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Abstract
We address the problem of learning the structure of Gaus-

sian graphical models for use in automatic speech recognition, a
means of controlling the form of the inverse covariance matrices
of such systems. With particular focus on data sparsity issues,
we implement a method for imposing graphical model struc-
ture on a Gaussian mixture system, using a convex optimisation
technique to maximise a penalised likelihood expression. The
results of initial experiments on a phone recognition task show
a performance improvement over an equivalent full-covariance
system.
Index Terms: speech recognition, acoustic models, graphical
models, precision matrix models

1. Introduction
Most modern systems for automatic speech recognition (ASR)
use hidden Markov models (HMMs) with the the acoustic fea-
ture observation probabilities modelled by a mixture of mul-
tivariate Gaussian components, known as a Gaussian mixture
model (GMM). An important consideration is the form of each
Gaussian component. Commonly, individual acoustic features
are assumed uncorrelated within each component, and so the
Gaussian is taken to have a diagonal covariance matrix. This
assumption can be made in practice because of the use of front-
end feature decorrelation techniques, and also because a full-
covariance Gaussian component can be modelled by splitting
into multiple diagonal-covariance components.

However, these techniques are not fully effective at remov-
ing the need to model correlations, and recent research has fo-
cused on finding alternative forms for the covariance matrix. It
is desirable to find a compromise between the need for just p
covariance parameters, in the diagonal case, and 1

2
p(p + 1) pa-

rameters for a full covariance matrix (where p is the number of
acoustic features for each frame). In the latter case, much larger
amounts of training data are required to obtain good parame-
ter estimates: otherwise the model is likely to be over-fitted to
the training data, leading to poor recognition performance. The
problem becomes particularly acute if it is desired to increase
the number of acoustic features used (for example, by adding
information from surrounding frames to the feature vector).

[1] proposed fitting the covariance structure to correspond
to a pre-determined sparse graphical model. Such models en-
code information about the conditional independence structure
of the system, and are described further in Section 2. When ap-
plied to a multivariate Gaussian system, the model is known as
a Gaussian graphical model (also a covariance selection model,
after [2]). It has been argued that graphical models can provide
a more parsimonious statistical model for speech [3]. It will
be shown that adopting a given graphical model for the sys-
tem imposes constraints on the sparsity structure of the inverse
covariance matrix, known as the precision matrix. A benefit

of modelling the structure of this matrix, rather than the covari-
ance matrix, is that it is used directly in the Gaussian probability
calculation, yielding computational benefits for speech decod-
ing. Indeed, much other work has been undertaken to reduce
the dimensionality of the precision matrix. A review is given in
[4].

This paper considers the problem of structure learning in
Gaussian graphical models, and coupled with it the problem of
parameter estimation, given the structural constraints. As we
explain in Section 2.2, other approaches to this problem used in
ASR systems often suffer from sparse data issues. We investi-
gate the use of a technique recently introduced by [5], related
to methods based on the Lasso [6]. These methods seek to es-
timate the graphical model structure by maximising a penalised
likelihood expression, and have been tested on inference prob-
lems in Bioinformatics. The penalty term is chosen so that the
maximisation results in a sparse precision matrix, whilst ensur-
ing that an optimal solution to the maximisation problem can
be efficiently found. We describe the procedure in detail in Sec-
tion 3. We adapt this technique for learning a set of GMM-
based acoustic models with reduced dimensionality, and test it
on a standard phone recognition task. In doing this we consider
the issue of how to chose the appropriate size of penalty term.

2. Background
2.1. Gaussian Graphical Models

In its undirected form, a graphical model [7] for random vari-
ables X = (X1, X2, . . . , Xp) (corresponding to acoustic fea-
tures) 1 consists of a graph, G = (V, E), with vertices V =
{1, . . . , p} representing random variables and undirected arcs
E ⊆ V × V representing causal relationships between vari-
ables. The absence of an edge (i, j) indicates that Xi and Xj

are (pairwise) conditionally independent, given the other vari-
ables in the system:

Xi |= Xj |X\{Xi, Xj} (1)

which is equivalent to the distribution function admitting the
factorisation

f(x) = f(xi, xs)f(xj , xs) (2)

where xs = {xl : l 6= i, l 6= j}. The distribution function of a
mean-centred2 multivariate Gaussian distribution with precision
matrix Ω = Σ−1 is given by

f(x; Ω) = (2π)−
p
2 (detΩ)

1
2 exp(−1

2
xT ΩxT )

1We use bold type to denote vectors of random variables or obser-
vations.

2We assume throughout that the means of each distribution can be
reliably estimated, and take all data to be mean-centred for the sake of
clarity.
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and from this it is clear that Xi and Xj are conditionally inde-
pendent if and only if Ωij = 0.

Dempster [2] derived the maximum likelihood estimator for
the covariance matrix of the restricted distribution, ΣG , showing
that we must have it matching the sample covariance matrix, S,
whenever there is a corresponding arc in G:

[ΣG ]ij = sij (i, j) ∈ E (3)

and it can be shown that finding such a matrix with its inverse
matching the graphical model is equivalent to finding the unique
positive definite matrix ΣG with maximum determinant, subject
to the constraints (3).

2.2. Structure learning

Determining the structure of G – that is, fixing the edge set E
or the sparsity structure of Ω – is an important problem. It is
possible to specify this according to prior knowledge: fixing Ω
to be block diagonal or banded diagonal would be an example.
However, we would expect that the optimal structure could be
learnt from the available data, and research has been undertaken
in this area for graphical models in general [8, 9]. In the case of
Gaussian graphical models, the structure can be tied across dif-
ferent Gaussians (for example, between mixture components of
the same state, or across triphones) by factorising the precision
matrix [10] according to

Ω = LDLT (4)

and tying the lower triangular matrix L across states. D is a
state-specific diagonal matrix of feature variance. [1] selected
edges based on estimates of class-conditional Mutual Informa-
tion (MI) between features, with the aim of creating discrimi-
natively structured models. Models selected according to these
criteria were shown to outperform graphical models with the
same number of randomly-selected arcs. However, an critical
deficiency of MI-based selection is that MI is essentially a func-
tion of feature correlation, and so a reliable estimate of the cor-
relation is required.

This is problematic: correlation values are obtained from
the sample covariance matrix, which is often a poor estimate
of the true covariance, particularly in the case that the number
of available samples, n, is close to the number of features, p,
– and it is not even guaranteed to be positive definite in the
case n < p. Even when the true graphical model structure is
highly sparse, with few parameters required to be estimated, it
is not simple to recover this structure from the inverted sample
covariance matrix due to the statistical “noise” present in the
estimate of the (generally non-sparse) full covariance matrix.

One solution is to use a backward selection procedure: the
importance of each edge (according to the chosen measure) is
computed using the parameters learnt for a full-covariance sys-
tem. The least important edges are removed one at a time from
the graphical model. After each step, the covariance parame-
ters are then recomputed using the new model. However, this
greedy search does not guarantee a globally optimal solution,
and has the disadvantage that the parameter re-estimation after
each step imposes a high computational cost.

3. Convex Optimisation Techniques
3.1. Penalised Likelihood

A standard technique in statistical modelling to avoid over-
fitting to data is to find the parameter set maximising a penalised

likelihood expression, where the size of penalty term increases
with the number of free parameters in the model. An well-
known example is the Bayesian Information Criterion [11].

Recent work [6, 5, 12] on Gaussian graphical model struc-
ture learning has focused on the use of the l1-norm of the pa-
rameter vector as a penalty term. The lq-norm of a parameter
vector θ = (θ1, . . . , θp) is given by ||θ||pq =

P
i |θi|q . As noted

in [6], the advantage of taking q = 1 is that it is the unique
choice both giving a sparse parameter set (which occurs only
for q ≤ 1), and resulting in the maximisation problem θ being
convex [13] (which occurs only for q ≥ 1) and hence efficiently
soluble.

We follow the approach of [5]. Here, the sparse precision
matrix, Ω, is found by maximising the penalised log likelihood
of the data. The penalty term is the l1 norm of all conditional
correlation parameters, given by the sum of the magnitude of
the off-diagonal elements of Ω. Ignoring constant terms, the
log likelihood of Ω, given data (x1, . . . ,xN ) is

`N (Ω) =
N

2
log detΩ−

NX
n

1

2
xT

nΩxn (5)

=
N

2
log detΩ− tr

NX
n

1

2
ΩxT

nxn (6)

=
N

2
(log detΩ− trΩS) (7)

where we use the fact that the trace operator is invariant to cyclic
permutations, and S denotes the covariance matrix of the data.
We therefore obtain the sparse version of Ω by solving

Ω̂ = arg max
Ω�0

{`N (Ω)− ρN

2
||Ω||1} (8)

= arg max
Ω�0

{log detΩ− trΩS − ρ||Ω||1} (9)

The parameter ρ is used to control the size of the penalty term
(with an increased penalty term leading to a more sparse ma-
trix). Both the parameter set and graphical model structure are
obtained simultaneously.

Details of an iterative algorithm for solving this problem
can be found in [5]. Ω̂ is guaranteed to be positive definite after
each iteration.

3.2. Penalised likelihood for Gaussian Mixture Models

The method described above can be used for structure learning
in a GMM with no difficulty. The density function of a GMM
is given by

g(xn; θ) =
X

k

wkf(xn; Ωk) (10)

where wk is the weight of the Gaussian component k (weights
summing to 1) and f(x; Ωk) is the density function of the cor-
responding Gaussian. θ denotes the complete parameter set.

No analytical solution exists for determining the maximum
likelihood estimates of these parameters, so an iterative method
is required. Suppose that to each xn we attach weights p(k|n),
denoting the probability that xn has been generated by compo-
nent k. For the log likelihood we have

`(xn; θ) = log g(xn; θ) (11)

= log
X

k

p(k|n)
wkf(xn; Ω

(i)
k )

p(k|n)
(12)



Given a set of initial parameter estimates, denoted w
(i)
k , Ω

(i)
k , it

can be shown that a lower bound for the likelihood of the model
is given by X

k

p(i)(k|n) log(wkf(x; Ω
(i)
k )) (13)

where

p(i)(k|n) =
wkf(x; Ω

(i)
k )P

m wmf(x; Ω
(i)
m )

(14)

and consequently at each iteration we choose parameters
w

(i+1)
k , Ω

(i+1)
k to maximise this expression, summed for all

data points. This is the familiar Expectation Maximisation
(EM) algorithm [14].

Suppose we now impose a penalty term on the log likeli-
hood for xn: X

k

ρ

2
p(k|n)||Ωk||1 (15)

weighting each penalty according to the probability of the point
belonging to component k. Since this is not a function of the
data, it does not affect the form of the lower bound (including
the computation of p(i)(k|n)), and so we maximise at each it-
eration, the value ofX

n

X
k

p(i)(k|n)(log(wkf(x; Ω
(i)
k ))− ρ

2
||Ωk||1) (16)

Considering just terms in Ωk, we maximise

X
n

p(k|n)(i)(log detΩk − ρ||Ωk||1 − trΩkx
T x) (17)

=
X

n

p(k|n))(i)(log detΩk − ρ||Ωk||1)

− trΩk

X
n

p(k|n)(i)xT x
(18)

from which it can be seen that we simply carry out the same
optimisation (9) as before, setting the sample covariance matrix

S(i) =

P
n p(k|n)(i)xT

nxnP
n p(k|n)(i)

(19)

at each iteration.

3.3. Choosing the penalty parameter

We consider the choice of the parameter ρ. As the sample size
tends to infinity, it is known that the unpenalised maximum-
likelihood estimate is optimal, so we should have ρ(n) → 0.
It was observed empirically in [5], using synthetic data, that
the best fit to the true graphical model structure was obtained
by setting ρ equal to the standard deviation of the sample co-
variance matrix, approximately proportional to n−0.5. Our own
preliminary experiments on synthetic data sets of varying sizes
appeared to confirm that this choice is optimal for classification:
however, we have yet to carry out exhaustive experiments to de-
termine whether or not this is true for speech decoding, and in
this work use a cross-validation method.

4. Experiments
To investigate the potential benefits for ASR of the penalised
likelihood structure learning technique, we carried out phone
recognition experiments on the TIMIT corpus. A standard

monophone HMM baseline system was constructed using 48
phone models, each with three emitting states. The acoustic
feature vector consisted of 12 MFCCs plus energy component,
their deltas and double-deltas. The observation probability for
each state was modelled by a diagonal covariance GMM, with
successive model sets having increasing numbers of Gaussian
components (the same for each phone). Results were obtained
on the reduced test set of 192 utterances, collapsing the labels to
the usual 39-phone set. A phone-level bigram language model
was used for decoding: early experiments indicated that apply-
ing a scaling factor to the language model of 5.0, and using an
insertion penalty of 2.5, tended to give highest accuracy scores,
and these were fixed for all subsequent experiments. The base-
line scores were very close to figures from similar systems pre-
sented in other work. The trend is for recognition performance
to improve up to about 48 components per state.

In obtaining full-covariance statistics for GMMs using the
EM algorithm, it is necessary to consider the choice of ini-
tial parameters. We found that systems initialised from a di-
agonal covariance GMM with the same number of Gaussian
components performed much better than those initialised by
component-splitting a full-covariance system with a smaller
number of components. (An alternative, initialising from a
sparse graphical model system with a smaller number of param-
eters, was judged to be too complex at this stage, given the need
to experiment with the size of the penalty parameter at each
split). To reduce computational overhead when re-estimating
the parameters, re-estimation was carried out independently for
each model using a forced alignment of the training data, gen-
erated using the 24-component diagonal covariance system. No
parameters were shared between models or components.

Whilst it may be true that sparse graphical model GMMs
are effective with very high numbers of components, here ex-
periments were carried out on full-covariance systems of 12
and 16 components. These gave performance comparable with
the best diagonal-covariance systems, whilst tending to avoid
problems caused by non-invertible sample covariance matrices
(this occurs more frequently as the number of components is
increased). Before performing the optimisation (9) to obtain
the sparse precision matrices from the accumulated sample co-
variance statistics, the sample matrices were scaled so that all
partial sample correlations were equal to one.

Figure 1 shows the variation in recognition performance
with the penalty parameter ρ for models with 12 sparse-
precision components, with the equivalent full-covariance per-
formance corresponding to ρ = 0. Table 1 shows a phone
accuracy results for a range of model sets: for the diagonal
covariance baseline systems and full-covariance systems with
varying numbers of Gaussian components, and for sparse pre-
cision matrix systems with varying penalty size. It can be seen
that the performance of the optimum sparse precision matrix
system achieves the highest accuracy score of any system. It
outperforms a full-covariance system with the same number of
mixture components by 0.7% absolute. Although the increase
is small, it was found to be statistically significant at the 1%
level by comparing scores on a per-speaker basis – and 163,000
fewer parameters are used.

5. Discussion
We have demonstrated that learning Gaussian mixture models
with sparse precision matrices may be beneficial for ASR tasks.
However, further investigation is needed into the the models’
performance on more challenging tasks.
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Figure 1: Phone accuracy of the sparse graphical model sys-
tems with varying penalty parameter.

Table 1: Phone accuracy scores. Parameter counts include only
precision matrix parameters.

Type #GCs #Params Accuracy
Diag 1 5,616 57.6
Diag 12 67,392 67.0
Diag 24 134,784 68.7
Diag 36 202,176 69.0
Diag 48 269,568 68.9
Full 1 112,320 63.6
Full 2 224,640 65.6
Full 12 1,347,840 69.6
Sparse 12 1,234,536 69.9
Sparse 12 1,184,787 70.3
Sparse 12 1,108,465 70.2
Sparse 12 849,211 69.6
Sparse 12 697,590 69.1
Sparse 12 453,261 67.9

There are a number of issues that we hope to address in
future work. Firstly, we have observed that the precision ma-
trix structure learning is effective only if the matrices are first
scaled so that all partial correlations are equal to one. This is not
possible if the covariance matrix is singular, which is increas-
ingly likely to occur as the number of Gaussian components
is increased. This lead to us considering only models with 12
components or fewer, for which covariance matrices can be re-
liably estimated, limiting the potential benefit to be gained by
the penalised likelihood method – particularly the benefit that it
always returns a non-singular solution. It will be necessary to
modify the algorithm to implement this scaling directly as part
of the optimisation procedure. We would hope to see greater
improvements over full-covariance models in sparse data con-
ditions or with large numbers of mixture components: neither
could be fully investigated here.

Secondly, we will need to conduct further experiments to
determine any possible analytic form of the optimal penalty pa-
rameter, which would include controlling the amount of data
available for training each model, rather than simply using a
standard training set for all experiments. Tying precision matri-
ces across components will allow these large-scale experiments

to be carried out more efficiently and is a standard method in
precision matrix modelling.

Thirdly, no attempt had been made here to learn graphical
model structures in a discriminative fashion, focusing instead
on the benefits of penalised likelihood from a purely statistical
viewpoint. We will aim to modify the technique to learn a dis-
criminatively beneficial structure. Other precision matrix mod-
elling methods [4] have trained models according to the mini-
mum phone error criterion (MPE), whilst [1] used an explicitly
discriminative measure of the significance of each edge in the
graphical model. The challenge will be to incorporate aspects
of these techniques, whilst retaining the attractive properties of
the current estimator.
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graphs and variable selection with the Lasso,” Annals of
Statistics, vol. 34, pp. 1436–1462, 2006.

[7] S. L. Lauritzen, Graphical Models. Oxford University
Press, 1996.

[8] M. Deviren and K. Daoudi, “Continuous speech recog-
nition using structural learning of dynamic Bayesian net-
works,” in Proceedings of EUSIPCO, Toulouse, France,
Sept. 2002.

[9] N. Friedman, K. Murphy, and S. Russell, “Learning the
structure of dynamic probabilistic networks,” in Proceed-
ings of UAI, Madison, WI, July 1998.

[10] M. Gales, “Semi-tied covariance matrices for hidden
markov models,” IEEE Transactions on Speech and Au-
dio Processing, vol. 7, no. 3, pp. 272–281, May 1999.

[11] G. Schwarz, “Estimating the dimension of a model,” An-
nals of Statistics, vol. 6, no. 2, pp. 461–464, Mar. 1978.

[12] M. Yuan and Y. Lin, “Model selection and estimation in
the Gaussian graphical model,” Biometrika, 2005, To ap-
pear.

[13] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[14] A. Dempster, N. Laird, and D. Rubin, “Maximum likeli-
hood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society, Series B, vol. 39, no. 1,
pp. 1–38, 1977.


