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ABSTRACT 

In the course of work aimed at discovering genes encoding novel sigma subunits of 
Escherichia coli RNA polymerase, two unknown open reading frames were 
identified by hybridisation of an E. coil genome library with synthetic 
oligonucleotide probes directed against the conserved subregion 2.1 of bacterial 
sigma factors. This thesis describes the mapping, sequencing, and characterisation of 
these genes. 

The open reading frame 1229 was located near 43 24kb on the physical map of the 
E.coli K12 chromosome. Its sequence and that of a downstream Bacterial 
Interspersed Mosaic Element (BIME) were determined. Transcription of 1229 was 
not detectable under normal growth conditions, nor was it found to be inducible by 
various environmental shocks. However, fi29 mRNA levels increased dramatically 
following alteration of the BIME structure, either by complete removal or by a 
deletion leaving just a single Palindromic Unit. This transcription was shown to be 
cy70-dependent, and the 1229 promoter was subsequently mapped. A protein encoded 
byJ229 was identified and had the expected molecular size of 25kDa, but was found 
to be poorly expressed even in the absence of the BIME. Moreover, an J229: :/wnR 
mutation did not affect growth of E. coii under a variety of conditions. Since the 
predicted amino acid sequence of F229 has no identity with any known protein and 
no similarity to members of either of the two known sigma families, the function of 
1229 remains unknown. 

The downstream portion of a second open reading frame was located near 381kb on 
the physical map. The amino acid sequence has very high identity (80% range) with 
a family of Pseudomonas enzymes, the 4-hydroxy-2-oxovalerate aldolases. These 
participate in a metabolic pathway that converts a variety of aromatic compounds 
into Krebs Cycle intermediates. Since E.coli is known to carry out similar catabolic 
reactions and the corresponding genes in Pseudomonas are clustered into operons, it 
is likely that the unsequenced region upstream of this open reading frame contains 
further genes involved in aromatic degradation. 
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Chapter 1 

The aim of this project was to discover genes encoding novel sigma subunits of 
E. coli RNA polymerase. Sections 1.1 to 1.8 deal with E. coil RNA polymerase and 
its sigma subunits. One candidate sigma gene, p29, has a BIME structure at its 3' 
end, which appears to influence fl29 transcription. BIMEs are discussed in section 
1.9. Osmotic and cold-shock were thought to play a role inJ229 expression, and are 
discussed in sections 1.10 and 1.11 respectively. A second candidate sigma gene, 
orJ243, is predicted to encode a protein having striking homology with the 
Pseudomonas 4-hydroxy-2-oxovalerate aldolases. These enzymes are involved in 
catabolism of aromatic compounds, which is discussed in section 1.12. 



Chapter 1 

Structure and function of eubacterial sigma factors 

1.1 Introduction 

Prokaryotic RNA polymerase (RNAP) consists of a core enzyme (subunits a2I 3 ') 

and one of several sigma () subunits. The core enzyme is catalytically active for 

RNA polymerisation and termination, but the a subunit is essential for promoter 

DNA sequence recognition (Lesley and Burgess, 1989). All eubacteria studied so far 

contain multiple a species. To date, seven Escherichia coli sigmas have been 

identified, each conferring a distinct transcriptional specificity on RNAP by 

directing the enzyme to different promoter sequences. The major E. coli sigma is the 

product of the rpoD gene, cr70, and is responsible for the majority of transcription, 

while at least six minor species transcribe co-ordinately regulated gene sets in 

response to various stress conditions (Table 1.1). 

Table 1.1 E.coli sigmas 

Sigma Size (kDa) Gene Primary Function 

70 70 rpoD Major sigma factor 

S 38 rpoS Major stationary phase 
transcription 

32 32 rpoH Heat-shock response 

E 24 rpoE Response to extracytoplasmic 
protein damage 

F 28 rpoF Flagellar synthesis and 
chemotaxis 

Feel 19 fecI Citrate-dependent iron transport 

54 54 rpoN Nitrogen assimilation 



Sigmas play a transitory role in transcription and are released shortly after 

initiation. They are generally present at a low level when compared 

stoichiometrically with core enzyme, and promote transcription in a catalytic 

manner; that is, one sigma allows many core polymerase molecules to initiate 

transcription (reviewed by Burgess and Travers, 1970). 

Sequence analysis of many sigma factors has indicated that, generally speaking, 

they can be divided into two protein families, related in structure and function to  cr 
70 

or cy54 . As the initial aim of my project was the characterisation of genes which 

might encode novel sigmas of the a family, I have concentrated below mostly on 

the structure and function of that family. A shorter discussion on the a 54  family is 

also included. 

1.2 E.coli RNA polymerase: a brief overview 

E. coli RNA polymerase is a large multisubunit DNA-dependent RNA polymerase 

consisting of two a, one 13,  one  13', and one of a number of a subunits (Table 1.2). 

The individual subunits show no biological activity when isolated, but instead must 

self-assemble in a defined order. This has been determined in vivo and in vitro by 

Ishihama and co-workers (reviewed by Ishihama, 1981) and can be summarised as 

follows: 

a+a -+ a 	a2 13 -~ a2 1313 -* a2 1313'a 
core enzyme 	holoenzyme 

Table 1.2 E.coli RNA polymerase major subunits 

Subunit Size (kDa) Gene Reference 

a 36.5 rpoA Post and Nomura (1979) 

13 150.6 rpoB Ovchinnikov et al. (198 1) 

13' 155.2 rpoC Ovchinnikov et al. (1982) 

G 70.3 rpoD Burton et al. (198 1) 

2 



The core enzyme is capable of ribonucleotide polymerisation and termination at 

some sites, but is unable to initiate transcription at specific sites on double-stranded 

DNA (promoters). A functional sigma subunit is absolutely required to allow proper 

transcription initiation by holoenzyme (Burgess, 1969). Genetic and biochemical 

evidence has identified residues in the core subunits of E. coli RNA polymerase that 

are involved in transcriptional processes. These are briefly summarised below. 

1.2.1 The a subunit 

Dimerisation of the a subunit is the first step in the assembly pathway of RNA-P, 

and thus a plays a key role in enzyme formation. A substantial portion of the C-

terminus of a can be deleted without affecting its assembly into core, whilst point 

mutations within the N-terminal domain (a-NTD) block RNA polymerase assembly 

in vitro (Igarashi et al., 1991) and in vivo (Hayward et al., 1991). The minimum 

portion of a required for active enzyme assembly was narrowed down to a region 

from residues 21 to 235 (Kimura et al., 1994). Insertion analysis (Kimura and 

Ishihama, 1 995a) and amino acid substitution analysis (Kimura and Ishihama, 

1 995b) have identified two conserved sequences within this region which are 

involved in a dimerisation and in a-dimer interaction with the 13  and 0' subunits. 

Similar studies using rpoA point mutants and C-terminally truncated a subunits 

have shown that a carboxy-terminal domain (a-CTD) is needed for transcription 

activation in vitro. This domain is thought to make protein-protein contacts with 

class I transcriptional activators which bind DNA sequences upstream of the -35 

promoter element (reviewed by Ishihama, 1993), and protein-DNA contacts with UP 

(upstream activation) elements (Ross et al., 1993; Gaal et al., 1996). UP elements 

are A:T-rich sequences of-2Obp located immediately upstream of the -35 element of 

strong promoters such as rrnB P1, and interaction with a-CTD can increase the 

efficiency of initiation by some 30-fold. a-NTD and a-CTD are connected by a 

flexible interdomain linker which is thought to allow the a-CTD to make different 

interactions at different promoters (Blatter et al., 1994). 

3 



Recently Liu et al. (1996) reported an additional role for a in transcription 

pausing, termination, and anti-termination involving a direct interaction between a 

and the elongation factor NusA. The a-CTD was found to stabilise the interaction 

between NusA and the transcription complex, allowing efficient modulation of 

elongation, termination and anti-termination. 

1.2.2 The 13  and  13' subunits 

The 13 and  13' subunits are highly conserved throughout prokaryotic and eukaryotic 

RNA polymerases with regions of high sequence similarity separated by regions that 

are poorly conserved (Rowland and Glass, 1990). The active centre of RNAP, which 

performs the principal biochemical reaction of gene expression, appears to be 

comprised of distinct segments within the core enzyme. Crosslinking studies of 

ternary complexes have identified two regions in 13 close to the 5' initiating 

nucleotide (Mustaev et al., 1991) and one region in 13' near the 3' end of the nascent 

RNA chain (Borukov et al., 1991) implicating these regions in the formation of the 

active site. Phenotypes of substitution mutations in the immediate vicinity of these 

crosslinks in the 13 subunit are consistent with the idea that these regions of the 13 
polypeptide participate in forming the catalytic centre of the enzyme (Mustaév et al., 

1991; Sagitov etal., 1993). 

Analysis of the effect of defined amino acid (an) substitutions on RNAP function 

in vivo located sites on the 13 polypeptide involved in the resistance to rifampicin, in 

transcription termination, and in the stringent response (Nene and Glass, 1984). The 

13 subunit is the target site for the transcription inhibitors rifampicin and 

streptolydigin, which respectively abort initiation and block elongation (Oen and 

Wu, 1978; Iwakuri et al., 1973). Most mutations conferring rifampicin resistance 

map to a central region of 13  (Jin and Gross, 1988; Severinov et al., 1993), although 

other mutations have been located at the N-terminus (Severinov et al., 1994). 

Mutations conferring streptolydigin resistance were originally found exclusively in 

4 



the 13 subunit (Heisler et al., 1993) but more recently a mutation was found in 13' 

(Severinov et al., 1995). 

The 13 subunit is a target for ppGpp, which mediates the inhibition of stable RNA 

synthesis during the so-called stringent response (see section 1.5.7). Single aa 

changes in 13 were found to render RNAP resistant to ppGpp, with the nature of the 

promoter also playing a part in the strength of the stringent control signal (Glass et 

al., 1986a and 1987). 

13 and  13'  are also involved in RNA elongation and termination, with amino acid 

substitutions in both subunits affecting these properties (Weilbacher et al., 1994; 

Heisler et al., 1996 and references therein). Tavorima et al. (1996) also provided 

evidence of intramolecular interaction between conserved regions of P. They 

identified suppressors of previously identified lethal P mutations; some of these 

suppressor mutations were themselves, when isolated, unable to support cell growth. 

The accumulating evidence suggests that functional units within RNAP may not 

necessarily be confined to one particular subunit. Contributions may come from 

segments of polypeptides that are not contiguous in their primary sequence, and also 

from segments of other subunits. However, there is still the possibility that some of 

the regions identified are indirectly rather than directly involved in the functions 

ascribed. The role of sigma is discussed in detail below. 

1.3 The 70  Cr family: functions in brief 

Over 37 members of the c 70  family have been isolated and sequenced from a 

variety of eubacteria (Lonetto et al., 1992 and 1994). All promoters recognised by 

holoenzymes containing sigmas of this type consist of blocks of conserved 

sequences which are located approximately 10 and 35 bp upstream of the 

transcription start site. Conserved promoter sequences recognised by different forms 

of holoenzyme can vary in the identity, length and spacing between the -10 and -35 

elements (Doi and Wang, 1986, and table 1.3). It is widely accepted that members of 
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the CY70 family are sequence-specific DNA binding proteins, and sigma is the only 

subunit of RNAP holoenzyme that can be crosslinked to both the -10 and -35 

promoter regions (Chenchick et al., 1981). Promoter recognition is discussed in 

sections 1.5.6 and 1.5.8. 

Following promoter recognition, sigmas play an essential role in the subsequent 

steps of transcription initiation, in particular the localised melting (DNA strand 

separation) around the start site. Structural and kinetic studies have shown that the 

opening of DNA strands at both a 70  and a32-dependent promoters involves at least 

two intermediate RNAP-DNA complexes which show different protection patterns 

in DNaseI, hydroxyl radical, and permanganate footprinting (reviewed by Gross et 

al., 1992; deHaseth and Helmann, 1995). It appears that initial binding of the 

promoter by RNAP holoenzyme results in the formation of a closed complex which 

isomerises, via a second intermediate, to the open complex in which the DNA is 

unwound between -11 and +3 relative to the transcription start site at +1 (Chan et al., 

1990). Possible roles for regions of sigma in open complex formation are discussed 

in section 1.5.5. 

Table 1.3 Promoter sequences recognised by E.coli sigmas 

Sigma -35 element -10 element Reference 

70 TTGACA TATAAT Hawley and McClure (1983) 

S TATAAT Tanaka et al. (1995) 

32 TCTC-CCTTGAA CCCCAT-TA Gross etal. (1990) 

E GAACCT TCTGA Erickson and Gross (1989) 

F CTAAA CCGATAT Helmann (1991) 

Fecl AAGGAAAAT TCCTTT Enz et al. (199 5) 

54 CTGG-A TTGCA Gussin etal. (1986) 

I 



1.4.1 Group 1 sigmas 

Using pairwise sequence alignments and functional criteria, Lonetto et al. (1992) 

divided the cr 70  family into three groups. Group 1 sigmas are the primary sigmas of 

diverse organisms, and are responsible for the majority of gene transcription during 

exponential growth. They are highly homologous, sharing pairwise sequence 

identities of at least 51%. Three regions of amino acid sequence are almost invariant 

among primary sigmas, and can be used to distinguish them from group 3 sigmas 

(section 1.4.3). Two of these regions, the "rpoD box" (Tanaka et al., 1988) and a 

conserved 20aa sequence, overlap the -10 and -35 promoter recognition 

determinants. This emphasises the close functional relationship of the primary 

sigmas, which recognise closely related promoter sequences. Indeed, the major 

sigma of Bacillus subtilis (cr and E. coli o direct polymerase to identical 

consensus DNA sequences and can function in vitro with each other's core 

(Shorenstein and Losick, 1973). This is despite a major difference in size, due 

mainly to an extra 245aa between regions 1.2 and 2.1 of a 70 . Recently, these an have 

been shown by deletion to be dispensible for the basic functions of E. coli cy 70  in vivo 

(Kumar et al., 1995). 

1.4.2 Group 2 sigmas 

Group 2 sigmas include E. coli a (section 1.8.1.) and three alternative sigmas of 

Streptomyces coelicolor (HrdA, HrdC, and HrdD) and are non-essential for 

exponential cell growth. They show strong homology to group 1 sigmas, especially 

in their DNA binding regions, which may reflect overlapping promoter specificities. 

Tanaka et al. (1993) demonstrated that E.coli cr 70  and a recognise a common subset 

of E. coli promoters, whilst each was found to display a distinct specificity for 

promoters not recognised by the other. cyS  is discussed in more detail in section 

1.8.1. 
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1.4.3 Group 3 sigmas 

Group 3 sigmas are alternate sigmas which show significant deviation from the 

primary sigma sequences, exhibiting a maximum identity of 27%. The group 3 

sigmas tend to cluster into functional subgroups that include members from diverse 

organisms. Members of a subgroup are more similar than primary and alternate 

sigmas in the same organism, suggesting that sigmas which regulate similar 

activities have common functional constraints. Accordingly, the heat-shock sigmas 

of E.coli and Citrobacterfreundii share -94% identity, whilst E.coli CY and a32  are 

only 24% identical. The more recent identification of the Extracellular Function 

(ECF) family of sigma factors has considerably increased the overall diversity of the 

a70  family (Lonetto et al., 1994). 

1.5 Sequence conservation of the a 70  family 

Sequence alignments of the a 70  family members from several eubacteria have 

indicated that they are homologous proteins with four regions of high conservation 

(Helmarm and Chamberlin, 1988; Lonetto et al., 1992; fig. 1.1). Regions 2 and 4 are 

the most highly conserved and tend to be very basic, which is consistent with their 

postulated role in DNA binding. Regions 1 and 3 exhibit lower conservation and are 

acidic. The roles of the individual regions are discussed below. 

8 
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1.5.1 Region 1 

Region 1 is divided into two subregions, 1.1 and 1.2. The former is present only in 

the primary sigmas and E. coli a   whilst subregion 1.2 is present (to varying degrees) 

within all primary and almost all alternative sigmas, an exception being 

S.typhimurium F1iA (Lonetto et al., 1992). Although free a is unable to bind DNA, 

Dombroski et al. (1992) reported that deletion of subregion 1.1 allowed non-specific 

DNA binding by the N-terminally-truncated sigma fused to GST. Moreover, a 

greater truncation affecting also subregion 1.2 and sequences downstream allowed 

a 70  to specifically bind promoter DNA. The obvious interpretation of these results is 

that subregion 1.1 sequesters the non-specific affinity of free a70  for DNA whilst 

amino acids further donwnstream suppress promoter recognition, either alone or in 

conjunction with subregion 1.2. Gopal et al. (1994) provided evidence for specific 

interaction between a tryptophan residue at position 434, in the junction of 2.3 and 

2.4, and the hydrophobic subregion 1.1. Dombroski et al. (1992) proposed that the 

N-terminus of a 7 normally masks the promoter recognition determinants which are 

only exposed upon interaction with core enzyme. According to their proposal, region 

1 would become buried within the core in order to free the DNA binding regions of 

sigma. 

Although E. coli a32  lacks subregion 1.1, it too was unable to bind DNA in the 

absence of core (Dombroski et al., 1993). However, deletion of the first 46aa 

including a non-conserved 1 8aa sequence allowed DNA binding, suggesting that a32  

contains its own amino-terminus inhibitory domain. On the other hand, the 

S. typhimurium sigma factor F1iA, which lacks both subregions 1.1 and 1.2, was able 

to bind promoter DNA in the absence of core (Dombroski etal., 1993). These results 

suggest that the interaction between different sigma factors and DNA can be 

regulated at the level of protein structure and/or conformation, with the amino 

terminal extensions providing the means for control of binding. 
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1.5.2 Region 2 

Region 2 is highly conserved throughout eubacterial sigmas and is divided into 

four subregions (2.1-2.4) which have been implicated in core binding, open complex 

formation, and -10 promoter element recognition. 

1.5.3 Subregion 2.1 

Aa 361-390 of a, constituting subregion 2.1 and an amino acid sequence 

immediately upstream, have been suggested to represent an essential minimal core-

binding region by Lesley and Burgess (1989). Using a set of internal deletions and 

frameshift mutations within rpoD to determine the regions of sigma inessential for 

core binding, their results implicated this segment as containing the primary core-

binding determinants. However, part of this region (aa 361-374) is located within the 

non-conserved 245aa insertion (characteristic in position, although variable in size, 

in Gram negative bacterial primary sigmas) suggesting that the essential core 

binding region can be further defined to the region immediately downstream of an 

374. It should be noted that this 245aa insertion can be deleted from cr without 

affecting its basic functions in vivo (Kumar et al., 1995; section 1.4.1). 

The P subunit is involved in the binding of a to core. Although the removal of up 

to 20% of the C-terminus of P did not prevent the formation of the core enzyme, it 

was found to interfere with holoenzyme production (Glass et al., 1986b). 

1.5.4 Subregion 2.2 

Subregion 2.2 has a highly conserved sequence in all groups of sigmas, with four 

invariant and several conserved residues, and was previously proposed as a possible 

core binding region (Helmann and Chamberlin, 1988). However, this subregion can 

be deleted without affecting the core-binding activity of a 70 (Lesley and 

Burgess,1989), and at present has not been assigned any specific function. 
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1.5.5 Subregion 2.3 

Helmann and Chamberlin (1988) proposed that subregion 2.3, in conjunction with 

2.1, might participate in DNA strand separation during open complex formation. 

This prediction was based upon the prevalence of evolutionarily conserved aromatic 

and basic amino acids in these subregions, in patterns which are reminiscent of the 

single-stranded DNA binding proteins of E.coli and its bacteriophages fd and T4. 

Part of subregion 2.3 is also similar to the "RNP-1 consensus sequence" shared by 

several eukaryotic proteins that bind to single-stranded RNA. Structural analysis of 

RNA and single-stranded DNA binding proteins has shown that aromatic amino 

acids facilitate nucleic acid -protein interactions by stacking between the nucleotide 

bases (011is and White, 1987). In addition, subregion 2.3 is in close proximity to 

amino acids that contact part of the -10 promoter element (section 1.5.6). Since 

can be crosslinked with the non-template strand at open complexes (Simpson et al., 

1979; Buckle et al., 1991), it is plausible that the sigma subunit is involved in DNA 

melting around the transcription start site. 

Juang and Helmann (1994) identified amino acid substitutions in subregion 2.3 of 

a of B.subtilis (which is interchangable with of E. coil-section 1.4.1) that had 

significant effects on open complex formation. Some of these mutants also exhibited 

promoter-specific effects, suggesting that downstream -10 sequence recognition may 

be carried out by subregion 2.3 in a manner associated with promoter melting. In 

contrast, Waldburger and Susskind (1994) showed that most residues in a 70  

subregion 2.3, including the aromatics and other residues showing similarity to the 

RNP-1 motif, were in fact tolerant of amino acid substitutions. Only one residue, 

Thr429, was intolerant to substitution suggesting an important role for this residue in 

cy 70  function. Thr429 corresponds to a position that is not conserved in the RNP-1 

motif. These discrepancies may be partly due to the different conditions used, with 

Juang and Helmann employing an in vitro assay system and temperature 

manipulation to increase the stringency of their tests. 
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It has been proposed that during open complex formation, the a subunit binds the 

displaced non-template strand, rendering the latter insensitive to permanganate ions. 

Meanwhile, the template strand associates with the catalytic site located on 3/3', 

suggested by the observation that a cold-sensitive 13  mutant has defects in promoter 

melting (Larionov et al., 1979). Clearly, further experiments are required to fully 

understand the role of subregion 2.3 in vivo and in vitro during open complex 

formation. 

1.5.6 Subregion 2.4 

Subregion 2.4 contains three conserved hydrophobic residues located at every 

fourth amino acid, followed by conserved basic residues, and is predicted to have an 

alpha-helical secondary structure (Helmann and Chamberlin, 1988). Identification of 

amino acid substitutions in subregion 2.4 that suppress point mutations in -10 

promoter regions indicate that the exposed face of the putative a-helix is involved in 

the recognition of the -10 promoter element. 

Two amino acid substitutions affecting residue 437 in subregion 2.4 of a have 

been isolated by selection for such suppressors. Q437H which substitutes the 

glutamine residue for a histidine suppressed a T to C mutation in the first position of 

the -10 hexamer (CATAAT) permitting a -40-fold increase in the level of 

transcription from the mutant lacUV5 promoter relative to wild-type cr 7°  

(Waldburger et al., 1990). A second substitution mutant, T4401 (Siegele et al., 1989) 

was found to suppress C or G mutations at the first position of the -10 hexamer by 2-

to 3-fold. Both of the above mutations are allele specific, that is, no other mutations 

in the -10 or -35 promoter regions were suppressed. Whilst T440I is a "loss of 

specificity" mutation allowing recognition of both consensus and mutant promoters, 

it is not clear whether Q437H alters the specificity of o or results in loss of 

specificity for -10, since the mutant protein cannot be assayed in vivo in the absence 

of wild-type a70  
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Similar studies have been used to pinpoint residues in subregion 2.4 of the 

B. subtilis alternative sigma aH  which affect recognition of the first two base pairs of 

the -10 element. Ti 001 suppressed a G to A mutation at the first position of the -10 

(Zuber et al., 1989; Daniels et al., 1990) whilst R96A suppressed an A to G 

substitution at the second position (Daniels et al., 1990). These two mutations also 

cause allele-specific changes of specificity. The results suggest that residues located 

four amino acids apart govern the recognition of adjacent promoter base pairs, 

providing strong support for the involvement of an (x-helix. a 70  and H  recognise 

different promoter sequences and show poor conservation in subregion 2.4. 

However, when the amino acid sequences are aligned residues implicated in 

contacting the first position of the -10 helix are adjacent in both proteins, suggesting 

that both primary and alternative sigmas may recognise promoters in a similar 

manner (Waldburger etal., 1990). 

Dombroski et al. (1992) showed that a GST fusion protein containing regions 2 

and 3 of cy selectively recognised the -10 consensus sequence. This provides 

further evidence for the involvement of subregion 2.4 (and possibly 2.3, along with 

2.2) in -10 promoter element recognition. Recently Minchin, Busby, and colleagues 

(personal communication) have identified a single an alteration just downstream of 

subregion 2.4 (a region which they have named 2.5) which suppresses a down 

mutation in the TG element of an "extended -10" promoter (section 1.6). Possibly 

2.4 and 2.5 really constitute a continuous DNA-recognition element. 

1.5.7 Region 3 

Region 3 is divided into subregions 3.1 and 3.2 (Lonetto et al., 1992). Subregion 

3.1 shows weak similarity with a helix-turn-helix DNA binding motif, although no 

function has previously been assigned for this subregion. However, recent work by 

Hernandez and Cashel (1995) demonstrated that spontaneous mutations in 

subregion 3.1 of cY°  suppressed physiological defects displayed by strains 

completely lacking guanosine 31,5  '-bis(pyrophosphate), ppGpp. 
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Following nutritional limitation of enteric bacteria there is a rapid inhibition of 

stable tRNA and rRNA synthesis, the so-called stringent response, mediated by a 

massive accumulation of ppGpp. The negative control of gene expression is 

accompanied by an induction of certain classes of mRNA such as amino acid 

biosynthesis transcripts (reviewed by Cashel and Rudd, 1987). Strains unable to 

synthesise ppGpp, a condition designated as ppGpp°, cannot grow in minimal media 

in the absence of amino acid supplements (Xiao et al., 1991). The only mutations 

identified so far that suppress this phenotype occur in rpoBC (97%) and rpoD (3%) 

(Cashel et al., 1995). The mechanism of the control of gene expression by ppGpp is 

unknown, although the suppressor mutations identified suggest that effects on 

promoter recognition, open complex formation and/or transcription elongation may 

be involved. The rpoD mutations characterised mapped to 3. 1, suggesting a role for 

this subregion in ppGpp-mediated gene regulation. The synthesis of U
s early in 

stationary phase is positively regulated by ppGpp and the accumulation of this sigma 

is deficient in a ppGpp° strain (Gentry et al., 1993; section 1.8.1). Interestingly, 

Hernandez and Cashel (1995) found an increase in a   upon entry into stationary 

phase in ppGpp° strains carrying the subregion 3.1 mutations. Further in vitro studies 

involving ppGpp/RNAP interaction are underway. 

Subregion 3.2 has several acidic amino acids which are conserved throughout the 

a 70  family. It may play a secondary role in core binding in some sigmas since a 25aa 

deletion affecting subregion 3.2 of a32  reduced its affinity for core enzyme (Zhou et 

al., 1992). However, many group 3 sigmas lack subregion 3.2 and it can be deleted 
70 from awithout significantly affecting core binding (Lesley and Burgess, 1989). It 

thus seems unlikely that 3.2 represents an essential core binding region. A possible 

role for 3.2 in contacting certain class II transcriptional activators has been 

suggested; this is discussed in section 1.5.8. 
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1.5.8 Region 4 

Region 4 has been divided into two subregions (4.1 and 4.2) which are separated 

by a spacer region of variable length and amino acid sequence. Secondary structure 

predictions and sequence comparisons have led to the proposal that subregion 4.1 is 

an amphipathic cc-helix, whilst 4.2 forms a classic helix-turn-helix (11TH) motif 

which is known in many cases to bind double-stranded DNA in a sequence-specific 

manner (Helmann and Chamberlin, 1988). Several lines of evidence indicate that 

subregion 4.2 recognises the -35 promoter element. 

Allele-specific suppressor mutations in the proposed recognition helix of region 

4.2 of &° were isolated, which compensated for down mutations at the third and 

fifth positions of the -35 consensus (TTACA). An R584C substitution affecting the 

first amino acid of the proposed recognition helix suppressed the effects of a G or T 

substitution for C at position 5 of the -35 element (Siegele et al., 1989). Similarly, 

substitutions of A or T for G at position 3 of -35 were suppressed by an R588H 

mutation of the fifth amino acid in the recognition helix (Gardella et al., 1989). 

Further evidence of a role for 4.2 in -35 promoter recognition came from mutations 

at position 23 within subregion 4.2 of B.subtths a . An alanine to vahne 

substitution changed its promoter specificity to that recognised by o, whilst a 

substitution of methionine allowed & to recognise &3-dependent promoters 

(Margolis et al., 1991). 

Siegele et al. (1989) isolated an additional set of mutants affecting amino acids in 

the structural helix of subregion 4.2 and the amino acid sequence immediately 

upstream of it, which non-specifically suppressed a series of promoter mutations. 

Based on structural and mutational studies carried out on other HTH proteins, it is 

likely that these a70  mutations allow additional contacts with the sugar-phosphate 

backbone of the DNA in the vicinity of the -35 promoter element. 

Region 4.2 has also been implicated in contacting class II transcriptional activator 

proteins which bind to promoter DNA in a position at or near the -35 region. The 

corresponding promoters often lack a consensus -35 sequence, and unlike class I 
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activators, transcription does not require the contact site on a (Ishihama, 1993), 

suggesting that protein-protein contacts with the carboxy-terminus of a 70  may be 

involved. Using a set of deletion mutants of truncated to different extents at the 

carboxy-terminus, Kumar et al. (1994) mapped the contact region of a 70  required to 

give activation of in vitro transcription initiation from appropriate promoters using 

the activators PhoB and CRP-cAMP. Whilst CRP-cAMP interaction required a 

segment extending from within subregion 3.2 to a region upstream of subregion 4. 1, 

PhoB interaction required the first helix of subregion 4.2, consistent with the point 

mutation studies of Makino et al. (1993). A series of 4.2 point mutations generated 

by Kim et al. (1995) provided further evidence that the first helix is required for the 

interaction between RNAP and PhoB, but not for interaction with CRP-cAMP. More 

recently Makino et al. (1996) identified the DNA-binding domain in its C-terminus 

and four amino acids were found to be important for contacting RNAP. It appears 

that necessary contact and/or activation sites for class II activators lie at different 

positions in a segment of a70  extending from subregion 3.2 to beyond subregion 4.2. 

It is plausible that other class II activators require contacts within 4.2 in order to 

activate transcription. 

Dombroski et al. (1992) found that a GST fusion with region 4 of a 70  selectively 

recognised the -35 consensus sequence, whilst a fusion containing regions 2 and 4 

selectively recognised both promoter elements. Although these results provide 

further evidence of roles for subregions 2.4 and 4.2 in promoter recognition, contacts 

with only 3 of 1 2bp defining a cr 70  promoter are as yet understood. Additional amino 

acid contacts may be elucidated when the physical structure of sigma and its 

complex with DNA and the RNAP core are known. 

Subregion 4.1 may act as a supporting structure for the HTH motif of subregion 

4.2, based on structural similarity with bacteriophage X Cro repressor, and with 

homeodomain proteins which also contain cc-helices upstream of the HTH motif 

(Lonetto et al., 1992). 
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1.6 Hybrid and truncated sigmas 

In view of the high degree of sequence and functional conservation amongst 

members of the cr family, and the fact that all act in combination with the same 

species of core enzyme, it seemed plausible that a functional hybrid sigma (with 

regions 2.4 and 4.2 derived from different proteins) should be able to direct RNA 

polymerase to initiate from correspondingly hybrid promoters. To test this theory, 

Hayward et al. (1992) constructed a hybrid rpoD-rpoH gene encoding a hybrid 

sigma, a7032 . This protein consists of amino acids 1-529 of a70 , including subregion 

2.4, and the terminal 82 amino acids of a 32 , including subregion 4.2. Whilst the 

hybrid sigma was unable to initiate transcription at a 32-dependent promoters, it 

allowed vigorous expression in vivo of a reporter gene from a correspondingly 

hybrid promoter consisting of a -35 heat-shock element suitably spaced from a -10 

major promoter element (Hayward et al., 1992; Kumar et al., 1995). The hybrid 

sigma may be more suitable for studies on structure/function relationships than 

either of its "parents", since work is difficult with a due to the indispensability of 

rpoD and with a32  due to its instability and the complex regulation of rpoH. 

The positively regulated U RE  promoter shows negligible (1/6) fit to the consensus 

-35 sequence, and only a poor (3/6) fit at -10. The promoter is barely recognised by 

purified RNAP and transcription is highly dependent on the class I activator protein 

cli (Shimatake and Rosenberg, 1981). In an effort to construct a constitutive 

derivative of the kP M  promoter Keilty and Rosenberg (1987) perfected the -10 

element to fit the consensus. The resulting promoter, allowed efficient cli-

independent initiation of transcription in vivo and in vitro. Point mutations within 

showed that while changes in the -35 element had only minor effects on 

promoter strength, sequences immediately upstream of the -10 consensus were 

critical for -35-independent activity. Keilty and Rosenberg concluded that the 

"extended -10" sequence TGnTATAAT constituted a -35-independent promoter and 

that the TG motif was an important requirement for efficient initiation at such 

promoters. 
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Since the hybrid sigma work described above suggested that regions 2.4 and 4.2 

function as effectively independent promoter recognition domains, it was 

hypothesised that a carboxy-truncated c 7  lacking region 4 might retain the ability to 

allow efficient initiation at an extended -10 promoter. Results showed that both 

intact and truncated cy allowed purified RNAP to initiate efficiently and 

specifically at an extended -10 promoter, whereas only the intact cr 70  permitted 

initiation at normal promoters lacking the TG motif (Kumar et al., 1993). Whilst the 

extended -10 promoter is rarely if ever used in E. coli in the absence of a -35 

element, it is probably used frequently to strengthen promoters. 

54 1.7 The c family 

Around 20 homologues of o have been identified, and studies have demonstrated 

that this sigma is both structurally and functionally distinct from the a family. 

Initially identified as a positive regulator of nitrogen assimilation, CY is now known 

to be required for the expression of a wide variety of genes involved in diverse 

functions including dicarboxylic acid transport, catabolism of aromatic compounds, 

hydrogenase biosynthesis, and pilus production (reviewed by Kustu et al., 1989). 17 

fully characterised rpoN genes show a high degree of conservation in the proteins 

primary sequence and all conform to the three domain structure first proposed by 

Merrick et al. (1987). A poorly conserved acidic domain (region II) of variable 

length (25-100 residues) is flanked by an N-terminal glutamine and leucine-rich 

domain (region I) and a highly conserved C-terminal region (region III) '-'400aa long 

(fig. 1.2). Region I is involved in -12 promoter element recognition and DNA 

melting (Hsieh and Gralla, 1994). Region II contains residues essential for binding 

to core RNA polymerase whilst region III, which carries a putative 1-ITH motif, is 

involved in -24 promoter element recognition (Wong et al., 1994). Region III also 

contains an almost totally conserved run of 1 Oaa which has been called the "RpoN 

box". Despite its remarkable conservation a number of residues in the RpoN box can 
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Figure 1.2. Conserved sequences in the o family. Regions are indicated within 
their corresponding rectangle. Motifs are identified below the protein along with 
their known or proposed functions. Leu/Gln rich is a Leucine/Glutamine-rich region; 
HHR is a hydrophobic heptad repeat; HTh is a helix-turn-helix motif. 
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be altered without inactivating the protein and its role remains to be determined 

(reviewed by Merrick, 1993). 

a54-dependent promoters are markedly different in structure from those recognised 

by the &° family, comprising elements containing highly conserved GC and GG 

doublets centred near -12 and -24, respectively, relative to the transcription start site 

(table 1.3). c' alone is capable of specific binding to certain promoters, although its 

binding affinity is greatly enhanced in the presence of core enzyme (Buck and 

Cannon, 1992). The Ea 54  holoenzyme can form a closed promoter complex but is 

incapable of proceeding to an open complex in the absence of an activator protein 

(Sasse-Dwight and Gralla, 1988). These bind to specific DNA sites and normally 

bind within lOObp upstream of the promoter, but activation can occur with the 

activator located in excess of 1kb upstream. (Reitzer and Magasanik, 1986). In 

contrast to the case for class I activators at a 70-dependent promoters (section 1.2. 1) 

the cx subunit C-terminus of the holoenzyme is not required for activation of 

initiation by Ea 54  (Lee et al., 1993). The activator catalyses strand separation by a 

mechanism requiring ATP hydrolysis (Sasse-Dwight and Gralla, 1988) and once 

formed, the open complex can be maintained without the activator present (Popham 

etal., 1989). E.coli a54  is discussed in more detail in section 1.8.6. 

1.8 E.coli alternative sigmas 

From the sequence data available, it has been estimated that the E. coli chromosome 

carries 4000 genes, among which at least 1000 are expressed under normal 

laboratory conditions, i.e. at 37°C and with aeration (Helmann and Chamberlin, 

1988). The rest of the genes are considered to be expressed under various stress 

conditions that E.co!i meets in nature (Magasanik, 1982; Neidhardt et al., 1984; 

Kolter et al., 1993; Hengge-Aronis, 1993). Control of expression of coordinately 

regulated gene sets required for adaptation to various environmental conditions is 

often mediated by alternative sigmas, of which E.coli has at least 6. 
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1.8.1 Sigma S 

In E. coli, it is known that expression of a set of genes is induced when cells enter 

the stationary phase and/or encounter stressful conditions for growth, such as 

nutrient starvation. Under such conditions, E. coil develops a general resistance 

against various physical and chemical stresses including heat, oxidative agents and 

osmotic shock (Hengge-Aronis, 1993; Kolter et al., 1993). In addition, the cells 

metamorphose into a rather spherical shape and become smaller. These physiological 

and morphological changes associated with stationary growth phase have been 

studied at the molecular level (Hengge-Aronis, 1993; Kolter et al., 1993; Siegele 

and Kolter, 1992). The global change in gene expression seems to be accompanied 

by modulation of the transcription and translation apparatus. For example, a high 

proportion of ribosomes are converted into dimers through the action of ribosome 

modulation factor (Wada et al., 1995), and the major sigma factor a 70  is replaced by 

aS the product of rpoS (Hengge-Aronis, 1993). In addition, RNA polymerase core is 

modified so as to change its promoter preference (Ozaki et al., 1991; Ozaki et al., 

1992). 

At least 30 genes are estimated to show rpoS-dependent expression (McCann et 

al., 1991). rpoS was originally identified as katF, a positive regulator of katE, which 

encodes a stationary phase-specific catalase, HPII (Mulvey and Loewen, 1989). The 

amino acid sequence, deduced from the /wtF DNA sequence, is very similar to that 

of a70  in regions 2 and 4, which include the specific DNA binding regions, making 

it a group 2 sigma (Lonetto et al., 1992). That c7 
  is indeed an alternative sigma was 

demonstrated by Tanaka et al. (1993). Using reconstituted RNA polymerase they 

showed that holoenzyme containing the katFlrpoS product, but not a 70, was able to 

efficiently trigger in vitro transcription from a small number of appropriate 

promoters (although it was noted that a great many promoters can be recognised by 

polymerase carrying either a 70  or aS).  Knockout mutations in rpoS reduce resistance 

to starvation, hydrogen peroxide and thermal stress, and drastically alter the pattern 

of protein synthesis upon starvation (McCann etal., 1991). 
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Control of a S  function 

Since csS  functions predominantly under certain growth conditions, its activity 

and/or cellular concentration have to be tightly controlled, although the mechanisms 

involved are unclear. The cellular content of a s increases -1-fold upon entry into 

stationary phase (Tanaka et al., 1993) and -8-fold following carbon starvation 

(McCann et al., 1993). Control of the cellular level of a s during starvation and upon 

entry into stationary phase appears largely posttranscriptional, involving stimulation 

of translation as well as changes in cy stability (Lange and Hengge-Aronis, 1994). 

These authors reported a mRNA secondary structure similarity between rpoS and 

rpoH transcripts, where a sequence upstream of the start codon is complementary to 

a downstream sequence (see section 1.8.3). In both cases, the translation initiation 

region could be sequestered by base-pairing with the downstream antisense-like 

element, suggesting similar mechanisms for control. Specific proteins might stabilise 

the secondary structures under non-inducing conditions, or actively resolve them 

under inducing conditions. The authors suggested various signals that may be 

involved in the transcriptional and posttranscriptional control of rpoS expression. 

Recently Schweder et al. (1996) have reported an increase in stability and levels of 

as in exponentially-growing clpXP cells, suggesting that the protease C1pXP plays a 

role in the degradation of this sigma under normal growth conditions. These results 

suggest. that the mechanisms underlying the control of cr s activity under various 

conditions are very complex. 

Within the large u s regulon, differential regulation has been observed for subsets 

of genes, for example in response to anaerobiosis (Atlung and Brønsted, 1994; 

Brønsted and Atlung, 1994), oxidative stress (Altuvia et al., 1994; Lomovskaya et 

al., 1994) and osmotic shock (reviewed in section 1.10.2). These observations 

indicate that additional factors besides a 5  participate in the fine regulation of these 

genes. 
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H-NS and cr S 

The histone-like protein H-NS has been shown to be another component of the 

complex network regulating aS  and many aSdependent genes. H-NS is a small, 

abundant DNA-binding protein with a preference for AT-rich curved DNA and is 

implicated in chromosome organisation due to its ability to negatively supercoil and 

compact DNA (Lucht et al., 1994; Owen-Hughes et al., 1992; Tupper et al., 1994; 

Zuber et al., 1994). In addition, it represses the expression of numerous genes with 

seemingly unrelated functions (Ueguchi and Mizuno,1993; Yoshida et al., 1993). In 

the case of the proU operon, binding of H-NS to the promoter region has been 

demonstrated (see section 1.10.3). 

Yamashino et al. (1995) observed enhanced accumulation of aS  during the 

exponential growth phase in cells carrying a hns deletion, while Barth et al. (1995) 

demonstrated increased expression of at least 22 a s-dependent proteins in a hns 

mutant. These authors independently found an increase in c concentration resulting 

from changes in both translational efficiency and protein stability with little or no 

effect of H-NS on rpoS transcription. These findings implicate H-NS deeply in the 

posttranscriptional regulation of rpoS. 

The precise role of H-NS in rpoS expression is currently under investigation. It 

may directly negatively regulate transcription of genes involved in efficient rpoS 

mRNA translation, or of genes involved in a s  stability such as enhancers of 

resistance to CIpXP activity. It might even bind directly and specifically to the rpoS 

transcript, since H-NS is known to bind to RNA (Lammi et al., 1984) and can inhibit 

in vitro translation (Spurio etal., 1992). The mode of H-NS derepression that allows 

the accumulation of aS  in response to different stimuli remains unclear. 

The role of aSindependent  H-NS repression of osmotically-inducible genes is 

discussed in section 1.10.3. 
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ySdependent promoters 

In contrast to other minor sigma factors, Eas  is able to recognise many Ea 70- 

dependent promoters (Tanaka et al., 1993). The promoter specificities are clearly 

different, since each will activate transcription from certain promoters not recognised 

by the other. However, alignment of c-dependent promoters has failed to yield a 

consensus sequence. Most appear to have an Ea 70-type -10 hexamer sequence, but 

with little homology at -35. Espinosa-Urgel and Tornio (1993) suggested a role for 

DNA curvature in EcIpromoter recognition, which perhaps aids binding by Ea s  

when no -35 element is present. However, there is no direct evidence for this, and the 

bends may be cis-regulatory elements which allow H-NS to bind and repress 

transcription, as is the case with certain osmotically-inducible genes (section 1.10.3). 

The Ea-dependentfic promoter does not contain any distinct -35 element, and is 

recognised weakly by Ea 70.  Using hybrid -351-10 promoters, Tanaka et al. (1995) 

showed that the -10 and downstream region of the fic promoter functioned as an 

efficient promoter for EYS  in vitro. This suggests that the discrimination signal of 

promoters recognised by EYS  alone resides in this region alone, with no apparent role 

for any upstream bends. Although fic transcription is exclusively dependent on rpoS 

in vivo (Utsumi et al., 1993), Ea 7°  can recognise its promoter in vitro at high RNAP 

concentrations (Kusano et al., 1996), indicating the involvement of additional factors 

in vivo. Indeed, Ding et al. (1995) showed that the promoters of the osmoregulated 

genes osmB and osmY, which are recognised equally by EOS  and Ea 70  under standard 

in vitro conditions (50mM NaCl), were transcribed at levels 20-fold higher by E at 

high glutamate concentrations. These conditions mimic the transient increase in 

potassium glutamate levels upon exposure to high osmolarity (see section 1.10). 

Thus, a consensus promoter sequence may not exist, if growth-phase or stress-

induced factors determine which particular sets of a s-dependent promoters are 

transcribed. Modification of core RNAP is thought to be involved in stationary-

specific transcription regulation (Ozaki et al., 1991 and 1992), and variations in core 

conformation may also direct Ec 5  to transcribe from other stress-induced promoters. 

One of the most striking differences between c 5  and the other sigmas (including cy 70) 
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is the long tail beyond 4.2 (Lonetto et al., 1992). It is possible that this is involved in 

interactions with a s-specific activator proteins binding to DNA upstream of the 

relevant promoters, or to ySspecific  upstream DNA sequences or conformations. 

Kusano et al., (1996) investigated the effect of DNA supercoiling on EaS 

transcription, since DNA superhelicity is known to be affected by cell growth 

conditions. For instance, nutrient downshift and stationary growth phase cause a 

decrease in DNA superhelical density (Balke and Gralla, 1987; Jaworski et al., 1991) 

while high osmolarity leads to an increase in the superhelicity (Higgins et al., 1988; 

Hsieh et al., 1991). The in vitro results of Kusano et al. (1996) indicated that 

transcription by EcTS  was maximal with promoter template DNA prepared at 

stationary phase, and suggested that EaS  has a higher affinity for DNA with low 

superhelical density. In addition, they found that transcription from the osmY 

promoter on a highly supercoiled plasmid was maximal at high levels of potassium 

glutamate. This may allow the aSdependent  transcription of certain genes following 

osmotic upshift when supercoiling increases, while other c-dependent genes remain 

silent. 

The global regulation of transcription by Ea is complex. Points of control at the 

levels of transcription, translation and a 
  stability determine the amount of active as 

within the cell. Additional factors present as a result of various growth and 

environmental stimuli determine which subsets of genes are expressed. This 

regulatory strategy presumably allows a degree of specific fine modulation of 

controlled genes with respect to the time of entry into stationary phase and in 

response to additional environmental conditions. 
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1.8.2 Sigma F 

Helmann and Chamberlin (1988) proposed that a novel sigma might be required 

for transcription of flagellar and chemotaxis genes in E.coli, based on the 

observation that such operons were preceded by sequences resembling SigD-

dependent promoters. SigD regulates the expression of flagellar genes in B.subtilis. 

Arnosti and Chamberlin (1989) isolated RNAP holoenzyme containing a novel 

28kDa sigma, required for the transcription of some E.coli flagellar and chemotaxis 

genes, which they named aF F is the same size as SigD and the two sigmas are 

37% homologous (Ohnishi et al., 1990). In addition, the cloned SigD gene can 

restore most rpoF regulated functions (except chemotaxis) to a cyFdeficient  E. coli 

strain (reviewed by Helmann, 1991). 

cr F  participates in a regulatory cascade of gene expression of more than 40 

structural genes required for assembly of flagellae, motility, and chemotaxis 

(Helmann, 1991). Flagellar and chemotaxis genes are expressed in three temporal 

stages. The two class I genes encode a pair of transcriptional activator proteins, Fh1C 

and Fh1D. Transcription offlulC andflulD is activated by cyclic AMP and the cAMP-

receptor protein (CRP). rpoF is one of 28 class II genes (which also include the 

structural genes for the base and hook of the flagellum) dependent on activation by 

Fh1C and Fh1D. The a-CTD of RNAP (section 1.2.1) is required for activation, 

indicating that the FhIC/Fh1D complex is a classl transcriptional activator (Liut et 

al., 1995). o is required for transcription of most of the 18 class III structural genes 

following the expression of the class II genes. The coordinate regulation of rpoF and 

the base/hook genes ensures that class III gene expression (and in particular the very 

costly production of flagellin) does not occur wastefully prior to assembly of a 

complete base-hook structure. A negative regulatory locus, flgR, has been identified 

in S.typhimurium, which may block & activity in the absence of complete class II 

gene expression. Mutations inactivating flgR allow class III gene expression in the 

absence of many class II gene products (Gillen and Hughes, 1991). 
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Putative yFdependent  promoters have been identified upstream of rpoF and many 

other class II genes but these are not essential for their expression in vivo. Helmann 

(1991) suggested that these promoters may facilitate a'tdependent  amplification of 

class II gene expression concomitant with expression of class III genes. Interestingly 

many of these promoters lack good -35 promoter elements, a feature reminiscent of 

some positively activated a 70-dependent promoters, suggesting that other positive 

factors may be involved in late class II gene expression. 

1.8.3 Sigma 32 

When cells are shifted from 30°C to 42°C, synthesis of well-conserved heat-shock 

proteins (HSP) is markedly and transiently induced. The role of HSP is to assist 

protein folding, assembly, transport, repair and degradation during normal growth as 

well as under stress conditions. In E. coli the rpoH gene product a32  is specifically 

required for the expression or increased expression of over 30 genes encoding HSP 

such as the GroEL and DnaK chaperones, and Lon and Clp proteases (Hendrich and 
E Hartl, 1993), while the a regulon activates additional genes necessary for similar 

functions in respect to extracytoplasmic proteins (section 1.8.4). Ordinarily a32  is 

very unstable, with a half-life of one minute, and its synthesis is largely repressed. 

Upon heat-shock the a32  levels are increased transiently by both stabilisation and 

enhanced synthesis (Straus et al., 1987). In parallel, the rate of HSP synthesis 

increases 10- to 15-fold within five minutes. The unusual instability and restricted 

synthesis of a32  provide an effective means for keeping HSP levels to a minimum 

during normal growth and for rapid adjustment upon exposure to stress. 

When downshifted from 42°C to 30°C expression of heat-shock genes decreases 

about 10-fold within five minutes before reaching a new steady-state level. In this 

case, the rapid drop in heat-shock gene expression results from a decrease in a32  

activity rather than in its amount (Gross et al., 1990). These findings show the need 
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for tight regulation of the HSP levels to assure maximal growth and survival, which 

is controlled by modulating the synthesis, degradation, and activity of a 32  

rpoHis served by at least 4 promoters (P1, P3, P4, and PS). Three (P1, P4, and P5) 

are recognised by Ea 70  whilst P3 is recognised by Eo (section 1.8.4). The major 

promoters P1 and P4 are responsible for rpoH transcription under most conditions, 

whilst EaE  has been shown to initiate at P3 only at very high temperatures (45-50°C) 

where a 7 is largely inactive (Gross et al., 1990). Despite the complex and potential 

regulatory importance of multiple promoters, the bulk of the transient increase in a32  

levels observed upon heat-shock results from increased translation rather than from 

increased transcription (reviewed by Yura et al., 1993). Transcriptional control of 

a32  appears to be important only in maintaining basal levels of rpoH mRNA under a 

variety of steady-state conditions and under extreme conditions at 45-50°C. 

Extensive analysis of deletion derivatives of an rpoH::lacZ gene fusion led to the 

identification of two 5'-proximal regions, designated A and B, of rpoH mRNA 

involved in thermoregulation (Nagai et al., 1991). Region A is a positive element 

located near the initiation codon which enhances translation, probably through its 

complementarity to a 16S rRNA sequence, somewhat upstream of the Shine-

Dalgarno complement at the 3' end. Region B is a long internal negative element 

which represses translation during normal growth. Random point mutations which 

cause high constitutive expression of a 32  were found to occur specifically within 

these two regions (Yuzawa et al., 1993). Nagai et al. (1991) predicted that a fairly 

stable mRNA secondary structure is formed, spanning the initiation codon plus 

region A and part of region B. The secondary structure as well as specific base 

pairing appears to be important for temperature regulation, suggesting that a trans-

acting binding factor(s) modulates the rate of translation (Yuzawa et al., 1993). 

Translational shutoff of a32  requires additional cis- and trans-acting factors. DnaK, 

DnaJ, or GrpE chaperones exert a negative feedback control on the synthesis of a 32  

and HSP since mutations in dna.l, dnaK, and grpE resulted in enhanced heat-shock 

gene expression at low temperatures and an extended heat-shock effect following 

temperature upshift (Tilly et al., 1983; Straus et al., 1990). Moreover, deletion 
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analysis of an rpoH: :lacZ gene fusion showed that a specific internal segment of a 32  

called region C was required for normal repression (Nagai et al., 1994). The amino 

acid rather than nucleotide sequence was found to be important, indicating the 

involvement of protein-protein interaction in translational repression. Since 

DnaKIDnaJ chaperones are known to interact with a 32  in vivo and in vitro (Gamer et 

al., 1992; Liberek et al., 1992), region C might provide sites for such interaction 

resulting in translational shutoff. Consistent with this idea, two motifs with high 

affinity for DnaK (but not DnaJ) have been identified in region C (McCarty et al., 

1996). These motifs were found to be highly conserved among a 32  homologues but 

missing in other sigmas, indicating that region C is central to a regulatory 

mechanism allowing the sensing of stress by the heat-shock transcription complex. It 

appears that the DnaKIDnaJ/GrpE chaperones contribute to the characteristic 

instability of a32  by facilitating proteolysis through an interaction with a 32  or a 

protease(s) responsible for its degradation. Tomoyasu et al. (1995) demonstrated that 

a temperature-sensitive fisH mutation stabilised a 32 at high temperatures, and 

purified FtsH protein was shown to degrade a 32  in an ATP-dependent manner, 

suggesting that this membrane-bound metalloprotease plays a major role in the 

turnover of a 32  and in the heat-shock response. 

Inactivation of a 32  contributes to the rapid shutoff of HSP synthesis early during 

the adaptation phase (Yura et al., 1993). A DnaKIDnaJ complex is thought to be 

involved in sequestering or inactivating a32  since DnaK and DnaJ compete with 

core RNA polymerase for binding to a 32  (Gamer et al., 1996). Heat-shock is thought 

to increase cellular levels of partially unfolded or misfolded proteins that should 

preferentially bind to DnaK and/or DnaJ. This would reduce the levels of free 

chaperones, which should in turn stabilise a 32, thus leading to HSP induction. When 

enough free chaperones accumulate, they would then exert a negative feedback 

control on the synthesis, stability, and activity of a 32 . Further dissection of the 

regulatory circuits of a 32  should provide useful information regarding the exact 

mechanisms that a cell employs to sense and respond to an increase in temperature. 



1.8.4 Sigma E 

Transcription from the rpoH P3 promoter, which is active at extreme high 

temperature in E. coli, was found to be independent of both Eo-7°  and Ecy32  (Erickson 

et al., 1987). The factor responsible for rpoH transcription at high temperature 

(50°C) was purified by Wang and Kaguni (1989) and Erickson and Gross (1989). 

Both groups identified it as a novel form of RNAP containing a sigma of 24kDa. 

The protein was named cyE  to denote that it is active at extreme high temperature. 

Another gene known to be transcribed by EYE  is degP (htrA) (Erickson et al., 1987) 

which encodes a periplasmic protease essential at temperatures above 42°C 

(Lipinska et al., 1988,1989). The periplasmic location of DegP suggests that the EYE 

regulon may protect extracytoplasmic compartments from stress. Indeed, Mecsas et 

al. (1993) found EoE  activity increased following overproduction of outer 

membrane proteins, and decreased when these proteins were underproduced. 

Mutations resulting in misfolded outer membrane proteins also induced E& activity 

whilst having no effect on ET32. cyE belongs to the Extracellular Function (ECF) 

subgroup of sigma factors, which is quite divergent from other sigmas of the a 7o-

type family (Lonetto et al., 1994). All the sigmas in this subgroup appear to regulate 

extracytoplasmic functions and respond to extracytoplasmic signals. Mecsas et al. 

(1993) proposed that the two heat-inducible sigmas may have distinct but 

complementary roles in monitoring the state of proteins in the cytoplasm (c732)  and 

outer membrane and periplasm (&). 

Little is known about the CTE  regulon and its control. Analysis of transcription of 

the cloned rpoE gene identified two major transcripts (Rouvière et al., 1995; Raina 

et al., 1995). Although the upstream startpoint was not located near any obvious 

canonical cy 70 ,  32 or a_ dependent promoters, the second startpoint was located just 

downstream of a sequence with high similarity to the two previously identified 

promoters. Both groups independently confirmed that E& can transcribe rpoE both 

in vivo and in vitro, and that constitutive transcription at 50°C originates primarily at 

the downstream promoter. In addition to this autoregulation it seems likely that other 

31 



elements are involved in controlling rpoE expression. Most of the ECF sigmas 

examined are in operons that also encode negative regulators of the sigma protein's 

activity. In particular AlgU, the ECF sigma most closely related to aE,  is negatively 

regulated by two proteins called MucA and MucB, also encoded by the algU operon 

(Deretic et al., 1994). Rouvière et al. (1995) noticed that the DNA sequence 

immediately downstream of rpoE encodes a protein with -40% identity to MucA, 

suggesting that o may also be negatively regulated by an antisigma encoded in its 

own operon. 

Overproduction of &E led to the increased synthesis of at least 11 proteins 

including o 	. 
, 

32  and DegP (Rouvière et al., 1995; Raina et al., 1995). At 50°C 

almost all rpoH synthesis is carried out by EaE  (Erickson and Gross, 1989), and so it 

affects the production of HSP by the a 32  regulon. However, it seems likely that the 

a  regulon provides additional functions necessary for growth under more extreme 

conditions. Characterisation of the other members of this regulon should provide 

further insight into the global regulation of the heat-shock response. 

1.8.5 Feel 

Although the sequence of fecI was published in 1990 (van Hove et al., 1990), Fed 

was not then identified as a potential sigma factor. However, its homology with 

members of the ECF subgroup of the a 70-type family later indicated that it is a sigma 

(Lonetto et al., 1994). Fecl was originally characterised as being essential for the 

induction of the ferric citrate transport genes encoded by the fec operon in E. coli. 

Briefly, ferric citrate binds to the outer membrane protein FecA, and crosses the 

membrane via TonB, ExbB, and ExbD (Zimmermann et al., 1984). The C-terminal 

portion of the cytoplasmic membrane-bound protein FecR responds to the ferric 

citrate, and the signal is transduced to Fed, located in the cytosol, by the N-terminal 

portion of FecR (Ochs et al., 1995). FecI activates transcription of the fecABCDE 

transport genes without the need for ferric citrate to enter the cell. Uptake of ferric 



citrate through the cytoplasmic membrane accordingly ensues, following the 

synthesis of the transport proteins FecB/FecC/FecD/FecE (Schultz-Hauser et al., 

1992). 

The fec genes are arranged fecIRfecABCDE and are transcribed in this order from 

a a70-dependent promoter upstream of fecI and the FecI-dependent promoter 

upstream of fecA (Enz et al., 1995). FecI is only weakly active in the absence of 

ferric citrate and FecR, although overproduction leads to low constitutive fec 

expression (Ochs et al., 1995). Within the fec operon the levels of fecBCDE RNAs 

are low compared to the level of fecA mRNA, and processing from the 3' end is 

proposed to stop near the end of fecA where a hairpin structure has been identified 

(Enz etal., 1995). 

Transcription of the fec operon is repressed by the Fur repressor loaded with Fe 2+ 
 

(Zimmermann et al., 1984) and nucleotide sequences typical for Fe 2 -Fur binding 

sites have been located in the fed and fecA promoter regions (Enz et al., 1995). In 

addition, the FecI-dependent promoter of fecA shown in table 1.3 was found to have 

sequence similarity to promoters of genes regulated by other ECF sigma factors, 

including the a  -dependent rpoH P3 promoter (Enz et al., 1995). FecI was 

subsequently shown to function as a sigma since purified protein in conjunction with 

RNA polymerase core enzyme specifically initiated transcription from the fecA 

promoter in vitro (Angerer et al., 1995). No specific transcript was obtained with 

RNAP carrying and competed with FecI for core binding. Furthermore the 

electrophoretic mobility of DNA fragments carrying the upstream region offecA was 

retarded by RNA polymerase core enzyme after addition of Fed. Ochs et al. 

(1995,1996) demonstrated that point mutations in the Fecl HTH motif either 

increased or decreased the induction of transcription of a fecAB::lacZ fusion, and 

that chromosomal insertion or deletion mutants infecl were totally devoid of FecA 

production and fecAB::lacZ expression. Ochs et al. (1996) also demonstrated that 

fecI is not autoregulated, but is regulated by iron via Fe 2 -Fur. 
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FecI is unique amongst E. coli sigma factors in that it only directs transcription 

from one known promoter. It may be that other proteins originally identified as 

activators of transcription can actually function as sigma factors. 

1.8.6 Sigma 54 

stands alone among the alternative sigma factors in exhibiting no significant 

amino acid homology to the a family (section 1.7). Wong et al. (1994) made a 

series of deletions in rpoN and analysed the properties of the mutant proteins. Their 

results identified a hydrophobic heptad repeat (HHR) sequence (fig. 1.2) important 

for binding to core RNA polymerase. PCR mutagenesis confirmed the requirement 

for residues in this region, which are clustered in a short sequence speculated to be 

homologous to a segment of the core binding region of cy (Tintut and Gralla, 1995; 

Lesley and Burgess, 1989). Further determinants of a binding were also found in 
70 flanking regions which have no homology with a suggesting that each sigma may 

bind multiple domains on core, only one of which is common in this case. 

The deletion studies of Wong et al. (1994) showed that a large carboxyl section of 

the protein, including a putative HTH motif (fig. 1.2), was essential for -24 promoter 

element recognition and DNA binding. A smaller amino-terminal segment was 

found to be essential for DNA melting and -12 promoter element recognition, but 

playing a secondary role with respect to DNA binding. The amino terminus contains 

acidic, glutamine-rich and periodic leucine-rich motifs which overlap, making the 

identification of potential roles for these motifs difficult. However, point mutational 

analysis has implicated the glutamine-rich motif in assisting DNA melting, whilst 

leucine residues comprising a heptad repeat structure have been shown to be critical 

for -12 promoter element recognition and mRNA production (Hsieh and Gralla, 

1994). 

As mentioned in section 1.7, members of the a 54  family can bind to promoter 

DNA in the absence of core enzyme. Tintut et al. (1995) showed that a 54  remained 
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at the promoter whilst core polymerase catalysed RNA elongation, probably due to 

tight contacts between the sigma and promoter DNA. The authors proposed a novel 

transcription cycle distinct from that mediated by cr 70. In this model, the closed 

complex containing the holoenzyme forms first and is converted to an open complex 

by the binding of an activator protein. In the presence of ribonucleotides, polymerase 

initiates transcription and proceeds downstream whilst a is left at the promoter. 

There then appears to be a requirement for c to be released or to undergo a change 

in conformation prior to reinitiation. This allows another possible step at which 

transcription might be controlled by allowing different mechanisms for initiation and 

reinitiation. Induction may be controlled via the activator protein, whilst reinitiation 

may be controlled separately by factors that work on the bound sigma. This 

alternative transcription cycle may reflect the different properties of a 54  and a70 . 

The a70  domain structure ensures that most promoters will not be bound by 

polymerase prior to their required activation. Because so many promoters are a 7o-

dependent, this property allows for optimal use of a limited amount of RNAP. In 

contrast, the less common a 54-dependent promoters are possibly permanently bound 

by this sigma, which might be more appropriate to its unusual function in permitting 

activator-dependent transcription of a relatively small number of genes. 

Detailed structure/function analysis of a 54  is still at an early stage, but further 

mutational analysis should reveal which regions are important for specific functions 

of this unique sigma factor. 
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1.9 Structure and Function of Bacterial Interspersed Mosaic Elements 

The presence of different families of interspersed DNA sequences located outside 

structural genes appears to be a general phenomenon in bacterial genomes (Blaisdell 

et al., 1993). They include Bacterial Interspersed Mosaic Elements, or BIMES 

(Gilson et al., 1991), which are 40 to 500-basepair long DNA sequences found in 

several enterobacterial species (Bachellier et al., 1993). They are composed of 

several motifs, including a 40-basepair sequence with imperfect dyad symmetry 

called PU for Palindromic unit (Gilson et al., 1984; 1987; Higgins et al., 1982) or 

REP for Repetitive Extragenic Palindrome (Stern et al., 1984). Although not found 

in protein-coding regions, they are usually located in transcribed regions of the 

chromosome. 

1.9.1 Palindromic Units 

PU elements are dispersed around the chromosome, and make up almost 1% of 

E.co!i genomic DNA (Gilson et al., 1984; 1987). Analysis of different PU 

sequences yielded a consensus (fig. 1.3). The highly conserved dyad symmetry 

could allow the formation of a strong stem-loop in the transcribed form, and 

evidence for such RNA secondary structure has been obtained (Higgins etal., 1988). 

PU elements often appear in clusters of two to six but with one occurrence of ten 

and one of eleven known to date (Bachellier et al., 1994). Because the palindrome is 

imperfect the PU can be oriented. Strikingly, successive PU within a cluster 

invariably alternate in orientation. In addition, where a base in the left arm of the 

dyad symmetry differs from the consensus, the corresponding base in the right arm 

also differs so as to maintain base-pairing potential. 
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Figure 1.3. Structure of a BIME. The PU consensus is as previously determined 
(Gilson et al., 1987). The arrows indicate the positions that exhibit dyad symmetry. 
The PU is symbolised below the consensus by a white rectangle with a triangle to 
indicate the orientation, from left to right, according to the positions not included in 
the symmetry (numbers 11-12 and 27-28). Variable positions are numbered below 
the diagram. The same PU symbol is used, along with the extra-PU motifs, to 
illustrate the structure of a BIME. The external motifs flank the left end of a single 
PU while the internal motifs are located between two successive PU occurences. The 
internal motifs have been further subdivided according to their sequence and to the 
ends of the adjacent PUs. See text for explanations of symbols s, 1, r, S, L, A, B. 

Palindromic unit = PU 

T 	T 	 AC 	G T 	 A 	A 
A T GCC GAT GC G CG NNNN CG C IT ATC GGC CTAC 

A 	G 	 G T 	AC 	 C 	G 
Left 	 Right 
end 	 end 

2 	7 	 14 	17 	 22 	25 	 32 	 40 

BIME STRUCTURE 

left 	 right 	 left 	BIME 
PU 	internal 	PU 	internal 	PU 	external 	motifs 

(s, 1, r) 	 (S, L) 	 (A, B) 
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1.9.2 Extra-Palindromic Motifs 

Detailed analysis of DNA sequences surrounding PU elements revealed seven 

other conserved motifs (Gilson et al., 1991). PU clusters were divided into segments 

according to their positions relative to the PU, and the lengths and sequences of 

segments occupying similar positions were compared. Segments located at each end 

of a PU cluster were called external segments. Because of the orientation of PU 

elements, right external sequences which flank the right end of a PU were 

distinguished from left external sequences, which flank the left end of a PU (fig. 1.3). 

Segments located between two PU were called internal segments. Because of the 

strict alternation in PU orientation within a cluster, right internal segments which are 

located between the right ends of two adjacent PU were distinguished from left 

internal segments, located between the left ends of adjacent PU (fig. 1.3). 

Two sets of similar sequences for left external segments were found, with 

homogeneity averaging 55% for group A segments and 60% for group B segments. 

By contrast, no such sets were found for right external segments. Sorting of internal 

segments into sets based on size and sequence identified five motifs. About 50% of 

right internal segments were found to have a size ranging from 32 to 34 bp, and were 

called L for Long sequences. The L set exhibits high sequence homogeneity, 

averaging 80%. The remaining segments, between 11 and 14 bp in length, were 

called S for short sequences. Sequence homogeneity averages 50%. Size distribution 

revealed three sets of left internal segments. 1 for long sequences are 8 or 9 bp in 

length and average 68% sequence identity. a for short sequences are composed of a 

single basepair, which is C:G in 60% of the cases. The third set, r, range in size from 

18 to 31 bp, with no sequence identity. It appears that PU clusters are composed 

exclusively of a mosaic combination of the PU sequence itself with these seven 

surrounding motifs. Within any single PU cluster, all the right internal segments are 

either S or L, while all the left internal segments are either s, 1, or r. Combination of 

the eight motifs can generate a great diversity of structures, which became known as 

BIMEs, for Bacterial Interspersed Mosaic Elements. 
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1.9.3 BIME Families 

More recently it has been shown that the E. coil PU motif can be subdivided into 

three classes, Y, Z', and Z2  (Bachellier et al., 1994). While the earlier PU consensus 

allowed for considerable variation, the newly defined PU motifs are highly 

homogeneous. PU sequences were grouped according to the presence of GC or TA 

at variable positions 7 and 32 (fig. 1.3), and called respectively the Y or Z type. The 

majority of Y-type sequences are 38 bp long with a high sequence homogeneity 

averaging 92%. The majority of Z'-type sequences are 33 bp while the majority of 

Z2-type sequences are 40 bp in length. Both Z motifs also exhibit a high level of 

sequence homogeneity, averaging 94% for Z 1  and 93% for Z2. The sequences are 

shown in figure 1.4. Within each class of PU motif the loop region, which was 

previously thought to be highly variable, appears to be as homogenous as the rest of 

the PU sequence. Available genomic DNA sequences indicate that the three PU 

motifs are equally distributed on the bacterial chromosome. 

A search for preferential association between the newly recognised PU motifs and 

the seven extra-palindromic motifs showed that when association with a right 

internal sequence is examined, 81% of the Z' motifs are associated with the L motif, 

while 80% of Z2  motifs are associated with the S motif. Preferential association is 

also found with the left internal sequences : the Z 1  motifs are associated with 1 and r 

motifs, while the Z2  motifs are mostly associated with 1 and s motifs. In addition, it 

was also found that the left external motif A is always associated with the Z-type 

PU, and that the left external motif B is always associated with the Y-type PU. 

Furthermore, 89% of Z 1  motifs are in BIMEs containing only two PU; among them, 

49% have the structure AZ'LYB, refered to as BIME-1. In contrast, 50% of the Z2  

motifs are in BIMEs with more than 2 PU; among them, 65% have the structure 

(YSZ2(s,l)) with n equal to or greater than 1.5, and are refered to as BIME-2. These 

results show that the association between motifs within BIMEs is not random, and 

that two major families of BIME are present in E.coli. 
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Figure 1.4. Sequence alignment of the three PUs. Regions of similarity have been 
numbered from I to V by Bachellier et al. (1994) and are underlined below. The 
asterisks indicate positions that are different between at least two of the three PU 
motifs; dashes represent gaps introduced to obtain an optimal alignment. 
The consensus sequence of the transcriptional terminator PU (Gilson et al., 1986 
and 1987) is also given. 

*** 	I 	* 	II 	 **** III * 	IV 	* 	V 

AA 	 G 	 A 
Y 	T GCC G GATGCG GCG-T AA- CG C CTTATC C GGCCTAC 

CT 	 A 	 G 

A 
Z' ATF GCC T GATGCG ---  CTA --- 	- CTTATC A GGCCTAC 

G 

AAT 	 G 	 A 
z2 	GCC T GATGCG ACGCT GCGCQ...T CTTATC A GGCCTAC 

GTC 	 T 

PU 	GCC G GATG 	GGATATCCA C ATC C GGC 
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1.9.4 Generation of BIMEs 

The structures of other BIMEs, corresponding mostly to ones containing a single 

PU, can be derived from the structures of the main families. Thus it is likely that 

BIME-1 and BIME-2 correspond to two ancestral BIME copies. Different 

mechanisms have been proposed for BIME formation: transposition (Gilson et al., 

1984), retrotransposition (Gilson et al., 1990 ; Higgins et al., 1988 ; Richetti and 

Buc, 1993), or formation of stem-loop DNA fragments (Ohshima et al., 1992). 

Whether the two types of BIME sequences are formed by the same mechanism is not 

known. Since the same PU and internal motifs are strongly conserved within a 

particular BIME, it seems that they originate from an array of direct repetitions. 

This could be explained by a localized amplification of a PU doublet. Interestingly, 

DNA polymerase I, which is known to bind BIME sequences (section 1 .9.7iii), is 

also believed to be involved in some amplification processes (Kornberg, 1980). 

Perhaps specific BIME-DNA polymerase I interaction can lead to localised 

amplification. 

1.9.5 Functions of BIMEs 

It has been estimated that the E.coli chromosome carries 300-500 BIMEs, but at 

present their biological function(s) is unknown. Roles have been proposed in the 

regulation of gene expression, in chromosome architecture, and in chromosomal 

rearrangements. These are discussed in detail in the following sections. 

1.9.5a Regulation of gene expression 

mRNA stabilization 

Newbury et al. (1987) found that in the ma1EFG operon of E.coli, upstream malE 

mRNA is considerably more stable than full-length ma1EFG mRNA. The ma1EFG 

operon is one of two divergent operons that comprise the maiB locus encoding the 
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maltose/maltodextrin transport system (Hengge and Boos, 1983). The malE gene 

encodes an abundant periplasmic protein, present in a 20- to 40-fold excess over the 

membrane associated Ma1F and Ma1G proteins (Manson et al., 1985). It was also 

noted that a BIME-2 sequence including two PU elements is located in the malE-

ma/F intergenic region. Upstream mRNA can be stabilized by impeding the action 

of 3'-5' exonucleases, which is frequently accomplished by stable secondary (stem-

loop) structures. It was therefore suggested that the BIME was responsible for the 

increased stability of upstream malE mRNA and hence, in part at least, for the 

differences in efficiency of gene expression within this operon. To test this 

hypothesis Newbury et al. (1987) deleted one or both of the PU elements on the 

chromosome. They found that with both PU elements deleted, the stability of the 

upstream transcripts was reduced such that ma/E-specific transcripts no longer 

accumulated. However, mRNA stability was unaffected when only one PU was 

removed. Correspondingly, whereas removal of both PU elements reduced the rate 

of MalE protein synthesis by nine-fold, removal of only one had no effect. 

Since the ratio of MalE to Ma1F proteins has been estimated at 20-40:1, the 

difference between upstream and downstream expression cannot be due to BIME-

dependent mRNA stabilization alone. Other factors may include differences in 

ribosome binding and translational efficiency between malE and ma/F mRNA. 

However, these results show that BIME-mediated differential mRNA stability can 

play a significant role in determining the relative expression of genes within an 

operon. 

Control of Translation 

Stem et al. (1988) went on to suggest that in operons with unequal gene 

expression, intercistronic BIMEs may interfere with efficient downstream translation 

as well as stabilise upstream mRNA. Working with the histidine permease operon of 

Salmonella typhimurium, which has an intercistronic region containing two PU 

elements located between the first gene (hisf) and three distal genes (his QMP), they 
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found that deletion mutants lacking the PU elements but retaining the hisQ Shine-

Dalgarno sequence increased the level of hisQ expression almost four-fold relative 

to wild-type. This supported a previous observation by Stem et al. (1984) who 

reported a decrease in expression of galK on a plasmid vector when the same PU 

sequences were inserted upstream of the reporter gene. The mechanisms involved 

remain unknown. 

Transcriptional Termination 

Despite their locations exclusively outside structural genes, their ability to form 

stem-loop structures, and their association with several proteins (next section), 

BIMEs do not appear to play any role in transcription termination. This is consistent 

with their presence in intercistronic regions. However, Gilson et al. (1986 and 1987) 

showed that a subclass of PU called PU*  (fig. 1.4) was able to act as a bidirectional 

terminator of transcription from the convergent genes pheA and tyrR. Surprisingly, 

the pheA terminator has no 3' run of uridines as seen in factor-independent 

transcriptional terminators (the tyrR terminator has 4). The 6 known PUK  sequences 

are all located between two convergent genes and make up most of the DNA in these 

regions. No other potential transcriptional terminators were found in their vicinity, 

leaving open the possibility that they all have this function. As yet, no further 

information is available regarding the frequency of PU on the chromosome. 

Although the above results indicate that BIME structures play a part in the 

regulation of gene expression, some of the effects can be explained as consequences 

of the palindromic secondary structures forming in mIRNA. Moreover, extensive 

sequence homology is not usually found among RNA structures involved in a 

generalized function (e.g. Rho-independent transcriptional termination or RNase 

protection structures), whereas the PU sequences retain remarkable sequence 

homology. Therefore, the above may not be the primary reasons for the maintenance 

of BIMEs on the chromosome. 
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1.9.5b Chromosome Architecture 

The palindromic nature and conservation of BIMEs suggests that they could be 

specifically recognized by proteins. Indeed, a role in chromosome structure and 

organization has been suggested, based on the nature of several proteins which 

associate with BIMEs. The chromosome of E.coli K12 is a single negatively 

supercoiled covalently closed circle comprising about 4.72Mb. Exponentially 

growing cells contain two to four chromosomes which are condensed into nucleoid 

structures that are capable of carrying out rapid replication and chromosome 

segregation. Biochemical studies and electron micrographs suggest that the nucleoid 

is organized into large independent loops whose structure is influenced by the action 

of topoisomerases and by the binding of histone-like proteins (reviewed by Drlica, 

1990). These individually supercoiled domains are thought to be anchored either to 

each other or to the membrane by way of specific interactions at the bases of the 

loops. 

DNA gyrase and HU binding 

Yang and Ames (1988) showed that the PU motif is bound specifically by DNA 

gyrase in vitro, and that gyrase binds progressivelly better to DNA containing one, 

two, and four PU sequences. In addition, they found that the histone-like protein HU 

stimulated the binding of gyrase to PU, and also reduced the level of gyrase-

mediated DNA cleavage. 

HU constitutes a major fraction of DNA-binding proteins in isolated bacterial 

nucleoids and has been found to affect site-specific interactions of other proteins 

involved in DNA transposition (Craigie et al., 1985), site-specific recombination 

(Johnson et al., 1986), and DNA replication (Dixon and Komberg, 1984; Ogawa et 

al., 1985). HU preferentially binds to supercoiled DNA rather than to relaxed DNA 

(Gualerzi et al., 1986), and it has been shown to wrap the DNA into a nucleosome-

like structure in which negative supercoils are constrained (Broyles and Pettijohn, 

1986). HU may play a regulatory role in the interaction of gyrase and PU sequences. 

Poniggia et al. (1993) found that HU prevents the extrusion of cruciforms likely to 
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be formed by the inverted repeat sequences found in PU elements. By binding to an 

intermediate in cruciform generation, HU may interfere with the formation of these 

structures. 

Upon identifying the three different PU motifs Y, Z', and Z 2  (section 1.9.3), 

Bachellier et al. (1994) studied their relative affinities for gyrase. Using an 

electrophoretic mobility shift assay, they found the gyrase concentration that led to 

half binding of a DNA probe carrying a particular PU was lower for Y than for Z 2 , 

(50nM for Y versus 80nM for Z 2), while the concentration for Z' was significantly 

higher (155nM). Since the main differences between Z 1  and Z2  are in the centre of 

the PU (fig. 1.4) this region may be critical for gyrase binding. Indeed, the authors 

found that a centrally deleted form of Y, Y was bound by gyrase with an affinity 

identical to that of Z'. It is worth noting that the transcriptional terminator PU*  is 

small (2 lbp), lacks the central region, and binds gyrase poorly (Gilson et al., 1986; 

1987). 

Since the central parts of Y and Z 2  share limited sequence homology but are 

similar in size (figi .4) it may be that the external parts of the PU, which are highly 

conserved between the different motifs, are directly recognized by gyrase, but only if 

the spacing is optimal. 

Integration Host Factor binding 

Integration host factor (IHF) is a sequence-specific DNA binding and bending 

protein that is abundant in the E.coli cell. The protein is a heterodimer, and belongs 

to the family of histone-like proteins that share amino acid sequence homology with 

HU (Drlica and Rouvière-Yaniv, 1987). IHF participates in a number of cellular 

processes such as X site-specific recombination, DNA transposition and inversion, 

phage DNA packaging, plasmid and phage replication and the control of gene 

expression (reviewed in Freundlich et al., 1992). 

IHF binds to specific DNA sequences and protects 30-40 bp against DNaseI 

digestion. A number of sequences with consensus binding sites for IHF have been 

suggested. Craig and Nash (1984) found that IHF-binding sites contain a non- 
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symmetrical consensus 5'- PyAANNNPuTTGATW-3', while Kur et al. (1989) 

proposed a related 27 bp consensus. Computer analysis of E. coli sequences to detect 

potential binding sites for IHF revealed that the highly conserved BIME motif L 

carries an IHF recognition sequence (ihJ). BIMEs carrying the L motif flanked by 

two PU motifs were called "reiterative ihfBIMEs" (RIBs) by Boccard and Prentki 

(1993), or "repetitive IHF-binding palindromic elements" (RIPs) by Oppenheim et 

al. (1993), and belong to the BIME-1 (sectioni .9.3) family as described by 

Bachellier et al. (1994).Using gel retardation assays and DNaseI footprinting, the 

above groups independently showed that IHF does bind to this form of BIME in 

vitro. The DNaseI footprint produced by IHF coincided almost exactly with the L 

motif, with little protection of the surrounding PU sequences. Boccard and Prentki 

suggested that by binding RIB elements, IHF forms a loop which enhances the 

interaction of gyrase with the flanking PU sequences. 

RIBs/RIPs appear to be evenly distributed around the chromosome and there are 

estimated to be 50-100 per genome. Interestingly, this coincides with the estimated 

number of independent domains in the nucleoid (Pettijohn,1982). Thus, IHF-

mediated DNA bending at RIBs/RIPs may facilitate the formation of a higher order 

DNA nucleoprotein structure involved in the organization of the nucleoid, while 

associated gyrase binding might ensure supercoiling in each domain. 

Another possible function of RIBs/RIPs has been suggested in view of an observed 

bias in their local position: in contrast to the general population of BIMEs, which 

can be found at intra-operonic locations, RIBs/RIPs are only found at the very end of 

transcription units. Liu and Wang (1987) have shown that movement of RNA 

polymerase along a DNA molecule can result in the formation of negative supercoils 

behind the transcription complex, and of positive supercoils ahead, if the ends of the 

DNA molecule or the transcription apparatus itself are not free to rotate. RIB/RIP 

elements are thus ideally located to bind DNA gyrase and function as swivels for the 

removal of transcription-generated positive supercoils. In support of this, Boccard 

and Prentkl noticed that at least half of their RIBs were located at the end of 

transcription units encoding a membrane-associated protein. In such cases, where the 
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nascent RNA encodes a protein carrying a transmembrane domain which is 

cotranslationally inserted into the membrane, there could be particularly severe 

restriction of the rotation of the transcription machinery. 

Using an L motif probe against genomic DNA from various enterobacteria, Gilson 

et al. (1991) concluded that this motif, and thus RIBs/RIPs, are present only in 

E. coli and Shigella sonnei. This could suggest that these elements are inessential, or 

that other bacterial species have different elements to carry out the same function. 

The role played by IHF could be performed by another DNA-bending protein or by 

an intrinsic bend in the DNA itself. Inspection of Salmonella PU-flanking regions 

did not provide evidence for these hypotheses, but much of the Salmonella genome 

remains unsequenced. Subsequently Bachellier et al. (1993) discovered a BIME 

element in Kiebsiella aerogenes which fulfils the criteria for RIBs/RIPs, i.e. two 

convergent PU sequences flanking an L motif. The Klebsiella PU and L motif 

sequences are significantly divergent from those in E. coli, but an i/if site is present. 

The high degree of conservation of the L motif sequence outwith the IHF-binding 

consensus may suggest possible interaction with other proteins (Herman and 

Schneider, 1992). An alternative explanation is that RIBs/RIPs have only recently 

been duplicated and dispersed throughout the E.coli genome; hence there has been 

little time for significant DNA sequence divergence. 

DNA Polymerase I binding 

Gilson et al. (1990) identified two protein fractions purified from an E.coli extract 

which were able to specifically protect PU sequences against Exonucleaselll 

(Exolil) digestion. One of these fractions was shown to be DNA polymerase I (Poll) 

judjed by the amino acid sequence of tryptic fragments. Commercially available Pol 

I gave the same Exolil protection pattern, although the large C-terminal fragment of 

Pol I (Klenow protein) did not. Poll/PU interaction was further confirmed using gel 

retardation and DNaseI footprint analyses. It was suggested that the PU could serve 

as preferred entry sites for Poll, playing a role in secondary replication initiation 

sites, in specific pausing sites during the polymerisation reaction, or in replication 
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fidelity. The second fraction conferring Exolli protection contained three major 

polypeptides of l30kD, 51kD, and 50kD, and two minor polypeptides of 80kD and 

66kD, as shown by SDS-PAGE. None of these were identified, but did not 

comigrate with purified DNA gyrase. 

The physiological functions of supercoiling are presumably compaction of DNA 

and modulation of gene expression. Some promoters are activated by an increase in 

negative supercoiling, and others are activated by a decrease. In a thermodynamic 

sense the negative superhelical torsion within the double-stranded DNA helix should 

favour the equilibrium of a process involved in the unwinding of DNA. It is 

therefore puzzling that an energetically favourable contribution in the form of 

superhelical torsion within the DNA helix does not in all cases increase promoter 

strength. In some cases DNA supercoiling might alter the promoter conformation 

such that binding by RNAP and/or activator proteins is weakened, resulting in 

diminished promoter strength. It is not known whether different operons are tuned to 

respond precisely to the particular degree of supercoiling of the domain in which 

they are located. It is conceivable that different degrees of superhelicity exist in 

various chromosomal domains, and that this may be due to the inherent differences 

between BIME sequences and therefore to variations in their interactions with 

gyrase, HU, IHF, and/or other BIME-associated proteins. 

1.9.5c Chromosome Rearrangements 

Chromosome rearrangements giving rise to gene amplification are important 

evolutionary events (Ohno, 1970) that increase gene expression by increasing gene 

dosage and/or placing genes under the control of new promoters. They can also 

create a source of redundant DNA potentially utilisable for generating genetic 

diversity. The ability to form stable base pairing between homologous regions is 

thought to be an important feature of the mechanism that gives rise to tandem 

duplications. 
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BIMEs could play a role in such rearrangements, and their intergenic location is 

compatible with this hypothesis. Indeed, several genetic duplications have one end 

in the PU-containing intercistronic region of the histidine biosynthetic operon of 

Salmonella typhimurium (Anderson and Roth, 1978). Shymala et al. (1990) deduced 

that these duplications arose by recombination with distant PU elements, and 

showed that recombination between non-identical PUs could take place in a RecK 

background. When a system not involving RecA is responsible for these events, 

DNA gyrase may play a role, since it can bind PU sequences, and can cause 

illegitimate recombination (Naito et al., 1984). Such a process may involve DNA 

gyrase bringing together distant PU sequences by binding them individually. If PU 

sequences were frequent sites of recombination, however, a much larger variety of 

duplications and rearrangements would be expected. Perhaps this is regulated, in 

part, by HU, which inhibits cruciform formation. 

Overview 

The multiple BIME structures, already shown to have different affinities for DNA 

gyrase and IHF, may also interact differentially with other BIME-associated 

proteins. The combination of motifs present within a particular BIME could 

influence its function, and each biochemical property associated with BIMEs should 

be studied with regard to the existence of the different families. Since PU sequences 

in E. coli are not usually found at corresponding loci in Salmonella lyphimurium, 

rigidly preserved positions may be unnecessary for most, if not all BIME functions. 

This suggests a widespread rather than localised roles. 
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1.10 Osmotic shock 

E. coli is able to survive outside its preferred habitat in the gut of vertebrate 

animals, and has developed protective systems against various stresses in order to do 

so. Such stresses include high osmolarity arising under conditions of desiccation or 

upon exposure to seawater. In hyperosmotic media, bacteria must increase their 

internal solute concentrations to avoid plasmolysis and maintain turgor pressure.The 

primary response of E. coli to osmotic stress is a rapid accumulation of K ions, 

achieved in part through the high-affinity potassium transport system, the product of 

the Up operon. Transcription of Up is induced by limited availability of K even at 

low osmolarity, and repressed at high osmolarity on addition of K (Sutherland et al., 

1986). The stimulus for osmotic induction of Up is unclear, but it may not be 

directly linked to the loss of turgor pressure as originally suggested (Laimins et al., 

1981). Asha and Gowrishankar (1993) found that while several ionic solutes were 

able to induce Up expression, non-ionic solutes were not, even though they also 

increased osmolarity. In addition, intracellular solutes including trehalose and 

glycine betaine, which would be expected to maintain turgor pressure, had no effect 

on Up expression. The authors proposed that the signal is related to the K flux 

across the membrane during shock. The intracellular glutamate concentration, like 

that of K, increases in proportion to the osmolarity of the growth medium, 

contributing to the maintenance of electrical neutrality (Richey et al., 1987). 

Osmotic protectants such as trehalose, choline, and glycine betaine are 

accumulated as a secondary response to osmotic stress. High intracellular 

concentrations of salts would seriously affect metabolic function and maintenance of 

membrane potentials, and osmolyte systems have developed in many organisms to 

be compatible with macromolecules (Yancey et al., 1982). These compatible solutes 

serve as osmoprotectants by maintaining both cell turgor pressure and intracellular 

enzyme function, and significantly enhance growth rates at high osmolarity. Glycine 

50 



betaine is the preferred osmoprotectant in E. coli (Sutherland et al., 1986) and is able 

to protect proteins from ionic or other denaturation (Yancey et al., 1982). 

Uptake of glycine betaine is mediated by two distinct transport systems encoded 

by proP and proU (Gowrishankar, 1985; May et al., 1986; Stirling et al., 1989). 

ProP mediates relatively low-affinity transport (Cairney et al., 1985a), whereas ProU 

specifies a high-affinity transport system whose synthesis is induced only when cells 

are grown at high osmolarity (Cairney et al., 1985b; Gowrishankar,1985; May et al., 

1986). pro  expression in vivo is induced about 100-fold by elevated osmolarity 

(May ci' al., 1989) and appears to require increased K concentrations (Sutherland et 

al., 1986). The increase in proU expression is mediated, at least in part, by changes 

in the DNA supercoiling level (Higgins et al., 1988a), while addition of glycine 

betaine prevents induction by osmotic shock (Sutherland et al., 1986). 

1.10.1 Induction of Osmotic shock genes 

Exposure to high osmolarity induces at least 20 proteins as determined by two-

dimensional gel electrophoresis (Botsford, 1990; Hengge-Aronis et al., 1993; 

Jenkins et al., 1990). The majority of these proteins are found in the cell envelope, 

but little is known about their functions and how they might aid the cell in coping 

with osmotic stress. However, blocking expression of osmotically-induced proteins 

has demonstrated their importance to hyperosmotic stress protection (Jenkins et al., 

1990). 

Many osmotically-inducible genes have been identified by transposon 

mutagenesis-created reporter gene fusions. These include osmB and osmY. osmB 

encodes a lipoprotein located in the outer membrane (Jung et al., 1989) which bears 

a strong structural similarity to the major E.coli lipoprotein, the product of lpp 

(Braun, 1975; Inouye et al., 1977). osmY encodes an osmotically-inducible 

periplasmic protein (Yim and Villarejo, 1992). This gene is identical to the carbon- 
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starvation-inducible gene csi-5 and is under the control of rpoS (Hengge-Aronis et 

al., 1993). rpoS is discussed in the next section. 

Genetic loci responsive to hyperosmotic stress are distributed throughout the entire 

E.coli chromosome (Csonka, 1989; Yim and Villarejo, 1992) but as yet, no central 

regulatory protein for the stimulon has been found. Some of the loci within the 

stimulon are known to be controlled by members of a family of specific regulatory 

factors, whose members in general control responses to environmental stimuli and 

are related by amino acid sequence homology (Ronson et al., 1987). In these two-

component systems found in many species of bacteria, a sensor protein detects the 

environmental stimulus and transmits a signal to an effector or regulator component 

that elicits a response, usually at the level of transcription. Phosphorylation of the 

smaller cytoplasmic effector by the larger membrane-bound sensor has been shown 

to occur for example in the control of porin synthesis (Forst et al., 1989), nitrogen 

regulation (Magasanik, 1988; Ninfa and Bennet, 1991), and chemotaxis (Hess et al., 

1988; Wylie et al., 1988). In the first of these examples, genes encoding the 

osmotically inducible outer membrane porins OmpC and OmpF are under the control 

of the osmotic sensor EnvZ and the transcriptional regulator OmpR. Regulation of 

the Up operon similarly requires KdpD, a 99-kD membrane protein, and KdpE, a 

25-kD cytoplasmic protein. Their amino acid sequences show that they are members 

of this same sensor-effector family (Walderhaug et al., 1992). 

In a further example, the cps genes involved in colanic acid capsule synthesis are 

regulated by RcsB, the effector, and RcsC, the sensor (Stout and Gottesman, 1990). 

Colanic acid is a mucoid exopolysaccharide that is normally synthesised by E. coli 

K12 in low amounts. Certain mutations that affect lipopolysaccharide synthesis and 

structure, leading to changes in the outer membrane, can increase colanic acid 

synthesis via activation of the inner membrane-bound RcsC, which in turn activates 

RcsB (Parker et al., 1992). This suggests that one function for colanic acid might be 

to protect the E.coli outer membrane from environmental stress. It has indeed been 

shown that colanic acid protects E. coli from dessication (Ophir and Gutnick, 1994) 

and recently Sledjeski and Gottesman (1996) found that a cps::lacZ fusion was 

52 



osmotically inducible. An alternative pathway for activation of cps gene 

transcription involves the unstable positive regulator RcsA. This is normally unstable 

because it is a substrate of Lon protease. If sufficient RcsA accumulates, cps 

transcription is activated independently of RcsC. Genetic and biochemical data 

suggest that RcsA and RcsB can interact to activate cps transcription (Brill et al., 

1988; Stout et al., 1991). Overproduction of capsular polysaccharide in ion mutant 

hosts is probably due to RcsA stabilization (Torres-Cabassa and Gottesman, 1987). 

Osmotic induction of cps was found to be dependent on the RcsB-RcsC pathway, 

with RcsA playing only a stimulatory role (Sledjeski and Gottesman, 1996). 

Although these three similar regulatory pathways respond to the same stimulus, 

osmotic shock, their signal transduction pathways appear to be specific. For 

example, the RcsC-RcsB system is similar to the KdpD-KdpE system, but the 

finding that RcsC is essential for osmotic induction of cps indicates that stimulated 

KdpD cannot cross-talk detectably to RcsB. This suggests that these systems are 

geared to different degrees of osmotic shock. For example, a slight increase in 

osmolarity may require activation of the Up operon to uptake K, but be too small a 

stimulus to warrant capsule synthesis. The systems may also respond selectively to 

alternate stimuli, with cps induction occuring preferentially under conditions that 

stabilize RcsA. If each osmotically-induced operon is individually controlled, there 

may not be a central regulatory protein. 

1.10.2 rpoS and osmotic shock 

Several osmotically-inducible genes such as osmB and osmY are also induced when 

cells enter stationary phase (Jenkins et al., 1990). This induction is believed to 

depend on rpoS, whose product is the "stationary phase" transcription initiation 

subunit, However, the intracellular level of a 5  does not significantly increase 

when exponentially-growing E.coli cells are exposed to osmotic shock, and many 

other rpoS-dependent genes are not osmotically inducible (Hengge-Aronis et al., 
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1993). Thus, within the rpoS regulon there exists a subset of genes which are also 

induced by increased osmolarity. Presumably the induction of osmB and osmY 

involves some activator which can stimulate RNA polymerase containing a, but not 
70 the major exponential phase sigma, cy 

Yim et al. (1994) found that osmY is regulated at the transcriptional level and that a 

single promoter is responsive to both osmotic and growth-arrest stimuli. In contrast, 

Jung et al. (1990) found two transcription control sites of osmB. Transcription from 

the downstream promoter P2 was induced by elevated osmolarity or upon entry into 

stationary phase, whereas transcription from P1, 1 5Obp upstream, occured only when 

both osmotic and growth phase signals arose simultaneously. Deletion analysis 

identified a 7-bp sequence just upstream of the -35 element of P2 essential for 

osmotic stimulation, but not for growth-arrest induction. 

Using lacZ fusions, Yim et al. (1994) showed that osmY and rpoS fusions were 

expressed in parallel, and that osmY expression did not require a functional a 70 , 

suggesting a direct role for cy S  Thus, osmY may be induced as a consequence of the 

5-10 fold increase in a S level when cells approach stationary phase (Tanaka et al., 

1993). Following osmotic shock, osmY may be activated by changes in K levels or 

supercoiling without the need to increase aS  concentration (although a s  is still 

required). In addition, core RNA polymerase and/or aS  could be modified during 

hyperosmotic stress so that the affinity for certain promoters is increased. 

Transcription from osmB P1 may be regulated by a different mechanism. 

To further study transcription of osmY and osmB, Ding et al. (1995) used in vitro 

transcription assays directed by reconstituted RNA polymerase holoenzyme 

containing either a 70  or aS.  They found that the relative levels of transcription by the 

two enzymes varied depending on reaction conditions. At low ionic strength, the 

osmB and osmY promoters were transcribed by both Ea 70  and EaS.  However, 

addition of up to 400mM potassium glutamate, to mimic intracellular conditions 

under hyperosmotic stress, specifically enhanced transcription from both promoters 

by Ea5, while inhibiting that by Ba 70. Similar high concentrations of potassium 

chloride inhibit both forms of RNA polymerase, suggesting that EaS  itself can sense 
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osmotic stress by responding to changes in intracellular potassium glutamate 

concentration resulting in increased affinity for osmoregulated promoters.In vivo, 

however, potassium glutamate may act to relieve the transcriptional repression 

caused by binding of H-NS (see next section). 

The effects of supercoiling on transcription from the osmY promoter were 

investigated by Kusano et al. (1996). They found that maximum transcription of 

DNA with low superhelicity required lower concentrations of potassium glutamate 

than that of DNA with high superhelicity. DNA superhelicity is known to change 

depending on cell growth conditions. For instance, nutrient downshift and entry into 

stationary phase cause a decrease in DNA superhelicity (Balke and Gralla, 1987; 

Jaworski et al., 1991) while high osmolarity leads to an increase (Higgins et al., 

1988a; Hsieh etal., 1991). 

OsmY and OsmB may play the same protective role in stationary phase growth and 

hyperosmotic conditions by altering the structure of the periplasm and outer 

membrane. osmY transcription is induced on entry into stationary phase by the 

increase in the concentration of cy and the decrease in negative supercoiling, while 

the stimulus following osmotic shock is the increase in potassium glutamate levels. 

Within the rpoS regulon it seems likely that each of the promoters 

requires specific factors or growth conditions for efficient transcription. 

1.10.3 H-NS and osmotic shock 

As mentioned in section 1.8.1, H-NS plays a regulatory role in determining the 

concentration of a, and may thus indirectly affect transcription of cySdependent 

osmotically induced genes. H-NS also plays a direct role in the transcriptional 

control of other osmotically induced genes in a cySindependent  manner. 

Ueguchi and Mizuno (1993) showed that purified H-NS inhibited transcription 

from the proU promoter in vitro, and DNaseI footprinting provided evidence of 

15 Obp protection upstream of the -35 promoter element. The inhibitory effect was 
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found to be alleviated by increased superhelicity of the template DNA, and strikingly 

more so by increased concentrations of K, in particular potassium glutamate. H-NS 

repressed the pro U promoter specifically, since it had no effect on transcription from 

an upstream tac promoter. Binding of H-NS downstream of the promoter, on the 

DNA encoding the 5' end of the pro  mRNA has also been demonstrated (Lucht et 

al., 1994; Mellies et al., 1994). There is evidence of pro  derepression in mutants 

lacking this negative downstream regulatory element. 

Trans-acting regulatory mutants with reduced proU expression were found to be 

allelic to rpoS and hupB, the latter encoding the B subunit of the histone-like protein 

HU (Manna and Gowrishankar, 1994). Thus HLJ plays a positive role in proU 

regulation in contrast to H-NS. HLJ also plays a positive role in rcsA expression, and 

HU oversynthesis induces mucoidy in E.coii (Painbeni et al., 1993). 

The otsBA operon encoding the trehalose synthesis system was found to be more 

strongly expressed in a hns rpoS double mutant than in a mutant deficient for rpoS 

alone, indicating that H-NS plays a direct negative role in otsBA expression (Barth et 

al., 1995). In general the direct H-NS effect can have varying importance in the 

regulation of a s-dependent genes. In the case of csgBA high levels of expression 

were seen in a hns rpoS double mutant (Arnqvist et al., 1994), indicating that the 

repression by H-NS is of primary importance. The csg operon encodes curli, which 

are fibronectin and laminin-binding fibres expressed by E. coil strains in response to 

low temperature, low osmolarity, and stationary growth conditions. On the other 

hand, a mutation in hns could only partially suppress the requirement for c in the 

expression of otsBA (Barth et al., 1995). 

The normally low level of transcription from the promoter of rcsA, which encodes 

the positive regulator of colanic acid synthesis, is thought to be due to H-NS 

repression. Using a iacZ fusion, Sledjeski and Gottesman (1995) found that rcsA 

transcription was stimulated following overproduction of DsrA, an 85nt RNA whose 

coding region lies just downstream of rcsA. The transcription start site was found to 

be the same with or without DsrA, showing that this RNA does not mediate 

transcription from another promoter. Increased transcription was also found when the 
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region upstream of -59 of the rcsA promoter was deleted, or when a mutant H-NS 

was present. In these strains, DsrA had no effect on rcsA transcription, suggesting 

that rather than behaving as a direct activator, DsrA overcomes the silencing action 

of H-NS. DsrA has no sequence homology either with the rcsA promoter or with any 

other sequenced E.coli DNA, although it is predicted to form an identical secondary 

structure to that of the homologue in Kiebsiella pneumoniae, with which it has 84% 

sequence identity. The effect of DsrA was lost when either the promoter or the 

terminator of dsrA transcription was removed, suggesting that RNA secondary 

structure is important. The antisilencing effect was also seen when just the rcsA 

promoter and upstream region was fused to a lacZ reporter gene, showing that no 

sequences within the rcsA transcribed region are important. The RNA may interfere 

with fl-NS binding to the promoter of rcsA, or prevent H-NS from forming a 

chromatin-like silencing structure. This is the only RNA molecule known to play a 

positive role in transcription, although others may exist. Transcription of 

antisilencing genes may be activated following a particular stimulus, such as 

increased osmolarity or entry into stationary phase. 

The complex regulation of genes expressed following osmotic shock may indicate 

a specific requirement for their protein products to permit cell growth also under 

other stressful conditions. This may also explain why there is no single regulator, 

such as an alternative sigma factor, to direct osmotic shock gene transcription. 
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1.11 The Cold-shock response 

Bacteria are well adapted to respond to instantaneous changes in temperature, with 

the induction of a specific set of genes upon temperature shift. Jones et al. (1987) 

found that transferring E.coli from 37°C to 10°C results in a 4 hour lag followed by 

resumption of growth with a generation time of 24 hours. During the lag period most 

protein synthesis ceases, except for a specific set of cold-shock-induced proteins. 

Generally, the magnitude of induction corresponds to the range of temperature 

downshift, and it is believed that the cold-shock response serves an adaptive function 

for continued growth at low temperatures. 

1.11.1 Cold-shock proteins in E.coli 

Most cold-shock proteins are synthesised at differential rates 2-10 times greater 

than their rates at 37°C (Jones et al., 1987). The identified cold-shock proteins are 

involved in various cellular processes such as transcription (NusA), translation 

(InfB), mRNA degradation (PnPase), recombination (RecA), and DNA topology (H-

NS and GyrA). 

The most striking induction is that of CspA, whose concentration increases 200-

fold following temperature downshift from 37°C to 10°C. As such, CspA has been 

designated the major cold-shock protein (Jones et al., 1987). The rate of CspA 

production accounts for 13% of total protein synthesis within 90 minutes at 10°C, 

and subsequently drops to a lower basal level (Goldstein et al., 1990). Induction of 

CspA was originally thought to arise primarily at the level of transcription, involving 

the binding of an unknown factor upstream of the cspA promoter (Tanabe et 

al., 1992). However, Goldenberg et al. (1996) demonstrated that the half life of cspA 

mRNA increased considerably upon downshift to 15°C. In addition, they found that 

the cspA promoter fused to lacZ did not significantly increase 13-galactosidase 

activity at 15°C, indicating that posttranscriptional mechanisms must play the major 

role in CspA regulation. Brandi et al. (1996) showed that cell-free S30 extracts from 
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cold-shocked cells were able to translate cspA mRNA much more efficiently than 

those from non-shocked cells, while both extracts translated a control transcript with 

equal efficiency. They proposed that the translational machinery is modified during 

cold-shock so as to preferentially translate this transcript. Although the mechanisms 

involved in this selective translation are unknown, they may also play a part in 

increased cspA transcript stability due to the occupation of mRNA by ribosomes. 

1.11.2 Role of CspA in cold-shock 

CspA is a 70 an protein with high sequence similarity to one domain of eucaryotic 

Y-box transcription factors (Wistow, 1990; Wolffe et al., 1992). These proteins 

recognise a specific regulatory sequence, the Y-box, which contains a conserved 

ATTGG motif (Wolffe, 1994). CspA has been implicated in the transcriptional 

regulation of two cold-shock genes, hns and gyrA. The regulatory domain of hns 

contains an ATTGG motif, and CspA binding to the hns promoter has been 

demonstrated in vitro (La Teana et al., 1991). CspA has also been shown to bind to 

the promoter region of gyrA, and mutation of three ATTGG motifs in this region 

eliminated specific protein-DNA interaction (Jones et al., 1992b). CspA may assist 

transcription initiation by facilitating open complex formation at low temperatures, 

perhaps by binding specifically to the non-coding strand around the transcription 

start site. 

It has been suggested that CspA might also bind RNA molecules, and may be 

involved in the translation of tightly folded mRNA molecules. Jones et al. (1996) 

identified a cold-shock-inducible ribosome-associated protein which was found to 

unwind double stranded RNA. They proposed that this 70kD protein, CsdA, plays an 

essential role in translation by unwinding cold-stabilized secondary mRNA 

structures. Since CspA is a putative 'RNA chaperone' (Jones and Inouye, 1994), it 

may bind to mRNA unwound by CsdA so as to prevent reannealing. 
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In addition to CspA, E. coli contains a family of CspA-like proteins among which 

only CspB is cold-inducible (Jones and Inouye, 1994; Yamanaka et al., 1994). 

Although the functions of these proteins are unknown, it has been suggested that 

they may play a role in masking the translation of certain mRNA molecules by 

recognising specific RNA structures (Jones and Inouye, 1994). 

1.11.3 Regulation of cold-shock gene expression 

DNA gyrase-mediated supercoiling appears to be involved in the regulation of 

cold-shock gene expression since induction was reported to have been lost in a 

gyrase deficient strain (Qoronfleh et al., 1992). In addition, the DNA binding protein 

H-NS is thought to play an important role in the adaptation to low temperatures since 

Dersch et al. (1994) found growth inhibition in hns mutants. It seems likely that 

CspA induction is the primary response to cold-shock, leading to a cascade of other 

effects. Induction of gyrA and hns transcription, due to CspA binding at their 

promoters, results in other cold-shock gene expression via DNA topology. In 

addition, it is possible that CspA directly affects transcription of certain cold-shock 

genes. 

Other possible participants in the regulatory process are guano sine 5 'triphosphate-

3' diphosphate and guanosine 5 'diphosphate-3 'diphosphate (collectively (p)ppGpp). 

Levels of (p)ppGpp decrease in proportion to the extent of temperature downshift 

(Pao and Dyess, 1981; Mackow and Chang, 1983). Artificially increasing (p)ppGpp 

levels prior to temperature downshift resulted in decreased induction of cold-shock 

proteins, while a relA spoT mutant (which lacks detectable levels of (p)ppGpp) 

produced higher levels of cold-shock-induced proteins (Jones et al., 1992a). It has 

been suggested that following temperature downshift the decreased translational 

capacity of the cell relative to the supply of charged tRNA triggers the decrease in 

(p)ppGpp levels, resulting in some of the altered gene expression observed. 
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The addition of certain inhibitors of translation (e.g. chloramphenicol, tetracycline 

and fusidic acid) was also found to induce a cold-shock-like response, leading to the 

proposal that the state of the ribosome is the normal physiological sensor for 

induction of this response (VanBogelen and Neidhardt, 1990). Many translational 

inhibitors that induce the cold-shock response also decrease the level of (p)ppGpp 

(Lund and Kjeldgaard, 1972), consistent with the proposed central involvement of 

these nucleotides in the cold-shock response. 

The function of the cold-shock response is not known, but the specific pattern of 

gene expression indicates that it is probably required for optimal adaptation to 

growth at low temperatures. In E. coli, a temperature downshift appears to modify the 

translational machinery leading to preferential synthesis of cold-shock proteins. In 

addition to stimulation of transcription, increased stability of cold-shock mRNAs and 

proteins may lead to their elevated levels at lower temperatures. Although the 

mechanisms involved are unclear, continued study of the cold-shock response will 

provide valuable insight into how cells respond and adapt to various stresses. 
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1.12 Aromatic Catabolism 

Studies of bacterial degradation of aromatic compounds have focussed mainly on 

the genus Pseudomonas and other soil bacteria. The initial pathway for the 

catabolism of various substrates including benzene, toluene, xylene, phenol and 

biphenyls is carried out by specific enzymes which convert the compounds to 

catecholic (1 ,2-dihydroxybenzene) intermediates. However, the reactions involving 

oxygenative ring fission of the catechol and the subsequent conversion to Krebs 

cycle intermediates are limited to one of two alternatives. The ortho-cleavage 

pathways involve ring cleavage between the two hydroxyl groups followed by a well 

defined series of reactions leading to -ketoadipate (reviewed by Dagley, 1986). The 

meta-cleavage pathway involves ring cleavage adjacent to the two catechol 

hydroxyls, followed by degradation of the ring cleavage product to pyruvate and a 

short chain aldehyde (see fig. 1.5). The enzymes involved in these pathways catalyse 

the same reactions but are specific to a particular substrate. 

Meta-cleavage pathways can metabolize many substituted aromatic compounds 

(Worsey and Williams, 1975), which may reflect the availability of different 

intermediates in nature. The tod gene cluster of Pseudomonas putida Fl encodes 

enzymes for toluene degradation (Lau et al., 1994), while the TOL plasmid pWWO 

of P.putida mt-2 encodes enzymes required for the oxidation of toluene and xylenes 

(Harayama and Rekik, 1993). Phenol and its methyl derivatives are degraded by the 

plasmid pVI150-encoded dmp gene products of Pseudomonas sp. strain CF600 

(Shingler et al., 1992) while the bph loci of Pseudomonas sp. LB400 and KK5 102 

allow these strains to degrade biphenyls and polychlorinated biphenyls (Hofer et al., 

1994; Kikuchi et al., 1994). The genes encoding the meta-cleavage pathway 

enzymes in each of these strains are present within a single operon. Comparison of 

the order and nucleotide sequences of these genes indicates that an ancestral gene 

cluster has spread horizontally and has been integrated into several operons that 

degrade different aromatic compounds (Harayama and Rekik, 1993, and references 

therein). 
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1.12.1 Aromatic catabolism in E.coli 

Several species of enteric bacteria including E. coli are also known to posess 

aromatic degradation pathways. Cooper and Skinner (1980) first demonstrated this 

by showing that strains B, C and W of E.coli (but not K12) were able to grow on 3-

and 4-hydroxyphenylacetate , and that all the enzymes necessary were present in cell 

extracts prepared from induced cells. The authors proposed that the strains of E. coli 

that they used had evolved the ability to grow on 4-hydroxyphenylacetate because 

this compound, being a product of anaerobic degradation of tyrosine, would be 

encountered in faecal environments. 

Burlingame and Chapman (1983) went on to demonstrate that E.coli K12, as well 

as strains B, C, and W, were able to utilize 3-phenylpropionic and 3-(3-

hydroxyphenyl)propionic acids as sole sources of carbon for growth. Fig. 1.5 shows 

their proposed reaction sequence for the degradation of 3-phenylpropionic acid and 

3-(3-hydroxyphenyl)propionic acid to succinate, acetaldehyde and pyruvate. These 

substrates are also compounds that have been found in the urine and faeces of 

animals, and are formed by the action of intestinal microflora on various plant 

constituents (Burlingame and Chapman, 1983, and references therein). The genes 

encoding the necessary enzymes have not yet been identified. 

Burlingame and Chapman (1983) also demonstrated the ability of strains K12 and 

W to utilize phenylacetic acid as carbon source. Cooper et al. (1985) identified K12 

mutations which mapped to 30.4 minutes on the genetic map and which prevented 

growth on this acid. Later Parrott et al. (1987) showed that E.coli K12 can grow on 

2-phenylethylamine, and proposed that this compound is first converted to 

phenylacetic acid. There is still uncertainty regarding the pathway for phenylacetate 

metabolism, but analysis of the DNA sequence around 30.4 minutes, when complete, 

may help to resolve this. 
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Figure 1.5. Proposed reaction sequence for the degradation of 3-phenylpropionic 
acid and 3-(3-hydroxyphenyl)propionic acid by E.coli strains K12, B, C, and W 
(from Burlingame and Chapman, 1983). 

The metabolites are as follows: 3-phenyipropionic acid (I); cis-3-(3-carboxyethyl)-
3 ,5-cyclohexadiene- 1 ,2-diol (II); 3-(3-hydroxyphenyl)propionic acid (III); 3-(2,3 -   
dihydroxyphenyl)propionic acid (IV); 2-hydroxy-6-ketona-2,4-dienedioic acid (V); 
2-keto-4-pentenoic acid (enol) (VI); succinic acid (VII); 4-hydroxy-2-oxovalerate 
(VIII); acetaldehyde (IX); pyruvate (X). 

The enzymes catalysing each step are as follows: 3-phenylpropionic acid 
oxygenase (a); cis-3-(3-carboxyethyl)-3 ,5-cyclohexadiene- 1 ,2-diol isomerase (b); 3-
(3-hydroxyphenyl)propionic acid hydroxylase (c); 3-(2,3-dihydroxyphenyl)propionic 
acid dioxygenase (d); 2-hydroxy-6-ketona-2,4-dienedioic acid hydrolase (e); 2-keto-
4-pentenoic acid hydrolase (f); 4-hydroxy-2-oxovalerate aldolase (g). 

COOH 

\ 

t 
COOH 	COOH 	COOH 

/ OHb/ 	C 1 N 

OH 
H 	

dt IV 
	M 

COOH 

OOH 

COOHj91 

e 
v 

COOH 
COOH 

VII 
f1H2o 	

COOH 

 g HCAO LX COOH 
- 3 + 

0 	 cH
3  

vifi 

64 



Jenkins and Cooper (1988) published the first study of the homoprotocatechuate 

(3,4-dihydroxyphenylacetate) degradative pathway in E.coii C, while more recently 

Stringfellow et al. (1995) completed the sequence of the hpc operon involved. The 

meta-cleavage pathways for catechol and homoprotocatechuate degradation involve 

chemically analogous reactions, but E.coii K12 strains appear to be devoid of hpc 

genes, and do not catabolise homoprotocatechuate (Jenkins and Cooper, 1988). 

Roper et al. (1993) noticed that an open reading frame just upstream of the hpc 

operon in E.coli C shared 99% identity with the E.coli K12 tsr gene encoding a 

serine receptor protein. tsr maps to 98.9 minutes on the K12 physical map, but the 

location of tsr on the E. coil C map has not been reported. 

1.12.2 Regulation of xyl gene expression in Pseudomonas 

The transcriptional control of the xyi operon carried by the TOL plasmid pWWO 

has been extensively studied (reviewed by Marques and Ramos, 1993). Expression 

of the upper pathway operon, which encodes enzymes for the oxidation of 

toluene/xylenes to benzoate/toluates, and the subsequent meta-cleavage pathway 

operon, is controlled by the products of the regulatory genes xyiR and xyiS. These 

genes are located adjacent to each other at the downstream end of the meta-cleavage 

operon, and are transcribed from divergent promoters. Xy1R stimulates transcription 

from the upper pathway operon promoter (Pu) in the presence of pathway substrates, 

and also from the xylS promoter (Ps). Both promoters are a 54-dependent, and 

transcription from Pu also requires Integration Host Factor. Xy1S-stimulated 

transcription from the cr 70-dependent meta-cleavage pathway operon promoter (Pm) 

is strongly enhanced by the presence of substrate benzoates. Expression of the meta-

cleavage operon is also induced by xylene-activated Xy1R which additionally 

stimulates transcription from Ps independently of meta-cleavage pathway substrates 

such as benzoate. The overall regulation of the xyi operons is shown in fig. 1 .6. 
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Figure 1.6. Regulation of the xyl operons in Pseudomonas 
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The C-terminal end of Xy1S is highly homologous to at least 27 proteins involved 

in transcriptional stimulation in carbon metabolism, pathogenesis and in response to 

alkylating agents (Gallegos etal., 1993; Ramos etal., 1990). A conserved helix-turn-

helix motif in this region is probably involved in DNA binding. This set of regulators 

constitutes the AraCIXy1S family. The interaction of benzoates with Xy1S leading to 

activation of the regulator is poorly understood, although amino acids in the N-

terminus have been implicated in effector binding. One possibility is that an 

intramolecular signal transmitted from the N-terminus to the C-terminus exposes the 

DNA binding motif so as to activate transcription. 

Kessler et al. (1994) noted XylS-independent induction of transcription from the 

Pm promoter by benzoate. This did not occur in an rpoN mutant background, 

suggesting that a a 54-dependent regulator (X in fig. 1.6) can activate transcription of 

the meta-cleavage operon in the absence of XylS. 

The XyLR protein belongs to the NtrC family (Inouye et al., 1988) and shares 67% 

overall identity with DmpR, the positive regulator of the phenol catabolic pathway 

borne by the Pseudomonas plasmid pVIl5O (Shingler et al., 1993). These regulators 

exhibit four domains, three of which are highly conserved within the family. The C-

terminal domain carries a helix-turn-helix DNA binding motif, while the non-

conserved N-terminal domain seems to be involved with signal interaction in the 

case of DmpR (Shingler et al., 1993) and Xy1R (Abril et al., 1989; Inouye et al., 

1988). XylR is constitutively expressed and autoregulates its own synthesis (Abril et 

al., 1989), but only stimulates transcription from Pu and Ps in the presence of 

pathway substrates or effectors. Using non-metabolizable effectors of both Xy1R and 

Xy1S, Duetz et al. (1994) demonstrated catabolite repression of the upper and meta-

cleavage operons by succinate. 
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1.12.3 Control of aromatic catabolic gene expression in E.coli 

Although positive regulation governs the expression of many aromatic catabolic 

pathways, the homoprotocatechuate (3 ,4-dihydroxyphenylacetate) degradative 

operon of E.coli C appears to be negatively regulated (Jenkins and Cooper, 1988). 

Removal of hpcR, the gene encoding the putative hpc repressor, led to constitutive 

expression of the hpc operon. hpcR was found to lie upstream of a promoter/operator 

region of hpc. Its sequence showed no significant similarity with other regulatory 

genes (Roper et al., 1993). The putative operator was found to contain two inverted 

repeats separated by 55bp, which may represent a binding site for HpcR. In addition, 

a binding site for the Catabolite Activator Protein was centred 20bp upstream of the 

hpc promoter, consistent with the reported glucose repression of this pathway 

(Jenkins, 1987). 

While investigating the catabolism of 3- and 4-hydroxyphenylacetate, Cooper and 

Skinner (1980) showed that the necessary enzymes were present in cell extracts 

prepared from induced cells, but were absent from non-induced cells. The regulation 

of this pathway is still unclear, but sequencing and identification of the genes 

involved may reveal similarities with other operons. 

Considering the similarities of the genes involved in aromatic degradation in all the 

bacteria studied, it seems likely that common mechanisms control their expression. 

Catabolite repression in the presence of more favourable substrates and induction of 

the necessary genes when aromatic compounds are the only metabolites available 

appear to be common features. 
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Chapter 2 

Materials and Methods 

2.1 MATERIALS 

2.1.1 Chemicals and enzymes 

Most chemicals were of analytical or molecular biology grade and were bought from 

the following suppliers (unless otherwise stated) 

Aldrich Chemical Company Ltd., Gillingham, Dorset. 

BDH Ltd., Poole, Dorset. 

Boehringer Corporation (London) Ltd., Lewes, Sussex. 

Fisons plc, Loughborough, Leicestershire. 

Sigma Chemical Company, Poole, Dorset. 

Agarose for gel electrophoresis of DNA and RNA was obtained from FMC 

Corporation, Rockland, ME, USA. Low melting point agarose was obtained from 

BRL (UK) Ltd., Cambridge. 

Hybond N positively charged nylon membrane, linked T7 Transcription-

Translation system and radiolabelled compounds were obtained from Amersham 

International plc, Amersham, Bucks. 

Enzymes used for nucleic acid manipulation purposes were purchased from 

Boebringer Corporation (London) Ltd., Lewes, Sussex. 

New England Biolabs, Beverly, MA, USA. 

Pharmacia LKB Biotechnology, Milton Keynes, Bucks. 

United States Biochemical Corporation, Cleveland, Ohio, USA. 

Synthetic oligonucleotides were purchased from the Oswel DNA Service of 

Edinburgh University. 
70 	s Purified RNA polymerase core enzyme, a and cr were kind gifts from Professor 

Akira Ishihama, National Institute of Genetics, Mishima, Japan. 
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2.1.2 Standard solutions 

Solutions were made up with dH20 and sterilised by autoclaving at 120°C, 1 5psi 

for 15 minutes, or by filtration through Acrodisc filters (0.45im pore size, Gelman 

Sciences). 

Solutions were stored at room temperature, unless otherwise stated. 

1 x TE 	 10mM Tris-HC1, 1mM EDTA; adjusted to pH 8.0 
with concentrated HCl. 

10 x TAE 	 0.4M Tris base, 0.2M sodium acetate, 10mM 
EDTA; adjusted to pH 8.3 with glacial acetic acid. 

TAE Agarose Gel 	 lOmi 10 x TAB, 3g Ficoll, imI 10% (w/v) 
Loading Buffer 	 bromophenol blue in methanol. 

10 x TBE 	 0.89M Tris base, 0.89M boric acid, 20mM EDTA; 
pH 8.2 without adjustment. 

TBE Agarose Gel 	 lOmi 10 x TBE, 3g Ficoll, imi 10% (w/v) 
Loading Buffer 	 bromophenol blue in methanol. 

20 x SSC 	 3.OM NaCl, 0.3M trisodium citrate; 
adjusted to pH 7.0. 

50 x Denhardt's solution 	1% (w/v) Ficoll, 1% (w/v) polyvinylpyroilidine, 1% 
(w/v) BSA (Pentax fraction V). 

10 x Tris-glycine 	 3% (w/v) Tris base. 14.4% (w/v) glycine; 
Running Buffer 	 adjusted to pH 8.6. 

RNase A 	 5mg/mi. Heated to 100°C for 15 minutes, then 
cooled to room temperature before storage, in 
aliquots, at -20°C. 

Phenol 	 Obtained from Sigma Chemical Company. Saturated 
with 1 x TE buffer for extractions of DNA solutions; 
saturated with 0.1M citrate buffer, pH 4.3, for 
extractions of RNA solutions. 

Chloroform 	 Chloroform and isoamylalcohoi mixed 24:1 (w/v); 
stored in darkened bottles at room temperature. 
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IPTG 	 25mg/mi stored at -20°C. 

X-Gal 	 25mg/mi in dimethyl formamide. Stored at -20°C. 

2.1.3. Growth media 

Growth media were made up with dH 20 and sterilised by autoclaving or by filter 

sterilisation. Quantities listed are for 1 litre final volume, unless otherwise stated. 

L-broth (LB) 	 1 Og Difco bactotryptone, 5g bacto yeast extract, 1 Og 
NaCl; adjusted to pH 7.2 with concentrated NaOH. 

LB Agar 	 LB plus 15g Difco agar. 

BBL Agar 	 1 Og Baltimore Biological Laboratories trypticase, 
5g NaCl, lOg Difco agar. 

BBL Top Agar 	 As for BBL Agar, but with 6.5g Difco agar. 

Freezing Broth 	 40g Difco nutrient broth, 5g NaCl. 

4 x M9 Salts 	 28g Na2HPO4, 12g KH2PO4, 2g NaCl, 4g NH4CI. 

M9 Minimal Medium 	lOOm! 4 x M9 salts, 300m1 dH20, plus 0.2% (w/v) 
sugars, 20p.g/ml amino acids, 2j.tg/ml thiamine, 
MgSO4  (80mg). 

Spizizen Minimal Medium 	2g (NH4)2SO4, 14g K2HPO4, 6g KH2PO4 , ig 
trisodium citrate dihydrate, 0.2g MgSO 4 .71-120, 
0.2% (w/v) sugars plus 2mg thiamine, 20mg amino 
acids as required. 

Spizizen Minimal Agar 	Spizizen minimal medium plus 15g Difco agar. 

Bacterial Buffer 	 3g KH2PO4, 7g Na2HPO4, 4g NaCl, 
0.2g MgSO4 .71-120. 

Phage Buffer 	 3g KH2PO4, 7g Na2HPO4, 5g NaCl, 
lOmi 0.1M MgSO4 , lOmi 0.1M CaCl2 , 

imi 1% (w/v) gelatin. 
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All media, with the exceptions of minimal medias and agars, were prepared by the 

staff of the Media Room of this Institute. 

2.1.4. Antibiotic stock solutions 

Ampicillin 	 10mg/mi in dH20. 

Chioramphenicol 	 Free chloramphenicol (20mg/mi) in ethanol. 

Kanamycin 	 20mg/mi kanamycin sulphate in dH 20. 

Rifampicin 	 20mg/mi in methanol (stored in the dark 
at 4°C for 2 weeks). 

Antibiotic solutions were filter sterilised and stored in aliquots at -20°C except 

where stated. The required amount of stock solution was added to liquid media at 

room temperature and to molten agar (cooled to 55°C) immediately prior to pouring. 

2.1.5 Bacterial strains 

All strains were derivatives of E. coli K 12 and are listed in table 2.1. 

2.1.6 Bacteriophages 

Listed in table 2.2. 

2.1.7 Plasmids 

Listed in table 2.3. 
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Table 2.1 Bacterial strains 

Strain Genotype Reference or source 
NM570 A(!ac-pro) thi supE hsdMhsdS recAl3/ N.E. Murray 

F: proAB 1ad 1  1acZM 15 (Edinburgh) 

TG1 L(lac-pro) thi supE hsdD51 Gibson (1984) 
F': traD36 proAB 1ad 1  1acZAM1 5 

NM621 recD hsdR mcrB pro leu thi lac tonA21 supE N.E. Murray 

P678.54 thr leu thi minB K. Begg (Edinburgh) 

W3110 supE? Bachman (1972) 

SW100 NM621 J229: : kan This work 

Table 2.2 Bacteriophages 

Bacteriophage Description Reference 
X139 W31 10 genomic DNA from 3 70k - 388kba cloned Kohara 

between the BamHI sites of AEMBL4 et al. (1987) 

X140 W31 10 genomic DNA from 38 1 k - 397kba cloned Kohara 
between the BamHI sites of XEMBL4 etal. (1987) 

A440 W3110 genomic DNA from 2759kb - 32778kba Kohara 
cloned between the BamHI sites of ?EMBL4 etal. (1987) 

A639 W3110 genomic DNA from 4313kb - 4327kba Kohara 
cloned between the BamHI sites of XEMBL4 etal. (1987) 

X640 W3110 genomic DNA from 43 18kb - 4332kba Kohara 
cloned between the BamHI sites of AEMBL4 etal. (1987) 

a. Numbers in kilobase pairs are co-ordinates on the physical map of the E.coli 

genome (Kohara etal., 1987). 
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Table 2.2 Bacteriophages (continued) 

Bacteriophage 	 Description 	 Reference 
or source 

M13 mGP 1-2 M13 mp8 carrying the T7 RNA polymerase gene 1 M. Khattar 
under the control of the lacUV5 promoter. 	(Edinburgh) 

M13 t9130 	lacZa cloning vector. 	 Amersham 
International 

M13 t9131 	As tgl30 but with the cloning sites in the opposite Amersham 
orientation. 	 International 

M13 tg130-4 	3.7kb BamHI/KpnI fragment from X639 cloned This work 
between the same sites in tgl3O. 

M13 tgl3 1-3 	3.7kb BamHI/KpnI fragment from ?639 cloned This work 
between the same sites in tg 131. 

Table 2.3 Plasmids 

Plasmid 	 Description 	 Reference 
or source 

pBluescriptllSK AmpR, lacZa cloning vector 	 Stratagene Ltd. 
Cambridge UK 

pBluescriptllKS As SK but with the cloning sites in the Stratagene Ltd. 
opposite orientation. 	 Cambridge UK 

pET3 	AmpR, vector for T7-directed transcription of 	Studier et al. 
inserted DNA. 	 (1990) 

pUC4-KISS 	AmpR, KanR, source of Tn901 Kanamycin Barany (1985) 
resistance cassette. 

pSW3 	3.7kb BamHI/KpnI fragment from A639 cloned 	This work 
between the same sites in pBluescriptllKS. 
Carries a 11 3bp deletion in the BIME. 

pSW4 	3.7kb BamHI/KpnI fragment from X639 cloned 	This work 
between the same sites in pBluescriptllKS. 
Carries a 339bp deletion in the BIME. 
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pSW5 3.6kb BamHI/KpnI fragment from pSW3 This work 
cloned between the same sites in tg 131 to pick 
up 	additional 	restriction 	sites. 	3.6kb 
HindJI/SmaI fragment from this M13 cloned 
into the BamHJ site of pET3. 

pSW6 As pSW5 but with the 3.4kb BamHT/KpnI This work 
fragment from pSW4 used in the initial step. 

pSW9 pSW4 with an internal StuI deletion followed This work 
by replacement of the 	1.8kb KpnI/EcoNT 
fragment with a linker. 

pSWlO 1.2kb KanR cassette from pUC4-KISS cloned This work 
into the unique BglII site of pSW9. AmpR, 
KanR plasmid used for the disruption of1229. 

pSW1 1 1.8kb KpnI/EcoNI fragment of pSW3 replaced This work 
with a linker. 

pSW12 1.8kb BamHh/KpnI fragment of pSW1 1 cloned This work 
into the same sites in pBluescriptllSK. 

pSW13 1.3kb BglII/BamHI fragment deleted from This work 
pSW11. 

pSW14 As pSW13 but with the ends blunted before This work 
religation. 

pSWI5 pSW12 with an internal StuI deletion. This work 

pTEP4 4.2kb EcoRV fragment from X140 cloned into T. Pratt 
the same site in pBluescriptllSK (this work) 
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2.2 GENERAL METHODS 

2.2.1 General Procedures (Sambrook et aL, 1989) 

All procedures were carried out at room temperature unless otherwise stated. 

All small-scale procedures were performed in 1 .5ml polypropylene microcentrifuge 

tubes. Large scale procedures were performed in 1 5m1 or 30m1 Corex tubes or in 

50m1 Falcon tubes. Liquids were dispensed using Gilson P-20, P-200, and P-bOO 

air displacement pipettors and tips, or glass pipettes. 

Microfuge tubes, pipette tips and glass pipettes were sterilised by autoclaving. 

Corex tubes were sterilised by baking at 250°C for 16 hours. Falcon tubes were 

supplied presterilised by the manufacturers. 

2.2.2 Preparation of Dialysis tubing 

Dialysis tubing (Visking 8/32") was prepared by boiling in a large volume of 2% 

(w/v) sodium bicarbonate, 1mM EDTA for 10 minutes and then in d11 20 for another 

10 minutes. Dialysis tubing prepared in this way was stored in 50% ethanol at 4°C 

and rinsed in sterile dH20 before use. 

2.2.3 Phenol extraction of nucleic acid solutions 

Proteins were removed from nucleic acid solutions by extraction with phenol. An 

equal volume of TE or citrate buffer-saturated phenol was added to the nucleic acid 

solution and the phases mixed by vortexing. The resulting mixture was then 

separated into organic and aqueous phases, by centrifugation at 11 000g in a 

microfuge or Sorvall SS34 rotor for 3-5 minutes, and the upper (aqueous) phase 

transferred to a fresh tube. The process was repeated until the interface between the 

phases was free from denatured proteins. Phenol extraction was usually followed by 

one extraction with an equal volume of freshly prepared phenol: chloroform: isoamyl 
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alcohol (25:24:1), then with chloroform. The chloroform extraction step removes 

traces of phenol from the DNA solution, which might otherwise inhibit enzymes. 

Nucleic acids were then precipitated with ethanol (section 2.2.4). 

2.2.4 Ethanol precipitation of nucleic acids 

Ethanol .precipitation of nucleic acids removes residual salts, phenol, and 

chloroform from nucleic acid solutions and is used to concentrate nucleic acids. 

0.1 volumes of sodium acetate (pH 5.2) and 2-3 volumes of ethanol were added to 

the nucleic acid solution. The mixture was then incubated at -70°C for at least 15 

minutes, and the precipitated nucleic acids were recovered by centrifugation at 

11 000g for 15 minutes at 4°C. The supernatant was discarded and the pellet was 

washed with 70% ethanol (v/v) to remove traces of the original solution, then 

recovered by centrifugation as before. The supernatant was drained off into paper 

and the pellet dried under vacuum. The pellet was then dissolved in the required 

volume of the appropriate buffer. 

2.2.5 Quantitation of nucleic acid solutions 

The concentration and purity of nucleic acid solutions were estimated by UV 

spectrophotometry at 260nm and 280nm. Concentration was estimated by assuming 

that an A260  of 1 corresponds to 50pg/ml for dsDNA and 40tg/ml for ssDNA and 

RNA. The ratio of A260/A280  of a relatively pure solution of nucleic acids should be 

close to 2. 
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2.2.6 Autoradiography 

Radiolabelled nucleic acids and proteins were detected by autoradiography. X-Ray 

film (DuPont Cronex or Amersham Hyperfilm) was exposed to gels or to nylon 

membranes containing [32P]-labelled nucleic acids in lightproof cassettes by one of 

the following methods (in order of increasing sensitivity): 

at room temperature 

with calcium tungstate intensifying screens at -70°C 

as in ii) but with preflashed X-Ray film 

Gels containing [32P]-labelled run-off transcripts were exposed to an Imaging Plate 

(BAS-Ill) and analysed with a Bioimage analyser (BAS-2000, Fuji Film Co.). 

[35S]-labelled nucleic acids and proteins in fixed and dried gels were 

autoradiographed at room temperature. 

2.3 BACTERIAL TECHNIQUES 

2.3.1 Growth of bacterial strains 

Except where otherwise stated, bacterial strains were grown in LB or LB agar 

containing the appropriate antibiotic for maintenance of plasmid and strain 

characteristics. Liquid cultures were routinely started by inoculating 5m1 of LB plus 

antibiotic(s) with a fresh single colony. The M13 hosts NM570 and TG1 were plated 

on minimal medium when single colonies were required, in order to maintain F 

plasmid derivatives required for M13 sensitivity. Both strains carry a mutation 

affecting proline biosynthesis which is complemented by genes on the F plasmid 

derivative. For long term storage, a single colony was inoculated into 2m1 of 

freezing broth containing the appropriate antibiotic(s) and grown overnight at 37°C. 
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imi of sterile glycerol (50% w/v) was then added and the culture frozen at -70°C. 

Such preparations are stable at -70°C indefinately. 

2.3.2 Transformation and transfection with DNA (Sambrook el al., 1989) 

Plasmid DNA and M13 replicative form DNA were introduced into E. coil strains 

by the same CaCl 2  based method. 50m1 prewarmed LB was inoculated with 1150 

volume of a fresh overnight culture and shaken at 37°C until an A 650  of 0.5-0.6 was 

reached. The culture was chilled on ice for 20 minutes, then split between two 30m1 

polycarbonate tubes and centrifuged (8000g) for 10 minutes at 4°C. The supernatant 

was discarded and pelleted cells resuspended in ice cold 0.1M MgC1 2  (lOml per 

tube) then centrifuged as before. The cells were then resuspended in ice cold CaC1 2  

(1 Oml per tube), incubated on ice for 20 minutes, then centrifuged as before. The 

cells were then resuspended in 0.1M CaC1 2, 15% (v/v) glycerol (lml per tube) and 

incubated on ice for 60 minutes. 0.2ml aliquots were transferred to microfuge tubes 

and stored at -70°C. 

Transformation and transfection were effected by adding DNA (50-200ng plasmid 

or M13 RF DNA, or one quarter of a ligation mix) to 0.2m1 of competent cells, 

freshly thawed, on ice. After 30 minutes incubation on ice, cells were heat-shocked 

(5 minutes at 37°C or 2 minutes at 42°C), then transferred back to ice for 10 minutes. 

Cells transformed by plasmid DNA were mixed with lml of LB and incubated at 

37°C for 60 minutes prior to plating 0.2m1 aliqouts on selective medium, in order to 

allow expression of antibiotic resistance. 

When transfecting with M13 DNA, transfected cells were mixed with 0.2m1 of a 

fresh overnight culture of the same strain, and then plated as for M13 titration 

- (section 2.4.6). 
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2.4 PHAGE TECHNIQUES 

2.4.1 Lambda titrations 

20m1 of prewanned LB, supplemented with maltose (0.2% w/v), were inoculated 

with 1/20 volume of a fresh overnight culture of host bacteria and shaken vigorously 

at 37°C until an A 650  of 0.5 was reached. Cells were harvested by centrifugation 

(2500g) in an MSE 'Mistral 1000' bench-top centrifuge and then resuspended in 

lOml M9SO4  (10mM) and stored at 4°C. Such "plating cells" can be used for up to 

one week. 

Lambda lysates were serially diluted ten fold in phage buffer and 0.1 ml aliquots of 

the appropriate dilutions mixed with 0.2m1 of plating cells. The samples were then 

incubated at 37°C for 15 minutes to allow adsorption of the phages to the bacterial 

cells, then mixed with 3m1 of BBL top agar and poured onto fresh, well dried BBL 

agar plates. The top agar was allowed to set, then the plates were incubated inverted 

at 37°C overnight. 

2.4.2 Lambda plate lysates 

A single fresh plaque was picked into lml of phage buffer using a sterile tooth 

pick. A small drop of CHC13  was then added and the phage suspension was 

incubated at 37°C for 15 minutes. 0.1ml of phage suspension and 0.2m1 of plating 

cells were mixed and incubated at 37°C for 15 minutes. 3m1 of molten BBL top agar, 

supplemented with maltose (0.2%) and MgSO 4  (10mM) were then added and the 

mixture poured onto a fresh, moist LB agar plate (also supplemented with maltose 

and MgSO4). 

The plate was incubated upright at 37°C until confluent lysis had occured (6-8 

hours). The plate was then flooded with 4m1 of LB and stored at 4°C overnight to 

allow phages to diffuse into the broth. The LB was then drawn off with a pipette, 
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mixed with a small drop of CHC1 3  and clarified by centrifugation (8000g) in a 

Sorvall SS34 rotor at 4°C for 10 minutes. 

2.4.3 Lambda liquid lysates 

200m1 of prewarmed LB, supplemented with maltose (0.2% w/v) and MgSO 4  

(10mM) were inoculated with 1/40 volume of a fresh overnight host culture and 

shaken vigorously at 37°C. When an A650  of 0.5 was reached, phage lysate was 

added to give a multiplicity of infection of 0.5, and incubation was continued until 

lysis occurred. 0.5ml of chloroform was added and the culture incubated with 

shaking for 10 more minutes at 37°C. 8g of NaC1 were then dissolved in the culture, 

and RNase A and DNase I added to a final concentration of 1 jtg/ml each. After one 

hour of incubation at room temperature the phage suspension was clarified by 

centrifugation (8000g) for 20 minutes at 4°C. The supernatant containing the phages 

was then decanted carefully into a conical flask and stored at 4°C . At this stage the 

lysate was titrated. 

Phages were concentrated by precipitation with PEG, as follows. PEG was 

dissolved in the phage lysate to a final concentration of 10% (w/v) by slow mixing 

on a magnetic stirrer at room temperature, then the mixture was transferred to ice for 

60 minutes to allow precipitation of phages and macromolecules. Precipitated phage 

particles were then recovered by centrifugation (9000g) for 20 minutes at 4°C. The 

supernatant was discarded and the phage pellet gently resuspended in 5m1 of phage 

buffer. PEG and cell debris were removed from the phage suspension by extraction 

with 1 volume of chloroform. The organic and aqueous phases were then separated 

by centrifugation (3000g) in a Sorvall SS34 rotor at 4°C for 15 minutes and the 

aqueous phase transferred to a fresh tube. 
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2.4.4 Lambda phage purification 

Lambda phage particles were purified by equilibrium centrifugation in caesium 

chloride. After extraction with CHC1 3  the volume of the phage suspension was 

measured and CsC1 added (0.75g per ml of lysate). When the CsC1 had dissolved 

completely the phage suspension was transferred to an 1 lml crimp-seal centrifuge 

tube and centrifuged at 90,000g for 24 hours at 4°C. 

The phage particles were visible as an opaque band in the CsC1 solution and were 

recovered through the side of the tube using a hypodermic syringe fitted with a 1 9g 

needle. CsC1 was then removed from the phage suspension by dialysis against two 

changes of phage buffer for two hours at room temperature. The purified phage 

suspension was then stored at 4°C in tightly capped microfuge tubes. 

2.4.5 Lambda transduction 

Mutations in cloned DNA were moved from plasmid vectors to the E.coli 

chromosome using lambda clones of the Kohara library (Kohara et al., 1987) as 

specialised transducing phages. This method was devised and described in full by 

Kulakauskas et al. (1991). 

The location of the cloned gene on the physical map of the E.coli K12 

chromosome must be known in order that the appropriate lambda clone can be used 

in the procedure. The plasmid borne copy of the gene is then mutated by insertion of 

an antibiotic resistance marker between appropriate restriction site(s). Lambda 

phages are then grown on cells carrying the mutated plasmid and the resulting lysate 

used for transduction. Phages of the Kohara library are ci, therefore transductants 

recovered are haploid recombinants produced by recombination between 

homologous sequences in the cloned and chromosomal alleles. 
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A plate lysate of the appropriate Kohara phage was prepared by infecting TG1 

cells, carrying mutant plasmids, as described in section 2.4.2 then titrated before 

storage at 4°C. 

An overnight culture of the recipient strain was then grown and subcultured as for 

lambda titrations. When an A 650  of 0.5 was reached the culture was infected with 

phage lysate at an m.o.i. of 1 and incubated with shaking 37°C for 15 minutes. 

Trisodium citrate and glucose were then added to a final concentration of 10mM and 

0.2% respectively. The culture was then grown at 37°C for 2 hours to allow 

expression of antibiotic resistance. 0.1ml aliquots were then mixed with 3m1 of BBL 

top agar and plated on LB agar containing appropriate antibiotic(s), then incubated at 

37°C overnight. 

Transductants were screened for the absence of plasmids by loss of antibiotic 

resistance and by small scale plasmid DNA preparation. Candidate transductants 

were then purified and characterised. 

2.4.6 M13 titration 

Phages were ten fold serially diluted in phage buffer. 1 Op.l of each phage dilution 

were mixed with 0.2m1 of a fresh overnight culture of TG1 and added to 3m1 of 

molten BBL top agar, containing IPTG (166tg/ml) and X-gal (250tg/ml) for 

blue/white selection. The mixture was poured onto a fresh, dry BBL plate and 

allowed to set. Plates were incubated inverted at 37°C overnight. 

2.4.7 Storage of M13 phages 

Single plaques were toothpicked into 0.5m1 aliquots of phage buffer and stored for 

several months at 4°C. Alternatively, aliquots of supernatant from phage infected 

cultures were stored at 4°C. Fresh, single plaques were obtained by plating dilutions 

of phage stock as described in section 2.4.6. For long term storage, phage infected 

cells were frozen at -70°C as described in section 2.3.1. 
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2.5 NUCLEIC ACID PURIFICATION 

2.5.1 Small scale plasmid DNA purification (Birnboim and Doly, 1979) 

Plasmid DNA was isolated from small volume cultures by alkaline lysis, which 

selectively denatures and precipitates chromosomal DNA and proteins. The 

following solutions were used in this method: 

Solution I 	50mM glucose, 25mM Tris-HC1 pH 8.0, 10mM EDTA pH 8.0. 

Solution II 	0.2M NaOH, 1% (w/v) SDS freshly prepared, as required. 

Solution III 3M potassium acetate, 2M glacial acetic acid. 

1 .5m1 of an overnight culture (previously grown from a single colony, in LB plus 

appropriate antibiotic) were transferred to a microfuge tube and centrifuged 

(1 1000g) for 2 minutes at room temperature. The supernatant was discarded and the 

pellet resuspended in 1 00 p.l of solution I (to which 4mg/ml lysozyme had been 

added) and incubated at room temperature for 5 minutes. 200pJ of solution II were 

added and the sample mixed by inversion, then incubated on ice for 5 minutes. 1 50p.l 

of solution III were added and the sample left on ice for a further 5 minutes to allow 

precipitation of SDS, chromosomal DNA, and proteins. The precipitate was then 

pelleted by centrifugation (1 1000g) for 5 minutes and the supernatant transferred to 

a fresh tube. The sample was extracted with an equal volume of 

phenol: chloroform: isoamylalcohol. Nucleic acids were concentrated by ethanol 

precipitation and vacuum dried. The dried pellet was then redissolved in 30p.l TE 

containing 20.tg/ml RNase A. 
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2.5.2 Large scale isolation of plasmid DNA 

200ml of LB, plus appropriate anitibiotic, were inoculated with a single colony 

and shaken at 37°C overnight. Cells were harvested by centrifugation (8000g) in a 

Sorvall GSA rotor at 4°C for 20 minutes. The cells were then resuspended in lOOml 

of TE and pelleted as before. The pellet was resuspended in 3m1 of sucrose buffer 

(25% (wlv) sucrose, 40mM Tris-HC1 pH 8.0) and placed on ice. imi of lysozyme 

(10mg/mi) was added and the sample incubated on ice for 5 minutes. ltl of 0.5M 

EDTA (pH 8.0) and 800tl of RNase A (5mg/mi) were added and the sample was 

incubated on ice for a further 5 minutes. 5m1 of Triton mix (0.1% (w/v) Triton X-

100, 65mM EDTA pH 8.5, 50mM Tris-HC1 pH 8.0) were added and the sample 

incubated for 10 minutes on ice. Cell debris was pelleted by centrifugation (27000g) 

in a Sorvall S534 rotor for 30 minutes. The supernatant was transferred to a fresh 

tube and its volume adjusted to 9ml. 9g of CsC1 were added and allowed to dissolve, 

after which 0.9ml of EtdBr (Smg/ml) were added. The sample was then transferred 

to a crimp-seal polyallomer tube and centrifuged (90,000g) in a Beckman Ti50 rotor 

for 60 hours at 18°C. The DNA was observed by fluorescence of the DNA-EtdBr 

complex under UV light. Two bands were visible. The lower band, almost 

exclusively comprising supercoiled plasmid DNA, was recovered through the side of 

the tube using a hypodermic syringe and needle. EtdBr was removed by four 

extractions, each with an equal volume of propan-2-ol saturated CsC1 solution. The 

DNA solution was dialysed against several changes of TE buffer for a total of 24 

hours at 4°C. The DNA was finally concentrated by ethanol precipitation, vacuum 

dried, and redissolved in 1 00 p.l TE buffer. 
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2.5.3 Purification of M13 Replicative Form (RF) dsDNA 

Small scale 

A fresh single plaque was toothpicked into 1 .5m1 of LB and shaken at 37°C 

overnight. The culture was then transferred to a 1 .5m1 microfuge tube and the cells 

harvested by centrifugation. RF DNA was prepared from infected cells by the same 

method used for small scale plasmid purification. 

Large scale 

200m1 of LB were inoculated with 1150 volume of an overnight liquid culture 

(grown from a single colony of the host strain) and shaken at 37°C until an A 650  of 

0.45 was reached. 0.2m1 of supernatant from a 1 .5m1 phage culture was then added 

and the culture grown for a further 4 hours. RF DNA was purified from phage 

infected cells by the same method used for large scale plasmid purification. 

2.5.4 Purification of M13 ssDNA 

Small scale 

Phages were grown as for small scale RF preparation. The culture was then 

transferred to a microfuge tube, and bacterial cells pelleted by centrifugation 

(11 000g) for 5 minutes. imi of supernatant was transferred to a fresh tube and 0.2m1 

of 20% (w/v) PEG 8000, 2.5M NaCl added. The tube was vortexed and placed at 

4°C for 15 minutes, then precipitated phages were pelleted by centrifugation 

(1 1000g) for 5 minutes. The supernatant was discarded, and remaining traces of 

supernatant removed with a rolled up tissue. The phage pellet was resuspended in 

0.1ml of TE. 0.1ml of phenol was added and the tube vortexed several times over 5 
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minutes, then centrifuged for 5 minutes. 80tl of the aqueous phase were transferred 

to a fresh tube and ssDNA recovered by ethanol precipitation. 

Large scale 

This method was taken from the site directed mutagenesis kit instruction booklet 

(Amersham International plc). The phage inoculum was prepared by toothpicking a 

single plaque into 1 .5m1 of LB and shaking overnight at 37C. Bacterial cells were 

removed by centrifugation and the supernatant stored at 4°C. lOOm! of LB were 

inoculated with lml of host strain culture (grown overnight from a single colony) 

and shaken at 37°C until an A 650  of 0.3 was reached. lml of phage inoculum was 

then added and the culture grown for a further 4 hours. Cells were then pelleted by 

centrifugation (8000g) in a Sorvall GSA rotor at 4°C for 30 minutes. The supernatant 

was carefully transferred to a fresh tube and 20m1 of 20% (w/v) PEG, 2.5M NaCl 

were added. The sample was mixed and stored at 4°C for at least 1 hour, then 

centrifuged as before. The supernatant was discarded, then the sample was 

centrifuged for 5 more minutes and remaining traces of supernatant removed with a 

drawn out pasteur pipette. The pellet containing the phages was resuspended in 

0.5ml of TE and transferred to a microfuge tube, then centrifuged (1 l000g) for 5 

minutes to pellet any remaining bacterial cells. The supernatant was transferred to a 

centrifuge tube, mixed with 0.2ml of 20% (w/v) PEG, 2.5M NaCl, and incubated at 

room temperature for 15 minutes. Precipitated phages were harvested by 

centrifugation (1 l000g) for 5 minutes and the supernatant discarded. The phage 

pellet was resuspended in 0.5m1 TE, mixed with 0.2m1 of phenol by vortexing, then 

left to stand for 15 minutes at room temperture. The tube was then vortex mixed 

once more and centrifuged (11000g) for 5 minutes. The aqueous phase was 

transferred to a fresh tube and re-extracted with phenol. The sample was then 

extracted once with phenol:chloroform:isoamyl alcohol (25:24:1) and once with 

chloroform:isoamyl alcohol (24:1). ssDNA was then recovered by ethanol 

precipitation and the dried pellet redissolved in 50i.tl TE. 
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2.5.5 Purification of Bacteriophage Lambda DNA (Sambrook et al., 1989) 

DNA was purified from concentrated phage lysates, prepared as in section 2.4.4, 

by phenol extraction. 0.5ml aliquots of phage lysate were mixed by several 

inversions with an equal volume of phenol, then left to stand at room temperature for 

15 minutes. Each sample was vortexed again and centrifuged (11 000g) for 5 

minutes. The aqueous phase was transferred to a fresh tube and phenol extracted 

once more, then once with phenol: chloroform: isoamyl alcohol (25:24:1) and once 

with chloroform:isoamyl alcohol (24:1). The aqueous phases were then pooled and 

dialysed against several changes of TE buffer at 4°C overnight. At this stage the 

DNA concentration was measured by UV spectrophotometry at 260nm. If necessary 

the DNA was further concentrated by precipitation with ethanol. 

2.5.6 Purification of E.coli genomic DNA 

This protocol is modified from Hermann and Frischauf (1987). 

1 OOml of LB (plus appropriate antibiotic) were inoculated with 1150 volume of an 

overnight culture and shaken at 37°C until an A 650  of 0.5 was reached. Cells were 

harvested by centrifugation (8000g) in a Sorvall GSA rotor at 4°C for 10 minutes 

and the supernatant discarded. Cells were then resuspended in 20 ml of STE (25% 

sucrose, 50mM Tris-HC1 pH 8.0, 10mM EDTA pH 8.0) and transferred to a Falcon 

tube. im! of SDS (10% w/v) and 0.4ml proteinase K (10mg/mi) were added and the 

tube was transferred to a 50°C waterbath for 6 hours. The sample was then mixed 

with Sml of phenol by gently inverting several times and left to stand at room 

temperature for 15 minutes. The tube was then centrifuged for 20 minutes at 4°C and 

the aqueous phase transferred to a fresh tube. The sample was then gently extracted 

twice with phenol:chloroform:isoamyl alcohol and the DNA recovered by 

precipitation with ethanol. The DNA pellet was dried by standing the tube at room 

temperature until the last traces of ethanol had evaporated. The DNA was then 

resuspended in 1 ml of TE and stored at 4°C until dissolved. 
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2.5.7 Purification of RNA from E.coli cells 

This protocol is taken from Salser etal. (1967) and Shaw and Guest (1982). 

200m1 of Spizizen minimal medium were inoculated with 1/50 volume of an 

overnight culture (grown from a single colony) and shaken at 37°C until an A 650  of 

0.3 was reached. 

Alternatively, cells were grown to various stages of stationary phase (early, mid, 

and late) as determined by the A 650  of diluted samples. Cells were cold-shocked by 

transferring to a 10°C waterbath and samples were taken every hour for 4 hours, then 

after 24 hours. For osmotic-shock induction, the culture was treated with NaCl (at 

0.5M final concentration) and grown for a further 30-60 minutes (Yim et al., 1994). 

Cells were harvested by centrifugation (8000g) for 10 minutes at 4°C. The 

supernatant was discarded and the cells resuspended in 20m1 of TE, then centrifuged 

as before. The pellet was resuspended in imi of ice-cold 10mM KC1, 4mM MgC1 2 , 

10mM Tris-HC1 pH 7.3, and transferred to a microfuge tube. Lysozyme was then 

added to a final concentration of 300ig/ml and the sample frozen at -70°C for 30 

minutes. Upon thawing, 1 lOp.l of 10% (w/v) SDS were added and the tube incubated 

at 64°C until the turbidity of the solution had dropped (usually 5-10 minutes). 40j.il 

of 3M sodium acetate (pH 5.2) was added and the sample split between 2 microfuge 

tubes. Each sample was mixed with one volume of phenol and placed at 64°C for 5 

minutes. During this incubation period the samples were mixed several times. The 

tubes were then centrifuged (1 1000g) for 5 minutes and the aqueous phase 

transferred to a fresh tube. The samples were phenol extracted once more as before, 

then precipitated with ethanol. The RNA pellet was washed 4 times in 70% (v/v) 

ethanol, 10mM Tris-HC1 pH 7.5, 10mM NaCl. 
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2.6 MANIPULATION OF DNA 

Unless otherwise stated, methods described in the following section are 

modifications of methods described in Sambrook etal. (1989). 

2.6.1 Restriction endonuclease digestion 

DNA was digested using a 2-10 fold excess of restriction endonuclease in a 

volume of 20-50i1 for 1-3 hours. For restriction mapping purposes, reaction 

conditions were those recommended by the manufacturer. For general cloning 

purposes and where digestion with two enzymes (for which recommended reaction 

conditions differed) was required, reactions were usually performed in 1 x Universal 

buffer (33mM Tris-acetate pH 7.9, 10mM Mg-acetate, 66mM K-acetate, 5mM DTT, 

0.1mg/mi BSA). Where appropriate, enzymes were inactivated by heating at 75°C 

for 15 minutes, or by extraction with phenol followed by ethanol precipitation. 

2.6.2 Dephosphorylation of DNA 

Vector DNA used in cloning experiments was dephosphorylated after digestion 

with restriction enzymes in order to minimise the recovery of parental clones. 0.5-

3pg vector DNA, in a final volume of 20p.l, were digested with the required 

restriction enzyme(s) as described in section 2.6.1. Thirty minutes before the end of 

the reaction 0.1 unit of calf intestinal alkaline phosphatase was added and the 

reaction completed at 37°C. The reaction was then heated at 75°C for 10 minutes to 

inactivate the phosphatase and nucleases, then extracted with phenol. DNA was 

recovered by precipitation with ethanol. 
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2.6.3 Electrophoresis of DNA 

For restriction analysis, Southern blotting, and restriction fragment purification, 

DNA molecules were size-separated by electrophoresis in submerged agarose gels. 

All gel formers, combs, and electrophoresis tanks were bought from Bethesda 

Research Laboratories (Gaithesburgh, MD, USA). 

Gels were 0.6-3% (w/v) agarose in 1 x TAE or 1 x TBE, with the same buffer in 

the electrophoresis tank. For rapid separation, gels were cast in small (50mm x 

75mm) gel formers and run with an electric field of 2-5 V/cm. For accurate mapping 

and restriction fragment purification, gels were cast in larger (11 x 14 cm) gel 

formers and run with an electric field of 0.75-1.25 V/cm. Prior to loading, 

restriction digests were heated at 75°C for 15 minutes to inactivate enzymes and 

separate cohesive ends, then mixed with 0.1 volumes of agarose gel loading buffer 

(see section 2.1.2). After electrophoresis, gels were stained in EtdBr (lj.tg/ml) for 30 

minutes, destained in dH20 for the same time and viewed on a UV transilluminator. 

Photographs were taken with a Polaroid Land Camera fitted with a red filter, or with 

a UVP electronic camera connected to a Sony Digital Graphic Printer. 

DNA molecules were also size-separated by electrophoresis in nondenaturing 

acrylamide gels for purifying small (< SOObp) restriction fragments. Gels were 4-8% 

acrylamide in 1 x TBE with 1 x TBE buffer in the electrophoresis tank. 

Electrophoresis tanks, combs and gel formers were obtained from the ATTO 

corporation, Tokyo, Japan. The following solutions were used in this method: 

Acrylamide stock solution 	30% (w/v) acrylamide, 0.8% N,N'-methylene bis- 
acrylamide, filtered through Whatman No. 1 
paper and stored in the dark at 4°C. 

AMPS 	 10% (w/v) ammonium sulphate, freshly made. 
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To prepare a gel, the appropriate volume of stock acrylamide solution was mixed 

with 3m1 10 x TBE, 50p.l AMPS and dH 20 to 30m1 final volume. 20j.tl TEMED 

were added and the mixture poured into a 16 x 16 x 0.1cm mould formed by two 

glass plates, one notched at one end, the other square, separated by 0.1cm spacers 

and sealed round the edges with a rubber gasket. The mould was filled to the top and 

a 14 tooth comb inserted into the top of the gel. Polymerisation was allowed to 

proceed for 30 minutes, after which time the comb and gasket were removed. The 

gel was attached to the electrophoresis tank fitted with 1 x TBE running buffer and 

the wells were washed out. DNA samples were heated, mixed with 10 x TBE 

loading buffer and loaded onto the gel. Samples were run at 1-8 V/cm. After 

electrophoresis the plates were separated and the gels were stained with 0.5p.g/ml 

EtdBr for 30 minutes. DNA bands were visualised on a UV transilluminator. 

2.6.4 Purification of restriction fragments from agarose gels 

Restriction fragments of DNA used in cloning experiments were purified from 

TAE agarose gels using the Gene Clean kit bought from Bio 101 Inc. (La Jolla, CA, 

USA). 

Briefly: The DNA was digested with the appropriate enzyme(s) and the products 

separated by electrophoresis in a TAE agarose gel (section 2.6.3). The EtdBr stained 

gel was examined on a UV trasilluminator and a gel slice containing the required 

restriction fragment excised using a scalpel. The agarose was dissolved in 2.5 

volumes of 6M sodium iodide at 55°C, then mixed with the appropriate volume of 

"glass milk" suspension (usually 5p.l) and incubated at room temperature for 5 

minutes to allow adsorption of the DNA to the silica matrix of the glass milk. The 

silica matrix and bound DNA were pelleted by centrifugation then washed 3 times in 

"New Wash" (a solution of Tris/NaC1IEDTA in ethanol). The DNA was eluted from 

the silica matrix by washing it twice at 55°C in a volume of TE equal to that of the 

glass milk. 

DNA prepared by this method can be used directly in cloning procedures. 
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2.6.5 Purification of restriction fragments from polyacrylamide gels 

The following procedure is a modification of the "Crush and Soak" method 

described by Sambrook et al. (1989). 

Restriction fragments were run on a nondenaturing polyacrylamide gel as 

described in section 2.6.3 and the EtdBr-stained bands visualised on a UV 

transilluminator. The required fragment was cut from the gel using a scalpel, 

chopped into small pieces, and transferred to a microftige tube. The gel fragments 

were crushed against the wall of the tube using a disposable pipette tip and 2 

volumes of elution buffer (0.5M ammonium acetate, 10mM Mg-acetate, 1mM 

EDTA pH 8.0, 0.1%SDS) were added. The tube was closed, sealed with parafilm, 

and incubated at 37°C overnight on a rotary wheel. The sample was then centrifuged 

(11 000g) for 2 minutes and the supernatant transferred to a fresh microffige tube. An 

additional 0.5 volumes of elution buffer were added to the pellet and the sample 

vortexed and centrifuged as above. The supernatants were combined and extracted 

twice with phenol and once with phenol: chloroform: isoamyl alcohol (25:24:1). The 

DNA was ethanol precipitated at -70°C for 30 minutes and recovered by 

centrifugation. The pellet was redissolved in 200.tl TE, reprecipitated with ethanol, 

and washed in 70% ethanol. The DNA was dried at room temperature and 

resuspended in 1 Ojtl TE. 

2.6.6 Ligation of DNA 

Ligation reactions were routinely performed in a final volume of 1 5p1 containing 

200-300ng of dephosphorylated cut vector DNA, a five-fold excess of "insert" DNA, 

1.5tl of 10 x ligation buffer (0.4M Tris-HC1 pH 7.6, 0.1M MgCl 2, 0.1M DTT, 

500p.g/ml BSA, 10mM ATP), DNA ligase and dH20. 

For ligation of cohesive ends , 0.5-2 units of T4 DNA ligase were used and the 

reaction allowed to proceed for 4 hours at room temperature or 16 hours at 16°C. 

Blunt end ligations were performed using 5 units of T4 ligase for 16 hours at 16°C. 
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2.7 DNA SEQUENCING 

DNA sequence was determined by modifications of the chain termination method 

(Sanger et al., 1977) using the "Sequenase" T7 DNA polymerase sequencing kit 

(IJ.S.B.) according to the manufacturer's instructions. A synthetic oligonucleotide 

primes synthesis of a new strand of DNA in two stages. A labelling reaction is 

performed in the presence of limiting concentrations of all four dNTPs, one of which 

is radiolabelled. This produces a population of radio-labelled DNA molecules 

ranging from a few nucleotides to several hundred nucleotides in length. In the 

second step, four parallel reactions are performed, one for each of the four bases 

(dA, dC, dG, dT). DNA synthesis is continued in each reaction, in the presence of 

higher concentrations of all four dNTPs plus one ddNTP. Provided the 

dNTP:ddNTP ratio is correct, a fraction of the population of extending DNA chains 

is terminated at each site where the ddNTP can be incorporated. 

The products of all four reactions are size separated in adjacent tracks on 

denaturing polyacrylamide gels and visualised by autoradiography. 

2.7.1 Sequencing of ssDNA 

Annealing primer to template 

1-3tg of ss M13 DNA and 0.5-lpmol of oligonucleotide primer were mixed with 

2p.l of 5 x Sequenase reaction buffer (200mM Tris-HC1 pH 7.5, 100mM MgC1 2 , 

250mM NaC1) and dH20 in a final volume of lOj.tl. The mixture was incubated at 

65°C for two minutes then allowed to cool to room temperature for 15-30 minutes. It 

was then transferred to ice. 
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Labelling reaction 

-3 

The annealed template-primer was mixed with lpJ of DTT (0.1M), 0.5pJ of [a- 35 S] 

dATP (lOjtCi/j.tl) and 2j.tl of labelling mix (1 .5p.M each of dCTP, dGTP, and dTTP). 

2.il of sequenase T7 polymerase (diluted 1/8 in 10mM Tris-HC1 pH 7.5, 5mM DTT, 

0.5p.gIml BSA) were added and the mixture incubated for 5 minutes at room 

temperature. 

Termination reactions 

Four microfuge tubes were labelled A, C, G, and T. 2.5.tl of the appropriate 

termination mix (containing 80p.M of each dNTP plus 8j.iM of one ddNTP) were 

added to each tube and the tubes transferred to a 37°C waterbath to prewarm. 

When the labelling reaction was complete, 3 .5j.tl aliquots of labelling reaction were 

mixed with each of the termination mixes and incubated at 37°C for 5 minutes. The 

reactions were stopped by addition of Sj.il of formamide dye (95% formamide, 

20mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF). The tubes were 

then transferred to a 75°C waterbath for 2-5 minutes and loaded immediately onto a 

denaturing polyacrylamide gel (see section 2.7.3). 

2.7.2 Sequencing of dsDNA 

Double-stranded plasmid or M13 RF DNA can be sequenced directly provided the 

template is first denatured to allow annealing of the primer. 

3-5 tg of plasmid DNA were denatured in 1 M NaOH (made up freshly from 1 OM 

stock) and annealed with the primer in a final volume of lOp.l for 15 minutes at 

3 7°C. The solution was neutralised by addition of 1M HC1, and sequencing was then 

performed as for single stranded templates. 
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2.7.3 Sequencing gels 

The products of sequencing reactions and primer extensions were size-separated 

by electrophoresis through Tris-borate-urea sequencing gels. All gels were run using 

the components of the Base Runner sequencing apparatus manufactured by IBI, 

using the method supplied in the manufacturer's instruction booklet. Products of 

run-off transcription were also analysed on denaturing polyacrylamide gels using the 

same apparatus as for nondenaturing gels (section 2.6.3). 

The following solutions were used in this method: 

1 x TBE 6% gel mix 1 50m1 40% acrylamide stock, lOOm! 10 x TBE, 460g urea, 
dH20 to 1L. 

40% acrylamide stock 38% (w/v) acrylamide, 2% (w/v) NN'-methylene bis 
acrylamide deionised and filtered through Whatman No. 1 
filter paper. 

AMPS 	 10% (w/v) ammonium persulphate. 

Gels were prepared by mixing 50m1 1 x TBE 6% gel mix with 1 5OpJ AMPS and 

50jtl TEMED and poured, using a 25m1 glass pipette, into a 60cm x 21cm x 0.4mm 

mould formed by two glass plates, one notched, one rectangular and insulated, 

separated down the long edges by 1cm wide, 0.4mm thick spacers and sealed with 

special "underwater" PVC tape round the edges. The flat side of a sharkstooth comb 

(32 lanes) was inserted 0.5cm into the top of the gel which was clamped at the 

corners and allowed to set for 30 minutes. 

When polymerisation was complete the tape and comb were removed, the gel 

sandwich was mounted on the electrophoresis apparatus and the upper and lower 

buffer tanks were filled with 1 x TBE. The top of the gel was then washed 

thoroughly with 1 x TBE using a syringe and needle, and the comb was re-inserted 

with its teeth just piercing the surface of the gel. The gel was pre-run at 45W 

constant power for 30 minutes, then the wells were washed out with 1 x TBE before 
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the samples were loaded. The gel was then run at 45W constant power for between 2 

and 6 hours depending on the range of sequence to be read. 

After the run, the plates were separated and the gel was fixed in 10% (v/v) 

methanol, 10% (v/v) glacial acetic acid for 20 minutes. The gel was then transferred 

to a sheet of blotting paper, dried at 80°C using a heated vacuum drier and 

autoradiographed. 

2.8 NUCLEIC ACID HYBRIDISATION 

2.8.1 3' end-labelling of DNA fragments with Kienow 

Recessed 3' termini of double-stranded DNA molecules can be filled using the 

Kienow fragment of E.coli DNA polymerase I. This is a modification of the protocol 

described by Sambrook et al. (1989). 

DNA restriction fragments were purified from agarose or nondenaturing 

acrylamide gels as described in sections 2.6.4 and 2.6.5. 0.5-I .Ogg were added to 2p1 

of 10 x Universal buffer, 1 pJ of a mixture of dATP, dGTP, and dTTP (2mM each), 

ipi [a-32P] dCTP (lOmCi/ml, 3000Ci/mmol), 1 unit of Klenow and dH20 to 20p1 

final volume. After 15 minutes at room temperature the reaction was chased with 1 j.d 

of unlabelled 2mM dCTP and incubated for a further 5 minutes. The reaction was 

stopped by heating for 5 minutes at 70°C and then transferred to ice. Labelled DNA 

was separated from unincorporated dNTPs by two rounds of ethanol precipitation 

followed by a 70% ethanol wash. 

2.8.2 5' end-labelling of oligonucleotide probes 

20-100pmol oligonucleotide were mixed with 2.5p1 10 x kinase buffer (0.5M Tris-

HC1 pH 8.0, 0.1M MgCl2), 2pi DTT (0.1M), 0.5-2.5pi [y-32P] ATP (lOmCiIml, 

3000Ci/mmol), 20 units T4 polynucleotide kinase and dH 20 to 25pi. The mixture 
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was incubated at 37°C for 30 minutes, then the enzyme was inactivated by heating at 

75°C for 15 minutes. The labelled oligonucleotide was stored at -20°C. 

2.8.3 Transfer of DNA to nylon membranes (Southern blotting) 

This protocol is taken from the Hybond N Instruction Booklet, Amersham 

International plc. 

Digested DNA was electrophoretically separated in agarose gels as described in 

section 2.6.3. The gel was stained and photographed, then immersed in denaturing 

buffer (0.5M NaOH, 1.5M NaC1) and incubated at room temperature, with shaking, 

for 30 minutes. The gel was rinsed briefly in dH 20, then immersed in two changes 

of neutralising buffer (1.5M NaCl, 0.5M Tris-HC1 pH 7.2, 1mM EDTA) for 15 

minutes each, and finally rinsed in dH 20. 

To prepare the blotting platform a glass plate, supported by an small inverted 

plastic tray, was placed in the middle of a shallow glass dish, filled with blotting 

buffer (20 x SSC or 20 x SSPE). A wick was formed by placing three sheets of 

Whatman 3MM paper (soaked in blotting buffer) on top of the glass plate and in 

contact with the buffer reservoir. 

The gel was inverted onto the wick and a piece of Hybond N positively charged 

nylon membrane, cut to the correct size, was placed on top of the gel, followed by 

three sheets of Whatman 3MM paper soaked in blotting buffer and a stack of 

absorbent paper towels. The gel was then surrounded with Saran Wrap to prevent 

blotting buffer being absorbed directly by the paper towels. A glass plate was placed 

on top of the paper stack and weighed down with a small (0.75 kg) weight. Transfer 

of DNA from the gel to the nylon membrane was allowed to proceed for 2-16 hours. 

DNA was then immobilised on the membrane by alkali fixation: 

The membrane was placed on a pad of Whatman 3MM paper saturated with NaOH 

(0.4M) for 30 minutes —,then rinsed briefly in 5 x SSC or 5 x SSPE and allowed to 

dry at room temperature. The membrane was then wrapped in Saran Wrap and stored 

at 4°C. 
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Alternatively the blotting buffer was replaced with 0.4M NaOH and DNA transfer 

performed as above. After 2-16 hours the membrane was rinsed, dried and stored as 

above without the need for further fixation. 

DNA samples were dot blotted onto nylon membranes by heating the sample to 

95°C then chilling on ice. 1 volume of 20 x SSC was added and samples spotted 

onto the membrane in 2pi aliquots. The membrane was placed, DNA side up, on a 

pad of Whatman 3MM paper soaked in denaturing buffer (as above) for 5 minutes, 

then on a pad of Whatman 3MM paper soaked in neutralising buffer (as above) for 1 

minute. The DNA was fixed to the membrane as described above. 

2.8.4 Hybridisation of DNA probes to DNA immobilised on nylon membranes 

Membranes prepared as in section 2.8.3 were prehybridised with lOmi of SSC 

hybridisation buffer (6 x SSC, 20% v/v formamide, 5 x Denhardt's solution, 0.5% 

SDS, 50 mM sodium pyrophosphate, 0.5mg/mi heparin from porcine intestinal 

mucosa) in a Techne hybridisation cylinder at 65°C for 1 hour. Prehybridisation is 

necessary in order to block non-specific sites on the DNA and nylon membrane, to 

which the probe and free radiolabelled nucleotides would otherwise bind. This 

would result in a high background signal which would obscure the signal from any 

sequence-specific binding by the probe. 

After prehybridisation was completed the solution was discarded and fresh 

hybridisation buffer containing denatured radiolabelled probe was added to the 

cylinder. Denaturation of the probe was achieved by boiling for 5 minutes 

immediately before use. Hybridisation was allowed to proceed at 65°C for 12-18 

hours. The hybridisation solution was then removed and stored at -20°C for re-use. 

The membrane was washed briefly at room temperature in 6 x SSC, then twice at 

65°C, for 20 minutes each, in 1 x SSC, 0.1% w/v SDS. The membrane was then 

wrapped in Saran Wrap and autoradiographed for 12-24 hours. More stringent 

washes (higher wash temperature and/or lower salt concentration) or longer exposure 

times were performed where necessary. 
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2.8.5 Hybridisation of oligonucleotide probes to immobilised DNA 

Oligonucleotide probes were hybridised to the immobilised DNA at 10°C below 

the calculated melting temperature (TM) of the DNA-oligonucleotide hybrids. The 

TM was estimated using the equation of Meinkoth and Wahl (1984) for 

oligonucleotides up to 1 7bp: 

TM (°C) = 4(G + C) + 2(A + T) 

where (G + C) = number of G:C base pairs and (A + T) = number of A:T base pairs. 

Filters were prehybridised with lOml SSC hybridisation buffer (as section 2.8.4) 

for 1 hour at 10°C below the calculated TM. The hybridisation solution was 

discarded and fresh solution containing the probe was added. Hybridisation was 

allowed to proceed for 18-24 hours. The hybridisation solution was then removed 

and stored at -20°C. The filter was rinsed briefly in 6 x SSC at room temperature 

then washed three times in 6 x SSC, 0.1% w/v SDS, for 15 minutes each, at 30°C. 

Finally, the filter was washed twice in 6 x SSC, 0.1% w/v SDS at TM -10°C for five 

minutes each, then wrapped in Saran Wrap and autoradiographed. More stringent 

washes or longer exposure times were performed when necessary. 

2.8.6 Removal of probes from nylon membranes 

DNA probes and oligonucleotides can be removed from a nylon membrane that 

has been kept moist, thereby allowing re-use of the membrane in further 

hybridisations. The membrane was immersed in boiling 0.5% SDS (w/v) and 

allowed to cool slowly to room temperature. The membrane was then 

autoradiographed to check that the probe had been removed successfully. If clean it 

was then allowed to dry at room temperature, then wrapped in Saran Wrap and 

stored at 4°C. Membranes kept in this way were prehybridised and hybridised with 

new probes as described (section 2.8.5). 

100 



2.8.7 Transfer of RNA to nylon membranes (Northern blotting) 

This protocol is taken from the Hybond N Instruction Booklet, Amersham 

International plc. 

RNA was purified from E.coli cells as described in section 2.5.7 and incubated at 

65°C for 5 minutes in the following solution : 6il RNA, 12.5pJ formamide 

(deionised), 2.5.xl 10 x MOPS buffer (0.2M 3-[N-Morpholino]-propane-sulphonic 

acid, 0.05M Na acetate pH 7.0, 0.01M EDTA), 4p.l 37% formaldehyde. The mixture 

was chilled on ice then 2.5p.l of 50% (v/v) glycerol containing 0.1mg/mi 

bromophenol blue was added. This was then run on a 1-1.5% denaturing agarose gel 

made up in 1 x MOPS buffer and 13% formaldehyde, with 1 x MOPS as running 

buffer. The RNA was then transferred to a Hybond N membrane by 20 x SSC 

capillary blotting as described in section 2.8.3. Alkali fixation was achieved by 

placing the membrane on a pad of Whatman 3MM filter paper soaked in 0.05M 

NaOH for 5 minutes. The membrane was rinsed briefly in 2 x SSC and then 

hybridised with oligonucleotide probes as described in section 2.8.5, or wrapped in 

Saran Wrap and stored at 4°C. 

RNA samples were dot blotted onto nylon membranes by incubating at 65°C in 

three volumes of the following solution 500pi formamide, 162j.xl formaldehyde 

(37% solution), lOOp.l 10 x MOPS buffer. After chilling on ice, one volume of 20 x 

SSC was added and samples spotted onto the membrane in 2p.l aliquots. RNA was 

fixed to the membrane as described above, then hybridised with oligonucleotide 

probes as described in section 2.8.5. 

2.8.8 Primer extension analysis of RNA 

This protocol is a modification of the method described by Sambrook et al. (1989). 

Primer extension was used to map the 5' termini of mRNA molecules. The test 

RNA was hybridised with an excess of a 5' end-labelled oligonucleotide primer, then 

the primer extended by reverse transcription. The length of the cDNA product(s), as 
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judged by denaturing polyacrylamide gel electrophoresis, was a measure of the 

distance between the 5' labelled nucleotide of the primer and the 5' terminus of the 

mRNA. 

20-1OOtg RNA prepared as described in section 2.5.7 were mixed with 0.5-5pmoi 

oligonucleotide primer (end-labelled as described in section 2.8.2). 3p,i formamide 

(special biochemical grade, BDH), 6jti 5 x First Strand Buffer (250mM Tris-HC1 pH 

8.3, 375mM KC1, 15mM MgC12, Gibco BRL) and dH20 to 30p.l final volume were 

added and the mixture incubated at 85°C for 10 minutes in order to denature nucleic 

acids. The mixture was then incubated at 5-10°C below the estimated TM of the 

oligonucleotide (see section 2.8.5) for 60 minutes to allow hybridisation to occur. 

The sample was then chilled on ice and mixed with 4J11 5 x First Strand Buffer, 5.Ll 

DTT (0.1M), 2.5j.tl dNTP mix (10mM each of dATP, dCTP, dGTP, dTTP), lp.l 

actinomycin D (1mg/mi, Sigma), 20 units RNase inhibitor (Boehringer), 200 units 

M-MLV RTase (Mouse Moloney Leukemia Virus Reverse Transcriptase, Gibco 

BRL), and dH20 to 50jtl final volume. The mixture was then incubated at 37°C for 

60 minutes. After this time, 12.5p.l NaOH (0.5M) were added and the sample boiled 

for 3 minutes to hydrolyse RNA. 12.5t1 each of HC1 (0.5M) and 1M Tris-HC1 (pH 

7.4) were added and the sample precipitated with ethanol. The dried DNA pellet was 

dissolved in 4.tl dH20 and mixed with 6p.l formamide dye (see section 2.7.1). 

Samples were then boiled for 3 minutes and the cDNA products size-separated on 

DNA sequencing gels (see section 2.7.4). A DNA sequencing ladder, generated 

using the same primer, was run along side as a marker. 

2.8.9 Nuclease Si analysis of RNA 

Nuclease Si was used to map the 3' termini of mRNA on ds DNA templates. 

Double-stranded DNA is denatured under conditions that minimise the formation of 

DNA: DNA hybrids while promoting the formation of DNA: RNA hybrids. Under 

these conditions, the coding region within a DNA fragment hybridises with its 

corresponding mRNA while the remainder of the DNA remains single-stranded. 
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DNA that has not formed duplexes is hydrolysed by nuclease-S 1, whereas DNA that 

has hybridised to RNA is protected from digestion. Double-stranded DNA fragments 

that are 3'-end labelled within the gene of interest can be size-separated on a 

denaturing acrylamide gel following RNA hybridisation and nuclease-S 1 digestion 

to map the 3' of the mRNA. This protocol is modified from that described by 

Sambrook et al. (1989). 

Double-stranded DNA fragments carrying a recessed 3' end within the coding 

region of the gene of interest were purified from nondenaturing acrylamide gels as 

described in section 2.6.5 and 3' end-radiolabelled as described in section 2.8.1. 0.1-

1 .Op.g DNA and 10-250.tg RNA (prepared as described in section 2.5.7) were mixed, 

ethanol precipitated, and dried. The pellet was resuspended in 30p.l hybridisation 

buffer (40mM PIPES [piperazine-NN'-bis(2-ethanesuiphonic acid)] pH 6.4, 1mM 

EDTA pH 8.0, 0.4M NaCl, 60% formamide) and the mixture incubated at 85°C to 

denature the nucleic acids. This was then rapidly transferred to a waterbath set at 52-

55°C (as determined for a particular DNA : RNA hybrid by a series of preliminary 

reactions) and hybridisation allowed to continue for 12-16 hours. After this time 

300p.l of ice-cold nuclease-S 1 mapping buffer (0.28M NaCl, 0.05M Na-acetate pH 

4.5, 4.5mM ZnSO4, 20.ig/ml single-stranded DNA, 100-1000 units/ml nuclease-Si) 

were added and the mixture immediately vortexed. This was then transferred to a 

37°C waterbath and incubated for 1-3 hours depending on the degree of digestion 

required. The reaction was chilled on ice and stopped by the addition of 80p.l stop 

mixture (4M ammonium acetate, 50mM EDTA pH 8.0, 50p.g/ml tRNA) followed by 

vortexing. The reaction was extracted once with phenol : chloroform, centrifuged, 

and the aqueous phase was ethanol precipitated. The dried pellet was resuspended in 

10il TE and mixed with lOjil formamide dye (section 2.7.1). After 2-5 minutes in a 

75°C waterbath 5j.il were run on a denaturing polyacryiamide gel as described in 

section 2.7.3. 
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2.9 IN VITRO TRANSCRIPTION 

These assays were performed at the National Institute of Genetics, Mishima, 

Japan, under the supervision of Professor Akira Ishihama. 

Promoter selectivity by reconstituted RNA polymerase holoenzymes Ea 70  and Ea 

were determined in vitro by single round run-off transcription. DNA fragments 

carrying the promoter region of interest were purified from nondenaturing 

polyacrylamide gels as described in section 2.6.5. 0.lpmol of promoter DNA (as 

determined by UV spectrophotometry) was mixed on ice with 3.5pJ 10 x 

transcription buffer (500mM Tris-HC1, 500mM NaCl, 30mM Mg-acetate, 1mM 

EDTA, 1mM DTT, 250p.g/ml BSA), lpmol of core RNA polymerase, and 4pmol of 

either cy or in a final volume of 35p.l. The mixture was preincubated at 37°C for 

15-30 minutes to allow open complex formation. 1 5tl of prewarmed substrate-

heparin mixture (1.5 p.1  10 x transcription buffer, 2p.l 25 x XTP mixture [4mM ATP, 

GTP, CTP, plus 1.25mM UTP], 2p.Ci [a- 32P] UTP, 2p.l 5mg/mi heparin, dH20 to 

15 p.!) were then added (without removing the preincubation mixture from the 

waterbath) and incubated for a further 5 minutes. 50j.il  of ice-cold stop solution 

(40mM EDTA, 300p.g/ml tRNA) were added and the sample immediately vortexed. 

Nucleic acids were precipitated by adding 500p.l ethanol and 100d 4M ammonium 

acetate and incubating the sample at -70°C for 30 minutes. After centrifugation 

(11 000g) for 10 minutes the pellet was washed in 70% ethanol and resuspended in 

iSp.l formamide dye (see section 2.7.1). This was incubated at 90°C for 2 minutes 

then placed on ice. The whole sample was loaded onto a 6% denaturing 

polyacrylamide gel as described in section 2.7.3 and labelled RNA products were 

analysed with a Bio-Imaging Analyser. 
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2.10EXPRESSION AND LABELLING OF PLASMID-ENCODED PROTEINS 

2.10.1 Expression of proteins in minicells 

E. coli strains which carry mutations in the min locus divide asymmetrically, 

resulting in the formation of anucleate cells (minicells) which are capable of 

supporting DNA synthesis, transcription, and translation, but which contain no 

chromosomal DNA. Plasmids segregate efficiently into minicells; therefore purified 

minicells can be used to analyse proteins under essentially in vivo conditions. 

Purification of minicells 

Three 500m1 batches of LB plus appropriate antibiotic(s) were inoculated with lml 

of a fresh overnight culture of the minicell-producing strain P678.54 transformed 

with the required plasmid, and shaken overnight at 37°C. At the same time eight 

sucrose gradients were prepared by freezing 25ml aliquots of 20% w/v sucrose in 

M9 minimal medium in 30m1 glass corex tubes at 70°C, then thawing them 

undisturbed overnight at 4°C. 

The next day, most viable cells were removed from the culture by centrifugation 

(I 000g) in a Sorvall GS3 rotor for 15 minutes at 4°C. Minicells were then harvested 

from the supernatant by centrifugation (12000g) in a Sorvall GS3 rotor for 20 

minutes at 4°C. The pellets were resuspended in a total volume of lOmi of 

supernatant and transferred to a 30m1 corex tube. The tube was then vortexed 

vigorously three times, for one minute each, to disperse aggregated minicells which 

would otherwise pellet with remaining viable cells in subsequent centrifugation 

steps. 2.5m1 aliquots of minicell suspension were layered on top of each of four 

35m1 sucrose gradients and centrifuged (4000g) in a Sorvall HB-4 swing-out rotor 

for 20 minutes at 4°C. The minicells formed a diffuse band within the sucrose 

gradient while the viable cells were pelleted. The top two-thirds of each minicell 

105 



band (approximately 1 OmI) were removed and pooled samples from pairs of 

gradients pelleted by centrifugation in a Sorvall SS34 rotor (16000g) for 10 minutes 

at 4°C. The pellet was resuspended in 4m1 of M9 medium and purified twice more in 

sucrose gradients as before (using two gradient tubes each time). The final minicell 

pellet was resuspended in lml 30% (w/v) glycerol in M9 medium and the A 600  of the 

sample measured. The sample was then aliquoted into 1 .5m1 microfuge tubes such 

that the volume of each when diluted to 1 ml gave an A 600  of 0.2 (2 x 10 minicells). 

Aliquots were stored at -70°C. 

Labelling of plasmid-encoded proteins 

Minicell aliquots were thawed at room temperature and diluted to imi final 

volume in M9 glucose medium. The minicells were pelleted by centrifugation then 

resuspended in 0.lml of M9 glucose medium and incubated at 37°C for 60 minutes 

to ensure degradation of any mRNA still present in the minicells. 20jtCi of [35 S]-

methionine (l0tCi/p.l, 1000 Ci/mmol) in Difco methionine assay medium (25% w/v 

in M9 glucose) were added and the samples incubated at 37°C for 3 hours (or at 

10°C for 1-4 hours for cold-shock experiments). Samples were then chased with 511 

unlabelled methionine (8mg/ml) for 3 minutes, and the minicells were pelleted by 

centrifugation for 3 minutes. Minicells were then washed in 50mM Tris-HC1 (pH 

6.8), pelleted as before, and resuspended in the residual liquid. 1 5p.l of cracking 

buffer (section 2.10.1) were added and the samples boiled for 3 minutes. Samples 

were then fractioned in SDS polyacrylamide gels as described in section 2.11. 

Labelled proteins were detected by autoradiography. 
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2.10.2 Induction of T7 RNA polymerase promoters 

Male E. coli cells susceptible to M13 infection were transformed with plasmids 

containing the T7 promoter controlling the gene to be expressed. A single colony 

from a fresh minimal agar plate was grown overnight with antibiotic selection, 

diluted 1/100 in LB containing antibiotic and grown for several hours at 37°C with 

gentle shaking. At an A650  of 0.5, 3ml of cells were harvested by centrifugation and 

the cells resuspended in 5ml M9 minimal medium. The cells were harvested again 

and the pellet resuspended in M9 minimal medium plus 18 amino acids (0.0 1% each 

minus methionine and cysteine). The cells were then grown for 1-2 hours at 37°C 

with gentle shaking, after which time they were infected with M13 mGP1-2 at an 

m.o.i. of 10. mGP1-2 carries the T7 RNA polymerase gene under the control of the 

lac promoter. IPTG was added at the same time (to a final concentration of 1mM) 

which induces expression of the T7 RNA polymerase gene. After 30 minutes at 37°C 

rifampicin was added to a final concentration of 200p.g/ml. After a further 30 

minutes, lml of cells were pulsed with lOp.Ci of [ 

35  S]-methionine for 5 minutes. 

Cells were harvested in a microfuge and resuspended in 120pi cracking buffer 

(60mM Tris-HC1 pH 6.8, 1% -mercaptoethanol, 10% glycerol, 3% SDS, 0.01% 

bromophenol blue). Samples were heated to 95°C for 3 minutes and a 40p.l aliquot 

loaded onto an SDS polyacrylamide gel (see section 2.11). 

2.10.3 Linked T7 transcription-translation system 

This protocol is taken from the Linked T7 transcription-translation system 

Instruction Booklet, Amersham International plc. 

This system is designed for efficient in vitro synthesis of proteins from a variety of 

templates containing T7 promoters upstream from coding sequences, including 

supercoiled plasmids, linearised plasmids, and PCR products. The system is based 

on transcription with T7 RNA polymerase followed by translation in an optimised 

rabbit reticulocyte lysate. 
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All plasmid DNA templates were purified on CsC1 gradients as described in 

section 2.5.2. Linearised templates were purified from agarose gels as described in 

section 2.6.4. 0.5j.tg of template DNA were added to 8p.l of T7 transcription mix and 

the volume made up to lOp.! with nuclease-free water. After mixing gently by 

pipetting up and down, the transcription reaction was incubated for 15 minutes in a 

30°C waterbath. 30p.l of translation mix and 1-4p.l of [ 35 S]-methionine (10p.CiIpi, 

1000 Cilmmol) were then added, and the final volume made up to SOp.d with 

nuclease-free water. After gentle mixing the translation reaction was incubated in a 

30°C waterbath for 60 minutes. SOp.l of cracking buffer (see section 2.10.1) were 

added and the samples boiled for 3 minutes. Samples were then fractioned in SDS 

polyacrylamide gels as described in section 2.11 and labelled proteins detected by 

autoradiography. 

2.11 SDS POLYACRYLAMIDE GEL ELECTROPHORESIS 

Protein samples were analysed by SDS polyacrylamide gel electrophoresis, using a 

discontinuous buffer system, as described by Laemmli (1970). The following 

solutions were used in this method: 

Acrylamide stock solution 30% (w/v) acrylamide, 0.8% (w/v) N,N'-methylene 
bis-acrylamide filtered through Whatman No.1 paper 
and stored in the dark at 4°C. 

Resolving gel buffer 	1.5M Tris-HC1 pH 8.8, 0.4% (w/v) SDS. 

Stacking gel buffer 	0.5M Tris-HC! pH 6.8, 0.4% (w/v) SDS. 

AMPS 	 10% (w/v) ammonium persuiphate, made fresh daily. 

Sample loading buffer 	50mM Tris-HC1 pH 6.8, 1% (w/v) SDS, 10% (v/v) 
glycerol, 0.05% (w/v) bromophenol blue, 1% (v/v) 3-
mercaptoethano!. 
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To prepare a 10% gel : lOmi acrylamide stock solution , 7.5m1 resolving gel 

buffer, 50pJ AMPS and dH20 to 30m1 were mixed. 20p.l TEMED were added and 

the resolving gel mixture poured into a 16 x 16 x 0.1cm mould formed by two glass 

plates, one notched at one end, the other one square, separated by 0.1cm spacers and 

sealed round the edges with a rubber gasket. The mould was fitted to within 5cm of 

the notched plate, then the gel solution was carefully overlayed with H 20-saturated 

butan-2-ol. The gel was then allowed to polymerise for thirty minutes in an upright 

position. 

To prepare the 10% stacking gel mix : 3ml acrylamide stock were mixed with 

2.25m1 stacking gel buffer, 25jtl AMPS and dH 20 to 9m1. 

The 1-120-saturated butan-2-ol was poured off the polymerised resolving gel and 

the surface washed with dH 20. 1 Op.1 TEMED were then added to the stacking gel 

solution and it was poured into the gel mould until it reached the top of the notched 

plate. A 14 tooth comb was then inserted into the top of the gel solution and 

polymerisation was allowed to proceed for 30 minutes. The comb and rubber gasket 

were then removed and the gel attached to an electrophoresis tank fitted with 1 x 

Tris-glycine running buffer containing 0.5% (w/v) SDS. 

The wells were washed out with running buffer and any air bubbles trapped 

beneath the gel were allowed to escape by gently tipping the whole apparatus to one 

side. Protein samples prepared as described in sections 2.10.1 to 2.10.3 were then 

loaded and the gel run at 60-90V overnight. 

Gels of varying percentages were prepared in the same way by altering the 

proportions of acrylamide stock and dH 20 in both the stacking and resolving gel 

mixes. 

After running, the gel was removed from the plates and fixed and stained for 30 

minutes at 37°C in a solution of 50% (v/v) methanol, 10% (v/v) glacial acetic acid, 

0.1% Coomassie brilliant blue. The gel was then destained in 3-4 changes of 10% 

(v/v) glacial acetic acid over several hours at 37°C. 
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Once destained the gels were transferred to blotting paper and dried on a heated 

vacuum drier. Gels containing [35 S]-labelled proteins were then autoradiographed as 

described in section 2.2.6. 

2.12 COMPUTER METHODS 

The University of Wisconsin Genetics Computer Group (GCG) sequence analysis 

software package, mounted on a UNIX operating system, was used in most sequence 

analyses. The MAP and CODONFREQUENCY programs were used to obtain 

restriction maps and translated DNA sequences, and to aid analysis of codon choice 

displayed by open reading frames respectively. PEPTIDESORT was used to 

calculate protein molecular weights and amino acid composition, and PILEUP to 

perform multiple alignments of protein sequences. 

BLAST, FASTA, and BESTFIT programs were used to find DNA and protein 

sequence similarities. The EMBL and GenBank sequence data libraries were used as 

a source of DNA sequences of interest whilst SWISS-PROT and NBRF-PIR 

provided relevant protein sequence information. BLAST and FASTA programs were 

also used to find E. coil sequence similarities within the ECDC database, WWW 

URL: http://susi.bio.uni-giessen.de/usr/local/www/htrnl/ecdc.html.  
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Chapter 3 

3.1 Introduction 

The identification of alternative sigmas has clearly established their importance in 

the regulation of gene expression. Their ability to confer a new promoter specificity 

on RNAP provides an efficient means of co-ordinately activating unlinked genes in 

response to a particular environmental stimulus. As described in chapter 1 at least six 

alternative. sigmas regulate the expression of various stress response genes in E. coli. 

Whether further sigmas control other regulons remains an important question in our 

understanding of bacterial gene expression. 

The majority of the known E.coli alternative sigma factors were identified as 

positive regulators of gene expression in response to various stresses (section 1.8). 

In an attempt to identify new sigmas, Fujita et al. (1987) utilised the available data 

on sigma sequence homology provided by Gribskov and Burgess (1986) to design a 

synthetic tetradecameric peptide matching exactly the amino acid sequence of the 

highly conserved subregion 2.2 (section 1.5.4). The authors raised polyclonal 

antiserum against the synthetic peptide and screened for proteins carrying antigenic 

epitopes similar to subregion 2.2. The anti-peptide antiserum was found to cross-

react specifically with both a and a 32  on Western blots, and with about 10 other 

E.coli proteins termed sigma cross-reacting proteins or SCRPs (Fujita et al., 1987; 

Ueshima et al., 1992). Four major SCRPs were purified and N-terminally 

sequenced and two of them, SCRP-27B and SCRP-34, were identified as the 

ribosomal protein S2 and thioredoxin reductase respectively. SCRP-23 was later 

identified as the C22 component of alkyl hydroperoxide reductase encoded by ahpC 

(Smillie et al., 1992) although the function of SCRP-27A remains unknown. None 

of these SCRPs was found to bind core RNAP; none was found exclusively in the 

RNAP holoenzyme fraction upon glycerol gradient fractionation of crude lysates of 

E. coli proteins, and none showed competition with cr 70  for immunoprecipitation 

(Fujita et al., 1987; Ueshima etal., 1992). In addition, none share significant amino 
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acid homology with sigma proteins (including subregion 2.2). Thus it is virtually 

certain that they do not function as sigma factors. 

As another approach to identifying candidate sigma genes, work in this laboratory 

has used oligonucleotides corresponding to conserved regions within sigma factors 

to probe the library of Kohara et al. (1987), which consists of physically mapped 

E. coli genome fragments in X vectors. In this chapter I describe the mapping, 

sequencing and characterisation of a candidate sigma gene, f229, which was 

identified by this approach. 

3.2.1 Design of oligonucleotide probes 

Two 78-mer oligonucleotide probes corresponding to the conserved core-binding 

subregion 2.1 of bacterial sigma factors (Lonetto et al., 1992) were designed in this 

laboratory by David A. Smillie. The degeneracy of the genetic code means that the 

target DNA sequence cannot be exactly defined from the corresponding amino acid 

sequence. However, the stablity of hybrids formed by long oligonucleotide probes 

can outweigh the destabilizing effects of mismatches within the probe/target 

complementarity (Lathe, 1985). Since most amino acids are specified by codons that 

differ only at the third position, at least two out of three nucleotides of such codons 

are guaranteed to be a perfect match. Where possible, regions lacking leucine, 

arginine and serine are chosen since each of these amino acids is specified by six 

codons. 

The two probes were designed on the basis of codon choice as described by 

Ikemura (1985). One probe, 746J, carried the least optimal codon for each amino 

acid within the subregion 2.1 target sequence, while the other, 745J, carried the 

codons recognised by major tRNA species of E.coli. The amino acid of a32  was 

chosen for positions of little or no conservation. It was thought that additional 

alternative sigmas may well be encoded by poorly translated mRNA (see table 3.1) 
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Table 3.1. F0  values of E.coli sigma genes. 

The codon usage of each gene was analysed using the Codonfrequency program of 
the GCG package. The frequency of optimal codons (F 0 ) was calculated by dividing 
the number of optimal codons by the total number of optimal plus non-optimal 
codons assigned according to Ikemura (1985). 

Gene 	 F0  

rpoD 0.72 

rpoS 0.68 

rpoH 0.81 

rpoE 0.60 

rpoF 0.61 

fed 0.51 

rpoN 0.62 

An F0  value of 0.60 to 0.62 shows that there is no strong bias in the coding 
sequence of these genes towards codons recognised by major tRNA species of 
E. coli. Such values are characteristic of moderately to weakly expressed E. coli 
genes. The high F0  for rpoH may be an additional feature of its complex regulation 
which results in enhanced synthesis of cr 32  following temperature upshift (see section 
1.8.3). The low F 0  for fecI may reflect the fact that its product is responsible for the 
recognition of only one promoter (see section 1.8.5), and so high levels of 
translation would be wasteful. 
It should be noted that rpoE was unsequenced and Fecl was not known to be a sigma 
factor when the probes described in section 3.2.1 were designed. 
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so as not to significantly reduce levels of E 70, hence the use of both major and 

minor codon probes. As such, the oligonucleotides differed at 16 positions out of a 

total of 78 nucleotides. The conserved amino acid sequence of subregion 2.1 of 

alternative bacterial sigmas (corresponding to, although not identical to residues 371 

to 396 of E.coii cy70) is: ADQEARKTLIEANLRLVVSIAKKYAN (as determined 

from Lonetto et al., 1992). 

Based on the minor codons of this sequence, the nucleotide sequence of 746J is: 

5'-GCC OAT CAG GAA 0CC CGC AAA ACC CTG ATT GAA GCC AAT CTG 

CGC CTG GTG GTG TCG ATT GCC AAA AAA TAT 0CC AAT -3' 

3.2.2 Probing E.coli genomic DNA 

746J was 5' end-labelled using [y-32P] ATP as described in section 2.8.2 and 

hybridised with nylon filters carrying DNA from the miniset clones of the E.coii K12 

genome (Kohara et al., 1987; Noda et al., 1991). This probe strongly hybridised with 

2A40 and more weakly with a pair of contiguous clones, X639 and X640 (fig. 3.1). 

The 19kb E. coil insert DNA of ?440 is centred near 2775kb on the physical map 

(59.4 minutes on the genetic map). The inserts of X639 and X640, which overlap by 

approximately 9kb, are centred near 4322kb (92.5 minutes). Although a 2.8kb probe-

positive PstI fragment was identified in a X440 DNA digest (data not shown), this 

and other positive fragments were unclonable (D.Smillie, personal communication). 

X440 is discussed in section 3.10. No other mapped sigma genes hybridised with this 

probe. 

The location of a candidate sigma gene in the overlap region of the X6390640 

insert DNA was investigated further. 
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Figure 3. 1 Location of candidate sigma genes identified using oligonucleotide 746J within the 
Kohara miniset clones of the E.coIi genome. Hybridisation (section 2.8) was performed at 
50°C for 18 hours. Final washing conditions were 2xSSC, 0.1% SDS for two periods of 5 

miiutes at 50°C. The positions of A clones 440, 639 and 640 are marked. A.639 is present at 

thk,  bottom right position of the panel indicated. X440 and X640 are present within the adjacent 
pa el; ?440 is at the bottom left position and A.640 is at the bottom right position. (Layout of 
the Kohara miniset library is such that each rectangular "panel" contains six phages, all with 
the same final two digits in their identifying numbers, but different initial digits. (This ensures 
th.t neighbours originate from far apart on the chromosome). Numbering runs left to right, 
aii1 then top to bottom. Thus for example the tenth rectangle in the fourth row contains 
phiges 140, 240 et seq). 
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3.2.3 Fine mapping of the X639/640 probe positive region 

The probe-binding region was mapped more accurately by Southern analysis of 

X639 and X640 restriction fragments as described in section 2.8.3. DNA was 

prepared from purified X639 and X640 lysates (previously amplified on the recD 

strain NM62 1, which is particularly suitable for the propagation of the spi 

recombinant phages of the Kohara library) as described in section 2.5.5. Restriction 

analysis using the "Kohara enzymes" confirmed the identity of A639 and ?640 (fig. 

3.2) and gave results consistent with the published map of the E.coli K12 

chromosome (Kohara et al., 1987). As determined from fig. 3.3, 746J hybridised to 

a region within the overlap of X639 and X640 flanked by a BamHI site and a PvuII 

site. The BamHI site at 4322.6kb is in the gltP gene encoding a proton-glutamate-

aspartate transport protein (Wallace et al., 1992), while the PvuII site at 4324.2kb 

was found to lie in the intergenic region between gltP and fdhF, the latter encoding a 

selenocysteine-containing subunit of formate dehydrogenase (Zinoni et al., 1986). 

The X639/?640 insert region is shown in fig. 3.4. The absence of significant 

sequence homology between 746J and the published sequence of gltP (Tolner et al., 

1992), as determined by the Fasta and Bestfit programs of the GCG package, 

indicated that the probe positive region lies in the 1 .3kb unsequenced gltP/fdhF 

intergenic region. 

3.3 Subcloning the probe positive region 

A 3.7kb BamHI-KpnI fragment from ?639 carrying the 3' ends of gltP and fdhF 

was subcloned between the corresponding sites in pBluescript KS(-) to form pSW3. 

The structure of pSW3 was verified by restriction analysis. In addition, a 

spontaneous deletion lacking -'200bp of insert DNA was obtained and called pSW4 

(fig. 3.5). For sequencing purposes, the same BamHI-KpnI fragment was subcloned 

into the polylinkers of M13 tg 130 and M13 tg 131 to give tg 130-4 and tg 131-3. 
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Figure 3.2. Restriction analysis of X639 and X640 DNA on a 0.6% agarose gel. 
Tracks 2,3,5,7,9, and 11 carry X639 DNA; tracks 4,6,8,10,12, and 13 carry 2640 
DNA. The following digests were loaded: track 2, EcoRJ; tracks 3 and 4, EcoRV; 
tracks 5 and 6, BglI; tracks 7 and 8, KpnI ; tracks 9 and 10, PvuII; track II, 
KpnI/PvuII; track 12, BamHI; track 13, PvuII1Bg11. Tracks 1 and 14 carry Xc1857 
Sam7 marker DNA digested with Hindlil and EcoRIIHindIII respectively. The 
relevant marker bands are indicated and their sizes given in kilobase pairs. 
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Figure 3.3. Southern analysis of X639 and X640 DNA using [y-32  P]-labelled 746J as 
probe. DNA was transferred from the gel shown in fig. 3.2 to a nylon membrane as 
described in section 2.8.3. Hybridisation was performed at 50°C for 18 hours. Final 
washing conditions were 0.2xSSC, 0.1% SDS for 2 minutes at 65°C. 

Arrows indicate probe-positive PvuII (tracks 9,10,11, and 13) and BamHI (track 
12) fragments (2.8kb and 6.7kb respectively) which define the limits of the smallest 
positively-hybridising region. The sizes of the Hindlil marker fragments are given at 
the left of the figure. 
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Figure 3.4. Restriction map of E.coli chromosomal inserts cloned in ?639 and ?640, 
based on the map of Rudd (1991). The top scale shows the coordinates in kb on the 
physical map of the E.coli K12 chromosome; the bottom scale shows the coordinates 
in minutes on the genetic map. The locations of gltP and fdhF are indicated. KpnI 
and BamHT restriction sites which flank the probe-positive region and were used to 
generate pSW3 are marked with asterisks, and the length and orientation (relative to 
the vector DNA) of the chromosomal inserts carried by 2639 and A.640 are indicated 
by arrows below the map. The following abbreviations are used for restriction 
enzymes: B, BamHI; E, EcoRV; H, Hindill; G, BglII; K, KpnI; P, PstI; R,EcoRI; V, 
PvuII. 
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Figure 3.5. Restriction fragments of pSW3 and pSW4 DNA analysed by 0.6% 
agarose gel electrophoresis. Tracks 1,3,5,9,11, and 13 contain pSW3 DNA; Tracks 
2,4,6,10,12, and 14 contain pSW4 DNA. Track 7 contains 1kb marker DNA (Gibco 
BRL); Track 8 contains Xc1857 Sam7 marker DNA digested with Hindlil. Relevant 
fragments are marked and their sizes given (in kilobase pairs) at the sides. 

Restriction enzymes used are as follows Tracks 1 and 2, PvuI; Tracks 3 and 4, 
PvuI+EcoRV; Tracks 5 and 6, PvuII+EcoRV; Tracks 9 and 10, BglJI+EcoRV; 
Tracks 11 and 12, Stul; Tracks 13 and 14, SphI. 

Below is the corresponding restriction map of pSW3, linearised at position 1 of 
pBluescript KS(-). The bottom scale shows the distance in base pairs 
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3.4 Nucleotide sequence of the gItPIfdhF intergenic region 

Single-stranded M13 DNA was prepared from tgl30-4 and tgl3l-3 as described in 

section 2.5.4. Nucleotide sequencing was initiated using synthetic oligonucleotide 

primers corresponding to the 3' ends of the published sequences of gliP and fdhF, as 

described in section 2.7. Further DNA sequence information was then generated 

using primers corresponding to already determined nucleotide sequences. 

Sequencing downstream from within gltP using tgl30-4 DNA consistently gave 

multiple pile-ups (fig. 3.6) which could not be overcome by addition of formamide 

to prevent non-specific primer hybridisation, by cycle sequencing at high 

temperature to alleviate template structural problems, or by using a different 

oligonucleotide primer (data not shown). Sequencing downstream from within fdhF 

using tg 131-3 DNA gave no such problems. Forward sequences were confirmed by 

sequencing back towards fdhF using tgl30-4 DNA showing that DNA template 

preparations were not responsible for the pile-ups in fig. 3.6. The sequencing strategy 

is shown in fig. 3.7, and the nucleotide sequence in fig. 3.8. 

An open reading frame (ORF) predicted to be transcribed in the same orientation 

as fdhF was identified. This would extend for 229 amino acids if translation were 

initiated at the first AUG codon, although no convincing Shine-Dalgarno ribosome-

binding sequences were found to precede this. A GA-GT sequence having 4 out of 7 

bp of the consensus Shine-Dalgarno sequence AGGAGGT was found to precede a 

potential TTG initiation codon (fig. 3.8). No other likely translation initiation codons 

were found further downstream. The amino acid sequence of the open reading frame 

shows no identity with any amino acid sequence in the protein databases searched. It 

also has no homology with the amino acid sequence of the subregion 2.1 consensus, 

suggesting that the open reading frame does not encode a sigma factor. 

A potential Y°-dependent promoter was identified upstream of the TTG codon. 

The -10 element, TATACT, has 5 out of 6 homology with the consensus sequence, 

and point mutations at the non-consensus position 5 of this promoter are known not 

to be severe down mutations (Youderian et al., 1982). The -35 element, TTTTTT, 

122 



has 2 out of 6 homology with the consensus sequence, and is optimally spaced at 

1 7bp upstream of the -10 element. The -35 element overlaps with the proposed rho-

independent transcriptional terminator of fdhF (Zinoni et al., 1986). In addition, a 

CCAAT motif present in the promoter region of certain cold-shock genes of E. coli 

was found just downstream of the -10 element. These potential promoter signals are 

shown in fig. 3.8. DNA sequence analysis of the ORF/fdhF intergenic region, and of 

fdhF itself, failed to reveal consensus promoter sequences for alternative sigmas. 
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Figure 3.6. Dideoxy-nucleotide sequence of the gltPlfdhF intergenic region using 
M13 tg130-4 ssDNA as template (section 2.7.1). Lanes 1-4 show sequence runs 
primed from within the intergenic region back towardsfdhF, with the tail of the fdhF 
transcriptional terminator indicated (see fig.3.8). Lanes 5-8 show sequence runs 
primed downstream from within gltP towards the intergenic region using the same 
DNA template preparation. The dideoxynucleotide used in each sequencing reaction 
is indicated above the corresponding track. 
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Figure 3.7. Sequencing strategy used for the gltP/fdhF intergenic region. Single-
stranded M13 tg 130-4 and 131-3 DNA were sequenced as described in section 
2.7.1. The top line shows the distance in base pairs, and begins at position 1 of fig. 
3.8. The second line gives a simple restriction map of the region. Abbreviations for 
restriction sites are : V, PvuII; G, BglII; 5, StuI; E, EcoRV. Also shown are the fdhF 
terminator (T) and the J2 29 promoter (P). Arrows show the direction and 
approximate extent of sequencing reactions primed with different oligonucleotides, 
whose numbers are given alongside. Primers shown above the third line were used 
to sequence tg 131-3; those shown below were used to sequence tg 130-4. Multiple 
binding sites within the BIME are shown for the primers A866 (A) and C134 (C). 
The primer M5102 was used for primer extension analysis (section 3.6) and for 
confirmation of the KpnI/EcoNI linker sequence present in pSW1 1 and other 
plasmids (fig. 3.14). 
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Figure 3.8. Nucleotide sequence of the fdhF/gltP intergenic region in the 5' to 3' 
direction of fdhF in RNA. The predicted amino acid sequence of the open reading 
frame is shown below the relevant codons. The putative promoter identified by 
Blattner et al. (1993), the putative transcriptional terminator of fdhF identified by 
Zinoni etal. (1986), and the putative promoter identified by the author are indicated. 
A potential Shine-Dalgarno ribosome binding sequence upstream of a TTG leucine 
(potential start, F-met) codon within the open reading frame is indicated. Restriction 
sites mentioned elsewhere in the text are marked. The motifs making up the 
extragenic repeats are noted. Only the first repeat is shown. 

126 



	

10 	 50 
.35 	 Pa s 	 -10 

GTTGAAAACTCGCCTGCGCGAAGCGGCACTGGCGTAATACCGTCCTTTCT 

70 
T1 	 -35

Po70 	 -10 

ACAGCCTCCTTTCGGAGGCTGTTTTTTTATCCATTCGAACTCTTTATACT 

	

110 	 130 	 150 

GGTTACTCCCTACCCAATCGTATTATCAAAATGAAAAAAATTATCGCATT 
M K K II AL 

170 	 190 
S+D 
TTGTTTTTGACATTCTTTGCCCACGCCAACGACTCCGAGCCTGGCA 
ML FL T F F A HAND S E P G S 

	

210 	 230 	 Ssp1250 
1 

GCCAGTATTTAAAQGCAGCAGAGGCCGGGGACCGACGCGCACAATATTTT 
Q Y L K A A E A G 	R R A Q Y F 

PvuII 	270 	 290 	SspI 

CTTGCCGACAGCTGGTTTAGCTCCGGCGATTTGAGCAAAGCCGAATATTG 
LAD SW F S S G 	L S K A E Y W 

	

310 	 330 	 350 

GGCACAGAAAGCCGCCGACAGCGGTGATGCTGATGCCTGCGCGCTGCTGG 

A Q K A ADS G 	AD A' C AL LA 

370 	 390 

CGCAGATCAAAATCACCAATCCGGTCAGTCTGGACTATCCACAAGCAAAA 

Q 1K IT N P V S L D 	P Q A K 
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GTTCTTGCAGAGAAAGCGGCGCAAGCGGGCAGTAAAGAAGGTGAAGTAAC 
V 	A E K AA Q AG S K E GE VT 

470 	 490 

GCTGGCGCATATTCTGGTAAATACTCAAGCGGGTAAACCGGATTATCCAA 
L A H IL V NT Q AG K P D 	P K 

510 	 530 BglII 	 550 

•1' 
AGGCAATTTCGCTGTTAGAAAACGCCTCGGAAGATCTGGAGAACGACTCT 
A I S L L E N A S E D L E N 'D S 

570 	 590 

GCCGTCGATGCCCAAATGCTGCTTGGTTTGATTTACGCCAACGGCGTGGG 
AV D A Q ML L G L 	YANG V G 

610 	 630 	 650 

CATTAAGGCCGACGATGACAAGGCAACCTGGTATTTCAACGCAGCTCTG 
I K 	D D D K AT WY F KR S S A 

670 	ScaI 	 690 

CAATTTCCCGAACCGGTTATTCCGAGTACTGGGCGGGAATGATGTTCTTA 
IS R T G Y SE Y WAG MM FL 

710 	 730 	 750 

AACGGTGAAGAAGGTTTTATCGAGAAGAACAAGCAAAAGGCGCTGCACTG 
N 	E E G F I E K N K Q K AL H W 

770 	 790 

GTTGAACCTGAGCTGTATGGAAGGGTTTGATACCGGGTGTGAAGAGTTTG 
L N L S C M E G F D T G CE E FE 

128 



'1 	• 
AAAAATTAACCAACGGTTAAGATAGGCCTGATAAGACGCGGCAPGCGTCG 
K L T N G * 	 z2 

870 	 890 

CATCAGGCATTGATGTCGGATGCGGTAAACGCCTTATCCGACCTACAAAA 

I 	 Y 	 I 

910 	 930 	StuI 

TCACGCTAAATCAGGCTATTGCGCTGTCTGGCGTAGGCCT 

L 
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3.5 Identification of extragenic repeats 

When the sequence downstream of the ORF matched the 3' end of the published 

gltP sequence, the calculated distance between fdhF and gltP was found to be 

smaller than expected. Although RF template DNA gave restriction fragments of the 

size expected from the Kohara map, some 500bp appeared to remain unsequenced. 

However, restriction analysis with StuI, which cuts 6bp downstream from the stop 

codon of the ORF, gave a smaller fragment whose size agreed with that predicted 

from the sequence. To investigate this further, pSW3 and pSW4 DNA were digested 

with StuI and analysed by high percentage agarose gel electrophoresis to locate the 

"missing" DNA. An unexpected band was found to migrate at approximately 11 Obp, 

which was more than equimolar with other fragments within that digest, and differed 

in intensity between pSW3 and pSW4 (fig.3.9a). Stul partial digests finally revealed 

its whereabouts (fig 3.9b). StuI sites separated by -4 lObp and identical sequences at 

the 3' ends of gltP and the open reading frame suggested a series of repeats in their 

intergenic region, of which pSW4 has lost 2 relative to pSW3. 

While these repeats were being sequenced, the entire genomic sequence between 

89.2 and 92.8 minutes was published by Blattner et al. (1993) as part of the E.coli 

genome project. The GenBank accession number is U00006; nucleotide number 

162495 of this sequence corresponds to nucleotide number 1 of fig. 3.8. Blattner et 

al. also noticed the ORF. They named it fi29 because it is transcribed in the 

"forward" orientation relative to DNA replication and potentially encodes 229 amino 

acids. I will refer to the ORF as 1229 from now on. The extragenic region was found 

to be made up of REP (Repetitive Extragenic Palindromic) sequences, or BIME 

(Bacterial Interspersed Mosaic Elements) as they are now known (section 1.9). The 

chromosomal BIME is reported to have six StuI recognition sites. pSW3 as well as 

pSW4 has a deletion in this highly repetitive region. The BIME is comprised of 5 

RIB/RIP elements (section 1.9.5) and one additional PU (section 1.9.1). The 

sequence and motifs of this PU and the first RIB/RIP proximal to J229 are shown in 
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fig. 3.8. The pile-ups observed in fig. 3.6 arose due to multiple primer hybridisation 

sites within the BIME. A map of pSW3 is given in fig. 3.10. 

To further map the probe-positive region pSW3 fragments were probed with 746J. 

Fig. 3.11a shows that the probe does not hybridise to sequences within the BIME, 

and along with previous Southern analysis (fig. 3.3) mapped the probe-positive 

region between the PvuII site of f229 and the proximal Stul site (fig. 3.8). Dot blots 

of single stranded tg 130-4 and tg 131-3 DNA (fig. 3.11b) indicated that 746J 

hybridises to the coding strand of f229, and therefore shares sequence homology 

with the non-coding strand. This was confirmed by Fasta and Bestfit programs from 

the GCG package, which found 10 out of 1 lbp sequence homology between the non-

coding strand of j229 and 746J located approximately 90bp downstream from the 

PvuII site. 7 of these basepairs are G-C and are found at the middle of the probe: 

J229 3 52-CTGGCGCAGAT-36 1 (numbered as in fig. 3.8) 

746J 54-GICCGCGTCTA-3 8 
	

(non-complementary base underlined) 

Since mismatches at the centre of a probe have a greater negative effect on 

hybridisation than those towards the ends (Sambrook et al., 1989) this portion of the 

probe is thought to form the primary contact with the 29 target sequence, with 

additional contacts being made at either side. However, no significant open reading 

frames have been found in the non-coding strand of f229. 
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I IOb: 

Figure 3.9. Restriction analysis of pSW3 and pSW4 DNA. 
Fig 3.9A. 3% agarose gel electrophoresis. Track 2 contains 5j..tg pSW3 DNA 

digested with figllI and Still. Track 3 contains 5p.g pSW4 digested with BglII and 
Still. Note that the -110bp SruI fragment is not equimolar with either the 239bp 
Bg[H fragment or with the 290bp BglIJ/StuI fragment. In addition, the same SluT 
fragment of pSW3 is not equimolar with that of pSW4, although the respective Bglfl 
and BglII/StuI fragments are. Tracks I and 4 contain 5p.g 1kb marker (Gibco BRL). 
The relevant pSW3/pSW4 fragments are marked and their sizes given to the left. 

Fig. 3.913. 0.6% agarose gel electrophoresis. Track 2 contains 5p.g pSW3 DNA 
digested with SphI, then partially with Still -. Track 3 contains 5g pSW4 DNA 
digested with SphI, then partially with Still. Partial digestion was achieved by adding 
0.05 Units of Still in a final volume of 20g1 and incubating for 15 minutes at 37°C 
before terminating the reaction. Track 1 contains 2j.tg 1kb marker (Gibco BRL). 
Relevant marker fragment sizes are given in kbp to the left. 

A 	 B 
1 	2 	3 	4 	 123 
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Figure 3.10. Detailed structure of pSW3. A 3.7kb probe-positive BamHI-KpnI 
fragment from X639 was subcloned into the corresponding sites in pBluescript KS 
(-). These restriction sites are marked in fig. 3.4. See text for an explanation of 
additional features. 

al 	
SspI Ss 	PvuII 

BamHI 

BstEII 

'gItP EcoRV 

= pSW3 Stul 
on BIME 	Stul 

-  Stul 
6567bp Stul 

Stul 

- IacZ' f229 	Scal 

PvuII BgIII 

SspI 
KpnI 'fdhF PvuII 

EcONI SspI 
ECORV 

BstEII BstEII 
SphI BgIII 

BgIII 

Restriction sites (bp): 

BamHI 689 PvuII 529, 2308, 4513 

BglII 2033, 3177, 3416 ScaI 1894, 6067 

BstEII 951, 2683, 3717 SphI 3706 

EcoN! 2506 SspI 442, 2273, 2325, 6386 

EcoRV 1239, 3873 SstI 657 

KpnI 4295 Stul 1293, 1406, 1519, 1623, 1743 
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4-tg 130-4 

—tg 13 1-3 

SphI -p 
(linear) 

SphI ISM * 
(partials) 

SphIIStuI 
 (partials) 

Figure 3.11. Fine mapping of the 746J probe-positive region within 1229. 
Figure 3.lIa. Southern hybridisation. pSW3 DNA was digested with SphI then 

partially with Stul as in fig 3.9b. DNA was transferred to a nitrocellulose membrane 
as described in section 2.8.3. Hybridisation was performed at 50°C for 18 hours. 
Final washing conditions were 0.2x SSC, 0.1% SDS for 2 minutes at 65°C. 

Figure 3.11 b. Dot blot hybridisation analysis of Ml 3 tg 130-4 and tg 131-3 ssDNA 
using 746J as probe. lOOng DNA was incubated at 95°C for 5 minutes then spotted 
onto a nylon membrane as described in section 2.8.3. Hybridisation and washing 
conditions were as above. 

p-gJ
I I] 
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3.6 Transcription analysis of theJ229 gene 

The E.coli Genome Project sequence analysis data include other features such as 

possible promoters and terminators and computer-predicted static bends. A potential 

promoter was identified just upstream of the putative rho-independent 

transcriptional terminator of fdhF (fig. 3.8) and a bend of 75° identified in the 

upstream coding region ofJ229 (Blattner et al., 1993). As discussed in section 1.8.1, 

promoters are often associated with bent DNA. However, it should be 

stressed that even now, ct-dependent promoter determinants are not well defined, 

despite the more recent work of Ishihama, Tanaka and others (section 1.8.1). 

3.6.1 J22929 is not detectably transcribed by Ea S 

To test the possibility that fl29 transcription is under the control of Eo, as 

suggested by Blattner et al. (1993), RNA was extracted from cells grown to various 

stages of stationary phase and also from cells grown in media containing 80mM 

sodium acetate, which is known to induce certain (ySdependent  genes 

(Mukhopadhyay and Schellhorn, 1994). Both primer extension and Nuclease Si 

analysis failed to show induction, even when 1229 was present on the multicopy 

plasmid pSW3. In addition, 1229 did not appear to be transcribed during exponential 

growth (data not shown). 

Run-off transcription assays with purified Ea 7°  and EYS  were also performed using 

pSW3 promoter fragment templates as described in section 2.9. Again, Ea failed to 

give detectable transcripts, whereas Ec 7°  produced specific and reproducible bands 

(fig. 3.12a). From the lacUV5 marker lane of fig. 3.12a, transcripts of approximately 

430nt and 140nt were obtained with promoter templates running off at the BglII and 

SspI restriction sites within fi29 respectively (see also fig.3.1 2b). Since these 

restriction sites are separated by 291bp, the transcripts seem clearly to have 

originated from the same promoter. Their sizes locate the transcription start site in 

the region of the putative -10 promoter element, TATACT, discussed in section 3.4. 
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Figure 3.12a. Run-off transcription assay (section 2.9) with Ea 70  (tracks 1-3) and 
EcT (tracks 4-6) using two different f229 promoter template fragments from pSW3, 
and a lacUV5 promoter template fragment as a control. Tracks 1 and 4 contain 
transcripts from a 1 144bp BgTII fragment, expected to run off at position 532 of the 
BgllI site in fig. 3.8. Tracks 3 and 6 contain transcripts from a 852bp BglII/SspI 
fragment, which should run off at position 245 of the SspI site in fig. 3.8. 

Tracks 2 and 5 contain transcripts from a 205bp EcoRI fragment from pKB252 
(Backman et al., 1976) carrying the lacUV5 promoter. This promoter is recognised 
by both Ea 7°  and Ea (Tanaka et al., 1993). The primary transcript from this 
promoter fragment is 63nt. In addition, a secondary 268nt transcript and a tertiary 
473nt transcript are present. These are thought to be generated by a proportion of 
RNA polymerase molecules which turn at the end of the template DNA rather than 
run off, and which then read back along the promoter fragment. The sizes of these 
marker transcripts are given in nucleotides at the right hand side of the figure. The 
approximate sizes of the J229 promoter initiated transcripts are given at the left hand 
side of the figure. Some of the sample from track 5 has spilled into the preceding 
track. 

Figure 3.12b. Diagram showing the run-off transcripts in tracks 1 and 3 generated 
by the two fl29 promoter template fragments. The following abbreviations are used 
for restriction enzymes: G, BgllI; S, SspI. 

I 	
430 n 

1144bp 

I 	
140 n 

I 	 I 

G 	 852 bp 	 S 
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Fig. 3.12a 
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3.6.2 Mapping thefdhF transcriptional terminator 

Although the run-off transcription assays indicated that a a 70-dependent promoter 

is active in vitro, no J229 transcript was detected by primer extension and Nuclease 

Si analysis in RNA extracted from exponentially-growing cells (data not shown) 

suggesting a possible in vitro artefact. On the other hand, DNA sequence analysis of 

the 1229 promoter region failed to reveal other consensus promoter sequences. To 

test for possible co-transcription ofj229 with fdhF, the transcriptional terminator of 

fdhF was mapped using Nuclease Si as described in section 2.8.9. Although the 

DNA sequence of fdhF clearly suggests the presence of a strong rho-independent 

terminator, read-through or anti-termination might occur to give low levels of 1229 

transcript. Since fdhF is transcribed from a ct-dependent promoter under conditions 

where formate is the ultimate electron acceptor (Zinoni et al., 1986), transcription of 

chromosomalfdhF is not likely to occur under aerobic growth conditions. 

To generate a 3' portion of fdhF mRNA, transcription was initiated from the 

IPTG-inducible lac promoter of pSW3 (fig.3 . i 0). Si Nuclease analysis consistently 

gave two bands of 1 86nt and 1 87nt (fig. 3.13a). These correspond to the final T of 

the stem-loop, and the first T distal to this in the 3 '-tail of the putative terminator of 

fdhF (starred in fig. 3.13b). Termination would be expected to occur further 

downstream in the run of Ts. The failure to observe this may well be an artefact 

arising from the tendancy of Nuclease Si to "nibble" into A:T (or A:U) basepairs 

(Sambrook et al., 1989). Alternatively, 3'-exonuclease may trim the mRNA back to 

the stem-loop in vivo. In any case, no full-length uncut probes were detected 

following Si digestion. This suggests that there is no detectable read-through of the 

fdhF terminator, and hence no co-transcription of J229 with fdhF, at least when 

transcription of fdhF is initiated from the heterologous lac promoter. 
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Figure 3.13a. Nuclease Si analysis of the transcriptional terminator of fdhF. A 
364bp BstEII-SspI fragment was 3' end labelled as described in section 2.8.2. This 
was hybridised with 1 OOjtg of total RNA and digested with Nuclease Si as described 
in section 2.8.9. Products of Nuclease Si digestion using the following RNAs were 
analysed on a 6% denaturing polyacrylamide gel : Track 1, E. coil tRNA 
(Boehringer); Track 2, RNA from NM570.pSW3, induced with 1 OOpg/m1 IPTG; 
Track 3, RNA from NM570.pSW3, not induced with IPTG. Tracks 4 and 5 contain 
sequencing ladders produced with Sequenase from M13 control DNA using ddA 
and ddT reactions respectively. The sizes of the major Nuclease Si-generated 
products are given in nucleotides. 
The weak band of 152nt corresponds to position 39 in fig. 3.8, and lies just 
downstream from the fdhF translation stop codon. This band may have been 
generated by RNase processing or by degradation of the probe. 

Figure 3.13b. The nucleotide sequence of the fdhF terminator region, showing the 
inverted repeat (underlined) and T-rich tail, with asterisks above the two Ts 
corresponding to the 186 and 187nt bands shown in fig. 3.13a. In addition, a direct 
repeat of TCCTTTC(N) 7TCCTTTC and the target sequence for EcoNI 

[CCT(N) 5AGG] are also shown. The sequence is numbered as in fig. 3.8. 

EcoNI 
** 

43- TCCTTTCTACAGCCTCCTTTCGGAGGCTGTTTTTTT- 78 
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3.6.31229 transcription is not detectably cold-shock inducible 

13bp downstream of the putative -10 promoter element TATACT lies the 

complement of the Y-box motif, ATTGG (fig. 3.8). This regulatory sequence is 

found in the promoter regions of several cold-shock genes of E. coli and is bound by 

the major cold-shock protein CspA (section 1.11.2). No alternative sigma controlling 

the cold-shock regulon has been identified, and transcription of cold-shock genes 

may involve activation of Ea 70  (or Ea S)by cold-shock-induced non-sigma factors. 

To determine whether 1229 transcription is cold-shock inducible, exponentially-

growing cells were shifted from 37°C to 10°C and RNA extracted at various time 

points following this temperature downshift. Neither primer extension nor Si 

Nuclease analysis gave evidence of 1229 transcription at any time point (1-24 

hours) following cold-shock, even when cells carried the multicopy plasmid pSW3 

(data not shown). Again, the fl29 transcript was also undetectable in RNA samples 

from exponentially-growing cells at 37°C. 

3.6.4fl29 is strongly transcribed after deletion of the downstream BIME 

In an attempt to simplify manipulation of pSW3 by removing "excess" DNA, the 

upstream fdhF DNA was removed. This was achieved by digesting pSW3 with 

KpnI, the original cloning site from ?639, and EcoNI, whose target site lies in the 

loop of the fdhF transcriptional terminator (fig 3.13b). The fdhF DNA was then 

replaced with a KpnI-EcoNI linker fragment to give pSWli (fig. 3.14). The linker 

was designed to remove the upstream arm of the stem of the fdhF terminator, so that 

transcription of 1229  could be strongly induced from the lac promoter if necessary. 

The naturalfdhF translational stop codon was retained, since this is in frame with the 

upstream lacZa of pBluescript, and would thus prevent the formation of N-terminal 

lacZa fusions. In addition a direct repeat, TCCTTTC(N) 7TCCTTTC, which overlaps 

the fdhF terminator sequence (fig. 3.13b) was also retained since this may represent 
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anf229 transcription signal. The linker sequence in pSW1 1 was confirmed by DNA 

sequencing as described in section 2.7. 

Originally constructed to generate protein from f229, the BamHI-KpnI fragment of 

pSW1 1 (cloned in pBluescript KS) was subcloned into the multiple cloning site of 

pBluescript SK, so as to place J229 downstream of the T7 promoter on the resulting 

plasmid, pSW12 (fig. 3.14). The protein work is described in section 3.7. To 

investigate the effect of the BIME on 1229 transcription, pSW12 was digested with 

Stul so as to remove all but one PU of the BIME structure to give pSW15 (fig. 3.14). 

While primer extension analysis of exponential phase RNA extracted from NM570 

cells carrying pSW12 gave the expected negative result, pSW15 RNA gave a very 

strong signal (fig. 3.15). Primer extension analysis was then repeated with pSW15 

RNA and run alongside a pSW3 DNA sequencing ladder to map the transcription 

initiation start point. Fig. 3.16a shows transcription originating at a T located 7bp 

downstream from the TATACT sequence, confirming this as the -10 element of the 

cr70-dependent fl29 promoter. Fig. 3.16b shows the promoter nucleotide sequence 

with the transcription initiation site indicated. Transcripts originating here will carry 

the CCAAT Y-box motif near their 5' ends. However, additional induction of fl29 

from pSW1 5 following cold-shock was not investigated, since the primary aim was 

to identify conditions which induce J229 transcription with the full BIME sequence 

present downstream. 

Primer extension analysis was also performed on RNA extracted from exponential 

phase cells carrying pSW13 (grown in the presence of 1% glucose to keep its wild 

type lac promoter catabolite repressed). pSW13 carries anJ229::1acZct fusion which 

has none of the BIME motifs (section 3.7.3 and fig. 3.14). This analysis consistently 

detected a major transcript initiating at the same position as seen with pSW1 5. in fig. 

3.16 (data not shown). 
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Figure 3.14a. Structures of pSW9, pSW1O, pSW11, pSW12, pSW13, and pSW15. 

The fdhF DNA of pSW3 (fig. 3.10) was replaced with a KpnIJEcoNI linker 

carrying a translational stop codon in frame with the upstream lacZa (see below) to 

generate pSW1 1. pSW9 is identical to pSW1 1 except for an internal StuI deletion, 

leaving just one PU of the BIME sequence. pSW1O was formed by inserting a 
Kanamycin cassette from pUC4-KISS into the unique BglII site of pSW9, which lies 

withinf229. BamHI cuts within the KanR gene. 
pSW12 was formed by subcloning the 1.8kb KpnIIBamHI fragment of pSW1 1 into 

the corresponding sites of pBluescript SK. This plasmid carries fl29 and the BIME 
sequence downstream from the T7 promoter. pSW15 is identical to pSW12 except 
for an internal Stul deletion, leaving just one PU of the BIME. 

p5W1 3 was formed by digesting pSW1 1 with BglH and BamHI and religated to 

give an in-frame fusion betweenJ229 and lacZa. 

bla 	 IaCz 

git4 xBgi]I 
pSW9 	 - 

lacT

4331bp

r) 

+KnR 

Stul 

f229 

 

KpnI ENI  

 

hcONI 	BamHI 

Figure 3.14b. Nucleotide sequence of the KpnI/EcoNI linker oligonucleotides. The 
top line gives the sequence (5'-3') of oligonucleotide P5335; the bottom line gives 
the sequence (3'-5') of oligonucleotide P5336. The TAA translational stop codon is 

shown in bold. 

KpnI 	 EcoNI 
CGTAATACCGTCC TilT CGCACTT GTCC TTT 

CATGGCATTATGGCAGGAAAGCGTGAACAGGAAAG 
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Figure 3.15. Primer extension analysis of 1229 transcripts. 50p.g of RNA from 
NM570 transformed with pSW12 or pSW15 were hybridised with 10 pmol [y- 32P]-
labelled oligonucleotide primer M5102 (complementary to positions 207-181 of fig. 
3.8) at 50°C, and primer extended with reverse transcriptase as described in section 
2.8.8. 

Track 1 shows the sequencing ladder from the Sequenase M13 control ddC 
reaction; Track 2 shows reverse transcripts generated from pSW15 mRNA; Track 3 
shows reverse transcripts generated from pSWI2 mRNA. The weaker bands less 
than lOint might have arisen due to premature termination of reverse transcription 
within the mRNA template. It is possible that these are within regions of strong 
secondary structure, or represent processing sites. 
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Figure 3.16a. Identification of the J229 promoter. 50 jig of RNA from 
NM570.pSW15 were hybridised with lOpmol M5102 and extended as in fig. 3.15. 
Track 1 contains reverse transcripts generated from the above primer extension. 
Tracks 2-5 contain dideoxy sequencing reactions using CsC1-purified double 
stranded pSW3 DNA with ddA, ddC, ddG, ddT respectively. The lOint reverse 
transcript (at position 107 in fig. 3.8) is marked. Track 6 contains the Sequenase 
Ml 3 control DNA ddC reaction. 

Figure 3.16b. Nucleotide sequence of the fl29 promoter, showing the -35 and -10 
elements and the Y-box motif. The transcription start site is indicated with an 
asterisk. 

-35 	 (N) 17 	 -10 	 * 	 Y-B 
TTTTTT TATCCATTCGAACTCTT TATACT GGTTAC TCCCTAC CCAAT 
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3.6.5 J229 transcription is not induced by osmotic shock. 

The effects of removal of the BIME indicate that this element exerts a negative 

effect on fl29 transcription, probably by supercoiling the fl29 promoter DNA. 

Transcription of osmotic-shock genes is thought to be induced by increased levels of 

supercoiling, whereas entry into stationary phase results in a general decrease 

(section 1.10.2). Since stationary phase growth is unable to induce J229 transcription 

(section 3.6.1), the level of supercoiling of the 1229 promoter putatively required to 

allow initiation would have to be even lower than that found in stationary phase. 

Alternatively, fl29 transcription might for example require the production of an 

activator which binds to highly supercoiled DNA templates. To test for induction of 

fl29 transcription by osmotic shock, RNA was extracted from cells grown in LB 

media containing 0.5M NaC1 final concentration (as described in section 2.5.7) to 

increase the osmolarity of the growth medium. However, RNA dot blots probed with 

an oligonucleotide complementary to the J229 transcript show no more hybridisation 

than RNA from cells grown in normal LB medium (data not shown). 
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3.7 Analysis off229 translation 

AlthoughJ229 is an open reading frame, no evidence had yet been presented that it 

is translated, and so its product F229 has remained a hypothetical protein. Results 

presented in this section provide evidence thatj229 does encode a protein. 

3.7.1 Minicell experiments 

From its amino acid sequence, fi29 is predicted to encode a protein of 25:1 kD, 

assuming initiation at the first methionine of the open reading frame as suggested by 

Blattner et al., 1993). However, proteins labelled in minicells (section 2.10.1) 

carrying pSW3 and pSW4 plasmids showed no detectable band of this size on SDS-

PAGE (data not shown). In the light of the transcription experiments, this could be 

explained by transcriptional silencing of j229 due to the BIME present on these 

plasmids. Accordingly, minicells carrying pSW15, which does give detectable 

transcripts, consistently gave a protein band migrating at approximately 25kDa as 

seen by autoradiography (fig. 3.17). A smaller protein band migrating at 

approximately 23kDa was also detected in the pS Wi 5-generated sample (fig.3.17). 

This might be a degradation product of F229, or perhaps a truncated F229 protein 

generated following the cleavage of an N-terminal signal sequence (see section 3.9.6 

for further discussion). 

Despite producing high levels of transcript (section 3.6.4), pSWl3 did not produce 

the expected 20kDa J229::lacZa fusion protein in minicells (data not shown). 
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Figure 3.17. SDS-PAGE analysis of labelled proteins produced by the minicell 
strain P678.54 carrying either pBluescript SK (track 1) or pSW15 (track 2). 
Minicells were purified and proteins labelled as described in section 2.10.1. Protein 
molecular sizes are given in kDa to the left of track 1. The bla gene products and 
F229 are marked in track 2. 
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3.7.2 A T7 expression system 

In view of the minicell results using pSW3 and pSW4 (which were obtained much 

earlier that those using pS Wi 5) it was logical to attempt over-expression of F229. To 

achieve this, BamHI/KpnI fragments from pSW3 and pSW4 were first subcloned 

into Ml 3 tg 131 RF DNA to pick up extra restriction sites. HindII/SmaI fragments 

from these M13 intermediates were then transferred into the T7 expression vector 

pET3 to give pSW5 and pSW6 (see fig. 3.18). The structures of pSW5 and pSW6 

were verified by restriction analysis. Cells harbouring these plasmids were infected 

with M13 mGP1-2, which carries the T7 RNA polymerase gene, and protein 

synthesis was induced as described in section 2.10.2. Extracts analysed by SDS-

PAGE clearly show a protein encoded by pSW5 and pSW6 that is not encoded by 

the parent plasmid pET3 (fig. 3.19). The size of this protein, which migrates just 

below the 26kDa degradation product of 13-lactamase, is consistent with the predicted 

size of 25.1kDa for F229. E.coli strain BL21(?J)E3), which carries the T7 RNA 

polymerase gene on a ? prophage (Studier and Moffatt, 1986), gave a similar sized 

band when transformed with pSW12 (data not shown). 

It was hoped that this system would generate sufficient levels of protein so that it 

could be purified. It may have then been possible to confirm by N-terminal 

sequencing that the 25kDa protein was indeed F229. However, as with the minicell 

experiments, the --25kDa protein band was not seen with Coomassie staining alone 

(data not shown). Silver staining was not attempted. 
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Figure 3.18. Structure of pSW5. The T7 promoter lies upstream of 'fdhF, J229, and 
bla. pSW6 is derived from pSW4 and thus has two fewer repeat units within the 
BIME than pSW5. 
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Figure 3.19. SDS-PAGE analysis of labelled proteins produced by pSWS and pSW6 
following induction of transcription by T7 RNA polymerase (section 2.10.2). 

+ indicates the addition of both mGP 1-2 and IPTG. - indicates addition of neither. 
Tracks 1 and 2 contain proteins from pET3-carrying cells; Track 3 contains protein 
molecular size marker (Sigma); Tracks 4 and 5 contain proteins from pSW5-carrying 
cells; Tracks 6 and 7 contain proteins from pSW6-carrying cells. Protein molecular 
sizes are given in kDa. The bla gene products are marked next to track 1 and P229 is 
arrowed in lane 6. 
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3.7.31229 has a functional ribosome binding site 

Further evidence that J229 is translated was obtained using anJ229::1acZa fusion 

which was constructed by digesting pSW1 1 with BgIH and BamHI and religating the 

complementary overhangs to give pSW13 (fig. 3.14). This should produce an in-

frame fusion of 1229 and lacZa, whereas filling in both ends with Kienow DNA 

polymerase I fragment (as section 2.8.1 but with unlabelled 2mM dCTP) before 

religating, which generates pSW14, results in an out of frame fusion. NM570 

transformed with pSW1 3 gave blue colonies on LB plates containing IPTG and X-

Gal (section 2.4.6), whereas NM570.pSW14 colonies were white (data not shown). 

This shows that the protein fusion of pSW13 is able to give a-complementation, and 

since a translational stop codon in the linker is in frame with the upstream portion of 

lacZa, translation of this fusion protein requires the fi29 ribosome-binding site. 

pSW1 3 produced no detectable increase in f3-galactosidase activity when assayed by 

the standard Miller technique (data not shown) although the X-Gal test is more 

sensitive. 

3.7.4 Codon usage inJ229 

The results obtained from the T7 expression system suggest that 1229 might be 

poorly translated. A possible explanation for inefficient translation is a requirement 

for rare tRNA species which might be sequestered by more abundant transcripts. The 

codon usage of the 1229 gene was analysed using the Codonfrequency program of 

the GCG package, and is summarised in table 3.2. It does indeed show a poor 

correlation between codon usage and the major iso-accepting tRNA species of E.coli 

(Ikemura, 1981 and 1985). The frequency of optimal codons (F 0 ) was calculated by 

dividing the number of optimal codons by the total number of optimal plus non-

optimal codons assigned according to Ikemura (1985). The calculated low F 0  (0.52) 

is consistent with the observation thatJ229 is poorly expressed. 
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UUU Phe 7 

UUC Phe 3 

UUA Leu 4 

UUG Leu 6 

UCU Ser 2 

UCC Ser 4 

UCA Ser 0 

UCG Ser 2 

UAU Tyr 	7 UGU Cys 	2 

UAC Tyr 	2 UGC Cys 	1 

UAA Ochre 1 UGA Opal 0 

UAG Amber 0 UGG Trp 	5 

U 

AUU lie 6 

AUC lie 4 

AUA lie 0 

AUG Met 6 

ACUThr 1 

ACC Thr5 

ACA Thr 1 

ACGThr 1 

AAU Asn 2 AGU Ser 	2 

AAC Asn 8 AGC Ser 	7 

AAA Lys 11 AGA Arg 	0 

AAG Lys 7 AGG Arg 	0 

A 

GUU Val 1 

GUC Val 2 

GUA Val 2 

GUG Val 1 

GCU Ala 1 GAU Asp 8 GGU Giy 	7 

GCC Ala 13 GAC Asp 8 GGC Gly 	5 

GCA Ala 10 GAA Giu 10 GGA Giy 	2 

GCG Ala 9 GAG Giu 7 GGG Gly 	3 

G 

Table 3.2 Codon usage inJ229 

First 
Letter 

U 

Second Letter 

C 	 A G 

10 

CUU Leu 3 CCU Pro 	1 

CUC Leu 0 CCC Pro 0 

CUA Leu 0 CCA Pro 2 

CUG Leu 10 CCG Pro 2 

CAU His 1 CGU Arg 	0 

CAC His 2 CGC Arg 	2 

CAA Gin 6 CGA Arg 	2 

CAG Gin 3 CGG Arg 	0 

F0  = 0.52 

Bold type denotes optimal codons for E.coli as designated by Ikemura (1985). 
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3.7.5 In vitro translation of1229 

F229 production in vitro was investigated using a linked T7 

transcription/translation system supplied by Amersham, as described in section 

2.10.3. Fig 3.20 shows proteins generated from a pSW15 DNA template linearised at 

either the EcoRV or BgIII restriction site (see fig. 3.14). The strong 25kDa F229 

band derived from the EcoRV template is indicated; the smaller band might be 

identical to that seen in minicell samples (fig. 3.17). The identities of the two larger 

proteins are unknown, although the same banding pattern was observed using 

pSW1 5 DNA templates linearised at either the Stu! or BamHI site, or with ccc 

pSW1 5 DNA (data not shown). 

The pSW1 5 template linearised at the BglII site would be expected to give a 

truncated protein of approximately 14kDa. However, no protein of this size was 

detected, either on gels run for a shorter period, or on overexposed autorads (data not 

shown). Further inspection of thef229 sequence showed no methionine codons lying 

between the BglII site and the putative AUG initiation codon (Blattner et al., 1993; 

fig. 3.8). Likewise, the 20kDa J229::lacZct fusion protein encoded by pSW13 has 

no internal methionine codons. This fusion protein was not seen in minicell 

experiments (section 3.7.1). Perhaps the N-terminal f-Methionine encoded by the 

potential UUG initiation codon (or the upstream AUG, if active) is cleaved off the 

protein. Alternatively, both of these proteins might be highly unstable. 
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Figure 3.20. SDS-PAGE analysis of proteins labelled in a linked in vitro 
transcription/ translation system (section 2.10. 3) with linear pSW15 DNA templates. 
Track 1 contains proteins from pSW1 5 linearised at the BglII site withinj229; Track 
2 contains proteins from pSW1 5 linearised at the EcoRV site downstream from the 
BIME (see fig. )3 .14). The sizes of protein markers (Sigma) are given. 
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3.7.6f229 is not preferentially translated following cold-shock 

Considering the low F 0  value for 1229, its protein product might only increase 

significantly, if at all, under conditions where translation is specifically directed 

towards F229 expression. During the lag phase following cold-shock, most cellular 

protein synthesis ceases except that of cold-shock proteins. In addition, ribosomes 

appear to be modified so as to preferentially translate the cspA transcript, although it 

is not yet known if translation of other cold-shock transcripts is also enhanced 

(section 1.11.1). Transcription of 1229 is not induced by cold-shock (section 3.6.3), 

but translation of pre-existing fl29 transcript (which carries the CCAAT Y-box 

motif) might be stimulated following cold-shock due to the increased availability of 

minor tRNAs and/or ribosome modification. However, analysis of proteins 

extracted from pSW15-carrying minicells labelled at 10°C for between 1 and 4 

hours failed to indicate cold-shock-induced translation ofJ229 (data not shown). 

3.8fi29 is inessential for growth under conditions studied 

The chromosomal copy of 1229 was disrupted in strain NM621 with a kanamycin 

cassette using pSW10 (fig.3.14) as described in section 2.4.5. Candidates were 

selected for resistance to kanamycin and sensitivity to ampicillin, and then DNA 

minipreps were made to ensure no plasmid contamination. J229 disruption was 

verified by probing genomic DNA with a kanamycin probe (fig. 3.21). Growth of the 

1229 : :Kan R  strain was unaffected under various conditions, including cold-shock, 

osmotic-shock, and stationary phase growth (data not shown). This is perhaps 

unsurprising considering the observed lack of elevated transcription in response to 

these stresses. 
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Figure 3.21. Verification of fi29 disruption on the E.coli K12 chromosome. 
Genomic DNA was prepared as described in section 2.5.6 and was transferred to a 
nylon membrane by Southern blotting (section 2.8.3). A double stranded DNA 
fragment carrying the gene encoding aminoglycoside 3'-phosphotransferase, which 
confers resistance to kanamycin, was labelled as in section 2.8.1 and used as a probe. 

Track 1 contains I kb ladder marker DNA (Gibco BRL); Track 2 contains NM621 
genomic DNA digested with BamHI; Tracks 3-7 contain transductant DNAs 
digested with BamHI. The inserted gene is present on the chromosome within a 
2.6kb BamHI fragment (BamHI cuts in this gene-see fig. 3.14). 
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3.9 Discussion 

3.9.1 The f229/gltP BIME 

The BIME separating J229 and gltP on the E. coli chromosome is comprised of 5 

RIB/RIP elements and one additional PU (gltP [Z2  L Y s] 5  Z2  fl29) (section 1.9). 

The eleven PU sequences which make up this BIME are the greatest number known 

in one BIME as determined from the sequence data available. There is one known 

occurrence of a Z2-containing BIME having a total of ten PU motifs (Bachellier et 

al., 1994), located between the phnA and phnB genes of the phn operon involved in 

alkyiphosphonate uptake. However, these PUs do not make up RIB/RIP elements. 

An oligonucleotide having the conserved PU sequences gave the strongest signal 

with 2,639/X640 when used to probe the Kohara library of E. coli genome fragments 

(Stem et al., 1984). This could mean that the gltP/J229 BIME carries the greatest 

number of PU sequences on the chromosome. However, the use of a consensus 

probe rather than a mixture of three specific probes directed against the Y, Z' and Z 2  

PU motifs may only reveal a subpopulation of PU, leading to an underestimation of 

their number (Dimri et al., 1992). 

Although the Y and L motifs are repeated with almost total fidelity throughout the 

BIME, the loop sequence of the Z 2  motif alternates thus : TTGCC, TTAAC, 

TTGCC, TTAAC, TTAAC, TTGCC. This is uncommon, since the loop sequence is 

thought to be highly conserved within a particular class (Bachellier et al. 1994). In 

addition, the PU motif is more conserved within a BIME than between BIMEs, 

leading to the theory that BIMEs are generated by a localized amplification of a PU 

doublet (Gilson etal. 1991). This may still be the case here, since the sequences only 

differ at two positions, or alternatively, the mechanism of BIME formation may be 

more complex than at first thought. 

The Y motif proximal to the end ofJ229 has a TG deletion compared to the other 

four Y motifs, but this would not affect base pairing. The s motif following this has 

a single base pair substitution, but as no direct role has been suggested for s, this 
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may not affect overall function. Comparison of BIME motif sequences indicates that 

differences at such non-critical positions are quite common. 

81% of L motifs carrying the IHF-binding sequence are associated with the Z 1  

motif, while 89% of Z' motifs are in BIMEs containing just two PU motifs 

(Bachellier et al. 1994). In most cases, BIMEs carrying the L motif have a single 

copy of L , Z' and Y, which are RIBs/RIPs and belong to the BIME-1 family. 

However, the gltP/ 1229 BIME carries five copies of L, each of which is associated 

with a Z2  motif It appears that this BIME structure is rare if not unique, suggesting 

that it might have a function distinct from other BIMEs. Possibilities include a direct 

involvement in the attachment of independent chromosomal domains to each other 

or to the membrane, or in chromosomal segregation. 

Since gyrase binds Z2  with greater affinity than Z', and IHF is thought to increase 

this binding between flanking PUs (section 1.9.5), such a BIME structure may be 

bound by gyrase and/or other proteins at very low concentrations. 

It is not known whether motifs within a BIME act as independent units or whether 

they contribute additively to the overall BIME function. It would be interesting to 

see if there is a cooperative effect on binding of different proteins to such complex 

BIMEs. If not, there may not be a physiological advantage to having so many motifs 

within one BIME, and they may have arisen merely as a result of over-amplification. 

Since most BIMEs carry just one PU, and all but two have less than six (Bachellier 

et al. 1994), it may not be possible to increase superhelicity further by increasing 

the number of PUs. Studies of the effect of various chromosomal deletions within 

this BIME on chromosome organisation and J229/gltP gene expression may help to 

clarify this. 
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3.9.2. Induction ofJ229 transcription 

Transcription ofj229 was undetectable under various growth conditions, including 

exponential and stationary phase growth, and acid-, cold-, and osmotic-shock of 

non-transformed cells and cells transformed with multicopy plasmids carrying p29. 

This, along with the run-off transcription studies described in section 3.6.1, suggests 

thatJ229 transcription is not under the control of Eo. 

However, whenJ229 was supplied on a plasmid having an internal StuI deletion so 

as to remove all of the downstream BIME except for a single Z 2  motif (pSW1 5), 

initiation of transcription was shown to increase greatly at a plausible cr 70-dependent 

promoter sequence (fig.3.15). Enhanced transcription was also seen from a plasmid 

carrying an J229::lacZa translational fusion (J)SW13), which carried no BIME 

motifs (data not shown). It should be noted that all RNA used for primer extension 

was extracted from exponentially growing cells, so transcription of the majority of 

this RNA would have been initiated by Ea 70 

The above results indicate that the downstream BIME represses Ec 70-mediated 

transcription ofJ229 under the conditions investigated, and that derepression occurs 

when most or all of the BIME motifs are removed. The most likely cause of this 

repression is BIME-mediated supercoiling of the promoter region, since 

transcription can be activated or repressed by increased levels of negative 

supercoiling, depending on the promoter. The Ec 70-initiated run-off transcripts 

shown in fig.3.12 were generated from linear template DNA lacking BIME motifs. 

The same strategy could also be adopted to investigate the effect of BIME sequences 

onJ229 transcription using linear template DNA, i.e. in the absence of supercoiling. 

In addition, plasmids carrying a strong rho-independent transcriptional terminator 

cloned between the fi29 promoter and various BIME motifs could be utilised to 

study their effects on supercoiled template DNA. 

Further evidence for a role of supercoiling in the transcriptional control of 1229 

came from attempted IPTG-induced transcription of gltP from the lac promoter of 

pSW12 (fig.3.14) which gave no detectable transcripts. Transcription from this 

promoter is known to be reduced by increased negative supercoiling (McClure, 
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1985). In contrast, IPTG-induced transcription of fdhF from the lac promoter of 

pSW3 was detectable and allowed the mapping of the fdhF terminator (fig.3.13). On 

this plasmid, the shortest distance between the lac promoter and the BIME sequence 

is approximately 2.6kb; on pSW12, the lac promoter and the BIME are separated by 

580bp while the 1229 promoter and the BIME are separated by 750bp. Thus the 

range of repression may be limited. On the chromosome the gltP promoter and the 

BIME are separated by only 1.5kb. It is not known whether the BIME affects gltP 

transcription. In any case, if this BIME is involved in chromosome architecture, J229 

and gltP would be in separate chromosomal domains, and might have completely 

different levels of superhelicity. In addition, the interaction between RNA 

polymerase and the gltP promoter may not be supercoiling sensitive. 

This leads to the question of how J229 is transcribed on the normal chromosome 

carrying the BIME. Is it due to an inducible transcriptional activator, which when 

bound to supercoiled DNA allows efficient transcription? Alternatively, perhaps 

1229 is expressed in response to conditions which cause a generalised decrease in the 

levels of negative supercoiling. 

Increased levels ofJ229 transcript following the removal of most of the BIME on a 

plasmid did not appear to have any effect on cell growth and viability, and 1229 

mRNA is almost certainly poorly translated considering its low F 0  value. An F0  

value of 0.52 is less than that of lad (0.62), and Lacl is thought to be present in 10 

copies per cell (Guoy and Gautier, 1982). These findings argue against a need to 

keep 1229 transcriptionally silent, suggesting that the primary role of the BIME is 

not to control J229 expression. It is possible that the BIME arose at this location 

because J229 is inessential, and the BIME can thus be tolerated. On the other hand, 

strains carrying complex BIMEs near essential genes may be selected against due to 

transcriptional repression of their promoters. 

The results obtained may be misleading because the behaviour of 1229 on a 

plasmid was being observed and a different supercoiled environment may exist on 

the chromosome. However, lack of detectable transcription under various conditions 

using non-plasmid strains suggests that there may also be repression of the 
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chromosomal copy. The effects on fi29 and gltP expression produced by removal 

of the chromosomal BIME would be interesting to examine. However, this may not 

be possible if the BIME plays an important role unrelated to J2 29 transcriptional 

control. 

It would be interesting to study the effect of this BIME and others on transcription 

of reporter genes from promoters known to be sensitive to or unaffected by increased 

levels of negative supercoiling. The distance between the promoter and BIME 

required for activation or repression could also be studied. For example, the cat gene 

encoding chloramphenicol acetyl transferase is only 790bp, similar in length to J229, 

while lacZ, encoding 3-galactosidase, is approximately 3kb, similar to the distance 

between the lac promoter and the BIME in pSW3. 

Placing BIMEs at different distances upstream of promoters may have different 

effects. Further to this, Boccard and Prentki's (1993) hypothesis that RIBs/RTPs 

reduce the levels of positive supercoils ahead of the transcription machinery could 

be investigated. Introducing RIBs/RIPs between diverging reporter genes would 

increase the levels of negative supercoils behind RNA polymerase and may serve to 

inhibit transcription elongation. 

3.9.3. Thef229 promoter 

This promoter has good homology with the consensus Pribnow box sequence, 

differing only at position 5 with a C instead of an A. Point mutations at this position 

are known to give only mild reductions in transcription (Youderian et al., 1982). 

Indeed, results from our lab indicate that when homology is maintained at -35, a C at 

position 5 may even elevate transcription. This elevation appeared more pronounced 

when the mutation was introduced into an "extended -10" promoter (data not 

shown). The Pribnow box consensus sequence is based on frequency, not promoter 

strength. 

The -35 element of the J229 promoter, 1 7bp upstream from the Pribnow box and 

overlapping the T-rich tail of the fdhF terminator, has only 2/6 homology with 

consensus. However, the two "conserved" Ts at positions one and two are thought 
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to be the most important -35 bases for efficient transcription, along with the G at 

position three. 

A second potential promoter sequence is present which overlaps the active 

promoter (fig.3.8). This has TATTAT at -10 (beginning at position 121 in fig 3.8), 

separated by 16bp from CTGGTT, i.e. 5/6 consensus at -10 and 2/6 consensus at 

-35. However, primer extension revealed no transcripts originating from this 

promoter, which may be due to the sub-optimal spacing of the promoter elements. 

Interestingly, overlapping the inverted repeat of the fdhF terminator is a direct 

repeat of TCCTTTC(N) 7TCCTTTC (fig.3.1 3b). This is centred at -54 relative to the 

transcription start, and is thus a potential binding site for a class I transcriptional 

activator. Although DNA-binding proteins are often symmetrical dimers binding 

quasi-symmetrical sequences, this is not always the case. ACIl is a well-studied 

exception (Keilty and Rosenberg, 1987). An E.coli ECDC database search failed to 

identify similar sequences upstream of promoter regions that may be activated as 

well asJ229. However, not all of the above sequence may be important for activator 

binding, making the search more difficult. For example, if TTTC(N) 10TTTC is 

crucial (separated by lObp, i.e. one turn of the DNA helix), defining 14bp rather than 

8bp would bias the search against the required sequence. 

It should be noted that the run-off transcription assay giving a positive result (fig. 

3.12) would not be expected to contain transcriptional activators. However, the assay 

uses excess purified RNA polymerase which may give positive results even in the 

absence of an activator. On the other hand, this assay has been used to demonstrate 

the requirement for transcription activators at various promoters (such as Kumar et 

al., 1994), making the latter suggestion unlikely. 

An EcoNI restriction site is conveniently positioned such that digestion would 

remove all but the last C of the direct repeat sequence. Thus, the effect of deletion on 

transcription of 1229 from pSW1 5 should be easy to study. However, even if this 

sequence is found to be important, that will give no further insight into the possible 

function ofJ229 unless the same activator sequence is found in the promoter region 
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of an already characterised gene, or the putative activator and its gene identified and 

studied. 

3.9.4. Transcription termination within BIME 

Attempts to study transcriptional termination of 1229 using nuclease-S 1 analysis 

produced no positive results, presumably because 29 transcription was very weak 

due to the inhibitory effect of the BIME on transcription initiation. Termination of 

IPTG-induced transcription from the lac promoter of pSW1 1 (fig.3. 14) was also 

undetectable, presumably because the inhibitory effect of the BIME extends to this 

supercoiling-sensitive promoter which is only some 50bp upstream of the fl29 

promoter on pSW1 1 DNA. Indeed, initiation at the lac promoter on pSW1 1 was not 

detectable by primer extension analysis (data not shown) so negative results were 

not confined to the Si mapping analyses. Likewise, termini of gltP transcripts 

initiated from the lac promoter on pSW12 were not detectable, perhaps for the same 

reason. 

Si mapping of the gltP transcriptional terminator using RNA from non-

transformed cells gave two weak bands corresponding to sequences within the first 

z2  motif of the BIME proximal to gltP (although with considerable read-through) 

but not within the PU*like  sequence preceding it. Interestingly, the end point comes 

after a stem-loop and two Ts. Although PUs were not previously thought to be 

involved in transcription termination (except for PU*),  because of their occurrences 

within operons, the RIB/RIP sequences which are located only at the end of 

transcription units may play a part in termination. Extra proteins bound to 

RIBs/RIPs, compared to other BIMEs, may facilitate this. Possible Rho-dependent 

termination sites have been postulated within BIMEs (Gilson et al., 1986), but direct 

experimental data have been unavailable. 

If transcription does extend into RIBs/RIPs, there may be a physiological reason 

for having BIME motif sequences within the mRNA. Perhaps proteins that can 

specifically bind to the PU and L RNA sequences confer a special property on such 

transcripts. 

166 



3.9.5 Translation ofj229 

Minicell experiments detected no protein of the size expected for F229, except 

when using strains carrying plasmids known to give elevated levels of J2 29 

transcript. Expression of F229 was detectable in a T7 promoter-based system (using 

rifampicin to suppress normal transcription) and in an in vitro transcription/ 

translation system. Moreover, anf229::1acZa gene fusion protein was able to give 

a-complementation. Thus there is initiation of 1229 translation, albeit at very low 

levels. Under most growth conditions, translation of the low levels ofJ229 transcript 

present is expected to be limited, considering its poor F 0 . The rare tRNA species 

required to translate the minor codons of j229 would probably be sequestered by 

more abundant transcripts. It may be that F229 can perform its function at low 

concentrations, as is the case for example with Lad. 

On the other hand, it is possible that F229 protein levels could increase under 

conditions where specific translation of 1229 mRNA is favoured. This situation 

occurs in the expression of cspA which encodes the major cold-shock protein. 

Following temperature downshift, the majority of protein synthesis ceases. 

Ribosomes appear to be modified so as to preferentially translate cspA mRNA, 

although it is not yet known if translation of other cold-shock transcripts is also 

enhanced (section 1.11.1). The fl29 transcript contains a Y-box sequence present in 

certain cold-shock gene promoter regions, although 1229  transcription is not cold-

shock-inducible. In principle, enhanced translation of low mRNA levels by modified 

ribosomes might give a considerable increase in F229 protein production. However, 

minicells carrying pSW1 5 did not yield increased amounts of F229 when labelled at 

various times following cold-shock. On the other hand if other factors are required, 

such as a cold-shock-inducible protein to transduce the signal, a negative result 

might be expected in minicells since they contain no chromosomal DNA to encode 

such a protein. In addition, CspA binds Y-box sequences and has been proposed as 

an RNA chaperone, which may assist in the unwinding of cold-stabilised mRNA 

structures. Thus the increased translation of cold-shock transcripts at reduced 

temperature may be reliant upon functions not present in minicells. In this respect, 
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S30 extracts from cold-shocked cells may be a better system to test for enhanced 

1229 translation following cold-shock. Another possibility would be to label proteins 

encoded by T7 RNA polymerase-generated fl29 transcripts at low temperature, 

although the unnaturally high levels of 1229 mRNA might mask enhancement of 

translation. 

3.9.6 Function of F229 

Various computer searches failed to reveal amino acid sequence homology with 

other proteins, or with conserved protein domains. However, Blattner et al. (1993) 

noticed that F229 has a potential N-terminal signal-peptide-like sequence if 

translation initiates at the first methionine in the open reading frame (fig. 3.8). This 

would give an N-terminal sequence including two positively charged lysine residues 

able to interact with the negatively charged phosphate groups at the surface of the 

inner membrane, followed by twelve hydrophobic residues able to initiate insertion 

into the membrane (Michaelis and Beckwith, 1982). However, initiation at the 

downstream leucine codon (section 3.4) would leave just four of the hydrophobic 

residues thus presumably eliminating this potential signal sequence. Such a protein 

would have a molecular weight of 23.8kDa, which cannot be distinguished from a 

protein of 25.lkDa by the SDS-PAGE analysis presented in section 3.7. 

Determination of the N-terminal sequence of F229 might therefore be informative 

regarding the likely localisation of this protein within the cell, and give some 

indication as to its possible function, although the low protein output would make 

such work difficult. Immunological approaches might help to overcome this. For 

example, specific anti--galactosidase monoclonal antibodies covalently bound to a 

column might be used to purify an F229::LacZ fusion protein, which could then be 

subjected to N-terminal sequence analysis. Alternatively, antibodies raised against a 

synthetic peptide comprising the first 10 amino acids of the putative F229 signal 

sequence could be used to probe a Western blot of F229 protein. Antibodies 

specifically cross-reacting with the 25kDa protein would provide evidence that the 
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protein does indeed have an N-terminal signal-sequence, whilst negative results 

would argue against (although not disprove) the presence of this sequence. 

Lack of a consensus Shine-Dalgarno ribosome binding site argues against 

initiation at the first methionine. It may be possible to modify the in vitro 

transcription/ translation system described in section 2.10.3 by hybridising newly 

synthesised transcripts with oligonucleotides before proceeding to the translation 

reaction. Oligonucleotides directed against the two putative ribosome-binding 

sequences within the mRNA would be expected to interfere with translation, thus 

reducing protein output. While an oligonucleotide bound at the putative downstream 

ribosome binding sequence might also affect translation initiated from the upstream 

putative sequence (by preventing ribosomes from continuing along the transcript), 

an oligonucleotide bound upstream would be less likely to interfere with translation 

initiated further downstream. 

Other methods could be employed to locate F229 within the cell. For example, the 

transposon TnphoA can be used to specifically detect bacterial genes that code for 

cell envelope proteins (Manoil and Beckwith, 1985). TnphoA inserts into a 

chromosomal gene and, when in the correct frame, will fuse alkaline phosphatase to 

the N-terminus of the protein product of that gene. Alkaline phosphatase is 

enzymically active only if fused to a sequence that promotes export of the protein 

into the envelope of the cell (Manoil and Beckwith, 1986). An J229::phoA fusion 

carrying only the putative signal sequence of fi29 should not suffer from the 

potential translation problems arising from rare codons inf229.. 

Certain stimuli may lead to increased 1229 expression. These would have to 

generate mechanisms first of all to overcome BIME-mediated transcription 

repression, and then to compensate for the normally poor translatability of the 1229 

mRNA. Identification of conditions that induce J2 29 expression would provide 

further insight into the fuction of this gene, but lack of amino acid sequence 

homology with characterised proteins makes it difficult to choose a logical starting 

point. It seems more likely that F229 is non-inducible and is not required in 
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elevated amounts, which would make the characterisation of its function all the more 

difficult. 

3.10. The A449 probe-positive region 

Fig. 3.1. shows that there is strong hybridisation between the sigma probe 746J 

and X440 DNA, although not with ?439 or ?441, indicating that the probe-positive 

region lies in the insert DNA unique to X440. Southern analysis in this lab by David 

Smillie fine-mapped the positive region to a 2.8kb PstI fragment (data not shown). 

However, this and other positive fragments were found to be unclonable, and so the 

2440 probe-positive region was not investigated further. 

More recently the genomic DNA sequence of E.coli K12 strain MG1655 from 58.3 

to 59.0 minutes was published as part of the E.coli genome project (EMBL 

accession number U36840). This region spans the entire 2,440 insert DNA from 

strain W31 10. However, certain discrepancies were found between the two strains, 

most notably an -6kb deletion in MG1655. 

By comparing the restriction maps of the published MGi 655 sequence and of 

W3 110, the present author mapped the deletion between two PstI sites at 2771.9kb 

and 2779.3kb on the physical map of W31 10 (Rudd, 1991). This deletion completely 

removes the 2.8kb probe-positive region. It is possible that a gene encoding a toxic 

protein resides in this region, hence the failure to obtain subclones from X440; 

conceivably the "deletion" in MG1655 is also related to this, and may have arisen in 

the process of sequencing. Although this gene is not necessarily the one hybridising 

with 746J, the observed deletion in MG1655 (if genuine) suggests that the probe-

positive region is inessential in this strain. 

The E.coli genome project intends to sequence the corresponding region in 

W3 110, and inspection of the deleted section may reveal a candidate sigma gene as 

well as the potentially toxic gene. In any case, none of the open reading frames 

within the published MG1655 sequence that are also present in the ?440 insert DNA 

share any significant amino acid sequence homology with bacterial sigma factors 

(data not shown). 
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Chapter 4 

4.1. Introduction 

As discussed in sections 3.1 and 3.2.1, oligonucleotides directed against the 

conserved core-binding subregion 2.1 of bacterial sigma factors were used to probe 

the library of Kohara et al. (1987) in an attempt to locate novel sigma genes of 

E. coil. In this chapter I describe the mapping, sequencing and characterisation of a 

candidate sigma gene, orJ243. Part of this work was carried out by a summer 

student, Thomas Pratt. Work by him is acknowledged in the appropriate sections. 

4.2.1. Design of oligonucleotide probes 

As discussed in section 3.2.1, the second oligonucleotide probe, 745J, carried the 

most optimal codon for each amino acid within the subregion 2.1 target sequence. 

The sequence of 745J is: 

5'- GGI GAc CAG GAA GCI CGI AAA ACC CTG ATC GAA GCI AAC CTG 

CGI CTG GTI GTI TCI ATC GCI AAA AAA TAc GCT AAC-3' 

The bases which differ from 746J are underlined. 
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4.2.2. Probing E.coli genomic DNA 

745J was 5' end-labelled using [y-32P] ATP as described in section 2.8.2 and 

hybridised with nylon filters carrying DNA from the miniset clones of the E. coli 

K12 genome (Kohara et al., 1987). This probe hybridised with three pairs of 

contiguous clones: ?139/2J40, X4330,434, and ?509/510 (fig. 4.1). The overlapping 

insert DNA of X509/510 is centred near 3375kb on the physical map (67.2 minutes 

on the genetic map) and carries rpoD, the gene encoding 370.  The nucleotide 

sequence alignment between rpoD and 745J is shown in fig. 4.2. 

The overlapping insert DNA of A.433/?.434 is centred near 2700kb on the physical 

map (55.3 minutes on the genetic map) and carries purL, encoding 

formylglycineamide ribonucleotide synthetase. This enzyme is involved in purine 

biosynthesis and is not a sigma factor. However, purL has significant sequence 

homology with 745J as determined by Fasta and BLAST nucleotide sequence 

alignments, scoring higher than several bacterial sigma factors (data not shown). 

The overlapping insert DNA of ?..139/?140 is centred near 3 84kb on the physical 

map (8.2 minutes on the genetic map). The location of a candidate sigma gene in this 

unsequenced region was investigated further. 

4.2.3. Mapping and subcloning of the 139IA140 probe-positive region 

The probe-binding region was mapped more accurately by Thomas Pratt using 

Southern analysis as described in section 2.8.3. Using "Kohara" restriction enzymes, 

745J was shown to hybridise with a 3.3kb EcoRV/PvuII fragment (data not shown). 

Fig. 4.3 shows the A.1390,140 insert region with the probe-positive fragment 

highlighted. The larger 4.2kb EcoRV fragment was subcloned into the EcoRV site of 

pBluescript SK(-) by Thomas Pratt to generate pTEP4. 
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Figure 4.1. Location of a candidate sigma gene within the miniset clones of the 
E. coli genome. Hybridisation was performed at 50°C for 18 hours. Final washing 
conditions were 0-lx SSC, 0.1% SDS, for 2 minutes at 65°C. The positions of X 
clones 139, 140, 433, 434, 509, and 510 are marked. The overlapping insert DNA of 
X433/434 carries purL; the overlapping insert DNA of X5090,5 10 carries rpoD. 

25O9 X510 
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Figure 4.2. Nucleotide sequence alignment (5 '—>3') between rpoD (top line) and 
745J. The rpoD sequence shown begins at nucleotide number 1080 of the EMBL 
sequence, accession number U23083. The 745J sequence begins at nucleotide 
number 1. Identical bases are shown in bold. 

1080-G AAAGCCCGCCGTGCGCAGAAAGAGATGGTTGAAGCGAAC 
GGTGACCAGGAAGCTCGTAAA ACCCTGATCGAAGCTAAC 

TTACGTCTGGTTATTTCTATCGCTAAGAAATACACCAAC CG-1 160 
CTGCGTCTGGTTGTTTCTATCGCTAAAAAATACGCTAAC 
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Figure 4.3. Restriction map of E.coli chromosomal inserts cloned in A.139 and X140, 
based on the map of Rudd (1991). The top scale shows the coordinates in kb on the 
physical map of the E.coli K12 chromosome; the bottom scale shows the coordinates 
in minutes on the genetic map. The EcoRV fragment subcloned into pBluescript 
SK(-) to give pTEP4 is highlighted, and the length and orientation of the 
chromosomal inserts carried by X139 and X140 are indicated below the map. The 
following abbreviations are used for restriction enzymes: B, BamHI; E, EcoRV; H, 
Hindu; G, BglII; K, KpnI; P. PstI; R, EcoRI; V, PvuII. 
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4.2.4 Fine mapping of the probe-positive region 

To determine further the location of the probe-positive region, the author digested 

pTEP4 with "non-Kohara" enzymes to identify other restriction sites (fig. 4.4). Fig. 

4.5 shows the plasmid map of pTEP4 as determined from this restriction analysis. 

After identifying convenient restriction sites within the insert DNA, pTEP4 was 

subjected to Southern hybridisation analysis using 745J as probe (fig. 4.6a). 

Additional Southern analysis located the probe-positive region on a 350bp XhoI/StuI 

fragment (fig. 4.6b). 
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Figure 4.4. Restriction analysis of pTEP4 DNA by 0.6% agarose gel 
electrophoresis. Restriction enzymes used are as follows: 
Track 1, BglT; Track 3. EcoRV+StuI; Track 4, PvuII; Track 5, EcoRV+PvuII; Track 
6. PstI; Track 8. BglII±EcoRV; Track 9, XhoI; Track 10, PstI+XhoI; Track 11, 
BarnHI+KpnI; Track 13, KpnI. Tracks 2, 7, and 12 contain 1kb marker DNA (Gibco 
BRL). Marker fragment sizes are given in kilobase pairs. 
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Figure 4.5. Plasmid map of pTEP4 as determined by restriction analysis (fig. 4.4). 
The position and orientation of orJ243 (see text) are marked. 
Abbreviations for restriction enzymes are as follows: 
B, BglII; E, EcoRV; P, PvuII; S, StuI; X, X7ioI. 

PvuII 

Stu I 

Restriction sites (bp) 

PvuII 	530, 1580, 5000. 	StuI 
	

1050, 1800, 1900, 4000. 
XhoI 	670, 4330. 	BglII 

	
1610. 

EcoRV 700, 4700. 
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Figure 4.6. Fine mapping of the 745J probe-positive region within pTEP4. 
Southern hybridisation of pTEP4 DNA. DNA was transferred from the gel shown 

in fig. 4.4 to a nitrocellulose filter as described in section 2.8.3. Hybridisation with 
[32P]-labelled 745J was performed at 50°C for 18 hours. Final washing conditions 
were O.lx SSC, 0.1% SDS, for 2 minutes at 65°C. Restriction enzymes used are as 
follows: 
Track 1, BglI; Track 3, EcoRV+StuI; Track 4, PvuII; Track 5, EcoRV+PvuIJ; Track 
6, PszI; Track 8, BglH+EcoRV; Track 9, XhoI; Track 10, PstI+XhoJ; Track 11, 
BamHI+KpnI; Track 13, KpnJ. Tracks 2, 7, and 12 contain 1kb marker DNA (Gibco 
BRL). 

To further map the probe-positive region pTEP4 DNA was digested with 
XhoI+StuI and subjected to 0.6% agarose gel electrophoresis (data not shown). DNA 
was transferred to a nitrocellulose filter as described in section 2.8.3. Hybridisation 
and washing were performed as above. The 350bp probe-positive fragment is 
indicated. 
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4.3. Nucleotide sequence of the probe-positive region 

Double stranded DNA seqUencing of pTEP4 was initiated using reverse primer as 

described in section 2.7. The original strategy was to sequence out of the vector 

towards the probe-positive region, at least 250bp away. However, when the first 

sequence data (not shown) were subjected to computer analysis, it was found that the 

entire X140 insert DNA sequence had just been submitted (GenEMBL accession 

number D64043). GCG Fasta and Bestfit programs were employed to locate the 

745J binding site within the previously identified XhoI/StuI fragment. This was 

located just downstream from the JthoI site (fig. 4.7). As with 746J/j229 interaction 

(section 3.5), it appears that homology towards the middle of the probe is of primary 

importance with additional contacts being made along the entire length of the probe. 

Figure 4.7. Nucleotide sequence alignment between orJ243 (top line) and 745J. The 
orJ243 sequence shown begins at the .k7oI target site at position 582 in the 
GenEMBL sequence, accession number D64043 (also in fig. 4.8). The 745J 
sequence begins at position 29 (section 4.2.1). Perfect matches are shown in bold. 

XhoI 

1 
5 82-CTCGAGCT(-)TCCTGCGTC 

29-TCGAAGCTAACCTGCGTC 
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4.4..745J hybridises to an open reading frame 

The probe-positive region was subjected to further sequence analysis. Although 

previously unidentified, an open reading frame was found with the potential to 

encode 243 amino acids, and called orf243 (fig. 4.8). The upstream portion of this 

open reading frame would lie in the unsequenced region of X139; lack of promoter 

and ribosome-binding sequences may explain why it was not noticed before. 

A BLAST search with the amino acid sequence of orf 243 revealed striking 

identity (80% range) with a family of Pseudomonas enzymes, the 4-hydroxy-2-

oxovalerate aldolases. The sequence alignment between 0rf243 and these enzymes, 

as determined by the GCG Pileup program, is shown in fig. 4.9. No other open 

reading frames were found in the —3kb of DNA downstream of orJ243 that is present 

in pTEP4, either by the author or by the group who sequenced the X140 insert DNA. 

However, a BIME was found approximately 2.2kb downstream of orf243 (see fig. 

4.5). This has the structure [Z 2SY]2  and is a member of the BIME-2 family (section 

1.9.3). 

4.5. Proteins encoded by pTEP4 

Proteins labelled in minicells (section 2.10.1) carrying pTEP4 included no 

detectable proteins that were not labelled in minicells carrying pBluescript SK (data 

not shown). This is unsurprising for orJ243, since promoter and ribosome-binding 

sites are not likely to be present. It also agrees with the apparent absence of other 

open reading frames in the pTEP4 insert DNA. The plasmid map of pTEP4 given in 

fig. 4.5 shows the lac promoter of pBluescript in the same orientation as orJ243. 

However, IPTG had no effect on protein output from minicells transformed with 

pTEP4. No obvious transcriptional terminators were found downstream of orJ243. 

This further indicates that there are no open reading frames in the same orientation 

as orf 243, which might have been missed in the absence of IPTG through weakness 

of their normal promoters. 
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Figure 4.8. Nucleotide sequence of orj243 from the GenEMBL entry, accession 
number D64043. The amino acid sequence encoded by the open reading frame is 
given below the relevant codons. Target sites for EcoRV and X7zoI are indicated. 
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10 	 30 	 50 

GATCTGAAAAATGCCTGGCAGGCTGGCGCGCGGGTGGTTCGTGTGGCAAC 

DL K N A W Q A GA R V V R VAT 

	

70 	 90 

GCACTGTACCGAAGCTGATGTTTCCGCCCAGCATATTCAGTATGCCCGCG 

H C T E A D V S A Q H I Q Y A R E 

	

110 	 130 	 150 

AGCTCGGAATGGACACCGTTGGTTTTCTGATGATGAGCCATATGACCACG 

L GM D TV G FL MM S H MT T 

	

170 	 190 

CCGGAGAATCTCGCCAAGCAGGCAAAGCTGATGGAAGGCTACGGTGCGAC 

PEN LA K Q A K L M E G Y GA T 

	

210 	 230 	 EcoRV 

CTGTATTTATGTGGTGGATTCTGGCGGTGCGATGAACATGAGCGATATCC 

CI Y V V D S G GA MN MS D I R 

	

270 	 290 

GTGACCGTTTCCGCGCCCTGAAAGCAGAGCTGAACCAGAAACGCAAACT 

DR FR AL K A ELK PET Q T 

	

310 	 330 	 350 

GGCATGCACGCTCACCATAACCTGAGTCTTGGCGTGGCGAACTCTATCGC 

GM H A H H N L S L G V ANSI A 
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GGCGGTGGAA.GAGGGCTGCGACCGAATCGACGCCAGCCTCGCGGGAATGG 

AVE EGCDRID A SLAG MG 

410 	 430 	 450 

GCGCGGGCGCAGGTAACGCACCGCTGGAAQTGTTTATTGCCGCCGCGGAT 

A GAG NAP L E 	F I AAA D 

470 	 490 

AAACTGGGCTGGCAGCATGGGACCGATCTCTATGCGTThATGGATGCCGC 

K L G W Q HG T DL Y AL MD A A 

510 	 530 	 550 

CGACGACCTGGTGCGTCCGTTGCAGGATCGACCGGTACGAGTCGATCGCG 

D D L V R P L Q D P. P V R V DR E 

570 	 .7ioI 	590 

•1. 
AAACGCTGGCGCTGGGATACGCTGGTGTTTACTCGAGCTTCCTGCGTCAC 

T LA L G Y AG V Y S S FL R  

610 	 630 	 650 

TGTGAAACGGCGGCGGCGCGTTATGGCTTAAGTGCGGTGGATATTCTCGT 

CE T -  A A AR Y G L S AV DI L  

670 	 690 

TGAGCTGGGCAAACGCCGGATGGTTGGCGGCCAGGAGGATATGATCGTTG 

EL G KR R MV G G Q ED MI V D 

710 	 730 

ACGTGGCGCTGGATCTGCGCAACAACAAATAA 

VA L DL RN N K 	* 
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Figure 4.9. Alignment of 4-hydroxy-2-oxovalerate aldolase protein sequences from 
Pseudomonas and the putative product of the E. coli open reading frame, orf 243, 
using GCG PILEUP. The Pseudomonas enzymes are involved in the degradation of 
the following substrates : BpM, biphenyls and polychlorinated biphenyls; NahM, 
naphthalene; DmpG, phenols; Xy1K, xylenes; TodH, toluenes; CmtG, pCumate. See 
section 1.12 for further details. 
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nahm .MNLHGKSVI LHDMSLRDGM HAKRHQISLE QMVAVATGLD QAGMPLIEIT 
dmpg MTFNPSKKLY ISDVTLRDGS HAIRHQYTLD DVRAIARALD KAKVDSIEVA 
xylk MTFNPGKKLY ISDVTLRDGS HAIRHQYSIQ NVQDIARALD KARVDSIEVT 

0rf243 
todh .. . MTQQKLY ISDVTLRDGS HAIRHQYTVE QVKQIARALD DAKVDSIEVA 
cmtg . MFDTRKKIY VSDVTLRDGM HAVRHQYSLA DAERIARALD EAGVDS IEVA 

51 	 100 
bphi HGDGLGGSSV NYGFPAHSDE EYLGAVIPLM KQAKVSALLL PGIGTVEHLK 
nahm HGDGLGGRSI NYGFPAHSDE EYLRAVIPQL KQAKVSALLL PGIGTVDHLK 
dmpg HGDGLQGSSF NYGFGRHTDL EYIEAVAGEI SHAQIATLLL PGIGSVHDLK 
xylk HGDGLQGSSF NYGFGAHSDL EWIEAAADVI QHARVTVLLV PGIGTVHDLK 

0rf243 .......... 	 .......... 	 .......... 	 .......... 	 ....... DLK 
todh HGDGLQGGSF NYGFGAQSDL EWIEAAASVV KASKIATLLL PGIGTVHDLK 
cmtg HGDGLQGSSF NYGFGAHTDL EWIERVAATV RRAKIATLLL PGIGTVHDLK 

101 	 150 
bphi MAXDLGVNTI RVATHCTEAD VSEQHITQSP. KLGLDTVGFL MMAHMASPEK 
nahm MALDCGVSTI RVATHCTEAD VSEQHIGMAR KLGVDTVGFL MMAHMISAEK 
dmpg NAYQAGARVV RVATHCTEAD VSKQHIEYAR NLGMDTVGFLJ MMSHMIPAEK 
xylk AAYDAGARSV RVATHCTEAD VSRQHIEYAR ELGMDTVGFL ?'4SHMIPAEQ 

0rf243 NAWQAGARVV RVATHCTEAD VSAQHIQYAR ELGMDTVGFL MNSHMTTPEN 
todh AVYEAGVRVV RVATHCTEAD ISRQHIEYAR HLGMEAVGFL MMSHMTTPQH 
cmtg NANAAGASVV RVATHCTEAD ISQQHIEYAP. KLGMDTVGFL MMSHMTTPTA 

151 	 200 
bphi LVSQALLMQG YGANCIYVTD SAGYMLPDDV KARLSAVRAA LKPETELGFH 
nahm VLEQAKLMES YGANCIYCTD SAGYMLPDEV SEKIGLLRA.E LNPATEVGFH 
drnpg LAEQGKLMES YGATCIYMAD SGGANSNNDI RDRMRAFKAV LRPETQVGMH 
xylk LAAQGKLMET YGAQCIYMAD SGGAMNMNDI RDRMRAFKAV LNPQTQTGMH 

0rf243 LAXQAKLMEG YGATCIYVVD SGGANNMSDI RDRFRALKAE LKPETQTGMH 
todh LAQQAKLMES YGATVCYVVD SGGALSDV RDRFPAFKDV LKPETQTGMH 
cmtg LVEAKKMES YGAQCIYVVD SGGAMNMYDI ADRFKALKIJV LDPSTQTGMH 

201 	 250 
bphi GHHNLAIIGVA MSIAAIEAGA TRIDAAAAGL GAGAGNTPME VFIAVCARMG 
nahm GHHNMGMAIA NSLAAIEAGA ARIDGSVAGL GAGAGNTPLE VFVAVCKRMG 
dmpg AHHNLSLGVA NSIVAVEEGC DRVDASIAGM GAGAGNAPLE VFIAVAERLG 
xylk AHHNLSLGVA NSIIAVEEGC DRIDASLAGM GAGAGNAPLE VFIAAAERLG 

0rf243 AHHNLSLGVA NSIAAVEEGC DRIDASLGM GAGAGNAPLE VFIAAADKLG 
todh AHHNLSLGVA NSIVAVENGC DRVDASLAGM GAGAGNAPLE VFIAAAERMG 
cmtg AHHNLSLGVA NSIVALEYGC DRIDASLTGM GAGAGNAPLE VFIAAVDPJ4G 

251 	 300 
bphi IETGVDVFKI QDVSEDLVVP IMDHVIRIDR DSLTLGYAGV YSSFLLFAKP. 
nahm VETGIDLYKI MDVAEDLVVP MMDQPIRVDR DALTLGYAGV YSSFLLFAQR 
dmpg WNHGTDLYTL MDAADDIVRP LQDRPVRVDR ETLGLGYAGV YSSFLRHAEI 
xylk WNHGTDLYTL MDAADDIVRP LQDRPVRVDR ETLGLGYAGV YSSFLRHAEV 

0rf243 WQHGTDLYAL MDAADDLVRP LQDRPVRVDR ETLALGYAGV YSSFLRHCET 
todh WNHGTDLYKL MDAADDLVRP LQDRPVRVDR ETLALGYAGV YSSFLRHSEM 
cmtg LKHGCDVRKL IDAAEEIVRP LQERPVRVDR ETLALGYAGV YSSFLRHTEA 

301 	 350 

bphi ASEKYGVPAR DILVELGRRG MVGGQEDMIE DTAMTMARER GLTLTAA*.. 
nahm AEKKYGVSAR DILVELGRRG TVGGQEDMIE DLALDMARAR QQQKVSA*.. 
dmpg AAAKYNLKTL DILVELGHRR MVGGQEDMIV DVALDLLAAH KENRA*.... 
xylk AAAKYGLKTL DILVELGRRR ?4VGGQEDMIV DVALDLLAAR KEQQA*.... 

0rf243 AAARYGLSAV DILVELGKRR MVGGQEDMIV DVALDLRNNK * 

todh AASKYGLKTV DILVELGP.RR MVGGQEDMII DVALDLLKQQ EHEGIRSEPV 
cmtg AAHKYGLDAF EILVELGRRR MVGGQEDMIV DVALDMMSRK PQGTMRDVIS 

351 
bphi 
riahm 
drnpg 
xylk 	...... 186 
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4.6 Discussion 

The major codon probe designed to locate novel sigma genes of E.coli was found 

to hybridize strongly to the overlap region of X1 39/X140. The probe-binding site 

was fine-mapped and sequenced, and was located just downstream of an Ji72oI site in 

the GenEMBL sequence D64043 (fig. 4.7). This region at 8.13 minutes on the 

physical map carries a previously unidentified open reading frame potentially 

encoding at least 243 amino acids, although the upstream sequence is presently 

unknown. A BLAST search of various databases to identify similar sequences 

revealed 84% identity with the Pseudomonas putida dmpG gene product (fig.4.9). 

dmpG is carried on plasmid pVIl5O of strain CF600, and encodes the 4-hydroxy-2-

oxovalerate aldolase enzyme involved in the meta-cleavage pathway of phenol and 

its methyl derivatives (Shingler etal., 1992; fig. 1.5). The protein product potentially 

encoded by the open reading frame, 0rf243, also has similar identity with the 

isofunctional meta-cleavage enzymes Xy1K, TodH, BphF, and BphI (section 1.12 

and fig. 4.9). The sequence identities are known to be in the 80% range, indicating 

striking conservation (Lau etal., 1994). 

If the homology extends throughout the entire length of the two proteins, 0rf243 is 

predicted to have a further 97 N-terminal amino acids, which would be encoded by 

DNA in the unsequenced region upstream of the X140 insert. Since all of the meta-

cleavage genes studied so far are encoded by a single operon, it is possible that other 

genes of this putative meta-cleavage operon are also present in this 6.5kb region 

lying between 1acI and the orf243 coding sequence. No open reading frames having 

sequence similarity to either meta-cleavage or other proteins have been found in 

3kb downstream of orJ243. Likewise, no detectable levels of protein were found in 

minicells carrying pTEP4. Comparisons of various meta-cleavage operons of 

Pseudomonas show that the order of the genes does not always directly correspond 

to the order of the pathway reactions that their products catalyse. Additionally, the 

actual order of analogous genes is not conseived between different operons. In their 

respective operons, todH is last, hp/il is second last and dmpG and xy!K are third last. 

Perhaps in this putative E. coli operon, orJ243 lies at the downstream end. 
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Within the known pathways, the acylating aldehyde dehydrogenase (AADH) 

enzymes catalysing the conversion of acetaldehyde to acetyl-CoA are also highly 

conserved. Lau et al. (1994) showed that TodI shares 75% amino acid identity with 

both DmpF and XylQ, and 85% identity with BphG. There is no significantly similar 

Orf in the known genomic sequence of E.coli K12. The nucleotide sequence of the 

region upstream of orj243 should therefore be determined and examined for possible 

homologues of AADH and of other known meta-cleavage enzymes. 

If it appears that orJ243 is part of a meta-cleavage operon, comparison of open 

reading frame amino acid sequences with enzymes of known function in other 

pathways may also indicate potential substrates. E.coli K12 is known to grow on 

compounds such as 3-phenylpropionic and 3-(3-hydroxyphenyl)propionic acids via a 

catechol intermediate (Burlingame and Chapman, 1983), and necessary enzymes 

including 4-hydroxy-2-oxovalerate aldolase have been identified, although the genes 

involved remain unmapped. Clearly orJ243 may encode the aldolase in question. The 

ability of K12 to grow on these compounds and others could be investigated in 

strains with chromosomal deletions of orJ243. The induction of transcription by 

various substrates could also be investigated. In addition, the protein output of 

subclones carrying the upstream region expected to contain the remaining genes of 

the putative meta-,cleavage operon could be analysed in a T7 expression system. The 

molecular weights and other characteristics of any proteins present could then be 

compared with those of the meta-cleavage enzymes in Pseudomonas. 

Although E.coli C can metabolize homoprotocatechuate thanks to the hpc operon, 

K12 is apparently devoid of these genes (Jenkins and Cooper, 1988). Stringfellow et 

al. (1995) found poor identity (16.2-22.3%) between the aldolase of this pathway, 

HpdH, and the aldolases of the Pseudomonas catechol pathways. Likewise, orf243 

has only 14% identity with HpcH, in contrast to its 84% identity with the catechol 

metabolism enzyme DmpG. The lack of identity between HpcH and the catechol 

pathway aldolases may be due to the structural differences between their substrates 

(see below). HpcH was found to have significant identity (47.8%) with the amino 

acid sequence of an as yet uncharacterised open reading frame in K12 known asJ256 
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(Stringfellow et al., 1995). This may encode an aldolase with substrate specificity 

closer to that of HpcH than DmpG. A candidate enzyme is 2-keto-3-deoxyglucarate 

aldolase which produces pyruvate and tartronic semialdehyde during the catabolism 

of glucarate (Blumenthal and Fish, 1963). fl56 maps to 68 minutes on the genetic 

map of K12. Since the gene encoding 2-keto-3-deoxyglucarate aldolase has not been 

mapped, it is not excluded thatf256 is this gene. 

Catechol degradation 

	

CH3  COOH 	 CH3 	 COOH

Zk  

	

HO O 	

aldolase 	

• H3C 
4-hydroxy-2-oxovalerate 	 acetaldehyde 	pyruvate 

Homoprotocatechuate degradation 

CH2COOH 
COOH 

HO "L O  

2,4-dihydroxy-hept-2-ene- 
1 ,7-dioic acid 

CH2COOH 

aldolase 	 COOH 

0)"" + H3C 

succinate semialdehyde pyruvate 

It is not known whether orJ243 is part of a meta-cleavage operon involved in 

aromatic catabolism by E.coli K12. The identity with highly conserved amino acid 

sequences of aldolases in Pseudomonas suggests that it may well have been a meta-

cleavage enzyme at some stage during the evolution of K12, but whether the operon 

is still intact and active remains to be seen. 
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Chapter 5 

Final Discussion 

It seems clear that neither of the two open reading frames identified by 

hybridisation with oligonucleotide probes directed against a conserved sequence are 

likely to be new E. coil sigma genes. The minor codon probe, 746J, hybridised to the 

sense strand of1229, thus having sequence homology with the antisense strand. The 

major codon probe, 745J, did hybridise with rpoD and so seemed likely to be more 

successful in locating further sigma genes. However, the striking identity between 

the potential gene product of orf243 and the family of Pseudomonas 4-hydroxy-2-

oxovalerate aldolases suggests that this open reading frame encodes an isofunctional 

enzyme. Previous work in this laboratory has involved the use of anti-sigma peptide-

antiserum to identify novel sigma proteins. Although this antiserum cross-reacted 

with a70  and a32, characterisation of several other Sigma Cross-Reacting Proteins 

(SCRPs) indicated that they too were unlikely to be sigma factors (Ueshima et ai., 

1992; Smillie, 1994). 

The use of oligonucleotides to identify related sequences within a gene library has 

several disadvantages. Examination of hybrids formed between unique homologous 

probes and their cognate target sequences has revealed that short stretches of 

homology occuring by chance make a significant contribution to the hybridisation 

background (Lathe, 1985). The detremental effects of mismatches tend to be 

outweighed by the increased stability of hybrids formed by longer oligonucleotides, 

but a sufficiently long stretch of amino acid sequence is necessary. However, in this 

particular case the target sequence cannot be accurately defined, since the consensus 

sequence is a compromise between the sequences of several sigma factors. 

Furthermore, the target sequence has three leucines, two arginines, and a serine, all 

of which are encoded by six codons, thus increasing the uncertainty. Although a 70  

does not have an identical sequence to the consensus core-binding sequence, 745J 

hybridised with rpoD. Less stringent washes might have resulted in hybridisation 
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with other known sigma genes, albeit at the expense of increased background. On 

the other hand, the more stringent washes might have revealed sigma genes having a 

subregion 2.1 sequence closely related to the consensus. 

Although other known sigmas were not identified by either of the above 

approaches, this still raises doubts as to whether further members of the cr' 7  family 

are present in E. coil. Even if not, other unidentified sigma factors that are not related 

to the cr 70  family may still exist. &E was first shown to function as a sigma factor by 

its ability to initiate transcription from the rpoH P3 promoter in vitro (Erickson and 

Gross, 1989). Although the amino acid sequence of &E does have homology with 

that of other sigmas of the cr family, it is less striking than the homology it shares 

with other members of the ECF subfamily (Lonetto et al., 1994 and section 1.8.4). 

Other members of this subfamily differ so greatly in sequence from the canonical 

sigma factors that they are difficult to identify by standard sequence similarity 

searching methods. The sequence of fecI was published in 1990 (van Hove et al., 

1990) but Fecl was not identified as a potential sigma factor. It was only implicated 

due to its membership of the ECF subfamily, then subsequently shown to function 

biochemically as a sigma factor (section 1.8.5). 

Sigma factors have long been considered to control large regulons, but this may 

not necessarily be true. Some sigmas such as Fecl may play an almost operon-

specific role, analogous to that previously associated with certain transcriptional 

activators. This type of sigma may therefore have different properties and hence 

different protein domains from the more conventional sigmas, thus making it more 

difficult to identify them. These properties could include an ability to transduce a 

signal from a sensor before initiating transcription. 

As more data become available, it may be possible to identify some novel sigma 

factors by sequence similarity alone. However, biochemical techniques may have to 

be employed to determine whether positive regulators of transcription can actually 

direct RNA synthesis in the absense of "known" sigma factors. 

191 



Bibliography 

Abril, M.A., Michan, C., Timmis, K.N., and Ramos, J.L. (1989) J.  BacterioL 171: 
6782-6790. 

Altuvia, S., Almiron, M., Huisman, G., Kolter, R., and Storz, G. (1994) Mo!. 
Microbiol. 13: 265-272. 

Anderson, P., and Roth, J. (1978) 1. Mo!. Biol. 119: 147-166. 

Angerer, A., Enz, S., Ochs, M., and Braun, V. (1995) Mo!. Microbiol. 18: 163-174. 

Arnosti, D.N., and Chamberlin, M.J. (1989) Proc. Nat!. Acad. Sci. USA 86: 830-
834. 

Arnqvist, A., Olsen, A., and Normark, S. (1994) Mo!. Microbiol. 13: 1021-1032. 

Asha, H., and Gowrishankar, J. (1993)1 Bacteriol. 175: 4528-4537. 

Atlung, T., and Brønsted, L. (1994)1 Bacteriol. 176 : 5414-5422. 

Bachellier, S., Perrin, D., Hofnung, M., and Gilson, E. (1993) Mo!. Microbio!. 7: 
537-544. 

Bachellier, S., Saurin, W., Perrin, D., Hofnung, M., and Gilson, E. (1994) Mol. 
Microbiol. 12: 61-70. 

Bachman, B. (1972) Bact. Rev. 36: 535-552. 

Backman, K., Ptashne, M., and Gilbert, W. (1976) Proc. Nat!. Acad. Sci. USA 73: 
4174-4178. 

Balke, V.L. and Gralla, J.D. (1987)1 Bacterio!. 169: 4499-4506. 

Barany, F. (1985) Gene 37: 111-123. 

Barth, M., Marschall, C., Muffler, A., Fischer, D., and Hengge-Aronis, R. (1995) 1 
Bacteriol. 177: 3455-3464. 

Bimboim, H.C., and Doly, J. (1979) Nuci. Acids Res. 7: 1513-1523. 

Blaisdell, B.E., Rudd, K.E., Matin, A., and Karlin, A. (1993) .1. Mo!. Biol. 229: 833-
848. 

192 



Blattner, F.R., Burland, V., Plunkett III, G., Sofia, H.J., and Daniels, D.L. (1993) 
Nucl. Acids Res. 21 : 5408-5417. 

Blatter, E.E., Ross, W., Tang, H., Gourse, R.L., and Ebright, R.H. (1994) Cell 78: 
889-896. 

Blumenthal, H.J., and Fish, D.C. (1963) Biochem. Biophys. Res. Comm. 11 : 239-
243. 

van Bogelen, R.A., and Neidhardt, F.C. (1990) Proc. Nati. Acad. Sd. USA 87: 
5589-5593. 

Boccard, F., and Prentki, P. (1993) EMBOI 12: 5019-5027. 

Borukov, S., Lee, J., and Goldfarb, A. (1991)1 Biol. Chem. 266: 23932-23935. 

Botsford, J.L. (1990) FEMSMicrobiol. Lett. 72 : 355-360. 

Brandi, A., Pietroni, P., Gualerzi, C.O., and Pon, C.L. (1996) Mol. Microbiol. 19: 
231-240. 

Braun, V. (1975) Biochim. Biophys. Acta. 415: 335-377. 

Brill, J.A., Quinlan-Waishe, C., and Gottesman, S. (1988)1 Bacteriol. 170: 2599-
2611. 

Brønsted, L., and Atlung, T., (1994) 1 Bacteriol. 176 : 5423-5428. 

Broyles, S.S., and Pettijohn, D.E. (1986)1 Mol. Biol. 187: 47-60. 

Buck, M., and Cannon, W. (1992) Nature 358: 422-424. 

Buckle, M., Geiselman, J., Kolb, A., and Buc, H. (1991) Nuci. Acids Res. 19: 883-
840. 

Burgess, R.R. (1969)1 Biol. Chem. 244: 6168-6176. 

Burgess, R.R., and Travers, A.A. (1970) FASEB 1 29: 1164-1169. 

Burlingame, R., and Chapman, P.J. (1983)1 Bacteriol. 155: 113-121. 

Burton, Z., Burgess, R.R., Lin, J., Moore, D., Holder, S., and Gross, C.A. (1981) 
Nuci. Acids Res. 9: 2889-2903. 

Caimey, J., Booth, I.R., and Higgins, C.F. (1985a) 1 Bacteriol. 164: 1218-1223. 

193 



Cashel, M., and Rudd, K.E. (1987) In: Neidhardt, F.C., Ingraham, J.L., Low, K.B., 
Magasanik, B., Schlaechter, M., and Umbarger, H.E. (eds.) E. coli and S. 
typhimurium : Cellular and Molecular Biology. 1st. edit. ppl4lO-l438. American 
Society for Microbiology, Washington D.C. 

Cashel, M., Gentry, D.R., Hernandez, V.J., and Vinella, D. (1995). In: Neidhardt, 
F.C. (editor-in-chief) E. coli and S. typhimurium : Cellular and Molecular Biology. 
2nd. edit. in press. American Society for Microbiology, Washington D.C. 

Chan, B., Minchin, S., and Busby, S. (1990) FEBS Lett. 267: 46-50. 

Chenchick, A., Babilashavi, R., and Mzabekov, A. (198 1) FEBS Lett. 128: 46-50. 

Cooper, R.A., and Skinner, M.A. (1980)1 Bacteriol. 143 : 302-306. 

Cooper, R.A., Jones, D.C.N., and Parrott, S. (1985)1 Gen. Microbiol. 131 : 2753-
2757. 

Craig, N.L., and Nash, H.A. (1984) Cell 39: 707-716. 

Craigie, R., Arndt-Jovin, D,J., and Mizuuchi, K. (1985) Proc. Nat!. Acad. Sd. USA 
82 : 7570-7574. 

Csonka, L.N. (1989) Microbiol. Rev. 53: 121-147. 

Dagley, S. (1986) In: J.R. Sokatch (ed.) The Bacteria. vol. 10. The Biology of 
Pseudomonas. pp527-556. Academic Press, Inc. (London), Ltd., London. 

Daniels, D., Zuber, P., and Losick, R. (1990) Proc. Nat!. Acad. Sd. USA 87: 8075-
8079. 

Deretic, V., Schurr, M.J., Boucher, J.C., and Martin, D.W. (1994) 1 Bacteriol. 176: 
2773-2780. 

Dersch, P., Kneip, S., and Bremer, E. (1994) Mo!. Gen. Genet. 245 : 255-259. 

Dimri, G.P., Rudd, K.E., Morgan, M.K., Bayat, H., and Ames, G.F-L. (1992) 1 
Bacteriol. 174: 4583-4593. 

Ding, Q., Kusano, S., Villarejo, M., and Ishihama, A. (1995) Mol. Microbiol. 16: 
649-656. 

Dixon, N., and Kornberg, A. (1984) Proc. Nati. Acad Sci. USA 81: 424-428. 

Doi, R.H., and Wang, L.F. (1986) Microbiol. Rev. 50: 227-243. 

194 



Dombroski, A.J., Walter, W.A., Record, M.T., Siegele, D.A., and Gross, C.A. 
(1992) Cell 70 : 501-512. 

Dombroski. A.J., Walter, W.A., and Gross, C.A. (1993) Genes Dev. 7: 2446-2455. 

Drlica, K., and Rouvière-Yaniv, J. (1987) Microbiol. Rev. 51: 301-319. 

Drlica, K. (1990) Trends Genet. 6: 433-437. 

Duetz, W.A., Marques, S., Dejong, C., Ramos, J.L., and Vanandel, J.G. (1994) J 
Bacteriol. 176 : 2354-2361. 

Enz, S., Braun, V., and Crosa, J.H. (1995) Gene 163: 13-18. 

Erickson, J.W., Vaughn, V., Walter, A.W., Neidhardt, F.C., and Gross, C.A. (1987) 
Genes Dev. 1 : 419-432. 

Erickson, J.W., and Gross, C.A. (1989) Genes Dev. 3: 1462-1471. 

Espinosa-Urgel, M.E., and Tormo, A. (1993) Nuci. Acids Res. 21 : 3667-3670. 

Forst, S., Delgado, J., and Inouye, M. (1989) Proc. Natl. Acad. Sci. USA 86: 6052-
6056. 

Freundlich, M., Ramani, N., Mathew, E., Sirko, A., and Tsui, P. (1992) Mol. 
Microbiol. 6 :2557-2563. 

Fujita, N., Ishihama, A., Nagasawa, Y., and Ueda, S. (1987) Mol. Gen. Genet. 210: 
5-9. 

Gaal, T., Ross, W., Blatter, E.E., Tang, H., Jia, X., Krishnan, V.V., Assa-Munt, N., 
Ebright, R.H., and Gourse, R.L. (1996) Genes Dev. 10: 16-26. 

Gallegos, M.T., Michan, C., and Ramos, J.L. (1993) Nuci. Acids Res. 21 : 807-8 10. 

Gamer, J., Bujard, H., and Bukau, B. (1992) Cell 69: 833-842. 

Gamer, J., Multhaup, G., Tomoyasu, Y., McCarty, J.S., Rudiger, S., Schonfeld, H.J., 
Schirra, C., Bujard, H., and Bukau, B. (1996) EMBOJ. 15: 607-617. 

Gardella, J., Moyle, H., and Susskind, M.M. (1989) .1 Mol. Biol. 206: 579-596. 

Gentry, D.R., Hernandez, V.J., Nguyen, L.H., Jensen, D.B., and Cashel, M. (1993) .1. 
Bacteriol. 175 : 7982-7989. 

195 



Gibson, T.J. (1984) Ph.D Thesis, University of Cambridge, U.K. 

Gillen, K.L., and Hughes, K.T. (1991)J. Bacteriol. 173: 2301-2310. 

Gilson, E., Clement, J.M., Brutlag, D., and Hofhung, M.. (1984) EMBOJ. 3: 1417-

1421. 
Gilson, B., Rousset, J.P., Clement, J.M., and Hofnung, M. (1986) Ann. Microbiol. 

(Inst. Pasteur) 137B : 259-270. 

Gilson, E., Clement, J.M., Perrin, D., and Hofnung, M. (1987) Trends Genet. 3: 

226-230. 

Gilson, E., Bachellier, S., Perrin, S., Perrin, D., Grimont, P.A.D., Grimont, F., and 

Hofnung,M. (1990) Res. Microbiol. 141: 1103-1116. 

Gilson, E., Saurin, W., Perrin, D., Bachellier, S., and Hofnung, M. (199 1) Nuci. 

Acids Res. 19: 1375-1383. 

Glass, R.E., and Nene, V. (1985) In: Glass, R.E., and Spizek, J. (eds.). Gene 
Manipulation and Expression p155. Croom Helm, London.. 

Glass, R.E., Jones, S.T., and Ishihama, A. (1986a) Mo!. Gen. Genet. 203: 265-268. 

Glass, R.E., Honda, A., and Ishihama, A. (1986b) Mol. Gen. Genet. 203: 492-495. 

Glass, R.E., Jones, S.T., Nomura, T., and Ishihama, A. (1987) Mo!. Gen. Genet. 

210: 1-4. 

Goldenberg, D., Azar, I., and Oppenheim, A.B. (1996) Mo!. Microbiol. 19: 241-

248. 

Goldstein, J., Pollitt, N.S., and Inouye, M. (1990) Proc. Nat!. Acad. Sci. USA 87: 

283-287. 

Gopal, V., Ma, H.W., Kumaran, M.K., and Chatterji, D. (1994) 1 Mo!. Biol. 242: 9-

22. 

Gowrishankar, J. (1985) 1 Bacteriol. 164 434-445. 

Gribskov, M., and Burgess, R.R. (1986) Nuci. Acids Res. 14: 6745-6763. 

Gross, C.A., Straus, D.B., Erickson, J.W., and Yura, T. (1990) In: Morimoto, R.I., 
Tissieres, A., and Georgopolous, C. (ed.) Stress Proteins in Medicine ppl62-187. 
Cold Spring Harbour Laboratory press, Cold Spring Harbour, N.Y. 

Gross, C.A., Lonetto, M., and Losick, R. (1992) In: Yamamoto, K., and McNight, 
S. (ed.) Control of Transcription. Sigma Factors. Cold Spring Harbour Laboratory 
press, Cold Spring Harbour, N.Y. 

196 



Gualerzi, C.O., Losso, M.A., Lammi, M., Friedrich, K., Pawlik, R.T., Canonaco, 
M.A., Gianfranceschi, A., Pingoud, A., and Pon, C.L. (1986) In: Gualerzi, C.O., and 
Pon, C.L. (ed.) Bacterial Chromatin pp101-134. Springer-Verlag, Heidelberg, FRD. 

Guoy, M., and Gautier, C. (1982) Nuci. Acids Res. 10: 7055-7074. 

Gussin, G.N., Ronson, C.W., and Ausubel, F.M. (1986) Annu. Rev. Genet. 20: 567-
591. 

Harayama, S., and Rekik, M. (1993) Mo!. Gen. Genet. 239: 81-89. 

deHaseth, P.L., and Helmann, J.D. (1995) Mo!. Microbiol. 16: 817-824. 

Hawley, D., and McClure, W.R. (1983) Nuci. Acids Res. 11 :2237-2255. 

Hayward, R. S., Igarashi, K., and Ishihama, A. (199 1) 1 Mo!. Biol. 221: 23-29. 

Hayward, R.S., Kumar, A., Grimes, B., and Logan, M. (1992)1 Cell Biochem. 
(suppi.) 16E: 141. 

Heisler, L.M., Suzuki, H, Landick, R, and Gross, C.A. (1993)1 Biol. Chem. 268: 
25369-25375. 

Heisler, L.M., Feng, G.H., Jin, D.J., Gross, C.A., and Landick, R. (1996)1 Biol. 
Chem. 271 : 14572-14583. 

Helmann, J.D., and Chamberlin, M.J. (1988) Annu. Rev. Biochem. 57: 839-872. 

Helmann, J.D. (1991) Mo!. Microbio!. 5: 2875-2882. 

Hendrick, J.P., and Hart!, F.U. (1993) Annu. Rev. Biochem. 62 : 349-3 84. 

Hengge, R. and Boos, W. (1983) Biochim. Biophys. Acta. 737: 443-478. 

Hengge-Aronis, R. (1993) Cell 72: 165-168. 

Hengge-Aronis, R. Lange, R., Henneborg, N., and Fischer, D. (1993)1 Bacteriol. 
173 : 7918-7924. 

Herman, B.G., and Frischauf, A.M. (1987) Methods in Enzymology 52: 180-182. 

Herman, N.D., and Schneider, T.D. (1992) 1 Bacterio!. 174:3 558-3560. 

Hernandez, V.J., and Cashel, M. (1995) 1 Mol. Biol. 252: 536-549. 

Hess, F.F., Bourret, R.B., and Simon, M.I. (1988) Nature 336: 139-143. 

Higgins, C.F., Ames, G.F-L., Barnes, W.M., Clement, J.M., and Hofnung, M. (1982) 
Nature 298 : 760-762. 

197 



Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, LR., May, G., and 
Bremer, E. (1988a) Cell 52: 569-584. 

Higgins, C.F., McLaren, R. S., and Newbury, S.F. (1988b) Gene 72 : 3-14. 

Hofer, B., Backhaus, S., and Tinimis, K.N. (1994) Gene 144: 9-16. 

van Hove, B., Staudenmaier, H., and Braun, V. (1990)1 Bacteriol. 172 : 6749-6758. 

Hsieh, L. S., Rouvière-Yaniv, J., and Drlica, K. (1991)1 Bacteriol. 173 : 3914-3917. 

Hsieh, L.S., and Gralla, J.D. (1994)1 Mol. Biol. 239: 15-24. 

Hsieh, L.S., Tintut, Y., and Gralla, J.D. (1994)1 Biol. Chem. 269: 373-378. 

Igarashi, K., Fujita, N., and Ishihama, A. (1991)1 Mol. Biol. 218: 1-6. 

Ikemura, T. (1981)1 Mol. Biol. 151: 389-409. 

Ikemura,T. (1985)1 Mol. Evol. 2: 13-24. 

Inouye,S., Wang, S., Sekizawa, J., Halegoua, S., and Inouye, M. (1977) Proc. Natl. 
Acad. Sci. USA 74: 1004-1008. 

Inouye, S., Nakazawa, A., and Nakazawa, T. (1988) Gene 66: 301-306. 

Ishihama, A. (198 1) Advan. Biophys. 14: 1-35. 

Ishihama, A. (1993) 1 Bacteriol. 175: 2483-2489. 

Iwakuri, Y., Ishihama, A., and Yura, T. (1973) Mol. Gen. Genet. 121: 181-196. 

Jaworski, A., Higgins, N.P., Wells, R.D., and Zacharias, W. (199 1) 1. Biol. Chem. 
266 : 2576-2581. 

Jenkins, J.R. (1987) Ph.D. Thesis, University of Leicester, U.K. 

Jenkins, J.R., and Cooper, R.A. (1988)1 Bacteriol. 170 : 5317-5324. 

Jenkins, D.E., Chaison, S.A., and Matin, A. (1990)1 Bacteriol. 172: 2779-2781. 

Jin, D.J., and Gross, C.A. (1988)1 Mol. Biol. 202: 45-58. 

Johnson, R.C., Bruist, M.F., and Simon, M.I. (1986) Cell 46: 531-539. 

Jones, P.G., van Bogelen, R.A., and Neidhardt, F.C. (1987) 1 Bacteriol. 169: 2092-
2095. 

Jones, P. G., Cashel, M., Glaser, G., and Neidhardt, F. C. (1992a) I Bacteriol. 174: 
3903-3914. 

198 



Jones, P.G., Krah, R., Tafuri, S.R., and Woiffe, A.P. (1992b) I Bacteriol. 174: 
5798-5802. 

Jones, P.G. and Inouye, M. (1994) Mol. Microbiol. 11 : 811-818. 

Jones, P.G., Mitta, M., Kim, Y., Jiang, W.N., and Inouye, M. (1996) Proc. Natl. 
Acad. Sci. USA 93: 76-80. 

Juang, Y.L., and Helmann, J.D. (1994)1 Mol. Biol. 235: 1470-1488. 

Jung, J.U., Gutierrez, C., and Villarejo, M.R. (1989)1 Bacteriol. 171 : 511-520. 

Jung, J.U., Gutierrez, C., Martin, F., Ardourel, M., and Villarejo, M. (1990)1 Biol. 
Chem. 265: 10574-10581. 

Keilty, S., and Rosenberg, M. (1987)1 Biol. Chem. 262 : 63 89-6395. 

Kessler, B., Marques, S., Kohler, T., Ramos, J.L., Timmis, K.N., and Delorenzo, V. 
(1994) 1 Bacteriol. 176 : 5578-5582. 

Kikuchi, Y., Yasukochi, Y., Nagata, Y., Fukuda, M., and Takagi, M. (1994) 1 
Bacteriol. 176: 4269-4276. 

Kim, S.K., Makino, K., Amemura, M., Nakata, A., and Shinagawa, H. (1995) Mol. 
Gen. Genet. 248: 1-8. 

Kimura, M., Fujita, N., and Ishihama, A. (1994)1 Mo!. Biol. 242: 107-115. 

Kimura, M., and Ishihama, A. (1995a) I Mol. Biol. 248: 756-767. 

Kimura, M., and Ishihama, A. (1995b) I Mol. Rio!. 254: 342-349. 

Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50: 495-508. 

Kolter, R., Siegele, D.A., and Tormo, A. (1993) Annu. Rev. Microbiol. 47: 855-
874. 

Kornberg, A. (1980) DNA Replication 101-110. 

Kulakaukas, S., Wikstrom, P.M., and Berg, D.E. (1991)1 Bacteriol. 173 : 2633-
2638. 

Kumar, A., Malloch, R.A., Fujita, N., Smillie, D.A., Ishihama, A., and Hayward, 
R.S. (1993)1 Mol. Biol. 232: 406-418. 

Kumar, A., Grimes, B., Fujita, N., Makino, K., Malloch, R.A., Hayward, R.S, and 
Ishihama, A. (1994) 1 Mo!. Biol. 235: 405-413. 

199 



Kumar, A., Malloch, R.A., Fujita, N., Smillie, D.A., Ishihama, A., and Hayward, 
R.S. (1993)J. Mo!. Biol. 232:406-418. 

Kumar, A., Grimes, B., Fujita, N., Makino, K., Malloch, R.A., Hayward, R.S, and 
Ishihama, A. (1994)1 Mo!. Biol. 235: 405-413. 

Kumar, A., Grimes, B., Logan, M., Wedgwood, S., Williamson, H., and Hayward, 
R.S.(1995a)J. Mo!. Biol. 246: 563571. 

Kumar, A., Williamson, H.S., Fujita, N., Ishihama, A., and Hayward, R.S. (1995b) 
1 Bacteriol. 177: 5193-5196. 

Kur, J., Hasan, N., and Szybalski, W. (1989) Gene 81: 1-15. 

Kusano, S., Ding, Q., Fujita, N., and Ishihama, A. (1996)1 Biol. Chem. 271: 1998-
2004. 

Kustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D. (1989) Microbiol. Rev. 
53 : 367-376. 

Laemmli, U.K. (1970) Nature 227: 680-685. 

Laimins, L.A., Rhoads, D.B., and Epstein, W. (1981) Proc. Nat!. Acad. Sd. USA 
78 : 464-468. 

Lange, R., and Hengge-Aronis, R. (1994) Genes Dev. 8: 1600-1612. 

La Teana, A., Brandi, A., Falconi, M., Spurio, R., and Pon, C.L. (199 1) Proc. Nat!. 
Acad. Sci. USA 88: 10907-10911. 

Lathe, R. (1985) 1 Mo!. Biol. 183: 1-12. 

Lau, P.C.K., Bergenon, H., Labbe, D., Wang, Y., Brousseau, R., and Gibson, D.T. 
(1994) Gene 146 : 7-13. 

Lee, H.S., Ishihama, A., and Kustu, S. (1993)1 Bacteriol. 175: 2479-2482. 

Lemmi. M., Paci, M., Pon, C.L., Losso, M.A., Miano, A., Pawlik, R.T., 
Gianfranceschi, G.L., and Gualerzi, C.O. (1984) In: Hubscher, H., and Spadori, S. 
(ed.) Proteins Involved in DNA Replication pp467-478. Plenum Press, N.Y. 

Lesley, S.A., and Burgess, R.R. (1989) Biochemistry 28: 7728-7734. 

Liberek, K., Galitski, T.P., Zylicz, M., and Georgopoulos, C. (1992) Proc. Nat!. 
Acad. Sci. USA 89 :5316-5320.  

Lipinska, B., Sharma, S., and Georgopoulos, C. (1988) Nuci. Acids Res. 16: 10053-
10067. 

200 



Liu, K., Zhang, Y., Severinov, K., Das, A., and Hanna, M.M. (1996) EMBOJ1S: 
150-160. 

Liut, X.Y., Fujita, N., Ishihama, A., and Matsumura, P. (1995) 1 Bacteriol. 177: 
5186-5188. 

Lomovskaya, O.L., Kidwell, J.P., and Matin, A. (1994) J. Bacteriol. 176: 3928-
3935. 

Lonetto, M.A., Gribskov, M., and Gross, C.A. (1992)1 Bacteriol. 174 : 3 843 -3 849. 

Lonetto, M.A., Brown, K.L., Rudd, K.E., and Buttner, M.J. (1994) Proc. Nat!. Acad. 
Sd. USA 91 : 7573-7577. 

Lucht, J.M., Dersch, P., Kempf, B., and Bremer, E. (1994) 1 Biol. Chem. 269: 
6578-6586. 

Lund, E., and Kjeldgaard, N.O. (1972) Eur. J. Biochem. 28: 316326. 

Mackow, E.R., and Chang, F.N. (1983) Mo!. Gen. Genet. 192: 5-9. 

Magasanik, B. (1982) Annu. Rev. Genet. 16: 135-168. 

Magasanik, B. (1988) Trends Biol. Sci. 13 : 475-479. 

Makino, K., Amemura, M., Kim, S.K., Nakata, A., and Shinagawa, H. (1993) Genes 
Dev. 7: 149-160. 

Makino, K., Amemura, M., Kawamoto, T., Kimura, S., Shinagawa, H., Nakata, A., 
and Suzuki, M. (1996)1 Mol. Biol. 259: 15-26. 

Manna, D., and Gowrishankar, J. (1994) 1 Bacteriol. 176: 5378-53 84. 

Manoil, C., and Beckwith, J. (1985) Proc. Nat!. Acad Sci. USA 83: 8129-8133. 

Manoil, C., and Beckwith, J. (1986) Science 233: 1403-1408. 

Manson, M.D., Boos, W., Bassford, P.J., and Rasmussen, B.A. (1985)1 Bio!. Chem. 
260 : 9727-9733. 

Margolis, P.M., Driks, A., and Losick, R. (1991) Science 248: 5 62-565. 

Marques, S., and Ramos, J.L. (1993) Mo!. Microbiol. 9: 923-929. 

May, G., Faatz, E., Villarejo, M., and Bremer, E., (1986) Mol. Gen. Genet. 205: 
225-233. 

May, G., Faatz, E., Lucht, J.M., Haardt, M., Bolliger, M. and Bremer, E. (1989) Mol. 
Microbiol. 3 : 1521-1531. 

201 



McCann, M.P., Kidwell, J.P., and Matin, A. (1991)1 Bacteriol. 173: 4188-4194. 

McCann, M.P., Fraley, C.D., and Matin, A. (1993)1 Bacteriol. 175: 2143-2149. 

McClure, W.R. (1985) Annu. Rev. Biochem. 54: 171-204. 

McCarty, J.S., Rudiger, S, Schonfeld, H.J., Schneider-Mergener, J., Nakahigashi, K., 
Yura, T., and Bukau, B. (1996)1 Mol. Biol. 256: 829-837. 

Mecsas, J., Rouvière, P.E., Erickson, J.W., Donohue, T.J., and Gross, C.A. (1993) 
Genes Dev. 7:2618-2628. 

Meinkoth, J., and Wahl, G. (1984) Anal. Biochem. 138: 267-284. 

Mellies, J., Brems, R., and Villarejo, M. (1994)1 Bacteriol. 176: 3638-3645. 

Merrick, M., Gibbins, J., and Toukdarian, A. (1987) Mol. Gen. Genet. 210: 323-
330. 

Merrick, M.J. (1993) Mol. Microbiol. 10 : 903-909. 

Michaelis,S., and Beckwith, J. (1982) Annu. Rev. Microbiol. 36: 435-465. 

Mukhopadhyay, S., and Schelihorn, H.E. (1994) 1. Bacteriol. 176: 2300-2307. 

Mulvey, M., and Loewen, P.C. (1989) Nuci. Acids Res. 17: 9979-9991. 

Mustaev, A., Kashlev, M., Lee, J.Y., Polyakov, A., Lebedev, A., Zalenskaya, K., 
Grachev, M., Goldfarb, A., and Nikiforov, V. (1991)1 Biol. Chem. 266: 23927- 
2393 1. 

Nagai, H., Yuzawa, H., and Yura, T. (1991) Proc. Natl. Acad. Sci. USA 88: 105 15- 
10519. 

Nagai, H., Yuzawa, H., Kanemori, M., and Yura, T. (1994) Proc. Nat!. Acad. Sci. 
USA 91 :10280-10284. 

Naito, A., Naito, S., and Ikeda, H. (1984) Mo!. Gen. Genet. 193 : 238-243. 

Neidhardt, F.C., van Bogelen, R.A., and Vaughn, V. (1984) Annu. Rev. Genet. 18: 
295-329. 

Nene, V., and Glass, R.E. (1984) Mo!. Gen. Genet. 194:166-172. 

Newbury, S., Smith, N.H., and Higgins, C.F. (1987) Cell 51: 1131-1143. 

Ninfa, A.J., and Bennett, R.L. (1991)1 Rio!. Chem. 266: 6888-6893. 

202 



Noda, A., Courtright, J.B., Denor, P.F., Webb, G., Kohara, Y., and Ishihama, A. 
(199 1) Biotechniques 10 : 474. 

Ochs, M., Veitinger, S., Kim, I., Welz, D., Angerer, A., and Braun, V. (1995) Mo!. 
Microbiol. 15: 119-132. 

Ochs, M., Angerer, A., Enz, S., and Braun, V. (1996) Mo!. Gen. Genet. 250: 455-
465. 

Oen, H., and Wu, C.W. (1978) Proc. Nat!. Acad. Sci. USA 75: 1778-1782. 

Ogawa, T., Baker, T.A., van der Ende, A., and Komberg, A. (1985) Proc. Nat!. 
Acad. Sci. USA 82: 3562-3566. 

Ohnishi, K., Kutsukake, K., Suzuki, H., and lino, T. (1990) Mo!. Gen. Genet. 221: 
139-147. 

Olmo, S. (1970) In: Evolution by Gene Duplication. Springer-Verlag, N.Y. 

Ohshima, A., Inouye, S., and Inouye, M. (1992) Proc. Natl. Acad. Sd. USA 89: 
1016-1020. 

011is, P.C., and White, S.W. (1987) Chem. Rev. 87: 981-995. 

Ophir, T., and Gutnick, D.L. (1994) Appi. Environ. Microbio!. 60: 740-745. 

Oppenheim, A.B., Rudd, K.E., Mendelson, I, and Teff, D. (1993) Mo!. Microbiol. 
10: 113-122. 

Ovchinnikov, Y.A., Monastryskaya, G.S., Gubanov, V.V., Guryev, S.O., Chertov, 
O.Y., Modyanov, N.N., Grinkevich, U.A., Makarova, l.A., Marchenko, T.V., 
Polovnikova, I.N., Lipkin, V.M., and Svedlov, E.D. (1981) Eur. J. Biochem. 116: 
621-629. 

Ovchinnikov, Y.A., Monastryskaya, G.S., Gubanov, V.V., Guryev, S.0., 
Salomatina, I.S., Shuvaeva, T.M., Lipkin, V.M., and Svedlov, E.D. (1982) Nuci. 
Acids Res. 10 : 4035-4044. 

Owen-Hughes, T.A., Pavitt, G.D., Santos, D.S., Sidebotham, J.M., Hulton, C.S, 
Hinton, J.C.D., and Higgins, C.F. (1992) Cell 71 :255-265. 

Ozaki, M., Wada, A., Fujita, N., and Ishihama, A. (1991) Mo!. Gen. Genet. 230: 17-
23. 

Ozaki, M., Fujita, N., Wada, A., and Ishihama, A. (1992) Nuci. Acids Res. 20: 257-
261. 

Painbeni, E., Mouray, E., Gottesman, S., and Rouvière-Yaniv, J. (1993) 1 Mol. Biol. 
234: 1021-1037. 

203 



Pao, C.C., and Dyess, B.T. (198 1) J Biol. Chem. 256: 2252-2257. 

Parker, C.T., Moser, A.W., Schnaitman, C.A., Stein, M.A., Gottesman, S., and 
Gibson, B.W. (1992) 1 Bacteriol. 174: 2525-2538. 

Parrott, S., Jones, S., and Cooper, R.A. (1987) 1 Gen. Microbiol. 133 : 347-353. 

Pettijohn, D.E. (1982) Cell 30 : 667-669. 

Poniggia, A., Negri,. A., Beltrame, M., and Bianchi, M.E. (1993) Mol. Microbiol. 7: 
343-350. 

Popham, D.L., Szeto, D., Keener, J., and Kustu, S. (1989) Science 243: 629-635. 

Post, L.E., and Nomura, M. (1979) J. Biol. Chem. 254: 10604-10606. 

Qoronfleh, M.W., Debouck, C., and Keller, J. (1992) J. Bacteriol. 174: 7902-7909. 

Raina, S., Missiakas, D., and Georgopoulos, C. (1995) EMBOJ. 14: 1043-1055. 

Ramos, J.L., Rojo, F., Zhou, L., and Timmis, K.N. (1990) Nuci. Acids Res. 18: 
2149-2152. 

Reitzer, L.J., and Magasanik, B. (1986) Cell 45: 785-792. 

Richetti, M., and Buc, H. (1993) EMBO 1. 12: 387-396. 

Richey, B., Cayley, D.S., Mossing, M.C., Kolka, C., Anderson, C.F., Farrar, T.C., 
and Record, M.T. (1987)1 Biol. Chem. 262: 7157-7164. 

Roland, G.C., and Glass, R.E. (1990) BioEssays 12: 343-346. 

Ronson, C.W., Nixon, B.T., and Ausubel, F.M. (1987) Cell 49: 579-581. 

Roper, D.I., Fawcett, T., and Cooper, R.A. (1993) Mol. Gen. Genet. 237 241-250. 

Ross, W., Gosink, K.K., Salomon, J., Igarashi, K., Zou, C., and Ishihama, A. (1993) 
Science 262: 1407-1413. 

Rouvière, P.E., De Las Peñas, A., Mecsas, J., Lu, C.Z., Rudd, K.E., and Gross, C.A. 
(1995)EMBOJ. 14: 1032-1042. 

Sagitov, V., Nikiforov, V. and Goldfarb, A. (1993)1 Biol. Chem. 268: 2195-2202. 

Salser, W., Gesteland, R.F., and Bolle, A. (1967) Nature 215: 588-591. 

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning. A 
Laboratory Manual. 2nd edition. Cold Spring Harbour Laboratory press. 

204 



Sanger, F., Nicklens, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74: 
5463-5467. 

Sanzey, B. (1979) 1. Bacteriol. 138 : 40-47. 

Sasse-Dwight, S., and Gralla, J.D. (1988) Proc. Nat!. Acad. Sci. USA 85: 8934-
8938. 

Schweder, T., Lee, K.H., Lomovskaya, 0., and Matin, A. (1996) 1 Bacteriol. 178: 
470-476. 

Schultz-Hauser, G., van Hove, B., and Braun, V. (1992) FEMS Microbiol. Lett. 95 
231-234. 

Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V. (1993) J. Biol. Chem. 
268: 14820-14825. 

Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V. (1994) Mol. Gen. 
Genet. 244: 120-126. 

Severinov, K., Markov, D., Severinova, E., Nikiforov, V., Landick, R., Darst, S.A., 
and Goldfarb, A. (1995) 1 Biol. Chem. 270: 23926-23929. 

Shaw, D.J., and Guest, J.R. (1982) J. Gen. Microbiol. 128: 2221-2228. 

Shimitake, H., and Rosenberg, M. (1981) Nature 292: 128-132. 

Shingler, V., Powlowski, J., and Markiund, Y. (1992)1 Bacteriol. 174: 711-724. 

Shingler, V., Bartilson, M., and Moore, T. (1993)1 Bacteriol. 175: 1596-1604. 

Shorenstein, R.G., and Losick, R. (1973)1 Biol. Chem. 248: 6170-6173. 

Shyamala, V., Schneider, E., and Ames, G.F-L. (1990) EMBOJ. 9 939-946. 

Siegele, D.A., Hu, J.C., Walter, W.A., and Gross, C.A. (1989) 1. Mol. Biol. 206: 
591-603. 

Siegele, D.A., and Kolter, R. (1992) 1 Bacteriol. 174: 345-348. 

Simpson, R.B. (1979) Cell 18: 277-285. 

Sledjeski, D.D., and Gottesman, S. (1995) Proc. Nati. Acad. Sci. USA 92 :2003- 
2007.  

Sledjeski, D.D., and Gottesman, S. (1996) 1. Bacteriol. 178: 1204-1206. 

Smillie, D.A., Hayward, R.S., Suzuki, T., Fujita, N., and Ishihama, A. (1992)1 
Bacteriol. 174 :3826-3827. 

205 



Smillie, D.A. (1994) Ph.D Thesis, University of Edinburgh, U.K. 

Spurio, R., Durrenberger, M., Falconi, M., La Teana, A., Pon, C.L., and Gualerzi, 
C. 0. (1992) Mol. Gen. Genet. 231 :201-211. 

Stern, M.J., Ames, G. F-L., Smith, N.H., Robinson, E.C., and Higgins, C.J. (1984) 
Cell 37: 1015-1026. 

Stern, M.J., Prossnitz, E., and Ames, G.F-L. (1988) Mol. Microbiol. 2: 141-152. 

Stirling, D.A., Hulton, C.S.J., Waddell, L., Park, S.F., Stewart, G.S.A.B., Booth, 
I.R., and Higgins, C.F. (1989) Mol. Microbiol. 3: 1025-1038. 

Stout, V., and Gottesman, S. (1990) 1 Bacteriol. 172 : 659-669. 

Stout, V., Torres-Cabassa, A., Maurizi, M.R., Gutnick, D., and Gottesman, S. (1991) 
I Bacteriol. 173: 1738-1747. 

Straus, D.B., Walter, W.A., and Gross, C.A. (1987) Nature 329: 348-351. 

Straus, D.B., Walter, W.A., and Gross, C.A. (1990) Genes Dev. 4: 2202-2209. 

Stringfellow, J.M., Turpin, B., and Cooper, R.A. (1995) Gene 166: 73-76. 

Studier, F.W., and Moffatt, B.A. (1986)1 Mol. Biol. 189: 113-130. 

Studier, F.W. (1990) Methods in Enzymology 185: 60. 

Sutherland, L., Cairney, J., Elmore, M.J., Booth, I.R., and Higgins, C.F. (1986) 1. 
Bacteriol. 168: 805-814. 

Tanabe, H., Goldstein, J., Yang, M., and Inouye, M. (1992) 1 Bacteriol. 174 : 3 867-
3875. 

Tanaka, K., Shiina, T., and Takahashi, H. (1988) Science 242: 1040-1042. 

Tanaka, K., Takayanagi, Y., Fujita, N., Ishihama, A., and Takahashi, H. (1993) 
Proc. Nat!. Acad. Sci. USA 190: 3511-3515. 

Tanaka, K., Kusano. S., Fujita, N., Ishihama, A., and Takahashi, H. (1995) Nuci. 
Acids Res. 23 : 827-834. 

Tavorima, P.L., Reznikoff, W.S., and Gross, C.A. (1996) 1 Mol. Biol. 258: 213-
223. 

Tilly, K., McKittrick, N., Zylicz, M., and Georgopoulos, C. (1983) Cell 34: 641-
646. 

Tintut, Y., and Gralla, J.D. (1995)1 Bacteriol. 177: 5818-5825. 

206 



Tintut, Y., Wang, J.T., and Gralla, J.D. (1995) Genes Dev. 9: 2305-2313. 

Tolner, B., Poolman, B., Wallace, B., and Konings, W.N. (1992) J. Bacteriol. 174: 
2391-2393. 

Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A.J., 
Oppenheim, A.B., Yura, T., Yamanaka, K., Niki, H., Hiraga, S., and Ogura, T. 
(1995) EMBOJ 14: 2551-2560. 

Torres-Cabassa, A.S., and Gottesman, S. (1987)1 Bacteriol. 169 : 981-989. 

Tupper, A.E., Owen-Hughes, T.A., Ussery, D.W., Santos, D.S., Ferguson, D.J.P., 
Sidebotham, J.M., Hinton, J.C.D., and Higgins, C.F. (1994) EMBOJ 13: 258-268. 

Ueguchi, C., and Mizuno, T. (1993) EMBOI 12: 1039-1046. 

Ueshima, R., Fujita, N., and Ishihama, A. (1992) Biochem. Biophys. Res. Comm. 
184 : 634-639. 

Wada, A., Igarashi, K., Yoshimura, S., Aimoto, S., and Ishihama, A. (1995) 
Biochem. Biophys. Res. Comm. 214: 410-417. 

Wang, Q.P., and Kaguni, J.M. (1989)1 Bacteriol. 171 : 4248-4253. 

Waldburger, C., Gardella, T., Wong, R., and Susskind, M.M. (1990) 1 Mo!. Biol. 
215 : 267-276. 

Waldburger, C., and Susskind, MM. (1994)1 Mol. Biol. 235: 1489-1500. 

Walderhaug, M.O., Polarek, J.W., Voelkner, P., Daniel, J.M., Hesse, J.E., Altendorf, 
K., and Epstein, W. (1992)1 Bacteriol. 174 2152-2159. 

Wallace, B., Yang, Y., Hong, J., and Lum, D. (1990) 1 Bacteriol. 172: 3214-3220 

Weilbacher, R., Hebron, C., Feng, G., and Landick, R. (1994) Genes Dev. 8: 2913-
2927. 

Wistow, G. (1990) Nature 344 : 823-824. 

Wolffe, A.., Tafuri, S., Ranjan, M., and Familiari, M. (1992) N Biologist 4: 290-
298. 

Woiffe, A. (1994) BioEssays 16: 245-250. 

Wong, C., Tintut, Y., and Gralla, J.D. (1994)1 Mo!. Biol. 236: 81-90. 

Worsey, M.J., and Williams, P.A. (1975)1 Bacteriol. 124: 7-13. 

207 



Wylie, D., Stock, A., Wong, C.Y., and Stock, J. (1988) Biochem. Biophys. Res. 
Comm. 151 : 891-896. 

Xiao,H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M. (1991)1. 
Biol. Chem. 266 : 5980-5990. 

Yamanaka, K., Mitani, T., Ogura, T., Niki, H., and Hiraga, S. (1994) Mo!. 
Microbiol. 13: 301-312. 

Yamashino, T., Ueguchi, C., and Mizuno, T. (1995) EMBOJ 14: 594-602. 

Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N. (1982) 
Science 217: 1214-1222. 

Yang, Y., and Ames, G.F-L. (1988) Proc. Nat!. Acad. Sci. USA 85: 8850-8854. 

Yim, H.H., and Villarejo, M. (1992) 1 Bacteriol. 174: 3637-3644. 

Yim, H.H., Brems, R.L., and Villarejo, M. (1994)1 Bacterio!. 176: 100-107. 

Yoshida, T., Ueguchi, C., Yamada, H., and Mizuno, T. (1993) Mo!. Gen. Genet. 
237: 113-122. 

Youderian, P., Bouvier, S., and Susskind, M.M. (1982) Cell 30: 843-853. 

Yura, T., and Ishihama, A. (1979) Annu. Rev. Genet. 13: 59-97. 

Yura, T., Nagai, H., and Mori, H. (1993) Annu. Rev. Microbiol. 47: 321-350. 

Yuzawa, H., Nagai, H., Mori, H., and Yura, T. (1993) Nucl. Acids Res. 21: 5449-
5455. 

Zhou, Y.N., Walter, W.A., and Gross, C.A. (1992)1 Bacteriol. 174: 5005-5012. 

Zimmermann, L., Hantke, K., and Braun, V. (1984)1 Bacteriol. 159: 271-277. 

Zinoni, F., Birkmann, A., Stadtman, T.C., and Bock, A. (1986) Proc. Nat!. Acadd, 
Sci. USA 83 : 4650-4654. 

Zuber, F., Kotlarz, D., Rimsky, S., and Buc, H. (1994) Mo!. Microbio!. 12: 231-240. 

Zuber, P., Healy, J., Carter III, H.L., Cutting, S., Moran, C.P., and Losick, R. (1989) 
1 Mol. Biol. 206: 605-614. 

208 


