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Abstract 
 
A methodology based on an automated optimization technique that uses a genetic algorithm 
(GA) is developed to estimate the material properties needed for CFD-based fire growth 
modeling from bench-scale fire test data. The proposed methodology involves simulating a 
bench-scale fire test with a theoretical model, and using a GA to locate a set of model parameters 
(material properties) that provide optimal agreement between the model predictions and the 
experimental data. Specifically, a genetic algorithm based on the processes of natural selection 
and mutation is developed and integrated with the NIST FDS v4.0 pyrolysis model for thick 
solid fuels. The combined genetic algorithm/pyrolysis model is used with Cone Calorimeter data 
for surface temperature and mass loss rate histories to estimate the material properties of two 
charring materials (redwood and red oak) and one thermoplastic material (polypropylene). This 
is done by finding the parameter sets that provide near-optimal agreement between the model 
predictions and experimental data given the constraints imposed by the underlying physical 
model and the accuracy with which the boundary and initial conditions can be specified. The 
methodology is demonstrated here with the FDS pyrolysis model and Cone Calorimeter data, but 
it is general and can be used with several existing fire tests and almost any pyrolysis model. 
Although the proposed methodology is intended for use in CFD-based prediction of large-scale 
fire development, such calculations are not performed here and are recommended for future 
work.  
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Nomenclature 
 
Letters 
a Parameter (gene) 
A Individual (chromosome) 
B Population of individuals (chromosomes) selected for reproduction 
C Intermediate population  
c Specific heat [kJ/kg·K] 
EA Activation energy [kJ/mol] 
f~  Fitness of an individual at one heat flux level 
f  Fitness of an individual, weighted over all heat flux levels 

h Convective heat transfer coefficient at front face of fuel sample [W/m2·K] 
∆H Latent heat [kJ/kg] 
k Thermal conductivity [W/m·K] 
l  Generation index 
m ′′&  Pyrolyzate flux rate [kg/m2·s or g/m2·s] 
n Number of parameters (genes) per individual 

eqn ′′&  Number of heat flux levels used for fitness evaluation 
N Number of individuals (chromosomes) per population 
p Probability  
q See Eq. 13 
q& ′′  Heat flux [kW/m2] 
r Array or matrix of random real numbers 
R Universal gas constant [kJ/mol·K] 
R2 Coefficient of determination [-]  
s Single random real number 
S Target (maximum) selection number of an individual 
t Time [s] 
T Temperature [K] 
v Velocity [m/s] or mutation severity 
X Volume fraction [m3/m3] 
y Measured or predicted value at a point in time 
z Spatial coordinate [m] 
Z Pre-exponential factor [m/s] 
 
Greek Symbols 
α Thermal diffusivity [m2/s] 
δ Thickness [m] 
ε Surface emissivity [-] 
ρ  Density [kg/m3] 
σ Stefan-Boltzmann constant [W/m2·K4] 
ζ See Eq. 10 
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Subscripts 

0 Initial 
∞  Ambient 
c Char 
e External 
exp Experimental value 
f Pyrolysis front 
fl Flame  
g Gaseous pyrolysate 
j Gene j 
max Maximum 
min Minimum 
mut Mutation 
p Pyrolysis 
s Surface 
sel Selection 
try Trial value 
v Virgin 
 
Superscripts 
 
* See Eq. 1 
try Trial value 
act Actual (experimental) value 

)  (  Averaged 
I Individual I  
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1.  Introduction 

 

There is substantial interest in using CFD-based fire modeling to predict flame spread and fire 

growth in real-world geometries and actual environments. This is potentially useful for fire 

safety engineering when it is not practical to perform full-scale fire testing due to cost or size. 

Particularly in the early phases of product development, fire modeling provides a cost-effective 

alternative to expensive full-scale fire tests required by building codes and other regulations for 

material certification, and can reduce the time to market. Also, computer fire models can be used 

predict fire development in environments that are difficult to reproduce in the laboratory. An 

example of particular interest to the authors is the extrapolation of normal gravity flammability 

data to reduced gravity environments such as those encountered in spacecraft [1] where testing is 

prohibitively expensive if not outright impossible. 

 

One of the biggest impediments preventing increased usage of CFD-based fire growth modeling 

is our limited ability to use data from common bench-scale fire tests, such as the Cone 

Calorimeter [2] and Fire Propagation Apparatus [3], to characterize practical materials in terms 

of the solid phase “material properties” needed by the simplified numerical pyrolysis models 

embedded in CFD codes. Although techniques have been developed to estimate several material 

fire properties from laboratory fire tests, as will be discussed further in Section 2.2 there is a 

disconnect between the material properties needed for CFD-based fire modeling and those 

properties that can be determined with existing methods. 
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The main contribution of this paper is the development of a methodology based on an automated 

optimization technique that uses a genetic algorithm (GA) to estimate the material properties 

required for CFD-based fire growth modeling from bench-scale fire test data.  Genetic 

algorithms are a class of search tools that use the principles of Darwinian evolution to seek an 

optimal solution to a problem having a large number of adjustable parameters. In comparison to 

many traditional search methods, genetic algorithms can handle nonlinear problems and search 

spaces having high dimensionality. The proposed methodology involves simulating a bench-

scale fire test with a theoretical model and using a GA to locate a set of model parameters 

(material properties) that provide optimal agreement between the model predictions and the 

experimental data subject to the constraints imposed by the underlying physical model. The 

material properties found by the genetic algorithm will be close to the “actual” values provided 

the experimental measurements are sufficiently accurate and contain enough information to 

establish a unique set of model parameters, the pyrolysis model is an adequate representation of 

the underlying physical processes, and the specified boundary and initial conditions are an 

accurate representation of the experimental configuration.  This approach is self-consistent in the 

sense that the same model that is used to estimate the material properties from small-scale 

experimental data can be coupled to a CFD code to model large-scale fire development.  

 

Here, the proposed methodology is used with the NIST FDS v4.0 thick solid fuel pyrolysis 

model [4] and Cone Calorimeter [2] data. Specifically, the pyrolysis model is used to calculate 

the solid fuel’s surface temperature and mass loss rate histories, which are then compared with 

the corresponding Cone Calorimeter data. A genetic algorithm is used to find the material 

properties that provide optimal agreement between the pyrolysis model predictions and the Cone 
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Calorimeter data. It should be emphasized, however, that the methodology is general and can be 

applied to several existing fire tests and used with almost any pyrolysis model. Whether a 

particular fire test or pyrolysis model is applicable for prediction of large scale fire development 

is an important issue that is not considered here. 

 

2. Simulating a bench-scale fire test with a one-dimensional pyrolysis model 

 

The physical problem being modeled is that of a combustible solid being tested in the Cone 

Calorimeter, i.e. the radiative heating, pyrolysis, and combustion of solid fuel slab. A simplified 

schematic is given in Fig. 1. The sample thickness δ  is small in comparison with its length and 

width. Edge effects are not considered and the problem is therefore treated as one-dimensional. 

The irradiated face of the sample is located at z = 0, and its back face abuts a perfectly thermally 

insulative substrate at z = δ. The solid fuel is approximated as spectrally gray and opaque to 

thermal radiation so that radiative absorption occurs only at the surface. A particular fire test is 

modeled by applying a specific set of initial and boundary conditions that describe the initial 

state (T0), the convective environment (h, ∞T ), and the applied external radiation level ( eq ′′& ). 

 

Prior to ignition, the fuel is heated only by the externally applied radiation; after ignition, it is 

also heated by heat feedback from the flame ( flq ′′& ). The flame heat flux varies from apparatus to 

apparatus, and for a particular apparatus it depends on the fuel type, the instantaneous heat 

release rate, and environmental conditions (particularly ambient O2 concentration). In this work, 

the approximation is made that the flame heat flux is fuel independent, spatially uniform, and 
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temporally invariant.  It is assumed to be negligible prior to ignition, instantaneously jumping to 

a constant value at the observed ignition time. 

 

Several pyrolysis models are appropriate for simulating the physical problem in this simplified 

form, but in this work a standalone implementation of the NIST FDS v4.0 pyrolysis model for 

thermally thick solid fuels [4] is used. The major equations (which are spatially discretized with 

finite differences and then integrated in time) are summarized below.  

 

2.1. Simplified pyrolysis model 

 

The NIST FDS v4.0 charring pyrolysis model [4] is based on the work of Atreya [5] as modified 

by Ritchie et al. [6].  It tracks the position of the pyrolysis front, a sharp demarcation between 

the virgin and char phases. These phases have different densities, and may also have different 

thermal conductivities and specific heats. The following form of the energy equation is solved:  
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A subscript v denotes the virgin material, a subscript c denotes the char phase, and a subscript g 

denotes the gaseous pyrolysate. Quantities without a subscript are total quantities that apply 

locally to the solid as a whole. Although the model can accommodate temperature-dependent 

solid phase thermal properties, in this work it is assumed that all thermal properties do not vary 



  

 5 

with temperature with the exception of cg (the specific heat of the gaseous pyrolysate vapors). 

This quantity is evaluated at the average of the initial temperature T0 and the local temperature T. 

 

Denoting T (0, t) as Ts, the initial and boundary conditions applied to Eq. 1 are: 

 ( ) 00 , TzT =  (2a) 
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Since the virgin fuel and char may have different thermophysical properties, the local volume-

averaged thermal conductivity and product of density and specific heat must be determined in 

each cell: 

 ( ) cccv XkXkk +−= 1   (3) 

 ( ) ccccvv XcXcc ρρρ +−= 1  (4) 

where Xc is the local char volume fraction.  Denoting zf as the position of the pyrolysis front, the 

char volume fraction is: 
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 (5) 

Although the pyrolysis front is assumed to be infinitely thin, the grid cells used to discretize and 

solve the governing equation have a finite thickness.  Thus, only for the grid cell in which the 

pyrolysis front is located, the char volume fraction falls between 0 and 1 and is equal to the 

spatially-weighted char volume fraction. 
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The volatiles generated in-depth are instantaneously transported to the surface, and the mass loss 

rate per unit area is calculated as an Arrhenius function of the pyrolysis front temperature Tf 

(determined by interpolation): 

 ( ) 

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
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cv RT

EZm expρρ&  (6) 

The volumetric pyrolysis reaction rate appearing in Eq. 1 is calculated from m ′′& :  
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where ∆z is the grid spacing in the cell containing the pyrolysis front. 

 

The preceding formulation is valid for modeling the pyrolysis of charring fuels.  For modeling 

the pyrolysis of noncharring fuels, the FDS “thermoplastic” pyrolysis model can be recovered by 

setting 0* =∆ pH  in Eq. 1, zf = 0 in Eq. 5 (leading to Xc = 0 ∀ z, k = kv, ρc = ρvcv, and Tf = Ts), and 

ρc = 0 in Eq. 6.  Thus, the thermoplastic model can be thought of as a special case of Eqs. 1 - 7. 

Its primary limitations are:  1) surface regression is not accounted for, i.e. the fuel thickness 

remains equal to its initial thickness regardless of the amount of solid fuel consumption, and 2) 

all pyrolysis is assumed to occur at the fuel surface, i.e. the pyrolysis rate is a function only of 

the surface temperature (it has been experimentally demonstrated that this is not the case [7]). 

 

2.2. Required material properties 
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In the present work, the pyrolysis model is used to calculate the material surface temperature and 

mass loss rate histories as a function of the material properties. In terms of the material 

properties needed to characterize a particular material, the FDS pyrolysis model described above 

is fairly typical of other models based on similar formulations. It can be seen from above that at 

least five material properties are needed to simulate the pyrolysis of a noncharring material:  

thermal conductivity (kv), specific heat (cv), pre-exponential factor (Z), activation energy (EA), 

and heat of pyrolysis (∆Hp). At least three additional properties are needed to model a charring 

material: char thermal conductivity (kc), char specific heat (cc), and char density (ρc). Our 

inability to estimate all of these properties from bench-scale fire tests, discussed briefly below, is 

one of the primary motivations of this work.   

 

Thermal ignition theories (e.g. Ref. [8]) can be used to determine a material’s apparent thermal 

inertia (the product kρc) by plotting ignition time data at multiple heat flux levels, but numerical 

pyrolysis models require specification of individual thermal properties (kv, ρv, cv). Furthermore, 

the derived kρc is an effective value that depends on the data reduction technique used [9] and 

environmental conditions [10]. Being an effective value, it also includes the endothermicity of 

the pyrolysis reaction, which is treated explicitly in a numerical model. Since the effective 

thermal inertial is derived from a thermally thick analysis using a linearized total heat transfer 

coefficient, it has limited usefulness for numerical modeling where nonlinear surface re-radiation 

is treated explicitly [11] (as in numerical pyrolysis modeling) and for non-thick materials. A 

perhaps more significant limitation is that although charring materials account for a large 

fraction of the materials encountered in practice, there are no procedures available to estimate the 
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thermal conductivity, density, and specific heat, and density of the char phase (kc, ρc, cc) from 

fire test data.   

 

Similarly, there are currently no procedures available that use laboratory fire test data to estimate 

the Arrhenius pyrolysis rate coefficients (Z, EA). They are usually determined by 

thermogravimetric analysis that involves slowly heating very small samples with a mass of a few 

milligrams and measuring the resultant mass loss [12]. Since heat and mass transfer processes 

are expected to be much different in milligram size samples and the bulk material’s end-use 

configuration, the relevancy of these measurements to the pyrolysis and combustion of large 

samples under fire-level heating rates is questionable. 

 

The heat of pyrolysis ∆Hp (the heat required to convert unit mass of solid material at its pyrolysis 

temperature to unit mass of pyrolysate and char) is generally used to characterize the 

endothermicity of the pyrolysis reaction.  However, ∆Hp cannot be directly determined from fire 

tests with existing procedures. Only the effective heat of gasification (the heat required to raise 

unit mass of material from its initial temperature to its pyrolysis temperature plus the heat of 

pyrolysis) can be determined from fire test data [13]. Furthermore, it is not clear whether this 

procedure can be effectively applied to charring materials that do not show a steady-state burning 

phase.  

 

3. A genetic algorithm for automated optimization  
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In this section, a methodology is presented that can be used to estimate the unknown material 

properties identified above from fire test data.  It involves using a genetic algorithm to find a set 

of properties that provides near-optimal agreement between the predictions of a numerical 

pyrolysis model and experimental measurements from a fire test. However, the inverse problem 

being solved is ill-posed. That is, the solution (the set of material properties) is not necessarily 

unique and it is not necessarily stable to small changes in the input data. The proposed 

methodology is heuristic, meaning that the final solution is not necessarily the absolute optimal 

solution; however, the algorithm will find a solution that gives a near-optimal prediction of the 

experimental data given the constraints of the underlying physical model, i.e. the results are 

almost as good as those that would be obtained with the optimal solution.  

 

Genetic and evolutionary algorithms have been widely used in engineering. They have already 

been applied to the optimization of combustion and chemical kinetics problems, including 

heterogeneous [14] and homogeneous [15] reaction mechanisms. The authors have used a GA to 

extract detailed decomposition kinetics of polyurethane foam from thermogravimetric 

experiments [16]. However, since the use of a GA to estimate solid-phase material properties 

from fire test data is a specialized application, the algorithm is described in detail below. The 

reader desiring a general treatment of genetic or evolutionary algorithms is referred to several 

books covering the topic [17, 18, 19]. 

 

3.1. Initial population 
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The search process is initialized by randomly generating several candidate solutions (for a 

charring material, a vector of eight real numbers corresponding to kv, cv, Z, EA, ∆Hp, kc, ρc, cc). 

Each candidate solution is referred to as an individual or a chromosome, and the terms are used 

interchangeably throughout the genetic algorithms literature. A single parameter of an individual 

(or chromosome) is referred to as a gene, i.e. the numerical value of the virgin phase thermal 

conductivity is one gene. The entire group of candidate solutions is referred to as a population. 

Typical population sizes range from tens to hundreds of individuals.  Populations constantly 

evolve to form subsequent generations;  the initial population is the first generation, the 

offspring of the first generation make up the second generation, and so on.   

 

Let {a1, a2 . . .  an} denote the n parameters, or genes, that make up an individual, or 

chromosome. Here, a1 may be associated with kv, a2 with cv, and so on.  For certain variables that 

may take on values over several orders of magnitude, it is convenient to have the gene represent 

the logarithm of that variable. Let {A1, A2 . . . AN} denote the N individuals that make up the 

population. The nomenclature AI( l ) is used to denote the Ith individual of generation l . 

Similarly, ( )lI
jA  represents the jth gene of the Ith individual of generation l .  

 

Begin by generating an initial population: 

 ( ) ( )min,max,min,1 jj
I
jj

I
j aaraA −+=  (8) 

The parameters aj,max and aj,min are the user-specified upper and lower bounds of each variable; 

all parameters are constrained by these values throughout the evolution process. In Eq. 8, I
jr  is 

an N by n matrix of random real numbers distributed uniformly on the interval [0, 1]. The indices 

I and j are cycled from 1 to N and 1 to n, respectively.  
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3.2. Fitness 

 

Next, the fitness of each individual is evaluated. Here, fitness is a measure of how well the 

candidate solution matches the experimental data. It is assumed that at a minimum, surface 

temperature and mass loss rate histories are available (additional temperature measurements 

could certainly be used). The coefficients of determination (R2 values) that measure the level of 

agreement between the measured surface temperature/mass loss rate histories and the predictions 

of individual I are: 
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Here, a subscript “exp” denotes the experimental data, and a subscript “try” denotes the trial 

solution generated by a certain set of parameters contained in the individual. Eq. 9 is written as a 

summation, rather than an integral, because experimental measurements are obtained at discrete 

time intervals. In Eq. 9a, the summation is performed for surface temperature 

measurements/predictions only before the experimentally determined ignition time, but in Eq. 9b 

the summation for the mass loss rate measurements/predictions is carried out over the entire 

duration of the test. This choice was made because the accuracy of surface temperature 

measurement becomes more questionable after ignition.  The use of a simple R2 value for 
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evaluating the fitness is somewhat arbitrary; other methods of calculating the residual could also 

be used. 

Next, the weighted fitness of individual I is calculated as: 

 ( ) ( )ζζ
φφ I

mm
I

TT
I RRf

ss

22~
′′′′+= &&  (10) 

In Eq. 10, ζ is a user-specified exponent, and the φ factors are user-specified constants that 

determine the relative importance of each fitness metric such that Σφi = 1. If experimental data 

are obtained at multiple heat flux levels, then an individual’s final fitness is considered to be the 

averaged fitness at all heat flux levels: 

 ∑
′′′′

=
eqe n

I

q

I f
n

f
&&

~1  (11) 

where 
eqn ′′&  is the number of heat flux levels at which data were obtained. The steps represented 

by Eqs. 9 through 11 are then repeated for all individuals to tabulate a numerical fitness value for 

each individual.  

 

3.3. Selection for reproduction 

 

The next generation is obtained through the process of reproduction wherein parents’ genes are 

combined to produce offspring. The likelihood that an individual reproduces is determined by its 

fitness. In this way, relatively bad candidate solutions die out, while relatively good solutions 

survive and propagate. This “natural selection” process is the basis of genetic algorithms’ ability 

to exploit good solutions.   
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There are many different ways in which individuals can be selected for reproduction, but 

proportional selection [19] was used here for simplicity. The selection probability of individual I 

is: 

 
∑

=

= N

I

I

I
I
sel

f

fp

1

 (12) 

Thus, the higher an individual’s fitness, the greater the probability it will be selected for 

reproduction. In practice, the selection probability in Eq. 12 is implemented by first sorting the 

current population in order of decreasing fitness, i.e. 1+≥ II ff . Then, for each individual, the 

following is calculated:  

 ∑
=

=
N

Ii

i
sel

I pq  (13) 

Note that by definition, q1 = 1 and N
sel

N pq = . Next, a random number r belonging to a uniform 

distribution is generated on the interval [0, 1]. Selection proceeds by comparing r with q:  if qI+1 

< r ≤ qI, then AI is selected for reproduction. The selection process is repeated N times to choose 

N parents.  

 

If one individual has a relative fitness much higher than the average, it is likely that this 

individual will be selected several times for reproduction. To prevent premature convergence, a 

target (maximum) selection number S is used so that any individual may be selected for 

reproduction no more than S times per generation (1 ≤ S < N). If an individual has reproduced S 

times and is selected again for reproduction, then a new individual is randomly selected from the 

population for reproduction. Low values of S preserve variability at the expense of convergence. 
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3.4. Reproduction  

  

Once individuals have been selected for reproduction, offspring are generated through a linear 

combination of two parents. Denote {B} the subset of population {A} that was selected for 

reproduction. As many as S copies of a single individual may belong to the set {B}. The 

offspring are stored in a temporary intermediate population denoted {C}. This is accomplished 

by generating a matrix of random numbers (denoted i
jr  where i = 1 . . . N/2 and j = 1 . . . n) 

belonging to a uniform distribution on the interval [-0.5, 0.5] and then producing offspring as 

linear combinations of the parents:   

 
( )
( ) 2

1          where1 . . . 5 ,3 ,1for       
1
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j

I
j

i
j

I
j  (14) 

 

3.5. Mutation 

  

After two parents have combined to produce a new individual, a process analogous to genetic 

mutation is used to introduce variability into the population, which ensures the entire search 

space is explored and that the solution does not become trapped at a local maximum. Mutation is 

accomplished by introducing random variations into one or more of an individual’s genes. The 

probability that a gene is mutated is relatively low, perhaps 0.05. Mutation is performed on a 

gene-by-gene basis. At the start of the calculation, each parameter (gene) is assigned a user-

specified mutation probability pmut,j. Mutation is performed on the intermediate population {C} 

and begins by generating a matrix of random numbers, denoted I
jr  (where I = 1 . . . N and j = 1 . 
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. . n) belonging to a uniform distribution on the interval [0,1]. Mutation occurs on individual I 

gene j if jmut
I
j pr ,≤ . If a gene is selected for mutation, then one of two types of equiprobable 

mutation occur. In the first (Eq. 15a) the gene is simply replaced with a randomly generated 

value.  In the second, the gene is replaced with an excursion from its current value (Eq. 15b): 

 ( )min,max,min, jjj
I
j aaraC −+=  (15a) 

 ( )min,max,jj jjmut
II aas vCC −+=  (15b) 

In Eq. 15a, r is a random number on the interval [0, 1], and in Eq. 15b s is a random number on 

the interval [-0.5, 0.5]. The user-specified parameter vmut controls the severity of the mutation 

and is generally less than 1.  

 

3.6. Replacement 

 

The final step in the genetic algorithm is to replace the parents with the offspring. In the 

algorithm used here, the offspring (i.e. the individuals in the intermediate population) completely 

replace the parents:  

 ( ) ( ) NICA II   . . .  3, 1,2,  for      1 ==+ ll  (16) 

The processes of selection, reproduction, and mutation and replacement are repeated until a 

predetermined number of generations has passed or the solution converges, meaning no further 

improvement of the solution occurs with subsequent generations.  

 

4. Methodology Application and Results 
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Before using the above-described methodology to estimate material properties from Cone 

Calorimeter data, it is first applied to an idealized case where simulated experimental data are 

generated with the FDS v4.0 charring pyrolysis model. This is done to evaluate the 

methodology’s ability to find a set of eight material properties for a case where the actual 

material properties are known and the model is an accurate representation of the physical 

problem.  Once the methodology is verified, it is then applied to estimate the material properties 

of a thermoplastic material (polypropylene) and two charring materials (red oak and redwood) 

using surface temperature and mass loss rate histories in the Cone Calorimeter [20]. 

 

When using the FDS pyrolysis model, 10 grid points are specified per mm of sample thickness, 

so that the average grid spacing is 0.1 mm (the FDS pyrolysis model clusters the grid points near 

the exposed surface). A convective heat transfer coefficient of 10 W/m2⋅K is assumed, and the 

emissivity of all materials is set at ε = 0.9. A constant flame heat flux of 30 kW/m2, consistent 

with experimental measurements in the Cone Calorimeter [20], is added to applied external 

radiation level after the experimentally determined ignition time. The genetic algorithm is run 

with a population size of 250, a target (maximum) selection rate of S = 6, a mutation severity of 

vmut = 0.1, and the exponent ζ in Eq. 10 is set to 3. The property-specific genetic algorithm 

parameters are listed in Table 1; for properties with a “Y” in the “log” column, the base 10 

logarithm of that property is used as the gene. 

 

4.1. Simulated material 
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To test the methodology’s capabilities, a hypothetical charring material with 5 mm thickness and 

a virgin density of 420 kg/m3 is used to generate simulated experimental data.  Its other 

properties are indicated in Table 2.  Three heat flux levels are used:  30 kW/m2, 60 kW/m2, and 

90 kW/m2, and the ignition times were arbitrarily chosen to be 100 s, 50 s, and 25 s, respectively. 

In addition to surface temperature and mass loss rate, the back-face temperature was also used to 

evaluate the fitness.  All three φ values were set to 1/3. 

  

The evolution of the population-averaged fitness and the fitness of the best individual found at 

any point during the evolution process are shown in Fig. 2. By 100 generations, the highest 

fitness found at any point in the evolution process reached 0.987 (a fitness of 1.0 is a perfect 

match). The average fitness, an indication of the quality of the “gene pool”, increases rapidly for 

the first ~200 generations but plateaus thereafter. By the 1000th generation, the fitness of the best 

individual reached 0.995. For practical situations, it would have been adequate to stop the 

algorithm after ~500 generations, requiring approximately 2 hours of CPU time on a 3.2 GHz 

desktop PC.   

 

A comparison of the simulated experimental surface temperature and mass loss rate at 60 kW/m2 

with the model predictions using the optimal material properties found by the genetic algorithm 

is given in Fig. 3.  It is seen that the agreement is excellent, which verifies the methodology’s 

capabilities to estimate material properties from experimental data.  

 

Table 2 gives a comparison of the optimal values found by the genetic algorithm and the actual 

values used to generate the simulated experimental data.  The algorithm matched all properties 
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within ~10%, with the exception of the char specific heat and the pre-exponential factor. 

Apparently, the slightly lower value of the heat of pyrolysis found by the genetic algorithm 

compensates for the higher value of the char specific heat because the model predictions match 

the simulated experimental data quite well. The slightly lower value of the pre-exponential factor 

found by the genetic algorithm is compensated for by the slightly lower activation energy. This 

compensation effect between the pre-exponential factor and the activation energy has long been 

observed to occur in the estimation of pyrolysis kinetics parameters from thermogravimetric 

analysis [21, 22]. Due to the kinetic compensation effect, the algorithm may not find the “true” 

values of the pre-exponential factor and the activation energy, but it will find values of these 

parameters that match the Arrhenius function over the temperature range within which pyrolysis 

occurs.    

 

4.2. Materials tested in the Cone Calorimeter 

 

The above methodology is applied in this section to estimate the material properties of a 

thermoplastic material (polypropylene) and two charring materials (red oak and redwood) for 

which Cone Calorimeter data are available [20]. The tests simulated are summarized in Table 3. 

Since no density values are given [20], the density for polypropylene is taken from Ref. [23] and 

the virgin densities for redwood and red oak are taken from Ref. [24]. The experimental data for 

surface temperature and mass loss rate were not available in spreadsheet form, so discrete data 

points were fit to the temperature plots. However, this was not possible with the mass loss rate 

data due to the large number of closely spaced points and scatter in the experimental data. 

Therefore, a smooth line was fit to the experimental data.  It should be pointed out that genetic 
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algorithms do not require smooth data sets; in fact, one of their advantages is that they work well 

with noisy data.  

 

Figs. 4 through 9 give a comparison of the experimental data and the model predictions using the 

optimal material properties found by the GA after 1000 generations. Although the measured 

surface temperature is shown after the samples ignited, for the purposes of matching the model 

predictions to the experimental data it was used only used prior to the experimentally recorded 

ignition time listed in Table 3. 

 

Fig. 4 gives a comparison of the polypropylene material’s measured surface temperature and that 

predicted with the FDS thermoplastic pyrolysis model at 34 and 61 kW/m2.  It can be seen that 

there is good agreement between the model predictions and the experimental data prior to 

ignition. After ignition, the measured and calculated surface temperatures diverge.  This is 

probably due to separation of the thermocouple from the fuel surface in the experiments.  There 

is very good agreement between the predicted and measured mass loss rate, as shown in Fig. 5. 

This suggests that the simple thermoplastic pyrolysis model used by FDS, where the pyrolysis 

rate is a function only of the surface temperature, is capable of reproducing quite well the mass 

loss rate curves of thermoplastic materials despite the noted limitations of this approach [7].  

 

Fig. 6 gives a comparison of the modeled and predicted surface temperatures for redwood.  At a 

heat flux of 21 kW/m2, the measured surface temperature is underpredicted after 100 s. At 42 

kW/m2, the predicted and measured surface temperatures match well. Fig. 7 gives the measured 
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and calculated mass loss rate histories, and the model predictions match the experiments quite 

well.  

 

Fig. 8 gives a comparison of the predicted and measured surface temperatures for red oak at 27 

kW/m2 and 76 kW/m2. At 27 kW/m2, the surface temperature is slightly underpredicted prior to 

ignition, but at 76 kW/m2 it is slightly overpredicted. It is interesting to note that after ignition, 

the model prediction matches the measured surface temperature at 76 kW/m2 quite well; 

similarly, at 27 kW/m2 the predicted surface temperature trend after ignition matches the 

experiment, although the model underpredicts the temperature by ~50K.  The predicted and 

measured mass loss rate histories are compared in Fig. 9, and it can be seen that there is good 

agreement.  

 

The material properties corresponding to the individual with the highest fitness after 1000 

generations are summarized in Table 4, with literature values given for comparison (where 

available). For the polypropylene material, the values of kv, cv, and ∆Hp are relatively close to the 

literature values. It should be noted that the Arrhenius parameters cannot be directly compared to 

literature values because in the model used here, the pyrolysis is forced to occur at the surface. 

Unfortunately, no literature values were located specifically for redwood or red oak. However, 

the values used by Ritchie et al. [6] for Douglas Fir are listed in Table 4 to provide a rough point 

of reference. The properties found by the GA for redwood and red oak all seem reasonable, 

although the thermal conductivity of the red oak char seems high. Radiative heat transfer in the 

porous char becomes important experimentally at high temperatures, but this effect is not 



  

 21 

accounted for by the FDS pyrolysis model. Ths may partially explain the relatively high value of 

thermal conductivity for red oak char found by the GA.  

 

5. Concluding remarks 

 

The feasibility of estimating the material properties needed for CFD-based fire growth modeling 

from small-scale fire tests has been demonstrated using a methodology based on matching a 

pyrolysis model’s predictions to the experimental data via genetic algorithm optimization. 

Transient measurements of surface temperature and mass loss rate in the Cone Calorimeter were 

used as the metric against which the “accuracy” of the model predictions was judged. The model 

parameters (material properties) were automatically adjusted to find a parameter set that provides 

near-optimal agreement between the model predictions and the experimental data given the 

constraints imposed by the simplified nature of the underlying physical model and the accuracy 

with which the experimental boundary conditions, particularly the flame heat flux, can be 

specified. The generally satisfactory level of agreement between the model predictions and the 

experimental data is encouraging. However, it remains to be seen whether material properties 

obtained with this methodology can be used to accurately model large-scale fire development, 

and this is recommended for future work. 

 

Although the genetic algorithm optimization technique developed here is heuristic, the results 

presented in Section 4.1 using simulated experimental data suggest that it is capable of finding 

most model parameters within ~10% for this idealized situation.  However, when using this 

methodology to estimate material properties from an actual fire test, the complex physical 



  

 22 

processes occurring in that test are by necessity simulated with a comparatively simple physical 

model. For example, all thermal properties are assumed independent of temperature here for 

simplicity (although, it is possible to use this approach to find temperature-dependent material 

properties by assuming a functional dependence on temperature). Therefore, the material 

properties found by the genetic algorithm should be interpreted as average values over the range 

of test conditions considered. Furthermore, they are influenced by the simplifying assumptions 

built into the pyrolysis model. It is possible that a set of properties found to provide the best 

agreement between the predictions and experiments using one pyrolysis model will not do the 

same when used with another model if it is based on different physics or simplifying 

assumptions. In this sense, they are not true properties of a material, but rather the pyrolysis 

model input parameters that were found to provide near-optimal agreement between model 

predictions and experimental data. However, if the model is physically correct and the 

experimental data corresponds to a fundamental fire process, there is reason to believe that the 

properties found with this methodology will provide good results when used with a fire model. 

Nonetheless, the material properties obtained should be used only with the pyrolysis model from 

which they were derived, incorporated in a fire model.  

 

There are several advantages to the specific methodology used in this work.  It can be used with 

any pyrolysis model (including models with nonlinear governing equations and a large number 

of adjustable parameters) and any fire test in which the mass loss rate can be measured. It is self-

consistent because the same model used to extract the material properties from the bench scale 

fire test data is used to calculate ignition, mass burning, flame spread, and fire growth. All 
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properties needed to characterize a material for CFD-based fire modeling can be estimated from 

a single bench-scale fire test. Practical charring materials can be handled.  

 

Some disadvantages of the proposed method used here are that the flame heat flux is not 

precisely known and surface temperature measurements are needed. A simple predictive model 

to estimate the flame heat flux in a particular apparatus for different fuels as a function of mass 

loss rate and key parameters measured in fire tests (such as the heat of combustion and soot 

yield) would allow the flame heat flux to be estimated with greater confidence.  Alternatively, 

the mass loss rate measurements could be obtained under nonflaming conditions (i.e., in the 

absence of a pilot). The sensitivity of the properties determined with this method to the particular 

experimental apparatus used must also be investigated.  
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Fig. 1.  Simplified schematic of the physical problem. 
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Fig. 2.  Evolution of average and best fitness to 1000 generations for simulated experimental data 
case. 
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Fig. 3.  Comparison of simulated experimental data and model predictions using optimal material 
properties determined by genetic algorithm after 1000 generations. Heat flux is 60 kW/m2. 

 



  

 Figure 4 

300

400

500

600

700

800

900

0 50 100 150

Time (s)

T
em

pe
ra

tu
re

 (K
)

34 kW/m2, Exp.

34 kW/m2, Model

61 kW/m2, Model

61 kW/m2, Exp.

Ignition Ignition

 

Fig. 4.  Comparison of experimental polypropylene surface temperature measurement with model 
prediction using parameters found by GA.  
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Fig. 5.  Comparison of experimental polypropylene mass loss rate with model prediction using 
parameters found by GA. 
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Fig. 6.  Comparison of experimental redwood surface temperature measurement with model 
prediction using parameters found by GA. 
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Fig. 7.  Comparison of experimental redwood mass loss rate with model prediction using 
parameters found by GA. 
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Fig. 8.  Comparison of experimental red oak surface temperature measurement with model 
prediction using parameters found by GA. 
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Fig. 9.  Comparison of experimental red oak mass loss rate with model prediction using parameters 
found by GA. 

 



  

 Table 1 

 
Table 1. Input parameters to genetic algorithm. 

 
Parameter pmut Log amin amax 
kv [W/m⋅K] 0.05 N 0.05 1 
cv [kJ/kg⋅K] 0.05 N 0.5 5 

Z [m/s] 0.10 Y 104 1010 
Ea [kJ/mol] 0.10 N 60 250 
∆Hp [kJ/kg] 0.20 Y 102 104 
kc [W/m⋅K] 0.20 N 0.05 1 
cc [kJ/kg⋅K] 0.20 N 0.5 5 
ρc [kg/m3] 0.20 N 20 ρv 

 



  

 Table 2 

 

Table 2.  Comparison of actual material properties used to generate simulated experimental data 
and material properties found with genetic algorithm.  

 
Property Actual 

 
GA 

 
% Error 

 
kv [W/m⋅K] 0.200 0.195 -2.5% 
cv [kJ/kg⋅K] 1.50 1.49 -0.7% 

Z [m/s] 8.30 × 107  3.73 × 107 -55.1% 
Ea [kJ/mol] 163.0 159.1 -2.4% 
∆Hp [kJ/kg] 1000 893 -10.7% 
kc [W/m⋅K] 0.100 0.107 7.0% 
cc [kJ/kg⋅K] 1.00 1.96 96.0% 
ρc [kg/m3] 100 98.6 -1.4% 

 
 



  

 Table 3 

 
Table 3.  Experimental materials. 

 
Material ρv 

(kg/m3) 
δ [20] 
(cm) 

eq ′′&  [20] 
(kW/m2) 

tig [20] 
(s) 

34 66 Polypropylene 900 [23] 2.5 61 22 
21 412 Redwood 420 [24] 1.91 42 20 
27 73 Red Oak 624 [24] 3.18 76 6 

 
 
  



  

 Table 4 

 
 

Table 4.  Comparison of optimal material properties found with genetic algorithm and literature 
values. For PP, Arrhenius properties given for thermal pyrolysis. Temperature-dependent 

properties for PP and Douglas fir evaluated at 200ºC.  
 

Property PP 
GA 

PP 
Ref. 23 

Redwood 
GA 

Red oak 
GA 

Douglas fir
Ref. 6 

kv [W/m⋅K] 0.29 0.24 0.22 0.42 0.18 
cv [kJ/kg⋅K] 3.83 3.55 1.87 1.57 2.86 

Z [m/s] 6.45 × 105 ‡4.6 × 1010  3.38 × 107 1.43 × 107 ‡2.5 × 108 
Ea [kJ/mol] 141.0 243.0 154.0 147.4 126 
∆Hp [kJ/kg] 2288 3000 686 802 126 
kc [W/m⋅K] - - 0.18 0.73 0.094 
cc [kJ/kg⋅K] - - 2.47 2.33 1.60 
ρc [kg/m3] - - 101 261 118 

‡Units are s-1, not m/s 


