sornette et al., 1996), linear least squares fits

(Scholz, 1997; Godano and Pingue, 2000; Al-Kindy and Main, 2003; Amitrano,

2003) and fitting the gamma distribution and variations thereof (Main and Burton,

1986; Kagan, 1997; Koravos et al., 2003).
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Figure 5.5: The effect of bin width δm being a) too narrow, b) too wide.

2. The majority of these studies mentioned calculate the scaling exponent on the cu-

mulative frequency distribution. This smoothes the data and may introduce bias in

the results (Main, 2000). I therefore, as in chapter 4, only use incremental distribu-

tions.

3. Regional studies on the scaling exponents tend to cover a specific area chosen for a

particular study. In this study, I will follow the method of Kagan (1997) regional-

ising the data using the standard Flinn-Engdahl classification (Flinn and Engdahl,

1974) described below.

For these reasons, I use three methods to calculate the scaling exponents in this study.

The results can then be compared with other studies and with one another:

1. I calculateB using aLeast Squares Fit(LSF) through the linear (power-law) part

of the energy probability distributions. I refrain from fitting a gamma fit since my

primary interest here is in the slope of the distribution. Therefore, there is no need

to introduce the extra parameterθ. B as mentioned in chapter 2 usually takes an

average value of∼ 2
3 worldwide (e.g. Frohlich and Davis, 1993)

2. The b (calledb1 hereon) value usingAki’s maximum likelihood method (1965)

is calculated by measuring the mean magnitude:

b1 =
log10 e

〈m〉 −mC
(5.5)

Here〈m〉 is the mean magnitude,mC is the minimum cut-off magnitude (5.5 in

this case) andb1 ∼ 1 globally on average. This method is extensively used in
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the literature and interestingly shares some similarities with the gamma entropy

equation. Note thatb1 depends mainly on the mean of the magnitude, similar to

Sγ , which depends on〈lnE〉 andm ∼ lnE (chapter 2). Although we calculate a

scaling exponent, it is not certain from the obtained value that the distribution ofm

is necessarily a power-law.m indeed might follow any distribution. I therefore use

this calculation in conjunction withB which confirms whether the distribution of

m or E is a power-law. Using this somewhat ‘popular’ method makes comparison

of my results with other published results feasible.

3. I finally calculate a scaling exponentb2 using rank order statistics (ROS). This sta-

tistical method has been used in various disciplines including linguistics and DNA

analysis (Mantegna et al., 1995) and has also been applied to earthquake popula-

tions (Sornette et al., 1996; Sornette, 2000). The method simply involves putting

events in order of their size with the largest event being rank 1 and the second

largest rank 2 and so on. The event sizes are then plotted against their rank. In ac-

cordance with Sornette et al. (1996), if the slope of a power-law scaling exponent

is µ, then the slope of the size vs. rank plot will be1
µ . For the case of magnitude

data, the slope of the magnitude vs. rank plot will be1
b2

.

5.4 The temporal study

I now examine the CMT data in time. I bin the data in yearly intervals and calculate the

external thermodynamic variables I examined in chapter 4.

5.4.1 Testing criticality

The magnitudes and energies are calculated from the moment data using equations5.3

and5.4 respectively. The magnitude and energy release data are shown in figure5.6.

Note the similarities between figure5.6and the numerical results of figure4.6. The mean

energies released per year are calculated by taking the annual averages of all values of

ln E andE to give 〈ln E〉 and〈E〉 respectively. I then bin the yearly data to produce

discretized probability distributions calculatingp(E) from which I also calculate the
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Figure 5.6: Plot of a) moment magnitude release and b) energy release for all data m ≥ 5.5.

entropy (equation3.21). I also measure the maximum energy released in a yearEmax.

The results of this analysis are shown in figure5.7. Note from figure5.7 that there is

a good correlation betweenS and〈lnE〉 as predicted by equation3.26 (chapter 3). I

then check to see if the temporal data are critical by plottingS against〈ln E〉 in figure

5.8. Figure5.8 firstly confirms thatthe prediction of the gamma entropy equation

is applicable to a real earthquake population. Because of the linear nature of the fit,

the results also suggest that earthquake seismicitytemporallyis ‘critical’ or at least very

nearly critical following the criteria outlined in chapter 3. It should also be noted here

that the slope of the linear line (y = 0.6275x − 18.73) gives a slope ofBS ∼ 2
3 which

is in agreement with global estimates (e.g. Kagan, 2002). It must be said that although

the inferred slope is apleasingresult, it is somewhat coincidental. As I demonstrated in

chapter 3 (section3.7.3), the calculated value ofS will depend on the number of bins

used. Keeping everything constant, If I were to increase or decreaseδm here, this would

alter the calculated value ofBS . It was another assumption associated with the derivation

of the gamma entropy equation that〈E〉 and〈ln E〉 are not correlated. I tested this in

figure5.9. We can see from figure5.9 that there is a negligible correlation between the

two with R2 = 0.09.



CHAPTER 5. Testing criticality in global earthquake populations 128

1975 1980 1985 1990 1995 2000
31.4

31.5

31.6

31.7

31.8

<
LO

G
(E

)>

1975 1980 1985 1990 1995 2000
0

1

2

3
x 10

17

E
m

ax

1975 1980 1985 1990 1995 2000
0.9

1

1.1

1.2

1.3

S

1975 1980 1985 1990 1995 2000
0

5

10

15
x 10

14

<
E

>
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2000.
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5.4.2 ‘Tectonic’ temperature TT

Following the statistical definition of effective/tectonic temperature (denotedTT here)

(see section4.7.3), I now measureTT with time for the radiated energy. I also compare

its temporal variation with the mean energy release〈E〉. This is shown in figure5.10a.

It can be seen that there is a coupling between the tectonic temperature and the mean

energy release. To further demonstrate this, I plotTT against〈E〉 in figure 5.10b. We

can see from figure5.10b that there is a good correlation between the two. This result is

in agreement with that found for the numerical NBTW model (figure4.17), suggesting

that areas of higher mean energy release will be of higher ‘temperature’ and therefore

less predictable. This is since higher temperatures are associated with larger more erratic

fluctuations in energy.
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Figure 5.10: Plot of a) Temporal variation of energy 〈E〉 (dashed line) and temperature TT (solid line) for period

1977-2000. b) TT against 〈E〉 showing a positive correlation between the two.

5.4.3 Three scaling exponents

From the data, I now calculate the three scaling exponentsB, b1 andb2, defined in section

5.3.3. I calculateB from the probability distribution of the energy release. This is shown

in figure5.11. The figure shows the very close to power-law nature of the annual data.

The results ofb1 are given in table5.1. I then calculateb2 from the rank ordering of the

magnitude data. This is shown in figure5.12. A summary of the results of the scaling

exponents with time is shown in figure5.13. In chapter 3, it was shown that the scaling
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Figure 5.11: Plot of probability distributions for annual energy data 1977-2000 showing slopes of distributions B.
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Figure 5.13: Plot of temporal variations of scaling exponents B, b1 and b2 1977-2000. The B exponent is rescaled for

comparison with b1 and b2.

exponent can have an effect on the mean energy and entropy of a data set since it will

be one of the parameters governing theshapeof a distribution (section3.6.1). I now

investigate if there is any correlation between the three scaling exponents calculated and

the main thermodynamic variables measured, namely,〈ln E〉, S and〈E〉. These results

are shown in figure5.14. The results show in almost all cases there is at least a weak

negative correlation between the thermodynamic variables and the scaling exponents

measured. The most notable correlation is seen in figure5.14b. We can see that there is

a very distinct negative correlation betweenb1 and〈lnE〉. This is not surprising because

m ∼ ln E (Kanamori and Anderson, 1975) and givenb1 depends on〈m〉 (equation5.5).

However, there is no apparent correlation betweenB and〈ln E〉 in figure 5.14a. This

would suggest that either the two are not related for real earthquake populationsor that

theB values are on average universal, therefore clustered around a particular value and

not showing any obvious change with〈ln E〉.

5.4.4 Data check

In chapter 4, every run had the same number of data points. Here, the numbers vary

annually as depicted by figure5.3. I therefore plot the thermodynamic and scaling expo-
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nent variables against their annual totals to see if there are any systematic dependencies

on data numbers. This is shown in figure5.15. The figure shows no obvious dependence

of any of the variables on their numbers. This validates using the pre-1982 data since the

number of points does not influence the results. This concludes the temporal study of the
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Figure 5.15: Plot of a) S on n b) 〈ln E〉 on n c) 〈E〉 on n d) B on n e) b1 on n f) b2 on n for 1977− 2000 data.

CMT catalogue. The results of the temporal study are summarised in table5.1.

5.5 The spatial (regional) study

5.5.1 Flinn-Engdahl regionalisation

Flinn and Engdahl (1974) developed a standard to subdivide the Earth based on geo-

graphic and geological constraints (referred to here as the FE regionalisation). Although

the classification has several hundred subdivisions, it broadly divides the earth in to 50
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year n 〈ln E〉 〈E〉 × 1015 S TT × 1016 B b1 b2

1977 343 31.64 1.11 1.09 1.17 0.59 0.95 0.97

1978 333 31.72 0.54 1.15 0.30 0.65 0.90 0.96

1979 322 31.69 0.61 1.16 0.54 0.64 0.92 0.96

1980 341 31.74 0.40 1.20 0.20 0.70 0.89 0.98

1981 322 31.62 0.32 1.13 0.14 0.70 0.96 1.00

1982 334 31.47 0.23 1.02 0.10 0.74 1.06 1.05

1983 396 31.68 0.45 1.15 0.25 0.60 0.92 1.01

1984 375 31.44 0.28 1.02 0.12 0.73 1.08 1.02

1985 367 31.67 0.57 1.14 0.45 0.66 0.93 1.01

1986 382 31.48 0.41 1.03 0.34 0.72 1.05 1.08

1987 409 31.64 0.36 1.15 0.23 0.77 0.94 1.00

1988 388 31.44 0.27 0.99 0.16 0.78 1.08 1.08

1989 374 31.44 0.38 0.99 0.40 0.75 1.08 1.13

1990 405 31.52 0.38 1.06 0.19 0.69 1.02 1.01

1991 323 31.66 0.35 1.14 0.16 0.66 0.93 0.98

1992 412 31.62 0.34 1.10 0.18 0.78 0.95 1.05

1993 374 31.58 0.38 1.08 0.23 0.72 0.98 1.03

1994 382 31.59 1.20 1.10 1.17 0.59 0.98 0.96

1995 477 31.66 0.70 1.15 0.51 0.60 0.93 0.95

1996 439 31.55 0.87 1.05 0.75 0.63 1.00 0.97

1997 373 31.47 0.42 1.03 0.25 0.69 1.05 1.00

1998 317 31.57 0.61 1.08 0.56 0.66 1.00 0.98

1999 392 31.51 0.35 1.03 0.16 0.65 1.04 1.01

2000 351 31.45 0.48 1.00 0.35 0.68 1.07 1.04

average 8938 31.58 (0.01) 0.50 (2.49) 1.09 (0.06) 0.37 (2.95) 0.68 (0.06) 0.99 (0.06) 1.01 (0.05)

Table 5.1: Summary of results for annual temporal study. The totals are given in bold and standard deviations are

given in brackets.
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tectonic regions numbered 1 to 50 (called the FE number). These are shown earthquake

locations in figure5.16. The FE coordinates used to construct figure5.16and to region-

alise the CMT data in this study were obtained from the United States Geological Survey

(ftp ghtftp.cr.usgs.gov). I then incorporated the FE data into a matlab code to analyse and

subdivide the CMT earthquake data. The FE system predates the CMT catalogue. This

means that there cannot be any spatial retrospective bias in the data selection by using

it (Kagan, 1997; Al-Kindy and Main, 2003a). Also, because the FE classification is

standardised, the results shown here can be reproduced, compared and checked against

results of other authors using the same classification. I group the data into tectonic zones

following Kagan’s grouping inKagan (1997). The four subgroups of Kagan2 (1997)

based on tectonic deformation style are as follows and are defined in accordance with

Fowler (1990) and Kearey and Vine (1996):

1. Subduction zones: These are areas of tectonic plate destruction where oceanic

lithosphere subducts under continental or oceanic lithosphere. This can generate

earthquakes up to depths of 700 km. Subduction zones are characterised by high

seismic activity, volcanic arcs and large earthquakes. In accordance with Kagan

(1997) these are FE regions 1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23,

24 and 46. Examples include Japan, the Caribbean Loop and Alaska-Aleutian Arc.

2. Collision zones: These are areas where continental crust collide. These areas are

characterised by the formation of mountain belts. In accordance with Kagan (1997)

these are FE regions 25, 26, 27, 28, 29, 30, 31, 41, 47 and 48 and include Northern

India and Western and Eastern Asia.

3. Intra-continental zones: These are areas where the lithosphere is deformed under

the influence of extensional forces and are found on continents of various settings.

In accordance with Kagan (1997) these are FE regions 34, 35, 36, 37, 38, 42, and

49. The main example is the African Rift Valley.

4. Mid-ocean ridges: There are areas in the oceans where new oceanic lithisphere

is constructed as new material rises from the mantle and the plates spread apart.

They are characterised by shallow earthquakes and add to a total length of 60,000

2Kagan has a fifth grouping of ‘others’ which do not fit into any of the four categories given here. Although

these are shown where possible, they are not used in the final spatial analysis.



CHAPTER 5. Testing criticality in global earthquake populations 138

F
igure

5.16:
W

orld
m

ap
show

ing
F

linn-E
ngdahlregionalisation

thatsubdivides
the

w
orld

into
50

regions.
E

arthquakes
w

ithin
regions

are
also

show
n.



CHAPTER 5. Testing criticality in global earthquake populations 139

km worldwide. Ridges play an important role in the dissipation of heat and are

responsible for approximately 60% of global heat loss (Sclater et al., 1996). In

accordance with Kagan (1997) these are FE regions 4, 32, 33, 40, 43, 44 and 45

that include the Mid-Atlantic and Indian Ocean ridges.

(a)(d)(b)(c)

Figure 5.17: Schematic of the four deformation styles in the crust: a) Subduction zone, b) Collision zone, c) Intra-

continental zone, d) Mid-ocean ridge.

It is important here to note from5.16that the regions are of different size and there may

therefore be a more pronounced variation in the number of earthquakes within each area

bin when compared with the yearly bins of the temporal study (figure5.3). I demonstrate

this in figure5.18. We can see from figure5.18that the variation in number of events
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Figure 5.18: Plot of number of points n for FE regions 1-50.

per region is considerable. Therefore, the effect of data numbers on thermodynamic

variables is checked in a similar way as the temporal study in figure5.15. Because

some regions contain no data or too few to calculate any of the thermodynamic variables
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Zone type Number of regions Events

Subduction 17 6047

Collision 9 617

Intra-continental 1 62

Mid-ocean ridges 5 963

Total 32 7689

Table 5.2: Number of regions analysed per deformation zone and corresponding total number of events.

accurately, I remove any regions withn < 30 to ensure stable estimates ofS andB etc.

This leaves a total of 32 out of the 50 regions for analysis and a total of 7656 earthquake

events in accordance with Al-Kindy and Main (2003). The quota for each zone style is

shown in table5.2.

5.5.2 Testing criticality

I now test criticality for the spatial ensemble as I did the temporal ensemble (5.8) by

plottingS against〈lnE〉 for the regionalised data. This is shown in figure5.19. In figure

5.19I plot data for the 32 FE regions grouped by deformation type. The figure shows

two things. Firstly, the difference between the linear and quadratic fits is more evident

than the case for the temporal data in figure5.8. This would suggest that in the spatial

sense, the data are sub-critical since they deviate from equation3.26. The curvature of

the quadratic curve is also in the right sense as predicted analytically in chapter 3 (figure

3.13). Second, it can be noted that the mid-ocean ridges (mor) are at the lower end of

the curve (lowerS) whereas the subduction zones (sub) are scattered at the higher end

of S. The significance of this curvature is addressed using Akaike Information Criterion

(AIC) (Akaike, 1978).

5.5.3 Akaike information criterion ( AIC)

Figure5.19shows both a linear and quadratic fit withR2 values of 0.93 and 0.95 respec-

tively. A better fit (smaller residual error or higherR2) for a quadratic fit model is ex-

pected as it has an extra free parameter. We are therefore required to penalise for the extra
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Figure 5.19: Entropy S against energy 〈ln E〉 for regionalised data with linear (dashed line) and quadratic (solid line)

fits (modified from Al-Kindy and Main, 2003). The different symbols correspond to 4 different deformation styles:
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free parameter in the quadratic fit in order to compare its fitness to a linear model. The

penalization is done here using Akaike’s Information Criterion (AIC) (Akaike, 1978;

Draper and Smith, 1998; Main et al., 1999). If data points can be defined by

yi = γ(xi) + εi (i = 1, 2, 3, ...n) (5.6)

whereγ is the theoretical model,ε is an error term andn is the number of points (here

n = 31), the residual sum of squaresRSS is then

RSS =
i=1∑
n

[yi − γ̂(xi)]2 (5.7)

with γ̂ the maximum likelihood model estimate and

L(y, x∗) = −n

2
ln(RSS) (5.8)

The Akaike Information Criterion is then

AIC = L(Y )− q (5.9)

whereq is the number of free parameters. The simplest model consistent with the data

has the highestAIC. I calculate this criterion on the 32 data points in figure5.19 as

shown in figure5.20. Figure5.20shows that a quadratic fit (polynomial order =2) gives

a higher value forAIC when compared to a linear fit (polynomial order =1) despite the

penalty for the additional free parameter. The difference inAIC of 3.5 between the

linear and quadratic fit is considered significant sinceAICq+1 − AICq > 1. That is,

by putting in an extra parameter,AIC decreases by 1, but the likelihood increases by

4.5, so the resultant gain of 3.5 is significant. It can be concluded from figure5.20that a

quadratic fit statistically better describes the data than a linear fit and the distribution can

be described as ’sub-critical’. This result is published in Al-Kindy and Main (2003).

5.5.4 Re-examination of Al-Kindy and Main (2003)

After the publication of Main and Al-Kindy (2003) and the submission of this thesis, it

was noted that the curvature ofS vs. 〈ln E〉 in figure5.19will be influenced by the point

corresponding to Flinn-Engdahl region 47. This is the lowest point on figure5.19 on
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Figure 5.20: Plot of Akaike information criterion (AIC) for polynomials of different powers with a quadratic distribution

(n=2) giving the best fit (from Al-Kindy and Main, 2003).

both thex andy axis. Therefore, a repetition ofS vs. 〈lnE〉 plot and theAIC analysis

is done here excluding this point to assess its influence on the final results.

First I compare the difference in the linear and polynomial (quadratic) fits to the data

with and without region 47 in figure5.21. It can be seen from the dashed lines in figure

5.21 that there is a decrease in slope of the linear fit and the curvature of the polyno-

mial fit when FE region 47 is excluded although the curvature is still in the right sense.

Therefore, the inclusion of the point has a notable influence on the curvature. To further

compare the results of the curved fit to the linear fit excluding region 47, I recalculate

theAIC as shown in figure5.22and compare it with the AIC including region 47. It

can be seen from the figure that although there was previously a significant difference

in theAIC between the linear and quadratic fits (AICq+1 − AICq ≈ 4.5), this differ-

ence becomes insignificant when region 47 is removed (AICq+1 − AICq ≈ 0.25). The

AIC results tell us that a linear relation is the simplest fit to the data when region 47 is

excluded. This means that the data is closer to being ‘critical’ with region 47 removed

similar to the temporal data (figure5.8).

In summary, it has been found after the publication of the Al-Kindy and Main (2003) that

FE region 47 will influence the curvature of theS vs. 〈ln E〉 plot for regional data. The

inclusion of this point suggests sub-criticality whereas its exclusion suggests criticality

following the criterion of chapter 3. The curvature is also in the right sense. However,
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this finding does not change the conclusion that the data analysed are more predictable in

space than they are in time given the differences between different deformation zones as

verified in section5.5.7below. In other words, we are more certain of the differences in

space over a given time than we are of changes in time over a given space. All subsequent

analyses in this chapter will exclude region 47 leaving a total of 7656 events over 31

regions. It can also be noted from figure5.23 below that region 47 does not contain

sufficient data to produce a reliable energy-probability plot.

5.5.5 Scaling exponents B, b1 and b2

It was shown in the temporal study that the scaling exponentsB, b1 and b2 did vary

somewhat annually as was summarised in table5.1. Here I carry out the same analysis on

the regional data to see if the change in scaling exponents is also present in the spatially

divided data. First I calculate the values ofB for all regions. This is shown in figure

5.23. I also calculateb2 for all regions as shown in figure5.24. Note that although I

have included all 50 regions here, only regions with more that 40 recorded events are

now used3 in the final analysis. The values ofb1 are also calculated from the mean

moment magnitude data for every region. A summary of the variation of the scaling

exponents with region is shown in figure5.25. It is clearly seen from figure5.25 that

there is a far better correlation between the scaling exponents with each other for the

spatial case when compared to the temporal case (figure5.13). This supports the claim

that regional variations are more amplified than temporal ones. The deformation

style will therefore have an influence on the general seismicity statistics.

Following from this, I now re-examine the question whether there is a more pronounced

dependence of the thermodynamic variables on the scaling exponents in figure5.26.

The figure shows a good negative correlation between〈ln E〉, 〈E〉 andS and all three

scaling exponents despite the different ways in which they are calculated. This suggests

that these scaling exponents may be used as a measure of self-organisation since they

are negatively correlated withS. This is particularly true forb1 as was found for the

temporal ensemble. This transpires that the higher the scaling exponent, the more the

organisation (lower entropy). Also, the scaling exponents can be an indicator of what

3Kagan (1997) in his regional study uses regions with as few as 6 events.
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Figure 5.23: Plot of log[p(E)] against log E for FE regions 1-50 with corresponding values of B.
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Figure 5.24: Plot of m against log(rank) for FE regions 1-50 with corresponding values of b2.
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Figure 5.25: Plot of variation of scaling exponents B, b1 and b2 with FE region. The B value is rescaled for comparison

with b1 and b2.

the expectation of the radiated energy is for a given region; the higher the exponents, the

lower the mean energy as seen in figure5.26. This is in agreement with Godano and

Pingue (2000) who find a negative correlation between the maximum moment release

and the scaling exponentB. The results here are also in agreement with models of

seismicity (e.g. Olami et al., 1992; Main et al. 2000).

5.5.6 Data check

As I have demonstrated in figure5.18, the number of events in each region varies con-

siderably. A check is therefore performed to see if any of the variables measured are

dependent onn as shown in figure5.27. The figure shows that there is no obvious cor-

relation between the parameters measured although the scatter decreases slightly with

increasingn. Again, this justifies comparing data of different regions despite the dif-

ference in event numbers. This is done keeping in mind the exclusion of regions with

n < 40 that could give scattered results.
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Figure 5.26: Plot of scaling exponents B, b1 and b2 against thermodynamic variables 〈ln E〉, 〈E〉 and S.
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5.5.7 Spatial study results

The results of the spatial study are summarised in table5.3. It can be seen that there is a

notable difference between the results of the subduction zones and the mid-ocean ridges.

For example, all scaling exponents are higher for mid-ocean ridges (B = 0.94, b1 =

1.24, b2 = 1.27) relative to the subduction zones (B = 0.67, b1 = 0.95, b2 = 0.96).

Kagan (1997) finds a similar result withB = 0.92 for mid-ocean ridges andB = 0.63

for subduction zones. Here, I confirm the result for a further two scaling exponents,b1

andb2. Kagan also bases his results on the cumulative frequency of events whereas I

show results for incremental probability distributions. Variations of scaling exponents

can be attributed to several factors including an increase in tectonic plate velocity (Cao

and Gao, 2002) rheology (Lyakhovsky et al., 2001; Amitrano, 2003) and temperature

(Wiens and Gilbert, 1996) both in space and time.

I also find that the entropy for the mid-ocean ridges is lower (S = 0.88) than for the

subduction zones (S = 1.11). Although this entropy is measured on the ‘dynamic’

energy release, the result can be compared with that of Nicholson et al. (2000) who also

find a lower ‘spatial’ entropy for mid-ocean ridges when compared to subduction zones.

However, they do find that intra-continental zones have the highest spatial entropy. As I

only have one zone representing intra-continental regions (FE=37), it is not possible to

fully compare my results with theirs. Nonetheless, the results here, and those found by

Kagan (1997) and Nicholson et al. (2000) all indicate a higher level of organisation in

mid-ocean ridges relative to subduction zones. The results here for the collision zones

are somewhat mixed as they are scattered between the two extremities of energy and

entropy.

To confirm that the regional variations are real, I now conduct a check by randomising

the data to see if the variations observed still remain. I do this by shuffling all magni-

tude data then repeating the analysis as I did above. I repeat this randomisation 20 times

calculating the thermodynamic values for every region/zone. I then compare the mean

of the randomised runs with the original un-shuffled results. These are shown in table

5.4. We can see from table5.4that the variations in mean values between different zones

become less evident in the randomised data when compared to the ‘real’ data. For exam-
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FE n 〈ln E〉 〈E〉 × 1015 S B b1 b2

Subduction zones

1 340 31.71 0.69 1.16 0.63 0.91 0.96

5 249 31.82 1.06 1.22 0.54 0.85 0.83

6 200 31.67 0.44 1.13 0.66 0.93 0.98

7 83 31.58 0.18 1.09 0.68 0.98 1.02

12 927 31.44 0.42 1.01 0.75 1.08 1.06

13 367 31.38 0.26 0.93 0.81 1.13 1.16

14 595 31.83 0.47 1.23 0.64 0.85 0.95

15 579 31.69 0.39 1.18 0.69 0.91 0.98

16 318 31.71 0.29 1.18 0.76 0.90 1.03

18 232 31.72 0.46 1.16 0.68 0.90 0.96

19 606 31.66 0.91 1.14 0.62 0.93 0.94

20 107 31.59 0.20 1.04 0.64 0.97 1.02

21 121 31.70 0.45 1.13 0.64 0.91 0.96

22 395 31.73 0.53 1.17 0.68 0.90 0.94

23 422 31.53 0.43 1.04 0.64 1.02 1.05

24 423 31.62 1.01 1.12 0.63 0.96 0.96

46 83 31.44 0.15 0.94 0.75 1.08 1.13

average 6047 31.64 (0.13) 0.49 (0.28) 1.11 (0.09) 0.67 (0.06) 0.95 (0.08) 0.96 (0.08)

collision zones

25 53 31.79 0.27 1.19 0.61 0.86 0.93

26 62 31.90 0.36 1.19 0.52 0.85 0.95

27 52 31.44 0.10 0.96 0.81 1.08 1.30

29 107 31.80 0.38 1.20 0.57 0.86 0.90

30 108 31.73 0.50 1.17 0.51 0.90 0.83

31 52 31.37 0.17 0.93 0.70 1.15 1.05

41 57 32.09 0.73 1.33 0.45 0.74 0.73

47 31 31.09 0.12 0.59 0.70 1.46 1.26

48 93 31.69 0.35 1.13 0.66 0.94 0.94

average 584 31.73 (0.23) 0.39 (0.20) 1.14 (0.13) 0.60 (0.16) 0.92 (0.13) 0.95 (0.17)

intra-continental

37 62 31.62 0.23 1.08 0.61 1.00 0.98

mid-ocean ridges

32 287 31.32 0.12 0.88 0.81 1.18 1.22

33 251 31.45 0.37 1.01 0.66 1.09 1.15

40 41 31.07 0.07 0.79 0.89 1.55 1.22

43 276 31.22 0.07 0.81 1.15 1.28 1.54

45 108 31.41 0.96 0.92 1.17 1.12 1.21

average 963 31.29 (0.16) 0.32 (0.38) 0.88 (0.09) 0.94 (0.22) 1.24 (0.19) 1.27 (0.15)

Table 5.3: Summary of results for spatial study. The standard deviations are given in brackets and the total numbers

of events per region are given in bold. Region 47 given in italics is not included in the calculation of the averages and

n.
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real subduction zones collision zones mid-ocean ridges

〈ln E〉 31.64 (0.13) 31.73 (0.23) 31.29 (0.16)

S 1.11 (0.09) 1.14 (0.13) 0.88 (0.09)

B 0.67 (0.06) 0.60 (0.16) 0.94 (0.22)

b1 0.95 (0.08) 0.92 (0.13) 1.24 (0.19)

b2 0.99 (0.08) 0.95 (0.17) 1.27 (0.15)

randomised subduction zones collision zones mid-ocean ridges

〈ln E〉 31.60 (0.10) 31.59 (0.17) 31.59 (0.09)

S 1.09 (0.07) 1.06 (0.04) 1.08 (0.04)

B 0.67 (0.09) 0.60 (0.13) 0.64 (0.08)

b1 0.98 (0.01) 1.00 (0.04) 0.99 (0.04)

b2 0.97 (0.02) 0.97 (0.05) 0.98 (0.04)

Table 5.4: Summary of mean results for real and randomised data sets. The standard deviations are given in brackets.

ple, note how all the scaling exponents for the randomised data become similar between

zones. What is more interesting is that the results are closest to what is calculated for

‘real’ un-randomised subduction zones. Why is this happening? We can see from tables

5.2 and5.3 that the largest number of data points are for subduction zones (∼ 79% of

analysed data) compared to say mid-ocean ridges (13% of data). These therefore will

overprint and smooth out the variations in the temporal data as well as the randomised

data. In summary, the regional study shows systematic variations between deformation

zones that are real. These are evident in the higher organisation (larger scaling expo-

nents and lowerS) and lower energy release for mid-ocean ridges when compared to

subduction zones.

5.6 Comparison of results with theoretical phase dia-

grams

In chapter 3, I used analytical thermodynamic results to construct energy entropy phase

diagrams that show how entropy varies with scaling exponentB, 〈lnE〉 and〈E〉 in the

sub-critical, critical and super-critical regimes. I now make a direct comparison of both

temporal and regional data with the theoretical curves to establish their state of criticality.

The phase diagrams are shown in figures5.28and5.30with zooms respectively in
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Figure 5.28: B vs 〈E〉 phase diagram with super-imposed results of temporal (circles) and spatial (dots) studies. Note

the proximity of the data to the ‘critical’ solid curve.
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Figure 5.29: Close up B vs 〈E〉 phase diagram with super-imposed results of temporal (circles) and spatial (dots)

studies.
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Figure 5.30: B vs 〈ln E〉 phase diagram with super-imposed results of temporal (circles) and spatial (dots) studies.

Note the proximity of the data to the ‘critical’ solid curve.
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figures5.29and5.31. It can be seen from the four figures that the temporal data (circles)

are clustered very close to the ‘critical’ line with the data mostly in the sub-critical regime

for 〈E〉 (figure 5.29) and in the super-critical regime for the〈lnE〉 (figure 5.31). The

spatial data (circles) are more scattered compared to the temporal data for both cases and

lie in both the sub-critical and super-critical regimes. It is unclear to me why the〈ln E〉
data predominantly plot in the super-critical regime. However, they are with one standard

deviation of the ‘critical’ line as shown by the error bars in figure5.31. We know from the

energy density distributions and the〈ln E〉 vsS plots (figures5.8and5.19) that the data

are critical to sub-critical. Nonetheless, it is reassuring that the data follow the trend of

the critical line and are almost parallel to it for both〈E〉 vsS and〈ln E〉 vsS plots. This

further confirms that data (in theory) can maintain a criticality state (be it critical, sub-

critical or super-critical) by varying the scaling exponentand mean energy. Therefore,

universality can be violated without criticality necessarily being affected according to

the thermodynamic definition outlined in this thesis.

5.7 Self-organised criticality?

In this brief second part, I look at the earthquake data in light of the results from the

numerical model of chapter 4. Based on the results presented in this chapter, and the

results deduced from the study of the numerical Bak et al. (1987) BTW model of self-

organised criticality (SOC) (section4.9), I now try establish if the Earth is indeed in

a strict state of SOC. I have shown in the previous chapter that the conservative BTW

model does show regional variations in the level of ‘seismic’ activity with it being most

active away from the boundaries. Looking at figure5.4, we see that the Earth too is more

seismically active in some areas than others. Also demonstrated in the regional study of

the BTW model was that we can get two different types of distributions, one of which

was a power-law and the other a gamma distribution (figure4.26), so any variations in

distributions observed in figures5.11and5.23need not contradict SOC. However, there

are two crucial contradictory factors:

1. The breakdown of universality: this was not seen in the BTW model but seen here

for all three scaling exponents as summarised in tables5.1and5.3. A regional vari-
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property SOC data

spatial variability yes yes

conservative yes no

power-law and gamma yes yes

universality yes no

SOC yes no

Table 5.5: Comparison of model of SOC and results of earthquake data analysis.

ation in scaling suggests a form of correlation length and a variation in the system

dynamics with space on a fundamental level (e.g. ocean-ridges vs. subduction-

zones).This vital difference suggests that the Earth cannot be best described

by a pure state of self-organised criticality.

2. The BTW model is internally conservative which allows for avalanche events to

cascade to length-scales approaching the system size. We know however from the

laws of thermodynamics and general observation that the Earth’s lithosphere must

be dissipative. Also, earthquake ruptures spanning the size of the entire crust have

not been observed.

I summarise my findings in table5.5. I hope this very briefly and hopefully conclu-

sively ends the ongoing debate on whether Earth seismicity is a SOC process; it is not.

The Earth’s seismicity may be described as a process undergoing self-organised sub-

criticality or (SOSC) as proposed by Al-Kindy and Main (2003a). This is simply a

dissipative SOC model in accordance with the NBTW model -or similar models- shown

in chapter 4. An SOSC model can accommodate for all the aspects outlined in table5.5

and because it is dissipative, it is more in tune with natural systems.

5.8 Entropy production and heat flow

There are two thermodynamic assumptions or predictions that can be made about driven

dissipative structures. These, in accordance with Kondepudi and Prigogine (1998) (see

chapter 2), are as follows:
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1. Keeping everything constant, an increase in entropy will be accompanied by a de-

crease in entropy production.

2. Entropy production is related to heat flow

Based on this, I attempted to conduct a simplified study to see if areas of higher (lower)

entropy will show lower (higher) heat flow. Following my viva examination, this study

was subsequently removed from the main body of this thesis since it proved inconclusive

and was not rigorous enough. However, to my best of knowledge, no such attempt at

relating entropy as derived from seismic energy release (or self-organisation) to heat

flow has ever been made. I have therefore included this study in the appendix of this

thesis for the curious reader. On an encouraging note, it should be mentioned here that

based on available evidence, mid-ocean ridges have a higher heat flow and, as shown in

this chapter, lower entropy when compared to subduction zones and vice-versa.

5.9 Chapter summary

This chapter examined criticality and self-organised criticality in the crust through tem-

poral and spatial analysis of data from the Harvard Centroid Moment Tensor catalogue.

The regional study was also extended to The Global Heat Flow Database. The following

results were found:

1. The gamma entropy equation derived in chapter 3 is found to be applicable and in

agreement with real earthquake populations. The temporal study suggests that in a

thermodynamic sense the Earth is critical or very close to critical. The spatial study

on the other hand shows that the Earth is best described as a sub-critical system.

This quantitatively shows that earthquakes are more predictable in space then they

are in time. However, if we are to exclude FE region 47, the spatial data are then

also best described as ’critical’. Overall however, the data show more variation

spatially than temporally.

2. A study of three different scaling exponentsB, b1 andb2 shows that scaling vari-

ability exists for a spatial ensemble of earthquake data. This contradicts the premise

of universality for earthquake populations.
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3. The weak to strong negative correlation between the scaling exponents and the

thermodynamic variables suggests that scaling exponents can be used as a proxy

for variables such as the entropyS and the mean energies〈E〉 and〈ln E〉. This

is in agreement with Godano and Pingue (2000) who find a negative correlation

between the maximum cut-off seismic moment and the scaling exponentB.

4. The spatial study shows that mid-ocean ridges are more organised (lower entropy)

than the continental subduction (and collision) zones. In accordance with the back-

ground presented in chapter 2 and the prediction of chapter 3, this might suggest

that mid-ocean ridges should be of higher entropy production and therefore higher

heat flow. This qualitative inference is found to be in agreement with studies of heat

flow data (e.g. Pollack et al., 1993) that show higher heat flow for oceanic regions

compared to continents. This study however proved inconclusive and is included

in the appendix of this thesis.

5. In relation to SOC and point 2 above, the violation of universality as shown by the

variations in regional measurements of three scaling exponentsB, b1 andb2 con-

tradicts self-organised criticality. This gives impetus to describe Earth seismicity

using self-organised sub-criticality in accordance with the NBTW model described

in chapter 4.
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Chapter 6

Discussions and prospects

“The laws of thermodynamics have a different feel from most of the other laws

of physics. There is something more palpably verbal about them - they smell

of their human origin”-Percy W. Bridgman1

6.1 Introduction

In this thesis, it has been shown that the tools of equilibrium thermodynamics/statistical

mechanics can be used to better understand self-organisation in dissipative out-of-equilibrium

power-law systems. The systems I examined in this thesis were the conservative and

non-conservative BTW numerical models and seismicity of real earthquake populations.

I ended the previous main chapters with a discussion/summary of the their respective

results. In this chapter, I discuss some issues and questions raised by the results from the

previous chapters. I also attempt to give a ‘bigger picture’ discussion pointing out the

relevance of the work done here with thermodynamics and self-organisation in general.

I also make suggestions on directions particular areas could be built upon and further

advanced. I try where possible to discuss the issues in the order they first appear in this

thesis.

1Physics Nobel Prize winner, 1946. As quoted by Kirkaldy (1985).
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6.2 The gamma entropy equation

6.2.1 Scaling exponent B

The gamma entropy equation derived in chapter 3 for logarithmic bins is given here once

more for reference:

S ∼ B〈ln E〉 (6.1)

The equation was successfully applied to both numerical model data in chapter 4 and

temporal and spatial earthquake data in chapter 5. However, there are some questions

that can be raised here. For example, why isS proportional toB? I have shown that the

entropy is inversely proportional toB in the phase diagrams in chapter 3 (figure3.11)

and results of chapter 5 (figure5.26). However, as it can be seen from figure5.26, B is

also inversely proportional to〈lnE〉 so if we take the extreme case ofB → 0, 〈lnE〉 →
large compensating for the reduction ofB. The gamma entropy forB = 0 reduces

to a pure Boltzmann exponential. It is also stressed that the derivation of the gamma

entropy equation was done integrating with respect to energy and notB. Nonetheless, it

is interesting to have an equation that combines energy, entropy and a power-law scaling

exponent all in one expression. What would be interesting if possible is to derive an

expression with respect toB assuming a fixed energy.

6.2.2 Applicability

There has been debate in the literature on whether equilibrium statistical mechanics and

thermodynamics can be applied to far-from-equilibrium systems (Bridgman, 1950, Sor-

nette, 2000). A clear result from this thesis is that they are indeed applicable to a dynamic

ensemble of synthetic and real earthquake data. The application of equilibrium thermo-

dynamics and statistical mechanics to non-equilibrium systems is currently of great inter-

est to many branches of physical and biological science. In relation to seismicity models,

Rundle et al. (1995) suggest for a numerical model that‘Boltzmann fluctuations will be

important in these systems, and that these may be the origin of extended spatial cor-

relation observed in real earthquake fault systems’conjuring that standard techniques

of equilibrium statistics may be used in the interpretation of at least some far-from-
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equilibrium dynamic systems. In addition, Rundle (1993) uses a statistical-mechanics

approach to explain deviations from the Gutenberg-Richter law at lower magnitudes.

This is done using a similar approach to Main and Burton (1984) as outlined in chapter

3.

Looking at a chaotic model, Egolf (2000) states that‘some far-from-equilibrium systems

might be understood in terms of equilibrium statistical mechanics’. Egolf continues to

prove this statement for a far-from-equilibrium chaotic model. Similarly, Klimontovich

(1999) shows theoretically the applicability of statistical mechanics and Shannon infor-

mation theory to open biological and quantum systems. The applications of equilibrium

thermodynamics and information theory have even been applied to power-law numeric

‘sequences’ that have been contaminated by noise (Freund et al., 1996). The use of

equilibrium thermodynamics has also been applied to better understand self-organisation

away from equilibrium in the laboratory. For example, statistical entropy has been suc-

cessfully measured to quantify the level of chaos in a Bénard cell type experiment (Ca-

puto and Atten, 1987), in quantifying transient spatial distribution of fractures in a rock

physics experiment (Nanjo et al., 2000) and very recently to vibration-fluidised granular

matter (D’Anna et al., 2003). Studies extending to dissipative climate models include

Lorenz et al. (2001) and Ozawa et al. (2001).

Applications in the field include spatial entropy (configurational entropy) such as to dis-

tributions of earthquakes locations (Nicholson et al., 2000; Goltz and Böse, 2002). Al-

though the application of entropy (information and statistical mechanical) to quantifying

spatial distribution is common practice (e.g. Goltz, 1997), the application to open driven

systems remains somewhat controversial since‘they appear to have little in common with

equilibrium systems’(Egolf, 2000). It is emphasised that in the majority of the examples

outlined, a stationary steady-state is normally the underlying assumption to the applica-

tion of equilibrium thermodynamics and statistical mechanics to these problems. In sum-

mary, although the application of equilibrium thermodynamics and statistical physics to

far-from equilibrium is emerging in the literature (as outlined in the references above),

this area of physics/thermodynamics is in its infancy leaving a lot of scope for further re-

search. This thesis, to my best of knowledge, is a first formal attempt at applying such an

approach to understand self-organisation in energy released from the Earth’s crust in the
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form of earthquakes. This is encouraging for further application to other natural systems

(biology, ecology, hydrology etc.).

6.3 Lessons from SOC and numerical modelling

6.3.1 Dissipation

Regarding SOC, the reoccurring theme seems to be‘It is still fair to say that the appear-

ance of large scale power-law scaling ranges in the dynamics of these [SOC] systems

remains an important unexplained effect’(Cross and Hohenberg, 1993). But, what can

we learn from SOC based on the results presented in this thesis? I have shown through

analysis of the conservative BTW numerical model that there is heterogeneity in the

spatial occurrence of site failures with distance from the edges (figure4.19). This is be-

cause dissipation is only allowed to occur at the edges in the BTW model. Once internal

dissipation is introduced, the spatial heterogeneity disappears (figure4.23). However,

once internal dissipation is present, the pure power-law in the energy probability distri-

bution also disappears and we are left with gamma type distributions (figure4.7). So,

dissipation at the edges in the BTW model is essential to achieve SOC whereby inter-

nal dissipation destroys pure SOC. This destruction of pure SOC is very sensitive to

dissipation as exhibited by equation4.26.

What can this tell us about real systems? Nicolis and Prigogine (1977) suggest dis-

sipation is a primary cause behind symmetry breaking (defined in chapter 2) and the

occurrence of spatial patterns:‘a symmetry-breaking instability induced by diffusion im-

plies that that the primary pattern is necessarily a spatial dissipative structure’(Nicolis

and Prigogine, 1977, p.g 416). In that particular example, the process of dissipation was

diffusion as opposed to say convection as in the Bénard cell experiment. It is therefore

not only important how much a driven system is dissipative to self-organise,whereand

how it dissipates energy is also important. Therefore, dissipation may have a quanti-

tative element (the percentage of energy lost say) as well as a qualitative one (where

from the system it occurs say) which must be taken in to account.This may be an

underlying factor as to why different driven systems show different forms of organ-
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isation such as B́enard cells (Cakmur et al., 1997) power-laws (Bak et al., 1987) and

periodic chemical reactions (Cross and Hohenberg2, 1993; Kondepudi and Prigogine,

1998), biomolecular processes (Cavanagh and Akke, 2000) and ecological interaction

(Visscher, 2003).

Qualitative dissipation could be an interesting and general area of further study that is

beyond the scope of this thesis. For example, shallow earthquakes are closer to a dissi-

pative boundary (the surface) than deeper ones. Following from the results of the BTW

model, should one predict a difference in the statistical properties of deeper earthquakes

compared to shallower ones? This is found to be the case (e.g. Ogata et al., 1991; Wiens

and Gilbert, 1996) although many other factors must be taking into account such as tem-

perature, pressure and chemical processes that vary with depth. Also for scope of further

study, numerical models could be created with different modes of dissipation. These

models could be set up with say a fixed level of dissipation but changing the mode of

dissipation between different runs (changing geometry etc.). One may then establish the

controlling factors on the level of self-organisation.

Generally speaking, I cannot think of any driven systems showing patterns that arenot

dissipative. The BTW model for example would produce an unobservable ‘infinite’

avalanche if no dissipation were present at the boundaries. In the Earth’s lithosphere,

there are several candidates for dissipation that are quantitatively and qualitatively dif-

ferent, both internally and external. These include seismic efficiency, heat flow, fluid

convection, radioactivity and so on although the most significant of these are seismicity

and heat flow (Keary and Vine, 1996; Scholz, 2000). Indeed, Kirkaldy (1985) simply

looks at the issue of self-organisation as‘...a tendency for dissipative systems subject to

strong driving forces to simultaneously seek saturation of the available energy source

and an equilibrium with the heat sink’. It is this path to equilibrium and hence the

minimisation of free energy through dissipation that therefore probably distinguishes

between the types of self-organisation in driven systems, power-law or otherwise as de-

picted in figure6.1. Being able to predict the patterns a system would evolve to have

by somehow solving for its level or mode of dissipation is a great challenge that even

2Cross and Hohenberg (1993) give a very extensive review of pattern formation away from equilibrium. How-

ever, only a scintilla of their review touches on power-law statistics.
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Prigogine and colleagues had failed to achieve (Ball, 1999). This renders the issue of

dissipation modean interesting area for further study (see below).

6.3.2 Attractors

The main property that distinguishes SOC systems from critical point (CP) equilibrium

systems as outlined in chapter 2 (section2.7.2) is that power-law statistics only appear at

the critical point in CP systems whereby they are an attractor state in SOC systems. What

this means is that although CP system statistics are very susceptible to perturbations,

SOC systems are not3. Sethna et al. (2001) study the ‘crackling noise’4 from various

systems such as earthquakes, sand piles, magnets and paper crumbling and show that

they all belong to auniversality classof power-law systems regardless of the different

microscopic properties governing them. There appears to be an underlying attractor

state to all these systems. Sethna et al. (2001) also distinguish between criticality in

self-organised critical systems and CP systems in the sense that the critical points in CP

systems are normally phase-transitions whereby for SOC systems they are simply phases

out of a possibility of many in a phase space. The noise element in a dynamic power-

law systems allows it to‘meander through and explore the phase space of its variables’

(Ball, 1999).

From the results outlined in chapter 5, Earth seismicity as we see it ‘meanders’ the vari-

ous functions, scaling exponents and energy states to an attractor state that is defined by

a gamma type distribution as depicted in figure6.2. Figure6.2 is a simplification of the

S vs 〈ln E〉 phase diagrams shown in chapters 3 and 5. We can see in figure6.2that out

of the myriad of possibilities, the data are circumambient about a relatively specific area

alongside the ‘critical’ line. The mechanisms behind why and how earthquakes globally

should all be attracted to thisphasemust be universal. The results outlined in chapter 5

show that subduction and ocean-ridges zones have different energy probability scaling

exponents withB = 0.67 (subduction) andB = 0.94 (ridges) so strict universality is

violated. However, both systems belong to the same genericuniversality classof power-

3Note that susceptibility here refers to the deviation from a state (such as a power-law) rather that the ‘sensitivity’

in SOC systems that refers to the possibility for a small fluctuation cascading in to a very large one.
4Sethna et al. (2001) use the term ‘crackling noise’ as a general term for power-law noise.
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Figure 6.1: Schematic diagram of possible phase path ways systems can acquire to dissipate energy.
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Figure 6.2: Schematic diagram illustrating possible phase evolution paths (dashed line) for subduction and ocean-

ridge earthquake populations.
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Figure 6.3: Internal and external observation of energy distributions.

law gamma type systems. That is, the data are all attracted to the upper end of the critical

line in theB vs 〈ln E〉 phase diagram.

6.3.3 Observer dependent criticality

One of the most interesting things learned from the modelling in chapter 4 is the differ-

ence between the external and internal energy probability distributionsp(Ee) andp(Ei).

While p(Ee) was a power-law/gamma as observed for earthquakes,p(Ei) was closer to

an equilibrium normal or Gaussian distribution (figure4.12) similar to what is seen for

say a gas (Mandl, 1988). This occurs over all dissipation levels and despite there being a

positive correlation between the internal and external energies measured. It may be diffi-

cult to test this for real systems such as the Earth’s crust since measuring internal energy

is not an easy or realistic task (Vitti et al., 2001). The results non-the-less are reminiscent

of some recent laboratory experiments on granular media (D’Anna et al., 2003) showing

both Guassian statistics and a Brownian noise signature (figure4.11) in internal energy

fluctuations away from equilibrium. Similar ‘Boltzmann’ fluctuations were also found in

a simple slider-block model (Rundle et al., 1995). It would be interesting non-the-less to

investigate other systems that may show bi-modal statistics in their internal and external

energy probability distributions sincetheir criticality will depend on if the observer is

‘inside’ or ‘outside’ the systemas depicted in figure6.3.
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6.3.4 Defining SOC?

My examination of SOC through models and an extensive review of literature draws me

to the belief that SOC is still not well defined. Perhaps the reason this is the case is

because‘SOC is a phenomenological definition rather than a constructive one’(Jensen,

1998). The definitions will therefore stem from observation rather than some underlying

theory or formulism. Thus, for now, the very general definition of ‘a slowly driven

system-away-from equilibrium showing power-laws with no tuning from the outside’ is

the one likely to remain. To extend this definition to similar systems that show gamma

type statistics and variations in the scaling exponent, I have proposed the term ‘self-

organised sub-critical’ in chapter 4 (as in Al-Kindy and Main, 2003).

6.4 Summary

General:

– In this brief chapter, I first discussed the gamma entropy equation and some of the

questions it raised. I also state how it adds to the newly emerging field of apply-

ing statistical mechanics and thermodynamics traditionally applied to equilibriums

systems to far-from equilibrium systems.

– Several lessons have been learned from SOC and numerical modelling. First that

not only is dissipation important in the level of self-organisation in a system, the

method orquality in which this dissipation occurs is also important. This could be

one explanation to why dissipative systems can show different patterns (power-law,

sinusoidal, etc.). The modelling has also shown that the statistics of systems can be

bi-modal. That is, have one energy probability distribution internally and another

one as observed externally. This observer dependency may have implications on

our assessment of the criticality of systems in nature

Prospects

– Testing the application of the gamma entropy equation to other power-law gamma

type systems.
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– A formal study of dissipation specifically. This can be done both on the quantitative

and qualitative aspects on real and numerical systems. Cellular automata models

similar to those outlined and used in chapter 4 can be used to investigate thedis-

sipation mode. For example, how does allowing dissipation at only one edge, two

edges etc affect the energy probability distributions and level of organisation. Ex-

perimentation with different geometrical dissipation sinks within the models could

be tested such as braded, periodic and random modes of dissipation and the influ-

ences they might have.

On a biological level, what modes of dissipation give rise to what patterns observed

such as 3, and 5 and 6 fold symmetries observed in some micro-organisms and

flora and spiral and sinusoidal geometries found in DNA and cells (see examples in

Nicolis and Prigogine, 1977 and Ball, 1999). That is, what is the energy exchange

mechanisms between theinside and outsideof these systems and are there any

systematic dependencies between these mechanisms and the resulting patterns?



Chapter 7

Conclusions

‘Begin at the beginning’ the King said, very gravely, ‘and go on till you come

to the end: then stop.’- From Lewis Carroll’sAlice’s Adventures in Wonder-

land.

The primary aim of this thesis was to study the Earth’s crust as a self-organising dis-

sipative structure. This was done to examine its level of self-organisation, proximity

to criticality and to test Prigogine and colleague’s prediction on self-organisation and

entropy production. The investigations were carried out with reference to analytical sta-

tistical mechanics and thermodynamics, numerical models and earthquake data from the

Harvard Centroid Moment Tensor Catalogue. The secondary aim was to further probe

the concept of Self-Organised Criticality and its applicability to Earth seismicity.

The following main conclusions were drawn from my investigations:

Although equilibrium systems at the critical point and non-equilibrium self-organised

critical systems share a power-law, they are different. For equilibriums systems, the

critical point is fixed whereby for driven self-organising systems, it is an attractor state.

The gamma entropy equation for the gamma distribution is derived in the formS ∼
B〈lnE〉. This equation is indicative of a system very near to or at a critical state. The

equation was found to be in general agreement with numerical as well as temporal and

spatial earthquake data. This successful application of concepts developed from equi-

librium statistical mechanics to a non-equilibrium steady-state system shows parallels
171
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with recent studies of other physical systems (e.g. fluidised granular media). Criticality

phase diagrams are also found to agree with the regional and temporal earthquake data

in general. The phase diagrams suggest that criticality can be maintained if there is a

change in the scaling exponentB provided there is also a corresponding change in the

mean energy release.

It is known that the critical point is at the state of global maximum entropy for equilib-

rium systems (B = 0), this is not the case for power-law gamma systems. This is because

the critical point for gamma systems occurs below the state of maximum entropy for a

sub-critical system and beyond the maximum entropy point for a super-critical system.

This distinction should also be taken in to account when comparing equilibrium and

non-equilibrium systems.

For the locally driven, dissipative BTW numerical model, the internal properties show

two characteristics that are indicative of an equilibrium system: Gaussian type statistics

in its internal energy distribution, and Brownian noise in its internal energy fluctuation

signature. In contrast, the radiated energy follows power-law gamma type statistics.

Although simple, the questions these results raise are important because they suggest that

our definition of ‘criticality’ may be observer dependant. If the observer -or observation

tool- is in the system orout of it will vary our assessment of criticality. The model

also shows that the organisation occurs at the expense of increasing entropy production

(dissipation) globally. The model is more organised externally (low entropy) and more

disorganised internally (high entropy) with increasing dissipation. Also, a locally driven

NBTW model shows the relation between mean radiated energy〈E〉 and dissipation to

be〈E〉 ∼ (1 − α)−0.975 whereα is the conservation factor. This relation demonstrates

the non-linear sensitivity of a self-organising system to the level of dissipation.

The BTW model does show spatial heterogeneity in contrast to the original notion of

SOC. In the regional study, a gamma distribution does not contradict the BTW model and

therefore is included within the framework of SOC. Also, the model shows universality (a

global constant scaling exponent) despite the edge effect of dissipation at the boundaries.

This final finding contradicts what was found for real earthquake populations that showed

regional variations in the scaling exponentB. This is the main factor in concluding

that earthquake seismicity is not SOC but what I describe as self-organised sub-critical



CHAPTER 7. Conclusions 173

(SOSC). SOSC is a looser form of SOC that allows for variations in the scaling exponent

and internal dissipation, more in tune with natural systems. The BTW model also shows

no spatial correlation between the point of origin of an avalanche and its relative size.

Earthquake populations are more predictable spatially than they are temporally. The

spatial variations are mainly evident in the differences between ocean-ridges and sub-

duction zones. The lower entropy of the mid-ocean ridges when compared to subduction

zones is in agreement with the studies of earthquake spatial organisation (configurational

entropy). The scaling exponents vary systematically in space with ocean-ridges having

relatively higher exponents. The variations were confirmed for three different scaling

exponents using a least-squares fit (B), Aki’s maximum likelihood method (b1) and us-

ing rank-order statistics (b2). This variation in scaling strongly question ‘universality’ in

earthquake seismicity.

The scaling exponentB, b1 and b2 are negatively correlated with entropy and hence

the level of self-organisation of power-law gamma type systems. This is highlighted in

the constructed phase-diagrams and in the analysis of real earthquake populations. This

suggests that scaling exponents could be used as a proxy for the level of self-organisation

in power-law gamma type systems.

To conclude, the results of this thesis are hopefully a step forward in our quest to un-

derstand self-organisation in dissipative structures. However, many questions remain.

For example, is heat flow in the crust the best proxy for entropy production? What are

the underlying dissipation mechanisms driving the Earth or other similar systems to a

power-law gamma type attractor state as opposed to any other? What other examples in

nature are there of observer dependent criticality? Is there a related underlying cause for

B varying globally? There is therefore a plethora of scope for further investigation into

this emerging and fascinating field of physics. This chapter may be the end of this thesis,

but it is refreshingly by no means “the end”.

Fahad Al-Kindy,

University of Edinburgh,

September 2003.
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Derivation of Shannon entropy

H

The following derivation of Shannon entropyH is given by inference to the appendices

of Shannon (1948) and Jaynes (1957) :

Derivation ofH = −∑
pi log pi:

H is a continuous function of probabilitypi. For equal probabilitiespi,

H(
1
n

,
1
n

, ...,
1
n

) = A(n) (1)

and is a monotonically increasing function ofn. A choice ofsm equally likely possibil-

ities can be decomposed into a series ofm choices froms equally likely possibilities to

give

Asm = mAs (2)

and similarly for another choice

Atn = nAt (3)

n is made large andm is chosen to satisfy:

sm ≤ tn < sm+1 (4)

Taking logarithms and dividing byn log s:

m

n
≤ log t

log s
<

m + 1
n

(5)

or ∣∣∣∣
log t

log s
− m

n

∣∣∣∣ <
1
n

(6)
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Now givensm = mA(s), A(tn) = nA(t) andA(sm+1) = (m + 1)A(s) we can write4

as:

mA(s) ≤ nA(t) < (m + 1)A(s) (7)

Dividing by nA(s) we have:

m

n
≤ A(t)

A(s)
<

m + 1
n

(8)

or ∣∣∣∣
A(t)
A(s)

− m

n

∣∣∣∣ <
1
n

(9)

From6 and9 we get ∣∣∣∣
log t

log s
− A(t)

A(s)

∣∣∣∣ <
2
n

(10)

For largen we have

A(S) = K log S (11)

Now, we putpi = niP
ni

. We can break this down to a choice ofm symbols subdivided

in to a choice ofn symbols. So forH = H(s1, s2, ..., sm) we have:

K log
∑

ni = H + K
∑

pi log ni (12)

hence

H = K
[∑

pi log
∑

ni −
∑

pi log ni

]
(13)

and given
∑

pi = 1

H = −K

[∑
pi log

ni∑
ni

]
(14)

giving the Shannon entropy:

−K
m∑

i=1

pi log pi (15)



Entropy and heat flow

During the course of this thesis, I attempted to investigate the relationship between heat

flow and seismicity. The rational behind this was that because entropy is related to en-

tropy production (chapter 2) and entropy production to heat flow, one would expect there

perhaps to be a correlation between the level of self-organizationS as measured from

seismicity and the corresponding heat flowQ. However it was noted that the analysis

I carried out was on the total heat rather than the heat due to seismic activity and the

results subsequently removed. Nonetheless, because the analysis uses the Flinn-Engdahl

regionalisation on global heat flow data, these results may be of some interests and are

therefore included here.

I use the Global Heat Flow Database described by Pollack et al. (1993) that contains

over 24,774 observations of heat flow worldwide. The database is provided by the In-

ternational Heat Flow Commission whose website is maintained by the University of

North Dakota (http://www.heatflow.und.edu/index2.html). In accordance with Pollack

et al. (1993), I only include data withQ ≤ 250mWm−2 since data above this value are

considered spurious. The locations of data measurements are shown in figure1. I then

use the same code I wrote to perform Flinn-Engdhal regionalisation used for earthquakes

to calculate the average heat flow〈Q〉 for each FE region. My results are summarised in

table1. I also plot the thermodynamic variables and scaling exponents calculated from

the radiated seismic energy against the heat flow dataQ in figures2 and3 respectivly

showing no correlation.
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FE no. 〈Q〉 n

subduction zones

1 74.92 60

5 100.04 157

6 76.84 121

7 68.51 151

12 57.37 37

13 84.38 48

14 84.22 48

15 60.23 40

16 81.12 55

18 65.39 126

19 85.88 572

20 74.19 255

21 77.83 47

22 61.56 45

23 66.55 114

24 77.11 287

46 118.39 267

average 77.32 (15.16) 243

collision zones

25 73.35 241

26 76.43 244

27 61.00 25

29 49.56 829

30 57.21 1523

31 87.32 740

41 73.36 654

48 56.56 259

average 66.85 (12.69) 4515

intra-continental

37 63.48 611

mid-ocean ridges

32 62.51 1755

33 62.16 507

40 87.51 222

43 80.62 128

45 74.60 8

average 73.48 (11.16) 2620

Table 1: Summary of results for regional study of the Global Heat Flow Database. The standard deviations are given

in brackets and the totals in bold.
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Figure 2: Plot of thermodynamic variables 〈ln E〉, 〈E〉 and S against heat flow Q showing no correlation.
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Figure 3: Plot of heat flow Q against scaling exponents B, b1 and b2 showing no correlation.



List of Symbols

A Cluster/fault area

b Seismic b-value (Gutenberg and Richter)

b1 Magnitude power-law scaling exponent (Aki’s method)

b2 Rank-order statistics scaling exponent

B Energy-probability power-paw scaling exponent

BS InferredB from gamma entropy equation

D Fractal dimension

E Energy

E Mean energy (model)

〈E〉 Energy expectation

〈ln E〉 Logarithmic energy expectation

Ee External energy (model)

Ei Internal energy (model)

ES Seismic energy release

f Frequency

F Free energy

g Degeneracy term

H Configurational entropy

J Joules (measure of energy)

k Bolzmann’s constant (1.38066× 10−23J/K) and thermal conductivity

K Kelvin

m Earthquake (moment) magnitude
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MO Seismic moment

MS Surface wave magnitude

Nm Newton.meter (Measure of seismic moment)

p Probability

pC Percolation threshold

P Pressure

Q Heat (flow)

QΣ Total heat

S Entropy

Se External entropy (model)

Si Internal entropy (model)

Sγ Gamma entropy (theoretical)

t Time

tC Critical time

T Temperature

TC Critical temperature

Te External temperature (model)

Ti Internal temperature (model)

TT Tectonic/effective/statistical temperature

u Slip

W Work

Wf Tectonic work

Z Partition function

α Conservation parameter (model)

αC Critical conservation parameter (model)

β Temperature parameter (thermodynamics)

η Seismic efficiency

θ Temperature parameter (gamma distribution)
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θC Critical ‘temperature’

σ Stress

σC Critical stress

ξ Correlation length
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