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Abstract 

The colloidal state has long been of interest to physicists, both in its own right 

and as a model for atomic systems. In particular, colloidal suspensions with low 

size-polydispersity have been widely used as model hard spheres. Optical mi-

croscopy can resolve detail at the larger end of the colloidal length scale, and to 

image suspensions at an individual particle level of resolution would allow the 

investigation of local behaviour in a way denied to the established techniques of 

light-scattering. To achieve high-contrast single-particle resolution in dense sus-

pensions that are thick enough to show behaviour the same as would be expected 

in the bulk is not a trivial exercise, however. This work builds on established 

advanced techniques of the light microscopy of phase objects, to develop an ef-

fective method of achieving this aim, addressing issues of imaging technique, 

suspension mounting and the interpretation of image data. The usefulness of 

this newly developed experimental protocol is demonstrated by, amongst other 

results, a detailed study of the structure of the colloidal crystals found in hard-

sphere suspensions and an investigation of the nucleation of such crystals from 

the metastable colloidal fluid. 
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Chapter 1 

Introduction 

Ever since the work of Thomas Graham [1861] on liquid diffusion first identified 

them as a separate class of materials, colloids have been the subject of physicists' 

interest. Although early experiments involved direct observation, over much of 

this century the favoured experimental approach has been light scattering, the 

optical equivalent of the highly successful X-ray techniques developed by the 

Braggs and others. While this approach has mirrored, and built upon, many of 

the successes of X-ray techniques, it also shares their disadvantages. However, 

the typical length scales in colloidal systems which make light scattering tech-

niques possible also open up the possibility of direct imaging of structures in 

real space, i.e. microscopy. My contention is that optical microscopy of colloidal 

suspensions, undertaken with care, is a technique that is very fruitful in yielding 

results that other, already well-established techniques can do so only poorly, or 

not at all. This thesis is both an account of what "undertaken with care" means 

in colloid microscopy, building on standard microscopy with my own methods, 

and a "harvest festival" of colloid physics - the firstfruits of those methods. 
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CHAPTER 1. INTRODUCTION 

1.1 The colloidal state of matter 

While Graham [1861] originally distinguished colloids as being "solutions" which 

were unable to diffuse through a membrane, an understanding of the microscopic 

reasons for this behaviour enables a more prescriptive definition to be made. 

1.1.1 The colloidal state defined 

Colloids are a complex state of matter, but all consist of at least one of each of 

the following: 

• a continuous phase (the dispersion medium); 

• a particulate (or disperse) phase. 

Various ranges of sizes of the particles (often - sometimes confusingly - re-

ferred to as "colloids") are suggested, but the important limits are that: 

• The particles are large enough to have a definable size and shape - this 

will also satisfy the need for the particles to be larger than the molecules of 

the medium to a degree which allows the medium to be treated as a simple 

continuum. 

• The particles are small enough for Brownian motion to be vigorous enough 

to keep them dispersed. 

These requirements limit the particles to the size range of roughly 10 nm 

to 1m [Pieranski, 1983; Tabor, 1991]. This range is intermediate between the 

microscopic length scale of molecules and atoms and the macroscopic one of 

objects resolvable by the naked eye and, for this reason, the colloidal length scale 

is often described as being mesoscopic. 

1.1.2 Examples of colloidal dispersions 

Many possibilities exist for colloidal systems and they are widespread in everyday 

life; some examples are given in table 1.1. 



1.1. THE COLLOIDAL STATE OF MATTER 

dispersion disperse phase 

medium solid liquid gas 

liquid colloidal suspensions: emulsions: liquid foams: 

blood, ink, margarine, shaving foam, 

toothpaste milk whipped cream 

gas solid aerosols: liquid aerosols: - 

smoke tobacco smoke, 

fog  

Table 1.1: Examples of Colloids 

In what follows only the case of solid particles dispersed in a liquid medium, 

i.e. colloidal suspensions, shall be considered. 

1.1.3 The stabilization of colloids 

A fundamental issue in colloid science is maintaining the stability of the disper-

sion. Where the particulate phase shows an affinity for the medium, the colloid is 

described as lyophilic ('liquid-loving') and is intrinsically relatively stable. In this 

case little is required beyond matching the densities of the phases and keeping the 

size of the particles small to mitigate the effects of gravity. On the other hand, 

the van der Waals attractions between particles in a lyophobic ('liquid-hating') 

colloid tend to cause aggregation, as the potential energy associated with the 

attractive forces typically exceeds the thermal energy of the particles by several 

orders of magnitude, once the particles have approached within distances of a few 

tens of nanometres [Tabor, 1991]. 

The van der Waals attraction, Fdw  between two identical spheres of radius 

RP  a distance s >  from touching has been shown [Hamaker, 1937] to be given by 

FVdW- 
AHRP 

- - 12s 
 

where AH is the Hamaker constant. As one might expect, the Hamaker constant 
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is related to the polarizabili ties of the medium and particles, and hence their 

relative permittivities m  and e respectively [Russel et al., 1989, page 147]: 

2 
AHCX (CP

_m 

 + m 
(1.2) 

Hence the van der Waals force will always be negative. However, the dielectric 

behaviour of the medium will mitigate this attraction, while closely matching 

the refractive indices (n = /) of the particles and the medium will reduce the 

attractions between particles to negligible values. 

To overcome residual attractions, two approaches are possible: 

Charge stabilization relies on particles repelling one another due to like surface 

charges. This can be achieved with naturally neutral particles by adding salt to 

the liquid phase, of which one species of ion will preferentially adsorb onto the 

surface of the particles. In the absence of thermal motion, these charges would 

be balanced out by the counterions, whereas real temperatures mean that the 

counterion "blanket" will be diffuse. Particles whose counterion blankets overlap 

will experience a repulsive force, inhibiting aggregation. 

Steric, or entropic, stabilization is achieved by attaching long chain polymers 

to the surface of the particles, with the decrease in entropy caused by "squashing" 

the polymers when two particles approach consequently causing a very steep and 

short ranged repulsion. 

1.2 The appeal of colloids to physicists 

Colloidal suspensions have been a fertile field of study for physicists, both in their 

own right and as tools for illuminating wider issues of interest. 

The physics developed by workers such as von Smoluchowski [1903, 1918] on 

the movements of charged colloidal particles, Hamaker [1937] on the interparti-

cle potential and culminating in the detailed theory of the stability of colloids 
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presented by Derjaguin and Landau [1941] and Verwey and Overbeek [1948] has 

been of seminal importance. 

The classic example of the extrinsic usefulness of colloid physics is the way that 

the experiments performed by Perrin [1908] and the theories of Einstein [1905, 

1906] and Langevin [1908] were able finally to confirm the molecular nature of 

matter. 

1.2.1 Colloids as model atoms 

Colloids can do more than just point to molecules and atoms, however: they can 

also be used to model atoms. Moreover, the number of particles in a colloidal 

model system can be many orders of magnitude larger than that possible in 

computer models and hence colloidal models can be much closer statistically to 

atomic systems. 

With the liquid behaving as a continuum, it is possible [Pusey, 1991] to ex-

press the interaction between particles by an effective pair potential, so that the 

suspension has thermodynamic properties formally the same as an atomic sys-

tem with the same pair potential (but where particles move ballistically between 

collisions with one another). 

The advantages of colloids as model systems are manifold and stem from their 

size. Directly, this means that these model atoms are large enough to probe with 

visible light. Indirectly, as thermal velocities scale inversely with the cube of the 

particle size, it means that the time-scale of particle rearrangements is of the order 

of seconds to months, allowing the kinetics to be followed in detail. Furthermore, 

the forces between sterically stabilized colloids are so weak that structures can be 

easily shear-melted and the slow, optically resolvable, relaxation to equilibrium 

can be readily followed. 
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1.3 Results from light scattering 

Owing possibly to their background in the X-ray methods of condensed matter 

physics of many of those involved in colloid physics, it has been the equivalent 

reciprocal space techniques of light scattering that have been most widely em-

ployed, to great effect. 

Powder light diffraction (q.v., e.g., Pusey [1991]) has yielded details of the 

structure of hard sphere colloidal crystals, in microgravity [Zhu et at., 1997] as 

well as under conventional conditions [Pusey et al., 1989; Liu et al., 1993]; this 

technique has also been used to study the superlattices formed by binary mixtures 

of hard spheres [Bartlett et at., 1992; Pusey et al., 1994]. 

The colloidal crystallization process has also been studied by following the 

time evolution of Bragg peaks, for hard spheres by Harland et al. [1995]; He 

et al. [1996]; Harland and van Megen [1997] and for charged ones by Würth et al. 

[1995]. The effect of the size distribution of the particles on crystallization and 

the glass transition has been measured [Henderson et al., 1996]. In combination 

with direct observation, static light scattering has been used by van Megen and 

Underwood [1993] to study the hard sphere glass transition and by Poon et al. 

[1995] to study the phase behaviour of colloid-polymer mixtures. 

Using a technique first presented by Cummins et at. [1964] and expanded upon 

by Clark et at. [1970], Brown et al. [1975] showed how the dynamical properties 

of colloidal suspensions could be extracted using photon correlation spectroscopy 

(also known as dynamic light scattering). As well as the early foundational work 

[Pusey, 1975], this technique has been used to measure particle sizes very precisely 

[Pusey and van Megen, 1984], to identify the kinetic glass transition [van Megen 

and Underwood, 1994] and to relate structural relaxations to low-shear viscosity 

[Segre et al., 1995aJ. To allow the application of dynamic light scattering to 

turbid suspensions where the single scattering assumption does not hold, a two 

colour method has also been developed [Segrè et at., 1995b]. 

Reciprocal space methods such as these, while being very powerful, have a 
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number of inherent disadvantages: first, due to the generic phase problem, in-

verting diffraction patterns to determine structure is not without ambiguities 

(Bartlett et al. [1992] and Pusey et al. [1994] used electron microscopy of dried 

suspensions to confirm their findings); secondly, the spatial and temporal averag-

ing inherent in these methods makes them unsuitable for studying the formation, 

structure and evolution of local defects such as vacancies and grain boundaries. 

The very earliest stages of nucleation are also inaccessible, because short-lived 

transient structures, probably containing only a small number of particles, are 

involved. For these purposes, the method of choice is real-space real-time imaging, 

which, while unfeasible for atoms, is readily achievable for colloids. 

1.4 The potential of optical microscopy 

In recent years, physicists have begun to exploit real-space techniques again, in 

particular digital video microscopy. 

The standard configuration of a suspension enclosed between a microscope 

slide and a cover slip leads to a quasi-two-dimensional system. Using fluores-

cent tracker particles, Schaertl and Sillescu [1993] studied the dynamics of hard 

colloidal spheres in a narrow gap. Such "thin" suspensions can, however, allow 

for the sharp imaging of ordinary (non-fluorescent) particles, even in close con-

figurations. Bongers and Versmold [1996] have studied the dynamics of single 

particles close to a glass wall in this way, while Dinsmore et al. [1997] have re-

ported on the fluid-solid transition at a wall in binary mixtures of hard spheres. 

Both the measurement of the effective pair-potential between particles in a con-

fined space [Carbajal-Tinoco et al., 19961 and the investigation of their structural 

phase transitions [Marcus and Rice, 1996, 1997] have been reported recently. 

To have suspensions thicker than a few particle diameters leads to difficulties 

with imaging, especially when the particle number density is large. Crocker 

and Grier [1996] have, however, managed to measure the hydrodynamic coupling 

between two isolated spheres (see also Crocker [1997]) while Grier and Murray 
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[1994] have studied heterogeneous crystallization in low-density charge-stabilized 

colloids. 

For dense, thick suspensions some means of optical sectioning is required, in 

order to filter out out-of-focus information. The best optical sectioning is achieved 

by confocal microscopy and the imaging of individual particles in concentrated 

colloidal dispersions has been clearly demonstrated [van Blaaderen, 1993; Ver-

haegh and van Blaaderen, 1994]. This method has been used to image the real 

space structure of a colloidal hard sphere glass [van Blaaderen and Wiltzius, 1995] 

and to measure stacking disorder in colloidal hard sphere crystals [Verhaegh et al., 

1995]. Aside from expense, confocal microscopy has the disadvantage that indi-

vidual images are acquired by scanning, so that bright images require either very 

intense illumination or exposure times which limit the suitability of the system 

for studying kinetics. 

It is possible, however, to obtain good optical sectioning using a research-

grade standard optical microscope and to obtain images that yield information 

about the three-dimensional structure of dense colloidal suspensions [Elliot et al., 

1997]. While care needs to be taken with the selection of contrast enhancing 

techniques and the interpretation of images, this approach holds out the prospect 

of being a relatively straightforward way of tracking the movements and configu-

rations of small numbers of particles within a larger suspension, complementing 

the established scattering techniques which characterize larger samples so well. 

The following chapters aim to realize some of the vast potential of optical mi-

croscopy, as applied to colloidal suspensions. Chapters 2 to 4 examine microscopy, 

reviewing the basics of imaging techniques and presenting the techniques and 

practices that I have developed, all with the end of achieving the best possible 

data from colloidal suspensions. Chapters 5 to 7 demonstrate the application of 

microscopy to a particular colloidal system, hard-sphere suspensions. Chapter 5 

presents details of methods of preparing suitable suspensions. Chapter 6 examines 

the interpretation of images with reference to predicted structures and crystal- 
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lography. Chapter 7 is concerned with results from microscopical observations 

of the hard sphere disorder-order transition. Chapter 8 presents several further 

avenues of research by means of optical microscopy that hold out prospects of 

good colloid physics. On the basis of the evidence given in those chapters, my 

case is that careful optical microscopy is an extremely useful tool for the colloid 

physicist. 
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Part I 

Principles of Colloid Microscopy 

11 



While the size of colloidal particles allows for the possibility of optical imaging, 

the exercise is not a trivial one. In studying colloidal suspensions, three main 

challenges are presented to those who would image individual particles: 

• Typical length scales are of the order of the wavelength of the illumination, 

so that we are always working near the limit of resolution. 

• Particles and medium are both highly transparent, with closely matched 

refractive indices, so that contrast is a problem. 

• The desire to study bulk behaviour requires the imaging of a genuinely 

three-dimensional suspension, so that object thickness is an issue. 

In this part I examine how these three challenges can be met, with each challenge 

being addressed in its own chapter. The earlier sections are largely a review of 

fundamental principles and well established microscopical techniques, presented 

with the aim of providing a self-contained exposition for the colloid physicist. As 

the chapters proceed, however, building upon these foundations, I present my 

own techniques and practices, specially developed for the full three-dimensional 

imaging of individual particles in thick colloidal suspensions. So, the part as a 

whole should provide a free-standing introduction to, and handbook of, colloidal 

microscopy for the physicist. 

13 



Chapter 2 

Resolving Colloidal Length Scales 

The fundamental problem with looking at small objects is the resolution of fine 

detail. In this chapter, we will first consider features of the process that con-

stitutes "looking at" small objects; then we will turn to three factors that limit 

the resolving power of a given observation system: detector segmentation, imag-

ing system aperture and illumination coherence; finally, the practicalities of the 

device designed to resolve small objects - the microscope - shall be set out in 

detail. 

2.1 Generic features of observation systems 

2.1.1 The observation process 

The observation process involves using an optical system to form an image 0' of 

an illuminated - or self-luminous - object 0 on a suitable detector. Any imaging 

system will, in principle, work "in reverse" i.e 0 is an image of 0', as well as vice 

versa. Any pair of points, planes, distances which are images of one another are 

said to be conjugate. 

15 
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I FRONTI 
	

Entrance pupil, P 	Exit pupil, fP' 	BACK 

Figure 2.1: The generic observation system: At the front is a source of illumination; 

behind this is the object; next, an optical system which images the object in front of 

it; finally, at the back, is the image, recorded by a detector. The pupils of the imaging 

system limit the cone of light from the object which can be used to form the image. 

2.1.2 Direction and notation conventions 

A number of conventions are useful in describing the observation process. The 

fundamental one is that the source of the illumination is called the front of 

the process, and the final image the back, so that the various components are 

described as being behind or in front of one another, as appropriate. Positive 

directions are: from front to back along the optical axis (z), upwards from the 

optical axis (y) and to the right as seen when upright looking along the optical 

axis towards the back (x), as shown in figure 2.1. 

My conventions for notation are given in table 2.1. Note that all planes are 

perpendicular to the optical axis, which passes through the coordinate origin of 

each of them. For polar coordinates r and 0, the positive directions are away 

from the optical axis and anticlockwise as viewed from the back of the system. 
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In the ... plane Object 0 Entrance Pupil P Exit Pupil P Image 0' 

Symbol for Plane fl tip n, [I' 

Coordinate 
Variables 

x,y;r,O x p ,yp ;rp ,Op  x',,y!p ;rp,8p  x',y';r',O' 

Maximum Extent X,Y;R X,Yp;Rp XP/ ,Y, ;R'p  X',Y';R' 

Transmittance T T ' Tp TI  
Function 

Light Amplitude U Up U1  
Distribution 

Light Intensity j ii 
Distribution  

Table 2.1: Notation conventions 

2.1.3 Magnification 

The ratio of the height of an observation system's image y to that of the object 

causing it yo,  taking the signs of the heights into account, defines the transverse 

magnification M of the system: 

M YO 

Yo 
(2.1) 

When considering the details of an observation system, other measures of mag-

nification can be necessary; these are dealt with in §2.3.2. 

2.1.4 Aberration-free imaging 

The ideal imaging system is one that is "aberration-free". Such a system is 

illustrated in figure 2.2 and is defined by: 

An imaging system that has as its output for a point object a spherical 

wavefront converging on that point's geometrical image is aberration-free. 

In geometrical optics, only the axial position of the object is important, meaning, 

in the notation given above, that (1) all points on II have their images on H' and 

(2) the magnification M of the system is constant over H'. In 1873, Abbe (and 
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H 	 P 

 

1 ' 

 

Imaging 
System 

 

 

Figure 2.2: The meaning of an aberration-free imaging system: a spherical wavefront 

E at the entrance pupil 2, centred on the object 0, leads to a spherical wavefront 

' at the exit pupil 2', centred on the (geometrical) image 0. 

simultaneously, von Helmholtz) showed, by considering refraction at a spheri-

cal interface, that this means that an aberration-free imaging system obeys the 

condition 

	

nsin o, =Mconstant 	 (2.2) 
In' sin o•' 	 I 

which is known as Abbe's sine condition. The best modern microscope optics 

are close to being aberration-free and equation 2.2 is an important relation. 

2.1.5 The microscopical observation system 

In microscopy, the illumination is provided by the substage assembly, with possi-

bly an external light source. The imaging system is the combination of the part 

of the microscope from objective to ocular and the observer's eye, or camera. The 

detector is then the retina of the eye, or film/CCD microchip of the camera. 

It is sometimes useful to divide a compound imaging system into sections and 

to treat each one as an independent imaging system, with one section's image 

being the next's object. 



2.2. RESOLUTION-LIMITING FACTORS 

2.2 Resolution-limiting factors 

However simple or complex an observation system, the basic factors limiting 

resolution are the same. These are: the spacing of the individual light-sensitive 

elements of the detector, the aperture/pupil size of the imaging system, and the 

degree of coherence of the illumination. 

2.2.1 Detector segmentation 

All image recording devices do so by being divided up into an array of detectors, 

each of which records the average light level in its own area. 

In the human eye*,  the retina consists of 0(108)  rods and cones arrayed over 

an area of 0(10) mm 2. At the fovea - the most sensitive area on the retina - the 

cones are spaced as closely as 0.0015 mm apart, so, other considerations apart, 

the retina being about 24 mm from the pupil, the angular resolution of the eye 

cannot exceed about 6 x 10 radians. This corresponds to about 
0th of the 

2500 

field of view. 

In photographic film, the emulsion consists of silver halide grains of size 

0(10) mm, but plates or film can be 0(102)  mm across, so that the resolution 

may correspond to 
1 of the field of view. 

100000 

On the other hand, the charge-coupled devices used in video cameras consist 

typically of a rectangular array of 800 x 500 pixels over an area of, say, 9 mm x 

7mm, giving a spacing of 0(10-2)  mm and a resolution corresponding to only 

1 t of the field of view, or so. 

For faithful image recording we must therefore ensure that: 

The magnification of the imaging system must be such that the finest detail 

of the image is larger than the spacing of the elements of the detector. 

*For  further details, see e.g. Inoué [1997], Chapter 4, pages 163-187 
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2.2.2 Imaging system aperture 

The wave nature of light means that diffraction by the finite aperture of an 

imaging system will limit its resolution. 

Pupils and apertures 

The physical dimensions of the imaging system mean that only a limited cone 

of light will be able to pass through it and take part in forming the image (see 

Figure 2.2). The angle of the cone accepted by the system, 2o-, is known as the 

object-side angular aperture of the system, whereas the angle of the cone 

that forms the image, 2cr', is the image-side angular aperture. 

In colloid microscopy, the objects are suspended in a medium with refractive 

index n n  > 1, normally with a glass cover which has rim . Refraction will 

occur at the interface between the glass and the space in front of the imaging 

system (refractive index n), so the light in the cone of angle 2cr entering the 

objective will have come from a cone of a different angle leaving the object plane. 

If the space between the objective and the glass cover is just filled with air, n = 1 

and the angle at the object will be smaller than 2cr. Changing n by using an 

immersion fluid will reduce this effectt,  so taking n (and n', of the space behind 

the imaging system) into account is important in considering the ability of the 

imaging system to capture light from the object. We therefore define the object-

side and image-side numerical apertures, by respectively 

A = nsina 	and 	A' = n' sin cr'. 	 (2.3) 

Apertures are limited by the finite width of some component in the imaging 

system, but it is not generally necessary to identify its actual dimensions and 

position. This is because those components of the imaging system in front of 

the limiting component will form an image of its transverse limits, known as the 

entrance pupil of the system (P); similarly, those components behind it will 

This is examined further in 2.3.2, under "Oil immersion technique" 
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form an image called the exit pupil of the system (2'). When considering the 

effect on imaging, it is sufficient to consider either one of these images instead of 

the restricting object itself. 

The amplitude transmittance functions r2 and r, are known as the entrance 

and exit pupil functions. Typically, pupils are circular, with a well defined edge 

and are centred on the optical axis so we can use 

= circ (-) 
	

(2.4) 

etc., the function circ () being defined by 

r 
circ 	= 	- 	. 	 (2.5) 

(R)  	O:r>R 

The exit pupil of a well-adjusted microscope can be seen as a bright disc a 

centimetre or so above the eyepiece (technically, the "ocular back surface"), if 

the eye is moved back far enough to allow it to focus on this plane. This disc is 

the narrowest extent of the image-forming rays behind the microscope, so: 

To observe the object, without straining the eye or reducing the field of view, 

the pupil of the eye needs to be at the exit pupil of the microscope. 

The distance between the exit pupil and the ocular is called the eye relief and 

is given on the side of most oculars. 

When using a camera to record the image, it is important to have the exit 

pupil of the photo-ocular coincident with the entrance pupil of the camera. This 

should be set up when the photo-ocular and camera are fitted to the microscope, 

but may need to be checked - especially if the camera field of view appears 

restricted. 

Point spread functions and diffraction-limited optics 

The aperture of an imaging system will limit the brightness of the image, but 

it will also lead to diffraction effects. This means that, even if the system were 
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Figure 2.3: (a) The Airy pattern: the image of a point object in an aberration-free 

imaging system with circularly symmetric pupils. The central bright disc, known as 
the Airy disc, contains 84% of the luminous energy at the image plane and is often 
taken as the effective extent of the "point" image (the outer rings have been enhanced 

in the diagram for clarity). 

aberration-free, a point object would not result in a point image, but instead a 

diffraction pattern, known as the point spread function (PSF). For this reason 

an aberration-free system is described as being diffraction-limited. 

The full PSF extends over three dimensions, centred upon the geometrical im-

age point; in this section we will just consider the two-dimensional cross-section 

of this at the image plane. For a diffraction-limited system with circularly sym-

metric pupils, this PSF is the Airy pattern, shown in figure 2.3. 

Scalar diffraction and Fourier optics 

To determine the intensity distribution in the Airy pattern (as plotted in figure 

2.4), we need to consider the diffraction of light by the imaging system. To do this 

we will use the theories of Fourier optics, which was largely formulated by P.M. 

Duffleux [1946], building on foundations laid by Abbe [1873] and Lord Rayleigh 

[1896]. Here I present the key principles; for more detail, see the English transla-

tion of Duffleux's work [1983] or the classic operational treatment by Goodman 

[1996]. 

According to Rayleigh, we can associate all diffraction effects with the prop- 

agation of light between the exit pupil and the image, and treat the rest of the 
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system geometrically. 

So, knowing that a point object will generate a spherical wavefront at the 

exit pupil of an aberration-free imaging system, all we need to do to find the 

point-spread function of such a system is to determine how a spherical wavefront 

of lateral extent determined by the exit pupil function will propagate from the 

exit pupil to the image plane. 

In principle, what we do is to apply the Huygens-Fresnel construction, taking 

account of the phase variations across the exit pupil due to the fact that the 

wavefront is not parallel to Hp. 

This approach is valid if we can treat the light as scalar wave, which is the 

case if the radius of the exit pupil R', and the distance z' between the exit pupil 

and the image plane are both large compared to the wavelength of the light 

in that region. Under these conditions, approximating the spherical wavelets 

by parabolic surfaces also holds good - in other words, we have the Fresnel 

diffraction conditions. 

What we find by doing this (see Appendix A.1) is that: 

The aberration-free image of a point object 0 is a scaled real-space Fourier 

transform of the pupil function r, centred on the geometrical image 0'. 

With a circular exit pupil with a sharp edge, we have r, = circ(r,/R'7,). 

Now, the Fourier transform of a circ function is a first order Bessel function of 

the first kind, J1 , which we can normalize to jinc(m) = 2J1(m) Applying the 

necessary coordinate scaling, the light amplitude distribution in the image plane 

can therefore be given by 

(2irR'pr'\ 

	

u'(r') cx jinc 	
) . 
	 (2.6) 

 YZI 

Intensity, I' = u'u', so the Airy pattern is given by 

(2 7rR'r' 
I'(r') cx jinc2 	

,, ). 	
(2.7) 
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I 	I 

Figure 2.4: Light distribution in the Airy pattern, normalized to unity at the central 
maximum and with radial distance in Airy optical units . Solid line: intensity I'; 

dotted line: amplitude u'. 

Figure 2.4 shows both the amplitude and intensity distributions plotted in terms 

of the Airy optical unit 	
= 2irR!1,r' 

Under the Fresnel approximations made, 

Z' >> R, so 	= tan a' 	sin a' = . Using A'n' = 	and the Abbe sine 

condition (equation 2.2) allows us to write the more practically useful expression 

2irA / 

- .A0M r. 
(2.8) 

The minima of jinc2 () correspond to the black rings in figure 2.3. The 

positions of the first six minima are given in table 2.2, along with the values and 

positions of the bright maxima in between. The central lobe contains 84% of the 

total luminous energy of the whole pattern. This region is called the Airy disc 

and we can consider it to be the limit of useful object information, with outer 

rings merely reducing the contrast of the image by brightening the background; 
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Minima (I' = 0) Maxima 

I' 

3.831705970 = 1.2196698917r 1 0 

7.015586670 = 2.2331305947r 1.749786278 x 10-2  5.135622302 

10.17346814 = 3.2383154857r 4.157996385 x iO 8.417244140 

13.32369194 = 4.2410628647r 1.600637668 x iO 11.61984117 

16.47063005 5.2427643757r 7.794453558 x iO 14.79595178 

19.61585851 = 6.2439216887r 4.370255517 x 10 17.95981950 

Table 2.2: The first twelve extrema of the Airy pattern 

its radius, 

r 1 	0.610 
A 	

(2.9) 

therefore gives a useful measure of the size of the point spread function. 

Real "point" objects 

An ideal point object will always be coherently illuminated and this fact, implicit 

in Huygens-Fresnel construction, is used in the derivation of the Airy pattern. 

However, a point object is an idealized concept and even the smallest real objects 

will have finite size. An object may be treated as a point, however, if it is (1) 

illuminated coherently and (2) its radius is no greater than rAiy  which is the 

geometrical image in the object space of and is given by 

0.610. 	 (2.10) 
Ao  

In microscopy, with an oil-immersion objective, we can achieve A = 1.4, so, as 

A0  < 750 nm, rAiry  < 325 nm, i.e., larger colloidal particles are just about able to 

act as extended objects. 
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T1 

Figure 2.5: The illumination of two point objects 

2.2.3 Illumination degree of coherence 

The image of an extended object will consist of the superimposed images of 

individual points on the object. How these images superimpose depends on their 

mutual coherence, which will be determined by the degree of coherence of their 

illumination. 

Mutual coherence between two point objects 

The degree of coherence of the illumination of two points separated by a distance 

s across the object plane H is given by 

e2= jinc 	sin ac) 	 (2.11) 

where the illumination is a uniform circular cone of angle 2c  and the refractive 

index in front of the object is n_ (see figure 2.5). In the microscope this angle is 

controlled by the condenser, which has numerical aperture Ac = n_ sin 

For e2 = 1 the two points are coherently illuminated. This can only be 

achieved if the illumination is a beam parallel to the optical axis. However, 

close to coherent illumination can be achieved for small values of °-c;  generally, 

0.88 is taken as the lower limit of coherence. At this value 11s n_ sin 	= 1, 

i.e., Ac = A0  . For a typical range 0.2 	A 	0.9, with . = 550 nm, we get 

438 nm > s > 97 nm, so separate colloidal particles of diameter 2 H > 438 nm 
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will not be coherently illuminated, even if the condenser diaphragm is closed to 

its minimum. 

Although 2 = 0 corresponds to incoherent illumination of the two points, 

the practical upper limit is taken at e2 = 0.18. This has Lls n_ sin ac  = ir, i.e., 

Ac = . Using the same values for Ac and A o  as before, we get 1380 nm 

s > 306 nm, so separate colloidal particles of diameter 2R,,, > 306 nm can be 

illuminated incoherently if the condenser diaphragm is opened sufficiently. 

For 0.18 < 6 < 0.88, the illumination of the two points is referred to as being 

partially coherent. 

The image of a two-point object 

If the coordinates of the two points are (x 1 , y)  and (x 2 , y2), so that we have 

S - x 2 ) 2  + (yi - y2)2, their geometrical images will be at (Mx 1 ,My j ) 

and (Mx 2 ,My 2 ) in H'. 

Leaving aside the identical constant prefactors, the image intensity 

I' = jinc2 ( 1 ) + jinc2 (2) + 2 2 jinc(E 1 )jinc( 2 ), 	(2.12) 

where 
27rA 

V(X1

A0M 	- Mx 3 ) 2  + (y' - My 3 ) 2 , 	j E 11, 2}. 	(2.13) 

For 6 = 1, 

	

= (jinc(E i ) +jinc( 2 )) 2 , 	 ( 2.14) 

i.e., with coherent illumination, the image is obtained by summing the ampli-

tudes. 

On the other hand, for e2 = 0, 

	

'incoh =jinc2 ( i ) + jinc2 (2) 	 (2.15) 

i.e., with incoherent illumination, the image is obtained by summing the intensi- 

ties. 
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Resolution limits 

If two incoherently illuminated points are separated by s = TAi, the centre of 

the Airy pattern of each will coincide with the first dark ring of the other, giving 

an image with two bright peaks with a local intensity minimum midway between 

them. Summing intensities, the intensity at the mid-point will be 2jinc 2( ) = 

73.5% of the intensity at either of the peaks. Such a minimum is usually detectable 

and the condition s = rA, called the Rayleigh criterion, is taken as the limit 

of resolution of two incoherently illuminated points. Using the Rayleigh criterion, 

we can therefore write the incoherent resolution limit gincoh  as 

incoh = 0.610. 	 (2.16) 

For optical microscopy, with A = 1.4, A0  = 550 nm, we get Uincoh = 240 nm. 

If the illumination of two points separated by s is coherent, amplitudes need 

to be summed and, to achieve a minimum of 73.5% of the peak intensity, we need 

to solve [2jinc(!i)2 = 0.735[1 +jinc(i 3 )] 2 . This value of s gives the coherent 

resolution limit of two points coh•  Solving the above equation gives us 

coh = 0.819 
	

(2.17) 

So resolution is not as good when the illumination is coherent; for A = 1.4, 

A0  = 550 nm, we get êincoh = 322 nm. 

Partially coherent illumination will give a resolution limit Qincoh < Opcoh < coh- 

2.3 Practical bright field microscopy 

The simplest way of increasing resolution is to bring the object closer to the eye, 

but there is a limit to how close an object can be and still be in focus. With 

a typical shortest distance of focus for the eye of 100 mm and a pupil diameter 

of 3 mm, the numerical aperture of the eye is about 0.015, so Q,ncoh 0.02 mm. 

To resolve detail smaller than this, we need an imaging system with a larger 

numerical aperture; the microscope is just such a system. 
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The microscopical system described in this section leads to standard bright 

field images, so called because the light-absorbing objects such a system is de-

signed for appear dark on a bright field or background. 

The simplest microscope is the magnifying glass or loupe. In order to resolve 

detail on the colloidal length scale without excessive aberrations over a reasonable 

field of view, however, a compound microscope - one that involves more than 

one imaging component - is required. For reasons to be described below, most 

modern research grade microscopes are designed with "infinite tube-length". 

2.3.1 The infinite tube-length compound microscope 

Figure 2.6 shows an "infinite tube-length compound microscope". The left-hand 

diagram shows the microscope set up for human observation, whereas the right-

hand one shows it set up for image recording by camera (photographic film may 

replace the CCD microchip without changing the rest of the set-up). It should be 

noted that each of the lenses of the microscope will be a combination of several 

lenses in actual fact. 

"Infinite tube-length" refers to the fact that the intermediate image formed 

by the objective is at infinity, because the object is at the front focal plane of 

the objective. This image is not shown on the diagram, but one can see that two 

rays from one object point are parallel behind the objective. Such an objective 

is often referred to as "infinity-corrected". 

A traditional compound microscope uses an objective to form a real mag-

nified inverted intermediate image at the front focal plane of the ocular, which 

in turn forms a further-magnified, still inverted, final image at infinity. Having 

the image at infinity means that the eye of the observer can be relaxed when 

focusing on the final image. With a camera, the intermediate image is in front 

of the photo-ocular front focal plane, so that a real final image is formed at the 

recording device. 

With this two-lens system, maintaining the correct distance between the lenses 
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Figure 2.6: The infinite tube-length compound microscope. 
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- the tube length - is critical. Using an objective which forms an image at infinity 

and adding a tube lens behind it, to form a real intermediate image at the latter's 

back focal plane, chosen to coincide with the ocular front focal plane, means that 

the exact axial position of the objective becomes relatively unimportant and 

focusing can be achieved by moving the objective alone. 

Imaging techniques other than the standard bright field described above rely 

on additional optical components placed behind the objective. With a finite 

tube-length microscope, the wavefronts behind the objective are curved, so such 

additional components require further compensating optics. Infinity corrected 

objectives have an obvious advantage in this respect and, mainly for this reason, 

most research grade microscopes are of infinite tube-length. 

It is sometimes useful to consider the objective and tube lens to act together 

as a compound objective. Alternatively, the tube lens and ocular combine to 

make a telescope which looks at the objective's distant image. 

2.3.2 Magnification 

Three measures of magnification need to be considered when determining the 

overall magnification of the infinite tube-length compound microscope: transverse 

magnification, visual magnification and tube lens factor. 
image size  Transverse magnification M = object size' so this measure can only be  

used for real images. In terms of the symbols used in figure 2.7 

YO 	p1' 	1' 	q 
	 (2.18) 

Visual magnification M is used for virtual images and compares the angular 

size of the image with the angular size of the object viewed unaided (see figure 

2.8). Unaided observation is taken to occur with the object at the "distance of 

distinct vision", i.e. the "working distance" of the eye Wye, taken as —250 mm. 

The sign of Weye indicates that it is measured from the eye backwards towards 
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YO 

YO 

Figure 2.7: Transverse magnification: the inset shows the sign convention for direc-
tions. 

the object. Using the notation of figure 2.8, we have 

M = tan L,,' = 	Y,Weye 	Weye(f' 	
(2.19) 

tan 	(Pe  a')yo 	f'(pep') 

With the image at infinity, as is the case for microscopy, 

M = urn M 
= Weye 	

(2.20) 
P 

Tube lens factor: The tube lens has a virtual object and a real image. Its 

"magnification" is measured in terms of a "tube lens factor" 

Q _ _fiL, 	 (2.21) 
Weye 

where fL  is the back focal length of the tube lens. 

Microscope magnification is given simply by the product of the objective 

and ocular magnifications and the tube lens factor. For human observation, the 

microscope magnification will be visual, whereas with a camera recording a real 

image, the microscope magnification will be transverse: 

M, = Mob Q M0 	or 	mo = Mob Q Mpo, 	(2.22) 
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Figure 2.8: Visual magnification: the upper diagram shows conventional unaided 

vision; the lower diagram compares this with the case of a magnified virtual image. 

where the subscripts i, Ob, Oc and P0 refer to the microscope, objective, ocular 

and photo-ocular respectively. 

As mentioned previously, the overall magnification of a system needs to be 

such that the finest detail on the image is larger than the spacing of the elements 

of the light detector. The smallest detail resolvable on the image will be given by 

M or M, o , as appropriate. There is no advantage to be gained by having the 

magnification such that more than a few elements of the detector correspond to 

the resolution limit of the image; any further magnification beyond this is called 

empty magnification. Practically speaking, I have found a useful range to be 

	

< M A  0 <10, 	 (2.23) 
xpix 

where Ax p ix  is the pixel spacing. 
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Calibration of digital images 

A digital image is an array of pixels, which can be displayed at any desired 

magnification. One cannot, therefore, give a value for the magnification of digital 

image per se, but must refer to the scaling S of a digital image - that is, the 

distance represented by the pixel spacing. 

Ideally, this scaling is the same for both dimensions of the pixel array. Al-

though equal magnification along all azimuths is axiomatic for a good microscope, 

a small difference between the pixel spacings Axp ix  and Ay pi. is common, even 

for the best microchips. We therefore need to determine S. as well as S. 

We can readily see that 

Sr =
M y1 

and 	S = 
	' 	

(2.24) 
MAAXPiX 

but a precision better than a few per cent (due largely to the measurement of 

the microchip dimensions) is hard to achieve by this method. This is not very 

satisfactory, especially as S x  and S, usually only differ to this degree. 

A more precise measure of scaling can be obtained by calibrating directly 

against a graticule (this also eliminates the need to assume that 	= 

Given that the image of a section of graticule can extend over several hundred 

pixels, a precision of 0.5% is easily obtainable from this approach. 

For a linear graticule, two images should be recorded, one for the graticule 

aligned along each of the directions of the pixel array. One can then determine 

directly from the recording how many pixels represent a known distance. This 

process should be carried out for all combinations of magnification and camera 

used. 

2.3.3 Conjugate planes 

Examination of figure 2.6 reveals a number of planes that are all conjugate with 

one another: the plane of the collector field stop, the object plane, the interme- 

diate image plane and the final image plane. An additional plane, containing the 
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virtual image formed by the objective exists at infinity behind the microscope. 

This set of planes is called the imaging or field set of optical planes because 

any lateral restriction at one of these planes will alter the field of view of the 

microscope image. The collector field stop is an adjustable iris (often just called 

the "field iris") and this is how the field of view is controlled. The general rule 

is: 

Open the field iris sufficiently to illuminate only the area of the object that is 

under observation. 

If the field iris is set too wide, stray reflections inside the microscope will reduce 

the contrast of the images. 

The field set is not the only set of conjugate planes, however; another set is 

shown in figure 2.9: the plane of the illumination source and all the planes with 

its images - the plane of the condenser aperture stop, the objective exit-pupil 

plane and the exit pupil of the microscope. An additional plane, containing the 

virtual image of the lamp formed by the condenser exists at infinity in front of 

the microscope. These are called the illumination or aperture set of optical 

planes because any lateral restriction at one of these planes will alter the aperture 

of the illumination. The condenser aperture stop is an adjustable iris (often just 

called the "aperture iris") and this is how the aperture of the illumination is 

controlled. Closing the aperture iris will decrease the angle of the cone of light 

illuminating the object. As some light is scattered by the object, the cone of light 

containing image information is of a larger angle than this, so the general rule is: 

Open the aperture iris so that the condenser numerical aperture Ac is 

approximately 70% of the objective numerical aperture A. 

This should reduce stray reflections in most conditions. To increase the degree 

of coherence of the illumination, it may be necessary to close the aperture iris 

further than this. 
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Figure 2.9: Illumination of the infinite tube-length compound microscope. 
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effect of opening aperture iris 	 effect of opening field iris 

Figure 2.10: Controlling angular aperture and area of illumination. 

Figure 2.10 shows the effect at the object plane H of the two irises on the two 

sets of planes. The arrows show the outer edges of the frustrated cone of light 

illuminating the object and the frustrated cone of unscattered light leaving the 

object due to the continuation of the illuminating rays. Opening the aperture 

iris increases the angle 2c of the cones, whereas opening the field iris increases 

the area A at the meeting point of the two frustra, i.e. the area of object 

illuminated - the field of view. 

An important relationship exists between the two sets of planes as shown in 

figures 2.6 and 2.9: 

The light distributions in the field set of conjugate planes are the scaled 

Fourier transforms of those in the illumination set of conjugate planes, and 

vice versa. 

This can be seen by the fact that rays crossing in one set of planes pass through 

opposite edges of the other set: light from a single point in one set passes through 

all points in the other set. This means that frequency-space operations can be 

performed on the images in one set by means of appropriate filters in the other 

set. 
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2.3.4 Köhler illumination 

The requirements for microscope illumination are that: 

The area of object illuminated is no larger than causes a minimum of stray 

light or glare. 

The illumination is of controllable uniform intensity across the object. 

The aperture of the illumination is adjustable according to objective and 

imaging requirements. 

These requirements are best met by the system of illumination first proposed by 

August Köhler (see Haselmann [1983]), which has a condenser and illuminator 

in front of the object, in the arrangement depicted in figures 2.6 and 2.9. The 

essential details are that the collector field stop is imaged at the object plane, that 

the lamp is imaged at the condenser front focal plane, and that the condenser front 

focal plane is coincident with the condenser aperture stop. This system enables 

illumination to be uniform, despite a non-uniform filament, as the condenser will 

image the filament at an infinite distance in front of the object. 

When setting up these conditions, it should be noted that removing the ocular 

and looking down the microscope tube reveals the aperture set of planes. Often a 

small telescope is fitted in place of the ocular to magnify the view of the aperture 

planes; alternatively, some microscopes have a Bertrand lens fitted to the tube 

which can be swung into place without having to remove the ocular. 

The procedure for setting up Köhler illumination is given in table 2.3. For 

good image quality, Köhler illumination is essential and it behoves the micro-

scopist to make this procedure one of habit. 

2.3.5 Oil immersion technique 

The presence of an air gap between an object and the objective places an upper 

limit on the numerical aperture of the imaging system and reduces the brightness 
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Use the substage focus to move the condenser close to the object plane. 

Adjust the voltage to the lamp so that brightness is in mid-range. 

Focus on the object plane; adjust brightness if necessary. 

Close the field iris enough to obstruct part of the field of view 

Use the substage focus to form a sharp image of the field iris; if necessary, 

use the condenser centring controls to centralize the image. 

Open the field iris so that only slightly more than the area of interest of 

the object is illuminated; often this means just outside the field of view. 

Viewing the objective exit pupil, adjust the position of the filament so 

that a sharp centralized image is formed. 

Adjust the size of the aperture iris to give the desired Ac (for incoher-

ent illumination this is usually set so that its image is slightly smaller 

than the objective exit pupil); if necessary, centralize, by adjusting the 

aperture iris mounting screws. 

Table 2.3: Setting up Köhler illumination 

of the image. Objectives designed to have this gap filled with a liquid of higher 

refractive index allow both these limits to be ameliorated. 

The half-angle of acceptance of light by the objective o can only be 900  if the 

object is in direct contact with the objective front lens. The presence of a cover 

slip on the object, amongst other practical considerations, limits a to about 72° 

[Pluta, 1988, §2.3.51, and hence A to no more than 0.95. With cover slip glass of 

refractive index = 1.515, refraction at the cover slip-air interface means that 

the half-angle of the cone of light leaving the object cannot exceed 39° (see figure 
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Figure 2.11: The effect on illumination of using an oil-immersion objective. 

2.11). The critical angle for this interface being 41°, a significant proportion of 

the energy in the light cone will be reflected back into the cover slip. 

If immersion oil of refractive index n 10  = 1.515 is used between the objective 

and cover slip, o can be about 68 0  [Pluta, 1988], which is similar to before, but 

the larger refractive index means that A can be 1.4. No refraction occurs at the 

cover slip-oil interface, so a cone of half-angle of 68 0  leaving the object will be 

accepted by the objective and no light energy will be lost by reflection. 

A similar technique can be applied in front of the object, so that the condenser 

top lens is immersed and the aperture of the illumination Ac can be increased. 

This means that incoherent illumination can be achieved for smaller separations. 

A system where the refractive indices of the objective front lens, immersion oil, 

cover slip, object mounting medium, microscope slide and condenser back lens 

are the same and both the condenser and objective are immersed is described as a 

homogeneous immersion system; such a system maximizes the light capturing 

power of the microscope. 

* 	* 	* 

With oil-immersion bright field microscopy, as described above, resolving de-

tail at colloidal length scales is just about attainable. However, the stability re-

quirement that colloidal particles and their medium have similar refractive indices 

results in highly transparent suspensions, which give very low contrast images. 

The next chapter deals with more advanced imaging techniques, which make it 

possible to achieve clear images of transparent objects. 



Chapter 3 

Enhancing Colloidal Contrast 

Colloidal suspensions, having closely matched refractive indices of particles and 

medium in order to reduce van der Waals attractions, produce very low contrast 

images under bright-field methods. This chapter, after demonstrating this prob-

lem, explains the microscopical techniques of phase contrast and Normarski dif-

ferential contrast, before turning to the digital techniques of processing recorded 

images. 

3.1 The problem of colloidal contrast 

3.1.1 Definition of contrast 

Contrast is usually defined in terms of intensities: 

I' - I'(x',y') 
C'(x',y') = 0 	

, 	 ( 3.1) 
10 

where I is the intensity of the background (i.e. the intensity when r(x, y) = 1). 

Positive contrast will therefore mean an image darker than the background. 

3.1.2 Colloids as phase objects 

Highly transparent objects, such as many colloidal suspensions, which cause only 

phase changes in the light passing through them are known as phase objects; 

41 
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objects which cause attenuation only are known as amplitude objects. 

In many applications, staining is used to give phase objects amplitude con-

trast, but few colloidal suspensions lend themselves easily to this approach. Fur-

thermore, suspensions which are to be studied for their bulk behaviour cannot be 

stained, as this will obscure the interior. In imaging colloidal suspensions, there-

fore, techniques of turning phase shifts into intensity differences must generally 

be used. 

3.1.3 Bright-field micrographs of colloids 

Bright-field microscopy is unsuitable for unstained phase objects, because mod-

erately out-of-focus images have greater contrast than in-focus images, which 

ideally have no contrast at all, as is demonstrated by figure 3.1. This has the 

consequence that digitally enhancing the contrast (see § 3.4 for examples of tech-

niques) of images of planes within the body of a suspension will, in fact, cause 

more confusion: 

The strength of the contrast of slightly defocused images will completely 

obscure the object plane. 

The series of 15 images at the top of figure 3.1 are of a single colloidal sphere 

at varying degrees of defocus. These images have had their contrast digitally 

enhanced, emphasizing the confusion caused: contrast is seen to be 

• strong and negative for moderate positive defocus (upwards for an upright 

microscope) - images 1-7, 

• close to zero in focus - image 8, and 

• strong but reversed, to positive for negative defocus (downwards) - images 

9-15. 
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Figure 3.1: Bright-field images (A = 1.25) of a single PMMA sphere, radius R = 

536 ± 7 rim, refractive index n = 1.49, in decalin, n, = 1.47. The top 15 images 

(field of view 4.5 jim x 4.5 jim) form a series at varying degrees of defocus: 1.0 Pm 

of forward axial (focusing) movement separate successive images, with 8 being in 

focus. The bottom image is a composite of 1 pixel-wide slices across the centre of 

361 images like the above series, but with each separated by 0.05 pm; this gives a 

quasi-side-on view and makes the contrast reversal clear: image 8 of the upper series 

is at the line indicated by the arrows. 

While naïf contrast increasing - as employed in figure 3.1 - does not work 

with bright-field images of phase objects, converting phase differences into con-

trast variations is possible. Two techniques suited to colloidal microscopy are 

phase contrast and differential interference contrast. These both involve optical 

operations at the objective exit pupil, so, in the next two sections, the imaging 

system shall be considered to be the objective alone. 



44 	 CHAPTER 3. ENHANCING COLLOIDAL CONTRAST 

3.2 Phase contrast microscopy 

The phenomenon of phase contrast was discovered by Frits Zernike, who applied 

it to the testing of telescope mirrors [Zernike, 1934], before turning to microscopy 

[Zernike, 1935, 1942a,b]. His discovery won him the 1953 Nobel Prize for Physics, 

and his address at the award ceremony [Zernike, 1964] is a good overview of the 

principles and practice of this technique. 

3.2.1 Zernike's principle 

For a very weak amplitude/weak phase object only small perturbations to the 

illuminating wavefront occur and we can consider the light behind the object to 

consist of a direct wave, which is the unperturbed version of the wavefront, and 

a much weaker diffracted wave, which consists of all the perturbations. All the 

object information is contained in the diffracted wave, but interference between 

the two waves at the image results in the object information being swamped in 

bright-field microscopy. 

Phase contrast works by introducing a phase shift b to the direct wave, and 

attenuating it to a (real) fraction T, at a point where the two waves can be 

spatially separated, before they reach the image. 

This phase shift and attenuation has the effect of turning small phase differences 

into large amplitude (or intensity) differences. 

We can represent this technique quantitatively in a number of ways: a phasor 

representation is perhaps easier to visualize, whereas a Fourier representation 

emphasizes ties in more closely with diffraction theory. 

3.2.2 Fourier representation 

In phase microscopy I' =± 1  is usual; for mathematical transparency, we will 

consider just this case here, leaving more general phase shifts to the phasor treat- 
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ment below, where they can be more easily apprehended. For simplicity, we will 

also take all magnifications to be unity, so that the Fourier transforms between 

field and illumination planes will not require scaling. 

For a phase object, the transmission function is of the form 

'r(x, y) 	 (3.2) 

where p  is the phase shift caused by the object. 

For a weak phase object, we can make the first order approximation 

r(x, y) 	1 + z(x, y). 	 (3.3) 

Letting u- (x, y) and I_ = u. u be the amplitude and intensity distributions 

just in front of the object, we get 

	

u(x, y) 	U- (X, y) + zço(x, y)u_(x, y), 	 (3.4) 

just behind the object. So, in words, the transmitted light can be considered 

as an unperturbed part and a phase shifted part, the first and second terms 

on the right-hand side of 3.4 corresponding to the direct and diffracted waves 

respectively. 

At the objective exit pupil, 4 	{u}, giving 

	

U'p 	.F{u} + :F{z(ptL_}. 	 (3.5) 

Note that the linearity of Fourier transforms means that the direct and diffracted 

parts remain separate. 

For coherent Köhler illumination, u.. = .F{TAS}, where "AS" refers to the 

(condenser) aperture stop. Fourier transforming twice just inverts the original 

function, so the first term on the right-hand side of equation 3.5 is just the image 

of the aperture stop, as expected. 

Coherent illumination requires TAS  to be non-zero over a very limited spatial 

extent, so its image at the objective exit pupil will also occupy only a small 

proportion of the area of the pupil. By placing a phase plate in the pupil, which 
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introduces a phase shift 0 and an attenuation T at the image of the aperture 

stop, we can achieve our desired manipulation of the direct wave. 

A phase shift of ± 11  corresponds to multiplication by +z, so, applying this to 

the direct beam term, we get 

+ZT1 As  + .T{zcpu_}. 	 (3.6) 

Fourier transforming again, to get the image, we have 

zTn_ - zçou_ = zu_(T ± ) 	 (3.7) 

and 

I' I- (T ± ) 2 	 (3.8) 

With small p, we can ignore terms quadratic in it, so 

I' 	I_(T 2  ± 2pT). 	 (3.9) 

Finally, the background intensity I is given by the attenuated intensity of 

the direct wave T 2 1_, so we arrive at an expression for contrast, 

C' (X
I  , y 	

2
') = 
	

(x', y'). 	 (3.10) 

Thus we have contrast proportional to phase differences due to the object; in 

other words, we have phase contrast. The inversion in the sign of the contrast 

compared to b reflects the more general result (see equation 3.20), that 

• If p  and 0 have the same sign, we get negative phase contrast. 

• If and have opposite signs, we get positive phase contrast. 

3.2.3 Phasor representation 

Under this scheme, we treat the direct and diffracted waves as vectors rotating 

anticlockwise about their origin at an angular frequency given by 27r/A 0 . These 

rotating vectors are what we mean by phasors. 
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(C) (a) 

U
P = Fu  

(b) 

u" =T u  

4ic Ud 

Figure 3.2: Phasor representation of phase contrast: (a) shows the perturbed wave 

ZIP , attenuated by F and phase shifted by by the object, as the resultant of the 

unperturbed direct wave i7 and the diffracted wave id;  (b) shows the effect on the 

direct wave iZ of attenuating by T and phase shifting by '; (c) shows the resultant 

wave as the sum of the diffracted wave lid  and the altered direct wave ii'. 

Here we will consider the general case of an object that attenuates the ampli-

tude of its illumination to a fraction F, as well as adding a phase shift . If we 

7, Ud,  and 9p  for the direct, diffracted and resultant waves, so that U = U + Ud 

we have 

lip  = F e i. 	 (3.11) 

This is represented in figure 3.2(a). 

If we introduce a phase shift 1' to the direct wave and attenuate it to a fraction 

T (as before), then, using iZ' to represent the altered direct wave, we have 

(3.12) 

This is represented in figure 3.2(b). 

The resultant wave will now be given by iZ, = ü'+uid, with the image intensity 

= iZI 2 . Figure 3.2(c) shows the whole scheme. By means of t rigonometry*, 

* see  Appendix A.2 
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we can use this diagram to get 

(3.13) 

Now I = T 2 1_, so 

= 	(cos ,0 + Fcos — TFcos(  -) - 	+ F2)). 	(3.14) 

Phase contrast was developed for objects with F nearly constant; for such objects, 

and a given phase plate, i.e., T and 0 are constants, we have contrast as a linear 

function of a combination of sin and cos , which we can see if we write equation 

3.14 as 

1+F2 1 	[2r (l—Tcos') _____
=[

2cos 

	T2 ]+ 	 I 
 cos— L T 

2F 
sin ] sin. (3.15) 

For objects with F 1, such as many colloidal suspensions, this reduces to 

2. 
(3.16) 

T2  

From this, we can see that contrast, being zero at cp = 0 and of opposite sign on 

either side of this, will go to zero and reverse in sign again at '°' 
= Tsi• 

The region between these successive zeroes of contrast is known as the region 

of unreversed contrast. For an image to be unambiguous, one needs to ensure 

that contrast does not reverse more than once in a single image (or set of images, 

if several are to be compared); however, for no object information to be lost, it is 

better to ensure that contrast goes to zero only for = 0, i.e. to remain in the 

region of unreversed contrast. 

A typical phase plate will have t' = ± 1 and 0.3 	T 	0.5. For t' = 21 

equation 3.16 further reduces to 

C' —  --(cos— 1) 	
2 
 sin o. 	 (3.17) 

T2  

This gives zeroes of contrast at 

=0and 2arctanT when 	 (3.18) 
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So, contrast will be positive for —2 arctan T <p < 0 and negative for the rest of 

the 27r domain of p, if = +., but positive for 0 < V < 2 arctan T and negative 

otherwise, if 0 = -. 

	

The maximum positive and negative contrast values, C+ maz 
' 	and C' max I will 

occur at the midpoints of their respective domains p = arctan T and p = 

F(lr — arctan T). These contrast values are given by 

2 	 2 
- 	_____ and C' 	= 	 (3.19) 

+max — 1+fTT2 	- 	1_y1+T2  

For fairly weak phase objects, with J W J < 1 , the region of unreversed positive 

contrast is the one containing the accessible maximum contrast. 

It may be readily seen from the expression for C mar  and the value of p at 

that maximum that the smaller the value of T, the better the maximum contrast 

and the smaller the value of W to achieve it. Obviously, the smaller p  is, the 

smaller 'I' needs to be, if we are to get the best contrast conditions (given that 

F 1). What also follows is that T should not be too small, if contrast is to 

remain unreversed. 

This may be understood by considering that the amplitude of the diffracted 

beam is small, when F 1, so a small value of T will bring the amplitude of 

the direct beam down to a value comparable with that of the diffracted beam, 

making for more efficient interference. 

	

In the case of weak phase objects, where 	is small, equation 3.16 further 

reduces to 
2  

C' = 	sinil'. 	 (3.20) 

So we have the case that phase contrast is negative if p and 0 have the same sign, 

but positive if p  and 0 have opposite signs, as mentioned earlier, in connection 

with equation 3.10 (C' R4p), which is what equation 3.20 finally reduces to 

for =±. 

A full treatment of the effects on phase contrast of varying T and tp for objects 

with varying F and 'p in terms of phasors is given in Barer [1952a,b, 1953a,b]. 
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3.2.4 Setting up phase contrast microscopy 

Coherence requirements 

Phase contrast clearly requires a high degree of coherence between the direct and 

diffracted waves; furthermore, Köhler illumination is essential (to allow manipu-

lation of the illumination at the objective exit pupil and the condenser aperture 

stop). On the other hand, for good resolution and bright images, a large numer-

ical aperture of the objective needs to be illuminated and the open area of the 

aperture stop cannot be too small. 

Conjugate annuli 

The best compromise for these conditions [Francon, 1954] is to illuminate with an 

annular condenser aperture stop and, conjugate with it, an annular phase ring in 

the objective exit pupil. Annular illumination allows a high degree of coherence 

with a relatively large aperture. Figure 3.3 shows the annular illumination, the 

(a) 
	 [Ia] 	 (c) 

. 

R, 	• 
	

R'. 

Figure 3.3: Conjugate annuli in phase contrast microscopy: images in the objective 
exit pupil, radius Rp , of (a) the annular condenser aperture stop, radius r 0 , width 

(b) the phase ring, radius r0 , width LTPR  and (c) the combined image. 

phase ring and the two combined, as seen at the objective exit pupil; this view 

can be obtained by removing the ocular and looking down the microscope tube. 
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The dimensions of a typical phase ring are chosen such that zrp 	1.25zr s  

and 27rr 0 zrpR 	O.1'rR, 2  [Pluta, 1989, §5.21. 

Phase objectives 

Modern phase rings consist of a thin dielectric film - to add the phase shift - and 

a thin metallic film - for attenuation - mounted directly on top of one another 

on a flat glass plate. This plate will form a permanent part of the compound 

objective, meaning that special phase contrast objectives are required for this 

technique. Phase objectives can be readily identified, as the phase ring is clearly 

visible if the objective is viewed through its exit pupil; moreover, the objective 

will have "Ph" inscribed on its outer case, the international convention being that 

the lettering on phase objectives is green - further assisting identification. 

Objectives of different numerical aperture will have different sized phase rings, 

indicated by the number after the "Ph". It is obviously important that the image 

of the aperture stop matches this, so different annular apertures are required 

for the concfenser; these are likewise identified "Phi", "Ph2" etc., and must be 

carefully centred to match up with the phase ring, as shown in figure 3.3(c). This 

must always be checked when using phase contrast. 

3.2.5 Phase contrast images of colloids 

Figure 3.4 shows a series of images of a single colloidal sphere at varying degrees 

of defocus. These images have had their contrast digitally enhanced, to show 

the out-of-focus images more clearly. The major difference between these images 

and those of figure 3.1 is immediately clear: The focused image has the strongest 

contrast, with out-of-focus contrast reversals being very weak. 

To explain the focused image we need to use the fact that the phase shift p 

of light, wavelength Ao , crossing the diameter 2R of a sphere of refractive index 

n in a liquid of refractive index m  is given by 

27r = 	(flm - n) 2R. 	 (3.21) 

) 
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Figure 3.4: Phase contrast images (A = 1.4, b = +-) of a single PMMA sphere, 

radius R = 550 + 7 nm, refractive index n, = 1.49, in decalin, n, = 1.47. The 

top 15 images (field of view 4.3 jm x 4.3 m) form a series at varying degrees of 

defocus: 1.0 1um of forward axial (focusing) movement separate successive images, 

with 8 being in focus. The bottom image is a composite of 1 pixel-wide slices across 

the centre of 165 images like the above series, but with each separated by 0.11 pm; 

this gives a quasi-side-on view; image 8 of the upper series is at the line indicated by 

the arrows. 

For the sphere in figure 3.4, this gives us 	= — 0.0757r radians. Although T 

is not known for this objective, equations 3.17 and 3.18 show that the range 

—0.0757r < <0 would give unreversed positive contrast for T > 0.12, which is 

very likely to be true. The fact that the contrast across the in-focus image of the 

sphere remains positive concurs with this prediction. 

Figure 3.4 shows that out-of-focus images can show reversed contrast, but, as 
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long as all in-focus information is within the region of unreversed contrast, these 

need not cause confusion in digitally recorded images, as areas of reversed contrast 

can simply be set to the value of the background. Figure 3.5 demonstrates the 

• 

4 

* 
(b) 

Figure 3.5: Phase contrast: (a) image of a low density suspension of 1 pm spheres, 

with grey scale values both above an below the background value, in this case 40; 

(b) the same image after processing by setting all brighter pixels to the background 

value and enhancing the contrast, the four in-focus spheres showing up very clearly. 

effectiveness of this simple procedure for low density suspensions. Techniques 

such as this are the subject of §3.4. 

Disadvantages of phase contrast 

Figure 3.4 also shows one of the inherent adverse features of phase contrast, viz. 

the bright halo, which can just be made out around the in-focus sphere in image 

8. This region of reversed contrast, and the related shading-off - loss of contrast 

- across the middle of the sphere (which is too weak to be detectable here), is 

due to the fact that some of the diffracted beam will pass through the phase 

ring. Zernike discusses this matter in his Nobel lecture [Zernike, 1964], making 

the point that the choice of a phase plate with circular symmetry means that the 

halo will be isotropic, at least. 
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The degree to which halo and shading off are problems depends on the prop-

erties of the phase ring - r0 , LrpR, rs and T, the object - cp and lip, and the 

magnification - M. The phase ring parameters are normally fixed, and modern 

research-grade microscopes have these chosen to minimize haloing and shading-

off. As far as the microscopist is concerned, what needs to be known [Pluta, 1989, 

§5.3.1] is that 

decreasing particle size broadens the halo, but diminishes the intensities of 

the halo and shading-off effect, 

increasing the magnification has the opposite effects and 

as long as it is within the region of unreversed contrast, increasing 	in- 

creases the halo width and intensity and shading-off intensity. 

In practice, with colloidal suspensions, as can be seen from figure 3.4, these effects 

are not often a problem, the very small size of the particles being the main reason 

for this. 

3.3 Normarski differential interference contrast mi-

croscopy 

Differential interference contrast microscopy was first developed by Georges Nor-

marski [1953, 1955]. Like phase contrast, this technique uses interference to 

generate intensity variations corresponding to phase differences. The particular 

advantage of DIC is that the optical sectioning is very good, which is to say that 

out-of-focus intensities drop off rapidly. For a fuller account than given here, see 

Chapter 7 of Pluta [1989] and Lang [1975]. 

3.3.1 The principle of differential interference contrast 

In interference microscopy, two mutually coherent rays are typically used to form 

fringes. Any distortion or shifting of these fringes reveals phase differences due 
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the object. If the optical paths are set up so that a uniform object field gives 

only a single very broad fringe, i.e. an image intensity that varies only slightly 

across the image plane, phase changes will - generally - be shown by intensity 

changes. This is interference contrast. 

Differential interference contrast (DIC hereafter) is achieved when both rays 

pass through the object, but with a lateral displacement e between them of less 

than the resolution o of the optical system. For microscopy this means that 

e < rAI. 

The effect of DIC is to give intensity variations that are simple functions of 

the phase gradient along the line of the lateral displacement. 

This generates images with a characteristic shadow-cast (see, e.g., figure 3.9, 

where a single sphere appears lit from the top left of the image plane). 

To arrive at expressions for image intensity and contrast, we must first consider 

the practical details of the DIG microscope. 

3.3.2 The DIC microscope 

The DIG microscope uses an arrangement of two polarizing filters and two bire-

fringent "Wollaston" prismst  to split a single incident wavefront into two spatially-

separated, non-interfering wavefronts passing through the object, then to recom-

bine the two, such that the intensity of the final wave is a measure of the phase 

difference between the two paths taken through the object. 

Figure 3.6 shows (a) the arrangement of these components, (b) the operation 

of the Wollaston prisms and (c) the orientation of the polarizing filters. 

Two points should be noted concerning figure 3.6: First, diagrams (a) and (b) 

are not to scale. For clarity, the Wollaston prisms have been drawn much thicker 

tWollaston prisms - illustrated in figure 3.6(b) - consist of two right-angled wedges of a 

birefringent material such as quartz, cemented together so as to make a rectangular block. The 

optic axes of the two sections are cut to be perpendicular to one another in the composite prism. 



Key: 	 (c) 

vibration 
i' 	direction 

1 optic 
#' axis 

,1 ray 	 P 	plane of (a) 
/ direction 

56 	 CHAPTER 3. ENHANCING COLLOIDAL CONTRAST 

(a) 

+ + + + ++++ 

Co 	II 	Ob 	
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Key to vibration directions of polarized waves, relative to plane of diagram: + ± + at 
450, 

+I I parallel, -0-00- perpendicular. 44 represents  f 	and -o-oc)- together. 

Figure 3.6: (a) The special components of the DIC microscope: a polarizer P, a 

Wollaston prism W 1  at the front focal plane of the condenser Co, another Wollaston 

prism W2  at the back focal plane of the objective Ob and a second polarizing filter, 

the analyser A. (b) The operation of a Wollaston prism viz., angular beam splitting 

(c). The vibration azimuths of P and A, as viewed along the optical axis. 

in the axial direction than those used in microscopy, which are just thin plates. 

This has meant that the angular and lateral separations of the two rays shown 

are correspondingly exaggerated. 

Secondly, in general, DIC microscopy does not require the polarizer and anal-

yser to be crossed, as drawn. For pure phase objects, such as colloidal suspensions, 

however, the best contrast is achieved with this arrangement and this is the one 

considered in the analysis below. 

The operation of the DIC microscope is as follows: 
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The polarizer P directs light linearly polarized at 45° to the optic axis of 

the front wedge of the first Wollaston prism W 1 . 

The front wedge of W 1  splits the light into two wavefronts, of equal inten-

sity and polarized orthogonally to one another and at 45° to the vibration 

direction of the light incident on the prism. Being birefringent, the wedge 

has different refractive indices for the two vibration directions, so that the 

two waves will propagate at slightly differing velocities. 

These two waves refract in opposite directions at the interface between the 

two wedges of W 1 , because the fact that the optic axis of the back wedge 

is perpendicular to that of the front means that refractive indices for the 

two vibration directions swap over from what they were in the front wedge. 

When the two diverging waves emerge from the back surface of the prism, 

they will have a phase difference which depends upon the relative path 

lengths through the two halves of the prism. Rays originating from light 

incident on the mid-point of the Wollaston prism will be in phase, and 

those originating from either side will have increasing phase differences, of 

opposite sign on the two sides. 

W i  being sited such that the virtual point from which the two waves are 

diverging (see figure 3.8(a)) is at the front focal plane of the condenser, the 

effect of the condenser is bring the two wavefronts into parallel propaga-

tion, with a small lateral shift, somewhat less than the resolution of the 

microscope. Note that figure 3.6 greatly exaggerates both the angular and 

spatial separation of the two waves, for the sake of clarity. 

Having passed through the object, the objective turns the lateral shift into 

an angular convergence of the wavefronts, the virtual centre of convergence 

being at the back focal plane of the objective. 

The second Wollaston prism W 2 , being situated at the objective back focal 

plane, brings the two wavefronts back into alignment. Each now propagates 
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just as the original light would have, in the absence of the prisms. W 2  

also affects the phase relationship between the two wavefronts: if W 2  is 

perfectly laterally aligned with W 1 , then the phase shifts due to the two 

prisms cancel out, right across the wavefronts, and only the phase differences 

introduced by the object remain. However, the final image may often be 

improved by laterally displacing W 2  and thereby introducing an additional 

phase difference J, known as the bias, which is constant across the wavefront. 

7. Finally, the second polarizing filter - the analyser An - resolves the two 

wavefronts along the same vibration direction, allowing them to interfere to 

form the intermediate image, which is observed in the normal way. 

Under this scheme, images will appear as if two slightly displaced images have 

been superimposed. With a mid-grey background (the bias, incidentally, controls 

the background colour), one of these two images will appear dark and one bright. 

This gives the impression that the object has been lit from the side, the shear 

direction being the direction of the apparent illumination (see figure 3.9 for the 

appearance of a spherical object). 

To determine an expression for image intensity and contrast for DIC, I will 

return to the phasor approach used previously for phase contrast. 

3.3.3 Phasor representation 

Figure 3.7 shows the DIC process, as represented by phasors. In each of the three 

diagrams the two waves which interfere behind the analyser are represented by 

the phasors ti and zi. 

Because the polarizer azimuth is at 45° to the optic axes of the Wollaston 

prisms (see figure 3.6(c)), the amplitudes of ti and ti 2  will be equal. With un-

polarized illumination of intensity III, the intensity behind P will be half this. 

Taking the quadratic relationship between intensity and amplitude into account, 

we get (tin = = /4i, for a transparent object. 
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Figure 3.7: Phasors in DIC (a) Without object or bias phase shifts, (b) with a bias 8 

(c) with bias 5 and phase shifts p'  and 72• 

Background intensity 

When neither an object nor a bias is present, as in figure 3.7(a), the effect, in 

terms of phasors, of P and An being crossed is to have t1 and tr2 in antiphase. 

Being of equal amplitude, they will cancel out and the resultant intensity will he 

zero. So the background intensity for zero bias and crossed polars is zero, as one 

might expect. 

The background intensity for crossed polars and nonzero bias can be deter-

mined with reference to figure 3.7(b), where the bias 8 is added to one or other 

of the two waves. It is a matter of simple trigonometry to show that 

I' - 	—cosS) = 
II 

--sin' (1) 0 
(3.22) 

For monochromatic illumination, equation 3.22 shows that any desired back-

ground intensity, up to half intensity of the illumination can be achieved by 

adjusting the lateral alignment of the two Wollaston prisms. 

With white light illumination, the range of wavelengths present means that 

I 0 can only be achieved for 8 = 0. For increasing bias the Newton sequence 

of (reflected light) interference colours is seent. 

These colours are often referred to as Michel Levy interference colours, after the mineralo-

gists' colour chart that bears that name. 
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Image intensity and contrast 

Figure 3.7(c) shows the situation with phase shifts 	and 2 - due to the ob- 

ject - applied to tri and tr2  respectively. Once again, the application of simple 

trigonometry leads to an expression for intensity: 

I' = 
111  

 (l— COS (+2 — ç1)) 	 (3.23) 

III 	

2( 	

'P2-1\ = 	
2 	)• 	

(3.24) 

With no bias, and small 02 - 'Pie DIC will therefore give I' = In(p2 - cp) 2 /8. 

Thus small variations in refractive index along the direction of the lateral shift e 

will show up clearly on the dark background. What should be noted though, is 

that the sign of 2 - i is ambiguous under zero bias, meaning that objects will 

appear to be lit from two opposing directions, which can be rather confusing. 

On the other hand, for ö = , we get 

I' = 	(1 + sin (2 - p')). 	 (3.25) 
2 

In this case, we can use equation 3.1 to obtain an expression for contrast: 

C'= sin (oi - p2). (3.26) 

So, for small ç0 2  - cpl, DIC gives contrast equal to the phase gradient along the 

lateral shift direction, with the contrast reversing for opposite signs of gradient. 

This is why one side of an object will appear dark and the other side bright. 

With white illumination, 5 = 11  can only be achieved for a single wavelength 

by a given bias. However, a path difference of 150 nm is close enough to 

for most optical wavelengths to provide a grey-blue background with contrast 

behaviour approximating equation 3.26. This value of bias gives contrast that is 

suitable for a monochrome CCD camera and is also amenable to observation by 

eye. 

With full colour observation, setting the bias so that the background is purple 

- corresponding to a path difference of 565 nm - clearly shows up small phase 
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differences as red or blue, depending on their sign (this behaviour is what gives 

this interference colour - first order purple - the description "sensitive tint"). 

In summary: 

DIC gives images with a side-lit appearance, the strength of the side-lighting 

being controlled by the bias 5: 

. With S = 0, crossed polars give a black background and lighting from two 

opposing directions. 

• With S = +, the background is grey and lighting is from a single 

direction. This gives the best contrast for monochrome images. 

3.3.4 Normarski's modifications 

To achieve the uniform background to DIC images, the lateral displacement be-

tween the two waves traversing the object, that is generated by the combination 

of W 1  and the condenser, must be perfectly cancelled out by the action of the 

objective and W 2 . 

As described above, this calls for W 1  and W2  to be situated at the front and 

back focal planes of the condenser and objective respectively. 

Figure 3.8(a) demonstrates why this is the case: The angular divergence which 

a Wollaston prism generates can be traced back to a plane within the Wollaston 

prism. This plane - traced by a dashed line in the diagram - is where interference 

fringes can be seen if a single Wollaston prism is placed between crossed po1ars. 

For proper operation of the DIC microscope, this plane needs to coincide with 

the front focal plane of the condenser for W 1  and the back focal plane of the 

objective for W 2 . 

A problem arises, however, with high numerical aperture objectives: the back 

As in figure 3.6, the prisms in figure 3.8 are shown to be much thicker than they are in 

practice. This means that the small angle that the plane of the interference fringes is shown to 

be at, with respect to the plane of the prism, is even smaller in reality. 
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(a) (b) 

Figure 3.8: (a) A standard Wollaston prism, showing the plane of interference fringes 

(dashed line) (b) Normarskis modification of the Wollaston prism: the optic axis of 

one half is set at an angle to the plane of the front surface, moving the plane of the 
interference fringes outside the prism. 

focal plane usually lies within the casing of the compound lens, making the siting 

of a Wollaston prism at that point impractical. Normarski's solution to this 

problem was to cut modified Wollaston prisms, with the optic axis in one half 

slightly tilted, as in figure 3.6(b). This has the effect of moving the plane of the 

interference fringes outside the prism, so that the prism itself can be sited outwith 

the confines of the objective housing. 

3.3.5 Normarski DIC images of colloids 

Figure 3.9 shows a series of images of a single colloidal sphere at varying degrees 

of defocus, analogous to the series of figures 3.1 and 3.4. Once again, contrast 

has been digitally enhanced, to show the out-of-focus images more clearly. As 

with phase contrast, and unlike bright field, the in-focus image has the strongest 

contrast. 
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Figure 3.9: Normarski differential interference contrast images (A = 1.4, Ac = 0.9) 

of a single PMMA sphere, radius R = 550 + 7 nm, refractive index n, = 1.49, in 

decalin, Ti m  = 1.47. The images (field of view 4.3 im x 4.3 urn)  form a series at 

varying degrees of defocus: 1.0 tm of forward axial (focusing) movement separate 

successive images, with 8 being in focus. The bottom image is a composite of 1 

pixel-wide slices across the centre of 165 images like the above series, but with each 

separated by 0.11 urn; this gives a quasi-side-on view; image 8 of the upper series is 

at the line indicated by the arrows. 

The azimuth effect 

Because DIC images can only show phase variations along a particular direction, 

viz., the direction of the lateral shear e, the contrast variations along lines across 

the image at different azimuths (about the optical axis) will be different, even for 

objects which are circularly symmetric about axes parallel to the optic axis. This 

is called the azimuth effect and it manifests itself in the characteristic side-lit 
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appearance of DIC images. 

The images in figure 3.9 were recorded with = , giving a grey background 

and making the sphere appear to be lit from the upper left. The in-focus image 

is contained within a roughly elliptical shape, angled at 45 0  to the edges of the 

figure. The azimuth of its semi-major axis is the same as the shear azimuth. 

Likewise, the line joining the brightest point in the image with the darkest is 

along this azimuth. 

With objects that have circular symmetry this effect is usually no problem, 

but features of an object perpendicular to the shear azimuth are poorly imaged by 

DIC. This disadvantage can be overcome by comparing DIC and phase contrast 

images of the same object. Alternatively, rotating the object about the optical 

axis of the microscope, where this is possible, will allow features at all azimuths 

to be observed clearly. 

Modelling the DIC image of a transparent sphere 

To calculate the ideal DIC image of a weak phase object when the bias S = 
2 1  

so that the small W approximation of equation 3.26 holds, all that is needed is to 

determine what shape a plane wavefront normally incident on the object becomes 

behind the object, take two of these shapes, shift one by e and subtract them 

from each other. The shape of the result will be the same as the intensity profile 

of the image. 

Solving the wavefront problem for a transparent sphere is not easy, but the 

following simple model produces results very similar to those recorded experi-

mentally. 

Figure 3.10 shows a transparent sphere, radius R, refractive index ni,, in a 

liquid of refractive index n n , illuminated by a collimated beam, represented by 

the plane wavefront E. 

Arrow 1 shows a ray traversing the diameter of the sphere and arrow 2 is a 

ray which is not incident on the sphere. Arrow 3 represents no physical ray, but 
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2 

3 

Figure 3.10: A transparent sphere illuminated by a plane wavefront E. A naïf consid-

eration of optical path lengths along lines parallel to the incident direction suggests 

an elliptical wavefront ' behind the sphere. 

simply a straight line parallel to rays 1 and 2 at a distance r from ray 1. 

Ray 1 will undergo a phase shift of 	as it traverses the sphere. Ray 

2 will travel a distance 21? + 
2Hp(npflm) for the same phase shift as ray 1. To 

nm  

achieve the same optical path length along arrow 3, a distance of 2R + z is 

needed, where 

	

2(n - flm)(Rp - 	- r 2 ) 
z = 	 (3.27) 

n. 

Given that z(0) = 0 and z(R,) = 
2Rp(npnm) , using equation 3.27 as a putative 

equation for the shape of E' suggests itself. 

This equation can be rearranged to give 

2 / 	 Zfl m 	\ 	r 2  
(1 - 

2R(n - am)) + 
	= 1, 	 (3.28) 

which, in cylindrical polar coordinates, is the equation of an ellipsoid of revolution 

(about the z axis). 
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Figure 3.11: A simple model of DIC imaging (a) Recorded image (A = 1.4) of 
colloidal spheres, radius Rp  = 460 ± 10 nm, refractive index n = 1.49, in decalin, 

= 1.47; (b) single recorded sphere with background and noise removed and 

contrast enhanced; (c) calculated image obtained by subtracting two "wavefronts" of 

elliptical cross-section, offset by e = (R + TAjry). The bar in (a) represents 1 sum. 

In figure 3.11, the difference between two such ellipsoids, one displaced by e 

perpendicular to z and using R7,+rA,.,  (to match the predicted image size), instead 

of R, has been plotted with a grey scale to represent z values, giving an image 

strikingly similar to the recorded DIC image of a sphere. For the recorded image 

0.61k 260 nm. The ratio e 	= was chosen for the calculation as A 	 Rp+rA 

this gave e 206 nm < TAit. , for R + rAiry  = 720 nm. 

Why this method should work so well is unclear, as the straight lines traversing 

the sphere above do not correspond to physical rays, except for r = 0 and r > R. 

Effectively, this method ignores the angle of incidence of the wavefront on the 

sphere. However, a comparison of this method with the application of Snell's 

Law, in the case of an isosceles triangular prism shows very close agreement, up 

to an angle of incidence of about 60 0 . This would correspond to roughly 87% 

of the diameter of the sphere, so perhaps the approximation is justified, for the 

rough calculation of images, at least. 

Determining the lateral shear e 

The "roughly elliptical shape" of DIC image of an object with circular cross- 

section we can see to be a "stretched disc" which results from two overlapping 
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Figure 3.12: Determining the DIC lateral shear: the overlapping discs which form the 

image of an object with circular cross-section. 

discs, each of radius R + TAiry and with the long axis of the resultant shape being 

parallel to the shear direction, as figure 3.12 shows. From this figure it is clear 

that the size of the DIC lateral shear e can be determined by measuring the 

difference between the length and the width of the "stretched disc". 

In figure 3.11(a), the width 2(R + rA,) = 1340 + 130 nm which agrees 

with the known particle radius (460 ± 10 nm) and rAIl.), 260 rim. The length 

2(R + rAF),) + e = 1540 ± 130 rim, so e = 200 ± 100 nm fj rAj, as expected. 

The effect of condenser numerical aperture 

DIC requires spatial coherence of illumination over a distance at least as large as 

the lateral shear e. As e rAIn,, this coherence condition will always be met if the 

condenser numerical aperture is no bigger than the objective numerical aperture, 

i.e., Ac <A. 

For the best resolution, A c  < A is best. Figure 3.13 illustrates the effects 

of reducing A, viz., an increased minimum distance of resolution and decreased 

optical sectioning. These effects can be seen particularly well in the sequences of 

decreasing A c  in (a) and (b), where the deterioration of the image is clear. 

On the other hand, (c) shows how these same effects can produce a spurious 

improvement in image quality under certain circumstances: When trying to locate 

close-packed layers in a crystalline region, this may appear easier when A c  is 
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Figure 3.13: The effect of varying the condenser numerical aperture AC  on Normarski 

differential interference contrast images (A = 1.4) of PMMA spheres, radius lip = 
550 + 7 nm, refractive index n = 1.49, in decalin, n n  = 1.47 at effective volume 

fraction ç& = 0.526. Each set of images shows the same object area (field of view 

9 pm x 9 pm) at, from left to right, Ac = 0.9, 0.7, 0.5, 0.3 and 0.1: (a) a partially 

ordered layer (b) a close packed plane of crystal (c) 0.5 pm below (b), between two 

crystal planes. 

small, as a comparison of the right-hand images in (b) and (c) shows. However, 

the apparently more confusing high Ac image at the left-hand end of (c) actually 

gives a better indication of the axial position of the layers - by making it clear 

that the object plane is not at one! 

The lesson to be learnt is that getting the apparently clearest image does not 

necessarily give a true representation of the object plane. For this reason, 

Ac should be kept as large as possible. 
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3.4 Digital image processing 

Images recorded by a CCD camera are stored as arrays of numbers. In the case of 

monochrome images, the value of the number of a pixel represents the intensity 

- the grey level - of the image at that pixel. 

In order for images to be visually pleasing, differences between grey levels 

should not be discernible to the human eye. Although 50 grey levels are usually 

sufficient, in practice, 256 levels, corresponding to 8 bits, are used where images 

are to be subject to computer processing [Inoué, 1997, §12.2.2]. 

The purpose of digital image processing is to manipulate these 8-bit numbers 

in order to make it easier to extract the information contained in the image. 

The peculiar information to be gleaned from microscopical images of identical 

spherical colloidal particles of known size is that concerning individual particle 

positions. Techniques designed to highlight such information shall be the empha-

sis of this section. 

3.4.1 Look-up table operations 

When the analogue signal from the CCD microchip has been digitized it passes 

through a look-up table (LUT) where grey levels are assigned to the digital values. 

By changing the LUT, the brightness and contrast of an image may be increased 

and regions with particular intensity values highlighted or obscured. 

A helpful tool in choosing suitable values for the LUT changes is the grey-

level histogram of an image. Recorded images often use only part of the avail-

able grey-level range; precisely which part will be revealed by a histogram much 

more clearly than by the image itself. Figure 3.14 shows a number of examples 

of single-pixel operations, along with their effects on the grey-level histograms of 

the images. 
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Figure 3.14: Brightness and contrast adjustments and their effects on grey-level 

histograms: (a) reference image (b) after a grey-level shift of 30 (c) after grey levels 

have been stretched from a range of 90-160 to one of 0-255. 

Grey-level shifting 

The simplest of all processes is to add a constant to all grey levels. This has the 

effect of changing the brightness of the image, a positive constant increasing it 

(cf. figures 3.14(a) and (b)). In order to avoid reducing still further the number 

of grey levels used by an image, it is important to ensure that the offset does 

not cause more than one pixel value to be set at the limit of the available range. 

Consideration of the grey-level histogram will help to avoid this clipping. 
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Grey-level stretching 

To increase the contrast of an image, the range of grey levels employed needs to 

be increased, ideally to encompass all available levels. In such an operation, the 

amount by which a pixel value changes depends upon its grey level. A grey-level 

stretch of the LUT does this by redistributing the pixel values over a wider range 

of grey levels. While many automatic contrast-enhancing processes employed by 

standard image-processing software simply change the LUT so that the full grey-

level range is employed (as in figure 3.14(c)), sometimes it may be preferable to 

set the range manually. 

Thresholding, clipping and binarizing 

It may be that it is known that those parts of an image with an intensity above or 

below a particular value are of particular interest, representing particle centres, 

perhaps. Or they may be of no interest, causing only confusion. In such cases, 

thresholding can be useful. 

Thresholding involves setting all the pixels above or below a chosen threshold 

value to a chosen grey level, often the maximum or minimum grey level available 

(255 or 0 for an 8-bit image), as appropriate. The operation is sometimes referred 

to as clipping to the chosen grey level, as thresholding always reduces the grey-

level range employed. In figure 3.15, (b) shows the effect of clipping the bright 

grey levels of (a) to an intermediate value. 

Sometimes two thresholds are used, so that all the intensities between them 

are set to a some intermediate value, or else the outer ranges of intensity are 

set to extreme values. The limit of this latter scheme is when a single threshold 

is used as a "watershed", so that it divides all intensities into one of two grey 

levels, thereby reducing the image to being effectively binary. Where the two 

extreme values are actually converted into 1-bit numbers, this process is called 

binarization. With positive contrast, low grey levels correspond to particles, 

so binarization can be used in such a case to pick out the particle positions. In 
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Figure 3.15: Clipping and binarizing: (a) is a phase contrast image, where the high 

grey levels correspond to out-of-focus information (b) shows the same image, after 
all grey levels more than one standard deviation above the average have been clipped 

to the value of that threshold; (c) shows part of a colloidal crystal and (d) shows the 
same image after binarizing to pick out the particle positions. 

figure 3.15, (c) shows a positive phase contrast image of a colloidal crystal and 

(d) shows the result of binarizing (c) with a threshold set at its average grey-level 

value, so that the dark centres of the particles are rendered black in the binary 

image and the rest of the field of view is left white. 

It is quite possible to have any number of thresholds up to the number of 

available grey levels and thereby reduce an image to as few bits as required. 

Conversely, multiplying all grey levels by a constant and storing the result as 

an image with more bits, before further processing will reduce the effects of the 

discrete nature of the grey levels in the final result, after conversion back to the 

original number of bits. 

3.4.2 Multiple-image arithmetic 

The intensity recorded at a particular pixel is, unfortunately, determined by fac- 

tors other than that component of the image due to the object under investigation. 

By performing arithmetical operations on series of images it is possible to remove 

some of this unwanted information. 
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Averaging 

One of the simplest ways to reduce noise is to take the average (pixel by pixel) 

of several recordings of the same image. Often, the image-grabbing hardware 

enables several frames to be stored and averaged before the result is sent to disk, 

but this can also be performed as a "post-production" process. 

For suspensions of colloidal particles this (time-)averaging has the effect of 

"smearing out" the effects of particle motion. Particles in crystalline regions 

have the effects of their Brownian motion obscured and their lattice sites, about 

which they diffuse, are highlighted. Conversely, particles in fluid regions can 

be completely obscured if the averaged frames are recorded over times greater 

than their structural relaxation time. This can be a good way of distinguishing 

between ergodic and non-ergodic suspensions, or fluid and crystal regions of a 

single suspension. 

Figure 3.16 shows a sequence of averages over increasing time intervals, em- 

2 	 3 	 3 

I 	 33 	 (1 

Figure 3.16: Averaging of images: a series of images of colloidal particles at the upper 

wall of their container was recorded every 2 seconds; the images in the figure represent 
(as indicated by the numbers) averages of increasing numbers of frames. Note how 
noisy the single frame image is and how those particles which have remained attached 
to one place over the full 2 minutes are increasingly enhanced through the series. 
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phasizing the way that fixed particles are highlighted. 

Background subtraction 

The effects of the non-uniform response of the CCD pixels and variations in 

background intensity can be reduced by subtracting an image which contains 

largely this information. This process is usually combined with a grey-level offset 

to some average value, to eliminate clipping. 

A background image may be obtained simply by defocusing enough to en-

sure that no detail from the object can be discerned. It is important to ensure 

that, as far as possible, the condenser remains focused, so that the illumination 

remains representative. At high numerical apertures it may not be possible to de-

focus on the object sufficiently, while maintaining Köhler illumination, however, 

particularly for DIC imaging. 

An alternative method is to average a series of many images recorded ei-

ther at different positions within the suspension or over a time long enough for 

(a) 

( I ) 
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Figure 3.17: Background subtraction: (a) shows a phase contrast image (i), an image 

(ii) recorded 30 im above this and the result (iii) of subtracted the latter from the 

former; (b) shows a DIC image of a single sphere (i), the average (ii) of a series of 

183 images over an axial range of 20 jim and the result (iii) after subtraction. 
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the entire structure in the field of view to have changed. When this average is 

subtracted from individual images only the information peculiar to that image 

remains. Figure 3.17 shows background subtraction using both the defocus and 

the stack-average methods. 

3.4.3 Multipixel operations 

The processes described so far have treated the individual pixels of an image 

independently of one another, sometimes with reference to the grey levels of 

the image as a whole. In the methods described here, the grey levels of pixels 

in the neighbourhood of the given pixel to be altered shall be included in the 

determination of the change to be made. 

Convolution 

Many multipixel operations take the form of discrete convolutions of an image 

with a smaller array of numbers, called the convolution kernel. 

Normally, the convolution I' = I' ® K, where I', K and I' represent the 

initial image, kernel and resultant image, respectively, involves performing the 

integral 1'(x, y') = i j co . ri ( - m 1 ,y' - rn2 ) ftC(m 1 ,m2 ) drn1 drn2  with m 1  and 

M2 being dummy variables of integration). 

In the case of a digital image, I' is a discrete array of numbers, so the convo-

lution integral becomes a discrete sum of products: 

! 2 2 

D(x', y') = 
_& 2 m=-- 

I'(x' - m1,y' - m 2 ) K(m i ,m2 ), 	(3.29) 

where kx and Ky are the numbers of pixels in the x and y dimensions of the 

kernel arrays. 

Figure 3.18 shows the discrete convolution process diagrammatically: the ker- 

The sum shown has the appropriate limits for a kernel with Kx and Ky both odd, as is 

most commonly the case; for even values, the only change to the sum is that the limits become 

from (1 - to 	etc.. 



image kernel 
4' 

jf 17 22 26 36 40 45 48 44 

24 30 38 45 53 57 54 47 

27 38 48 55 62 59 54 54 -1 	-1 	-1 
28 41 57 63 66 54 56 46 9 
28 44 61 66 61 49 47 29 -1-1-1 
23 43 61 56 51 38 31 14 

18 39 45 53 37 29 12 9 

8 29 38 37 31 18 8 0 

The kernel is placed over a 	The nine 
pixel, showing the nine 	 products 

multiplications to be done: 	are summed: 

result 

4' 
00000000 

0 	30 42 47 78 98 78 	0 

0 	49 65 128 106 75 59 	0 

0 	38 97 	91 125 32 112 	0 

0 	54 11811810637 106 0 

0 	68 142 69 70 25 72 	0 

0 	86 49 121 20 35 -39 	0 

0 	0 0 	0 	0 0 0 	0 

The sum gives the new 
pixel value. Repeating for 
all pixels gives the result. 
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Figure 3.18: The shift-and-multiply process of convolution, as applied to digital im-
ages. 

nel is placed over a target pixel and the kernel values are multiplied by the image 

values that they coincide with; the sum of these products gives the value for 

corresponding pixel in the output image. Then the kernel is shifted to the next 

target pixel and the process is repeated until all pixels in the image have been 

targeted. 

Often a scaling is applied to the result, in order to ensure that all pixel values 

lie within the grey-level range in use. If the sum of the kernel pixel values is 

greater than unity, a general principle is to divide the result by that sum. 

Figure 3.19 gives some examples of kernels and their effects. A kernel with 
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Figure 3.19: Some image convolutions and their kernels: (a) shows the original image; 

the other images show the results of convolving with the kernel shown below each 

one: (b) smoothing, (c) sharpening, (d) horizontal edge enhancement, (e) vertical 

edge enhancement, and (f) an example of a specialized convolution, used here to 

enhance the images of colloidal spheres. 

all values equal performs an average over the area of the kernel, smoothing out 

high frequency noise, but also causing blurring. The size of the kernel (and shape, 

if some pixels are zero) will determine what size and type of detail is smoothed 

out. 

For image sharpening a kernel is used which gives a result determined by 

the difference between a pixel and its neighbours. While enhancing fine detail, 

this also increases noise. One way to reduce noise without blurring is to unsharp 

mask by subtracting a smoothed image from its original. 
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Kernels which give results dependent on the rate of change of grey level across 

them are called derivative filters and are used for edge detection. Individual 

derivative filters will best enhance one particular orientation of edge, so, to detect 

edges in more than one azimuth, a sequence of convolutions is usually applied, 

each enhancing a different orientation. 

Combinations of all these techniques can be used to form specialized kernels, 

which emphasize or obliterate particular features. Figure 3.19(f) shows a kernel 

which is good at highlighting circular features of a radius of about 7 pixels. 

Morphometric operations 

Where objects of interest have been defined by some process, usually in terms of a 

binary image, morphometric operations can be used to manipulate these objects, 

in order to characterize their shapes and positions. Here only operations designed 

for use on 1-bit images shall be considered; figure 3.20 shows some of those most 

frequently used. 

Dilation and erosion involve adding or removing pixels at the edge of objects. 

Dilation works by setting all the eight neighbours of a given pixel to a value of 

1, if less than a chosen number of them are at 0. Conversely, erosion sets a pixel 

to 0, if less than a chosen number of its eight neighbours are at a value of 1. By 

repeating one of these operations, it is possible to expand objects until only single 

pixels remain between them, allowing the space per object to be measured, or to 

reduce objects to single pixels, allowing their centres to be marked. 

Other operations, such as segmentation allow overlapping objects to be 

separated, by first determining the distance of all object pixels (defined as being 

those at grey level 1) from their nearest background pixel (grey level 0). Any pixel 

which has a pair of opposing neighbours (e.g., left and right, above and below, ...) 

with distance values both bigger than the distance value of the pixel in question 

is set to 0. As object centres lie at peaks in these distance values, the effect of 

setting all the relevant pixels to zero is to introduce 1 pixel-wide lines separating 
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Figure 3.20: Morphometric operations on binary images: (a) is a binary image formed 
by thresholding figure 3.19(f) to pick out colloidal particles; in (b), the binary com-

plement has been taken, so that the particles are now represented by bright pixels; 

(c) shows the effect of eroding the particles to single pixels, (d) the effect of dilating 

them until they nearly touch and (e) the result of segmenting; (f) shows how dilation 

after segmentation is a better method of picking out all particles than just dilating, 

on its own. 

the objects. However, not all distance peaks genuinely represent object centres: 

the white boundary in figure 3.20(b), for instance, is divided into a number of 

"objects" in (e), so care is needed in interpreting these semented images. Many 

other operations are possible and are given in the standard textbooks, e.g., Low 

[1991]; Gonzalez and Wood [1992]. 

3.4.4 Frequency space operations 

Where particular spatial frequencies are a feature of an object, it can be quicker 

to deal with them in frequency space, especially where large convolution kernels 

would be required. Moreover, the convolution of the geometrical image with the 
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point spread function - which constitutes the diffraction-limited imaging process 

- can be "undone" - to recover the geometrical image - only in this domain. 

Fourier filtering 

The convolution theorem means that a simple multiplication of a Fourier-trans-

formed image and a Fourier filter (of the same size) can replace convolution in real 

space, the inverse Fourier-transform of the product giving the desired convolved 

image. 

By removing parts of the spatial frequency spectrum, noise can be removed or 

harmonic features enhanced. Figure 3.21 shows an image of a section of colloidal 

crystal and its Fourier transform, along with some Fourier filters and their effects. 

Deconvolution 

If the point spread-function appertaining to an image is known, then dividing the 

Fourier transform of the image by the Fourier transform of the PSF (known as 

the optical transfer function, OTF) can restore the geometrical image, when 

the quotient is inverse Fourier-transformed. 

Though simple in principle, noise in images and PSFs and zeroes in the OTF 

both cause problems in the division process. A number of methods of surmount-

ing these difficulaties have been published and while, research is still ongoing, 

many commercial image-processing software packages already offer some form of 

deconvolution (Inoué [1997] lists the main approaches in §12.7.7). 

In the case of colloidal suspensions of identical spheres, the idea of deconvolu-

tion has a special appeal: images can be considered to be convolutions of "sphere 

spread-functions" with the particle coordinates, where the sphere spread-function 

(SSF) is just the point spread function convolved with the geometrical image of a 

sphere. So, using the Fourier transform of the SSF, instead of using the OTF, in 

the deconvolution process would, in principle, yield an image consisting of single 

intensity spikes at the particle coordinates. 
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Figure 3.21: Fourier filtering: The top row shows an image of a colloidal crystal and 

its Fourier transform, along with a contrast enhanced FT, to show the detail at large 

spatial frequencies; the lower rows each show a Fourier filter, the product of the filter 

and the FT, and the result after inverse FT-ing (and enhancing the contrast). 
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This exercise suffers from the same difficulties as mentioned earlier, but some 

progress is being made [Renth, 1999] towards an effective scheme that would be of 

considerable use in the microscopical study of monodisperse colloidal suspensions. 

Fourier-space operations in the microscope 

As has been mentioned in a number of places already, Fourier transforms are at 

the heart of operation of the microscope. What is worth mentioning at this point 

is that, by direct observation of the objective back focal plane or exit pupil, we 

can see the Fourier transform of the image directly, which can provide a useful 

way of making a quick check of the frequency space information e.g., the degree 

of polycrystallinity of a suspension. This information can then be used to inform 

the choice of Fourier filteretc. 

* 	* 	* 

The techniques presented in this chapter allow high contrast images of col-

loidal suspensions to be achieved, by means of a combination of imaging technique 

with "post-production" image processing, although there remains still opportu-

nity for improvement. The key issues remaining to be considered, before full 

three-dimensional imaging can be achieved, are those concerned with the axial 

extent, or thickness of the suspension under observation; to which we now turn. 



Chapter 4 

The Microscopy of Thick 

Suspensions 

The study of bulk behaviour in real space at an individual particle level is a 

realizable goal with optical microscopy, although the conditions for achieving it 

are stringent and special techniques are required to meet them. 

The previous two chapters have described how colloidal suspensions can be 

imaged with a good degree of contrast. This chapter considers the particular 

challenges presented by objects of significant extent along the optical axis, i.e. 

thick objects, and presents methods developed to meet them. 

These challenges present themselves at two levels: First, there is the need to 

achieve a genuinely three-dimensional suspension in the confined space between 

the objective and the condenser. Secondly, we need to find a way of converting 

series of recorded images, each representing a thin slice of the suspension, into 

three-dimensional information. 

4.1 Achieving bulk conditions under the microscope 

The basic challenge here is that the maximum space available, given the imaging 

requirements of colloid microscopy, is only just sufficient to meet the requirement 



84 	 CHAPTER 4. THE MICROSCOPY OF THICK SUSPENSIONS 

of the suspension to show true bulk behaviour. 

4.1.1 Suspension requirements and optical limitations 

For a suspension to be genuinely three-dimensional and hence show real bulk 

behaviour, the obvious requirement is that the shortest dimension of the suspen-

sion's container should be much greater than the particle size. 

In the microscopical context, the shortest dimension is nearly always the one 

parallel to the optical axis. This, as before, shall be referred to as the z dimension. 

The standard configuration in microscopy is to mount the object on a glass 

slide and cover it with a thin glass sheet, the cover slip. Colloidal suspensions 

can be mounted in this way, by placing a drop of the suspension on the slide, 

then placing a cover slip on top. This arrangement can provide a container of 

dimensions Xu  x Yu  x Zu  = 1.5 cm x 1.5 cmx 15 jim. To maintain the 

confinement of the suspension, the edges of the cover slip should be sealed with 

a suitable adhesive. 

Observation of colloidal suspensions mounted in this way show that behaviour 

is strongly influenced by the z confinement: for all but very low density suspen-

sions (q< 0.01), particles are very quickly ordered into layers parallel to the glass 

surfaces. This agrees with the findings of, for example, Neser et al. [1997], whose 

experiments on confined suspensions showed that significant deviations from bulk 

behaviour were noticeable with suspensions up to 9 particle diameters thick. 

It is possible, however, to mount thicker suspensions and still to be able to 

focus clearly on object planes at any axial position, but an upper limit to thickness 

is set by the imaging properties of the objective and condenser, viz., their working 

distances, as well as the mechanical requirement to mount the suspension in a 

reasonably rigid container. 

Objective and condenser working distances 

Referring to figure 4.1, the working distance WOb of a microscope objective is 
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Figure 4.1: The definition of objective and condenser working distances, wOb and wc. 

defined as the free distance required between the front surface of the objective 

and the back surface of the cover slip to focus on a plane immediately in front of 

the cover slip. Objectives are corrected for a specific value of cover slip thickness 

Zcs, the standard being Zcs = 170 pm. 

By moving the objective closer to the cover slip, planes further from the glass 

are brought into focus. With dry objectives, the distance from object plane II to 

the back surface of the cover slip must remain close to the value of Zcs for which 

the objective is corrected, in order to benefit from the correction. A variation of 

no more than say 	10 itm can be tolerated, inadequate for the suspension 20 

requirements. 

With oil-immersion objectives, however, if the immersion oil, cover glass and 

suspension have very similar refractive indices, the objective can be brought right 

up to the glass with no loss of image quality. Moreover, the value of Zcs  can vary, 

so thinner glass can be used to increase still further the depth into the suspension 

that can be achieved for [I. 

The general rule is that wOb decreases with A, but there is no unique rela-

tionship between the two. Equations 2.16 and 2.17 show that to resolve detail on 

a length scale o, using light of wavelength .\, we require 

A 	
A0 	

(4.1) 

Given that optical wavelengths and colloidal length scales are very similar, this 
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means that we need A > 1. Oil immersion objectives with A in this range 

typically have wOb 100 9m. With Zcs  being possibly as little as 100 tim, 

focusing at depths of a hundred microns or so into a suspension is feasible. 

For good images, we need to ensure that we can maintain Köhler illumination 

over this range; whether we can is dependent on the condenser working distance 

wc. This is given by the free distance required between the condenser top lens 

back surface and the microscope slide front surface, in order to focus the illumi-

nation at a plane immediately behind the slide (see figure 4.1 again). For Köhler 

illumination, this plane must be coincident with the object plane H, so for thick 

objects the condenser must be brought closer to the slide, when the objective is 

not focusing on the bottom of the suspension. Like objectives, condensers are 

corrected for a specific glass thickness, the standard being ZMS = 1.1 ± 0.1 mm. 

A dry condenser might therefore be expected to tolerate a variation of 100 sum. 

Of course, an oil-immersion condenser will not suffer from this limitation. 

Although thinner microscope slides are feasible and would allow thicker sus-

pensions, their use is not really necessary, as a range of focus of the condenser 

within the object that is greater than the objective's range is superfluous. More-

over, thinner slides mean weaker suspension containers. 

The net result of these considerations is that, with an oil-immersion objective 

of numerical aperture sufficient to resolve colloidal length scales, a suspension of 

thickness Z 100 um can be accommodated the space available, with the entire 

depth of the suspension accessible to imaging. 

Experiments on suspensions of this thickness have shown that bulk behaviour 

can be genuinely achieved. The evidence for this can be found in the fact that 

suspensions show the same phase behaviour as in the bulk (in glass cells with 

Xu x Y x Zu = 1 cm >< 1 cm x 5 cm) and that structures have no preferred 

orientation, at least at distances of more than a few microns from the glass walls, 

or over time intervals of less than several weeks. 
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4.1.2 A method for mounting thick colloidal suspensions 

The requirements for a mount for suitably thick colloidal suspensions may be 

summarized as follows: 

• a parallel-sided container, 

• glass thickness in front of the suspension 	1.1 mm, 

• glass thickness behind the suspension < wOb + 70 pm and 

• lateral dimensions >> particle size 

These requirements can be met in a variety of ways; the method I have devel-

oped is therefore not the only possibility, but it works well and has the added 

advantages of quick and easy filling with colloid and readily obtainable and cheap 

components. 

The basis of this method, illustrated in figure 4.2, is to contain the colloidal 

suspension within a rectangular section capillary tube. The tubes used have 

internal dimensions of 2 mm x 100 + 10 pm, with walls of thickness 100 ± 10 pm. 

They are supplied in lengths of about 5 cm. 

Tubes this narrow have the advantage that capillary action is sufficient to 

draw colloid into them, although this may take several minutes for 0 0.5. Once 

filled, the ends of the tube can be wiped clean, then sealed with epoxy resin. 

For strength and condenser imaging reasons, these capillary tubes are mounted 

flat on microscope slides. So that observation may begin as soon as the tube has 

been filled and sealed, this mounting is done well before the tubes are filled, so 

that the mounting adhesive (the same epoxy resin as used for sealing will do) has 

time to set. 

To make the ends of the tube accessible for filling once mounted on the glass 

slide, the ends are bent upwards. This is done, before the tube is mounted, by 

holding the ends in a blue Bunsen flame for a few seconds and removing as soon 

as they begin to bend under gravity. 

One end needs to be bent enough so that it can reach into the container holding 

the colloid to be used and touch the surface of the suspension. In practice, the 
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Figure 4.2: A method of mounting a thick colloidal suspension for microscopy, using 

a rectangular section capillary tube: (a) Side elevation of capillary tube (CT), with 

ends turned up and mounted on a microscope slide (MS). The grey blobs represent 

adhesive. (b) Plan of the same, at half the scale. Towards the right-hand end of the 

capillary a small bubble can be seen. (c) Magnified cross-section through the capillary 

and slide, along line AB of plan. 

curve at this end needs to be about a centimetre long. 

The other end only needs to be bent enough to prevent the colloid from leaking 

out once it reaches the end and to allow the sealing adhesive to encase the end 

properly. Half a centimetre is adequate for this curve. 

One undesirable result of this method is that a small air bubble is always 

trapped at this "short" end of the tube. This can be minimized by curving the 

short end as little as possible. However, as long as the bubble is small - say only 

a few millimetres long, i.e. with volume less than a tenth of the suspension - 

and observation is more than a few millimetres away, then the bubble causes no 

problems. 

When the curved tubes are mounted on their microscope slides, it is important 

to ensure that they sit as flat as possible on the slide. A small gap is almost 

inevitable, and it is very important to ensure that no spilt colloid is allowed 
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to enter it: the colloid will soon dry out to an opaque powder and render the 

mounting useless. 

On the other hand, the immersion oil filling this gap once the mounting has 

first been prepared for observation will make it undetectable optically. Likewise 

any slight surface relief on the capillary walls - which are not manufactured to 

be optically fiat - is rendered invisible by the index-matching oil. 

Throughout this research, these mountings have been used with objectives of 

WOb > 80 pm quoted by the manufacturer. With the tube walls being 100+10 Pm 

thick, it has indeed proved possible to image colloidal particles in contact with 

both top and bottom interior glass surfaces, 100 pm apart, the particles in 

question being clearly identifiable by their lack of Brownian motion. Whenever 

a new mounting is used, a check should always be made to see whether this can 

be done. 

4.2 Acquiring three-dimensional information 

A microscope image of a thick object is a combination of clearly focused detail 

from the object plane and gradually deteriorating detail from planes in the object 

on either side of this. The thickness of the object which is sufficiently clearly 

focused as to be indistinguishable from the diffraction-limited image is called the 

depth of field. 

The best images have only a small proportion of poorly focused detail. One 

way to achieve this is by increasing the depth of field so as to have the entire 

thickness of the object in focus. Alternatively, we can decrease the depth of field 

to less than the typical length scale of axial intensity variations, giving a sharp 

image of a thin slice of the object. Whichever approach is used, the uncertainty 

in the axial position of any feature clearly focused cannot be less than the depth 

of field, a factor which must be taken into account when interpreting images. 

Our approach in acquiring three-dimensional information shall therefore be to 

use the smallest possible depth of field and to employ the technique of optical 
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sectioning. This is simply the process of recording a series of images at axial 

positions separated by distances of the order of the depth of field or less. Such an 

axial series I will refer to as a stack of images. Where the object is undergoing 

structural changes over time, each stack recorded must be completed in a time 

significantly less than the structural relaxation time. 

Practically, this requires us first to determine the depth of field so that we can 

choose an appropriate spacing for our stacks; secondly, we need to have a method 

of ensuring that the individual images of each stack are positioned accurately. 

4.2.1 The determination of depth of field 

Theoretical calculation 

We know already that the geometrical image 0,'-,  of a point object 0 is at the 

peak of a lateral intensity distribution; in the case of diffraction limited optics 

with circular apertures, this distribution is the Airy pattern (equation 2.7, figure 

2.4). 

It is also the case that 0 is at the peak of intensity along the axial direction; 

this intensity variation is given by 

2  irA 
I' = Isinc (2Ofl,M2z'), 	 (4.2) 

where z' is the coordinate along the optic axis (in this case with its origin at 

sin s the image plane H'), I is the peak intensity, at z' = 0, sincs = *S I n' is the 

refractive index of the image space and M is the transverse magnification [Pluta, 

1988, §3.7.1]. 

Small axial deviations from 0 will only cause imperceptible reductions in in-

tensity. At z' = A 0 
IM2

we have I' 0.810 . This fraction represents the Strehi 

limit and is a common measure of the limit of perceptible intensity reductions. 

The range of z' over which the intensity drop is imperceptible is called the depth 

of image Z. 

Corresponding to the distance Z in the image space is a distance Z. in the 
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object space which is the axial range over which object points give intensities at 

the image plane which are imperceptibly different from the peak intensity. In 

other words, Z. represents the axial range within the object which gives a well 

focused image at H', i.e., Z. is the depth of field. 

The relationship between Z. and Z is just given by the longitudinal mag-

nification M1 = .M 2 , where n is the object space refractive index. Using the 

Strehi limit, we therefore have 
n)'0 	

(4.3) 

For )'o = 550 rim, an oil-immersion objective of A = 1.4 will give Z. = 420 nm, 

which should be suitable for optical sectioning of colloidal suspensions of particles 

at the larger end of the colloidal range. 

Equation 4.3 assumes diffraction-limited optics and uses a criterion of the limit 

of clear focus which may be over-strict, so the effective depth of field Z may be 

more than this. For this reason, it is as well to measure Z experimentally. 

Experimental measurement 

The most direct way of doing this is to focus on a feature in the object, then 

record the limits of axial variation that are possible for the object to remain in 

clear focus. By measuring intensities in the stacks of images of which figures 3.4 

and 3.9 show a subset, we find Z = 1.20 + 0.06 pm for phase contrast, whereas 

for DIC we find Z 1.90 + 0.06 irn. 

Figures 3.4 and 3.9 show single particles in isolation; examination of images 

of suspensions at high volume fraction suggests an effective depth of field that is 

much closer to the theoretical value, particularly for DIC: clearly focused images 

can be readily obtained of layers of particles in colloidal crystals, without any 

obvious influence from particles in adjacent layers (see, for example, figure 3.13(a) 

and (b)). 

Measurements on stacks of images of suspensions at q  0.5 give Z 	0.9 jim 

for phase contrast, which is an improvement. DIC gives even better results, with 
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Z 	0.5 ,am. 

The reason for this density dependence of depth of field must be due to the 

influence of the out-of-focus information from nearby planes: what makes for a 

noticeably degraded image is not only the intensity decrease of the image of the 

feature we are interested in, but also the increase in intensity of images of features 

outwith the plane of this feature. 

Where there is a large amount of out-of-focus information from nearby planes, 

as in high density suspensions, an image will degrade on defocusing much more 

rapidly than where there is relatively little out-of-focus information from nearby 

planes, as in low density suspensions, and the variation in intensity on defocusing 

is due solely to the object under examination. 

High density suspensions would therefore seem to be particularly favourable 

for optical sectioning. 

Depth of field and the three-dimensional point spread function 

It is important to note that the depth of field is a diffraction effect: small depths 

of field, like small resolutions, are achieved by large numerical apertures. Of 

relevance to three-dimensional imaging is the fact that depth of field is always 

larger than resolution, so that a full three-dimensional point spread function 

does not have spherical symmetry and spherical particles will appear as prolate 

ellipsoids of revolution (rugby footballs) aligned along the optical axis. 

4.2.2 The control of image position 

There are two aspects to the control of image position: First, for optical sectioning 

it is obviously important to be able to set the axial position of the object planes 

accurately, so that the z-spacing of the pixels in the three-dimensional array 

formed by the image stack may be calibrated. 

Secondly, as each image is of finite lateral extent, it is also important to be 

sure that any variation in the position of these lateral limits due to "stage drift" 
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is taken into account. 

Axial control of object plane 

The standard way of altering the axial position of the object plane is to use the 

microscope focusing controls. Indeed, to focus on an object is just to bring the 

object plane into coincidence with the plane of interest in the object. 

Although focus knobs are often graduated, the best precision that can be 

achieved by hand is about ±0.5 pm, which is insufficient for acquiring a series of 

images, each of which are to be separated by 0.5 pm. Moreover, with typical 

structural relaxation times 0(102)  s, it will be difficult to achieve stacks with 

more than one or two images in them in the time available. 

One very precise method of focusing which can respond very rapidly is to 

use a piezoelectric translator attached between the objective and the microscope 

nosepiece, as in figure 4.3(a). By adjusting the voltage input to the translator, 

the objective can be positioned axially to a precision of ±0.1 pm, over a range of 

about 100 pm. To achieve this accuracy a closed-loop system is needed to control 

the translator, i.e. one which actively monitors the actual position and maintains 

very close to its nominal value. This mode of operation is a standard option for 

commercially available systems*. 

For movements of < 1 pm, the translator can respond in a few hundredths of a 

second; so, using computer control of the input voltage, a piezoelectric translator 

could enable a stack of several hundred images, covering a range of 100 pm or 

so, to be recorded within a few seconds. In practice, the time taken to acquire 

a stack depends on other factors, in particular the size of the individual images 

and the speed at which the computer hardware can grab and store them. 

By way of example, using a typical image grabbing board, the MuTech MV-

1000t, a stack of 100 images takes around 10 s to record, as long as the (8-bit 

The one used in this work was the P-862 produced by Physik Instrumente (P1) GmbH & 

Co., Polytec-Platz 5-7, 76337 Waldbronn, Germany. 
MuTech Corporation, 85 Rangeway Road, Billerica, Maryland 01862, USA 
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(a) 	 (b) 

Figure 4.3: Controlling axial position with a piezoelectric translator: (a) the conven-

tional configuration of translator Pz, with objective Ob fitted, suitable for bright field 

and phase contrast. The object (a capillary tube on a microscope slide) is shown in 

front of the objective, with the dashed line representing the microscope stage; the 

threaded attachment at the top of Pz is screwed into the microscope nosepiece (not 

shown here), being secured with the lockring shown (b) An alternative configuration, 

suitable also for DIC, where the inverted Pz is used to move the object, by means of 

a small platform (shown in grey) attached to it; in this configuration Pz is secured 

to the microscope stage by means of the lockring (c) a plan view of this alternative 

configuration, to show the positioning of the object on the platform and the aperture 

in the platform for illumination. 

grey-scale) images are less than about 150 x 150 pixels' (which can adequately 

represent (10 pm)'). Larger images increase the storage time at a rate of roughly 

(80 pixels)' 

Faster hardware is available, but even these moderate speeds make it possible 

to acquire three-dimensional snapshots of reasonable extent in times significantly 

less than the relaxation time of dense colloidal suspensions. 

To adjust the distance between the objective and the nosepiece is not suitable 

for Normarski DIC however, as the distance between the Wollaston prisms is 

critical for imaging. Following up the suggestion [Tanaka, 1997] to try moving 

the object instead, I have developed a method for acquiring image stacks that is 

both suitable for DIC and enjoys the benefits of piezoelectric positioning. 

Figure 4.3(b) and (c) show this new method, whereby a small soldered brass 

platform is attached to an inverted piezoelectric translator which is itself attached 

to the microscope stage. The suspension mounting can be held in place on the 
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platform either by means of small rubber bands or by paper stickers. Comparison 

between translations achieved by the translator and those by the microscope focus 

controls show that the accuracy of the translator is as good as in its standard, 

upright configuration. 

Problems with lateral alignment of images 

It is important to ensure that the images in a given stack can be properly aligned 

laterally. If the object does not move laterally during the recording of a stack, 

then alignment poses no problem, but this will not necessarily be the case. As 

long as the object is properly secured, the main cause of lateral drift is thermal 

expansion/ contraction. 

Time-lapse series of images show that lateral drift is worst when images are 

recorded shortly after the microscope illumination has be switched on. Drifts of 

as much as 0.1 ims 1  have been recorded during the first few minutes. After an 

hour or two, drifts are only 0(10) pms', and correlate closely with ambient 

temperature changes - 0(10) K - in the laboratory. Ambient temperature control 

of ± 1 K is not difficult to achieve, so the problem of drift may be neglected, as 

long as the microscope has been on for some time. 

Experiments have also shown that it is thermal expansion in the microscope 

that is the source of the large drift observed shortly after switching on the il-

lumination: if a suspension mounting at ambient temperature is placed on the 

stage of an already warm microscope, noticeable drift occurs only over the first 

few tens of seconds, while the mounting warms up due to the illumination. 

To reduce lateral drift to negligible amounts: 

1. Turn on the microscope illumination, at the level to be used during 

experiment, at least two hours beforehand. 

2. Maintain the ambient temperature constant to within ±1 K for the du-

ration of the experiment. 
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4.3 Displaying three-dimensional information 

Once a stack of images has been recorded, the three-dimensional information 

can be extracted in a variety of ways. Displaying this information visually can 

be particularly helpful in revealing structures. In this section three methods of 

display are outlined, ranging from a simple selection of images to a sophisticated 

reconstruction of how a stack would appear viewed from some arbitrary direction. 

4.3.1 Montages of selected images 

The simplest method of displaying the three-dimensional information in a stack 

of images is simply to select a series of images at depths of interest within the 

object. Figures 3.1, 3.4 and 3.9 show montages of this kind. 

This method is particularly suitable for obtaining a broad picture of variations 

over the thickness of an object, perhaps followed over a period of time, as in 

figure 4.4. On the other hand, the full three-dimensional nature of structures 

at an individual particle degree of resolution are not easy to visualize using this 

method. 

43.2 longitudinal sections through stacks 

If the individual images of a stack measure N1  x 	in terms of pixels, and there 

are Ni,,, = 	images in the stack, then the data represents an N1  x 	x NPIX PIX

array. It is a straightforward matter to obtain axial slices of this array, measuring 

x 	or N1  x 	pixels'. The composite images at the bottom of figures 

3.1, 3.4 and 3.9 are just such slices. 

Usually the z-calibration S = 1/zz 1  (obtained from the axial spacing of the 

stack, as LZp jx  = 1Zjm , the spacing of the images) will differ from the x- and y-

calibrations, S and S, of the recorded images (see page 34), so some adjustment 

of aspect ratio will be required for these sort of axial slices to display a proper 

image of a longitudinal section of the object. This sort of stretching is a standard 
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Figure 4.4: A series of montages of a dense colloidal suspension: each column is a 

montage of eight images recorded at different heights from the bottom of a 100 pm 

thick suspension of 1.1 pm diameter spheres at = 0.510; the time after the sus-

pension was sealed into its mounting is given beneath each montage. 
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(a) 	 (b) . 	• 
t • I 	 * 

• • • 	 4 - 

Figure 4.5: Longitudinal sections through stacks of images: (a) a single 76 pixel by 

76 pixel image of a 31 plane stack through a colloidal crystal, showing a geometrical 

arrangement of particles typical of all planes in the stack (b) a longitudinal section 

through the middle of the stack, stretched in the z-direction (left to right across 

the figure) to make the magnification the same as in the y-direction (vertical in the 

figure). 

procedure of digital image processing. 

Figure 4.5(b) shows just such a longitudinal section through a stack of images 

of a colloidal crystal, one of which is shown in (a). The depth of field of images 

obtained in this manner, it is important to note, is given by the resolution in the 

x-y plane perpendicular to the plane of the section, and so is less than that of 

the recorded images. 

Longitudinal sections are useful for revealing particle arrangements in three 

dimensions, but the longitudinal elongation of spherical particles - clearly evident 

in figure 4.5(b) - can make appearances deceptive and care must be taken in 

interpretation. 

This approach is at its most useful when planes of particular interest are 

parallel to the three possible sections. Where it would be helpful to able to 

view the stack from other directions than along the x-, y- and z-axes, a more 

sophisticated approach to displaying the data is required. 

4.3.3 Constructed views of entire stacks 

With negative contrast, particles are represented by dark regions; so, if an 	x 

PIX array is constructed from the darkest grey level values for each x- and y-

coordinate, then an image with a depth of field as large as the z-extent of the 
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Figure 4.6: Views constructed from entire image stacks: (a) the view along the z-

axis, through the entire stack of figure 4.5, (b) the view along the y-axis of the same 

stack. 

stack is generated. 

Figure 4.6(a) shows this construction for the stack displayed in figure 4.5. Note 

how the bright regions highlight the way that the particles must be arranged in 

planes perpendicular to this view. 

We can also construct an image from the minimum grey level along lines 

parallel to the y-axis of the stack, to give an (N x N)  array which forms an 

longitudinal image of the stack, with a depth of field equal to the y-extent of the 

stack. This construction is shown in figure 4.6(b). 

The principle of finding the darkest grey level value along lines parallel to a 

given direction can be applied to directions other than the three axes of the array. 

Figure 4.7 shows how this works in principle, using a two-dimensional equivalent 

for clarity: one-dimensional lines of pixels are arranged in a two-dimensional array 

and a new (one-dimensional) line of pixels is generated as the "view" of the array 

from an oblique angle. 

MetaMorph®, the image-processing softwaret  used to construct the images in 

figure 4.6 by this method, allows views to be constructed at any integer num-

ber of degrees of rotation about either the x- or y-axis. Figures 4.6(a) and (b) 

represent angles of 00  and 90° to the y-axis respectively; examples at a range of 

other angles are given in §6.3, where the detailed interpretation of the images 

constructed in this way can be found. All that needs to be said here is that the 

Universal Imaging Corporation, 502 Brandywine Parkway, West Chester, Pennsylvania 

19380, USA 
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Figure 4.7: Construction method for oblique views of entire stacks: 1 - Five eight-

pixel columns, the two-dimensional equivalent of five images in a stack, are spaced 

so that the array of pixels has the same aspect ratio as the object space it represents. 

2 - The lowest pixel value along each of a set of lines, spaced the same as pixels in 

the columns, is recorded (here, dotted lines are used to show the construction the 

75 0  view, with the recorded value indicated for each line). 3 - Where a line intersects 

with no pixel, gaps will exist in the line of pixel values recorded, so a linear (integer) 

interpolation is made to complete the construction (at the bottom of the figure, the 

final result for the 75° view is shown, along with the 0 0  view, along the z-axis, and 
the 90° view, along the x-axis.) 

particular advantage of this method is that it effectively converts the stack of 

images into a solid body consisting of dark regions (the particles) embedded in a 

transparent medium, which we can tilt almost at will and thereby quickly arrive 

at an understanding of the arrangement of the particles in three dimensions. 

* 	* 	* 



4.3. DISPLAYING THREE-DIMENSIONAL INFORMATION 	 101 

Being now armed with the means to achieve high-resolution, fully three-

dimensional images of colloidal suspensions thick enough to show bulk behaviour, 

the first part of this thesis is complete and we can now turn to the application of 

the principles and techniques set out here. 
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Part II 
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Applications of Colloid Microscopy 
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Chapter 5 

Colloidal Hard Sphere Suspensions 

5.1 The ideal hard sphere system 

5.1.1 Monodisperse hard spheres 

The hard sphere interaction 

Ideal hard spheres are perfectly rigid bodies which exert no forces on one another, 

except when they come into contact. On touching, their rigidity means that 

arbitrarily large forces will prevent any deformation or overlap. This implies a 

very simple 'right-angled' pair potential for hard spheres (figure 5.1). 

U(s) 

El S 

Figure 5.1: The pair potential U(s) for hard spheres of radius R and separation .s. 

105 
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Mono d isp ersity 

Implicit in figure 5.1 is that the spheres in an assembly with such a pair potential 

all have the same radius R; such an assembly is said to be monodisperse in 

size. 

5.1.2 Hard sphere phase behaviour 

Two dimensionless parameters suffice to describe a monodisperse hard sphere 

assembly thermodynamically: reduced pressure P and volume fraction 4. For an 

assembly of N hard spheres of radius R, confined to volume V, at temperature 

T and pressure F, 

= 4rrRN 

3V 	
(5.1) 

PV 
= NkT 	

(5.2) 

As an assembly of identical spheres can never completely fill space, volume frac-

tion is limited to the range 0 < 0 <' = 0.740. In the low density limit, 

the hard sphere system approximates an ideal gas so reduced pressure is limited 

toP>1. 

Numerical calculations of the monodisperse equation of state [Wood and Ja-

cobson, 1957] showed that, despite the simple non-attractive interaction between 

hard spheres, two different phases exist: one fluid-like with no long-range order, 

the other solid-like with a long-ranged order, with the symmetry of a close-packed 

crystal. Subsequent calculations [Hoover and Ree, 1968] showed that fluid at 

= 0.494 and solid at 4 = 0.545 share the same pressure and entropy at any 

temperature, i.e., they are in thermodynamic equilibrium, the difference in vol-

ume fraction implying that the phase transition must be first-order. Thus we 

can refer to freezing and melting volume fractions, OF = 0.494 and 0M = 0.545, 

respectively. Figure 5.2 shows the equation of state schematically. 

For 0 < OF, the fluid is the stable phase; the equation of state proposed by 
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P 	 metastable fluid -- 

crystal + fluid I 
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0.494 	0.64 Volume fraction, 4) 	0.545 	0.740 

Figure 5.2: The hard sphere equation of state (solid curve). The dashed line shows 

the equation of state of the fluid for 0 > 0.494, in which region it is only metastable; 

this line approaches asymptotically to the line = 0.64, the random close-packing 

limit. 

Carnahan and Starling [1969], 

1 +0+ 02  - 

(i — q)3  
(5.3) 

holds well for the stable region of the fluid. Fluid may exist metastably up to 

0.64 = rcp, the random close-packing limit [Schaertl and Sillescu, 1994], 

however and above 0.5, the pressure exceeds that predicted by equation 5.3. 

A better expression [Woodcock, 1981] is 

P 
= 	1.85 	

(5.4) 

For Om < 0 < O, p  the stable phase is the solid; its equation of state [Hall, 1972] 

can be expressed by 

- 	2.22 

0.74-0- 	
(5.5) 
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For OF < 0 < Om the assembly will separate in to fluid at q = OF and solid at 

= M with a fraction 

X= qq5 	 (5.6) 

being solid to satisfy the value required for the overall 0. 

Hoover and Ree [1968] showed that the phase transition is entropy driven. 

Broadly speaking, one can consider this in terms of a competition between the 

large global entropy of the fluid state and the large local entropy of the solid 

phase: at high ç"  the particles in the fluid phase have increasingly less room to 

move around, decreasing the local entropy of the fluid. At > OF, the loss of 

global entropy on ordering into the solid phase, is outweighed by the increase in 

local entropy due to the fact that the spheres, though trapped within cages, have 

greater freedom of movement on a small scale (only at 0 =Ocpdo the spheres 

actually touch all their nearest neighbours). 

Thus the monodisperse hard sphere system is one of great simplicity in its 

defining characteristics, yet has a phase behaviour which could make it a fruit-

ful model of atomic systems. While much work has been done using computer 

simulations, the number of particles used is quite restricted, even on the most 

powerful computers. Numbers of particles exceeding these limits by several or-

ders of magnitude are routinely achievable, however, by performing experiments 

using colloids. 

5.2 Real nearly-hard sphere colloids 

5.2.1 Limitations of assemblies of colloidal spheres 

Sterically stabilized colloidal suspensions would seem to be good candidates for 

model hard sphere assemblies. Important differences between such systems and 

the ideal exist, specifically: 

• no real system can have a perfectly hard interaction, 
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• no real system will be perfectly monodisperse. 

Hardness of interaction 

For hard spheres, 

 OF OM -  
= 0.1 	 (5.7) 

OF 

is expected [Hansen and Schiff, 1973], but not for softer potentials. This ra-

tio will therefore provide a useful measure of how close a candidate suspension 

approximates hard sphere behaviour. 

Size potydispersity 

For an assembly with a finite range of sizes of spherical particles, the distribution 

of particle size - the size polydispersity - is conveniently measured by the 

standard deviation ER  of the distribution Pusey [1987]. 

Pusey showed that the hard sphere disorder-order transition should not be 

found in assemblies with 6R 6% and 4'M  and OF  are known to vary with poly-

dispersity [Bartlett, 1997; Bolhuis and Kofke, 1996, 1999; Fairhurst, 1999b], but, 

as long as crystallization is observed to occur, the monodisperse values are as-

sumed [Fairhurst, 1999a] to hold. 

5.2.2 Evidence for nearly-hard sphere behaviour in colloids 

While both polystyrene [Papir and Krieger, 1970] and silica [de Kruif et at., 

1985] spheres have been used as good model hard spheres, the system of poiy- 

methylmethacrylate (PMMA) spherical latices, sterically-st abili zed with chemi-

cally grafted coating of polyhydroxystearic acid (PHSA) "hairs" of length 0.1R 

or less, suspended in a nonpolar, refractive index-matching liquid, have also re-

ceived a lot of attention. 

Using decalin as a medium for a PMMA-PHSA suspension, with the addition 

of carbon disulphide to index match, Pusey and van Megen [1986] observed phase 
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behaviour very similar to that expected of hard spheres. By application of a 

lever rule (like equation 5.6) to phase separated samples showing fluid-crystal 

coexistence, they obtained values of OF = 0.407 and OM = 0.442, based upon 

literature values for the densities and a combination of electron microscopy, light 

scattering and crystallography for the particle sizing. Pusey and van Megen's 

value of 	= 0.085 was close to the ideal [Hansen and Schiff, 1973], and they 

suggest rescaling to an effective volume fraction, 	, using OF = 0.494 as the 

datum. 

Study of the analytical behaviour of the sedimentation velocities of PMMA-

PHSA spheres in a mixture of decalin and tetralin over a range of volume frac-

tions, using Pusey and van Megen's method of rescaling, gave Paulin and Acker-

son [1990] a value of q5 = 0.552, and hence Aç = 0.117. 

Later work by Underwood et al. [1994], using carbon disulphide for index 

matching gave even closer agreement with hard sphere predictions: their value of 

4 = 0.545 ± 0.02 was found to be independent of particle size 1-4 and refractive 

index of medium Ti m . Furthermore, measurements of intrinsic viscosity were 

consistent with the ideal case and collective diffusion coefficient scaled linearly 

with R and sedimentation velocity with as expected for hard spheres. 

Recent work [Phan et al., 1998] using X-ray densitometry of equilibrium sed-

iments to obtain the fluid equation of state as well as viscometry and coexistence 

region size measurements has only increased confidence in the ability of PMMA-

PHSA suspensions in index-matching nonpolar solvents to provide model hard 

sphere assemblies. Such systems have been used exclusively in the current work. 

5.2.3 The preparation of suspensions 

In essence, three stages are required in preparing a colloidal suspension as a 

candidate hard sphere system. First, appropriate particles need to be synthesized; 

secondly, the particles need to be dispersed in a suitable medium; and thirdly, 

the desired concentration of particles in the medium needs to be achieved. This 
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subsection considers each of these stages in turn. 

Particle Synthesis 

This research has not involved the actual manufacture of colloidal particles, but 

reference to this stage of suspension preparation is included here for completeness. 

Details of the methods of synthesizing PMMA spherical latices, and the chemical 

grafting of the PHSA monolayer coating onto them, can be found in Anti et at. 

[1986] and Pathmamanoharan et al. [1989]. 

These methods have the useful side effect that size polydispersity decreases 

with mean particle size, so the relatively large particles that are needed for optical 

resolution are produced with polydispersities that lie within the range required 

for crystallization to occur. It is a matter of simple experiment to determine 

whether crystallization occurs, but for more accurate determination of ER  light 

scattering techniques are used [Pusey and van Megen, 1984]. In this work, all the 

suspensions used were characterized, in terms of both size and polydispersity, by 

the synthesizers. 

Solvent replacement 

The stock suspensions produced by the above methods have dodecane as their 

medium. Although the refractive indices of dodecane, 1.42, and PMMA, 1.49, 

are similar, as required to reduce van der Waals attractions, they are not close 

enough( 0.05) for optical experiments, due to multiple Rayleigh scattering. 

So alternative media need to be found and the dodecane replaced. 

Decahydronapthalene (commonly called decalin), with n = 1.48 (giving 

0.007) matches PMMA closely and is a good solvent for PHSA; mixtures of decalin 

with tetralin (tetrahydronapthalene, n = 1.54) can be used to match the refractive 

indices even more closely. CHPB (cycloheptyl bromide, n = 1.50) is another good 

solvent for PHSA which closely matches refractive index with PMMA, but has 

the added advantage of matching the density of PMMA more closely (PMMA = 
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1.19 g cm 3  and PCBPB = 1.29 g cm 3 , whereas Pdecalin = 0.89 g cm 3  and Ptetraijn = 

0.97 g cm-3 ). 

The process of solvent replacement is examined in detail in Fairhurst [1999b], 

§4.1.1.; the stages are (1) centrifuge the suspension until it has separated into 

a dense, randomly packed sediment at 0.64 and pure solvent; (2) pour off 

the pure solvent; (3) add the alternative solvent, thereby diluting the previous 

solvent; (4) repeat the first three stages until the desired purity of solvent is 

achieved. Typically this involves 5 to 10 cycles (for precise calculation of the 

theoretical solvent purity see Fairhurst, ibid.). Confirmation of the purity can be 

achieved by comparing the measured refractive index with the expected value. 

Volume fraction determination 

Achieving the desired volume fraction could be done by adding/removing known 

masses of solvent, both microbalances and known solvent densities having high 

degrees of precision, were it not for a number of complicating factors: the core-

shell structure of the PMMA-PHSA spheres, solvent penetration of the shell and 

possibly the core, and size polydispersity. Fairhurst [1999b], loc. cit., explores 

these difficulties and their implications for measurement techniques; here the two 

techniques used in this research are outlined. 

A rough measure of volume fraction can be obtained by centrifuging the sus-

pension in a parallel sided container and adjusting the ratio of the heights of 

sediment and pure solvent. Using the theoretical value of the volume fraction 

of the sediment [Schaertl and Sillescu, 1994] for the known polydispersity and 

assuming that the sediment is genuinely random close packed and no crystalline 

regions exist, the effective that the particles occupy can be calculated. 

If this centrifuging method is used to achieve OF < 0 < Om, the ratio x 
of colloidal crystal (clearly distinguishable by optical Bragg scattering) to fluid 

can be measured. The crystals will sediment and, following Paulin and Ackerson 

[1990], the height of the crystal-fluid interface can be plotted against time and 
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extrapolated back to remove the effects of crystal compression and incomplete 

separation. As x is a very sensitive measure of 04 , this is a very precise method. 

All the samples used in this work had their effective volume fractions cali-

brated by the combination of these two methods alluded to above. Changes to 

desired values for particular experiments which lay outwith the coexistence re-

gion where then achieved by the addition/ removal of carefully measured masses 

of solvent. 

Over time, volume fractions tend to steadily increase, due to solvent evapo-

ration. Keeping track of the mass of suspensions allows one to recalculate j and 

replace solvent, when required. Evaporation is kept low by sealing suspension 

containers with air-tight stoppers and PTFE tape. 
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Chapter 6 

The Structure of the Hard Sphere 

Solid 

Predictions of the structure of the ordered, high density phase of the hard sphere 

system are well known and have been studied both by light scattering and mi-

croscopy. In this chapter, using this theoretical and experimental background 

as a starting point, a detailed microscopical study of the structure of the hard 

sphere solid is made. 

This study is in two parts: First, an extensive set of optical micrographs is 

presented, showing a variety of defect structures, and a number of characteristic 

geometrical patterns. The ab initio interpretation of the latter in terms of diffrac-

tion theory is a formidable task. However, careful consideration of a computer 

model of the predicted structure, along with the imaging characteristics of the 

microscope used, allows a number of these patterns to be related, with a high 

degree of certainty, to particular crystal facets. One particular pattern is shown 

to provide a direct quantification of the degree of disorder in the solid, making 

for better statistics than achieved previously by another direct-imaging method. 

Secondly, a series of views at various angles, constructed from a stack of 

micrographs, is used as a demonstration confirming the interpretations given to 

patterns in the first part of the study. 

115 
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Such an interpreted collection of images can form the basis of future studies 

of defects and kinetic processes in colloidal crystals using optical microscopy. 

6.1 Background 

6.1.1 Predicted structure and crystallographic scheme 

The isotropic nature of their interaction means that two-dimensional arrays of 

hard spheres will arrange themselves with hexagonal order at high density*.  In 

three dimensions, a stacking up of such layers will be the expected arrangement. 

There will, however, be a degree of randomness associated with this stacking 

owing to the fact that there are two possible sites for stacking one layer on another. 

Both the hexagonal order in two dimensions and the disorder in the third need 

to be taken into account in describing the structure of the solid. 

Stacking probability a 

Taking i and b as the lattice vectors in the hexagonal layers, the two possibilities 

lie at ( + b) and (d + b) relative to a given layer. Hence there are three 

possible lateral positions for hexagonal layers to occupy, the only constraint being 

that adjacent layers be in different positions. 

Labelling the lateral position of a reference layer as A, we can label the lateral 

positions at the displacements given above as B and C respectively (see figure 

6.1). An ordered stacking sequence such as ABCABC..., which cycles through the 

three lateral positions, is known as "face-centred cubic" (fcc) packing, whereas 

one alternating between any two, such as ACACAC..., is called "hexagonal close-

packing" (hcp). 

To quantify the degree of randomness in "randomly-stacked close-packing" 

(rscp) a stacking probability a that any pair of layers two apart have different 

1t was Kepler [1611] who first suggested this arrangement for tiny ice spheres, to account 

for the six-fold symmetry of snowflakes. 
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Figure 6.1: A diagram of the view "looking down" on a hexagonal layer of spheres in 

a crystal of volume fraction 4 = 0.545. The different sites for stacking of such layers 

are labelled A, B and C. Also shown are the lattice vectors a', b and 16,  along with the 

additional lattice vector used in the Miller-Bravais scheme, d' touching spheres 

 Ocp  - 	
- 
- 7r 	 0.740) have a = 2R, for 0 = 	= 0.545, this diagram is drawn 

with a = 	 2.22R* 

lateral positions is commonly used [Wilson, 1942]. For completely random stack-

ing a = 0.5, whereas Of cc = 1 and 0hcp = 0. 

The "reduced unit cell" 

The stacking disorder means that each differently-stacked crystal will have its 

own unit cell. For the sake of generality in the labelling of directions within the 

rscp crystal, it makes sense to use a "reduced" unit cell as follows: 

The conventional unit cell for hcp has a' and b the same as the lattice vectors 

of the hexagonal layers (see figure 6.1) and 5 perpendicular to the layers and 

of magnitude equal to twice the spacing between adjacent hexagonal layers. A 

similar unit cell, but with c = 3 layer spacings can be used for fcc. There being 
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no regular repeat distance in the direction for rscp, the sensible length scale to 

use for c in the reduced unit cell is the inter-layer spacing, i.e., c = 

Miller-Bravais indices 

The hexagonal symmetry of the rscp crystal suggests the use of the augmented 

four-index system of Miller-Bravais indices (hkil) to label lattice planes, as this 

makes symmetry-related planes easier to spot. Under this scheme h, k and I have 

their usual meaning and i measures the fractional displacement along the third 

close-packed direction of the hexagonal layers (the direction of d in figure 6.1). 

As d, b and d are coplanar, h, k and i cannot be independent; in fact, it can be 

readily shown that h + k + i = 0. 

The usefulness of the extra index i in crystals with hexagonal symmetry can 

be seen by considering the sets of lattice planes (110), (110) and (110). The 

cyclic permutation of the first three indices shows immediately that these three 

sets constitute a crystallographic form, i.e. a complete set of symmetrically-

equivalent sets of planes. While brackets are used to designate sets of planes, 

braces are used for crystallographic forms; thus we use {1 10} represent the form 

constituted by the three sets mentioned. Using standard Miller indices, it is much 

less obvious that the sets of planes (110), (10) and (10) are all symmetrically 

equivalent and constitute the form {110}. 

6.1.2 Results from earlier work 

Light scattering results 

The basic interlayer spacing for stacking at any c gives rise to a sharp Bragg 

reflection in the diffraction pattern. Randomness in the stacking (0 < c < 1) 

shows up in diffraction from a polycrystalline sample as bands of diffuse scattering 

underlying Bragg peaks. 

Using the theory of these diffuse bands developed some time ago by Wilson 

[1942] and Hendricks and Teller [1942], Pusey et al. [1989] studied the stacking of 
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colloidal crystals in the sterically-stabilized PMMA hard sphere system. Having 

confirmed that the crystals were indeed made up of a more or less randomly-

stacked sequence of hexagonal layers, they took measurements of the average a 

and found that crystals nucleating from a metastable fluid at 0 = 0.535 had 

a = 0.50, i.e. totally randomly stacked, while crystals nucleating from a fluid at 

= 0.523 showed a tendency towards fcc, with a = 0.58. 

A more complete study, by light diffraction, of the dependence of a on the 

parent metastable fluid density has been performed by Chui [1994]. 

Microscopical results 

The structure of more-or-less randomly-stacked colloidal crystals of rhodamine-

labelled silica spheres has been investigated by Verhaegh et al. [1995], using flu-

orescence confocal scanning laser microscopy (CSLM). In their work, individual 

hexagonal layers of particles were imaged one layer at a time, with the depth 

resolution in turbid samples provided by the confocal optics. This permitted the 

labelling of a sequence of a few hexagonal layers in terms of A, B or C, thus giving 

a direct measurement of the stacking probability, a. 

6.2 Interpretation of single micrographs 

Images of rscp polycrystalline solids can be expected to show a variety of pat-

terns of particle arrangements, along with defects, and grain boundaries between 

regions with different patterns. 

Figure 6.2 is a typical example of a micrograph of a hard sphere colloidal 

crystal. As expected, grain boundaries, vacancies and line defects are all visible. 

Two types of ordered arrangement are seen: hexagonal, as would be expected in 

any close-packed structure, and kinked lines, or zig-zags, which shall be shown 

below to be characteristic of random stacking. 

In the following sections, these patterns and others shall be interpreted using 
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Figure 6.2: A Normarski DIC image, Z. = 420 nm, of a suspension of R = 460 ± 
32 nm particles, age = 21 days. 

a computer model, taking into account the finite-thickness slicing effect of the 

microscope depth of field. 

6.2.1 Experimental details 

All the micrographs presented here are of suspensions with volume fractions in 

the crystal-fluid coexistence range. Particle sizes and depth of field are given for 

each micrograph; sizes R were determined (for the most part by other workers) 

using static light scattering and depths of field Z. are the theoretical values given 
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by equation 4.3, calculated for A o  = 550 nm and n = 1.5. 

The suspensions were all sealed in rectangular capillaries (as in §4.1.2). The 

age given on each micrograph is the time elapsed since sealing, i.e. how long the 

suspension will have had to equilibrate from the metastable fluid. 

Both phase contrast and Normarski DIC were used, with oil-immersion lOOx 

objectives. Figure 6.4 was recorded using an Olympus BX 50 microscope (A = 

1.25); the microscope used for all the other micrographs was a Zeiss Axioskop FS 

(A = 1.40). 

6.2.2 Computer model 

To assist with the interpretation, a computer-generated model of a small rscp 

crystal was built, using Molecular Simulations' Cerius 2  software, which is partic-

ularly versatile as a tool for the display and manipulation of user-defined crystal 

structures. 

Having decided upon the stacking sequence ACACBAC so as to include both 

fcc and hcp stacking, as would be found in a rscp crystal, the first step in building 

the model was to define a hexagonal unit cell containing seven "atoms" at the 

fractional coordinates (0,01 0)1 (0107),131 (0 1 0 1 ) and 

(, , ). Next, an array of 5 x 5 x 1 unit cells was built into a small crystal of 

175 particles, which could then be displayed in any desired orientation, specified 

either by azimuth and co-latitude or as parallel or perpendicular to a chosen 

crystal plane. 

Figure 6.3 shows this model, with the boundaries of the unit cells picked out by 

dashed lines, and the radius of the "atoms" set at a/2.22, so that 0 = = 0.545, 

as in figure 6.1. 

By faceting the crystal parallel to the plane of view thin slices of the model 

corresponding to the microscopical depth of field were made. In this manner a 

means of modelling the effect of the microscope's imaging of rscp crystallites in 

arbitrary orientations was arrived at. 
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Figure 6.3: A computer visualization of seven hexagonally packed layers stacked in 

the sequence ACACBAC (from the bottom). 

In the interpretations following, these conventions shall apply: 

• For the sake of generality, the "reduced unit cell" scheme (c = /52 a) 

shall be used, although the computer model was based on a seven-layer 

unit cell. 

• Views of the model shall be labelled by the Miller-Bravais plane which 

is parallel to the plane of the figure. 

6.2.3 Hexagonal patterns 

Any crystal consisting of stacked hexagonal layers should reveal evidence of this 

hexagonal order if the crystal is oriented with the stacking direction along the 

optical axis of the microscope, i.e., the (0001) view is taken. 
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Figure 6.2 shows a number of crystallites in this orientation. Despite differ-

ences in the contrast and distinguishability of the PMMA spheres in different 

parts of the image, hexagonal order on the same length scale is clear. 

The differences in contrast and distinguishability can be explained with ref-

erence to the depth of field and the spacing of the particles: For 0 = 0.545 and 

R = 460 ± 32 nm, the hexagonal layers are J2_/3_a = 830 nm apart. While 

a plane through the centres of the particles in a layer intersects only with the 

particles of that layer, planes more than /7a - = 370 nm from the centres 

of the particles of one layer will also intersect with a second layer. With a depth 

of field Z. = 420 nm, this means that focusing at more than 160 nm from the 

centre of a layer will image parts of two layers. For crystallites intersected at ran-

dom one would therefore expect to see clear images of single layers only in about 

40% of (0001) views. The left-hand images of figure 3.13(b) and (c) illustrate 

the difference between focusing directly on a hexagonal layer and at one particle 

radius below this. 

On the other hand, scanning the plane of focus through such crystallites will 

allow individual planes to be imaged, which explains the shift of particle positions 

seen when this is done. Lateral positions A, B, or C can then be assigned to 

individual layers and the stacking probability a determined, after Verhaegh et al. 

[1995]. 

In terms of interpreting patterns however, the key point is that: 

The hexagonal pattern represents the (0001) view of an rscp crystal. 

6.2.4 Zig-zag patterns 

In the upper centre of middle of figure 6.2 is a crystallite presenting a facet in 

which a more-or-less random sequence of "zig-zags" can clearly be seen. This 

pattern is often seen in hard-sphere colloidal crystals and has the property that, 

when the plane of focus is changed, particle positions do not appear to shift, 

indicating that, from this direction of view, particles are arranged directly behind 
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Figure 6.4: Zig-zag pattern (Phase contrast image, Z0  = 530 nm; R = 460±32 nm; 

age = 4 hours) 

one another. Figure 6.4 shows a large crystallite with this pattern, this time in 

phase contrast. 

The (110) view of the computer model, shown in figure 6.5(a), looks at the 

stacked hexagonal planes "sideways" (seen as horizontal lines) and shows a "zig-

zag" pattern which can be traced down the image, with an angle that appears 

similar to that of the micrograph. Moreover, although this figure is a thin slice of 

the model, viewing the entire 5 x 5 x 1 model shows no difference in the number 

of spheres seen, which can only mean that the other spheres must lie directly 

behind those seen. 

Consideration of the model's parameters tells us that the spacings of the 

spheres in this view are given by: SQ = ST = $a and RT = 	Therefore 

the angle that the zig-zags slant at an angle = LRST = arccos 	70.5° to the 

hexagonal layers. 

Before comparing these values with measurements from the micrograph, we 

must consider the effect of the depth of field on the {110} view. Careful ex- 
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Figure 6.5: The zig-zag pattern seen in the (1120) view (a) computer model (b) 
diagram highlighting the "zig-zag" feature. 

amination of the thin slice in figure 6.5(a) reveals that the spheres shown are 

at two different levels. Consideration of the geometry of the (0001) layers leads 

to a value of a/2 for the distance between these two levels. The thickness of 

the slice was chosen to be just enough to show both levels. Any thinner slice 

shows zig-zags slanting at an angle N = ZSQT = arccos * 55° and particles 

with a horizontal spacing of 2SQ, whereas any thicker slice shows no difference. 

The particle spacing perpendicular to this view is a. So, for Z. > a - 214, any 

f 1120 view will always show particles on two levels and, for Z. > a/2, it will be 

impossible to distinguish these two levels. 

For 0 = 0.545 and 14 = 460 ± 32 nm, we have a - 214 = 100 nm and 

a/2 = 510 rim. As figure 6.4 has Z. = 530 rim, the criteria for showing zig-

zags slanting at the measured 70.5 ± 0.5° are met. The predicted spacing of the 

hexagonal layers, V,  25 
a = 830 nm, also compares favourably with the measured 

value, 840 ± 13 rim. 

However, the predicted spacing within the layers in the f 1120 view, a = 

880 rim, is much larger than the measured value, 810 ± 16 nm. It is possible, 

though, for the particles to be more closely packed than in the model: for = 

0.74, we would expect$a = 800 rim. 



126 	 CHAPTER 6. THE STRUCTURE OF THE HARD SPHERE SOLID 

So, if the crystal were compressed parallel to the line of intersection between 

the {0001} and (110) planes, i.e. along the direction PQRS, until the particles 

were nearly at close-packing, the particle spacings would match the predicted 

values in all directions within the plane of the view. Moreover, no change in the 

angles of the zig-zags would be expected, so we can say with confidence that: 

The zig-zag pattern represents a {11O} view of an rscp crystal. 

It is worth noting at this point that the each "zig" or "zag" is itself the trace of 

an hexagonal layer, of the form either {1101} or {1101}. 

Given this identification, we now turn to the relationship of the zig-zags to the 

stacking sequence of an rscp crystal. Any instance of stacking we can consider to 

be either cycling forward through the three layer types, A, B and C, or backward. 

Thus fcc would be continuously "forward cycling" or continuously "backward 

cycling"; hcp, on the other hand, would be alternating between forward and 

backward cycling with every layer. 

In figure 6.5, kinks occur at layers 2 and 3. Consideration of the stacking 

order shows that these kinks occur every time the stacking sequence changes its 

direction of cycling, the three segments of the zig-zag being AC, CA and ACBAC. 

This means that: 

Crystallites showing the zig-zag pattern can have their stacking probability c 

determined from a single image, without the need for axial scanning. 

So, this method for the direct determination of the stacking probability a is 

able to achieve good statistics with much less effort than the method involving 

scanning through (0001) views. 

Determining c from zig-zags 

For a crystallite with te kinks in N=  hexagonal layers, it can be readily seen that 

(6.1) 
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Thus the crystallite in figure 6.4, with frC = 6 and N=  = 30, has a = 0.79. 

The results (reported in Elliot et al. [1997]) of counting #c and N, in six 

crystallites showing zig-zags in a suspension with 0 = 0.529 ± 0.03 are given in 

table 6.1. The mean value (a) = 0.60 ± 0.07 is consistent with the data of Chui 

N=  26 40 28 36 35 51 

12 12 10 11 14 22 

a 0.50 0.68 0.62 0.68 0.58 0.55 

Table 6.1: Measurements of stacking probability a from the zig-zag patterns shown 

by the {110} view of rscp crystallites. 

[1994], who obtained a = 0.550 ± 0.005 for fresh crystallites nucleating from a 

metastable fluid at 0 = 0.532 + 0.003. Continued observation of the sample over 

time suggested that there is a tendency for a to increase, i.e., the structure was 

becoming more fcc-like. This is again consistent with the observations of Chui 

[1994]. 

Recently [Jackson and Bruce, 1999], simple theoretical considerations, fitted 

to simulation results, have suggested a relationship between a and the number 

of particles per hexagonal layer N11 of the form 

1 + tanh(N11 zS) 
' 	 (6.2) 

2  

where AS is the entropy difference (per particle) between an fcc arrangement and 

an hcp one. 

The measured crystallites showed no evidence of being significantly elongated 

or squashed, so the assumption N11 x N 2  seems reasonable. Figure 6.6 uses this 

assumption, in comparing the data of table 6.1 with the simulation result, plotted 

with Jackson and Bruce's value of AS = 44 x 10 5 kB. From this we can see that 

the experimental data are both consistently below the simulated curve and show 

an altogether slower variation with N,. These discrepancies need to be explored 

further, but the point to be made here is that only microscopical techniques, of 
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Figure 6.6: Experimental measurements of stacking probability compared with simu-

lation results. 

which the zig-zag technique is particularly user-friendly, could have allowed these 

comparisons to have been made. 

Zig-zags and twinning 

The change in the direction of cycling through layer types which gives rise to a 

kink may be considered as marking the boundary between fcc twins. This is most 

obvious where only a single kink is seen, as in figure 6.7. Under this scheme hcp 

is the limit of maximum twinning, but this is not usually the most helpful way 

to think of it. 
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Figure 6.7: A zig-zag pattern with only one kink (DIC image, Z. = 420 nm; 14 = 

460 ± 32 nm; DIC, age = 21 days) 

6.2.5 Disjointed-line patterns 

Figure 6.8 shows particles arranged in lines running across the micrograph; some-

times the particles in adjacent lines are aligned directly with one another, but 

sometimes they are so that the particles in one line are level with the gaps be-

tween particles in the other. This gives a somewhat disjointed effect overall. This 

effect is enhanced when the plane of focus is changed: the lines remain in place 

but the particles change their alignments. 

Measurements of the micrograph show that, where the lines are "in register", 

the particles are arranged rectangularly. The particles' spacing along the lines 

was found to be 895 ± 19 urn, whereas the spacing of the lines themselves was 

734 ± 12 nm. 

The presence of such clear lines of particles suggests that this view, like the 

one revealing the zig-zag pattern, is "side-on" to the stacking direction, the trace 

of the hexagonal layers being responsible for the prominent lines. One such view 

is that parallel to the {10I0} crystal form. Figure 6.9 shows three successive slices 
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Figure 6.8: Disjointed lines (Phase contrast, Z. = 420 nm; R = 460 ± 32 nm; age 

= 59 days) 

through the Cerius 2  model in this view, each slice containing all the spheres with 

centres lying in planes less than 	a apart. 

The middle image in figure 6.9 shows a rectangular arrangement of particles 

very clearly, with a single displaced line. The other two images also show this 

arrangement, although only a pair of lines are in register in each case. The spacing 

of the particles along the lines is a, whereas the lines are spaced by c =/ja. 

These dimensions compare very favourably with the measured values, as long 

as the crystal is taken to be close-packed, so that a = 2R. In this case, and 

using R = 460 + 32 nm, the model gives a = 920 nm and c = 750 nm, whereas 

the micrograph has 895 ± 19 nm and 734 ± 12 nm. That the colloidal crystal 

should be at 0 = 0.74 rather than 0.545 is reasonable, given the time that the 

suspension has had to settle under gravity. 

The thickness of the model slices in figure 6.9 was chosen to ensure that 

the traces of the hexagonal layers showed only a single line of spheres, yet that 
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Figure 6.9: Disjointed-line patterns seen in (1010) sections. 

all three types of layer, A, B and C, would show a line. The particle spacing 

perpendicular to the f 1010 view isa, so the slices must be thinner than this. 

On the other hand the maximum displacement of one layer type to any other in 

this direction is two-thirds of this, setting a minimum thickness to the slices. 

The equivalent depth of field of the model slices, for close-packed spheres 

of radius 460 + 32 nm is therefore in the range 530 to 800 nm. Although the 

quoted value of Z. is 420 nm, this is the theoretical value and, as has been seen 

previously, the experimental value for phase contrast may be as much as twice 

this, which would agree well with the model. The three different views of figure 

6.9 would then represent the effect of changing the plane of focus. The way that 

the lines remain in place, but their alignments shift is just like the way that the 

micrograph pattern changes on refocus. It would seem that we can say with 

confidence that: 

The disjointed-line pattern represents a {i0ii0} view of an rscp crystal. 

While it is not possible to determine a from a single image in this view, it can 

be found by a comparison of two such views of the same crystallite, parallel but 

differing in the manner of figure 6.9, which would allow the stacking sequence to 

be determined. 
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Figure 6.10: Square pattern (Phase contrast image, Z. = 420 nm; R = 460±32 nm; 

age = 21 days) 

Edge dislocations 

Further confirmation that this pattern is evidence for a side-on view of the hexag-

onal layers comes from the presence of a number of edge dislocations in figure 

6.8. These can been easily found by tracing along the lines of the pattern. The 

clearest example is just above the scale bar, towards its right-hand end. 

6.2.6 Square patterns 

The pattern shown in the majority of figure 6.10 is superficially similar to the 

disjointed lines of figure 6.8: lines of particles (here running almost vertically), 

sometimes with the particles in adjacent lines in register, sometimes not. How-

ever, measurement of the particle spacings shows that, where the lines are in 

register, the particles are an array that is very close to being square: the lines are 

spaced at 907 ± 13 nm intervals, whereas the particles are spaced at 895 ± 13 nm 

intervals along the lines. Both these dimensions are very close to the particle 
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Figure 6.11: The square pattern seen in the (302) section. 

diameter of 920 ± 64 nm. 

Square order is characteristic of fcc stacking. The faces of the face-centred 

cubes which show this square order are represented by the {302} form in our 

reduced hexagonal crystallographic schemet;  under this scheme, the squares are 

of side a, so, if the squares in figure 6.10 are the same as these ones, it would 

appear that the crystal is close-packed, which would be reasonable, given the age 

of the suspension. 

To display this view (figure 6.11), the computer model (figure 6.3) was mod-

ified to consist of only 6 hexagonal layers by removing the top one; this enabled 

the conversion of the Miller-Bravais indices to those appropriate to the model unit 

cell to be done in terms of integers. Two slices of the (3302) view are shown, each 

of thickness a, equivalent to 430 nm Z0 , for q5 = 0.74 and R = 460±32 nm. 

Both slices show two regions of primitive square order: the top four layers, in the 

(fcc) sequence ACBA, and the bottom two layers (AC); these two regions lie at 

In the more usual cubic system this is the {100} form; in the standard hexagonal fcc scheme 

it is {1102}. 
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Figure 6.12: Small square pattern (DIC image, Z. = 420 nm; R = 540 ± 27 nm, 

age = 57 days) 

different heights. The difference lies in the relative positions of the two regions. 

Considering a view perpendicular to this plane, such as the (110) view, as in 

figure 6.5, where the traces of the square planes are shown by lines of particles 

slanting at l = ZSQT = arccos 55°, shows the difference in the levels due 

to the zig-zag at hexagonal layers 2 and 3. 

As the plane of focus is shifted in the (302) view, each square region alternates 

between two lateral positions, the particles in each lying in the gaps of the other. 

This alternation occurs for an axial shift of , but, as the planes of particles 

in each region are at different levels, the alternation of the regions between their 

two positions will occur at different positions of focus, giving two possible relative 

positions of the two regions, as in figure 6.11. The right-hand arrangement in 

figure 6.10 appears more frequently. 

Sometimes, square order of a length scale rather less than the particle size 

is seen, as in figure 6.12. In the centre of this micrograph is a region where 
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what appear to be smaller particles than are seen in the rest of the field of view 

are arranged on lines at about 85° to one another (at about 17° and 103° from 

the rightward horizontal). The spacings of these particles are 740 ± 20 nm and 

780 ± 20 nm along the two sets of lines. These distances correspond to roughly 

= 760±40 rim. 

This can be explained if the plane of focus is situated exactly half way between 

the two possible lateral positions of the square pattern of figure 6.11. This plane 

lies atfrom the "normal" square layers, a distance equivalent to 380 to 

430 nm for R = 540 + 27 nm, depending upon how close-packed the crystal 

is. This distance is comparable with the depth of field, so, while neither of the 

adjacent square layers would be clearly imaged, parts of spheres from both would 

be. Given that the spheres in each layer are arranged in square of side a and 

that the spheres in one layer sit in the gaps between the spheres of the other, 

a spacing of' would be expected. For close-packing, this would be the 

value measured. 

Figure 6.13 is another {302} view, this time the (30) one. By displaying a 

thicker slice than previously and reducing the apparent particle size, square order 

at 45° to the normal pattern and with a spacing' can be seen in a band of 4 

lines towards the bottom of the left-hand image. The right-hand image shows the 

particles at the proper size for 0 = 0.74, but viewed side-on to show the thickness 

of the slice. What is also apparent from this view is that this square order is due 

to particles in hexagonal layers 2 and 3 of the six layer model, i.e. the stacking 

sequence CA. 

In the upper portion of the (30) slice can be seen a more hexagonal arrange-

ment of particles. Figure 6.12 shows a similar pattern at the upper-right edge of 

the "small square" region. As can be seen from the side on-view of the model, 

this pattern is due to the stacking sequence CABA of layers 3 to 6 of the model, 

which is the opposite fcc sequence to the region of the small squares, suggesting 

that the edges of the band in figure 6.12 represent stacking faults. 
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Figure 6.13: The square pattern seen in the (30) section, with reduced particle 

size, and a view perpendicular to it, but with natural particle size. 

So, whether of "normal" or "small" spacing, it would appear that: 

Square order is found in {302} views of rscp crystals. 

6.2.7 Other patterns 

The patterns described above are not the only ones to be found in colloidal crystal. 

This section presents some others, which have not yet been as fully explained, but 

which are nonetheless worth reporting, albeit with rather tentative explanations. 

Five-fold symmetry 

Occurrence of five-fold symmetry is always of interest in crystallography. Figure 

6.14(a) shows two particles (highlighted by dotted circles) which appear to be at 

five-fold centres of symmetry. 

Examination of the appearance of the surrounding regions suggests that some-

thing akin to the zig-zag pattern could explain this image. Indeed, both particle 
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Figure 6.14: Five-fold symmetry? (a) Phase contrast image, Z. = 420 nm; R = 
460 + 32 nm; age = 21 days (b) Scheme for "pentagonal twinning". 

spacings and the angles of their slanting lines are close to the zig-zag values. Re-

membering that the kinks of the zig-zag view can be considered as twin boundaries 

and that the angle between the (0001) hexagonal layers and the {1I01} slants 

(themselves traces of hexagonal layers) is arccos 1 = 70.5° 72°, one could 

imagine that, with a small amount of distortion, a form of twinning whereby 

five-fold symmetry could be achieved. 

Figure 6.14(b) shows a possible scheme: at twin boundaries of the zig-zag 

type, the (0001) planes of both twins are parallel to the boundary. However, the 

distinction between (0001) and (1101) is arbitrary in an fcc region, so another twin 

boundary, at 70.5° to the first is possible. Repeating this rotation another three 

times would complete a pentagonal set of twins, if a small amount of distortion 

of the zig-zags were permitted. The sets of parallel lines in the figure represent 

the (0001)/(1I01) plane traces and show how this twinning scheme might work. 

The situation in the micrograph is obviously more complicated than this and 

needs more careful explanation, but some form of multiple twinning would seem 

to be clear. 
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Figure 6.15: Linear patterns (DIC images; R = 540 + 27 nm; age = 57 days; (a) 

Ac = 0.9 (b) Ac = 0.1) 

Lines 

The peculiar symmetry of rscp crystals means that lines spaced comparably with 

the hexagonal layers are a common feature of micrographs of colloidal crystals, 

whereas order along the lines, with or without coordination between lines, can 

take many forms (as witnessed to above), if it is apparent at all. 

Figure 6.15 shows an interesting variation on this theme. Both (a) and (b) 

show the same field of view, but the resolution of (b) is much decreased due to 

greater coherence of the illumination. 

Common to the images is a length scale of 823 ± 40 urn, representing the 

spacing of lines running from top left to bottom right. For 14 = 540±27 nm, the 

layer spacing -t/1a = 882 ± 44 nm for '/ = 0.74 and 795±40 nm for 4' = 0.545, so 

this line spacing is consistent with the lines being traces of the hexagonal layers. 

The interesting feature of figure 6.15 is the extra detail that DIC is able to 

bring to the lines (a phase contrast image of this field of view is very similar to 



6.2. INTERPRETATION OF SINGLE MICROGRAPHS 
	

139 

40 

&L4  

' 	a 	 a . •IV 	/ 	.( 

: 

ah14. .S.d., 

Iluni 	-J ie? 
dI 

0 

Figure 6.16: R = 540 ± 27 rim, Z0  = 420 rim, DIC, age = 57 days 

(b)). This detail is on a length-scale of 528+10 nm, which is very close to a if the 

crystal is close-packed, a contention the age of the suspension would support and 

the line spacing would allow. What is not apparent from this single micrograph 

is that a shift of focus causes the lines shift laterally, indicating that this view is 

not perpendicular to the c-axis, so a value for the line spacing of slightly greater 

than the layer spacing is understandable. 

The question remains, then, of what might cause order on a length scale of 

within the layers. What seems most likely is that, due to the better optical 

sectioning of DIC (with a large condenser aperture), a slice between close packed 

lines is being seen and that this view may well be related to the disjointed lines 

of the (1010) view, but further analysis is required. 

Herringbone 

Figure 6.16 shows parts of three crystallites: one showing the zig-zag pattern, 

another the lines of figure 6.15(a) and a third a sort of "herringbone" effect of 
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Figure 6.17: (a) "Basket weave", DIC image (b) Imperfect zig-zags, phase contrast 

image (R = 460 ± 32 nm; Z. = 420 nm; age = 59 days) 

alternating bands of slanting lines. These lines are spaced at 811 ± 17 nm and 

those in adjacent bands slant at 56 ± 0.5° to one another. 

The way that particles appear to go in and out of focus across the herringbone 

pattern suggest that the section seen in this crystallite is at an angle to any one 

plane of particles. In the case of hexagonal patterns, it is not unusual to find 

crystallites where particles are clearly in focus only in bands across a crystallite. 

The regular spacing of such bands, which shift on focusing, supports the idea that 

it is a view tilted at a small angle to (0001) that is being imaged and suggests 

that the band spacing could be used to determine the angle of the tilt. However, 

in the case of this herringbone effect, while the lines within the bands shift on 

focusing, the bands themselves remain in place, so a more subtle explanation is 

needed. 

Basket-weave 

Figure 6.17(a) shows a "basket-weave" pattern only ever observed in DIC images. 
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The vertical "warp" is spaced by 764 ± 24 nm (0.83 ± 0.03)a for a = 2R, as 

in close packing, so this could be due to the hexagonal layer spacing at 

0.816a. The "weft", while appearing to run at right angles to this on a local scale, 

gives an effect of being angled 72.5 ± 1 . 00  in the larger view, so some evidence for 

fcc stacking may possibly be here. 

Imperfect zig-zags 

Figure 6.17(b) shows a pattern in many ways similar to the zig-zags of the {1120} 

view: the lines running from top right to bottom left are spaced by 740±10 nm 

(0.80 + 0.01)a for a = 2R, and the zig-zag pattern tilts at 69.5 ± 1.00 to these 

lines. However, the zig-zags are not as clearly imaged as in the "proper" pattern 

and sometimes the particles in adjacent lines appear to almost line up with one 

another. 

* 	* 	* 

The patterns presented in this section, some explained in detail and others 

requiring further analysis, have shown many of the features to be expected of sec-

tions through rscp polycrystalline solids. These single images of the hard sphere 

solid have thereby been able to confirm the structure expected from theory and 

reported previously from both light-scattering and microscopy. A full under-

standing of the patterns seen, along with an appreciation of how such parameters 

as the stacking probability can be determined from a given pattern is obviously 

fundamental to the application of microscopy for the study of how the structure 

of colloidal crystals varies with time, volume fraction, hardness of interaction etc. 

The work presented here therefore represents a springboard for the future. 
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6.3 Constructed views of an image stack 

In this section, an image stack of a colloidal crystal is used as a three-dimensional 

data array and views of the array at a number of angles are constructed. These 

views are found to compare well with the images of a model crystal viewed from 

the same directions. 

In the whole of this section, wherever x-, y- or z-directions are referred to, 

these shall be those of the experimental data set, i.e., the z-direction is parallel 

to the optical axis of the microscope and forms the conventional right-handed 

mutually-perpendicular set with the x- and y-directions. In the micrograph shown 

in figure 6.18(a), which represents the top image of the stack, the x-direction is 

horizontal, from left to right; the y-direction is vertically upwards, as depicted in 

figure 6.18(c). 

6.3.1 Experimental and analytical details 

Experiment 

A suspension of particles of radius R = 460±32 nm (as measured by static light 

scattering) in cis-decalin, at a volume fraction 4' = 0.540 4'M,  so that most of 

the suspension would be crystalline, was sealed in a rectangular capillary of the 

type described in figure 4.1.2. 

A week after sealing, the suspension was observed using an Olympus BX-

50 microscope, fitted with an oil-immersion 100x oil-immersion objective (A = 

1.25). Initial examination confirmed that, as expected for 4' 4'M, the poly-

crystalline solid occupied nearly the entire depth of the capillary. Under phase 

contrast, a region showing the "disjointed-lines" pattern identified above as be-

ing characteristic of the {ioio} view was found and an image stack measuring 

Nprix  X X Ni,, = 76 x 76 x 32, with Azi, = 460 nm R, was recorded. 

The field of view of each plane, the top one of which being shown in figure 

6.18(a), is (5.5± 0.1 jm) 2 . Six horizontal lines of dark particles can be seen, with 
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Figure 6.18: A section of colloidal crystal and its computer model: (a) the top image 

from a stack of 32 planes, showing 6 rows of (dark) particles in a "disjointed-line" 

pattern; (b) a computer model of 6 hexagonal layers, showing the {10i0} view, with 

the nearest spheres in each layer coloured a paler shade, to show that they are in the 

same arrangement as the particles in (a); (c) the direction conventions for the x- and 

y-axes and positive rotations about them, as used in this section. 

the third line from the bottom being perhaps clearest, showing five spheres. 

Measurements give the s-spacing of the particles to be 1130±57 nm and they-

spacing to be 901 ±45 nm. For = 0.545, as expected for a suspension only a few 

days old, the {10I0} view would predict spacings of a = 2.22R = 1021 ± 72 nm 

and = 834 ±58 nm, respectively, so identifying the x-y plane in this way is 

consistent with the crystal being uncompressed. 

Computer model 

Given the close similarity between the disjointed-lines pattern of the planes in the 

stack and the {1010} view of a rscp crystal, a computer model (using Cerius 2 , 

as before) was constructed using six hexagonal layers in the stacking sequence 

ABCABA, chosen from the appearance of the stack side on (see the 90 0  image in 

figure 6.19). The original model of 20 x 20 x 1 unit cells was faceted to give an 

s-width of 5 particles, to match figure 6.18(a) and a z-extent of 15 particles to 

agree with the side-on view. 
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Figure 6.18(b) shows the 110101 view of this faceted model; the nearest 

spheres in each layer have been highlighted to make the comparison with the 

disjointed-lines pattern of (a) clearer. 

By rotating this model, comparisons could be made with the angled views 

constructed from the experimental data. 

Construction of views from experimental data 

As described in §4.3.3, MetaMorph® image-processing software was used to con-

struct views of the stack of micrographs at a variety of angles to the z axis. 

6.3.2 Views obtained by rotations about the y-axis. 

If the identification of the individual images in the stack with {10I0} sections is 

correct, then six-fold symmetry should be found about the y-axis. Figure 6.19 

shows both MetaMorph® constructions and views of the Cerius 2  model at rota-

tions at 300  intervals about this axis. The spheres in the model have been reduced 

slightly from their "natural" size (giving q = 0.545) so that their arrangement is 

easier to see. The views corresponding to 180° to 330°, are not included because 

they were found, as expected, to be simply mirror images of those shown. 

The first point to be noted about figure 6.19 is that all the views show six 

horizontal lines (as do views constructed at any angle of rotation about the y-

axis). If these correspond to six hexagonal layers, stacked parallel to the y-

axis, one would always expect to be able to see the layering clearly in any view 

containing that axis, such as all these are. 

Secondly, it is clear that the views can be divided into two sorts: 

• at 60° intervals, starting from 0°, individual particles are hard to make out 

on the lines, whereas 

• at 60° intervals, starting from 30°, the particles are clearer and seem to 

stack up along a slant. 
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Figure 6.19: Views of an image stack constructed after rotation about the y-axis and 

the corresponding views of a computer model 

That both sorts of views should repeat on 600  intervals is consistent with the 

hexagonal order of the six stacked layers suggested, but closer examination of 

the two gives even more evidence that the experimental data and putative model 

agree: 
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Lines of overlapping spheres 

Although not easy to distinguish particles along the horizontal lines of the con-

structed views of the first sort, it is possible to find order compatible with the 

appearance of overlapping spheres, as shown in the model views at the same 

angles. 

However, the first sort of view should correspond to {iOiiO} sections, where 

disjointed-line patterns might be expected. The individual images in the stack, as 

recorded, do show this pattern, but not even the 00  construction (which is parallel 

to the recorded images) does. The reason for this is that, while the individual 

images have a depth of field of < 1 urn, in the reconstruction the depth of field 

is the thickness of the entire stack along the direction perpendicular to the plane 

of the view, so particles at any depth will appear. This explains the appearance 

of overlapping particles in both the constructed images and the computer model 

(remember that slicing was required to show the disjointed-line pattern in the 

model - figure 6.9, whereas the model here shows as many particles as the image 

stack). 

Sloping lines of spheres 

The most striking point about the appearance of the views at 30°, 90°, 1500  etc. 

is not shown by figure 6.19, because the interval between the views is 30°. If 

a set of 360 views, at 10  intervals, had been given, what would be immediately 

clear is the way that only within a degree or so of the six angles corresponding 

to this sort of view do the particles become clearly distinct; for most rotations, 

the particles are not distinguishable even after the manner of the {ioiio} views. 

These angles, bisecting the f 1010 views and hence corresponding to {110} 

views, are perpendicular to the close-packed directions of the hexagonal layers, 

so the striking appearance of their views is due simply to the fact that most of 

the particles lie hidden directly behind others. Only at angles very close to these 

will this effect occur. 
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The sloping lines of particles also agree with the {110} identification of this 

view, where we would expect to find zig-zag patterns. Examination of the con-

structed view at 300  shows the bottom five layers to slope upwards to the right, 

at 71 ± 2° to the horizontal, before a kink at the fifth layer to slope upwards to 

the left at 69 + 5°. Both these angles are consistent with the expected value of 

( = arccos 70.5°. 

By the nature of the {110} form, one would expect identical angles and 

slope directions at 120° intervals, but mirror images of the zig-zags at the angles 

bisecting these. The 150° view does indeed show the same pattern as the 30° one, 

and the 3300  and 210° views are mirror images of them, but the 90° and 270° do 

not immediately appear to fit this scheme. 

While mirror images of one another, and both showing a kink at the fifth layer, 

the more immediately obvious slope of the particles in the bottom five layers is 

upwards to the right, at 55 + 2° to the horizontal, whereas we would expect 

a slope to the left at ( 70.5°. Such a slope, at 69 ± 2°, can be found, however, 

although it is less clear. Similarly, it is possible to trace lines of particles sloping 

up to the left at 52 ± 2° to the horizontal in the 300  and 1500  views. The reason 

for the superficial difference in the appearance between the 90° and 270° views 

and the other four {1120} views is probably due to the fact that the images of 

spheres are elongated along the z-direction, an effect which is most obvious in 

views containing that axis. 

So, views constructed after rotation of the image stack about the y-axis would 

appear to confirm the identification of the stack as being of a region of rscp 

crystal with the stacking direction parallel to the y-axis and the individual planes 

representing {1010} views. To complete the investigation, however, consideration 

of other views is required. 
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6.3.3 Views obtained by rotations about the x-axis. 

The stacking sequence of the bottom five layers particles being fcc suggests that 

certain angles of rotation about the x-axis should present distinctive patterns. 

If the sixth layer of particles is removed from both the image stack (i.e. crop-

ping each image to = 61) and the computer model, only the fcc sequence 

will be seen. 

Predictions from the computer model 

Figure 6.20 shows the five layer Cerius 2  model: four angles of rotation about 

the x-axis are given, along with the 900  rotation about the y-axis. This last view 

helps to make clear the reasons for choosing the four given rotations about x-axis, 

the planes of the views of which are traced by dashed lines: the 19.5° and 54.7° 

views look directly along the sloping lines of the particles, whereas the 109.5° and 

144.7° views are perpendicular to these. 

The 19.5° view, for which the spheres have been displayed at 1  of the size 

required for close-packing, shows a tight hexagonal order, with ten vertical lines 

of particles. With any larger size of sphere, overlapping obscures this order. 

Even though displayed 25% larger, the particles are clearly separated in the 

54.7° view, where hexagonal order is found too, but the hexagons are not regular: 

the spheres are aligned along horizontal lines and lines at +55° to the horizontal, 

with 4 or 5 spheres, alternately, on the horizontal lines. 

Any two of the four sets of hexagonal planes in an fcc crystal are at ( = 

arccos 70.5° to one another. A rotation of 109.5° achieves the same effect as 

would —70.5°, so, just as the original 0° view shows hexagonal layers side-on, so 

the distinctive feature of the 109.5° view is of horizontal lines caused in the same 

way. 

Rotating by 144.7° from the (1010) view gives the (032) view, which, being 

of the {302} form, is parallel to one of the faces of the face-centred cubes. In this 

view particles are seen at two levels, each level being a primitive square lattice of 



6.3. CONSTRUCTED VIEWS OF AN IMAGE STACK 	 149 

19.5° 54.7° 	 109.5° 

.... .... _.sNs, .....- ••.•.•.•. _N._. 
liii Ill Ill ••.•.•.•. iuiijmumii III 
11111111 IF 

•..S..... IIIIIIIIIIIIIJJIIF 
.:.:.:.: lIJIIIfflIfl$JJ III 

. ltQhtIIItflhIJIIF 
0IlItflhIIIIIIIIF • .. 	. ltflItIIItIJItIIII ••.•.•.•. lIlIlIflItfilDIll .•.. ISNSSSSS 

.....—sss- .... issr .... 

144 . 7 0  

54.7 ° 	19.5 0  

109.5 ° 	144.7 °  

Figure 6.20: Four views of an fcc model obtained by rotation about the x-axis, with 

a 90° y-rotation view, as a key to show their planes. 

twice the spacing of the pattern seen in the figure. The reason that the particles 

appear to touch in this view is because they have been displayed at of 

the size required for close-packing. 
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190 	 57 0 	 115 0 	 1470 
 

Figure 6.21: Views of an image stack constructed after rotation about the x-axis 

Results from constructed views 

An examination of the appearance of views constructed from the stack of image 

data, upon rotation about the x-axis showed a close, but not exact correspondence 

with the model views. The four views of figure 6.21 show patterns similar to the 

predicted ones. The angles chosen for these views were those that gave the clearest 

patterns. All four angles are close to those predicted. 

The closest correspondence is in the case of the "small hexagon" pattern of the 

19.5° model view and the 19° constructed view, where both show ten vertical lines 

of 12 or 13 particles. Given the overlapping of spheres that might be expected in 

this view, it is remarkable quite how well this order is shown. The 20° view was 

also constructed, MetaMorphO only allowing rotation by integer degree values, 

but the pattern was not quite as clear, indicating that the stacking of planes 

in the colloidal crystal may have been slightly displaced laterally from the ideal 
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positioning, although this is hard to understand, as the close agreement between 

predicted and constructed views under rotations about the y-axis eliminates the 

possibility that the z-scaling was incorrect, since this would lead to distortion of 

the hexagonal order in the x-z planes. 

The 57° construction shows the same "squashed hexagon" pattern as the 

54.7° model view: clearly separable particles arranged on horizontal lines and at 

+(55 ± 2°) to the horizontal, with 4 or 5 spheres, alternately, on the horizontal 

lines. The larger discrepancy between the angles of the two methods, compared to 

the "small hexagon" pattern views, can perhaps be explained by the fact that any 

extra displacement in the stacking sequence along the z-direction would become 

more apparent for views at smaller angles to that direction. 

The 147° construction is consistent with the 57° one in that the two are 

perpendicular, as are the 54.7° and 144.7° model views. The constructed view 

shows a certain amount of distortion, in that the lines of the particles are not 

quite straight, but the angles between the lines measure 88 + 2° and the numbers 

of particles in the lines matches the model. 

The least satisfactory comparison is between the model at 109.5° and the 

constructed view at 115°. Horizontal banding could only just be discerned in 

constructions at 109 0  and even the clearest pattern, the 115° one shown, was not 

very clear, but rotating the diagram by 90° can make it easier to detect by eye. 

The largest discrepancy in angle of the predicted and constructed views of the 

four patterns considered here can perhaps be explained, as before, by the fact 

that these angles are the closest to 90°. 

To determine the precise nature of the reason for these angular discrepancies 

requires further thought, but the closeness of the agreement of the predicted views 

and those found by reconstruction suggests that only minor differences remain to 

be found between the ideal rscp structure of the computer model and the actual 

structure of the colloidal crystal. 
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* 	* 	* 

While work remains to be done, the results presented in this chapter go some 

way towards proving the usefulness of direct imaging in unravelling the structure 

of colloidal crystal. Further analysis of other patterns may still be required and 

development of three-dimensional construction techniques to allow rotation to 

any azimuth and co-latitude may well be desirable but the methods established 

here provide a firm foundation for establishing any such work. 
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7.1 Experimental details 

In all the experiments, the suspensions were prepared first in "bulk" containers, 

viz., glass cells with Xu  x Yu  x Zu  = 1 cm x 1 cm x 5 cm. These cells were then 

observed over a period long enough to allow the separation of those suspensions 

with volume fractions OF < 0 < cM into crystal and fluid regions, so that both the 

volume fraction could be accurately determined (as Paulin and Ackerson [1990], 

see page 113 above) and some measure of an upper limit to the time required for 

crystals to nucleate could be gained, from the time for the first crystals to appear 

to the naked eye. 

Before these suspensions were introduced into the capillary tubes used for the 

microscopical observation, they were thoroughly shear-melted by shaking until 

no solid regions could be found in the bulk containers by eye and then tumbled 

for at least 12 hours to remove all microscopic traces. 

Two different suspension media were used: the "standard" mixture of decalin 

and tetralin and a mixture of decalin with cycloheptyibrornide (CHPB), which 

provides a better density match for the PMMA-PHSA spheres (the case for us-

ing this medium shall be outlined in §7.3). For each medium, suspensions were 

prepared at three volume fractions: one in the middle of the coexistence region, 

one just above the freezing volume fraction and one just below it. 

For all suspensions, the colloidal spheres had R = 540 ± 27 nm and the 

mixture used as the medium was chosen to give a refractive index match close 

enough to allow crystallization to be observed by eye in the large glass cells, but 

not too close to give insufficient phase differences for good microscopical images; 

the image stacks, recorded in DIC, using a Zeiss Axioskop FS microscope with 

A = 1.40, had = = 128 and LZjm  = 0.44 P IX 

Although the 14 jm square field of view gave access to only a narrow col-

umn within the suspension, observation of the wider field of view shown on the 

CCD video monitor, combined with previous experimental experience, includ-

ing wide-ranging surveys of mature suspensions, confirms that these images are 
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The Kinetics of Hard Sphere 

Nucleation 

In this chapter six series of image stacks are presented, each series following the 

development of a different suspension over a period of time. The duration of the 

observation was chosen to be sufficient to demonstrate the occurrence or absence 

of crystal nucleation, depending upon what would be expected in each case from 

the observation of the behaviour of the suspensions in the bulk. 

The results are presented in the form of montages of images, so that both 

time and depth variations can be followed together for a single suspension, and 

are supplemented by graphs showing the positions of crystalline regions, which 

are able to give better time-resolution, although they cannot show the appearance 

of the suspension. 

The interpretation of results in this chapter concentrates on the key differences 

between the six series of images. As the intention here is to illustrate the potential 

of microscopical studies of nucleation, the emphasis is on presenting good results 

as the firstfruits of the microscopical techniques developed earlier in this work. For 

this reason, the full interpretation of what is presented here remains a challenge 

for future work. 
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representative of the behaviour throughout the central region of the capillary. 

7.2 "Standard" suspensions 

The mixture of decalin and tetralin used for these three suspensions had m = 

1.4915 + 0.0005 (measured using an Abbe refractometer, with a filament lamp as 

illumination), with suspensions being prepared at 0 = 0.525, 0.502 and 0.490. 

7.2.1 0 = 0.525 

In the large cell, this suspension first showed crystallites visible to the eye by 

Bragg reflections after about 80 minutes. The effective volume fraction was mea-

sured as 0 = 0.525 ± 0.001. 

Overview of entire observation period 

Figure 7.1 shows how this suspension developed over the course of the three hours 

after it was introduced into the capillary tube used for microscopical observation. 

Over the course of this period the suspension separated, as expected, into an 

upper, fluid region and a lower, crystalline one. The effective volume fraction 

= 0.5251 ± 0.0006, implied by the observed final ratio of crystal to fluid, 

X = 0.61 ± 0.015 (see equation 5.6) was in very close agreement with the bulk 

result. 

That the suspension took only an hour or so to reach a state which required 

several days in the bulk may be explained by the fact that the crystallites in the 

capillary needed to sediment distances 0(10-2)  of those in the large cell, in order 

for separation into distinct regions to occur. 

Images spanning the nucleation period 

To show the appearance of the suspension during the course of its phase separation 

from the metastable fluid state in which it was introduced into the capillary, figure 



156 
	

CHAPTER 7. THE KINETICS OF HARD SPHERE NUCLEATION 

100 

90 

80 

70 
U) 
C 
2 60 

J 50 

40 w -c 
30 

20 

10 

n 

x 	
* x X X 

ic 

HHHH 	V '' 	
V V 

Vc7V 

x 	 4 

* 	x 	** 
V 	 V 	ci 

0 	15 	30 	45 	60 	75 	90 	105 120 135 150 165 180 
time/minutes 

Figure 7.1: Graph of crystallization in capillary (interior vertical extent 100 pm), with 

= 0.525. The limits of regions where crystallites can be found in the field of view 

are shown by "x" symbols; "V" and "z" represent the upper and lower bounds of 

a fully crystalline field of view. For clarity, dotted lines have been added to highlight 

partially crystalline sections of the image stack. The solid line, referred to on page 

158, has a gradient of 8 x 10 m s'. 

7.2 shows a selection of eight images from each of six of the stacks recorded. The 

images selected from each stack were from the same eight heights above the 

bottom of the tube, chosen to span the depth of the capillary and intersect with 

regions of interest identified by figure 7.1. 

The stack at 7 minutes was the first recorded and shows only a very slight 

and gradual increase in particle density towards the bottom of the suspension. 

No regions of order can be found that are more than a few particles across. 

The beginnings of a larger region of order may just about be detected in the 

image at 47.5 pm of the stack at 24 minutes, but after 30 minutes it is clear that 

crystallization is in progress, with at least two crystallites in view. This region 

is seen to grow in all three dimensions and eventually joins up with a region of 

crystal that has grown upwards from the bottom of the suspension. In the final 

stack, the sharp division of the suspension into polycrystalline and fluid regions 
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Figure 7.2: Images of phase separation at = 0.525, showing the appearance of the 

suspension at heights z = 16.0, 26.5, 37.0, 47.5, 58.0, 68.5, 79.0 and 89.5 Jim above 

the bottom of the 100 pm deep capillary tube, at times of 7, 24, 30, 42, 60 and 180 

minutes after being left to settle. 
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is clear, as is the considerable density variation of the fluid region. 

The later-appearing, lower crystalline region that appears to grow upwards 

is probably the result of sedimentation. In the bulk, a small region of crystals 

which appear to be columnar can be found growing up from the bottom of the 

cell, even with , < 95F = 0.494. Growth rates are typically 0(10 - ) m s 1 , which 

agrees with the graph in figure 7.1, where the solid line following the trend in 

upward growth of the lower crystalline region has a gradient of 8 x 10 m s'. 

The sedimentation velocity of a single particle of radius R is given by 

Vsed 
= 2R2(p - pm)g 

' 	 (7.1) 
9 im  

where p and 77 refer to density and viscosity and the subscripts p and rn designate 

the particle and medium respectively. For this suspension, p p  = 1.2 x iO kg m 3  

and Pm = 9.0 x 102  kg m 3 . Using the ad hoc fitted expression suggested by 

Meeker et al. [1997], the viscosity of the medium in the presence of the particles 

is increased by a factor (1 - 4)_1.76 over its natural value of 3.0 x iO Pa s, so 

we have Ved 3 x 10'° m s 1 . Although collective diffusion of particles, which 

is somewhat quicker, is responsible for the growth of sedimentary crystals, this 

calculation shows that we are dealing with the right time-scale. 

The middle crystalline region that appeared first, on the other hand, being ini-

tially unconnected with the bottom of the tube cannot be this sort of sedimentary 

crystal. Unfortunately, the first crystallites in this region appear to have grown 

into the field of view from outwith its limits, so the exact appearance of their ear-

liest stages is not known from this experiment. It seems likely, however, that they 

had their origins in small ordered regions of the sort seen in the earlier stacks, 

but the answer to this question will have to await further experiments. What is 

clear is that this method is certainly amenable to answering such questions. 

Discussion 

Two main points of interest arise from the results of this experiment: The first is 

that the details of the phase separation of a suspension of this volume fraction, in 
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terms of both time-scale and spatial proportion, is in agreement with the findings 

in the bulk. 

Secondly, the image stacks show that crystallization is able to occur within 

the bulk of the liquid, although sedimentation does have noticeable effects over 

the time-scale of the nucleation-and-growth process. While sedimentation is the 

likely explanation for some of the final polycrystalline region, other crystallites 

have formed independently of this mechanism. 

7.2.2 0 =O.49O 

This suspension showed only a small region of sedimentary crystals at the bottom 

of the large cell when left to stand for several weeks. This region grew upwards at 

a rate of 7x 10 m s'. The volume fraction 0 = 0.490±0.02 was calculated from 

the ratio of amorphous sediment to clear solvent after centrifuging (see §5.2.3). 
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Figure 7.3: Graph of crystallization in capillary, with 0 = 0.490. The limits of regions 
where crystallites can be found in the field of view are shown by "x" symbols; "V" 

represents the upper bound of a fully crystalline field of view. 

Figure 7.3 shows that the first signs of crystallization occur after an hour or so, 

with the crystalline region then growing upward from the bottom of the capillary 
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tube, initially at a rate of 6.5 x iO m s 1 , but progressively more slowly until, 

after about 4 hours, no further growth of the sediment occurs. 

The images in figure 7.4 illustrate various stages in this process: the stack 

at 15 minutes was the first to be recorded and shows no long range order and 

as yet little sedimentation; after 45 minutes, the top of the tube is becoming 

visibly less dense and the beginnings of order are perhaps just about to appear at 

the bottom; at 75 minutes, the bottom frame is showing long-range order more 

clearly; this becomes ever more apparent as the crystalline region grows upwards, 

as evidenced by the stacks at 105 and 135 minutes; the final ratio of crystal to 

fluid is shown in the stack at 240 minutes. 

That the initial rate of upward growth of the crystalline region is very similar 

to the bulk rate would confirm the sedimentary explanation for the crystalline 

region in this suspension and that sedimentation should be a significant effect is 

clear from the appearance of the images close to the top of the tube. 

The reason for the halt in the growth is probably that, as the crystalline 

region grows upwards, the osmotic pressure of the fluid region above which drives 

the crystallization process decreases, and there will come a point at which is no 

longer sufficient to drive the phase transition [Pusey, 1999]. When this occurs 

will depend upon the overall volume fraction of the sample, but one might expect 

that a significant proportion of the suspension container would be crystalline at 

this point (if all the crystal were at 0 = 0.545, the lowest likely value, an average 

fluid volume fraction even of as much as 0 = 0.45 would result in x = 0.52). If the 

large cell had been observed for the month or so that would have been required 

for the sedimentary crystals to reach a height of several centimetres, then this 

same stop to the sedimentation process would have been observed [Paulin and 

Ackerson, 1990]. 

By measuring the variation in particle density with depth over the fluid re-

gion a suspension at equilibrium, a measure of the significance of sedimentation, 

viz, the sedimentation length Zsed,  can be obtained (see 8.1). By counting the 
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Figure 7.4: Images of sedimentary crystal growth at 0 = 0.490, showing the appear-

ance of the suspension at heights z = 8.0, 20.5, 33.0, 45.5, 58.0, 70.5, 83.0 and 

95.5 urn above the bottom of the 100 urn deep capillary tube, at times of 15, 45, 

75, 105, 135 and 240 minutes after being left to settle. 
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numbers of particles clearly in focus in the top planes of the stack recorded after 

22 hours, the results shown in figure 7.5 were obtained. In the most dilute region, 
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Figure 7.5: Sedimentation profile of R = 540 nm PMMA spheres in a decalin-tetralin 

mixture: the sedimentation length is found from the gradient of the dilute region. 

toward the top of the liquid, the number density of particles increases close to ex-

ponentially with depth. The gradient of this region in figure 7.5, 3.09 ± 0.06 /im, 

is the sedimentation length. That it is not much larger than the particle diameter 

shows that sedimentation can be expected to be a significant effect. 

Although this experiment does not teach us about the homogeneous nucleation 

of colloidal crystals, it does show that sedimentation is even more of a significant 

effect in these small capillary tubes. 
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7.2.3 0 = 0.502 

In the large cell, this sample first showed crystallites in the body of the suspension 

after 24 hours, although it took several days for them to begin to collect clearly at 

the bottom. Applying Paulin and Ackerson's method [1990] again, the effective 

volume fraction was determined to be 0.502 + 0.002. 
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Figure 7.6: Graph of crystallization in capillary, with 4 = 0.502. The limits of regions 
where crystallites can be found in the field of view are shown by "x" symbols; "V" 

represents the upper bound of a fully crystalline field of view. 

At first sight, the behaviour of this suspension in the capillary, as shown by 

figure 7.6, is closer to that of the suspension at q5 = 0.490 where only sedimentary 

crystals were seen, than that of the other suspension in the coexistence region, at 

= 0.525. However, at least some tentative explanations may be found for this 

behaviour, by considering the constraints of the bulk nucleation process, given 

that sedimentation is occurring continuously. 

Looking at the results in more detail, no crystallization is seen up to about 

an hour after the capillary was filled, as can be seen in the images at 20 and 45 

minutes of figure 7.7, but after this point a crystalline region grows upwards from 

the bottom of the tube at about 8 x iO m s 1 , stopping at a height of 65 jtm 
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Figure 7.7: Images of phase separation at '2 	0.502, showing the appearance of the 

suspension at heights z = 18, 31, 44, 57, 70, 83 and 96 Minn above the bottom of the 

100 pm deep capillary tube, at times of 20, 45, 60, 90, 120 and 240 minutes after 

being left to settle. 

(see the remaining images of figure 7•7). 

That sedimentation should be a significant effect is once again clear, both 

from the appearance of the images close to the top of the tube, which show a 
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marked decrease in particle density over the four-hour interval illustrated, and 

from the rate at which the crystalline region grew upwards, which is comparable 

with previous results for sedimentary crystals. 

Two major differences exist between this crystallization sequence and that at 

= 0.490: the rate of growth of the crystalline region comes to a much more 

abrupt halt and the height at which this occurs is noticeably greater. 

The reason for this latter difference can be explained by the fact that the 

suspension is at a larger overall volume fraction, so that more crystal can grow 

before the fluid becomes too dilute to drive any further growth of sedimentary 

crystal. 

The reason for the fairly abrupt stop to the growth of the crystalline region 

is probably related to the presence of some equilibrium coexistence crystal for-

mation, that "fills in the gap" when the rate of growth of sedimentary crystal 

decreases. To address the question of why there is no other evidence for the ap-

pearance of bulk nucleated crystals, some reference to some aspects of the theory 

of hard-sphere nucleation is required. 

Following van Duijneveldt and Lekkerkerker [1995], the free-energy AG re-

quired to form a nucleus of N particles is given by 

zG=A+NAM, 	 (7.2) 

where A is the surface area of the nucleus, -y the surface energy per unit area and 

zt the chemical potential difference. 

For a spherical nucleus of radius R i.., containing particles of radius R at 

volume fraction 4, we have 

A = 47rR 2 	 (7.3) 

and 

N =. 	 (7.4) 

So we get 
qiR 3  

= 4ir'yR1, 2  + 	. 	 ( 7.5) 
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This rises from a minimum of zero at R, = 0 to a maximum at R = Rt (for 

,LL <0), given by 

Rcrit - - 8iryR 3  
1/ - 

By taking the nucleation process to occur at mechanical equilibrium, van 

Duijneveldt and Lekkerkerker [1995] suggest expressions of 

All 
- rcp 	- 	cp 	 CP 	 rcp 

kB T 	
I 

- 	rcp 	F 	cp - M 
+ 

&p - M + 1.34 (F - ) - rcp - 

+ln 
( F (cp - M) (OM + 1.34 ( - OF)) (qrcp - 

(rcp - F) M (cp - M + 1.34 (F - )) 	
( 7.7) 

and 
- 0.65kBT 

2  AD 
.t I 

Applying these relationships to the suspension in this experiment, we get a 

value of Rit = 14.5 pm, representing 0(10) particles. Given that a value of 

Rt = 3.1 pm, representing 0(101)  particles, is obtained for a suspension at 

= 0.525, which was seen to take at least half an hour to nucleate homoge-

neously, and that a 29 pm diameter nucleus would occupy nearly a third of the 

depth of the capillary tube, it is not surprising that the homogeneous nucleation 

of crystals should take much longer at this lower volume fraction and that the 

sedimentation process, taking only a few hours in the capillary, should take prece-

dence. However, by the time that the sedimentation process has begun to slow 

down this mechanism can begin to surface. 

7.3 Suspensions with a better density match 

Because of the effects of sedimentation, a set of experiments was carried out 

using a medium with a much closer density to that of the spheres, viz, an 80 : 20 

CHPB:decalin mixture (by mass), which had a refractive index nm  = 1.493 ± 

0.001. This mixture was calculated to have a density of 1.18± 0.07 x iO kg m 3 , 

which was very close to that of PMMA (1.19 ± 0.01 x 103  kg rn"3), but the 

ambiguity in the density-matching, shown by p,, - Pm = 10± 80 kg m-3 , renders 

(7.6) 

(7.8) 
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this result unhelpful. For this reason, the sedimentation length was measured (for 

details, see §8.1) and found to be 28 + 1 pm. This value is an order of magnitude 

larger than for the standard system and implies p,, - Pm = 23 ± 2 kg m 3 . 

This system has not yet been confirmed to provide a hard-sphere suspension, 

but initial results [Haw, 1996] suggest that suspensions with this ratio of CHPB to 

decalin should behave in very similar ways to the standard system. By measuring 

the proportion of crystal x in coexistence samples and comparing it to expected 

values - which is a particularly sensitive way of comparing effective and theoretical 

volume fractions, my experiments suggest that in the few days after the medium 

has been changed a slight swelling (about 1.5% radius increase) of the particles 

occurs. This amount of swelling is consistent with measurements of form factors 

[Martelozzo, 1998]. Furthermore, rescaling the volume fractions to take account 

of this swelling maintains the hard-sphere result of M  

OF 

F 	0.1 (equation 5.7). 

So, with the caveat that they are only provisional, the results presented in this 

section would seem to be worth at least airing. 

The three volume fractions for these experiments were chosen to be close 

to those used for the standard system, for ease of comparison of the effects of 

sedimentation. 

7.3.1 	5=O.489 

In order isolate sedimentation effects, a suspension was prepared at effective vol-

ume fraction 04  = 0.489 ± 0.017, determined from the proportion of amorphous 

sediment found after centrifuging for two days. Left to stand in a large cell, this 

suspension took several days before any sedimentary crystal could be seen and no 

crystallites were ever seen in the body of the suspension, during an observation 

period lasting four months. The steady rate of growth of the sediment observed 

over the first two months was 9.1 x 10-10  m s 1 , an order of magnitude less than 

that found for the previous experiments, as might have been expected from the 

ratio of the sedimentation lengths. 
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In the capillary, no evidence of any sort of crystallization was found, even 

over two days, so no plot of the crystal-fluid interface can be given, but figure 7.8 

shows a selection of representative views. Given that sedimentary crystals first 
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Figure 7.8: Images of a density-matched suspension at 0 = 0.489, showing the 

appearance of the suspension at heights z = 12, 37, 62 and 83 pm above the bottom 

of the 100 pm deep capillary tube, at times of 30, 90, 270, 750, 1470 and 2790 

minutes after being left to settle. 

appeared at this volume fraction previously after an hour or so, it might have 

been expected that some would have been found within a day or so. There may 

be some beginnings of ordering occurring in the latest stacks shown, but no clear 

evidence of sedimentation is found over the time period of this experiment, so we 

can perhaps ignore its effects over periods of a few hours in this system. 

7.3.2 0 = 0.510 

A suspension at 0 = 0.524 was prepared, but nucleation was very rapid, with 

large regions of order being found within a few minutes of filling the capillary, so, 
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with the intention of increasing the time for nucleation to occur by increasing the 

critical nucleus size, another suspension, at 	= 0.510 ± 0.002, was prepared. 

As can be seen from figure 7.9, this suspension shows some very interesting 
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Figure 7.9: Density-matched crystallization in capillary, 0 = 0.510. The limits of 

regions where crystallites can be found in the field of view are shown by 'x" symbols; 

"V" and "s" represent the upper and lower bounds of a fully crystalline field of view. 

For clarity, dotted lines have been added to highlight partially crystalline sections of 

some image stacks. 

behaviour. Briefly, an ordered region appears in the middle of the tube after 

about 40 minutes, but after growing to fill the field of view it recedes completely 

over the next hour or so. Shortly after this another crystalline region appears, 

about a third of the way up the tube. This region appears unconnected with the 

previous one and with a region growing up from the bottom of the tube. These 

two new regions eventually join and, after about 6 hours after the start of the 

experiment, the suspension seems to have reached some sort of steady state, with 

roughly the bottom third of the tube being crystalline, which is consistent with 

a volume fraction of 0.51. 

Figure 7.10 illustrates this behaviour. The three regions where crystallization 

was observed to originate are shown by the images at 48 and 59 pm of the stack 
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Figure 7.10: Images of a density-matched suspension at 0 = 0.510, showing the 

appearance of the suspension at heights z = 4, 15, 26, 37, 48, 59, 75 and 98 m 
above the bottom of the 100 im deep capillary tube, at times of 14, 41, 62, 150, 

300 and 1060 minutes after being left to settle. 
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at 62 minutes, the image at 26 pm of the stack at 150 minutes and the image at 

4 pm of that same stack. 

First, we should note that the images very close to the top of the tube show 

very little evidence of any reduction in particle density and that the rate of 

upward growth of the bottom crystalline region - obtained from figure 7.9 - is 

1.7 + 0.4 x iO m s', so this region is unlikely to be due to sedimentation. 

Secondly, we need to consider what has happened to the first crystalline region 

that appeared in the middle of the tube, grew to fill the field of view and then 

moved out of it. Five explanations seem worth considering: stage drift, diffusion, 

sedimentation, convection and melting. 

Stage drift, i.e. the movement of the suspension mounting relative to the 

objective, can be ruled out, as movements 0(100)  pm are the maximum likely 

over the time-scale of the disappearance of the crystalline region, given that the 

microscope illumination had been turned on a long time previously (see §4.2.2). 

Not only is the field of view 0(10') pm, but an ambient temperature change of 

several kelvin, such as would be expected for a magnitude of stage drift as large 

as this, is not likely in an air-conditioned laboratory. 

Diffusion also seems very unlikely. This region was observed on the CCD 

video monitor to be at least 20 pm in diameter. The time for an object of radius 

R to diffuse its own radius is of the order of 'A•  Following Meeker et al. 

[1997] again, a viscosity Tim  = 0(10 1 ) Pa s, i.e. 102  times the value for the pure 

medium without any suspended particles, gives a time t = 0(10) s, i.e., several 

days would be expected. 

That the crystallite does not disappear by sedimentation is clear, both from 

the fact that sedimentation does not have any noticeable effects over the time-

scale of the whole experiment, let alone the much shorter time over which the 

crystallite disappears, and from the fact that the upper and lower bounds of this 

region, followed in figure 7.9, show no evidence for any general vertical drift. 

Despite the way in which the crystalline region appears to disappear sideways, 
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convection would not appear to be the explanation, either. From past experience 

of similar experiments, the sort of large scale co-ordinated movement of particles, 

at least at the rates required here, has never been observed, except during the 

filling of capillary tubes and at the edges of drying out suspensions, neither of 

which are the case here. By way of confirmation, a recording of one image every 

second for half an hour, played back at high speed, showed no such drift in a 

suspension of similar age and volume fraction. 

The most likely explanation would therefore seem to be that the crystalline 

region has melted, not having reached the critical radius. Treating this region as 

a sphere (its vertical and horizontal extents were comparable), its radius reached 

at least 10 ,um. The theory of van Duijneveldt and Lekkerkerker [1995] suggests 

= 6.8 pm, but the surface tension of hard spheres is not well known and 

this theory assumes an isolated nucleus growing particle by particle from a dilute 

fluid, so that the expression used in this theory should give a value even this close 

to the lower limit implied by the melting explanation of this experimental result 

is in itself better than might have been hoped for. 

If this region does represent an unstable nucleus, then its structure might be 

expected to show unusual features [van Duijneveldt and Frenkel, 1992; Shen and 

Oxtoby, 1996]. None were immediately apparent on examination of the relevant 

section of the image stack, but the data are of sufficient detail to merit further 

analysis, given the time. For the moment, all that can be said is that melting 

seems to be the most likely explanation for the disappearance of this crystalline 

region. What can be said with confidence, though, is that, whether this melting 

explanation is reliable or not, this experiment makes clear the potential for optical 

microscopy to make a significant contribution to colloid physics. 

7.3.3 0 = 0.50 

In order to complete the comparison with the standard system, a density-matched 

suspension at just above the freezing concentration was prepared. In the large 
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cell, isolated crystals in the body of the suspension were first observed after four 

days, but no clear boundary between crystal and fluid could be discerned until 

a week later. The crystalline region at the bottom of the suspension, which 

appeared to contain only a very small layer of sedimentary crystal at the bottom, 

grew at a rate of 1.4 x 10 m s 1 , over the course of the two months that the 

suspension was allowed to stand. Since sedimentation did not seem to play a 

significant part in this growth, it seems likely that the extrapolation of the height 

of the crystalline region back to the start time would give a falsely low value for 

volume fraction. Indeed, the value of 0.496 + 0.001 obtained by this method was 

towards the low end of the range 0.499 ± 0.010 suggested from measuring the 

sediment after centrifuging. 

Figure 7.11 shows that nothing could be seen for the first five hours or so. After 
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Figure 7.11: Density-matched crystallization in capillary, 	= 0.50. The limits of 

regions where crystallites can be found in the field of view are shown by "x" symbols; 

"V" represents the upper bound of a fully crystalline field of view. 

this, a crystalline region grows upwards from the bottom of the tube, initially at 

a rate of 7.1 ± 1.2 x 10 m s 1 , before halting at a level of 21 ± 2 /lm. If this level 

represents the equilibrium proportion of crystal, then a value of = 0.505±0.001 
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would be suggested. 
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Figure 7.12: Images of a density-matched suspension at 0 = 0.50, showing the 
appearance of the suspension at heights z = 4, 17, 30, 65 and 96 pm above the 

bottom of the 100 jim deep capillary tube, at times of 30, 180, 360, 570, 750 and 

1350 minutes after being left to settle. 

The appearance of this suspension during this period is illustrated in figure 

7.12, showing the way in which the crystalline region appears at the bottom, 

grows, then reaches a steady value, all while the topmost regions have yet to 

markedly decrease in density due to sedimentation. 

Following van Duijneveldt and Lekkerkerker [1995] would suggest that the 

critical radius for a volume fraction of 0.505 would be about 10 jim, which could 

explain why only a single crystallite is seen in any image stack. That the volume 

fraction is more properly given by the value obtained from the capillary rather 
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than the bulk is likely, given that the speed at which the crystal growth occurs 

implies that the crystals are not sedimentary, whereas, the capillary being much 

shallower than the large cell, the equilibrium proportion of crystal to fluid is 

reached much quicker, i.e. within the duration of the experiment. If this con-

jecture holds, then the fact that the crystalline region nucleated at the bottom 

could well be just coincidental. 

* 	* 	* 

The results given in this chapter are obviously open to more detailed analysis. 

However, they satisfy the purpose of their inclusion, which is to give a taste of the 

sort of work which can be done using the experimental protocol established in the 

first part of this thesis. The following chapter adds to this demonstration, but 

those results have not been included here because they form a slightly disparate 

group, compared to the coherent set of this chapter. 
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Chapter 8 

Additional Interesting Observations 

This chapter contains several examples of the application of digital image process-

ing techniques to colloidal optical micrographs. The first example is an updated 

version of a classic experiment, now automated for rapid data collection. The 

second example shows a system of how particle recognition can be achieved auto-

matically in a particular, specific case. Thirdly, a possible method of measuring 

rates of diffusion is tentatively suggested. All three examples are included at this 

point by way of further demonstrating the potential of optical microscopy as a 

tool for colloid physicists, as well as suggesting avenues of future research. As 

such, they represent only preliminary results and await further development. 

8.1 Sedimentation profiles 

Being at the upper limit of the colloidal range, particles large enough to image 

will have a gravitational potential energy difference across their diameter close to 

their thermal energy, i.e., 

7r(P - pm )gRp4  kBT, 	 (8.1) 

where p, and Pm  are the densities of the particle and medium, respectively. The 

consequent particle-concentration variation with depth, or sedimentation pro- 

file, observed microscopically, was what lead Perrin [1908, 1910] to the discov- 
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ery of sedimentation equilibrium, for which he won the 1926 Nobel Prize for 

Physics and put "a definite end to the long struggle regarding the real existence 

of mo1ecu1es *. 

For dilute suspensions, the equilibrium sedimentation profile is exponential in 

shape, with a characteristic sedimentation length 

Zsed = 4 	
kBT 	 (8.2') 

ir(pp — pm )gRp 3 	 ' - 

For sedimentation to have only a very slow effect on a suspension, we require 

Zsed >> Ri,. Measurement of Zed  for a particular combination of particle and 

medium will therefore be useful in determining how significant sedimentation 

effects might be, for instance, in crystallization. 

Perrin carried out his measurements by directly counting particles, focusing 

by hand. With the automated system of acquiring image stacks, as described in 

§4.2, and an automated particle counting system, described here, sedimentation 

lengths can be measured in a few minutes. 

Automated particle counting 

Figure 8.1 shows a sedimentation profile for a suspension of PMMA-PHSA spheres 

in a mixture of CHPB and decalin (80 : 20 by mass), obtained from a stack of 

images spaced by 1 ym. The profile was the result of measuring the area of each 

image corresponding to in-focus particles, according to the following scheme (each 

stage is illustrated in figure 8.2): 

(a) The stack was recorded in positive phase contrast, so that dark regions corre-

sponded to particles. After recording, the stack average was calculated and 

a new stack was formed by subtracting this average and grey-level shifting 

by +128 for each image. 

Professor C.W. Osen, Royal Swedish Academy of Sciences, in the Presentation Speech - 

see Perrin [1965]. 
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Figure 8.1: Sedimentation profile of a suspension of PMMA spheres (J1 = 540 ± 

27 nm) in a mixture of CHPB and decalin (c 	0.05). The straight line is a linear fit 

(correlation coefficient = 0.98); the reciprocal of the gradient, Zed = 27.4 + 0.6 pm. 

First, to remove noise, the images were convolved with 5 x 5 smoothing kernel 

(cf. figure 3.19(b), where a 3 x 3 kernel is illustrated). 

To remove long range contrast variations, a convolution with a 30 x 30 smooth-

ing kernel was calculated. 

The difference between these two low passes, grey-level shifted by +128, gave 

a version of the original with contrast variations on length scales of 6 to 29 

pixels enhanced (the in-focus particles were expected to be about 15 pixels 

in diameter). 

A threshold was set at grey level 125 (just below the average), and the high- 
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1. 

(a) 

Figure 82 A scheme for counting particles from the area they occupy: (a) shows 

the basic image, (b) is the same image smoothed by a 5 x 5 convolution kernel, (c) 

ditto, but 30 x 30 kernel, (d) the difference between the two smoothed images, (e) 

binarized version of this difference, (f) binarized version of the basic image. 

lighted (dark) area measured. 

(f) If the same threshold were applied to the unsmoothed images a much less 

reliable estimate of area corresponding to particles would be achieved, owing 

to the noise and background intensity variations. 

If the area highlighted is proportional to the number of particles, then a log-

linear plot of area against vertical position should give a straight line and Zsed 

should be obtainable from the gradient. By this method, figure 8.1 gave a value of 

27.4 ± 0.6 urn, very close to that achieved by counting particles individually, viz., 

28.2 ± 0.6 pm. This close correlation was confirmed in a number of cases, so the 

thresholding-and-area-measuring method would appear to be justified. The ad-

vantage of this method is that the image processing and measuring can be entirely 

automated, without the need for sophisticated particle recognition systems. 
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8.2 A particle recognition scheme 

If all in-focus objects have a common characteristic, digital processing can be used 

to identify the positions of such a characteristic, i.e., we can achieve automatic 

particle recognition. 

In practice, particularly in dense suspensions, where particles are very close, 

it is hard to achieve a general scheme for a given imaging system which requires 

no fitting beyond the expected particle size. Volume fraction and structure of the 

suspension, and brightness, contrast and noise of the image all affect the choice 

of parameters in a particle recognition scheme. 

However, as an example of what can be achieved in one particular case, I 

include here a scheme for R = 540 1tm spheres imaged by Normarski DIC: 

Referring to figure 8.3, where the central image is the original image, as 

recorded, then (clockwise from the middle of the top row): 

The raw image is smoothed (with a 3 x 3 kernel), to reduce noise. 

The bright-to-dark intensity gradient from upper left to lower right across 

the DIC images of particles is picked out by convolving with the kernel 

labelled (a), which has a gradient of that sort, extending over a range corn-

parable with the diameter of a particles. 

To separate the regions corresponding to different particles, we convolve 

with sharpening kernel, (b). 

By setting the threshold at a grey level of 128, binarizing divides the image 

into particles and background. 

All bright pixels with fewer than 4 bright neighbours are eroded, repeatedly, 

until only single pixels remain. 

As sometimes more than one pixel remains per particle, we convolve with 

a disc the size of the particles (kernel (c)). 
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Figure 8.3: A scheme for recognizing particles automatically: the central image is the 

recorded DIC image of R = 540 pm spheres; then, clockwise from the middle of 

the top row, this image is smoothed, convolved with the kernel (a), then with (b), 

binarized, eroded to single pixels, convolved with (c), eroded again, convolved with 
(c) again. 

Those single pixels which had belonged to the same particle having now be-

come large, but fairly round, single regions, we perform the erosion process 

again, to arrive at one pixel for each particle. 

Finally, for the purpose of comparison with the original image we can con-

volve with the disc (c) again. 

The positions of the single pixels in the penultimate image (middle row, left) 

are closely correlated with the positions of the particles (cf. the original image). 

If this is the information required from the stack, then a considerable reduction 

in data storage requirements can be achieved by following this scheme: a single 
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128 x 128 8-bit image requires at least 16 kilobytes, whereas the coordinate pairs 

for, say, 100 particle positions requires only 200 bytes. Even storing the final result 

as an image, either in single pixel form or after convolution with the particle-sized 

disc, will mean an eightfold saving, as these images are binary, i.e. 1-bit. 

In the scheme given, grey-level values were scaled for each of the images shown, 

in order to bring the results of the convolutions to within the 0 to 255 range. The 

amount of scaling was chosen by inspection, for display purposes. Only when 

setting the threshold does a choice of a particular grey level make a qualitative 

difference to the final result. The threshold was chosen to lie at the midpoint of 

the range, in order to try to avoid being image-specific. 

This scheme gives quite good results for colloidal fluids at volume fractions in 

the range 0.5, but is not as good for denser systems, ordered or disordered. 

Nevertheless, schemes such as this can be useful, as long as they are applied 

appropriately. 

8.3 Measurements from time-average series 

If a series of images of a colloidal suspension is recorded over a period of time 

and then a series of averages of increasing numbers of images is performed, as 

shown figure 3.16, then the effect of particle motion is to increasingly blur the 

(averaged) images. 

How much blurring occurs will be a measure of how much movement has 

happened. Figure 8.4 shows results obtained by measuring the grey-level variance 

of six sets of averages. This measure was used because the effect of averaging is 

to reduce the range of grey levels used. 

The six sets of averages were obtained from images recorded at 10, 20, 30, 

40, 50 and 60 jm from the top of a suspension 100 prn deep, with j = 0.515. 

Sixty-one images were recorded for each set, at one second intervals; averages 

were of increasing numbers of images. Inspection of the recorded images showed 

that the five series closest to the top of the suspension were of colloidal fluid, 
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Figure 8.4: Diffusion coefficients from increasing time-averages? 

whereas the deepest was of a crystalline region. 

What is interesting about these results is the way that the contrast appears to 

decrease exponentially with time in the fluid regions, at rate that decreases with 

depth (it is also worth noting that the contrast of the crystalline region reaches 

a steady value). The volume fraction increase with depth may be the reason for 

the variation in the speed of blurring, so these measurements could possibly give 

some indication of diffusion coefficient, but the theory of how this would work 

has yet to be done. 
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Chapter 9 

Conclusions 

ihe aim of this thesis was to make the case for optical microscopy as a valuable 

tool for the colloid physicist, first by establishing a sound experimental protocol 

for optical microscopy suitable for colloidal suspensions, then by demonstrating 

some of the potential of such an approach. 

Techniques of colloid microscopy 

In establishing the experimental method reported here, many well-established 

techniques of the optical microscopy of phase objects were applied to the special 

case of colloidal suspensions and new techniques were developed in order to enable 

this application to include the full three-dimensional imaging of suspensions of 

sufficient thickness to show bulk behaviour. 

Having reviewed the basic principles of the imaging process in light mi-

croscopy, under conditions suitable for resolving colloidal length scales, the ef-

fects of defocusing, in the case of the image of a single colloidal sphere, were 

used to demonstrate the deficiencies of standard, bright field microscopy, as well 

as the ability of both phase contrast and Normarski differential interference con-

trast to overcome these deficiencies, in their own peculiar ways. Expressions for 

the contrast of images of colloidal particles were developed and used to explain 

experimental results. 
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The effects of a wide range of digital image processing methods on images 

of colloidal suspensions were shown, too. In particular, methods for counting 

particles and for the display of three-dimensional data were demonstrated, along 

with an example of an approach to finding particle coordinates. 

In solving the problems presented by the imaging of thick suspensions, new 

methods were presented for mounting such suspensions for microscopical obser-

vation, and for controlling the acquisition of three-dimensional image data. 

These new methods, along with a number of observations concerning points of 

practice, aimed at obtaining the best possible data, combine with the illustrated 

application of established methods to provide an introductory set of tools for 

all aspects of the real-space, real-time study of the microscopical behaviour of 

colloidal suspensions in three dimensions. 

Demonstrations of colloid microscopy 

Aside from examples illustrating the application of individual tools in the set, 

some of the potential of the whole set was shown by a detailed study of the struc-

ture of the hard-sphere solid and an investigation of the nucleation process, with 

the determination of sedimentation length from density profiles as a supplemen-

tary example. 

The structural study of the hard-sphere solid involved careful interpretation of 

the images obtained: by analysing image patterns, it was shown that, while unable 

to give as good optical sectioning as confocal microscopy, the quality of sectioning 

achievable was good enough, not only to confirm the expected random-stacked 

close-packed arrangement, but also to open the way for further investigation 

of local defects, the measurement of stacking probability being one particular 

illustration of this potential. 

By means of a time-lapse series of image stacks, the earliest stages of nucle-

ation were demonstrated to be accessible to study. 

Both these studies illustrated well the advantages of direct imaging over recip- 



rocal space methods: the direct route to structure determination and the ability 

to resolve fine detail spatially and temporally. This level of detail, impossible 

to achieve for atomic systems, has here been shown to be readily achievable for 

colloids, which can be used to model atomic behaviour with numbers of particles 

of several orders of magnitude larger than possible in computer simulations. So 

whether colloids are studied as model atoms, or in their own right, it can be seen 

that optical microscopy has a vital part to play, a part which it has been the 

purpose of this thesis to establish. 

Suggestions for future work 

Only some of the vast potential of optical microscopy, as applied to colloidal 

suspensions has been exploited here. Among the many avenues for further work, 

the following spring directly from what has been presented: 

Further investigation of the polycrystalline nature of the solid structure, 

looking into ageing effects on stacking probability and the crystallite size 

distribution, deformations of crystallites and variations of stacking proba-

bility with volume fraction and crystallite size, is perhaps the most imme-

diately obvious avenue for developing the work started here. 

The full analysis of a number of patterns presented by images of the rscp 

solid also remains to be done. In particular, it would be good to estab-

lish how much information each can give about stacking probability. The 

use of three-dimensional display methods on image stacks would be worth 

pursuing in this context. 

A deeper study of the nucleation process is required. Though particle track-

ing would yield the greatest detail, much could be obtained from following 

the development of the small regions of order as units. In particular, the 

structure of sub-critical nuclei would be worth examining further. 
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4. The key to a general scheme of particle recognition and hence coordinate 

extraction and tracking, would seem to lie in image deconvolution. A non-

trivial exercise in digital image processing, success would provide a very 

powerful tool to complement those presented here. 

There are many other possibilities which colloid microscopy opens up, but 

these suggestions, deriving from the work already done and presented here, serve 

as additional evidence for my original contention, viz., that careful optical mi-

croscopy is an extremely useful tool for the colloid physicist. 



Appendix A 

Derivations 

A.1 The Airy pattern - the bright field P.S.F. 

This appendix derives the monochromatic light amplitude and intensity distri-

butions for the image of an axial point object due to an aberration-free imaging 

system with a circularly symmetric exit pupil. The notation conforms to table 

2.1, except where otherwise stated. We will follow the approach of Rayleigh 

[1896], who stated that we can associate all diffraction effects with the propa-

gation of light between the exit pupil and the image, and treat the rest of the 

system geometrically. 

The object 

The object can be represented by a scaled Dirac delta function 

u(r,O) = A 6j (r,9), 	 (A.1) 

where A is the luminosity of the object, uniform over 27r steradians behind the 

object and the Dirac delta function öj  may be defined by 

circ (*) 
= 	= lim 

R-O 7r R2 ' 	 (A.2) 
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the circle function circ(*)  being defined by 

Ii: r<R 
circ 	= 	 - 	 (A.3) 

( R') 	O:r>R 

The geometrical output of the imaging system 

For a distance from H to Up of z, only a fraction 

+ Rp2] 
	

(A.4) 

of the light from the object will be accepted by the imaging system. where A is 

the luminosity of the object. 

For an aberration-free imaging system, a point object will lead to spherical 

wavefronts at the exit pupil, converging on the geometrical image, i.e. wavefronts 

of the form  

27r 
e/ 2 + 2  

 ~Z,2 +  r , 

2 

where z' is the distance H, to II' and )V is the wavelength of the light behind the 

exit pupil (b). 
The circularly symmetric exit pupil transmittance function r, is given by 

(rp 
circ 

il-p  ) - 
 

We get the light distribution at the exit pupil by multiplying together expres-

sions A.4 (to get the brightness of the geometrical image right), A.5 (spherical 

wavefront) and A.6 (to set the lateral extent of the wavefront): 

A 
u(r,Op )= 	[i_ 

z2+Rp2] 

e1 22 	/ r\ 

	

+ 2 	
(A.7) circ 

Dots have been used to separate the scaling, wavefront and pupil terms. 

Equation A.7 represents the geometrical output of the imaging system. Now 

we just need to consider the diffraction of this light distribution between ll, and 

H,. 
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The propagation of light from the exit pupil to the image plane 

If ) is small compared to z, Rp, R, and z ' , then we can treat the light as a scalar 

and use the Rayleigh- S ommerfeld formulation of the Huygens-Fresnel principle. 

Expressed in polar coordinates, this tells us 
r 

e ZXM d' 
u'(r',O') 

= fo fo 
u,(r,,0,) 
	1d ] 	

rp  drp 	 (A.8) 

where s is the distance between the points (r,, O'p)  and (r', 0'), so that 

S = s/z'2  + (r, cos 0, - r' cos 01)2 + (r',, sin 0, - r' sin 01)2 	(A.9) 

= 	z12 + r 2  + r'2  - 2rr'cos (0 - 0') 	 (A. 10) 
I 2 	,2 	2r'pr'cos (Op - OF)) 2 

Z = '(l+ 	
+r 

- 

Equation A.8 shows us that the image amplitude distribution will be given by the 

sum over the exit pupil wavefront u'7, of an infinite number of spherical wavelets 

propagating towards II', resolved along the optical axis. The term in square 

brackets represents the spherical wavelets and the term the cosine of the angle 

between the wavelet normals and the optical axis (by symmetry, the components 

perpendicular to the axis will cancel). 

Substituting for 4, from equation A.7, into equation A.8: 

f27r 
[ circ 

(r ' 

Rj s2Jz/2 
+ r,2 z' r dr d0. 

(A.12) 

Now, z' is large compared to R, and R' (i.e., we have Fresnel diffraction 

conditions). Moreover, the integrand in equation A.12 is zero for r'p  > R', and 

we have chosen R' to be such that no significant image information is found for 

r'> R'. This means that, expanding equation A.11, we can approximate 

r,2  + r'2  - 2r,r' cos (O, - 0') 
S 	z' + 	 ( A.13) 

2z' 

and 
	rp  

VZ,2 + r 2 z' + 	
. 	

( A.14) 
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While we apply these second-order approximations to the exponential in equa-

tion A.12, it is sufficient to apply the first order approximations s z' and 

VZ,2 + r'1, 2  z elsewhere. This gives us 

A - 	z 

4z' 	Vz + R22 ] 

)f o
cir

2,rs  r 

o 2ir

L c(' 
 R1,) 

	

-r'p  dr, d9p, (A.15) 

which we can rearrange to 

A 
U 

= 4i' z'2 [ -
VrZ2 + Rp2] 

eW 

f 
 00 27r 

p ! / 	_
srr' 

cos(o_o')dOI dr,,. 	(A.16) circ 
( r' 

The quadratic phase term e- \ rz-r shows that the effect of our approximations has 

been to treat the spherical wavefronts as parabolic surfaces. This is the physical 

meaning of the Fresnel diffraction conditions. 

Integrating with respect to 0, we get 

1 A 
U'  = 	 _______ 

4z'z'2 [i - ;+ Rp2] e f
r;,

circ (
2irJ0 —2irr,r'\

drp 
 \11pJ 	A's' )  rp  

where J0  denotes a zeroth order Bessel function of the first kind. 

Applying the circ limits and rearranging gives 

 

irA 
U'  = 

2iA'z'2 [i - 
e 

/z2 + Hp2  J0 

/'i rr'pr'\ 
r,J0 —2 ;'' )dr.  

Next, we change variables: 

)VA I 	z 	1 rs r
77 U 

= 8irzr'2 
1 
 - z2 + 	 j e 

L -2irR4,r'/.X'z' _21rr vr' (-27rr,'Pr'\ d (_2irrvr"\ 

'' '' ) '' . 
 

M 
Finally, integrating, using 	in Jo(m) din = M J1 (M) = —M J 1 (—M), we 

end up with 
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ARp 1 - 	 1 	,2  /2irR,r'\ 'TI? 

	

u'(r',O') = u r) 
= 4ir'z' L 	./z2 + Rp2] 

e"5Y7J1 	
) 	

( A.20) 

where J1  is a first order Bessel function of the first kind. This equation is our 

desired light amplitude distribution, the bright field amplitude point spread 

function of an axial point object, for an aberration-free imaging system with a 

circularly symmetric exit pupil. 

Before we consider the intensity distribution, first note that the Fourier trans-

form of a circ function is given by 

circ 

	

r' 	1 	R\'z'1 
1 	 (A.21) 

) 

(2irRpr"\ 
= 	

. I  
Comparison with equation A.20 shows the important result that: 

The image u'(r') of a point object 0 is just a scaled real-space Fourier transform 

of the pupil function r, centred on the geometrical image 0'. 

We should note secondly that, for off-axis point objects, the above arguments 

still work under Fresnel conditions, as can be shown by a simple change of coor-

dinate origins. 

Thirdly, we can make matters simpler if we normalize the Bessel function in 

equation A.20 to 	jinc(s) to get an alternative amplitude PSF: 

	

 12 	 /27r1%r' 

4zA'z'2 	

\ 
AR [i - 

z2 + Rp2] cinc 
	

'z' 	
(A.22) 

which has all the variation with r' contained in the jinc term alone; the other 

terms affect all values of r' (and 0') equally. 

To determine the intensity, we use I' = ulu*, so that 

(irAR,2 
2 	 2 

____ 	 _______ 	

2Rr'\ 

	

I'(r') = _4,Z,2) [i - 
	z2 + Rp2] jinc2 ( 	). 	

(A.23) 
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This is our desired expression for the bright field intensity point spread func-

tion of an axial point object, for an aberration-free imaging system with a circu-

larly symmetric exit pupil, i.e. the Airy pattern. 

As before, all the variation over H' is contained in the jinc 2  term, so we can 

often use 

(\ 
I'(r') =jinc2 	

A'z' 
2irRpr' 

) 	
(A.24) 

as our practical expression for the intensity point spread. 

A.2 Phase contrast image intensity 

This appendix uses the phasor representation of phase contrast to derive an ex-

pression for image intensity I'. Figure A.1 is an annotated copy of figure 3.2(c), 

showing the phasor scheme for phase contrast. This figure shall be used to de-

termine I'. 

[I] A 

IT 

Figure A.1: Phasor representation of phase contrast 
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First, note that 

OA = 	iZI,  

OB = 	= F Jill,  

OC = RZ'I 	= T U-1,  

OD = AB.  

Now 

= 	= DC 2 .  

By the cosine rule, 

DC 2  = 0C2  + 0D2  —2 OC OD cos (c + ) 

= 00 + 0D2  - 2 OC (OD cos,; cos 0 - OD sin c sin b). (A.30) 

Now, also by the cosine rule, 

AB  = 0A2  + 0B2  - 2OAOB cos p. 	 (A.31) 

From equations A.25, A.26 and A.28, this gives us 

0D 2  = iZ1 2  (1 + F2  - 2F cos p). 	 (A.32) 

By simple trigonometry, 

ABcosc=EA=OA—OE=OA—OB cos '. 	(A.33) 

From equations A.25, A.26 and A.28, this gives us 

ODcosc=IiZ(1—F cos p). 	 (A.34) 

By the sine rule, 

AB sin = OB sin p 	 (A.35) 

From equations A.26 and A.28, this gives us 

OD sin c= IiZIF sin p. 	 (A.36) 
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So, using equations A.27, A.29, A.32, A.34 and A.36, equation A.30 becomes 

I,  = 1112 (T2  + 1 + r2 - 2Fcosp— 2T((1 - Fcosp)cosb - Fsinsin)) 

(A.37) 

Rearranging, and using I_ = Ill2 and the identity cos(P - Q) = cos P cos Q + 

sin P sin Q, we arrive at our desired equation (3.13): 

I' = I_ (1 + T 2  + F2  + 2TF cos(-0 - p) - 2T cos 0 - 2F cos so). 	(A.38) 
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List of Symbols and Abbreviations 

13.1 	Symbols 

A = Area 

A, A' 	= objective numerical aperture on object side, image side 

Ac = condenser numerical aperture (on object side) 

AH = Hamaker constant 

An 	= analyser (polarizing filter in image space) 

A, B, C 	= the three lateral positions for stacking hexagonal layers 

a, b, c, d 	= (Miller-Bravais) lattice constants 

, g, 	, ci 	= (Miller-Bravais) lattice vectors 

C' 	= image contrast 

C' 	C. 
max 	

= + max  
maximum positive, negative phase contrast 

Co 	= condenser 

e 	= the lateral shear caused by a Wollaston prism 

f, f' 	= focal length on object side, image side 

fL 	= image side (back) focal length of tube lens 

F, F' 	= prinicpal focus on object side, image side 

= the Fourier Transform of the function f(m) 

Fdw 	= van der Waals force 
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g 

G 

It )  i, k, / 

(hkil) 

{ hkil } 

i 

I, I', iç 
T 	JF 	1, 

1 coh 'incoh 'pcoh 

I7:, I, 

I_, Iii 

I,  

3 

jo, J1  

kB 

K: 

,CX I  Icy 

in, m 1 , m 21  Al 

M, Mob, M0, M. 

acceleration of free fall 

Gibbs free-energy 

Miller-Bravais (crystallographic) indices 

the set of lattice planes for which 	++ L is 

an integer 

all the symmetrically equivalent sets of planes to 

(hkil), i.e., the crystallographic "form" 

intensity of object, image, image background 

ditto of image with coherent, incoherent and par-

tially coherent illumination 

ditto in plane of entrance pupil, exit pupil 

ditto in front of object, microscope substage 

ditto of image after convolution 

dummy subscript 

zeroth, first order Bessel function of the first kind 

the Boltzmann constant, 1.380658 x 1023  JK- ' 

convolution kernel 

dimensions of ditto (in pixels) 

dummy variables 

visual magnification, of objective, ocular, micro- 

scope 

M, M, Mpo = transverse magnification, of microscope, photo-

ocular 

M, M = ditto of microscope along x-, y-direction 

n, n', n_ = refractive index, of image space, in front of object 

Tip , nmI  ncs , n 0  = ditto of particle, medium, cover slip, immersion oil 

N = number of particles 

Nim = number of images in stack 
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dimensions of an array of pixels 

N= , N11 	= number of hexagonal layers, of particles in each layer 

0, 0', 0'4 	= object, image, geometrical image 

Ob, Oc 	= objective, ocular 

P, i, Peye 	= distance from lens to object, image, eye 

P, P 	= pressure, reduced pressure 

P 	= polarizer (in front of microscope substage) 

7, 1" 	= entrance, exit pupil of optical system 

q, q' 	= distance from principal focus on object side to object, 

on image side to image 

Q = tube lens factor 

r, r', rp, r, 	= distance from optical axis in object space, image space, 

entrance pupil, exit pupil 

rAiry 	= radius of Airy disc, conjugate in object space 

ro 	= radius of phase ring and image of annular aperture 

LrpR, Ars 	= width of phase ring, image of annular aperture 

R, R 	= radius of particle, nucleus 

R, R' 	= maximum radial extent of object, image 

R2, R' 	= radius of entrance, exit pupil 

S 7  S X 	= separation (centre to centre), edge to edge 

AS = entropy difference 

S, S t,, S 	= scaling factors for digital images 

t 	= time 

T = absolute temperature 

U, u', 	= light amplitude, in image, complex conjugate of ditto 

up, u'p , u_ 	= ditto at entrance, exit pupil, in front of object 

it, iZ, ud,  1?, iZ, 	= phasor representing direct, perturbed, diffracted, atten- 

uated direct, resultant wave 

U1, i12 	= phasors representing the two waves in DIC 
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U 

V,ed 

V 

WOb, WC 

Weye 

W i , W2  

(x,y), (x',y') 

\ I 
Xp,ypj, (Xp

F ,pF 
 

Ypix, AZPiX  

X, Y, Z; X', Y', Z'; 

X'P' V.' XP' '  

xu, Yu, Zu  

Yo, Y 

Z '  

LZim 

Zcs, ZMS 

ZO  Z1 , Z(  

Zsed 

a 

F 

8 

81 

C, fr,, Cm 

ER 

C 

interaction potential 

sedimentation velocity 

volume 

working distances of objective, condenser 

ditto of eye = distance of distinct vision 

Wollaston prism in front of condenser, behind ob 

jective 

cartesian coordinates in object, image plane 

ditto in plane of entrance, exit pupil 

pixel spacings 

maximum linear extent of object; of image 

ditto of entrance pupil; of exit pupil 

dimensions of suspension container 

height of object, image 

axial coordinate in object, image space 

spacing of images in a stack 

thickness of cover slip, microscope slide 

depth of field, effective ditto, depth of image 

sedimentation length 

stacking probability 

surface free energy per unit area 

amplitude attentuation factor of object 

DIC bias 

Dirac delta function 

relative permittivity, of particle, medium 

size polydispersity = standard deviation of the dis 

tribution of particle sizes 

angle of zig-zags, arccos 	70.5° 

viscosity of medium 
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0 1  0, 9, o;, = azimuth in object space, image space, entrance pupil, 

exit pupil 

number of kinks in a zig-zag pattern 

\, A', A0  = wavelength of light in object space, image space, in 

A 

—2 

7r 

H, H', Hp, lI'p 

P, Pp, Pm 

&, &koh, Pincoh, &pcoh 

a, o, oc 

c 

T, T, TT I T, TA  

T 

çb, 

'F, OM 

'cp, Orcp 

011 

P, i, 2 

X 

vacuo 

luminosity 

chemical potential difference 

illumination degree of coherence of two points 

Airy optical unit, 
2irRr' 

ditto with shift of origin (see equation 2.13) 

3.1415... 

object, image, entrance pupil, exit pupil planes 

density, of particles, of medium 

resolution limit, with coherent, incoherent, partially 

coherent illumination 

angular half-aperture of objective on object, image 

side, of condenser 

phase angle between diffracted and direct waves 

wavefront in object, image space 

amplitude transmittance of object, image, entrance 

pupil, exit pupil, aperture stop 

amplitude attentuation factor of phase ring 

volume fraction, effective ditto 

volume fraction at freezing (0.494), melting (0.545) 

ditto at close-packing (' ;z: ~ 0.74), random close- 
3,72 

packing 

ditto of crystal nucleus 

phase shift due to object, for the two waves in DIC 

fraction of crystal coexisting with fluid 
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= phase shift of phase ring 

W, w' = angle subtended at eye by object, image 

= "wrong" zig-zag angle, arccos54•7 o  

B.2 Abbreviations 

CHPB = cycloheptylbromide 

CSLM = confocal scanning laser microscopy 

DIC 	= differential interference contrast 

fee 	= face-centred cubic, i.e., cubic close-packing 

FT = Fourier Transform 

hcp 	= hexagonally close-packed 

LUT = look-up table 

OTF = optical transfer function (.T(PSF)) 

PHSA = polyhydroxystearic acid 

PMMA = polymethylmethacrylate 

PSF 	= point spread-function 

PTFE = polytetrafluoroethylene 

SSF 	= sphere spread-function 

rscp 	= randomly-stacked close-packed 
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