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Abstract

Locally weighted regression is a non-parametric technique of regression that is ca-

pable of coping with non-stationarity of the input distribution. Online algorithms like

Receptive Field Weighted Regression and Locally Weighted Projection Regression use

a sparse representation of the locally weighted model to approximate a target function,

resulting in an efficient learning algorithm. However, these algorithms are fairly sen-

sitive to parameter initializations and have multiple open learning parameters that are

usually set using some insights of the problem and local heuristics. In this thesis,

we attempt to alleviate these problems by using a probabilistic formulation of locally

weighted regression followed by a principled Bayesian inference of the parameters.

In the Randomly Varying Coefficient (RVC) model developed in this thesis, lo-

cally weighted regression is set up as an ensemble of regression experts that provide

a local linear approximation to the target function. We train the individual experts in-

dependently and then combine their predictions using a Product of Experts formalism.

Independent training of experts allows us to adapt the complexity of the regression

model dynamically while learning in an online fashion. The local experts themselves

are modeled using a hierarchical Bayesian probability distribution with Variational

Bayesian Expectation Maximization steps to learn the posterior distributions over the

parameters. The Bayesian modeling of the local experts leads to an inference pro-

cedure that is fairly insensitive to parameter initializations and avoids problems like

overfitting. We further exploit the Bayesian inference procedure to derive efficient on-

line update rules for the parameters. Learning in the regression setting is also extended

to handle a classification task by making use of a logistic regression to model discrete

class labels.

The main contribution of the thesis is a spatially localised online learning algorithm

set up in a probabilistic framework with principled Bayesian inference rule for the

parameters of the model that learns local models completely independent of each other,

uses only local information and adapts the local model complexity in a data driven

fashion. This thesis, for the first time, brings together the computational efficiency

and the adaptability of ‘non-competitive’ locally weighted learning schemes and the

modelling guarantees of the Bayesian formulation.
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Notations

A matrix

AT transpose of matrix A
trace(A) trace of matrix A
a vector

a scalar

A(i, j) (i, j).th entry of matrix A
diag(.) diagonal matrix constructed from the argument

N (., .) Normal distribution

G(., .) Gamma distribution

I G(., .) Inverse Gamma distribution

〈.〉q expectation w.r.t q

f () function

sgn(.) sign of the argument

(.)+ function that takes value zero if the argument is less than zero other-

wise takes the value of the argument itself

‖.‖1 l1 norm of the argument

∇A gradient of A
∇∇A hessian of A
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Standard probability distributions

Normal P(θ) = 1√
2πσ

exp
(
− 1

2σ2 (θ−µ)2
)

Multivariate normal P(θ)= (2π)−d/2|Σ|−1/2exp
(
−1

2(θ−µ)T Σ−1(θ−µ)
)

Gamma P(θ) = βα

Γ(α)θα−1exp(−βθ)

Inverse-gamma P(θ) = βα

Γ(α)θ−(α+1)exp(−β/θ)

Laplacian P(θ) = 1
2σ2 exp(− |θ−µ|

σ2 )
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Chapter 1

Introduction

Recent progress in information systems has seen an explosion of data that needs to be

processed. The data could typically consist of values of certain variables in the real

world and the task would be to infer the relation between these different variables.

Different learning systems have been developed to accomplish this task by processing

the values observed for these variables. One of the common learning scenario is the

supervised learning where the task involves deducing the relation between a set of

input variables and a response variable. Various supervised learning algorithms are

tailor made to handle different settings of learning depending on the nature of the data

and the application for which it is used. In this thesis, we are interested in developing

a learning algorithm that has the following characteristics :

1. Learn from continuous noisy response : The learning algorithm must be able to

infer the mapping f from a multivariate input variable x to a continuous response

variable y given observations of the input variable x1 . . .xN and the corresponding

noisy observations of the response y1 . . .yN . The value of the observed response

can then be modeled as :

y = f (x)+ ε

where ε is the random variable corresponding to an independent Gaussian noise.

We also assume that the mapping f is deterministic and does not change with

time.

2. Large amounts of continually arriving data : The training data is assumed to

be produced continually and the learning algorithm must be capable of dealing

with the stream of data - typical scenario pre-empt storing and batch process-

ing. A good example of such a situation is learning the dynamics model of an

3



Chapter 1. Introduction 4

anthropomorphic robot (Vijayakumar et al., 2002) from movement data. The

intrinsic dynamics of the robot is represented by the mapping between the com-

mand (torque) and the desired action (joint angle, joint velocity), and needs to

be learnt in tandem with the execution of the command itself. This requires the

algorithm to be capable of learning from its experiences, processing data points

as they arrive and then discarding them. This paradigm of learning is termed as

online learning. Large amounts of data also ensures that we do not have to worry

about finite-sample effects during online learning.

3. Computational efficiency and real-time applicability : In order to implement

incremental learning in real time, the learning algorithm should have minimal

time complexity.

4. Automatic structure determination : We assume that there is minimal or no prior

knowledge about the complexity of the function f that we are approximating.

This precludes the use of any parametric representation of the function - poten-

tial methods fall under the non-parametric estimation technique, with the model

structure being learned from the data.

5. Non-stationary input distribution : When a learning system is trained using a

stream of data points, the sampling distribution of the input could change with

time. Learning in new regions of space can then interfere with the previously

learnt fit for the function. This phenomenon is often termed as negative inter-

ference (Schaal & Atkeson, 1998). In this thesis we are interested in negative

interference due to a change in the input distribution and not with a change in

the functional relation between the input and the output. To make the distinction

clear, we borrow the explanation from (Schaal & Atkeson, 1998) - If we base

our estimation of a function f on the minimum squared error criterion, then the

estimate f̂ would be obtained by minimizing -Z
∞

−∞

||y− f̂ (x)||2 p(x,y)dxdy =
Z

∞

−∞

||y− f̂ (x)||2 p(y|x)p(x)dxdy

The estimate f̂ will thus depend on the input distribution p(x) for finite number

of samples. If p(x) changes it can lead to a change in f̂ and result in negative

interference.

Negative interference is illustrated in Fig. 1.1 where the function approximation

learnt in Fig. 1.1(a) is forgotten after learning from data points in a different



Chapter 1. Introduction 5

x

y

 

 

Data pts.
Target fn.
Learnt fn.

(a) Initial function fit

x

y

 

 

Data pts.
Target fn.
Previous fit
Current fit

Negative
Interference

(b) Function fit after a change in the input dis-
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Figure 1.1: A schematic illustration of negative interference - (b) illustrates the forgetting

of the initial learning in (a) due to a change in the input data distribution.

region of space in Fig. 1.1(b). We aim to minimize the effect of negative inter-

ference in methods developed here.

6. Minimal number of open parameters : There should be minimal number of open

parameters for the learning system so that manual tuning can be avoided.

We now motivate the learning methodology adopted in this thesis by reviewing

some of the related algorithms that satisfy a few of the criteria listed above but have

other deficiencies that makes it unsuitable for the purpose.

1.1 Non-parametric regression

Non-parametric learning can be used when we lack a definite prior knowledge about

the model structure of the underlying generative process. In non-parametric learning,

we make an assumption that properties within the neighbourhood of an input point are

related in a particular smooth manner. For regression, the assumption could be that

the points within a neighbourhood share a specific parametric form for the function

(piecewise polynomial smoothers) and for non-parametric classification it could be that

the point of interest belongs to the same class as its neighbours (k-nearest neighbour

classifier). We concentrate for now on regression but the arguments for regression

carries over to classification as well.

A non-parametric regression commonly uses local averaging to estimate the func-

tion at a given point. More formally, the estimate of the function f (xc) at input point
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Figure 1.2: Illustration of kernel regression

xc is a weighted sum of the training responses given by :

f (xc) =
N

∑
i=1

wc,iyi (1.1)

where wc,i is the weight provided to each of the training response. The form of non-

parametric estimate in eq. (1.1) is also called a linear smooth (Hastie & Tibshirani.,

1990; Loader, 1999a) because the response at a test point is estimated as a linear com-

bination of the training responses. As illustrated in Fig. 1.2, the weights wc,i in eq. (1.1)

are usually chosen such that the responses yi with the corresponding input points xi ly-

ing close to xc get higher weights while distant points get lesser weights.

There are various methods for non-parametric regression including Kernel smooth-

ing (Nadaraya, 1964; Watson, 1964; Gasser et al., 1991), Orthogonal series estimators

(Szegö, 1992), Spline smoothing (Silverman, 1984), Gaussian process regression (Ras-

mussen & Williams, 2006) and Local polynomial regression (Loader, 1999a). How-

ever as explained earlier, we are interested in a spatially localised non-parametric learn-

ing algorithm. Locally weighted polynomial regression is one such algorithm for non-

parametric regression. Polynomial regression smoothing has many advantages over

the other methods of non-parametric regression (Hastie & Loader, 1993; Jones et al.,

1994) including simple interpretation and efficient inference. Furthermore, it can also

be shown (Härdle, 1994) that kernel smoothers is just a special case of local polyno-

mial regression.
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1.1.1 Locally weighted polynomial regression

The first use of localised polynomial regression was in (Gram, 1883). Other early in-

dependent developments in the field of local polynomial fitting and smoothing include

(De Forest, 1873; De Forest, 1874; Woolhouse, 1870; Spencer, 1904) and is reviewed

in (Cleveland & Loader, 1995).

A local polynomial regression assumes that a non-linear function can be approxi-

mated locally by a polynomial fit. For instance, a non-parametric local linear univari-

ate regression assumes a linear parametric form for the function f within a local region

centered around xc and is given by :

f (xi)≈ β0 +(xi− xc)β1

Locality is modeled by a weighting function that gives different weights to data points

around xc. Defining φ((xi− xc)/h) to be the weighting function with bandwidth h, the

estimate β̂ for the regression coefficient β ≡ [β1 β0]T for a local linear fit is obtained

by minimizing the weighted squared error loss function :

β̂ = argmin
β

(∑
i

φ((xi− xc)/h)(yi−β
T xi)2) (1.2)

where xi ≡ [(xi− xc) 1]T and β̂ ≡ [β̂1 β̂0]
T . To provide a local estimate, the weighting

function φ((xi− xc)/h) is chosen to be symmetric around xc and decreasing with |xi−
xc|. The bandwidth parameter (also called the smoothing parameter) h modulates the

extent of locality. The estimate β̂ in eq. (1.2) can be written down in a matrix form as :

β̂ = (XT WX)−1XT Wy (1.3)

where, W = diag(φ((xi−xc)/h)), X≡ [x1 . . .xN ] and y≡ [y1 . . .yN ]T . The estimate for

the fit at the point xc is then given by β̂0 which can be written down using eq. (1.3) as :

β̂0 = [0 1]T (XT WX)−1XT Wy

= wT y (1.4)

where w = [0 1]T (XT WX)−1XT W. It can be seen that eq. (1.4) has the same form

as eq. (1.1), thus demonstrating that local polynomial regression is a special form of

linear smoothing.

After having examined the estimation of the fit for a locally weighted regression,

we now examine the role of the bandwidth parameter in determining the fit of the local

model.
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Bandwidth and its estimation

Bandwidth plays a major role in determining the smoothness of the estimate. For

a given fixed bandwidth parameter, minimizing the squared error given by eq. (1.2)

would give the local linear fit. The fit learnt would be different for different values of

bandwidth. As the bandwidth increases, the neighborhood increases and the estimate is

smooth and approaches a global parametric fit as h → ∞. In contrast as the bandwidth

decreases the estimate tends to be undersmoothed and in the limit of h→ 0 the estimate

is the value of the response itself. A smaller bandwidth thus implies less bias but

higher variance of the estimator and vice versa. Hence, it is important to obtain a

correct estimate of the bandwidth by balancing the bias against the variance. There

are different ways to parametrise a bandwidth in a local regression model - a single

bandwidth could be used for all the local models or different bandwidths could be

used in different regions of the input space.

Constant bandwidth is used to model a weighting function that has the same extent

of locality across the entire range of the input space. This form of weighting

function is easy to interpret but its capacity to model functions is limited to sim-

ple forms. It is insufficient to model functions with varying spatial complexity

like the one in Fig. 1.3(a). It can be seen from the figure that a constant band-

width provides a good fit for the linear part of the function but is incapable of

modeling the non-linear region of the function with a high bias in this region.

Varying bandwidth is the alternative to this approach where we have different band-

widths at different regions of the input space. The function illustrated in Fig. 1.3(a)

is now modeled using a varying bandwidth and is shown in Fig. 1.3(b). The ap-

proximation of the function can be seen to be better when a varying bandwidth is

used. The bandwidths used in different regions of the input space is shown in the

bottom pane of Fig. 1.3(b). It can be seen that larger values of bandwidths are

used to model the linear region of the function while smaller values are used to

model the more non-linear parts of the function. This results in a fit that adapts

to the varying spatial complexities of the function.

There have been different methods proposed for the estimation of bandwidth for

non-parametric regression and broadly falls into two categories - classical and plug-in.

The classical methods of estimation of bandwidth are extensions of model selection

methods in parametric statistics. These include cross validation (Allen, 1974), Mal-

low’s CP criterion (Mallows, 1973), and Akaike information criterion (Akaike, 1974).
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(b) Varying bandwidth fit

Figure 1.3: Comparison of local linear fits using a constant versus varying bandwidth.

The toy function has a spatially varying complexity. The bandwidths were computed

using the LOCFIT software (Loader, 1999a)

In the plug-in approach to bandwidth selection, an analytical expression for the

asymptotic mean integrated squared error(Jones et al., 1996) is derived which is then

minimized to obtain the optimal bandwidth. The expression derived for the optimal

bandwidth however, contains terms of unknowns like the second derivative of the target

function and different plug-in methods try to estimate these unknown expressions using

the different approximations. Accordingly there have been a variety of plug-in methods

which started with (Woodrofe, 1970) and further developed in (Gasser et al., 1991)

and (Ruppert et al., 1995). Different plug-in methods have been reviewed in (Fan &

Gijbels, 1996) and the comparison of classical methods with the plug-in methods of

bandwidth estimation can be found in (Loader, 1999b). It must be noted that all these
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methods perform localised non-parametric regression and differ only in their estimates.

From the discussion in this section we can conclude that localised non-parametric

regression circumvents the problem of negative interference by localizing the interfer-

ence using locally weighted learning routine and adapting its model complexity in a

data-driven fashion. However, the non-parametric smoother uses a memory based lazy

evaluation strategy wherein the smoothing algorithm stores away all the training data

points and uses a weighted smooth of the training responses (refer eq. (1.1)) to com-

pute the prediction at a new test point. This results in an increased space complexity

of the trained model along with an increase in the time complexity for each prediction

thus making it unconducive for incremental learning. The solution to this problem lies

in constructively and incrementally building up a representation of the target function

by using local models centered at only a subset of training points in contrast to the

memory based approach of lazy evaluation. One such class of online learning algo-

rithms is the locally weighted regression algorithms as represented by Receptive Field

Weighted Regression(RFWR)(Schaal & Atkeson, 1998) and Locally Weighted Projec-

tion Regression(LWPR)(Vijayakumar et al., 2005).

1.2 Online locally weighted regression

In this section we look at a popular method of online regression which uses local

linear models to approximate a non-linear function and is able to dynamically adapt

the complexity of the approximating function by adding local models during learning.

The initial version of the algorithm was known as Receptive Field Weighted Regres-

sion(RFWR) (Schaal & Atkeson, 1998) which used locally weighted linear models to

approximate the function. Scalability of RFWR was improved with the addition of

dimensionality reduction of the input space resulting in an algorithm called Locally

Weighted Projection Regression(LWPR)(Vijayakumar et al., 2005). In this section, we

review the learning procedure formulated in RFWR and briefly describe its extension

to higher dimensions in the form of LWPR. As with all locally weighted regression

algorithms RFWR uses a weighted error criteria to learn the parameters of the model.

The loss function is a form of least squared cross-validation given by :

J =
∑

N
i=1 (yi− β̂

T
−ixi)2φ(xi)

W
(1.5)
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where β̂−i is the estimate of the regression coefficient estimated using all of the data

except the ith point,

φ(xi) = exp(−xT
i Dxi) (1.6)

is the weight function with D being the inverse bandwidth matrix and W = ∑i φ(xi).

The evaluation of the N-fold cross-validation error as represented by eq. (1.5) is com-

putationally expensive since it requires the inference of the regression coefficient N

times and the subsequent optimization of J to infer the bandwidth matrix D. Using

Sherman-Morrison-Woodbury theorem it is possible to express eq. (1.5) in terms of

the regression coefficient inferred using the entire dataset as :

J =
1

W

N

∑
i=1

(yi− β̂
T

xi)2φ(xi)(
1−φ(xi)xT

i Pxi
)2 where P =

(
XT SX

)−1
(1.7)

where X ≡ (x1 . . .xN)T and S ≡ diag(φ(x1) . . .φ(xN)). Minimizing the error criterion

given by eq. (1.7) leads to a consistent model - a model whose bias decreases with

the number of training data points, but the downside is that the locality also shrinks

thus requiring more number of local models to approximate the function (Schaal &

Atkeson, 1998). To avoid this, a penalty term is introduced in the loss :

J =
1

W

N

∑
i=1

(yi− β̂
T

xi)2φ(xi)(
1−φ(xi)xT

i Pxi
)2 + γ

d

∑
i, j=1

D2
i j (1.8)

where the second part of the equation stands for the penalty for a small bandwidth. The

penalty factor γ controls the relative magnitude of the penalty and in turn influences

the smoothness of the fit.

To obtain an online algorithm we need to optimize the objective given by eq. (1.8)

incrementally and obtain the updates for learning the bandwidth matrix D. A gradient

descent update would be given by :

Mn+1 = Mn−α
∂J
∂M

(1.9)

where M is an upper triangular matrix such that D (given by D = MT M) is guaranteed

to be positive definite. The optimization of J using eq. (1.9) can be turned into an

incremental update by approximating the gradient ∂J
∂M using a novel stochastic approx-

imation which unlike conventional stochastic gradient descent, uses a memory trace to

maintain a history of the sufficient statistics of the data and uses these to update the

parameters. This results in a more stable procedure for learning.

We started out by motivating the online learning algorithm as a means of intro-

ducing sparsity to the otherwise lazy evaluation methods of localised learning. RFWR
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Algorithm 1 Receptive Field Weighted Regression
1: Input: Training point x,y

2: for k = 1 to #local models do
3: Calculate the weight φk = exp

(
−(x−xk)T Dk(x−xk))

)
4: Update the bandwidth using eq. (1.9)

5: end for
6: if φk < φgen∀k=1...#local models then
7: add a new local model with xc = x
8: end if{add a local model if φ is less than a threshold φgen}
9: if ∃i6= j,i, j∈{1...#local models}φi,φ j > φprune then

10: remove the local model with the larger |D|
11: end if{remove a local model if there are more than one local model with weight

greater than φprune}

achieves sparsity by adding local models only at points in the input region where the

accuracy of the function approximation is low. RFWR then combines the predictions

of these local models using a weighted average, to output the prediction for a previ-

ously unseen input point xq:

yq =
∑

M
k=1 φk(xq)yq,k

∑
M
k=1 φk(xq)

where yq,k is the prediction of the kth local model and yq is the combined prediction.

The basic form of RFWR algorithm is summarized by Algorithm 1.

One of the main drawbacks of RFWR and in general locally weighted learning is

the curse of dimensionality that manifests in the form of sparsity of data in the high di-

mension space. As the dimensionality of the input space increases the number of local

models required for accurate approximation increases exponentially. Locally weighted

projection regression (LWPR) is a modification of RFWR geared towards solving this

problem. It combines the robustness of partial least squares (PLS) regression with the

locally weighted approach of RFWR to provide an incremental regression that uses

a projected lower dimensional space to perform the local regression. The interesting

aspect of LWPR learning is that dimensionality reduction and regression are carried

out simultaneously in an incremental fashion.

While RFWR/LWPR achieves our aims of spatially localised non-parametric on-

line regression with data dependent adaptation of model complexity, one of its main

drawbacks is that it introduces a number of parameters that needs to be tuned for the
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gradient descent to find a reasonable solution for the bandwidth. These parameters in-

clude the learning rate α (eq. (1.9)), initialization of the bandwidth matrix D (eq. (1.6))

and the penalty factor γ (eq. (1.8)). The learning rate controls the rate at which the gra-

dient is followed - a slower learning rate results in a highly damped slow converging J .

The penalty term models the prior about the smoothness of the target function. Higher

the penalty, smoother the function. Disadvantage of having all these open parameters

is that it becomes difficult to assign reasonable values to these parameters. Also, given

two different learning models with different parameter settings it becomes difficult to

select the model that is the most suitable. We can use the squared error of the response

as an indicator but then it would need a separate cross validation data to select the

model without overfitting.

The ideal solution to avoid tuning of parameters would be to design an optimization

function that is convex. Optimizing the convex objective function with respect to the

parameters would lead to a unique solution for the parameters irrespective of the initial-

ization. This however is difficult for the current setting of a locally weighted learning

where finding such a convex objective function is inherently difficult because there can

be different configurations of the local models that provide equivalent solutions. An

alternative philosophy is to formulate a probabilistic model for the locally weighted re-

gression and express our prior belief over the parameters as prior probabilities. Given

our priors about the parameters it is then possible to combine the beliefs with the ev-

idence obtained from the data to infer the posterior probability over the parameters

using the Bayes rule. The uncertainty in the estimation of the parameters is reflected

by the posterior distribution which in turn contributes to the overall uncertainty in the

prediction of the response. This is useful when we need to combine independent local

models having their own levels of confidence into a robust prediction. Furthermore,

a Bayesian model selection allows the complexity of the model to be integrated into

the selection process along with the fit over the data (MacKay, 1992) thus avoiding

the problem of overfitting. The discussion in this section thus motivates the need for

a Bayesian probabilistic formulation of a locally linear regression that avoids the need

to tune open parameters and have simple yet robust model selection capabilities. One

possible candidate for such a learning algorithm is the mixture of experts.
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1.3 Mixture of Experts

Mixture of local experts model for regression is an example of a probabilistic formu-

lation of a locally weighted regression. The earliest mixture model used for regression

has been (Xu et al., 1995). This work was extended to a Bayesian formulation in (Wa-

terhouse et al., 1996; Bishop & Svensèn, 2003). Next we describe some details of the

original version of mixture model as formulated in (Xu et al., 1995).

A mixture of experts model consists of two components - one, a probabilistic re-

gression model that corresponds to the local fit and the other, a region of locality as

represented by a probability distribution over the input region. The former is usually

termed as the expert model while the latter is known as the gating function.

A mixture model can be formulated by expressing our belief about the process in

which the data was generated. We start with a multinomial random variable z which

can take values in {1 . . .M} where M is the number of local models. The probability

that the tuple of xi,yi is generated from the jth model is given by P(xi,yi|zi = j).

The joint probability P(xi,yi|zi = j) can in turn be factorized as P(xi,yi|z = j) =

P(yi|xi,zi = j)P(xi|zi = j). Hence if the prior probability of zi taking the value j is

P(zi = j), the joint probability is given by the factorization :

P(yi,xi,zi) = P(yi|xi,zi)P(xi|zi)P(zi)

and is denoted pictorially by the graphical model in Fig. 1.4. The graphical model

illustrates the probabilistic dependency between the various random variables of the

model. The probabilistic model can be better understood by marginalizing out the

hidden variable z to obtain the joint distribution of the input and the response variables :

P(yi,xi) =
M

∑
j=1

P(yi|xi,zi = j)P(xi|zi = j)P(zi = j)

which in turn can be rewritten as a conditional probability as :

P(yi|xi) =
∑

M
j=1 P(yi|xi,zi = j)P(xi|zi = j)P(zi = j)

∑
M
j=1 P(xi|zi = j)P(zi = j)

(1.10)

It can be seen from eq. (1.10) that the global fit of a function is defined as a set of

spatially local fits. The fit part of the localised regression corresponds to P(yi|xi,zi = j)

which for linear regression is defined as a Gaussian :

P(yi|xi,zi = j) = N (yi;β
T
j xi,σ

2
j)
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Figure 1.4: Graphical model for a mixture of regression experts

where β j is the regression coefficient for the jth model and σ2
j its noise variance. On

the other hand locality is defined by P(xi|zi = j)P(zi = j) where the conditional distri-

bution of the input variable is often modeled by a Gaussian :

P(xi|zi = j) = N (xi;x j,D j)

where xc is the center of the local model and D j is the bandwidth matrix of the jth

local model. The maximum likelihood estimates for the parameters - β j,σ j,xc,D j

and P(z = j) can be obtained using an expectation maximization (EM) procedure by

treating z as a hidden variable. The predictive distribution for a query point xq can then

be obtained using the conditional distribution defined by eq. (1.10) and can be written

down as :

P(yq|xq) =
M

∑
j=1

P(yq|xq,zq = j)wq, j

where :

wq, j =
P(xq|zq = j)P(zq = j)

∑
M
j=1 P(xq|zq = j)P(zq = j)

such that ∑ j wq, j = 1. This further implies that the mean prediction is given by :

E(yq|xq) = ∑
j

wq, jE(yq|xq,zq = j)

which is a convex combination of the predictions of the individual model. An illustra-

tion of linear fits learnt by a mixture of experts along with the responsibilities on a toy

example is shown in Fig. 1.5.
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Figure 1.5: Illustration of function approximation using a mixture of regression experts

In a mixture model, the region of locality is learnt by splitting the input region

amongst the local models that make up the mixture. The gating function assigns a prob-

ability P(zi = j|xi) of a data belonging to the jth expert and since ∑ j P(zi = j|xi) = 1,

there is a fraction of contribution by each expert in explaining the data. Reassigning

the responsibility of a single model during training, thus affects the responsibilities

of the other local models of the mixture. This again leads to the problem of negative

interference amongst the local models of the mixture. The phenomenon of negative in-

terference in a mixture model has been illustrated in Fig. 1.6(a) and Fig. 1.6(b) where

data from different regions of input space are used to train the mixture model. In the

first phase, data lying on the negative half of the input space is used to train the mixture

model. The function approximation by the trained model after convergence of the EM

algorithm is shown in Fig. 1.6(a). In the second phase, data from the positive half of

the input space is used to retrain the mixture model and the resultant function approx-

imation after the retraining is shown in Fig. 1.6(b). During these training epochs the

centers of the models of the mixture model are kept constant for simplicity and ease

of visualization. As can be seen from the results, the global optimization of the local

models of the mixture leads to negative interference which manifests as a suboptimal

fit displayed in case (b) in the input region that had previously been learnt optimally

in case (a). This is primarily due to the fact that, as the input distribution changes, the

responsibilities of the local models lying in the positive half change during the train-
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(c) Initial presentation of data pts. to LWPR
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(d) Adaptation of LWPR to modified input dis-

tribution

Figure 1.6: Illustrative comparison of negative interference

ing which is then propagated to the models lying in the other half of the input space

although these models are not directly affected by the new data. The same example is

learned using LWPR which uses local experts that have independent learning routines

and the results are illustrated in Fig. 1.6(c) and 1.6(d). These figures clearly illustrate

the lack of negative interference when local models with uncorrelated learning rou-

tines are used. We can hence conclude that in order to avoid negative interference it

is not just sufficient for the learning algorithms to be spatially localised, but is also

necessary for them to have independent training routines. As a solution to this prob-

lem we develop a probabilistic model of independent ensemble learning in Chapter 2

that motivates a probabilistic formulation of independent learning through the use of a

Product of Experts paradigm.
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1.4 Aims and outline of the thesis

From the discussion in this chapter, we can summarize the aim of the thesis as - develop

a spatially localised online learning algorithm with a Bayesian formulation, that learns

local models completely independent of each other, adapts the local model complexity

in a data driven fashion and has an efficient training algorithm with minimal open

parameters.

Chapter 2 provides a motivation for a principled probabilistic framework for inde-

pendent ensemble learning by modeling the global regression model as a Product

of Experts. The probabilistic formulation allows us to perform Bayesian infer-

ence of the parameters whereas the independent training of the ensemble experts

allows for dynamic adaptation of complexity of the regression model during in-

cremental learning.

Chapter 3 provides a hierarchical probabilistic model for each expert of the ensem-

ble termed as a Randomly Varying Coefficient model. This results in a localised

regression paradigm that makes the function approximation robust against nega-

tive interference.

Chapter 4 provides the inference rules for the parameters of the local regression mod-

els using a Variational Bayesian EM. This overcomes the problems of overfitting

and allows for principled model selection thus making the inference procedure

fairly insensitive to parameter initializations.

Chapter 5 provides the online updates for the parameters of the regression model by

readapting the Bayesian inference procedure derived in Chapter 4.

Chapter 6 extends the localised regression to the problem of classification by using a

logistic regression formulation of the Randomly Varying Coefficient model.

Chapter 7 summarises the key contributions of the thesis along with possible direc-

tions for extending the work in this thesis.



Chapter 2

Regression using Product of Experts

We saw in the earlier chapter that it is essential to model the target function as a set of

local linear approximations and have independent learning rules for these local models

to avoid negative interference and simplify model construction. In this chapter we at-

tempt to provide a justification of the independent training of local models by modeling

the joint likelihood of all the experts as an unnormalized product of individual expert

probabilities. This chapter provides the basic framework for combining the probabilis-

tic predictions of individual local models in line with the ideas of committee machines

and ensemble learning.

2.1 Committee machines

There has been extensive research into committee machines to make use of a dis-

tributed architecture of learning such that individual models specialize differentially

(Brown et al., 2005a; Dietterich, 2002; Freund & Schapire, 1996). The idea of com-

mittee machines originated when it was found that a combination of multiple learners

that were trained using the same data provided more robust predictions than a single

model trained on the same data. One of the noteworthy case of ensemble learning

has been the method of boosting (Schapire, 1999). Using this procedure a set of weak

learners are trained on the training data with the data weighted differently for the differ-

ent learners and individual predictions from these learners are then combined together.

This procedure has been found to produce powerful learners although the base learners

are themselves weak.

There can be two variants of committee learning - one where the number of learners

are fixed and the learning is competitive with the learners trying to share amongst them-

19
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selves the responsibility of explaining the data. In the other case the learners are trained

independent of each other and the predictions of these learners are combined together.

Mixture of experts (Xu et al., 1995) fall under the former category. For reasons ex-

plained in Chapter 1, we are interested in the latter category of learning and we would

implicitly refer to the latter case when using the term committee machines. Although

there has been a lot of research into independent committee machines (Kuncheva et al.,

2000; Demirekler & Altinçay, 2002; Hashem & Schmeiser, 1995), the theoretical jus-

tification of independent training has not been forthcoming. Especially it has been

rather difficult to come up with a probabilistic formulation of an independent com-

mittee machine. In this chapter we use a product of experts (POE)(Hinton, 1999) as

the probabilistic equivalent of committee machines and illustrate an approximation of

POE to make the learning of the components independent.

2.2 Product of regression experts

Let us formulate the conditional distribution of the response variable as a product of

local distributions. Specifically we model the distribution of the response as a product

of local Gaussian distribution with a parametric mean function centered at xc with a

heteroscedastic1 noise component given by :

y|x,xc ∼ N ( f (x),1/φ(x−xc)) (2.1)

For a given input x, the local model centered at xc predicts the output as f (x) with a

confidence proportional to φ(x−xc) which has a form similar to the weighting function

in eq. (1.2). Local models centered at different locations in the input space can now

be combined by taking the normalized product of the probabilities. The combined

conditional probability is given by :

y|x ∼
∏

M
j=1 N ( f j,1/φ j)

Z
(2.2)

where f (x) has been abbreviated to f , φ(x− xc) has been abbreviated to φ, j is the

index over the local models of the ensemble and Z is the normalization constant given

by :

Z =
Z

∏
j

N (y; f j,1/φ j)dy

1input dependent noise variance
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The formulation in eq. (2.2) is called the product of experts. Here, individual experts

are defined by eq. (2.1) and their product combination by eq. (2.2) which is another

Normal distribution given by :

y|x ∼ N (
∑ j φ j f j

∑ j φ j
,1/∑

j
φ j) (2.3)

We find that the mean prediction is given by the sum of predictions of individual lo-

cal models weighted by the confidence of each model about its prediction. This is

similar to linear combination rule of regressors found in committee machines (Kittler

et al., 1998). This connects the probabilistic formulation of product of experts with

the more conventional treatment of committee machines. Parameters of the POE can

now be learnt by maximizing the likelihood defined in eq. (2.2) but this introduces de-

pendency between the local models due to the normalization term. We can eliminate

the dependency by ignoring the normalization term; resulting in maximization of the

unnormalized likelihood of a POE while still using the normalized version for com-

puting the prediction. This has sparked criticism of independent ensemble learning

claiming that the models used for training and prediction are different. Although the

criticism is well founded, due to reasons of computational efficiency and the need for

dynamic adaptation of model complexity during online learning, we retain the inde-

pendent learning scenario in this thesis.

The idea of independent learning of the components of an ensemble have appeared

in different guises in slightly disparate fields of machine learning. In the next few sec-

tions we try to unify these ideas using the mathematical framework afforded by POE

serving as a common ground to bridge these different definitions of independent learn-

ing. Here, the attempt is not to justify independent learning but to unify the different

views of independent learning.

2.2.1 Diversity formulation of POE

One of the early attempts in explaining regression ensembles has been (Krogh &

Vedelsby, 1995) who showed that the squared loss for an ensemble learner is less

than the sum of the squared losses of the individual models of the ensemble. This

can be derived by splitting the squared loss of an ensemble into a sum of squared

losses of individual models and a diversity (Kuncheva & Whitaker, 2003) term. The

same derivation holds true for the log-likelihood resulting from the product of experts

(POE) combination of Normal distributed regression components. Writing down the
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log of the likelihood given by eq. (2.2) we get :

L = ∑
j
−

φ j(y− f j)2

2
+

1
2

ln(φ j)− ln(Z) (2.4)

When Z is expanded, the equation can be rewritten as -

L = ∑
j
−

φ j(y− f j)2

2
+

1
2 ∑

j
φ j f 2

j −
1
2

(∑ j φ j f j)2

∑ j φ j
+

1
2

ln∑
j

φ j

= ∑
j
−

φ j(y− f j)2

2
+

1
2 ∑

j
φ j( f j−

∑ j φ j f j

∑ j φ j
)2 +

1
2

ln∑
j

φ j

= ∑
j
−

φ j(y− f j)2

2
+

1
2 ∑

j
φ j( f j− fens)2 +

1
2

ln∑
j

φ j (2.5)

where fens = ∑ j φ j f j

∑ j φ j
is the prediction of the ensemble model. This equation shows the

correspondence of the likelihood of a POE model to the ambiguity decomposition de-

rived by (Krogh & Vedelsby, 1995) and explained in depth in (Brown et al., 2005b).

The second term of equation eq. (2.5) is referred to as the ambiguity term and essen-

tially measures the diversity of individual models of the ensemble. There have been

many methods of ensemble learning that strive to achieve higher generalization ability

by trying to increase this diversity (Brown et al., 2005a). In (Brown et al., 2005b), a

generalized version of the ambiguity based loss was provided as :

L ∝ ∑
j
−

φ j(y− f j)2

2
+λ∑

j
φ j( f j− fens)2

where, λ modulates the contribution of the diversity of the ensemble to the loss func-

tion. Setting λ to zero, then will correspond to independent learning.

To understand the effect of an independent learning assumption, consider a lo-

calised regression where the confidence φ(x− xc) is a symmetric decaying function

about the center xc, like a Gaussian. This would mean that at the center of a local

model k the ensemble prediction fens is dominated by the prediction of the kth local

model with the weight of the local model being higher than others and as x → xc,

fens → fk and ∀ j 6=kφ j → 0. This results in the diversity term itself going to zero. For x

away from the centers and lying in the region of overlap of different local models, the

diversity term is finite and the error due to the unnormalized likelihood increases for

these points. However, it is quite difficult to derive a generalized theoretical bound for

the error caused due to the independence assumption.
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2.2.2 Independent learning using Complementary prior

Independent learning of ensembles can also be motivated as a form of prior that can

be used to eliminate the inter-dependence introduced due to the normalization factor

of the likelihood. Unlike in the previous section, we are now interested in making

proper Bayesian inference over the parameters of the model. To this end, we have

to find the posterior probability of the local function estimate f j given a certain prior

probability over it. We show in this section that by carefully choosing the form of the

prior probability over the function estimates it is possible to get an inference process

that is independent.

We use a complementary prior as formulated by Hinton et al. in (Hinton et al.,

2006), where it was used to overcome the explaining away phenomenon in directed

graphical models. The prior is designed so that the parameters of the prior distribution

are tied together in a fashion that is complementary to that of the likelihood and hence

cancels it out when computing the posterior. A similar prior was also discussed in

(Murray & Ghahramani, 2004) in the context of inference in a Boltzmann machine

though the authors of the work dismissed such a prior citing its dependence on the

data.

In this thesis, we try to derive a complementary prior for the POE regression model

at hand. To start with, it is not necessary that such a complementary prior exist at

all (refer to (Hinton et al., 2006) for conditions under which such a prior exists), but

our model being a simple Gaussian it is possible to derive such a prior. To derive the

prior we start off by transforming the normalization constant into a distribution of the

parameters. Given a conditional POE model :

P(y|θ1 . . .θ j . . .θM) =
∏ j P(y|θ j)R
∏ j P(y|θ j)dy

(2.6)

we can come up with a joint prior for θ1 . . .θ j . . .θM as -

P(θ1 . . .θ j . . .θM) ∝

Z
∏

j
P(y|θ j)dy∏

j
Q(θ j) (2.7)

where Q(θ j) is an arbitrary probability distribution over θ j. Using Bayesian rule, we

can combine the likelihood defined by eq. (2.6) and the prior as defined by eq. (2.7) to

get the posterior over the parameters as :

P(θ1 . . .θ j . . .θM|y) ∝ ∏
j

P(y|θ j)Q(θ j) (2.8)

⇒ P(θ j|y) ∝ P(y|θ j)Q(θ j) (2.9)
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(a) (b)

Figure 2.1: (a) Undirected graph model for POE based regression, y and x are the

output and input variables for regression and M j are the local models of the ensemble

(b) node-split approximation for independent learning

where in eq. (2.8), the inference is rendered independent when the normalization term

gets cancelled by the complementary part of the prior probability.

The complementary prior for the fits of the local models of the POE regression can

be derived by assuming that the weight function φ j is fixed. The prior over the fits can

then be written down as :

P( f1 . . . f j . . . fM) ∝

Z
∏

j
P(y| f j)dy∏

j
Q( f j|α)

We can see from the equation that the complementary prior is equivalent to assuming

prior correlations between the parameters of the ensemble models. The correlation

term in the complementary prior probability is designed to cancel out the correlations

amongst the parameters introduced by the likelihood term, making the posterior prob-

abilities over the parameters independent.

2.2.3 POE regression as a conditional random field

Finally we present POE as a conditional random field and demonstrate the effect of

independent learning under such a setting. A conditional random field (Lafferty et al.,

2001) is a representation of a conditional distribution as a Markov random field. A

conditional random field is any conditional distribution that can be expressed as a nor-

malized product of functions(usually termed factors) :

P(y|x) =
∏ j ψ j(y,x)

Z
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where ψ are the local factors and Z the normalization constant. One can immediately

note that the POE regression model discussed in the earlier section is a conditional

random field and can be represented as a factor graph (Kschischang et al., 2001) as

shown in Fig. 2.1(a). In a factor graph as in Fig. 2.1(a), random variables are (de-

noted as circles) connected to all the factors (denoted as squares) in which it appears.

The paradigm of independent learning of ensemble model can now be viewed as a

node-splitting approximation similar to (Sutton & McCallum, 2005) where the nodes

are split into duplicate nodes and inference is performed on independent disconnected

components of the factor graph. The resulting model for POE regression is shown in

Fig. 2.1(b). In (Sutton & McCallum, 2005) independent learning has been justified

as maximizing a lower bound on the loss function defined over the entire ensemble,

though their derivation of the bound is restricted to a certain family of parameteriza-

tion. The same derivation can be applied to the POE model of regression if the weight

function φ(x− xc) < 1. To derive the relation between the dependent likelihood and

independent likelihood, we write down the likelihoods for the cases represented by the

graphical models in Fig. 2.1. The dependent log likelihood is given by :

Ldep = ∑
j
−

φ j(y− f j)2

2
+

1
2 ∑

j
φ j( f j− fens)2 +

1
2

ln∑
j

φ j

where φ j is a shorthand notation for the weighting function of the jth local model -

φ j ≡ φ(x− x j) and the independent likelihood is just the sum of the likelihoods of the

individual disconnected factor graphs of Fig. 2.1(b) and is given by :

Lind = ∑
j
−

φ j(y− f j)2

2
+

1
2 ∑

j
lnφ j

Taking the difference of the likelihoods we get :

Ldep−Lind = ∑
j

φ j( f j− fens)2 + ln∑
j

φ j−∑
j

lnφ j

> ln∑
j

φ j−∑
j

lnφ j since, φ > 0 ⇒∑
j

φ j( f j− fens)2 > 0

> 0 using Jensen’s inequality when ∀ j φ j < 1 (2.10)

The above equations prove that the likelihood for an independent regression POE

model is a lower bound of the likelihood corresponding to the dependent model. By

maximizing the independent likelihood we are in effect maximizing the lower bound of

the actual objective function. The condition holds only when the weight function φ is

less than one. This property is satisfied by weighting functions that have an appropriate
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kernel function like an exponential function of the form exp(−(x−xc)T (x−xc)). For

an inverse polynomial function like the one used in this thesis φ can be restricted to a

maximum of one by scaling the inputs appropriately.

2.3 Discussion

In this chapter we have reviewed the definition of independently trained ensemble mod-

els in recent research. Despite the difficulty in deriving a strong theoretical justification

of independent learning, empirical evidence presented in (Sutton & McCallum, 2005)

shows that the independent likelihood is sufficient to obtain good parameter estimates

for the model. When coupled with the ease of training in a constructive and incremen-

tal learning setup, this makes independent ensemble models an attractive option for

efficient online learning. This motivates the use of independent regression ensemble in

this research.



Chapter 3

Randomly Varying Coefficient model

In the previous chapter we looked at modeling regression as a product of locally linear

experts and studied the properties of such a model. In this chapter we concentrate

on the local models constituting the product of experts and formulate a probabilistic

model for the local linear regression.

Modeling spatially localized linear models using a probabilistic framework in-

volves deriving a formulation that allows to model the fit, in our case a linear fit, and

the bandwidth at a particular location in the input space. Each of these local models

can then be combined to provide a prediction for a novel data. Additionally, in order

for the local models to be independent, each of them should be capable of modeling the

entire data by learning the correct bandwidth that partitions the data into two parts –

one which corresponds to the linear region of interest and the other which does not. In

this thesis, we accomplish this by formulating a probabilistic model called Randomly

Varying Coefficient(RVC) model which builds upon the idea of a random coefficient

model (Longford, 1993).

For a locally linear region centered around xc a generative model for the data points

can be written as:

yi = β
T
i xi + ε (3.1)

where xi ≡ [(x′i − xc)T ,1]T represents the center subtracted, bias augmented input

vector, βi ≡ [β(1)
i . . .β

(d+1)
i ]T represents the corresponding regression coefficient and

ε∼N (0,σ2) is the Gaussian mean zero noise with a standard deviation σ. The data is

assumed to have been generated in an IID fashion. Crucially, we allow the regression

coefficient to be a random variable with a prior distribution given by:

βi ∼ N (β̂,Ci) (3.2)

27
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Figure 3.1: Variation of prior with the location of the input

where we have assumed that each βi is generated from a Gaussian centered around β̂

with the confidence being represented by the covariance Ci. The covariance itself is

defined to be proportional to the distance of x′i from the center. This has the effect that

for points that lie close to the center, the distribution of βi is peaked around β̂ resulting

in a linear region around the center. This has been illustrated schematically in Fig. 3.1

where point c is the center of the local model: for a point a that lies close to c we assign

a prior that is fairly tight around the mean whereas for a point b that lies away from

c the prior is much broader. One can consider various distance functions to index the

variation of the covariance matrix C. Here, we restrict ourselves to a diagonal version,

each diagonal element varying quadratically with x as:

Ci( j, j) = ((x′i−xc)T (x′i−xc)+1)/h2
j = xT

i xi/h2
j (3.3)

where h j is the bandwidth parameter of the kernel defining the extent of the locality

along the j-th dimension and xi is the center subtracted input variable. Larger values

of h j implies a larger extent of the local region and vice versa.

3.1 Varying coefficient model

Randomly varying coefficient model is based upon a varying coefficient model where

the regression coefficient of a linear regressor varies with the data and this approach has

found wide application in statistics as a specialization of multilevel models (Gelman &

Hill, 2007). In a varying coefficient model the regression coefficient is varied to model

the differences between different classes of data. For instance, in (Price et al., 1996)

the radon concentration in different households is analyzed using a varying intercept,
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varying slope model. Different intercepts and slopes are used to model the variance

in Radon levels between counties where the counties are the different classes. This

is similar to a classical mixture model (Xu et al., 1995) where different parameters

are assigned to different clusters defined over the data. This approach is useful when

the classes in the data are well defined and it is possible to define a function that

discriminates between the different classes. In our case, where we need to carve out a

region of linearity for an independent local model there are no competing models that

can stand for distinct classes. To appreciate the difficulty in formulating the problem,

we could try to model a regression using two classes - one class corresponds to a model

that is responsible for the linear region and the other class models the rest of the data.

Though it is easy to come up with a probabilistic model that corresponds to the linear

region, it would be difficult to come up with a model that can model its complement.

This is mainly due to the fact that we cannot assign any prior belief on the model

in the “non” linear region. In this research we use a single class and then assign a

prior probability of a data point being generated from that class based on the location

of the data point in the input space. Here, the class is represented by the Gaussian

distribution over the mean parameter β̂ and the individual data from this class is the

hidden variable β. Hence, unlike the conventional multilevel model, there are as many

hidden variables1 β as there is data. One could imagine using a box car function for

modeling the covariance in eq. (3.3) such that the variance is low and constant inside

the linear region and high in the region outside. This would be a special case where

the input space is differentiated distinctly into a region of linearity and its complement.

The quadratic function of eq. (3.3) on the other hand corresponds to a soft partition of

the input space.

3.1.1 Pooling in the hierarchical model

One of the reasons why multilevel models have been used is the way the parameter is

estimated as a combination of the variables at the levels below and above it on the prob-

abilistic hierarchy termed as pooling. RVC model utilizes the pooling phenomenon to

estimate the hidden variable β. Consider the two-level hierarchy defined by eq. (3.1)

and eq. (3.2), if we assume that h is known and hence C, then the posterior of the

hidden variable β is given by :

β̃i ∼ N (νi,Gi) (3.4)

1Although the parameters of the model are also hidden, we reserve the term hidden variable to refer
to the variable whose cardinality increases with the data
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where,

Gi = (xixT
i /σ

2 +C−1
i )−1

= Ci−
CixixT

i Ci

σ2 +xT
i Cixi

by Sherman-Morrison Woodbury theorem

νi = Gi(yixi/σ
2 +C−1

i β̂)

=
Cixi

(σ2 +xT
i Cixi)

(
yi−xT

i β̂

)
+ β̂ (3.5)

We can see the effect of pooling more clearly, if we were to premultiply eq. (3.5) by

xT
i :

xT
i νi =

xT
i Cixi

(σ2 +xT
i Cixi)

yi +(1− xT
i Cixi

(σ2 +xT
i Cixi)

)xT
i β̂

= ωiyi +(1−ωi)xT
i β̂

where ωi =
xT

i Cixi

(σ2+xT
i Cixi)

is called the pooling factor(Gelman & Pardoe, 2006). As ω→ 1

the posterior estimate νi tends to be pooled towards the data and as ω→ 0 the estimate

is closer to β̂. The pooling factor ω tends to 0 when the term xT
i Cixi is negligible com-

pared to the noise term σ, which means that the prior dominates over the likelihood

term and the estimate is close to the prior term (in this case β̂) and vice versa. The

pooling factor is plotted in Fig. 3.2 for a sample uniform grid input distribution cen-

tered around the origin. Here C is given by eq. (3.3), parameters h and σ were chosen

arbitrarily and the local model is centered around the origin. From the plot, it is obvi-

ous that the pooling factor approaches 0 near the center of the model and approaches

1 away from the center as is expected. Also shown in the plot are the pooling factors

for different values of the bandwidth h. For smaller bandwidths the curve is sharp at

the bottom and is more flat for higher values of the bandwidths. This implies that for

higher bandwidths the extent of data around the center of the model pooled towards

the mean regression coefficient is higher and in turn leads to an increased expanse of

linearity.

3.2 Locally weighted linear model

A Randomly Varying Coefficient model can also be understood as a local linear re-

gressor. The local regression equivalent to RVC can be obtained by marginalizing out

the hidden variables βi of the local model to obtain :

P(yi|β̂,σ,h1 . . .hd+1) =
R

P(yi|βT
i xi,σ

2)P(βi|β̂,Ci)dβi

⇒ yi ∼ N (β̂
T

xi,xT
i Cixi +σ2) (3.6)
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Figure 3.2: The pooling factor as a function of the input distribution

It is interesting to note that the form of likelihood in eq. (3.6) corresponds to a linear

regression with heteroscedastic noise (Gelman et al., 2003). Thus the Randomly Vary-

ing Coefficient formulation strives to model the data points as being generated from

a linear function with a noise process that increases monotonically with the distance

from the center of the local model. This brings the model in line with the kind of het-

eroscedastic model we had discussed in the context of product of experts regression in

Chapter 2.

Assuming IID data, the log likelihood for the entire data is given by the sum of the

log likelihood of individual data points defined in eq. (3.6), and can be written as :

L = ∑
i
−1

2
ln(xT

i Cixi +σ
2)− 1

2
(yi− β̂

T
xi)2

(xT
i Cixi +σ2)

(3.7)

Eq. (3.7) can be rewritten in a more generic form by replacing the variance part xT
i Cixi+

σ2 by a weighting function 1
φ(xi,h) to yield :

L = ∑
i

1
2

lnφ(xi,h)− 1
2

φ(xi,h)(yi− β̂
T

xi)2 (3.8)

The log likelihood L can be seen to be made up of two terms - a weighted squared error

term that represents the bias of the fit and the normalization term that corresponds to the

variance. The weighting function contributes to both these terms with the bandwidth

parameter h of the weighting function modulating the bias and variance of the fit. The
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optimal bandwidth would hence be a trade-off between the bias and variance and would

typically depend on the functional form of the objective function being optimized.

3.2.1 The weight function for the local linear regression

As we saw in eq. (3.8), the marginal likelihood can be understood as a weighted least

square regression with appropriate regularization. The nature of the weighting is gov-

erned by the weighting function that is used to provide locality.

The weighting function in our model is given by φ(xi,h) = 1/(xT
i Cixi + σ2). This

weighting function corresponds to an inverse of a quartic polynomial in x. This type

of weight function has not been used previously in local least squares regression or

kernel regression. Researchers usually prefer to use weight functions like Gaussian,

Epanechnikov or tricubic kernels (Härdle, 1994; Loader, 1999a). However it has been

noted (Härdle, 1994; Atkeson et al., 1997) that given an optimal bandwidth for a kernel

the fit is not sensitive to the shape of the kernel. Hence, in this work we have chosen

an inverse polynomial keeping an eye on the ease of inference afforded by this form of

kernel.

In this section we had formulated RVC as a local linear regression with parameters

for the fit and bandwidth. A straightforward approach to estimate the fit (β̂) and the

bandwidth (h) parameters of RVC would be to optimize the log likelihood given by

eq. (3.8). However, it is observed that the maximum likelihood (ML) estimate for

the fit obtained using the log likelihood suffers from substantial bias at points of high

curvature along the function being modeled and requires a regularizer prior over the

bandwidth parameter as explained next.

3.2.2 Bias reduction for linear fit

The log likelihood function L given by eq. (3.8) is a typical loss function for a locally

weighted regression and it is generally observed that when a localised linear regression

is used to obtain a smoothed estimate of a non linear function, substantial bias is in-

troduced at points of high curvature. This is usually referred to as “trimming the hills

and filling the valley” (Hastie & Loader, 1993) and is illustrated in Fig. 3.3. The phe-

nomenon can be demonstrated by estimating the bias for a simple noiseless function

defined over a one dimensional input. The log likelihood of a local model of RVC as
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defined by eq. (3.8) can be adapted to a univariate target function as :

L = ∑
i

1
2

lnφ(xi,h)− 1
2

φ(xi,h)( f (xi)−m(xi− xc)− c)2

where f (x) is the function to be approximated, xc the center of the local model, m

the slope and c the intercept of the univariate regression. To estimate the value of

the bias introduced by an ML estimate of the parameters, the slope and intercept of

the weighted regression needs to be computed by differentiating L with respect to the

parameters and equating to zero :

∂L
∂m

= ∑
i

φ(xi,h)(xi− xc)( f (xi)−m(xi− xc)− c) = 0 (3.9)

∂L
∂c

= ∑
i

φ(xi,h)( f (xi)−m(xi− xc)− c) = 0 (3.10)

Solving the above simultaneous equations in m and c we obtain :

( f (xc)− c) = f ′′(xc)
∑i φ(xi,h)(xi− xc)∑i φ(xi,h)(xi− xc)3− (∑i φ(xi,h)(xi− xc)2)2

(∑i φ(xi,h)(xi− xc))2−∑i φ(xi,h)∑i φ(xi,h)(xi− xc)2

= w f ′′(xc) (3.11)

where f (xi) has been replaced by its Taylor expansion about xc upto the second de-

gree. Eq. (3.11) clearly illustrates the bias ( f (xc)− c) as a function of the curvature

represented here by the second order differential f ′′(xc).

Different methods have been proposed in the literature to reduce this bias -

• Using a higher degree polynomial fit can overcome the effect of higher degrees

of the function. In the above derivation we have effectively shown that a linear fit

can overcome bias effects of first degree, similarly a quadratic fit can overcome

effects of second degree and so on. This has been proved for any generic local

polynomial fit in (Hastie & Loader, 1993), (Fan & Gijbels, 1995).

• As illustrated in (Choi & Hall, 1998) the bias at a point of high curvature can

also be reduced by using local models in neighboring regions placed in such a

way as to cancel out the effects of the bias.

• If we assume that the fit is sufficiently local so that φ(x,h) has a fast decay, then

the data distribution around the center of the local region can be assumed to be

fairly symmetric. In addition when φ(x,h) is symmetric around xc and always
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Figure 3.3: Bias for a local linear regression

nonnegative, the summation of terms of odd degree in eq. (3.11) reduces to zero.

Hence, w in eq. (3.11) can be approximated as :

w ≈ ∑i φ(xi,h)(xi− xc)2

∑i φ(xi,h)
(3.12)

which means that in order to reduce the bias one can favor a weighting function

φ(xi,h) with a small bandwidth value such that terms away from the center (large

values of (xi− xc)2) receive a significantly low weight leading to smaller values

for w.

All the above methods tend to decrease the bias at the expense of an increased variance.

In this work we use the last method wherein small bandwidths for local models are

encouraged by using a Gamma 2 regularizer prior over the bandwidth parameters given

by :

h2
j ∼ Gamma(a j,b j) (3.13)

The parameter h being a scale parameter of the Normal distribution over the hidden

variables βi, the Gamma distribution over h would be a conjugate to the Normal dis-

tribution and will serve to simplify inference procedure. We shall further assign non-

informative Normal prior N (µ,S) for the parameter β̂ and a noninformative inverse

Gamma3 prior with hyperparameters c and d for σ. We use values of µ = 0, S = 103×I,

2Gamma(θ|a,b)∼ ba

Γ(a)θa−1e(−bθ)

3Inv−Gamma(θ|a,b)∼ ba

Γ(a)θ−(a+1)e(−b/θ)
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Figure 3.4: The ‘local’ regression model

c = 10−3 and d = 10−3 to make the corresponding priors non-informative. We assume

a uniform prior for the regularizer hyperparameters a j and b j. Fig. 3.4 summarizes the

resultant probabilistic model for a single local model.

3.3 Combining the models for prediction

In the last section, we had concerned ourselves with the building of a probabilistic

model for an individual local model. In this section, we look at how these local models

can be combined together to form the complete model by using the product of experts

regression model discussed previously in Chapter 2. In this section, we assume that the

parameters of the models have been inferred and the learnt models need to be combined

during prediction.

Using the product of experts combination given by eq. (2.2), we get :

y ∼
∏ j N ( f j,1/φ j)

Z
(3.14)

Here, the local function f j is modeled using a linear fit : f j(x∗) = β̂
T
j (x∗− x j) from

eq. (3.8), x∗ is the test query point and x j is the center of the jth local model. The

product of Gaussians is just another Gaussian and hence eq. (3.14) reduces to :

y∗|x∗ ∼ N (
∑ j φ j(x∗)β̂

T
j (x∗−x j)

∑ j φ j(x∗)
,1/∑

j
φ j(x∗)) (3.15)
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We now examine the predictive process by modeling the combined prediction as

a linear smoother. Maximizing the likelihood given by eq. (3.8) with respect to the

fit β̂ leads to a weighted regression solution. Writing down the maximum likelihood

estimate of β̂ we get :

β̂ j = (XT
j W jX j)−1XT

j W jy (3.16)

where, X = [x1 . . .xi . . .xN ]T , W j is a diagonal matrix with the diagonal elements given

by W j(i, i) = φ j((xi − x j),h) and y = [y1 . . .yi . . .yN ]T . We can rewrite eq. (3.16) as

β̂ j = S jy. Substituting this form in eq. (3.15) we get the mean prediction as :

E(y∗) =
∑ j φ j(x∗)β̂

T
j (x∗−x j)

∑ j φ j(x∗)

=
∑ j φ j(x∗)(x∗−x j)T S j

∑ j φ j(x∗)
y

= s(x∗)T y (3.17)

where, s(x∗) = ∑ j φ j(x∗)ST
j (x∗−x j)

∑ j φ j(x∗)
. From eq. (3.17) we can conclude that the RVC model

is a linear smoother (Hastie & Tibshirani., 1990; Loader, 1999a), predicting the re-

sponse to a new query point as a smooth over the target points y. The weight vector

s(x∗) is usually called the weight function (Silverman, 1984) or the weight diagram

(Loader, 1999a). It must be noted that the weight function s is a function of the de-

sign points and is completely independent of the response variable. For a fixed design

with input data being regularly spaced within an interval, Silverman compares the

weight function to a kernel and calls it an equivalent kernel (Silverman, 1984; Sol-

lich & Williams, 2005). The equivalent kernel can be used to deduce the properties

of the smoother as it indicates the weight received by each of the response points in

accordance with its position in space. For the weight function defined in eq. (3.17),

the equivalent kernel is plotted in Fig. 3.5 for three different test points with the train

points being equally spaced along the input dimension.

3.3.1 Degrees of freedom

One of the ways to compare different linear smoothers is by measuring the degree

of smoothness of the curve it models. The smoothness is often measured in terms

of the degrees of freedom of the fit. The degrees of the freedom is also an indicator

of the complexity of the learning model (in the sense of Occam’s razor) and loosely

corresponds to the number of parameters used by the model. The degrees of freedom
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Figure 3.5: The weights produced by the equivalent kernel at different test points for a

uniformly spaced train points.

of a smoother can be computed by looking at the trace of the hat matrix (Hastie &

Loader, 1993). The hat matrix is defined as the matrix that maps the responses to the

fits produced by the model. We can derive the hat matrix for RVC by starting with the

local model. For a local model the fit is linear and hence the hat matrix Ŝ is given by -

Ŝ j = X jS j

= X j(XT
j W jX j)−1XT

j W j

such that ŷ j = Ŝ jy where ŷ j is the vector of predictions obtained from the jth local

model corresponding to the vector of training responses y. The combined estimate

produced by RVC is a convex combination of the estimates of different local models :

ŷ = ∑
j

Ŵ jŷ j

= ∑
j

Ŵ jŜ jy (3.18)

where, Ŵ j is a diagonal normalized weight matrix with the diagonal elements given

by Ŵ j(i, i) = φ j((xi−x j),h)
∑ j φ j((xi−x j),h) which can also be expressed in terms of W j as Ŵ j =

(∑ j W j)−1W j. From eq. (3.18), the effective weighted hat matrix would be Ŝ =

∑ j Ŵ jŜ j. The degree of freedom of the RVC model according to the measure de-

veloped in (Hastie & Loader, 1993) would be given by the trace of the hat matrix Ŝ
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Figure 3.6: Variation of degrees of freedom with bandwidth and the number of models

in RVC

given by :

d f = trace(Ŝ) = trace(∑
j

Ŵ jŜ j) (3.19)

It can be easily seen that the degree of freedoms of the combined system is greater than

a single local model :

trace(Ŝ)≥ trace(Ŝ j)∀ j∈1...M (3.20)

For a local model having a linear parametrization for the function, trace(Ŝ j) would

be equal to the number of dimensions of the input d. Therefore from eq. (3.20)

we find that the combined model of RVC would have atleast as many degrees of

freedom(trace(Ŝ)) as the number of dimensions of the input. As we can see from

eq. (3.19), the degrees of freedom of the system is governed by the weighting pro-

vided to individual hat matrix. The weighting in turn is modulated by the individual

bandwidths of the model. We can then expect that the degrees of freedom would be a

function of the bandwidth. The variation of the degrees of freedom with the bandwidth

of the models is illustrated in Fig. 3.6. Here, local models were centered around all

the input points and were assigned the same bandwidth. The value of the bandwidth

was varied and the effective degrees of freedom computed and plotted. The plot shows

that as we increase the bandwidth the modeling ability of the model decreases as the

degrees of freedom approaches that of a simple linear regression model and as the

bandwidth decreases more complex surfaces can be modeled as it captures more vari-
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ations in the given function. The other factor that influences the degrees of freedom is

the number of models in the system. In Fig. 3.6 two plots have been shown to illustrate

the effect of number of local models on the degrees of freedom of the system. The plot

in the dashed line shows an RVC model with as many local models as data points and

the plot with solid curve stands for the degrees of freedom for a case when only half

of the data points are used as centers of the local models of RVC. The interesting fact

to note in the figure is that as the bandwidth decreases in the top plot the degrees of

freedom tends to reach the maximum which is the number of data points whereas in

the bottom curve the maximum degrees of freedom exceeds the number of models in

the system (in this case 100). This shows that the combined system can reach degrees

of freedom exceeding the number of models. It must be noted that the illustration here

has been obtained by restricting the bandwidths to be the same for all local models,

this then represents a restricted subspace of the combination of the bandwidth values

possible and represents a subset of the possible degrees of freedoms.

3.4 Discussion

In this chapter we had developed a probabilistic model for local linear regression and

showed its links to related research literature. Furthermore we derived the complexity

of the learning model for a local component of the ensemble and extended it to the

entire ensemble. We also demonstrated in Section 3.3.1, that by learning the optimal

bandwidth in a data driven fashion it is possible to modulate the flexibility of the model

and by dynamically allocating and deallocating models in the system it is possible to

enhance or limit the complexity of the system. This would be the basis for the learning

algorithm of RVC developed in succeeding chapters.



Chapter 4

Learning

Learning the parameters of the Randomly Varying Coefficient model implies optimiz-

ing the joint likelihood of the variables of the model. A simple maximum likelihood

estimate of the parameters would tend to produce a biased (MacKay, 1992) model

which overfits the training data. An alternative would be to to learn a distribution

over the parameters that gives the most probable estimate of the parameter and con-

fidence bounds over the estimates. Use of a non-informative prior over the nuisance

parameters results in a posterior that is insensitive to the specific prior used and thus

avoids tuning of the hyperparameters. The posterior over the parameters can then be

used to marginalize out the variables during prediction. This is equivalent to taking

an average of the predictions of different models and results in a more robust predic-

tion. In the RVC model, we have non-informative priors over the parameters β̂ and

σ (refer Fig. 3.4). For the bandwidth parameter h we have an informative prior with

hyperparameters a j and b j. In a true Bayesian setting a non-informative prior over

the hyperparameters a and b would be used to infer its posterior. However, due to the

absence of any suitable conjugate prior over a and b we resort to inferring the point

estimates of the hyperparameters.

Our objective is thus to learn the posterior over the parameters β̂, h j, σ and to obtain

point estimates for the hyperparameters – a j, b j. The joint posterior is given by:

P(h, β̂,σ|y,a,b,c,d,µ,S) =
P(y, β̂,h,σ,a,b,c,d,µ,S)

P(y,a,b,c,d,µ,S)
(4.1)

where we have used h to denote the vector [h2
1 . . .h2

d+1]
T and y denotes the training data

[y1 . . .yN ]T , a ≡ [a1 . . .ad+1]T and b ≡ [b1 . . .bd+1]T . However, the posterior over the

parameters is rendered intractable due to the difficulty in evaluating the denominator of

eq. (4.1). This necessitates the use of variational Bayesian EM to evaluate the posterior

40
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P(h, β̂,σ|y,a,b,c,d,µ,S) and learn the regularizer hyperparameters a and b.

4.1 Variational approximation for RVC

To learn the parameters of the model we can maximize the marginal log likelihood

with respect to the parameters treating βi as the hidden variables. The marginal log

likelihood is given by:

L = lnP(y|a,b,c,d,µ,S)

= ln
Z

P(y,β1 . . .βN ,h, β̂,σ2|a,b,µ,S,c,d)dβ1 . . .dβNdhdβ̂dσ
2

= ln
Z [

∏
i

P(yi|βi,σ
2)P(βi|β̂,h1, . . .hd+1)

∏
j

P(h2
j |a j,b j)P(β̂|µ,S)P(σ2|c,d)

]
dβ1 . . .dβNdh1 . . .dhd+1dβ̂dσ

2 (4.2)

Using Jensen’s inequality, the objective function that lower bounds L for a distribution

Q is given by:

F =
Z

Q(β1 . . .βN ,h, β̂,σ2) ln
P(y,β1 . . .βN ,h, β̂,σ2|a,b,µ,S,c,d)

Q(β1 . . .βN ,h, β̂,σ2)
dβ1 . . .dβNdhdβ̂dσ

2

(4.3)

The optimal value for Q(β1 . . .βN ,h, β̂,σ) that makes the bound tight is given by the

joint posterior P(β1 . . .βN ,h, β̂,σ|y) but since this posterior is intractable, we make an

approximation by assuming that the posterior over the variables is independent and can

be expressed as :

Q(β1 . . .βN ,h, β̂,σ|y) = ∏
i

Q(βi|y)∏
j

Q(h2
j |y)Q(β̂|y)Q(σ2|y)

This form of approximation is often called an ensemble variational approximation

(Beal, 2003), details of which can found in Appendix A. Substituting the factorized

approximation in eq. (4.3) we get:

Fapprox = ∑
i

[
〈lnP(yi|βi,σ)〉Qβi ,Qσ2

+
〈

lnP(βi|β̂,h1 . . .hd+1)
〉

Qβi ,Qh1 ...Qhd+1,Q
β̂

]
+∑

j

〈
lnP(h2

j |a j,b j)
〉

Qh j
+
〈

lnP(β̂|µ,S)
〉

Q
β̂

+
〈
lnP(σ2|c,d)

〉
Q

σ2

−∑
i

〈
lnQ

βi

〉
Qβi

−∑
j

〈
lnQh j

〉
Qh j

−
〈

lnQ
β̂

〉
Q

β̂

−〈lnQσ2〉Q
σ2

(4.4)
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where 〈.〉Q denotes the expectation with respect to the distribution Q. The optimal

values of the posterior probabilities can be computed iteratively by maximizing the

functional Fapprox with respect to each individual posterior distribution keeping the

other distributions fixed akin to an EM procedure.

The posteriors for the parameters of RVC can be derived following the same pro-

cedure detailed above. Here, we give the resulting updates for the hyperparameters of

the posterior with the detailed derivation listed in Appendix B.

• The update of the posterior Q(βi|y) ∼ N (νi,Gi) keeping Q(β̂|y), Q(h2
j |y) and

Q(σ2|y) fixed is :

Gi = (xixT
i /
〈
σ

2〉+ 〈Ci〉−1)−1

= 〈Ci〉−
〈Ci〉xixT

i 〈Ci〉
〈σ2〉+xT

i 〈Ci〉xi
by Sherman-Morrison Woodbury theorem

(4.5)

Here, 〈Ci〉= diag(xT
i xi/

〈
h2

j

〉
Q(h2

j)
) and

〈
σ2〉= d̃/c̃. Furthermore, using results

from eq. (4.5),

νi = Gi(yixi/
〈
σ

2〉+ 〈Ci〉−1 µ̃)

=
〈Ci〉xi

(〈σ2〉+xT
i 〈Ci〉xi)

(
yi−xT

i µ̃
)
+ µ̃

(4.6)

• The update of the posterior Q(β̂|y) ∼ N (µ̃, S̃) keeping Q(βi|y), Q(h2
j |y) and

Q(σ2|y) fixed is :

S̃ =

(
∑

i
〈Ci〉−1 +S−1

)−1

(4.7)

µ̃ = S̃

(
∑

i
〈Ci〉−1

νi +S−1µ

)
(4.8)

The update given in eq. (4.8) can be seen to be equivalent to a weighted least

squares regression by substituting the value of νi from eq. (4.6), S̃ from eq. (4.7)

in eq. (4.8) and setting µ = 0 to obtain :

µ̃ =

(
∑

i
〈Ci〉−1 +S−1

)−1(
∑

i

xiyi

〈σ2〉+xT
i 〈Ci〉xi

−
(

xixT
i

〈σ2〉+xT
i 〈Ci〉xi

−〈Ci〉−1
)

µ̃

)
(4.9)

which at convergence would yield :

µ̃ =

(
∑

i

xixT
i

〈σ2〉+xT
i 〈Ci〉xi

+S−1

)−1(
∑

i

xiyi

〈σ2〉+xT
i 〈Ci〉xi

)
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and has the same form as a weighted regression estimate with the weights given

by
〈
σ2〉+xT

i 〈Ci〉xi.

• The update of the posterior Q(σ2|y)∼ Inv-Gamma(c̃, d̃) keeping Q(βi|y), Q(h2
j |y)

and Q(β̂|y) fixed is :

c̃ = c+N/2 (4.10)

d̃ = d +∑
i

[
(yi−ν

T
i xi)2 +xT

i Gixi
]
/2 (4.11)

• The update of the posterior Q(h2
j |y)∼Gamma(ã j, b̃ j) keeping Q(βi|y), Q(σ2|y)

and Q(β̂|y) fixed is :

ã j = a j +N/2 (4.12)

b̃ j = b j +∑
i

[
(νi, j− µ̃i, j)

2 +Gi, j j + S̃ j j
]
/(2xT

i xi) (4.13)

Here, νi, j and µ̃i, j denote the j-th element of the respective vectors and Gi, j j and

S̃ j j denotes the j-th diagonal element.

These updates are repeated till convergence. The regularizer hyperparameters a j and

b j in eqs. (4.12) and (4.13) are obtained by maximizing the bound Fapprox given by

eq. (4.4) with respect to these hyperparameters keeping the posterior distributions Q

fixed. Such a method of hyperparameter estimation has been used previously in (Tip-

ping & Lawrence, 2005) and suggested in (Beal, 2003). Considering only the terms of

Fapprox involving the hyperparameters we can define E as :

E =
Z

Q(h2
j |ã j, b̃ j) lnP(h2

j |a j,b j)dh2
j

Maximizing E with respect to the hyperparameters is equivalent to minimizing the KL

divergence between the distributions Q and P. Since the posterior Q and prior P share

the same parametric form, KL divergence is minimized when the parameters of these

distributions match. This leads to the simple update rule for the hyperparameters given

by:

a j = ã j, b j = b̃ j (4.14)

The iterative training algorithm for each local model is concisely summarized in Al-

gorithm 2.
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Algorithm 2 Training a local model
1: Initialize hyperparameters: Θ ≡ {µ0,S,c,d,a,b}.

2: Input: Batch training data X, y
3: repeat
4: Estimate posterior hyperparameters Θ̃ using Θ and eq. (4.5), (4.6) and eqs. (4.7)

- (4.13).

5: Estimate values of the hyperparameters a and b of the regulariser prior using eq.

(4.14).

6: until convergence of Θ̃

4.2 Prediction using the committee of local models

We have dealt so far with building a coherent probabilistic model for each local expert

and have derived inference procedures to estimate the parameters of individual models.

Given the ensemble of trained local models, in order to predict the response yq for a

new query point xq, we take the normalized product of the predictive distribution of

each local model as discussed in Chapter 2. The predictive distribution of each local

model is given by:

P(yq|y) =
Z

P(yq|β̂,σ,h)Q(β̂|y)Q(σ2|y)Q(h|y)dhdβ̂dσ
2 (4.15)

where P(yq|β̂,σ,h) has the form given by eq. (3.6). We can further integrate out β̂

from eq. (4.15) to obtain the predictive distribution as :

P(yq|y) =
Z

P(yq|µ̃, S̃,σ,h)Q(σ2|y)Q(h|y)dhdσ
2 (4.16)

Eq. (4.16) is a mixture of Gaussians with a common mean and different variances.

Since the integral in eq. (4.16) is intractable, it is approximated using a Gaussian distri-

bution given by N (µ̃T xq,v2). A student-t distribution would be a better approximation

for the particular integral, but we have chosen to approximate the predictive distribu-

tion by a Gaussian keeping in mind the ease of combining Gaussian distributions using

a product of experts paradigm. By minimizing the KL divergence between the approx-

imate distribution and the actual distribution, it can be shown (Appendix C) that the

optimal value of v2 is xT
q (S̃ +Chmode)xq + σ2

mean where Chmode refers to the covariance

matrix evaluated at the mode of the posterior Q(h|y) and σ2
mean stands for the mean of

Q(σ2|y). The final predictive distribution for the k-th local model is:

yq,k ∼ N (µ̃T
k xq,k,xq,k

T (S̃k +Ckhmode)xq,k +σ
2
mean),



Chapter 4. Learning 45

Algorithm 3 Global prediction using local models
1: Input: Query point xq, learned parameters µ̃k, Ck, S̃k and σk

2: Initialize: sumα = 0, yq = 0

3: for k = 1 to #local models do
4: xq,k = xq−xc,k

5: Calculate αk using eq. (4.18)

6: yq = yq +αkµ̃T
k xq,k

7: sumα = sumα +αk

8: end for
9: Output: yq = yq/sumα, var = 1/sumα

where xq,k refers to the query point with the k-th center subtracted and augmented

with bias. Blending the prediction of different experts by taking their product and

normalizing it results in a Normal distribution given by :

yq ∼ N (µ,ζ2) where µ =
∑k αkµ̃T

k xq,k

∑k αk
, ζ

2 =
1

∑k αk
. (4.17)

Here, µ is a sum of the means of each individual expert weighted by the confidence

expressed by each expert in its own prediction αk, ζ2 is the variance and αk is the

precision of each expert :

αk = 1/(xT
q,k(S̃k +Ck)xq,k +σ

2
k), Ck = diag{xT

q,kxq,k/h2
j,k} (4.18)

The prediction routine for RVC combining the predictions of individual local models

is summarized in Algorithm 3.

4.3 Empirical study of RVC

In this section, we carry our some empirical evaluations of the RVC algorithm in order

to highlight the salient aspects of its formulation. In the implementation, the hyper-

parameters µ, S, c and d are set to values that make the corresponding priors non-

informative. Values of µ = 0, S = 103 × I, c = 10−3 and d = 10−3 ensures such a

condition. On the other hand the regularizer hyperparameters a and b are initialized

such that it encourages small h as previously discussed in Section 3.2.2. A value of

a = 1 and a sufficiently large value for b ensures such a bias. These settings are used

for all the evaluations in the thesis.
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Figure 4.1: Local linear fits and ‘local’ bandwidth adaptation

4.3.1 Bandwidth adaptation and confidence measures

The bandwidth parameter plays a crucial role in determining the bias-variance tradeoff

for each local model by determining the extent of each local model. Here, we illustrate

the adaptation of bandwidth for each local model and the resulting global fits and

confidence bounds of the RVC model. Fig. 4.1 shows the local linear fits (at selected

test points) learnt by RVC using 300 noisy training data points from a function with

varying spatial complexity(Vijayakumar et al., 2005). Such functions are extremely

hard to learn since models with high bias tends to oversmooth the nonlinear regions

while more complex models tend to fit the noise. While the local linear fits roughly

correspond to the expected slope at the respective points (see Fig. 4.1 (top)), avoiding

overfitting or oversmoothing, a more significant result is the adaptation of the local

bandwidth. The bottom section of Fig. 4.1 plots the converged locality measure1 in

terms of the local bandwidth parameter hslope, illustrating the adaptation to the local

curvature.

In another evaluation using the same toy function and 500 noisy training points, we

compared the global fit and confidence bounds learned by RVC to Gaussian Process

1Smooth plots for the bandwidth were obtained by using local models centered around a dense
uniform grid in input space.
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Figure 4.2: Comparison of fits learnt by RVC and GP

(GP) regression (Williams, 1998) – a state of the art regression technique. Fig. 4.2(a)

and 4.2(b) shows the results of the comparison; it is important to note that we have

deliberately avoided using training data in the input data range [55,65] and the confi-

dence bounds (computed using eqs. (4.17) and (4.18) for RVC) nicely reflect this.This

evaluation is aimed to demonstrate that RVC is able to adapt its confidence bounds

based on the distribution of training data as well as a global learning algorithm like

GP. This comparison does not include the fit learned in the region of sparse data, since

the lack of data precludes any judgement about the true fit.

This evaluation highlights the fact that RVC provides competitive (with respect to
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Figure 4.3: Sensitivity to initialization of the hyperparameters

the state of the art), approximate and appropriate confidence interval estimates while

retaining the attractive properties of non-parametric, localised learning.

4.3.2 Sensitivity to initialization

Although the Variational Bayesian EM(VBEM) procedure of learning in RVC is not

entirely parameter free, the majority of the parameters and hyperparameters (refer to

Fig. 3.4), with the exception of the scale parameter of the Gamma regularizer hyper-

prior b, can be set using uninformative priors – we will demonstrate this empirically

later on in this section. Maximum likelihood estimation of the regularizer hyperpa-

rameter b makes the convergence of the RVC relatively sensitive to its initialization.

Next, we explore this effect on the final learned model and recommend a procedure to

determine the optimal initialization for b.

As an illustrative example, a noisy (std. deviation of 0.05) sinc function with 200

randomly distributed training points was used to train RVC. The training was repeated

for different values of the scale parameter b of the regularizer Gamma prior. Fig. 4.3

plots the predictive likelihood of test data and the value of Fapprox as defined by eq.

(4.4) after convergence of learning. These quantities are plotted against different ini-

tializations of b measured on a log scale. From the figure (and further extensive evalua-

tions), it can be gleaned that while different initializations can lead to different points of
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convergence in the parameter space, the variation of the converged value of the objec-

tive function(Fapprox) closely mimics that of the test likelihood. Hence, this objective

function can be used as a reliable measure to choose a near-optimal initialization for

the hyperparameter b.

In contrast to the scale hyperparameter b, for the parameters of fit (β̂) and noise

variance (σ2) – again refer Fig. 3.4, it is sufficient to use uninformative priors over

them. This insensitivity can be illustrated via an example where the role of prior in

learning the noise parameter σ is studied. An experiment was performed where the

evolution of test likelihood was traced under three different settings of prior over the

parameter σ. The value of σ enters into the learning updates through the expectation

statistic
〈
σ2〉 which in turn is determined by the updates of d̃ and c̃ in eqs. (4.10) and

(4.11), and is given by : 〈
σ

2〉=
d̃
c̃

=
dprior +ddata

cprior + cdata
(4.19)

where ddata = ∑i
[
(yi−νT

i xi)2 +xT
i Gixi

]
/2, cdata = N/2, cprior = c and dprior = d. Eq.

(4.19) can then be rewritten as :

〈
σ

2〉=

〈
σ2

prior

〉
/cdata +

〈
σ2

data

〉
/cprior

1/cdata +1/cprior
(4.20)

where
〈

σ2
prior

〉
= dprior

cprior
and

〈
σ2

data

〉
= ddata

cdata
. It is evident from eq. (4.20) that the

posterior estimate is a weighted average of the data estimate (σ2
data,cdata) and the prior

(σ2
prior,cprior). The relative contribution of prior and data in determining the posterior

can be modulated by adjusting the ratio of cprior to cdata. The learning behavior of

RVC in terms of accuracy and convergence is studied under three different priors for

σ2:

• Correct informative prior : In this setting,
〈

σ2
prior

〉
is initialized to the true noise

value used in generating the dataset and cprior/cdata = 5. This setting provides a

higher weight to the prior belief.

• Non-informative prior : In this setting, cprior = 10−3 and dprior = 10−3 which

corresponds to a
〈

σ2
prior

〉
= 1 and cprior/cdata = 5× 10−6. This setting corre-

sponds to a case where the prior is downweighted and allows the “data to speak”

(Gelman et al., 2003).

• Incorrect informative prior : In this setting,
〈

σ2
prior

〉
is initialized with a random

incorrect value and cprior/cdata = 5. This setting corresponds to a case where the

prior belief is incorrect but is allowed to dominate over the data.
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Figure 4.4: Effect of prior on accuracy and convergence

The plots of test likelihood for these settings is shown in Fig. 4.4. As can be seen

from the figure, a non-informative setting of the prior leads to the same likelihood

as a correct prior albeit at a slower rate of convergence whereas an incorrect strong

prior leads to a deterioration in accuracy accompanied with a slower convergence.

This suggests that in the absence of any strong prior information about the values

of the parameters, a non-informative prior serves as the best choice; indeed, these

default settings can be carried over to different learning tasks without the need for

extensive tuning. The resulting reduction in the number of open parameters in RVC

is a significant improvement over other local linear regression methods like LWPR

(Vijayakumar et al., 2005).

4.3.3 Allocation of local models

Modularity and independence of local models lets us adapt the complexity of the com-

bined model by the addition and deletion of local models without affecting the exist-

ing learnt models. This property of RVC makes it useful as an adaptive, incremental

learner that maintains the key benefits of local learning (Schaal & Atkeson, 1998; Vi-

jayakumar et al., 2005) and will be exploited in Section 5.2, wherein local models are

allocated and deallocated dynamically. There are two issues when dealing with the

allocation of local models - the number and the position of these models in the input

space. In a non-competitive local learning scenario, where local models cooperate only
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Figure 4.5: Illustration of the effect of number of local models on the quality of fit

at the prediction phase, the exact position and number of local models do not affect the

quality of approximation(Atkeson et al., 1997; Schaal & Atkeson, 1998) as long as

sufficient overlap is maintained.

To illustrate this, noisy (std. deviation of 0.05) training data from a sinc function

is used and accuracy of RVC is measured as a function of the number of local models

used. To make the evaluation efficient, we exploit the fact that the local models are

trained independently. Hence, instead of retraining RVC models with different number

of local models, local models are placed at all the training data points and trained. A

subset of these local models is then chosen to build an RVC for prediction. The RVC

built in this manner is used to compute the test likelihood over a test dataset. This

process of prediction is repeated for RVC built with a single local model, two local

models and so on upto the maximum number of local models available. For each

cardinality of the RVC, mean and variance of test likelihood is computed by repeating

the test with different random selections of local models from the pool of trained local

models. The statistics thus collected is shown in Fig. 4.5. From the figure, it is clear

that after a certain point there is no significant increase in the accuracy with further

addition of local models. Also, as seen from a larger variance at low number of local

models and a much lower variance when using larger numbers of local models, the

exact positioning of the local models is significant only when the number of local

models are low, i.e., when there is not sufficient overlap between models. These results
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are indeed in line with other more extensive studies on local weighted learning(Atkeson

et al., 1997).

4.4 Discussion

In this chapter we have formulated a principled variational approximation to the poste-

rior probabilities over parameters of the model. The EM optimization procedure built

on top of the variational Bayesian approximation allows us to develop efficient up-

dates for the posterior probabilities of the parameters of the local model. The most

interesting aspect of the learning rules for the local models is that they are completely

independent of each other and hence avoid negative interference between them.

Training local models is in itself not sufficient to make predictions for novel test

points and requires a combination rule to combine the predictions of the local models.

In this chapter we formulated such a combination rule based on the framework of

product of experts. Furthermore, through empirical analysis of the RVC model in

Section 4.3 we demonstrated the properties of the learning algorithm used in RVC. To

summarise, the outcome of this chapter is a learning algorithm that has a probabilistic

formulation and uses a Bayesian inference procedure to learn the posterior distributions

over its parameters, from a batch of data. In the next chapter we modify this algorithm

to make it online.
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Online learning

In previous chapters, we have looked at the probabilistic formulation of RVC and de-

rived learning rules that involved learning the posterior probabilities of the parameters

using a batch update represented by eqs. (4.7)-(4.13). These updates can be rewrit-

ten in the form of online updates by exploiting the Bayesian formalism (Sato, 2001;

Opper, 1998). In a batch mode of posterior evaluation, we have

posteriorN =
N

∏
i=1

(likelihoodi)×prior0

where i is an index over the data points. The same can be expressed as a set of online

updates:

posteriori ∝ likelihoodi× priori

priori+1 = posteriori

This set of updates implies that at every step of the online update the prior computed

over the data seen so far is combined with the likelihood of the current data point to

yield the posterior. This new posterior distribution of the parameter is then used as the

prior during the next update. Based on this, we can derive the online updates for RVC

that correspond to the batch results derived earlier :

S̃i = (〈Ci〉−1 +S−1
i )−1 (5.1)

µ̃i = S̃i(〈Ci〉−1
νi +S−1

i µi) (5.2)

ãi, j = ai, j +1/2 (5.3)

b̃i, j = bi, j +
[
(νi, j− µ̃i, j)

2 +Gi, j j + S̃i, j j
]
/(2xT

i xi) (5.4)

c̃i = ci +1/2 (5.5)

d̃i = di +
[
(yi−ν

T
i xi)2 +xT

i Gixi
]
/2 (5.6)

53
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Algorithm 4 Online updates for a local model
1: Initialize hyperparameters: Θ0 ≡ {µ0,S0,c0,d0,a0,b0}.

2: repeat
3: Input training data: xi, yi

4: repeat
5: Estimate posterior hyperparameters Θ̃i using Θi and eq. (4.5), (4.6) and eqs.

(5.1) - (5.6).

6: Estimate values of the hyperparameters a and b of the regulariser prior using

eq. (4.14).

7: until convergence of posteriors

8: Θi+1 = Θ̃i

9: until end of training data

We repeat the above updates for a single data point {xi,yi} till the posteriors Θ̃ =

(S̃, µ̃, ã, b̃, c̃, d̃) converge. For the (i + 1)-th point, we then use posterior Θ̃ of i-th step

as the prior Θ = (S,µ,a,b,c,d); this procedure is illustrated in Algorithm 4. The pre-

diction subroutine for the online algorithm remains the same as shown in Algorithm 3.

5.1 Complexity analysis of online updates

The time complexity of the learning algorithm is dominated by the computation of

Gi in eq. (4.5). The equations that use Gi are eq. (5.4) and eq. (5.6) and these can

be rewritten to avoid explicit computation of Gi. Eq. (5.4) requires only the diagonal

elements of Gi which can be computed in O(d)(d is the number of dimensions of the

input) since

Gi( j, j) = Ci( j, j)− (Ci( j, j)xi( j))2/(σ2 + γi) using eq. (4.5)

where γi = xT
i Cixi which can also be computed in O(d) due to the fact that Ci is

diagonal. On the other hand, eq. (5.6) requires the evaluation of xT
i Gixi which in turn

can be written down as:

xT
i Gixi =

σ2γi

σ2 + γi

and can also be computed in O(d). Furthermore, the matrix inverses in eq. (5.1) and

eq. (5.2) can also be computed in O(d) due to the fact that Si and Ci are diagonal

matrices. Therefore, the overall time complexity per online update is O(dM) where

d is the number of dimensions and M the number of local models. The algorithm
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does not require any data points to be stored and hence, has a O(M) space complexity

for the sufficient statistics stored in the local models. The independence of the local

models also means that the effective time complexity can be brought down to O(d)

using M parallel processors. The time complexity for prediction is O(dM) including

the evaluation of mean and the confidence bounds. We can see from this analysis that

the algorithm is very efficient with respect to time and space (in fact it matches LWPR’s

efficiency) and hence, is a strong candidate for situations which require real time and

online learning.

5.2 Addition/deletion of local models

An important issue in online learning is the dynamic allocation of local models. It

has been shown in Section 4.3.3 that typically only a subset of the training points

needs to be used as centers of local models. Finding such an optimal subset of the

training points, in a real time and independent learner is difficult and non-essential.

The motivation behind this statement can be summarized as:

• In an online setting, at any point in time there is only a partial knowledge of the

target function. Hence, in theory, the optimal centers for the local models could

shift with time as more samples are provided to the learner. This is particularly

true when we have a changing input data distribution (also known as covariate

shift) – a scenario which is very realistic in, for e.g., robot dynamics learning

where data arrives in batches from one part of the workspace and then, another

as opposed to a uniform distribution.

• The optimal centers for the local models is a function of the global fit and can-

not be determined locally and independent of other models. Moreover, truly

incremental learning schemes discard training data after incorporating it into the

learning model. Indeed, Section 4.3.3 has shown that sufficient overlap between

local models is enough to ensure good global prediction.

Hence, the local models are added using a simple heuristic based on the predictive

likelihood for a new data point. The predictive likelihood for an unseen data point

measures the capacity of the existing local models to explain the new data point. If

the likelihood is less than a threshold parameter for all local models, then a new local

model is added with the data point serving as the center.
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Figure 5.1: Comparison of generalization error between RVC, GP and LWPR on sinc,

boston and ozone data sets.

When two local models have sufficient overlap in the region they model, then one

of them is redundant and can be pruned. The degree of overlap between two models can

be estimated by looking at the input region where these two models have a significantly

high confidence. If the two candidate models express confidence for a prediction above

a fixed threshold then it is likely that the models have a significant overlap and one

of them can then be pruned. In empirical studies though, we have found that if the

addition of models is done judiciously then pruning does not play a significant part in

the learning process. The addition and deletion heuristics used here are similar to the

ones used in (Schaal & Atkeson, 1998).

5.3 Evaluation

In this section, we demonstrate the salient aspects of the RVC model by looking at

some empirical test results, compare the accuracy and robustness against state of the

art methods and evaluate its performance on some benchmark datasets.

In the first experiment we compare the generalization performance of RVC against

two other candidate algorithms - Gaussian Process(GP)(Williams, 1998) and Locally

Weighted Projection Regression(LWPR)(Vijayakumar et al., 2005) on artificial as well
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Figure 5.2: Comparison of online learning dynamics for sinc function

as real world datasets. The sinc function, air dataset described in (Bruntz et al., 1974)

and the Boston housing dataset from the UCI repository were used as benchmark

datasets. The dataset for the sinc function consisted of 500 training data points from the

sinc function corrupted with output noise: ε ∼ N (0,0.052) and a test dataset consist-

ing of 1000 uniformly distributed test points. The air(ozone) dataset which is a three

dimensional dataset with 111 data points was split into 83 training and 28 test points.

The 13 dimensional Boston dataset was split into 404 training and 102 test points. The

online learning methods – RVC and LWPR, were trained in epochs of repeated pre-

sentation of the training data, till convergence; LWPR required careful tuning of the

distance metric initialization and learning rates to achieve the performance reported

here as opposed to the uninformative priors used for RVC. The performance of GP,

RVC and LWPR shown in Fig. 5.1 are statistics accumulated over 10 different train-

test splits. Asymptotically, all three methods perform very well on the sinc data set,

achieving nMSE of less than 0.0025. For the ozone dataset which is highly nonlinear,

RVC and LWPR performs better than GP. For the Boston dataset, we find that the per-

formance of RVC is close to that of LWPR while slightly inferior to the GP results –

although this difference is statistically insignificant.

In an evaluation to compare the online learning characteristics, we trained RVC,

LWPR, GP and Sparse Pseudo-input Gaussian Process (SPGP) (Snelson & Ghahra-

mani, 2006) algorithms on the sinc dataset described earlier. After each training data
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Figure 5.3: (a) Comparison of training time between RVC, GP and SPGP on sinc data

set. (b) Comparison of time complexity for prediction.

point was presented to the learning system, the generalization error was evaluated us-

ing a uniform grid of 500 test data points. The RVC model was allowed only a single

EM iteration for each data point to ensure a fair comparison with LWPR. The result-

ing error dynamics averaged over 10 train-test evaluations, is shown in Fig. 5.2. In

this comparison, GP exhibits a sharply decreasing error curve which is not surprising

considering that it is essentially a batch method and stores away all of the training

data for prediction. When we compare RVC with LWPR, we find that RVC converges

faster while using roughly the same order of local models. This can be attributed to

the Bayesian learning rules of RVC that estimates the posterior over parameters rather

than point estimates. Since the posterior is a product of likelihood and prior, in the

event of sparse data (as in the initial stages of online learning), the prior ensures that

the posterior distributions assigned to the parameters and in turn the predictions of

the learner are reasonable. Also the optimization of the regularizer hyperparameters

for every data point implies a faster adaptation and hence, a faster convergence. We

can now compare accuracy and efficiency of RVC with that of a sparse version of GP

namely SPGP. RVC is able to match the generalization performance of an SPGP us-

ing almost the same number of local models. A more significant result is seen from

Fig. 5.3(a) where the time taken for training on the sinc dataset is illustrated for RVC

and compared with an accurate yet slow full Gaussian Process and an approximate yet

fast algorithm of SPGP. The difference between RVC and SPGP is very clear from

Fig. 5.3(a) with RVC having a better scaling behaviour. The empirical results supports

the theoretical prediction of a O(MN) time complexity for RVC compared to O(M2N)
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Figure 5.4: Comparison of fit and confidence bounds for the motorcycle dataset learned

by GP and RVC model, showing adaptation to heteroscedastic (varying) noise levels.

The data consists of a sequence of accelerometer readings through time following a

simulated motor-cycle crash.

for SPGP and O(N3) for a full GP. The time required for the mean prediction are the

same for RVC and SPGP - O(M) per test case and is much efficient than a full GP

with O(N3) complexity. These experiments thus demonstrate the favourable scaling

characteristics of RVC when learning from data.

Our next experiment aims to illustrate the ability of RVC to model heteroscedastic

data (i.e., data with varying noise levels). Fig. 5.4(b) illustrates the fit and the con-

fidence interval learnt on the motorcycle impact data (Silverman, 1984) discussed in

(Rasmussen & Gharamani, 2000). Notice that the confidence interval correctly adapts

to the varying amount of noise in the data as compared to the confidence interval learnt

by a GP with squared exponential kernel shown in Fig. 5.4(a). This ability to model
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(a) (b)

Figure 5.5: (a) DLR LWR-III robot arm, (b) OpenGL/ODE based full contact simulation

of DLR robot arm

non-stationary functions is another advantage of RVC’s localised learning.

In the next evaluation, we demonstrate the utility of RVC in learning the inverse

dynamics of a 7DOF KUKA Light-Weight Robot (LWR) arm (see Fig. 5.5(a)). Out

of the seven degrees of freedom, three were controlled and the rest fixed. A batch

train-test dataset consisting of 9 input dimensions and an output was generated using

a faithful simulation (see Fig. 5.5(b)) of the robot arm performing a pseudo-randomly

drifting figure-8 pattern. The input dimensions were the joint angles, velocities and

accelerations whereas the output was the applied torque at the shoulder joint. A set

of 1000 training and test points were used to evaluate the normalized mean square

error (nMSE) and the performance averaged over 5 repeats of the evaluation. The

performance of RVC compared against GP and LWPR is shown in Fig. 5.6(inset table).

As can be seen from the table, for data from one of the representative joints of the robot

arm, RVC and LWPR have similar performance and is significantly better than a simple

linear regressor whereas GP has the best performance. This difference can be attributed

to the fact that while GP utilizes the whole of the training set for prediction, RVC and

LWPR is more efficient and uses only a few parameters for prediction. Finally, we used

the robot arm as mentioned in the previous experiment to track a figure-8 pattern. A

composite control consisting of a combination of feedforward and low gain feedback

commands was used to control the joints of the arm. The feedforward command in turn

was produced from an inverse dynamics model of the robot arm learnt online by an

RVC model. The aim of the experiment was to learn an accurate model for the inverse

dynamics of the robot arm. The RVC model was trained on data that was collected

while the robot arm performed a drifting 8 pattern. The training data consisted of

2000 data points corresponding to a 8 pattern in the x-z plane and a slowly drifting y
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Methods Test error (nMse)

Linear 1.4×10−2(±6.13×10−4)

GP 1.45×10−7(±8.09×10−9)

RVC 1.8×10−3(±2.19×10−4)

LWPR 1.1×10−3(±3.63×10−5)

Figure 5.6: Progress of online learning with RVC control - Trajdes is the desired tra-

jectory, Traj50, Traj200000 are the trajectories learnt from 50 and 20,0000 training data

points and Traj pd is the trajectory corresponding to a low gain PD control without any

feedforward component; (table) Comparison of test errors for different learning meth-

ods.

coordinate. The training was stopped at certain intervals and the robot arm with the

composite control was used to track the figure-8 pattern on a fixed x-z plane. The

result of the experiment is shown in Fig. 5.6 where the pattern performed by the robot

is shown at different stages of learning. As can be seen from the figure, RVC model is

able to achieve a significant improvement over a simple Proportional-Derivative (PD)

controller within a single pass of the training data, but requires more learning iterations

to accurately track the desired trajectory. In this experiment we have compared the

performance of the composite control based tracking to the PD controller to illustrate

the suitability of an online learner like RVC for such control applications.

5.4 Automatic relevance determination in high dimen-

sional input space

One of the impediments of localised learning is that, with increasing dimensions of the

input space, learning the locality becomes difficult and requires a dense sampling of

data in the input space. As explained and empirically demonstrated in (Vijayakumar

et al., 2005; Hoffmann et al., 2009), the usual methods of dimensionality reduction

like PCA is insufficient to handle this problem since PCA takes into account only the

correlation amongst the input variables and ignores the information provided by the
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Figure 5.7: Comparison of the convergence of learning using a Gaussian prior and an

ARD prior on a high dimensional dataset

response variable when determining the optimal low dimensional representation of the

input space. The dimensionality reduction is more effective if the response variable

is also included in the dimensionality reduction process. Consequently in this section

we look at a method to reduce the dimensionality of the input space using a Automatic

Relevance prior. It must be noted that while using Automatic Relevance prior allows us

to choose the features it does not create new features like a PCA and so is less powerful,

yet from the empirical evaluations performed later in this section we find that feature

selection greatly improves the rate of convergence of the learning algorithm.

The main advantage of having a Bayesian formulation for learning is that we can

integrate our prior belief into the model by changing the prior distribution over param-

eters. When we need to handle large number of input dimensions with some of them

being irrelevant, it is efficient to identify and eliminate the irrelevant dimensions. It is

especially useful to have an automatic relevance determination in RVC because of its

use of distance measures defined on the input space to measure the locality of a model.

When we eliminate the irrelevant bandwidth parameters from the model, the learning

becomes more efficient.

We can achieve an automatic relevance determination by using a sparsity encour-

aging prior similar to (Figueiredo, 2003). In the original model illustrated in Fig. 3.4,

we change the prior over the regression coefficient β̂ from a zero mean Gaussian to a

zero mean Laplacian distribution leading to -

P(β̂|α) ∝ exp(−α‖β̂‖1)
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where ‖β̂‖1 denotes the l1 norm and α is the scale parameter of the Laplace distri-

bution. We can use this prior to find the posterior distribution over β̂. However the

Laplace prior is not a conjugate distribution of the Gaussian distribution and requires

approximation inorder to evaluate the posterior. We approximate the posterior over β̂

by a Gaussian distribution using a Laplace approximation. In our case the log posterior

over β̂ is given by :

M = lnQ(β̂|y) ∝

〈
lnP(βi|β̂,Ci)

〉
Q(βi),Q(h)

+ lnP(β̂|α) (5.7)

Laplace approximation of the posterior corresponds to

Q(β̂|y)∼ N (µ̃, S̃)

where µ̃ = argmax
β̂

M and S̃−1 = −∇∇M |
β̂=µ̃

is the Hessian of the negative log

posterior. The posterior mode µ̃ can be obtained by setting the gradient of M to zero

and when C is diagonal we can evaluate the value of µ for each dimension separately:

µ̃ j = sgn(v j)
(
|v j|−

α

∑i 1/Ci( j, j)

)
+

(5.8)

where sgn(.) is the sign of the argument, (.)+ is defined as 0 when the argument is less

than 0 else it takes the value of the argument itself, v =
(

∑i C−1
i

)−1
∑i µiC−1

i and j is

the index over the dimensions. The variance of the posterior is given by the Hessian

which is defined as -

S̃ =


(

∑i C−1
i

)−1
µ̃ 6= 0

unde f ined otherwise
(5.9)

When any component of the vector µ̃ goes to zero we prune that particular dimension

from the training data and from the model. This makes the learning very efficient.

To demonstrate the effectiveness of the sparsity prior in determining irrelevant vari-

ables, we use a 5 dimensional sinc dataset with 4 of its dimensions being irrelevant.

We run the RVC algorithm with an ordinary Gaussian prior and compare it with a

Laplacian ARD prior with α set to a value of 0.1. It must be noted that there exist a

number of methods to learn the value of α (Figueiredo, 2003), but here we have used

the value of α that gave the maximum value for the training likelihood with multiple

restarts. The evolution of the test error with each epoch of the EM is shown in Fig. 5.7.

We find that the algorithm with the ARD prior is able to converge faster by pruning the

irrelevant dimensions.

In the final experiment we demonstrate the ability of RVC with an ARD prior to

learn in high dimensions with many irrelevant input dimensions in the data. RVC is
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Figure 5.8: Performance of SPGP and RVC on datasets of increasing dimensions.

Shown on the plot are the mean and a single standard deviation of 10 train-test splits

of data with 500 train and test points.

run on a sinc dataset with 5, 10 and 20 dimensions out of which only one dimension

is relevant. The test error of RVC is compared against SPGP in Fig. 5.8. The SPGP

algorithm was run using the matlab implementation of sparse GP with default settings

and using as many local models as the RVC. The result demonstrates that RVC is able

to match up with SPGP in terms of its generalization ability. It must be noted that SPGP

did not use an ARD prior since the results obtained for the ARD priors were worse than

that of an ordinary RBF prior and requires careful initialization of parameters before

training to obtain better generalization performance (Snelson & Ghahramani, 2006).

5.5 Discussion

In the initial part of this chapter we modified the training updates of RVC to enable

learning from data in an online manner. This process was simplified due to the use of

Bayesian inference procedure that naturally yields online updates.

In the second half of the chapter we provided extensive empirical evaluations to

highlight the different strengths of the RVC formulation -

Generalization ability : Generalization ability of RVC was compared against other

learning algorithms on well known multivariate benchmark datasets in Fig. 5.1

and was found to be fairly competitive compared to the other learning algo-

rithms.
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Online learning dynamics : RVC was shown to have a favourable online learning and

fairly fast convergence as compared to related learning algorithms in Fig. 5.2.

Efficiency : RVC has a very efficient learning and prediction routines as compared to

learning algorithms like GP and was demonstrated in Fig. 5.3.

Heteroscedastic noise : The ability to model heteroscedastic noise is another of the

positives of RVC and is shown in Fig. 5.4.

Scalability : The RVC model scales up well with increasing number of data points

learning them online. This is illustrated in experiments with the robot arm shown

in Fig. 5.6 and it also scales up well with increasing number of input dimensions

as shown in Fig. 5.8.

From these evaluations it can be seen that while RVC is well suited for a high dimen-

sional data rich environment which requires fast learning with limited space complex-

ity.



Chapter 6

Classification using Randomly Varying

Coefficient model

In this chapter we look at a different scenario of learning where we are concerned with

classifying given data points into different classes. The essential difference between

a regression as we have been examining in the previous chapters, and classification

lies in the nature of the response variable. In regression the response is continuous

valued while in classification the response has discrete values corresponding to the

discrete classes. While in regression we aim to approximate the mapping between the

input and the response, in classification the aim is to discriminate between the classes

conditional on the input. Research in classification has been dominated by kernel

based methods like Support Vector Machine (SVM)(Vapnik, 1998) and more recently

by non-parametric methods like Gaussian Process Classification (GP)(Rasmussen &

Williams, 2006). Non-parametric methods like GP derives its success by using a co-

variance function of the input to model the dependency amongst the responses. The

response for a test input is then computed as a linear smooth of all the training re-

sponses. This in turn leads to a large overhead in the time and space complexities for

training and prediction. The training time complexity for GP is O(N3) for a data of

size N and O(N2) for prediction. For an SVM, the training time complexity for an

active set of size M in the worst case is O(MN2). These are significant overheads for

large datasets. There have been many sparse Gaussian Process formulations (Csatò

& Opper, 2002; Williams & Seeger, 2001; Smola & Bartlett, 2001; Tresp, 2000) that

try to reduce this overhead but the efficiency still is quadratic in the size of the active

set for most of these implementations. When we deal with online classifiers the space

complexity also becomes an overarching concern. As seen in previous chapters Ran-

66
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domly Varying Coefficient (RVC) model exhibits a good generalization performance at

a low cost - O(MN). Hence, we can use RVC to learn decision boundaries that would

discriminate between classes.

6.1 Local logistic regression

We modify the RVC designed originally for regression into a classifier by using a

logistic link function to convert a continuous response produced by a regressor into a

value that lies between 0 and 1. This value in turn can be interpreted as the probability

of the data belonging to a particular class. For a binary class variable zi, the probability

that zi = 1 is modeled as the output of a logistic link function over a continuous latent

variable yi expressed as :

p(zi = 1|yi) = 1/(1+ exp(−yi))

In turn, the latent variable yi is modelled as the response of a locally linear regression.

For a locally linear region centered around xc a conditional model for the continuous

latent variable yi is modelled as in eq. (3.1) and can be written as:

yi = β
T
i xi + ε (6.1)

where xi ≡ [(x′i − xc)T ,1]T represents the center subtracted, bias augmented input

vector, βi ≡ [β(1)
i . . .β

(d+1)
i ]T represents the corresponding regression coefficient and

ε∼N (0,σ2) is the Gaussian mean zero noise with a variance σ2. We follow the same

formulation of RVC given in eq. (3.2) and define βi as :

βi ∼ N (β̂,Ci) (6.2)

with Ci being a diagonal matrix given by :

Ci( j, j) = xT
i xi/h2

j

where h j is the bandwidth of the jth dimension.

By marginalizing the hidden variables βi we end up with a model for the local

linear regression as :

yi ∼ N (β̂
T

xi,xT
i Cixi +σ

2) (6.3)

Proceeding along the same lines as Chapter 3 of (Rasmussen & Williams, 2006) and

Section 5.3 of (Gelman & Hill, 2007) we now assume a noise-free latent variable yi by

setting σ2 to zero. Setting σ2 to zero yields the following model for yi :

yi ∼ N (βT
i xi,0)
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Figure 6.1: Probabilistic model of the logistic regressor

or equivalently marginalizing yi :

p(zi = 1|βi) = 1/(1+ exp(−β
T
i xi)) (6.4)

which corresponds to the classical formulation of a linear logistic regression with re-

gression coefficients βi.

We preserve the same probabilistic model as the original RVC for the rest of pa-

rameters. This includes a Gamma regularizer prior over the bandwidth parameters :

h2
j ∼ Gamma(a j,b j) (6.5)

and a noninformative Normal prior N (µ,S) for the parameter β̂. We assume a uniform

prior for the regularizer hyperparameters a j and b j. The resultant probabilistic model

for a single local model of the logistic regressor is shown in Fig. 6.1.

Next, we infer the posterior distribution over the parameters of the model using

Bayesian inference rules.

6.2 Learning the parameters

The joint posterior over the parameters β̂, h j is given by:

P(h, β̂|z,a,b,µ,S) =
P(z, β̂,h,a,b,µ,S)

P(z,a,b,µ,S)
(6.6)

where we have used h to denote the vector [h2
1 . . .h2

d+1]
T and z denotes the training data

[z1 . . .zN ]T , a ≡ [a1 . . .ad+1]T and b ≡ [b1 . . .bd+1]T . However, the posterior over the
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parameters is rendered intractable due to the difficulty in evaluating the denominator of

eq. (6.6). This necessitates the use of variational Bayesian EM to evaluate the posterior

P(h, β̂|z,a,b,µ,S) similar to Chapter 4 and learn the regularizer hyperparameters a and

b.

To learn the parameters of the model we can maximize the marginal log likeli-

hood with respect to the parameters treating βi as hidden variables. The marginal log

likelihood is given by:

L = lnP(z|a,b,µ,S)

= ln
Z

P(z,β1 . . .βN ,h, β̂|a,b,µ,S)dβ1 . . .dβNdhdβ̂

= ln
Z

∏
i

P(zi|βi)P(βi|β̂,h1, . . .hd+1)∏
j

P(h2
j |a j,b j)P(β̂|µ,S)dβ1 . . .dβNdh1 . . .dhd+1dβ̂

Using Jensen’s inequality, the objective function that lower bounds L for a distribution

Q is given by:

F =
Z

Q(β1 . . .βN ,h, β̂) ln
P(z,β1 . . .βN ,h, β̂|a,b,µ,S,c,d)

Q(β1 . . .βN ,h, β̂)
dβ1 . . .dβNdhdβ̂ (6.7)

The optimal value for Q(β1 . . .βN ,h, β̂) that makes the bound tight is given by the joint

posterior P(β1 . . .βN ,h, β̂|z) but since this posterior is intractable, we make a factorized

approximation by assuming that the posterior over the variables is independent and can

be expressed as :

Q(β1 . . .βN ,h, β̂) = ∏
i

Q(βi|z)∏
j

Q(h2
j |z)Q(β̂|z)

Substituting the factorized approximation in eq. (6.7) we get:

Fapprox = ∑
i
〈lnP(zi|βi)〉Qβi

+
〈

lnP(βi|β̂,h1 . . .hd+1)
〉

Qβi ,Qh1 ...Qhd+1,Q
β̂

+∑
j

〈
lnP(h2

j |a j,b j)
〉

Qh j
+
〈

lnP(β̂|µ,S)
〉

Q
β̂

−∑
i

〈
lnQ

βi

〉
Qβi

−∑
j

〈
lnQh j

〉
Qh j

−
〈

lnQ
β̂

〉
Q

β̂

(6.8)

where 〈.〉Q denotes the expectation with respect to the distribution Q. The optimal

values of the posterior probabilities can be computed iteratively by maximizing the

functional Fapprox with respect to each individual posterior distribution keeping the

other distributions fixed akin to EM. For a logistic regression, an additional compli-

cation arises in the computation of the posterior distribution over the hidden variables
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βi. The likelihood term P(zi|βi) is given by the logistic link function whereas the prior

over βi is Gaussian and is not conjugate to the likelihood term. We solve this issue by

using a Laplacian approximation to approximate the posterior over βi by a Gaussian

distribution.

6.2.1 Laplace approximation of Q(βi|z)

Frequently in Bayesian inference of complicated probabilistic models that employs

non-conjugate priors, the posterior is approximated by a Gaussian distribution cen-

tered around the mode of the actual posterior. This is usually termed as the Laplace

approximation (Tierney & Kadane, 1986). In our case the log posterior over the hidden

variable βi is given by :

M = lnQ(βi|z) = lnP(zi|βi)+
〈

lnP(βi|β̂,Ci)
〉

Q(β̂),Q(h)

− ln
Z

exp(lnP(zi|βi)+
〈

lnP(βi|β̂,Ci)
〉

Q(β̂),Q(h)
)

(6.9)

Laplace approximation of the posterior corresponds to

Q(βi|z)∼ N (νi,Gi)

where νi = argmaxβi
M and G−1

i = −∇∇M |βi=νi is the Hessian of the negative log

posterior. The posterior mode νi can be obtained by setting the gradient of M to zero.

However, this procedure does not yield a closed form solution for the posterior mode

νi. We then have to resort to Newton’s update to find the mode iteratively as shown :

νi = ν
old
i − (∇∇M )−1

∇M (6.10)

Substituting the forms of P(βi|β̂,Ci) and P(zi|βi) from eqs. (6.2) and (6.4) into eq. (6.9)

and differentiating it with respect to βi we get :

∇M |
βi=νold

i
= xi(zi−πi)−〈Ci〉−1 (νold

i − µ̃) (6.11)

∇∇M |
βi=νold

i
=−xixT

i πi(1−πi)−〈Ci〉−1 (6.12)

where πi = 1/(1 + exp(−xT
i νold

i )) and 〈Ci〉 = diag(1/
〈

h2
j

〉
Q(h2

j)
). It can be found

from eq. (6.12) that G−1
i =−∇∇M = xixT

i πi(1−πi)+ 〈Ci〉−1 and the estimate for νi

can be obtained by substituting eqs. (6.11) and (6.12) in eq. (6.10) yielding :

νi = ν
old
i +Gi(xi(zi−πi)−〈Ci〉−1 (νold

i − µ̃))
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which can be simplified using Sherman-Morrison Woodbury theorem to yield :

Gi = 〈Ci〉−
〈Ci〉xixT

i 〈Ci〉
wi +xT

i 〈Ci〉xi
(6.13)

νi =
〈Ci〉xi

(wi +xT
i 〈Ci〉xi)

((zi−πi)wi +xT
i ν

old
i −xT

i µ̃)+ µ̃ (6.14)

where wi = 1
πi(1−πi)

.

6.2.2 Posteriors for Q(β̂|z) and Q(h2
j |z)

Posterior over β̂ based on the likelihood and the prior over β̂ can be derived as :

Q(β̂|z)∼ N (µ̃, S̃)

where

S̃ = (∑
i
〈Ci〉−1 +S−1)−1 (6.15)

µ̃ = S̃(∑
i
〈Ci〉−1

νi +S−1µ) (6.16)

Similarly, the posterior over h j is given by :

Q(h2
j |z)∼ Gamma(ã j, b̃ j)

where

ã j = a j +N/2 (6.17)

b̃ j = b j +∑
i

[
(νi, j− µ̃i, j)

2 +Gi, j j + S̃ j j
]
/2xT

i xi (6.18)

where νi, j and µ̃i, j represent the jth element of the vectors. The regularizer hyperpa-

rameters a j and b j in eqs. (6.17) and (6.18) are obtained by maximizing the bound

Fapprox given by eq. (6.8) with respect to these hyperparameters keeping the posterior

distributions Q fixed. This leads to the same update rule as eq. (4.14) for the hyperpa-

rameters and is given by:

a j = ã j, b j = b̃ j (6.19)

The posterior parameters are inferred by using a partial Newton step to infer the pos-

terior of βi followed by EM updates. The procedure for training a local model is

summarised in Algorithm 5.
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Algorithm 5 Training a local model
1: Initialize hyperparameters: Θ ≡ {µ0,S,a,b}.

2: Input: Batch training data X, z
3: repeat
4: Initialize νold

i = µ̃, πi = 1/(1+ exp(−xT
i νold

i )) and wi = 1
πi(1−πi)

.

5: Estimate posterior hyperparameters Θ̃ using Θ and eq. (6.13), (6.14) and eqs.

(6.15) - (6.18).

6: Estimate values of the hyperparameters a and b of the regularizer prior using

eq. (6.19).

7: until convergence of Θ̃

6.3 Prediction

Using the learning procedure discussed in the previous section we obtain indepen-

dently trained local models of the logistic regression. Each of the local models rep-

resent a separate classifier with a linear decision boundary. To obtain an aggregate

prediction for a particular query input we need to combine the classifiers.

Ensemble learning has been a field of research which has seen considerable amount

of research into the ways of combining classifiers (Kittler et al., 1998). In this thesis

though we use the same technique as RVC - combining the linear regressors to produce

a non-linear regression model and then using a logistic transform to obtain a classifier.

Given the ensemble of trained local experts, in order to predict the response yq for

a new query point xq, we take the normalized product of the predictive distribution of

each local expert. This results in the predictive distribution for the k-th local model :

yq,k ∼ N (µ̃T xq,k,xq,k
T (S̃k +Ckhmode)xq,k)

where xq,k refers to the query point with the k-th center subtracted and augmented

with bias. Blending the prediction of different experts by taking their product and

normalizing it results in a Normal distribution given by:

yq ∼ N (µ,ζ2) where µ =
∑k αkµ̃T

k xq,k

∑k αk
, ζ

2 =
1

∑k αk
. (6.20)

Here, µ is a sum of the means of each individual expert weighted by the confidence

expressed by each expert in its own prediction αk, ζ2 is the variance and αk is the

precision of each expert:

αk = 1/(xT
q,k(S̃k +Ck)xq,k) (6.21)
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Algorithm 6 Global prediction using local models
1: Input: Query point xq

2: Initialize: sumα = 0, yq = 0

3: for k = 1 to #local models do
4: xq,k = xq−xc,k

5: Calculate αk using eq. (6.21)

6: yq = yq +αkµ̃T
k xq,k

7: sumα = sumα +αk

8: end for
9: yq = yq/sumα

10: Output : P(zq = 1) = 1/(1+ exp(−yq))

The predictive probability for the logistic regression can be obtained by combining

the predictive probability of the latent variable yq with the link function and marginal-

izing the latent variable to yield :

P(zq = 1|z) =
Z

P(zq = 1|yq)P(yq|z)dyq (6.22)

where P(zq = 1|yq) is a logistic function and P(yq|z) is the predictive distribution given

by eq. (6.20). The integral given in eq. (6.22) cannot be evaluated analytically and we

must rely on numerical methods or sampling to evaluate the integral. In the context of

binary classification if we threshold the predictive probability at 1
2 in order to discrimi-

nate between classes a MAP prediction would be the same as an averaged prediction as

shown in (Bishop, 1995) and explained in (Rasmussen & Williams, 2006). Therefore

we use MAP predictive estimate for classification. To obtain the MAP prediction we

evaluate the integral in eq. (6.22) by approximating P(yq|z) by a delta function at its

mode. The prediction routine is listed in Algorithm 6.

6.4 Evaluation

In the first evaluation, we look at the ability of logistic RVC (lRVC) to discriminate

between two classes on a one dimensional artificial data. The data used in the task

has previously been used in (Rasmussen & Williams, 2006) and is shown in Fig. 6.2.

The data consists of two classes distributed such that there is linear separability at one

region (between cluster centered at -6 and cluster centered at 0) and there is no clear

separation in the other region (cluster centered at 0 and cluster centered at 2). This
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Figure 6.2: Comparison of the decision boundary learnt by lRVC and GP

data was used to train lRVC with local models placed at all the training points and a

Laplacian GP classifier with a square exponential covariance function. The predictive

probability curve learnt by the two classifiers is compared in Fig. 6.2. It is interesting

to observe that the predictive probabilities assigned by lRVC to the data points lying

in the inseparable region is less than the probabilities assigned to the separable part

of the class. The local modeling of lRVC ensures that the decision boundaries learnt

by the local models is based on the local spatial distribution of the class and hence in

this case is more confident about the linearly separable part of the input space than the

non-separable data. On the other hand, GP assigns almost the same and sometimes

more (Rasmussen & Williams, 2006) predictive probability to the inseparable points

than the separable ones which is not very intuitive for a classifier.

Before we proceed to detailed evaluation experiments, we need to specify the eval-

uation measures that would be used to compare different classifiers. We compare clas-

sifiers based on two different measures - misclassification error and target information.

The former is the often used loss function that measures the mean number of misclassi-

fications produced by a classifier on a test set. The target information criteria refers to

a loss function that takes into account the confidence expressed by the classifier about
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its prediction. The loss function is given by :

I =
1
N

[
∑

zi=1
log2(P(zi = 1|xq

i ))+ ∑
zi=0

log2(1−P(zi = 1|xq
i ))

]
+1

and it measures in bits, the information conveyed by the classifier about the test target.

For a baseline classifier that assigns classes at random I → 0 and for a more confident

discrimination of classes I → 1.

6.4.1 Comparison of generalization performance and time efficiency

In the next evaluation, we compare the generalization performance of lRVC against a

Gaussian Process classifier and a baseline probabilistic linear logistic regressor. The

lRVC used in the evaluation used around 20 local models initialized at the cluster cen-

ters in the input space. The Gaussian Process uses a square exponential kernel and a lo-

gistic link function. The three classifiers are compared on different benchmark datasets

listed in Table 6.1. The Breast cancer, Heart (Cleveland) and the Ionosphere dataset

were obtained from the UCI repository, Pima and synthetic datasets are the same as the

ones used in (Ripley, 1996) 1. The USPS dataset corresponds to the digit discrimina-

tion task listed in (Rasmussen & Williams, 2006). The Catalysis and Gatineau datasets

were obtained from the predictive uncertainty challenge 2 were the validation set has

been used as test set. The evaluations on the datasets obtained from UCI was carried

out on 10 train-test splits of the data and the mean and standard deviations are reported

here. For all other datasets a single train-test trial was carried out using the train and

test files provided. This makes it possible to compare other classifiers that have previ-

ously used the latter datasets. For the Gatineau dataset GP was trained using a subset of

1000 training points due to practical considerations of time and space complexity. The

evaluation statistics are listed in Table 6.2. Also shown in the table is the results for a

LIBSVM(Chang & Lin, 2001) (with an RBF kernel) evaluation over the same datasets.

The comparison for SVM is restricted to the misclassification error since SVM does

not provide a predictive probability. One can see from the results that lRVC is able to

match the performance of GP for all the datasets and outperforms the baseline linear

classifier especially when the target information is used for the comparison. It must be

noted that while lRVC used only a small number of local models for prediction, GP

used all of the training set for training and prediction. To emphasize this difference Ta-

ble 6.3 shows the time taken by lRVC and GP for training and prediction on a dataset
1The datasets can be obtained from http://www.stats.ox.ac.uk/pub/PRNN/
2http://predict.kyb.tuebingen.mpg.de/pages/home.php
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Dataset #train pts. #test pts #dim

Breast cancer 142 427 30

Heart(Cleveland) 149 148 13

Ionosphere 175 176 33

Pima 200 332 7

Synthetic 250 1000 2

USPS(3-5) 767 773 256

Catalysis 873 300 617

Gatineau 3000 2176 1092

Table 6.1: Statistics of the benchmark datasets

lRVC GP Linear SVM

Error Information Error Information Error Information Error

Breast 0.028(0.007) 0.807(0.010) 0.026(0.009) 0.805(0.045) 0.042(0.014) 0.797(0.050) 0.028(0.009)

Heart 0.166(0.017) 0.432(0.049) 0.169(0.017) 0.423(0.039) 0.173(0.024) 0.388(0.113) 0.173(0.022)

Ionosphere 0.152(0.027) 0.338(0.170) 0.123(0.025) 0.535(0.054) 0.163(0.027) -2.288(0.963) 0.078(0.025)

Pima 0.202 0.361 0.222 0.276 0.198 0.364 0.198

Synthetic 0.100 0.649 0.093 0.658 0.114 0.611 0.100

USPS(3-5) 0.045 0.798 0.025 0.794 0.040 0.476 0.023

Catalysis 0.303 0.143 0.303 0.150 0.343 -3.516 0.323

Gatineau 0.090 0.570 0.090 0.588 0.154 -0.484 0.090

Table 6.2: Performance comparison between lRVC and GP in terms of the misclassifi-

cation error rate and the target information (measured in bits) conveyed by the classifier.

The values in parenthesis indicate the standard deviation.

consisting of the USPS digit 3 classified against the rest of the digits. lRVC can be

seen to achieve a good generalization performance with a low overhead.

6.4.2 Rejection using the predictive confidence bounds

In the last evaluation, we evaluate the confidence bounds learnt by lRVC by plotting the

relation between the reject rate, the misclassification error and the target information.

In this experiment the first and second moments for the predictive probability were

computed by using sampling to evaluate the integral in eq. (6.22). The test samples

which had a variance above a threshold were rejected and the misclassification error

was evaluated for the rest of the test data. The dataset used for this purpose was the
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Method 0 1 2 4 5 6 7 8 9

GP

Error 0.0108 0.0028 0.0183 0.0046 0.0259 0 0.0024 0.0254 0.0061

Information 0.8944 0.9027 0.8627 0.8686 0.7943 0.8857 0.8677 0.8550 0.8486

Train time(sec) 1915.9 1475.8 1020.8 877.0 911.4 963.7 919.9 845.8 993.0

Test time(sec) 47.8 37.6 25.0 22.1 20.2 23.8 23.4 20.5 24.4

lRVC

Error 0.009 0.005 0.022 0.005 0.045 0.003 0.009 0.032 0.012

Information 0.944 0.960 0.886 0.966 0.798 0.972 0.955 0.883 0.946

Train time(sec) 582.59 509.67 440.44 402.23 382.08 400.75 370.25 363.13 383.42

Test time(sec) 0.87 0.74 0.61 0.61 0.55 0.55 0.54 0.49 0.55

Table 6.3: Comparison between the time taken for training and prediction by lRVC and

GP on the USPS dataset.
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Figure 6.3: Comparison of error-reject curve for lRVC and GP

USPS data. The misclassification error typically decreases as test samples are rejected

and an ideal classifier would have a larger reduction in the misclassification error with

respect to the rejection rate. The error and the target information versus the rejection

rate for lRVC, GP and the Bayesian linear logistic regressor were evaluated and plotted

in Fig. 6.3. It can be seen that lRVC’s performance exceeds that of the linear classifier

by a large margin and is not significantly different from GP.

6.4.3 Dynamics of online learning

Similar to Chapter 5 we can derive the online updates for the batch updates. The on-

line updates for the logistic RVC are the same as eqs. (5.1) - (5.4) derived in Chapter
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Figure 6.4: Online learning dynamics of lRVC compared with GP. The plots are the

average performance over 10 trials of different orders of data presentations.

5. In the last evaluation, we use these online updates to learn a classifier on the syn-

thetic dataset. The data points are presented to the online learner one at a time and

the misclassification error is evaluated over the test data after each training update.

The dynamics of the learning process is shown in Fig. 6.4. The learning dynamics is

compared with the generalization performance of GP which uses increasing number

of training data points and the corresponding test error at each stage is displayed. It

can be seen from the figure that online version of lRVC exhibits fast convergence and

matches the performance of GP asymptotically.

6.5 Discussion

In this chapter we extended the learning framework of RVC from a regression setting

to handle classification. We used a logistic link function to turn regression into classi-

fication. From the evaluations in this chapter we can see that local logistic regression

is a very competitive method. The result makes it more significant when we take it into

account that the logistic regression is able to achieve such a good performance using

a small number of local models. Moreover the time and space efficiency is linear in

terms of the data points and the dimension. In contrast, kernel classification paradigms

like GP and SVM have a much higher overhead in training and testing.
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The use of variational Bayesian EM approximation for learning the parameters of

the model allows us to reformulate the learning rules into a set of online updates for

the parameters that would enable the logistic classifier to learn from data in real time.

The logistic regression formulation in this thesis is restricted to binary classifi-

cation. It can be easily extended to a multi-class classification using a softmax link

function instead of a logistic link function. The treatment of the learning remains the

same in that case too.

In conclusion, the contribution of this chapter has been a probabilistic formulation

of a local linear logistic regressor that can learn online using very efficient Bayesian

updates and at the same time exhibits good learning characteristics.



Chapter 7

Contributions and future work

The major contribution of the thesis is the development of a Bayesian formulation for

independent spatially localised learners for multivariate nonlinear regression. We have

used a novel formulation of data dependent priors in order to carve out locally linear re-

gions while avoiding competition amongst local models. The ‘non-competitive’ behav-

ior of each local model allows independent, efficient learning while the Bayesian reg-

ularizer hyperpriors guard against the danger of overfitting or over-smoothing through

automatic local bandwidth adaptation. In this chapter we summarize the contributions

made in this thesis along with future avenues of research possible.

In this thesis, use of a product of regression experts explained in Chapter 2 has

been shown to be a feasible approach to follow when we require efficient learners that

can learn in an online manner and dynamically adjust model complexity. Furthermore

in this thesis we have derived the connection between the ambiguity formulation of

regression ensembles and a product of regression experts in eq. (2.5). Another novelty

is the use of POE to bridge the gap between previously unrelated pieces of research

- conditional random fields, independent ensemble learning and complementary prior.

Though it is difficult to assimilate independent ensemble learning into a probabilistic

framework, it is useful in designing efficient learning systems. Therefore it is worth-

while to compare the framework of dependent learning to that of independent learning

by treating the latter as an approximation to the dependent learning. In eq. (2.10) we

provide a bound that characterizes the error between an independent and a dependent

learning. In future this bound could be further refined to quantify the effect of inde-

pendent learning on the generalization ability of a learning algorithm.

Chapter 3 provides a unique probabilistic formulation of a locally weighted learn-

ing using a heteroscedastic variance component to weight the errors. This type of a

80
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model has not been used for locally weighted learning, nonetheless, eq. (3.8) demon-

strates the equivalence of heteroscedastic model to a locally weighted regression. Sec-

tion 3.3.1 examines the ability of RVC to adapt its model complexity and illustrates the

change in the complexity of the learning model through a plot of the varying degrees

of freedom in Fig. 3.6. The plot provided in Fig. 3.6 is a result of an empirical analy-

sis of the degrees of freedom; it might be possible to extend this to a more analytical

treatment wherein we can derive a closed form functional relation between the degrees

of freedom of RVC and the bandwidths of individual local models.

Chapter 4 provides a simple Variational Bayesian EM procedure to train the lo-

cal models efficiently. These learning updates are very efficient with each EM update

being O(MN) where M is the number of local models and N the number of training

points. Furthermore, Bayesian inference procedure also yields a predictive distribu-

tion with a mean prediction and a confidence bound on the prediction. The predictive

distribution of RVC is shown to provide meaningful confidence bounds through an il-

lustrative example in Fig. 4.2. The Variational Bayesian algorithm provides efficient

updates but the approximation itself tends to have a slow convergence rate. One of

the possible avenues of future research will be to use algorithms like (Qi & Jaakkola,

2006) to speed up the convergence of the VBEM algorithm.

In Chapter 5 we derived the online updates for the Variational Bayesian EM learn-

ing and evaluated the RVC model against the state of the art in non-linear regression

techniques on artificial as well as real world data sets. RVC matched the generalization

performance of LWPR while avoiding cumbersome parameter tuning for initialization

(refer Fig. 5.1, Fig. 5.2). It achieves competitive performance compared to GP - essen-

tially a batch method, while being much more computationally efficient (refer Fig. 5.3).

One of the main advantages of spatially localised models of RVC is its ability to model

locally constant but globally varying properties of a function like heteroscedastic noise.

The ability of RVC to model heteroscedastic noise is illustrated in Fig. 5.4 where it is

compared with a GP on a benchmark dataset and is shown to perform better than a GP.

The RVC is also shown to scale well with increasing dimensions of the input space in

Section 5.4 where an ARD prior is used to learn in a high dimensional space with lots

of irrelevant dimensions and its performance is compared with other learning methods

in Fig. 5.8. In Fig. 5.6 we also demonstrate a practical application of RVC in learning

the inverse model of robotic arm and is shown to perform well compared to other sim-

ilar methods. The pros and cons of RVC compared against other learning algorithms

have been compared in Table 7.1. The space and computational efficiency of RVC
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coupled with the ability to grow model complexity in a data driven fashion makes it a

strong candidate for practical online and real time learning scenarios and was the basis

for (Edakunni et al., 2007)

The probabilistic formulation of RVC can further be exploited to extend it to gen-

eralized linear models and has been illustrated in Chapter 6 by formulating a logistic

regression based on the model of RVC. The classifier based on RVC was also evalu-

ated against the state of the art methods and was found to exhibit good generalization

properties with a low computational complexity as illustrated by Tables 6.2 and 6.3.

This work formed the basis for (Edakunni & Vijayakumar, 2009).

Active learning is another area of research that can be pursued in the context of

the work presented in this thesis. While traditional research has concentrated on ac-

tive learning in global models of learning, the localised independent models of RVC

provide an alternative strategy for active learning. The active learning itself can be

localised with the learning of the fit and the number of models being learnt actively.

This effort is aided by the presence of a probabilistic confidence bound provided by

each of the local models constituting the ensemble.

To conclude, this thesis presents an online, spatially localised ensemble learning

method with efficient Bayesian inference rules that provides competitive generalization

results for a variety of learning scenarios.
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Appendix A

Variational Bayesian Expectation

Maximization

In this section we introduce the variational Bayesian expectation maximization algo-

rithm as applied to a generic graphical model involving hidden variables and distribu-

tions over those variables. We start with a simple model with the visible data given

by D which stands for the collection of training data of N points whose ith individual

point is represented by Di. The hidden variable associated with each individual data

point is given by the variable zi. The likelihood is given by P(D|z1 . . .zN). Assuming

that the data is conditionally independent the likelihood can be written down as :

P(D|z1 . . .zN) =
N

∏
i=1

P(Di|zi) (A.1)

The hidden variables are assumed to have been generated from a distribution given by

: P(z1 . . .zN |θ) where θ is the parameter of the prior distribution. The prior distribution

over the hidden variables is assumed to be conditionally independent :

P(z1 . . .zN |θ) = ∏
i=N

P(zi|θ) (A.2)

and the prior over the parameter θ is given by P(θ|α) where α is the hyperparameter.

We are now interested in inferring the posterior distribution over the parameter θ.

Following Bayes’ rule, the posterior is given by :

P(θ|D) =
P(D|θ)P(θ|α)

P(D|α)
(A.3)

Here, P(D|θ) is obtained by integrating over the hidden variables from the joint distri-

bution :

P(D|θ) =
Z

P(D|z1 . . .zN)P(z1 . . .zN |θ)dz1 . . .dzN (A.4)
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The integration in eq. (A.4) leads to a closed form expression for P(D|θ) only when

P(z1 . . .zN |θ) is conjugate to P(D|z1 . . .zN). We assume from hereon that the distribu-

tion is conjugate. The prior over the parameter P(θ|α) is also assumed to be conjugate

to P(z1 . . .zN |θ). Despite these pairwise conjugate distributions the posterior over the

parameter θ is rendered intractable due to the difficulty in evaluating the evidence term

P(D|α) in the expression in eq. (A.3). The cause of this problem is the integration

involved in evaluating the evidence term :

P(D|α) =
Z

P(D|θ)P(θ|α)dθ

and this would lead to a closed form expression only when P(θ|α) is conjugate to

P(D|θ) which is generally not the case.

In order to infer the posterior over the parameters we can start with the marginalized

likelihood given by :

P(D,α) =
Z

P(D|z)P(z|θ)P(θ|α)dzdθ (A.5)

where z ≡ [z1 . . .zN ]. Taking the log of the likelihood given in eq. (A.5) we get :

L = lnP(D|α) = ln
Z

P(D|z)P(z|θ)P(θ|α)dzdθ

Using Jensen’s inequality L can be lower bounded by F given by :

L = ln
Z

P(D|z)P(z|θ)P(θ|α)dzdθ (A.6)

≥
Z

Q(z,θ) ln
P(D|z)P(z|θ)P(θ|α)

Q(z,θ)
dzdθ (A.7)

= F (A.8)

where Q(z,θ) is any arbitrary function of z and θ that integrates to unity. The inequality

of eq. (A.7) becomes an equality when Q(z,θ) equals the joint posterior of the random

variables. But as we had seen earlier this distribution is intractable and our aim is to

estimate this posterior distribution.

We can constrain the form of the joint posterior as a factorized form of distribution

which implies Q(z,θ) ≈ Q(z)Q(θ). Substituting this factorized form in eq. (A.7) we

get :

F ≈ Fapprox =
Z

Q(z)Q(θ) ln
P(D|z)P(z|θ)P(θ|α)

Q(z)Q(θ)
dzdθ (A.9)

Here, Fapprox can be seen to be a functional form of the distributions Q(z) and Q(θ)

and we can maximize Fapprox iteratively with respect to the free distributions. These

iterative steps would essentially form the updates for the Variational Bayesian EM

(VBEM) algorithm.
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A.1 VBE step

In the VBE step we try to estimate the posterior distribution over the hidden variables

Q(z) and is obtained by taking the functional derivative of Fapprox defined by eq. (A.9)

with respect to Q(z) and equating it to zero :

∂Fapprox

∂Q(z)
=

Z [
∂

R
Q(z) lnP(D,z|θ,α)dz

∂Q(z)

]
Q(θ)dθ (A.10)

=
Z

[lnP(D,z|θ,α)− lnQ(z)−1]Q(θ)dθ (A.11)

= 0 (A.12)

Solving for Q(z) we get :

lnQ(z) ∝

Z
lnP(D,z|θ,α)Q(θ)dθ (A.13)

Substituting the form of P(D,z|θ,α) from eq. (A.1) and (A.2) we get :

lnQ(z) ∝

Z N

∑
i=1

ln [P(Di|zi)P(zi|θ)]Q(θ)dθ

⇒∑
i

lnQ(zi) ∝

Z N

∑
i=1

ln [P(Di|zi)P(zi|θ)]Q(θ)dθ

⇒ lnQ(zi) ∝

Z
ln [P(Di|zi)P(zi|θ)]Q(θ)dθ (A.14)

Taking exponential of both sides of eq. (A.14) we get :

Q(zi) ∝ exp(lnP(Di|zi))exp
(
〈lnP(zi|θ)〉Q(θ)

)
(A.15)

where 〈.〉Q denotes the expectation with respect to the distribution Q. When P(zi|θ)

belongs to the exponential family of distribution the term 〈lnP(zi|θ)〉Q(θ) results in a

distribution belonging to the same family and as a result the posterior over the hidden

variable Q(zi) is given by :

Q(zi) ∝ P(Di|zi)P(zi|θ̂)

where P(zi|θ̂) = exp
(
〈lnP(zi|θ)〉Q(θ)

)
is a distribution conjugate to P(Di|zi). This

leads to a closed form expression for the distribution of the posterior Q(zi).

We can see that the end result of the VBE step is an approximate posterior for the

hidden variable. In the next step of the procedure we use this approximate posterior

over the hidden variable to estimate the posterior over the parameter θ.
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A.2 VBM step

In this step we estimate the posterior over the parameter assuming that the estimate

of the posterior over the hidden variable is known and is equal to the current estimate

from the VBE step. We use the same strategy as before to obtain the estimate of the

posterior. We take the functional derivative of Fapprox with respect to Q(θ) and equate

it to zero to obtain :

∂Fapprox

∂Q(θ)
=

∂
R [R

lnP(D,z|θ)+ ln P(θ|α
Q(θ)

]
Q(θ)dθ

∂Q(θ)

=
Z

lnP(D,z|θ)Q(z)dz+ lnP(θ|α− lnQ(θ)+ c

= 0

Solving for the equation we get :

lnQ(θ) ∝ lnP(θ|α)+ 〈lnP(D,z|θ)〉Q(z) (A.16)

Applying exponential on both sides and using eq. (A.1) and (A.2), eq. (A.16) becomes :

Q(θ) ∝ exp

〈∑
i

lnP(Di,zi|θ)

〉
Q(zi)

P(θ|α)

∝ exp

(
∑

i
〈lnP(Di,zi|θ)〉Q(zi)

)
P(θ|α)

∝ ∏
i

exp
(
〈lnP(Di,zi|θ)〉Q(zi)

)
We can make the same arguments as for the VBE step and show that if the distributions

involved belong to the conjugate exponential family, the posterior over the parameter

has a closed form expression and belongs to the exponential family as well.

The two steps of VBE and VBM are repeated iteratively till convergence. Further-

more, it can be proven that this procedure is guaranteed to minimize the KL divergence

between the actual joint posterior distribution P(z,θ|D) and the approximate posterior

distribution Q(z)Q(θ).
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Derivation of VBEM posteriors for RVC

We start with the approximate lower bound of the loglikelihood given by :

Fapprox = ∑
i

[
〈lnP(yi|βi,σ)〉Qβi ,Qσ2

+
〈

lnP(βi|β̂,h1 . . .hd+1)
〉

Qβi ,Qh1 ...Qhd+1,Q
β̂

]
+∑

j

〈
lnP(h2

j |a j,b j)
〉

Qh j
+
〈

lnP(β̂|µ,S)
〉

Q
β̂

+
〈
lnP(σ2|c,d)

〉
Q

σ2

−∑
i

〈
lnQβi

〉
Qβi

−∑
j

〈
lnQh j

〉
Qh j

−
〈

lnQ
β̂

〉
Q

β̂

−〈lnQσ2〉Q
σ2

(B.1)

B.1 Derivation of Qβi

The form for the posterior over βi can be derived by performing a functional differen-

tiation of Fapprox with respect to Qβi and equating it to zero. This would yield :

∂Fapprox
∂Qβi

= 〈lnP(yi|βi,σ)〉Q
σ2

+
〈

lnP(βi|β̂,h)
〉

Qh,Q
β̂

− lnZ− lnQβi = 0 (B.2)

⇒ lnQβi = 〈lnP(yi|βi,σ)〉Q
σ2

+
〈

lnP(βi|β̂,h)
〉

Qh,Q
β̂

− lnZ (B.3)

where Z is the normalization term for the posterior probability. Expanding eq. (B.3) by

taking the expectations with respect to the posteriors of the other parameters we get :

lnQβi ∝ −1
2
(yi−β

T
i xi)2 〈1/σ

2〉− 1
2
(βi− µ̃)T 〈Ci〉−1 (βi− µ̃)

⇒ Qβi ∼ N (νi,Gi) with

Gi = (xixT
i

〈
1

σ2

〉
+ 〈Ci〉−1)−1

νi = Gi(yixi

〈
1

σ2

〉
+ 〈Ci〉−1 µ̃)
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where, 〈Ci〉= diag(xT
i xi/

〈
h2

j

〉
Q(h2

j)
) and

〈
1

σ2

〉
= c̃/d̃.

B.2 Derivation of Qσ2

Performing a functional differentiation of Fapprox with respect to Qσ2 and equating it

to zero would yield :

∂Fapprox
∂Q

σ2
= ∑i 〈lnP(yi|βi,σ)〉Qβi

+ lnP(σ2|c,d)− lnZ− lnQσ2 = 0 (B.4)

⇒ lnQσ2 = ∑i 〈lnP(yi|βi,σ)〉Qβi
+ lnP(σ2|c,d)− lnZ (B.5)

Taking expectations and expanding eq. (B.5) yields :

lnQσ2 ∝ ∑
i

[
−1

2
lnσ

2− 1
2
(yi−ν

T
i xi)2/σ

2− 1
2

xT
i Gixi/σ

2
]
− (c+1) lnσ

2−d/σ
2

⇒ Qσ2 ∼ I G(c̃, d̃) with

c̃ = c+N/2

d̃ = d +∑
i

[
(yi−ν

T
i xi)2 +xT

i Gixi
]
/2

B.3 Derivation of Q
β̂

Equating to the zero, the functional differential of Fapprox with respect to Q
β̂

yields :

∂Fapprox
∂Q

β̂

= ∑i

〈
lnP(βi|β̂,Ci)

〉
Qβi ,Qh

+ lnP(β̂|µ,S)− lnZ− lnQ
β̂

= 0 (B.6)

⇒ lnQ
β̂

= ∑i

〈
lnP(βi|β̂,Ci)

〉
Qβi ,Qh

+ lnP(β̂|µ,S)− lnZ (B.7)

Taking expectations and expanding eq. (B.7) yields :

lnQ
β̂

∝ ∑
i

[
−1

2
(βi− β̂)T 〈Ci〉−1 (βi− β̂)

]
− 1

2
(β̂−µ)T S−1(β̂−µ)

⇒ Q
β̂

∼ N (µ̃, S̃) with

S̃ = (∑
i
〈Ci〉−1 +S−1)−1

µ̃ = S̃(∑
i
〈Ci〉−1

νi +S−1µ)

B.4 Derivation of Qh j

The diagonal structure of Ci ensures that the posterior over Qh factorizes into individ-

ual components Qh j . Performing a functional differentiation of Fapprox with respect to
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Qh j and equating it to zero would yield :

∂Fapprox
∂Qh j

= ∑i

〈
lnP(βi|β̂,Ci)

〉
Qβi ,Qβ̂

+ lnP(h2
j |a j,b j)− lnZ− lnQh j = 0 (B.8)

⇒ lnQh j = ∑i

〈
lnP(βi|β̂,Ci)

〉
Qβi ,Qβ̂

+ lnP(h2
j |a j,b j)− lnZ (B.9)

Taking expectations and expanding eq. (B.9) yields :

lnQh j ∝ ∑
i

[
1
2

lnh2
j −

1
2

(νi, j− µ̃i, j)2 +Gi, j j + S̃ j j

xT
i xi

h2
j

]
+(a j−1) lnh2

j −b jh2
j

⇒ Qh j ∼ G(ã j, b̃ j) with

ã j = a j +N/2

b̃ j = b j +∑
i

[
(νi, j− µ̃i, j)

2 +Gi, j j + S̃ j j
]
/(2xT

i xi)
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Approximation of predictive

distribution

We approximate predictive distribution given in eq. (4.16) by P(yq|µ̃T xq,v) where,

P(yq|µ̃T xq,v)∼ N (µ̃T xq,v2)

The KL divergence between the two distributions is given by,Z [Z
P(yq|µ̃,σ,h)Q(h|y)Q(σ|y)dhdσ

]
ln

R
P(yq|µ̃,σ,h)Q(h|y)Q(σ|y)dhdσ

P(yq|µ̃T xq,v)
dyq

(C.1)

where,

P(yq|µ̃,σ,h)∼ N (µ̃T xq,xT
q (Ch + S̃)xq +σ

2) (C.2)

We need to optimise eq. (C.1) with respect to v. Writing down the term dependent on

v and exchanging the order of integration we get,

L =−
Z [Z

P(yq|µ̃,σ,h) lnP(yq|µ̃T xq,v)dyq

]
Q(h|y)Q(σ|y)dhdσ

=−
〈Z

P(yq|µ̃,σ,h) lnP(yq|µ̃T xq,v)dyq

〉
Q(h|y),Q(σ|y)

=
1
2

lnv2 +
1
2

xT
q (〈Ch〉Q(h|y) + S̃)xq +

〈
σ2〉

Q(σ|y)

v2

(C.3)

where,

〈Ch〉Q(h|y) = diag(xT
q xq

〈
1
h2

j

〉
Gamma(h2

j)
) = Chmode〈

σ
2〉

Q(σ|y) =
〈
σ2〉

InvGamma(σ2) = σ
2
mean

Differentiating L w.r.t to v and equating to zero we get v2 = xT
q (Chmode + S̃)xq +σ2

mean.
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