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INTRODUCTION

Of fundamental importance in physics are problems whose
mathematical formulation requires at least three dimensions.
Since in many ways one and two dimensional problems are easier
to handle, one of the major efforts of mathematicians has been
to reduce three dimensional problems to those of lower dimensions.
Fourier analysis, separation of variables, integral transforms,
and the introduction of various kinds of axial symmetry are some
of the more familiar methods that have been devised with this aim
in mind, This thesis is concerned with the study of the two
dimensional equations that result when Fourier analysis is applied
to the three dimensional Helmholtz or reduced wave equation.

The Helmholtz Equation

We begin our study by considering the three dimensional
Helmholtz equation in eylindrieal coordinates Ps f, z ¢

sf e ot 1 28 LB BT - oF e
AT+R*2 = FHR+E55 e a;az"'azz*ké © (0.1)

The following uniqueness theorem was first stated by Sommsrfeld(az)

and later extended and refined by Magnus(la), Rellich(zo) and
Levind 16),

Theorem O,1 Let F be the exterior of a finite three
dimensional closed surface OD (0D denotes the boundary of a
simply connected domain D). oD satisfies such regularity
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conditions as to insure the validity of the following case of
Green's identitys
[ (agau-uaa)dy = [ (G%-uSE)ds
Ca S (a,0)
where 2 (a, 0) denotes the sphere of arbitrary radius a
centred at the origin and containing 0D in its interior, Gg
is the domain bounded by > (a, 0) and 0D, u is a twice
continuously differentiable funetion in Ga’ vanishing on 0D,
(with U as its complex conjugate) and % indicates differen=-
tiation in the direction of the exterior normal of 2 (a, 0). Then
u(ps £, z) = 0 is the only continuous function in F =F u
such that
a) ue ¢@E)nc)F  (c®)r) denote the space of
functions defined in F which are n times continuously
differentiable in F).
b) Au+%u=0 in F.
e) u=0 on 0D,

d) 1lim R(-g% - iku) = 0 uniformly along all rays from the origin,
R-> o

where R = (p2 + 32)]75 .

e) u:O(R"l) as R—> .

Condition d) is known as the "radiation condition" and
e) is known as the "finiteness condition"., A bounded, simply
connected domain D that admits the application of the Gauss

s
integral theorem( 12)

will be called a normal domain. The con=-
ditions imposed on 0D in theorem 0.1l are equivalent to

3*E
requiring that the domain D be normal(lz). Rellich showed that

conditions d4) and e) could be replaced by

® D. U=5.
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a') lim S' \%-nmlaas = 0.,
R—>® % (R,0)

s 30 0 mupe Tteonntion, Nobise THAL XNNEES Dl BAS
only for u defined in the exterior of a finite closed surface
oD, TFor the situation in which there are infinite boundaries
very little is known, BSee (16) for a survey of what has been
done up until 1964 in this area of research,

we now expand solutions % (py #, 2) of (0.1) ina
Fourier series in ¢4, that is,

2 (e 42 = 3.2+ 2 3o (@ 2)crng + .ZI:(62JMh¢
n=|

i (0.2)
c wy /
mere IS0 2 = £ ( Fp s memnpde’ | nz
B | L - ’ ' (0.3)
TR go Tl o 2)amnsde’ | nzl
- T° ana £° satisfy the equation
. _
% 1 0% 33 2
ity ¥ oh n _ nt _
Ser TP e T om T e Ene WH =0 o)
We introduce the change of variables pn Un(l"' z) = §n(p. z)
and (0.3) becomes
— Ph uh Zn~+] a -
Lyen (dn) 5 S5t + 55 Qr " “é’gf i =0 (0.5)

In the above analysis 2n+l must be a positive, odd integer,

® D. 107=-11kL,
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However if we begin our study of equation (0.1l) by expanding
3 (ps #s 2) over a wedge shaped domain 0 ¢ g £ 2xa (a is
a real number) instead of O < g < 2x, then it is seen that
2n+l can assume arbitrary positive real values depending on
the choice of «a.

For the situation in which the solution £ (p, #, z) of
(0.1) is considered to be defined and continuous in the exterior
of a bounded domain, only solutions u of Ln#% (u) = 0 which
are bounded along thefaxis i for p > Po (where Po is
some positive number) are permitted., However if we consider un-
bounded domains (which arise for example if we wish to examine
the field resulting from the diffraction of a plane electro-
magnetic wave by an infinite conducting cylinder whose axis is
the line p = 0) solutions u of Lh4%(u) = 0 no longer need
necessarily be bounded along o =0 and we need to examine singular
solutions of Ln#%(u) = 0, From the analytic theory of this
equation (to be developed presently) it is seen that this is
essentially the study of L%Fn(u) = 0. Hence investigation of
questions of uniqueness for Lh¥%(u) =0 for n< 0 may pro=-
vide clues as to sufficient criteria for uniqueness of solutions
of the Helmholtz equation in unbounded domains.

Because of its intimate connection with the three dimensional
Helmholtz equation, considerable attention has been devoted in
recent years to the study of boundary value problems for equation
(0.5) (see the survey article by Heina(ll)). As of yet, however,
guestions of uniqueness of solutions has not been examined. This

is due basically to the fact that for n #£ <5 the coefficient of

%% in (0.5) is unbounded in any region containing a segment of
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the axis p = 0, and the mathematical study of boundary value
probleﬁs;éuéh;“singular" partial differential equations is of
only very recent origin., It is the purpose of this thesis to
examine questions of unicueness for equation (0.5) where n

is an arbitrary real number, To the author's knowledge this

is the first time uniqueness theorems have been obtained for
an exterior boundary value problem involving a singular partial

differential equation.

Singular Part ifferential Equations

Ordinary linear differential equations with rational
coefficients, such as Bessel's and Legendre's equation, made
an early appearance in analysis and today their study forms an
integral part of the theory of ordinary differential equations.
A similar theory for singular partial differential equations (i.e.
partial differential equations with rational coefficients) is still
only partially developed even though mathematicians of the calibre
of Appell, Goursat and Picard devoted their energies toward it.
For the state of the art as of 1951, see the survey article by
Erdelyi(u). Recently considerable attention has been given to
a class of singular partial differential equations involving

Bessel's operator

R
DV(U] = ayz + '27)’ S

<

Y

(0.6)

since such equations arise frequently in many areas of mathe-
matical physies. For more information on this important class of

equations, see the survey article by WEinstein(as).



o

Singular partial differential equations are also of interest
as a source of "improperly posed" problems, i.e. boundary value
problems in which either existence, uniqueness, or continuous
dependence upon the boundary data fails to hold. See(lg) for
some results along this line, The following quotation from E P. 230)
should indicate why the mathematician and physicist are interested
in such seemingly pathological casest "The stipulation about
existence, uniqueness, and stability of solutions dominates
classical mathematical physioa; They are deeply inherent in the
ideal of a unique, complete, and stable determination of physical
events by appropriate conditions at the boundaries, at infinity,
at times t = 0, or in the past, Laplace's vision of the possi-
bility of ecalculating the wheole future of the physical world from

2)

complete data of the present state is an extreme expression of
this attitude, However, this rational ideal of cdsupl-mathematical
determination was gradually eroded by confrontation with physical
reality. Nonlinear phenomena, quantum theory, and the advent of
powerful numerical methods have shown that "properly posed"™ prob-
lems are by far not the only ones which appropriately reflect
real phenomena. So far, unfortunately, little mathematical progress
has been made in the 1nmbrtant task of solving or even identifying
and formulating such problems which are not "properly posed" but
gtill are important and motivated by realistie situations."
Although questions of existence and uniqueness have played a
fundamental and basie role in the study of partial differentisl
equations whose coefficients are twice continuousiy differentiable,
it is only very recently that a similar study has been initiated
for the singular ease(2l, 19),
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We now explain briefly the terminology used in the work that
will follow. Consider the following partial differential

equation of elliptic type in normal form

2Y | My S 9 s
e P RAL Rl - il (0.7)

and assume that a, b and ¢ are rational functions of x and y.
Let #(x, y) be an irreducible factor of one of the denominators.
The algebraic curve C = #g(x, y) = 0 is a gingular curve of
eguation (0.7)e A point (e, D) of C is called a nonsingular
Mor C if either g (a, d) # 0 or ,dy(a, b) # O and
it is called a general point of C if it is nonsingular and if

C is the only singular curve of (0.7) which passes through that
point, If there is a fundamental system of solutions Iﬁﬂx, V)

u,(x, y) which can be represented in the canonical form

u gyl = ¢S (x-ay-1)
Uplry) = BB Solxa,y-b) (0.8)

(or in special cases in a similar form containing terms in log £,
where the 8(x-a, y=b) are power serics convergent in some neighe
bourhood of (a, b); and if such a reprosentation holds in the
neighbourhood of each general point (a, b) of C, with the Py
independent of a, by, X, ¥y then A{x y) = O may be called a

8 € the regul type.

From this point on we will consider equation (0.5) in the

form

bzq 2y
Ly Wz Sa+d « Frsf +wtuso (0.9)
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where (x,y) are cartesian coordinates and v is an arbitrary

real number which can be either positive or negative.

The tiec Theo L (u) = 0.

In either of the half planes y>0 and y<O0, (0.9) is an
elliptic partial differential equation with analytic coefficients,
and hence every twice continuously differentiable solution is an
analytic function of x and y in each such half plane(z)? The
line y = 0, which will be called the gxis is a singular curve of
the regular type with exponents Py = 0s pp = 1l -2v (see
equation (0.8)). Consequently, there are solutions of (0.9) which
are regular on (some portion of) the axis. It is seen from the
differnetial equation that 2%/dy = 0 on the axis for such
regular solutions. For 2v # -1,-2,-3 each regular solution can
be continued across the axis as an even function of y i.e., for
2v ¢ =1,-2,-3,. a regular solution is an analytic function of x

2 4n some domain D that is symmetric with respeet to the

and y
axis y = 0. 1If 2v = =1,-2,-3,,, the assumption that u is an

even funection of y will be part of the definition of regularity,

viz.
Def. 0.1 ¢ A solution u(x, y) of Lv(u) = 0 will be called
regular if it is an analytic function of x and y2 in some

region which is symmetric with respect to the axis y = 0.

Theorem 0.2 ¢ (The Correspondence Principle): Let u(2v) be a
solution of Lv(u) = 0 in a region D not intersecting with
y = 0. Then ut = y2v'1 u(2v) is a solution of Ll_v(u+) =0
and vice versa,

Proor: (2%)

From theorem 0.2 we see that for v £ % a fundamental system
x p! 502.
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of solutions of Lv(u) = 0 about a point (a, 0) consists of a
regular solution ul(x, y) of Lv(u) = 0 and a solution of the

=2y u*(x, y) where u*(x, y) is a regular

form u,(x, ¥) =¥
solution of Ll_\r(u) = 0. This holds even for 2v equal to an
integer (provided 2v # 1) where we might have expected logarithmic
solutions. Hence the study of singular solutions of Lv(u) = 0 for
v > %5 is essentially the study of regular solutions of Lv(u) =0
for v < . Note that the case when 2v = =1, =3, =5,e00 is
exceptional in the sense that any solution is an even function of

¥y and hence regular,

Theorem O.3% (The Identification Principle): Let 2v # =l,=3,=5540e¢
and let ul(x, y) and uz(x, ¥) be two regular solutions of
Lv(u) = 0 in a region D which is symmetric with respect to
the axis y = 0, If ul(x, y) = ua(x, y) along some segment
of the axis contained in D, then ul(x, y) = ua(x, y)
throughout D,

Theorem O.4: (The Recursion Formula): Let u(gv)(x,y) be a

solution of Lv(u) = 0 in a region D not intersecting with

(2v)
y = 0. Then u'(x,y) = % 22__3§L¥;El is a solution of

Lyep(u) = 0 in D,

Qutline of Results

Much of the analysis in this work is based on our first showing
that any regular solution wu(x, y) of L (u) = O can be
expanded in a Bessel=Jacobi series and then extracting properties
of u(x, y) from such an expansion. The use of such special
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function expansions can be considered analogous to the use of
power series and Laurent expansions in the study of analytiec
functions of a complex variable.

The case v = 0 is always excluded since in this case
Lv(u) = 0 reduces to the classical two dimensional Helmholtz
equation in cartesian coordinates.,

In chapters one and two we consider the following uniqueness
question:s Let F = R2 - D where D is a normal domain symmetric
with respect to the axis y = 0 and R2 is the x-y plane. Let
u(x,y) be a regular solution of Lv(u) =0 in F and suppose
that u(x,y) = 0 on ©OD., Then under what conditions can we state
that u(x,y) = 0 in P? Examples are given to show that u(x,y) = O
on ©OD alone does not imply u=0 in F, The following resultis

are obtained.

1) Assume v>-h, If 1lim gx v+l 10 o L%% - iku]2 ae = 0
(where x =r cos €, ¥ =r£’;§n 8) then u(x.Y) =0, It is shown
that if u(x, y) is regular for r>a the above radiation con-
dition is equivalent to there existing a rectangle T (independent
of r) enclosing [—1, +i] in the complex £ = cos @ plane such
that for each fixed r >a u(x, y) =1 (r, £) is an analytic
function of & in T and lim rv"'.l’é Lg% - ikl ) = O uniformly

r> ®
for E contained in T,

2) Assume v< -1, 2v # <1, =3, =5,.... If there exists a
vlh ¢ od A
rectangle T as described in 1) and if 1lim r ( - ikl 0
r > 00
uniformly for & contained in T then u(x,y) = u(r,£) = O.

3) It is shown that for v = -1. -2. ""3...-- a solution to the
exterior Dirichlet problem satisfying the conditions in 2) does

not in general exist for given analytic boundary data even though
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if a solution does exist it is unique. This is of added interest
since it is often tacitly assumed or hoped that elliptic boundary
value problems are well posed if uniqueness holda(7). Such mis-
guided hopes are encouraged by the fact that Perron's method yields
both existence and uniqueness theorems provided one can derive a
maximum modulus principle(2) p. 342,

In chapter three regular solutions of Lv(u) = 0 for the case
2y = =1, =3, =5,... are decomposed into a function of the form

y1-2v ut(x,y) where u+(x,y) is a regular solution of

Ly_y (u) = 0 and a function of the form Ql(x,y)eikx + QZ(on)e-ikx
where Ql(x.y) and Qz(x,y) are polynomiala in x and y2. Hence
the study of Lv(u) = 0 for such values of v is reduced to
examining Lv(u) =0 fordvz 3,

In chapter four solutions u(x,y) of Lv(u) = 0 which are
regular in the whole plane are considered for v< - %,
2v £ =1, =3, =5,.4s « Conditions are established to insure that
if 1lim rv*% u(x,y) = 0 pointwise for @ ¢ [0, i] (x = r cos &,
y =r;’ r:?.n &) then w(x,y) = 0. It is noted that for v>=%
uniqueness theorems are easily obtainable by direct generalization

of results for the classical Helmholtz equation.

Concluding Remarks

Previous work on the equation Lv (u) = 0 has been done by
Henrici(13) and Gilbert and Howard(a), each of whom considered



solutions of L, (u) = 0 for v>0 which are regular in sonme
region containing the origin.

The author believes that results similar to thoue obtained
in this thesis can be derived without serioue difficulty for the
following equations

(0.10)

(0.11)

Ry 2 2 2 -
v Y ..l._’.‘ﬂsg_.‘)."‘_-i-—‘?y-yg?*&-ka-b 'e/r}U-O (0.12)

Here pu, v, ky, € are real valued constants.



CHAPTER I

In this chapter we will investigate uniqueness questions

for

2
Ly(U)E’J é +—27%L;,+k3u =0

{1:1)
where v and k are real numbers, v>-%, k > 0. More specifically
we ask the following: Given a normal domain (see introduction) D
symmetric with respect to the axis y =0, F=R, - D (R, is two
dimensional Fuclidean space), u a regular solution of (l.1l) (see
introduction) such that u = 0 on 0D, under what additional
conditions is u 0 in F ? The fact that some additional

condition is needed can be seen by the following examples:

Example 1.1 ¢ Let x=rcos® y=rsinée, D = {(x,y)lr4a, a> 0}
i i H‘U - Q)
and let u(x,y) = U(r,8) = H"‘(kl (kv) — H(n( y (k)
where H denotes Hankel's funetion. On @D ﬁ(a,e) = 0 but
i(r,8) # 0 in F =R, - D. 1%(r,0) is a solution of

Lv(u) = 0 which is independent of &.

For v = 0 the following radiation condition assures
uniglenesaéla) p. 108)
el > s 2
s f r‘/fg_ru'-ik'tf/ do = o
r—>ce (1'2)
In the more general ease of equation (1.1) it will be shown that
(1.2) must be replaced by

/ f 2v+/ . 2‘3/35';7-—3'/('&'/2Jt9=‘0

r—>oce (103)
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Observe that for v = 0 (1.3) reduces to (1.2). Henceforth in this
chapter (1.3) will be referred to as the radiation condition.

Condition (1.3) is implied by stronger radiation conditions
which resemble those first derived by Sommerfeld (see Introduction).
If v 20 we have

y : _
2v+| - 2v 90 .L~|2 2v+) . ~ 2
\ S‘o\' o) 8 ]—é-;-?.kul JG < Vmﬂr sza ]g—g-zka’,
and hence (1.3) holds if
. ) = QN . ~
_/((nw Y‘V*/%owuuG/‘J}?-& ‘FU/:O (1.1)

r—>ce

uniformly for 040 € %, If <5<v<0 we have

m
v+ - g . ~ g 7
S‘orz 2, I%’E'ikUIZJO < .gm rzvﬂ/%},‘_gkul"’ avn’ode
fo<m 2

and hence (l.3) holds if

/ Va | O
r.lH' 2 !( .y A_ =0

r—>co / ..o vl (1.5)

uniformly for 0 <@ <=, For v * 0O condition (1.5) implies that

condition (1.4) holds also.

Statement of Main Theorem and Outline of Proof.,

Theopem 1,17 1Let F =R, =D where D is a normal domain
symmetric with respect to the axis y = 0. Let u(x,y) be a
regular solution of L (u) = 0 in F. Assume v > by & > 0,
and let the radiation condition (1.3) hold. Then if u(x,y) = 0

on 9D, u(x,y) = 0 in F .,
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Outline of Proof: Since all regular solutions of (1.1) for v>-%
are even functions of y (see Introduction) it is only necessary to
examine solutions u of Lv(u) = 0 in the half plane y Z 0, For
r, sufficiently large let Bl'o be the region bounded by that part
of o 1lying in y > 0, portions of the axis L, and L,, end

the semicircle 98 = {(x,y)l r=r,y= 0]‘ « See Figure 1.1 below.

Eigure 1.1

First a representation for u(x,y) = u(r,8) valid for r=zr, will
be obtained. WNext it will be shown that if

Nim, Y lutgyp|?ds =0
s

f'o—-bao 3

(1.6)

then u(x,y) s 0 in P. Finally Green's fomula(5) will be
applied to u(x,y) in the region Bp, and it will be shown that
(1.6) is implied by the radiation condition.

Preliminary Theorems
Assume v > -,
Theoremn ¢ Let u(x,y) be a regular solution of L (u) = O for

rzr, where X =r cos & Yy = r sin €. Then if u satis=

fies the radiation condition (1.3), u can be expressed for
(=X (o, 11')
>
r=r,/as
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uiny) = G0) =¢™ 3 ay o rr) GY (e ®)

be -}

(1) v
where H van is a Hankel function, Cn

and &, ne=0,1l,sees are independent of r and &,

a Gegenbauer polynomial

Proosi For fixed r2xr,, U(r,e)e c(l)(fo,x]) and hence the
Fourier cosine series of sin'® @(r,®) rconverges urifornly o
sin’e fi(r,0) in e+@<x - ¢ where e is a fixed positive
number, O<ezx ((26) p. 368, L410). Now since Gegenbauer
polynomials are censtent multiples of Jacobi polynomials

((3) VII p. 174) by the equiconvergence theorem for Jacobi series
((23) P. 239) it is seen that for @ e (0,x) we have

B
dlr, ) = E_' L“ CY (= 6) S; O e) ap @ C¥ (o) dco

<o

where C;’l denotes the Gegenbauer polynomial ((3 ) Vol. II, pe 174)

i e - 2nhav) n! T)
NT e (2, Cle'hs) (1.7)
In polar coordinates equation (1l.1) becomes
*TW  2pel Y 1 R4 2
3rz2 ' T ¥ 3r *rr 3ozt r—-a;me'%ﬁ + k2 =0

Now let v (r) = L X
J:, acn e) sen®e CY (tree) d Go

a’-"’ 2;ml G
? Ch (Cm(e)-dw w { grz. e T —J-i'aa '—IM g 'f'kza‘}Ju

5
- 2utl !
“Vn' 4+ S W A, + —r{;j;ch"

where uﬁ = guz . Now consider the integral in the last term,

setting £(4) = c;(cos g) for notational convenience,
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gﬂg‘(@,mz@f;w Ua+ Ugq|de = g:{‘(cpja% [ Ge]de

Henece -g% =-yg-%+x% = O(y) as y—> 0 by Weinstein's

%% * %% and x=rcos g, y=rsing.

recursion formula (see Introduction.). Therefore
T

1 = (7 S 2V A~
&\o W@J’gﬁ['mzy@ Uelde = - ga-‘?'(@) e’ Up de + £(@) 20l uu{

©

The last term in the above line vanishes from the above discussion

and therefore integrating by parts again we have

T -n i i}
S; F(w) -)ac_p L2’ Gy lde = S:: {?"(@)M"'&e +2vF @) 2im @ caacelu(r,awcg
b
e 4 (g) awm= '&'Cr,cej)o

d (e a) . O(2in @)
d (er @)

By our notation < (@] = -317,‘, Cv () = —em @

Hence the last term in the above line vanishes and from Gegenbauer's
differential equation

(I")(z))(“ - f2u+l)£y' —{-T\(h-r?l/)y =0 (1.8)

we have

[0S Cainy § T "
" {(a) Y rm (7 U@]JQ': —}\(n-rZy)J:Ch (o) in’'e U (ra) clce

= -n(n+2v) Vn(r]



Hence vn(r) satisfies

v" + 21):! o (Rz_ h(T;-:ZV))V.._.O
(1.9)
i,e. (2)
) -
Vn (el = Gn ¥~ H (K"'] "'bh £ HV‘\'“ Crev)
where (13 ’ Fig denote Hankel functions of the first and
second kind respectively. Now we have, using the radiation
condition and Schwartz 8 lemma,’ 2
u+/2( 5 ;kv) 4 fzr w'/;. 2y (r-;ku)G.(m@) dee
ru»oo r-> o0 )
< rﬁ’; - frzw -%/;-f-z'&a/c/@ fom @[C,.(ma»)]dco
=0
From (3)(Vbl. II, pp. 79, 85, 31) we have
) ({}]
0 B 0] = e By, G
€2) R (2)
£ [ 0] e Ui 2:10)
) 2 i (kv -2Svr "—"r'") -3,
y (ko) = Vi © +0(%) | r>oe
) i (re- Yovn-Ygu)
Hy o= Vi, e + OG%), r s om
(1.11)

Hence for large r we have

. _ ! - Yo
T_V+'/;(%_V£ -ith) = Qy, fo (JF-)]* Ln [:.sz ?ZE e—b(tr Yalyen+ )T -fi ())(Y")]

Since this last expression must tend to zero as r tends to

infinity, conclude that bn = 0. Hence our theorem is proved.



The next theorem we are going to prove can be considered as
an analogue of Rellich's lemma(la)(p. 109) for the classical
Helmholtz equation.

Theorem 1.3 (Rellich):! Tet V(x) € c?

X = (xl,...., %)) be a bomplex valued) solution of
!
A v+x®ve=0(A=3 ax= gx;) with k > O, Let

for Ix\>ro (ro > 0,

lim f lvi2as = o
¥y

r>00 Ixl=
where dAS denotes an element of surface area on the sphere

\x| = DT Then V(x) g 0.

Theorem 1.4t Assume u(x,y) = u(r,8) is a regular solution .
of L (u) = 0 in F and the radiation condition (1.3) bolds.
Let v>-1. If

v .
lim 2V j‘ sin?"% |¥(x,4)|% a6 = o
Ir—->00 (]

then u(x,y) s O.

@
. ne - 1 v

Proof: u(z,y) = u(r,8) =r ¥ Eo a, H‘(’ﬂz (xr) Gn(aos &) from
theorem 1,2. Parseval's relation for series of Gegenbauer

polynomials gives us

Z L\_,: \r'vq“ H;:h (kev) ]2 = S\omz’a’ ’ Ci'(r‘ @) lzche

ThTo
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where h, is defined by (1.7). Hence

T %0 '
g 2 j\omz"cglﬁtna)lﬂ@ = v-hZ hn | 90 Hcv_-]m Cer) |

Therefore Ves-o, 3 v s such that for r > ry

e u e, BE) () (< e 4285

But from (1.11) we have
- -« VUL - "
Hin, Cor) = Vi, @2 CX77 O o O(#) rs o

Hence conclude \ay| <|e hn\)-? and since ¢ was arbitrary
.Tl- = 0y N = 0,1,25000¢9 which implies u g 0 for 1‘>l‘°¢ By

analyticity of u(x,y), u(x,y) = 0.
We are now in a position to prove theorem 1,1,

1t iz convenient to consider two separate cases, that for
v >0 and ~hev<0, For v >0 Green's formula can be applied
directly. Green's formula for equation (1l.1) is (5)

bf"(s%—‘f—#‘%ﬁ)JS: g”(g““““{f?))clxcly
Bro Yo (1.13)

‘P,s € CC” CE-,)
(Bee Figure 1.1) where /, g= indicates differentiation in the

direction of the exterior normal of &Bp,, L(u) = é + . ?;.
y

and OBp, 1is traversed in a counterclockwise direction, Now if f and
g are regular solutions of Lv(u) = 0, then % = % =0 along



A

the axis y = 0 since f and g are even functions of y. Let
f=g=0o0n @D, Equation (1.13) now becomes

Lgy” (93F - $32)ds- fB‘/”(s Ltb)- FLlgdddy |

LS

o)

For = < v < 0 Green's formula is valid only if the path of
integration does not contain points of the axis y = O sinece in
this case yzv in (1.13) becomes infinite. We have however the
following

y Y"(Ej%i,f-‘p%g)ds = gyz"(aL(-F)—-pog)) clxcly
3% 2 (1.15)

where 03 = Ly +Cy + Ly, + C, where C, lies on oD (see Figure
1.2 below).

Ly

Figure 1.2

Now in (1.15) assume f, g are bounded for y = 0 and %§ ’ %% = 0(y)
as y —> 0. Now let 00-—» 0 in Figure 1.2 and conclude that
formula (1.13) is valid in this case also since the integrals along

Ll, L2 vanish in the limit. Now note that Weinstein's recursion
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formila (see Introduction) implies that for regular solutions u

of L (u) =0 we have %% ’ %% = O(y) as y — 0. Hence conclude
i ue C¥(By)

formula (1.14) is valid for f =u, g = u /where Lv(uj = 0. Let

R(re) = S;S‘/’”l%%-ikulzc!s = S\ag/z" %__,;kﬁ)(%;"-i ku)ds

I

v . u QU
S‘BS\,WI%{‘:I’JS + k2 j;;l’ lul*ds +zk5‘a;”(“%‘?““§'§)d’5

Now apply (1l.14) with f =u, g =1u and arrive at

_ v | 2 2 2 y”lulst
RCr.) = j;s\/ l;%j c]S + k g;s (1.16)

since 1lim R(r) = 0 and both terms in (1.16) are positive conclude
r->00
that

lim j\s yzv|u(x,y)l 2 as

S = 0 ®
r—~>00

By theorem 1l.4 this implies u(x,y) = O .



CHAPTER II

In this chapter we will investigate uniqueness questions

for

<

_— 2
Lv(u]:_éﬁ+%_y%+%%§+mu=o (2.1)
where v < =%, k>0, More specifically we ask the following?

Given a normal domain (see introduction) D symmetrie with respect
to the axis y = 0, F the exterior of D, u a regular solution
(see introduction) of (2.1) in F such that u =0 on?d3D, under
what additional condition is u s 0 in F ? Here it will always
be assumed that 2v is not a negative odd integer since in this
case all solutions of (2.1) are regular and up to a function of

ut where u* is a regular solution of Iy_, u =0

the form Yy
the general solution can be explicitly expressed in terms of 1-2v
arbitrary constants (see chapter three).

For v> <% uniqueness theorems for (2.1) depend on expanding
u(x,y) = U(r, cos 8) in a Gegenbauer series for fixed r (see
chapter one. In chapter one U denoted u as a function of r
and &. Due to the fact that u 1is an even funetion of y, u
can also be expressed as a functionof r and cos € and in this

chapter T denotes this latter function):

ad
o~ v
uix,y)= Ulr, cn ) = X Ancr) Cy (ou®) (2.2)
h=To
the %(r) are then determined from the following representation

formula

|
wl
Ay(r) = \.: j (1- o) /zC:CcaaG) S, ern®) d (coe ) 0553
q-l ™
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where h,  1s a normalization constant depending only on n. It
was shown in chapter one that for v > <% the following radiation

condition assures uniqueness:

-‘/l {7 ~ x
_/(&nz j\’ l’zw"(f—m‘@)u /'?F"—ku/"[(c“w =a
r—>»oceo ~1 (2'u)

where X =r cos 8, y = r sin 6,

For v < < the methods outlined above cannot be applied
immediately since the weight function (1 = cos;:ae)""l’é in (2.3)
and (2.4) no longer . is integrable over [-1, +1] « This can
be dealt with by considering contour integrals instead of real
integrals. 1In this sense our work bears some resemblance to that
of Mackie(17), iuch of the forthcoming analysis is devoted to
considering equations similar to (2.2) and (2.3) when & = cos @
is complex valued. It will be shown that if u(x,y) is a regular
solution of L (u) = 0 for r>a then for fixed r >a A(r,z)
can be extended to an analytic funetion of £ 1in some rectangle
in the complex &-plane enclosing the points 1. For veHh
(2v # =1, =3, =5,..s) the following conditions are shown to
ensure uniqueness.

1) There exists a rectangle T, independent of r, enclosing
f;l, +1] in the complex E=-plane such that for each fixed r>a
U(r, £) is an analytic function of £ in T.

2) 1lim 1'”'"1’é (aﬁ - ikii) = 0 uniformly in T .
Wi or (2.5)

Finally for v > =% it is shown that condition (2.4) is equivalent
to conditions 1) and 2) above.



Statement of Main Theorem and Outline of Proof

where D is
Theorem 2,1% Assume v <=f, 2v £ =1,=3,=5,.0. « Let F =R, = D/

a normal domain symmetric with respect to the axis y = 0. Let
u(x,y) = i(r, cose)l be a regular solution of Lv(u) =0 in
F and hence regular for r>a where a is large enough.
Suppose that
1) there exists a rectangle T, independent of r, enclosing
E-l, +1] in the complex ¥ plane such that for each fixed r>a

U(r,z) (£ = cos @) is an analytic funetion of ¥ in T.

V'llé (%ﬁ_ i

2) 1lim »r ki) = 0 uniformly for £ in T.

r->@®

Then if u(x, y) =0 on 0D, u(x,y) =0 in F,

Qutline of Proof: As pointed out in chapter one it is only
necessary to examine solutions wu of Lv(u) = 0 in the half

plane y2 0. An expansion theorem for u(x,y) in terms of a

Bessel=-Jacobi series valid for r > a where a is sufficilently
large will be obtained. Using this series an asymptotic expansion
for u(r, £) and ﬂ%lﬂ will be obtained for large r. By
the use of Green's formula it will be shown that if u =0 on

oD then for O < 6,< =%

L%
QU

6, e
S‘ ‘,_'a.v-i-lmzvcp (N L a"%_: )J@:—a
P (2.6)

g

for r large enough where T denotes the complex conjugate of .
Finally by using (2.6) coupled with the above mentioned asymptotic

expansion we will show that u(x, y) = O.
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Preliminary Theorems

Theorem 2,2% Suppose = <€ V<400, =00 < k < oo and let u(x,y)

be a regular solution of L (u) =0 for r, < r < r, where
v 1 2

rs +d:;:§-1—aa'2 . Then for every closed interval [i'3, rh]
contained in (rl, r2) there exists a neighbourhood T of
f-l, +1] in £he complex £ = cos & ©plane such that
u(x,y) = ﬁ(r-,g) is an analytic function of £ for r c['rs,rh].
Ee T

Proofs Sinece u(x,y) 4is regular for Py ¢ T < Ty u(x,y) is an

2

analytic function of x and Yy in this annulus (see introduction).

Since we have

X = rcos @ = rg

y2= r°sine = ra(l-gz) (2.7)

we can conclude that for Py <P <Py E € [-1, +ﬂ ’ 'ii(r,g)
is an analytic function of r and £ since an analytiec funetion
of an analytic function is analytie ((1) p. 136). Hence for

each fixed goe[—l, +1] sy T3¢ T, < Ty Wecan write

UCr ) = D QumyCr-r) (5-6)" (2.8)

mn

for lz--ro\ ¢ 8 (ro, Eg) » & = &,\ < n(r, E,). Hence about each
point goe [-1, +1] there exists a disc of radius 'n(ro,P;o) such
that %(r, £) 1is analytic in thisdisc for |r-r |< 8(r,, &) By
the Heine Borel theorem we can pick out a finite number of these discs

which cover ['-1, +1]. Let these discs have their centres at the
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points 51,...., Ek' For each Ek we have associated with it
the positive number S(ro. Ek). Let

SCra) =mim § SCro 8p): 06 Ak ] (2.9)

then for each fixed r, |r - r°l< s(ro), U(r,z) can be continued
analytically into this finite union of disecs which cover E;l, +1].
Now consider the closed interval [53, r#j contained in (rl. rz).

For each fixed r_ in Efs, rd] there exists a 5(r°) such that

o
for l r~r°|< 5(ro) u(r,£) can be continued analytieally into

some region in the £ plane enclosing [:1, +i]. By the Heine- Borel
theorem there exists a finite number of these intervals Ir-rjl 45(rj),
0 < J< m, which cover ]fr3. rd]. Let Tj be the region into

which {U(r,£) caun be continued aualytically for ]r—rJ]< 5(r3) and
et T = ’?ll Tﬁ. fhis T satisfies the requirements for T in

the theorem and hence we are done.

snegot®3) p. 838) has shown that if #(x)  isian mmalytis
function on the closed segment [;1, +1] then f£(x) can be expanded
in a Gegenbauer series which is convergent in the interior of the
greatest ellipse with foei at =1 4in which £(x) is regular.
There it is assumed that the index v of the Gegenbauer polynomials
cz‘; (x) is greater than <%. Since the Jacobi polynomials Pl(l'm"Es )(x)
are well defined for a, B # 0,~1,-2,..., and

Cv Cy = i (‘V+'/:,) Mne2v) (v-(!::sv-’/z)
WY T zy) Tinwe)

(2.10)
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the question arises as to the possibility of expanding an arbitrary
analytic funetion in a Jacobi series of equal negative non-integer
indices. In view of theorem 2.2 and recalling the analysis of
chapter one, this is the case of interest in the study of regular
solutions of L (u) = 0 for v<-%, 2v £ =1, =3, =5,.0s + The
following theorem shows that the above mentioned expansion is in

general impossible for v = =1, =2, =3, «es

Theorem 2.3: Let v = =1,-2,-3,,,. and f(x) be a polynomial
of degree -2v. Then it is not possible to expand f£(x)

in a Jacobi series

{p-i/;)v-‘/z)

flx)= 2 an P

nTO

where the series converges in some region containing (;1, +i] .

Proof: From ((23) p. 61) we have

(v=lfa,v- %) v- 1=-X
Ph (%) £ (h*“ 2)2 F;("Yl)h-t-ZV j vz -i_)
‘ (2.11)

where 2F1 denotes t?g hfgergeometric function. Hence if v is

a negative integer P_ (x) is of degree n for 0 < n < =y
and =2v +1 € n whereas Pﬁ“;%"qﬁ) (x) 1is of degree =-n=2v, and
hence of degree strictly less than n, for -v+l<¢ns<-=2v, Since
f(x) is a polynomial of degree =2v it is therefore impossible to
expand f(x) in a Jacobi series with a finite number of terms.
Now suppose it were possible to expand f£(x) in an infinite

series of Jacobi polynomials, i.e.

&~ cv-'/;‘,v—’/a)
Pty = EO% P (x] (2.12)



where there does not exist an N suc? that, for n > Ny .an =0
and the series (2.12) converges in some region containing E—l, +1].
Let C be a simple closed curve lying in this region and enclosing
[-1, +ﬂ. From ((23), pe 245) we have for a > A

....!._.. vV Co-Mz, y-"3) CW ’/3 Y- '/z) v
T S‘ Cy2- l “ Qh c;) P C\(j cly = Syn In
¢

529l (2.13)

qv¥ = C%(nty+ i)

Nn+y Fn+t) Tln+2vy)

where nga.-lé,o.-’;&)(y) denotes a Jacobi function of the second
kind. If we expand f£(x) in a Jacobi series for some (fixed)
o > ~% and apply (2.13) conclude (since f(x) is a polynomial of
degree =-2v) that for n > =2v

Cou-lz - 1)
L‘;Mc}zu.) @ cy)  dy (2.14)

By analytic continuation with respect to o (2.13) and (2.14) holds
true for o =% not equal to a negative integer, in particular for
a = v, Now note that due to the asymptotic expansion of the Pr(lv'%’v'%ax]
((2:5 ), p. 195) the series (2.12) converges uniformly in every compact
subset of its ellipse of convergence and hence termwise integration
is permissivle. (2.13) and (2.14) now imply that in the series (2,12)
a, =0 for n?> =-2v which is a contradietion. |

We next derive an expansion theorem for solutions u(x,y) of
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Lv(u) = 0 which satisfy conditions 1) and 2) of theorem 2.1.

This could have been accomplished by extending the expansion theorem

of Szego as mentioned on page 27 to the case when ve=1%, 2v £1, =2, =
eses o Then by using the orthogonality property (2.13) the general
expansion theorem for u(x,y) could have been derived using the method
of theorem 1.2 since Q.I(l"'%'v'%)(x) satisfies the same ordinary
differential equation as C; (x). However the following approach
allows us to handle the case v equal to a negative integer (which

by theorem 2.3 is excluded in the method outlined above) and thereby
bring to light the improperly posed problems which arise in this

situation.

Theorem 2.4t Let u(x,y) = fi(r, cos ) be a regular solution
of Lv(u) =0 for r>a >0 and 2v £ =1, =3, =5,e0¢ «
Suppose further that u(x,y) satisfies hypotheses 1) and 2)
of theorem 2,1, Then for any b >a and r 2z b > a we have

)
' =1z, 0~ ")

Vf l“l)-l-h (k) c
uixy) =ti(qwr®d) = r maqh vf.':n (ky) O L 6)

Proof. Let m be an integer greater than or equal to =2v+l,
Sinee by hypothesis for each fixed r >a U is an analytic

function of £ = cos @ in T, so0 is g_m'u_ « Now expand ﬂ;n in
F:

a Jacool sepries of index m 4v = 5 for fixed r =1 ((23% p. 238),

(*m -2 mav-42)

- e (F
Z i 4 (2.15)
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From ((23 ), p. 238) the above series converges uniformly in some
ellipse containing ['1, -I-l] and in view of the fact that
(“’B)(a)l >| for n 1large enough and & ¢ El +1] ((23)p 195)

we can use the root test to conclude that 1im |a |}“4I « This

N=mn
n->m
implies the weaker estimate Ian_ml o(n"P) for any fixed integer p.
We now use the following relationship between the Jacobi polynomials

($3), vo1. 11, p. 170)2

(w,v) (x+m s+w)
Z‘w‘ D“ Pa (x) = (Y\-t-Z?H]M Ph_m B . s ams L
(2.16)
where D = %J-: . Hence for nzn

5 § (m+v-Uz, m+v-1/2) v, v-'h)
y" ’ g P s (f}cls" = 2 {?1+2y))n rﬁx CS‘) +~F/"']:]

l \
e S (2.17)

w Wmee’

where f (g) is a polynomial of degree at most m=1l . (Define
(v~Yz ym-k v-Vz,a-m-k)

ez 2" " (n+2vhp P ey

h-

¥ §
Jwl€) 2 J:J: £ 1, (5)=)

By (2416) we have
§  (wmw-Y2, m+v-4) {y—-’}z v-Yz)
2" (n+2v) J: F;'J—m (5)dF ».r D™ h C&'} df

-l (y.-yzib’-!j?}

= D Ph Cf) —%

Repeating this operation m times we have formula (2.17) where

m-l
Cate)e =2 Yoo, Lo () ;
olz0 .

(3)

Since from (-, VII, p. 169) we have



(2.18)

and (n+2v)m_k = O(nm’k) we can conclude from the above repre-
sentation of fh(g) that if we express fn(a) as f (g) = ‘gflskg
then Bk = O(nv'%) for 0<k <m=l, Therefore since

& m = o(n™P) for any integer p it is possible to integrate
(2.15) termwise m times and then rearrange the series to get

(v-"% - Y2 )

d (g = > b B, (¢) + hlns) =S80ns)th(ns)
! N=m (2'19)

where h(r,Z) is a polynomial of degree at most m=1 in & with
coefficients depending on r and where b (r) = o(n™P) for any
integer p. Note that 8(r, £) is an analytie funetion of & (for
fixed r) in the rectangle T since €(r,£) and h(r,z) both
have this property. Now for a =5 not equal to a negative integer
by reasoning exactly as in the derivation of equation (2.14), we
have for n> m :
.r A ) cs21)Y 2 QT 1¢ <o
¢ (2.20)

where C is a smooth curve surrounding [:-1 » +1] and lying within
the rectangle T. Setting o = v in (2.20) we have from (2.13)

and (2.19) that

- i ’ Yo rv’év-—)’f')
b.Ce) = (i 9n) : Glr§) (S2 &, ¢ d§



e

where g; is defined in (2.13). Since the curve C ecan be
chosen independent of r we can apply the methods of theorem
1.2 and conclude from the partial differential equation and the
radiation condition that

(4)]

Hoey, (k)
[ b V+n il

where b, is independent of r . Since s(r,g) 1s an analytic
function of # for r=Db and bn('b) = b, conclude that
b, = o(n™®) for any integer p just as we concluded that

a__. = 0(xP) in (2.15). ror real g [p\"7HY"E)(g) = o(a™%)
uniformly for £ € ]__-1, +1__, ((23), p. 164) and

il

Hytn Ciev
.h n
\ ity | = O CH

10).

uniformly for »r on compact subsets of [b, 00) ( Henece for

each fixed r,, b < r < oo, 8(r,2) is dominated over the
interval (b, r.) by

z '?('b') b<r<r, p any integer

This series converges uniformly for b £ r < Ty Similar arguments

2
show that the series obtained by applying -3%, 33? ’ -5% ’ 3:; termn=-

wise to S(r, ¥) converge uniformly. Hence the operator L, can
be applied to S(r, &) termwise with the result that L (8) =
for »r= Db, @ 5[0, 21:] since r, can be taken arbitrarily large.
By methods identical to theorem 2.5 (which follows this theorem)
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it is seen that 8(r,£) satisfies conditions 1) and 2) of
theorem 2.1. Hence h(r,£) is a polynomial in & of degree at
most m=1 with coefficients depending on r which satisfies
L,(h) =0 for r=b, €<[0, 2x] and also the radiation con-
dition(zﬁ). Our proof will be complete if we show that h(r,&)

is of the form

™m-| ) I
Wy (k) (0= a0=%2)
(r,5) =¢Y 2 <n—F2— PR, (%)
h(ns)=r ;, T

For v not equal to a negative integer this is immediate since
we can expand h(r,£) in a Jacobi series of a finite number of
terms and then use (2.13) and the methods of theorem (1.2).
Therefore consider the case in which v equals a negative
integer. In this situation we set m = =2v41 and go to the
partial differential equation.

The polynomial h(r,£) can be written in the form

-2V

h('ﬁg) - E Chnir) ceron® (2.21)

Th=o

Applying L, to h(r,£) we have

-2V

- " 2v+l 2 2Vn :
o“lhzo [Ch -+ v Ch‘+(kl—%)ch mh@ '- C“ rlmamhg

(2.22)

Now 2%35539 = §%§;¥59 cos & = Uﬁ_l(cos 8) Tl(cos 8) where Tpyo
Uh denote Tchebichef polynomials of the first and second kind

respectively ((3), Vol. II, p. 183). We have
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uh-lT' = "i_ Euh "‘Uh-z—.{

n he|

1 —

Hence
14

K 2y |
O = Z [ ch# e+ (K’-{-‘;’_‘)cn coeh @
M=o

h-2

- +2 f@aZm&-& Coe 2n0 Jhw%
m=o

2vn
=Cwn rz

2 f@ﬂ(?-ml)&-{- coe,zh&n/n,a} odlel

™m=o

Therefore by the orthogonality properties of cos n € and the
fact that h(r, £) (and hence cn(r) in (2.21)) satisfies the
radiation condition (2.5). Conclude

= v )
Cufel = 2 dj ¥ “V-rj (rer)

j=n

Substituting (2.24) into (2.21) and rearranging we have

-2V

hiv,§) = ¢V Z H;:h(h'r) Gn (5)

n<so

where gn(-g) is a polynomial of degree at most =2v in E£. Now
using the fact that the H\(’L)l (kr) are linearly independent for

(2.23)

(2.24)

0% n < -v whereas H_(_il;zn(kr) = elven)sl H(l)(kr) and applying

v+
the partial differential equation conclude that g,(&) must

satisfy Jacobi's equation

(1~8¥y"- (2v+1) Sy’ +mine2))y =0

Eal nHl V- '&, b~ ’/3)
i.e. h(r, S) = \f'v Z an ”V—J-n(’n-) Ph (§)
h=o

(2.25)



Here the a, are not fully determined since the preceding
analysis shows that it is in fact a linear combination of a,

and a which is uniquely determined. This concludes the

-N=2YV
proof.

Corollary 2.1t ILet f(Z) be an analytic funetion of & = cos &
for & € (=1, +1| and let v be a negative integer. Then in
general no solution u(x,y) of Lv(u) = 0 regular for r 2 1
exists which satisfies hypotheses 1) and 2) of theorem 2.1

and assumes the values f(£) on r = 1.

Proof: th 2.1 Yo e, B)=rV S H‘(’i’)‘(kﬂ
oofs: By theorem 2.4 u(x,y) = u(r, ) =r Z a, Hv+n(k)

- o~
Pévé%’v é)(e‘-;,) for r= 1 since uU(r, £) is regular for r = 1,
3 (vth, v4)
Hence f(&) = > N, " () where convergence is uniform
n=0
in some ellipse containing [;1, +i] « By theorem 2.3 there exist

analytie functions f£(&) for whieh no such expansion exists.

The following theorem is a generalization of a result due to
Karp(15) who considered the case v =0 , i.e. the classical
two dimensional Helmholtz equation. The hypothesis of the theorem
is implied by the hypothesis of theorem 2.4.

Theorem 2,5: Assutme =00 < v+ @, 2v # -1, =3, =5,,, Let u(x,y)
satisfy Lv(u) =0 for r >a and have the expansion

(y- ’/z JU- ’/z)
n (5) ,F=2b>a

wlxy) = T e) s r 2 an Dram ()
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then there exists a convergent expansion in the form

oo ]
Ulxy)= Oerg) =t H:,”(!tr) z _F-l‘\r_(ni) +r™ H::, Crev) Z E'-:-;,;E)
hzo n=o
where the series converges uniformly and absolutely for
rzb >a, E = cos & contained in some rectangle T in
the complex & plane enclosing {-1, +i] . Fo(g) ana a,(&)
determine u(x,y) uniquely and are analytic funetions of &

in the above mentioned rectangle.

3

z
oof It is knowns’) Vol. II, p. 34) that

Hh] (ky) = ::I (kcr) R\\,V (cy) = HU-! (ker) R'h-—l,l?-ﬂ (k) (2.26)

V+n

where (kr), (kr) are the Iommel polynomials
v -1,v+1l
. J ]

defined as
wﬂ( Y (n-k) T ( k) e
—1 n-kj! V4+n- 1 )'
= = r
Ry (v) Z % Cmeam)l Floeey 2 (2:27)
Consider now the series
oo V-3, v- %)
an 5B, ¢s)
Elwe)= 2 2o 00 p )
nzo yy.,.h (kb)
(2.28)
oo Prv-'/-,v-’/a)
qh h f?)
w, §) = Z - (ew
o( ’ -] . ”;:_:h (kb) f‘:h-lJl)ﬂ )
(2.29)

which result when (2.26) is substituted into the Bessel-=Jacobi
representation for u(x,y) given in the statement of the theorem.
Here w 1s a complex variable. Replace ® by kbei“ where

0 < 0% 2x. Then for example we can rewrite (2.28) as
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rv-#z y-) .
E—(kbew 5)= Z o i Y Ry (kbe®
f'anj( kb ;?) n+v #(ﬂ { ) hv C2130)

(if v is a negative integer, for n<-v omit the factor r'(%Tn]'

which appears in the numerator and denomenator of each term in the

above series). Using the formula ((3) V. II, p. 55).(15)

s (2/2)11'!'" 2 y(z)
_/(?hv e = —g-) J;(Z')

—(y
L ) (2.31)
./&frm (&)my " 2
’ e e (k) = ~—
- I~ (v+n) Vi m
(2.32)

and recalling that for r =b U(r,£) is an analytic function of
E in some rectangle enclosing [;1, +1__l (theorem 2,2) and hence

U(b,g) = el { a, Plgv—%,v <) converges absolutely uniformly
n=0

on compact subsets of this rectangle, we can conclude that the
right hand side of (2,28) is uniformly and sbsolutely convergent
for \wl = kXb and £ contained in some rectangle enclosing ];1, +1].
Now the series (2.28) is a series of polynomials in -3‘3 which, as
we have just seen, converges uniformly and absolutely on the cirecle
\%\ = k'% and hence define an analytic function for %i 4 'klb
((26) Pe 95, 97). A similar result is seen to hold for equation

(2.29). Hence

[} (1)
uixyl = O (re) = v H,,”/kv) E(+ 5)+r /-/yﬂ ter) § (£ 5
(2.23)
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where E and Q are analytie functions of % and are regular

in the interior of the circle ‘%l=% in the complex -3‘-: plane.

The first part of the theorem follows from this statement. IT

Fo and Go are known, Fn and Gn can be computed recursively

by substituting the series into the differential equation (866(15 )).
It is also easily verified that

Qay, N7 wv-"%2,v-%)
F(s)= 2 —o=— R, s
a hrTeo thw (h'b]
(2.34)
— a C-1)" cv-Ya,v-)
GotBs ) T — P, 8
n-o Zn+y+t) ) (2035)

which are seen to be analytic in the same rectangle 1u(b, £) is
analytic since they are the uniform limit of analytic functions
in this rectangle.

The above theorem implies the following important corollary.

Corollary 2.2¢ Let u(x,y) = u(r, cos @) satisfy the conditions
of theorem 2.1. Then 1lim \}% rv"% %(r,cos @)exp {-ikr + -1!’5 + E{A‘]
r->00

= fo(cos ©) exists uniformly for £ = cos & contained in some

rectangle in the complex £ plane enclosing El, +1] » Where
F () = % EXOR fo(-&:)]
% [2,(8) - £,(-2)]

Proof. From theorems 2.4 and 2.5 and the asymptotic expansion for

- 1a,(&)

Hankel functions (see theorem 1.2) we have

£,(8) = F (g) - 1G,(£)s From@.34) and 2,35 it is seen
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that Fo(g) = Fo(-a) and G (2) = =G (-£). The corollary
follows from these facts,

regular
Theorem 2.6: Let v<~% . If u(x,y) = U(r, cos @) 1is a/solution

of Lv(u) = 0 in the exterior/%r a normal domain D symmetrie
with respect to the axis y = 0 and u(x,y) = 0 on @D then
for 0« 904 % and r sufficiently large
-G s — o
J,, rersins (a3E - E38)do = o

where U denotes the complex conjugate of 1.

Proof: For y > O Green's formula(s) is

)

J;z vy (93")- £32) )ds - ffy"’[c;zm LLig)]drdy  (2.36)

2
where L (u)= %xz %—;_ 2; J;,' ) JE, is a sufficiently smooth

simple closed curve in the half plane y >0 traversed counter-

¥ 9 € C‘”CZ‘:)
clockwise and bounding a closed domain Z /. For y«= 0O we can

write the identity as

Lr(vju(?ﬁ')ﬁc‘f?f)ck = fﬁ-y}"/}zm-fzry)_]d{,,,zy

= (2.37)

where 02 o 1is traversed counterclockwise. Now consider
2y ’ __t( 2y d7 = J&
j‘éﬁ'y (U%— v )o’&' + f[y) ( ;;;——-UDF‘)JS‘ (2.38)
)

where
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92, =1L, +Cy + L, + C, and 6f2=L3+CB+Lh+Cu
(see Figure 2.1. Lys Lo L3, Lll are line segments connecting
the eircle containing Cy, C) With . C, and Cy lie on D 2

By hypothesis both u and U vanish on C, and Cs (since Co

ebd C; 1lie on dD) and since u and u satisfy L (u) =

the double integrals in (2.36) and_(z 37) taken over Zl’ 22
we set g=u

respectively vanisI{ Obaerving that 1) u is an even function

of ¥y, 2) -g%‘ is an odd function of 6, 3) along I'l and

du 1 0u , ou _ 1 %u
L3 s = -8 » along L, and Lll- "2 R e e ]

m+mﬁrﬁ—-m¢-%-;7-m{mmmmm
oppoeite-diveetiens conclude that the contribution along the
straight line paths in (2.38) cancel each other. Hence since

u = u = 0 along C, and C; we have
- U _— 9 =
O = SClVWCN';%—H:ﬁ‘f)JSﬂ- E\C:"')w(“g}!‘“%ﬁ)‘is
-0 "
— g\ r’""'m“"’a( .g_g s JE)JQ

This proves our theorem.
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This concludes the preliminary results. We now prove the

main theorem of this chapter viz. theorem 2,1.

Proof of theorem 2.1 ¢ If U satisfies the hypothesis of theorenm
2.1 then by theorecm 2.4 the hypothesis of theorem 2,5 is also
satisfied. The series representation for U derived in theorem
2.5 converges uniformly and absolutely for r»r =1b > a and

E = cos © contained in some rectangle in the complex & plane
enclosing [=1, +1] » Hence by this theorem and corollary 2.2 we

can write

2 -V~ i ™ -
Ulyy)e TCrs) = |3 r il - - M [F ()40 (#)]

(2.39)
20Mns) _ _ (v tp) G® . 5k b0%)
r
; urT
= ik R TSNP (o) 04T
(2.40)

From theorem 2.6 we have for r sufficiently large

o

-6 _ 78,
0= f P i 29 (0 32 -T28)d0 = 2k &m/my/ﬂmo&)
(]

Letting r tend to infinity we have therefore

Tr- 09

i [, (te ©)1°d© =0

Hence since fo(coa @) is continuous, fo(cos €)= 0 for

905 @ < x - 90 + Since 6, can be chosen arbitrarily close to
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zero, conclude that fo(cos 8) 80 for 0 <6 <£x by continuity of
fo(cos ), and hence f,(cos €) 0 forall & 0 <6< 2x.
Theorem 2.5 and corollary 2.2 now imply that wu(x,y) = 4(r, cos ©) = O.
The theorem is proved.

At Tirst glance conditions 1) and 2) of theorem 2.1 which
treats the case v< ~%h , 2v £ <1, =3, =5,... seems much more
restrictive than condition (2.4) for the case v> <A, The follow=-
ing theorem shows that the class of solutions considered in each

case is essentially the sanme,

Theorem 2.74 Suppose v> -5 and u(x,y) = U(r, cos @) is a
solution of Lv(u) = 0 regular for r 2b > a. Then the
following two conditions are equivalent.

.o ~
1) 1im 2+l o302V g% - 1k | 2a0=0 .

r=> 00 o

2) There exists a rectangle T (independent of »r) enclosing
[;1, +1] in the complex £ = cos @ plane such that for each
fixed r >a u(x,y) = f(r, £) is an analytic function
of £ in T end lim r’*% I%v-ikﬁ’l = 0 unifornly

r=> 00
for £ contained in T .

Proof: The fact that 2) implies 1) was shown in Chapter
One where the limit in 2) was required to hold only for

Ee [;1, +l] o If 1) holds then for r =z b > a we have by
heorem~ 2.2

Ay
theopem 1.2 (it is easily shown/that the interval (0,x) in the
theorem can be replaced by [0,%] )e

i" Hed (e
Ulgyl = Ttrg) =Y ) ay —r 0 v,
n=o oy (kb)) N L ©)

(2.41)
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By theorem 2,5 we see that there exists a rectangle T as
defined in condition 2) and by methods identical to colollary
2.2. we have % = ik + O (%) uniformly as r tends to
infinity for £ contained in T, Conclude that 2) holds and
hence the theorem is proved,
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CHAPTER III

It is the purpose of this chapter to investigate solutions

of the equation

- U 2 -
ISR ' N exi

N

where 2v is a negative odd integer and k > 0. If solutions of
the classical Helmholtz equation in three dimensions which are
regular in some exterior domain are expanded in a Fourier series,
then the Fourier coefficients;;re a function of o and 2
(Helmholtz's equation is assumed to be egggessed in cylindrical
coordinates p, £, z) and satisfy Ln#é&) =0 if we set p =y,
z=x in (3.1). The study of singular solutions of the last
mentioned equation is essentially the study of equation (3.1) for
the values of v indicated above, viz. 2v a negative odd integer.
The reader is referred to the introduction for more detailed
information. The main characteristic which distinguishes this

case from other real values of v is that it is now possible for

a regular solution u(x,y) of Lv(u) = 0 to vanish along the axis
¥y = 0 without having u(x,y) s O. The following theorem essentially
reduces the study of equation (3.1l) for 2v a negative odd integer
to the study of Li_xb(u) = O, This extends the results previously
obtained by Hyman for the situation in which k = O(Iu).

Theore : Suppose 2v = =1, =3, =5,.... and u(x,y) is a
golution of Lv(u) = 0 regular in some domain D containing
a segment of the axis y = O. Then u(x,y) is of the form

u(x,y) = Ql(x..v)eikx + Qxr,y FHE 4 g1y (x,y)
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where Q.(x,¥), Q,(x,y) are polynomials of degree at most
1 2

2

—i—(2v+1) in x and = (v#5) in y° and u"'(x,y) is a

solution of L.J_v__(u) = 0 regular in D.

Proof: A fundamental system of solutions of equation (3.1) can
be written in the following canonical form

U lxyl = Z cl,.,.,,, (X-aJ“yz"‘ ; U, (xy) = YI-Zv Zchhw-aj“yz‘“ (3.2)
mmn m,n

where the power series converge in some neighbourhood of

(a,0) (see introduction), By Weinstein's correspondence

principle (see introduction) uz(x,y) is of the form

y1-2vu+(x.y) where L:I__y_,(u"') = 0, Now consider

ul(x,y). Sinee the series representation of ul(x,y) is

absolutely convergent on compact subsets contained in its

region of convergence, we can rearrange this series on such

sets to obtain

o0

U (x,y) = > Y g, () (3.3)

h=o

Using the method of -(6) .. we have

4n (nev="%) gn = = (D*+k?)g,_, (3.44)

where D = % + The recurrence relation (3.4) tells us that

2 2 _
(D% + k )3..1,... ‘[2 = 0 and by repeated application of this

formula we can conclude that (D2 + 1:2)-"""1’é Bo(x) =0 .
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since g, (x) = u(x,0) by (3.3), we have

(D% k2)™” u(x 0) TO (3.5)

a Ulxo) = p, (x) e 4 B e (3.6)

where pl(x) and p,(x) are polynomials of degree at most —=velb,
Again from (3.4) it is seen that g (x) for n > =v +% 1is
uniquely dependent on g_vJ%QOwhich can be arbitrarily chosen.

Therefore

=p- yz,

™ 0% k) uino) N
u (X‘ y) = Z yZh ( / /] Y2h /X)
: oo 4™ n!l (V+ %), i ‘hZW-ﬁ In (3.7)

In view of (3.6) this equation can be rewritten as

U lxy = Q,(mje v Qv et "Z”va y2" Gea)”
(3.8)

where Q, and Q, are functions described in the statement of the
theorem and £ = are constants. By (3.4), (3.5) and (3.7) it is
seen that w(x,y) = Ql(x,y)eikx + Qz(x,y)e"ikx satisfies

L (w) 0 and since L, (u) = 0 we can conclude that the third

1-2v u'i'(x’y)

term on the right hand side of (3.8) is of the form Yy
where L, ., (u+) = 0, (See arguments at the beginning of this proof).

This proves the theorem.
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CHAPTER IV

It is the purpose of this chapter to investigate uniqueness
questions for solutions regular in the whole space of the equation

Oy L 32U
X2 Sy?

L, Cu)

‘*"Z?I"}—‘ + k2*u = O
(4.1)

where v < =%, k > 0. For v>-% uniqueness theorems follow

readily from the snalysis of the Bessel=Gegenbauer series repre=-
sentation of u(x,y) (see chapter one) similar to the investi-
gation of Do 34 - the classical Helmholtz
equation. The reader is referred to the papers of Hartman and
w1lcox(9’ 10) for details. Hence in this chapter we concern
ourselves solely with the case v < <5, For such values of Vv

our main interest is in deriving results analogous to the follow=-
ing theorem of Magnus for the classical Helmholtz equation. Again
let us stress the point that for v > -4 such results are easily
obtainable. In the following xXx=rcos &€ , y =r sin &,

Theorem 4.1 (Magnus). Let u(x,y) be a solution regular in
the whole plane of L,(u) = 0 having the
expansion o
u(x,y) = ZE a, Jn(kr) cos n O .
nso
Suppose that

+ f] lu(z,y)2axay ¢ ¢ for all r
Alo,r)

(or equivalently Egz Ian|2 £ C) where C is a positive

constant and & (0,r) denotes a disec of radius r centred
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at the origin in the (x,y) plane., If

1
lim ré u(x,y) = 0
r->00

for every (fixed) e e [0, k] then u(x,y) s 0 «

The reason that problems of uniqueness for (4.1) are quite
difficult for v< ~% and v > -% is due basically to the fact
that the condition of regularity in a neighbourhood of the axis
y = 0 serves essentially as a boundary condition and the strength
of this condition is seriously weakened as we pass into the range
v ¢ <4, TFor example if v > % (v # 0) then any twice con=-
tinuously differentiable solution u(x,y) of Lv(u) = 0 in a domain
D containing a portion of the axis is also regular in D whereas
for v< <% this is not the case. (This is due to the fact that
the exponents of the singular line y =0 are 0 and 1=2v
(see 1ntroductian)J The well known methods of attacking (L4.l1)
viz. integral operators and Bessel-Gegenbauer expanaions(a’ 13)
run into difficulties for v< ~% and recourse often has to be
made to properties of solutions u(x,y) of Lv(u) = 0 in the
complex y or £ = cos @ plane(17); Chapter two of this thesia)

In chapter two of this thesis strong use was made of the fact that
u(x,y) = ﬁ(r,g) (where £ = cos ©) is an analytiec function of &

(for each fixed r) in some rectangle in the complex & plane
enclosing [=1, +1 ]| . In general the size of this rectangle will

of course depend on r. With these facts in mind we proceed to
determine sufficient conditions on solutions u(x,y) of Lv(u) = 0 whieh

are regular in the whole plane to ensure that u(x,y) = O .
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Theorem l4,2: Assume v < =, 2v # =1, =3, =5,.., and let
u(x,y) = i(r, £) be a solution of Lv(u) = 0 which is
regular in the whole real x,y plane, Suppose there exists
a rectangle T in the complex £ = cos & plane enclosing
(-1, +1] such that %U(r,£) is analytic in T for all fixed
ry 0<r< o, i.e. T 1is independent of r. If

1) sup {rv'% \¥(r,2)|: § 22 <0, £ ¢ T}.{M (8) < o=

where & and M are positive constants, ) arbitrary

but greater than zero.

2) 1lim rv'% u(x,y) = 0 pointwise for & & [0, x—j
T ->00

where X = I cos 8, y=rsin @€
then u(x,v) & 0.

Proof: = Proceeding exactly as in the proof of theorem 2.l,
except that instead of employing the radiation condition (2.5)
to determine the coefficients of the Jacobi expansion for
H(r,£) we use the fact that uU(r,z) is regular at r = 0,

we have
Ulxy) = Gcr,5) = r-vz Ap Jyey (vl P,:"'(]’;J)V-vz) -
where
T ay 9y ¥ Iy.w. (kv) = f ( S“—UW&G' (rs) Q:WC,?JPJ?) (4a3)
A .

formula (4.3) holding for n:z=2v if v equals a negative
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integer and for all n if 2v # =1, =2, =3,..ss Here C is
an ellipse lying in T with foeli at 2 1, QI(IV'%’ V'%)(F,,) is a

Jacobl function of the second kind and g; is given by

v 22!&"" r2(h+v+|/?-)

In= T Tin+) [[(ve)

(hols)

Note that due to the hypothesis of the theorem we can use the same
ellipse C for all values of r, O < r< o0, i.e. C is inde=-
pendent of r . We first examine the behaviour of Q}lv%’ ”'%)(E,)
along the ellipse C o From (\3), V.II, p. 170) we have

Qc\;\«j _ 2 r2(nayr) F-( o i _.)
w (%)= T'C2n+z-,+z)(£2_;'.)“*'(§-v-_|)z* o Inslynrasl, n+2y+2 ;2(-5) (a8

where 2F1 denotes the hypergeometric series. Fron ((3) Vel, De77)

we have

(B ™ F bk, amcs whgambslogd g 2 =
e o o a+)g, -C+l + ja- +l+2 )ZCl-f) =

A
2% [ a bbb ) X L ccelle  cogope!

T T aee wd ) Efoaboad] C1-) (1+e™) D+ocUJ

(4.6)
e A—> oo

1 +
where |argA|<¢x=-8, &> o0, gi(gznl)éz il E,t#El,-l-ﬂ.
-o+l, b = =20 in (L.6) we have

Setting a=1, ¢

Y, v) 3 ¢ ,_ {14 -1y
R Vee) = V() (g0 Tnote g liem) e (- Tie0th)]  @.7)

which implies




‘ Q (v,%) ( l Vh (:Sj- I,
§) ‘ G (s)]"™

i T Us- (st

= 1+e(l) aen-—soo

which is valid for all real non integer o and for £ ¢ f—l, +1] .
Here (E,z - 1)%{‘Z is positive for £ > 1.

Now from (4.3) and the hypothesis of the theorem we have for
nz =2v

| TG an v Tyen k)| £ Mman | ) 0™ |

Sec

where M is independent of n, r, O, Since the curve C 1is
bounded away from E-l, +1] for £eC we have \g-(e;z-l)’}él se<1l
where P is a positive constant independent of E£. For e small

(4.9)

enough we can find a ¥ such that P(l-re)s yY<1l. The right hand
h>Neo

side of (4,8) is less than 1l+e¢ for n>no(e) and hence for/EeC

the inequality \( (G"a‘)(g)\ ¢y¥™ holds., Here n, does not depend

on r since the ellipse C does not depend on r, Hence we have

Vv 2 h
| Tanan v By Gerl [ e MY™ Lo o, (4410)

Now consider the sequence of integers n, n> Dy and let ok

denote the k' loeal maximum of J kr). In view of the

v-m(
asymptotiec behaviour of Bessel's function ((3) Ve 1I, p. 85)

(277) "™ Jpi(r) = 2 cou (r-tVepun~Ta)+0(Z) Gar—>oo (4.11)

we have from(4.1l0) by letting r run through the values Por
k=1,2,3,4000y n fixed, that for each fixed integer n>n,

| Gy, @ o | 2 MY™ (h.12)
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Sinece (4.4) implics that \g; \ = 0(-3—;) and M and ¥ are
independent of n we can conclude from (4.12) that

—— —

Mems lanl'm 24 (14.13)

N—> o=

We now make use of Lommel's inequality(g)

| T i l2d for 1 pazo0 (0 14)

and the uniform bound on Jacobi's polynomials ((23), Pe 16l)

(v-"Y2,v- %) ) .
| Pa a1 = O™ xe b0, 203 -1,73,5,. () 0y

We have using (L4.11)

b o e (v-Ye,v-"12)
\ 2ak TVt Ger,§) =2 ) ay coe(ke- T en)-Ta) P, (5)
h=o

= (v-"a,Vv- %) Vy
= z ) aw Pn ) | | (zwhe) Jen (k) =2 e (rer- T (ven)- ) |
=0
(4.16)

By (4.14) the factor of \an Pl(lv-%'v-ié)(f—;) | in (4.16) is uniformly
bounded for n >L—v + 1] and r> O and hence by (4.13) and (4.15)
the series is uniformly convergent for § e E—l, +1] « Sinece by
(4e11) each term tends to zero as r tends to infinity we can
conclude that for & e [-1, +1]

oo Uy
Mdimy | Vark 23 6 )= 2 D ay coa (kr=Th (v+n)-Ti4) P:vcéy é)]':
=0

M~>eo

d (4.17)
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and hence by the hypothesis of the theoren

o0 {v_J/sz-f/z)
G, 2. awcoaCkr-Tawm)-Ta) B () =0 (4.18)

r>o0 N0
Formula (4.18) can be written as
l.'v-'/a,f)-"é.)

i Y e e T 7 0l By Bey 4
F=>co n=o

ol " o (-l
+ e (ke- 5- =) Eaan o GO oy €9) =0
h=
; (4.19)
Formula (4.19) implies that for £ e [-1, +1]
oo
" oVl b)) e (-, v~ %)
z Azn (-1) Pzn (s) = zqznﬁ (-1)" PZr\-wJ (s) =0
n=o h=0
(k.20)
From ((23 ), Pe 195) we have for non-negative integer o and
g ¢ [=1, +1]
(o, %)
P’ %
| P )]; o Aowoll] Bl e
| § +(§2=) "2 (4.21)

Hence in view of (4.13) and (4.15) each of the series in (l4.20)

is an analytic function of £ in some rectangle enclosing E-l, +1]

since each of the series converges uniformly in some such rectangle

and the uniform limit of analytic funetions is analytic. Since each
of the series is zero along [—1, +1:f » by the identity principle

they are equal to zero in the above mentioned rectangle.
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Now for n 0, 2v # «1, =3, =5,.,.. we have from formula

(2.13) that

| v nCv-Youeto) (v-Yo - Y2)
e j‘ (§%1) Q;, f;'J Ph-, (s) df = J\mrx yby
o (4e22)

where g; is given by (L4.4) and C; is a simple closed curve
lying in a rectangle in which both series in (4.20) converge
uniformly. Hence a =0 for nz0 if v # =ly, =2, =350000
and for n =z =2y if v = =1, =2, =3,.,..s If the first case
holds, by (4.2) we are done. Therefore assume VvV = =1, =2, =3.,.

when by the above analysis we have

= - Ve v-Y%)
(w-Y%2 ,v- ¥a) =, (v=72,
Z Gan &1)" Pn (5) = z Chan g CH PZh-H (€§) =o
n=o h=o (1.23)

From (2.11) we have Pévg%’VJ%)(g) = h, PE;j%;vJ%)(E) where
n

is a normalization factor and also that for O <
Pévé%’v;%)(g) is a polynomial of degree n in £ . Hence if

€ =™y

(4.23) vanishes we must have for 0 <n <€ =y

-1
Ay ~ )™ ]’\h Aepezy =0 (L.24)

v
Since Jv+n(kr) = (=1)V™ J_v_n(kr) we have from (4.2) (since

a, =0 for n2 -2v) that u(x,y) = 0 and the theorem is proved.

Example .1l ¢ The rectangle T in the hypothesis of theorem
4.2 cannot be replaced by the line segment [-1, +i] since
in this case u(x,y) = eikx satisfles all the conditions of

the theorem, but u(x,y) ¥ O.
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