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Abstract

In this thesis we investigate the quantum aspects of black holes near extremality. In particular
we seek evidence that a near-extremal black hole has a microscopic description in terms of a
two dimensional conformal field theory (CFT).

We first demonstrate how the low temperature expansion of the first law of thermodynamics
leads to an expression for the entropy of extremal black holes which can be recast as the Cardy
formula for the entropy of a chiral two dimensional CFT, in agreement with the Extremal Black
Hole/CFT correspondence. We apply Sen’s entropy function formalism to fortify this result by
reproducing it in a gravitational setup.

We extend our first law analysis to a class of near-Extremal Vanishing Horizon (near-EVH)
black holes. These black holes have low entropy and temperature, and their geometries contain
locally asymptotically AdS3 throats in the near horizon region. The low temperature expansion
of the first law is compatible with the first law for a three dimensional BTZ black hole. As the
BTZ black hole has an AdS/CFT description in terms of a non-chiral two dimensional CFT,
our result can be viewed as thermodynamic evidence for the EVH/CFT correspondence, which
states that gravity on the near horizon EVH geometry is described by a 2d CFT. A near-EVH
black hole, or low energy excitation around an EVH black hole, is described by excitations of
the dual 2d CFT.

As case studies of our first law analysis and the EVH/CFT correspondence, we focus on
two asymptotically AdS5× S5 classes of near-EVH black holes. The two cases have interesting
individual properties and, by the AdS/CFT correspondence, dual descriptions as states in
N = 4 super Yang-Mills theory . We can compare these (UV) pictures to the two dimensional
descriptions that emerge from the near horizon, or low energy, dynamics. All EVH near horizon
geometries have local AdS3 factors which become BTZ black holes when the configurations are
excited from EVH to near-EVH.

In the study of static black holes with three R-charges, we examine the non-BPS and near-
BPS regimes separately. While the non-BPS near horizon limit is locally regular, in the near-
BPS case the near horizon procedure requires focussing geometrically on a strip of the horizon,
and the degrees of freedom of the dual CFT2 can be associated with stretched strings between
giant gravitons in the transverse five-sphere.

The near-EVH limit of non-BPS stationary charged black holes is obtained by taking the
vanishing limit of one or both of the angular momenta. When one of the momenta is small, the
AdS3 angle is a combination of azimuthal angles in the AdS5 and S5 regions of the geometry.
Taking the vanishing limit of both of the angular momenta leads to a near horizon limit which
contains a BTZ black hole that is non-trivially fibred by a three-sphere.

For each of the case studies we use the AdS3/CFT2 dictionary to specify dual IR CFT2

descriptions of the black holes. We outline a map between the UV and IR near-EVH excita-
tions and demonstrate how the first law reduces in the near-EVH limit to the first law of a
BTZ black hole. As a consistency check we compare our results with those of the Kerr/CFT
correspondence.
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Chapter 1

Introduction

Black holes are some of the most mysterious objects in physics. Classically, they are solutions
of Einstein’s equations, surrounded by an event horizon such that no object inside this event
horizon, not even light, can escape the black hole. In the quantum theory, however, they
radiate with a finite Hawking temperature [1], and have assigned to them an entropy defined
by Bekenstein [2] and Hawking [3]

SBH =
AH

4GN
, (1.1)

where AH is the area of the black hole horizon, and GN is the gravitational Newton’s constant.

The existence of a macroscopic black hole entropy calls for a microscopic understanding.
Indeed, Boltzmann’s equation

S = kB logn, (1.2)

where kB is Boltzmann’s constant, states that n = exp
(

AH
4GNkB

)
microstates are responsible

for this entropy. The statistical nature of (1.1) by definition prompts one to ask what are the
underlying quantum states that give rise to it, and it is an ongoing quest to understand this
entropy as the logarithm of the number of microstates associated with the black hole.

This counting has been achieved in e.g. [4] (see [5] for a review) when we embed certain
four and five dimensional black holes in a string theory setting. In ten dimensional spacetime,
strings end on surfaces called D branes [6], which can wrap around compact dimensions. The D
branes provide the degrees of freedom that give rise to the black hole charges, and the number
of ways, or degeneracy, of wrapping around the compact dimensions results in a microscopic
entropy that produces the macroscopic black hole entropy. Although this is an encouraging
result, this microstate counting is limited to supersymmetric [4] and (near-)extremal non-BPS
[7, 8, 9], black holes1. While extremal black holes, which have a minimal mass for given angular
momentum and electric charge, are theoretical, near-extremal black holes have been observed in
nature [11]. It is yet to be fully understood, and the motivation for this thesis, how the entropy
of near- and non-extremal black holes arises from statistical mechanics based on a quantum
field theory.

The holographic principle is a conceptual framework that can be used to understand the
microscopic description of experimentally observed black holes. It states that the information
contained in some region of space can be represented by a theory on the boundary of that
space. In particular, ’t Hooft and Susskind [12] suggested that our observed universe (three
spatial dimensions and one time dimension) can be described by degrees of freedom living on the
boundary of the universe. This principle suggests that gravity in d+1 dimensions is equivalent
to a local field theory in d dimensions; then by this principle the entropy associated to a black
hole with horizon of area AH could be attributed to quantum states residing on the horizon
[13, 14, 15].

1There are results in e.g. [10] for non-extremal microscopic countings, but they are generically not understood.
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1.1 Brown and Henneaux

Brown and Henneaux [16] first introduced a quantitive approach to identifying gravity with
a quantum field theory. They computed the conserved charges associated to the asymptotic
symmetry (ASG) group of three dimensional Anti de Sitter (AdS) space, where the ASG of a
spacetime is the group of symmetry transformations ξ that preserve its chosen boundary condi-
tions at spatial infinity (allowed diffeomorphisms) but are not associated with trivial conserved
charges (trivial diffeomorphisms). It was then demonstrated that the Dirac bracket algebra of
these charges gives the algebra of a two dimensional conformally invariant quantum field theory.

Pure gravity in three dimensions with a negative cosmological constant Λ is described by
an Einstein-Hilbert action and some boundary terms

I = IEH + Ibdy =
1

16πG3

∫
d3x

√
g

(
R− 2

`23

)
+ Ibdy . (1.3)

In three dimensions the gravitational field has no dynamical degrees of freedom, so the spacetime
away from sources is locally equivalent to the empty space solution of the Einstein equations.
Three dimensional anti de Sitter space

ds2 = −r
2

`23
dt2 + `23

dr2

r2
+ r2dφ2 (1.4)

with radius of curvature given by `3 =
√
− 1

Λ is the empty space solution to the equations of
motion.

Three dimensional anti de Sitter space: Anti de Sitter space of dimension 2 + 1 is a
negatively curved Lorentzian manifold, defined as a hyperboloid in R2,2

x2
1 + x2

2 − x2
3 − x2

4 = −`23 (1.5)

with metric
ds2 = dx2

1 + dx2
2 − dx2

3 − dx2
4. (1.6)

In global coordinates the metric is

ds2 = `23

−
(

1 +
r2

`23

)
dt2 +

dr2(
1 + r2

`23

) +
r2

`23
dφ2

 (1.7)

where the coordinates

x1 = `3 sinhµ cosφ, x2 = `3 sinhµ sinφ (1.8)
x3 = `3 coshµ sin t, x4 = `3 coshµ cos t; (1.9)

sinhµ =
r

`3
(1.10)

have ranges
φ ∈ [0, 2π], r ∈ (0,∞), t ∈ [0, 2π]. (1.11)

Three dimensional anti de Sitter space has SO(2, 2) symmetry and its conformal boundary is
the cylinder R×S1.

Another form of AdS3 that will be familiar in this thesis is the metric (1.4). This is achieved
by first transforming to the Poincaré patch, with the coordinate definitions

x1 = `3φr, x2 =
1 − r2(`23 − φ2 + t2)

2r
, x3 = `3tr, x4 =

1 + r2(`23 − φ2 + t2)
2r

9



to get

ds2 = `23

(
dr2

r2
+ r2

(
−dt2 + dφ2

))
(1.12)

with the ranges
t ∈ R, u ∈ (0,∞), φ ∈ R. (1.13)

Notice that if φ ∈ [0, 2π] in these Poincaré-like coordinates, the AdS3 boundary is also a cylinder.

Asymptotically AdS3 solutions

ds2 = −
(
r2

`23
+ α2

)
dt2 +

(
r2

`23
+ α2 − A2

`23

)−1

dr2 + 2αAdtdφ+ (r2 −A2)dφ2 (1.14)

approach AdS3 space at spatial infinity r → ∞, and are considered to be excitations of the
ground state (1.4).

The gauge symmetry of a theory with action (1.3) is diffeomorphism invariance, and the
gauge parameter is the field dependent vector field ξµ(x). The Lagrangian is invariant, δL = 0,
for a transformation of the metric

ξ : ḡ 7→ ḡ + δξ ḡ, (1.15)

where the infinitesimal symmetry transformation of the metric under the action of the diffeo-
morphism ξ is given by the Lie derivative:

δξ ḡ = Lξ ḡ. (1.16)

Asymptotic symmetries are necessary for the definition of the global charges of the theory, which
in the Hamiltonian formalism are the canonical generators of the asymptotic symmetries of the
theory. The boundary conditions determine the structure of the ASG, but are not completely
fixed by the theory. The behaviour of a perturbation at spatial infinity, i.e. the boundary
conditions of the perturbed metric, determine the form of the symmetry transformations of the
asymptotic symmetry group. The diffeomorphisms that preserve the boundary conditions obey

Lξ(ḡ + h)µν
r→∞−→ hµν , (1.17)

where ḡ is the background spacetime and h describes a perturbation.

One choice of boundary conditions satisfied by both (1.4) and (1.14) is

hµν = hνµ = O

 1 0 1
0 1

r4 0
1 0 1

 (1.18)

in the basis (t, r, φ), and the ASG is generated by ∂t and ∂φ. If we relax the boundary conditions
from gtr = gφr = 0 to gtr = gφr = O

(
1
r3

)
at infinity, then there is an infinite number of

diffeomorphisms ξ that preserve the asymptotic structure of the spacetime,

ξ =
(
ξt0(t, φ) +

1
r2
ξt−2(t, φ) + O(r−4)

)
∂t +

(
ξr1r(t, φ) + O(r−1)

)
∂r (1.19)

+
(
ξφ0 (t, φ) +

1
r2
ξφ−2(t, φ) + O(r−4)

)
∂φ,

where the transformation coefficients satisfy

1
`23
∂φξ

t
0(t, φ) = ∂tξ

φ
0 (t, φ), ∂tξ

t
0(t, φ) = ∂φξ

φ
0 (t, φ) = −ξr1r(t, φ), (1.20)

ξt−2(t, φ) = −`
2
3

2
∂tξ

r
1r(t, φ), ξφ−2(t, φ) =

1
2
∂φξ

r
1r(t, φ). (1.21)
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The Hamiltonian H of the system is the sum of a linear combination of constraints [17]

Hv =
∫
dnxξµ(x)Hµ(x) (1.22)

plus an appropriate surface term J [ξ] that cancels the unwanted surface terms in the variation of
the “volume piece” Hv. The surface term J [ξ], which is a functional of the vector fields, is used
to calculate the charges associated to the symmetry generators. The surface term associated
to the generator of time translations is the mass of the configuration, and the surface term
associated to the generator of rotations is its angular momentum:

J

[
∂

∂t

]
= 2π

(
1 − α2 − A2

`23

)
, J

[
∂

∂φ

]
= 4πAα. (1.23)

The algebra of the asymptotic symmetry generators yields a representation of the Lie algebra
of the corresponding vector fields,

{H[ξ1],H[ξ2]} = H[[ξ1, ξ2]] +K[ξ1, ξ2], (1.24)

where the functional K is called the central charge. For the solutions of the equations of motion,
the Lie algebra is

{J [ξ1], J [ξ2]} = J [[ξ1, ξ2]] +K[ξ1, ξ2]. (1.25)

We also know that the Dirac bracket of two transformation vectors is

{J [ξ1], J [ξ2]} = δξ2J [ξ1], (1.26)

which is the variation of the charge associated to ξ1, on the surface deformed by ξ2. So we write

δξ2J [ξ1] = J [[ξ1, ξ2]] +K[ξ1, ξ2]. (1.27)

We can evaluate this variation on the ground state, where J [ξ1] = J [ξ2] = 0, to get

δξ2J [ξ1] = K[ξ1, ξ2], (1.28)

and we see that the charges J [ξ] are the central charges of the representation of the ASG. We
note this is in any dimension. Due to the periodicity of φ, the generators (1.19) can be expanded
in a Fourier series with a countable basis {Mn, Nn} given in [16]. Then the algebra obeyed by
the canonical asymptotic symmetry generators is

{J [Mm], J [Mn]} = (m− n)J [Mm+n] +
c

12
(m3 −m)δm+n,0 (1.29)

{J [Nm], J [Nn]} = (m− n)J [Nm+n] +
c

12
(m3 −m)δm+n,0 (1.30)

{J [Mm], J [Nn]} = 0, (1.31)

where
c =

3`3
2G3

. (1.32)

This algebra, generated by Lm ≡ J [Mm], L̄m ≡ J [Nm], is the direct sum of two Virasoro
algebras

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n, [Lm, L̄n] = 0, (1.33)

and similarly for [L̄m, L̄n] with c = c̄. We will see in the following section that this is the algebra
obeyed by the symmetry generators of a two dimensional conformal field theory with central
charge (1.32). We emphasise that the central charge (1.32), which is a property of a quantum
field theory, is a function of the gravitational parameters. This classical result suggests the
existence of a duality between gravity on AdS3 space and a two dimensional conformal field
theory.
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1.2 Two Dimensional Conformal Field Theories

The algebra (1.33) that emerges from the Poisson bracket of the canonical symmetry generators
of three dimensional asymptotically anti de Sitter space is the algebra associated with two
dimensional conformal field theories (CFTs). Here we give some basic facts about 2d CFTs.

Conformal field theories [19, 20] are quantum field theories that obey a conformal symmetry
generated by conformal transformations σα → σ̃α(σ) preserving the angles, but not the distance,
between vectors. These theories have no dimensionful parameters, i.e. no mass or dimensionful
coupling constant, as the β function

β(g′) =
dg′

d logE
, (1.34)

which measures the change in the coupling g′ as a function of the energy E, vanishes exactly:
β(g′) = 0.

Euclidean coordinates (σ1, σ2) can be mapped into the analogue of lightcone coordinates

(z, z̄) ≡ (σ1 + iσ2, σ1 − iσ2) (1.35)

where the flat Euclidean metric is given by

ds2 = (dσ1)2 + (dσ2)2 = dzdz̄. (1.36)

Examples of conformal transformations are translations, z → z+a, rotations z → wz : |w| = 1,
and scaling transformations z → wz : Re(w) 6= 1.

The lightcone coordinates (1.35) allow us to split 2d fields, also called operators, into left
and right-moving pieces associated with holomorphic and anti-holomorphic functions. A field
or operator is labelled as primary if it transforms in a “natural” way under conformal transfor-
mations (z, z̄) → (f(z), f̄(z̄)) as

O(z, z̄) → Ō(z, z̄) = f ′(z)−h̃f̄ ′(z̄)−
¯̃
hO(z, z̄), (1.37)

and the operator product expansion (OPE) of two operators

Oi(z, z̄)Oj(z, z̄) =
∑
k

Ckij(z − w, z̄ − w̄)Ok(w, w̄) (1.38)

provides information of the outcome of two operators approaching each other.

The numbers (h̃, ¯̃h) of a CFT operator O are called conformal weights, and describe how it
transforms under rotations and scalings. The spin J2d = h̃− ¯̃

h of an operator is its eigenvalue
under rotations generated by the operator

L = z∂ − z̄∂̄ = −i(σ1∂2 − σ2∂1), (1.39)

and its scaling dimension ∆2d = h̃ + ¯̃
h is its eigenvalue under dilatations generated by the

operator
D = z∂ + z̄∂̄ = σα∂α. (1.40)

Translational invariance gives rise to conserved currents encoded in the stress energy tensor

Tαβ = − 4π
√
g

δS

δgαβ
, (1.41)

where gαβ are the metric components on the two dimensional background, which can be de-
scribed in terms of holomorphic (Tzz(z)) and anti-holomorphic (Tz̄z̄(z̄)) components. While in
the classical theory the stress tensor is traceless, Tαα = 0, in the quantum theory the stress
tensor is not trace free,

〈Tαα 〉 = − c

12
R2 = − c̄

12
R2, (1.42)
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where R2 is the Ricci scalar of the background. c and c̄ are the left-moving and right-moving
central charges of the CFT, computed from the operator product expansion (OPE) of the stress
tensor,

T (z)T (w) =
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ non-singular terms, (1.43)

T̄ (z̄)T̄ (w̄) =
c̄/2

(z̄ − w̄)4
+

2T̄ (w̄)
(z̄ − w̄)2

+
∂T̄ (w̄)
z̄ − w̄

+ non-singular terms. (1.44)

We can see from (1.42) that curved backgrounds require c = c̄ 2.

We can express the stress tensor on the plane as a Laurent expansion of its left and right-
moving pieces

T (z) =
∞∑

m=−∞

Lm
zm+2

, T̄ (z̄) =
∞∑

m=−∞

L̄m
zm+2

, (1.45)

which we can invert to obtain the Virasoro modes

Ln =
1

2πi

∮
dzzn+1T (z), L̄n =

1
2πi

∮
dzz̄n+1T̄ (z̄). (1.46)

In radial quantisation Ln, L̄n are the conserved charges associated to the conformal transfor-
mations δz = zn+1 generated by the vector fields 3 ln = zn+1∂z.

The algebra of these conserved charges is the Virasoro algebra (1.33). Representations of
this algebra classify the states of the CFT .

In the quantum theory these conserved charges Ln, L̄n are generators of the transformations.
An eigenstate |Ψ〉 of L0 and L̄0 has eigenvalues h̃ and ¯̃

h:

L0|Ψ〉 = h̃|Ψ〉, L̄0|Ψ〉 = ¯̃
h|Ψ〉. (1.47)

Primary states, also called highest weight states, are states |Ψ〉 of lowest energy such that

Ln|Ψ〉 = L̄n|Ψ〉 = 0, n > 0. (1.48)

The vacuum state |0〉 has conformal weight h̃ = ¯̃
h = 0 so that Ln|0〉 = L̄n|0〉 = 0, n ≥ 0. L0

and L̄0 generate scaling and rotations while L−1 and L̄−1 generate translations in the plane.

Representations of the Virasoro algebra can be built by acting on the primary states with
raising operators L−n, L̄−n, n > 0, giving an infinite tower of descendant states. Then knowl-
edge of the spectrum of primary states allows us to work out the spectrum of the whole theory.

While this section has mainly discussed two dimensional conformal field theory on a plane,
the states of the CFT associated with the Virasoro algebra (1.33) arising in section (1.1) are
widely thought to reside on the cylindrical boundary of AdS3. States on the cylinder with
coordinates τ, σ ∼ σ+ 2π live on spatial slices of constant τ and evolve by the Hamiltonian ∂τ ,
while the Hamiltonian on the plane is given by the dilatation operator (1.40), where the map
between coordinates on a cylinder w = σ + iτ with metric ds2 = dwdw̄ = −dτ2 + dσ2 to the
complex plane is z = e−iw. The Hamiltonian of a two dimensional conformal field theory, which
measures the energy of states on a cylinder, is mapped to the dilatation operator D = L0 + L̄0

on the plane. A state |Ψ〉 on the plane given by (1.47) corresponds to some state on a cylinder
of radius R with energy given by E = h̃+ ¯̃

h− 2π c+c̄24R , where the Casimir energy is [20]

E = −2π
c+ c̄

24R
. (1.49)

2This is called the gravitational anomaly.
3The algebra satisfied by these vector fields is the Witt algebra.
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1.3 AdS/CFT

The connection between gravity and a conformal field theory described in section 1.1 was ex-
tended in [21] to an equivalence between string theory or M theory on asymptotically AdSd+1×
M spaces, where M is a compact manifold, and a conformal field theory on its conformal d-
dimensional boundary. d+1 dimensional anti de Sitter space is the higher dimensional analogue
of AdS3 space introduced in section 1.1, with conformal R × Sd−1 boundary.

The defining example [21] of the AdS/CFT correspondence is type IIB string theory on
AdS5 × S5 and its dual description of N = 4 Super Yang-Mills theory. The identification
between the two theories was made upon examination of D branes, the hypersurfaces on which
open strings end. A stack of N coincident type IIB D3 branes in flat 10d string theory can be
described in terms of closed strings or open strings.

In the open string picture, we take the low energy limit of a system of open strings stretched
between N D3 branes separated by a distance r. This involves sending the string length ls to
zero4 so that the inverse tension of the string α′ = l2s → 05, and sending r → 0 also, so that
the string mass

m2
string =

r2

α′2 (1.50)

remains finite. The 10d gravitational coupling

κ10 ∼ (α′)4g2
s , (1.51)

with the string coupling gs kept finite, also vanishes in this limit, so that there are no interactions
between closed and open strings. In this limit, the theory decouples into the action of free gravity
in 10d and N = 4 Super Yang-Mills Theory with gauge group SU(N) and coupling parameter
λ′tHooft = g2

YMN .
The equivalent closed string picture is obtained by taking the α′ → 0 limit of type IIB string

theory. As the spectrum of excitations of closed strings contains gravitons, the low energy limit
of the closed string sector of string theory describes a supergravity theory. The gravitational
background created by the stack of D3 branes has asymptotically flat metric6

ds2 = H− 1
2 (−dt2 + dx2

3) +H
1
2 (dr2 + r2dΩ2), (1.52)

and an RR 5-form field strength

F5 = (1 + ∗)dt ∧ dx ∧ dH−1, (1.53)

where

H = 1 +
R4

r4
, R4 = 4π(gsN)(α′)2. (1.54)

An observer at infinity measures the energy of an excitation of proper energy E(r) localised at
r as

E∞ = E(r)

(
1 +

R4

r4

)− 1
4

. (1.55)

An excitation approaching r = 0 will appear to an asymptotic observer to suffer a large redshift
as its energy at r ' 0 appears as:

E∞ ' E(r)
r

R
' E(r)

r

(gsNα′2)
1
4
. (1.56)

Thus the α′ → 0 limit admits any excited string modes localised in the r → 0 region, as any
modes of large energy are infinitely redshifted so that they appear to have low energy. The

4In this limit the strings act like components of a gauge field living on the worldvolume of the branes.
5By taking just the string length scale to zero, we decouple all massive string modes as they become infinitely

heavy.
6Placing D-branes in flat space breaks the Poincaré symmetry from ISO(9,1) to ISO(3,1)×SO(6).
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metric (1.52) in this region is of the form

ds2 = α′
[
U2(dxµdxµ)√

4πgsN
+
√

4πgsN
dU2

U2
+
√

4πgsNdΩ2
5

]
, (1.57)

with U = r
α′ , describing AdS5× S5 space with AdS radius and 5-sphere radius

R ≡ RAdS5 = RS5 = (4πgsN)
1
4 ls. (1.58)

The units of RR 5-form flux through the 5-sphere measures the number of D3-branes N =∫
S5 F5.

The closed string picture then describes string theory on AdS5× S5 near the horizon of the
D brane geometry, while the asyptotically flat region admits free fields corresponding to the
massless closed string modes. In the low energy limit, these two types of excitations decouple
from each other. Thus the closed string picture of the low energy limit of a stack of N coincident
D3 branes describes full IIB string theory on AdS5× S5 decoupled from free gravity in 10d.

Maldacena identified that the dynamics of open strings and closed strings describe the same
system, and conjectured that the IIB string theory on AdS5 × S5 is an equivalent theory to the
four dimensional N = 4 super Yang-Mills theory .

We can see from the relation between gravity parameters R, ls, gs and field theory parameters
λ′tHooft, N

R

ls
= λ

1
4
′tHooft, λ′tHooft = 4πgsN = g2

YMN (1.59)

that perturbative field theory is valid for λ′tHooft << 1, classical gravity is valid for λ′tHooft >>

1, and quantum string corrections are suppressed for N >> 1 as N ∼ R4

l4P
from g2

s l
8
s = l8P . The

central charge N2 of the N = 4 Super Yang–Mills theory is related to the effective 5d Newton’s
constant by 1

16πG5
= N2

8π2
7.

If we define ε ≡ 1
r , then the region close to the conformal boundary of the near horizon

geometry is reached by sending ε → 0. Translations along ε are related to scaling, or energy,
transformations in the dual field theory, so we can interpret ε = 1

r as an energy scale in the
dual strongly coupled CFT [22, 23]. Then movement away from the boundary corresponds to
a renormalisation group flow in the CFT.

The duality is expected to apply to anti de Sitter space of d+1 dimensions and d dimensional
conformal field theories. The isometries of spacetime manifest themselves as global symmetries
of the dual field theory, which is defined to reside on the boundary manifold of AdS [24],
and physical states are organised as representations of the isometry group. A map between
field theory and string theory quantities was given in [24], which states that the AdS/CFT
correspondence requires an equivalence between the CFT partition function and the string
theory partition function,

〈exp
[
i

∫
boundary

ψ0(x)O(x)
]
〉CFT = ZIIB [ψ(x, ε)|ε=0 = ψ0(x)] , (1.60)

where ψ are (bulk) fields in string theory with boundary values ψ0, and O(x) are (boundary)
operators of the dual CFT.

Black hole solutions arise as the low energy limit8 of string theory. While the near horizon
geometry of an extremal D3-brane describes the product of AdS5 space, the geometry near
the horizon of a non-extremal D3-brane is that of a black hole sitting in the AdS part of the
spacetime. The temperature and entropy of this black hole are mapped by the AdS/CFT
correspondence to the temperature and entropy of a thermal ensemble in the dual CFT [25].
Black holes in this spacetime are thermal mixed states in the dual N = 4 super Yang-Mills
theory , and the thermodynamic charges of a black hole correspond to the quantum charges
carried by the states in the dual CFT.

7As the 5d Newton’s constant scales likeN−2, only objects with mass O(N2) will have significant gravitational
backreaction on the geometry.

8The low energy limit of string theory is supergravity coupled to other fields.
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1.4 BTZ Black Holes and 2d CFTs

In the majority of successful cases of precisely matching the degeneracy of CFT states with black
hole entropy, the near horizon region contains an AdS3 factor, and the microscopic entropy is
accounted for by counting the states of the dual 2d CFT. In this section we follow [26], [27] in
outlining the AdS3/CFT2 dictionary between the 3d gravitational and 2d CFT stress tensors,
the Virasoro generators and gravity conserved charges, and the Cardy formula.

Stationary axisymmetric solutions to 3d gravity with a negative cosmological constant (1.3)
are spacetimes of the form

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2 (Nφ(r)dt+ dφ)2 (1.61)

where

N2(r) =
r2

`23
−8G3M+

(
4G3J

r

)2

, Nφ(r) =
J

2r2
, t ∈ (−∞,∞), r ∈ (0,∞), φ ∈ [0, 2π].

The inner and outer horizons r± are situated at the zeros of N2(r):

r2± =
4G3`

2
3M ± 4G3`3

√
`23M

2 − J2

2
. (1.62)

The values of the horizons decide the nature of the spacetime [5, 28]:

1. `3M < J : this is a space with a conical singularity.

2. −1 < `3M − J < 0: this is a conic space that can be resolved in string theory if J ∈ Z
and

√
J −M`3 ∈ Q.

3. M = − 1
8G3

, J = 0: this is global AdS3 (1.7).

4. `3M + J ≥ 0 and `3M − J ≥ 0: this is a rotating BTZ black hole with mass M and
angular momentum J .

We are interested in this section - and thesis - in scenarios 3 and 4. We may write the BTZ
black hole metric (1.61) as

ds2 = −
(r2 − r2+)(r2 − r2−)

r2`23
dt2 +

`23r
2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ− r+r−

`3r2
dt

)2

(1.63)

with inner and outer event horizons at r = r±. The ADM mass and angular momentum are
given by

M =
r2+ + r2−
8G3`3

, J =
r+r−
4G3`3

, (1.64)

and the angular momentum, Hawking temperature and Bekenstein-Hawking entropy are [26]

Ω =
r−
`3r+

, TH =
κ

2π
=
r2+ − r2−
2π`23r+

, SBH =
AH
4G3

=
πr+
2G3

. (1.65)

In order to have a well-defined action and variational principle9 for asymptotically AdS3 space-
times, we take an ansatz for the metric in Gaussian normal coordinates

ds2 = dη2 + gijdx
idxj . (1.66)

Inserting this ansatz into the variation of IEH (1.3) gives a boundary term that is inconsistent

9This is the principle of least action. We vary the path, keeping the end points fixed and require δS = 0,
where S =

R

dL is the integral of the Lagrangian between two instants of time. The variational principle keeps
this area fixed.
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with the variational principle, and we thus require the Gibbons-Hawking term

IGH =
1

8πG3

∫
∂M

d2x
√
gTrK̃, K̃ij =

1
2
∂ηgij (1.67)

in the action. Varying the total action IEH + IGH gives bulk pieces that vanish when the
equations of motion are satisfied, and a boundary piece defining the stress tensor T̃ ij :

δ(IEH + IGH) =
1
2

∫
∂M

d2x
√
g T̃ ijδgij , T̃ ij = − 1

8πG3
(K̃ij − TrK̃gij). (1.68)

If we write the ansatz so that it grows as r2 at infinity, in line with (1.4) and (1.63),

gij = e2
η
` g

(0)
ij + g

(2)
ij + . . . , (1.69)

where g(0)
ij is its conformal boundary metric - which we identify with the metric of the boundary

CFT - , then the action requires another term to avoid divergences in the variation: Itot =
IEH + IGH + Ict, where

Ict = − 1
8πG3`3

∫
∂M

d2x
√
g. (1.70)

Then the variation of the action is

δI =
1
2

∫
d2x
√
g(0) T ijδg

(0)
ij , Tij =

1
8πG`

(
g
(2)
ij − Tr(g(2))g(0)

ij

)
, (1.71)

where Tij is the AdS3 stress tensor. It has nonzero trace10:

Tr(T ) = − 1
8πG3`3

Tr(g(2)) = − `3
16πG3

R(0) (1.73)

and obeys all the properties of a stress tensor in a two dimensional CFT. This nonzero trace
is the Weyl anomaly [20], Tr(T ) = − c

24πR
(0), and reproduces Brown and Henneaux’s central

charge (1.32).

Now, we write the boundary metric as a flat metric on the cylinder: g(0)
ij dx

idxj = dzdz̄ with
z, z̄ given in (1.35). From the stress tensor

Tzz =
1

8πG3`3
g(2)
zz , Tz̄z̄ =

1
8πG3`3

g
(2)
z̄z̄ (1.74)

we can define the Virasoro generators

Ln − c

24
δn,0 =

∮
dz e−inzTzz (1.75)

L̄n − c

24
δn,0 =

∮
dz̄ einz̄Tz̄z̄ (1.76)

which obey the Virasoro algebra (1.33). Then the conserved charges in asymptotically AdS3

space are given by the n = 0 Virasoro generators:

L0 −
c

24
=

1
2
(M`3 − J) , L̄0 −

c

24
=

1
2
(M`3 + J). (1.77)

10using

Tr(g(2)) =
1

2
`23R(0). (1.72)

17



For a non-rotating BTZ black hole11

ds2 = −
(r2 − r2+)

`23
dt2 +

`23
(r2 − r2+)

dr2 + r2dφ2, (1.78)

we have g(2)
zz = g

(2)
z̄z̄ = r2+/4, and hence

L0 = L̄0 =
`3

16G

(
1 +

r2+
`23

)
⇒ M =

r2+
8G3`23

, J = 0. (1.79)

Note that the pure AdS3 metric has L0 = L̄0 = 0, so M`3 = − c
12 = − `3

8G3
. As AdS3 has the

lowest mass of any solution, it plays the role of the vacuum.

Cardy formula for BTZ black holes: We give a brief outline of the Cardy formula for a
BTZ black hole as per [26]. Let h̃0 be the smallest eigenvalue of a state under L0, and let us
define an effective central charge

ceff = c− 24h̃0. (1.80)

For large h̃ or c, the density of states with eigenvalue, or conformal weight, h̃ of L0 is then [29]

ρ(h̃) ≈ exp

2π

√
ceffh̃

6

 ρ(h̃0). (1.81)

For a BTZ black hole, we assume that h̃0 = 0 and we will analyse the density of states with
eigenvalue under L0 − c

24 and L̄0 − c
24 :

S = ln ρ
(
h̃− c

24

)
+ ln ρ

(¯̃
h− c

24

)
= 2π

√
c

6

(
L0 −

c

24

)
+ 2π

√
c

6
(L̄0 −

c

24
), (1.82)

which exactly reproduces the three dimensional Bekenstein-Hawking entropy SBH in (1.65)
when (1.77) are used in (1.82). This result demonstrates that the entropy associated with
counting the states in a two dimensional quantum field theory exactly matches the entropy of
a three dimensional classical black hole.

AdS3/CFT2 partition functions and higher derivatives: We now investigate the equal-
ity of string theory and CFT partition functions (1.60) in a low energy three(two) dimensional
setting:

ZAdS(g(0)) = ZCFT (g(0)) (1.83)

where g(0) labels a conformal class of boundary metrics, taken here to be the flat metric on a
torus of modular parameter τ̃ . The partition function for the 2d CFT is [27]

ZCFT = Tr
[
e2πiτ̃(L0− c

24 )e−2πi¯̃τ(L̄0− c
24 )
]
. (1.84)

and for asymptotically AdS space it is

Zgrav =
∑

e−I . (1.85)

In the case of the saddle point AdS3, the variation of the action (1.71) may be written as

δI = 4π2i(−Tzzδτ̃ + Tz̄z̄δ ¯̃τ), with Tzz = − c

48π
, Tz̄z̄ = − c

48π
, (1.86)

where we have used (1.75) and L0 = L̄0 = 0, giving the AdS3 action to be

IAdS3 =
iπ

12
(cτ̃ − c¯̃τ). (1.87)

11Note that if we set r2+ = −`23 we recover AdS3.
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In the limit of low temperature, Im(τ̃) → ∞, we get

lnZAdS3 = − iπ
12

(cτ̃ − c¯̃τ) + exponentially suppressed terms. (1.88)

As the stationary BTZ metric (1.78) is related to the AdS3 metric (1.7) by a change of coordi-
nates

z′ = − z
τ̃
, r′ =

`3
r+

√
r2 − r2+, (1.89)

BTZ with τ̃ ′ is equivalent to AdS3 τ̃ when the identification τ̃ ′ = − 1
τ̃ is made. Then the BTZ

action and partition function are, for high temperature, Im(τ̃) → 0+,

IBTZ = − iπ
12

( c
τ̃
− c

¯̃τ

)
, lnZBTZ =

iπ

12

( c
τ̃
− c

¯̃τ

)
+exponentially suppressed terms. (1.90)

We note that
lnZCFT = 2πiτ̃

(
L0 −

c

24

)
− 2πi¯̃τ

(
L̄0 −

c

24

)
(1.91)

to get

L0 −
c

24
=

1
2πi

∂ lnZCFT
∂τ̃

= − c

24τ̃2
⇒

√
c
(
L0 −

c

24

)
=

ic

12τ̃
, (1.92)

and similarly for L̄0, ¯̃τ , c. Then we read the Cardy formula for the black hole entropy:

SBTZ = lnZBTZ = 2π
√
c

6

(
L0 −

c

24

)
+ 2π

√
c

6

(
L̄0 −

c

6

)
= SCFT . (1.93)

This result can be generalised to rotating BTZ black holes (1.63), by describing them as quo-
tients of AdS3 space [27], whence the action may be written as

I(τ̃ , ¯̃τ) =
iπ

12

[
c

(
Aτ̃ +B

Cτ̃ +D

)
− c

(
A¯̃τ +B

C ¯̃τ +D

)]
. (1.94)

We note that in theories with actions containing higher derivative terms the analogue of the
Brown Henneaux central charge may be written as

c =
`3

2G3
gµν

∂L

∂Rµν
, (1.95)

and the BTZ black hole entropy is generalised by Wald’s entropy formula [30] to

S = − 1
8G3

∫
H

dx
√
h

δL

δRµναβ
εµνεαβ . (1.96)

Left and right moving temperatures: Associated to the left and right moving operators
in the dual CFT are left and right moving temperatures. Here we derive these quantities using
the relationships between the thermodynamic expressions of the dual black holes (1.64-1.65).
While in Chapter 2 we will discuss the first law of thermodynamics in detail, we will simply
state it here for the BTZ black hole;

THdSBH = dM − ΩdJ, (1.97)

from which the following relations immediately follow:

βT ≡ 1
TH

=
∂SBH

∂M
, Ω =

∂M

∂J
. (1.98)

We define the quantities

h± ≡ M`3 ± J

2
, β+ =

∂SBH

∂h+
≡ 1
TL

, β− =
∂SBH

∂h−
≡ 1
TR

. (1.99)
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It is then straightforward to check, using the chain rule and the expressions for TH and Ω (1.65),
that the left and right moving temperatures are given by

TL =
r+ + r−

4π`3
, TR =

r+ − r−
4π`3

. (1.100)

1.5 The Kerr/CFT Correspondence

So far, we have encountered possible dual descriptions of black holes in anti de Sitter space
with holographic field theory duals. The degeneracy of states in these quantum field theories
explain the black hole entropy (1.1).

The black holes in asymptotically AdS space do not, however, describe those that are ob-
served in the real world. Strominger et al [31] employed the asymptotic symmetries technique
of Brown and Henneaux described in section 1.1 and utilised the results of Brandt et al [32] to
suggest a microscopic description for the extremal limit of the experimentally observed asymp-
totically flat Kerr black hole [33].

The authors used certain boundary conditions for extremal Kerr black holes in the near
horizon limit to show that the generators of the ASG, defined in section 1.1, form an algebra
that can be quantised to give one copy of a Virasoro algebra (1.33) with non–vanishing central
charge. This algebra is compatible with the existence of a dual 2d CFT description of the black
holes.

The vacuum Einstein equations in four dimensions are solved by the Kerr metric (in Boyer-
Lindquist coordinates):

ds2 = gµνdx
µdxν = − ∆̂

ρ̂2

(
dt̂− a sin2 θdφ̂

)2

(1.101)

+
sin2 θ

ρ̂2

(
(r̂2 + a2)dφ̂− adt̂

)2

+
ρ̂2

∆̂
dr̂2 + ρ̂2dθ2 (1.102)

∆̂ = r2 − 2mr + a2, ρ̂ = r2 + a2 cos2 θ. (1.103)

As this metric is invariant under time t̂ and angular φ̂ translations, L∂t̂
gµν = L∂φ̂

gµν = 0, its
corresponding conserved charges are its mass M and angular momentum Jφ. The inner and
outer horizons are located at the roots of ∆̂ = 0,

r± = m±
√
m2 − a2, (1.104)

where the parameters a and m respectively parameterise the angular momentum and mass of
the black hole. The Hawking temperature, Bekenstein-Hawking entropy and angular velocity
of the horizon12 are

TBH =
r+ −m

4πmr+
, SBH =

2πmr+
G4

Ωφ =
a

2mr+
. (1.105)

A black hole is extremal when its inner and outer horizons coincide, r+ = r− = r0 so that
its temperature TBH vanishes. For the Kerr black hole, we can see from (1.104) that this is
achieved for m = a = r0. Taking a near horizon limit of the extremal geometry enhances the
isometry group to SL(2,R) × U(1) so that the metric

ds2 = 2G4JΩ2(θ)
(
−r2dt2 +

dr2

r2

)
+ 2G4JΩ2(θ)dθ2 + Λ2(θ)(dφ+ rdt)2 (1.106)

contains a circle bundle over an AdS2 base. The U(1) is generated by ∂φ, while the SL(2,R),

12These quantities will be discussed in more detail in Chapter 2.
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generated by

ξ0 = 2∂t, (1.107)

ξ1 = 2 sin t
r√

r2 + 1
∂t − 2 cos t

√
r2 + 1∂r +

2 sin t√
r2 + 1

∂φ, (1.108)

ξ2 = −2 cos t
r√

r2 + 1
∂t − 2 sin t

√
r2 + 1∂r −

2 cos t√
r2 + 1

∂φ, (1.109)

acts both on the AdS2 subspace and along the fiber to preserve the form of (dφ + rdt) [31].
This metric at a fixed θ has the form of a warped circle fibration over AdS2 in which the fiber
radius depends on the angle θ13. This observation is in fact universal for extremal black holes
in 4 and 5 dimensions [37], as extremality of the black holes induces this structure on the near
horizon regions.

The isometry group of the near horizon extremal Kerr (1.106) is shared by the near horizon
geometry of an extremal (r+ = r−) asymptotically AdS3 BTZ black hole (1.63)

ds2 = Γ
(
−r2dt2 +

dr2

r2

)
+ γ (dφ+ krdt)2 , (1.110)

with Γ = `23
4 , γ = `23, k = − 1

2 . The authors took this isometry matching as a clue to some dual
CFT description, and followed the steps of Brown and Henneaux, sketched in section 1.1, to
search for a symmetry algebra associated to a two dimensional CFT.

1.5.1 Generators of the ASG

We discussed in section 1.1 how the Lagrangian is invariant under a transformation (1.15) of the
metric, where the gauge symmetries ξ are generated by conserved charges. Brandt et al [32] have
developed a framework to evaluate the conserved charges that generate these gauge symmetries.
Their method utilises linearised theory around solutions to the equations of motion obtained
by perturbing the background metric ḡ to g = ḡ + h. Strominger et al chose the boundary
conditions

hµν = hνµ = O


r2 1 1

r
1
r2

1 1
r

1
r

1
r

1
r2
1
r3

 (1.111)

in the basis (t, φ, θ, r). The transformations

ξ = (−rε′(φ) + O(1)) ∂r +
(
C + O(

1
r3

)
)
∂t +

(
ε(φ) + O(

1
r2

)
)
∂φ + O

(
1
r

)
∂θ (1.112)

are solutions to (1.17) and generate the allowed symmetry transformations of the ASG. The
subleading terms correspond to trivial diffeomorphisms, i.e. the generators of the transfor-
mations due to these diffeomorphisms vanish and so the asymptotic symmetry group of these
spacetimes is generated by the asymptotic Killing vectors:

ζε = ε(φ)∂φ − rε′(φ)∂r. (1.113)

As φ is a periodic coordinate, the functions ε(φ) can be written as

εn(φ) = −e−inφ, (1.114)

so that the generators of the ASG can be written

ζn = ζ(εn) = rine−inφ∂r − e−inφ∂φ (1.115)

13One sees similar squashed geometries with AdS2 and AdS3 factors in decoupling limits of near-extremal
black holes in anti-de Sitter space [28, 34, 35]. (Also see [36].)
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and form one copy of a Witt algebra:

i[ζm, ζn] = (m− n)ζm+n. (1.116)

Conserved charges associated with gauge symmetries: According to [32], the conserved
charge Qζ [g(x)] associated with diffeomorphism invariance is given by the flux of an antisym-
metric superpotential d− 2 form k

[νµ]
f through the boundary of a spacelike surface Σ of the 4d

spacetime

Qζ [g(x)] =
∫
∂Σ

kζ

∣∣∣
g(x)

(1.117)

where g(x) = ḡ + h describes the background metric ḡ (1.106) and the fluctuations (1.111).
This superpotential is given by

kζ [h, g] =
1
4
εαβµν(ζνDµh− ζνDσh

µσ + ζσD
νhµσ +

1
2
hDνζµ − hνσDσζ

µ+

1
2
hσν(Dµζσ +Dσζ

µ))dxα ∧ dxβ , (1.118)

where ζµ(x) are the generators of the ASG, and the covariant derivative Dµ is calculated with
respect to the background metric ḡ. Indices are lowered and raised by applying the background
metric ḡµν and its inverse ḡµν .

Algebra of the conserved charges: A theorem by Brandt et al [32] gives the Dirac bracket
algebra of the generators of the gauge symmetries of spacetime,

{Qζm , Qζn}DB = Q[ζm,ζn] +
1

8πG

∫
∂Σ

kζm [Lζn ḡ, ḡ], (1.119)

with the central charge

Kζm,ζn =
1

8πG

∫
∂Σ

kζm [Lζn ḡ, ḡ] (1.120)

arising as a central extension of the algebra from the conserved charge Qζ by substitution of
Lζ(ḡ) for h.

From (1.120) we can see that when exact Killing vectors of the background metric are
considered, there is no central charge in the algebra:

Lζ(ḡ) = 0 ⇒ Kζm,ζn = 0. (1.121)

For an appropriate definition of the quantum version of the charges, the Dirac bracket algebra
defines a Virasoro algebra. This is calculated explicitly for the Kerr black hole below.

1.5.2 Explicit realisation of the Virasoro algebra

The superpotential of the Kerr black hole (1.101) is given in [31] to be

kζε =
1

4Λ

(
2Λ2ε′rhrφ − εΛ2

(
Λ2htt

r2
+ (Λ2 + 1)hφφ + 2r∂φhrφ

))
dθ ∧ dφ. (1.122)
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The symmetry transformations of the background metric under the action of the ASG is given
by its Lie derivative with respect to the generators (1.113) of the ASG with εn(φ) = −e−inφ:

Lφn ḡtt = 4GJΩ2(1 − Λ2)r2ine−inφ (1.123)

Lφn ḡrφ =
−2GJΩ2r

1 + r2
n2e−inφ (1.124)

Lφn ḡφφ = 4GJΩ2Λ2ine−inφ (1.125)

Lφn ḡrr =
−4GJΩ2

(1 + r2)2
ine−inφ. (1.126)

For the Kerr metric, the functions Ω(θ) and Λ(θ) are given by

Ω2 ≡ 1 + cos2 θ
2

, Λ ≡ 2 sin θ
1 + cos2 θ

. (1.127)

Substitution into (1.122) yields

Kζm,ζn
=

1
8πG

∫
e−i(m+n)φΛGJΩ2

(
−rimn2

1 + r2
+ 2Λ2(1 − Λ2)in+

ir2n3

1 + r2

)
dθdφ (1.128)

r→∞=
1
8π

∫
e−i(m+n)φΛJΩ2i

(
n2(n−m) + 2nΛ2

)
(1.129)

=
Ji

8π

∫
e−i(m+n)φ sin θ

(
n2(n−m) + 2n

sin2 θ

(1 + cos2 θ)2

)
(1.130)

= δm+n,0
Ji

2
(
n2(n−m) + 4n

)
(1.131)

= −i(m3 + 2m)δm+n,0J, (1.132)

where we have used the identity ∫ 2π

0

e−i(m+n)φ = 2πδm+n,0. (1.133)

To obtain the quantum charge algebra, Strominger et al defined the quantum generators

~L̄n ≡ Qζn +
3Jφ
2
δn,0 (1.134)

and applied the standard rule for moving from a classical to a quantum theory by quantising
the Dirac brackets, {., .}DB → − i

~ [., .], so that (1.119) gives

{Qζm , Qζn}DB → − i

~
[Qζm , Qζn ] = −i(m− n)Qζm+n − im(m2 + 2)δm+n,0Jφ. (1.135)

Substitution of the quantum expression for the charges (1.134) into the Lie bracket gives

−i
~

[
~L̄m − 3J

2
δm, ~L̄n − 3J

2
δn

]
= −iL̄m+n + i(m− n)

3Jφ
2
δm+n,0 − im(m2 + 2)δm+n,0Jφ

⇒ −i~[L̄m, L̄n] = (m− n)L̄m+n +
Jφ
~

(m3 −m)δm+n,0, (1.136)

where the Witt algebra (1.116) obeyed by the generators ζ of the ASG has been used. This
quantum charge algebra is a Virasoro algebra (1.33) with central charge

cφ = 12Jφ, (1.137)

with Jφ the angular momentum of the extremal Kerr black hole.

We now have an expression for a central charge that could be attributed to a two dimensional
conformal field theory, and look towards calculating the associated temperature.
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A quantum field in the extremal Kerr black hole background can be expanded in eigenmodes
of energy ω and angular momentum m̃. The Frolov-Thorne vacuum is a diagonal density matrix
in the energy-angular momentum eigenbasis with a Boltzmann weighting factor

ρ̂ ∝ e
−

ω−Ωφm̃

TH . (1.138)

Near the horizon [31], this may be written as

e
− 2πm̃

Tφ , (1.139)

where the dimensionless quantity Tφ = 1
2π is the Frolov-Thorne temperature associated to the

near horizon extremal black hole. A detailed calculation of Frolov-Thorne temperatures in
arbitrary dimension can be found in Appendix A.

The entropy of the left-moving sector of a two dimensional CFT is [38]

S = 2π

√
c̄

6

(
L̄0 −

c̄

24

)
, (1.140)

where the energy L̄0 − c̄
24 is related to the temperature T and entropy S by the first law of

thermodynamics:

d
(
L̄0 −

c̄

24

)
= TdS. (1.141)

Using
√
L̄0 − c̄

24 = S
2π

6
c̄ , we can write

dS = π

√
c̄

6
(
L̄0 − c̄

24

) ⇒
√
L̄0 −

c̄

24
= π

√
c̄

6
T (1.142)

allowing us to express the entropy in terms of the central charge c̄ and temperature T :

S =
π2

3
c̄T. (1.143)

Identifying (c̄, T ) with (cφ, Tφ), we find that the Cardy formula for the left moving sector of a
2d CFT then reproduces the Bekenstein-Hawking entropy for the Kerr black hole:

SCardy =
π2

3
cφTφ = 2πJφ = SBH. (1.144)

The geometry near the horizon of the extremal Kerr geometry can then be associated with a
thermal state of the 2d CFT at temperature TNHEK = 1/2π.

1.5.3 Extremal black Hole/CFT correspondence in d> 4

Originally formulated for black holes in 4 dimensions, the Kerr/CFT correspondence has been
generalised in e.g. [36, 38, 39] to higher dimensions and curved spacetimes. The near horizon
geometry of extremal black holes in dimension d= 2n +D, where D = 0, 1, can be written in
Poincaré coordinates as

ds2 = Ã

(
−ρ2dt2 +

dρ2

ρ2

)
+
n−1∑
α=1

Fαdy
2
α +

n−1+D∑
i,j=1

g̃ij ẽiẽj , (1.145)

with
ẽi = dφi + kiρdt, ki =

1
2πTi

. (1.146)
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A near horizon geometry in the class (1.145) contains an AdS2 base and, for constant g̃ij , a
circle fibration for each azimuthal angle. Each φi has associated to it an ASG generated by

ζ(i)
n = −e(−inφi)∂φi − inre(−inφi)∂r, (1.147)

as in (1.115). Each diffeomorphism generates a Virasoro algebra , with central charge

ci =
6kiSBH

π
(1.148)

computed as in subsection 1.5.1 from the central extension of the Dirac bracket algebra (1.119)
of the conserved charges (1.117). The entropy of a two dimensional CFT with central charge
ci reproduces the black hole entropy,

SBH =
π2

3
ciTi, (1.149)

where each Frolov-Thorne temperature is given by

Ti = −T
′
BH(r0)
Ω′
i(r0)

, T ′
BH(r0) ≡

∂TBH

∂r+

∣∣∣∣
r+=r0

, Ω′
i(r0) ≡

∂Ωi
∂r+

∣∣∣∣
r+=r0

. (1.150)

Pope et al [38] suggested that, as the relation SBH = SCFT(ci) has no features that depend on
the dimension of these black holes (1.145), it is likely to hold in any dimension.

In Chapter 2, we will investigate the first law of thermodynamics for generic extremal black
holes and give a thermodynamic argument for the existence of the Frolov-Thorne temperature
and central charge.

However, apart from these quantities, we know little else of this proposed holographic dual
to an extremal black hole. We will see in the following sections that a special class of nearly
extremal black holes with vanishing horizon size (EVH black holes) may also have 2d dual
descriptions. The near horizon geometry of these black holes contain locally AdS3 geometries,
allowing us to use the AdS3/CFT2 correspondence outlined in section 1.4 to glean information
on the CFT duals.

1.6 Black Hole Extremality and CFT2 Chirality

We may ask whether the AdS2 base of the extremal black holes in section 1.5 has a a one
dimensional CFT dual that would satisfy the Cardy formula producing the extremal black hole
entropy (1.149). However, it was shown in [40] that a consistent quantum theory of gravity in
this background should not have any states charged under the isometry group SL(2,R). All
degrees of freedom transform trivially under SL(2,R), as excitations in AdS2 back-react and
can modify the asymptotic structure of the spacetime [41].

The fibred AdS2 component (1.110) appears in the near horizon geometry (1.145) of many
extremal, asymptotically flat or AdS black holes. In particular, it shows up in the near horizon
geometry of extremal BTZ black holes. In this section, following [40] we outline how the near
horizon geometry of an extremal BTZ black hole can be identified with the Discrete Lightcone
Quantisation (DLCQ) of a 2d CFT.

The extremal limit of a BTZ black hole (1.63) is obtained by setting r+ = r− ≡ r0 so that
the geometry is given by

ds2 = − (r2 − r20)
2

r2 `23
dt2 +

`23 r
2

(r2 − r20)2
dr2 + r2

(
dφ− r20

r2
dt

`3

)2

. (1.151)

We note that the boundary of this spacetime is conformal to a cylinder of radius `3:

ds2 → r2

`23
(−dt2 + `23dφ

2), (1.152)
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and its near horizon geometry14 can be written as an S1 fibration over AdS2:

ds2 =
`23
4
dρ2

ρ2
− ρ2

r20

dτ2

`23
+ r20

(
dϕ+

ρ

r20

dτ

`3

)2

(1.154)

=
`23
4
dρ2

ρ2
+ 2

ρ

`3
dτdϕ+ r20dϕ

2 .

The geometry (1.154) is called the spacelike self-dual orbifold of AdS3. The SL(2,R) component
of the isometry group SL(2,R)×U(1) corresponds to isometries of the AdS2 base. A change of
coordinates

û = t/`3 − φ , v̂ = t/`3 + φ, r2 − r20 = `23e
2ρ , {û, v̂} ∼ {û− 2π, v̂ + 2π} (1.155)

will make the boundary cylinder more apparent, and the extremal BTZ metric in these coordi-
nates is then

ds2 = r2+dû
2 + `23dρ

2 − `23e
2ρdûdv̂. (1.156)

We take the near horizon limit by focussing on the region close to the horizon, r → r0 ⇔ ρ →
−∞:

ρ = ρ0 + r, u = û
r+
`3
, v =

e2ρ0`3
r+

v̂, {u, v} ∼ {u− 2π
r+
`3
, v + 2π

`3
r+
e2ρ0} (ρ0 → −∞)

to get a metric

ds2 = `23(du
2 + dr2 − e2r du dv), {u, v} ∼ {u− 2π

r0
`3
, v}. (1.157)

The r → ∞ boundary of this near horizon metric is a null cylinder

ds2 ∼ dudv, {u, v} ∼ {u− 2π
r0
`3
, v}. (1.158)

This null cylinder has a metric conformal to the standard lightcone metric on a cylinder, but
has a compact null direction (u); the spacelike circle at the causal boundary of the extremal
BTZ geometry has become a light-like circle at the horizon. Thus moving from the boundary
to the horizon is like boosting the spacelike circle so that it becomes approximately null.

At any fixed r, the metric is one of a boosted cylinder:

ds2 = du2 − e2r du dv. (1.159)

To see this, we take a cylinder of radius R:

ds2 = −dt2 +R2dφ2, {t, φ} ∼ {t, φ+ 2π}. (1.160)

We can define the coordinates

T = 2Rt, U = t−Rφ, {T,U} ∼ {T,U − 2Rπ} (1.161)

and write the metric as
ds2 = dU2 − dUdT. (1.162)

Now, we may boost the cylinder with rapidity 2γ by scaling T = e2γ T̂ so that the boosted
metric is given by

ds2 = dU2 − e2γdUdT̂ , {T̂ , U} ∼ {T̂ , U − 2Rπ}, (1.163)

14The near horizon limit is

r2 = r20 + ερ, t =
τ

ε
, ϕ = φ−

τ

ε`3
, ε→ 0. (1.153)
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and can be identified for R = r0
`3

with fixed radial surfaces of the near horizon extremal BTZ
metric (1.159).

The right-moving Hamiltonian of a CFT on the boundary of the asymptotically AdS3 ge-
ometry is given by

∂v̂ = L0 −
c

24
. (1.164)

The Hamiltonian defined in the near horizon geometry is given by

∂v ∼ e−2ρ0 ∂v̂ , (1.165)

so that near the horizon, as ρ0 → −∞, all finite energy states |s〉 are annihilated by the
right-moving zero mode of the Virasoro generator:

∂v̂|s〉 = e2ρ0∂v|s〉 = (L0 − c/24)|s〉 = 0 (1.166)

so that the right-moving sector is frozen to its vacuum state. That is, one chiral set of Virasoro
generators of the CFT is frozen in this limit, in the sense that there are no physical states
charged under them. As the left-moving Hamiltonian does not scale with ρ0, the left-moving
states are not affected by the near-horizon limit.

Thus the near horizon limit of the extremal BTZ black hole focuses in on energies so low
that they lie below the black hole mass gap, thus eliminating all non-extremal dynamics [42].

The SL(2,R) isometries are associated to reparameterisations of the non-compact coordinate
v on the boundary, while the physical states only carry momentum along the compact null
direction u on which only the U(1) part of the isometry group acts. Thus, AdS/CFT is telling
us that physical states cannot be charged under the SL(2,R) isometry group associated to the
AdS2 base in (1.154). The AdS2 factor cannot be excited: it is the geometric manifestation
of the frozen L̄0 sector, and the excitations in the dynamical L0 sector involve the remaining
third space-time coordinate. Because the right-movers are frozen very little dynamics is left in
this case.

We note from (1.154) that the ϕ direction at generic ρ is a spacelike circle, becoming null
at the boundary, while τ is always null. The chiral CFT resides on the null cylinder causal
boundary of the self-dual orbifold. Once the periodicity of the ϕ direction is fixed to 2π, the
only parameter of the self-dual orbifold metric, r0, is then related to the value of the light-cone
momentum p+ = L̄0 − c

24 defining the DLCQ sector.

DLCQ of 2d CFT = chiral CFT: We now demonstrate how a CFT with one sector frozen
is in fact the DLCQ of a 2d CFT. The DLCQ prescription emerges when approaching the
horizon:

Near Horizon of Extremal BTZ boundary
−−−−−−−→

Boosted Cylinder = DLCQ of CFT (1.167)

Let us consider a 2d CFT on a cylinder of radius R with metric (1.160) and write it in terms
of left-moving coordinate u and right-moving coordinate v:

ds2 = −dudv, (1.168)

u = t−Rφ ∼ u− 2πR; v = t+Rφ ∼ v + 2πR. (1.169)

The operator conjugate to u, measuring the energy in the left-moving sector, is

P v =
(
h̃+ n− c

24

) 1
R

≡
(
L̄0 −

c

24

) 1
R
, (1.170)

where n is quantised, and the momentum operator conjugate to v, measuring the energy in the
right-moving sector, is

Pu =
(
h̃− c

24

) 1
R

≡
(
L0 −

c

24

) 1
R
. (1.171)
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We perform a boost with rapidity γ which leaves the metric (1.168) invariant while scaling the
coordinate periodicities

U = eγu ∼ U − 2πReγ , V = e−γv ∼ V − 2πRe−γ . (1.172)

If we send γ → ∞ and keep R̂ ≡ Reγ fixed, the periodicities {U, V } ∼ {U − 2πR̂, V } can be
identified with those of the near horizon extremal BTZ boundary and the DLCQ of 2d CFT on
a cylinder is the same configuration as (1.158), with R̂ identified with r0

`3
.

We can see from the energies in the boosted sectors15

PV =
(
h̃+ n− c

24

) e−γ
R

, PU =
(
h̃− c

24

) eγ
R

(1.173)

that there will be an infinite energy gap in the right-moving sector unless we set h̃ = c
24 . Then

the energy of the left-moving sector is given by

PV =
n

R̂
. (1.174)

Thus the right-moving sector is frozen to h̃ = c/24, and all physical finite energy states only
carry momentum along the finite direction u.

We can see from the expressions for the left and right-moving temperatures (1.100)

TL =
r+ + r−

4π`3
, TR =

r+ − r−
4π`3

(1.175)

that the identification of the DLCQ sector with the extremal BTZ black hole allows us to assign
the temperatures (TL, TR) = (R̂/2π, 0) to the the CFT.

So we see that the DLCQ limit defines a Hilbert space

H = {|anything〉L ⊗ |c/24〉R} (1.176)

and the surviving chiral sector is in the state in which it was placed to realize the dual to
an extremal black hole, namely a thermal state at a temperature TL = TDLCQ = R̂/(2π),
corresponding to the left-moving thermal state |T = R̂/2π〉⊗ | c/24〉 in the Hilbert space of the
CFT dual to AdS3.

It was shown in [43] that globally the self-dual orbifold geometry has two causal boundaries,
each of which is a null cylinder carrying a DLCQ of a CFT. Both the near horizon geometry of
extremal BTZ and the 3d uplift of the AdS2 background with constant electric flux can thus be
regarded globally as duals of two DLCQ CFTs, each giving rise to one chiral theory [43]. We
can then view the self-dual orbifold as a thermal state in a single CFT emerging from tracing
over the Hilbert space living in one of the boundaries.

The authors of [40] concluded that gravity on the near horizon geometry of an extremal
BTZ black hole is described by the chiral sector of a two dimensional conformal field theory,
which is equivalent to the DLCQ of the 2d CFT. This conclusion is sketched in Figure (1.1).

15using ∂V = e−γ∂v and ∂U = eγ∂u.
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Figure 1.1: Relating the extremal BTZ geometry to the chiral sector of a 2d CFT.

To connect with the Kerr/CFT correspondence, we note that we can embed the extremal
BTZ near horizon geometry into d = 2n+D dimensions where D = 0, 1 to obtain a geometry
with isometry group SL(2,R) × U(1)n−1+D. This is done by setting

Ã ≡ `23
4
, g̃ij =

{
4r20
`23

i = j ,

0 i 6= j
, ki =

`3
4r0

(1.177)

in (1.145). We could apply the Kerr/CFT machinery in subsection 1.5.3 to suggest that a
higher dimensional extremal black hole with near horizon geometry of the form

ds2 =
`23
4

(
−ρ2dt2 +

dρ2

ρ2

)
+
n−1+D∑
i=1

4r20
`23

(
dφi +

`3
4r0

ρdt

)2

+
n−1∑
α=1

Fαdy
2
α (1.178)

has n − 1 +D chiral dual CFT descriptions, each with a central charge ci and Frolov-Thorne
temperature Ti = 2r0

π`3
. The DLCQ picture suggests that each chiral CFT has geometric dual

ds2 =
`23
4

(
−ρ2dt2 +

dρ2

ρ2

)
+

4r20
`23

(
dφi +

`3
4r0

ρdt

)2

(1.179)

which can be identified with (1.154) by replacing τ by 1
2`3r0t. Although such a geometry

(1.178) would contain the same isometry group as the general form of the extremal near horizon
geometry (1.145), the latter contains the non-trivial warping factors Ã, g̃ij , and the relationship
between the extremal black hole/CFT correspondence and the DLCQ picture is yet to be fully
understood.

1.7 Pinching AdS3 Orbifolds

We saw in section 1.4 that BTZ black holes have dual descriptions in terms of thermal ensembles
in a 1+1 dimensional CFT. In section 1.6 we considered thermal ensembles in a single chiral
sector of this CFT, which are dual to the near horizon region of extremal BTZ black holes and
explain their statistical degeneracy.

Null self-dual orbifold: In [44], and also [45], the authors examined the ground state, or
p+ = 0 sector, of this DLCQ chiral CFT, where the lightcone momenta are related to the
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gravity conserved charges according to

p− = L0 −
c

24
=
MBTZ`3 − JBTZ

2
=

c

24

(
r+ − r−
`3

)2

,

p+ = L̄0 −
c

24
=
MBTZ`3 + JBTZ

2
=

c

24

(
r+ + r−
`3

)2

.

(1.180)

Then for an extremal BTZ black hole, where r+ = r− ≡ r0, we have

p− = 0, p+ =
c

6
r20
`23

(1.181)

and we can see that the ground state p+ = 0 of the CFT corresponds to the r0 = 0 limit of
(1.154), which is the massless (M = 0 (1.64)) BTZ black hole 16. The extremal black hole
has zero Hawking temperature by definition (1.65), and its dual CFT state has a vanishing
left-moving temperature for r0 = 0 (1.175). On the gravity side, under a change of coordinates

ρ = r2, ϕ = x−, τ = 2`3x+, (1.182)

the r0 = 0 limit of the spacelike self-dual orbifold gives the null self-dual orbifold

ds2 = r2dx+dx− + `23
dr2

r2
, x− ∼ x− + 2π , (1.183)

which can be viewed as a state, ie the p+ = 0 sector of the Discrete Light-Cone Quantization
(DLCQ) of the 2d CFT where a chiral sector of the CFT is decoupled.

This geometry can also be achieved by first taking the horizon size of (1.151) to zero to give
the massless BTZ black hole

ds2 = r2dx̃+dx̃− + `23
dr2

r2
, x̃± = φ± t, φ ∼ φ+ 2π (1.184)

and then taking the near horizon limit

r = ερ, x̃− = x−, x̃+ =
x+

ε2
, ε→ 0 (1.185)

to give the null self-dual orbifold (1.183).
This geometry was found in [46] as the near horizon limit of an extremal vanishing horizon

black hole. As it has the same boundary as the spacelike self-dual orbifold, it can be viewed as
belonging to the same semiclassical Hilbert space.

We can excite the null orbifold to the spacelike self-dual orbifold by adding a wave to the
metric

ds2 =
`23
r2
[
dx+dx− + kr2(dx−)2 + dr2

]
, (1.186)

where (1.186) is isometric to (1.154) for r20 = k`23. This injects some chiral momentum while
keeping its causal null boundary. On the CFT side, this corresponds to a chiral excitation of
the left-moving sector from p+ = 0 to p+ = ck

6 .17 So the null orbifold allows finite excitations.

Pinching orbifolds: The near horizon geometry of the massless BTZ black hole (1.184) can
also be obtained by taking the pinching near horizon limit

r = ερ, x̃± =
x±

ε
, ε→ 0 (1.187)

16Note that the MBTZ = 0 BTZ black hole does not describe the true ground state of the system, which is
global AdS3.

17We note that adding a wave to the massless BTZ gives extremal BTZ.
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of the massless BTZ black hole (1.184) gives the pinching AdS3 orbifold

ds2 = ρ2dx+ dx− + `23
dρ2

ρ2
x± ∼ x± + 2πε , (1.188)

so called due to the vanishing periodicity of the compact directions x±. It has the same geometry
of a massless BTZ black hole, but with vanishing periodicity.

The pinching AdS3 orbifolds appearing in the near horizon geometry of some black holes
[28, 47, 48, 49, 50] prompted the authors of [44] to investigate the effect of this “pinching” on
the dual CFT.

The CFT dual to the pinching orbifold (1.188) is defined on a cylinder (1.160) of radius
Rp. The vanishing periodicity sends this radius to zero, Rp = εR. As the momentum operators
scale like Pu ∼ P v ∼ 1

Rp
∼ 1

ε from (1.170-1.171), there is an infinite mass gap in both sectors.
In the pinching orbifold, there are no dynamics when you probe energies below this mass gap.
So the pinching limit freezes out (decouples) both sectors for fixed cp, where cp is the central
charge of the CFT defined on the pinching cylinder:

H = {|cp/24〉L ⊗ |cp/24〉R} . (1.189)

Since the difference between energy levels is proportional to 1
cpRp

, keeping this fixed will allow
dynamics in the CFT; that is, there may not be energy to excite states, but if the system is
“heated up”, the states can be excited. This requires taking a large limit of the “pinching”
central charge cp so that cp = c

ε . As CFTs with an AdS3 dual have a mass gap of the order
of 1/c, a pinching CFT with a large central charge will have a mass gap like 1

cp
∼ ε, and some

nontrivial dynamics may survive the limit.

The question now is whether a CFT defined on a pinching cylinder can have a finite entropy.
We can see from studying the Cardy formula of a CFT defined on a pinching cylinder

Spinching = 2π
√
cp
6

(
l0 −

cp
24

)
+ 2π

√
cp
6

(
l̄0 −

cp
24

)
, (1.190)

that the CFT entropy will be kept finite for cp ∼ 1
ε and l0 − cp

24 ∼ ε. This can be achieved by
defining generators

ln ≡ 1
K̃
LnK̃ , n 6= 0 , l0 ≡ 1

K̃
(L0 −

c

24
) +

c

24
K̃ , (1.191)

for K̃ = 1
ε , which obey a Virasoro algebra with central charge cp = cK̃. The spectrum of l0

has a spacing of 1/K̃ compared to that of L0, and the relation between a CFT on a regular
cylinder of radius R specified by {Ln, L̄n, c} and a CFT defined on a pinching cylinder of radius
Rp specified by {ln, l̄n, cp} is summarised in Table 1.1.

Parameter Finite CFT Pinching CFT

Radius R Rp = εR

Central Charge c cp = c
ε

Generators L0 l0 ∼ ε

Mass Gap 1
cR

1
cpRp

∼ 1

Table 1.1: Relation between quantities defining a CFT on a regular cylinder and those on a
pinching cylinder.
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On the 3d bulk side, the BTZ entropy

SBTZ =
2πr+
4G3

(1.192)

is kept finite for r+ ∼ ε, as G3 ∼ ε from (1.32) for fixed AdS3 radius `3.
The pinching AdS3 orbifolds emerging in the near horizon limit of massless BTZ black holes

thus allow us to explore the possibility of non-chiral dual descriptions of extremal BTZ black
holes. These non-chiral CFT2s are defined on pinching cylinders and allow dynamics in the
large central charge limit, that is, when (1.32) is modified to c

ε .

1.8 The EVH/CFT Correspondence

We have seen that an extremal black hole, whose near horizon geometry contains a warped
AdS2×S1 factor, has a microscopic description in terms of a chiral two dimensional conformal
field theory. The AdS2 factor corresponds to the frozen sector of the dual CFT, and physical
states are charged under the the U(1) component of the SL(2,R) × U(1) isometry group, as
excitations in the dynamical sector involve the third spacetime coordinate.

We have also seen that the r0 → 0 limit of an extremal BTZ black hole has two inequiva-
lent near horizon geometries, capturing different physics of the same system. While one near
horizon limit of a massless BTZ black hole corresponds to the ground state of a chiral CFT,
an inequivalent locally AdS3 near horizon geometry may allow non-trivial dynamics in both
sectors in a large central charge limit. This latter near horizon limit involves an angle of van-
ishing periodicity, so that the boundary of the near horizon geometry is a pinching cylinder.
It also results in a vanishing Hawking temperature and a horizon area of zero size, and the
large central charge limit is equivalent to a vanishing limit of the three dimensional Newton’s
constant G3 ∼ c−1:

TH ∼ AH ∼ G3 → 0. (1.193)

The limit (1.193) of an extremal BTZ black hole is the simplest example of an extremal vanishing
horizon (EVH) black hole. This three dimensional geometry may be embedded into higher
dimensions to give a generic EVH black hole18, with a microscopic two dimensional description
defined on the pinching cylinder at the boundary of the near horizon local AdS3. In a generic
EVH black hole, vanishing of the horizon area appears because a one dimensional cycle19 on the
horizon manifold becomes of zero size, so that its near horizon geometry includes a 3d metric
of the form

ds2 ∝ −ε2ρ2 dτ
2

`33
+ `33

dρ2

ρ2
+ ε2ρ2dϕ2 + . . . . (1.194)

The appearance of this local AdS3 throat combined with the scaling limit (1.193) inspired the
authors of [51] to propose the EVH/CFT correspondence,

EVH/CFT Correspondence:
Gravity on the near horizon of an EVH geometry is

described by a 2d CFT
(1.195)

in the scaling limit
TH ∼ AH ∼ Gd → 0, (1.196)

which is an extension of (1.193) for Gd ∼ G3. Near-EVH black holes are excitations of EVH
black holes that have arbitrarily small temperature and area. Examples of near-EVH black
holes are [34, 28, 48, 46, 49, 50].

In four dimensions, the most general form of a black hole solution to four dimensional gauged
Einstein-Maxwell dilaton theory with vanishing temperature and horizon was found, and it was
subsequently demonstrated that the near horizon region of any 4d EVH black hole contains

18The earliest known example is in [47].
19Of course, this can also occur for higher dimensional cycles, for which AH ∼ εp as TH ∼ ε → 0. This

possibility will not be considered in this work.
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a pinching AdS3 factor, suggesting that the degeneracy of their microstates can be captured
by a two-dimensional CFT in accord with the AdS3/CFT2 duality. It was also demonstrated
that when the horizon size is increased from zero to some small parameter, the near horizon
geometry of a near-EVH black hole contains a locally BTZ black hole, the entropy of which
captures the entropy of the 4d near-EVH black hole. This result will be fortified in Chapter 2,
where we will demonstrate that the first law of thermodynamics for near-EVH black holes in
generic dimension agrees gives the first law of thermodynamics for the near horizon BTZ black
hole. While an EVH black hole is dual to the ground state of the dual CFT2, a near-EVH black
hole describes its excitations. These are thermal states in the dual CFT, and we may use the
AdS3/CFT2 dictionary to compute the quantum numbers of these states.

By examining the equation of motion of a massless scalar field in the background of a four
dimensional EVH black hole, the authors determined that in the near horizon geometry an
infinite potential barrier develops so that the low energy physics in the EVH near horizon
geometry is decoupled from the rest of the space. The pinching issue was addressed by taking
large G3 ∼ G4 and cp so that the BTZ and 4d near-EVH entropy remain finite.

It is a natural question to ask if the statement of the EVH/CFT correspondence is consistent
with the picture depicted by the Kerr/CFT correspondence (section 1.5). In order to make a
comparison between the two proposals, we focus on the chiral sector of the CFT dual to the
near horizon near-EVH black hole, and take the near-EVH limit of the central charges (1.148)
computed via the Kerr/CFT prescription. We anticipate that only one of the Kerr/CFT central
charges ci, appearing in the Virasoro algebra associated with the azimuthal angle ϕ, will survive
the near-EVH limit, and that it will parametrically agree with the central charge of the DLCQ
of the EVH CFT. Our expectation, following the discussion of section 1.6, is that the CFT2

associated to the finite (in the near-EVH limit) Kerr/CFT central charge is the DLCQ of the
dual CFT description that arises in the EVH/CFT correspondence.

EVH/CFT correspondence in 5d: The five dimensional extension of the EVH/CFT cor-
respondence is more complicated and we have yet to prove that any 5d EVH black hole has a
near horizon pinching AdS3 factor, or that the near horizon limit is a decoupling limit in this
dimension. However, while for the original Kerr/CFT correspondence there’s no dual AdS/CFT
description, asymptotically AdS5 black holes have the virtue of four dimensional CFT descrip-
tions in terms of thermal mixed states in the dual N = 4 super Yang-Mills theory . For this
reason, we will investigate two AdS5 case studies of the EVH/CFT correspondence in Chapters
3 and 4. States in the (UV) CFT4 carry charges ∆UV,Ji, and the bulk limit (1.196) corre-
sponds to taking a large N limit, Nεα ∼ 1, in the dual theory. For specific choices of α, non
trivial dynamics are permitted in the bulk, boundary and CFT2 descriptions. The near-EVH
near horizon limit of these black holes probes, on the field theory side, a sector of the UV the-
ory describing low-lying (IR) excitations. The question is whether there exists an alternative
description for the physics of low-lying excitations, and whether this alternative description is
in terms of a 2d CFT with quantum numbers ∆2d, J2d.

Geometrically, near-extremal near horizon limits typically involve non-trivial (singular) large
gauge transformations defining the near horizon geometry (IR description) in terms of the
isometry coordinates of the boundary geometry (UV CFT theory)

r = r0 + ε ρ, ϕIR
i = ϕIR

i

(
ϕUV
i , tUV, ε

)
, tIR = tIR

(
ϕUV
i , tUV, ε

)
ε→ 0. (1.197)

This suggests, as also expected from a purely field theoretical perspective, the existence of a
non-trivial relation between the UV and IR Hamiltonians. If the IR theory is conformal, there
will therefore be an interesting relation between quantum numbers of the form20

(∆IR,JIR) = (∆IR(∆UV,Ji),JIR). (1.198)

The relationship between these quantities and ∆2d, J2d will be examined in Chapters 3 and 4.
Figure 1.2 is a pictorial representation of the EVH/CFT mechanism.

20The importance of these singular large gauge transformations for extremal black holes has been emphasised
in [52, 53].
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Figure 1.2: The EVH/CFT setup for AdS5 black holes. Near-extremal asymptotically AdS
black holes have dual descriptions in terms of thermal mixed states in the dual N = 4 super
Yang-Mills theory . We study the low energy excitations through the near-EVH near horizon
geometry and identify potential IR 2d CFTs describing them. Bulk descriptions are outlined
in purple and dual field theory quantities have red borders.

1.9 Outline of the Thesis

This thesis is organised as follows. In Chapter 2, we will start by discussing the thermody-
namics of generic black holes in general relativity and the laws of thermodynamics they satisfy,
particularly the first law. The rest of the Chapter will comprise an analysis of the first law
applied to extremal and near-EVH black holes respectively. The first correction to the first
law for extremal black holes with finite entropy gives a Cardy-like expression for the entropy
compatible with the Kerr/CFT correspondence in section 1.5. The expression is in exact agree-
ment with Sen’s entropy function formalism and a scalar probe analysis. This expansion in
thermodynamic quantities also reproduces the Frolov-Thorne temperatures associated with the
chiral CFTs in section 1.5.

We also analyse the first law of thermodynamics in the near-EVH regime introduced in
section 1.8. For a near-EVH black hole in generic dimension and background with one vanishing
U(1), the first law of thermodynamics is compatible with the first law of thermodynamics of
a BTZ black hole. This thermodynamic argument suggests that the physics of any near-EVH
black hole is captured by a BTZ black hole, and consequently by its AdS3/CFT2 dual. One
may then speculate that the near horizon near-EVH limit of a black hole is a decoupling limit.
This idea is backed up by a scalar probe analysis.

Chapters 3 and 4 are case studies of the first law analysis and the EVH/CFT correspondence
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in five dimensional anti de Sitter space. Chapter 3 will analyse static three charged black holes
in AdS5 supergravity. These will be embedded into 10d supergravity and the near horizon limit
of the near-EVH cases will be taken. The near-BPS and non-BPS regimes have different near
horizon limits and properties. In the non-BPS case, the scaling limit (1.196) applies and the
near horizon geometry contains a pinching AdS3 factor. For near-BPS black holes, however,
TH is kept finite in the near-EVH limit and the local AdS3 factor is not pinching. Its dual
CFT2 description can be interpreted in terms of strings stretched between giants. The first
law analysis of Chapter 2 will be applied to the near-BPS and non-BPS black holes. We then
explore the idea that these emergent local AdS3 geometries describe the low energy excitations
of the original ultravoilet (UV) CFT in terms of an infrared (IR) 2d CFT. As a consistency
check of the EVH/CFT correspondence, the limit in which the Kerr/CFT predictions agree
with those of the EVH/CFT correspondence will be discussed.

The near-EVH limit of stationary asymptotically AdS5 black holes will be presented in
Chapter 4. These black holes rotate in two planes, and the near-EVH limit can be taken by
sending one or both momenta to zero. Although these cases have very different near hori-
zon geometries and will be analysed separately, it will be made manifest that the first law of
thermodynamics will universally reduce to the first law for a BTZ black hole in the near-EVH
limit. The connection between the UV and IR CFTs will be investigated, as will the connection
between the EVH CFTs and the Kerr CFTs.

We will conclude the thesis with a discussion of results and open questions.
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Chapter 2

The Low Temperature Limit of
Black Holes

This Chapter contains the results of [54], which was done in collaboration with M. M. Sheikh-
Jabbari, J. Simón, and H. Yavartanoo. It is a lightly edited version of the arxiv preprint.

We study the low temperature expansion of the first law of thermodynamics for near-
extremal black holes. We show that for extremal black holes with non-vanishing entropy, the
leading order contribution yields an expression for their extremal entropy in agreement with
the entropy function result and the Cardy formula for the entropy of a two dimensional chiral
conformal field theory (CFT). When their area vanishes due to the vanishing of a one-cycle
on the horizon, such leading contribution is always compatible with the first law satisfied by
a BTZ black hole. These results are universal and consistent both with the presence of local
AdS2 and AdS3 near horizon throats for extremal black holes and with the suggested quantum
microscopic descriptions (AdS2/CFT1, Kerr/CFT and EVH/CFT).

2.1 Introduction

We discussed in Chapter 1 how the near horizon limit of extremal and near-EVH black holes
leads to the identification of certain CFT2-like quantities. Geometrically, for finite horizon
black holes an AdS2 throat appears, while in the near-EVH case this is promoted to a local
AdS3. We now ask what happens to the thermodynamics of these black holes in the extremal
and near-EVH limits. Our analysis will focus on the first law of thermodynamics for these
black holes. In this section, we set the stage by first introducing the conserved charges and
chemical potentials associated to black holes in four dimensional asymptotically flat spacetime,
and the physical laws they satisfy. Following this, we discuss how Beckenstein and Hawking,
among others, drew an equivalence between the laws of black hole mechanics and the laws
obeyed by thermodynamic systems. For spacetimes in which we can define conserved charges,
our expression of the first law of thermodynamics can be extended to generic dimension and
background.

2.1.1 Black hole potentials and charges

Black holes are solutions to classical theories of gravity, possibly coupled to matter, characterised
by the existence of an event horizon. Physically, a black hole is defined as a region where
gravity is so strong that nothing can escape. When a sufficiently large quantity of matter
is compactified into a small region, a spacetime singularity occurs; black holes describe the
endpoints of gravitational collapse.

The black hole event horizon ΓH is a null hypersurface that satisfies

ξ · ξ|ΓH
= 0, (2.1)

where a null hypersurface is one whose normal n̂ is null, n̂2 = n̂µn̂µ = 0, and ξ is a Killing
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vector field defined by a one parameter group of isometries. For regular black holes, spatial
sections of ΓH are smooth and compact. If n̂ is normal to ΓH, then n̂ · ∇n̂µ = 0 on ΓH

1, so for
ξ = υn̂ for some υ, we have

ξ · ∇ ξµ|ΓH
= κξµ (2.4)

where
κ = ξ · ∂ log |υ| (2.5)

is the surface gravity of the Killing horizon. It is so called because in a static asymptotically
flat spacetime κ is the force required at infinity to hold a unit mass particle at rest near the
Killing horizon [55].

If κ 6= 0, then the event horizon comprises a branch of a bifurcate Kiling horizon, which is
a pair of null surfaces that intersect on a spacelike 2-surface such that they are each Killing
horizons with the same normal Killing field ξµ. If κ = 0 then the black holes are extremal and
the event horizon is a single Killing horizon.

In a four dimensional theory with vanishing cosmological constant, the black hole solution
includes a metric which asymptotes to Minkowski spacetime. A stationary, axisymmetric black
hole has event horizon ΓH that is a Killing horizon of ξ = ∂t + Ω∂φ. As φ is constant on
orbits of ∂t, particles moving on orbits of ξ rotate with angular velocity Ω relative to an inertial
observer at infinity. We say that the black hole has angular velocity Ω, which can be computed
by solving (2.1).

In a theory including electromagnetism, e.g. Einstein-Maxwell theory, the solution will
include a gauge field A = Aµdx

µ. The chemical potential Φ is the electric potential difference
between the event horizon ΓH and spacelike infinity ı0 given by evaluating ξµ ·Aµ on the horizon.

The associated electric charge is

Q =
1
4π

∫
S2
∞

?F (2.6)

where F is the gauge field strength and S2
∞ is a two-sphere that approaches ı0. If the black

hole is stationary there exists a conserved energy momentum current Jµ = −Tµν ω̂ν so that the
total energy of matter on a spacelike hypersurface Σ is

E(Σ) = −
∫

Σ

?J. (2.7)

The Komar mass, which is the conserved charge associated to time translation symmetry, is
generated by a timelike Killing one form ω̂ = ω̂µdx

µ, where ω̂µ∂µ = ∂t. In asymptotically flat
spacetime the Komar mass is given by

MKomar = − 1
8π

∫
S2
∞

?dω̂. (2.8)

The conserved charge associated to rotational symmetry is the Komar angular momentum, gen-
erated by the Killing one form k̂ = k̂µdx

µ, where k̂µ∂µ = ∂φ. In asymptotically flat spacetime
this is

JKomar =
1

16π

∫
S2
∞

?dk̂. (2.9)

1We can see this by noting that ΓH belongs to a family H(x) = constant so that n̂ = υdH for some function
υ. Then

n̂ · ∇n̂µ = n̂µn̂ · ∂ log |υ| − n̂2∂µ log |υ| +
1

2
∂µ(n̂2) (2.2)

⇒ n̂ · ∇n̂µ|ΓH
= n̂µn̂ · ∂ log |υ||ΓH

+
1

2
∂µ(n̂2)

˛

˛

˛

˛

ΓH

∝ n̂µ|ΓH
, (2.3)

as n̂2 = 0 on ΓH. We can then choose υ so that n̂ · ∇n̂µ|ΓH
= 0.
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2.1.2 Laws of black hole thermodynamics

In 1973 Bardeen et al [3] demonstrated that the mass of a black hole behaves like the energy
of a thermodynamic system, its surface gravity acts like temperature, and the horizon area
plays the role of entropy of a thermodynamic system. It was then natural to draw an analogy
between black hole mechanics and the laws of thermodynamics.

Mathematical analogues of the zeroth and first laws of thermodynamics for stationary black
holes were formulated by Bardeen, Carter and Hawking in [3].

The zeroth law states that the surface gravity κ is constant over the horizon of a stationary
black hole:

Theorem 2.1.1. (Zeroth Law of Black Hole Mechanics) κ is constant on each connected com-
ponent of the future event horizon of a stationary black hole spacetime satisfying the dominant
energy condition (−Tµν V ν is a future-directed timelike or null vector, for energy-momentum
tensor Tµν and future-directed timelike or null vectors Vµ).

The second law of black hole mechanics states that the horizon area must be non-decreasing
in any (classical) process.

Theorem 2.1.2. (Second Law of Black Hole Mechanics, Hawking Area Theorem)[56] Let
(M, g) be a strongly asymptotically predictable spacetime2 which obeys the null energy con-
dition stating that TµνV µV ν ≥ 0, where Vµ are future-directed timelike or null vectors. Let Σ1,
Σ2 be spacelike Cauchy surfaces for U , where Σ2 ⊂ J+(Σ1). Then for Hi = Σi ∩ ΓH,

area(H2) ≥ area(H1). (2.11)

Although Hawking showed [56] that the second law of black hole mechanics can be compared
to the second law of thermodynamics, the former is a theorem in differential geometry while
the latter has a statistical origin.

For a perturbation of a stationary black hole, the first law relates the changes undergone by
the mass and angular momentum with the horizon area of the black hole.

Theorem 2.1.3. (First Law of Black Hole Mechanics [57]) Consider a stationary, asymptot-
ically flat black hole solution of the vacuum Einstein equations, with bifurcate Killing horizon.
Assume a small amount of matter, carrying energy δM and angular momentum δJ crosses ΓH

and the black hole eventually becomes stationary. Then the area of Hi = ΓH ∩ Σi increases by
δAH given by

κδAH

8π
= δM − ΩδJ. (2.12)

Additional terms may appear on the right hand side of (2.12) when matter fields are present
[58].

Another way of looking at this [55] is by considering a stationary, asymptotically flat black
hole solution of the vacuum Einstein equations, with bifurcate Killing horizon, mass M , angular
momentum J , electric charge Q, horizon surface AH, surface gravity κ and angular velocity ΩH.

Let δg be a non-singular (on and outside ΓH) asymptotically flat metric perturbation, sat-
isfying the linearised Einstein equations. Then the perturbed spacetime has (ADM) mass
M + δM , angular momentum J + δJ , electric charge Q + δQ and horizon area (measured at
the bifucation two sphere) AH + δAH satisfying

κδAH

8π
= δM − ΩδJ − ΦδQ. (2.13)

2An asymptotically flat spacetime (M, g) is strongly asymptotically predictable if ∃ some globally hyperbolic
open set U ⊂ M such that

J−(I+) ∪ ΓH ⊂ U, (2.10)

where J−(I+) is the causal past of I+; that is, physics is predictable from a Cauchy surface for U outside the
black hole and on ΓH.
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Hawking radiation: Although the laws of black hole mechanics closely resemble the laws
of thermodynamics, the connection was superficial until 1975, when Hawking discovered [1]
that particle creation occurs in the vicinity of black holes. Consider a massless scalar Ψ in the
spacetime of spherically symmetric gravitational collapse

Ψ =
∑
i

(
aifi(x) + a+

i f̄i(x)
)

(2.14)

in a basis {fi, f̄i} with fi ∼ e−iωv and i = ω, l, m̃. Here ai and a+
i are creation and annihilation

operators, and v is a positive frequency eigenfunction. While the quantum field is initially in its
vacuum state, the expected number of outgoing particles in the ith mode at light-like infinity
I+ is (

e
2πωi

κ − 1
)−1

, (2.15)

which is a thermal spectrum at Hawking temperature

TH =
κ

2π
. (2.16)

The radiation emitted from the black hole is in a thermal mixed state and is in exact agreement
with the radiation emitted from a perfectly thermal black body.

The Hawking effect allowed for the surface gravity to be viewed as the physical temperature
of the black hole, just as the mass can be viewed as its energy. Although as a perfect absorber
a black hole will not emit anything and classically has a temperature of absolute zero, in the
quantum theory the creation of particle pairs results in a radiation with a thermal spectrum.

Hawking’s semiclassical calculation of the black hole temperature led to a correlation be-
tween the laws of black hole physics and thermodynamics. The Hawking effect and its impli-
cations are clues to the fundamental features that a quantum theory of gravity will have.

Laws of black hole thermodynamics: As black holes radiate with a temperature, the
zeroth law of black hole mechanics is the same as the zeroth law of thermodynamics, that the
temperature is constant throughout a body in thermal equilibrium. The first law (2.13) can be
rewritten as

dE = THdSBH + ΩdJ + ΦdQ (2.17)

where
SBH =

AH

4
. (2.18)

This is the same as the first law of thermodynamics if we interpret SBH as the Beckenstein-
Hawking entropy of a black hole. Restoring units, this is

SBH =
c3AH

4~GN
. (2.19)

The first law of thermodynamics was first formulated for asymptotically flat spacetimes in four
dimensions, and was generalised to higher dimensions and curved spacetimes in e.g. [59].

Although SBH cannot classically decrease by the second law of black hole mechanics (2.11),
the thermal radiation (2.16) allows the black hole entropy to quantum mechanically decrease.
Beckenstein proposed [2, 60] that the area is proportional to the black hole entropy obeying a
generalised second law where the sum of this entropy and matter outside the black hole

Stot = Smatter + SBH (2.20)

should never decrease.

First law in higher dimensions: There is no physically reasonable objection to the expec-
tation that Hawking radiation is essentially unmodified in higher dimensions [61]: a black hole
emits radiation that, up to greybody factors, has a Planckian spectrum of temperature T = κ

2π
and chemical potentials Ω,Φ etc. The laws of black hole mechanics described above are valid
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in any number of dimensions. In particular, although the evaluation of conserved charges may
vary with the backgroud, the first law

THdS = dM −
m∑
a=1

ΩadJa −
n∑

q=m+1

ΩqdJq (2.21)

will always hold. In the above, we take Ωa to be angular velocities for i = 1, · · ·m evaluated by
demanding that the Killing vector

ξ = ∂t +
m∑
a=1

Ωa∂φa (2.22)

becomes null on the horizon,
ξ · ξ|ΓH = 0. (2.23)

We take Ωq to be chemical potentials associated to gauge fields A(q) for q = m+ 1, · · ·n given
by

Ωq = ξ · A(q)
∣∣
ΓH
. (2.24)

The black holes we will take as case studies in Chapters 3 and 4 are solutions to U(1)3 5d
gauged supergravity, where the angular momenta and charges are modified to [62]

J (a) =
1

16π

∫
S3
?dk̂(a), Q(q) =

1
16π

∫
S3

(
X−2
q ? F (q) +

1
2
|εqrs|A(r) ∧ F (s)

)
(2.25)

where Xq are functions of the scalar fields and F (q) are the gauge field strengths. Evaluation
over the sphere is performed at infinity and

k̂(a) = k̂(a)
µ dxµ, k̂µ(a)∂µ = ∂φ(a) , (2.26)

and the mass is evaluated by integrating the first law of thermodynamics (2.21).

2.2 The Low Temperature Limit of the First Law: Finite
Horizon Black Holes

We now turn to examining the first law of thermodynamics (2.21) for nearly-extremal black
holes in four and five dimensions.

2.2.1 Extremal black holes in four and five dimensions

We consider the first law satisfied by a set of four and five dimensional black holes charged
under gauge fields A(i) with R × U(1)d−3 invariant metrics which in adapted coordinates look
like

ds2bh = −N2
l dt

2 +
dr2

grr
+ gθθdθ

2 + γab(dφa −Badt)(dφb −Bbdt) , (2.27)

where all components are functions of r, θ. The Killing vector field

ξ = ∂t +
d−3∑
a=1

Ωa∂φa (2.28)

is null on the event horizon which is located ar r = r+, the largest root of grr(r+) = 0.
The horizon angular velocities Ωa and chemical potentials Ωq, collectively labelled by Ωi, are
determined by solving (2.23) and (2.24) to get

Ωa = Ba(r+), Ωq =
(
ξtA(q)

t +
∑

ξaA(q)
φa

)∣∣∣
r+
. (2.29)
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There are n conserved charges Ji where i = 1, . . . , n. The angular momenta Ja are associated
to the angular velocities Ωa, where a = 1, ..d− 3, and the electric charges Jq are associated to
the chemical potentials Ωq, where q = d− 3 + 1, ..n.

As explained in Chapter 1, extremal black holes have coincident inner and outer horizons,
r+ = r−, and vanishing Hawking temperature, TH = 0. It was proved in [37] that any regular
extremal black hole with R×U(1)d−3 isometry group has an on-shell near horizon geometry of
the form

ds2 = Γ(θ)gAdS2 + gθθ(θ)dθ2 + γab(θ)(dϕa + eaρdt)(dϕb + ebρdt) (2.30)

where
gAdS2 = −ρ2dτ2 + dρ2/ρ2 (2.31)

is the metric on AdS2 spacetime. While (2.30) is proved to hold for any 4d or 5d classical theory
of Einstein gravity coupled to an arbitrary number of Abelian Maxwell-type gauge fields and
neutral scalar fields with lagrangian density L, it is known to hold for more general extremal
black holes.

This solution is invariant under SO(2, 1) × U(1)n. While SO(2, 1) is geometrically realised
as the isometries of the AdS2 gAdS2 , n − d + 3 of the U(1) symmetries are associated with
non-geometrical Abelian gauge fields.

2.2.2 Low temperature first law analysis

Given a thermodynamical system with n+1 charges, the limit of vanishing temperature defines
an n-dimensional extremal surface (ES) characterised by the relationMe = Me(Ji)3, compatible
with (2.21):

dMe =
n∑
i=1

ΩiedJi , Ωie =
∂M

∂Ji

∣∣∣∣
ES

. (2.32)

We study the first non-trivial correction due to a small but non-zero temperature for a near-
extremal black hole with non-vanishing extremal entropy Se 6= 0. If re is the extremal black hole
horizon radius, turning on temperature corresponds to a deformation in black hole parameter
space satisfying r± = re ± ∆ε, where ∆ ∼ ε0 is defined on the extremal surface, so that
TH ∼ r+ − r− ∼ ε for near-extremal black holes. As an extremal black hole is represented by
a point on the extremal surface in parameter space, a near-extremal black hole is represented
by a point in parameter space (Me + δM, Ji) that has been orthogonally displaced from the
extremal point (Me, Ji). Assuming analyticity of all thermodynamical quantities, we define this
deformation as

TH = T ′
H |ES ε, Ωi = Ωie + Ωi′ |ES ε , (2.33)

where prime denotes differentiation w.r.t the deviation from extremality, i.e. orthogonal motion
away from the extremal surface. The question we explore is which physical excitations are
relevant at first order in ε for regular black holes. To this end we first show that δM is second
order in ε

dM −
∑
i

ΩiedJi ≡ d (δM) ∝ ε2 . (2.34)

To prove this, let grr(r;M,Ji) = 0 be the equation specifying the location of the horizon(s).
At an extremal point this has a double root, grr(r,Me, Ji) = C(r − re)2. Turning on δM , and
relying on analyticity, we have

grr(r;Me + δM, Ji) = δA+ δB(r − re) + (C + δC)(r − re)2 + . . . , (2.35)

with δA, δB and δC proportional to δM . We require grr to have roots at r± = re ± ∆ε, that
is,

grr(r±;Me + δM, Ji) = 0 = δA± δB(∆ε) + (C + δC)(∆ε)2 + . . . ,

3We assume that the black hole mass is uniquely specified by Ji in the extremal limit.
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giving δA = −Cε2∆2, δB = O(ε2) and hence (2.34) follows. We note that condition (2.34)
determines the absence of physical excitations above extremality at first order in ε for our (finite
horizon) black holes.

The first law (2.21) at first order in ε then reduces to [63]

εT ′
H

∣∣∣∣
ES

dSe = dMe −
n∑
i=1

ΩiedJi − ε
n∑
i=1

Ωi
′
∣∣∣∣
ES

dJi + d(δM), (2.36)

yielding

dSe =
n∑
i=1

kidJi , ki = ki(Jk) = −Ωi′

T ′
H

∣∣∣∣
ES

, (2.37)

where d is the derivative tangential to the extremal surface, and we have used (2.34). Note
that, despite considering the near-extremal limit (2.33), all quantities in (2.37), including the
entropy, are evaluated on the extremal surface and are independent of the deformation ε. Thus,
(2.34) implies that the low temperature expansion of the first law for regular black holes in
the leading order yields information on the entropy of the extremal black holes and not on
excitations above them. This information may arise at second or higher orders in the expansion
of the first law [64].

In the above we merely used thermodynamic considerations and the only crucial input from
black holes is (2.34). Below, we will interpret this condition, but now we want to prove that
regular black holes do satisfy (2.37). We show this using Sen’s entropy function formalism [65],
which relies on the near horizon geometry of regular extremal black holes.

2.2.3 Sen’s entropy function

The presence of SO(2, 1) in the near horizon geometry (2.30) allows us to employ the entropy
function formalism. We define the function

f (Γ, γab, ea, eq, ~u(θ)) =
∫

ΓH

√
−det gL (2.38)

where ea are the constants in (2.30), eq are constants appearing in the expression for the field
strengths F i

µν = F i
µν(ea, eq), and ~u are scalar fields.

By Sen’s analysis, the equations of motion for backgrounds (2.30) correspond to

∂f

∂ea
= Ja,

∂f

∂Γ
= 0,

∂f

∂eq
= Jq,

∂f

∂γab
= 0,

∂f

∂us
= 0. (2.39)

Solving the equations of motion is equivalent to extremising the entropy function E

E = 2π

(
n∑
i=1

eqJq − f (Γ(θ), γab(θ), ea, eq, ~u(θ))

)
. (2.40)

The on-shell evaluation of E equals the entropy of the extremal black hole, i.e. Eeom = Se.
Computing the on-shell variation of (2.40) yields

dSe = 2π
n∑
i=1

ei dJi (2.41)

which matches (2.37) if
ki = 2πei. (2.42)

This identification is manifest when studying the near horizon limit r = r0+ερ in metrics (2.27)
in a near-extremal regime [38, 63, 65]

t = λ
τ

ε
, ϕa = φa − Ωaeλ

τ

ε
, ε→ 0. (2.43)
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For an extremal solution we have grr(r0) = grr ′(r0) = 0. Expansion in ε gives

−N2
l dt

2 +
dr2

grr
= −ρ

2

2
(N2

l )′′(r0)λ2dτ2 +
2

grr ′′(r0)
dρ2

ρ2
(2.44)

=
2

grr ′′(r0)

[
−λ2 g

rr ′′(r0)(N2
l )′′(r0)

4
ρ2dτ2 +

dρ2

ρ2

]
, (2.45)

where regularity required Nl(r0) = N ′
l (r0) = 0. We find that that the near horizon geometry

of an extremal black hole contains an AdS2 factor,

ds2bh =
2

grr
′′(r0)

gAdS2 + gθθdθ
2+

γab(r0)
(
dφa − (Ba(r0) + (ερ)Ba

′
(r0))

λτ

ε

)(
dφb − (Bb(r0) + (ερ)Bb

′
(r0))

λτ

ε

)
,

(2.46)

where gAdS2 is the AdS2 metric (2.31) and

λ =
2√

grr
′′(r0)(N2

l )′′(r0)
=

1
2πT ′

H

. (2.47)

Then, using (2.43), the near horizon geometry is given by (2.30) where (2.42) is satisfied:

Γ(θ) =
2

grr
′′(r0)

, ea = B′(r0)λ =
Ωa′(r0)
2πT ′

H

=
ka

2π
. (2.48)

In the near horizon region the gauge potentials take the form

A(q) = A(q)
t dt+

∑
A(q)
φa dφ

a (2.49)

=
(
A(q)
t (r0) + A(q)

φa (r0)Ωae
)
λ
dτ

ε
+ A(q)

φa (r0)dϕ+ ρ
(
A(q)′
t (r0) + A(q)′

φa (r0)Ωae
)
λdτ. (2.50)

Then the ρτ component of the field strength in the near horizon limit

F (q)
ρτ = eq =

(
A(q)′
t (r0) + A(q)′

φa (r0)Ωae
)
λ = Ωq′λ =

kq

2π
(2.51)

gives our desired result (2.42)4.
This generic agreement between (2.37) and (2.41) establishes that on-shell near horizon

geometries of extremal black holes always satisfy (2.37).

2.2.4 Scalar probe analysis

A similar conclusion can be reached by probing the extremal black hole background by a
quantum field Ψ. A quantum field in a black hole background at finite temperature has a mixed
quantum state described by a density matrix whose eigenvalues equal the standard Boltzmann
factors

%̂ ≡ exp

[
−β

(
ω −

n∑
i=1

m̃iΩi
)]

. (2.52)

Notice the “chemical” potentials are fully determined by the black hole geometry, while the
quantum numbers {ω, m̃i} label the quantum state.

4The last equalities of (2.48) and (2.51) are valid for the following reason: we have functions Di(r) evaluated
at r0 to give chemical potentials Di(r0). Taking the derivative with respect to r and evaluating at r0 gives
∂Di(r)
∂r

˛

˛

˛

r=r0
. The same is true for r0: The chemical potentials Di(r0) can be differentiated and evaluated on

the extremal horizon to give
∂Di(r0)
∂r0

˛

˛

˛

r0=r0
. Then

∂Di(r)
∂r

˛

˛

˛

r=r0
=
∂Di(r0)
∂r0

˛

˛

˛

r0=r0
to leading order in ε.
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In the near-extremal limit, this becomes

exp

[
− 1
T ′
H(r0)ε

(
ω −

n∑
i=1

m̃iΩie

)
+

1
T ′
H(r0)

n∑
i=1

m̃iΩi′(r0)

]
. (2.53)

The near-extremal limit (2.33) thus requires ω =
∑
i Ω

i
em̃i + O(εα), α ≥ 1 to prevent the

vanishing or blow up of the probability density %̂, constraining the energy quantum of the
scalar fields in terms of the remaining modes. This is the analogue of the black hole extremality
condition (2.32) and spectrum of excitations (2.34) for the scalar probe.

It is clear that in the regime α > 1 and in the limit ε→ 0,

%̂ = exp

(
−
∑
i

ki(Jk)m̃i

)
(2.54)

reproduces the chemical potentials in (2.37).
A different take on the procedure described above consists in interpreting the near horizon

limit (2.43) as a large gauge transformation to reproduce the same constraint on the quantum
numbers. Consider a quantum scalar field and decompose it into Fourier modes

Ψ =
∑
ω,m̃,l

ϕωm̃l exp

[
−iωt+ i

n∑
i=1

m̃iφ
i

]
fl(r, θ). (2.55)

The near horizon limit involves the time scaling and angular shifts in (2.43). Writing the Fourier
modes in terms of the new coordinates gives

exp

[
i

(
−ω +

n∑
i=1

m̃iΩie

)
τ

2πT ′
Hε

+ i

n∑
i=1

m̃iϕ
i

]
. (2.56)

In the limit ε→ 0, it is natural to require ω =
∑
i Ω

i
em̃i + O(εα), as before.

2.3 The Low Temperature Limit of the First Law: Van-
ishing Horizon Black Holes

We now apply the first law analysis of the previous section to the near-EVH black holes of the
EVH/CFT correspondence (1.195) discussed in section 1.8. Systems satisfying Se ∼ εp, p > 0
as TH ∼ ε → 0 do not obey the analysis of the previous section. Here we consider black holes
with Se/TH finite, i.e. p = 1. Since black holes in this category have vanishing horizon area, we
refer to them as extremal vanishing horizon (EVH) ones. In parameter space, they exist at the
co-dimension k (k ≥ 2) EVH surface defined by the intersection of the TH = Se = 0 surfaces.
In all known examples, the EVH surface corresponds to r+ = r− = c̃ = 0, where c̃ is a function
of the remaining parameters.

Inspired by the finiteness of Se/TH and the Cardy-like growth in the density of states of a
2d CFT, we want to identify a set of sufficient conditions under which p = 1 EVH black holes
allow a first law of thermodynamics compatible with a 2d CFT microscopic description. For this
purpose, we assume that vanishing of the entropy is due to the vanishing of a single one-cycle.
This requires the existence of a vanishing eigenvalue in the near horizon metric γab in (2.30).
Let this eigenvalue be along the ∂ϕ direction. Then, close to the horizon r → εr, ε → 0, the
length of this one-cycle must scale like γϕϕ ∼ γ(θ) r2. The geometry is smooth for γ(θ) = Γ(θ),
as in (2.30), giving rise to

ds2 = Γ(θ)
(
ε2r2(−dt2 + dϕ2) +

dr2

r2

)
+ ds2⊥ (2.57)

as the near horizon geometry of an EVH black hole. Notice the isometry of the first factor is
locally enhanced to SO(2, 2). The geometry is smooth at r = 0 and ds2⊥ is SO(2, 2) invariant
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when ds2⊥ is r independent. These statements were proved in 4d Einstein-Maxwell-dilaton
theories [51] and have been verified in several 4d and 5d studies [44, 51, 66]. We expect them
to hold for any EVH black hole and we will assume them hereafter.

As discussed in Chapter 1, there exist two inequivalent near-horizon geometries: the null
self-dual orbifold of AdS3 [44] after redefining t + ϕ → (t+ ϕ) /ε2 keeping t − ϕ fixed and
the pinching AdS3 orbifold [44] after t, ϕ → t/ε, ϕ/ε. The former reduces the isometry to
SO(2, 1) × U(1) and does not allow for dynamical excitations [44]. Searching for non-trivial
excitations, responsible for dδM ∼ TdSe ∼ ε2 in (2.34) when we turn on the temperature, we
will focus on the second option.

Note that the 3d metric in (2.57) can be obtained by taking the near horizon limit (r → εr)
of metrics (2.27)

t =
τ

ε
, ϕi = φi − Ω(0)

i

τ

ε
, χ = ε ϕ , ε→ 0 , (2.58)

where φi, i = 1, · · · , n− 1 parameterize the non-singular U(1) symmetries of the original EVH
black hole solution. These include both the isometries of ds2⊥ and the Abelian U(1) symmetries
due to the gauge fields of the solution. The resulting geometry includes the pinching AdS3

orbifold [44], due to χ ∼ χ + 2πε, and it is written in a co-rotating frame since Ω(0)
i are the

horizon angular velocities or electric potentials at the EVH point.
Having identified the relevant EVH geometry, we now turn to thermodynamics and switch

on temperature and entropy
TH = εT

(1)
H , SBH = εS(1) , (2.59)

along the k orthogonal directions in parameter space that infinitesimally move away from the
EVH surface. By construction, dSBH is a one-form belonging to the space of EVH orthogonal
deformations. In gravity, these deformations will correspond to the near-EVH black holes. By
analyticity, any thermodynamical quantity Z will allow an expansion Z = ZEVH+

∑
n>0 ε

nZ(n),
with dZEVH = 0. Besides (2.59), we have

dM = εdM (1) + ε2dM (2) + · · · ,

dJi = εdJ
(1)
i + ε2dJ

(2)
i + · · · , (2.60)

Ωi = Ω(0)
i + εΩ(1)

i + · · · .

Since THdSBH ∼ ε2, the Ωi in the near-EVH regime relevant to our leading order analysis
are of the form

Ωnear-EVH
i =


Ω(0)
a a = k − 1, · · · , n ,

εΩ(1)
α α = 1, · · · , k − 2 ,

Ωϕ for pinching direction ϕ .
(2.61)

We singled out the angular velocity along the pinching direction, because even though it vanishes
at the EVH point, its value in the near-EVH regime can be non-vanishing. This is because
Ωϕ ∼ dϕ/dt and as discussed previously, both coordinates scale in the same way. Noting the
coordinate scalings (2.58), a similar argument leads to the scaling of Ωa and Ωα given in (2.61).
There is no second order contribution, because at this order the only non-trivial contribution
would come from dJ

(0)
i which vanishes, by construction.

Using (2.34), i.e. dδM ≡ ε2
(
dM (2) −

∑
a Ω(0)

a dJ
(2)
a

)
, and plugging (2.59), (2.60) and (2.61)

into the first law, one obtains

T
(1)
H dS(1) = dM (2) −

∑
a

Ω(0)
a dJ (2)

a − ΩϕdJ (2)
ϕ −

∑
α

Ω(1)
α dJ (1)

α . (2.62)

As we will show below, (2.62) is indeed the first law for a BTZ black hole [67].

Consider the subset of Ω(1)
α that are geometrically realised. One can always work in a

co-rotating frame by performing the coordinate transformation

ϕα = φα −Aα
τ

ε
−Bα

χ

ε
, (2.63)

45



where Aα and Bα are first order in ε, extending the transformation (2.58) to the near-EVH
regime. Equivalently, these angular velocities must satisfy the identity

Ω(1)
α = A(1)

α +B(1)
α Ωϕ . (2.64)

For those Ωα that are not geometrical, the corresponding transformation is a U(1) gauge trans-
formation. Either way, recalling the symmetries of the near-EVH solution, (2.63) is just a large
gauge or coordinate transformation by an element in the SO(2, 2) × U(1)k−1 symmetry group.

We can parameterise excitations in the α directions, i.e. first order deformations belonging
to a k− 2 dimensional space, by zα = εz

(1)
α + · · · . Then, as Ωα = εΩ(1)

α + · · · , Jα = εJ
(1)
α + · · · ,

Ω(1)
α and J

(1)
α are linear in z

(1)
α , and must therefore be linearly related as Ω(1)

α = MαβJ
(1)
β ,

where only the symmetric part of the matrix Mαβ is relevant for the first law (2.21). Then
A

(1)
α = C

(0)
αβ J

(1)
β , B(1)

α = D
(0)
αβJ

(1)
β , where C(0)

αβ and D
(0)
αβ are symmetric matrices of the EVH

parameters. It follows that

d

(∑
α

A(1)
α J (1)

α

)
= 2

∑
α

A(1)
α dJ (1)

α ,

d

(∑
α

B(1)
α J (1)

α

)
= 2

∑
α

B(1)
α dJ (1)

α .

(2.65)

We plug (2.64) and (2.65) into (2.62), which then simplifies to

TBTZ dSBTZ = dMBTZ − ΩBTZdJBTZ , (2.66)

where we defined

T
(1)
H = TBTZ , εS(1) = SBTZ , Ωϕ = ΩBTZ ,

MBTZ = ε

(
M (2) −

∑
a

Ω(0)
a J (2)

a − 1
2

∑
α

A(1)
α J (1)

α

)
,

JBTZ = ε

(
J (2)
ϕ +

1
2

∑
α

B(1)
α J (1)

α

)
.

(2.67)

The BTZ subscript is to stress the fact that (2.66) has the same form as the first law for a BTZ
black hole [67] introduced in section 1.4. This reinforces the expectation that near-EVH black
holes have a universal near horizon geometry given by a pinching BTZ, as explicitly checked
for several near-EVH black holes, e.g. [51], and as will be demonstrated in Chapters 3 and 4.
This is consistent with the idea that near-EVH deformations in parameter space correspond to
large gauge transformations in gravity.

Notice that the entropy and conserved charges of the pinching BTZ black hole have an
explicit ε multiplying them. We have included this factor when taking into consideration the
pinching of the AdS3 angle, which induces an ε-dependent periodicity. As SBTZ, MBTZ and
JBTZ are calculated by evaluating the Komar integral over the angular direction at infinity, we
expect this extra ε factor in their expressions. We will see in Chapters 3 and 4 that this is
indeed the case. As we discussed in sections 1.7 and 1.8, this factor is cancelled by scaling the
three dimensional Newton’s constant appropriately, G3 ∼ ε. When our black holes are solutions
to supergravity in AdS with dual CFTs, this is achieved by taking a large N limit.

Scalar probe analysis for near-EVH black holes This thermodynamic evidence for the
existence of a BTZ black hole in the near horizon geometry of a near-EVH black hole is enhanced
by probing a near-EVH black hole with a scalar field Ψ. Consider the Fourier decomposition
of the probe

Ψ =
∑
ω,m̃,l

ϕωm̃l exp

[
−iωt+ i

n∑
i=1

m̃iφi

]
fl(r, θ). (2.68)
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Expanding in the near-EVH limit, we get

Ψ =
∑
ω,m,l

ϕωml exp

[
− iω

τ

ε
+ i

n∑
a=k−1

m̃a

(
ϕa + Ω0

a

τ

ε

)
(2.69)

+ im̃χ
χ

ε
+ i

k−2∑
α=1

m̃α

(
ϕα +Aα

τ

ε
+Bα

χ

ε

)]
fl(r, θ). (2.70)

Collecting coefficients of the near horizon isometry coordinates τ and χ, we identify the probe
quantum numbers in the IR near horizon geometry as

ωNH =
1
ε

(
ω −

n∑
a=k−1

m̃aΩ0
a −

∑
α

m̃αAα

)
, m̃NH =

1
ε

(
m̃χ +

∑
α

m̃αBα

)
. (2.71)

When we expand the density matrix (2.52) in the near-EVH limit, we find, using TH = εTBTZ,
that5

%̂ ∝ exp
[
− 1
TBTZ

(ωNH − m̃NHΩBTZ)
]
. (2.72)

Thus the Ψ quantum state is the same as one outside of a BTZ black hole, in agreement with
(2.66).

2.4 Discussion

We conclude this Chapter by relating the main physical inputs leading to (2.37) and (2.66) to
the proposed microscopic descriptions in the literature. It is worth stressing that (2.37) is always
compatible with a Cardy-like density of states growth at temperature T = k(J)−1 whenever
n = 1, where the Frolov-Thorne temperature was calculated in Appendix A. This does not
uniquely select the existence of a 2d chiral CFT microscopic interpretation, but it is certainly
consistent with it. Indeed, the central charge of such a CFT would equal c = 3Se/(π2k). This is
in agreement with the Kerr/CFT proposal [31] outlined in section 1.5, which identifies a chiral
Virasoro algebra with this central charge as the asymptotic symmetry group of the same near
horizon geometries (2.30) with some prescribed boundary conditions.

It is known, via the AdS3/CFT2 duality [68] summarised in section 1.4, that a generic BTZ
black hole corresponds to a thermal mixed state in the dual 2d non-chiral CFT, and an extremal
BTZ to a mixed state at zero temperature. It was shown that the near horizon limit of extremal
BTZ corresponds to the Discrete Light-Cone Quantisation (DLCQ) of the dual CFT2 which has
only one dynamical chiral sector, leading to a 2d chiral CFT [40]. This explains why the chiral
sector associated with AdS2 excitations is frozen (if suitable boundary conditions are used) and
identifies the chiral Kerr/CFT sector with the second chiral sector of the original 2d CFT.

This also ties nicely with our result (2.66) for EVH black holes. Our thermodynamic analysis
indicates that excitations above an EVH black hole correspond to a configuration compatible
with a BTZ black hole, i.e. that the physics of near-EVH black holes are captured by BTZ black
holes. The generic form of our result can be viewed as strong evidence that the same structure
exists for any EVH black hole where the vanishing of the horizon area is due to a vanishing
one-cycle, as conjectured in [51]. As these black holes have dual descriptions in terms of
non-chiral CFTs, (2.66) is thermodynamic evidence in favour of the EVH/CFT correspondence
(1.195). The specific case studies of Chapters 3 and 4 will demonstrate how this thermodynamic
statement agrees with the existence of the geometric structure in the near horizon region.

5We note that, as we are working in a co-rotating frame, there is no rotation in the ϕa, ϕα directions, so that
the quantum numbers associated to these coordinates do not appear in the expression for the density matrix.
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Chapter 3

Case Study I: Static Charged
Black Holes

This Chapter contains results of [69] which was done in collaboration with J. de Boer, M. M. Sheikh-
Jabbari and J. Simón. It is an edited version of the published paper, with more recent results
added in light of [66] and [54].

We consider families of static charged asymptotically AdS5 Extremal black holes with Van-
ishing Horizon (EVH black holes) whose near horizon geometries develop locally AdS3 throats.
Using the AdS3/CFT2 duality decribed in section 1.4, we propose an EVH/CFT2 correspon-
dence to describe the near horizon low energy IR dynamics of near-EVH black holes involving
a specific large N limit of the 4d N = 4 super Yang-Mills theory . We consider both non-BPS
and near-BPS regimes and their near horizon limits, emphasise the differences between the local
AdS3 throats emerging in either case, and discuss potential dual IR 2d CFTs for each case. We
obtain a natural quantisation for the central charge of the near-BPS emergent IR CFT which
we interpret in terms of the open strings stretched between giant gravitons. These black holes
are concrete examples of the “UV first law” of thermodynamics reducing to the “IR first law”
satisfied by the near horizon BTZ black holes in this near-EVH limit as outlined in Chapter 2.
As evidence of the EVH/CFT correspondence introduced in section 1.8, we give a map between
the UV and IR near-EVH excitations. We also discuss the connection between the Kerr/CFT
correspondence outlined in section 1.5 and our EVH/CFT proposal in the cases where the two
overlap.

3.1 Static Three Charged Solutions to Type IIB Super-
gravity

In this section, we review the characterisation of extremal vanishing horizons among R-charged
AdS5 black holes. These are solutions of type IIB supergravity with constant dilaton, and
metric and RR 4-form potential given by [70]

ds210 =
√

∆
(
− X

H1H2H3

dt2

r2
+ r2

dr2

X
+ r2 dΩ2

3

)
+

L2

√
∆

(
3∑
i=1

Hi

(
dµ2

i + µ2
i [dψi + Ai dt]

2
))

C4 = −r
4

L
∆ dt ∧ d3Ω − L

3∑
i=1

q̃i µ
2
i

(
Ldψi −

qi
q̃i
dt

)
∧ d3Ω . (3.1)

The configuration is determined by a set of scalar functions {Hi, X, ∆} and gauge fields {Ai}

Hi = 1 +
qi
r2
, Ai = −

√
qi(µ+ qi)

L2(r2 + qi)
, q̃i =

√
qi(µ+ qi), i = 1, 2, 3 (3.2)
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X(r) = r2 − µ+
r4

L2
H1H2H3, ∆ = H1H2H3

[
µ2

1

H1
+
µ2

2

H2
+
µ2

3

H3

]
, (3.3)

AdS radius L, the unit radius 3-sphere metric dΩ2
3 and a further 2-sphere µ2

1 + µ2
2 + µ2

3 = 1
parameterised by

µ1 = cosα , µ2 = sinα sinβ , µ3 = sinα cosβ , α, β ∈ [0,
π

2
]. (3.4)

Charges and Thermodynamics These solutions have four independent parameters {µ, qi}
determining the mass and R-charges of the black hole

E =
π

4G(5)
N

(
3
2
µ+ q1 + q2 + q3

)
, Ji =

πL

4G(5)
N

q̃i =
πL

4G(5)
N

√
qi(µ+ qi) (3.5)

in terms of the five dimensional Newton’s constant

G
(5)
N =

G
(10)
N

(π3L5)
=
π

2
L3

N2
. (3.6)

The temperature and entropy for these black holes are [70]

TH =
r6+ + µL2r2+ − (q1q2 + q1q3 + q2q3)r2+ − 2q1q2q3

2πr2+L2
√

(r2+ + q1)(r2+ + q2)(r2+ + q3)
,

SBH =
πN2

L3

√
(r2+ + q1)(r2+ + q2)(r2+ + q3) ,

(3.7)

where r2+ is the (outer) horizon radius, defined as the largest root of X(r) in (3.2).
Angular velocities in the azimuthal directions on the S5 are given by the gauge fields (3.2)

evaluated at the horizon r+,
Ωi = −Ai(r+), (3.8)

and the black holes satisfy the first law of thermodynamics

THdSBH = dE −
3∑
i=1

ΩidJi. (3.9)

A subset of the family (3.1) of black holes are BPS black holes with energy E a linear com-
bination of the electric charges. This subset is defined by µ = 0 so that q̃i = qi, giving
`E = J1 + J2 + J3, i.e. the system is BPS. Thus µ measures the deviation from BPSness. The
generic BPS solutions in this class preserve 1/4 of the supersymmetries of the original 5d theory,
i.e. two (out of eight) real supercharges in 5d [38, 71]. We also note that BPS AdS5 black holes
can only happen if we have electric charges turned on, i.e. neutral rotating AdS5 black holes
cannot be BPS; moreover, all the static BPS AdS5 black holes have naked singularities, which
can be removed by the addition of rotation [71].

Four dimensional N = 4 super Yang-Mills theory description Using the AdS/CFT
correspondence sketched in section 1.3, the black holes (3.1) correspond to thermal states in
the dual N = 4 super Yang-Mills theory defined on R×S3 carrying charges :

∆UV = `E , Ji = Ji . (3.10)

Gravitational energy E becomes conformal dimension ∆UV, and the electric charges Ji, R-
charges Ji of the dual 4d gauge theory. By construction, these are functions of the the four
parameters (q1, q2, q3, µ) and scale like N2.
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Intersecting giant description: These singular configurations were interpreted as distribu-
tions of smeared giant gravitons in [72], where the flux quantisation conditions

Ni
N

=
2Ji
N2

=
q̃i
L2
, i = 1, 2, 3 (3.11)

were derived for each of the three types of giants supporting these black holes. Here Ni is
the number of giant gravitons in each stack. Since each giant type involves a different 3-cycle
in the transverse 5-sphere [73], pairs of giants belonging to different types intersect on circles.
This observation was used in [28, 34, 74] to argue that two R-charged AdS5 black holes should
allow a dual 2d CFT description defined on the S1 where giants intersect and with central
charge proportional to the total number of such intersections, i.e. c ∼ NiNj (i 6= j). This
interpretation will play an important role when we discuss the near-BPS regime.

3.2 The Set of EVH and Near-EVH Black Holes

In this section we describe the criteria for the family of black holes (3.1) to be (near-)EVH. To
this end we examine the parameter space.

Extremality vs charges: For completeness, we review the conditions under which finite
horizon extremal R-charged black holes appear [70]:

a) For single R-charge configurations characterised by {µ, q1}, the condition for extremality
coincides with the condition for the black hole to be BPS, i.e. µ → 0. However, as one
may easily check, no local AdS3 geometry appears as one takes the near horizon limit.

b) For two R-charge configurations characterised by {µ, q2, q3}, horizons exist when µ has
values above a lower bound µc. As extremality is preserved when

µ = µc =
q2q3
L2

, (3.12)

the scale µ− µc measures the amount of non-extremality.

c) For three R-charge black holes, with three generic charges of the same order of magnitude,
horizons exist for µ above a certain quantity and below which we have a naked singularity
[70]. As soon as the extremal limit is achieved for black holes in this class, the horizon
size is necessarily finite. Thus, in this regime, EVH black holes can not appear.1

We can solve the horizon equation to express q1 and µ in terms of the other parameters

q1 = r2+r
2
−C(r±, q2, q3) ,

µ− µc = (r2+ + r2−)µc C(r±, q2, q3) + r2+r
2
− ((q2 + q3)C(r±, q2, q3) − 1)

(3.13)

where the scalar function C(r±, q2, q3) is

C(r±, q2, q3) ≡
L2 + q2 + q3 + r2+ + r2−

µc L2 − r2+r
2
−

(3.14)

and µc is given by (3.12) The function X(r) characterising the existence of horizons becomes2

X(r) =
(r2 − r2+)(r2 − r2−)

L2r2
(r2 + µc L

2 C(r±, q2, q3)). (3.15)

1If one of the charges is parametrically smaller than the other two, the three-charge system can under favorable
circumstances be viewed as a perturbation of the EVH configuration identified in b), as we will describe in detail
in the following.

2We note that q1 blows up for µcL2 = r2+r
2
−. We will not, however, be probing this regime of parameters as

(near-)EVH black holes only occur for q1 < qi, i = 2, 3.
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3.2.1 The set of EVH black holes

Consider the four dimensional parameter space, either in terms of (q1, q2, q3;µ) or (q1, q2, q3; r+).
We define the subset of EVH black holes as a limit of near-extremal black holes in which
AH, TH ∼ ε→ 0. From inspection of (3.7), we find

AH, TH ∼ ε→ 0, ⇒ r+ ∼ ε, q1q2q3 ∼ εn, n ≥ 4, µL2 − (q1q2 + q1q3 + q2q3) ∼ εm, m ≥ 2.
(3.16)

It is straightforward to check that this is the most general configuration that arises from choosing
the horizon r+ to be O(ε). From (3.13) we can see that r+ = 0 gives q1 = 0, and so EVH black
holes require

r+ = 0, q1q2q3 = 0, and µ = µc =
q2q3
L2

. (3.17)

We can distinguish between two types of EVH configurations:

non-BPS : r+ = q1 = 0; µc finite (3.18)

near-BPS : r+ = q1 = 0; µc ∼ ε2.

q1 - and, as will be apparent, all quantities corresponding to it - is clearly distinct from q2 and
q3, so we will take i = 2, 3 for the rest of the Chapter.

3.2.2 The set of near-EVH black holes

To explore the physics of near-EVH black holes, we describe regions in parameter space close
to the EVH surface. Given a generic q1 = 0 EVH point parameterised by (3.17), one can
decompose the space of deformations into tangential and orthogonal. Tangential movement
along the EVH surface corresponds to parametric change in an EVH black hole: a change in
parameters (q2, q3) → (q2 + δq2, q3 + δq3) will return a different value on the EVH surface:

µ+ δµ =
(q2 + δq2)(q3 + δq3)

L2
. (3.19)

Orthogonal deformations correspond to excitations of EVH black holes to near-EVH black holes;
we discuss the non-BPS and near-BPS situations separately below.

Near-EVH non-BPS black holes: Non-BPS EVH black holes are described by (q1, q2, q3;µ) =
(0, q2, q3; q2q3L2 ), so the most general orthogonal deformation is obtained by computing the normal
at a point on the surface, given by the gradient:(

0, q2, q3;
q2q3
L2

)
−→

(
δq1, q2 −

q3
L2
δµ, q3 −

q2
L2
δµ;

q2q3
L2

+ δµ
)
. (3.20)

We can see from (3.16) that we can choose

δµ = Mε2, δq1 = ε4q̂1, (3.21)

and so the most general physical excitations of non-BPS EVH black holes are parameterised by
M, q̂1.

Once these deformations are turned on, the equation determining the horizon location
X(r±) = 0 becomes

V
(r±
ε

)4

−M
(r±
ε

)2

+
q̂1q2q3
L2

= 0, V =
L2 + q2 + q3

L2
. (3.22)

This is solved by

r2± = ε2

M ±
√
M2 − 4V q̂1q2q3

L2

2V

 , (3.23)
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so we can see that extremality is preserved for M = 2
√

Vq̂1q2q3/L. The temperature and
entropy in the near-EVH limit are

SBH =
πN2√q2q3

L3
r+, TH =

ML2
( r+
ε

)2 − 2q̂1q2q3

2π
( r+
ε

)3
L2√q2q3

ε. (3.24)

By construction, as in Chapter 2, SBH ∼ TH ∼ ε, due to the scaling of r+ (3.16).

Near-BPS black holes: Near-BPS EVH black holes are described by (q1, q2, q3;µ) = (0, εq̂2, εq̂3; ε2 q̂2q̂3L2 ),
so the most general orthogonal deformation is(

0, εq̂2, εq̂3; ε2µ̂c
)

−→
(
δq1, εq̂2 −

q3
L2
δµ, εq̂3 −

q2
L2
δµ; ε2µ̂c + δµ

)
. (3.25)

We can see from (3.16) that we can choose

δq1 = ε2q̂1, δµ = Mε2, (3.26)

where µc = ε2 q̂2q̂3L2 = ε2µ̂c; and so the most general physical excitations of near-BPS VH black
holes are parameterised by M, q̂1.

Once these deformations are turned on, the equation determining the horizon location
X(r±) = 0 becomes (r±

ε

)4

−
(r±
ε

)2

M +
q̂1q̂2q̂3
L2

= 0, (3.27)

which is solved by

r2± = ε2

M ±
√
M2 − 4 q̂1q̂2q̂3L2

2

 ; (3.28)

so extremality is preserved for M = 2
√
q̂1q̂2q̂3/L. The temperature and entropy in the near-

EVH limit are

SBH =
π

√
(
( r+
ε

)2 + q̂1)q̂2q̂3
L3

N2ε2, TH =

( r+
ε

)2
ML2 − 2q̂1q̂2q̂3

2π
√

(
( r+
ε

)2 + q̂1)q̂2q̂3L2
( r+
ε

)2 . (3.29)

We note here that AH ∼ N2ε2 and TH ∼ 1 have different scalings, and their ratio is not
finite. Thus the special cases of near-BPS black holes have different criteria to their non-BPS
counterparts (1.196). In fact, as TH ∼ 1, it is not fully correct to define them as extremal, and
we shall call them (near-)VH black holes. As we will see, the scaling of AH and TH will impact
on the near horizon geometry analysis.

3.3 Near Horizon Geometry Analyis: Static Charged Black
Holes

In this section we study the near horizon geometries corresponding to the non-BPS and near-
BPS VH black holes identified in (3.17) together with their near-extremal versions (3.20),(3.25)
.
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3.3.1 The non-BPS EVH near horizon geometry

Let us consider a static EVH black hole µ = µc and study its deep interior geometry by
expanding in small ε for r = ερ. The metric expansion is

ds2 = µ1

[
− Vε2

√
q2q3

ρ2dt2 +
√
q2q3

V
dρ2

ρ2
+

L2ε2
√
q2q3

ρ2dψ2
1

]
(3.30)

+ µ1
√
q2q3dΩ2

3 +
L2

µ1
√
q2q3

3∑
i=2

qi

(
dµ2

i + µ2
i

(
ψi − Ω(0)

i t
)2
)
,

where V is defined in (3.22) and

Ω(0)
i = −

√
qi + L2

L2
(3.31)

is the angular velocity at the EVH point, obtained by expanding Ai = A(0)
i + ε2A(2)

i in ε.
As we discussed in sections 1.8 and 2.3, extremality determines the scaling −ε2ρ2 dt2 together

with dρ2/ρ2 giving rise to an AdS2 throat responsible for the SO(2, 1) isometry enhancement
of the near horizon geometry [37]. The new feature here is the vanishing size of the one-cycle
along ψ1 as ε2ρ2. Notice this is the isometry direction in the 5-sphere with vanishing R-charge
(J1 = 0). This is responsible for the vanishing of the entropy and transforms the standard
AdS2 throat into a local AdS3 throat.

The near horizon geometry is obtained by considering the ε→ 0 limit of

r = ε
(q2q3)

1
4

L
x, t =

L

(q2q3)
1
4

τ

ε
, ψ1 =

χ̂

ε
, ψi = ψ̂i + Ω(0)

i t, (3.32)

The resulting metric is

ds2 = µ1

[
− x2dτ2

`23
+
`23dx

2

x2
+ x2dχ̂2

]
+ µ1

√
q2q3dΩ2

3 +
L2

µ1
√
q2q3

3∑
i=2

qi

(
dµ2

i + µ2
i dψ̂

2
i

)
.

(3.33)

Due to the 2πε periodicity in χ̂, this geometry describes a warped locally AdS3×S3 geometry,
with radii given by

R2
AdS3

= `23 =
√
q2q3

V
, R2

S3 =
√
q2q3 . (3.34)

More precisely, the local AdS3 throat is the pinching AdS3 orbifold introduced in section 1.7,
corresponding to the near horizon of a massless BTZ black hole. Once more, notice how the
circle in AdS3 comes from the direction in the 5-sphere where there is no R-charge at the EVH
point. Besides the pinching, which does not introduce a curvature singularity, the geometry
(3.33) is otherwise everywhere smooth except at µ1 = 0.

3.3.2 The non-BPS near-EVH near horizon geometry

Near-EVH non-BPS black holes are parametrically described by excitations (3.26) from the EVH
vacua (3.18), and we will see that the excitations are encoded in the near horizon geometry as
local BTZ black holes. The excitations are described by the BTZ mass and angular momentum.
The near horizon limit is as in (3.32), and the near horizon geometry is

ds2 =µ1

[
−

(x2 − x2
+)(x2 − x2

−)
`23x

2
dτ2 +

`23x
2dx2

(x2 − x2
+)(x2 − x2

−)
+ x2

(
dχ̂− x+x−

`3x2
dτ

)2 ]
+ µ1

√
q2q3dΩ2

3 +
L2

µ1
√
q2q3

3∑
i=2

qi

(
dµ2

i + µ2
i dψ̂

2
i

)
. (3.35)

The first line is conformal to a local BTZ black hole (1.63) built on the pinching AdS3 orbifold.
The inner and outer horizons of the near horizon BTZ black hole are given in terms of (3.22)
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by

x2
± =

L2

√
q2q3

M ±
√
M2 − 4V q̂1q2q3

L2

2V

 . (3.36)

We note that q̂1 = 0 corresponds to a vanishing inner horizon, while M = 0 forces q̂1 = 03; so
M controls the outer horizon size.

It was shown in [28] that there exists a non-trivial consistent truncation of type IIB with a
constant dilaton, metric and self-dual 5-form to six dimensions of the form

ds2 = µ1ds
2
6 +

L2

µ1

(√
q2/q3 (dµ2

2 + µ2
2 dψ

2
2) +

√
q3/q2 (dµ2

3 + µ2
3 dψ

2
3)
)
. (3.37)

Notice this is indeed of the form found above with ds26 = ds2BTZ +
√
q2q3/L

2dΩ2
3, where the 6d

part is a space of negative constant scalar curvature R6 = −6(q2+q3)
L2√q2q3 .

Temperature and entropy: To use the standard thermodynamic relations satisfied by BTZ
black holes, we must compactify (3.35) to three dimensions. Consider the ansatz

ds2 = µ1g
(3)
µν dx

µdxν + µ1
√
q2q3dΩ2

3 +
L2

µ1
√
q2q3

3∑
i=2

qi

(
dµ2

i + µ2
i dψ̂

2
i

)
, (3.38)

and plug it into the 10d type IIB supergravity action. Focussing on its Einstein-Hilbert term

1
16πG10

∫ √
−g(10)

(
10R + · · ·

)
=

1
16πG3

∫ √
−g(3)

(
3R + · · ·

)
, (3.39)

we can identify the 3d Newton’s constant to be

1
G3

=
(q2q3)3/4L4

16G10
(2π)4 =

2(q2q3)3/4N2

L4
. (3.40)

We stress that although the metric (3.38) is singular in µi, the integral (3.39) produces a finite
value for the 3d Newton’s constant (3.40). We will see that this is the case in all calculations
of G3 in this thesis.

We can now compute the temperature and entropy of the pinching BTZ black holes (3.35),
which equal

TBTZ ≡
x2

+ − x2
−

2πx+`23
=

L

ε(q2q3)
1
4
TH ,

SBTZ ≡ 2πε · x+

4G3
= SBH ,

(3.41)

where for TH and SBH we have used (3.24) and (3.36). We can see that the BTZ temperature
agrees with the near-EVH limit of the 10d temperature, up to the time scaling (3.32), while
the 10d entropy in the limit is captured by the 3d BTZ entropy.

The null orbifold appearance: Following the discussion in section 1.7, there should exist
a second inequivalent near horizon limit when we restrict ourselves to deformations preserving
extremality

x+ = x− = x0 ⇐⇒ M = 2

√
V
L2

√
q̂1q2q3. (3.42)

3M2 ≥
q

4V q̂1q2q3
L2 , as discussed in section 1.4, and from section 3.2 we cannot have q1 > qi.
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Indeed, for this subset of excitations, we can modify the singular large gauge transformations
appearing in (3.32) to

t =
L

(q2q3)1/4
τ

ε2
, ψ1 = χ̂+

τ

`3 ε2
, (3.43)

ψi = ψ̂i + Ω(0)
i

L

(q2q3)1/4
dτ

ε2
, i = 2, 3 .

The resulting metric

ds2 = µ1

(
`23
dσ2

4σ2
+ 2σ dχ̂

dτ

`3

)
+ µ1

√
q2q3dΩ2

3 (3.44)

+
L2

µ1
√
q2q3

3∑
i=2

qi

(
dµ2

i + µ2
i

(
dψ̂i − Ω(2)

i

L

(q2q3)1/4
dτ

)2
)

contains the null self-dual orbifold described in section 1.7, where σ = x2 − x2
0, in lieu of the

BTZ geometry. The null AdS3 orbifold does not have a pinching angle and is non-trivially
fibered over the 7d transverse space.

Near horizon and near-BPS order of limits: One could ask whether we could take the
near-BPS limit after zooming in on the geometry close to the horizon. This would require
taking q2 ∼ q3 ∼ ε, resulting in an unreliable supergravity description since both AdS3 and
S3 become Planck scale. We also note that the definition of q̂1 would need to be changed to
comply with (3.13), ie q̂1 = q̃1

ε2 ; then the horizon size (3.36) would become very large.

3.3.3 The near-BPS VH near horizon geometry

For near-BPS VH black holes (3.18), the near horizon geometry for r = εRLx and t = L
Rτ , is

ds210 = µ1ε

(
−x2 dτ

2

R2
+R2 dx

2

x2
+ x2dχ̂2 +R2dΩ2

3 + x2 dµ
2
1

µ2
1

)
(3.45)

+
L2

µ1

3∑
i=2

q̂i√
q̂2q̂3

(
dµ2

i + µ2
i

(
dψi − Ω(0)

i

L

R
dτ

)2
)
, (3.46)

where R = (q̂2q̂3)
1
4 is the AdS3 and S3 radius and Ω(0)

i = 1
L is the angular velocity at the EVH

point. We can see that the first line is locally AdS3×S3 for constant values of µ1 = cosα; we
thus focus geometrically on a strip of the transverse S5 by demanding

α = α0 +
√
εα̂, β = β0 +

√
εβ̂, dµi =

√
εdµ̂i. (3.47)

and redefining

ψi − Ω(0)
i

L

R
τ =

√
εψ̂i. (3.48)

In this “strip” picture, the near horizon geometry becomes

ds210 = µ0
1ε

[(
− x2dτ2

`23
+
`23dx

2

x2
+ x2dψ2

1

)
+R2dΩ2

3 +
L2

(µ0
1)2

3∑
i=2

q̂i√
q̂2q̂3

(
dµ̂2

i + (µ0
i )

2dψ̂2
i

)]
.

(3.49)

Locally, this is AdS3×S3×R4
+. The AdS3 and S3 have equal radii `3 = R = (q̂2q̂3)

1
4 and the

coordinates of the non-compact manifold M4 with metric

ds2M4
= dµ̂2

i + (µ0
i )

2dψ̂2
i (3.50)
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have ranges
µ̂i ∈ [0,∞], ψ̂i ∈ [0,∞]. (3.51)

We can see that although this metric does not suffer the pinching as in section 3.3.1, it is
multiplied by an overall ε factor4. The scaling limit (3.47) of the near-BPS VH black hole
does not involve the pinching and vanishing temperature that is common in the EVH/CFT
correspondence as described in section 1.8 and involved in the first law analysis in section 2.3.
Nonetheless, the geometry does have a near horizon local AdS3 geometry and potential CFT2

dual description.

3.3.4 The near-BPS near-VH near horizon geometry

Near-VH near-BPS black holes are parametrically described by excitations (3.25) from the EVH
vacua (3.18), and we will show that the excitations are encoded in the near horizon geometry
as local BTZ black holes. The near horizon limit is as in (3.47), but with the radial and time
variables scaled like

r2 = ε2
(
R2

L2
x2 − q̂1

)
, t =

L

R
τ. (3.53)

The near horizon geometry

ds210 = µ0
1ε

[(
−

(x2 − x2
+)(x2 − x2

−)
`23x

2
dτ2 +

`23x
2dx2

(x2 − x2
+)(x2 − x2

−)
+ x2(dψ1 −

x+x−
`3x2

dτ)2
)

+R2dΩ2
3 +

L2

R2(µ0
1)2

3∑
i=2

q̂i

(
dµ̂2

i + (µ0
i )

2dψ̂2
i

)]
(3.54)

contains a BTZ factor, where the BTZ inner and outer horizons are given in terms of (3.27)

x2
± =

L2

R2

M ±
√
M2 − 4 q̂1q̂2q̂3L2

2
+ q̂1

 , (3.55)

the size of which are controlled by the near-EVH excitations M and q̂1 as in section 3.3.2. We
see that the near horizon geometry of a near-BPS black hole is excited from an AdS3 geometry
to a BTZ black hole as in section 3.3.2. Although the geometry does not contain a pinching
angle, it has an overall epsilon scaling.

Temperature and entropy: To use the standard thermodynamic relations satisfied by BTZ
black holes, we must compactify (3.54) to three dimensions. Consider the ansatz

ds2 = εµ0
1g

(3)
µν dx

µdxν + εµ0
1R

2dΩ2
3 + ε

L2

R2µ0
1

3∑
i=2

q̂i

(
dµ̂2

i + (µ0
i )

2dψ̂2
i

)
, (3.56)

and plug it into the 10d type IIB supergravity action. First we note that the volume of the
non-compact 4d manifold (3.50) is very large for small ε,

Vol(M4) = L4 (2π)2

ε
µ0

2µ
0
3

∫
dµ̂2dµ̂3. (3.57)

4If ψi is not scaled with
√
ε, the metric will look like (recalling that dµi remains finite and µi ∈ [0, 1])

ds210 = µ0
1ε

»„

−
x2dτ2

`23
+
`23dx

2

x2
+ x2dψ2

1

«

+R2dΩ2
3

–

(3.52)

+
L2

µ0
1

3
X

i=2

q̂i√
q̂2q̂3

 

dµ2
i + (µ0

i )
2

„

dψi − Ω
(0)
i

L

R
dτ

«2
!

.

Geroch’s argument [75], which states that the first order contribution to an expansion of a solution to the
equations of motion is itself also a solution, ensures that (3.49) is on-shell. As (3.52) is isometric to (3.49), it
must also be a solution. Our subsequent analysis is unchanged for this alternative near horizon limit.
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So at each strip of the S5 there is a geometry that looks like an AdS3×S3 transverse to an
infinite flat space.

Focussing on its Einstein-Hilbert term

1
16πG10

∫ √
−g(10)

(
(10)R + · · ·

)
=

1
16πG3

∫ √
−g(3)

(
(3)R + · · ·

)
, (3.58)

and recalling that (10)R + · · · =
(

1
εµ0

1

)
(3)R + · · ·, we can write the left hand side of (3.58) as

1
16πG10

∫ √
−g(3)

√
ε3(µ0

1)3 × ε3(µ0
1)3(R2)3dΩ2

3 × ε4
L8

R8(µ0
1)4

× Vol(M4)
(

1
εµ0

1

)
(3)R

which gives5
2π2

16πG10

ε4L4

R

∫ √
−g(3) × Vol(M4)(3)R. (3.59)

This will yield, utilising the expression for the ten dimensional Newton’s constant (3.6),

1
G3

=
2π2

G10

ε4L4

R
Vol(M4) = 16N2ε2

R3

L4
µ0

2µ
0
3

∫
dµ2dµ3, (3.60)

so we may calculate the BTZ entropy,

SBTZ =
2πx+

4G3
= SBH

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
, (3.61)

where the entropy SBH in the near-EVH near-BPS regime of parameters is given in (3.29). It is
interesting to emphasise that focusing on a “strip” of a black hole horizon, when taking the near
horizon limit, is generic in non-extremal black holes. The difference is that the 2d geometry
close to the generic non-extremal horizon is Rindler, whereas the (near-)BPS and (near-)EVH
case studied here give rise to AdS3 (BTZ). Technically, this occurs to guarantee analyticity
in the ε expansion of the black hole metric components when taking its near horizon limit,
ensuring that the limiting metric remains a solution to supergravity equations. Conceptually, if
one thinks of the horizon as the location where the black hole degrees of freedom live (at least
from the perspective of an observer at infinity), it is clear that such a near horizon description
will never reproduce the correct entropy because it loses the information on the curvature of
the original horizon by approximating it with a flat tangent plane.

Gravitationally, and for the reasons just mentioned, it is natural to interpret the so obtained
near horizon Bekenstein-Hawking entropy (3.61) as an entropy density; that is, SBTZ = Sper strip.
This is more even so in the particular example discussed in this subsection, given the microscopic
interpretation of the BPS R-charged black holes as a distribution of smeared giant gravitons
on the 5-sphere [72] and the arguments provided in [34] identifying the open strings stretched
between these giants as responsible for the entropy of their near-BPS limits. The dependence
on the point where the strip lies, i.e. µ0

2µ
0
3, provides the natural measure where to integrate

this density. Not surprisingly, one finds∫
µ2

2+µ
2
3≤1

µ2µ3dµ2dµ3 =
1
8
. (3.62)

That is, if we suitably sum over the entropies of each BTZ black hole located at different strips
(different values of µ2, µ3), given in (3.61), we recover the entropy of the original 5d black hole.
Unfortunately, it is not clear to us what the process of integrating over this entropy density
means in the language of 2d CFTs that naturally would arise as the dual descriptions of the
near horizon geometries (3.54)6.

5The S3 is written in Hopf coordinates ds2 = dθ2 + sin2 θdφ2 + cos2 θdψ2 and the volume element is
R

dV =
R

sin θ cos θdθdφdψ = 2π2.
6It is possible that requiring to have a consistent on-shell near horizon geometry is responsible for the focusing

on a horizon “strip”. Recently, there have been discussions trying to argue that the low energy physics in (non-
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The Hawking temperature associated to each BTZ black hole geometry is given by

TBTZ ≡
x2

+ − x2
−

2πx+`23
=

L2

2πx+R4

√
M2 − 4

q̂1q̂2q̂3
L2

=
L

R
TH , (3.63)

which agrees up to time scaling (3.47) with the Hawking temperature (3.29) in the near-EVH
limit. We note the temperature of each BTZ black hole gives the exact Hawking temperature,
independently of the strip picture, as it is by definition a constant value.

3.4 IR 2d Description

In this section we use the results of sections 1.1 and 1.4 to compute the central charges of the
IR 2d CFT that is dual to the asymptotically AdS3 structure emerging in the near horizon of
non-BPS and near-BPS near-VH black holes. While the non-BPS quantities will adhere to the
pinching arguments of section 1.7, the near-BPS near horizon AdS3 is not a pinching geometry.

3.4.1 Non-BPS near-EVH

The central charge c of the IR 2d CFT and the quantum numbers (L0, L̄0) describing the
gravitational black holes described in the previous section can be extracted from standard
AdS3/CFT2 [5], where the effective central charge c is related to the pinching central charge
cp by c = εcp as per section 1.7, and the mass and angular momentum of the BTZ built on a
pinching AdS3 orbifold have an extra ε in their expressions, as they are evaluated by integrals
over U(1)s with periodicity 2πε:

c =
3`3
2G3

ε =
3q2q3
L4V

N2ε (3.64)

`3MBTZ = L0 + L̄0 −
c

12
=
x2

+ + x2
−

8`3G3
ε ,∼ N2ε (3.65)

JBTZ = L0 − L̄0 =
x+x−
4`3G3

ε ∼ N2ε. (3.66)

Requiring a finite central charge to have a finite gap in this IR 2d CFT is achieved by the large
N limit:

N2ε = fixed. (3.67)

It is manifest the entropy SBH in (3.24) remains finite in this limit, as do the near-EVH exci-
tations

`3MBTZ =
M

4L2
√

V
N2ε JBTZ =

√
q̂1q2q2
2L3

N2ε, (3.68)

which will be related with precise combinations of the UV quantum numbers.
We note how the non-BPS EVH point (0, q2, q3;µ(q2, q3)) determines the IR 2d CFT by fixing

its central charge, whereas its orthogonal deformations (3.20) encode their finite excitations.
Any tangential deformation would have simply changed the value of (q2, q3), which would
correspond to a different CFT. This mechanism will be apparent throughout the analysis of
near-EVH black holes in this thesis.

Using Cardy’s formula (1.93) [5]

SCFT = 2π
√
c

6

(
L0 −

c

24

)
+ 2π

√
c̄

6

(
L̄0 −

c̄

24

)
, (3.69)

one can immediately check the bulk entropy (3.24) is reproduced for the near-EVH black holes.

)extremal black holes is described by a 2d CFT, without appealing to its near horizon geometry, but to the wave
equations satisfied by probe fields on the geometry [76, 77]. If one would take a similar attitude in these black
holes, one can envision keeping the information about the full black hole geometry.
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3.4.2 Near-BPS near-EVH

There is no pinching here, so the CFT central charge and BTZ conserved charges are calculated
using the expressions 1.32 and 1.77 in Chapter 1:

c =
3`3
2G3

=
3R4

L4
N2ε2

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
(3.70)

`3MBTZ = L0 + L̄0 −
c

12
=
x2

+ + x2
−

8`3G3
, (3.71)

JBTZ = L0 − L̄0 =
x+x−
4`3G3

. (3.72)

The near-EVH excitations equal

`3MBTZ =
M + 2q̂1

4L2
N2ε2

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
(3.73)

JBTZ =

√
q̂1(q̂1 +M + q̂2q̂3

L2 )

2L2
N2ε2

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
. (3.74)

Again, notice how the static EVH point (0, εq̂2, εq̂3; ε2µ̂(q̂2, q̂3)) determines the IR 2d CFT
by fixing its central charge, whereas its orthogonal deformations (3.25) encode their finite
excitations. Any tangential deformation would have simply changed the value of (q̂2, q̂3), which
would correspond to a different CFT.

The “volume factor”
(
8µ0

2µ
0
3

∫
dµ2dµ3

)
multiplies the central charge and BTZ conserved

quantities as it did for the BTZ entropy (3.61). If we were to suitably sum over the value of the
central charge at each strip, this would agree up to the pinching factor ε with the near-BPS limit
of the central charge in the non-BPS regime (3.64). However, the mass and angular momentum
here are parametrically different to the non-BPS values (3.68), as the two types of excitation
are different.

In the near-BPS case we may view the central charge in terms of giant gravitons: from
(3.11) we see that in the limit (3.25)

Ni =
q̂i
L2
Nε ⇒ c = 3N2N3

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
, (3.75)

so that the sum of the values of the central charge at each strip will give us the total number
of giant intersections. This is evidence in favour of the view that the central charge counts the
number of giant intersections in the focussed strip.

Again, we can use Cardy’s formula (1.93) [5]

SCFT = 2π
√
c

6

(
L0 −

c

24

)
+ 2π

√
c̄

6

(
L̄0 −

c̄

24

)
(3.76)

to check the three dimensional Beckenstein Hawking entropy (3.61) is reproduced for the near-
EVH black holes.

Scaling of N : For non-BPS black holes, it was obvious that near-EVH excitations are finite
in a specific large N limit (3.67). In the near-BPS regime, however, the choice of scaling is more
subtle. We discuss here two possible large N limits one could take together with the near-EVH
limit.

Nε2 ∼ 1: The entropy of the original black hole (3.29) goes to zero, for finite N , as a
consequence of the dilute giant graviton approximation. Given the overall ε scaling in the near
horizon metric (3.54), it is natural to interpret the latter as a rescaling of the 10d Planck scale,
i.e. `4p → ε2`4p, as we usually do in the decoupling limits leading to the AdS/CFT correspondence
[68]. Keeping L finite requires N to scale as Nε2 ∼ 1 if gs remains fixed, i.e. α′ → εα′. This is
the same scaling considered in [28]. Given the non-compactness of the transverse space in the
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limit (3.26), it is the entropy density that one should require to keep finite

s =
S

Vol(M4)
∝
(
Nε2

)2
finite but large =⇒ Nε2 ∼ 1. (3.77)

Thus, both considerations are consistent with the same scaling. We provide two further physical
arguments for why Nε2 ∼ 1 can be a meaningful limit to study:

1. One can estimate the mass density of open strings stretched between intersecting giants
as

mopen =
Mopen

lengthM4
∼ ε1/2

Lδα̂

`2s

1
Lε−1/2

∼
√
gs

L2
δα̂

√
Nε2 . (3.78)

where we used L4 = 4πgs`4sN and kept gs fixed. Thus, requiring energy density finiteness
of these excitations also dictates the scaling Nε2 ∼ 1.

2. The smallest distance computed in the near horizon metric (3.54) is of order ` ∼ L
√
ε

and the curvature invariants of the near horizon metric (3.54) are of order `−2. In order
to have a valid supergravity approximation in which stringy corrections are small we need
to require ` & `s. Since `/`s ∼

(
Nε2

)1/4, for a fixed gs, validity of supergravity leads to
Nε2 ∼ 1. The validity of the supergravity description also demands sL4 & 1 where s is
the entropy density. This latter, as discussed above, is also satisfied with Nε2 ∼ 1 scaling.

Nε ∼ 1: However, the number of giants (3.11) in the limit described above blows up and
we do not have a notion of “giant density”. In the truncated three dimensional theory, we do
not have a concept of density either when discussing the thermodynamic quantities. We also
note that in the limit Nε2 ∼ 1, the three dimensional Newton’s constant G3 ∼ (Nε)−2 vanishes.
While this is desirable in the pinching case, we do not require G3 → 0 to keep a finite mass gap
in the dual CFT2. We will see that in the near-EVH near-BPS limit, specific combinations of
the gauge theory charges (3.10) scale like Nε. Although a definition of “charge density” would
allow them to remain finite for Nε2 ∼ 1, we do not know what this means in gauge theory
language. We also note that taking a near-EVH limit of these charges is independent of the
geometry.

One way to address these questions is to scale N like Nε ∼ 1. Keeping a finite AdS5 radius
requires then that gsε ∼ 1, resulting in a large ’tHooft coupling in the dual gauge theory,
λ′tHooft = g2

YMN = gsN ∼ 1
ε2 . We may ask why the entropy in ten dimensions remains finite

in this limit, when the near horizon area seems to be infinite. To understand this, we first note
that taking the near-EVH limit of the entropy is independent of the near horizon geometry.
This implies that the near-EVH limit should be accompanied by the Nε ∼ 1 scaling. Then,
recalling (3.52), we can view the horizon manifold in the near horizon geometry as the product
of a small manifold and a finite, compact piece:

ds2r=r+ ∼ ε

[
x2

+

(
dψ1 −

dτ

`3

)2

+R2dΩ2
3

]
+

L2

R2(µ0
1)2

3∑
i=2

q̂i
(
dµ2

i + (µ0
i )

2dψ2
i

)
. (3.79)

The volume of this spacetime does not blow up, and scales like (Nε)2.
For these reasons, we adopt the large N limit

Nε ∼ 1. (3.80)

In this limit, the 10d bulk quantities are kept finite, as are the dual N = 4 super Yang-Mills
theory charges. The AdS3 and CFT2 expressions also remain finite for (3.80).

3.5 First Law of Thermodynamics: Static Charged near-
EVH Black Holes

We now explicitly demonstrate how the BTZ first law of thermodynamics follows from the 10d
one (3.9) as described in section 2.3, which we may view as further supporting evidence of
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the EVH/CFT correspondence reviewed in section 1.8. We will give well-defined values to the
abstract objects (2.67) introduced in section 2.3, and show that the generic proposal holds in
both the non-BPS and near-BPS cases.

The 10d dimensional black holes (3.1) interpolate between asymptotically AdS5 and locally
AdS3 geometries. As a near horizon limit of a system probes its low-energy sector, we call
the near horizon sector the IR sector, and we label the asymptotically AdS5 system by UV.
Physical variations appearing in the first law are generically defined as one-forms on the black
hole parameter space. In our examples, the UV {dE, dJ1, dJi} forms are defined on a four
dimensional space spanned by (q1, q2, q3, µ), while in the IR, physical variations belong to the
subspace of orthogonal deformations to the EVH hyperplane, leaving the EVH point fixed.

3.5.1 Non-BPS first law

As advocated in section 2.3, we distinguish two categories of 10d black holes charges in the
near-EVH non-BPS regime (3.21):

• Y = {E, J2, J3} with an ε expansion of the form Y = Y (0) + ε2Y (2).

• J1 with expansion J1 = ε2J
(2)
1 .

Y (0) is the value of charges at the EVH point, whereas Y (2) are the near-EVH excitations.
Ωi have analogous expansions to J2 and J3, with finite Ω(0)

i values at the EVH point (3.18),
corresponding to Ω(0) in section 2.3, and with ε2 corrections.

Consider the UV first law (3.9). Using (3.41), its left hand side equals

THdSBH =
ε(q2q3)

1
4

L
TBTZdSBTZ . (3.81)

To discuss its right hand side, we first note that there are no non-trivial fibrations in the near
horizon geometry (3.35), so that Aα = Bα = 0 (2.63). In agreement with our analysis of the
previous Chapter, we find

ε2
(
E(2) − Ω(0)

2 J
(2)
2 − Ω(0)

3 J
(2)
3

)
=
ε(q2q3)

1
4

L
MBTZ. (3.82)

We also have

Ω(0)
1 =

(q2q3)
1
4

L
ΩBTZ, J1 = εJBTZ. (3.83)

Adding all contributions and dropping the overall ε(q2q3)
1
4

L constant factor, the exact IR first
law is derived

THdSBH = dE − Ω1dJ1 −
3∑
i=2

ΩidJi

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ.

(3.84)

This reduction is our first example of the first law derivation in section 2.3. We will see in the
following section and Chapter 4 that this result is universal for near-EVH black holes.

3.5.2 Near-BPS first law

As the near-BPS near-VH black hole does not have a vanishing temperature, and its near horizon
geometry (3.54) does not contain a pinching AdS3 orbifold, we do not necessarily expect the
first law proposal of section 2.3 to hold. Nevertheless, we examine the first law (3.9) in the
near-BPS near-VH regime (3.26). We first distinguish the categories of 10d black holes charges
and chemical potentials in this regime:
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• Y = {E, J2, J3} with an ε expansion of the form Y = εY (1) + ε2Y (2), where Y (1) are func-
tions of the EVH parametes q̂2, q̂3 and Y (2) encode the near-EVH excitation parameters
q̂1,M .

• J1 with expansion J1 = ε2J
(2)
1 (q̂1,M).

The angular velocities scale like Ω1 = Ω(0)
1 + O(ε2), Ωi = Ω(0)

i (q̂2, q̂3) + O(ε). As described in
section 2.3, Ω(0)

1 depends on the near-EVH parameters and gives the BTZ angular velocity, up
to the temporal scaling:

ΩBTZ = L2

√
q̂1(q̂1 +M + q̂2q̂3

L2 )

R3x2
+

=
L

R
Ω(0)

1 . (3.85)

On the left hand side of the first law, we have from (3.63) and (3.61)

TBTZdSBTZ =
L

R

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
THdSBH . (3.86)

On the right hand side, the near-EVH expansion is7

E −
3∑
i=2

ΩidJi = ε

(
E(1) −

3∑
i=2

Ω(0)
i J

(1)
i

)
+ ε2

(
E(2) −

3∑
i=2

Ω(0)
i J

(2)
i

)
. (3.87)

As the system is near-BPS, the first order contribution vanishes, E(1) −
∑3
i=2 Ω(0)

i J
(1)
i = 0. In

the near-BPS regime, we cannot define the BTZ mass as in (2.67). Instead, we define a notion
of “First Law Mass”8 as per section 2.3 as

M1st Law = ε2

(
E(2) −

3∑
i=2

Ω(0)
i J

(2)
i

)
, (3.89)

so that its variation is proportional to the variation of the BTZ mass (3.73)9

dMBTZ =
L

R

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
dM1st Law. (3.92)

The BTZ angular momentum is given by

JBTZ =
(

8µ0
2µ

0
3

∫
dµ2dµ3

) √q̂1(q̂1 +M + q̂2q̂3
L2 )

2L2
N2ε2 =

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
J1. (3.93)

7There are O(ε2) terms like
P3
i=2 Ω

(1)
i J

(1)
i , but these do not contribute to the near horizon geometry; also

dJ
(1)
i = 0.
8To connect with section 2.3, we note that the scaling (3.48) is a combination of a gauge shift and a pinching:

ψi → ϕi = ψi −Aiτ, ϕi → ψ̂i =
ϕi√
ε
, (3.88)

where Ai = Ω
(0)
i .

9We have
 

E(2) −
3
X

i=2

Ω
(0)
i J

(2)
i

!

ε2 =
q̂2q̂3 + 2q̂1L2 +ML2

4L5
N2ε2 =

q̂2q̂3

4L5
N2ε2 +

2q̂1 +M2

4L3
N2ε2 (3.90)

so that

d

 

E(2) −
3
X

i=2

Ω
(0)
i J

(2)
i

!

ε2 = d

„

2q̂1 +M2

4L3

«

N2ε2 ∼ dMBTZ, (3.91)

as q̂2, q̂3 parameterise the EVH plane.
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Adding all contributions and dropping the overall LR
(
8µ0

2µ
0
3

∫
dµ2dµ3

)
factor, the exact IR first

law is derived

THdSBH = dE − Ω1dJ1 −
3∑
i=2

ΩidJi

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ.

(3.94)

We can see that this relation is satisfied regardless of the transverse volume and of N scaling.
The first law result (3.94) holds even though the EVH black hole has finite temperature and
no pinching angle. This an indication that there may be a more general way than the one in
section 2.3 of deriving the BTZ first law from the near-EVH one.

3.6 EVH/CFT2 vs. AdS5/CFT4

Our black holes have a UV description as thermal states in N = 4 super Yang-Mills theory.
Taking the low energy limit of the (UV) field theory corresponds to focussing on an IR sector
of the theory. On the other hand, our AdS3 near horizon geometry hints at the emergence of
an IR 2d CFT dual description. Here we advocate a more direct connection between the two
CFTs.

The analysis of the RG flow in field theory and gravity is beyond the scope of this thesis,
but we can gain some insight by studying how the quantum numbers of a bulk scalar field probe
transform along the flow. Given the isometries of the original black hole (3.1), the UV quantum
numbers of this scalar field will be associated with the eigenvalues of the following operators

∆UV = `E = i`∂t, J2,3 = −i∂ψ2,ψ3 J1 = −i∂ψ1 . (3.95)

Similarly, the IR quantum numbers are mapped to

∆IR = i`3∂τ , JIR = −i∂ψIR , (3.96)

where ψIR is the AdS3 angle; in the non-BPS case, ψIR = χ̂ and in the near-BPS case ψIR = ψ1.
From now on, as the notation above suggests, we will identify these eigenvalues with the gravity
conserved charges. Though this need not hold generically, it will turn out to provide us with
the right intuition.

3.6.1 EVH/CFT2 vs. AdS5/CFT4: non-BPS

The conformal dimension ∆UV of the non-BPS states dual to the non-BPS black holes is
expected to “run” along the RG flow implemented by the near horizon limit r = ερ, ε → 0.
Hence, its relation to ∆IR is non-trivial. On the other hand, given the quantised nature of the
remaining conserved U(1) charges, these will not run.

Given the large gauge transformations (3.32) implemented in the near-EVH non-BPS regime,
we learn the angular momentum along the AdS3 pinching circle equals

JIR = −i ∂
∂χ̂

= −i∂ψ1

∂χ̂

∂

∂ψ1
=

1
ε
J1 = JBTZ, (3.97)

where we used (3.68).

63



The IR conformal dimension equals

∆IR = i`3∂τ = i`3

(
∂t

∂τ

∂

∂t
+

3∑
i=2

∂ψi
∂τ

∂

∂ψi

)
(3.98)

=
`3

ε(q2q3)
1
4

(
∆UV − L

3∑
i=2

Ω(0)
i Ji

)
(3.99)

=
`3

ε(q2q3)
1
4

(
∆(0)

UV − L

3∑
i=2

Ω(0)
i J (0)

i

)
+ ε

`3

(q2q3)
1
4

(
∆(2)

UV − L

3∑
i=2

Ω(0)
i J (2)

i

)
(3.100)

= ∆0
IR + `3MBTZ, (3.101)

where we have used (3.82) and where

∆0
IR =

`3

ε(q2q3)
1
4

(
∆(0)

UV − L
3∑
i=2

Ω(0)
i J (0)

i

)
= − `3

ε(q2q3)
1
4

N2q2q3
4L4

. (3.102)

Notice ∆0
IR only depends on the EVH point (and not the excitations) and could consequently

be interpreted as a “zero point energy” from the IR 2d CFT perspective. This contribution
is generically divergent, but vanishes when supersymmetry is preserved, i.e. q2q3 = 0. This
would reproduce the expected ∆IR = L0 + L̄0 bound in this case, due to the protection of
supersymmetry along the RG flow. Near the BPS point, i.e. q2q3 ∼ ε2, the “zero point energy”
still remains finite in the large N limit (3.67).

We conclude that both ∆IR and JIR match the expected IR 2d CFT quantities. This
is a good piece of evidence in favour of the EVH/CFT correspondence since despite lack of
supersymmetry, the RG flow from the UV to the deep IR does not lead to contributions not
captured by the 2d CFT. This fact supports the expectation that the near-EVH sector in the
UV dual 4d CFT is a decoupled sector described by this IR 2d CFT where the UV quantum
numbers were reshuffled (1.198).

Null orbifold discussion: We can repeat the procedure for the null orbifold case, where the
near horizon limit is given in (3.43). Here, we have

∆IR = i`3∂τ = i`3

(
∂t

∂τ

∂

∂t
+

3∑
i=2

∂ψi
∂τ

∂

∂ψi

)

=
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ε2(q2q3)
1
4

(
∆UV − L

3∑
i=2

Ω(0)
i Ji −

√
VJ1

)

=
`3

ε2(q2q3)
1
4

(
∆(0)

UV − L

3∑
i=2

Ω(0)
i J (0)

i

)
+

`3

(q2q3)
1
4

(
∆(2)

UV − L

3∑
i=2

Ω(0)
i J (2)

i −
√

VJ (2)
1

)

=
∆0

IR

ε
+ `3MBTZ −

√
VJ (2)

1 , (3.103)

where we recall that the null orbifold limit does not include the pinching of an angle, so that
MBTZ ∼ N2. As the conformal dimension, after subtracting the zero point energy, scales like
N2, one can deduce that the null orbifold limit does not require a large N scaling. We expect
that the extra contribution

√
VJ (2)

1 to the conformal dimension is associated to some notion
of spectral flow, which is geometrically realised as rotations in the manifold transverse to the
orbifold. We will come across similar “extra terms” in the rotating case study of Chapter 4.
Also

JIR = J1 ∼ N2ε2 → 0, (3.104)

which is expected as there is no rotation in the null orbifold (3.44).
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3.6.2 EVH/CFT2 vs. AdS5/CFT4: near-BPS

In the near-EVH near-BPS limit, the charges (3.10) scale like

∆UV ∼ N2ε, J1 ∼ (Nε)2, Ji ∼ N2ε. (3.105)

It is clear that in the large N limit (3.80), ∆UV and Ji diverge, while J1 is kept finite. However,
we will see that the combination

∆IR ≡ ∆UV −
3∑
i=2

Ji ∼ (N2ε2) (3.106)

remains finite. The near-EVH (3.26) near horizon (3.53) limit focusses the dynamics onto a
sector of N = 4 super Yang-Mills theory. It was argued in [34] that J1 and ∆IR characterise
a set of “almost-quarter-BPS” operators associated to open strings stretched between smeared
giant gravitons [34]. In the following, we will provide evidence that the sector of N = 4 super
Yang-Mills theory decoupled in the near-EVH near-BPS limit is described by a 2d CFT, in line
with the open string picture.

The angular momentum along the AdS3 circle is given by J1 = JIR, which is proportional
to the BTZ angular momentum, so that

JIR = −i ∂

∂ψ1
=

JBTZ(
8µ0

2µ
0
3

∫
dµ2dµ3

) . (3.107)

The conformal dimension

∆IR = i`3∂τ = i`3
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∂t

∂τ

∂

∂t
+

3∑
i=2

∂ψi
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∂
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)
(3.108)

= ∆UV − L
3∑
i=2

Ω(0)
i Ji = ∆ −

3∑
i=2

Ji (3.109)

= ε

(
∆(1)

UV − L
3∑
i=2

Ω(0)
i J (1)

i

)
+ ε2

(
∆(2)

UV − L
3∑
i=2

Ω(0)
i J (2)
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)
(3.110)

=
q̂2q̂3
4L5

N2ε2 +
`3MBTZ(

8µ0
2µ

0
3

∫
dµ2dµ3

) (3.111)

is the sum of some “zero point energy” ∆0
IR, and a term proportional to the BTZ mass, where

we have used (3.89). The “zero point energy”

∆0
IR =

q̂2q̂3
4L4

N2ε2 =
N2N3

4
(3.112)

is proportional to the number of giant intersections10. It is finite in the large N limit as
expected, and agrees up to −ε with the near-BPS limit of the zero point energy (3.102) in the
non-BPS case.

We conclude that ∆IR and JIR match the expected IR 2d CFT quantities (3.71 -3.72), up
to the “volume factor”

(
8µ0

2µ
0
3

∫
dµ2dµ3

)
. This is further evidence for the argument that the

2d CFT dual to the near horizon AdS3 geometry captures the dynamics of the sector of the
N = 4 super Yang-Mills theory we have focussed on by taking a near-EVH near horizon limit.

3.7 A Check: Comparison with Kerr/CFT

In this section, we investigate the behaviour of the CFT data, i.e. central charges and Frolov-
Thorne temperatures, provided by the Kerr/CFT correspondence described in section 1.5, and
its extremal black hole extension [78], when the extremal horizon size vanishes. When the latter

10The number of giants corresponding to J1 is of order Nε2.
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occurs, the AdS2 near horizon responsible for the boundary conditions proposed in [79, 78] may
disappear, giving rise to the local AdS3 throats discussed in this note. We thus seek a connection
between the 2d CFTs appearing in the EVH/CFT correspondence discussed in previous sections
and the 2d chiral CFTs emerging in the Kerr/CFT correspondence described in section 1.5.
As outlined in section 1.6, our perspective is that a 2d chiral CFT is the Discrete Light-Cone
Quantization (DLCQ) of a standard 2d CFT [40]. To explore this perspective, we examine
the Kerr/CFT Frolov-Thorne temperatures and central charges in the context of the family
of embedded black holes (3.1). In the region of parameters where Kerr/CFT and EVH/CFT
overlap, we can always derive one of the Kerr/CFT descriptions from the EVH/CFT.

We recall from 1.5 that the extremal black hole/CFT correspondence [78] applies to near
horizon geometries of the form

ds2 = Ã

(
−ρ2 dt2 +

dρ2

ρ2

)
+
n−1∑
α=1

Fα dy
2
α +

n−1+ε∑
i,j=1

g̃ij ẽi ẽj ,

ẽi = dφi + kiρ dt. (3.113)

When certain boundary conditions are applied to these near horizon geometries, one discovers
that the asymptotic symmetry group includes a single Virasoro algebra extension for each of
the compact U(1) isometries ∂φi [38]. Their central charges equal [38]

ci =
6kiSBH

π
, (3.114)

where SBH stands for the entropy of the original finite extremal black hole. The application of
Cardy’s formula

SCardy = 2π
√
ci
6

(
Li0 −

ci
24

)
=
π2

3
ciTi = SBH, (3.115)

always reproduces SBH since the CFT temperature Ti equals

ki =
1

2πTi
, Ti = −T

′0
H

Ω′0
i

, with T ′0
H ≡ ∂TH

∂r+

∣∣∣∣
r+=r0

, Ω′0
i ≡ ∂Ωi

∂r+

∣∣∣∣
r+=r0

, (3.116)

where TH(r+) and Ωi(r+) are the temperature and angular velocities on the outer horizon r+
and r0 stands for its extremal value.

Finite extremal R-charged AdS5 black holes fit this discussion. Since these have three U(1)
isometries describing independent rotations in S5, there should exist three inequivalent chiral
CFTs reproducing the black hole entropy. This system was analysed in [80], where the following
Frolov-Thorne temperatures were computed

Ti =
(r20 + qi)2(q1q2q3 + r60)
πq̃i Lr70

√
H1H2H3(r0)

. (3.117)

These fix the central charges through (3.114).
Given the emergence of local AdS3 throats in these situations, we are interested in matching

the AdS3/CFT2 dictionary to the limiting values of the Kerr/CFT predictions above and,
whenever possible, interpret and justify the latter results in terms of the former. As we have
seen, the large N scalings in the non-BPS (3.67) and near-BPS (3.80) scenarios render the
respective AdS3 and CFT2 charges finite.

Taking the near-EVH limit: Since Kerr/CFT works for extremal finite size black holes,
while EVH/CFT works for near-EVH black holes which can be extremal or non-extremal, we
need to compare them in some region of parameter space where both apply. This can be
achieved by restricting to the extremal excitations in the EVH/CFT side, i.e. when the BTZ
geometry obtained in the near horizon limit of near-EVH black holes is an extremal BTZ, and
considering the vanishing entropy limit in the Kerr/CFT side. The second step involves a
singular limit. On the CFT side, this is because some of the Kerr/CFT central charges tend
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to zero trying to reproduce the appearance of a vanishing geometric cycle to account for the
vanishing entropy. On the bulk side, this is because of the non-commutativity between taking
the near horizon limit of a near-EVH black hole and taking the near-EVH limit of the near
horizon of an extremal finite horizon black hole. The two limit procedures lead to different
geometries.

3.7.1 Non-BPS near-EVH regime

The Frolov-Thorne temperatures (3.117) in the near-EVH limit (3.21) with x+ = x− = x0 are

T1 =
L
√
q̂1ε

x0π(q2q3)
1
4
, T2 =

q
1
4
2 q̂1L

5

π
√
q3 + L2q

3
4
3 x

5
0ε
, T3 =

q
1
4
3 q̂1L

5

π
√
q2 + L2q

3
4
2 x

5
0ε
. (3.118)

Extremality gives M = 2
√

Vq̂1q2q3/L, so x2
0 = L

√
q̂1
V and we may compare T1 to the left

moving temperature in the extremal case

TL =
x+ + x−

4π`3
=

x0

2π`3
(3.119)

to find that the two temperatures agree up to epsilon: T1 = εTL. Then we compute the leading
terms in the Kerr/CFT central charges in the near-EVH limit

cψ1 =
3q2q3N2

L4
√

V
, cψ2 =

3
√
q̂1q2q

(3/2)
3

√
q3 + L2N2ε2

L6V(3/2)
, cψ3 =

3
√
q̂1q3q

(3/2)
2

√
q2 + L2N2ε2

L6V(3/2)
.

(3.120)
In the large N scaling limit (3.67) we see that ci ∼ ε and Ti ∼ ε−1. The corresponding CFTs
thus have infinite mass gaps, and an infinitely high energy would be required to populate the
levels.

Following [81], χ̂ = εψ1 implies
cχ̂ = εcψ1 , (3.121)

which is in exact agreement with the Brown Henneaux central charge (3.64). This is in accord
with our proposal/vision for connecting Kerr/CFT and EVH/CFT: the chiral 2d CFT appearing
in Kerr/CFT is the DLCQ of the one appearing in the EVH/CFT.

In the pinching CFT, the scaling of the quantities cψ1 ∼ N2, T1 ∼ ε can be interpreted as
stating that the mass gap is being sent to zero and a very low energy would be required to
populate the levels, in agreement with the discussions of section 1.7. We can translate these
quantities to a CFT on a regular cylinder, where cχ̂ ∼ TL ∼ 1, so that the mass gap and
Frolov-Thorne temperature are finite.

Although it would be tempting to interpret the central charge cχ̂ in terms of intersecting
giant gravitons, the microscopic understanding of the non-BPS regime is not established.

Comment on the null self-dual orbifold: In (3.43), we identified a different near horizon
limit giving rise to a different local AdS3 throat, corresponding to the null self-dual orbifold. It
is straightforward to see the central charge describing this throat is the same as in the previous
discussion. The difference in scaling in the time coordinate and the absence of pinching are
consistent with the chiral nature of the dual CFT description, which is identified with the one
emerging in the limiting Kerr/CFT description. In this case, though, the absence of pinching
suggests the surviving chiral sector is not decoupled. It is worth stressing the appearance of
non-trivial gauge fields in the transverse dimensions. Note also the discussion in footnote 11.
These are reminiscent of the deformations recently discussed in [82]. It would be interesting to
understand the physics of these.

3.7.2 Near-BPS near-VH regime

The purpose of this section is to describe the limiting behaviour of the three CFTs that repro-
duce the entropy for extremal finite R-charged AdS5 black holes in the near-BPS regime (3.26)
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and to identify which one matches, if any, with the 2d CFT that one may associate with the
near horizon AdS3 geometry (3.54). Geometrically, it is expected the latter should correspond
to the chiral CFT based on the Virasoro extension of the isometry direction along which giant
gravitons intersect. Thus, one expects c1 and T1 to have different scaling behaviour from the
two remaining Kerr/CFT descriptions.

Let us analyse the CFT temperatures first. The form for the inner and outer BTZ horizons
(3.55) shows that at extremality x+ = x− = x0 gives µ̂c = M2

4q̂1
and

x2
0 =

L2

R2

(
M

2
+ q̂1

)
⇒ TL =

x+ + x−
4π`3

=
1

2πR
L

R

√
M

2
+ q̂1, TR = 0. (3.122)

While the Frolov-Thorne temperatures scale like Ti ∼ ε−1, when we compute the near-EVH
expansion of the parameters in T1 we find that it is in exact agreement with TL,

T1 = TL. (3.123)

The leading terms of the central charges in the near-BPS near-VH limit are

c1 =
3q̂2q̂3
L4

N2ε2 = 3N2N3, ci =
3R4(M2 + q̂1)

L4q̂i
N2ε3. (3.124)

where we used the quantisation conditions (3.11). c1 agrees up to the “volume factor” with
the Brown Henneaux central charge (3.70). It also agrees with the total number of giant inter-
sections, independently of whether N is scaled, confirming our expectation that the surviving
CFT is the one living on the intersection of giant gravitons.

Here, as in subsection 3.7.1, we see that the other two CFT descriptions break down as their
central charges ci ∼ ε vanish and Frolov-Thorne temperatures Ti ∼ ε−1 diverge.

We do not understand either in field theory or in gravitational terms, what the proper
connection is between the description above and the one emerging in Kerr/CFT. We do want
to emphasise that our approach insisted on taking a near horizon limit to study the IR properties
of the on-shell system. In this near-BPS regime, this forced us to lose part of the degrees of
freedom responsible for the full black hole entropy. Both the Kerr/CFT central charge c1 and
our near horizon analysis suggest the potential existence of a 2d CFT which is not intrinsically
localised in the horizon. Similar observations have been made using low energy probes in
(non-)extremal black holes [76, 77], without explicitly relying on the near horizon geometry.11

It would be very interesting to provide any technical evidence confirming the structures
uncovered in gravity, along the lines of [83], by which the sector in N = 4 super Yang-Mills
theory may be equivalently described by a (non-)chiral CFT whose degrees of freedom should
be the open strings stretched between giant gravitons.

3.8 Discussion

In this Chapter we studied aspects of Extremal Vanishing Horizon (EVH) black holes in the
family of static R-charged AdS5 black holes, envisioning that a generic black hole in this family
can be understood as excitations above the EVH black hole. As discussed in section 1.8,
generic non-BPS near-EVH black holes are defined as black holes with AH, TH, GN → 0 while
the ratios AH/TH and AH/GN remain finite, where AH is the horizon area, TH is the Hawking
temperature and GN is the Newton constant. We saw that near-BPS VH black holes have
some other subtleties: the Hawking temperature is finite and as a result the near horizon limit
required focussing on “strips” of the horizon. Despite these differences, we showed that in the
near horizon limit of a generic EVH black hole one obtains an approximate AdS3 throat, which
is excited in the near-EVH limit to a BTZ black hole.

11If we start with a generic BPS or extremal black hole, take the near horizon limit first (as is done in [78, 38])
and then take the nearly vanishing horizon limit, as we have done in this section, we obtain a different geometry
than when we first take the near-EVH black hole limit and then take the near horizon limit, as we did in sections
3.3.2 and 3.3.4. Nonetheless, despite having different geometries, as we have shown the entropies obtained in
these two cases are equal.

68



We discussed that R-charged AdS5 EVH black holes can be BPS or non-BPS and we have
seen that the near horizon limit is only well-defined in the 10d uplift of the black hole, as the
angular direction of the local AdS3 geometry comes from the transverse S5.

The appearance of the AdS3 geometry in the near-BPS case required geometrically focussing
on a strip of the S5. In the non-BPS case this was not necessary, though the AdS3 throat
becomes a pinching orbifold of AdS3, a feature seemingly generic to all non-BPS EVH black
holes. We discussed the possibility to resolve the pinching orbifold using large N and large
central charge limits.

As mentioned, in the near-BPS case the near-EVH sector of the dual four dimensional
gauge theory has an interpretation in terms of stretched strings between giant gravitons. This
interpretation compliments our results, which state that the excitations may be described by
the CFT2.

We applied our first law analysis of near-EVH black holes to these asymptotically AdS5

black holes. The non-BPS case is compatible with the analysis of section 2.3 and the BTZ
first law is extracted from the expansion of the 5d first law. Although near-BPS black holes
do not undergo the near horizon limit (2.58) outlined in section 2.3, the first law reduces in
the near-EVH limit to that of the BTZ black hole. It would be interesting to invesigate the
derivation of a generic first law near-EVH expansion that reflects this result.

As we noted in section 1.8, the appearance of an approximate near horizon AdS3 throat
motivated the EVH/CFT proposal [51]: near-EVH black holes or low energy excitations around
an EVH black hole is described by a subsector of a 2d CFT. Moreover, when dealing with
asymptotic AdS5 black holes, there is also a UV dual CFT (N = 4 super Yang-Mills theory in
this case). Based on the gravity picture we then proposed a relation between the IR and UV
dual CFTs. Exploring and establishing this proposal further is an open interesting question.

We also discussed how the EVH/CFT and Kerr/CFT proposals are related to each other
along the lines of discussions in [40, 44, 50, 84, 85]: The chiral CFT appearing in Kerr/CFT
in the near-EVH locus in the parameter space corresponds to the DLCQ of the 2d CFT whose
pinching orbifold limit appears in the EVH/CFT. This, together with our discussions here, can
potentially be used to identify the microscopic degrees of freedom of the dual 2d CFT and it
would be interesting to pursue this further.

The EVH black holes are not limited to static ones and can be stationary, e.g. the one
considered in [51]. Within the class of asymptotic AdS5 black holes we have a more general
family of EVH black holes which involve rotation as well as R-charge. This class of charged-
rotating AdS5 EVH black holes will be studied in Chapter 4.
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Chapter 4

Case Study II: Rotating Two
Charged Black Holes

The following work was done in collaboration with M. M. Sheikh-Jabbari, J. Simón, and H.
Yavartanoo, and is published in [66]. This Chapter is a lightly edited version of the published
paper.

We extend the analysis of Chapter 3 to consider families of charged rotating asymptotically
AdS5 extremal black holes with vanishing horizon (EVH black holes) whose near horizon geome-
tries develop locally AdS3 throats. Using the AdS3/CFT2 duality, we propose an EVH/CFT2

correspondence to describe the near-horizon low energy IR dynamics of near-EVH black holes
involving a specific large N limit of the 4d N = 4 super Yang-Mills theory . We solidify our
claims in Chapter 2 by demonstrating explicitly how the “UV first law” of thermodynamics
reduces to the “IR first law” satisfied by the near horizon BTZ black holes in this near-EVH
limit. We give a map between the UV and IR near-EVH excitations as further evidence of the
EVH/CFT correspondence outlined in section 1.8. We also discuss the connection between our
EVH/CFT proposal and the Kerr/CFT correspondence in the cases where the two overlap.

4.1 Rotating Two Charged Solutions to Type IIB Super-
gravity

The particular class of black holes considered here are solutions to the U(1)3 5d gauged super-
gravity whose bosonic action is [86]

S5d =
1

16πG5

∫
d5x

√
−g

(
R− 1

2
∂~ϕ2 − 1

4

3∑
i=1

X−2
i F2

i +
4
`2

3∑
i=1

X−1
i

+
1
4
εµνρσλFµν

1 Fρσ
2 Aλ

3

)
, (4.1)

where ~u = (u1, u2) and

X1 = e
− 1√

6
u1− 1√

2
u2 , X2 = e

− 1√
6
u1+

1√
2
u2 , X3 = e

2√
6
u1 . (4.2)

Its most general asymptotically AdS5 black hole solutions include three electric charges, two
angular momenta (spins) and mass. They form a six parameter family of solutions. The four
parameter subclass of static black holes was constructed in [87]. The EVH black holes in this
subclass, which are two-charge black holes, were studied in Chapter 3 and [34, 28].

In this work we consider black holes with two independent spins, mass and two equal R-
charges, with the third R-charge a function of the remaining charges. These solutions were first
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constructed in [88]1. Their metrics are

ds2 = H− 4
3

[
− X

ρ2
(dt− a sin2 θ

dφ

Ξa
− b cos2 θ

dψ

Ξb
)2

+
C

ρ2
(
ab

f3
dt− b

f2
sin2 θ

dφ

Ξa
− a

f1
cos2 θ

dψ

Ξb
)2 (4.3)

+
Z sin2 θ

ρ2
(
a

f3
dt− 1

f2

dφ

Ξa
)2 +

W cos2 θ
ρ2

(
b

f3
dt− 1

f1

dψ

Ξb
)2
]

+H
2
3 (
ρ2

X
dr2 +

ρ2

∆θ
dθ2 ) ,

gauge and scalar fields

A1 = A2 = P1(dt − a sin2 θ
dφ

Ξa
− b cos2 θ

dψ

Ξb
)

A3 = P3(b sin2 θ
dφ

Ξa
+ a cos2 θ

dψ

Ξb
)

X1 = X2 = H− 1
3 , X3 = H

2
3 , (4.4)

where

H = ρ̃2/ρ2, ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, ρ̃2 = ρ2 + q ,

f1 = a2 + r2, f2 = b2 + r2, f3 = (a2 + r2)(b2 + r2) + qr2;

∆θ = 1 − a2

`2
cos2 θ − b2

`2
sin2 θ,

X(r) =
1
r2

(a2 + r2)(b2 + r2) − 2m+ (a2 + r2 + q)(b2 + r2 + q)/`2 , (4.5)

C = f1 f2(X + 2m − q2/ρ2),

Z = −b2 C +
f2 f3
r2

[f3 − r2

`2
(a2 − b2)(a2 + r2 + q) cos2 θ],

W = −a2 C +
f1 f3
r2

[f3 +
r2

`2
(a2 − b2)(b2 + r2 + q) sin2 θ] ,

Ξa = 1 − a2

`2
, Ξb = 1 − b2

`2
, , P1 =

√
q2 + 2mq
ρ̃2

, P3 =
q

ρ2
.

This family of solutions is specified by four parameters (a, b, q,m). The metric (4.3) is written
in an asymptotically rotating frame (ARF). The coordinate transformation

φS = φ+
a

`2
t , ψS = ψ +

b

`2
t (4.6)

brings it to the asymptotically static frame (ASF), where it is manifestly the AdS5 metric with
radius ` in the standard global coordinate system.

Charges and thermodynamics: Whenever the equation X(r) = 0 allows real positive
solutions, the configurations (4.3) describe a family of black holes. This is discussed in detail
in Appendix 4.A in the regime of charges we are interested in this chapter. In the following, we
review their charges and thermodynamics.

The angular momenta and electric charges of the family of black hole solutions can be
evaluated using Komar and Gauss integrals respectively [38],

Ja =
πa (2m+ q Ξb)

4G5Ξb Ξ2
a

, Jb =
πb (2m+ q Ξa)

4G5Ξa Ξ2
b

, (4.7)

Q1 = Q2 =
π
√
q2 + 2mq

4G5Ξa Ξb
, Q3 = − πabq

4G5`2Ξa Ξb
. (4.8)

1The most general six-parameter solution to this theory was constructed in [89].
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The minus sign of Q3 may seem strange, but we highlight here that it is not an independent
conserved charge, as it is proportional to both Ja and Jb. An explicit computation of Q3

may be found in Appendix 4.B. Note that Ja = Jφ and Jb = Jψ are the standard angular
momentum associated with rotations along the φ and ψ angles in the 3-sphere. We saw in
section 2.1 that the horizon structure determines the thermodynamic properties of the black
hole. Its temperature can be computed through the horizon surface gravity, leading to

TH =
2r6+ + r4+(`2 + a2 + b2 + 2q) − a2b2`2

2πr+`2[(r2+ + a2)(r2+ + b2) + qr2+]
, (4.9)

while the Bekenstein–Hawking entropy is proportional to the area of the black hole horizon,

SBH =
π2[(r2+ + a2)(r2+ + b2) + qr2+]

2G5ΞaΞbr+
. (4.10)

The outer horizon (r = r+) is the Killing horizon generated by the Killing vector field

ξΩ = ∂t + ΩSa∂φS + ΩSb ∂ψS , (4.11)

where ΩSa and ΩSb stand for the angular velocities on the horizon in the ASF [88]

ΩSa =
a(r4+ + r2+b

2 + r2+q + `2b2 + `2r2+)
`2(a2 + r2+)(b2 + r2+) + `2qr2+

, ΩSb =
b(r4+ + r2+a

2 + r2+q + `2a2 + `2r2+)
`2(a2 + r2+)(b2 + r2+) + `2qr2+

. (4.12)

The same angular velocities in the ARF equal ΩRa = ΩSa − a
`2 and ΩRb = ΩSb − b

`2 , calculated by
demanding that the Killing vector field (4.11) is invariant under diffeomorphisms:

ξΩ = ∂t + ΩRa ∂φ + ΩRb ∂ψ. (4.13)

The electrostatic potentials Φi associated to the electric charges can be computed through the
definition Φi = ξµΩAi

µ|r=r+ . One finds

Φ1 = Φ2 =

√
q2 + 2mq r2+

(a2 + r2+)(b2 + r2+) + qr2+
, Φ3 =

qab

(a2 + r2+)(b2 + r2+) + qr2+
. (4.14)

These values are invariant under the change of frame (4.6), as the effect of this shift in the
gauge fields (4.4) is compensated by the redefinition of the Killing vector (4.11).

The mass of these black holes can be determined by integrating the first law of thermody-
namics

TH dSBH = dE − Ωa dJa − Ωb dJb −
3∑
i=1

Φi dQi, (4.15)

giving rise to

E =
π[2m(2Ξa + 2Ξb − Ξa Ξb) + q(2Ξ2

a + 2Ξ2
b + 2Ξa Ξb − Ξ2

a Ξb − Ξ2
b Ξa) ]

8G5Ξ2
a Ξ2

b

. (4.16)

The BPS black holes among the family (4.3), with energy E a linear combination of the
electric charges and angular momenta, [38, 88, 96] parametrically satisfy the condition

m =
q(a+ b)(a+ b+ 2`)

2`2
, (4.17)

and the generic BPS solutions in this class preserve 1/4 of the supersymmetries of the original
theory, i.e. two (out of eight) real supercharges [38, 71].
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Embedding in type IIB supergravity: All solutions to (4.1) can be uplifted to on-shell
10 dimensional type IIB supergravity solutions using the ansatz [70]

ds210 =
√

∆̃ ds25 +
`2√
∆̃

3∑
i=1

X−1
i (dµ2

1 + µ2
i (dψi + Ai/`)2), (4.18)

with Xi as in (4.5), µi are functions parameterising a unit 2-sphere

µ3 = cosα , µ2 = sinα sinβ , µ1 = sinα cosβ , α, β ∈ [0,
π

2
] (4.19)

and

∆̃ =
3∑
i=1

Xiµ
2
i = H− 1

3 (µ2
1 + µ2

2) +H
2
3µ2

3 . (4.20)

The 10d metric (4.18) is a solution of IIB supergravity with constant dilaton φ, where eφ = gs,
and selfdual RR-fiveform field [70].

Recalling that G10 = 8π6g2
s`

8
s and performing a standard compactification over the 5-sphere,

we learn that the 5d Newton’s constant equals

G5 = G10
1

π3`5
=
π

2
`3

N2
, (4.21)

where N is the 5-sphere RR five-form flux and ` its radius
(
`4 = 4πgs`4s N

)
. Thus, all black

hole charges scale like N2.
The 10d perspective allows to reinterpret the 5d electrostatic potentials Φi and electric

charges Qi as angular velocities Ωi and angular momenta Ji on the transverse S5. Due to the
conventions in (4.18), their relation is

Ωi = −Φi
`
, Ji = −`Qi . (4.22)

As in 5d, all 10d angular velocities can be computed by requiring the vanishing of the norm of
the Killing vector field ξΩ = ∂t + ΩSa∂φS + ΩSb ∂ψS + Ωi∂ψi at the outer horizon.

Four dimensional N = 4 super Yang-Mills theory description: Like the black holes
analysed in Chapter 3, the black holes (4.3) correspond to thermal states in the dual N = 4
super Yang-Mills theory defined on R×S3 carrying charges :

∆UV = `E , J1 = J2 = Q1 =

√
q2 + 2mq
2`2ΞaΞb

N2 ,

Sa = Ja =
a(2m+ qΞb)

2`3Ξ2
aΞb

N2 , Sb = Jb =
b(2m+ qΞa)

2`3Ξ2
bΞa

N2 .

(4.23)

As usual, energy E becomes conformal dimension ∆UV, angular momenta Ja, Jb SO(4) spins
Sa, Sb and the electric charges Qi, R-charges Ji. By construction, these are functions of the
four parameters (a, b, q,m) and scale like N2.

Intersecting giant description: The black holes in this class have an analogous giant gravi-
ton description to those introduced in Chapter 3. Their world-volumes reside on two three cycles
on the S5, intersecting on a circle parameterised by ψ3 in our coordinates. These giant gravitons
are rotating on the ψ1 and ψ2 directions which are transverse to their world-volume; the electric
charges correspond to the angular momenta of the giants in each stack. The number of giants
in each stack is then given [72] by the q2 = q3 = q case of (3.11),

N1 = N2 =
2J1

N
. (4.24)
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As we see for generic values of the a, b, q parameters the number of giants in each stack grows
as N , and hence we are dealing with a system of order N2 giants.

We should comment that the intersecting giant graviton picture is a good one if we are
close to a BPS point, where moving slightly away from that would correspond to turning on
excitations (deformations) on the giant graviton world-volume. In this picture the spins Ja, Jb
would correspond to rotating the giant on the S3⊂AdS5. (Recall that each giant is already
rotating on a circle in S5.)

4.2 The Set of EVH and Near-EVH Black Holes

4.2.1 EVH black holes

Consider the four dimensional black hole parameter space, either in terms of (a, b, q,m) or
(a, b, q, r+). We are physically defining the subset of EVH configurations as a limit of near-
extremal black holes in which AH , TH ∼ ε → 0, keeping AH/TH finite as discussed in section
1.8. Inspection of (4.9) and (4.10) reveals

AH, TH ∼ ε→ 0 ⇒ r+ ∼ ε , a ∼ εα , b ∼ εβ , β ≥ α ≥ 0, α+ β ≥ 2 . (4.25)

where we used the a ↔ b exchange symmetry to assume b ≤ a. This is the most general
configuration for r+ = O(ε) when q = O(1).. Thus, EVH black holes require

r+ = 0 and ab = 0 . (4.26)

These describe a bifurcate hypersurface, corresponding to the a = 0 or b = 0 branches. Since
b ≤ a, we shall focus on the b = 0 branch. Requiring X(r+ = b = 0) to vanish, ensuring the
presence of a horizon, gives rise to the further constraint

m =
q2 + a2(`2 + q)

2`2
. (4.27)

In the following, we shall distinguish between two types of EVH configurations:

Static : a = b = r+ = 0 and Rotating : b = r+ = 0, a 6= 0 . (4.28)

The static EVH configuration corresponds to the (q1, q2, q3;µ) = (0, q, q, µ) configuration of
Chapter 3 as the subspace spanned here by (m, q) is related to the subspace spanned in Chapter
3 by (µ, q) by the map (m, q) = (µ/2, q). We will see though that as the full parameter space of
the rotating black holes is manifestly different to that of the three-charged black holes Chapter
3, its near-EVH deformation describes a different set of black holes. In figure 4.1, we illustrate
the space of EVH configurations, where we already took into account that q ≥ 0 and |a|, |b| ≤ `.
Static configurations correspond to the q-axis at a = 0 with 2m = q2/`2, whereas rotating ones
correspond to generic a 6= 0 points with m given by (4.27). Among the rotating BPS EVH
black holes we have quarter-BPS configurations specified by q = a`, b = 0, or q = b`, a = 0.

4.2.2 Near-EVH black holes

To explore the physics of near-EVH black holes, we describe regions in parameter space close
to the EVH hypersurface. Equivalently to the static case study in Chapter 3, given a generic
b = 0 EVH point parameterised by (4.27), one can decompose the space of deformations into
tangential and orthogonal. The first correspond to

m+ δm =
(q + δq)2 + (a+ δa)2(`2 + q + δq)

2`2
. (4.29)

These tangential deformations take us from one EVH black hole to a different one on the EVH
hyperplane. Orthogonal deformations correspond to excitations of an EVH black hole, giving
rise to near-EVH black holes. We will study the two cases separately.
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Figure 4.1: Bifurcate EVH hyperplane. The left figure shows the EVH hyperplane in (a, b, q)
space. The a = b = 0 q axis stands for static EVH black holes, while b = 0, a 6= 0 points
correspond to rotating EVH black holes. The subset of EVH BPS configurations, which occur
for q = `a, b = 0 or q = b`, a = 0, are indicated by 45◦ lines. The right figure shows the b = 0
branch of the EVH hyperplane in (a, q;m) space.

Near-EVH nearly-static black holes: Static EVH configurations are described by (a, b, q;m) =
(0, 0, q; q2/2`2) and hence the most general orthogonal deformation is(

0, 0, q;
q2

2`2

)
−→

(
δa, δb, q − q

`2
δm;

q2

2`2
+ δm

)
. (4.30)

Recalling (4.25), one can choose δm ∼ ε2, δa ∼ εα , δb ∼ εβ where β ≥ α > 0, α + β ≥ 2.
Demanding to have a black hole, i.e. X(r) = 0 to have real positive solutions, implies α ≥ 1.
One may hence choose,

δm = Mε2 , δa = âε , δb = b̂ε , (4.31)

where â, b̂ are either finite or may go to zero in some positive power of ε. Thus, the most
general physical excitations of static EVH black holes are described by the three parameters
M, â, b̂, corresponding to nearly-static black holes. This is consistent with the co-dimension
three of the EVH surface describing the static case (4.28), as depicted in figure 4.1.

Once these deformations are turned on, the equation determining the horizon location
X(r±) = 0 becomes

Vs

(r
ε

)4

−
[
2WsM − Ys(â2 + b̂2)

] (r
ε

)2

+ â2b̂2 = 0 , (4.32)

with

Vs = 1 +
2q
`2
, Ws = 1 +

q2

`4
, Ys = 1 +

q

`2
. (4.33)

This ensures both r± ∼ ε as required in (4.25). In this limit one can work out the temperature
(4.9) and entropy (4.10)

SBH = πN2 q

`2
r+
`
, TH =

(1 + 2q
`2 ) − â2b̂2

r4+

2πq
r+ =

Vs

2πq
r2+ − r2−
r+

, (4.34)

where we used r2+r
2
− = V−1

s a2b2, which follows from (4.32). By construction, as advocated in
section 1.8, AH ∼ TH ∼ r± ∼ ε.
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Near-EVH rotating black holes: Using m(a, q) in (4.27), rotating EVH configurations are
described by (a, 0, q;m(a, q)). Their most general orthogonal deformation is hence

(a, 0, q;m) −→
(
a− a

(
1 +

q

`2

) δm
`2
, δb, q −

(
q +

1
2
a2

)
δm

`2
;m+ δm

)
. (4.35)

For finite a, q, the scaling (4.25) requires

δb = b̂ε2 , δm = Mε2 . (4.36)

Unlike the static EVH case, the most general excitations of a rotating EVH black hole are
described by two parameters, M, b̂. This is consistent with the co-dimension two surfaces
defining them in (4.28), as shown in figure 4.1.

These deformation parameters determine the location of the horizons

V
(r
ε

)4

− 2WM
(r
ε

)2

+ a2b̂2 = 0 (4.37)

with

V = 1 +
2q
`2

+
a2

`2
, W = 1 +

(
q

`2
+

a2

2`2

)2

+
a2

`2

(
1 +

q

`2

)2

. (4.38)

Notice its a → 0 limit does not reproduce the nearly-static equation (4.32). This is because
the near-EVH scaling of b with ε is different from the nearly-static case in (4.31) and, more
importantly, because there exists a non-commuting order of limits between taking a near horizon
limit and considering the a → 0 limit, as we shall explicitly see in section 4.3.4. For these
reasons, we will study the (nearly-)static and rotating cases separately in the following, noting
when the former can be obtained as a limit of the latter.

It is reassuring that whenever the parameters {a, q; b̂,M} allow real roots r±2, the entropy
and temperature of these near-EVH black holes equal

SBH = πN2 q + a2

`2Ξa
r+
`
, TH =

(1 + 2q+a2

`2 ) − a2b̂2

r4+

2π(q + a2)
r+ =

V
2π(q + a2)

r2+ − r2−
r+

. (4.39)

By construction, the ratio SBH/TH is finite. Notice these equations reproduce (4.34) when
written as a function of r± at a = 0.

We stress expressions (4.39) resemble the analogue quantities for BTZ black holes, i.e.

SBTZ = πr+
2G3

and TBTZ = r2+−r2−
2π`23r+

. In fact, we will see in the coming sections that the near
horizon of these configurations develops a locally AdS3 throat. The corresponding 3d Newton’s
constant G3 and AdS3 radius `3 will be such that this analogy will become an equality.

4.3 Near Horizon Geometry Analysis: Rotating Two Charged
Black Holes

In this section we study the near horizon geometries corresponding to the static and rotating
EVH black holes identified in (4.28) together with their near-extremal versions (4.30)-(4.35).

2For a thorough analysis on when this occurs, see Appendix 4.A.
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4.3.1 The static EVH near horizon geometry

Let us consider a static EVH black hole (a = b = 0) and study its deep interior geometry by
expanding in small ε for r = ερ. The metric expansion is

ds2 =
q`2µ3

`2 + 2q

[
− V2

sε
2

q2
ρ2dt2 +

dρ2

ρ2
+
`2V2

sε
2

q2
ρ2dψ2

3

]
(4.40)

+ qµ3

(
dθ2 + sin2 θdφ2 + cos2 θdψ2

)
+
`2(dµ2

1 + dµ2
2)

µ3

+
`2µ2

1

µ3

(
dψ1 − Ω(0)

1 dt
)2

+
`2µ2

2

µ3

(
dψ2 − Ω(0)

2 dt
)2

.

As we have seen in Chapter 3, extremality determines the scaling −ε2ρ2 dt2 together with
dρ2/ρ2 giving rise to an AdS2 throat responsible for the SO(2, 1) isometry enhancement of the
near horizon geometry [37]. Again, the vanishing one-cycle along ψ3 is the isometry direction
in the 5-sphere with vanishing R-charge (J3 = 0), and the standard AdS2 throat is transformed
into a local AdS3 throat. We note that, even though Ja = Jb = 0, the cycles along ∂φ and ∂ψ
remain of finite size.

The near horizon geometry is obtained by considering the limit

ψi = ψ̂i + Ω(0)
i t, (i = 1, 2) t =

`
√
q

τ

ε
, ψ3 = − χ̂

ε
, r = ε

√
q

`
x , (4.41)

on the original black hole metric (4.18), with

Ω(0)
1 = Ω(0)

2 = −1
`

√
1 +

q

`2
= −

√
Ys

`
, (4.42)

being the horizon angular velocity at the EVH point. The resulting metric is

ds2 = µ3

[
− x2dτ2

`23
+
`23dx

2

x2
+ x2dχ̂2

]
+ qµ3

(
dθ2 + sin2 θdφ2 + cos2 θdψ2

)
+
`2

µ3
(dµ2

1 + dµ2
2 + µ2

1dψ̂
2
1 + µ2

2dψ̂
2
2) . (4.43)

Due to the 2πε periodicity in χ̂, this geometry describes a warped locally AdS3×S3 geometry,
with radii given by

R2
AdS3

= `23 =
q

Vs
, R2

S3 = q . (4.44)

More precisely, the local AdS3 throat is the pinching AdS3 orbifold introduced in section 1.7,
corresponding to the near horizon of a massless BTZ black hole3. Once more, notice how the
circle in AdS3 comes from the direction in the 5-sphere where there is no R-charge at the EVH
point. Besides the pinching, which does not introduce a curvature singularity, the geometry
(4.41) is otherwise everywhere smooth except at µ3 = 0.

As the EVH configuration coincides with the q1 = 0, q2 = q3 = q subset of the non-BPS
case in section 3.2, it is not surprising that (4.43) coincides with the q2 = q3 = q limit of (3.33).

4.3.2 The nearly-static near-EVH near horizon geometry

Near-EVH nearly-static black holes are described in parameter space by (4.30). These are
excitations of the static EVH vacua. Hence, one expects them to be encoded in the near-horizon
geometry as pinching BTZ black holes [44], that is, BTZ black holes built on the pinching AdS3

orbifolds of section 1.7. Indeed, as discussed in more detail in section 4.6.1, these excitations are
described by the mass and angular momentum of the pinching BTZ with the possible addition
of constant electric and magnetic fields on the transverse 3-sphere, describing the Ja and Jb

3Massless BTZ black holes allow for a second near horizon limit giving rise to the null self-dual orbifold. This
near horizon limit is oulined in Appendix 4.C.
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rotations.
These expectations are verified when we combine the near horizon limit (4.41) with the

angular coordinate redefinitions

φ̂ = φ− â

q

`
√
q
τ − b̂`

q
χ̂ = φS − â`

q
√
q
Ysτ −

b̂`

q
χ̂ , (4.45)

ψ̂ = ψ − b̂

q

`
√
q
τ − â`

q
χ̂ = ψS − b̂`

q
√
q
Ysτ −

â`

q
χ̂, (4.46)

where we have used (4.6). These shifts are the ones defined (2.63) in Chapter 2, where the
following identifications have been made:

ϕ1 = φ̂S , φ1 = φS , Aa =
â`

q
√
q
Ysε, Ba =

b̂`

q
ε, (4.47)

and

ϕ2 = ψ̂S , φ2 = ψS , Ab =
b̂`

q
√
q
Ysε, Bb =

â`

q
ε. (4.48)

The resulting near horizon metric is

ds2 = µ3

[
−

(x2 − x2
+)(x2 − x2

−)
`23x

2
dτ2 +

`23x
2dx2

(x2 − x2
+)(x2 − x2

−)
+ x2(dψ̂3 −

x+x−
`3x2

dτ)2
]

+ qµ3(dθ2 + sin2 θdφ̂2 + cos2 θdψ̂2) +
`2

µ3
(dµ2

1 + dµ2
2 + µ2

1dψ̂
2
1 + µ2

2dψ̂
2
2) (4.49)

where x± are given in terms of (4.33) as

x2
± =

`2

2qVs

(
2WsM − Ys(â2 + b̂2) ±

√(
2WsM − Ys(â2 + b̂2)

)2

− 4Vsâ2b̂2)

)
. (4.50)

Notice how the original pinching AdS3 turned into a pinching BTZ metric4. The constant shifts
in the AdS3 boundary coordinates {τ, χ̂} in (4.45) corroborate the existence of constant electric
and magnetic fields responsible for the UV spins Sa and Sb.

We note here again that there is an order of limits between taking a near horizon limit and a
near-BPS limit. Analogously to the static case (section 3.3.2), taking the near-BPS limit q ∼ ε
after the near horizon limit would result in a vanishing AdS3 radius and divergent BTZ horizon
radii.

Temperature & entropy: To use the standard thermodynamic relations satisfied by BTZ
black holes, we must compactify (4.49) to three dimensions. Consider the ansatz

ds2 = µ3 g
(3)
µν dx

µdxν + qµ3(dθ2 + sin2 θdφ̂2 + cos2 θdψ̂2) +
`2

µ3
(dµ2

1 + dµ2
2 + µ2

1dψ̂
2
1 + µ2

2dψ̂
2
2),

and plug it into the 10d type IIB supergravity action. Focussing on its Einstein-Hilbert term

1
16πG10

∫ √
−g(10)

(
(10)R + · · ·

)
=

1
16πG3

∫ √
−g(3)

(
(3)R + · · ·

)
,

we can identify the 3d Newton’s constant to be

1
G3

=
q3/2`4

16G10
(2π)4 =

2q
3
2N2

`4
. (4.51)

4For the subset of excitations that preserve extremality, i.e. x+ = x−, there exists a second near horizon
limit again giving rise to the null self-dual orbifold, discussed in Appendix 4.C.
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Thus, the temperature and entropy of the pinching BTZ black holes (4.49) equal

TBTZ ≡
x2

+ − x2
−

2πx+`23
=

`

ε
√
q
TH ,

SBTZ ≡ 2πε · x+

4G3
= SBH ,

(4.52)

where for TH and SBH we have used (4.34). As expected, the second matches the original 10d
black hole entropy whereas the first agrees with the scaling of time in (4.41). This confirms the
expectations raised in section 4.2, when interpreting the near-EVH temperature and entropy
(4.34) as BTZ thermodynamical quantities.

4.3.3 The rotating EVH near horizon geometry

Consider a rotating EVH black hole (b = 0) and study its deep interior geometry by expanding
in small ε for r = ερ. The metric expansion is

ds2 = h1h2

[
− V
a2 + q

ε2ρ2dt2 +
a2 + q

V
dρ2

ρ2
+
a2 + q

a2
ρ2ε2dψ2

]
+

(a2 + q)h1h2

1 − a2

`2 cos2 θ
dθ2 +

`2h1

h2
(dµ2

1 + dµ2
2) +

a2`2 cos2 θ
(a2 + q)h1h2

dµ2
3 +

a2`2 cos2 θµ2
3

h1h2

( q
a`
dψ + dψ3

)2

+
sin2 θ

[
a2Ys − a2

`2 (a2 + q) cos2 θ + qΞaµ2
3

]
Ξ2
ah1h2

(
dφ− Ω0R

a dt
)2

− 2a`
√
qYs sin2 θ

Ξah1h2

√
a2 + q

(
dφ− Ω0R

a dt
) [
µ2

1

(
dψ1 − Ω(0)

1 dt
)

+ µ2
2

(
dψ2 − Ω(0)

2 dt
) ]

+ `2
h1µ

2
1

h2

(
dψ1 − Ω(0)

1 dt
)2

+ `2
h1µ

2
2

h2

(
dψ2 − Ω(0)

2 dt
)2

, (4.53)

where

Ω(0)
1 = Ω(0)

2 = −1
`

√
qYs

a2 + q
, Ω(0)R

a =
aΞa
a2 + q

(4.54)

are the horizon angular velocities at the EVH point, V is as in (4.38) and

h2
1 =

a2 cos2 θ + q

a2 + q
, h2

2 =
a2 cos2 θ + qµ2

3

a2 + q
. (4.55)

As before, there is a single vanishing cycle responsible for the vanishing entropy and the emer-
gence of a local AdS3 throat. This corresponds to the isometry direction ∂ψ along the 3-sphere
in the asymptotic AdS5. Notice that despite having vanishing Jb, J3, rotating EVH black holes
still have a single vanishing cycle, keeping the q

a`dψ + dψ3 cycle finite. The relevance of this
combination is physically understood noticing that

Ωb +
a`

q
Ω3 = 0 (4.56)

(up to O(ε2)) in the near-EVH limit (4.36), where (4.12), (4.22) and (4.14) have been used.
Thus, there is no angular velocity along the U(1) defined by q

a`dψ + dψ3. This point also
brings up the question on the uniqueness of the near horizon U(1) describing the AdS3 angular
momentum. We briefly discuss this matter below.

Choice of IR U(1) : The previous discussion suggests to work with

ξ = C1

( q
a`
ψ + ψ3

)
χ = C2ψ + C3ψ3 (4.57)
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so that
ψ = C1χ− C3ξ, ψ3 = −C1

q

al
χ+ C2ξ. (4.58)

We fix

C1 =
al√

a2l2 + q2
, (4.59)

and will comment on this choice later in the subsection. Ensuring that the volume spanned by
the two angles is invariant requires

C1

(
C2 − C3

q

al

)
= 1 ⇒ C2 =

1
C1

+
q

a`
C3. (4.60)

After this digression, let us return to the near horizon geometry which is obtained by considering
the limit5

ψ1 = ψ̂1 + Ω(0)
1 t, ψ2 = ψ̂2 + Ω(0)

2 t, φ = φ̂+ Ω(0)R
a t ,

t =
λ

ε
τ , χ =

χ̂

ε
, r = ε

x

λ
,

(
λ =

√
`2(a2 + q)
a2`2 + q2

)
(4.61)

on the original black hole metric resulting in

ds2 = h1h2

[
−x

2

`23
dτ2 +

`23dx
2

x2
+ x2dχ̂2

]
(4.62)

+
(a2 + q)h1h2

∆θ
dθ2 +

`2 cos2 α cos2 θ
λ2h1h2

dξ2 +
a2 + q

Ξ2
a

h2

h3
1

∆θ sin2 θdφ̂2

+ `2
h2

h1
dα2 + `2

h1

h2
sin2 αdβ2 + `2

h1

h2

[
µ2

1(dψ̂1 −Adφ̂)2 + µ2
2(dψ̂2 −Adφ̂)2

]
,

where α, β, θ ∈ [0, π/2], φ ∈ [0, 2π], µ1 = sinα cosβ, µ2 = sinα sinβ and

∆θ = 1 − a2

`2
cos2 θ, A =

a
√
qYs

``3Ξa
√

V
sin2 θ

h2
1

. (4.63)

The first line in (4.62) is again conformal to a pinching AdS3 orbifold with radius

`23 =
a2 + q

V
=

a2 + q

1 + 2q
`2 + a2

`2

, (4.64)

which reduces to (4.44) in the static limit (a = 0). This metric solves the type IIB supergravity
equations of motion with a constant dilaton and a RR 5-form. The analysis is very similar to
that in [28].

Due to the ε scaling in χ, all dependence on C3 is subleading. In fact, not only the near
horizon metric (4.53), but also all physical observables are expected to be independent of C3.
We will see this explicitly in our analysis in the rest of this chapter.

Although the choice (4.59) was the natural candidate in our search for an AdS3 throat,
its value can in principle be arbitrary. An investigation into the impact of this choice is in
Appendix 4.D.

Contrary to the static EVH case, which always requires a 10d uplift to have a well defined
near horizon geometry, the rotating EVH one does allow a purely 5d description for the par-
ticular choice χ = ψ. In this case, the entire pinching AdS3 lies inside AdS5. Its near horizon

5It is important to note that switching between the two frames does not affect the near horizon prescription
φR = φ̂R + ΩR(0)t, as this translates to

φS −
a

`2
t = φ̂S + (ΩS(0) −

a

`2
)t

φS = φ̂S + ΩS(0)t;

and similarly for ψR.
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geometry is presented in Appendix 4.E.
There are special values in parameter space that deserve special mention. For q = 0, one

recovers Kerr AdS5, ξ = ψ3 and χ may be chosen entirely inside AdS5. The BPS surface defined
by q = al has no special features compared to the generic case (4.62). Finally, the a → ` limit
(the edge of the EVH plane in figure 4.1) must be handled with care. Recent work [90] confirms
the existence of a 2d chiral spectrum also in this case.

4.3.4 The rotating near-EVH near horizon geometry

Near-EVH rotating black holes are described by (4.36) in parameter space. Their near horizon
geometry is obtained through the same limit (4.61) and gives rise to

ds2 = h1h2

[
−

(x2 − x2
+)(x2 − x2

−)
`23x

2
dτ2 +

`23x
2dx2

(x2 − x2
+)(x2 − x2

−)
+ x2

(
dχ̂− x+x−

`3x2
dτ

)2
]

+
(a2 + q)h1h2

∆θ
dθ2 +

`2 cos2 α cos2 θ
λ2h1h2

dξ2 +
a2 + q

Ξ2
a

h2

h3
1

∆θ sin2 θdφ̂2 (4.65)

+
`2h2

h1
dα2 +

`2h1

h2
sin2 αdβ2 +

`2h1

h2

[
µ2

1(dψ̂1 −Adφ̂)2 + µ2
2(dψ̂2 −Adφ̂)2

]
,

where µ1, µ2, h1, h2, ∆θ, A in (4.19), (4.55) and (4.63), and α, β, θ ∈ [0, π/2], φ ∈ [0, 2π].
The first line is conformal to pinching BTZ black holes in the region of the deformation

parameter space where the outer and inner horizons x±

x2
± = λ2 r

2
±
ε2

=
`2(a2 + q)
q2 + a2`2

[
WM ±

√
W2M2 − Va2b̂2

V

]
, (4.66)

exist. This holds for6

W2M ≥ Va2b̂2.

Notice b̂ = 0 corresponds to a vanishing inner horizon, whereas M = 0 forces b̂ = 0, in this
region of parameters. Thus M controls the size of the outer horizon. Notice how the outer and
inner horizons of the near-EVH static black hole in (4.50) cannot be obtained as a limit of the
ones for the rotating case in (4.66). As stressed in section 4.2.2, this is due to the fact that the
near horizon and the near-EVH limits in the two cases do not commute.

Temperature & entropy: To use the standard thermodynamic relations satisfied by BTZ
black holes, we must compactify (4.65) to three dimensions. This is achieved by considering
the ansatz

ds2 = h1h2g
(3)
µν dx

µdxν +
(a2 + q)h1h2

∆θ
dθ2 +

`2 cos2 α cos2 θ
λ2h1h2

dξ2 +
a2 + q

Ξ2
a

h2

h3
1

∆θ sin2 θdφ̂2

+
`2h2

h1
dα2 +

`2h1

h2
sin2 αdβ2 +

`2h1

h2

[
µ2

1(dψ̂1 −Adφ̂)2 + µ2
2(dψ̂2 −Adφ̂)2

]
.

Proceeding as in subsection 4.3.2, the 3d Newton’s constant is

1
G3

=
2N2

√
(a2`2 + q2)(a2 + q)

Ξa`4
. (4.67)

Note that in the a = 0 case we recover the static EVH expression (4.51).

6For W2M < Va2b̂2 we get a space with a conical defect, in line with the regimes of parameters highlighted
in section 1.4.
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The temperature and entropy of the pinching BTZ black holes equal

TBTZ ≡
x2

+ − x2
−

2πx+`23
=
λ

ε
TH ,

SBTZ ≡ 2πε · x+

4G3
= SBH .

(4.68)

Once more the 3d entropy matches the original 10d black hole one (4.39), while the proportion-
ality of temperatures is consistent with the temporal scaling in (4.61).

4.4 IR 2d Description

We calculate in this section the central charge of the emergent dual conformal field theory, and
the quantum numbers associated to states in this theory.

We employ the technique of section 3.4.1 to compute the central charge c and quantum
numbers (L0, L̄0) of the IR 2d CFT dual to the pinching BTZ black hole appearing in the near
horizon geometry of the near-EVH black holes. Again, the effective central charge c is related
to the pinching central charge cp by c = εcp, and the mass and angular momentum of the BTZ
built on a pinching AdS3 orbifold have an extra ε in their expressions:

c =
3`3
2G3

ε =
3(a2 + q)
`4Ξa

√
a2`2 + q2

V
N2ε (4.69)

`3MBTZ = L0 + L̄0 −
c

12
=
x2

+ + x2
−

8`3G3
ε ∼ N2ε, (4.70)

JBTZ = L0 − L̄0 =
x+x−
4`3G3

ε ∼ N2ε. (4.71)

Requiring a finite central charge to have a finite gap in this IR 2d CFT is achieved by the large
N limit:

N2ε = fixed. (4.72)

It is manifest the entropy SBH in (4.39) remains finite in this limit. It is shown below that the
same holds for the excitations MBTZ, JBTZ which will be related with precise combinations of
the UV quantum numbers.

4.4.1 Nearly-static near-EVH

The central charge may be obtained from (4.69) at a = 0

cstatic =
3q2

`4
√

1 + 2q
`2

N2ε . (4.73)

whereas excitations equal

`3MBTZ =
2MWs − Ys(â2 + b̂2)

4`2
√

Vs

N2ε , JBTZ =
âb̂

2`2
N2ε . (4.74)

Notice how the static EVH point (0, 0, q;m(q)) determines the IR 2d CFT by fixing its central
charge, whereas its orthogonal deformations (4.30)-(4.31) encode their finite excitations. Any
tangential deformation (4.29) would have simply changed the value of q, which would correspond
to a different CFT. Note also that the BTZ mass has contributions from all three parameters
describing the transverse deviations from the EVH surface.
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4.4.2 Rotating near-EVH

The central charge is given by (4.69) with excitations

`3MBTZ =
`3λ

2`3Ξa
MW N2ε , JBTZ =

`3λ

2`3Ξa
ab̂
√

V N2ε. (4.75)

As before, the rotating EVH point (a, 0, q;m(a, q)) determines the IR 2d CFT central charge
and vacuum structure, whereas its orthogonal deformations (4.35)-(4.36) encode its excitations.

As we have noted all physical quantities at the static EVH point can be recovered from
the corresponding expressions at the rotating EVH evaluated at a = 0 point. This is not true,
however, for the excitations above these EVH points. For example, the nearly-static values for
MBTZ, JBTZ and TH cannot be recovered by simply setting a = 0 (or taking a → 0 limit) of
the rotating EVH ones. This is due to the fact that in the nearly-static case both a, b scale as
ε, while in the rotating case, a is finite and b ∼ ε2.

Using Cardy’s formula [5]

SCFT = 2π
√
c

6

(
L0 −

c

24

)
+ 2π

√
c̄

6

(
L̄0 −

c̄

24

)
, (4.76)

one can immediately check the bulk entropy (4.39) is reproduced for both near-EVH black
holes.

4.5 First Law of Thermodynamics: Rotating Charged near-
EVH Black Holes

Now we explicitly demonstrate how the IR first law of thermodynamics follows from the UV
one (4.15) as described in section 2.3, which we may view as further supporting evidence of the
EVH/CFT correspondence [51] reviewed in section 1.8. Physical variations appearing in the first
law are generically defined as one-forms on the black hole parameter space. In our examples, the
UV {dE, dJa, dJb, dJi, dJ3} forms are defined on a four dimensional space spanned by (a, b, q,m),
while in the IR, physical variations belong to the subspace of orthogonal deformations to the
EVH hyperplane, leaving the EVH point fixed. Below, we consider nearly-static and rotating
near-EVH cases separately.

4.5.1 Nearly-static first law

As advocated in section 2.3, we distinguish three categories of 10d black holes charges in the
near-EVH nearly-static regime (4.31):

• Y = {E, J1, J2} with an ε expansion of the form Y = Y (0) + ε2Y (2).

• X = {Ja, Jb} with an ε expansion of the form X = εX(1).

• J3 with expansion J3 = ε2J
(2)
3 .

Since all charges scale like N2, charges X have a finite value due to (4.72).
Using (4.52), the left hand side of the UV first law scales like

THdSBH = ε

√
q

`
TBTZdSBTZ, (4.77)

noting the difference in time scaling between here, ε
√
q

` , and in (2.58), ε. When analysing the
right hand side, we first identify the angular momenta categorised in (2.61) with the near-EVH
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values in the near-static regime:

Ω(0)
i = Ω1 (4.78)

ΩBTZ ≡ x−x+

`3x2
+

=
âb̂√
Vs

1
`3r̂2+

= − `
√
q
Ω3 + O(ε2) = Ωχ̂

Ωa =
a(b2 + r2+Ys)

qr2+
=
(
A(1)
a +B(1)

a ΩBTZ

) `
√
q
ε+ O(ε3) , (4.79)

Ωb =
b(a2 + r2+Ys)

qr2+
=
(
A

(1)
b +B

(1)
b ΩBTZ

) `
√
q
ε+ O(ε3) ,

where Aα, Bα are defined in (4.47-4.48). Then on the RHS we have

E − 2Ω1J1 −AaJa −AbJb = ε

√
q

`
MBTZ. (4.80)

We define
(−J3 +BaJa +BbJb) = εJBTZ, (4.81)

where the minus sign multiplying J3 reflects the χ-scaling, so that

Ω3J3 +BaJa +BbJb = ε

√
q

`
ΩBTZJBTZ. (4.82)

Adding all terms, modulo the overall ε
√
q/` factor, the first order contribution to the UV first

law is the first law for a BTZ black hole,

THdSBH = dE − 2Ω1dJ1 − ΩadJa − ΩbdJb − Ω3dJ3

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ

, (4.83)

where we already dropped all vanishing subleading contributions in the ε→ 0 limit.

4.5.2 Rotating first law

Given the original 10d black hole charges (4.7), (4.8) and (4.16) and the near-EVH expansion
of parameters (4.36), charges fall into two categories in the rotating near-EVH regime:

• Y = {E, J1, Ja} with an ε expansion of the form Y = Y (0) + ε2Y (2).

• Z = {Jb, J3} with expansion Z = ε2Z(2).

Y (0) is the value of charges at the EVH point, whereas Y (2), Z(2) are the near-EVH excitations.
Ω1 and Ωa have analogous expansions to J1 and Ja, with finite Ω(0)

1 and Ω(0)
a values at the EVH

point (4.54) and with ε2 corrections.
Consider the UV first law (4.15). Using (4.68), its left hand side equals

THdSBH =
ε

λ
TBTZdSBTZ . (4.84)

To discuss its right-hand-side, we first note that there are no non-trivial fibrations in the
near horizon geometry (4.65), so that Aα = Bα = 0. In this case, we identify from (2.61)
Ω(0) = (Ω(0)

1 ,Ω(0)
a ). Then

E − 2Ω1J1 − ΩaJa =
ε

λ
MBTZ. (4.85)

To find the analogous expression for JBTZ, we first note that

Ω(0)
b =

a

q + a2

ab

r2+
, Ω(0)

3 = − q

`(q + a2)
ab

r2+
, Ω(0)

b +
a`

q
Ω(0)

3 = 0 , (4.86)
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and7

ΩBTZ ≡ Ωχ̂ =
x+x−
x2

+`3
=

1
C1

Ωb. (4.88)

We use these relations to define

ΩbJb + Ω3J3 = ΩBTZC1

(
Jb −

q

a`
J3

)
= ΩBTZ

ε

λ
JBTZ. (4.89)

Note that as expected, the dependence on C3 drops out of all of the expressions above.
Adding all contributions and dropping the overall ε/λ constant factor, the exact IR first law

is derived
THdSBH = dE − 2Ω1dJ1 − ΩadJa − ΩbdJb − Ω3dJ3

⇓
TBTZdSBTZ = dMBTZ − ΩBTZdJBTZ

(4.90)

where we already dropped all vanishing subleading contributions in the ε→ 0 limit. Notice the
ξ direction does not contribute above because the ΩξdJξ term is an order ε2 smaller than the
leading term.

It can be straighforwardly checked using the transformations in Appendix 4.D that the BTZ
first law is invariant under the choice of C1 (4.59).

4.6 EVH/CFT2 vs. AdS5/CFT4

The ten dimensional black holes (4.18) interpolate between asymptotically AdS5 and locally
AdS3 geometries. The former has a dual (UV) description in terms of N = 4 super Yang-Mills
theory , whereas the latter must have a dual (IR) description as advocated in section 4.4. In
this section we provide an explicit map between the IR quantum numbers and those of the 4d
UV dual to the original black hole.

We repeat the analysis of section 3.6 by studying how the quantum numbers of a bulk scalar
field probe transform along the RG flow. The UV quantum numbers of this scalar field (in the
static AdS5 frame) will be associated with the eigenvalues of the operators

∆UV = `E = i`∂t, Ja,b = −i∂φS ,ψS Ji,3 = −`Qi,3 = −i∂ψi,3 . (4.91)

Similarly, the IR quantum numbers are mapped to

∆IR = i`3∂τ , JIR = −i∂χ̂ Jξ = −i∂ξ . (4.92)

From now on, as the notation above suggests, we will identify these eigenvalues with the gravity
conserved charges. Though this need not hold generically, it will turn out to provide us with
the right intuition.

4.6.1 EVH/CFT2 vs AdS5/CFT4: nearly-static

Given the large gauge transformations (4.41) and (4.45) implemented in the near-EVH static
regime, we learn the angular momentum along the AdS3 pinching circle equals

JIR = −i∂χ̂ = −i

(
−1
ε
∂ψ3 +

b̂`

q
∂φ +

â`

q
∂ψ

)
= −1

ε
J3 +

`

q
(âJb + b̂Ja)

= JBTZ +
`

2q
(âJb + b̂Ja),

(4.93)

7This is consistent with our expectations, as

ΩBTZ ≡ Ωχ̂ =
x+x−

x2
+`3

= λ

„

C2
∂ψ

∂t
+ C3

∂ψ3

∂t

«

=
1

C1
Ωb + C3

“ q

a`
Ωb + Ω3

”

. (4.87)
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where we used (4.74). Furthermore, from (4.7) and (4.31)

`

2q
(âJb + b̂Ja) =

âb̂Ys

2`2
N2ε.

The IR conformal dimension equals

∆IR = i`3∂τ =
`3√
qε

[
∆UV − 2` Ω(0)

1 J1 −
`Ys

q
(bJb + aJa)

]
= ∆0

IR +
`3ε√
q

(
∆(2)

UV − 2` Ω(0)
1 J (2)

1 − `Ys

q
(âJ (1)

a + b̂J (1)
b )

)
,

(4.94)

where the “zero point energy” ∆0
IR is defined as

∆0
IR =

`3√
qε

(∆(0)
UV − 2` Ω(0)

1 J (0)
1 ) = − `3√

qε

N2q2

4`4
. (4.95)

In the BPS case where q ∼ ε [28] ∆0
IR remains finite8. It is evident that the zero point energy is

the q2 = q3 = q case of (3.102) as expected, as the ground states coincide. Using the expressions
for mass and angular momenta (4.7), (4.8) and (4.16) and the near-EVH scalings (4.31) we find

∆(2)
UV − 2` Ω(0)

1 J (2)
1 =

N2

2`2

[
MWs +

qYs

2`2
(
â2 + b̂2

`2
)

]
,

`

q
(âJa + b̂Jb) =

(â2 + b̂2)Ys

2`2
N2ε ,

(4.96)

and hence
∆IR = ∆0

IR + `3MBTZ − `3√
q

`

2q
(âJa + b̂Jb) , (4.97)

where MBTZ is given in (4.74).
Thus, even after removing the “zero point energy”, both JIR and ∆IR contain extra terms

compared with the expected BTZ mass MBTZ and angular momentum JBTZ
9. Similar extra

terms appeared in charges associated with the null orbifold that appeared in the near horizon
geometry of the non-BPS static charged case in section 3.3.2. These terms are related to the
rotation in the S3 transverse to the local near horizon AdS3 and should be associated with some
notion of spectral flow in the dual CFT. Notice, in particular, how the extra dependence on Ja
and Jb in (4.97) and (4.93) drops from the IR first law (4.83). This highlights the invariance
of the first law under large gauge transformations generating constant electric and magnetic
terms on the transverse 3-sphere.

4.6.2 EVH/CFT2 vs AdS5/CFT4: rotating

As discussed in section 4.3.3, the Jb and J3 charges

Jb =
b̂(q2 + a2`2 + q`2)N2

2`5Ξa
ε2, J3 =

ab̂qN2

2`4Ξa
ε2 , (4.98)

8We comment that the negative value of ∆0
IR from the dual 2d CFT viewpoint may be attributed to the

−c/12 Casimir energy of the theory on the cylinder.
9We note that it is possible to define new φ̂ and ψ̂ coordinates such that (4.93) and (4.97) respectively reduce

to simply ∆IR = ∆0
IR + `3MBTZ and JIR = JBTZ. The new φ̂ and ψ̂ which do this are

ψ̂ = ψ −
b̂

2q

`
√
q
τ −

â`

2q
χ̂ , φ̂ = φ−

â

2q

`
√
q
τ −

b̂`

2q
χ̂ .

The resulting near horizon geometry would then contain a rotating S3 transverse to the BTZ black hole. The
role of this transformation in terms of spectral flow is yet to be understood.
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are naturally encoded in the IR geometry in terms of

JIR = Jχ̂ =
C1

ε

(
Jb −

q

al
J3

)
=

(a2 + q)

2`2Ξa
√
a2`2 + q2

ab̂ N2ε = JBTZ , (4.99)

Jξ = (−C3Jb + C2J3) ∼ N2ε2 , (4.100)

where we used (4.58-4.60).
The AdS3 pinching is responsible for the 1/ε factor in the first equality of (4.99). This allows

JIR to remain finite, matching the BTZ angular momentum, whereas Jξ ∼ ε is subleading, in
the limit (4.72). This prevents any unphysical dependence on C3 to survive our limit, as
expected on physical grounds.

Let us consider the IR conformal dimension ∆IR. If we proceed analogously to the other
charges, we learn

∆IR ≡ i`3
∂

∂τ
=
`3
`

λ

ε

i` ∂
∂t

+ i`Ω0S
a

∂

∂φ
+
∑
i=1,2

i`Ω0
i

∂

∂ψi


=
`3
`

λ

ε

(
∆UV − `Ω0S

a Ja − 2`Ω(0)
1 J1

)
. (4.101)

Using the 5d charges (4.8), (4.7) and (4.16) in the near-EVH regime (4.36), we find

∆IR =
λ`3
`ε

(∆(0)
UV − ` Ω0S

a J (0)
a − 2` Ω(0)

1 J (0)
1 ) +

λ`3
`
ε
(
∆(2)

UV − ` Ω0S
a J (2)

a − 2` Ω(0)
1 J (2)

1

)
= ∆0

IR + `3MBTZ , (4.102)

where we used (4.75), the identity `MBTZ = λ(∆(2)
UV − `Ω(0)

a J (2)
a − 2`Ω(0)

1 J (2)
1 )ε and ∆0

IR is
defined as

∆0
IR =

`3
`

λ

ε

N2(a2`2 − q2)
4`4Ξa

. (4.103)

Note the zero point energy of the nearly-static near-EVH case (4.95) can be obtained as the
a = 0 limit of the rotating EVH case (4.103). Notice ∆0

IR only depends on the rotating EVH
point (and not the excitations) and could consequently be interpreted as a “zero point energy”
from the IR 2d CFT perspective. This contribution is generically divergent, but vanishes
when supersymmetry is preserved, i.e. q = a`. This would reproduce the expected ∆IR =
L0 + L̄0 − c/12 bound in this case, due to the protection of supersymmetry along the RG flow.
Near the BPS point, i.e. q = a`− ε2δ2s/(2a`), the ”zero point energy” still remains finite

∆0
IR =

`3
`

λN2ε

4`4Ξa
δ2s + `3MBTZ. (4.104)

Once more, we learn that when the near-EVH near horizon limit does not admit the geomet-
ric manifestation of gauge fields in the 3d theory, the quantum numbers ∆IR, JIR of low-lying
excitations in the dual N = 4 super Yang-Mills theory are given by the quantum numbers
∆2d = `3MBTZ, J2d = JBTZ of the emergent two dimensional CFT. This is again evidence that
the near-EVH sector in the UV dual 4d CFT is a decoupled sector described by this IR 2d
CFT.

4.7 A Check: Comparison with Kerr/CFT

In this section we seek a connection between the 2d CFTs appearing in the EVH/CFT corre-
spondence discussed in previous sections and the 2d chiral CFTs emerging in the Kerr/CFT
correspondence described in section 1.5. Our perspective is that a 2d chiral CFT is nothing
but the Discrete Light-Cone Quantization (DLCQ) of a standard 2d CFT [40], as was already
discussed in section 3.7 for static charged AdS5 EVH black holes. To explore this perspective,
we first review the Kerr/CFT formalism in the context of the family of black holes (4.3) and
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their 10d embeddings (4.18). In the region of parameters where Kerr/CFT and EVH/CFT
overlap, we can always derive one of the Kerr/CFT descriptions from the EVH/CFT.

Review of Kerr/CFT for AdS5 black holes [38]: The Kerr/CFT correspondence applies
to any extremal black hole of finite horizon size. In our notation, one considers the near horizon
limit

r = r0(1 + εy) , t =
τ

2πTH′
0r0ε

, φ̂ = φ+ Ωa0t , ψ̂ = ψ + Ωb0t , (4.105)

where r0 stands for the extremal horizon, T ′
H is the derivative of Hawking temperature w.r.t.

the horizon size r0 and all 0 indices refer to the thermodynamical quantities being evaluated at
it. Using the Taylor expansion for the function X in (4.3) controlling the horizon size,

X = (r−r0)2
X ′′(r0)

2
+O(ε3) ≡ Vf (r−r0)2, with Vf = 1+

3a2b2

r40
+

6r20 + a2 + b2 + 2q
`2

, (4.106)

the resulting metric describes an S3 bundle over AdS2 [38]

ds25 = A(θ)
(
−y2dτ2 +

dy2

y2

)
+ F (θ)dθ2 +B1(θ)e21 +B2(θ) (e2 + C(θ)e1)

2
,

where the scalar functions are given by

A(θ) =
X0

1 (ρ2
0 + q)
Vf

, F (θ) =
X0

1 (ρ2
0 + q)
∆

,

B1(θ) = X0
1

(
g0
φφ −

g0
φψ

2

g0
ψψ

)
, B2(θ) = X0

1g
0
ψψ , C(θ) =

g0
φψ

g0
ψψ

,

g0
φφ =

(Z + b2C sin2 θ) sin2 θ

(ρ2
0 + q)f2

2 Ξ2
a

∣∣∣∣∣
ε→0

, g0
ψψ =

(W + a2C cos2 θ) cos2 θ
(ρ2

0 + q)f2
1 Ξ2

b

∣∣∣∣∣
ε→0

, g0
φψ =

abC sin2 θ cos2 θ
(ρ2

0 + q)f1f2Ξ2
aΞ2

b

∣∣∣∣∣
ε→0

,

and the set of one-forms ea = dφa+kφaydτ for a = 1, 2 (in terms of our earlier notation φ1 = φ
and φ2 = ψ) is determined by the constants

kφ =
2aΞa(f0

2
2 + b2q)

f0
3 r0Vf

, kψ =
2bΞb(f0

1
2 + a2q)

f0
3 r0Vf

. (4.107)

According to the Kerr/CFT dictionary [91] reviewed in section 1.5, these fix the dual CFT
Frolov-Thorne temperatures

Tφa =
1

2πkφa

. (4.108)

These expressions agree with the expressions

Ti = −∂TH/∂r+
∂Ωi/∂r+

∣∣∣∣
r+=r0

(4.109)

obtained in section 2.2 from the expansion of the first law of thermodynamics around extemality.
The central charges of the chiral Virasoro algebra obtained from the asymptotic symmetry group
analysis equal [38]

cφ =
6πa[(r20 + b2)2 + qb2]

G5VfΞbr20
, cψ =

6πb[(r20 + a2)2 + qa2]
G5VfΞar20

. (4.110)

Embedding to 10 dimensions: As originally discussed in [79], when the 5d geometry is
embedded in higher dimensions, as in (4.18), the number of geometrical U(1) isometries that
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can get enhanced to a full Virasoro is enlarged. Proceeding as before, we write the 10d near
horizon geometry as

ds210 = Ã(θn)
(
−y2dτ2 +

dy2

y2

)
+ B̃1(θn)eφ2 + B̃2(θn)

(
eψ + C(θ0)2eφ

)2
+

2∑
n,m=0

Fθnθm(θn, θm) dθndθn +
3∑
i=1

Di(θn) (eψi + Pi(θ0)(eφ + eψ))2 ,

with θ0 being the latitudinal coordinate in AdS5 and θ1, θ2 those of the transverse S5 (the same
as α, β angles defined in (4.19)), and

Ã(θn) =
√

∆̃A(θ0) , B̃1,2(θn) =
√

∆̃B1,2(θ0) , Di(θn) =
µ2
i

X0
i

.

where ∆̃ is defined in (4.20). The non-zero Fθmθn are

Fθ0θ0 =
√

∆̃F (θ) , Fθ1θ1 = H0(cos2 θ1 + sin2 θ1 sin2 θ2) + sin2 θ1 cos2 θ2 ,

Fθ2θ2 = H0(cos2 θ1 cos2 θ2) + cos2 θ1 sin2 θ2 , Fθ1θ2 = sin θ1 sin θ2 cos θ1 cos θ2(1 −H0).

This metric can be viewed as a warped S3×S5 bundle over AdS2. The corresponding Frolov-
Thorne temperatures are fixed by

kψ1 = kψ2 =
2r30q

√
1 + 2m/q

`3f0
3V

(2r20 + a2 + b2 + 2q),

kψ3 = − 2abq
`r0f0

3Vf
(2r20 + a2 + b2 + q) , (4.111)

corresponding to the three U(1)s in the 5-sphere, whereas the central charges of the correspond-
ing CFTs are10

cψ1 = cψ2 =
6πr20q

√
1 + 2m/q(2r20 + a2 + b2 + 2q)

`3G5ΞaΞbVf
, cψ3 = −6πabq(2r20 + a2 + b2 + q)

`G5ΞaΞbVfr20
.

Kerr/CFT thus suggests the existence of five apparently inequivalent chiral CFTs reproducing
the entropy of the extremal black holes upon using Cardy formula11

S =
π2

3
ciTi. (4.112)

Taking the near-EVH limit: To compare the central charges arising from the Kerr/CFT
prescription with the Brown Henneaux central charge of the CFT2 emerging from the EVH/CFT
correspondence, we follow the same procedure as in section (3.7). We take the near-EVH limit
of the Kerr/CFT charges, and impose extremality on the near-EVH BTZ black holes, so that
there is an overlap in the regions of parameters of the respective correspondences.

We expect that the near-EVH limit will induce a vanishing (in the large N limit) of all
Kerr/CFT charges other than the one associated to rotations in the near horizon region. Fo-
cussing on extremal near-EVH excitations corresponds to restricting to the chiral sector of
the dual CFT, so we anticipate that the Brown Henneaux central charge in this regime of
parameters will coincide with the central charge associated to the DLCQ of the theory.

10Negative central charge cψ3 may sound alarming. However, we note that in a 2d CFT the sign which has

physical significance is cL0 or 1
c
L0 and that the charge corresponding to rotations on ψ3, Q3 is negative in our

conventions (4.8); had we chosen the opposite orientation for ψ3, both cψ3 and Q3 would have changed sign.
11For ψ3 direction which the central charge was negative, one may directly show that the Frolov-Thorne

temperature is also negative, cf. discussion in footnote 10.
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4.7.1 Nearly-static near-EVH regime

The leading terms in the Kerr/CFT central charges in the nearly-static near-EVH limit (4.31)
take the form

cφ =
3q

`2
√

Vs

b̂

`
N2ε , cψ =

3q
`2
√

Vs

â

`
N2ε (4.113)

cψ1 = cψ2 =
6
√
q`33
`4

âb̂

`2

√
YsN

2ε2 , cψ3 = − 3q2

`4
√

Vs

N2 , (4.114)

where we used the identities Vf = 4Vs and r20 = ab/
√

Vs. We are interested in identifying the
central charges for the relevant IR U(1)s. Following [81], (4.41) implies

cχ̂ = −εcψ3 = cstatic . (4.115)

Thus, cχ̂ exactly matches cstatic (4.73).
This matching supports the claim that the chiral CFT appearing in Kerr/CFT is the DLCQ

of the one appearing in the EVH/CFT as outlined in section 1.7. Moreover, the Kerr-CFT T3

agrees up to the scaling of χ̂ with the temperature of the left-sector TL of the 2d CFT in
EVH/CFT satisfying T3 = − 1

εTL. (Note that in the extremal case the temperature of the
right-moving sector of the 2d CFT appearing in EVH/CFT vanishes.) One may then use
Cardy’s formula

S =
π2

3
c(`3TL) =

π

3
· 3q2

`4
√

Vs

N2ε · x0

`3
= π

q

`2
r̂0
`
N2ε = SBH ,

where in the last equality we used (4.34).
Unlike the rotating case, cφ and cψ also remain finite in the near-EVH static limit. They

satisfy the relations cφ = cχ̂ · `b̂/q, cψ = cχ̂ · `â/q. Notice the proportionality coefficients agree
with those appearing in the coordinate transformation (4.45) removing the mixing between the
angles on S3 and the AdS3 coordinates τ, χ̂. Within the Kerr/CFT mentality, one may then
propose that in the near horizon, near-EVH static case we have three chiral CFT descriptions,
one associated with the EVH/CFT via the DLCQ description and the other two (related to
cφ and cψ) with rotations on the S3. This latter, if true, may not be argued for through the
standard Kerr/CFT prescription for computing the central charges, which involves imposing
certain boundary conditions for metric fluctuations [79, 91]. To see this we note that the
extremal black hole geometry we discuss here is extremal-BTZ×S3, the near horizon limit of
which is AdS3-selfdual-orbifold×S3 given in Appendix 4.C. This suggests that one should be
able to extend the standard Kerr/CFT prescription to compute the central charge to the cases
like extremal-BH×X, where X is a compact geometry. This of course cries for a thorough study
and better understanding.

4.7.2 Rotating near-EVH regime

The leading terms in the Kerr/CFT central charges in the near-EVH limit (4.36) take the form

cφ =
3b̂
`

q + a2V−1

`2
√

V
N2ε2 , cψ1 = cψ2 =

3
√
q

`

ab̂

`2V
`3
`

√
YsN

2ε2 , (4.116)

cψ =
3a

√
V

`Ξa
`23
`2
N2 , cψ3 = −3q

√
V

`2Ξa
`23
`2
N2 , (4.117)

where we used the identities Vf = 4V and r20 = ab/
√

V. In the infinite N limit (4.72),
cφ, cψ1 , cψ2 ∼ ε → 0. Thus, the corresponding CFTs break down. Conversely, cψ and cψ3

diverge. Nonetheless, we already discussed in section 4.3.3 that the relevant IR U(1)s are given
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by (4.57). Following [81], the central charges transform like

cξ = C1

( q
al
cψ + cψ3

)
, cχ̂ = ε (C2cψ + C3cψ3) =

ε

C1
cψ , (4.118)

where we have used (4.60). These equal

cξ = 0 , cχ̂ =
3
√

V
`2Ξa

`23
`2

√
q2 + a2`2

`2
N2ε , (4.119)

where we used (4.59). The vanishing of cξ agrees with the absence of angular velocity and
momentum. More importantly, cχ̂ exactly equals the Brown-Henneaux central charge in (4.69).
This latter is in accord with our proposal/vision for connecting Kerr/CFT and EVH/CFT: the
chiral 2d CFT appearing in Kerr/CFT is the DLCQ of the one appearing in the EVH/CFT.

4.8 Discussion

In this Chapter, we extended the analysis of Chapter 3 to stationary black holes as a case study
of the first law analysis of Chapter 2 and the EVH/CFT correspondence (section 1.8). The
black holes we studied are in the class of asymptotic AdS5 black holes with two equal electric
charges and two independent spins. We classified all EVH black holes in this class and argued
that generically the EVH hypersurface is a bifurcate co-dimension two surface. The bifurcation
line, which corresponds to the case with vanishing spin, the static EVH black hole, is then a
co-dimension three surface. We studied excitations around any given EVH point and showed
that all these excitations can be captured by the near-horizon geometry, which has a locally
AdS3 throat, a pinching AdS3 [44].

We showed EVH black holes interpolate between AdS5 at the boundary and a (locally) AdS3

throat at the horizon and discussed the connection between the UV N = 4 super Yang-Mills
theory and the two dimensional conformal field theory appearing in the EVH/CFT proposal.
Based on the arguments and proposal made in [44] and discussed in section 1.7, we argued
that to resolve the pinching orbifold we should take a large N limit in the dual gauge theory
such that its entropy, measured in 5d (or 10d) Planck units, remains finite, and its temperature
scales like some small parameter. It is still desirable to have a better understanding of the
pinching resolution proposal made in [44].

As a specific example of the first law result described in section 2.3, and as pieces of ev-
idence for the EVH/CFT proposal introduced in section 1.8, we showed that the first law of
thermodynamics for the original 5d (or 10d) EVH black hole, in the near-EVH limit reduces
to the first law of thermodynamics of the BTZ black hole appearing in the near horizon. This
result is remarkable, as it holds quite generically regardless of the details of the EVH black hole
geometry.

Although we did not fully specify the IR CFT2, we mentioned that it can be understood
as a sector in the UV CFT4 in the specific large N limit (4.72). This proposal, in agreement
with the large N regime of Chapter 3 and in [28] for different sectors, should still be established
through explicit computations.

We also discussed a connection between the EVH/CFT proposal and Kerr/CFT for extremal
excitations of EVH black holes, i.e. extremal near-EVH black holes. We showed explicitly that
the chiral CFT appearing in the Kerr/CFT proposal for extremal near-EVH black holes can be
understood as the DLCQ of the CFT2 appearing in the EVH/CFT correspondence, realising
the proposal made in [40] and discussed in section 1.6. There are several questions and points
which asks for further analysis. One closely related idea, providing a “microscopic description”
for Kerr/CFT through locally AdS3 throats, has also appeared in [91, 49].

There are two further points arising from this Chapter that require further study: the
identification of IR charges for the near-static near-EVH black holes and its connection with
Kerr/CFT.

Regarding the identification of IR charges, it is known that the appearance of constant
electric and magnetic fields shift the values for the stress tensor and U(1) R-symmetry currents
under spectral flow in the dual CFT [92]. We suspect the same, if not more general set of spectral

91



flows, should occur here accounting for the extra energy and angular momentum contributions
in (4.93) and (4.97). To understand this point, one must study the reduction of our 10d near
horizon geometries to three dimensions, extending the reduction to six dimensions done in [28].
As we discussed in section 2.3, the geometric realisation of spectral flow in terms of non-trivial
fibrations over the BTZ black hole geometry renders a precise contribution to the BTZ mass
and angular momentum that leaves the BTZ first law invariant.

The rotations that induce an apparent spectral flow in the emergent CFT2 are associated
to “extra” chiral CFT descriptions in the Kerr/CFT picture. It would be desirable, given the
satisfactory agreement between the EVH/CFT result and that of Kerr/CFT in all other near-
EVH regimes, to establish a connection between the suspected spectral flow picture and these
central charges.

4.A Horizon Structure

Whenever the equation X(r) = 0 allows real positive solutions, the configurations (4.3) describe
a family of black holes. When this is not the case, it describes a naked singularity. In this
Appendix, we study the constraints in parameter space for black holes to exist. To do so, define

`2X ≡ r4 +Ar2 +B +
C

r2
(4.120)

= r4 +
[
`2 + a2 + b2 + 2q

]
r2 +

[
(a2 + b2)(`2 + q) + a2b2 + q2 − 2m`2

]
+
a2b2`2

r2

Note A,C ∈ R+, because a, b ∈ R and q ∈ R+, whereas B can be negative for large m.

We shall denote the outer and inner horizons by r±. These correspond to the largest and
smallest positive roots of the equation X(r) = 0. When r+ = r−, (4.3) corresponds to extremal
black holes. Figure 4.2 shows the root structure for the equation X(r) = 0. The existence of
a horizon requires Xc ≤ 0, where Xc is the extremum of X. This constraints the parameters
a, b, q and m.

Charges carried by the EVH black holes studied in this work are such that C � |B| � A.
When these hold, r± can be expanded as follows

r2± = − B

2A
±

√(
B

2A

)2

− C

A
+ · · · . (4.121)

Existence of horizons requires B2 ≥ 4AC.

Figure 4.2: X as a function r for a general non-extremal black hole solution.
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Near-EVH solutions occur when r± ∼ ε→ 0. This can happen if (note that A is finite)

Rotating EVH : a = finite, b = b̂ε2α, B = −B̂ε2 , α ≥ 1 (4.122)

Static EVH : a = âεβ , b = b̂εα, B = −B̂ε2 , α ≥ β ≥ 1, (4.123)

where B̂ ≥ 0 and C = Ĉε4+γ , γ ≥ 0. These are of course the two cases discussed in (4.28) and
(4.27).

Rotating EVH: To study this case let us assume α = 1, γ = 0. Indeed it is not difficult to
show that α > 1 cases can be recovered from α = 1, by sending b̂ → 0 and we get back to the
solution (4.62). From (4.120) we can read the parameter m

m =
1

2`2
(`2a2 + qa2 + q2) +

B̂

2`2
ε2 +

b̂2(`2 + a2 + q)
2l2

ε4. (4.124)

For the above parameters, condition B2 ≥ 4AC is given by

B̂2 ≥ 4a2b̂2`2(`2 + 2q + a2) + O(ε2) (4.125)

Static EVH: For this case, without loss of generality we can assume α = β = 1, γ = 0
(larger values of α, β and γ may be obtained from this case in the â, b̂, Ĉ → 0 limit). In this
case the B2 ≥ 4AC condition reduces to

B̂2 ≥ (`2 + 2q)â2b̂2`2 , (4.126)

and the negative B̂ condition implies,

2m`2 − q2 ≥ (`2 + q)(â2 + b̂2)ε2 . (4.127)

Finally, we note that for generic values of the parameters, the black hole horizon topology is
S3 or S3×S5, depending on whether one takes the 5d or 10d perspective. For the specific values
discussed in section 4.2, they degenerate to S2×S1. Furthermore, our black hole configurations
(4.3) have closed time-like curves. For more discussions on these black holes and their singularity
and causal structure, see [38, 88, 96].

4.B Calculation of Q1 and Q3

We calculate Q3 using the expression given in [96]:

Qi =
1

16π

∫
S3
X−2
i ? F i +

1
2
|εijk|Aj ∧ Fk. (4.128)

First we note that

1
2
|ε3jk|Aj ∧ Fk = A1 ∧ F1 (4.129)

=
1
3!
AaFbcdxa ∧ dxb ∧ dxc (4.130)

and over the sphere at infinity this is

1
16π

∫
S3

2
3!

(AφFθψ + AψFθφ) ∼
1

16π

∫
S3

O(1/r4). (4.131)
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We have

?F3 =
1
3!

(?F)θφψdθ ∧ dφ ∧ dψ (4.132)

=
1
2!
εθφψ

abFabdθdφdψ (4.133)

= gθθ[gφφgψψεθφψrtFrt + g2
φψε

θψφrt + gφtgψψε
θtψrφFrφ (4.134)

+ gφtgψφε
θtφrψFrψ + gψtgψψε

θtψrφFrφ + gψtgψφε
θtφrψFrψ]dθdφdψ. (4.135)

The asymptotic metric is

det g =
sin2 θ cos2 θ

ΞaΞb
r6, (4.136)

and the r-dependence of the metric and the relevant components of the gauge field strength F
are

Frt ∼
1
r3

Frφ ∼ 1
r3

Frψ ∼ 1
r3
, gtφ ∼ gtψ ∼ gφψ ∼ 1

r2
, (4.137)

gθθ =
1

∆θ
r2 + O(1) gφφ =

sin2 θ

Ξa
r2 + O(1) gψψ =

cos2 θ
Ξb

r2 + O(1). (4.138)

Also X−2
3 ∼ 1 so for εtrθφψ = 1 we have

Q3 = − 1
16π

∫
S3
gθθgφφgψψ

Frt√
det g

dθdφdψ (4.139)

= − 1
16π

2abqg2

ΞaΞb

∫
S3

sin θ cos θdθdφdψ (4.140)

= −abms
2πg2

2ΞaΞb
, (4.141)

where we have used

Frt =
2abq∆θg

2

Ξ2
aΞ2

br
3

+ O(r−5). (4.142)

We now calculate Q1:

Q1 =
1

16π

∫
S3
X−2

1 ? F1 +
1
2
|ε1jk|Aj ∧ Fk (4.143)

=
1

16π

∫
S3
X−2

1 ? F1 +
2
3!

[A1
φF3

θψ + A1
ψθφ

3 + A3
φF1

θψ + A3
ψθφ

1]dθdφdψ (4.144)

=
1

16π

∫
S3
X−2

1 ? F1 + O(1/r4). (4.145)

We apply the same procedure as above to find

Q1 = − 1
16π

∫
S3
gθθgφφgψψ

F1
rt√

det g
dθdφdψ (4.146)

= − 1
16π

∫
S3

(
−

2
√
q(q + 2m)
ΞaΞb

sin θ cos θ

)
dθdφdψ (4.147)

=
mscπ

2ΞaΞb
(4.148)

in agreement with the literature.

4.C Null self dual orbifold: static (near-)EVH

Here, we outline the appearance of the null orbifold for the static EVH (4.28) and near-EVH
(4.30) configurations.
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In the static EVH case, we define

σ+ =
t

`3
+

`
√
q
ψ3 =

x̃+

ε2
, σ− = − t

`3
+

`
√
q
ψ3. (4.149)

Taking the ε → 0 limit gives a product of the null selfdual orbifold (1.183) and a transverse
manifold,

ds2 = µ3

[
ρ2dx̃+dσ− +

`23dρ
2

ρ2

]
+ qµ3

(
dθ2 + sin2 θdφ2 + cos2 θdψ2

)
(4.150)

+
`2

µ3
(dµ2

1 + dµ2
2 + µ2

1

(
dψ2

1 − Ω(0)
1 t
)2

+ µ2
2

(
dψ2

2 − Ω(0)
1 t
)2

), (4.151)

where x̃+ decompatifies and σ− remains compact. This is the near horizon limit of a massless
BTZ black hole.

In the near-EVH case, we first we take the extremal limit so that x+ = x− = x0. We make
the following coordinate redefinitions

σ ≡ x2 − x2
0, t =

`
√
q

τ

ε2
, ψ3 = −ψ̂3 −

τ

`3ε2
, ψi = ψ̂i + Ω(0)

i

`
√
q

τ

ε2
(4.152)

and

φS = φ̂S +
τ

ε

(
â`Ys

q
√
q

+
b̂`

q`3

)
, ψS = ψ̂S +

τ

ε

(
b̂`Ys

q
√
q

+
â`

q`3

)
(4.153)

to get a geometry containing the null orbifold introduced in section 1.7:

ds2 = µ3

[
`23
dσ2

4σ2
+

2σ
`3
dψ̂3dτ

]
+ qµ3(dθ2 + sin2 θdφ̂2 + cos2 θdψ̂2) +

`2

µ3
(dµ2

1 + dµ2
2 + µ2

1dψ̂
2
1 + µ2

2dψ̂
2
2). (4.154)

As in the null orbifold discussion in Chapter 3, the second order contribution from expansion
of the coefficients of the τ direction in the S3 may give rise to non-trivial gauge fields.

4.D Choice of U(1)

We can impose constraints on the coefficients of χ, ξ (4.57) to ensure that they have a 2πn
periodicity:

C1 =
1

n( qal + 1)
, C3 =

1
n( qal + 1)

− n, n ∈ Z. (4.155)

For generic C1 and pinching χ = χ̂
ε , the 3d part of the metric (4.62) looks like[

− x2 dτ
2

`23
+ `23

dx2

x2
+ Q̃2C2

1x
2dχ̂2

]
, (4.156)

where Q̃2 = a2+q
a2 . We can rewrite it as

Q̃2C2
1

[
− x2 dT

2

L2
3

+ L2
3

dx2

x2
+ x2dχ̂2

]
, (4.157)

with

L2
3 =

`23
Q̃2C2

1

, T =
τ

Q̃2C2
1

. (4.158)
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The 3d Newton’s constant transforms as

1
G3

=
1
G10

∫ (
Q̃2C2

1

)3/2 √
... (4.159)

so under the redefinition (4.157) the Newton’s constant is

1
G′

3

=
Q̃3C3

1

G3
, (4.160)

and the central charge scales like

c′ =
3L3

2G′
3

= Q̃2C2
1c. (4.161)

The BTZ temperature and angular momentum transform as

T ′
BTZ =

x2
+ − x2

−
2πx+L2

3

= Q̃2C2
1TBTZ, Ω′

BTZ =
x−x+

L3x2
+

= Q̃C1ΩBTZ . (4.162)

The BTZ entropy, mass and angular momentum will be

S′
BTZ =

2π · x+

4G′
3

= Q̃3C3
1SBTZ, (4.163)

M ′
BTZ =

x2
+ + x2

−
8L2

3G
′
3

= Q̃5C5
1MBTZ, J ′

BTZ =
x+x−
4L3G′

3

= Q̃4C4
1JBTZ. (4.164)

It is straighforward to check that the first law of thermodynamics for a BTZ black hole is
invariant under the choice of U(1).

To sum up, the choice of C1 alters the AdS3 radius, time coordinate scaling, and consequently
G3 and c. As a result the BTZ thermodynamic quantities in the first law will have individual
scaling dictated by C1 such that the BTZ first law is invariant.

4.E Near Horizon Geometries as 5 Dimensional Geome-
tries

As discussed in section 4.3.3, for the rotating EVH case there is a freedom in choosing the
χ angle. In particular, one may choose it to be proportional to ψ, corresponding to C3 = 0.
With this choice, the near horizon geometry may be taken over the 5d black hole solution (4.3)
without considering the 10d uplift. To this end, consider the following scalings

r =
a√
a2 + q

εx, t =

√
a2 + q

a

τ

ε
, ψ =

ψ̃

ε
, φ = φ̃+

l2 − a2

l2a
√
a2 + q

τ

ε
(4.165)

Taking ε→ 0, we get following geometry

ds2 =
a

2
3 cos

2
3 θ

(q + a2)
1
3
h

4
3
1

[
−

(x2 − x2
+)(x2 − x2

−)
`23x

2
dτ2 +

`23x
2dx2

(x2 − x2
+)(x2 − x2

−)
+ x2(dψ̃ − x+x−

`3x2
dτ)2

]
a

2
3 cos

2
3 θ

∆θ
(a2 + q)

2
3h

4
3
1

(
dθ2 +

∆2
θ sin2 θ

Σ2
ah

4
1

dφ̃2

)
. (4.166)
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Scalar fields and non-zero components of gauge fields in this limit are given by

X1 = X2 =
a

2
3 cos

2
3 θ

(a2 + q)
1
3h

2
3
1

, X3 =
(a2 + q)

2
3h

3
3
1

a
4
3 cos

4
3 θ

(4.167)

F
(1)

θφ̃
= F

(2)

θφ̃
= −

2a
√
q(1 + q

l2 ) sin θ cos θ

Σah4
1

√
q + a2

. (4.168)
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Chapter 5

Summary and Outlook

We conclude the thesis by summarising our results and pointing to open questions.
In section 1.8 we introduced the set of extremal vanishing horizon (EVH) black holes (1.196),

which by definition have zero temperature and area. The area vanishes because a one-cycle in
the EVH black hole geometry shrinks to zero size, resulting in the near horizon region of these
black holes containing a local AdS3 factor (1.194), with a pinched angular direction. The
emergence of this near horizon factor gives an indication, via the AdS3/CFT2 correspondence
(section 1.4), of the existence of a dual 2d CFT description for the EVH black holes. EVH
black holes can be excited to near-EVH black holes, with arbitrarily small temperature, area
and Newton’s constant such that their entropy remains finite. The near horizon AdS3 factor is
excited to a BTZ geometry for these black holes. This asymptotically AdS3 geometry in the
near horizon throat of near-EVH black holes motivated the EVH/CFT correspondence (1.195),
which states that gravity near the horizon of an EVH black hole has a dual description in
terms of a two dimensional conformal field theory. While in four dimensions it has been proved
[51] that the appearance of an AdS3 throat is generic, and that the near horizon limit is a
decoupling limit, in five dimensions these are open questions. The EVH/CFT correspondence
in five dimensions has been studied case by case in [28, 34].

Chapter 2 was an investigation into the low temperature expansion of the first law of ther-
modynamics (2.21) for black holes in generic dimension and background. Associated to black
holes are n + 1 conserved charges, parameterised by a set of variables that span the n + 1-
dimensional black hole parameter space. A generic black hole is represented by a point in this
space. An extremal black hole obeys the constraint TH = 0 so that it is represented by a point
on the n-dimensional extremal surface. Infinitesimal movement, measured by a small number
ε, in parameter space off this extremal surface corresponds to shifting the temperature of the
black hole to some value that is proportional to ε. We Taylor expanded the components of the
first law in ε and found that the leading order contribution to the first law is an expression
for the entropy (2.37) that is compatible with the Cardy formula for the entropy of a chiral
2d CFT. Our result can be viewed as a thermodynamic derivation of the Frolov-Thorne tem-
peratures (1.150) and, for black holes with one conserved charge, the central charge discussed
in the Kerr/CFT correspondence (section 1.5). Our expression also agrees with Sen’s entropy
function result (2.41), and is reinforced by an analysis of the density matrix of a scalar probe
in the relevant black hole background (2.54).

We then applied this first law analysis to the subset of near-EVH black holes. EVH black
holes are represented by points on the (n + 1 − k)-dimensional EVH surface, where k is the
number of parameters we set to zero to achieve both TH = 0 and a zero horizon size. Again,
orthogonal movement off the EVH surface corresponds to injecting some small temperature of
order ε into the black hole configuration. It will also increase the horizon size so that the black
hole area is O(ε).

We took into account the fact that in the near horizon region of EVH black holes, the
geometry contains a pinching AdS3 orbifold. The near horizon limit (2.58) provided us with
clues as to how to categorise the black hole potentials and charges in the near-EVH regime,
and rotations in the directions transverse to the near horizon AdS3 led us to identities (2.64)
satisfied by the associated potentials.
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The charges and potentials of near-EVH black holes can be distributed into specific ar-
rangements according to their ε expansions, which we defined to be BTZ mass and angular
momentum (2.67). We deduced that the angular velocity in the pinching direction is the BTZ
angular velocity, and established that these quantities obey the first law of thermodynamics for
BTZ black holes (2.66). This result is remarkable, as it does not require details of a BTZ ge-
ometry; although we assumed the existence of a single vanishing horizon cycle (and smoothness
of the r → 0 geometry), we did not specify the geometric excitations, and the thermodynamic
excitations allude to the existence of a BTZ black hole in the near horizon geometry.

Our result is again fortified by a scalar probe analysis, from which we deduced that a
scalar probe in the background of a near-EVH black hole (2.72) is the same as one in a BTZ
background.

As the black holes we studied (2.27) are quite generic, our result suggests that any near-EVH
black hole should contain a near horizon BTZ factor. This suggestion remains to be proved.

Chapters 3 and 4 were case studies of the EVH/CFT correspondence and our first law
analysis in five dimensions. We chose asymptotically AdS5 black holes with the intention of
comparing the dual N = 4 super Yang-Mills theory descriptions with the two dimensional dual
descriptions of the AdS3 factor in the near horizon geometries.

The near-EVH limit of static three charged non-BPS black holes was obtained by sending
one charge parameter to zero, which geometrically corresponds to a vanishing one-cycle in the
transverse S5. The near horizon geometry contains a BTZ black hole built on a pinching AdS3

geometry, as advocated by the EVH/CFT correspondence. The entropy of this near horizon
BTZ black hole entirely captures the entropy of the UV black hole in the near-EVH limit. We
demonstrated explicitly how the black hole charges in the near-EVH regime arrange themselves
into the BTZ mass and angular momentum (3.82-3.83) that obey the first law for a BTZ black
hole (3.84). We stress once again how this result is at the level of the near-EVH limit of the
conserved charges in the UV theory, and is independent of, while complementary to, the BTZ
geometry.

On the CFT side, we calculated the central charge of the CFT2 using Brown and Henneaux’s
expression (1.32) and taking the pinching into account (section 1.7). The near horizon BTZ mass
and angular momentum were used as per section 1.4 to compute the quantum numbers ∆2d,J2d

of the dual two dimensional conformal field theory. We discussed the large N limit (3.67) for
which all AdS and CFT quantities are finite. The N = 4 super Yang-Mills theory charges in
the near-EVH near horizon limit describe a sector of the full UV theory. We demonstrated how,
in a similar fashion to the first law analysis, the IR charges arrange into quantities ∆IR,JIR

that agree, up to a “ground state” contribution, with the CFT2 quantum numbers J2d,∆2d

(3.97-3.101). This result, which indicates that the near-EVH near horizon limit of the N = 4
super Yang-Mills theory can be described in terms of a two dimensional field theory, is further
evidence in favour of the EVH/CFT correspondence.

The Kerr/CFT correspondence (section 1.5) can also be applied to the static charged black
holes, indicating the existence of three inequivalent chiral dual CFT descriptions. We compared
the Kerr/CFT result in the near-EVH regime with the strictly extremal limit of our EVH/CFT
results. In the overlap of parameters, in the large N limit, one Kerr/CFT central charge is kept
finite, and the EVH CFT2 is constrained to its chiral sector. The Kerr/CFT central charge
corresponding to the vanishing U(1) matches the Brown Henneaux result (3.121) in the overlap
of parameters, and we concluded that the relevant Kerr/CFT description is the DLCQ of the
non-chiral CFT that emerges in our EVH/CFT picture.

We also examined the near-EVH regime when the black holes are near-BPS. As ten dimen-
sional supergravity solutions, the BPS black holes are interpreted as distributions of spherical
three dimensional giant gravitons rotating in the transverse S5. Exciting the system slightly
away from BPS-ness corresponds to exciting degrees of freedom associated to open strings that
stretch between giants [34]. These giants are the source of electric charge in the 5d theory and
the number of giants of each type is proportional to each electric charge of the AdS5 black hole.
Since each giant type involves a different S3 ⊂ S5, pairs of giants of different species intersect
on circles.

The near-EVH near-BPS limit does not obviously fit in with the EVH/CFT correspondence
prescription, as the temperature is kept finite in this limit, and there is no “pinching” in the
near horizon limit. The near horizon limit does, however, contain a BTZ factor, signalling the
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existence of a dual 2d CFT description. In this limit, the number of giants of one species is
very small, as its corresponding charge. Pairs of giants of the other two species in this “dilute
giant approximation” intersect on the circle associated to the vanishing charge. This S1 is the
angular direction of the (not pinching) BTZ black hole.

Ensuring the near horizon geometry remains on shell [75] requires that when we zoom in
on the horizon, we focus on a strip of the S5. For this reason, the thermodynamic quantities
SBTZ, MBTZ, JBTZ are multiplied by a “volume factor” and can be understood as the quantities
calculated “per strip”. As we lose information of the integration measure of the S5 when we
focussed on the strip, we do not know how to properly integrate these quantities over all strips.
However, the identity (3.62) suggests that a suitable integration would result in the BTZ entropy
exactly matching the UV entropy in the near-EVH regime, as for the non-BPS case.

The central charge of the dual CFT (3.70) gives, up to the “volume factor”, the number
of giant graviton intersections. The giants are intersecting on the angular direction of the
near horizon BTZ, and the near-BPS excitations can be viewed as stringy excitations. This is
evidence that the dual two dimensional CFT describes strings stretched between these giants.

We discussed in some detail the appropriate N scaling to take in the near-BPS regime. In
the large N limit (3.80), the number of giants and all BTZ and CFT quantities are finite. We
found again that the N = 4 super Yang-Mills theory charges in the near-EVH near horizon
limit ∆IR,JIR match, up to the “volume factor”, those of our emergent 2d CFT.

Connecting with the Kerr/CFT correspondence was analogous (up to the “volume factor”)
to the non-BPS case, with the extra result that the relevant Kerr/CFT central charge (3.124)
is exactly equal to the number of giant graviton intersections, which can be viewed as more
evidence in favour of the “strings between giants” interpretation.

We emphasise again that near-EVH near-BPS black holes do not satisfy the conditions,
namely a pinching angle and vanishing temperature, shared by the EVH/CFT correpondence
and the first law analysis. Nevertheless, the first law obeyed by these black holes is the BTZ
first law (3.94), independently of the “volume factor” and scaling of N . It is encouranging that
our first law result applies to these near-BPS black holes, and it is a natural future project
to derive the IR first law result in a more generic near-EVH regime that includes non-zero
temperature and regular AdS3 angle.

In Chapter 4 we extended our analysis of asymptotically AdS5 black holes to the set of
rotating charged black holes. These black holes have one independent electric charge and rotate
in two planes in the AdS5. They also have associated to them an additional electric charge
Q3 (4.8) that is dependent on this rotation. The near-EVH limit can be taken by sending one
(rotating) or both (nearly-static) angular momenta to zero, resulting in a vanishing Q3.

The nearly-static near-EVH black hole has a near horizon geometry containing a pinching
BTZ black hole and a rotating S3. The diffeomorphisms (4.45) shift the BTZ to a co-rotating
frame. In the rotating case, the near horizon BTZ is trivially fibred by a compact seven
dimensional manifold, while its angular variable is a linear combination of the angles associated
to the vanishing momentum and Q3. We noted that there is some freedom in choosing this
combination.

While the appearance of a near horizon BTZ requires a ten dimensional uplift for all static
and nearly-static near-EVH black holes, this is not required in the rotating case.

The calculation of the BTZ entropy, mass and angular momentum, and the Brown Hen-
neaux central charge was analogous for the nearly-static and rotating regimes. We took into
consideration the pinching of the BTZ angle to find that the entropy of the BTZ black hole
is in exact agreement with the near-EVH limit of the UV black hole. Our expressions for the
BTZ thermodynamic quantities and dual CFT2 central charge indicated that our near-EVH
near horizon limit should be accompanied by a large N limit (4.72), in which all quantities are
kept finite.

In our first law analysis for the nearly-static black hole, the coefficients of the “co-rotating”
diffeomorphism contributed to the mass and angular momentum terms in the BTZ first law
(4.83) as expected. For the rotating near-EVH black hole, the appropriate UV conserved charges
arranged themselves into the BTZ mass (4.85), and the angular momenta corresponding to the
angles that combined to give the BTZ angle summed to give the BTZ angular momentum
(4.89), so that the first law again reduced to the BTZ first law (4.90). The invariant nature of
the first law result was underlined by its independence of the angular combination (4.57).

100



The UV quantum numbers of the N = 4 super Yang-Mills theory dual to the rotating near-
EVH black holes organise themselves into ∆IR,JIR that exactly agree, modulo the ground state
term (4.103), with ∆2d,J2d. While this is yet more evidence that near-EVH AdS5 black holes
are described by dual 2d CFTs, the nearly-static case requires more study. Here, the rotations
in the S3 in the near-EVH limit correspond to gauge fields from a three dimensional point of
view. Moving to a co-rotating frame is associated to a spectral flow in the dual CFT2, resulting
in residual terms in the comparison between the IR and 2d quantum numbers (4.97). These
terms require further understanding, which is postponed to future work.

Comparing the Kerr/CFT central charges to the Brown Henneaux value in the rotating
near-EVH regime returned the expected result. Following [81], the effective Kerr/CFT central
charge associated to the pinching angle agrees with the Brown Henneaux result (4.119), while all
other central charges are subleading. We can again surmise that the CFT2 charge associated to
this charge is the DLCQ of the non-chiral CFT that emerges in the EVH/CFT correspondence.

The contribution of the rotating S3 arose again in the comparison of our CFT2 description
with the Kerr/CFT result. In the region of parameters where the two proposals overlap, the
Kerr/CFT central charge (4.119) associated to the angle we pinched exactly matches our Brown
Henneaux computation. There are also two further Kerr/CFT central charges that remain finite
in the large N limit, associated with the rotations transverse to the BTZ in the near horizon
geometry. The finiteness of these charges in the near-EVH limit deserves further investigation.

One avenue we did not go down is the near-BPS limit of the rotating charged black holes.
The ten dimensional picture of these black holes is of giant gravitons rotating in both the S5

and in the azimuthal planes of AdS5. It would be interesting to investigate the near-EVH
limit in terms of excitations of these giants. Related to this limit, it is clear that although
we have provided both thermodynamic and case study evidence in favour of the EVH/CFT
correspondence, a more generic prescription of the correspondence, where the temperature is
not necessarily zero and the AdS3 angle does not have to be pinched, would be desirable. We
also have yet to prove the five, and higher, dimensional EVH/CFT statement: that a generic
EVH black hole has a dual description in terms of a two dimensional conformal field theory. A
natural step in this direction is to prove that generic near-EVH black holes have near horizon
BTZ factors, and that the near horizon limit is a decoupling limit.
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Appendix A

Frolov-Thorne Temperatures

In this Appendix, we calculate the Frolov-Thorne temperatures [93] associated to the near
horizon region of a near-extremal black hole. We follow [94] by considering a quantum field in
a black hole background at finite temperature, i.e. one assumes the black hole is not extremal.
Its quantum state is mixed and described by a density matrix whose eigenvalues equal the
standard Boltzmann factors

exp

[
−β

(
ω −

n∑
i=1

niΩi

)]
, (A.1)

where Ωi denote angular momenta for i = 1, . . . ,m, and chemical potentials for i = m+1, . . . , n.
Notice the “chemical” potentials are fully determined by the black hole geometry, while the
quantum numbers {ω, ni} label the quantum state.

Whenever an extremal limit in the black hole geometry is taken, we can study the behaviour
of the above eigenvalues by parameterising the limit. Since all chemical potentials are a function
of the horizon radius, and the extremal limit can be described as the limit r+ = r0 + ερ with
ε→ 0, we expand (A.1) in ε, while using the fact that TH = TH(r0)+ ερT ′

H(r0) = ερT ′
H(r0). We

expect two terms, one divergent and one finite. Indeed, by direct calculation, we obtain

exp

[
− 1
T ′
H(r0)ερ

(
ω −

n∑
i=1

niΩ0
i

)
+

1
T ′
H(r0)

n∑
i=1

niΩ′
i(r0)

]
. (A.2)

In order to avoid a vanishing probability in the extremal ε→ 0 limit, we require the divergent
piece to vanish, i.e. ω =

∑
i Ω

0
ini + O(εα). Notice this constrains the energy quantum of the

scalar fields in terms of the remaining modes. The remaining diagonal density matrix becomes

exp

[
1

T ′
H(r0)

n∑
i=1

niΩ′
i(r0)

]
= exp

[
−

n∑
i=1

ni
Ti

]
= %̂, (A.3)

allowing us to identify the Frolov-Thorne temperatures as

Ti = −T
′
H(r0)

Ω′
i(r0)

. (A.4)
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