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ABSTRACT 

We shall present a theory of fractional calculus for generalised functions on 

(0, oo) and use this theory as a basis for extensions to some related areas. 

In the first section, appropriate spaces of test-functions and generalised 

functions on (0, oo) are introduced and the properties of operators of fractional 

calculus obtained relative to these spaces. Applications are given to hyperge-

ometric integral equations, Hankel transforms and dual integral equations of 

Titchmarsh type. 

In the second section, the Mellin transform is used to define fractional pow -

ers of a very general class of operators. These definitions include standard 

operators as special cases. Of particular interest are powers of differential op-

erators of Bessel or hyper-Bessel type which are related to integral operators 

with special functions, notably C-functions, as kernels. 

In the third section, we examine operators whose Mellin multipliers involve 

products and/or quotients of F-functions. There is a detailed study of the range 

and invertibility of such operators in weighted LP-spaces and in appropriate 

spaces of smooth functions. The Laplace and Stieltjes transforms give two 
particular examples. 

In the final section, we show how our theory of fractional calculus on (0, oo) 

can be used to develop a corresponding theory on R" in the presence of ra-

dial symmetry. In this framework the mapping properties of multidimensional 

fractional integrals and Riesz potentials are obtained very precisely. 
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INTRODUCTION 

We shall present a theory of fractional integration for certain spaces of 

generalised functions on the half-line (0, x) and discuss some applications of 

this theory, as well as several related topics. 

In the first instance, the theory is presented in an elementary and direct 

fashion. Subsequently we show how this approach can be streamlined by use 

of the Mellin transform. This leads to detailed examination of a class of Mellin 

multiplier transforms, which can bethought of as analogues for (0, oo) of pseudo-

differential operators on the whole real line. Although the majority of our 

results relate to (0, oo), we also include some recent work which extends the 

one-dimensional theory to fractional integrals and Riesz potentials of functions 

defined on ri-dimensional space. 

"Fractional Calculus" is the (slightly unfortunate) name which has been 

given to the study of operators involving derivatives or integrals of order c, 

where a is not necessarily a positive integer. Some of these ideas are as old as 

calculus itself. For example, in 1695 Leibniz and L'Hôpital were in correspon-

dence about a possible interpretation of a derivative of order 1/2. We might 

expect fractional derivatives to be inverses of fractional integrals and since this 

is so we shall concentrate on fractional integrals. Fractional integration has 

been studied in various settings including functions defined on (0, oo), R, or-

thants in R, domains in the complex plane, light cones, homogeneous spaces 

and Orlicz spaces. The results obtained have led to many developments. We 

might mention, as one instance, how results of Hardy and Littlewood obtained 

in the 1920's have provided the basis for areas of modern harmonic analysis, 

such as weighted norm inequalities. For a selection of ideas related to fractional 

integrals, see [14] and [26]. 

The last 50 years have seen the development of an area of mathematics 

sometimes called "generalised integral transformations" in which classical inte-

gral transforms are extended to appropriate spaces of generalised functions or 

distributions (in the sense of Schwartz). Possibly the best known example is 

the extension of the Fourier transform to tempered distributions. The aim is 

to enlarge the class of problems which can be solved by use of the relevant in-

tegral transform. In certain cases, the need for a distributional approach arises 



naturally. An illustration is afforded by the dual integral equations studied in 

[6], where the change in behaviour at x = 1 suggests that there may be a role 

for the s-distribution concentrated at 1 in studying behaviour which may be 

too "wild" for a classical treatment. 

In studying a particular generalised integral transformation, authors typi-

cally introduce a space of test-functions (and corresponding generalised func-

tions) which are tailor-made for that one transformation. The resulting spaces 

vary considerably, depending on the kernel of the integral transformation. A 

difficulty arises when we require to apply a sequence of operators, rather than 

just a single operator, in order to solve a problem. Then, all the operators 

involved should have good mapping properties relative to the same space (or 

scale of spaces). Our work makes use of a family of spaces relative to which the 

mapping properties of many operators can be described completely. 

Our spaces 	of test-functions and the corresponding spaces F, of 

generalised functions were originally conceived for the study of operators of 

fractional calculus called the Erdélyi-Kober operators, to which the Riemann-

Liouville and Weyl fractional integrals are simply related; see [1], [4]. However, 

the spaces are amenable to application of the Hankel transform [5] and by com-

bining the two sets of results we can completely solve the dual integral equations 

in [6]. Much more can be done. The properties of a large class of Mellin mul-

tiplier transforms can be described in great detail; see [17], [18], [19]. The 

contrast with the corresponding classical theory in versions of LP with power 
weights is remarkable. 

Use of the Mellin transform leads to another extension of fractional cal-

culus. We can define arbitrary cth  powers, T, of operators T satisfying an 

appropriate functional relation involving the Mellin transform. The Riemann-

Liouville and Weyl fractional integrals and fractional derivatives are particular 

cases. However, we can obtain powers of much more complicated operators 

such as Bessel-type differential operators •  [7]. The theory is distinct from the 

spectral approach for powers of an operator T mapping a space into itself. Our 

operators map one space into another different space in our 	(or 
family. Paradoxically perhaps, the theory is often simpler than in the spectral 

approach, a notable example being the validity of the index law (T&)$ = T&P. 

We compare and contrast the two approaches in [13]. 
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Fractional powers of an operator form a seinigroup under composition and 

our work consequently impinges on the theory of semigroups of operators. The 

Hille-Yosida theorem is the fundamental result for strongly continuous semi-

groups. When an operator fails to satisfy the hypotheses of this theorem, the 

operator does not generate a strongly continuous semigroup. In an attempt 

to overcome this, the concept of an a-integrated semigroup has recently been 

introduced and has led to some interesting results. Although this is not our 

main concern here, some of the ideas are surveyed in [14]. 

Having outlined the interplay between fractional calculus, fractional powers 

of operators, generalised functions and Mellin multiplier transforms, we shall 

now comment briefly on the papers involved in this presentation. 

We may group them under the following headings. 

Fractional Calculus in 	and 	with Applications P it 

Fractional Powers of Operators via the Mellin Transform 

Range and Invertibility of Mellin Multiplier Transforms 

Radial Spherical Fourier Transforms. 

We consider each in turn. 

1. Fractional Calculus in F and 	with Applications. 

The relevant papers are [1], [2], [3], [4], [5], [6]. The material in these papers 

can be found gathered together in [25], although the latter also contains various 

extensions (involving very weak restrictions on parameters). The spaces 

(of test-functions) and 	(of generalised functions) are introduced and simple 

properties obtained. These spaces are used in all subsequent papers. However, 

it should be noted that in later papers, such as [19], a slight adjustment is made 

to the definition (essentially a change of notation) which makes conditions on 

the parameters more aesthetically pleasing and independent of p. For example, 

the condition Re(tj - i2) = 1/Pi - 1/p2 in [3, Corollary 2.31 becomes 
Re j = Re ji2 in the revised notation. 

In [1] the basic theory of fractional calculus is developed with the Erdélyi-

Kober operators I,  K 	as the starting point. These are homogeneous 

operators mapping 	into itself under conditions of great generality. Ana- 
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lytic continuation with respect to a, which is possible when dealing with smooth 

test-functions, leads to definitions of I and K for all complex a. For Re a > 0 

mrn  we have the usual Riemann-Liouville and Weyl fractional integrals while for 

Re a < 0 we can recover fractional derivatives. In [4] we show how to extend 

the previous definitions to allow a much wider range of parameter values. A 

direct approach is adopted and concrete forms of the extended operators are 

obtained. Subsequently the various definitions can be harmonised via multi-

pliers. Thus, all versions of the operator 1,,7,,' correspond to the same Mellin 

multiplier, namely 	+ 1 - s/m)/P( + a + 1 - s/rn). See, for example, [22]. 

Extension to 	is routine on using adjoints. 

The first application of the theory, to hypergeometric integral equations, is 

presented in [2] and extended in [25, Chapter 4]. The simplicity of our results 

is in marked contrast to the highly technical conditions in the two fundamental 

papers of E.R. Love cited in [2]. This arises because Love imposes very mild 

local integrability conditions on his functions, whereas we can imbed classical 

functions from weighted LP spaces into appropriate F,1  spaces wherein all the 

operators are easily handled under very general conditions. 

The properties of the Hankel transform are presented in [5] and extended in 

[25, Chapter 5]. The mapping properties of this transform relative to LP(0, oo) 
are not particularly good unless p = 2, and there are major difficulties for 

p > 2. In contrast, our Fp ,,  theory is simple, elegant and valid for all p ~! 1. 

We go on to establish six fundamental results, connecting the Erdlyi-Kober 

operators and Hankel transforms, which are valid under very mild restrictions 

on the parameters. As in the classical case, these are the main tools for the 

study in [6] of dual integral equations of Titchmarsh type. As previously noted, 

the role of the distribution 6 emerges naturally and leads to the resolution of 

questions of existence and uniqueness (or non-uniqueness) of classical solutions 

of the dual integral equations. 

2. Fractional Powers of Operators via the Melliri Transform 

The relevant papers are [7], [8], [9], [10], [ii], [12], [13], [14], [15] and [16]. 

Much of this material is summarised in [26, pages 99-139]. The first of these 

papers forms the transition between the direct approach of earlier papers and the 

subsequent extensive use of the Mellin transform. In [7], we consider a class of 

differential operators T, sometimes called Hyper-Bessel operators. By relating 
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D d/dx to Dm  = d/dx m for a suitably chosen m, we can obtain expressions 
for T'(n = 1,2,...) which extend easily to T'. Convenient expressions involving 

the Mellin transform are to be noted. Similar much more elaborate expressions 

appear in [10]. By choosing particular operators T we recover results of Love 

[8] and Buschman [9] which were obtained some years ago by other means. 

The Mellin transform expressions in [7] serve as motivation for the theory 

in [10], [11], [12]. The presence here of a complex, number with Re 0 is 

crucial for the definition of T.  It is this number y which ensures that T maps 
from one Fr,,., space into a different one. As previously noted, this makes life 

easier rather than harder. In [13] we compare and contrast our theory with the 

spectral method for defining fractional powers of an operator mapping a space 

into itself. This and other related matters are also discussed in [14]. 

In [15] and [16] we return to ideas related to [7]. We study one particular 

aspect of the solution of equations involving Hyper-Bessel operators. On this 

occasion the analysis is conducted in certain spaces of continuous functions but 

an theory can also be developed. 

3. Range and Invertibility of Mellin Multiplier Transforms 

The relevant papers are [17], [18], [19], [20], [21] and [22]. 

By a Mellin multiplier transform we mean an operator T, acting on suitable 
functions 0, such that M(T) = h.Mq, where M denotes the Mellin transform 
and h is a suitable function called the (Mellin) multiplier of T. Such operators 

can be related to pseudo-differential operators under a change of variable which 

turns M into ., the Fourier transform. Interest attaches to deriving mapping 
properties of T from analytic properties of h. P.C. Rooney has developed an 
extensive theory in power weighted LP spaces for operators T whose multiplier 
h involves products and/or quotients of r-functions. In [17] we study a simple 

example of such an operator, characterise its range and, by renorming, turn the 

operator into a homeomorphism. The operator is related to the Laplace trans-

form and we obtain real inversion formulae of Widder-Post type. In [18] we 
carry out a similar investigation for an operator related to the Stieltjes trans-

form. It is already clear that in a LP setting things become very complicated. 
However, subspaces of F,,1  spaces appear as ranges and it is therefore natural 

to look at such operators wholly in an setting. In [19] a complete theory 

is developed which again displays' elegance and simplicity, the contrast with 
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LP being as notable as the contrast already mentioned in connection with [2]. 

A corollary of our theory is the emergence of a whole family of spaces Fp ,p, r , 
each of which is invariant under the action of the Erdélyi-Kober operators and 

suitable for fractional calculus. There is great scope for further development, 

including details of the distributional theory or further studies of multipliers 

similar to [20]. We content ourselves in [21] with one simple illustration. A 

summary can be found in [22]. 

4. Radial Spherical Fourier Transforms 

In [23] and [24] we bring together work of B.S. Rubin on so-called radial 

spherical Fourier transforms and our results for FI' ,,L ,F, on (0,00). It is nat-
ural to ask how to generalise the definition of our spaces from one dimension 

to n dimensions. In [23] we offer one possibility, motivated by consideration of 

the expansion in terms of spherical harmonics of functions defined on R' - {O}. 

These spaces provide a framework for the study in [24] of multi-dimensional frac-

tional integrals and Riesz potentials. For smooth functions we can relate these 

to one-dimensional fractional integrals acting on individual spherical harmon-

ics, the latter belonging to our original space under appropriate conditions. 

The corresponding distributional theory gives desirable mapping properties of 

the potentials under very general conditions, which again contrasts sharply with 

what happens in weighted versions of LP(R). There is scope for a variety of fu-

ture investigations, including applications to boundary-value problems and the 

study of other radial spherical Fourier transforms via Mellin transforms acting 

on the individual spherical harmonics. 

In conclusion, we may say that the spaces Fr,,, and 	on (0, oo) provide an 

excellent setting for the study of many differential and integral operators. Our 

original foray into fractional calculus spawned the study of fractional powers of 

operators and studies of the range and invertibility of certain classes of Mellin 

multiplier transforms. These studies suggest various future investigations. We 

have already mentioned other radial spherical Fourier transforms on R. Even 

on (0, oo), there is plenty scope. One possibility is the extension from power 

weighted spaces to spaces with more general weights, such as those satisfying 

the Muckenhoupt A,, condition. 

C 



It can justifiably be claimed that the classical notion of a fractional integral 

has connections with many topics in analysis, some of which are discussed in 

[141, [26] and a few of which have been treated in detail in the accompanying 

books and papers. 
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A THEORY OF FRACTIONAL INTEGRATION FOR 
GENERALIZED FUNCTIONS* 

ADAM C. McBRIDET 

Abstract. In this paper, we develop a theory of fractional integration for ertain classes of generalized 
functions and give one simple application. 

First, we introduce the appropriate spaces of testing-functions and generalized functions and 
state some of their basic properties. Next, we discuss the various operators of fractional integration 
including the Riemann—Liouville and Weyl fractional integrals and the Erdélyi—Kober operators. 
Use of analytic continuation enables us to obtain a precise description of the mapping properties of 
these operators relative to the testing-function spaces. We extend the operators to the generalized 
functions using adjoints and deduce the corresponding mapping properties using standard theorems. 
Finally, we solve a differential equation involving generalized functions using the previous theory. 

The theory is much more general than that developed in Erdélyi and McBride [6]. 

1.1. Conventions. We begin by making certain conventions which will be 
adhered to throughout. Generalized functions will be denoted by letters such as 
f, g, etc., while testing-functions will be denoted by Greek letters such as 4), çfr, etc. 
The value assigned to a testing-function 4) by a generalized function f will be 
denoted by  

Our testing -functions will be complex-valued infinitely differentiable functions 
on the open interval (0, cc). The space of all such functions will be denoted by C. 
For each p, 1 :!~- p < cc, L is the set of (measurable) functions 4) for which 

'I" 

I4)I 
= J 	I4)(x)Idx 	<cc. 

0 

LP will denote the set of equivalence classes of such functions which differ on a set 
of measure zero. L will denote the space of (measurable) functions 0for which 

101 = essential supremum of 4) over (0, cc) 

is finite. L is the corresponding space of equivalence classes. The numbers p and q 
will always be related by 

1 	1 
 —+ —  = 1 

p q 

and unless otherwise stated, 1 ,:!~ p :!~ cc. 	 . 

For any x e (0, cc) and complex number p, x means exp (ji log x) where 
log x is real. 

Where any term is not defined explicitly, we shall use the terminology of 
Zemanian [16]. 

* Received by the editors March 26, 1973, and in revised form March 12, 1974. 

t Department of Mathematics, University of Strathclyde, Glasgow, Scotland. This research was 
supported by the Carnegie Trust for the Universities of Scotland. 
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1.2. Introduction. We shall be concerned with the following operators of 
fractional integration: 

(1.1) 	 I4)(x) = rnJ 
	- um) 8 _lum_l4)(u)du ,  

F(a) 

(1.2) 	 K,,,cb(x) = _) J(um - xm)_l um_l4)( u)du,  

(1.3) 	 I'.(x) = X _ mmI,,,xm(Xx), 

(1.4) 	 K4)(x) = 

Here m > 0 is real, Re c > 0, is a suitably restricted complex number and 4) is 

defined on (0, cc). When m = 1, we obtain Içb and K4), which are respectively the 
Riemann–Liouville and Weyl integrals of order a of 4), while and K are the 
Erdélyi–Kober operators [9]. 

Such operators arise in many situations, notably in connection with certain 
ordinary and partial differential equations (see, for instance, [3], [4] and [11]), 
integral transforms ([2], [10] and [14]) and dual and triple integral equations 
([1] and [7]). On the other hand, the theory of generalized functions, or distribu-
tions, has led to great advances in the theory of differential equations ([8], [15]) and 
elsewhere. In this paper, we combine these two methods in developing a theory of 
fractional integration for a class of generalized functions. 

It is possible to develop a theory for I and K based on the concept of the 
convolution of distributions [8], but this cannot be extended to the more general 
operators above. Instead, we pursue an approach based on adjoint operators. In 
[6], a space 5 of testing-functions was introduced such that (under suitable re-
strictions on the parameters) K is an automorphism of 5 and I is an auto-
morphism of the generalized function space J'. In this paper, we introduce classes 
F',,,4  of generalized functions, relative to which the mapping properties of all four 
operators above can be obtained. The theory is much more general than that in [6] 
and also more flexible, since other operations such as differentiation and multi-
plication by arbitrary powers of x are easily handled. 

In § 2, we study the spaces F,,,, proceeding via the spaces F,, F 0 . Certain 
simple operators are also discussed. The results are then extended to F',,,,, and, in 
addition, we obtain a structure theorem for F',,,, in the case p < cc. 

Section 3 is devoted to a detailed study of the operators of fractional integra-
tion on F,,,, and F,,,. It appears easier to obtain results for I and K first, 
deducing properties of I,,, and K.,,, rather than to proceed in the opposite direc-
tion. The whole theory depends on the work of Kober in [9]. 

As indicated above, we would expect to obtain applications of the theory to 
generalized integral transforms (notably the Hankel transform) and to integral 
equations. These we hope to discuss in future papers, and we refer the interested 
reader to the author's thesis [13]. Here we content ourselves with just one applica-
tion. In § 4, we discuss relations between fractional integration and the operator 

d2 	2v+l d 
(1.5) 	 L—..+ 	- 

dx 2 	x dx 
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Formulas are given for the solution of 

Lf = g, 

where f and g are generalized functions. Again, the results are much more general 
than those in [6]. 

2.1. The testing-function spaces Fp . For each p, 1 :5; p :!~ cc, we define F,, by 

(2.1) 	F,, ={4:E C and x4e L P  (k = 0,l,2,•• )}. 

With the usual pointwise operations of addition and scalar multiplication, F,, 
becomes a complex linear space. For çb e F,,, k = 0, 1, 2, 	, define y' by 

(2.2) 	 y(4)) = 
dx,, 

The collection 

(2.3) 	 M,,= {y.:k=0,1,2,...} 

is a countable multinorm and, with the topology generated by M,,, F,, becomes a 
countably multinormed space. We define convergent sequences and Cauchy 
(or fundamental) sequences as in [16, § 1.6]. As usual, every convergent sequence is a 
fundamental sequence, but the converse is also true, i.e., F,, is complete. 

THEOREM 2.1. For 1 	p 	cc, F,, is a complete countably multinormed space 
(and hence a Fréchet space). 

Proof. Define an operator 5 on F,, by 

- 	 (54)(x) = x, 
dO  
dx 

(2.4) 
d 

X 
dx 

Since xk(d4/dxk)e  LP,  k = 0,1,2,.., .'çbe  LP,  k = 0, 1,2,..., we may re-
write (2.1) as 

(2.5) 	F,, = {:4eC' and 6"4eL,,(k = 0, 1,2,.. 

The proof is completed by an argument analogous to that in [16, pp.  253-4] 
using Holder's inequality rather than Schwarz's inequality at the appropriate 
stage. 

It can be shown similarly that F,, is a testing-function space in the sense of 
[16, p. 39], and we will call the elements of F, testing-functions. 
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We conclude this section with an easy lemma which will be used frequently. 
LEMMA 2.2. 0 e F,, 	x 11P4(x) is bounded on (0, cc), 1 :5; p :5; cc. 
Proof. It is sufficient to consider the case when 4(x) is real-valued. Suppose 

first that 1 :5; p < cc. Choose a, b with 0 < a < b < cc. Integrating by parts, we 
have 	b 	 1 	 1 

fb 
 

x'(x){4'(x)}' dx = —[x{(x)}"] - - 
	

{4(x)}"dx. 

	

fa 	 P 	 P0 

Now q E F => x4'(x) e L,,. Also {(x)}P' E L q  so, by Holder's inequality, the left-
hand side is bounded as a - 0 + or b —p cc. Since the same is true of the integral 
on the right, the result follows in this case. 

The case p = cc is trivial since then x'IPO(x) = (x) is essentially bounded and 
continuous and hence bounded on (0, cc). 

2.2. The generalized function spaces F,. A functionalf on 1 is (sequentially) 
continuous if, whenever & converges to 0 in the topology of F,,, (f' &) - (f, 4) 
as n —p cc. F',, will denote the complex linear space of continuous linear functionals 
on F,, with the usual operations of addition and scalar multiplication. We assign 
to F' the topology of weak (or pointwise) convergence. From Theorem 2.1 and also 
[16, Thm. 1.8-3] we have the following. 

THEOREM 2.3. F',, is complete, 1 	p cc. 
Any function f  L q  generates an element f  F, by means of the formula 

(2.6) 	
= 5 f(x)(x) dx, 	 0 e F,,. 

Generalized functions with an integral representation of this form will be called 
regular; those with no such representation will be called singular. An example of a 
singular element ofF',, is provided by 6., a > 0, defined by 

We shall use regular functionals to motivate the definition of various operators on 
F',, in the sequel. 

It is interesting to compare the spaces F',, with other spaces of generalized 
functions, in particular with ', the distributions on (0, cc), and f, the distribu-
tions on (0, cc) with compact support. For the theory of (= (0, cc)), ', 
g(=a(O, cc)) and ',see [16]. It is clear that for each p, 1 :5; p :s: cc, 

both inclusions being strict. Further, since 	is dense in 61, [ 16, p.  37], F,, is dense 
ins. Also it can be shown that if 1 :5; p < cc, 	is dense in F,,; the proof, which is 
rather intricate, is omitted. However, 	is not dense in F; for instance, we cannot 
approximate a (nonzero) constant function in the F m -topology by functions with 
compact support. 

Now suppose 1 < p < cc. Let {&} converge to 0 in (i.e., in the topology of 
). The supports of 0 and çb, n = 1, 2, 	, are all contained in some closed 
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interval [a, b] with 0 < a < b < cc, so that 

	

bI 	dk 
- 4)) = f xk(4) 	dx 

	

LaI 	dx 

k 

	

~ b"(b 	— a)" 	
d 

. sup I 	j(4)n  
a~x~bI 

—*0 

by definition of convergence in . Hence 

as n —* co, 

convergence in =' convergence in F,,, 	I 	p < cc, 

\ and hence, F',, 	'. We can also show that 

convergence in 	- convergence in F,,,, 

but since 	is not dense in F,, we cannot deduce that F' 	'. In the other 
direction, however, we can show that for 1 :! ~ p :5; cc, ' c F',,. In summary, we 
have Theorem 2.4. 

THEOREM 2.4. ' 	 F,, 1 :5 p :!~ cc, and F',, 	', 1 	p < cc. 
After we have defined generalized differentiation below, we will be able to 

prove a structure theorem for the elements of F',,, p < cc. 

2.3. The spaces I and F,. In order to be able to consider certain operations 
such as multiplication by arbitrary powers of x and differentiation, we must 
introduce generalizations of the spaces F,, and F',,. For any complex number i and 
1 :!~ p:!~ co,we define F,,by 

(2.7) 	 F,,,,, = 

F,,,, is given the topology generated by the multinorm 

(2.8) M r,,, = {y':k = 0,1,2,•.. 

where, for 4) e F,,,,,, 

(2.9) 	 y'(çb) = 

where y is given by (2.2). It follows that the mapping 4) —* x'4) is an isomorphism of 
F,, onto F,,,,,. From Theorems 2.1 and 2.3 we immediately have Theorem 2.5. 

THEOREM 2.5. For each complex number ju and 1 :!~ p :!~ cc, F,,,, is a Fréchet 
space and F',,,, is complete. 

Note in passing that we will continue to write 

(2.10) 	 F 

For each complex number 2, we define the operator x' on F,,,, by 

(2.11) 	 (x4))(x) = x'çb(x), 	 0 < x < cc. 
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No confusion should arise from using the same symbol for the function xA  and the 
operation of multiplying by this function. We define 6' on F,  by 

(2.12) 	 = 
dx 

while for m > 0 we shall write 

Note that 

d 
Dm 

- dxm' 
'I 

6,  = 6 + I, 

where I is the identity operator and (5 is defined by (2.4). It is easy to prove the next 
theorem. 

THEOREM 2.6. Let A, It be complex numbers and 1 :!~; p :5; co. 
xA  is an isomorphism of 	onto F,,4  + ,,  with inverse x - 

5,(5' are continuous linear mappings of Fp,,  into itself. 
Dm  is a continuous linear mapping of F,,,, into Fr,,, 

- 

To define the corresponding operators on F',,,,, we use adjoint operators. For 
f  F,,, we define xAf,  (5f, (5'f and Dm f by 

(2.13) 	 (xAf, 4,) = (f, x24,), 	 4, e F ,,,_ 2 , 

(2.14) 	 Of, çb)=(f,—ö'4,), 

(2.15) 	 ((5'f, 4)) = (f, -(54), 	 4) e Fr ,,, 

(2.16) 	 (Dmf,4,)= (f,_IDX_m+14)), 	 4)EFp,p+m. 

The motivation for (2.14)—(2.16) is supplied by taking f to be a regular functional, 
and integrating by parts. Using Theorem 2.6 and [16, Thm. 1.10-1] we 

immediately obtain the following. 
THEOREM 2.7. Let A, p be complex numbers and 1 :!~ p :!~ cc. 

xA  is an isomorphism of F',,,, onto F',,,, 
- A with inverse x - 

(5,(5'are continuous linear mappings of F',,,, into itself. 
Dm  is a continuous linear mapping of F',,,, into F',,.,, +m . 

We conclude this section with the following structure theorem. 
THEOREM 2.8. Let p be any complex number and 1 :!~ p < cc. Any fe F',,,, is of 

the form 

(2.17) 	 f= 

where r is a positive integer, hk  E L q , k = 0, 1, .. , r, and hk  is defined as in (2.6). 
Proof. The proof is analogous to a number of proofs in the literature and is 

omitted. (See, for instance, [15, pp.  272-274].) 

3.11. The operators ! on F,,,. We are now ready to discuss the mapping 
properties of the operators (1.1)—(1.4) of fractional integration. In this section we 
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study I,, and 	and the corresponding results for K,, and Kare given in the 
next section. 

It is convenient to begin with I since (under suitable conditions) it maps 
L,, into L,, whereas I m  does not. The mapping properties of I,,, can be derived 
using the relation 

(3.1)  

This approach has the slight disadvantage that some of the more obvious results 
such as 

(3.2) 	 Içb = /I 1 4 

appear much later than usual. 
LEMMA 3.1. For 1 :!~ p :5 ci, Rea > 0, I is a continuous linear mapping of 

L into L provided m Re q + m > i/p. 
Proof. The result for m = 1 is proved by Kober in [9, Thm. 2]. The general 

result follows by a simple change of variable. 
This leads to Theorem 3.2. 
THEOREM 3.2. For 1 :5 p :!~ cxj, Re c > 0, I is a continuous linear mapping of 

Fr ,, into Fp,  provided Re (m + ji) + m> 1 /i• 
Proof. Suppose first that p.= 0. Since F,, is a subspace of L,,, Lemma 3.1 

shows that MI.,  is a continuous linear mapping of F into L. From (1.1) and (1.3), 

(3.3) 	 IX 14 0(x) = 
---- fo (1 - tm)_ltmm_5( xt)dt. 
F(x) 

Differentiating under the integral sign in (3.3) gives 

6 FT-20 = I 

from which it follows by induction that for k = 0, 1, 2, 

(3.4) 	 x—17cb = 
dXk 

By Lemma 3.1, for some number M (depending only on j, a and m), 

yJ(I(b) 	Myf(çb), 

and the theorem is proved for ji = 0. 
The general result follows from the previous case using the relation 

I II çb(x) = x Im x _Pçb , 	 E F,,,, 

and Theorem 2.6 (i). 
We shall, in fact, prove much more about J shortly. One result we shall need 

is 

(3.5) 	 X- 	mo = 	 e F,,,,,, 

valid provided Re  > 0, Re fl > 0 and Re(mij + ) + m> lip. Theorem 3.2 
involves restrictions on Pj and a . That the restriction Re (mu + 	+ m > i/p is 
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necessary is seen by taking p = cc, 4(x) = x', whence 

F(+(p/rn)+ 1) 
I(x) 

- f( + + (p/rn) + 1) 
X  

which belongs to 	provided Re (,j + (p/rn) + 1) > 0. On the other hand, 
we now proceed to remove the restriction Re c > 0 using analytic continuation. 
We make the following definition. 

DEFINITION. Let V, V2  be two countably multinormed spaces. Suppose that to 
each Lx in some domain D of the complex plane there corresponds a continuous 
linear mapping T from V1  to V2 . We shall say that 7 is analytic with respect to x in 
D if there exists a continuous linear mapping aT.10ot of V1  into V2  such that, for 
each fixed 4 e V1 , 

converges to zero in the topology of V2  as the (complex) increment h -+ 0 in any 
manner. 

It is easy to show that iff(ca) is an analytic function ofoe in D (in the usual sense) 
and T, is analytic in D (in the sense of the above definition), then the operator f((X)T 
is analytic in D. 

THEOREM 3.3. On 	I is analytic with respect to x for Re z > 0, provided 
that Re(mt + p) + m > l/p. 

Proof. See [13]. 
Notes. 1. It is clear that, under the hypotheses of Theorem 3.3, I4(x) is, for 

each fixed x, an analytic function of c in the usual sense for Re x > 0. 
2. A similar argument shows that, for each fixed c with Re x > 0, I7 is 

analytic on 	with respect to il in the half-plane Re il > (1/m)((1/p) - rn - Re p). 
We shall be concerned with analytic continuation with respect to a . We 

require the following lemma which can be proved by straightforward differentia-
tion. 

LEMMA 3.4. Let Rea >0, 4eF,Re (mil + p) + rn> i/p. Then 

' = 	 = mI/ - (m + rncx + m)I 	'. 

Rearranging the result of Lemma 3.4 gives 

(3.6) 	 mI4 = (m + mot + rn)I'4 + I' t54. 

By Theorem 3.3 and the remark following our definition above, the right-hand 
side is analytic with respect to c for Rea > - 1. We use (3.6) to continue I 
analytically, in the first instance to - 1 < Re c 	0 and hence, step by step, to the 
whole complex x-plane. 

Still assuming Re (m + p) + m > i/p, we may put a = 0 in (3.6) to obtain 

(3.7) 	 I,°q5=q5. 

We can now prove our first main result. 
THEOREM 3.5. Let Re(rnij + p) + rn> i/p, 1 :!~ p :5; cc. 

(i) For any complex number a , 	 is a continuous linear mapping of 
into itself 
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For fixed il , 	is entire with respect to a on 
If, in addition, Re (m ,i + ma + p) + m > l/p, I is an automorphism of 

and 

(I) -  I =
XM 

Proof. Parts (i) and (ii) follow using Theorems 3.2 and 3.3 along with suffi-
ciently many applications of formula (3.6). We now prove (iii). 

By analytic continuation, ( 3.5) is valid provided only Re (mu + j)  + m > 1/p 
and Re (mu + m + /1) + m > I/p. (This second condition was redundant before 
with Re a > 0). In this case for j E 

I''Iq5 = Iq5 = 

by (3.7) and 

= Xm =  

by (3.7). The result follows. 
Finally in this section, we state the mapping properties of I,,, For Re a > 0, 

we have, from (1.1) and (1.3), 

(3.8) 	 J,,,4(x) = Xm I0 (X). 

We use (3.8) to define I,,, for all of, this definition coinciding with (1.1) for Rea >0. 
By Theorems 2.6 (i) and 3.2, I.,, is a contintinuous linear mapping of FP  into 
Fp,,,.a  provided Re  + m >11p. In this case also we can prove 

(3.9) 	 IX, -(P(X) = -I"(W). 

If we had developed the theory of I,,, without proceeding via I, we would use
xm (3.9) to continue I,,, analytically from Re c > 0 to the whole complex a-plane. 

Still assuming Re p + m > l/p, we have from (3.7) and (3.8) that, for çb e 

= 0. 
It follows from (3.9) that, for n = 0, 1, 2, 

(3.10) 	 no
= 

as might be expected. 
It can also be proved using (3.5) and (3.8) that for 0 e 	(I 1p) - m - Rey 

< mm (0, m Re c, m Re fl),  
(3 11) 	 r = 	= 

This leads to Theorem 3.6. 
THEOREM 3.6.I,,, is a continuous linear mapping of 	into Fp ,p+m  provided 

Rep + m > i/p. I is the identity operator. If, in addition, Re (p + mot) + m > l/p, 
I m  is an isomorphism of F,1  onto Fpp+m2  and 

(1 \1 - Va 
,. x"" 	- 
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Equation (3.11) enables us to write down an explicit expression for I for any 

; if 0 e 	Re p + m> l/p, Re a + n > 0, then

In 	d 
(3.12) 	I X' - O(x) 

= F(+ fl)(dX'fl)J0 	
- um)_l um_l cb(u)du . 

We mention also the second index law for the operators I.,,; if j. e 

- Rep - m + (l/p) < mm (0, m Re y), a + 13  + y = 0, then 

(3.13) 	 xmI xm4(x) = Ix - mflJ_a1,(X) 

We shall not prove (3.13) here, but defer the proof to a subsequent paper where the 
result arises naturally in connection with hypergeometric integral equations. 
Equations (3.11) and (3.13) have been studied in the case m = 1 by Love [12] for 
ordinary functions and by Erdélyi [5] for a class of generalized functions. 

3.2. The operators K on 	We now consider the operators KX  on F 4 . 
For Re a > 0, we have from (1.2) and (1.4) that 

K " '-', O(x) = x mK x _rnrn(x) 

(3.14) 
M 00 

(tm - 

— 1 

We obtain the properties of K using arguments similar to those for I. We shall 
mention only the salient points. 

THEOREM 3.7. Let Re(mfl - p)> —l/p, 1 ~p ~ cc. 
For any complex number a , 	 is a continuous linear mapping of Fp,,  into 

itself. 
For fixed ij, K is entire with respect to x on 
If, in addition, Re (mj + ma - p) > - lip, K is an automorphism of 

and 

(K7)' =K' 

Proof. (i) For Rea > 0, the result follows using a result of Kober [9] and 
differentiating under the integral sign in (3.14). We extend the definition of KNII to 

Re c :f~-: 0 using the formula 

(3.15) 	mK7(x) = (m+ mc)K'(x) -    

which is an analogue of (3.6) and is valid for 4. E Fp , m  if Re (mrj 
- p) > - i/p. 

Use of (3.15) completes the proof of(i). 
As regards (ii) and (iii), we proceed as for I' using (3.15) and the additional 

results 

(3.16) 	 Kq=4, 

valid for 4 e F,,,, Re (mil - p)> - lip, and 

(3.17) 	 = 

valid when eF,,Re(m - p) > —1ip and Re (mil + mot - p)> —i/p. 
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To obtain the results for K,,,, we note first that for Rex > 0, 

	

(3.18) 	 K4 = Kx0 x m2 0 

from (1.2) and (1.4). We use (3.18) to define K,,, for all a. Using Theorem 3.7 gives 

the following. 
THEOREM 3.8. If Re (p + ma) < lip, K is a continuous linear mapping of 

F,, into Fp .,z+mi  If also Rep < lip, K is an isomorphism of Fp,, onto Fp ,p +m2  and 

(Ka-) - 1  = K. 	 - 

K ° m is the identity operator on Fp,, if Rep < i/p. 

Using (3.15), we can show that, for Re (p + ma) < lip, 

	

(3.19) 	 K'-O(x) = - K' p.4(x), 	 e F,,, 

from which it follows by induction that if Re p - mn < lip, n = 0, 1, 2,..., 

	

(3.20) 	 Kq5 = 
dxm  

The first index law for the operators K,,, is 

(3.21) =  K4 = KK4, 

valid when (l/p) - Rep> max (mRea,mRe fl, mRe(cx + /3)). The second index 

law states that for cbeF,,Rep —(lip) < min (0, m Re y), a + /3 + y = 0, 

	

(3.22) 	 xmYKxma4 = K;, x _mflK4. 

For discussion of (3.21) and (3.22) we again refer the reader to [5] and [12]. 

3.3. The action of I and K'X ,m' on F. We are now ready to develop the 

theory of fractional integration on the spaces F',, of generalized functions. As 
usual, our definitions are motivated by considering regular functionals. 

Letf e F',, . From adjoint considerations we are led to define If, for Re a > 0, 

by 

	

(3.23) 	 (If, 44 = (f, K 1(1/m)4), 

where 4 e F,,. However, the right-hand side is meaningful provided only 

Re (m - p) + m > 11q by Theorem 3.7 ; in this case, we can remove the restriction 

Re a > 0 and use (3.23) to define If for all complex cx. 
THEOREM 3.9. Let 1 p cc and let a be any complex number. 

I' is a continuous linear mapping of F,,. into F,,,1  provided that Re (m - ,q) 

+ m> 11q. 	- 
If, in addition, Re (m + ma - p) + m> l/q, 14 1 2  is an automorphism of 

F',,,1  and 

= 

Proof By Theorem 3.7 (i), K'' 1 	is a continuous linear mapping of 
into itself provided Rem( + 1 - (1,/0) - p > —lip, i.e., Re (m - p) 
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+ m > 11q. Part (i) now follows by [16, Thm. 1.10-1]. Part (ii) follows similarly 
using Theorem 3.7 (iii) in conjunction with [16, Thm. 1.10-2]. 

Using (3.17) and (123) we see that iffe F',,, 

(3.24) 	 JI?+8.I1J1I.Zf = JI7.2+flf 

provided Re (m - p) + m> l/q, Re (m + m - u) + m> l/q, while from 
(3.16), 

(3.25) 	 I °f=f 

provided Re (m? - ) + m > 11q. Equations (3.24) and (3.25) are analogous to 
(3.5) and (3.7), respectively. 

It is now clear that to obtain results for F, from the corresponding results 
for FP, (e.g., to obtain Theorem 3.9 from Theorem 3.5) we interchange /1 and —p, 
p and q in the restrictions on the parameters. This trend, which continues below, 
is to be expected from consideration of Holder's inequality. If 4) E ,f f(x)4)(x) dx 
will converge if f(x) = xg(x) with g  L q  and, in particular, iffe Fq,_,. 

We note in passing that for fixed f  F',,,,, 4) e F,,,, and Re (m - p)+ m 
>1/q, 

(If, 4)) 

is an entire function of Lx by virtue of Theorem 3.7 (ii). However, this will not be 
needed here. 

Proceeding as before, we are led to define K for any cx and any f e F',,,, by 

(3.26) 	 (Kf, 4)) = (f, J; 1 +(1Im).4)) 	 4) E F,,,,. 

Using Theorem 3.5 we obtain the following result analogous to Theorem 3.7. 
THEOREM 3.10. For 1 p cc and any complex cx, K is a Continuous linear 

mapping of F,,, into itself provided Re (mil + u)> - 11q. If, in addition, Re (mrs 
+ ma + ii)> - 11q, K is an automorphism of F',,,, and 

= K' 

For fe F,,,, we have analogues of (3.16) and (3.17). 

(3.27) 	 K 7 
 

°f = f 

for Re (m + t)> —1/q;ifin addition, Re(nv + ma + i')> —l/q, 

(3.28) 	 KK'f = K"f. 

Finally we discuss the properties of I,,, and K,. on F,,,. 
Let fe F,,,,. As before, from adjoint considerations, we are led to define 
for any complex or by 

(3.29) 	 4)) = (f, xm lK,x_m+ 4)). 

The right-hand side is meaningful provided only that 0 e Fp,, 	and m - Rez 
> 11q by Theorem 3.8. Similarly, for 4) EFp,,,_ m2 , fe F,,,, we define K,,,f by 

(3.30) 	 (K'-f, 4)) = (f, 	hI,,,x_m+ 14)) 

Use of Theorems 3.6 and 3.8 proves the next theorem. 
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THEOREM 3.11. (i) I,,, is  continuous linear mapping OfF p  into FP ,  

m Re p > 11q. I,,, is the identity Operator. If, in addition, m + Re (ma - p)> 11q, 

I,, is an isomorphism of F' onto F'i,, p _ m2  and 

jr \1 
- 

	

" x"'I 	- x"'• 

(ii) K,,, is a continuous linear mapping of F' ,,,  into F'_m2  provided Re (mci - p) 

< 11q. If, in addition, —Re p < 11q K,,, is an isomorphism of F, onto 	and 

(K)' = K. 

K,,, is the identity operator on FP' ,,,,  if - Re p < 11q. 

For feF',,,, we have the following index laws analogous to (3.11), (3.13), 

(3.21) and (3.22). 

(3.31) = J2+/if 
= 

provided (11q) - m + Re p < mm (0, m Re c, m Re /3). 

(3.32) 	 xmI,, xmYf = I;, x _mPI;.f 

provided (11q) - m + Re p < mm (0, m Re y), c + /3 + y = 0. 

(3.33) 	 KKJ = KJ = KKf 

provided (11q) + Rep> max (m Re oc , m Re /3, m Re (c +  

(3.34) 	 xmYKxmaf = K x _mflKf 

provided —(1/q) - Re p < mm (0, m Re y), Lx + 0 + y = 0. 

4.1. The operators L,. For any suitable function 4) and any complex number 

v, we define the differential operator L by 

	do  d 20 
(4.1) 	 (Lcb)(x) = 	

+ 2v + 1 

dx 	x dx 

In this section, we consider connections between L and operators of fractional 
integration which have been discussed for ordinary functions by Erdélyi in [3], 
and one of which has been established for the class 5' of generalized functions by 

Erdélyi and McBride in [6]. 
It is immediate from Theorem 2.6 that for all complex numbers p and v and 

for 1 	p cc, L  is a continuous linear mapping of 	into FP., -2• For  f e F, 
we define Lf by 

(4.2) 	 (Lf,4)) = (f,xL_x14)), 	 4)eF+2. 

The motivation for (4.2) is supplied by taking  to be a regular functional generated 

by a C 2  function, taking 4) and integrating by parts. Using [16, Thm. 1.10-1], 
we immediately deduce Theorem 4.1. 

THEOREM 4.1. For any complex numbers p and v and for 1 :5 p :!~ cc, L  is a 

	

continuous linear mapping of F',, into 	+ 2•p.p 

As regards connections with fractional integration, we have Theorem 4.2. 
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THEOREM 4.2. Let EF,l :5;p:5; Co. 
IfRe(2v+ji)> l/p, 

(4.3) 	 I2Lq5 = 

If Re (2v — IL) > - lip, 

(4.4) 	 L_KI = KL_ V _4. 

Proof. To prove (i) we can proceed as in [6, § 6], or use (3.15). The proof of 
(ii) is similar, so we shall omit the details. 

(4.3) and (4.4) give perhaps the neatest relations between L and fractional 
integration operators on F. We now give the corresponding results for F,.,. 

THEOREM 4.3. LetfeF, 1 :5; p :!~ Co. 

If Re (2v — p) > 11q, 

(4.5) 	 JV.2Lf = L . +.IXv 2f. 

If Re (2v + p) >— l/q, 

(4.6) 	 L_ V K C'ff = KL_ V _J. 

Proof. (i) For f  F, 4' e F +2 , (3.23) and (4.2) give 

(ILf, 4') = (f, xL_x 'K 112 ''4') 

= (f,xLKx 1 cb) 

and similarly 
(rv,a y 	c .k\ - i c 	 -1 

The result now follows from Theorem 4.2 (ii) with ji, 4' replaced by p + I and x  
respectively. Part (ii) follows similarly from Theorem 4.2 (i). 

4.2. Solution of L vqo = 4'. Suppose 4' eF,., _ 2  is given. We wish to find 
4' eF,,, such that L4 = 4', i.e., 

d2 çb 	2v±ld4' ,  
x dx 

(4.7) 	
d 
 ( 

2+1'4' = X2V+t  lo.  
dx/ dx 

The problem then reduces to inverting D = d/dx, and for this we fall back on 
Theorems 3.6 and 3.8, which tell us that D is an isomorphism of Fp,,  onto 
provided Re p i/p and 

f I' 	Rep > l/p, 
D'=_ 

	Rep <1/p. 

As regards the case Re p = l/p, take p = m so that p = 0. Then D4' = 0 for every 
constant function 4' e F, and clearly D is not invertible in this case. Using (4.7) 
we easily obtain the following theorem. 
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THEOREM 4.4. For each 4, e Fp, -2'  the equation L4; = ifr has a unique solution 

4; e F,,,, provided Re (2v + p) 	i/p and Re p 0 i/p. 
IfRe(2v+p)> l/p, Rep > l/p, 

4, = 

If Re (2v + ji) > l/p, Rep < lip, 

4; = _K x _ 2 v_hIx 2 4,. 

IfRe(2v + p) < lip, Rep> lip, 

4; = 

If Re (2v + p) < lip, Rep < lip, 

4:. = Kx 21Kx 2 'çli. 

The results are particularly simple when v = - 4 (in which case (ii) is redundant) 
and v = 0 (when (ii) and (iii) are redundant). We can use these special cases in 
conjunction with Theorem 4.2 to derive alternative expressions for the solution 

4; in the general case. For instance, for the case v = - 4, we obtain Theorem 4.5. 

	

THEOREM 4.5. If Re (2v + p) 	lip and Rep 	lip,  the (unique) solution 

4; e F,,,, of L4; = 0, fr e 	is given as follows: 
If Re (2v + p) > lip, Re(— l + p) > lip 

4:. = 
1/2v+ 1/2 y2yv, - v- I -

x2 	Ix 
	1/2 

If Re (2v + p) < lip, Re(— l + p) < lip 

4; = _K 2 . -  l/2IlKK;2v" 12,/, 	lip < Rep <(lip) + 1, 
X 

4; = K2,' h/2KK;2v+ 1/2,4, 	Rep < 1,/p. 

Proof. 
(i) Since Re(2v + p)> lip,we may take otv-4in(4.3)toget 

rv,-'- 1/2 1/2 
1 x 2 	L4; = L. 1/2 x 2 	0 

ifr = L4; = I;hI2 + "2 L 1/21x2 	
1/24, 

using Theorem 3.5 (since Rep + 1 > lip). Provided (L 1/2) 1 exists, we may now 
invert obtaining 

4; = L; 1,4, = I- 1/2,v+ 1/2   (L 	1 'v.-v-- 1/2,4, 

	

X 	 -1/2) 	1 x 2  

and we use Theorem 4.4 (i) to substitute for (L 1/2) 
Part (ii) is proved similarly using (4.4). 
There are other possible expressions for 4;, but we shall not list them here. 

4.3. Solution of Lf = g. Suppose now that g e F 2  is given. We have to 
find f e F',,,,, such that Lf = g. To obtain the solution, we can either imitate the 
methods of § 4.2 or else take adjoints. 
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THEOREM 4.6. For each g e F' 12,  the equation Lf = g has a unique solution 
f  F',, provided Re (2v - p) 11q and Re p 0 11q. 

If Re (2v - p) > 1/q, —Rep > 11q, 

f = 

If Re (2v - p) > 11q, —Rep < 11q, 

f= _Kx_2v_hIx2g. 

If Re (2v - p) < 11q, —Rep > l/q, 

f = _ I x _ 2vK x 2 i9.  

If Re (2v - p) < l/q, -Re p < l/q, 

f = Kx_ 2 v_iKx 2 g.  

As an illustration consider(i). Under the given conditions, xL_x  'is invertible on 

+ 2' and from Theorem 4.4 (iv), if i/i e 

xL_x' 0 	0 = 

Hence taking adjoints, where g e F' +2,  we see that 

Lf = g 	= x 2 vI x2 1 Ixg. 

This is a perfectly acceptable expression for the solution, but to obtain the form in 
(i) we use the index laws (3.31) and (3.32). Indeed, 

f = x _ 2 I x 2 v_hI xg  = I 2 v x lIVJ xg  

= I(I 2 v x _hIV+l)xg  = 

from which (i) follows; the above steps are all valid under the given conditions. 
Parts (ii)-(iv) are similar. 

Again other equivalent solution formulas can be obtained if required via (4.5) 
and (4.6). 
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• SOLUTION OF HYPERGEOMETRIC INTEGRAL 
EQUATIONS INVOLVING GENERALISED FUNCTIONS 

by ADAM C. McBRIDE 
(Received 10th December 1973) 

1. Introduction 
In a previous paper (9), we introduced the spaces F,,,, of testing-functions 

and the corresponding spaces F, L 
of generalised functions. For 1 p cc, 

F,,(= F,,, ) is the linear space of all complex-valued measurable functions 
deljned on (0, cc) which are infinitely differentiable on (0, cc) and for which 

xk eL(0, cc) for each k = 0, 1, 2. .... In symbols, 
dX k 

F,,EC {(O cc) : x k 4k0— eL(0, cc) for k = 0, 1, 
2, ...}. 	

(1.1) =  
dx 

F,, is equipped with the topology generated by the semi-norms yf} 	where, 
for 0 e F,,, 

= xk_i 	(k = 0,1,2,...) 	 (1.2) 11 	dx lip 

(and 11 Ii,, denotes the usual L"(O, cc) norm). Then, for any complex number p, 
and 1 	p 	cc, we define F,,,,, by 

F,,,,, = { : xq(x)eF,,}. 	 (1.3) 

F,,,,, is equipped with the topology generated by the semi-norms {y'} 0 

	

y"(q5) = y(x"çb) (k = 0, 1, 2, ...) 	 (1.4) 

with y $  as in (1.2). Finally, F,,, is the linear space of continuous linear func 
tionals on F,,,,,; it is equipped with the topology of weak (or pointwise) con-
vergence. 

The spaces F,,,,, and F,,, are amenable to the study of various operators of 
fractional integration and, in (9), we investigated the mapping properties of 
I_ and the Riemann-Liouville and Weyl fractional integrals respectively, 
as well as the Erdélyi-Kober operators Ii',,? and K,f. We also gave a simple 
application to differential operators. In this paper, we are going to turn our 
attention to integral operators. 

We shall be concerned with four operators H,(a, b; c; m) (i = 1, 2, 3, 4) 
E.M.S.-19/3—S 
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typical of which is H, (a, b; c; m), defined for Re c>O and suitable functions 4 
by 

H1 (a, b; c; m)çb(x)= 
fX(Xm_tm)C_1 

F(a. b; c; 1— )mtm_1(t)dt. (1.5) 
F(c) 	 t 

Here m>O is real, a, b and c are complex and F(a, b; c; z) 	2F, (a, b; c; z) 
is the Gauss hypergeometric function. For m = 1, the operators H(a, b; c; m) 
have been discussed at length for classical functions by Love in (5) and (6). 
Love's results unified the work of many authors who had earlier treated parti-
cular cases; see (5) and (6) for references. Here we work with generalised 
functions in F;, , rather than classical functions. With tools such as analytic 
continuation available, it is not surprising that the restrictions on the parameters 
involved are not so numerous as in Love's work. On the other hand, we end up 
with a generalised solution which may or may not correspond to a classical 
solution. However, we shall give one result to indicate how, in a particular 
case, we can recover a classical solution. 

In Section 2, we gather together a few facts about F(a, b; c; z) which we 
require in the sequel. In Section 3, we develop the properties of H1  (a, b; c; m) 
on Fr,, by establishing a connection with the operators I. Analytic con-
tinuation and results in (9) enable us to extend the definition of H1 (a, b; c; m) 
to values of c with Re c 0 (although in this case we will no longer be able to 
use the integral representation (1.5)). In Section 4, we introduce the other three 
operators H(a, b; c; m) (i = 2, 3, 4) on FP , and obtain connections between 
them. H3 (a, b; c; m) and H4(a, b; c; m) are the adjoints of H2(a, b; c; m) 
and H1 (a, b; c; m) respectively and moreover we find that 

[H2(a, b; c; m)] = H 1 (—a, —b; —c; m) 

a fact which does not emerge clearly in (5). 
The use of adjoint operators enables us to define the operators 

H(a, b; c; m) (i = 1, 2, 3, 4) 
on F, 

A 
and in Section 5 we obtain their mapping properties as well as giving 

formulae for the solution f of 
H(a,b; c; m)f=g, 

where g is a given generalised function. Finally, in Section 6, we compare and 
contrast our results with those of Love and also discuss the problem of finding 
classical solutions. 

In the course of our travels, we establish on Fr,,. and F;, , the second index 
laws for the operators I,,, and Km; if a + 13 + y = 0, then 

xIx'f = J;,,T(x_mPJ;:f 

x m1K mx m8f = K; x _mPK;,%f 

are valid under appropriate conditions. These arise naturally in the discussions; 
they have been discussed for classical functions by Love (7) and for a class of 
generalised functions by Erdélyi (11). 
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Throughout, we shall use the notation and terminology of (9). In particular, 
we shall assume that m >0, that 1 :!~ p :!~ o (unless the contrary is stated) and 
that p, q are connected by i/p + 1 /q = 1. 

2 
We shall denote Gauss' hypergeometric function by F(a, b; c; z). Thus for 

complex numbers a, band c with c 	0, —1, —2, ..., and for I z I <1, 

F(a, b; c; z) = 	
(a)(b) 	

(2.1) 
n0 (c) 	n! 

where, for example, 

(a)0  = 1, 

(a) = a(a+l) ... (a+n—l) = r'(a+n)/r'(a) (n ~! 1). 

For brevity we shall write 
F*(a,  b; c; z) = F(a, b; c; z)/IT(c). 

Thus, for J zj < 1 and for any complex numbers a, b and c 

F*(a, b; c; z) = 	
(a),,(b) z" 

(2.2) 
,=o 1-(c+ n) n! 

The restriction c 0 0, —1, '-2, ... is no longer necessary since the reciprocal of 
the gamma function is an entire function. F*(a,  b; c; z) as defined by (2.2) is 
an entire function of a, b and c, and an analytic function of z for I z I <1. 

We shall require values of F(a, b; c; z) for z on the negative real axis. We 
therefore extend F*(a,  b; c; z) to the half-plane Re z<4 using one of Kummer's 
relations ((2), p.  105) 

F*(a,  b; c; z)=(1_z)_aF*(a,  c — b; c;--
Z 

___ 
—1

) 	(2.3) 
z 

using the principal branch of (1 	The extended function is an entire 
function of a, b and c, and an analytic function of z for Re z <f. Also, by (2.2) 
and analytic continuation, 

F*(a,  b; c; z) = F*(b,  a; c; z) 	 (2.4) 
for Re z<. 

To discuss the operator H1 (a, b; c; m) we require the following result. 

Lemma 2.1. Let a, b and c be complex numbers and let 5>0. Then there 
exists a constant M, independent of v, such that, for 0< v < 1, the four expressions 

I F*(a,  b; c; 1 - 1/vm)I, 	F*(a,  b; c; 1-11vtm) 

F*(a,  b; c; 11/vtm) . 	-F*(a, b; c; 1-1/vtm) 

are all less than or equal to MVmmn(mRca,mb)_& 
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Proof. The proof of this result for m = 1 is given in (8). The general result 
then follows easily. 

3 
We now proceed to the discussion of H1 (a, b; c; m) on F,, ,. We recall 

that for Re c>'O, m>0 and suitable functions 4, H1 (a, b; c; m)çb is defined, for 
0<x<co,by 

H 1 (a, b; c; m)q5(x) 
= fo 

(xm_tm)c_lF*(a, b; c; 1_xm1tm)mtm_lb(t)dt. (3.1) 

To begin with, we note 

Lemma 3.1. Let Re c>0, —Re JL—m+1/p<min (m Re a, m Re b), 4 
Then 

the integral (3.l)for H1 (a, b; c; in)q5(x) exists and defines a continuous 
function of x on (0, co), 
for each fixed x e (0, co), H1 (a, b; c; m)çb(x) is an analytic function of the 
(single) variables a, b, c in the regions —Re y —m+ 1/p<min (m Re a, 
m Re b) and Re c>0. 

Proof. For x  (0, co) we have, from (3. 1), 

f l
H 1 (a, b; c; m)çb(x) = XrnC (1_v)._F*(a, b; c; 1_1/vm)mvm_l cb(xv)dv.  

o 
(3.2) 

By Lemma 2.1 above and Lemma 2.2 of (9), for any given 6 >0, there exists M 
independent of v e (0, 1) such that 

I (1_ vm)'_lF*(a,  b; c; 1_1Ivm)mvm_lcb(xv) I 
M(1 — v Te c —  lmin (m Rca, m Re b)_öVm_l(XV)Re p-i/p 

for v a (0, 1). Under the given conditions on the parameters, the right-hand side 
of this inequality is an integrable function of v over (0, 1) provided ô is chosen 
sufficiently close to 0. Hence the integral on the right of (3.2) converges 
uniformly on compact subsets of (0, co) and (i) follows. (ii) follows similarly 
using Lemma 2.1 since, under the given conditions, we may differentiate under 
the integral sign in (3.2) with respect to a, b or c. 

The main use of Lemma 3.1 is in resolving a minor technical detail below. 
The information it gives turns out to be relatively little as we shall see later. 

To obtain a full description of the mapping properties of H1  (a, b; c; m) on 
F,,, , we proceed to establish a connection with fractional integrals. 

Lemma 3.2. Let 

Re c>0, Re 13>0, —Re,u---rn+1/p<min(m Re c, m Re ), aF,,,,. 
Then, for x>0, 

I" N'41;,fOW = x mm Hi(c+fl — ?J, 13; +fl; m)xm_mPcb(x). 	(3.3) 
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Proof. 

I'I'Jçb(x) 
-m17 -mz Cx 	 -m-m fo

u = mx 	(xm_ um)_1 umm_1du mu 	 (Um_tm)P_htm 4 m_(t)dt. 

r(x) 	Jo 	 r'(1)  
By Lemma 2.2 of (9), there is a constant M: I (t)  J ~ Mt Re  11 (0<t< Go). 
It then follows easily that the repeated integral is absolutely convergent under 
the given conditions on the parameters. By Fubini's Theorem we may justi-
fiably invert the order of integration to obtain 

— m?1 — m2 

f

X 	

ftx

mx 1m'+m— 'çb(t)dt 	(xm_Um) _ t(Um_ tm)P_ lum_m_mf,num_ 'du. 
r(cx)r'(/3) 0 

Under  the substitution w = (utm - tm)/(xm - tm) the inner integral becomes 

(xm— tm) _itmtr_rn_mf (1 —w) 1 w 1 [1 —w(1 _ xm/tm)]__Pdw  

13; +13 ; 1—xm/tm) 
f(x + 13) 

using Euler's Integral, formula (10) on p.  59 of (2). Finally, therefore, 

i;:i ,Pfr(x) 
—mt7—m fx+fl) 	 rn _tm 	'F+13, 13; +fl; 1_xm1tm)ntm_ltm_ms(t)d1 

= xm'mH 1 (+/3—, 13; c+f3; fl2)XmmP(X) as required. 

This completes the proof. 

Corollary 3.3. Let 

Re c>Re b>0, —Rep—m+lfp<min(m Rea, m Reb), q 

Then for x>0, 
H 1 (a, b; c; m)çb(x) = IC_bX_maIbXma(X) 	 (3.4) 

Proof. In Lemma 3.2, we take a = c—b, 13 = b, c = +a—b, and replace 
t and O(x) by p—m+mb and xmmb(x). The conditions in Corollary 3.3 

then imply that the conditions of Lemma 3.2 are satisfied so that (after a slight 
rearrangement) 

	

H1(a, b; c; ;n)i(x) = 	 (3.5) 

for x>0. The free parameter disappears when we rewrite (3.5) in terms of the 
inhomogeneous operators I,,. and (3.4) follows almost immediately. 

In (9), we extended the operators I and I,. on F,,, using analytic con-
tinuation to values of a with Re c 0. The right-hand side of (3.4) therefore 
has a meaning even if the condition Re c> Re b >0 is removed. We must 
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however retain the restriction - Re p - m + I/p <mm (m Re a, m Re b); for 
details, we refer the reader to Section 3 of (9). We now use (3.4) to extend the 
definition of H1 (a, b; c; m) on Fp,, removing the restriction Re c>0. 

Definition 3.4. For 0 c Fp ,,L  with —Re p—m+1/p<min (m Re a, in Re b), 
we define H1 (a,b; c; m)q5by 

H 1 (a, b; c; m)(x) = I_bx_maJ,,xmac/j(x) (x>0). 

Note. We must be a little careful here and check that this new definition 
coincides with the original where both make sense, namely where the above 
conditions are satisfied and Re c>0. Certainly this is the case if Re c> Re b >0 
by Corollary 3.3. However, under the given conditions both sides are analytic 
functions of b (using Lemma 3.1 for the left-hand side). The principle of 
analytical continuation then gives the desired result for Re c>0. 

With Definition 3.4 available, we can now use results in (9) to obtain the 
mapping properties of H1 (a, b; c; m). 

Theorem 3.5. If —Re p—m+l/p<min (rn Re a, mReb), H, (a, b; c; m) 
is a Continuous linear mapping of F,,2  into Fp,,L + mC . 

If, in addition, —Re i—m+l/p<min (in Re c, in Re (a+b)), H, (a, b; c; m) 
is an isomorphism of Fp ,, onto Fp,,j+m  and, for i/i a FP , iz+mc , 

[H1 (a, b; c; m)] 1 ifr(x) = x_mQI;,,xmaI;cq,(x). 	 (3.6) 

Notice that, in the above theorem, "isomorphism" is used in the sense of 
Zemanian (10, p.  27). 

Proof. Let 0 a Fr,,,. Then Xm"cb a Fp , iz+ma  (Theorem 2.6 (i) of (9)). Since 
Re (p+ ma) +m> I/p. we can apply Theorem 3.6 of (9) with p and 0 replaced 
by u+ma and Xmacb  respectively to deduce that I,,,X m0 EFp+mO+mb . Then 

X-,ajbmX,ao EF, +mb 

(Theorem 2.6 (i) of (9)). Finally, since Re (p+mb)+m> lip, we can again 
apply Theorem 3.6 of (9) with It and 0 replaced by 4u+mb and x_ma1xm0 çb 

respectively to obtain I XmaI,,,Xm/E p  Fp+mc . Further, the theorems quoted 
above also show that H1 (a, b; c; m), being the composition of four continuous 
linear mappings, is itself a continuous linear mapping of into Fp#+mc. 
The second part of the theorem is proved similarly; the extra conditions are 
needed to ensure the invertibility of It ,,. and JC;b  (see Theorem 3.6 of (9) again). 
We note that it is also possible to prove the theorem by using (3.5) above instead 
of Theorem 3.5 of (9). 

One interesting consequence is 

Corollary 3.6. If 

uI1 EFp,p+mc and —Re p—in+ 1/p<min (m Rea, in Re b, in Re c, in Re (a+ b)), 
then for x>0, 

[H1 (a, b; c; ;n)] 1 0(x) = xm0H1 (—a, b—c; —c; in)xm00(x). 	(3.7) 
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Proof. This follows immediately from (3.6) and Definition 3.4; in the latter 
a, b, c, p and q5(x) have to be replaced by - a, b - c, - C, p + ma + mc and 
xq5(x) respectively. 

Next we remark that if 0 e F,,1  and —Re p—m+l/p<min (m Re a, m Re b), 
then 

H1(a, b; c; m)o = H1(b, a; c; m)0. 	 (3.8) 
Indeed, this follows for Re c>0 from (2.4) and (3.1) and then in general by 

analytic continuation. It is hardly surprising that the restrictions on the para-
meters are symmetric in a and b. However, the right-hand side in Definition 3.4 
is not symmetric in a and b. We exploit this lack of symmetry to establish the 
second index law for the operators I,, on the spaces There are various 
ways of stating this of which we choose the following (see (3.13) of (9)). 

Theorem 3.7. Ifc+J3+y = 0 and if q5 e F,,, where 

—Re p —m+I/p <min (0, m Rey) 
then, for x>0, 

xm2I,,,xmv(x) = I;2x _mPI_(X) 	 (3.9) 

Proof. Under the given conditions we apply (3.8) with a, b, c, p and O(x) 
replaced by —cx, /3, /3, p—mfl and X mP4(x) respectively. To do this we need 

—Re (p—m/3)—m+ 1/p<min (—m Re Lx, m Re /3) 
or 

—Re p—nt+1/p<min(—m Re ((x+$),  0) = mm (rnRe y, 0) 

and this is the case by hypothesis. Hence (3.8) gives 

Hl(—a, /3; /3; m)(x _mP çb) = H1 (/3, —ci; /3; m)(x_mct). 

Using Definition 3.4 then gives 
JO MOCIP -MM 	 = JP+ 	mP x J- :xmPxmP. 	(3.10) 

Theorem 3.6 shows that under the given circumstances, 0 a F, implies that 
Xm8I X mmPEF ,,.  and, in addition, I° ,, is the identity operator on 
Hence, putting y = - a-fl in (3.10) gives (3.9) as required. 

4 
We now introduce three more integral operators related to H1 (a, b; c; m). 

For any complex numbers a and b, Re c>0 (m >0 as usual) and suitable 
functions 4, we define H2(a, b; c; m)ç& by 

H2(a, b; c; m)çb(x) = fo (xm_tm)c_IF*(a, b; c; 1 _tm/xm)mtm_lcb(t)dt, ( 4.1) 

where x>0. Proceeding as in (5, p. 195), we deduce that, for x>0, 

H2(a, b; c; m)çb(x) = xm 0H 1 (a, c—b; c; m)xm 0çb(x) 	1 (4.2) 
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whenever either side exists. In particular, if we apply Theorem 3.5 with b, It 
and O(x) replaced by c—b, 'u—ma and xm"çb(x) respectively we find that 

0 eF,,=H2(a, b; c; m)ct.e  FP' p+mc 
provided that —Re (p— ma) —m+1/p<min (m Re a, m Re (c—b)) and Re c>O. 
However, the right-hand side of (4.2) is meaningful even without the restriction 
Re c>O. We can therefore use (4.2) to extend the definition of H2(a, b; c; m) 
on Fp ,L . 

Definition 4.1. For 0 e F,, , with -Re It - m +  i/p < mm (0, m Re (c— a - b)), 
we define H2 (a, b; c; m)q5 by 

H2(a, b; c; m)çb(x) = xm 0H1(a, c—b; c; m)x_rnacb(x) (x>.0). 

In view of the preceding remarks, the definition is meaningful and agrees with 
(4.1) when, in addition, Re c>0. 

Using Theorem 3.5, we can easily prove 

Theorem 4.2. If —Re z—m+l/p.<min (0, m Re (c—a—b)), then 

H2(a, b; c; m) 

is a continuous linear mapping of F,,  into F,, p+mc and, for 0 e F,,,, 
H2(a, b; c; m)çb(x) = Xm0Ix_mI4(x) (x>0). 	(4.3) 

If, in addition, 
—Re —m+1/p<min (m Re (c—a), m Re (c— b)), 

then H2(a, b; c; m) is an isomorphism of F,,,,4  onto Fp,4+m  and, for any 
1I E Fp ,,z+mc , the equation 

H2(a, b; c; m)çfi = 1i 	 (4.4) 
has a unique solution 0 e F,,, given by 

OW= J,,, cX maIX , bX_ ma ,(X) (x>0). 	 (4.5) 
This leads to 

Corollary 4.3. Let 

—Re ,u—m+ l/p<min (0, m Re (c—a—b), m Re (c—a), mRe (c—b)), q5 e F,,, 
and /' 6 Fp , 14+mc . Then 

H2(a, b; c; m)çb = ip'q5 = H1 (—a, —b; —c; tn)i/i. 
Proof. Since by hypothesis, 

—Re (p+mc)—m+1/p 

<min (m Re (— c), mRe(—a—b), mRe(—a), mRe(—b)), 
we can apply Definition 3.4 with a, b, c, p and O(x) replaced by - a, - b, - c, 
y+ mc and O(x) respectively to obtain 

H1 (—a, —b; —c; 	 (x>.0). 
The result follows at once from Theorem 4.2 and in particular (4.5). 
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Our other two operators are the adjoints of H, (a, b; c; m) and H2(a, b; c; m) 
and reduce in the case m = 1 to those studied by Love in (6). For complex 
numbers a and b, Re c>0 and suitable functions 0 , we define H3(a, b; c; m)4 
and H4(a, b; c; m)çb on (0, cc) by 

H3(a, b; c; m)(x) = mxm fm (tm — xm)c—  'F*(a, b; c; l—xm/tm)çb(t)dt (4.6) 

00  

H4(a, b; C; m)çb(x) = in m 	(lmxm)c_1F*(a, b; c; l—tm/xm)çb(t)dt. ( 4.7) 

As we might expect, it is possible to express these operators in terms of operators 
of the form K or K. Indeed, proceeding as in Lemma 3.2, we find that for 
x>0, 

KJK4(x) = m_m+ 1 H3(+$— , c;  c+$; ;fl)X_m_mi_mm_lçb(X) (4.8) 

provided Rec>0, Refl>0, çbeF and Rey-1/p<min(rnRec, mRe). 
It follows, as before, that 

H3 (a, b; c; m)0(x) 
= _ mmmm+m_  IKO±b_c+I,,  c_bKbXm?i+ma+mb_m+ 1(x), 

or 
H3(a, b; c; m)0(x) = xm_lK;bx_m0K,,,xm0_m+(x) 	(4.9) 

provided 

Re c>Re b>0, 	and Rep—m+1/q<min(—m Re c, —in Re(a+b)). 
As before, wecan use (4.9) to extend the definition of H3(a, b; c; in) on F,1  
removing the restriction Re c> Re b >0. 

Definition 4.4. For 4 e F',, , and 

Rep—m+1/q<min(—mRec, -in Re (a+b)), 

define H3 (a, b; c; m)0 by 

H3(a, b; c; in)4(x) = xm_lK;bx_maK,,,xm_m+(x) (x>0). 

By analytic continuation, this definition coincides with (4.6) when in addition 
Re c> 0. Using the mapping properties of K or K. derived in Theorems 3.7 
and 3.8 of (9), we immediately obtain 

Theorem 4.5. If 

Re y — m + 1/q<min (—in Re c, —m Re (a+b)), H3(a, b; c; in) 

is a continuous linear mapping of F,,, into Fp , p+mc. If, in addition, 

Re jz—ni+1/q<min (- in Re a, —m Re b), H3(a, b; c; m) 

is an isomorphism ofF,,,, onto F, + mc' and, for any ci' e F,, it +mc'  the equation 

H3(a, b; c; m)çb = i 	 (4.10) 
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has a unique solution 4) e F,,,,1  given by 

4)(x) = x_ma+m_lK;.xm0K;cx_m+l(x) (x>0). 	(4.11) 

As regards H4(a, b; c; m), we may use (4.6) and (4.7) and proceed as in ((6), 
pp. 1073-4) to show that for Re c>0, 

H4(a, b; c; m)çb(x) = x rnaH 3 (a,  c—b; c; m)xm 0 çb(x) 	(4.12) 

whenever either side exists. In particular, from Theorem 4.5, (4.12) is valid if 
4) e F,,,,,, Rey — m + I Iq < min (m Re(a—c), m Re (b—c)) and Re c>0. The 
right-hand side is meaningful even without the restriction Re c >0 and we can 
use (4.12) to extend the definition of H4(a, b; c; m) on F,,,,. 

Definition 4.6. For 4) e F,,,,, and 

Re z—m+1/q<min (m Re (a— c), m Re(b—c)), 

define H4(a, b; c; m)çb on (0, cc) by 

H4(a, b; c; m)cb(x) = xm"H 3(a, c—b; c; m )x _rna cb(x). 

The definition agrees with (4.7) when also Re c>0. 
Using Definition 4.4 and Theorem 4.5 we obtain 

Theorem 4.7. If 

Re u—m+1/q<min (m Re (a—c),mRe (b—c)), H 4(a, b; c; m) 

is a continuous linear mapping of F,,,,, into Fp ,,, +mc  and, for 4) e F,,,,,, 

H4(a, b; c; m)çb(x) = xmm_tK,,,x_maK;bx_m+l4)(x) (x>'O). 	(4.13) 

If, in addition, Reu—m+lfq< min (0,mRe(a+b—c)), H 4(a, b; c; m) is an 
isomorphism of F,,,,, onto Fp,,,+mc  and, for any cli a F,, ,,+mc,  the equation 

H4(a, b; c; m)4) = 1f 	 (4.14) 

has a unique solution 4) a F,,,,, given by 

4)(x) = x lK;cxm0K;,x_m0_m+ 'c(i(x) (x >0). 	(4.15) 

Comparing (4.15) with Definition 4.4 produces the following analogue of 
Corollary 4.3. 

Corollary 4.8. Let 

Re 1t—m+lfq<min (0, m Re (a+b—c), m Re (a—c), m Re (b—c)), 4) a F,,,,, 
and a Fp ,,,+mc . Then 

H4(a,b; c; m)4)=cli'4)=H3(— a, —b; —c; m)çfr. 

To conclude this section, we state the second index law for the operators K,,, 
analogous to Theorem 3.7. 

Theorem 4.9, Ifct+fl+'y = 0 and if q5 a F,,,,, where 

Re a_ 1/p<min (0, m Re y), 
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then, for x>0, 
xmvK,,xrn ,b(x) = K;,.?x _mPK;,Zb(x). 	 (4.16) 

This can be proved by observing that under appropriate conditions 

H4(a, b; c; ;n)4i = 114(b, a; c; m)çb 	 (4.17) 

and proceeding as in Theorem 3.7 making use of Theorem 3.8 of (9). 

5 
We are now going to discuss the operators H(a, b; c; m) (i = 1, 2, 3, 4) 

relative to the spaces F;. 
We consider first H1 (a, b; c; in) and to motivate our definition we deal with 

regular functionals. We require the following 

Definition 5.1. For each complex number p and 1 p co, we define LP 
It 

by 
= {f: xf(x)eL"(0, co)}. 

We can turn LP into a Banach space by introducing the norm ii J 	defined 
by 

Ill Ii,, = ii x_Lf(x)  ii,, (feL) 

where Ii Ii,, denotes the usual norm on L"(O, co). 
If fe LP and Re c>0 we can define H, (a, b; c; m)f using (1. 5), with 4 

replaced by f, under appropriate conditions on a, b and p. Indeed we can 
prove 

Lemma 5.2. If 

Re c>0 and —Re p—m+ l/p<min (m Re a, m Re b), H1 (a, b; c; m) 

(as given by (1.5)) is a continuous linear mapping of LP into L +mc . 

Proof. Using (1.5) and putting t = xv we have (see (3.2)) for x>0, 

11 1(a, b; c; m)f(x) = xmcj'  (1_vm)c_lF*(a, b; c; 1_1/v m) mv m_hf( xv)dv.  
o 

For simplicity write d = mm (m Re a, m Re b) and choose 6 >0 such that 
—Re p—m+1/p<d—ö. Applying Lemma 2.1, there exists a constant M such 
that 

I 	b; c; ,n)f(x) I 

< M.J 
(l_vm)Re_lvd_Re11mvm_hI (xv) 'f (xv) Idv 

o 
= MF(C)Ihtm(d_ö+lP). Rec(1 x_Uf(x) I) 

(see (3.3) of (9)) = g(x) say. Then 

I x __mcH( a, b; c; nz)f(x) I 	g(x). 	 (5.1) 
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Now since (d— 6 + Re je) + in> l/p, we can apply an extension of a result of 
Kober (4, Theorem 2 (i)) to deduce that, since I xf(x) I e L"(O, co), g e L"(O, co) 
and there is a constant K independent off such that 

II g(x) lI :!:-~: K II xUf(x) II,,. 	 (5.2) 

Kober's result deals with the case m = 1, z = 0. The general case follows 
easily by a simple change of variable; compare Lemma 3.1 of (9). Now (5.1), 
(5.2) give 

II x_m"H 1 (a, b; c; m)f(x) 1 1p :!9 K 11 x'f(x) J 

II H 1 (a, b; c; m)f(x) IIp,U+mc K 111(x) 
and the result follows. 

Now let fe L!. Then! generates a regular functional, rf say, in the space 
F;,,, according to the formula 

(tf, çb) = jf(x)5(x)dx ( eF,,) 	 (5.3) 

the integral on the right being absolutely convergent by Holder's inequality. 
IfRec>O and Re .u—m+1/q<min (mRea, mReb), Lemma 5.2 shows that 
H1 (a, b; c; in)f exists and belongs to Lt +mc. Hence H1 (a, b; c; m)f 
generates a regular functional tH1(a, b; c; m)fe F, according to the 
formula 

(rH1 (a, b; c; tn)f, q) = f° Hi(a b; c; m)f(x)çb(x)dx (Q5 EFp,_mc). 	(5.4) 

It seems reasonable that we should define H1  (a, b; c; m) on the space F, ,, in 
such a way that if the above conditions are satisfied, 

Hj(a, b; c; m)rf= rH1 (a, b; c; m)f. 	 (5.5) 

Note. No confusion should arise from using the same symbol H1 (a, b; c; m) 
for the operator on FP', 

A 
 as well as the operator on F,,,,,. 

(5.5) implies that if Re c>0, Re —m+ l/q<min (m Re a, m Re b), 
H1 (a, b; c; m) maps regular functionals in F,,, into regular functionals in 
F;,,,,_mc . Further if 0 e Fp,,,_ mc , we have 

(H 1 (a, b; c; nl)rf, 4)) = (rH(a, b; c; m)f, 4)) 	 by (5.5) 

= 00  0  H
1(a, b; c; m)f(x)4)(x)dx 	 by (5.4) 

= 

 

f'*(f (xm - trn)c 
- 1F°(a, b; c; 1— xm/tm)m tm - 1f(t)dt) 4)(x)dx by (1.5) 
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= J f(t)(nit_' J (xm_tm)c_ 1F*(a, b; c; 1_xmltm)cb(x)dx)  dt o 
= f f(t)H 4(a, b; c; m)çb(t)dt 

or, using (5.3), 

by (4.7) 

	

(H 1(a, b; c; m)tf, 4) = (rf, H4(a, b; c; m)çb). 	(5.6) 

The inversion of the order of integration above is justified since the 
integrals involved are absolutely convergent by Lemma 5.2, Theorem 4.7 and 
Holder's inequality. The derivation of (5.6) required Re c>0 in order that we 
could use (1.5) to obtain H1 (a, b; c; m)f. If Re c 0, the integral in (1.5) 
will not exist for an arbitrary element feL, nor can we use a formula such as 
Definition 3.4 unless f has some additional differentiability. Nevertheless, by 
The 4.7, the right-hand side of (5.6) is still meaningful provided only 
q5 e Fp . p _ mc  and Re 4u—m+ l/q<min (m Re a, in Re b). We can even go 
further and replace tf by any functional in F;,, regular or not. Hence we are 
led to the following definition. 

Definition 5.3. For feF,,, and Re jt—m+ l/q<min (m Rea, m Re b), we 
define H1 (a, b; c; m)f as the member of F;,SIL_mc  such that 

(H 1 (a, b; c; m)f, çb) = (f, H4(a, b; c; m)ç&) (cbeFp,,j_mc). 

Remark 5.4. No confusion should arise from the use of "f" to denote an 
arbitrary generalised function as well as a classical function generating the 
regular functional rf. Indeed it is often convenient to identify a classical function 
with the functional it generates, although we shall not do so in this paper. 

Since Theorem 4.7 details the mapping properties of H4(a, b; c; m) on the 
spaces we can use standard theorems on adjoints (e.g. Theorems 1.10-1 
and 1.10-2 in (10)) to obtain properties of H1 (a, b; c; m) on the spaces FP' , ,. 

Theorem 5.5. If Re i—m+1fq< min (m Re a, m Re b), H, (a, b; c; m) is a 
continuous linear mapping of F,into 	and,forfeF,,L , 

H 1(a, b; c; m)f=I,bxmI,,,xm0f. 	 (5.7) 

If, in addition, Re p—m+ 1/q<min (m Re c, m Re (a+b)), H(a, b; c; m) is an 
isomorphism of F;, , onto F,, , - mc and, for any g e F;, p -mc' the equation 

H 1(a,b; c; m)f=g 	 (5.8) 

has a unique solution feF,,, given by 

f= x_m0I;,xmaI;cg. 	 (5.9) 

Proof. By Theorem 4.7, H4(a, b; c; m) is a continuous linear mapping of 

Fp , p _ mc  into under the given conditions; the first statement follows from 
Theorem 1.10-1 of (10). To establish (5.7), let feF,,1 , 4'EFp,p_mc. 
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Then 
(H 1 (a, b; c; m)f, 4) = (f, H(a, b; c; in)çb) 	by Definition 5.3 

= (f, Xma+m_lKX —ma  Iç;bX_m+l,b) 	 by (4.13) 
= (x"17, Xm_lKX_m+lX_maXm_lKbX_m+ll5) by (2.13) of (9) xcM

= (I,,,xmaf,  x_maxm_lK;bx_m+l) 	 by (3.29) of (9) 
= (x_ma1,,xm 1f,  xm_lK;i)x_m+lcb) 	 by (2.13) of (9) 

= (JC;bxmajb.,xmaf 4) 	 by (3.29) of (9) 
from which (5.7) follows. The two applications of (3.29) of (9) above are valid 
under the given conditions. The remainder of Theorem 5.5 can be proved 
similarly. 

If we compare Theorems 3.5 and 5.5, we see that the restrictions on the 
parameters in one are obtained from those in the other by interchanging p and q, 
p and - p. This continues the trend we first mentioned after Theorem 3.9 of 
(9). 

We can handle the other operators similarly. We mention the salient facts 
and omit proofs. 

Consideration of regular functionals leads as before to 
Definition 5.6. For feF,,, we define H(a, b; c; m)f(i = 2, 3, 4) to be the 

elements of F,, mc  such that, for all 0 C Fp,p_mc , 

(H2(a, b; c; m)f, 4)) = (f, H3 (a, b; c; in)çb) 	 (5.10) 

(H3(a, b; c; m)f, 4)) = (f, H2(a, b; c; m)çb) 	(5.11) 

(H4(a, b; c; m)f, 4)) = (f, H(a, b; c; m)4)) 	(5.12) 
(whenever the right-hand sides are meaningful). 

Theorem 5.7. If Re y —m+1/q<min(0, m Re (c—a--b)), H2(a, b; c; m) is 
a continuous linear mapping of 	into F;,,L_mc  and, for feF,,2 , 

H2(a, b; c; 7n)f=xmaI,,,x_maIf. 	 (5.13) 
If, in addition, Re p—m+1/q<min (m Re (c—a), m Re (c—b)), H2(a, b; c; m) 
is an isomorphism of F, onto FP' ,,_ mc  and, 	each g EF,,,_mc , the equation 

112(a, b; c; m)f= g 	 (5.14) 
has a unique solution fa F, given by 

f=Hj (—a, —b; —c;  

Theorem 5.8. If 

—Reu—m+1/p< min (—m Re c, —m Re (a+b)), H3  (a, b; c; m) 
is a continuous linear mapping of F, into F,, p _ mc  and, for feF,,, 

H3(a, b; c; m)f= xm_iK;bx_maK,,,xma_m+lf. 	(5.16) 
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If, in addition, — Re y — m + i/p <nun (— m Re a, - m Re b), H3(a, b; c; m) is 

an isomorphism ofF;,,, onto F;.,,_mc  and, for each geF,,,j _ m , the equation 

H3(a, b; c; m)f= g 	 (5.17) 

has a unique solution fe F;,,, given by 

f= 	°+" lK;, xmaK cx_m+ 'g. 	 (5.18) 

Theorem 5.9. If 
—Re p—m+1/p<min (m Re (a—c), m Re (b—c)), H4(a, b; c; m) 

is a continuous linear mapping of F;,, into F;,,,_ mc  and, for feF,,,, 

H4(a, b; c; m)f= xmm_iK x _maKx_mf. 	(5.19) 

If, in addition, —Re jz—m+ 1/p<min (0, m Re (a+b—c)), H4(a, b; c; m) is an 

isomorphism of F;,, onto F;,,,_mc  and, for each ge FP' ,,,_ mc , the equation 

H4(a, b; c; m)f=g 	 (5.20) 

has a unique solution feF,,, given by 

f=H3(—a, —b; —c; 	 (5.21) 

Finally, we state the second index laws for I,, and 	on F,,,. 

Theorem 5.10. Let feF,,,, and c+$+y = 0. 

If Re p—m+ 11q <mm (0, m Re 'y), then 

xmhI,,,xmVf = I;, x_mPIf. 	 (5.22) 

If —Re p-1/q <mm (0, m Re y),  then 
xmYK mx mf = K;, x _mPK,%f. 	 (5.23) 

The basis of Theorem 5.10 is the symmetry of the H.(a, b; c; m)f between a and b 
which is inherited from the symmetry of H1(a, b; c; m)cb as exemplified by (3.8) 
and (4.17). 

6 
In this section we compare and contrast our results with those of Love in (5) 

and (6). Since Love's results are stated for m = 1, we shall also take m = 1 
in the remainder of the paper. Corresponding results for general m are easily 
obtained by simple changes of variables. 

As usual we shall focus attention on H1 (a, b; c; 1). We shall have occasion 
to consider H1 (a, b; c; l)f wheref is either a classical function or a generalised 
function. If f is a classical function (for example in L) we must assume that 
Re c>0 and define H1(a, b; c; 1)f by (1.5) with 4) replaced byf and m = 1; 

that is 

H1(a, b; c; 1)f (x) = f ox  
(x _t)c_ 1F*(a, b; c; 1—x/t)f(t)dt (x>0) 	(6.1) 

with appropriate conditions on a and b to guarantee the existence of the integral. 
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If  is a generalised function, we define H1 (a, b; c; 1)f by Definition 5.3 and 
use (5.7), with m = 1. 

Working with certain classes of locally integrable classical functions (defined 
below), Love has to impose considerable restrictions on the parameters and 
proofs are different for different ranges of the parameters. On the other hand, 
in our results for generalised functions, the restrictions are less numerous and 
there is no need to split up proofs into different cases. This is hardly surprising 
when we consider the powerful tools, such as analytic continuation, which are 
available for generalised functions but not for locally integrable functions. 

In (5), Love gives six solution formulae, valid under appropriate sets of 
conditions (the sets not being disjoint) for the equation 

H1(a,b; c; 1)f=g, 	 (6.2) 

where f, g are classical functions satisfying an appropriate local integrability 
condition. Three of these formulae are 

f  = x_aI;bxaI_cg(x) 	 (6.3) 

f(x) = x_bI_cxc_0I;bx_cg(x) 	 (6.4) 

AX) =x_a{xH2(__a, n—b; n—c; 1)g(x)} 	(6.5)  
dn  

df 

(where n is a positive integer, n—Re c>0 and H2(—a, n—b; n—c; 1)g(x) is 
defined using the analogue of (4.1) with m = 1). The other three are obtained 
by interchanging a and b and using the fact that 

(compare (3.8)). 	
H1(b, a; c; 1)f=H1 (a, b; c; 1)f 

As a contrast, we consider (6.2) where f, g are generalised functions and 
suppose that the conditions of Theorem 5.5 are satisfied with m = 1, i.e. 

Rey— 11p <rnin (Re a, Re b, Re c, Re (a+b)), gEF,,,_C . 

Theorem 5.5 ensures that the right-hand side of (6.3) is the unique solution in 
F,,1 . However, (6.4) and (6.5) are also valid under the same conditions and are 
merely alternative ways of writing (6.3). Indeed, if we apply Theorem 5.10 (i) 
with cc, /3, y, It and  replaced by c—a, —b, a+b—c, y —c and g (which is per-
missible under the given conditions) 

x 
= 	

x 

= xI;axbI_cg 	 using (3.31) of(); 

we have (6.3) with a and b interchanged. As regards (6.5), suppose ii is a non- 
negative integer; then we may apply Theorem 5.7 with a, b, c, It andf replaced 
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by —a, n—b, n—c, jz—c and g to deduce that 

d" 
- {x°H 2(—a, n—b; n—c; 1)g 
dx" 

d" = 	- x 0x _aI_bxaI_cg 
dx" 

= x _aI; fI_l x 0I_cg 	 (compare (3.10) of (9)) 

= x _ 0I;? xa1_(g 	 using (3.31) of (9) 

and we have (6.3) again. 
We now indicate how our results involving generalised functions can be 

used to obtain results concerning classical solutions of (6.2); thus given g(x) 
d efined for x e (0, cc) we try to find f(x) such that 

(x t)c 1F(a, b; c; 1—x/t)f(t)dt = g(x), 	 (6.6) 
ox  

where equality is to hold almost everywhere on (0, co). (Here Re c>0 as 
indicated earlier.) We shall identify functions differing only on a set of measure 
zero on (0, cx)). In (5), Love discusses (6.6) relative to spaces Qr. (We use r 
rather than q to avoid confusion with i/p +1 /q = 1.) By definition, for each 
real r, 

Qr = f: xTf (x)eL'(O, X) for each Xe(0, co)}. 	(6.7) 

We shall discuss (6.6) relative to the spaces L (see Definition 5.1). GivenfeL, 
we again denote by tf the element of F defined by (5.3). We can regard 

f—*rf as an imbedding of LP into F .. We shall use r to denote any such 
imbedding and will not show the dependence on p, j explicitly; this should not 
cause confusion. 

It is natural to try to compare the spaces Q, and L. Since local integrability 
does not imply integrability over (0, cc), there is no hope of any inclusion of the 
form Q,. L. However, in the other direction we have 

Lemma 6.1. Lc:Q, provided —Re jt— 11q <r. 

f
x 

Proof. Let fe L so that 	x -  f(x) I "dx <cc for any Xe(0,cc). Then, 
o 

by Holder's inequality, if 1 <p <cc, 

X r 
I 	f(x)Idx= f xr+RIx_1f(x)Idx 
Jo 	 o 

I fo
x 	 1/q (rx 	 1/p 

I x'f(x) I"dx 	<cc 
 J 	(Jo 	 I 

since (r+Re p)q> —1 by hypothesis. The proof is similar if p = 1 or cc. The 
result follows. 

E.M.5.-1913-T 
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We know from Lemma 5.2 that if (6.6) is to have a solutionf in L, g must 
belong to . We could regard this as a very rough analogue of Theorem 7, 
p. 185 of (5); however, our condition on g is an integrability condition whereas 
Love's condition, namely Ig Q is more a differentiability condition. We 
can prove theorems corresponding to other results in (5). For example, compare 
(5, Corollary 1, p.  179) and 

Theorem 6.2. If g cL +  where 

—Re - 1/q.<min (Re a, Re b, Re c, Re(a+b)) and Re c>0, 

(6.6) has at most one solution fe L. 

Proof. It is instructive to give two proofs. 

Choose r such that —Re j2— lfq<r<min (Re a, Re b, Re c, Re (a+b)). 
Then also - Re (u + c) - 1 /q < r <mm (Re a, Re b, Re c, Re (a + b)) since 
Rec>O. Thus 	 by Lemma 6.1. By Corollary 1 on p.  179 of (5), 
(6.6) has at most one solution f  Qr  However, under the given conditions, 
LP a Qr  by Lemma 6.1 again; the result follows. 

g generates a regular functional rg eF 	via (5.3). Thus applying r 
to (6.6) gives 

r11 1 (a, b; c; 1)f= rg 	 (6.8) 

in F, _. Also any solution fin LP of (6.6) generates rfeF 	and under 
the given conditions, (5.5) is valid and gives 

tH1 (a, b; c; 1)f=H1 (a, b; c; 1)rf. 	. 	(6.9) 

On the left-hand side H1 (a, b; c; 1) is defined via (6.6), while on the right-hand 
side we use Definition 5.3. From (6.8) and (6.9) we seekfeL: satisfying 

H 1 (a, b; c; 1)r = 'rg. 	 . (6.10) 

Now, under the given conditions, we may apply Theorem 5.5 with p, ju replaced 
by q and —p to deduce that the equation 

H 1(a, b; c; 1)h = Tg  

has a unique solution heF 	given by 

h = x_0I;bxaI_crg. 	 (6.12) 

Thus (6.6) will have either no solution in LP or exactly one solution in L (since 
we are identifying functions which differ only on a set of measure zero), depen-
ding on whether there existsfe LP such that h = rf, that is, depending on whether 
h, as given by (6.12), is a regular functional. 

We might call h,asgiven by. (6.12), a generalised solution of (6.6). The 
second proof of Theorem 6.2 has therefore established 
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Corollary 6.3. If g eL +  with 

'—Re ji- lJq<min (Re a, Re b, Re. c, Re a+b)) and Re c>0, 

(6.6) has a unique generalised solution in F _'give.n by 	- 	-. 

h = x _0I;bxdI_ctg.  

If,we are interested in classical rather than generalised solutions we must put 
further restrictions on our parameters and on g. We then obtain results analo-
gous to Theorems 8 12 in (5).'Selecting just one at random, we shall prove an 
analogue of Theorem.IL Our proof requires the following lemma. 

Lemma 6.4. Let f  L.  
For any complex numbers u and q, 	- - 	- 

tx'7f=x"tf. . 	- 	,• 	 (6.13) 

If Re Ct>0-andRe-Jt>-1/q, 

tIf=Itf. 	. 	 (6.14) 

Proof. We. prove (ii); (i) can be proved similarly, using (2.13) of (9). 
Since Re ct >0 and Re p> - 11q, If is defined by ,  - 

- 	 ' 	

- 

 fox, 	
t X \2- i 

If(x) = 	 f(t)dt (x>O). ., 	. 	(6.15,) 
- TOO, - 

Under the given conditions we may apply Theorem 2.1 (i) of (4) (with f(x), 
replaced by 'f(xañd ji) to deduce that IfEL +  so that 'rIfeF .. On 
the other hand, feL=--rfeF, 	and -we' may apply Theorem 3.11 (with p, p 
replaced by ,q, 77 it) to. deduce that Irfe F also. (Here I is interpretedq.
in  the sense of (.29) of '(9)). Thus both sides *of (6.14) exist and, belong to 
F To prove equality let EFq  Then' 

(irf,q)= (tf, Ku). 	., , 	. 	by (3.29) of.(9) 

= J f(x)K ()d 	

- 	

by (53) 

f - f('x)ff 

:_1 

4(t)dt)dx 

- 	=-1 codt I 	. 	f(x)dx , 

- 	
' 	"' 	. 	 - 	by (6.15) - 

(Itf, 	(tIf, ) 	 by (5.3). 
The inversion of the order of integration in the fourth line above is'justified since 
the: rep6ated integrals involved are both 'absolutely convergent by Holder's in-
equality'. - This completes the proof;  
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We can now prove 

Theorem 6.5. If Reb<O, Rec>O, —Re (p+b)-1/q<min (0, Re a) and 
J_Cg eL +b  (that is, there exists GeL+b  such that g = 1bG),  then (6.6) has a 
unique solution f  LP given by 

f(x) = x _01;IxaG(x ) .  

Proof. Under the given conditions, we certainly have Re c>0 and also 
—Re it —1/q<min (Re a, Re b, Re c, Re(a+b)). Further, since Re(c—b)>0 
we may apply Theorem 2.1(i) of (4) (withf(x), C and oe replaced by x_bG(x), 

ji+b and c—b) to prove that eL + . Hence, by Corollary 6.3, (6.6) 
has a unique generalised solution h e F,', - , given by 

h = x _0I;l xa1_ rg  

= x —0 1 —  bxalb_ cjc—  bG 

= _aI_bXajb_cJc_bG 

= x _0I;lx 0tG 

=_i; btxaG 

= xT I;hx0G .  

Thus, by (6.13) we have 
h = tx_01;- bXaG 

by (6.14) 

using Theorem 3.11(i) of (9) 

by (6.13) 

by (6.14) 

(6.16) 

The first application of (6.14) above is valid since Re (c—b)> 0 and 

Re (jz+b)> —1/q 

and the second is valid since Re (- b)>0 and Re (p + b + a)> —1 /q. From 
(6.16) we have h = rf where 

f= x°i;x°G. 

By examining the Proof of Theorem 6.2, we see that fe LP is a solution of 
(6.6) and since z is a 1-1 mapping of LP into F , uniqueness of h gives unique-
ness off. The result follows. 

Here we mention that in (6), Love discusses the operators H3(a, b; c; 1) and 
H4(a, b; c; 1) relative to the spaces Rr ; for each real r 

R, = {f: x'f(x)eL 1 (X, cc) for each X>0}. 

(Compare with (6.7).) Analogously to Lemma 6.1 we find that L R,. provided 
that Re z+ 1/q< — r. We can then proceed as above to prove theorems on 
classical solutions analogous to those in (6). Details are similar to those above 
and are omitted. 

Lemma 5.2 showed that the integrability condition gEL 	was necessary 
for (6.6) to have a solutionfE L. On the other hand, the condition I Cg eLP b 
in Theorem 6.5 states that g has a fractional derivative of order c—b (belonging 
to L+b). This is characteristic in the sense that any sufficient condition for a 
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classical solution (in L) of (6.6) (or the corresponding equations for the other 
operators) seems to require of g a certain degree of differentiability. For further 
discussions in this direction we refer the reader to Higgins (3). 

In conclusion, we remark that results for special cases such as Jacobi poly-
nomials and Legendre functions can be obtained by the appropriate choices of 
a, b, c and m. 
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SYNOPSIS 

This note is concerned with the spaces F;.,,, of generalised functions introduced in a previous paper. 
A necessary and sufficient condition for an inclusion of the form 

F,3 . 13  

to hold is established. The case  = oo leads to consideration of a class G, whose simple properties 
are. noted. Some consequences of relevance to fractional integrals and Hankel transforms are 
indicated. 

I. INTRODUCTION 

The purpose of this short note is to consider a question connected with the spaces 
F,,, of testing-functions and the corresponding spaces F,, of generalised functions 
which were introduced in [3]. The answer to this question is relevant to a discussion 
of the Hankel transform of elements of F,,,,, a topic which we intend to explore in a 
future paper. 

For convenience we recall briefly the necessary definitions. We consider complex-
valued infinitely differentiable functions on (0, co). For 1 :!r. p ;5 u, let 

F, = e C(O, ): xkdkcô/dxk E L'(O, ) for k =0, 1, Z  
We equip F. with the topology generated by the semi-norms yf (k =0, 1, 2, ...) defined 
by 

yf()= fi x*dkd/dxk  II,. 	 (1.2) 
Then for any complex number p, 

F,,,, = {: x(x) è F,) 	 (1.3) 
with the topology generated by the semi-norms yf" (k = 0, 1, 2, ...) given by 

YVM = 	 (1.4) 
F,,, is the space of continuous linear functionals on F,,, equipped with the topology 
of pointwise (weak) convergence. 

The question we shall consider is as follows: 'Are there any inclusions of the form 

F,, 1  g F,2 ,,, 2  or F;1 ,,, 1 	F 2 ,,, 3  
apart from the trivial ones when Pi = P2 and Re Pi = Re P2?' 

The answer is affirmative. In section 2 we prove that, if 1 < Pi . P2 6 oo and 
* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of 

Scotland. 
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hi' JU2 are complex numbers, then 

F3•2 	 (1.5) 
if and only if Re (p — i') = i/Pi - 1 1P2. Furthermore, the inclusion is strict when 
Pi <P2. We can deduce easily that 

F; 	E £ p2,112 

in the case I P1P2 < co. For the case  = co, we are led to consider subspaces 
of F,11  and the corresponding dual spaces G'(11 . These spaces are studied in 

section 3 and we show in particular that 

Fr i ,, 111 	G, 112  

provided 1 Pi  <co and Re (1 — hi2) = l/p. 
In section 4, we contrast these results with the situation for the spaces LP where, 

for 1 <p < co and any complex number p, 

LP = {f: xf(x) e L(O, co)). 	 (1.6) 
The analogue of (1.5), namely L 	L is false. We also explore some of the conse- 
quences of (1.5) for various results on fractional integrals established by Kober [1] 
as well as theorems on the Fourier or Hankel transforms derived from those in [6]. 

2 
Let 1 S Pi P2 	co and let hi' P2 be complex numbers. In this section we first 

show that a necessary and sufficient condition for 

Ff11111  9 F32 	 (2.1) 
to hold is that Re (ji — P2) = 1/p 1  — 1 1P2. To do this, we proceed by means of a 
number of simple steps and, where convenient, we use p, r instead ofp1, P2 for typo-
graphical convenience. 

First we recall the definition of the spaces 19L, as defined in [5, P. 199]. For 
I 	p  :9 co, 

	

= {: Dkçô E L"(— co, co), k = 0, 1, 2, ...) 	 (2.2) 
and the topology on 	is that generated by the semi-norms 

vç(q) = jJ DO 	(k = 0, 1, 2, ...). 	 (2.3) 
We have the following lemma: 

LEMMA 2.1. If 1 <P  <r co, then 	c 	the inclusion being Strict. Further, 
the identity mappin g  from , into 91L'  is continuous. 

Proof. Most of the details required appear in [5, pp. 199-200]. We merely note that 
to establish the strict inclusion, we may consider 

(2.4) 
where —p - '<a< —r and co(x) is an infinitely differentiable function on (—cc>, co) 
such that 

w(x)—{o x<1 - 1 x>2. 
Then (i E L'  but i/i 21,,. 

V/  (X) = co(x)x°, 
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The relevance of this result to our investigations is indicated by the next lemma. 

LEMMA 2.2. Let 1 p 	and let p be a complex number. Then the operator T,,,, 
defined by 

(T ,,ç6)(x) = ePM4,(ex) (4, E F,,,,) 	 (2.5) 
is a homeomorphism ofF,,,,, onto f,,. 

[Note: The operator T,,,,, is the same as the operator C 1 ..,,,,, p  used by Rooney in 
[4] when p<co.] 

Proof. It is obvious that 7',,,,, is 1 - 1. As regards continuity, we first note, as in [4], 
that if 4, e F,,,,, 

I T 	 - p,p'r LP(- W. 	v.r,, 

where y" is defined in (1.4). Also by induction 

	

D"T,, , ,,çb = T,,,,,[(l/p—p)I+c5]1 4, (çt e F,, 9) 	 (2.7) 
(k = 0, 1, 2, ...) where I denotes the identity mapping on F,,,, and cS 	xd/dx. 
Combining (2.6 and 2.7), we can show after a little routine algebra that 

vr(T,, ,,4,) 	C,yf' (4,) 

for certain constants C, independent of 4,. It follows that 7',,,,, is a continuous mapping 
of F,,,,, into 	That 7',,,,, maps F,,,,, onto 9, is easily seen and 

(7)tfr(x) = xi(log x) (fr e fi,). 	 (2.8) 
The continuity of T,,;' can be proved directly but follows immediately from the Open 
Mapping Theorem for Fréchet spaces [7, Theorem 17.1]. This completes the proof of 
Lemma 2.2. 

We now combine the results of Lemmas 2.1 and 2.2. 

COROLLARY 2.3. Let 1 Pi < P2 	. Then, if Re (jt, — P2) = 1 /1)1 -1 /1)2 
F,,,,,, 1  9 F,,2 ,

02 
 

and the identity mapping from F,, 1 ,,, 1  into F,,2 ,,, 3  is continuous. Also if P1 <P2, the inclusion is strict. 

Proof. First we remark that if p is any complex number and 1 <p 5 oo , then 
F,,,,, = F,,, Re,,;  this is  consequence of the fact that for O<x<oo, X' ('-P)  is infinitely 
differentiable and I = I. Thus it is sufficient to prove the result when p 1  and 
P2 are real. The case Pi = P2 15 now a triviality; so we consider only the case 
1 <Pi<Pi < 00 , 91 — P2, I1p 1 -11p2 . By Lemma 2.1, ,,c, 2 . But 

l/p 1 —p 1 	1 IPi — P so that 
TpI,9i = T 2 ,,, 2  

T,,;',,l( LP2) 

= F,,2 ,,, 2  

by Lemma 2.2. The strict inclusion and continuity of the embedding follow from the 
homeomorphic properties of 	= 7',,2,,,2 and Lemma 2.1. 

For future reference we write down a function 4, in F,,2 ,,,2  which does not belong to 
F,,,,,, 1  when p1 <P2  and Re (u1 P2) = l/p - 11P2. 
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Using TP 'RCPI  = 	as given by (2.8) and i1i as in (2.4), we can choose 4) to 
be given by 

4)(x) = x" 'P2w(log  x)(log x)°, 
where 

- l/Pi <a< 
- 

l/P2. (Here again we use the fact that F,,1 ,,, 1  = F,,2, Rep1  etc.) 
Alternatively we could take 

4(x) = x''1'22(x)(1og X), 	 (2.9) 
where - 1/p 1  <a< 

- 1 1P2 and I is an infinitely differentiable function on (0, aD) such 
that 

2(x) = 0 X <C1 	
(2.10) 1 x>C2  

for positive constants C1 , C2  with C,<C2 . 
In the other direction we have the following result. 

LEMMA 2.4. Let 1 :!5; Pi <P2 < Co. Then if Re (III —p2) 96 'Ipi - l/p, the inclusion 
(2.1) is false. 

Proof. Again we may assume without loss of generality that Mi' P2 are real. 

I1p 1  —p 1 <1/p2 —p 2 . Let b = 01p2 — p2) - 01pl — p1); then b>0. Let 

4(x) = 2(x)xP 1h /P1_l'/ 2  

with las in (2.10). Then, since x 01 4)(x) = 2(x)x' 1" 12 ,  0EF,,101 . On the 
other hand 

XP 2 cb(X) = A(x)xM 2+ P 1 IP 1_l'I2  = 

and this function does not belong to 22  since b>0. 
So, in this case, (2.1) is false. 

11P1P1>I/P2P2.  Again we let b = 01P2 — p2) — ( 1 1pl — pl)<0 and choose 
4(x) = 2(1fx)xs41 1/p2-b/2  with I as in (2.10). Again it is easy to check that 
4) e F,,1 ,,, 1  but 4) 0 F2,113. 

This completes the proof of Lemma 2.4. 
We collect our results together in the following theorem. 

THEOREM 2.5. Let 1 5 Pi <P2 ~ oo and let Mi, JP2 be complex numbers. 

FPi.Pi 	P2.P2 
c F 	if and only if Re (p1 - P2) = I/ps  —l/p. =  

If Re(p 1 —p2) = 1 IP1 -1 1P2' then the identity mapping from F,,,,,, into 
F,,2 ,,2  is continuous. 

If Re (p — P2) = 11P 
- l/P2 and  Pi <P2' then F,,,,,,1  is a proper subspace of 

F,,2 P2' 

We mentioned in [3] that (= (0, aD)) is dense in F,,,, for any complex p and for 
1 	p <aD. Hence F,, , ., is dense in F,,2 , 02  when 1 <p I  p2 <co and 

Re  (PI  —p2) = l/P1 — l/P2. 
This enables us to prove the next result. 

THEoREm 2.6. Let I < Pi <P2< Co and let Mi' P2 be complex numbers. Then 
F;,,,,, Q F;2 ,, 2  jf,and only if Re (p 1  - P2) = l/Pi — l/P2. Further,  if P <P2' then 
F,, ,,,F2, P2 (strict inclusion). 
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Proof. If Re (p1 

- 112) = lli'i - 'IPi, then F,',, 1., F, by virtue of our previous 
remark together with [8, Theorem 1.8-2]. 

For the converse we again assume without loss of generality that p, and P2  are real. 
Let b = ( I1p-p)-(11p 1 -p 1)>0. (The case b<O is similar.) Also write 

q 1  =pJ(p - 1) (i= 1, 2). 
Then 1<q 2  ;S q 	and b = (l/q 1 -.-p 2)-(1/q 2 -p 1). Let 

f(x) = A(X)X 2I2/2 

with A as in (2.10). Then as in Lemma 2.4, x1*2f(x)  E Fq2 , p , but xM14P2f(x) 

'fE F93, iza (butf 0 Fq2, —01) 

By Holder's inequality, fgenerates an element,Jsay, of F2 P2  by means of the formula 

f f(x)4)(x)dx. (4) e F,2,). 	 (2.11) 

On the other hand, consider the function 

4(x) = A(x)x' P ' /4 . 	 (2.12) 
This function 4) E F1, 1  since b>O, but for x sufficiently large 

f(x)4)(x) = 	u21/q2_b/2+,_1/P1_b/4 = 

and since -1 +b/4> -1, 
fo f(x)4)(x)dx does not exist. Thus we cannot use (2.11) to 

extend/to an element of F,1 P1 . Indeed, there is no such extension. To see this, let 
be an infinitely differentiable function such that 0 a(x) 5 1 for all x e (0, c) 
and 

tIi 0<x<1 
x>2. 

Then let 4)(x) = c(x1n)4)(x) with 4) as in (2.12). It can be shown that 4) converges to 
4) in the topology of F1 . [For a similar calculation, see 2, pp. 63-4.] Thus if JE 
denotes any extension of Ito an element of F,11  we would have 

(JE, 4)) = urn (JE. 4)). 
1l -. 

But, since 0,, E F,3 ,,2 , 

(h, 4)) = (3', 4),,) = j f(x)O,,(x)dx oo as 

as above and we have a contradiction. Hence F;,, 	F;,2 ,,,2  in this case. 
Finally, the strict inclusion in the theorem requires similar arguments to the above 

and the proof is therefore omitted. 
This completes the proof of Theorem 2.6. 
Since is not dense in Fc,,,, for any complex p we must exclude the case p = co 

in Theorem 2.6. To plug the resulting gap we are led to consider a certain subspace, 
G,,, say, of F,.,,, and the corresponding dual space G ' , Go p. This investigation is carried 
out in the next section. 

3 
We define the space G by 

G - 	F for each non-negative integer k, 
xkd k 4)/dxk +Oasx_,0+ and as x-'cx 	(3.1) 
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and equip G. with the topology induced by that on F (that is, the topology generated 
by the semi-norms y (k = 0, 1, 2, ...) defined in (1.2)). Then, for each complex 
number p, we define G11,, by 

	

Ga ,, = (: x4(x) e Ga,) 	 (3.2) 

and equip 	with the topology induced by that on F,, (that is, the topology 
generated by the semi-norms y° (k = 0, 1, 2, ...) defined in (1.4)). 

Using the operator T 1 ,, defined in (2.5), it is easy to check that G,,, is homeo-
xnorphic to the space () defined in [5, p. 199] so that the properties of Ge,,,,, follow 
almost at once from those of() in [5]. We list those of interest to us in the form of a 
theorem. 

THEOREM 3.1. Let I :!~ P1< oo and let' ju 1, JP2 be complex numbers. 

if and only if Re(91—p2) = i/Pt. 

If Re (p 1  — P2) = 1 /pi, then F,,,, ,,, is a proper subspace of G., 
18 2 

 and the identity 
mapping from FP,.  I  into G 	 is continuous. 

For any complex number p, (= (0,  )) is dense in 

Proof. (i) We may assume again that Pi' P2 are real. From [5], p. 200, LP l c(). 

Thus if Re (p 1  — P2) = IIpi, T,',,,(, 1)c T' 2(). By Lemma 2.2 and our remark 
above, F,,1 ,,,,cG, 2  as required. The converse follows at once from Lemma 2.4. 

This follows as in Corollary 2.3. For the strict inclusion, we can use the function 

4' in (2.9) with P2 = oo and 
- 1

1Pi <a<zO. 

By [5, p. 199] 1(— oo , c) is dense in (i). Our result follows on using the 
homeomorphism T, I from () onto G 	which also maps 9(— oo , a) onto 
.9(0, 00). 

The corresponding result for generalised functions is contained in the next theorem. 

THEOREM 3.2. Let 1 <_  P1 <P2 < oo and let Pi' P2' P3 be complex numbers such 
that 

Rep 1 -1/p 1  =Rep2 —i/p2  = Re 113. 
Then 

G'CF' 	F' 	c 
X, P3 = P2. P2 = P1. P1 = 9( 	(0, 

Proof. Under the given conditions we have the chain of inclusions 

F 2 , 2 cG, 3  

each inclusion in the chain being dense and each embedding continuous (by Corollary 
2.3 and Theorem 3.1). The result therefore follows from [8, Theorem 1.8-2]. 

Theorems in [3] concerning the spaces F', ,, 
give rise to corresponding results for 

As an example we consider again the Erdélyi-Kober operators I, K7; for 
the relevant definitions see [3]. 

THEOREM 3.3 (i) If Re (m il 	then I is a continuous linear mapping of 
G

CO. 
 ,, into itself; f  also Re (mu + mot + p) + m >0, then I is an automorp h/sm of 

Gr, p. 
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(ii) If Re (mi-p)>0, then K is a continuous linear mapping of G O, .  into itself; 
(f also Re (ml +mx -p)>0, then K' is an automorphism of G,,. 

Proof. We prove (i), (ii) being similar. For (i), it only remains in view of [3, Theorem 
3. 5], to show that if çbeG, 

kdk1d xk(x _P14)),O as x-.O and as x-' +, for k = 0, 1, 2..... 
Now if Re 

I x I4)(x)I = m [r()]1 	(1 - 1m) 1 
isrm-  1 +P(xi) 4)(xt)dt 

fo 

<rn sup I v"d(v)I I r'() 	1  
O<e<x 

The integral on the right is finite under the given conditions and since v4)(v)-'0 
as v-'O+, it follows that x I4)(x)-0 as x--+O+. 

Now let {x} 1 be any sequence of positive real numbers tending to cia. 
Let f(t) = (l_r)1lrm 	(xt)çb(xt) (0<1<1). Then for each fixed t, 

xt—'co as , 	(xt)"4)(xz)-0 as n-+ 	(since 4) e 	i.e. f converges 
pointwise to 0. Also If(:)I ~ (l __tm)Re 1 tRe(M 	+m—lyg.P(4)) so that the right- 
hand side is integrable over (0, 1) under the given conditions (Re cc>0 still). By 

i 
Lebesgue's Dominated Convergence Theorem, 

 f  
f(t)d:-0 as n'cs; that is, 

o 	
- 

 
(x)z(I4)XxO as n-* co for any sequence {x} with x a-+ oo . Thus xI(x)-O 
as n-i co. Also, for k = 1, 2, ... we may differentiate under the integral sign to 
obtain 

xkdk/dxk(x_PI4)) = x 	C1I'(x'd'4)1dx') 

for certain constants C(i =0, ..., k) and since x'd'çb/dx'-O as x-'O+ and as x-. co 
we may apply the previous reasoning to obtain the required result for Re a> 0. 
The case Re 0 is now easily bandied using [3, formula (3.6)] and observing that 6 
is a continuous linear mapping of G  into itself. This completes the proof of Theorem 
3.3. 

The corresponding results for G'a, p follow immediately from [8, Theorems 1.10-1 
and 1.10-2]. Thus, as regards the theory of fractional integration, there seems nothing 
to choose between F, , and G ,. However, in certain cases, it will be more advan-
tageous to use G , as we shall see in our work on the Hankel transform. 

4 

Let us consider now the spaces LP as defined in (1.6). Such weighted V spaces 
have been considered, for instance, in [4]; our space L' is Rooney's space L 1 _,,,. 

It might be thought, as a result of Theorem 2.5, that there might be an inclusion of 
the form 

	

LOP ,,  q L 	 (4.1) 112 

when 1 5 Pi < P2 < co and Re (j — P2) = l/p I - I[p2 . However, this is soon seen 
to be false by considering the operator T,,, 11,, (see (2.5)) defined on L 11, by 

(1, ,4))(x) = 4)(ex) (_ <x< 
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For 1 <p  ;5 cc, T,,, 1 ,p  is an isometric isomorphism of Lç,,, onto L(—oo, cc) 
so that Lv;,,, g LP2 p, is equivalent to L"(— cc, cx)) g L" 2(— cc, cc) which is false. 
The falsity of (4.1) in general then follows by considering the mapping 

0 -+X Rc pi - 11plo =  X Re  

Let us examine two well-known results in the light of our findings above. First we 
consider the Erdélyi-Kober operator J of fractional integration defined for Re cx>O 
and suitable functions 4) by 

	

I' a4)(x) = []7(cc)] - 	 (x - l)a 
- 

In [1, Theorem 2], Kober proved that, if Re ,> i/p—i, then I' 2  a continuous linear 
mapping of L"(= L) into L'1/,._ 1/p under the following additional alternative hypo-
theses: 

(i)1pcc,p=r 

	

<p <r < cc, i/p - 1 /r :!!~- Re cc 	I/p 

(iii)! 	 cc,Recc>1/p. 

In view of the falsity of (4.1), the results obtained under (i, ii, iii) are independent; for 
instance we cannot immediately deduce that under (ii) from that under (1). However, 
when we study I' relative to F,,,,,, the situation is completely different. In [3, 
Theorem 3.2] with m = 1, we proved that r,  was a continuous linear mapping of FP  
into F. for Re q > i/p—i (and Re x>O). In view of Theorem 2.5, it follows that is 
a continuous linear mapping of F. into F,, 1/..- up whenever conditions (ii or iii) 
are satisfied so that all the results may be subsumed in just one. Furthermore, in cases 
(ii and iii), if p<r, cannot possibly map F,, onto F,., 1/r-1/p  because of the strict 
inclusion in Theorem 2.5. Thus the largest candidate for the range of I' on F. is 
F. itself and we saw in [3, Theorem 3.5] that if Re j7 > lIp— 1 (and Re (q ± cc)> i/p—i), 
then a  does indeed map F. onto F,,. 

Similar considerations apply to the Fourier sine and cosine transforms on F,,. 
Theorem 74 of [6] shows that if lczp 2, the Fourier transform is a continuous linear 
mapping of L(—co, cc) into L(_  cc, cc) (q = p(p— 1).1).  It follows easily that H_ 
(the Fourier cosine transform) is a continuous linear mapping of L"(O, cc) into 
L(O,  co) for i.<p 2 (as is the Fourier sine transform). We could use this to prove 
that H_, is a continuous linear mapping of F,, into F under the same conditions. 
On the other hand, if we use [6, Theorem 80], we can show that H_+  is a continuous 
linear mapping of F into F,,, 21 _ 1  and this result is stronger than the other since for 
l<p2, 

Fp,2/p_lFq  

by Theorem 2.5, with strict inclusion for i<p<2. Thus H_+  cannot map F. onto  F. 
for 1 <p < 2. In fact, we shall prove in a subsequent paper that H_+  maps F. onto 
F,,, 21 _ 1  not merely for 1 <p < 2 but for 1 <p< cc. This result is, in turn, a special 
case of a much more general result to the effect that H, the Hankel transform of 
order v, maps F,,,,, onto F,,, 21,,_ 1 _,, under very general conditions on p, j and v. 

We should mention that results concerning the properties of fractional integrals and 
Hankel transforms in the spaces L,, (jz 96 0) have been obtained by several authors, 
e.g. Flett [9] and Rooney [10]. Comments similar to the above apply to these; suffice 
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to say that they are in accord with our results under the appropriate restrictions on the 
parameters. 
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SYNOPSIS 

In a previous paper [2], a theory of fractional integration was developed for certain spaces 	of 
generalised functions. In this paper we extend this theory by relaxing some of the restrictions on the 
various parameters involved. In particular we show how a generalised Erdlyi-Kober operator can 
be defined on F;,,,for 1 p < oo and for all complex numbers & except for those lying on a countable 
number of lines of the form Re IA = constant in the complex s-plane. Mapping properties of these 
generalised operators are obtained and several applications mentioned. 

1. INTRODUCTION 

In a previous paper [2], we introduced the spaces 	of testing-functions and the 
corresponding spaces F;M  of generalised functions and showed that they were well 
suited to the study of operators of fractional integration. For instance, the operator 
I defined for Re x>O by 

f  x  (1.1) 

is a continuous linear mapping of Fe,, into itself if Re (mi+p)+m>p 1  [2, 
Theorem 3.2]. We extended the definition of J to values of a with Re 0 using 
analytic continuation and found that under certain conditions 1 was an auto-
morphism of and also of F,,. It is the - purpose of this paper to show that these 
results hold under still more general conditions. For instance, -as regards I, we 
show how the condition Re (mrs +.u) + m>p —1  mentioned above can be replaced by 
Re (mi + p) + m 96 p 1  - ml (1 = 0, 1, 2, . . ) with similar generalisations for the other 
operators studied. 

The functions in F., are complex-valued infinitely differentiable functions defined 
on (0, cc). As in [2], for I p<co, F,(= F,, 0) is defined by 

F={4eC(O, cc): xkDk4, E LP(O,  cc) for k=0, 1, 2, ...}, 	(1.2) 
where D 	d/dx. For the case p = cc, it is convenient to modify the definition in [2]. 
Thus, in this paper, 

F = 	€ Cx(0, cc): for each non-negative integer k, 
 

as x-+O+ and as x-*co}. 

This is the space denoted by G in [4] and is a subspace of F as defined in [2]. 

* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of 
Scotland. 
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However, we shall not use the latter in this paper and for typographical convenience 
we shall write F rather than G for the space defined by (1.3). This should not cause 
any confusion. For I < p co, we equip F. with the topology generated by the 
seminorms yP(k = 0, 1, 2, ...) defined by 

vL'() = x&Dkcb ii,, (0 e F,,), 	 (1.4) 
where fi li i, denotes the L(0, co) norm. 

For any complex number p, and 1 < p 

F,, ,, = { 0: x_` O(x) e F,}. 	 (1.5) 
F,,, is equipped with the topology generated by the seminorms yr'(k = 0, 1, 2, ...) 
given by 

yP.P(4) = y'(x') (4 e F,,,,). 	 (1.6) 
Finally, F,,, is the space of continuous linear functionals on Fr ,, equipped with the 
topology of pointwise convergence. 

The basic properties of the spaces F,,,, and F,.,, were developed in [2, 4]. In parti-
cular we recall that 

C(0, co) is dense in F,,,,, for 1 <p < co and any p, 	(1.7) 
where 

C(0, co) = 	e C(O, x): 0 has compact support in (0, co)). 	(1.8) 
(1.7) is crucial to our development and justifies the modified definition of F,,, in the 
case  = 

The extension which we are going to discuss makes extensive use of the invertibility 
of the differentiation operator D d/dx. In section 2, we investigate the behaviour of 
D on FP, P . Indeed, in [2] we saw that D is a homeomorphism of F., P  onto FP, _ 1  
if 1 p < co, Re ji & p 1  (the case p = co needing minor modification in view of 
our modified definition). We show that in the case Re z = p'. D does not map F,,, 
onto F,, 1 and hence is not a homeomorphism. 

In section 3, the extension process is carried out in detail for the operator I on 
FP. P . The theory for K is outlined and results for 1.,, and K, follow easily. The 
corresponding theory for F.., is then obtained using adjoint considerations. We find 
that results in [2, 4] continue to hold under our more general conditions. 

We should mention that the definition of P,,- 1 , as given by (1.1) form = 1, has been 
extended, relative to the spaces L'(O, co), in [7]. We give an approach that develops 
naturally from earlier work and find that the results of Erdëlyi emerge as particular 
cases of our results. Similar comments apply to other operators. 

Finally, in section 4, we give three applications of our results. Firstly we give condi-
tions under which the equation 

J.:f=g 	 (1.9) 
with I as in (1.1) has a classical solution 1€ L' when g e if,, is given. Here 

Ii',, = { f: x"f(x) E L"(0, co)}. 	 (1.10) 
Secondly we indicate how results on the hypergeometric operators H.(a, b; C; ,n) 
0 = 1, 2, 3, 4) introduced in [3] remain true under more general conditions. Lastly 
we mention the extended validity of results in [2] connected with the differential 
operator L. 
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Throughout the paper we adhere to the conventions used in [2] except that we use 
'homeomorphism' rather than 'isomorphism' in accordance with common usage. We 
mention in particular that 1 :! ~ p unless the contrary is specifically stated. Also 
p, q are always related by p —1+  q' = 1. 

2. In this section we consider the invertibility of the differentiation operator D d/d.r 
on F,,. From [2, Theorem 2.6] we see that D is a continuous linear mapping of F,,,,, 
into F,,,,,_ 1  for 1 :5 p ;5 oz and for any complex number p. Further, from [2, 
Theorems 3.6 and 3.8], D is a homeomorphism of F,,,,, onto F,,.,, - I  if Rep 9& p 
1 p<x and 

fox 

4(t)dt Re p>p' 

f ~(I)dt Rep<p' 

for 0 e 	The corresponding result for Re p -A 0, p = 	is also true and follows 
easily by a simple modification of the proof in [2] using [4, Theorem 3.3 (i)] rather 
than [2, Theorem 3.5]. 

It remains to consider the exceptional case Rep = p' and here the situation is 
different. 

THEOREM 2.1. If 1 p co and Re p = p- ' , then D is not a homeomorphism of 
F,,,,, onto F,,,0 _ 1 . 

Proof. First we consider the case 1 p < co, Re p = p 1 . Let 

(x) = 1(x)(log x)4  (0< x < co), 

where —p <aczO and 2 E C(0, co) is such that 

(0 0<x:!g2 
- 

As in [2], we shall write 
xD a xdfdx. 	 (2.1) 

We next define ,/i  on (0, co) by i(x) = (ö)(x). Then for k = 0, 1, 2, ..., 

(510W = 0"'4)(X) 
so that 

0 
(ô/i)(610W

= (a(a - 1).. .(a - k)(log x)1' 
0<x ~ 2 

e 	
(2.2) 

for k=0,1,2. .... Since, for Rey =p', 

00 	

• 	1'o 
I x'(log x) 0k I' dx = I u _k_)11u<co 

tic 

(k = 0, 1, 2, 
...), 

it follows easily that 41 eF,,,,. Thus if we write 

AX) = 

xeF,,,_ 1  and (x) = D4(x). However, 0 F,,,,; for
CD 

U"Pdu f
OD 

I x'(x)I dx 
fe° 

x'(log x)°dx 
= f 

PROC. R.S.E. (A) Vol. 77, 4. 1977. 	 22 
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diverges since op> - 1. Further, suppose there were some other function 4 e F,,,, 
such that Dçb1 = X . Then 

4)1(x) = 
where c is a constant. Now the analysis in [2, Lemma 2.2] shows that 4) 1 (x)-'0 as x-' ; 
also, since a<O, 4)(x)-+O as x-'oo. Hence c = 0, 0 1  = 4) and we have a contradiction 
since 0 1  e F, 4) 0 F,,,,,. Thus x does not belong to the range of D on F,,,, and the 
result is proved in this case. 

Now consider the case p = co, Re p = 0 and let 

4)(x) = A(x)(log x) 
with ) as above and 0<< 1. Certainly 4) 0 F,,,. But if 4' = 64) it follows easily from 
(2.2) that ,,(i e F,,, so that x defined by x(x) = x4'(x) belongs to F,,,_ 1  and 
X  = D4). Proceeding as above, we can show that there is no function 4) € Fr,,,,, such 
that x = D4) 1 . Hence D does not map Fr,,,,, onto Fr,,,,,_ 1  and so is not a homeo-
morphism. 

This completes the proof of Theorem 2.1. 
One important consequence of Theorem 2.1 is that it is impossible to extend the 

operator I' to the whole of certain spaces F,,,,, as we shall see in the next section. 
We also mention the following corollary. 

COROLLARY 2.2. 5 (defined by (2.1)) is an automorphism of F,,,, if and only if Rep 0p. 

Proof. This follows immediately from Theorem 2.1 as well as [2, Theorem 2.6 (i)]. 

3. We proved in [2, Theorem 3.5] that I', defined by (1.1) for Re z>0 and extended 
as in [2] to Re a ::5 0, was a continuous linear mapping of F,, , ,, into F,,,, provided that 
Re (mi+p)+m>p 1 . Further, for fixed j7 satisfying this inequality, Ppa was entire 
with respect to a on F,,,,,; in particular for each fixed 4) in F,,,,, and each fixed 
X E (0, x), (I4))(x) was an entire function of a. We now consider how to relax the 
condition Re (ml +p)+m>p. 

First suppose that Re p>p' and Re a> 0. Then, if 4) 

	

= mI4), 	 (3.1) 
as is easily seen on integrating the left-hand side by parts. The restriction Re x>0 
can be dropped using analytic continuation so that (3.1) holds for 4) e F,,, provided 
only that Re p>p 1 . In this situation, ö is invertible by Corollary 2.2 so that we can 
rewrite (3.1) in the form 

I;mla4)=mIxO_lo_14) (4)eF) 	 (3.2) 
when Re p>p'. However, the right-hand side of (3.2) is meaningful provided 
Re p+m>p, Rep 0 p by [2, Theorem 3.5] and Corollary 2.2 above. We can 
therefore use (3.2) to extend the definition of to spacesF,, with Re p>p-m, 
Re p 96 p'. Now, for any j7 and a 

117. cc - —mq--m,-1,2 m,+m 
xm -x 	x" X 

and it follows that we can use (3.2 and 3.3) to extend the definition of J.' -.`0 to spaces 
F,,,,, satisfying the conditions 

Re(m+p)+m>p'-m, Re(mi+p)+mp1. 
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The formula used for the extension can be written in the form 

I " , 4(x) = 	'x'"' + 1(D,,.) IXmj, 	 (3.4) Xrn

where 

D. d/dx"  a m_lx_mö. 
Expressions for (Dm) -' for the cases 

Re(m+p)+m>p 1  and p_m<Re(m,+p)+m<p 1  
can be obtained as in [2]. The right-hand side of (3.4) defines a continuous linear 
mapping of 	into 	under the above conditions. 

We can now repeat the process and extend the definition of f to all spaces 
except those for which Re (m il 	= —ml for some non-negative integer 1. 

P 
For I p < oo, m>0 and any complex number p we shall define the set A p p m  of complex numbers by 

i: Re (mi+p)+m p 1 —mi, 1 = 0,1, 2,...}. 	(3.5) 
Definition 3.1. For tiE A p , p . m  and any complex number a, we define I on 

FP' 11 by 
J 2 4(x) = 17 k, - kx - m(ij + k)(D) _kXmIi(X), 	 (3.6) 

where k is a non-negative integer such that Re (ml +p)+m>p 1  —mk. 
A few comments are in order concerning this definition. 

Notes 

The operator on the right-hand side of (3.6) defines a continuous linear mapping of 
into F,,,,, under the given conditions, with I" being defined as in [2]. 

Our extended definition agrees with the previous definition in [2] in the case 
Re (mtj + p) + m >p 1; this follows by k applications of (3.4) which are valid under 
these circumstances. 
We must check.that the definition is independent of the choice of the non-negative 
integer k. Assume also that Re (m+p)+m>p'—ml, where 1 is another non- 
negative integer and that 1> k (without loss of generality). Then using results in 
[2], we have 

p7+k,—k X —m(It+k)( m) k 

- 
- '

77+1, d— +k, i—k m(17+k 	—k 
x" 	Xfl 	X 	 MmJ 

- p+i,-2 —m(77+i)7l—k( \l—k( 	—1 mq 
4 Xm 	X 	'x" ml A( Dm) 	X 

= 
for all 4 e F,,,,, and we have established the independence of the definition of k. 
Suppose Re (nu+p)+m<p' and that k is the smallest positive integer for which 
Re (nil +p)+m>p 1  —mk; in other words, 

p 1 —mk<Re (MI +p)+m<p'_m(k_l). 
Then, using results in [2], (3.6) takes on the simple form 

- (... 1'%k777+k,2 — kv—,,—k.kJ. 
lAxm 	xm 	'f's 

where both the operators on the right-hand side are defined as in [2]. It is some-
times convenient to use this particular expression for J' as we shall see below. 
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We see that when z = 0 and in = 1, (3.7) and the conditions for its validity 
agree exactly with the corresponding statements in [7], although we have arrived at 
them by a different approach [see 7, p.  295, formula (5)]. Also the same exceptional 

strips Re, = - - 1(1 = 0, 1, 2, ...) emerge clearly as the complement, in the 
q 

complex plane, of A,, 0  1, 
5. Using the analyticity of the Erdélyi-Kober operators discussed in [2], we can show 

that if p, p, in, a are fixed, I is analytic on F,,,,, for il e A p ,,,, m . In particular, if 
4) is a fixed function in F,,,, and x e (0, c) is fixed, then PO(x) is an analytic 
function of q in A p , p. m . 

In view of [2, Theorem 3.5], we might hope that, under appropriate conditions, 
would be an automorphism ofF,,, onto itself with (I?)' = J8. , and this is 

indeed the case. However, we cannot deduce the result by analytic continuation with 
respect to since A p ,,, m  is not connected. Instead we proceed as follows. 

Let 4) e C(0, co). Then by straightforward differentiation, for Re a< 0, 

IX-M' + 
', - = XmDmIxn8 

184) 

and this result can be extended to all complex values of a by analytic continuation. 
Next, for any ii, 

-m(q+1)y-1+8, — 8 
.LXSfl 	 'V - X 	 .&Xm 	 X 

= +1)717+2, -8+14, 
ixm 

and repeating the process k times (k = 0, 1, 2, ...) gives, by induction, 
J+8. - 	= X mll(D)kf(174.k)lIl7x"+2. 8+k4) 	 (3.8) 

for 4) e C 0(0, cr4. Further, this result remains true if we interpret J2. 24, and 
jI741. -8+k4) in the sense of Definition 3.1 using (3.7). 

XM 

Now let 4, e F,,,, and assume that 17 + oe € A,,,,,,,. Then since both sides of (3.8) are 
continuous linear mappings of F,,,,, into itself and since C(0, cx) is dense in F,,,,, 

(3.8) will hold for all 4, e F,,,,, under the stated conditions. On the other hand from 
(3.6), we find that if , e A,,,,,. and 71+a E A p , p, m, then 

(J17.8-lA - -m17( fl  \k m(17+k)117+8, -2+k (PA -' o 	s mjX 

for 4) e F,,,,, and with k as in Definition 3.1; in inverting J8k on F,,,, we may use 
[2, Theorem 3.5 (iii)] under the given conditions. Comparison of (3.8 and 3.9) gives 
our required result which we state in the following theorem. 

THEoREM 3.2. Let 1 <p co, rn >0 and let P1, a be any complex numbers. 

(j) If i  e AP, 11, ,,,, then 	is a continuous linear mapping of F,,,, into itself and for 
fixed ce and m is analytic on FP.  ,,for i € 

(ii) If also ii+c  e A p ,,,, m , then I is an automorphism ofF,,, and (Ij,' = 	, 

Proof. The results follow from Note 1 following Definition 3.1 and formulae (3.8 
and 3.9). 

Of course if q 0 A p,,,, m , the process used above breaks down because Dm  is not 
invertible at some stage and it is therefore not possible to extend I to the whole of 
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in this case (although 	would still be meaningful for some elements of 
such as those in C(O, co)). 

An entirely analogous process can be applied to extend the definition of K1 to a 
wider class of spaces 	than in [2]. We merely outline the salient points. 

Starting from the formula 
= 

- mK'. 14, 

analogous to (3.1) and valid for 4) e  FPM  with Re (-p)> -p we obtain 
L'O,..& =  -m'K4) 

and hence, if 0 E 	with Re (mii- 4u)> -p 1 '  

= 	 l4) 
"x" W A in 

which is essentially an adjoint version of (3.4). The right-hand side is meaningful 
provided Re (mn-p)> -p- '-m, Re (mn-p) & -p and by repeating the process 
we can define K12  on F.,  i f j7 G A,  where 

= {: Re (nij-p) 	-p' -nil, 1 = 0, 1, 2, 
...}. 	

(3.10) 
We notice in passing that 

?l EA p , p , m  if and only ifii+1-m EA , _ P.M , 	 (3.11) 

which accords with Kl_l/m.2  being the formal adjoint of I' in the sense of [2, 
formula 3.23]. 

The extension of K is afforded by the following definition. 

Definition 3.3. For q e A' , 	any complex number a , we define K' on 
by 

= (- 1)kXm(D m)_ kX_m (f 4k)K k . 	 (3.12) 

where k is a non-negative integer such that Re (m,-p)> -p 1 --mk. 
Comments analogous to those in Notes 1-5 following Definition 3.1 apply here. 

For instance, if Re (mq - p)< -p" and k is the smallest positive integer for which we 
can apply Definition 3.3, so that 

-p'-mk<Re(m-p)< -p'-m(k-l), 

then (3.12) takes on the simple form 

(3.13) 9F 

which is essentially an adjoint version of (3.7). As regards invertibiity, we need 

= ( [)kj(J7+a 	 (4) €  FP, 09 

which is the adjoint version of (3.8), valid for 	E A; pm . The following theorem 
then follows easily. 

THEoIM 3.4. Let I p :!!~ co, m>0 and let p, c be complex numbers. 

(I) zf then K' is a continuous linear mapping of 	into Fp,M  and for 
fixed a , m is analytic on F, , ;, for 7 E 

(ii) If also q+e A' 	K' is an aulomorphism of F,,,,, and p,p.m' x m 

(K' = 
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Results proved in [2] remain true for our extended operators. In each case the 
technique is to use (3.6) together with the corresponding results in [2]. 

For instance, from [2, formula 3.6] we have, for 0 e 
mIçb = (M+ m+ 	 (3.14) 

provided 17 € A,,,,,, while if q E A; pm , [2, (3.15)] gives 

mK4 = (mi  

One consequence of (3.14 and 3.15) is that 

öjl.lJ; 1 .O 

	

—K 1 = K°= 	 (3.16) 

valid provided - 1 e A p, I  and 0 e A, I  respectively. 

It remains to consider the operators I.,. and Km on 	As usual for any a we 
define the operators by 

ia - ?fl27O, - X Axm 

Kmçb = K xm .  

The following results are almost immediate from Theorems 3.2 and 3.4. 

THEOREM 3.5. (j) ff0 E Ap . then I,' ,. is a continuous linear mapping of Fp , , into 

(ii) If also 0 e A p , p +,,., m , then 	is a homeomorphism of F,, onto F.. 	and 
(Im)' = i;,. 

Proof. The only statement which needs comment is that (I) 1 = 
This follows from Theorem 3.2 (ii) and the fact that for Or e 

( mzO,-1 i - y.  X £rI ) 	 S'AxSi  

THEOREM 3.6. (i) If 0 EA;,. P+mZ.m , then 	is a continuous linear mapping of 
F,, into Fp , p +ma . 

(ii) If also oeA; pm , then K, is a homeornorphism of F,, onto Fp, p+m  and 
91 (L" \1 

Ixm) 
- 
- Ixm. 

The proof is omitted. 
As regards the wider validity of the index laws we have the following results. 

THEOREM 3.7. (j) If {0, , 	A,, p m, then, for 0 e F,, ,, 

1  11  = 
Ixm %L1 	 xm9. 

(ii) If {0, 	- v1 A p,p,m' and +fl+y 0, then,for e F,,,, s)  

Xmafi m y 	 -m$ f --2o .  .. 	- 
I

M 	LXm 

Proof. These results can be established by applying to [2, formulae (3.11 and 3.13)] 
the technique described after Theorem 3.4. 



A Theory of Fractional Integration for Generalised Functions II 	343 

THEOREM 3.8. (1) If {-a, —fi, ——} c A n ,,,, then, 	4*eF,,, 

V xm xnvP 0 2+PA — 

(ii) If (0, y} c A; 	, then, for 4) e F,, , 

x m7K x m cb = K; x mPK;J4). 

The proof, which uses [2, formulae (3.21 and 3.22)], is omitted. Also relevant here is 
[3, Theorems 3.7 and 4.9]. 

To define our operators on F we proceed via adjoint operators as in [2]. Thus19  
for 1€ F,, ,, and appropriate values of , we define 1f by 

(If, 4))=:(f, K,4)) (4)eF, 1) 	 (3.17) 

[see 3, (3.23)]. The operator K1 - fl" on the right is to be interpreted in the sense of 
Definition 3.3. Thus by Theorem 3.4, the right-hand side of (3.17) is meaningful 
provided ii+1-m' € A,,,, which is equivalent to fl€A q,_ p ,,,, by (3.11). 

THEOREM 3.9. (i) If 77 6 Aq• •,,,, then I is a continuous linear mapping of F;, into  11  
F;,, and for eachf € F;,,, 4€ F,,,,,, (If, 4)) is an analytic function of i in A q  

(ii) If also 71+1  6 Aq• -i,m'  then I is a automorphism of F,, and 

- ,q +, — 
'x'!'J 	z x I 

Proof. The results follow immediately from Theorem 3.4 together with [6, 
Theorems 1.10-1 and 1.10-2]. 

We notice again that the condition on j7 is obtained from that in Theorem 3.2 by 
interchanging p and q, p and — p. 

Next, for f e F, ,,, we define K'f by 

(K'f, ) = (f p_l+l/m4)) (4)e E,,,,) 
	

(3.18) 

[see 2 (3.26)]. The right-hand side is meaningful provided q € A 	by (3.11) and 
we have the following results. 	 V  

THEOREM 3.10. (i) If 716  A, p,m  then K'X ' ,  is a continuous linear mapping of 
F,,, into Ft,,, and for each f e F,,,,, 4) e F,,,,,, (KI 4)) is an analytic function of , 
in A -p,m' 

(ii) If also tj +at e A, 	then K,? is an automorphism of F', and 

(V'I.)1 - v 11+, — a. 
- 

Proof. Immediate from Theorem 3.2 above and [6, Theorems 1.10-1 and 1.10-2]. 

For f € F,,,,, we define Imf and Kmf by 

	

(I') = (f, XmlKmXm4i4))  (4)e F,,,,_,,,1) 	 (3.19) 

	

(K-f, 4)) = (1' XmlImXm44)) (4)6 F p , p _ m ). 	(3.20) 

We gather together the properties of these operators in the following two theorems. 
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THEOREM 3.11. (i) If 0€ A q, -pm'  then I, is a continuous linear mapping of 
F, into 

If also 0€ Aq, 	+m2m, then 1,,, is a homeomorphism of F,',,,  onto F' 	and F,',,. p - mi 

- 

If {O, x, fi) c Aq, -z,m, then for feF,,, 

yfi r = 	= IJrnf. 

	

1x" x"J 	 .,  

If {0, 	 - y) 	- p,m' then for f€ F' )  p.11 ' 

xm2I mx mYf = IJx _mflJ.f
XM 

Proof. (i), (ii) follow from Theorem 3.6 above and [6, Theorems 1.10-1 and 1.10-2]. 
(iii), (iv) are proved using (3.19) together with Theorem 3.8. 

THEOREM 3.12. (i) 110€ A, 	m' then Km is a Continuous linear mapping of 
F, into F,, p _ mft . 

If also 0eA, _,,,,,, then Km is a homeomorphism of F,. 11  onto F,, 11 _ and 
(V \-1 - 
Lx mJ - 

If {—c, -fi, - - fl} A' 	then for g  p,m,- FP p' 

KKmf= Kf= KmKnf. 

If {0, v } C A' 	then for feF' - F,' ,,., 

= Kx - m$rp - if 
AxmJ. 

Proof. (i), (ii) require Theorem 3.5 and [6, Theorems 1.10-1 and 1.10-2]. (iii), 
(iv) are proved using (3.20) together with Theorem 3.7. 

We conclude this section with a few results concerning the composition of the 
operators I' and K. For instance, we have the following theorem on comrnuta-
tivity. 

THEOREM 3.13. Let 4) e F,,,, f  F, 11, let a, fl be complex numbers and let m, n be 
positive real numbers. Then 

(i) II'/0 = I'I',b if ?7 C A,,, A. m' € A p, p, 

Kxm' K' x" 4) = K5.K'4) if tj e A;, p, m 	A,, ,, 

if 	€ A 	, € A; 11  

 I 	xJ{ ,Pf =  j{.Pp.af if 17 C A q , -p.m' ( C A q , 

 K4K!f = 	if i € A, 	, M11 	A, _,,, 

 IK"f = K n"Imf if 	C Aq, -p, m, € A, 	p, 

Proof. (i) First suppose Re a >0, Re fl>0, Re(m)l+ it) +m>p 1  and Re(n+p)+n 
>p- '. Then both sides are defined by absolutely convergent repeated integrals and the 
result follows in this case on using Fubini's theorem to invert the order of integration. 
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The restrictions Re a>O, Re fl>O can be removed by using (3.14) or analytic con-
tinuation. The general result now follows from the previous case together with (3.7); 
the details are similar to those in (iii) below: 

is proved similarly. 

if Re cc>O, Re 13>0, Re (mit + t) + m>p 1  and Re (n - p)> —p - 1  both 
sides are given by absolutely convergent repeated integrals and we can use 
Fubini's theorem. Again the restrictions Re cc> 0, Re 13>0 can be removed 
using analytic continuation. Suppose now that we choose a positive integer k 
such that 

P_ I —mk<Re (m+j)+ m<p' —n2(k-1) 

and assume still that Re (n—jj)> —p 1 . Then 

=(- 11n.IK 	x" _kK__K,P4 by (3.7)6 

= (- 1 /
+ 	 - k,k4 by (ii) rk,.fl  

= K(__l)kI 	_kKk4 by the previous case 

= KIçb by (3.7) again. 

We now have (iii) for i e A p ,,,, m , Re (ne — p)> —p'. Finally, we can replace the 
restriction Re (n—p)> —p 1  by e A,.,,, using (3.13) and (1). 

(iv)—(vi) follow immediately from (i)—(iii) on taking adjoints. 
This completes the proof of Theorem 3.13. 
An interesting situation arises when we consider the generalisations of [2, formulae 

(3.5, 3.17, 3.24, 3.28)]. 
For instance, consider the formula 

= J'4' ( E 	 . 	 (3.21) 

Our considerations above show that the left-hand side defines a continuous linear 
mapping of F,,,, into itself provided tj e A,,,,,,, and ii+cc  e A,,,,,, while the right-
hand side defines a continuous linear mapping of F,,, into itself provided only that 
17 e A,,,,,,,,. This seems to indicate that it should be possible to remove the restriction 

+ cc e A,,, or, in other words, to remove the singularities corresponding to 
t7 + a f AP, p, m . To see how this can be dQne let us, for the moment, write 

= ,PI+,P,'7,2A 	 (3.22) Am lxmW 

for 0 e F,,,,,, where i e A,,,,,,, 	cc e A,,,,,,,,. If we make use of (3.6) and an analogue 
of (3.8) we obtain 

- 

- 

or 
T"4. = ",T.P_k4., 	 (3.23) 

where k is a positive integer such that Re (m+mcc+p)+m>p 1  —mk. In this 
case ( + a + k) € A,,,,,,,, so that the right-hand side defines a continuous linear mapping 
of F,,,, into itself. Thus we can use (3.23) to extend the definition of T" 0  to values 
of q, cc with a+ cc 0 AP. ,,, m . As usual this extension is independent of the integer k 
satisfying i+ a + k e Ap , p, m . The extended operator is analytic for j7 e A,,, m  and we 
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can use (3.23) together with [2, formula (3.5)] to show that 	coincides with 
on F',,, when r E 	so that (3.21) holds provided only that t e 

A similar process can be carried through for K:K).,2.P on and by taking 
adjoints we can obtain corresponding results on FP', . We state the results without 
proof in the following theorem. 

THEOREM 3.14. Let 0 e F,fe F,.,. Then 
() 1

x  m+ 
PPXfl2A  -  Ix" M* 

+PA 
  if  si 

 p. is. m 

(ii) KKçb = K4' if t € A; pm  
j+.Pp.crj I?f if 11€ Aq,  -p.m 

(iv) K?Kf= K 4 f if j 6  A' —p,nr 

We remark that in spite of Theorem 3.14 (i), for instance, we cannot remove the 
condition i+c E Ap ,p, m  if we want I to be an automorphism of Fp , . (Theorem 3.2 
(ii)). The situation is analogous to considering z 1 .z = 1 at z = 0. Theorem 3.14 
gives us one instance of the removal of singularities. We shall encounter a number of 
other examples in work on the Hankel transform in a later paper. 

4. As a first application of the results of section 3, let us study the equation 

fx(xm_um)2_lumm_lf(u)du = g(x) 	(4.1) 
o 

relative to the spaces LP where, for 1 p 	and any complex number p, 

LP = {f: xf(x) e L(0, co)). 	 (4.2) 

In (4.1) we assume Re x>0 and that tj is a suitably restricted complex number. 
Indeed from [1, Theorem 2], the left-hand side defines a continuous linear mapping 
of LP, into LP provided Re (mli +,u) + m >p '. Hence a necessary condition for (4.1) 
to have a solution f in LP. is that the given function g e L. However, this is not a 
sufficient condition, as is well known. Nevertheless, we shall show how, under very 
general conditions, (4.1) has, for a given g €L, a unique 'generalised solution' in a 
sense to be made precise. Further, the generalised solution is generated by the unique 
L,P solution whenever the latter exists. (In LP we identify functions which differ only 
on a set of measure zero and work with the resulting equivalence classes.) 

Let g e L. We wish to know whether there exists a functionfe L satisfying19  

9 

where Re x>0 and Re (mti+p)+m>p 1 . Since9 e L, Holder's inequality shows that 
g generates an element, rg say, of F 	via the formula 

(rg, 
) = fo 

g(x)çb(x)dx (0 € Fq , _p). 	 (4.3) 

We can regard g - rg as an embedding of LP into F 	. As in {3], we shall use t for 
any such embedding and will not exhibit the dependence on p, j explicitly. 

Consider the equation 
I'X' M'h = r 	 (4.4) 
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in F 	, where I is interpreted in the sense of (3.17) above. Since Re (m17+p)-i-in> 
we know that t € 	Hence provided only that 	e A P.P. M9 (4.4) has a 

unique solution h e F 	by Theorem 3.9 and 

	

h=I.2tg. 	 (4.5) 

It is this functional h which we might refer to as the generalised solution of (4.1). If 
(4.1) has a classical solution f  L, then since Re a>O, rI'f= Irf; indeed, this 
was the motivation for [2, formula (3.23)]. Hence applying r to (4.1) gives Irf= rg, 
so that 

1 = Iiq+
rI . Itf= if  cz  I'   

in this case, as mentioned above. On the other hand, it is not always possible to find an 
f  LP which will generate h and then of course there is no solution in L. To see more 
clearly the crux of the matter, we write 

	

h = X rrnl(D)kXm(.I )J2. _+k.g 	 (4.6)Xrn 

using the analogue of (3.8) for generalised functions which is valid under the given 
conditions. If the integer k is such that —Re +k>O, (4.6) gives 

h = X ml1(D)kTXm(fl+k)rJv7+m . —i+k 

	

x 	9 	 (4.7) 

since Re (m+mk+p)+m>p 1 . Thus a classical solution f exists if and only if 
exists as a classical function. If this latter condition holds 

f= X msl(D)kXm( +k) P2, 2+kg 	 (4.8) 

a formula similar to several in [5, § 2.4]. If the above condition does not hold, the 
process stops at (4.7). We can sum up our conclusions in the following theorem. 

TJoB.EM4.1. Let g e LwhereRe(m1+p)+m> ,and let Re x>O.Ifq+xe AP. P.M 

then (4.1) has a unique generalised solution h given by (4.5). Jfk is a positive integer such 
that - Re x+k>O and if (D)1f(4k)J2. exists in the classical sense, then (4.1) 
has a unique solution fe LJ.1  given by (4.8). 

Results for special cases of (4.1) including Abel-type integral equations can be 
obtained by appropriate choices of ti, a and m. 

As a second application of our results we consider again the hypergeometric 
operators H,(a, b; c; m) (1 = 1, 2, 3, 4) which were discussed in [3]. As in [3, 
Definition 3.4], we define H1 (a, b; c; m) on F,,,, by 

H1 (a, b; c; m)çb = Jc_bX—rnalbXmacf,(X) 	 (4.9) 

In [3] we saw that H1 (a, b; c; m) was a continuous linear mapping of F,,,, into 
Fp , p+mc  provided - Re j—m +p 1  <mm (m Re a, in Re b). But if we now interpret 

cb the operators J;L  and Im on the right-hand side in the sense of section 3 we find that 
the right-hand side of (4.9) defines a continuous linear mapping of F,,,, into F,, p+mc 
provided only that 0 e A p  p+ ma, n, and 0 e A p ,,, +mb.,, (from Theorem 3.5 (i)) or equiva-
lently that {a, b} c In fact the following theorem is easily proved. 
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THEOREM 4.2. (1) If [a, b} c A , then H1 (a, b; c; m) is a continuous linear mapping 

	

of F,, M  into F,,,,+,,,. 	- 

(ii) If also {c, a+b} c A p ,,,, m , then H, (a, b; c; m) is a homeomorphism ofF,,,, onto 
Fp,p+mc and 

[H1 (a, b; c; m)]' 1  = xmH 1 (—a, b—c; —c; m)x'"°. 

Proof. The result follows on applying to [3, Theorem 3.5 and Corollary 3.6] the 
technique stated after Theorem 3.4 above. 

Similar considerations apply to the other three operators on F,,,. We summarise 
the results in the form of a table. In the column headed 'c.l.m.' we give the conditions 
under which the various operators are continuous linear mappings from F,,,,, into 
Fp,,i+mc while the column headed 'homeo' gives the conditions under which they are 
homeomorphisms. 

TABLE 4.1. 

H(a, b; C; m): Fp , p +Fp,, +mc  

C.I.M. 	 homeo 

	

HI (a, b; c; m) 	{a, b} c Ap, M ,., 	 {a, b, c, a+b} c 

	

H2(a, b; c; m) 	{O, c—a—b) c 	{O, c—a, c—b, c—a—b} 

	

H3(a, b; c; m) 	(—c, —a—b) c A,, ,, {—a, —b, —c, —a—b) A 4.- ,% . m  

	

H4(a, b; c; ,n) 	{a—c, b—c) 9 A,, m (0,a — c, b—c, a+b—c} 9 A,, 
 

All the results in [3] such as 

[H1 (a, b; c; rn)]' 1  = H2(—a, —b; —c; rn) 
remain true under the appropriate more general conditions. 

The operators are defined on F,, using adjoints. Thus forf€ F,,, H,(a, b; c; m)f 
is defined by 

(H,(a, b; c; m)f, ) = (1, H5 _,(a, b; c; rn)) ( e F_) for i = 1,2,3,4.   
Using [6, Theorems 1.104 and 1.10-2] and Table 4.1 we easily obtain the following 
table for the operators on F,,. 

TABLE 4.2 

H1(a, b; c; m): F;,,-~F;,p_ mc  

C.I . M. 	 homeo 

	

H, (a, b; c; m) 	{a, b) c A,, 	 {a, b, c, a+ b) A,, ,m 

	

H2(a, b; c; m) 	{O, c—a—b) A,, -p,m {O, c—a, c—b, c—a—b) A,,  

	

H3(a, b; c; m) 	{—c, —a—b) c A, • ,,,, 	(—a, —b, —c, —a—b) 

	

H4(a, b; c; m) 	{a—c, b—c} 	 {O, a—c, b—c, a+b—c) c App. 

As a third application we consider again the operator L, defined for each complex 
number v by 

L 	d2 + 2v+1 d 
vdx2 	x dx' 

This operator can be applied meaningfully to elements in F, and we can prove the 
following generalisation of [2, Theorem 4.3]. 
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THEOREM 4.3. (i) If v e A p-22' then for fe F,,, 

7v..r 
 vi f_ 

 

(ii) !frEA,_ ,2 , then for 	r' 
£ 

r 
- 4x2 Lp_ 

Proof. The results are obtained by applying to [2, Theorem 4.21 the technique 
described after Theorem 3.4 and then taking adjoints. 

We note also that 

Aq, -p-2,2 EZ A q , 	and A, 	A,• -p-2,2m. 

A fourth important application of our results arises in Connection with the theory 
of the Hankel transform for elements of F; ,. This turns out to be a rather extensive 
investigation which we intend to pursue in a later paper. 
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SYNOPSIS 

In previous papers [11, 12, 13], certain spaces F, ,,, of generalized functions were studied from the 
point of view of fractional calculus. In this paper, we show how a Hankel transform H. of order v can 
be defined on F, . for all complex numbers v except for those lying on a countable number of lines of 
the form Re i' = constant in the complex v-plane. The mapping properties of H,, on F' are obtained. 
Various connections between H,, (or modifications of H,,) and operators of fractionaf Integration are 
examined. 

§1. INTRODUCTION 

In this paper we are concerned again with the spaces F,,, of testing-functions and 
the corresponding spaces F of generalized functions as defined in [12]. It seems 
convenient to recall immediately the basic definitions. 

Our testing-functions are complex-valued infinitely differentiable functions 
defined on (O,). For lp<oo, 

	

F={4EC"(O,00): x kdk4/ kELP(Ocx,)f or  k=O, 1,2,...) 	(1.1) 

while 

for each k=O, 1,2,..., 
xkd/d x O asx O+ and 	I 	(1.2) 

For 1 p 	, F is equipped with the topology generated by the semi-norms y 
(k=O, 1, 2, . . .) defined by 

i(4)=I1xcdc4/dx JdIIp  (4EF) 	 (1.3) 

where 11 fl,, denotes the norm on L"(O, oo).  Next, for each complex number 14 

F ={4: x4(x)EF}. 	 (1.4) 

* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of 
Scotland. 

t This paper is dedicated to the memory of my great friend and former supervisor, Professor Arthur 
Erdélyi, without whose help this work would never have existed. 
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F,, is equipped with the topology generated by the semi-norms 	(k =0, 1, 
2,...) defined by 

y(x4) ( € F,,,) 	 (1.5) 

with yt as in (1.3). Finally, FP' ,,, is the space of continuous linear functionals on 
equipped with the topology of weak (or pointwise) convergence. We mention 

again that the space F,. as defined above differs from that in [11] and corres-
ponds to the space G. in [ 13]. 

The purpose of this paper is twofold: 
to define the Hankel transform H on the spaces 	and to obtain its 

mapping properties relative to them. 
to investigate some of the connections between the Hankel transform and 

fractional integration and establish the conditions under which they are valid in 

We hope to carry this a stage further in a future paper whose aim will be 
to apply some of the results obtained to solve certain dual or triple integral 

equations involving elements of the F spaces. 
Various authors have defined the Hankel transform for various classes of 

distributions. One particularly notable theory appeared in a series of papers by 
Zemanian which form the basis of [23, Ch. 5] and which has been 
extended in [8, 9 and 3].  Before proceeding, therefore, we must attempt to justify 
our alternative theory. 

As regards the behaviour of the Hankel transform itself, the situation is as 
follows. In Zemanian's theory, for each (real) v, H is an automorphism of 
[23, Theorem 5.10-1] although its behaviour relative to X J , ( vO v 0) is not 
immediately obvious; the definition of the spaces 	will be recalled in Section 2 
below. In our theory we shall find below that H is an homeomorphism of F 
onto F,,21 _ 1_, for all but certain exceptional values; for fixed p, the set of 
exceptional values of (, v) is of measure zero as a subset of two-dimensional 
complex space. 

It is no surprise that the Hankel transform is well behaved relative to the spaces 
We have developed a theory of fractional integration in these spaces in two 

previous papers [11 and 12] and it is well known that there are many connections 
between fractional integration and the Hankel transform; a few of these results 
appear in [4, 6, 7, 14, 17 and 19]. In a sense, knowledge of the behaviour of the 
Erdélyi-Kober operators is equivalent to knowledge of the behaviour of the 
Hankel transform. To discuss these results for generalized functions we must find 
spaces relative to which the properties of all the operators involved can be found. 
Since the behaviour of the Erdélyi-Kober operators on Ye ' not obvious, we can 
regard this as part of the raison d'être of our theory. We compare and contrast the 
two theories at more length in Section 2. 

At this point we should mention that a similar investigation to ours has been 
carried out in a recent paper by Braaksma and Schuitman [1].  They use Mellin 
transforms to study the Hankel transform on certain spaces T(a, b) which are 
essentially countable unions of spaces of the form Indeed for real a, b and 
c, T(a, b) = Ua<c<b F,,.... Not surprisingly, our results are in accord with theirs for 
the case p = oo . Nevertheless, their use of countable-union spaces leads to the 
restrictions on the parameters taking on a more complicated form. Since the 
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mapping properties of H can be ascertained on each F00,_, it seems simpler to 
work with them. The results for T(a, b) can then be deduced easily if required. 
Furthermore, our methods, which do not involve Mellin transforms, handle all 
values of p in the range 1 p simultaneously and this is essential for the L 
theory of Hankel transforms; the theory in [1] deals only with the case p = . We 
may therefore regard our theory as incorporating that of Braaksma and Schuit-
man. (A similar comparison can be drawn between the results on fractional 
integrals in §5 of [1] and our theory in [11, 12].) 

Meanwhile in Section 3 we begin our investigations into the behaviour of H on 
We find that if —Re v— ! +p- 1 , < Re .t <p' we may use the integral 

representation 

(H4))(x) = 	t)J(xt)4)(t) dt (4) E Fp,g ) 	 ( 1.6) 

and thus obtain a continuous linear mapping of 	into F,21 _ 1_. We give a 
proof which may not be the simplest but makes use of some results on fractional 
integrals. Further we would expect that under appropriate conditions H would 
be invertible with I-I = H 1 . This is indeed the case and follows from the classical 
Hankel inversion theorem if also Re v> -i. ' For Re - we fall back on 
analytic continuation and prove that under the conditions above H is analytic on 

in the sense that for each fixed 4) F,, 

[H+hd - H4']/h 

converges to a limit in the topology of F,21 _ 1 _,, as h--+O in any manner. This 
might seem to be an example of using a sledgehammer to crack a nut and other 
methods are possible. However the analyticity of H,, is of great importance in 
later sections. Indeed analytic continuation is one of the two main tools in this 
paper; the other is the fact that C'0 (0, co) is dense in F,. for 1 p and any 
complex g. 

In Section 4 we pause to consider how the results of Section 3 are in accord 
with other standard results in the literature. In particular, we indicate how various 
special cases can be deduced from results in [20] on the Fourier transform and 
also indicate connections with results from [18] on the extendability of operators 
on weighted L" spaces. 

In Section 5 we show how by redefining H we can relax the condition —Re 
v—+p 1 <Re <p 1  very considerably. At each stage our new definition 
coincides with the previous definition whenever both are meaningful. We first 
remove the restriction Re ji <p 1 , which of course necessitates leaving behind the 
simple integral representation (1.6). This operation is quite painless but when we 
turn to the second restriction —Re v—+p 1  <Re ji difficulties arise. Our ex- 2 

tended definition requires the invertibility of certain differential operators and we 
know from [12, Section 2] that D = d/dx is a homeomorphism of F,,,,  onto F,,,,_1  
if and only if Re g 0 p. It is this restriction which gives rise to the exceptional 
values mentioned above. We shall be able to define H on F,,,, provided that 

Re (+ v)0 —+p'-2l where 1=0, 1,2..... 

The mapping properties of the extended operator H are easily deduced from 

7 
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those in Section 3 using results in [11] and we have H = H' under appropriate 
conditions. 

In Section 6 we consider a number of operators closely related to H particu-
larly the modified Hankel operator used extensively in [ 19]. The definitions 
of these operators on F,,4, are extended using the extended definition of H and 
their mapping properties obtained. 

We come at last in Section 7 to the definition of H on F,,,,. From considera-
tion of Parseval's equation, we are led to define H for our generalized functions 
as the adjoint of the (extended) operator H on the testing-functions. The 
properties of H on F,, are quickly obtained from those in Section 5 using 
standard theorems on adjoints; indeed most of the hard work goes into Sections 3 
and 5. This completes the first part of our project. 

We then turn our attention to the sundry connections between the Erdélyi-
Kober operators and the Hankel transform or modifications of it. The conditions 
necessary for their validity on are established in Section 8 and the corres-
ponding results on F,, follow readily in Section 9. We come across a number of 
instances of "removable singularities" analogous to [12, Theorem 3.14], where 
the composition of two operators can be interpreted in the sense of analytic 
continuation on a space where one or other of the individual operators is not 
defined. 

As indicated above we defer our main application of the theory to dual integral 
equations until a later paper. 

We shall adhere to the conventions adopted in our previous papers. In 
particular we mention again that 1 p co unless the contrary is explicitly stated 
and that p and q are always connected by the relation p 1  + q 1  = 1. Also, 
C(O, 0°)  will denote the set of infinitely differentiable functions on (O,) whose 
support is a compact subset of (0, '). 

§2 

In this section, we compare and contrast our theory with that developed in [ 23]. 
First it is convenient to recall the definition of the spaces X, introduced in [23]. 

(We use v here to avoid confusion with For each complex number v, is 
the complex linear space of infinitely differentiable functions 4 such that, for 
every pair of non-negative integers m and k, 

Ym,k(4) = sup Ixm(x_ lD) kx_4(x)t < 	 (2.1) 
0<x <00  

X is equipped with the topology generated by the semi-norms 	(m,k = 0, 1, 
2,...). 

It is natural to ask whether there are any connections between these spaces and 
our spaces 	It is fairly easy to see that there are no inclusions of the form 

. Indeed, consider the function 4 defined by 

4(x) = 

where 1 p 	, 	is any complex number and A is an infinitely differentiable 
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function on (0, c)  such that 
0 0<x<1 

I I 	x>2 
Then 4) E 	On the other hand, since 4) is not of rapid descent as x—.rr, 4 
by [23, Lemma 5.2-1]. 

In the opposite direction we state the following theorem. 

THEOREM 2.1. Let 1 p 	and let p, v be complex numbers. Then 
YC,, c F,, if and only if Re i.> Re u ——p 1 . 

If Re v>Re 1L — —p', F,,.c 	. 

The proof involving some routine analysis is omitted. 
Theorem 2.1 effectively says that when 	and F are comparable, the former 

contains "more" generalized functions than the latter. Thus although both 
theories treat spaces of distributions, relative to which the Hankel transform is 
"well-behaved", that in [23] includes our theory in a certain sense, under the 
above conditions. On the other hand we shall also define H on FP' . ,, for values of 
IL, v and p which do not satisfy the condition Re v>Re g -- lip. Further, in 
solving all but the simplest problems, it is necessary to use a sequence of different 
operators. Therefore, if we are solving problems in a space of distributions, the 
mapping properties of all the operators, relative to the given space, must be 
known. 

To illustrate these remarks in the context of the Hankel transform let us 
consider for a moment mixed boundary value problems such as those which arise 
frequently in potential theory and which are discussed comprehensively in [19]. 
One important method of solving the dual integral equations which arise involves 
the use of the Hankel transform (or certain modifications of it) in conjunction 
with the Erdélyi—Kober operators of fractional integration [see 19, Ch. 2].  To 
solve the corresponding problems for distributions entails using spaces of 
generalized functions which are not only amenable to the Hankel transform but 
also to the various fractional integration operators. The spaces F fill the bill PIAL 
nicely and we shall explore some of the theory in the rest of this paper. 

But how do the spaces behave as regards fractional calculus? Let us 
consider the simple differentiation operator D. It follows easily from [23, Lemma 
5.3-3 (ii)] that D is a continuous linear mapping of X 1  into a', for any complex 
v. On the other hand, from part (i) of the same lemma, D maps 	onto Ye.,j  
rather than 	and the range of D on X, for arbitrary ii does not seem to be 
readily obtainable. Thus the precise behaviour of even this simple operator 
relative to X or requires a fairly extensive investigation. By contrast, from 
[12, Theorem 2.11, D is a homeomorphism of F onto F,_1  except when 
Re=p'. 

With these few remarks as a prologue, we now proceed to our theory. 

§3 

For 4) € 	we define H4), the Hankel transform of order i' of 4), by 

(H4))(x) = fo sJ(xt)J(xt)4)(t) dt (O<x <cx) 	 (3.1) 
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provided that the integral exists. If 4) were only known to belong to L"(O, 00)  for 
instance, there would be no guarantee that the integral would exist even for 
almost all x € (0, o)  and we would have to define H4) using mean convergence 
(for instance, convergence in the L'(O, oo)  norm). Fortunately the differentiability 
of the functions in F and FP,  obviates this difficulty and enables us to use (3.1) 
under fairly general conditions which we now indicate. 

Lilt4. 3.1. Let 4) E F with - Re v - + p <Re 
. 
<p 1 . Then H45, as 

defined by (3. 1), is infinitely differentiable on (0, ) and for k =0, 1, 2,... 
6kH4) = (- 1)' H(8 + 1)cd, (S x d/dx). 	 (3.2) 

Proof. First recall from [11, Lemma 2.2] that if 4) E 	t_R4)(t) is bounded 
on (0, cc).  Also, by [5, p. 11, formula (50)], 

z'J(z) = d/dz(z"j ,"   (z)) 1 
for any z, v. Using these facts and integration by parts, we find that 

(H4))(x) = - J (xt1J ~ 1(xt){(84))(t) - (z' + 4)4)(t)} 	dt. 	(3.3) 

Since 4) € F,,. 54) —(v +)4) E 	the integral on the R.H.S. is absolutely 
convergent and uniformly convergent when x is restricted to any compact subset 
of (0, oo).  Hence H4) is continuous on (0, oo). 

If 4) = 54) - (v + ) 4), (3.3) can be written in the form 

r  
U _2J., + j (u)4i(u1x)  du/x. 	 (3.4) 

We may differentiate under the integral sign in (3.4) to obtain 

d1dx[(H4))(x)] = x 1JuJ+i(u)[(u/x)4)'(u/x) + 4)(u/x)] du/x 

=X-1f  u 1J 1 (u){(S + 1)4)](u/x) du/x. 

Since (S + 1)4)e 	the integral again converges absolutely and uniformly on any 
compact subset of (0, cc)  under the given restrictions on the parameters. Hence 
H4) is differentiable on (0, cc)  and 

(SH4))(x) = J uJ + 1(u)[(5 + 1 )4)](u/x) du/x. 

By induction it follows that H4 is infinitely differentiable on (0, cc)  and for k =0, 
1,2,..., 

	

(8kH4))(x) = ( 1Yc_1JU_Jv+iMRS + 1)"4)1(u/x) du/x 	(3.5) 

Now (S + l)'i = (5 + 1), [S —(v+ 4)]4) [S —(v +4)] (5 + 1)k4) since our operators 
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are polynomials in S Hence from (3.5) 

(8"H4)(x) = ( 1Y (  - 'J uJ +i(u)[(6 - (v + ))(6 + 1)'4))(u/x) du/x 

+))(& +1)k4)](t)  dt 

= (._1)k[H(5 + 1)cd](x ) 

from (3.3) with 4) replaced by (5 + 1)"4. This completes the proof. 
We can now proceed to investigate the mapping properties of Ii on the F 

spaces. It is probably easiest to split the process up into a number of smaller 
stages. First we have 

LEMMA 3.2. If —Re v—+p' <Re <p', then H is a continuous linear 
mapping of 	into F,21 _ 1 _,. 

Proof. We give a proof which makes use of properties of the Erdélyi—Kober 
operators of fractional integration. Again we write  
From (3.4) we have 

x 1 (H4))(11x) = - J uJ +i (u)4)(ux) du - J UJ +1 (u)q(UX) du. 

Using properties of J(u), we can find constants C1  and C2  such that 

1x'(H1,4))(11x)I CiJ u'"('(ux)I du + C2 1 00 

uliI'(ux)J du 

I 1 H4)(11x)I C 1 J u 	+ReiI(ux)_Ip(ux) du 

00 

+ C2  u 1 I(ux)'P(ux)I du J1 
= ciI 	"Jxp(x)I + c2K;Rlx_q,(x)f. 

By hypothesis, JxqJ(x)EL. Since we have Re(v++p)>—q 1  and 
—Re > —p' we may apply [11, Lemma 3.1] to deduce that there exist 
constants C3, C4  (independent of 4)) such that 

tIx 1 H4)( 1 /x)II 	C x_1Lq,J + C4  IIXPIIp. 
Using the change of variable t = 11x we find that 

1k 	1 H4)(h/x)II = 

and therefore we can find a constant C 5  (independent of 4))  such that 

IIx + ' 21 H4) (x)fl 	C5  lix 'p(x). 

Similarly we see from (3.4) and (3.5) that for k = 0, 1, 2, 

llx 2 'H4)Il C5 fix(8 + 1)r1J. 
It now follows that for each k =0, 1, 	2,... there exist constants Ce,... 
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(independent of 4)) such that 
k 

C Ix'd'/dx'(x4))JI. 
1=0 

Finally substituting for 4), we deduce that there exist constants D°,... D' 
(independent of 4)) such that 

k+1 
D IIx'd'/dx'(x4))D 

l=0 
or 

k+1 :!E: 	
(3.6) 

Thus H4) 6 F,21 _ 1 	and H is a continuous linear mapping of 	into 
F,21 _ 1_. This completes the proof. 

It is natural to ask whether H maps Fp,,L  onto F,21 _ 1 _ under appropriate 
conditions. It turns out that the answer is affirmative. It is convenient to give a 
proof making use of the principle of analytic continuation and it is this that we 
consider next. 

Let 4)6 Fp,,L  and suppose —Re v—+p' <Re .t <p' as in Lemma 3.2. Then 

H4) exists and, for fixed 0  F,,, and for fixed x €(0, oo),  we can consider 

(H4))(x) = .14000 '.1(xt)J(xt)4)(t) dt 

as a function of v in the half-plane Re v> —Re —+p 1 . Since, for each 
E (0, oo),  J(y) is an entire function of v [5, p. 5], we would expect (H4))(x) to be 

an analytic function of v in the half-plane indicated with 

= JO 
sJ(xt)a1av[J(xt)]4)(t) dt. 

This is a consequence of 

THEOREM 3.3 Let - Re v - + p <Re <p 1  and let 4) € 	Then, as the 
complex increment h tends to 0 (in any manner), h'[H+h4) - H4)] converges in 
the topology of F,21 _ 1 _,. to the function [aHJav]4) defined by 

[aHjav14)(x) = J ..J(xt)a1a[J(xt)14)(t) dt (0<x <cc). 	(3.7) 

Proof. Let 0  C(0, oo) and let x 6(0, cc)  be fixed. The function 

(H4))(x) = J sJ(xt)J(xt)4)(t) dt 

is analytic in v on S ={v: —Re v—+p 1 <Re p.<p 1 } and for k =  1, 2, 

ak/a vk [H4)(x)] = rN/(Xt)ak/apk  [J(xt)]4) (t) dt, 

differentiation under the integral sign being justified by uniform convergence. 
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Hence, in this case, a/av[H(x)] = ffaHJav]4))(x) where the operator aHJav is 
defined by (3.7). 

For fixed v in the strip S  we can choose e >0 such that 1h  <8 => V + h E S 1 . 

For such h we may use the Cauchy integral formula to obtain 

t 
[h 1 (H 1h4) - H4))  - (aHjav)4)](x) = 

h 
2iriJ 	

H34)(x) 	
ds 

c (s - v - h)(s - v)
2 
 

where C is any closed contour in S surrounding v and v + h. By (3.6), there exist 
constants D, independent of 4) E F, such that 

k+1 

D'(0) (4) E 
1-0 

for s E S,, and examination of the proof of Lemma 3.2 shows that these constants 
can be chosen to be independent of seC. If lp<, the quantity 

.rv( J

H. 0(x) 	
2ds') 

(s-v-h)(s-v) / 

involves a double integral which converges absolutely. We may invert the order of 
integration by Fubini's theorem and, using our previous remark, we can find 
constants C, independent of h satisfying Ihi < € and independent of 4) E 	such 
that 

k+1 

- HV4)1 - (aH,Jav)44 IhIC1'(o). 	(3.8) 
1-0 

A similar result follows somewhat more easily in the case p = 00 •  

	

We know that H is a continuous linear mapping of 	into F,21 _ 1 _ when 
V E S. A calculation, similar to the above, using the Cauchy integral formula 
shows the same is true of aHfav. (An alternative would be to derive the 
asymptotic expansion of (aJjav)(x); [see 10].) This, together with the fact that 
C(0, oo)  is dense in shows that (3.8) holds for all 4) E  FPM.  Hence, as h-+0 in 
any manner. 

_ K451 - (aHJav)4))-+0 

and the theorem is proved. 

Remarks 3.4 
Theorem 3.3 contains the weakerresult that if Re <p 1 , (H4))(x) is 

analytic in the half-plane Re ii> - + p` - Re g for fixed x E (0, ) and fixed 
4) E F. 

We can prove similarly that t3'HJäv' exists as the kth order Fréchet 
derivative of H under the above conditions [see 16, pp.  205-210). 

For Re v> -, the Hankel inversion theorem [22, p.  456] shows that H = H' 
under the conditions of Theorem 3.3. To remove the restriction Re i> -, we 
need 

LErta 3.5. Let - q - '< Re g <p 1 . Then for fixed 4) E F. and fixed X  (0, ), 
H,14V 4) (x) is analytic in i' on the region Re v> max (-Re g- 2 +   p', 
Re g.t-4+q'). 
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Proof. Writing T,h = h [H + 4)—H4)]—(aHJa)4), we can write 

— H,H4)] = h(T h T h4) + T, h aHJaPcb +aHJavT4 
+aHJavaHJav4))+ HVh 1 (H +h4) — H,,4)) 
+ h'(H+h — H)H,cb. 

Taking Ihi small enough, we can use arguments similar to those in Theorem 3.3 to 
show that each term converges in the topology of Fp,M  as h — 0 if 

max (— Re ii —2 + p', —q)< Re t <mm (p 1 , Re v + — 

The required result then follows. 
We notice that the inequalities in the hypotheses of Lemma 3.5 imply that 

Re z' > —1 now and not Re v> — 1  as previously. It might appear that we have 
expended a great deal of effort in travelling the short distance from —3 to —1. 
However, the results on analyticity will be useful later. Furthermore we can now 
obtain a complete description of the mapping properties of H, on by means 
of 

LEMMA 3.6. Let 4eF, with max (—Re v—+p', —q 1 )<Re ju <min (p', 
Re +—q'). 
Then 

HJ,4)-4. 	 (3.9) 

Proof. First assume also that Re v> —3. 
If 4) E C(0, CO), then certainly 4) E L 1 (0, ) and, since Re v> —3, (3.9) follows 

by (he Hankel inversion theorem, [22 p.  456]. (Although Watson only considers 
real values of v, the result is easily modified for complex v.) 

Next, let 4) E 	be arbitrary. By [12, (1.7)], C(0, ) is dense in Fp, and 
hence there is a sequence 	of elements in C(0, oo)  such that On  converges 
to 4) in Fp, as n — oo. By the previous case, for n = 1, 2,. 

H,,H,4),,=4),, 	 (3.10) 

But, as mentioned above, under the given conditions, H,,H, is a continuous linear 
mapping of 	into 	(3.9) follows on letting n— 	in (3.10). 

We have now proved that under the extra hypothesis Re v> — 3 
H,H,4)(x) = 4)(x) 

for each fixed 0 E F,4, and each fixed x E (0, ). However the left-hand side is an 
analytic function of v in the half-plane Re v > max (—Re .t — + p 1 , 
Re p —+ q') using Lemma 3.5. By the principle of analytic continuation, the 
restriction Re i> -3 can be removed. This completes the proof of Lemma 3.6. 

We can summarize our conclusions in 

THEOREM 3.7. H, is a continuous linear mapping of F,. into F .21 _ 1 _ provided 
—Re v-3+p'<Re p<p 1 . If also —q'<Re p<Re v+ 2 —q -  , then H, is a 
homeomorphism of Fp, onto Fp,21p _ 1 _,L  and H 1  = H,. 

Proof. This follows immediately from Lemmas 3.2 and 3.6. 
There are other ways of arriving at Theorem 3.7 but the method we have 
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chosen both makes use of some earlier results and paves the way for using 
analytic continuation as a tool in later sections. 

§4 

Before attempting to relax the conditions in Theorem 3.7, we consider briefly 
how certain special cases can be derived from results in the literature. 

Some facts about H_1 and H1, the Fourier cosine and sine transforms can be 
obtained from results in [20].  For instance, [20, Theorem 74] can be used to show 
that H_4 is a continuous linear mapping of L(0,) into L(O,)  when l<p2. 
For 45 € F,,, the definition of H_14, using convergence in the Lq norm coincides 
with (3.1). From this it follows fairly easily that H_1 is a continuous linear 
mapping of F,, into Fq  when 1< p 2. 

To get a sharper result, we could use [20, Theorem 801 to prove in an 
analogous way that for 1<p2, H_1 maps F,, continuously into F,,,21,,_ 1 . As we 
remarked in [13], if 1<p ---::::2  

F,,, 21 _ 1  c Fq  

the inclusion map being continuous and for 1 <p <2, the inclusion is strict [13, 
Theorem 2 . 5 ]. Thus for 1< p  <2, H_1 cannot map F. onto Fq . That it maps F,, 
onto F,,,21,,_ 1  can be seen using [20, Theorem 83] in conjunction with properties of 
the Riemann-Liouville fractional integral I"' developed in [11] and the Open 
Mapping Theorem for Fréchet spaces [21, Theorem 17.1]. We also note that 
conditions under which H_1 maps F,,,21,,_ 1  into F,, can be derived from [20, 
Theorem 79]. 

Other special cases can be derived from results in [14 and 15] concerning 
operators of the form 

I4(x) = iim(q)J (x:)i_vJv_&(x:)cb(t)  dt (4, € L") 	(4.1) 

where lim(q) denotes convergence in the Lq norm. 
Finally we should mention work of Rooney on the extendability of the Hankel 

transform relative to weighted LP spaces. For 1 p and any complex .t we 
shall write 

LP = (f: xf(x) E LP (0, oo)} 	 (4.2) 

so that LP is the space L 1 _,,,,, in [17 and 18].  Transcribing results in [18],  we find 
that H can be extended to a continuous linear mapping from LP into L'11,, 11,_ 1 _,, 
provided that 1<p!_5 r <oo and max (lIp, 1— 1/r) lip - Re 1x<Re i' +. If we 
take p = r, results for F,,,, follow fairly easily although the restrictions on the 
parameters are more stringent than those in Theorem 3.3 above. 

We now consider whether it is possible to extend the definition of H to spaces 
F,,,1  which do not satisfy the conditions —Re v—+p 1 <Re <p 1  in Lemma 
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3.2 and Theorem 3.7. First we remove the restriction Re 1L <p 1 . 
Let 0 € 	with - Re ii - + p' <Re <p'. Then from (3.3), we have 

(H4)(x)= —X1HV+INV4, 	 (5.1) 
where, as in [23, p. 135], N is the differential operator defined by 

Nd = x 	d/dx(x44))= d4)/dx — (v+)x'4). 	 (5.2) 

Now the right-hand side of (5.1) exists provided only that 

—Re (v+ l)- 2 +p- '< Re - l<p 
or 

—Re 

We can therefore use (5.1) to define H on F,1, subject to the last condition. It is 
clear from [11, Theorem 2.6] and Lemma 3.2 above that II,  as so defined, is a 
continuous linear mapping of F into F,21 _ 	Furthermore if 4) E F where 
—Re P —+p 1 <Re p<p 1 , H4) as defined by (5.1) agrees with H4) as defined 
by (3. 1), in view of (3.3). Also, it is easy to show, using Theorem 3.3 and (5.2) 
that if Re tt  <p' + 1, 1-4 is analytic in v in the half-plane Re i> - Re 14 — +p 
with Fréchet derivative aHjav given by 

[agJav]4) = — x{aH ±1/aN4) - H~ 1 x 1 4)} (4) € F,,,,) 
Having weakened the condition Re <p to Re <p +1, we can now repeat 
the process to define H on F. subject only to the condition —Re v—+p 1 < 

,Re g . (5.1) motivates the following definition. 

DEFINITION 5.1. Let - Re v - + p 1  <Re p.. For 4) E F, we define H4 by 
(H4))(x) = (_1)IcxHv+kNy+k_l .. . N4(x) (5.3) 

where k is any non-negative integer such that Re 1L <p 1  + k. [Compare 23, p. 
163, formula (2).] 

Before we proceed, there are a number of points to be resolved concerning this 
definition. 

Notes 

Firstly we note that since —Re (v+k)—+p 1 <Re u —k<p 1 , the right-
hand side of (5.3) defines a continuous linear mapping of 	into 	by 
[11, Theorem 2.6] and Lemma 3.2 above. 

To justify the symbol H on the left-hand side of (5.3), we have to show that 
our new definition agrees with that in (3.1) wherever both make sense, that is, for 
functions 4) € F 	with - Re ii - + p <Re 1L <p'. However, this is easily 
checked using k applications of (5.1) which are valid under the given hypotheses. 

We must also check that our definition is independent of our choice of 
non-negative integer k satisfying Re g <p 1  + k. To this end, suppose that I is 
another non-negative integer such that Re p<p+L Also we may take k<l 
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without loss of generality. Then for 4) € 	and - Re ii - + p <Re , we have 

l)kx_k(_l)l_kx_(I_k)HN 	. . . N + (N +,_ 1  . . . N4)) 

=(—l)'xH+k(N+k_l .. . N4)) 

applying (5.1) (1—k) times with 4) replaced by N+k_j . . . N4). This is valid since 
—Re (v+k)—+p'<Re p.—k<p 1 +(l—k). The required result follows. 

From results in §3, we can easily obtain the mapping properties of our extended 
operator. 

THEOREM 5.2 
If—Re v—+p'<Re p., then H is a continuous linear mapping of F. into 

F,21_1 
.. 

H is analytic in ii in the half-plane Re v> —Re p.—+p 1 . 
If - Re v - + p' <Re p. <Re ii + - q 1 , then H is a homeomorphism of 

onto F,21 _ 1 _ and H = H'. 

Proof. (1) and (ii) follow almost immediately. The proof of (iii) is similar to that 
of Lemma 3.6 and is therefore omitted. 

To relax the restrictions in Theorem 5.2 further, we have to leave behind (5.1) 
of which maximum use has been made. As in [23), we define the operator M by 

M4) = X 	d1dx(x 4 4)). 	 (5.4) 

Proceeding as in [23, Lemma 5.4-1(7)) we can prove that 

HVMV4) = 
	

(5.5) 

for 4) e C(0, ) and, by continuity, (5.5) is true for 4) E•F 	provided that 
- Re v - + i/p <Re p. —1. However the right-hand side of (5.5) is meaningful if 
- Re ii - + 1 l <Re. p. +1. To exploit this, we would like to write 

H4) = xH +1M'4) 	 (5.6) 

under appropriate conditions. In [11], we saw that D is a homeomorphism of F,, 
onto 	if and only if Re 0p 1  and, for 4)eF,_1 , 

10 4)tt Rep.>p 1  

4i(t)dt Re p.<p 1  

It follows easily that M is a homeomorphism of F,. onto F_1  if and only if 
Re(p.+v+4) ~ p'. (If  Re (g 	M 1  will not be defined on the whole 
of 	Thus the right-hand side of (5.6) defines .a continuous linear mapping 
of Fp, M  into F,21 _ 1 _,. provided that 

Re (p. + v)> —2—+p 1 , Re (p. + v)~ —+p 1 . 	(5.7) 

For such values of ii we can use (5.6) to define H on 	Because of (5.5), the 
new definition agrees with the previous (extended) definition in the case Re (p. + 
v)> - + p'. By repeating the process, we can extend the definition of H to the 
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set of complex numbers 

fl ={i': Re(+ v) ~ —+p 1 -2l for 1=0, 1,2,...) 	(5.8) 
P'g 

DEFINiTION 5.3 Let v E fl 	and let k be a non-negative integer such that 
Re(+v)>—+p 1 -2k. We define H on Fp,,  (lp) by 

(H4))(x)=x'H+kMk_l.. . M'd (4)€F,) 	 (5.9) 

where H+k is defined using (5.3). 

Notes. Comments similar to those after Definition 5.1 are in order here. 
Since - Re (v + k)— + p <Re + k and v E 	the right-hand side of 

(5.9) defines a continuous linear mapping of 	into F 21 _ 1 _,.. by Theorem 5.2 
in conjunction with [11, Theorem 3 .2]. 

By k applications of (5.6), our new definition agrees with that of Definition 
5.1 when Re(+v)>—+p 2 . 

We most check that our definition is independent of the choice of the 
non-negative integer satisfying Re (p + v)> - + p - 2k. The details are similar 
to those in Note 3 following Definition 5.1 and are omitted. 

We would expect 1-4 to be a homeomorphism of 	onto F,21 _ 1_.1  with 

H = H 1 , under appropriate conditions and this is indeed the case. However, 
since fl,,,, is not connected, it is not merely a case of applying analytic continua-
tion in conjunction with Theorem 5.2 (iii). Instead we use the following Lemma. 

Liiu 5.4. Let 1 p 	and let v E fl u ,.. Then for 4) € F,,,., 

H4)=M,,H+ix 1 4) 	 (5.10) 

Proof. ii € fl,,,. => v+ 1€ fl,,,,. 1  so that H4), H+1 x 1 4 are both defined. First 
assume Re ( + v)> -+ 1 l and let 4) E C(0, ). The method of [23, Lemma 
5.4-1(6)] (with 4) replaced by x'4)) establishes (5.10) in this case and the result 
for a general 4) E F,,,,. follows since C(0, 00)  is dense in F,,,.. 

The proof for a general value of v E fl,,,, now follows from the previous case on 
using (5.9). 

We are now ready to give a precise description of the behaviour of H on F,,,.. 

THEOREM 5.5 Let 1 p 00 and let IL , v be complex numbers. 
If V € fi,,,., 1-4 is a continuous linear mapping of F,,,,. into Fp,2/p_ 1 _,L . 
For fixed p and 1L , H is analytic on F,,,,. for ii E fl,.. 
If V € fL,,,,, fl flp,2/p..4,.  H is a homeomorphism of F,,,,. onto F,,, 21,,_ 1 ,. and 

H 1 =Hy. 

Proof. We consider only (iii). 
Let v€fl,,,,. flfl,,, 21,,_ 1_,. and let k, 1 be non-negative integers such that 

Re ( + v)> - + p - 2k and Re (2p - 1— g. + v)> - + p = 2!. Then if 4) E F,,,,. 
and Re (21p—  1— + v)>—+p 1  (so that we may take 1=0) 

(Hv4))(x)=x'Hv+kM k _ l  .. . M4) 	 (5.11) 

from (5.9). But under the given conditions H + k is a homeomorphism of F,,,,.+k 
Onto Fp,2/p-1(+k)  by Theorem 5.2(iii). Hence by (5.11), H is a homeomorphism 
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of F.,. onto F,21 _ 1 _,, and, for 4)eF,21 _ 3 _ 1  
M.. . M +k_jH+kxJ1. 

But, by an easy induction based on (5.10), the right-hand side is simply Hc(' 
under the given conditions and we have the required result. The case 1>0 follows 
easily from the previous case. 

This completes the proof of Theorem 5.5. 
We mention one consequence of Theorem 5.5. 

COROLLARY 5.6. Let —Re v - +p <Re p<p 1  and let vEfl,,21 ,_ 1 _. Then 
the equation 

fo"o 
%1(xt)J,,(xt)0(t) dt = 4)(x) 

has, for each 4)€F .21 _ 1 _, a unique solution 4)eFp,,. 

Proof. If —Re v — + p <Re <p 1 , then v E fl,, and for 4) E 	H4) is 
given by (3.1). The result follows at once from Theorem 5.5 (iii). 

§6 

Various operators related to H can now be extended easily. For instance, (4.1) 
indicates that the operator 5,, of Okikiolu can be extended to other values of v 

via the relation 

= xH,,_x"4. 	 (6.1) 

Similar considerations apply to operators involving the composition of two 
Hankel transforms as studied in [17]. However we shall only look in detail at one 
important modification of H,,. 

For complex numbers i and a, we define the modified Hankel transform S" 
by 

00  

(xt)4)(t) dt 	 (6.2) 1 	V S4)(x) = 2ax fo  

-a 

 

under appropriate conditions. The operator S"-* was introduced in [7] and used 
extensively in [19 in connection with dual integral equations. By Lemma 3.1, if 

qS E F,,, the integral in (6.2) converges for all x e (0, ) provided that 
—Re (27J +a)—+p<Re  a <p 1  and in that case 

S'4) = 2ax 4H2+x 4). 	 (6.3) 

We can use this to extend S' to those values of r,a such that Re (2ri + a + —  
a + .t) o —+ p 1  —2! (1 = 0, 1, 2, .. .). Accordingly, let 

A={Re(21l+p.)+296 p'-2l (l-0, 1,2 .... )} 	(6.4) 

(6.4) is the case m = 2 of [12, formula 3.5]. 

DEFThIITION 6.1. For any complex number a and for i E 	define S' on 
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by 
S"4 (x) = 2ax  aH2  ,aX a4, (x) 

where H2,j+a  is defined using Definition 5.3. 
To discuss the invertibility of S', let 

A' ={q: Re (2ir - p)FI —p —21, (l= 0,1,2,. ..)) 	(6.5) 

This is the case p  =2 in [12, formula 3.10]. Then we have the following. 

THEOREM 6.2 
(1) If a is any complex number and r E AP.W  then S' is a continuous linear 

mapping of Fp, JL,L  into Fp,2/p_2_ p . 

	

(ii)' If also i + a € A',,,, then 	is a homeomorphism of F,,, 1  onto Fp,2/p _2_,L  and 
(Szyl = s 4a'. 

Proof. The results follow in a routine manner from Theorem 5.5 and the details 
are omitted. 

§7 

We are now ready to define our generalized Hankel transform on the spaces 
F. Our definition is motivated by considering regular functionals. 

Let f € L (where L is defined by (4.2)). By Holder's inequality, f generates a 
functional, 'rf say, on Fq,_,(p 1  + q 1  = 1) according to the formula 

(ii, 	
= 	

dx (4 ) E Fq,_). 	 (7.1) 

The mapping f -+ ri provides an imbedding of LP into 	We shall use i-  to 
denote any such imbedding and omit any explicit mention of p or 1L. 

Suppose now that Hf exists in the classical sense. As we have seen above, we 
may expect HJ to belong to under appropriate conditions. In this case, 

Hf generates an element rHf of F,_21,,+1+ . = F.2/q_i+p . For our definition to be 
reasonable we must ensure that 

Hrf='rHf 	 (7.2) 

for such functions f, where H on the left-hand side is our generalized Hankel 
transform and H on the right is the classical Hankel transform. 

If 4) € Fq.2Iq _1+ p , (7.2) implies that 

00  (Hi', 4)) = (rHf, 4)) = J Hf(x)4)(x) dx = J f(x)HO(x) dx 
0 	 0 

by Parseval's formula. The validity of this step can be checked by first taking 
4) € C(0, ) and f with compact support and then using continuity and HOlder's 
inequality. In particular, Parseval's equality is valid for each of the special cases 
mentioned in §4. We are therefore led to the equation 

(Hrf, 4)) = (Tf, HA)) (4) € Fq,21q _ 1+p ). 	 (7.3) 

Although we arrived at (7.3) by considering regular functionals only, it is natural 
to use (7.3) to define Hg for any g € 	regular or not. We shall continue to 
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use f rather than g for an arbitrary element of F. Thus we require that 

(Hf, 4)) = (1' H4)) 
	

(7.4) 

for f€ F, 4) € Fq ,2/q _1+ under appropriate conditions. Further, although our 
derivation above used an integral representation for H4),  the right-hand side of 
(7.4) is meaningful under much wider conditions if we use Definition 5.3. Finally, 
therefore, we arrive at the following definition. 

DEFINITION 7.1. Let 1 p 	and let 1L be any complex number. For z' E flq , 

we define H on F, by 

(Hf, 4))=(f,H4)) 

for f  F, 4) € F,21 _ 1 _ where H4) is defined as in Definition 5.3. 

Notes 

Since flq,_ = p,2/p1, the right-hand side is meaningful and H defines a 
continuous linear mapping of F 21 _ 1 _ into 

By our motivation above, our definition of a generalized Hankel transform 
extends the classical transform for functions in LP in that, when both exist, they 
agree in the sense of (7.2). In particular, our theory is consistent with Rooney's 
theory of extendability of the classical Hankel transform in [18] but allows us to 
relax the restrictions further by passing to generalized functions. 

The mapping properties of Ii on 	are easily obtained from those of H on 
Fp.2/p _1 L . 

THEOREM 7.2 (i) If V E 	then H is a continuous linear mapping of F into 
F,21 _ 1  . 

If also v € fl,,,.,, then H is a homeomorphism of F onto F,, 21 _ 1  and 
H 1 =H. 

For each fixed f€ F and each fixed 4) € F,21 _ 1_, (Hf, 4)) is an analytic 
function of v in 

Proof. (i) As was stated in Note 1 following Definition 7.1, H is a continuous 
linear mapping of F,21 _ 1  into if VEflq,_. The result follows at once from 
[23, Theorem 1.10-1]. 

(ii) is proved similarly using Theorem .5.5 (iii) and [23, Theorem 1.10-2] while 
(iii) can be proved using Theorem 5.5(u). 

Analogues of various formulae in §5 hold for our generalized Hankel trans-
form. For instance if VEfl q._ IL , the result (cf. (5.1)) 

Hf= —x'H +1Nf (f€F) 

can be established by taking adjoints in (5.10) and using the fact that the adjoint 
of M is - N,,,. Similar reasoning applies to other formulae in [23, p.  143]. 

To define 	on F,, we have formally 

(S'f, 4)) = (2x 	H2q +ax 4 'f, 4)) 

= (1. 2ax4H2+axF4)) 
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Hence for f  F, we define S'f by 

(S"'°f, 4)) = (f, xS'"'x 1 4) (4) E F,21 _) 	 (7.5) 

By Theorem 6.2, the right-hand side is meaningful if i € Aq _ and we have the 
following result which we state without proof. 

THEOREM 7.3. (1) If a is any complex number and 7 € A q,_, then S'° is a 
continuous linear mapping of F into F,21 _. 

(ii) If also + a € A'q,_, then S"° is a homeomorphism of F onto 	and 
(STh)l = S 	a 

We now consider connections between the Hankel transform and operators of 
fractional integration in F. For Re a >0, m >0 and 4) € Fp,L  we define J,04) 
and K4) on (0, c)  by 

X 

(I4))(x) =[r(a)]_ 1 mx _m1_maj (x'" - um)a_lum+m_14)(u) du 

(K4))(x)=[r aff- Imxmj (um - x m  )um_m_l4)(u du 

provided that Re (mil + t)+ m >p 1  and Re (mt - )> —p respectively. The 
restriction Re a >0 was removed by analytic continuation in [11] and an 
extension to more general values of 'q was discussed in [12] where the mapping 
properties of the operators can be found. 

By making simple changes of variables in results from [6],  we find that for 
4)€L 2 , Re a>0 and Re v>-1, 

= 	 (8.1) 

We consider the conditions under which (8.1) holds for 4) E 	From results in 
[12, §3] and Theorem 5.5 above, the left-hand side maps F continuously into 
Fp,21p-1-IL if P E fl p,p  flfl q,_ p . The corresponding conditions for the right-hand side 
are v € fZ,,, and i.' + 2cr E The fact that these two sets of conditions are not 
the same indicates that further investigation is called for. 

If k is a non-negative integer then by [12, (3.6)] we have formally 
= jv/2-4-k,a _k x —v±I-2 k (lxlD)_kx V_4 	 (8.2) 

while if we use (5.10) we obtain formally 

H = M,M +1  . . . M±k_ l H ±kx" = x_(x_ 1 D) kx v_ JI ±kx 	(8.3) 

Combining (8.2) and (8.3) we obtain 

Ic1cH4) 2kjvI2—±k,a  _kx_ kHx - k4)X2 4 

or 

I2H4) = 2kx_kI(v +k)I 2_.Q _kHx_k4) 	 (8.4)X2 	 4 

Now the calculations above are valid for 4) € F provided that v € fl,,. and 
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V€fl q._. On the other hand, the right-hand side is meaningful provided only that 
PEI1 L  and P+2kEflq _ L . This enables us to remove the restriction VEfl q. , 
while retaining the restriction ii E fl,,.,. Namely, if vfl q, 	we can choose a 
non-negative integer k such that ii +2k E fl q 	and we use (8.4) to define 
I;'?H on 	in this case. We should mention the following points. 

(I) The definition of the extended operator is independent of the non-negative 
integer k satisfying the condition v + 2k E flq . 

The extended operator I'2'°H is a continuous linear mapping of Fe,,, 
into 	for any complex a and VEfl P.L . 

The extended operator is analytic in v on Fp,j , for PEflI.L • 

We have, therefore seen that in a sense the singularities corresponding to 
V € 	- fl q , are removable. 

Similar considerations apply to the operator Hv+2aI 2 ' on the right-hand 
side of (8.1). We find that if PEfl,,,, v+2a€fl 	and 4)eF, 

 v
2

k)/2_,a±kxk —k
X

k
v 
	)r(_Hv +2apx22 	

, 
	—k+2(a+kx 

 

However, the right-hand side is meaningful provided only that i' e 	and 
(v + 2a) + 2k e 	We can use (8.5) to extend 	 to

FP, provided only 
V e fl 	and the extended operator is a continuous linear mapping of Fp. Jl, into 
F ,21_ 1—.t• 

We have now established that, for 4) E 	both sides of (8.1) define elements 
of F,21 _ 1 _ provided only that ii € f1p1WIt remains to establish equality. We state 
our result as a theorem. 

THEOREM 8.1. If 4 € F,, and v € fl, then (8.1) holds in the usual sense if also 
V € flq,  and v + 2a E ,,,L and, otherwise, in the sense that the analytic con-
tinuations of both sides are equal. 

Proof. By the continuity of the (extended) operators, it is sufficient to establish 
the result for 4) E C'(O, ) (regarded as an element of Using Kober's result 
together with analytic continuation, ( 8.1) holds provided that 

Re ( + v)> —+p 1 , Re (+ +2a)> —+p 1 , Re (- + v)> —-p 1 .  

Now, let k be a non-negative integer such that Re ( + v)> - + 	- 2k and 
Re(i+v+2a)>—+p'-2k. Then, if 4)€F, 

I;2'H4) = I 2—,or 
kH kX 

&,—k4 (x' D)"x V_4) 2 4

= XkI+k)/2HV+kXv2(XlD)kXv4, 

- x'H - 	v+k+2a x2  

by Kober's result with ji, v replaced by tL + k, v + k respectively. Also 
r(v—k)/2 

Hv+2aI/24) = 2'x kH 	+klx2 	- +kx k4) 

- — v +2cz ±k1X 2  

by (8.5) above and [12, Definition 3.1J. Hence our result holds for VEf1 
v+2a€fl and Re(—+)>—+p'. 

Finally, using similar considerations, the restriction Re (- IL + v)>--I+ p -1   can 
be replaced by the condition v € flq, ; the details are omitted. 

This completes the proof of Theorem 8.1. 
8 
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(8.1) gives a simple connection between operators of the form 	and If. 
There is a similar connection between the operators K b" and H which we state 
in the following theorem. 

THEOREM 8.2. If 4) € F. and v € 	then, in a sense analogous to that of 
Theorem 8. 1, 

HK'22 "d = 	+2a 4i. 	 (8.6) 

Proof. The proof is similar to that of Theorem 8.1 and is omitted. 

We next establish relations between Iv', K' and the modified Hankel 
operator S'. These are well-known and are given in [19].  We merely establish 
the range of values for which they are valid and indicate how this may be deduced 
from our results above. We give six results from [19, p.  274, formulae 13A-18A]. 

THEOREM 8.3. Let 4) € Then 

 IScz4 = S' 4 4 if i E A p ,.L , r + a E A,.. 

 KS 4 4 = S'4) if € i + 	€ 

 S''Scb if t € A,,, ij + a E A,.. 

 SI.?4' = S'4 if i € A,,, i + a € A PM . 
 .a SK4 = S''4 if q € i + a € Al.  p. 

S'S-n+CK'PO = K 04) if i € 	r + a € 

The right-hand sides provide analytic continuations of the left-hand sides for 
yp € 	in (i)-(v) and vp € A 	in (vi). 

Proof. We consider (i); the other parts are similar. 

If ip € Ap,, the right-hand side of (1) defines a continuous linear mapping of F 
into F,21 _2_. The same is true of the left-hand side, the potential singularities 
for ip + aA, 21 _ 2_. (= A,,.) being removable. To see this, we rewrite the 
left-hand side in the form 

2axI2+2 PH2 ,, +ax4 

and we are in the situation discussed above for (8.1) with v = 2p + a and IL 

replaced by+ - a. 
For a verification of equality we can proceed as in [19],  taking 0.  E C'(O, ) and 

using analytic continuation with respect to v, as well as techniques similar to those 
above. 

Results obtained in [17] concerning the products of Hankel transforms can be 
used to derive the following theorem. 

THEoR1 8.4. If PEfl,,. and v+yefl .21 _ 1 _, then for 4)€F, 

HV +.VHV4) = 

HV+,JIV4) = 

Proof. The details are similar in spirit to those in Theorem 8.1 and are omitted. 
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As a special case, we can obtain properties of 

H=HH and IL=HH4, 

the Hubert transforms of odd and even functions. Another corollary ties together 
formulae (8.1) and (8.6) above. 

COROLLARY 8.5. If 4$ E F,. and V E f11,, then 
I 2 aH4$ = 	JV/2.e& 4,  = K 2 "Hv +2a4$ = HK: 4' 2a x 

where equality holds in the sense of Theorem 8.1. 

Proof. The result follows formally on putting y = 2a in Theorem 8.4 and using 
Theorems 8.1 and 8.2. The removal of singularities is carried out as in Theorem 
8.1. 

Finally in this section we mention a result involving three Hankel transforms. 
This is a special case of a result for Watson transforms which has been proved in 
[2] using Mellin transforms for functions in L(O, ). 

THEOREM 8.6. If a E flp ,, 0 € flq,_, y E 	then, for 4$ E 

HQHH.,4$ = H.,HHQ 4$. 

Proof. We merely mention that an alternative to the use of Mellin transforms is 
provided by Theorem 8.4 and Corollary 8.5 above together with [12, Theorems 
3.13 and 3.14]. 

§9 

As usual it is an easy matter to obtain the corresponding results on F. by 
using adjoint operators. For instance, let us consider again the operator I241H. 

Using [12, (3.17)] and Definition 7.1 above we have formally 

(I: 2-1 'Hf, 4) = (j H,,K24l.a4$) 	 (9.1) 

where f€ F, 4$ € F,21 _ 1 . Now, in the first instance, the right-hand side will be 
meaningful provided that v/2+€A,,, 21 _ 1 _,,, and z'EIZP,2Ip_1_M  (by [12, Theorem 
3.10] and Theorem 5.5 above) or equivalently v E RP4, and v € However we 
may remove the restriction v € fl,,. and consequently the right-hand side is 
meaningful provided only that v €(1q,-AL9 if  we interpret it in the sense of its 
analytic continuation. We can then use (9.1) to define an operator, which we again 
denote by I 2 'H, on F for any complex a and v € 	This operator is the 
analytic continuation to the whole of fl q, 	of the operator formed by the 
composition of I;2_  and H. 

Similar considerations apply to the., other operators appearing in Corollary 8.5 
and we have the following theorem. 

TIoRl 9.1. If f€ F and VEfl q, then 

I 2 Hf = 	 = 	 = HK9 1''f 	(9.2) 

where if appropriate the operators are interpreted in the sense of their 
analytic continuations. 	 - 
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Proof. The result follows immediately from Corollary 8.5 which states in effect 
that the operators are formally self-adjoint. 

Theorem 9.1 contains many classical results as special cases. For instance we 
give the following corollary. 

COROLLARY. 9.2. Let 1<p2, Rea>0, Re(v+)>-+p', Re(v-)> 
—4 — p 1 . Then, for gEL, 

JV12iocHg = Hp+2a 1 x 2 	g 	 g 
= 

2  

Proof. Using Rooney's result quoted in Section 4 together with a simple 
extension of [6, Theorem 2],  we see that, under the given conditions, all four 
expressions define functions in and therefore generate 'elements in 
F,_21+1+ . Using the notation introduced in (7.1) we have 

= I 2 i-Hg since Re (ii 
- 

p)> 
- - 

p 1 , Re a >0 

I$2 Hrg (see Note 2 following Definition 7.1) 

= H +2 I 2 '°rg (by Theorem 9.1 applied to Tg E 

= = THy+2aI 2 'g as before 

Hence 

 

1 ,/2- '°Hg Hy~2J20rg  (a.e.). The other equalities are proved simi- 
larly. 

The analogues of Theorem 8.4 and 8.6 are obvious and we state them without 
proof. 

THEOREM 9.3. If IJ€ flq,  and z' + 'yE fl,, then, for fE F,,jL

HV +.Y HVf = K'"2' .Y/2Jc2—..Y12f = 

THEOREM 9.4. If a € fIq,- jL 9 (3 E 	and y € fl q,., then, for f E F,, 

HaHpI{yf = H.H,3HJ. 

We mention that various classical results can be deduced from Theorem 9.4 by 
using the method of proof of Corollary 9.2. 

Finally we state the results for the modified Hankel operators S" on F,,,,. 

THEOREM 9.5. Let f€F. Then 

IS'f= SThcz+$f 

KS4af= S'f 

S+ S.c2f= I"f 

S 	I"f= S''°f 

S 19-- + 13  

S S'"3f= Kf 

Furthermore, the right-hand sides provide analytic continuations of the correspon-
ding left-hand sides for i € A q,_,.. for (i)-(v) and 77 E A,-,L for (vi). 

Proof. We give a quick proof of (1); the others are similar. 

if 77EA q,, i+aeA,_. 

if 71EA q,_ j , 77+aEAq,_. 

if TlEA q., 77+a€A L . 

if 71 € A q,, 77+ a E Aq,_p . 

if 71 E Aq,_, 77+aEA,_. 

if 77€A, 77+aEAq,_. 
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Using [12, (3.17)] and (7.5) above we have, for fEF and 4)EF,2I _, 
(I'S'°f,4,) = (f, xS.6x_l Ktc +i.4) 

Now the right-hand side is meaningful provided + a E A,, 21 _ 1 _, and r E pL 

A 21 _ 1 _ or equivalently 71+ a E 	q E Aq . Applying Theorem 8.3(v) with 
and 4) replaced by q, - and x 1 4 respectively 

(IS''f, 4)) = (1 xSx'4)) = (SY'cf) 0) 
using (7.5) again. The result follows. 

We hope in a future paper to apply these results to the solution of certain dual 
or triple integral equations involving elements of F,',.,,, which are generalizations 
of classical equations whose solutions can be obtained using the operators above; 
[see, for instance, 19]. 
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SYNOPSIS 

The theories of fractional calculus and of the Hankel transform developed in [5, 6 and 8] for the 
spaces F1  of generalised functions are used to study distributional analogues of dual integral 
equations of Titchmarsh type. These are shown to have infinitely many solutions in F1 under very 
general conditions on the parameters involved. These results are used to study the corresponding 
classical problem in weighted L" spaces. Existence and uniqueness of classical solutions are investi-
gated and examples(given of both uniqueness and non-uniqueness for the classical problem. 

§1 

The mathematical formulation of many problems in mathematical physics pro-
duces a pair of dual integral equations of the form 

S" 2 "2 'f= g1  on (0, 1) 
 

92  on (1, cc) 

Here 9 1 , 92  are known functions on (0, 1) and (1, cc)  respectively, v 11  v 2 , a1 , a2  are 
complex numbers and S"° is an operator defined, for appropriate complex 
numbers 71 and a and appropriate functions f (defined almost everywhere on 
(0, cc)), by 

Sf(x)=2x J t 1  J2 ,(xt)f(t) dt (0<x<-). 	(1.2) 

These so-called dual integral equations of Titchmarsh type are discussed fully, 
within a classical framework, in [11]. 

The basic questions connected with (1.1) are those of existence and uniqueness, 
that is, whether a function f, defined almost everywhere on (0,-) and satisfying 
(1.1), exists and, if so, whether it is unique. The purpose of the present paper is to 
discuss these basic questions by examining an analogue of (1.1) for certain classes 
of generalised functions. Such an exercise seems justified on at least three counts. 

It is conceivable that singularities could arise at the point x = 1 and that 
generalised functions are required to handle rigorously the 5-type distribu-
tions which could then occur. 
A space of testing-functions, all of which are infinitely differentiable, 
provides a setting in which all the formal analysis associated with (1.1) can 
be made rigorous without much difficulty. 

* This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of 
Scotland. 
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(iii) A study of the operator S'' relative to, say, weighted L' spaces, leads to 
difficulties concerning its range which can be overcome to some extent by 
imbedding the weighted L" spaces in appropriate spaces of generalised 
functions and extending S' 1' suitably. 

A similar investigation to ours has been carried out recently by Walton [12]. 
Hence some justification for our work is required. In [12], Walton uses the spaces 

0  introduced by Zemanian in [ 13]. However, as we mentioned in [8],  the 
properties of even simple differential or integral operators are not easily described 
in full relative to C; only certain special combinations of operators can be 
inverted with precision. By contrast, we have available in [5 and 6] a complete 
fractional calculus for our spaces FI,, and in [8] a complete description of the 
behaviour of S'' relative to these spaces. This allows us to avoid some of the 
weighty analysis in [12] involving Bessel functions and to proceed, instead, along 
the lines of [11, §4.2]. Furthermore, we are able to study (1.1) under much more 
general conditions on the parameters v 11  v 2 , a, - and a2  than does Walton because 
of the extension processes carried Out in [6 and 8]. 

Mention must also be made of another similar investigation carried out by 
Braaksma and Schuitman [1]. They study certain dual integral equations in spaces 
closely related to the case p = in our theory and extend the operators involved 
to ranges of the parameters analogous to those in [6 and 8]. However, our theory 
deals with all values of p in the range 1 p whereas the spaces in [1] do not 
seem suitable to the development of a theory in weighted L" spaces for p < ce. 

Our theory can thus be regarded as an extension of that in [1] which also contains 
some results on regularity similar to those of Walton. 

To get a precise formulation of our problem, it is convenient to recall the 
definition of the spaces F' here. For lp<co, 

for k=O,1,2, ... .} 

while 

F={4cC°(O,cc): 	 1,2,.. 

For 1 p 	and any complex number g, 

={4: x'4(x)EF}. 

is given the topology generated by the semi-norms y'  (k = 0, 1, 2,...) 
defined by 

yN4) = IIx' dkIdxk(x_4)ll 	(4,  n F). 

Finally, F is the space of continuous linear functionals on Fp,, equipped with 
the topology of pointwise convergence. 

As in [, formula (6.4)], we define the set A PA, of complex numbers by 

={v: Re (2 + L)+ 2 A i/p —21 (1 = 0, 1, 2,. . 

Then from [, Theorem 7.3] we see that, if 7lEA q,_,,.( 1 Ip+ 1/q= 1) and a is 
complex, then an operator S'" can be defined on F,,.,, which is an extension of 
S" as defined by (1.2); further, S 	is a continuous linear mapping of F1 into 

With this in mind, we arrive at the following problem. 
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PROBLEM 1.1. Let g 1 , 92  F,,21 _ and let v 1 , v 2 , a 1  and a2  be suitably restricted 
complex numbers. Find f  Flp, such that 

S"2 "2 "f= g 1  on (0, 1) 

= 92  on (1, co) 

in the sense of distributions. 
This means that, for all 0D 02 E 	with supports in (0, 1), (1, co)  respec- 

tively, 

(p)- (g 1 , 4) 

(S2'Z2'22f, 02) = (92, (P2). 

In view of the above motivation, we will obviously require vjI2-aj €A q,_ for 
= 1, 2 if the problem is to be meaningful. The other conditions which are 

relevant appear naturally in due course. 
The plan of campaign is as follows. In §2, we deal with a small technical lemma 

which is required in §3 to show the existence of a solution of Problem 1.1 under 
very general conditions on the parameters. The uniqueness investigation turns out 
to be much more interesting than existence and in §4, we find that Problem 1.1 
always has infinitely many solutions fE F under the conditions of D. However, 
in §5, when we apply our results to obtain information about the corresponding 
classical problem, as given by (1.1) and (1.2), we discover that we sometimes have 
a unique classical solution and sometimes infinitely many classical solutions. We 
deal in detail with the simplest case and give specific examples of uniqueness and 
non-uniqueness. Finally, in §6, we describe briefly what happens in a more 
complicated situation when the values of the parameters are such that one or 
more of the operators S'1' occurring can no longer be defined by the simple 
integral (1.2) and must .be interpreted in an extended sense. We do not go into 
any great detail but give two examples which indicate how the theory can be 
applied to the electrified disc [11, Ch. 3] and a crack problem in elasticity [11, 
§4.5]. - 

Throughout this paper we will make frequent reference to [6 and 8] and will 
use their notation. In particular, unless the contrary is stated, we assume that 
lpco and that tt is any complex number. For such p and L, 

L P = {f: x'f(x) a L'(O, co)}. 

p and q will always be connected by the relation i/p + 11q = 1 and any function 

f E 	generates a regular functional Tf a 	by means of the prescription 

(Tf, 4>) = J f(x)4>(x) dx. 	 (1.3) 

Occasionally we shall write 

	

Tf = 	 (1.4) 

§2 
At an early stage in our investigation we are faced with the following 

technicality. 

6 
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PROBLEM 2.1. For 1 p 	and for any complex number , let f1, f2 F'. 
Does there exist f  Flp, such that (in the sense of distributions) 

f=f1 on(0,1);  f=f2 on(1,cc)? 

The difficulty for us is that standard results such as those in [, p. 144 or 110, p.  27] 
cannot be applied as they stand since (0, oo)  34  (0, 1) U (1, cc).  Instead we fall back 
on a structure theorem for F,, which we recall briefly. 

THEOREM 2.2. Let 1 p cc  and let i be any complex number. Then any g E F 
can be written in the form 

where n is a non-negative integer, g EL (k = 0, 1, . . ., n), gk  is defined via (1.3) 
and (1.4) and 8 is interpreted in the sense of [5, formula (2.14)]. 

Proof. This can be deduced from results in [10, pp. 199-201] by using the 
homeomorphism TP, defined in [7, Lemma 2.2]. The details are routine and are 
omitted. (See also [51.) 

We can now deal easily with Problem 2.1. 

THEOREM 2.3. Problem 2.1 has infinitely many solutions f  F, any two of 
which differ by a distribution of the form 

a,, 
k0  

where a0, a1 , . . . , am  are constants and 81  e F is defined by 

(,4)=4(1) (4€F,). 	 (2.1) 

Proof. Let f1, f2 be as in Problem 2.1. By Theorem 2.2, for some positive 
integer n, 

fi 

=k=O 

where f E L (i = 1, 2; k = 0, 1,.. ., n). Then a solution of Problem 2.1 is given 
by 

= 	

kj 

k=O  

where, for k = 0, 1,. . ., n, fk E L q  is such that almost everywhere 

f(x) 0<x1 
fkx)= tPk2) (x)  x>1. 

The proof is completed by using [110, p.  100] and a little algebra. 

§3 

It is convenient at this stage to introduce four non-negative integers k 1 , k 2 , l, 12  
defined relative to v, v2 , a1 , a2  as follows. 
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DEFIMTI0N 3.1. (i) Let vj2+ a 1  E 	(i = 1,2). If Re (v1  + 2a 1  + .L)> -1 1q, 
then k. = 0. Otherwise, k i  is the unique positive integer such that 

Re (vi  +2a1 +)+2(k1 -1)<-1Iq<Re (vi  +2a1 +p+2k1 . 

(ii) Let Vj/2—a j EA q, 	(i=1,2). If Re(v 1 -2a1 —)+2>'Iq, then 1 1 =0. 
Otherwise, 1, is the unique positive integer such that 

Re (v, - 2a, - ) + 21 1 < '/q <Re (v, - 2a1 - ) + 21 1 +2. 

Remark 3.2. The sets A q,_ and 	are defined as in [8, formulae (6.4) and 
(6.5)]. The restrictions vj2 + a, € 	vj2 - aj  € A q, arise naturally from the 
operators involved. The integers k 2 , 1 2  play a role in our initial existence theorem 
while k 1 , 1 1  are needed in the uniqueness investigation in the next section. The 
integers k 1 , k 2 , 1 and 1 2  retain the above meaning for the rest of the paper. 
Similarly, for the rest of the paper, A will be the complex number 

A = ( VI +v2)/2—(a 1 —a 2) 	 (3.1) 

with v 1 , v2 , a 1 , a2  as in Problem 1.1. (3.1) is suggested by the theory in [1.1, §4.2] 
and, indeed, our proofs are essentially generalisations of these results. 

Equipped with the above notation, we are now ready to prove the following 
existence theorem. 

THEOREM 3.3. Let g1 €F, , 21 _, vj2+aj EA'q,_, vjI2—a j EA 	for i= 1, 2. 
Then Problem 1.1 has a solution f€F. 

Proof. By using the hypotheses and the facts that 	= A q, p _2/p , A q,_ = 
A_ 21 , we can deduce from [6, Theorems 3.9 and 3.10] that 

i /2+l, A ±k2_' 	z/ 2_az,l 	/2I,2 +121,2/2±2,k2lKz g1, K'   92 

exist as elements of 	Hence, by Theorem 2.3, there exists a functional 
h E 	such that 

	

- 1. 	 on (0, 1) 	
(3.2) 

	

h - 	 on (1, ).  92 x2 	 x 2  

Indeed, we saw that there are infinitely many such functionals h but any one will 
do here. Next, we define H by 

H= K 2 "2122 h. 	 (3.3) 

Since Re (v2 - 2a2 + 21 2 — 1 + 2/p - )+ 2> 1/p, HE F 21 _ also. Finally, we 
define f by 

f = S2/ 2 2z , 1_2a1_A_J2H. 	 (3.4) 

By [8, Theorem 7.3], f€ F'. We will show that f is a solution of Problem 1.1. By 
[6, Theorem 3.14 and 8, Theorem 9.5], 

= 

= IAl/2+al±k2,vl_A_k2K'2/2_z+12,_12h 
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If 4,eF,21 _. has support in (0, 1), then since Re(v 2 +2a2 +j.L)+2k2 >-1 /q, so 
does I!2_ 2 2 +  l2/2._ 1ZKA_ ,,/2+,±k 2+ '/2,.,-A - k, , (and therefore the K operator is 
defined as in [5]).  Thus, for such functions 0, 

(S"2 ''2"f, 	(h, 
= (IV  2±, 	2-"1Ki!2"2'12g1, 

X Kl/2,+/2,_A_k2(p) 

= (1) 	 K /2,+ 1 2 , - 1 2  

X K""g 1 , 4,) 

=(g1,4,) 

where we have used [6, Theorems 3.9, 3.10 and 3.13] and (3.2) above. Thus 

S 2 "2"f= g1  on (0, 1). 	 (3.5) 

Similarly, we have 

S2'2 2'2 2f = K j/2  '2"' zSA - 

= 

= K 2_2±l2,A_2_lzI i/2 2±k2._k2h 

using [8, Theorem 3.13]. If 4,EF,21 _ has support in (1,00), then so does 
because Re (v2  - 2a2 - ) + 21 2  + 2> 1 1q 

and the I operator can be defined as in [5].  Thus, for such functions 4,, 

(S2'2_2.2a2f, 4,) = ( h, 	 1 2-'/2,A- 2- 1 2 4,) 
X2  

= (KV 2_al2_ i2I2/2±0 2.k2g2,  K/ 2 z±kz f2, _k2 
X 2 X 2 

X  .LXZ 

= (g2,4,) 

as in the previous case. Hence 

S2IZc222f 92  on (1, 173). 	 (3.6) 

In view of (3.5) and (3.6), this completes the proof. 

Remark 3.4. (i) A careful examination of the proof shows the need for the 
various restrictions on the parameters. Also k 2  and 1 2  play a vital role. 

(ii) The fact that we chose any admissible h and found a solution suggests that 
we have non-uniqueness. This is indeed the case as we shall see in the next 
section. 

§4 

We now turn to the question of uniqueness for Problem 1.1. To answer this 
question it is clearly necessary to decide whether there exists a non-zero element 
f€ F satisfying the homogeneous Problem 1.1. 

sv1hl2 1 2 1f=0 on (0,1) 
 

S2'22.2a2f= 0 on (1, oc) 
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We will show that under the hypotheses of Theorem 3.3, such an f exists and 
hence Problem 1.1 will have infinitely many solutions faF'. 

As a first step we prove the following lemma. 

LEMMA 4.1. If vj2+aaA 	V 1J2 — aj eA q 	(i= 1,2) and f E Fpl ,,, satisfies 
(4.1) then f must be of the form 

f = S 2/2222"21  ,Kr,/2_,_k,,k, 

(sO 
a (51)S 	 (4.2) 

where r is a non-negative integer, a0,. . . , ar  are constants, 6' is defined by [5, 
formula (2.15)] and 6 by (2.1) above. 

Proof. First we note that by [6, Definition 3.3], K" 2 "" is invertible on 
F1  , and (K"2"'")1 = 1I2±,±k,.-k, Hence by [6, Theorems 3.13 andxi  

3.14 and 8, Theorem 9 . 5], 

= 
x2 

= 

If 4€F,21 _ has support in (0, 1), then, since Re(v 1 +2a 1 +)+2k 1 >- 1 /q, so 
does I2" 1,_h/2,_1,K,/2±l+kI+/2,A_,_k, 4. Hence, for such 4, 

) 
X2 	 K~2 

= (Sv1I 2 1.2 1f,  

=0 by (4.1). 

On the other hand, we may write 

= I,' I2I_k,K,/2_ 	1,S'222 X2 	 xZ 	 - 

and by a similar argument we can show that, since Re(v 1 -2a 1 —)+21 1 +2> 

4) = 0 

for all 4 E F,21 _ with support contained in (1, cr).  Hence, by [10, p.  100] 

bDs 6 	(4.3) 

where b0,.. . , b are constants and D denotes generalised differentiation. How-
ever, proceeding formally, we see that D' S, is a linear combination of 
6, (6) 6,.. . , 

(8I)s 6 and conversely (6') 6 is a linear combination of 
6, D6 1 , . . . , DS 6 (s = 0, 1, . . . , r). Hence (4.3) can be written in the form 

= 	
a, (5 ') s 6 	(4.4) 

where a0,... , a, are constants. The result then follows from (4.4) on using [8, 
Theorem 7.3]. 
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Remark 4.2. (i) We observe that this time it is the integers k 1  and 1 which 
play the vital role. 

(ii) (4.4) is more convenient than (4.3) since in each term ((8')' 6, 4,), where 

4, E 	 we may regard 8 1  as an element of 	while in the term 

(D'61 , 4,) we would have to regard 8 1  as an element of the space 	which 

varies as s varies. 

Having identified the form of possible solutions of the homogeneous Problem 
1.1, we now have to decide which expressions of the form (4.2) do give solutions. 
As the calculations are a little involved, we will proceed in a number of stages. 

I-EmmA 4.3. Let vd2+  ai  E vf2- a- E A q,_ p.  for i = 1, 2. The following are 

necessary and sufficient conditions on a 0,... , a, for f (as defined by (4.2)) to satisfy 
S 2 1.2alf=0 on (0, 1). 

If k 1  = k2  = 0, r and a0,.. . , a are arbitrary. 
If k 1  = 0, k2 > 0, a0,.. . , a are such that 

	

=0 (h2 =0, 1,..., k2 — 1). 	(4.5) 

If k 1  >0, k2  = 0, a0,.. . , a, are such that 

	

(h 1 =0,1,...,k1 -1). 	(4.6) 

If k 1 >0, k2 >0, a0,.. . , a are such that both (4.5) and (4.6) hold. 

Proof. With f as in (4.2), 

S "i12"2'if = K X  

x Kl/2_l_k1.k1(as(8')5 ) 

=(
a,(6')' 

x0 

= (_ 1)'I? /2± i _l i .l i (_ 1)k2 1V/2+a Z+kZ .' 1 _A_k 2  

I ,. 
x K ;z12_az _k z .k z K ,I21kk1( 	a,(6')' 51). 

's=0 

Here we have used [6, Definition 3.3 and 8 , Theorem 9.5].  Now let 4, E 

have support in (0, 1). Then 

(S 2 "2 'f, 4,) 
= ( 	

a, (6')' 

where 

= (- 1)  k,+1lKlf2+uz±k2±1/2 	 4,. 

Since Re(v 1 -2a1 —)+21 1 <1/q and Re(v2 +2a2 +p.)+2k2 >-1/q, 4' also has 
support in (0, 1). There are four possibilities. 
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k 1  = k 2  = 0. In this case 

(S"2 "2 'f, 4) = (a, OT si, qi) = o 
for all choices of r and a0,.. . , ar. 
k 1  = 0, k 2 >0. In this case (I;212"1/2."2qi)(x) = x 22' 2 P(x2) for x 1 
where P is a polynomial of degree at most k2 - 1 - Since 
Re (v 2  + 2a2  + 1 + 2k2  —2 + 

- 2/p) <- 1 /p, it follows that every such 
polynomial can arise from suitable functions 4) e with support in 
(0, 1). By taking P(t)= t'z  (h2 =0, 1,..., k-1) we see that S" 2 1 ,2 'f=0 
on (0, 1) if and only if 

s=0 

(a,(5')' 51, x2122 ±2hz)
= O  

for h2  = 0, 1,. . . , k2 —  1 (where, strictly speaking, in the last bracket we 
are dealing with a function in which equals for 
x 1). (4.5) now follows easily via [5, formula (2.15)]. 
k 1  >0, k 2  = 0. This case is similar to (ii). 
k 1  >0, k 2 >0. As in (ii), 	 = xz 2 2P(x2) for x 1 
where P is a polynomial of degree :-5 k2— l-  If Re (j' 1 +2a 1)+ 
2k 1  -/- Re (v2  + 2a2) + 2k2, we can show after a fairly routine calculation 
that, for x1, 

= x1+2a1 Q1 (x2) + x 2"  Q2(x 2) 

where 01  and 02  are polynomials of degrees at most k 1  - 1 and k 2  - 1 
respectively. Then, by proceeding as in (ii), (iii) we find conditions on 
a0,..., a as stated. In the case Re(v 1 +2a 1)+2k 1 =Re(v2 +2a2)+2k2 ; 
there is an added complication and we have to add on an extra term of the 
form log (1/x 2) where 03  is a polynomial of degree at 
most mm (k 1  - 1, k 2  - 1). However, as log 1 = 0, the problem again reduces 
to evaluating polynomials at x = 1 and the proof goes through. We omit 
the full details which are rather tedious. 

This completes the proof of Lemma 4.3. 

Remark 4.4. The conditions in (ii)—(iv) above put constraints on r. For instance 
in (4.5), we require a0,..., a to be such that the numbers v 2 +2a2 +1+2h2  
(h2 =0, 1,..., k 2 -1) are solutions of a,(- 1)'z' =0 which requires r _~k 2 . 
Likewise (4.6) implies that r k 1  while case (iv) produces k 1  + k 2  constraints on 
ao,...,ar. 

The situation as regards (1, 00)  is very similar and the relevant facts are as 
follows. 

LEMMA 4.5. Let v/2+a, 	vj2—a, EA q, for i = 1, 2. The following are 
necessary and sufficient conditions on a 0,. . . , a for f (as defined by (4.2)) to satisfy 
52/2z.22f 0 on (1, co) .  

If 1 1  12 = 0, r and a0,. . . , a are arbitrary. 
If 1 1 =0,1 2 >0, 

a,(v2 -2a2 +1+2j2)' =0 for j2 0,1,..., 121. 	(4.7) 
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If 1 1 >0,12 =0, 

E a,(v,-2aj +1+2jj)'=O for j1 =0,1,...,1 1 -1. 	(4.8) 

If 1 1 >0,12 >0, a0 ,.. . , a such that both (4.7) and (4.8) hold. 

Proof. The details are entirely similar to those in Lemma 4.3. We merely 
mention that the crux is to use [8, Theorem 9.5] to write 

(S 2'2''22f, 0) 
= ( sO 

a(6)s , KX-2 	 x 2 

where 

= (- 

Comments analogous to Remark 4.4 apply here. 
Putting together the results of Lemmas 4.3 and 4.5 leads to 

THEOREM 4.6. Let v/2+ ai  E 	v/2— a, E A q,_ p  for i = 1, 2. Then there are 
infinitely many elements f  F satisfying (4.1). 

Proof. There are 16 cases to consider depending on whether each of k 1 , k 2 , 1 
and 12 is zero or positive. For instance, if k 1 >0, k 2 >0, 1 1 >0, 1 2 >0,f, as given 
by (4.2), is a solution of (4.1) if and only if 

1 +2h1)s = 0 (h1  = 0, 1,..., k1 — 1) 

=0 (h2 =0, 1,..., k 2 — 1) 

a5 ( vi _2ai +1+2ji)s=0  

and 

a(v2 - 2a2 +1+2j2)=0 (12= 0 , 1 ,..., 1 2 -1 ), 

the first two conditions coming from case (iv) in Lemma 4.3 and the second two 
from case (iv) in Lemma 4.5. We have a system of k 1 + k 2 + 1 1 +12  homogeneous 
equations in the variables a0 , . . . , a, and the system has infinitely many solutions 
if r is such that r + 1 > k 1  + k 2 +11 +12 . The other cases are similar and the details 
are omitted. 

As an immediate consequence of Theorem 4.6, we obtain our non-uniqueness 
theorem for Problem 1.1 which we can state as follows. 

THEOREM 4.7. Let g, n 	v12+ a € 	and vd2—  a e Aq,_ for i = 1, 2. 
Then Problem 1.1 has infinitely many solutions feF'PIW each of which is of the 
form 

	

S2/2 z2I_2 ,_A _kzH + S2t 2+2, A _2_2 	 (E a (P)s 51 
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and 

Re(—v 1 -2a1 -2k 1 —)+2>1Iq [by 5, Lemma 3.1]. 

The latter holds by definition of k 1  and the former will hold if k 2  = 0 and (5.10) 
holds. It is fairly clear that there are various possibilities and we shall not go 
through them all. We content ourselves with just one. 

THEOREM 6.1. Let k 1 >0, k2 =11 =12 =0 and Re(v2 +2a2 +) 1I2- 1Iq+ 
Re A and let (5.3) hold. Then the homogeneous Problem 5.1 has no non-trivial 
solution in L. 

Proof. This is similar to that of Theorem 5.6(u) and is omitted. 

Next suppose that k 1  = 1 1 = 12 = 0 but k 2 >0. Again we have to look at 

(S2/22_v2_22()5 6, (p)  = (() 5 51, xS'2'2222'2x10) 

for 4) € F. Using [6, Definition 3.3 and 8, Theorem 8 . 3], 

xS2/22'' 'z2'zxl4, = ( l)kSXI2/2_rZ_kZ.kZSVSI2+z+kS.A_Sz_2Oz_kSX_ld,. (6.5) 

An argument similar to the above then yields as possible candidates 

AX) = 	cx +z+2az+s1P.k2(J (x)) 	 (6.6) 
S=O 

where ps  = — 2k 2  -,k + s and now we are back to the previous situation. 
If 11=12=0, and k 1 >0, k2 >0, possible solutions in L of the homogeneous 

Problem 5.1 would take the form 

AX) = 	CSx 	 x2 _A2±22+sIY k1I .k2JA _ s (X) 	 (6.7) 
S=O 

where c0,. . . , C are suitably restricted constants and %,p are similar to the 
above but again we will not pursue the matter. 

Remark 6.2. Expressions such as (6.4) and (6.6) can be written in terms of 1 F2  
hypergeometric functions. This follows from [3, p.  195, formula (65)] and a simple 
change of variable. Similarly (6.7) can be written in terms of hypergeometric 
functions since the result of applying an Erdélyi—Kober operator to a 1F2  function 
is a 2F3  function under appropriate conditions [3, p.  200, formula (95)]. 

We mentioned after Example 5.10 that we would consider some applications to 
physical problems and it is in connection with these that the cases 1 1 >0 or 1 2 >0 
(or both) arise fairly naturally. 

EXAMPLE 6.3. Let v 1  = 0, V2 = 0 1  a1  = 1, a2 = 1 /2 .  Then Problem 5.1 arises in 
connection with the electrostatic potential due to a charged disc [11, 0.11. In this 
case A = —'/ 2. If we try to treat this problem within the previous framework with 

qq 
1 1  = 12 = 01  we would be given g u LI q _2+p  (i = 1, 2) and would seek fE L 
where, by (5.3), 

max ( 1 1p, '/q) 1 /q + Re p. — 1/2 + 2< /2 
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and 

max ('1p, 1Iq)/q+Re p. —/2+ 1</2 => —'/2+ max ( 1 /p, 1Iq)'/q+Re p. <0. 

However, as max ( ' /p, 11q) 1/2,  no such values of q and p. exist. Thus, to study 
the problem of the electrified disc in we must use values of q and p. which 
require 1 1 >0,1 2 >0 or both. 

The condition 1, >0 (i = 1, 2) means that Re (v1  - 2a, - p.) + 2< 1 1q and hence 
the conditions demanded in Lemma 5.2 are not satisfied by S 2 '2' on L and 
we may not interpret the operator in the sense of Rooney's extension. 

However we can generalise our operators in the manner suggested by (6.5). 
Namely, if 1>0 (i = 1, 2), define S 2 '2' on L by 

S'2"'2f = (— 	 (6.8) 

By Lemma 5.2 and [5, Lemma 3.1], the right-hand side defines a continuous 
linear mapping of 	into L/ q_2+,, provided that 1 <p<co, 

max ( 1 1p, 11q)/q+Re(p. — 1/2+2a - 1)<Re v, + 1. + 3 /2 

and Re (- v, + 2a, - 21, + 2  /q —2 + p.) + 2> 1/q, the last two restrictions being au-
tomatically satisfied by choice of 1 L• Further, using appropriate parts of [8, 
Theorem 8.3] it can be shown that (5.4) still holds for this more general operator. 
We may refer to (6.8) as the extension of S~j/2 j ,2ai  in the sense that, for spaces 
Lq with Re (v1  - 2a - p.) + 2> 1 1q, 1, = 0 and we recover Rooney's extended 
operator. 

Again we will not embark on a major investigation but merely give two 
examples of what happens in the case of the homogeneous Problem 5.1. 

EAMPLE 6.4. We consider again the problem of the disc introduced in Example 
6.3. The homogeneous problem corresponds to the disc being uncharged and we 
would expect f, which can be regarded as a measure of the potential, to be zero; 
see [11, Ch. 3].  With v 1  = 0, z'2  = 0, a, = 1, a2 = 1/2 as before, we now choose 
k 1  = k 2  = 1 2  = 0 1  1, 1. To study the problem in L q  we require values of q and p. 
such that (1<q<cc), 

max ('1p, '/q)/q+Re I.+ 1 /2< 3/2, Re(p.+ 1/q)>0 

max ( ' /p - '/2, 1 /q - 1 /2, 0)<Re p. + 1 /q <1. 

Such values of p. and q can be found and for these values we have to try to find a 
non-trivial solution feL such that 

S'2f=0 on (0,1); 	S 2"f=0 on (1,co) 

where S 1 '2  is interpreted via (6.8) and S 112 ' 1  as in Lemma 5.2. Since (5.4) still 
holds, the argument proceeds as before (as k, = k 2  = 0) and we obtain, from (4.2), 
possible solutions of the form 

f(x) 
= sO 

c,x 12+ 5Ji ,2_(x) 	 (6.9) 

where c0,... , C are restricted according to Lemma 4.5. For the right-hand side of 
(6.9) to belong to L, we need in particular Re p. + 1/q<—r, contradicting 
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Re 1L +'/q >0, unless c0,.. .. C are all zero. Hence, we have no non-trivial 
solution in L', as anticipated. This does not, in itself, rule out the existence of 
say, a locally integrable solution f. This requires a theory. relative to a space of 
such functions which might not need the extension (6.8) but would have other 
difficulties; [see 12]. An existence investigation for the charged disc can be carried 
out using the above results and ideas similar to those in Theorem 5.11. 

EXAMPLE 6.5. For v1 = _1/2, v2 = 	a1 = _1/4, a2= 1/4  Problem 5.1 arises in 
connection with the stress distribution across a Griffith crack; see [11, §4.5 and 
12]. Again no spaces L can be used which correspond to k 1  = k 2  = 1 1 = 1 2  = 0. 
However if we take k 1  = k 2  = 1 = 0 and 12  = 1, we need values of 1L, q such that 
max ( 1 /p+1, '/q+l, 1)<Re+'Iq<2, 1<q<cc, which can always be achieved. 
Since A = 0, (5.9) gives the prospective solution 

AX) = 	C5xJ_(x) 	 (6.10) 

of the homogeneous Problem 5.1. However the right-hand side of (6.10) only 
belongs to L if co  = Cr  = 0 and again there is no non-trivial solution in 
L. Comments similar to those at the end of the previous example apply here 
also. 

Perhaps enough has now been said to justify the use of generalised functions in 
studying dual equations of Titchmarsh type, not merely for its own sake but also 
for the light it sheds on existence and uniqueness questions for the corresponding 
classical equations. It remains to be seen how such methods can be extended to 
more general dual integral equations or to triple integral equations such as those 
discussed in [11, §6.2]. 
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1. 

In this paper, we shall be concerned with the class of ordinary differential operators of 
the form 

L = x1Df2Dxa3 ...  

where n is a positive integer, a,,..., a . ,, are complex numbers, and D d/dx. L will 
act on classes of functions defined on (0, cc) so that, in (1.1), x > 0 and XOk  will stand 
for exp(alogx) where log  is the principal branch of the logarithm (k = l,...,n+ 1). 

For technical reasons, we shall assume that 
n+1 

a = 	ak  is real. 	 (1.2) 

(The reason for this assumption is explained in Remark 3.10(i).) Further, we shall write 

m=Ia-nI. 	 (1.3) 

Many different particular cases of (1.1) turn up in practice and, indeed, the impetus 
for this investigation was a paper by Sprinkhuizen-Kuyper [16] which dealt with the 

class of operators of the form 

D 2 +vx'D 	 (1.4) 

corresponding to the values 

n = 2, a 1  = — 1, a 2  = 2—v, a 3  = v—1, 	 (1.5) 

or, equivalently, 

n = 2, a 1  = — v, a 2  = v, a 3  = 0. 	 (1.6) 

In the case where a = n, it is clear that, for any complex number ), Lx' = cx for 

some constant c z  depending on 2. It is to be expected, therefore, that if q0 belongs to a 

certain space X of functions, then so does Lp. The theory of fractional powers of 
various classes of operators mapping a Banach space X into itself has been extensively 
developed in, for instance, [1, 4, and 5]. However, if X is a space of testing-functions 
and X' the corresponding space of generalized functions, X is not, in general, a 
Banach space but, rather, a countably multinormed space or the inductive limit of a 
family of such spaces [17, Chapter 2]. In [6], Lamb has developed a theory of 
fractional powers of operators from a Fréchet space X into itself and has extended 
these results to generalized functions. Therefore, we shall not consider the case where 

a = n, or m = 0, any further in this paper. 
When a n, considerations similar to the above indicate that, if p belongs to a 

certain space of functions, Lço will, in general, belong to a different space so that the 
theories mentioned for the case where m = 0 do not apply. Nevertheless, and perhaps 

Proc. London Math. Soc. (3), 45 (1982),.519-546. 
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paradoxically, a theory can be developed using more elementary ideas and dispensing 
with the more abstract apparatus of resolvents, Dunford integrals and so on. The 
object is to obtain an expression for positive integral powers, L ,  of L which remains 
meaningful when r is replaced by a general complex number a. The resulting 
expression can then be taken as the definition of L,  the xth power of L. There is 
nothing new in this approach. For instance, in the development of fractional calculus 
[115], one can take the r-fold repeated integral operator I' defined by 

(Jr) ( X ) = [F(r)] i 
fox 

- - 1 (t) dt 

as the motivation for the definition of the Riemann—Liouville fractional integral 
operator Ja  defined for Re a > 0 by 

(POW = U-001 -1 

fo (x 
- - 1 (t) dt. 

Indeed, it is fractional calculus which lies at the heart of the matter here. The key step 
is to obtain an expression for L  which involves derivatives, not with respect to x but 
with respect to xm,  where m is given by (1.3). (This is obviously a non-starter when 
in = 0.) We then define L  in terms of fractional integrals or derivatives with respect to 
Xm. An extensive theory of such fractional calculus has been developed in [7, 9, and 
110] and gathered together in [11]. We shall rely heavily on this theory in this paper. 
As regards applications, the cases where in = 1 and m = 2 figure prominently in [111], 
m = 2 being intimately connected with Hankel transforms [1111, Chapter 6] and 
generalized axially symmetric potential theory [11, § 3.6]. However, a general positive 
value of m may have seemed a trivial or worthless generalization. We shall show in 
this paper how such general values of in emerge in a reasonably natural way. 

In § 2, we recall for convenience the definitions of the spaces F , of testing-functions 
and the corresponding spaces F',,. of generalized functions. We also recall the 
appropriate operators of fractional calculus and list such of their properties as are 
necessary to make the paper reasonably self-contained. In § 3, we obtain the required 
expressions for L' referred to above, as well as expressions for positive integral powers 
of the formal adjoint, 

	

= (- l)"x0" IDxan ... x° 2Dx", 	 (1.7) 

of L and of the related operators 

	

M = (- 1)L, It'!' = (- 1)L'. 	 (1.8) 

It soon becomes clear (and it is hardly surprising) that the cases in which a < n and 
a > n produce different expressions so that the two cases have to be handled 
separately in the subsequent theory. The results in § 3 provide the motivation for the 
definitions of fractional powers of L, L', M, M' which are given in §4 along with the 
mapping properties relative to the spaces. 

It is to be expected that, if Re  <0, then La will be an integral operator rather than 
a differential operator and it is of interest to identify the kernels of this and other 
operators. Therefore, in § 5, we relate the definitions of our fractional powers to 
results involving the Mellin transform, using which it is an easy matter, in § 6, 
to discover that the kernels can be expressed in terms of Meijer's G-function. 

In § 7, we extend our definitions of fractional powers to the spaces FP',,. As usual, 
this involves the use of adjoint operators, and mapping properties inare easily 
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obtained from the results in §4 by standard methods. In §8, we use the results in F' 
to obtain existence and uniqueness results for classical and weak solutions of certain 
integral equations involving the G-function. Finally, in § 9, we examine our results for 
the case where n = 2 in more detail relating them to our earlier work on operators 
involving the 2 F1  hypergeometric function [8] and [11, Chapter 4]. and reconciling 
our fractional powers with the operators discussed in [11, § 3.6] and [16]. 

Throughout, we shall use the terminology, notation, and conventions of [11]. In 
particular, p and a will denote general complex numbers, m will be real and positive, 
1 < p < cc (unless the contrary is explicitly stated), while p and q are related by the 
equation i/p + l/q = 1. 

2. 

In this section we recall for convenience the definitions of the spaces in which we 
• shall be working and the properties of some relevant operators relative to these 
• spaces. Fuller details and proofs can be found in [11, Chapters 2 and 3] or in [7,9, 10]. 

DEFINITION 2.1. (i) For 1 < p < cc, 

F,, = Jqp e C(0, cc): xdkco/dxl( e L"(O,cc) fork = 0, 1,2,...} 	(2.1) 

while 

F={QE C(O,co): x dp/dxk -* Oasx - 0+ and asx.—*cc for k=0,1,2, ... }. 
(2.2) 

For 1 < p < cc and any complex number p, 

= {p: xq(x) e F}. 	 (2.3) 

Fork = 0,1,2,..., we define y" on Fp,, by 

	

= II xkd(x_Lço(x))/dx!c  II,, 	 (2.4) 

where 11 11 p  denotes the usual norm on L"(O, cc). For each k, y" is a semi-norm on 
and yZ  is a norm. With the topology generated by {y' 1 }o=  [17, p.9], 	is a 

Fréchet space. 

THEOREM 2.2. For any complex number 2, the mapping x defined by 

	

(xp)(x) = XP(x) (0 < x < cc) 	 (2.5) 

is a homeomorphism from 	onto 	with inverse x 

NOTATION 2.3. For any positive real number m, we shall write 

	

Dm  d/dxm = m_lxl_md/dx, 	 (2.6) 

D D 1  and ö xD. 	 (2.7) 

THEOREM 2.4. (i) Dm  is a continuous linear mapping from F,,,, into F,,,,, - , and is a 
homeomorphism from F,,,, onto Fp,,,_ m  if and only ifRep 0 i/p. 

(ii) ö is a continuous linear mapping from F,,,, into F,,,, and is a homeomorphism from 
Fr ,, onto Fr ,, if and only if Rep 0 i/p. 
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Theorem 2.4 describes the behaviour of differentiation operators on the spaces 
As regards integration, we shall require the following definitions. 

DEFINITION 2.5. We define the sets A p,.,, m  and A, m  of complex numbers by 

Ap,, L . m  = {: Re(mij+ii)+m 	1/p—mi (1 = 0, 1,2,...)}, 	(2.8) 

A'ppm  = {j: Re(nuj—p) 0 -1/p—mi (I = 0, l,2,...)}. 	 (2.9) 

DEFINITION 2.6. (i) Let Re(m+ii)+m> 1/p, and (p E 	For Re  > 0, we define 
Ip by 

I " ,  "~p(x) = [F()] - - m —m f(XM  - um)lum(u) d(um). 	(2.10) 
ox  

The definition is extended to Rea < 0 by means of the formula 

Let Re(m,—p)> — l/p, and sp e 	For Re  >0, we define Kp by 

K (x) = [f(
f 

l,'~p a 	XM r/ 	(UM - xm) - - m " -  m(u) d(um). 	(2.12) 

The definition is extended to Rea < 0 by means of the formula 

Kço = (+cx)K'—m'K'5q. 	 (2.13) 

Let il e A p,p, m , qp e 	and let cx be any complex number. For 
Re(mij+z)+m> l/p, we define I',,p  as in (i). Otherwise, if  is the unique positive 
integer such that 

1/p—mk < Re(mi+J1)+m < 1/p—m(k-1), 
then 

= (- l)kI_kK_k. 1 p 	 (2.14) 

where j,1+k,ak  and KM  k
, k are defined as in (i) and (ii) respectively. 

Let 1 C A'ppm , p e F, and let Lx 	any complex number. For 
Re(mfl—/1)> — l/p, we define K as in (ii). Otherwise, if k is the unique positive 
integer such that 

- l/p—mk <Re(m—x) < - 1/p—m(k— 1), 
then 

Kg = (- l)kK_k 1 __Ip 	 (2.15) 
Pt 

where 	and ji1I  are defined as in (ii) and (i) respectively. 
For 0 e 	q C FPM , and any complex number cx, we define I" (p by 

Ia = 	 (2.16) M(P 

where I' is defined as in (iii) and xm as in (2.5). 
For p e FP, and any complex number cx such that —cx E 	we define K ' p 

by 

Kp = Ko, xm 	 (2.17) 

where K.ct  is defined as in (iv) and xm as in (2.5). 

We now list the mapping properties of these operators. 
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THEOREM 2.7. (i) If'i  e ppm'  then I' is a continuous linear mapping from F,, 9  into 
itself If also tj + a e A p , p . m , then I is a homeomorphism from F,, 9  onto itself and 

(Jx)_I = JtJ+a._1 	 (2.18) 

If ,j  e A,,,. m , then K' is a continuous linear mapping from FP 	itself If also 
i1+a E A'p p m , then K is a homeomorphism from F,,,, onto itself and 

(K)' = 	 (2.19) 

If 0 E A p . p . m , then I, is a continuous linear mapping from F,,,, into Fpp+m2 . If 
also c c A p.,,. m , then I is a homeomorphism from 	onto Fp.p+ma  and 

(I)' =1,. 	 (2.20) 

If — ce e A;,,,. m , then 	is a continuous linear mapping 	F,, into Fp, p+m ,. If 
also 0 e A pm , then K is a homeomorphism from F,,,, onto Fp ,, +ma  and 

(K)' = K,. 	 (2.21) 

If 0 E A p . p . m , then 1 0m  is the identity operator on F,,,, and for n = 1,2,..., 

= (DJ on F,,,,. 	 (2.22) 

If 0 E A; , ,. ., then K °m  is the identity operator on F,,,,. If n E A',, pm  (n = 1,2,...), then 

KM n = ( Dm ) 	on Fr,,,. 	 (2.23) 

Next we list a number of results which we shall need later. 

THEOREM 2.8. Let , j, ), p, a , and fl be complex numbers and let qp E F,,,, 

if'i E A p,,,. m , then 

xAI (p  = Il,,_.%/m.x. 	 (2.24) 

If ij e A p , p . m , then 

xAK ço  = K/m x p . 	 (2.25) 

If E A p . p , m  and ii  e A p. p, m , then 

IIp = (2.26) 

If 	e A',, m  and q e A'p ,, m , then 

KK'p = KKp. (2.27) 

If 	a A p,,,. m  and ij a A'ppm , then 

= IKp. (2.28) 

If 	a A p . p , m  and 	+ a E A p.,,, m , then 

II'q = (2.29) 

If ,j  E 	1 p.p.m and tj +x a A'p ,, m , then 

= K8+p.  (2.30) 

If (0, cc, f3} 9 A,,,,,,,, then 

JJfl(p = 	= I 1I(p. 	 (2.31) 
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(ix) If 	—a—f3} 9 A'p., then 

KKp = KçD = KKço. 	 (2.32) 

DEFINITION 2.9. We let F',.,, denote the space of continuous linear functionals on 
and equip it with the topology of pointwise convergence. 

DEFINITION 2.10. Letf E 

For ije A q._, m , we define If e F' by 

(I", f,(p) = (f,KllIm.) ('p e 

For j e A, —m'  we define Kf e F',,,., by 

(Kf,q) = (fJq-l+lIrn.) ('p e 

For 0 e A q , -p,m'  we define 1J E F'p. mI  by 

(If,p) = (1 xm_lK,x_m+l'p) ('p E Fp,p_ m2). 

For — tx C A'q  -.m' we define K' f C F'p . p _ ma  by 

(Kf,'p) = (f,x m_hI ,,x _m+l P) ('p C Fp, ii _ ma) 

REMARK 2.11. The mapping properties of the operators I, K, I, and 	on 
F',,,, are obtained from those on 	by using standard results on adjoints [117, 
Theorems 1.10-1 and 1.10-2]. Analogues of (2.24H2.32) can likewise be obtained by 
replacingf by 'p and by interchanging p with q and /2 with - ,u  in the conditions on the 
parameters. 

3. 

We now begin the development of our theory by examining the differential operator 
L given by (1.1) in more detail. It is an immediate consequence of Theorems 2.2 and 
2.4(i) that Lis a continuous linear mapping from 	into Fp,, +a _ n , where a is given 
by (1.2). If a = n, then Lisa continuous linear mapping from 	into itself. However, 
as indicated in § 1, we shall be interested in the case where a 0 n or m > 0, where m is 
given by (1.3). 

Firstly, we rewrite L, using Notation 2.3, in the form 

L = xa1l5x12l5 ... x0ntöxan*1. 	 (3.1) 

L will be invertible as a mapping from 	onto F,,, la-n  provided that each operator 
5 in (3.1) can be inverted. From Theorem 2.4(u), we see that this is the case if and only 
if Re(p+a—n- 1 a+k) # 1/p (k = 1,...,n). These conditions may be written as 

\ 
Re( 	a+k-n-f-u) 	1 l (k = 1,...,n). 

\i=k+1 	 J 

Thus an important role will be played by the following numbers. 

NOTATION 3.1. With the notation of (1.1) and (1.3), we shall write 

/n+1 
b,=( 	a-l-k-n)/m (k= l,...,n). 	 (3.2) 

\i=k-+-1 	 /1 
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THEOREM 3.2. Lisa continuous linear mapping from 	into FP.,L + O _flfor all complex 

numbers 	 and is a homeomorphism from 	onto Fp,, +a_ n  if and only if 

Re(mb k +u) :A 1/p(k = 1,...,n). 	 - 

Proof. This is immediate from the preamble. 

By making use of the numbers bk  (k = 1, ..., n) and m, we can obtain the most 
convenient form of the operator L for our purposes. 

LEMMA 3.3. With b, (k= 1,...,n) as in (3.2), 

L = 	fl x m_mb kD m x mbk 	 (33) 

or L = mnxa - T1  T2  ... 1 where 

Tk = x m_mik Dmx mtk  (k = 1,...,n). 	 (3.4) 

(Since, as is easily checked, the operators T1  ,..., 7 commute, the product in (3.3) is 
unambiguous.) 

Proof. The result follows easily from (2.6) and the identities 

mb 1 =a—a1 +l—n, mb=a +1 , 

mbk+l — mbk+l=ak+l (k=1,...,n-1). 

Lemma 3.3 leads to an examination of an operator of the form 

T = xrn_rnvD m xrn% 	 (3.5) 

where v is a complex number. 

LEMMA 3.4. Let q e F,1 . 

If v E A p,,i . m , then Tp = I', - 'q, as given by Definition 2.6 (iii). 
ff1—v E A'p ., m , then Tp = —K M", ' q, as given by Definition 2.6 (iv). 

Proof. These results follow fairly easily from Definition 2.6 and Theorem 2.7(v). 

To indicate how these facts can be used, we next give expressions for positive 
integral powers of L, L', M, and M', dealing first with the case where a < n. 

LEMMA 3.5. Let r be a positive integer, a <n, *p e F,1 , and bk  e 4p,p,m  (k = 1,..., n). 
Then 

Lp = mrx_mr fl Jhk. -r 	 (3.6) 

Proof. We note first that the I operators commute, by Theorem 2.8 (iii), so that the 
product on the right-hand side is unambiguous. The result is true for r = I by Lemma 
3.4 and the fact that m = n - a in this case. Assume the result is true for a certain value 
of r. Then from (3.6), (2.16), and (2.22), 

Lp = mx_mr H x_m+mr(Dm)rxmbkco 

= m( fl x - mbk(D )rXmbk + mr)x - mr 	 (3.7) 
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Bearing in mind that the operators in the products commute with each other, we can 
use (3.7) and (3.3) (with qp replaced by L'(p) to obtain 

L'ço = LLTço 

= 	+ - m( ft Xm - mbk(D)r +1  Xmbk + mr) - mr (p  

= 	l)X_m(r+ l)([1 Xm( l)_mbk(D )r+ 1mbk) (P  

= m'' t)X_m(r+ l)j] Jbk, — (r+ 

Hence (3.6) is true for all positive integers r by induction. 

REMARK 3.6. In the proof of Lemma 3.5, it is tempting to use the expression for L 
derived from (3.6) to calculate LLp. However, by Theorem 3.2, Lp e Fp , p _ rnt , and the 
fact that bk  e AP, ,z . m .does not imply that bk E A p, p _ mr , rn . Hence this procedure is 
invalid and a slightly longer argument is required. A similar remark applies to the 
proofs of the corresponding results for (L', M,  and (M')T. 

LEMMA 3.7. Let r be a positive integer and let a <n. 
If b k  e A p ,irn  (k = 1,..., n) and q e Fq, - + mr, then 

n 

(L 7Q = mJr fl K+l/m._1x_m. 	 (3.8) 
k=1 

If —b k  E A, -p,rn  (k = 1,..., n) and çø e Fq , -+rnr,  then 

Mp = 	
rXrnr(p 	 (3.9) 

If — bk e 	- 	(k = 1,...,n) and q e 	then 

n 

WAO = mwx —mr fl J 
 rn 
— bk —1 + 1/M, _rq, 	 (3.10) 

k=1 

Proof. The details which are similar to those in Lemma 3.5 are omitted. 

REMARK 3.8. We note that (i) can be obtained from (ii) and vice versa. L' is obtained 
formally from M on replacing ak  by a,, + , —,  (k = 1, ..., n + 1), from which it follows that 
bk  must be replaced by the quantity 

7n+1 

b = ( 	a 2 ..+k—n )/m 
\i=k+1  

/ 	n+1 	 \ I 
=(a— 	a1 +k—n)/m 

\ i=n k+2 

= (a— (mb fl k+l —(n—k+l)+n)+k—n)/m 

= (a—n+ l)/m—bflk+l  

= —b.. k+l —l+l/m, 

where we have used (3.2) and the fact that ,n = n - a in this case. Equation (3.8) follows 
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from (3.9) and vice versa since the operators in the products commute. Similarly, (iii) 
can be derived from Lemma 3.5. 

As regards the case where a > n, we can prove the following results. 

LEMMA 3.9. Let r be a positive integer and let m = a—n > 0. 

(i)Ifço e Fq._ i _ rnr  and bk — i e A q,_ p , rn (k = 1..... ,n), then 

n 

L'p = mr 1J rbk -  1, rXmr(p  'rn 
k= 1 

If qp e Fp,, and bk  — i e A q,_ p , rn (k = l,...,n), then 

n 

	

(L')r = m rx rnr fl K 	1/rn. -r 	 (3.12) 
k= 1 

If qp e Fp, , and i — bk  C A'p. M ,rn(k = i,...,n), then 

Mp = mnrxrnr ' 
	

-r 	 (3.13) 

If qO C Fq ._ IL _ rnr  and 1—bk  C A, p . rn (k = 1,...,n), then 

n 

= m's' 1J J 
rn 
- bk+ 1/rn, rXrnrq) 	 (3.14) 

k=1 

Proof. Again the details are similar to those in Lemma 3.5 and are omitted. 

REMARK 3. 10. (i)All the work prior to Lemma 3.5 goes through even if the number a 

is allowed to be complex. However, if Im a 0, the proofs of Lemmas 3.5, 3.7, and 3.9 

fail because the term Xa—n presents difficulty. The restriction, however, is not a major 
one when we observe that = FP ReP  for all complex numbers M. 

Formulae (3.6) and (3.8H3.14) can be used as the motivation for the definition of 

fractional powers of L, L', M, and M' in the two cases a <n and a > n. It is already 
clear that these two cases will require separate treatment. In the sequel, we shall 
concentrate on L and L' in the case where a < n and on M and M' in the case where 

a > n and omit discussion of the others. 
In stating the results in Lemmas 3.5, 3.7, and 3.9, we have assumed that certain 

conditions hold for k = 1,..., n. This will continue in what follows and we shall ignore 

other situations (for example, bk  e Ap., z , rn  for some values of k and ibk c A'p. p , m  for 

other values of k) which might present further difficulties. 

4. 

With the motivation supplied by § 3, we can now give our definitions of fractional 

powers of L andM. We shall give details for Land L' in the case where a < n and then 

simply state the corresponding results for M and M' when a> n. 

DEFINITION 4.1. Let m = n—a > 0, let a be any complex number, and let bk  e A prn  
fork = 1,...,n. Then we define La on F,, 1, by 

n 

	

Lp = m'x" fl Ilk, 	 p ( q  e F,,,,). 	 (4.1) 
k=1 
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Noms. 1. Equation (4.1) is obtained by formally replacing r by Oe in (3.6). 
We emphasize that a may be any complex number. 
The operators I" commute, by Theorem 2.8 (iii), so that the product on the 

right-hand side is unambiguous. 

As a first step we can state the following result. 

THEOREM 4.2. If a < n and bk  e A p,,,, m for k = 1,...,n, then L is a continuous linear 
mapping from F,,,,, into F,,,,-m,,-  

Proof. For each k, It" is a continuous linear mapping from F,,,, into itself by 
Theorem 2.7(i). The result follows easily from Theorem 2.2. 

To obtain further information we require two results generalizing properties of 
indices in ordinary algebra. 

LEMMA 4.3. If a < n and hi, C A p,,j . m  for k = 1,..., n, then L °  is the identity operator 
on 

Proof. This is almost immediate from Theorem 2.7(v), Definition 2.6(v), and 
Theorem 2.8 (i). 

THEOREM 4.4 (First index law). Let a <n, c' and /3 be any complex numbers, ( C F,,,,, 
and hi, e A p.,,. m  for k = l,...,n. 

If bk — I3  e A p,,,, m  for k = 1,...,n, then 

LL 99 = L"qI. 	 (4.2) 

If b i,—c e A p,,,, m  for k = 1,...,n, then 

LL'ço = 	 (4.3) 

If {b i,—a,b i,— fl} c A p,,,, m  for k = 1,...,n, then 

LLço = L 6 p = L'9Lço. 	 (4.4) 

Proof. It is clearly sufficient to prove (i). Under the stated hypotheses, we may use 
Theorem 2.8(i), (iii), and (vi) to obtain 

L8Lço 
= 	 F' 	 I' -Iq, 

n 
= m n(a +fl)x_m2+fl F' ) 	rb,, — fl, — c,,bk, flq, 

m 	m 
k=1 

= m 	+fl)_m(a+p) '' Ilk, — (+ fl) 

= Lap. 

This completes the proof. 

REMARK 4.5. It is interesting to note that in (i), the right-hand side is meaningful 
without the extra condition bi,— fl C A p,,,, m  (k = 1,..., n). Thus we could use the right-
hand side to provide an analytic continuation of the left-hand side to values such that 
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bk — fl 0 AP, p , m  for at least one value of k. We have commented on this before in [10] 
and [11, p.72] in connection with the first index laws for I, and K,, quoted in 
Theorem 2.8 (viii) and (ix). We can think of this as removing 'removable singularities' 
by analogy with z'z = 1 at z = 0. We could therefore combine all three parts of 
Theorem 4.4 into one. 

COROLLARY 4.6. If a < n, a and /3 are complex numbers, e F,,,, and bk E 	mf07 
k=i,...,n,then 

	

LXLP q, = L2+Pço = LL "p, 	 (4.5) 

the first and third members being interpreted in terms of the appropriate analytic 
continuations, where necessary. 

We shall concentrate on the cases where analytic continuation is not necessary. For 
instance, we can use Theorem 4.4 to obtain further information about L. 

THEOREM 4.7. If a < n and {bk ,bk } g A
p, A, M 

for k = 1,...,n, then L is a 
homeomorphism from 	onto Fp . p _ m2  with inverse L. 

Proof. Let ( € 	and 1,1' E Fp , p _ m ,. Under the given conditions, Lemma 4.3 and 
Theorem 4.4 give 

LLp = L °q = q, LLi/í = L° i = 0. 
The result follows at once. 

COROLLARY 4.8. If a <n and bk  — i e AP, p , m  for k = 1,...,n, then L is a homeo-
morphismfrom Fp , . Onto Fp , p _ m  and the inverse of L is L as given on F p , p _ m  by (4.1) 
with —1. 

Proof. Since if bk — i e A p . p . m  then bk e A p , p . m , as can be seen from (2.8), the result 
follows from Theorem 4.7. 

For future reference we record the salient facts about L'. 

DEFINITION 4.9. Let m = n—a > 0, let a be any complex number, and let 
bk e A p , p , m (k = 1,...,n). Then we define (L') 8  on Fq ,_ p + m8  by 

n 
(L')'qp = m 2 fj K'11" 	(4 e Fq, -,, m.). (4.6) 

k=1 

THEOREM 4.10. Let m = n - a > 0 and let Lx , /3 be any complex numbers. 
If bk.E A p . p , m  (k = 1,...,n), then (L)z  is a continuous linear mappingfrom Fq -z +m 

into Fq, _,. If also bk 	e A p . p , m  (k = 1,...,n), then (L')8  is a homeomorphism from 
FontoF 	d 1(L'Wl -' - 	- F,,, -p+m q, -p 	L' / J 	- 	/ 

If bk C  A p , p , m  (k = 1,..., n), then (L') °  is the identity operator on Fq  
Let (p C Fq._ p + m + mp. If {b k ,bk —f3} g A pp ,,, fork = 1,...,n, then 

= (L)' "p. q,. 	 (4.7) 

If{bk,bk,bkfl) c A p , p . m  for k = 1,...,n, then 

(L')(L'), = (L')q, = (L')(L')q. 	 (4.8) 
5388.3.45 	 HH 
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Proof. The details are similar to those for Land are therefore omitted. Once again 
we observe that in (4.7) the right-hand side provides an analytic continuation of the 
left to cover the cases where bk13  0 A pjt . m . Likewise (4.8) can be regarded as holding 
subject only to the conditions bk  e A p.,,, m  (k = 1,..., n) provided that the first and third 
members are interpreted in terms of their analytic continuations. 

We now turn to the case where a> n and consider fractional powers of M and M'. 

DEFINITION 4.11. Let m = a—n >0, let a be any complex number, and let 
i — bk  E A'p ,, m (k = 1,...,n). Then we define M on F,,,, by 

n 
Mp = maxrn2 fl K" 	(q e F). 	 (4.9) 

k= 1 

The motivation for Definition 4.11 comes from Lemma 3.9 (iii). 

THEOREM 4.12. Let m = a—n > 0 and let cçfJ be any complex numbers. 
If i — b k  e A

P
',,,. (k = 1,...,n), then M is a continuous linear mapping from F,,,, 

into Fp,,, +mcz . If also 1—b k —xE A'p,,z , m (k = 1,...,n) then M is a homeomorphism from 
Fr,,, onto Fp.,, +mcz  and (M8)_l = M. 

If ib k  C A'p ,, m  (k = i,...,n), then L°  is the identity mapping on F,,,,. 
Let p e F,,,,. If {l — b k , 1 —b k -13} 	A'p, m  (k = i,...,n), then 

MMp = Mq. 	 (4.10) 

If{1—bk,1—bk—c,1—bk—l3} g A' 1, p ,,,(k = 1,...,n), then 

MMço = M(p = MMp. 	 (4.11) 

Equations (4.10) and (4.11) hold if 1 - bk  e A'p ,, m  (k = 1,..., n) provided that the 
appropriate terms are regarded in terms of their analytic continuations. 

Proof. The proof of this theorem is omitted. 

DEFINITION 4.13. Let m = a—n > 0, let c be any complex number, and let 

1 - bk  e A',,,,,,,, (k = 1, ..., n). Then we define (M') on Fq , -,, - ,,, by 

n 
(M')q = m' fl I k+l/m._xm2cD ((p C Fq ,_ p _ m2). 	(4.12) 

k= 1 

The motivation for Definition 4.13 comes from Lemma 3.9 (iv). 

THEOREM 4.14. Let m = a - n > 0 and let a
, 

fi be any complex numbers. 
If i — bk  E A'p,,j , m  (k = 1 ..... n), then (M') is a continuous linear mapping from 

Fq ,_,, m  into Fq,_,,. If also I —b k —a C A'p,,,. m  (k = 1,...,n), then (M') is a homeomor-
phism from Fq._,,_ mi  onto Fq,_,, and [(M')]' = (M'). 

If 1 - bk C A,,, m  (k = 1, ..., n), then (M') °  is the identity mapping on F,,, 
Let p C Fq ._,,_ m _ m fl. If {1—b k ,1—b k IJ} 	A'pp ,,(k = i,...,n), then 

= (M')"p. 	 (4.13) 

If{i—b k ,i—b k —c,1—bk—fl} g A' p , p , nt (k = i,...,n), then 

(M')(M')p = (M') 11 (p = (M')''(M')p. 	 (4.14) 
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Equations (4.13) and (4.14) hold if i — b k  e A, pm  (k = l,...,n) provided that the 
appropriate terms are interpreted in terms of their analytic continuations. 

Proof. The proof of Theorem 4.14 is also omitted. 

5. 

In the case where Rea <0, we might expect L2, M etc. to be integral rather than 
differential operators and it is of interest to try to identify the kernels of these integral 
operators. Expressions such as (4.1) and (4.9) do not yield the kernels without a great 
deal of effort involving special functions. However, use of the Mellin transform helps 
considerably. In this section, we show how this approach leads us to the same 
definitions of fractional powers as in §4. Previously, any value of p in the range 
1 p cc could be considered. In the Mellin transform approach the restriction 
1 p 2 enters but, by way of compensation, we shall be able to identify the kernels 
easily in §6. 

The Mellin transform, d(p, of a function (p is defined formally by 

di4)(s) = 
f000 

Xs
-l p(x)dx, 	 (5.1) 

where s is a complex number. If q' e C(O, co),(5.1)is meaningful for any s. However, 
if e 	we must restrict s to the line Res = 1/p—Rep. 

THEOREM 5.1. For 1 p < 2 and any complex number p, let 	be defined on 
(—cc,c13)by 

(t) = J14)(l/p— Rep +it) = fo 
x 1/p-R e ju - I +it 4)(x) dx. 

Then the mapping 4) —p t' is a continuous linear mapping from Fp, , into L(_  cc, cc). 

Proof. This is a consequence of [13, Lemma 2.3] once we observe that our space 
is continuously imbedded in Rooney's space L1 pRe,p 

REMARK 5.2. From now on, in dealing with 	4)(s) for p e 	it will be implicit 
that Res = 1/p—Rep. In view of Theorem 5. 1, to establish results on Fp, involving 
J1, it will be sufficient to take 4) E C(0, co) and use the fact that C(0, cc) is dense in 

[11, Corollary 2.7] in conjunction with the continuity of dl. However, the 
restriction 1 < p < 2 mentioned above becomes operative immediately in this 
approach. 

The following result is easily proved. 

LEMMA 5.3. Let I < p < 2, let p e 	let ,2 be any complex number (and let 
Res = 1/p—Rep). Then 

dl(xp)(s—),) = .Ai'(p(s), 	 (5.2) 

.11(D(p)(s+ 1) = —sd/4)(s). 	 (5.3) 
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Proof. (i) is trivial but we should perhaps note that both sides are well-defined in the 
spirit of Remark 5.2 since 

Res = 1/p—Rep => Re(s-2) = 1/p—Re(p+)). 

(ii) follows at once by integration by parts for p a C(O, cx)) and hence for all 
(p a 	by continuity. 

Of more substance is the effect of ..1f on I and K. 

THEOREM 5.4. Let 1 < p 2, let (o a 	and let a be any complex number. 
If il a A 	,,,, then 

- F(?7+1—s/rn) 
11 

	

di(Ip)(s) - 
	

.p(s). 	 (5.4) 
 f(+cc+ 1—s/rn) 

il E A'p  pm, then 

- F(i + s/rn) 

	

d1(Kp)(s) 	 .J/(p(s). 	 (5.5) 
- 

Proof. We consider only (i), the proof of (ii) being similar. We deal with the various 
forms of I as given in Definition 2.6(i), (iii). The validity of (5.4) for the case where 
Re(rni + u) + m> i/p and Rex > 0 is established, in slightly different notation, in [12, 
Corollary 4.1]. For Re(mil > i/p and —1 < Re  0, we use (2.11), (5.2), 
(5.3), and the previous case to obtain 

F(j+l—s/rn) 	s F(ij  
J1(Ip)(s) = 

[++ f(q++2—s/rn) - mf(,++2—s/rn) 

which reduces to (5.4) via F(z+ 1) = zF'(z). Proceeding step-by-step, we can thus 
establish (5.4) for Re(m + ,u) + m > i/p and likewise (5.5) for Re(rn - 1u) > - I/p. We 
now use these results along with (2.14) and the formula F'(z+ i) = zF(z), the latter 
being applied 2k times, where k is as in (2.14). The details, which are routine, are 
omitted. This completes the proof. 

REMARK 5.5. The expression (5.4) shows clearly the relevance of the set A ppm . For 
(5.4) to be meaningful, we require that Re(j + 1 - s/rn) should not be zero or a negative 
integer. Bearing in mind that Res = i/p—Rep, we see easily that this condition is 
equivalent to q E A p.m  Similar remarks apply to (5.5). Theorem 5.4 also makes the 
extended definitions of and K in Definition 2.6 (iii) and (iv) appear perfectly 
natural. 

We can now obtain expressions for the Mellin transforms of our fractional powers. 

THEOREM 5.6. Let I < p < 2, 'p a 	m = n—a > 0, and 

bkE API p , m  (k=I,...,n). 

Then 

" F(bk+1—s/m) 
J((L8q)(s+rnc) = m' fl 	 .iYq(s). 	 (5.6) 

k=1 F'(bk - ( + 1 -S/M) 
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Proof. By Theorem 4.2, if qo e 	then L(p E Fp,p_ m2  and, in keeping with Remark 
5.2, Res = i/p—Rep implies Re(s+mc) = 1/p—Re(p—ma). Thus both sides of (5.6) 
are meaningful and equality follows from (4.1), (5.2), and (5.4). 

REMARK 5.7. As mentioned above we could use the Mellin transform method to 
arrive at (4.1) in the case where 1 < p < 2. The first step would be to establish (5.6) for 
the case where a = r, a positive integer, and this is easily done via (3.3), (5.2), and (5.3). 
With this motivation, we would then use (5.6) as the definition of L which we could 
regard as being similar to a multiplier transform as discussed by Rooney in [13], 
although here we are mapping one space into a different space. For 1 < p < 2, .il is 
one-to-one and we can deduce via (5.4) that (5.6) is equivalent to (4.1) in this case. 
Similar comments apply to the other cases. 

Analogues of (5.6) for (L'), M, and (M)a  can easily be obtained. We shall list just 
one of the results for use below. 

THEOREM 5.8. Let 1 < p < 2, p e 	m = a—n > 0, and 

i — b k  c A;,,,, m  (k = 
Then 

J1(M9)(s—mcx) = Mn, fl 
JT(1—b k 

 +s/m) .Atfcp(s). 	(5.7) 
k=i f(1 —b k —c+s/m) 

Proof. The result follows easily from (4.9), (5.2), and (5.5). 

6. 

Armed with (5.6) and (5.7) as alternatives to (4.1) and (4.9), at least when 1 < p < 2, 
we set about identifying the kernels of L and M 2  in the case where Re a <0. 

First, we need a technical lemma. 

LEMMA 6.1. Let K be afunction defined (almost everywhere) on (0, cc) and such that 

f0,0 

x (I 1p -  K(x)j dx < cc. 	 (6.1) 

Let T be the integral transform defined, for suitable functions p, by 

Tp(x) = 	K(xm/ttm) Q(t) dt/t 
Jo 

where m > 0. Then, for 1 < p < cc and any complex number p, 
T is a continuous linear mapping from LP into itself, where 

L,P = {f: xf(x) e L"(0, cc)} 	 (6.2) 

is equipped with the norm 

II f 	= 1 1 x'1f(x)  lip, 	 (6.3) 

T is a continuous linear mapping from Fp, into 
for qp e C(O,cc) and Res = 1/p—Rep, 

J1(Tp)(s) = m 'JIK(s/m)dIp(s). 
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Proof. For x > 0, let K 1 (x) = K(xm). Then, by (6.1), 

I 	
fo,* 

1/q K 1 (x) I dx = m1 	t(hIP_R)/m_1 I K(t)  I dt <  oo 
Jo  

and 

Tp(x) = 	K 1 (x/t)çb(t) dt/t. 
fo 

(i) follows easily by a well-known result on Mellin convolutions [12, Lemma 3.1]. 
We may also write 

Tq(x) =  f `0 

 K 1 (v)ço(x/v)dv Iv.  
o 

When p e 	we may differentiate under the integral sign, subject to (6.1), and 
obtain öTp = T6ço where 6 is defined by (2.7). Since ( e Fp,,  implies &p e L, (ii) now 
follows in a routine manner. (iii) can be proved by inverting the order of integration on 
the left-hand side which, again, can be justified subject to (6.1). This completes the 
proof. 

In view of Lemma 6. 1, we seek, in the case of L, a function whose Mellin transform 
is of the form 

[1 r'(bk+l_s)/fl F(bk — c.+ 1 — s). 

Formula (14) of [3, p. 337] leads us to Meijer's G-function, properties of which can be 
found in, for instance, [2, Chapter V]. 

DEFINITION 6.2. Let n be a positive integer, let m > 0, let v 1  ,..., v,, be complex 
numbers, and let y be a complex number with Rey >0. We define G 1 (v 1 ,...,v;y;m)tp 
for suitable functions qp by 

X 	

t-(G1(v1,...,v;y;m))(x) = x_mm_J Gn.0(' 
v1 

) c (t) d(tm). (6.4) 
X 	v1,...,v 	/ 

REMARK 6.3. We note that 

n,n 	 = 0 for u> 1, 	 (6.5)
V1, ..., V, 	) 

and that the condition Rey > 0 ensures that 

	

( ~ 	v1,...,vn 

is absolutely integrable at u = 1. These facts can be deduced from, for instance, [2, p. 
208, formulae (5) and (6)]. 

LEMMA 6.4. Let the hypotheses in Definition 6.2 be satisfied. If Re(mv k  + p)  + m > i/p 
for k = 1,..., n, then G 1 (v 1  , ..., v i,; y; m) is a continuous linear mapping from 	into 
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Proof. For e 	we have 

G 1 (v 1 , ..., v; y ; m)(x) = m - "  f000 
K(xm/tm)(t) dt/t 

where 

K(u) = u1G(u1 I V, 	
(u > 0). 

To apply Lemma 6.1, we recall (6.5) and consider 

('a 
(h/P)Im_i K(u)Idu 

Jo 

fo

1  
't 'G o(t 

 I
vi 	

dt. 	 (6.6) 
 V I, ...' V ~ 	) ~ 

At the origin, 

G(t 'Y)=O(ItIV) n: n

where v = max(Re v 1 ,..., Re v) by [2, p. 212]. By hypothesis, Re(rnv + ,U) +  m > i/p and 
this ensures the convergence of (6.6) at t = 0, while convergence at t = 1 is catered for 
by Remark 6.3. Thus (6.6) is finite and the result now follows easily from Lemma 6.1. 

LEMMA 6.5. Under the hypotheses of Lemma 6.4, we have 

fl = J1(x mYG 1 (vj ,..., v;y;rn) (o)(s _ rny) = rn' 	
1 lT(i'+ 1 - s/rn) 

 
1—I = 1 F(v + y + 1 - 

s/rn) J1(p(s) (6.7) 

for q E C(0,co) and Res = 1/p—Rep. 

Proof. By [2, p.  209] and (6.5) we can write (6.4) in the form 

rn" if G.01
,( 
nn 	

- 	 :::: 1:_ )p (t) dt/t. 	 (6.8)
—tm 

The required result follows when we use Lemma 6.1 (ii) in conjunction with [3, p. 337, 
formula (14)]. 

We have now reached the stage of relating L to the G-function. 

THEOREM 6.6. If m = n—a >0, Re(rnbk +)+m> l/p(k = l,...,n), and Rex <0, 

then 

Lp = xmG 1 (b 1 ,...,b; —a;rn)q (peF,j. 	 (6.9) 

Proof. Under the given conditions, both sides of (6.9) define functions in Fp,p_ ma  by 
Theorem 4.2 and Lemma 6.4. They are equal when p e C(0, cx) and 1 < p 2 in 
view of Theorem 5.6 and Lemma 6.5. Using the continuity of the operators, 
established in Theorem 4.2 and Lemma 6.4, together with the fact that C(0, co) is 

dense in [11, Corollary 2.7], we can establish (6.9) in the case where 1 < p < 2. In 
the case where p > 2, the above proof for p = 2 will hold for q,  e C(0, co) and 
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Re(inb + ;L)+ in > - (k = 1,..., n). We can relax - to i/p in the latter inequalities using 
analytic continuation with respect to b,_., b.; analyticity of the left-hand side follows 
from [II, Theorem 3.31] and of the right-hand side from the analyticity of the G-
function. We omit the details. Finally, continuity and density complete the proof as 
before. 

We now state, without proofs, results for other fractional powers. 

DEFINITION 6.7. In the notation of Definition 6.2, we define G 2 (v 1 , ..., V.; Y; m)p for 
suitable functions p by 

(G 2(v 1 ,...,v;y;m)q)(x) 

fx,* n ( 

= - 	I - Q(t) d( tm)
Y ) 

7 t 	1—v 	1—v 	\ 
= m''' 	G°'( - 	'' ...' 	' 	)q(t)dt/t. 	(6.10) 

\xm 1—v 1 —y,...,1—v—yj 

THEOREM 6.8. If m = n—a> 0, Re(nIb k +/1)+m> 1/p(k = 1,...,n) and Re cc <0, 
then for (PEFq ._p+ma, 

(L')ço = G 2 (b 1  + 1— 1/m,...,b+ 1— 1/m; —o;m)xmq. 	(6.11) 

THEOREM 6.9. Let m = a—n >0, Re(mb k +1L)—m < 1/p(k = 1,...,n), and Re a <0. 
For ço e 

M'qo = xm 2 G 20 —b 1 ,..., 1—b e ; — oc;m)q. 	 (6.12) 

For q e Fq,__ m1 , 

= G 1 (—b 1 -f-1/m,..., —b+1/m; —x;m)xmq. 	 (6.13) 

REMARK 6.10. (i) In Theorems 6.6, 6.8, and 6.9, we have dealt with the simplest 
restrictions on the parameters b,_., b,,. For instance, if, in Theorem 6.6, bk e A ppm  
but Re(mb k +)+m < i/p for some k, the proof breaks down and the investigation 
becomes more complicated. Here, we do not try to identify the kernels of our 
fractional powers in these more complicated cases. Some indication of what is 
involved can be obtained from (2.14) and (2.15). Likewise, for Recz> 0, the operator 
becomes an integro-differential operator while Re a = 0 (c. ' 0) presents its own 
problems. We shall not pursue this further either. 

(ii) In the case where n = 2, the G-functions appearing in (6.4) and (6.10) become 
hypergeometric functions of type 2 F1 . In § 9, we shall examine this case in more detail 
and reconcile our results in this paper with those obtained in earlier work [] and [11, 
Chapter 4]. 

7. 

We now discuss the extension of L and M to the classes F',,., of generalized 
functions. 

We consider first the case where a <n. The motivation for the definitions of the 
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extended operators conies, as usual, from consideration of regular functionals. If 
g e Fq  , then g generates an element e F' by means of the formula 

(,(P) = 	g(x)p(x)dx ((pc- FP., ) , 	 (7.1) 
fo 

By Theorem 3.2, if r is a positive integer, Lrg E Fq._p_ mr  and generates an element 
(L'g) e F'pp+mr  in an analogous way. The extended operator (L') , say, should be 
such that 

(L') 	= (Lrg) 	 (7.2) 

as an equality in F'p p +mr. Thus, if c C(O,co), 

((Lr), 47) = ((Lrg)p) 
= I (L'g)(x)p(x)dx 

Jo 

= f '0g(x)((L')" ~o)(x)  dx = 
, 
(L')) (7.3) 

o 
on integrating by parts. Since C(0, co) is dense in Fp. u+mr  [11, Corollary 2.7], (7.3) 
will hold for all qo c Fp .p +m,. This suggests that for any f e F',,,, regular or not, we 
should define (Lf by 

This in turn suggests the definition of the extension of L 2  to F"
, IU . We shall denote this 

extension by L 2  rather than (L') , since no confusion should arise. 

DEFINITION 7.1. Let a < n, let c be any complex number, and let 

bk e A q._p, m  (k = 1..... n). 

If f e F',,,, we define Lf  e F,p+m  by 

(Lf, (p) = (f, (L')(p) ((p e Fp . 12+mcz ) 	 (7.4) 

where (L')p is defined by (4.6). 

NOTE. By Theorem 4.10 (i), (L')47 exists as an element of F.,  under the given 
conditions so that the right-hand side of (7.4) is meaningful. Equation (7.4) therefore 
defines Lf  as a linear functional on Fp.p +m2 . That Lf is also continuous is a 
consequence of the definition of convergence in 

We can easily obtain the properties of L on F,., from those of (L')' on Fpp+m . 

THEOREM 7.2. Let a <n and let a and /3 be any complex numbers. 
if b k EA g.  _p. m (k = I..... n), then L 2  is  continuous linear mappingfrom F' into 

F.p+m . if also bk LEA q. _ p , m  (k = l,...,n), then L is a homeomorphism from F' 
onto F:,- ,,.,,with (V) - '  = L. 

if bk e A q,_. m (k = 1,...,n), then L °  is the identity operator on F'1, 1 . 
Let f e F'.If {b k ,bk /3}g A g _ p , m  (k = 1,...,n), then 

L2LPf = 	 (7.5) 

If {b k ,bk —cx,b k -13} ç 	= l,...,n), then 

LLf = Lf = LLf. 	 (7.6) 
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Proof. These results follow by applying standard results on adjoint operators [117, 
Theorems 1.10-1 and 1.10-2] in conjunction with Theorem 4.10. Consider, for 
instance, (iii). Under the given conditions, Lf a F,, +mp and L(Lf) a F'pp+m+mp. 
Likewise, L'f a F',, p+m+mp so that both sides of (7.5) define elements of the same 
space. To prove equality, let çaeFpp+rn2+p . Then 

(L'L'f, (p) = (Lf, (L')(p) = (f, (L')(L7(p) 

= (f, (L')' +  I(p) = (L' +  If, (p) 

where we have used (7.4) and Theorem 4.10(iii). This gives equality. Equation (7.6) 
and parts (i) and (ii) are established similarly. 

The theory for (L)a  in the case where a < n can now be stated briefly, the 
motivation for the definition being similar to that above. 

DEFINITION 7.3. Let a < n, let a be any complex number, and let 

bk a A q,_ p , m  (k = 1,...,n). 

If f a F,_ 14-m, we define (L')f a 	by 

((L')f,(p) = (f, Lp) (p a F q,). 

THEOREM 7.4. Let a < n and let a, fi be any complex numbers. 
If b k  e A q,., m (k = 1, ..., n), then (L') is a continuous linear mapping from 

F',-,,- M. into F',-,,. If also b - a a A,,,-,,.(k= 1, ..., n), then (L') is a homeomorphism 
from F, 

- p - m onto F,, -,, with [(L')] ' = (L') 

IfbkEA q._ it, m(k = 1,...,n), then (L') °  is the identity operator on F 	,. 

Let f a F,._ p _ m _ m p. If {b k ,bk -1J} 	A,,,,jk = 1,...,n), then 

(L')(L')f = (L)a +If. 	 (7.7) 

If {bk,  b, — Lx, bk  — # 1 9  A q,_ p , m (k = 1,...,n), then 

(L')(L')f = (L') 2 + If = (L')(L')f. 	 (7.8) 

Proof. The details, which are similar to those in Theorem 7.2, are omitted. 

Finally, we deal with the case where a > n. Again proofs are omitted. 

DEFINITION 7.5. Let a> n, let a be any complex number, and let 

l—b k aA'q,_ p , m  (k=1,...,n). 

If f E F',,,,, we define Mf a F',,,,,_ m2  by 

(Mf,ço) = (f,(M')() ((p a Fp,p ma) 

THEOREM 7.6. Let a> n and let a, $ be any complex numbers. 
If 1 bk E A'q , -p.m  (k = 1,..., n), then M is a continuous linear mapping from F',,,,, 

into F' 
- 
m If also I — b — a a A,,,. (k = 1,..., n), then M 8  is a homeomorphism 

from F',,,, onto F"..-M.  and (M 1  = M. 
If 1—b k  a A._,,. m(k = 1,..., n), then M °  is the identity operator on F,,4 . 
Let f € F'pp . If {lb k , lbk } 	A'q,_ p , m  (k = 1,...,n), then 

	

MMf = Mf. 	 (7.9) 
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If {1 —b k , I —b k —a, I —b k -13} 9 A,,-,,. (k = l,...,n), then 

M2MI3f = M2+flf = MMf. 	 (7.10) 

DEFINITION 7.7. Let a> n, let a be any complex number, and let 

lbk EA'q. _ p , m  (k1,...,n). 

If f E F'q,_ g+m , we define (M')2f e F_ by 

((M')8f, q) = (f, Mp) (q e 

THEOREM 7.8. Let a> n and let a,/i be any complex numbers. 
If I — b k  e A_ m (k = 1,...,n), then (M') is a continuous linear mapping 

from F,._, +m8  into 	If also l — b k  — c. A_ pm (k = 1,...,n), then (M)a  is a 
homeomorphism from F'q _, +m  onto 	and [(M')]' = (M'). 

ff1—bk E A j._. m  (k = 1,...,n), then (M') °  is the identity operator on 
Let f E F9,_, +m2+mp. If{l —b k , 1 -bk -13} 	A j,_ p , m  (k = 1,...,n), then 

(M)P(M)2f = (M' )f. 	 (7.11) 

If {l—b k , l—b k —, 1—b k -13} c A j,_. m  (k = 1,...,n), then 

= (M')f = (M')(M')f. 	 (7.12) 

REMARK 7.9. Once again, the equations (7.5)-(7.12) hold under weaker conditions 
provided that we interpret appropriate expressions in terms of analytic con-
tinuation. For instance, let us consider (7.5). Suppose that bk  e A q,_ m  (k = 1, ..., n) 
and let f e and (p C Fp,p +m2+mp. Under the additional assumption 

bk13 C A q._,. ni (k = 1,...,n) we have, from (4.7), 

(LLf, q) = (f, (L')' 1(L')(p) = If, (L') + 

However, the last expression is meaningful without the additional assumption and we 
can use it to extend the definition of LaLfif.  . In this way, we may say that (7.5) holds 
provided only that bk  e A q -z.m  (k = 1,..., n). Similar considerations apply to 
(7.6H7.12). 

8. 

In this section we show how our theory in § 7 can be applied to obtain information 
about integral transforms involving the G-function relative to the spaces LP defined by 
(6.1) and (6.2). Instead of starting with L and reading off a, b 1 , ..., b, in this section we 
start with complex numbers b 1 , ..., b, from which we calculate a, a1 ,..., a using (3.2) 
and (1.2) and then form L, L', M, and M'. 

Assume first that m = n—a > 0, Rey > 0, and that 

Re(mb k +u)+m> i/p (k== 1,...,n). 

We can consider the operator G 1 (b 1 ,...,b;y;m) defined via (6.4). By Lemma 6.1(i), 
this operator is a continuous linear mapping from LP into L. 
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Suppose now that g e LP is given and that we seek f e LP such that 

G 1 (b 1 ,...,b;y;m)f=g a.e.on(0,co). (8.1) 

To answer the questions of existence and uniqueness, we use our distributional theory. 
Firstly, (8.1) is equivalent to 

xmG 1 (b 1 ,...,b;y;m)f = xmg a.e. on (0, co). 	 (8.2) 

The functions f and xmg generate functionals ]' a F _ . and (xmg)  a F, -p-my  
respectively in the manner of (7.1). If qp a C(0, cc), we then obtain 

((xmYg),) = 
foo 

 xmG 1 (b 1 ,...,b;y;m)f(x)ço(x)dx. 
o 

We now substitute for G 1 (b 1 ,...,b;y;m)f via (6.4) and interchange the order of 
integration (Fubini's theorem supplying the justification) to obtain, after routine 
calculation, 

((xmg), 
) = 	f(x)G 2 (b 1  + 1 - 1/rn,..., b + 1— 1/rn; y; rn)xmp(x)dx fo 

= (L]',(P) 

where we have used (6.11) and (7.4) and regarded p as a member of Fq , -p-my.  Thus 
any classical solution  a LP of (8.1) satisfies the equation 

(LJ,) =((xmYg)p)  ((P a C(0,cc)). 

Since C(0, cc) is dense in Fq , -p-my'  we deduce that h = J satisfies 

U 1 = (xmvg), 	 (8.3) 

where equality holds in the sense of F,',-,,-My 

DEFINITION 8.1. Let m = n—a > 0, Rey >0, Re(rnbk +,t)+m> i/p (k = 1,...,n), 
and g a L. A functional h a F',- satisfying (8.3) will be called a weak solution of(8.i) 
or (8.2). 

The discussion so far shows that, iff a LP is a classical solution of(8.l), thenjis a 
weak solution of (8.1). However, it is possible to have a weak solution when no 
classical solution exists. 

THEOREM 8.2. Let m = n—a >0, Rey >0, Re(mb k +p)+m> l/p(k = I,—, n) and 
g a L. Then ( 8.1) has a unique weak solution h a F _, given by 

h = L7((xmYg)). 	 (8.4) 

Proof. For each k, Re(mb k +/2+ MY) +m> i/p since Rey > 0, so that 
{bk,bk+Y} A p,p, m . By Theorem 7.2, 	is a homeomorphism from F,,_ onto 
F'q ,_ ,-,u 	the given conditions, with inverse V. Equation (8.4) therefore follows 
at once from (8.3). 

COROLLARY 8.3. Under the hypotheses of Theorem 8.2, equation (8.1) has at most one 
solutionf a L. 
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Proof. Iff1 ,f2  were two solutions in LP of (8.1) j1 and]; would be weak solutions of 
(8.1). By Theorem 8.2,]; =] so thatf 1  =f2 as elements of L. 

To illustrate the possibility of no classical solution, we consider the following 
example. 

EXAMPLE 8.4. Let rn = n—a >0, Rey >0, Re(rnbk +u)+m> 1/p(k = 1,...,n), and 
let 5 be the element in F'q ,_ p  defined by 

(vs' e Fq,_ p). 	 (8.5) 

For (p E Fq,_ j _ my , (7.4), (6.11), and (6.10) give 

o 
n,= rn 1  

f

"
Go,nn(tm 	

—b 1  + 1/rn,..., —b+ 1/rn 	
)mYOd/ t. 

—b 1  + 1/rn—y,..., —b+ 1/rn—y 
(8.6) 

Using properties of the G-function [2, p.213], we may write (8.6) in the form 
((xmvg), q,) where 

g(x) = m 	1x-1G(x—m1 	
:iii 	 I 

l/rn+Y) 	
(8.7) 

for x> 0, g being identically zero on (0, 1). Proceeding as in the proof of Lemma 6.4, 
we can show that g e L, under the given conditions. Thus, with g as in (8.7), (8.1) has 
the weak solution h = 6, but, as 6, is a singular distribution, there can be no classical 
solution  e LP of(8.1). 

An indication of what governs the existence or non-existence of classical solutions 
of (8.1) can be obtained from the following purely formal analysis, which can be 
justified for functions in rather than L, under appropriate conditions: 

G 1 (b 1 ,...,b;y;rn)f=g 

L'f = xmG 1 (b 1 ,...,b;y;rn)f = xmg (by (6.9)) 

F1  Jbk.Yf = xm 7g (by (4.1)) 

n 
f = rn fl I''g (by (2.18)). 

k= 1 

For the last expression to make sense, it has to be possible to work out n 'fractional 
derivatives' of order y and this is where the restriction on g comes in. However, we 
shall not pursue this matter any further here. 

A similar collection of results can be stated briefly in the case where rn = a - n > 0. 
In this case we may consider the equation 

G 2 (1—b 1 .....l—b;y;rn)f=g 	 (8.8) 

and the corresponding equation 

Mh = (x_mvg) - 	 (8.9) 

for weak solutions h of (8.8). Under appropriate conditions, a classical solution of (8.8) 
generates a weak solution h = J.  We can again state a uniqueness theorem. 
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THEOREM 8.5. Let in = a—n >0, Rey> 0, Re(mb k +p)—m < I/p(k = l,...,n) and 
g e L. Then (8.8) has a unique weak solution h e 	given by 

	

h = M((x_"g)). 	 (8.10) 

Proof. This follows easily from Theorem 7.6. 

COROLLARY 8.6. Under the hypotheses of Theorem 8.5, equation (8.1) has at most one 
solutionf e L. 

Proof. This is almost immediate from Theorem 8.5. 

Once again, by considering M5 1 , with 6, as in (8.5), it is easy to construct an 
example where there is no classical solution f e L, and a criterion involving 
fractional derivatives forge LP to belong to the range of G 2(1 —b 1 ,..., 1—b;y;m)on 
LP could be derived if desired. 

REMARK 8.7. Finally in this section, we should mention that Rooney [114] has 
conducted a comprehensive investigation into the behaviour of integral transforms 
involving the G-function on the spaces L. In connection with our remark on ranges 
above, it must be mentioned that Rooney obtains a complete characterization of the 
range of his operators, the range being that of a certain fractional integral in the case 
corresponding to our operators given by (6.4) and (6.10). Rooney makes extensive use 
of the Mellin transform and multipliers and his results apply to the values 1 <p < co 
and in = 1 (although the extension to general positive in could easily be obtained). 

In this final section we look in a little more detail at the case where n = 2 in order to 
see how the results tie in with some of our earlier work [8] and also with the work of 
Sprinkhuizen-Kuyper [116]. 

We are thus concerned with 

	

L = xJlDxa2Dxl3 	 (9.1) 

where a = a1 -i-a2 -i--a 3  is real and a =A 2. From (3.2) we obtain 

= (a2 +a3 -1)/m, b 2  = a3 /m. 	 (9.2) 

Dealing first with the case where in = 2—a > 0, we have 

	

L= i2—mcrbl. —21b2, -m 	 (9.3) 

The form of the right-hand side indicates that, in this case, L is related to the 
hypergeometric operators discussed in [S] and [1111, Chapter 4]. 

THEOREM 9.1. If in = 2—a> 0, {b 1 ,b2 } A p•m , and qo e 	then 

L 3 tp = m2x_m!IH1(b2 —b 1  -cc, - - 2c ; m)xml +m2 	 (94) 

where H1(b2—b1 -, —; —2cc;in) is as !n [1111, Definition 4.6]. In particular, if 
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Re  <0 and Re(mbk +p)+m> 1/p(k = 1, 2), then 

Lp(x) = [F(__2c)]_lm2x_mb1 f 
(Xm 

Jo 

	

X 2 F1 (b 2 —b 1  —, 
—; —2z; 1 _xm/tm)tmhhl+mp(t)d(trn), 	(95) 

where 2 F1  denotes the Gauss hypergeometric function. 

Proof. From [11, Definition 4.6], when {b 1 ,b 2 } 9 Ap.p,m and  q,  e 

m 2 x _mtlH j(b 2 _b i  —z, —; _2c;m)xmbl4 Moe  p 

	

= m22x_m J, 	_b2+)r_cXm(b 2_ bl _z)mbl +ml(p 

which readily reduces to Lp via (9.3), (2.16), and (2.24). Equation (9.5) is obtained 

from [II, Definition 4.2]. This completes the proof. 

REMARK 9.2. We could also have arrived at (9.5) via Theorem 6.6. Under the given 

conditions 
('x 	/tm 	 —c\

Lco(x) = x_m_mm2a 	G 	
Ib l —Lx,b 2 

 
(- 	 b1,b2 	

)P(t)d(tm). 
fJo 

To show that this gives (9.5) we have to show that, for 0 < u < 1, 

G(u1b2) = (1_u)_2_lub22Fi(b2_bj_, —; —2; 1—u)/F(-2c). 

(9.6) 

If we extend the right-hand side to have the value zero for u > 1, the resulting function 
has as its Mellin transform 

V(b 1  +s)JT(b2  +s)/JT(b1  — + s)f'(b 2  —c+s), 

as can be checked from, for instance, [3, p. 337, formula (10)]. As this is also the Mellin 
transform of 

G20" b1—c,b2—c 

and this function is identically zero for u> 1 by (6.5), we have established (9.6). 

For another illustration we consider M 2  in the case where a> 2. By Definition 4.11 

with n = 2, m = a-2, and 'p c 	we have 

	

Mp = m 2 x m1K ,,, _l 	Kl 2  

and we can express Ma in terms of another hypergeometric operator. 

THEOREM 9.3. If m = a-2 > 0, {1 b 1 , I b 2 } 9 A',,and 'p e 	then 

	

M2'p = m28xm2_mbIH3(b2_bi —, —ci; _2 c;m)x ml 2 m_t 'p, 	(97) 

where 110 2 —b 1 —z, —; —2a;m) is as in [11, p.94]. In particular, if Reo <0 and 

Re(mb k +p)—m < l/p(k = 1, 2), then 

M'p(x) = [r(-2)] -'M 
2a X  ma — m +m 

fx"o 
 (tm _Xm)_2a_ 1 

x 2F1(b2—b1 -, —z; —2; 1_ X m1tm)tmb1+ 2mm'p(t)d(tm). 	(9.8) 
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Proof. This is similar to that of Theorem 9.1 and is omitted. 

It is possible to study the other six cases, namely (L'), M, (M)a  for a < 2 and L, 
(L)a, and (M') for a> 2 in a similar way but we omit the details. Instead we examine a 
particular case of Theorem 9.1. 

EXAMPLE 9.4. Let a,= —1, a2  = 2—v, and a3  = v—i so that a = 0 and m=2.  
These are the values in (1.5) for which L becomes the operator D 2  + vx - 1 D considered 
by Sprinkhuizen-Kuyper [16]. In this case b 1  = +(a2 +a3 + 1-2) = 0 and 
b2 =1 2a3  = -(v— 1). Then, under the conditions of Theorem 9. 1, 

L(p(x) = [F(-2cc)]122 fo 
(x—t) 2 ' 

X 2 F1 (v——cc, —cc; —2cc; 1 x 2 /t 2)t 28ço(t)d(t 2) 

= [F(-2cc)] -1 	{(x2 - t2)/2t} -2- 1 

X 2 F1 (—cc+(v— 1), —cc; —2cc; 1 —x 2 /t 2)9(t)dt. 	(9.9) 

This last expression turns up in [16, Theorem 2.5] (with cc replaced by —cc). The only 
difference is that the result in [16] is concerned with functions defined on [1, co) so 
that the lower limit in the integral is 1 and it is assumed that x > 1. It should be 
mentioned that the values given in (1.6) give rise to the same result, as the only effect is 
to interchange b 1  and b 2 . 

REMARK 9.5. Once again, it would be possible to obtain explicit expressions for (L'), 
M, and (M') for the particular operator L in Example 9.4. Expressions similar to 
those in [16] appear with minor differences in the limits of integration because of the 
different domains of the functions in our work and in [16]. Generalized functions in 
the spaces F',,., can also be handled as particular cases of the theory in § 7 and the 
results compared with the distributional results in [16]. We omit the details. However, 
it seems fair to say that our theory is in agreement with that of Sprinkhuizen-Kuyper 
but can handle a much larger class of operators. 

In view of Example 9.4, it seems appropriate to conclude by looking at another 
situation where such an operator occurs. For each complex number il, we shall write 

L,= D2 +(2ij+1)xD. 	 (9.10) 

On replacing v by 21j + 1 in Example 9.4, we have b 1  = 0 and b 2  = j so that, from (4. 1), 

La = 22 x 2 I 

on 	provided that {0, q) 	As mentioned in [1111, § 3.6] L q  plays an 
important role in generalized axially symmetric potential theory and elsewhere. In 
[ii, Theorem 3.59], we proved that, under appropriate conditions, 

PILL 

Now we offer the following extension of this result. 
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THEOREM 9.6. Let {O,tj,—c,t-fl} 
Ifp e 	then 

1jIJ(L)2ço = (L 
'i+fl) 2 (p. 	 (9.11) 

If (P  e Fq,_ p+22, then 

= (9.12) 

where L' and L' +2  denote the formal adjoints of L and L +  respectively. 

Proof. We prove (i), the proof of (ii) being similar. For (p e 	we have 

= I 2 2 x 2 I 	I'' q 	(by (4.1)) 

= 222x _ 22I j fI j  -aJ. q (by (2.24) (2.26)) 

= 	 _2q 	(by (2.29)) 

= 22x_22I2O, 	Jj 11 ço (by (2.26),(2.29)) 

= (Lq+ J"jp 	 (by (4.1)). 

This completes the proof. 

REMARK 9.7. Once again, the conditions 	e A pm  and ti+fl  e A p , p . m  can be 
removed if we interpret the left-hand and right-hand sides respectively of (9.11) and 
(9.12) in terms of their analytic continuations. Thus only {O,tj} E A p p m  is crucial. 
Similar remarks apply to the corresponding theorem for generalized functions. 

THEOREM 9.8. Let {0,1i—i+f3} 
1ff e F,, then 

In AL,ff 	 \ 1's. P = (L+, '2 f. 

IffEF,_p_2a, then 

= 

Proof. These results follow from Definitions 7.1 and 7.3 and Theorem 9.6. 

In conclusion, we may say that, by expressing a differential operator in an 
alternative form, it is possible to discover in a natural way how operators of the form 
J and K', with an appropriate value of m, can be used to study problems 
associated with the differential operator. Other instances of this will be discussed 
elsewhere. 
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Abstract 

Two index laws for fractional integrals and derivatives, which have been extensively studied by E. R. 
Love, are shown to be special cases of an index law for general powers of certain differential 
operators, by means of the theory developed in a previous paper. Discussion of the two index laws, 
which are rather different in appearance, can thus be unified. 
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1 

In [2], Love discussed two index laws for fractional integrals and derivatives and 
gave detailed conditions for their validity. These laws were also discussed in a 
distributional setting by Erdélyi [1] and later by McBride; see, for instance, [3, 
Chapter 31. In order to state the index laws, we shall work, for convenience, with 
functions in the class C(O, no) of smooth, complex-valued functions defined on 
(0, no). Throughout, m will denote a positive real number. 

Let a be a complex number and let q (E C°°(0, no)) be a suitably restricted 
function. 

(i) For Re a > 0, we define I,, q by 

(1.1) 	(I,)(x) 
- 1 
	

f (m - (m) aIq(t) d(t-) 
F(a) 

rcr 

© Copyright Australian Mathematical Society 1983 
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where d(tm) = mtm dt. The definition is extended step-by-step to the region 
Re a < 0 by repeated application of the formula 

(1.2) 

where 

1 (I I—rn 	- 	l I—rn 
k ) 	 m -_dm - m- x 	 - x 

(ii) For Re a > 0, we define K",10  by 

(1.4) 	(K)(x) = 
IF(a) 

I  
f 	- x-)4(t) d(tm) .  

The definition is extended to Re a < 0 by repeated application of the formula 

(1.5) 	 K4 = (_Dm )K 14L 

We can now state the two index laws referred to above. 
(First Index Law). For any complex numbers a and 

(1.6) 	 i i;4 = I'cI? = 

(1.7) 	 KKçb = 	= 

(Second Index Law). For complex numbers a, 0 and y such that a + /3 + y 

=0, 

(1.8) 	 = 

(1.9) 	 x maK x mY4 = 

(Throughout we shall use x 1' to denote the operation of multiplying a function of 

the variable x by x i'.) 
The first index law is very familiar but the second index law is much less 

familiar and seems, in the first instance, rather strange and unexpected. The 
object of this note is to point out that both laws can be brought under the same 
umbrella. In a recent paper [4], we have shown how it is possible to define general 
powers of an ordinary differential operator 

(1.10) 	L =xalDxa2Dxa3 ... x Dx a± 	(D mi-) 
of order n, as well as powers of the related operators 

L' = (_1)n X±1DXa" . . . x a3Dx Dx a, 

M = (-1)"L and M' = (—l)P?L. 

This was done under the assumption that the complex numbers a 1 ,... ,a ±1  were 

such that 
n+I 

(1.13) 	 a= 	a, is real 
i= I 



358 	 Adam C. McBride 	 131 

and 

(1.14) 	 mIa — nI>O. 

The powers satisfied a "first index law" so that, for instance, 

(1.15) 	 LaLfl ç& = La 	=  

(1.16) 	 (L)a(LF)P = (L')''q  

under appropriate conditions. The two cases a <n and a > n produced different 
expressions for the general powers. We shall show that in the case a < n, (1.6) 
and (1.7) lead to (1.15) and (1.16) and, conversely, by choosing a suitable L, that 
(1.15) and (1.16) contain (1.6) and (1.7) so that, in a sense, (1.15) and (1.16) are 
equivalent to (1.6) and (1.7) in this case. More interestingly perhaps, in the case 
a > n, analogues of (1.15) and (1.16) for M and M' are equivalent to (1.8) and 
(1.9) so that the first index law for M and M' gives rise to the second index law for 
I,',, and K. 

2 

In what follows, 4  will be a function in C°°(O, oo), such that all the subsequent 
formal analysis is valid. For instance, we may choose 4  to be an element of the 
space 1 defined in [3, Chapter 21. Precise conditions under which the various 
steps can be justified within the framework of the F spaces can be found in [3] 
and will not be detailed here. 

For m > 0, Re a > 0 and suitable complex numbers i, we define the Erdèlyi-
Kober operators I and K," by 

(2.1) 
	 = x _mfl_maI x mp ,  

(2.2) 
	 = 

where I and K are as in (l.l)—(l.5). Thus, for Re a > 0 and suitable 71, 

(2.3) 	(I'p)(x) 	F(a) j'(l - um) a 'um(xu) d(u-) ,  
o  

(2.4) 	(K,")(x) = ['(a) J (u" - l)'u_m_m( xu ) d( u m) ,  

while, for any complex a, 

(2.5) 	 Imn,ao = ( + a + l)I,'4 + 

(2.6) 	 K' = ( i + a)K'4 - 
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[3, formulae (3.14) and (3. 18)], where 

(2.7) dx 

We can prove that 

(2.8) 	 = 

under appropriate conditions. For Re a > 0, Re $ > 0, (2.8) follows on using (2.3) 
and interchanging the order of integration; the restriction on a and 8 can then be 
removed by repeated application of (2.5) together with the fact that 8 commutes 

with each I operator. Also, by (1.6) and (2. 1), 

(2.9) 	 Jrs—Y—aJn—p = 

Hence by. (2.8) and (2.9), for suitable functions Ji, 

= I:11_.f%Ii. 

(2.1) then gives 

(2.10) x _mmYI,  ?X m X _m mY+maI, xm 71_mYp = x_mfl+mmYI_xmp. 

If we write 4(x) = xm'mb(x) and 0 = —a - y so that a +,0 + y = 0, (2.10) 

becomes (1.8). Thus we may say that the first index law for I together with the 
commutativity of the Erdélyi-Kober operators leads to the second index law for 

I. Similarly, we can show that (1.7) and the result 

(2.11) 

lead to (1.9). This gives us one way of viewing the second index laws for I.", and 

K. 

3 

Now we show how the two index laws for I and K are related to the first 

index law for general powers of the operators L, L', M and M' defined by 

(1.10)—(1.12). As indicated above, the two cases a < n and a> n need separate 

treatment. We shall consider L and L' for a < n and M and M' for a > n. 
The method used in [4] relied on rewriting the operator L, defined by (1.10), in 

the equivalent form 
n 

(3.1) 	 L = m'x"_" fi 
k=1 

where 
I n+I 

(3.2) 	 bk 1 ( 	ai +k_n) 	(k1,...,n). 
i=k±I 
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In the case a <n, induction shows that, for r 

= mxr 	 X mr_mbk(Dm ) rx m bk 

k=1  

and, since (Dm 
)r = j-r under appropriate conditions, we can use (2.1) to write 

= mx 

k=1 

which in turn leads to the definition of L,  for any complex number a, as the 
operator 

(3.3) 	 La = 	

k=I 

(The product on the right-hand side is unambiguous in view of (2.8).) (2.1) and 
(2.8) give 

nn 

(3.4) 	LaL$4 = max-ma H 	[J jb,,-fl 

	

k=1 	 k=1 

a 	 a 
= mThxm((+fl) fi Tmbk—$,-a  H J,k.fl4 

k=1 	 k=I 

a 
= mn±x_m() H Jbk—Th-aJbk,-$.4. 

	

m 	m 'V 
k=1 

while 
a 

(3.5) 	 L a+flp = mn(a+ft)xm 	H Jbk,-(a±$) 

k=1 

That the right-hand sides of (3.4) and (3.5) are equal is a consequence of (2.9), 
which in turn is a consequence of (1.6). Thus we may say that 

(3.6) 	 LaI}=La 4 P 

is a consequence of the first index law for I in this case. Conversely, we may 
regard (1.6) as a special case of (3.6) corresponding to 

(3.7) 	 L = mDm xI_mD. 

In the notation of (l.lO),n = 1, a 1  = 1—rn, a2  = 0,b1  = 0 s that 

L = m 	 = m"I. 

Thus L -aL- ft = 	
jm  m
ajfl = j4fl as required. 

In a similar fashion, for a <n, we define (L )a by 
a 

(3.8) 	 (L') 	= rnPa fl Kk4_I1m._ax_ma. 

k=1 
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The index law 

(3.9) 	 (L)a(L)fl = (L') °  

is a consequence of (1.7). Conversely, with L as in (3.7), we find that 

(L') = m _ax m_lK x I_m 

so that (1.7) is a special case of (3.9). 
We now consider the case a > n. (1.12) and (3.1) give 

M mnxm k1 

By induction, we obtain, for r = 1, 2,...,  

n 
MT = mTxmT fi Xmm!k(_Drn)Xmbk+m() 

k=1 

and, since (_D)r = K, r under appropriate conditions, (2.1) gives 

n 
MT = mPrxmT II K,_t)k,_T 

k=1 

(The inductive step requires the result (_Dm)Xm(T+ I)(D) = X m(_D)r 1mr a 

special case of (1.9) which can be established by Leibnitz' formula.) This suggests 

that we define M,  for any complex number a, to be the operator 

(3.10) 	 M = mxma k=I 

From (2.2) and (2.11), we obtain 

(3.11) 	MaMP = mxrna k=I 

	 k1 

 fj = m n(a+,B)xm+fl ) 	 K 6k' 

k=I 	 k=I 

	

= m n )x m 	Ki_bk_$ ,_aK,  

k=I

_ ,_  

while 

n 

(3.12) 	Ma 	= mn)xm 	II K,_bk''4'. 

k=1 
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The right-hand sides of (3.11) and (3.12) are equal provided that 

= KIk,_(a±fl), K.'-  m 	 m 

which, by (2.2), is equivalent to 

(3.13) 	Xm_mbk_mKX_m±mbk+mfl+maXm_mh 1kK, X -m+mbk+m.& 

= Xm_mbkK, ( $)X_m+mbk±mm$q,, or 

K,x m(P)KP = 	 ma lp  

where 4)(x) = Xm±mbk+m4)(X). (3.13) is simply (1.9) with a, 0, y and 4)  replaced 
by 8, —(a + 8), a and 4) respectively. Thus the equation 

(3.14) 	 MaM=Ma+ 

is a consequence of the second index law for K. Conversely, (1.9) is a special 
case of (3.14), corresponding to 

(3.15) 	 L=xDxm. 

In the notation of (1.10), n = 1, a1  = 1, a2  = m, b 1  = I so that 

M" = m 0xmK,2,  = 

If a + /3 + 'i = 0, then 

my+a = MMp 

=> m  +tXm(Y+a)K( a)xm(T+a)p = 

= 	 = K, Yx m$K, 4 

where 4)(x) = x rna4)(x ) .  This gives (1.9). 
Similarly, for a > n, we define (M')' by 

(3.16) 	 (M'4) = mna k1 

The index law 

(3.17) 	 (M)a(M) = (M,) .+# 

is a consequence of (1.8). Conversely, with L as in (3.15), 

(MFy = m axmmI,x m(_m 

and, as above, we can show that (1.8) is a special case of (3.17). 
Finally, we mention that the results are valid in the setting of distribution 

theory, for instance in the spaces F introduced in [3, Chapter 21. 
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Abstract 

Two index laws for fractional integrals and derivatives, which have been extensively studied by E. R. 
Love, are shown to be special cases of an index law for general powers of certain differential 
operators, by means of the theory developed in a previous paper. Discussion of the two index laws, 
which are rather different in appearance, can thus be unified. 

1980 Mathematics subject classification (Amer. Math. Soc.): 26 A 33. 

I 

In [2], Love discussed two index laws for fractional integrals and derivatives and 
gave detailed conditions for their validity. These laws were also discussed in a 
distributional setting by Erdélyi [1] and later by McBride; see, for instance, [3, 
Chapter 3]. In order to state the index laws, we shall work, for convenience, with 
functions in the class C(O, no) of smooth, complex-valued functions defined on 
(0, cc). Throughout, m will denote a positive real number. 

Let a be a complex number and let 4 (E Ctm(O, no)) be a suitably restricted 
function. 

(i) For Re a > 0, we define 1,' ,-0 by 

D 
(1.1) 	(J)(x) 

- 
- I f (m - (m) a_l 4,(t) d(Im) 

['(a) 

© Copyright Australian Mathematical Society 1983 
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vhere d(rm) = mtm_l dt. The definition is extended step-by-step to the region 
a < 0 by repeated application of the formula 

(1.2) 	 I=Dm I,'4 

where 

=___ = 	I -1 —m_.._. = - I I—rn
D.  

mm 	 dx 

(ii) For Re a > 0, we define K4 by 

1.4) 	(K)(x) = 	f 
(t - xm)q(t) d(tm) .  

rhe definition is extended to Re a < 0 by repeated application of the formula 

1.5) 	 K4 - —D \Ka m'f' 	rn/rn 

We can now state the two index laws referred to above. 
(First Index Law). For any complex numbers a and 

(1.6) 	 i I/,4 = 	= I 

(1.7) 	 KKf4 = 	= 

(Second Index Law). For complex numbers a, /3 and y  such that a + + y 

=0, 

(1 8) 	 xmaIxm = 

(1.9) 	 xfhaKxmY4 = K , YX K , a4. 

(Throughout we shall use x ' to denote the operation of multiplying a function of 

the variable x by x ?s . ) 

The first index law is very familiar but the second index law is much less 
familiar and seems, in the first instance, rather strange and unexpected. The 
object of this note is to point out that both laws can be brought under the same 
umbrella. In a recent paper [4], we have shown how it is possible to define general 
powers of an ordinary differential operator 

(1.10) 	L x aDf2Dx a3 	x aDx 0 	 (D mi-) 
of order n, as well as powers of the related operators 

(1.11) 	 = (_ l)n x +Dx 2 	xDxDx'', 

(1.12) 	 M(-1)L and M'(—l)"L'. 

This was done under the assumption that the complex numbers a 1 ,.. . , 	were 

such that 
n+ I 

(1.13) 	 a= 	a, is real 
i= I 
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and 

(1.14) 	 mIa — nI>O. 

The powers satisfied a "first index law" so that, for instance, 

(1.15) 	 LaL$çt = L4 = L$La4,  

(1.16) 	 (L)a(L)$ = (L')j = (L')(L'), 

under appropriate conditions. The two cases a <n and a > n produced different 
expressions for the general powers. We shall show that in the case a <n, (1.6) 
and (1.7) lead to (1.15) and (1.16) and, conversely, by choosing a suitable L, that 
(1.15) and (1.16) contain (1.6) and (1.7) so that, in a sense, (1.15) and (1.16) are 
equivalent to (1.6) and (1.7) in this case. More interestingly perhaps, in the case 
a > n, analogues of (1.15) and (1.16) for M and M' are equivalent to (1.8) and 
(1.9) so that the first index law for M and M' gives rise to the second index law for 
I,',, and K. 

2 

In what follows, 0 will be a function in C(O, ), such that all the subsequent 
formal analysis is valid. For instance, we may choose to be an element of the 
space 1 defined in [3, Chapter 2]. Precise conditions under which the various 
steps can be justified within the framework of the 1 spaces can be found in [3] 
and will not be detailed here. 

For m > 0, Re a > 0 and suitable complex numbers q, we define the Erdèlyi-
Kober operators J," and K by 

(2.1) 	 1  1,  1  ao= x-Pnn_mapxmi.p 

(2.2) 	 K' = xmKxm'm''4, 

where I and K are as in (1.1)—(1.5). Thus, for Re a > 0 and suitable q, 

(2.3) 	(pa)(x) = F(a) j(i - um)um(X) d( u-) ,  

(2.4) 	(K,')(x) = 1(a) foo(um— l)1u_m_m4(xu)d(um), 

while, for any complex a, 

(2.5) 	 ImI7,10 = ( + a + 	+ m'I1 '°' 1&j, 

(2.6) 	 K,4 = (ij + a)K," 
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[3, formulae (3.14) and (3.18)1, where 
d 

(2.7) dx 

We can prove that 

(2.8) 	 = 
m m 	m m 

under appropriate conditions. For Re a > 0, Re/3 > 0, (2.8) follows on using (2.3) 
and interchanging the order of integration; the restriction on a and /3 can then be 

removed by repeated application of (2.5) together with the fact that a commutes 

with each I operator. Also, by (1.6) and (2.1), 

(2.9) 	 = 

Hence by. (2.8) and (2.9), for suitable functions i/i, 
= 

(2.1) then gives 

(2.10) 	 x_ml+ma+mTI,a_1xm,t,. 

If we write (x) = xm 1 rnJi(x) and 0 = —a - y so that a + /3 + y = 0, (2.10) 

becomes (1.8). Thus we may say that the first index law for Ima together with the 
commutativity of the Erdèlyi-Kober operators leads to the second index law for 

I. Similarly, we can show that (1.7) and the result 

(2.11) =  

lead to (1.9). This gives us one way of viewing the second index laws for I and 

am .  

3 

Now we show how the two index laws for I and K are related to the first 
index law for general powers of the operators L, L', M and M' defined by 

(1.10)—(1.12). As indicated above, the two cases a < n and a> n need separate 

treatment. We shall consider L and L' for a < n and M and M' for a > n. 
The method used in [4] relied on rewriting the operator L, defined by (1.10), in 

the equivalent form 
n 

(3.1) 	 L=M n  X  a—n  fl xm_mkDmxmbk 

k=1 

where 
n±I 

(3.2) 	bk= — 	a.+k—n 	(k=l,...,n). 
i=k± I 
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In the case a <n, induction shows that, for r = 1, 2,..., 

LT = mnrx_mr 	 Xmrmbk(Dm)rXmbk 
k=I  

and, since (D ) r =  j-r under appropriate conditions, we can use (2.1) to write 

= mx 
k=I 

which in turn leads to the definition of L", for any complex number a, as the 
operator 

(3.3) 	 La = m'x"' 
k1 

(The product on the right-hand side is unambiguous in view of (2.8).) (2.1) and 
(2.8) give 

n 	 n 
(3.4) 	LOLP4 = m?laxrna fl Jbk. mflxmP fl J'kTh'4, 

k=I 	 k=I 

a 	 n 
= m n(a±fl)_n(a±Th fj jb,—B.a fl J,k.P4 

	

k=I 	 k=I 

a 
= 	 H Ibk_fl,aIbk

m
,-ph 

m  
k=1 

while 
a 

(3.5) 	 = m 	)xm) H J(a+$)4 

k=1 

That the right-hand sides of (3.4) and (3.5) are equal is a consequence of (2.9), 
which in turn is a consequence of (1.6). Thus we may say that 

(3.6) 	 LaLP = 

is a consequence of the first index law for I'm' in this case. Conversely, we may 
regard (1.6) as a special case of (3.6) corresponding to 

(3.7) 	 L = mDm xl_mD. 

In the notation of (1.10), n = 1, a 1  = I - m, a2  = 0, b 1  = 0 s that 

L = 	= m'I. 

Thus L"L = 	 j
m  m
ajfl = jc±P as required. 

In a similar fashion, for a <n, we define (L')' by 
n 

(3.8) 	 (L') = mna H K,k/m,_ax_ma. 

k=1 
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rhe index law 

(3.9)  

is a consequence of (1.7). Conversely, with L as in (3.7), we find that 

(L') = m_axm_IKxI_m 

;o that (1.7) is a special case of (3.9). 
We now consider the case a > n. (1.12) and (3.1) give 

M = m nx m 	 X mmbk(_Dm )X mb k 

k=1  

By induction, we obtain, for r = 1, 2,. 

n 

m'"x" [I Xm_m!k(_Dm)rxmbk+m(r_l) 

k=1 

and, since (Dm )r = K, r under appropriate conditions, (2.1) gives 

I' 

JI4 r = m r m r II K, bk r 

k=1 

(The inductive step requires the result (_Dm)rXm(r+I)(_Dm) = X rn(_Dm ) 1 X m , a 

special case of (1.9) which can be established by Leibnitz' formula.) This suggests 

that we define M,  for any complex number a, to be the operator 
n 

	

(3.10) 	 M" = mxrna fl 
k=1 

From (2.2) and (2.11), we obtain 

	

(3.11) 	MM = mxrna 

k=I 	

kI K,bk,_ 

= m 	xm(a+$) k=I 

	 k=l mm  

= mn)xm 	k=I KI_bk_fl,_aK,_bk,_fuI, 

while 

n 

	

(3.12) 	Ma4 = mn±xm(a-1-fl) fl 
k=1 
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The right-hand sides of (3.11) and (3.12) are equal provided that 

= K,'k ,-(a±) 

which, by (2.2), is equivalent to 

(3.13) 	X mmb k mflK rn aX m+mbk±mfl+maX mmbkK rn PX m±m/k±m 4 
= Xm_mbkK)Xm±mbk±mm, or 

K,x m(fl)K, P = x mPK)x mp 

where Ji(x) = Xm+m'k+m$(X). (3.13) is simply (1.9) with a, 8, y  and op replace 
by /3, —(a + 0), a and /i  respectively. Thus the equation 

(3.14) 	 MaMfl=Ma 

is a consequence of the second index law for K. Conversely, (1.9) is a specia 
case of (3.14), corresponding to 

(3.15) 	 LxDxm. 

In the notation of (1.10), n = 1, a 1  = 1, a 2  = m, b 1  = I so that 

Ma = 	= m ( x maK,x ma .  

If a +,0 + y = 0, then 

= MYMU 1/, 

=> m  aXm 	 = m Tx mYK x m7m ax maK,x m i4, 

= K, 7XmflK,, 4 

where (x) = xm'tJi(x). This gives (1.9). 
Similarly, for a > n, we define (Ml)a  by 

(3.16) 	 (w) = Mna 

k1 

The index law 

(3.17) 	 (M)a(MF) = 

is a consequence of (1.8). Conversely, with L as in (3.15), 

(MT = maxma+m_hI, xmt_m± 1  

and, as above, we can show that (1.8) is a special case of (3.17). 
Finally, we mention that the results are valid in the setting of distnbutioi 

theory, for instance in the spaces F introduced in [3, Chapter 21. 
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On an index law and a result of Buschman 

Adam C. McBride 
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Synopsis 
A result for the Erdélyi-Kober operators, mentioned briefly by Buschman, is discussed together with a 
second related result. The results are proved rigorously by means of an index law for powers of certain 
differential operators and are shown to be valid under conditions of great generality. Mellin multipliers 
are used and it is shown that, in a certain sense, the index law approach is equivalent to, but 
independent of, the duplication formula for the gamma function. Various statements can be made 
concerning fractional integrals and derivatives which produce, as special cases, simple instances of the 
chain rule for differentiation and changes of variables in integrals. 

1. 

The simplest version of the chain rule for differentiation gives rise to results such 
as 

(D.0) (x) = m _lx l_m(D4)( x ) 	 (1.1) 

or, in operational form, 

Dm = m _l x l_mD . 	 ( 1.2) 

Here in is real and positive, x 1 '" in (1.2) stands for the operation of multiplying a 
function of the variable x by x 1 " and 

Dm d/dxm, DD 1 asd/dx. 	 (1.3) 

It is also an easy matter to express D = (Dm )" in terms of D by repeated use of 
(1.2) or to obtain Dnm  in terms of Dm  for n = 1, 2, It is interesting to 
contemplate what might happen in the cases when positive integral powers of 
derivatives are replaced by fractional derivatives or fractional integrals. Is it 
possible to relate D m  (Re a >0, n = 1,2,.. .)-to fractional powers of Dm  or to 
relate fractional integrals with respect to x'm to fractional integrals with respect to 
xm? The present note considers two formulae which, when written in an appro-
priate form, answer this question in the affirmative. 

One of the formulae was mentioned briefly by Buschman in [1]; see, in 
particular, [1, (3.8)]. However, it does not seem to have attracted a great deal of 
attention since. Analysis in [1] is formal and makes use of the Mellin transform 
and properties of the gamma function, notably the duplication formula. Buschman 
says, "The Mellin transformation not only is suggestive of these identities, but it 
also provides an indirect method of proof of them for certain restricted ranges of 
the parameters". One purpose of this paper is to present a rigorous analysis of 
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Buschman's result and of a second (essentially adjoint) result. However, another 
purpose is to show how the results are related to ideas developed by the author in 
other papers [5] and [6].  Like Buschman, we shall make extensive use of the 
Mellin transform but we shall not use the duplication formula. Instead, we obtain 
our results as a particular case of earlier work on index laws for fractional powers 
of a class of ordinary differential operators. 

Some details from earlier papers will be recalled from time to time in order to 
make the present paper reasonably self-contained. For instance, rigour will be 
supplied by studying the various operators in the context of the F spaces, whose 
definition will be recalled below. (These spaces were originally intended as spaces 
of testing functions which generated corresponding spaces F,. of distributions; 
however, we shall not be working distributionally in this paper.) Within this 
context, our main tools will be 

the so-called Erdélyi-Kober operators, whose properties are developed 
extensively in [3, Chap. 3] but which will be treated slightly differently here; 

an explicit expression in terms of Erdélyi-Kober operators for fractional 
powers of certain ordinary differential operators, as discussed in [4]; 

an index law of the form (7'')'3  = T as established in [5] and [6] for 
classes of Mellin multiplier transforms T 
We would like to suggest that our approach is of intrinsic interest since it gives a 
worthwhile application of earlier theory, provides rigorous proofs under condi-
tions of great generality and shows that, in some sense, a particular case of an 
index law for operators turns out to be equivalent to the duplication formula for 
the gamma function. 

2. 

We first introduce the spaces F,, mentioned above. 

DEFmJrn0N 2.1. Let ji be any complex number. 

For 1 p <, we define the set F of functions by 

={4c C(O,00): 	 00) for k=0, 1,2,.. 
.} 	 (2.1) 

while 

={4 G C(O, oo): xkDk(x_(p) --->O  as x - 0+ and as x ->- 

for k=0,1,2,...}. (2.2) 

For lpco  and k=0,1,2,..., we define y"I on 	by 

yP(4) =IIxkDk(x_4)II 	 (2.3) 

where 11 , denotes the usual LP (0, cc)  norm. 

Remark 2.2. For each fixed p and p., F is a vector space and a Fréchet space 
with respect to the topology generated by the separating collection {y'}o  of 
seminorms. Analytic and topological properties of these spaces are described in 
detail in [3, Chap. 2]. 

Next we state the behaviour of the Mellin transform on 
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Formally, the Mellin transform 41 is defined by 	 -. 

	

(4(4))(s) 
= J x

' 0(x) dx 	 (2.4) 

where s is a complex variable and the integral is interpreted in an appropriate 
sense. 

THEOREM 2.3. For 	(414))(s) exists provided that lp2  and. 

Res =1/p—Rep.. 	 (2.5) 

In that case, ifs =cr±it (where or = 11p—Re ) and (414))(u+it) is regarded as a 
function of t a (—cc, cc), then 41 is a continuous linear mapping from F into 
L'1 (—cc,cc), where q=pI(p - 1). 

Proof. This appears as [4, Lemma 2.3]. 

Remark 2.4. 
For p = 1, the integral in (2.4) converges absolutely under the hypotheses of 

Theorem 2.3, while for 1<p:-52,  (4(4))(s) = (414))(u + it) exists as a limit in the 
L'1 (—cc,cc) mean. 

From now on, whenever we consider (4(4)(s) for 4) G F (1 p 2), it will 
always be the case that s and t are related by (2.5). 

We now introduce the idea of F multipliers for which the following notation 
is helpful. 

Notation 2.5. 
fl will denote a region in the complex plane which is the union of a finite or 

countably infinite collection of disjoint strips, each of which has one of the forms 

{s: a <Re s <b}, {s: Re s <c} or {s: Re s >d} 

where a, b, c and d are real numbers. (There can be at most one strip of each of 
the second and third forms.) 

Let fl be as in (i). For each fixed p in the range 1 p cc, we let 

fl={,i: 1Ip — p.af}. 	 (2.6) 

(2.6) ensures that, when s and i are related by (2.5) and p is fixed, s a Cl if and 
only if li a 

DEFINTI'ION 2.6. Let g be a complex-valued function analytic in a region Cl (of 
the type in Notation 2.5(i)). We shall say that g is an multiplier if there exists 
a (unique) linear transformation R (depending on g) such that 

for 1< p <cc  and Ix a fIr,  R is a continuous linear transformation from Fpp  
into 

for 1 <p2, paf1 and 4)aF, 

	

(A1(R4)))(s) = g(s)(414))(s). 	 (2.7) 

We may then refer to R as a Melliñ multiplier transform. 
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To illustrate these ideas, we give an example of an operator which will play a 
role later. 

	

EXAMPLE 2.7. We define the operator 6 on 	by 

(&f,)(x) = x d4i/dx or 6 xD. 	 (2.8) 

From [3, Corollary 2.14], we see that for 1 p:-5; - and any complex number IL, 8 

is a continuous linear mapping from 	into 	If, further, Re 	lip, then 6 

is a homeomorphism from 	onto 	with 

( 
jx 

qi(t) dilt 	(Re It> lip) 
0 	 (2.9) 

L -i (t)dtit 

for iji E F,, (2.9) being derived from [3, Theorem 2.13]. To relate 6 to the Mellin 
transform, we let 4' c C(0, cc) and use integration by parts to show that 

(41(64)))(s) = —s(14))(s). 	 (2.10) 

Since C(0, cc)  is dense in 	for all p and 	[3, Corollary 2.7] and 5,.R are 
continuous on for 1<p2 (Theorem 2.3 above), (2.10) holds for 4) aF0 . if 
1<p2, ji is any complex number and Re s = 1/p—Re R (Remark 2.4(u)). On 
comparing (2.10) with (2.7), we see that the function g(s) = —s, with domain equal 
to the whole complex plane, is an F0  multiplier and the corresponding operator R 
is 6.11 Re jil/p, then Res0 by (2.5) and, in particular, s0. With 4)=8_14), 

as given by (2.9), we can rewrite (2.10) in the form 

	

(jt(6'0)(s) = _s_ 1 (.i /,)(s) . 	 (2.11) 

By comparison with (2.7), we see that the function g defined by 

g(s)=—s'(scfI) where a={s: Res0} 

is an 	multiplier and the corresponding operator R is 6_1.  That the form of R 
is different on the two components of IL,, ={.t: Re g-t l/p} is typical. 

In [5] and [6], we considered the case in which the function g(s) in (2.7) is of 
the form 

	

g(s) = h(s - y)/h(s) (s E f) 	 (2.12) 

and were more interested in the operator T = xR than in R itself. Here 'I'  could be 
any complex number but since -y = 0 produces the trivial case T = R = I, the 
identity operator, we are primarily concerned with 'y 0. It is not hard to see that 
if R maps F0 , into itself, then xR maps into If i/p - Re IL = Re s, 
then lip - Re (IL + -y) = Re (s - 'y) so that we should compare (.M(T4)))(s - -y) with 

(jif4))(s). With this motivation, we are led to the following definition. 

DEFINITION 2.8. We shall say that T belongs to the class 9 if there is a triple 
(h, fl, y) such that 

(i) I is a region of the type described in Notation 2.5(i), y  is a complex 
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number, h is a function such that the function g defined on f1 by (2.12) is anF 
multiplier; 

for 1< p < o and fk € ( 1,,, T is a continuous linear mapping from 	into 

for 1< p  2, fL E fl, and 4' E F, 

(j(T4'))(s—y 	
h(s—'y)

)= 	(.Acfr)(s) (sell). 	 (2.13) 
h(s) 

We say that the triple (h, fl, -y) generates T and sometimes write T T(h, fl, y). 
Formally, (2.13) shows that for n = 1, 2, 3,..., 

(4 	
h(s—ny)

(T"4'))(s - ny) = 	(44')(s) 
h(s) 

and we use this as the motivation for the definition of T' as the unique operator 
in 3F generated by the triple (h, fl, ay), so that for 1 <p 2, gt C fl,, and 4' e 

h(s—cry) 
- ay)

- h(s) 
	 (2.14) 

However, this is only valid if the complex number a is such that the function 

g(s)=h(s—ay)/h(s) 

is an 	multiplier. Accordingly, we make the following precise definition. 

DEFINITION 2.9. Let T = T(h, fl, y) e 9 and let A = A (h, 11, y) be given by 

A ={a: (h, fl, ay) generates an element of }. (2.15) 

(This is the set denoted by A F  in [6] and differs from the set A in [5]!)  Then for 
a cA, we define T to be the unique operator in 9 generated by (h, fl, a-y). In 
particular, when a E A, 

for 1 <p < oo and p. e ll.,,, T is a continuous linear mapping from 	into 

for 1< p  2, p. c fl., and 4, e 	(2.14) holds. 
Again we give two examples relevant to what follows. 

EXAMPLE 2.10. 
Let A be any complex number and let T=x", i.e. (T4')(x)= x A4,(x) .  For- 

mally, (.A(T4,))(s -,k) = (.A4')(s) and by arguing as in Example 2.7, we find that 
T c 9 and is generated by the triple (h, fl, y) where (1= C (the complex plane), 
h(s) = 1 (s E=- ,Q)  and y = A. In this case, A = C also and (2.14) shows that 
T" = (x')' = x & ,  as expected. 

For m >0, let T=Dm , as defined by (1.3). In the case rn = 1, we can modify 
Example 2.7 to show that for 1< p 2, any complex number p. and 4' E F,,, 

(.iIt(D4,))(s + 1) = —s(.iO4')(s). 

(1.2) then leads to 

(A(D m 4)))(s + rn) = (4((m_lxl_mD4'))(s + rn) = m 1  (4(D4'))(s + m +1—rn) 
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or 
(.A(D m 4,))(S + m) = - (s/m)(.ii(4,)(s). 	 (2.16) 

Formally, —(s/rn) = F(1 - s/m)/IT(—s/m) = h(s + m)/h(s) where h(s) = [F(1 - s/m)] 1 . 

The quotient of gamma functions has removable singularities at s = km 
(k = 1, 2, 3,...) and - (s/rn) serves as an analytic continuation. With that under-
standing, we could use the triple 

ci=c, h(s)=[F(1—s/m)] 1 , y=m 

to generate Dm . However, we then experience difficulty with ga (s) = 
h(s+arn)/h(s) which takes the form F(1—s/m)/F(1—a—s/rn). The singularities 
are no longer removable in general. Accordingly, we shall use the triple (h, (1, y) 
given by 

fl  =Is: Re s km fork = 1,2,.. .}, h(s)  =[F(1—s/m)]'  (scf), y = m. 
(2.17) 

By arguments similar to those in [6], it can be shown that the set A A(h, fl, y) = 
C. Thus, for any complex number a, we may define D"m  = (Dm )a as a continuous 
linear mapping from into Fp,_ma  for 1 <p <c and tL c fl, which is such that 

- F(1—s/m) 
(1(D4,))(s + ma) 	 (A4,)(s) 	 (2.18) 

- F(1 - a - s/rn) 

when 1<p2, fL c f1p  and 4EF. Again as in [6], we mention that if Rea>0 
then D' is an integral rather than a differential operator and we may write 

I1 	TU  (Rea>0) 	 (2.19) 1-'m 	k m  

where for 1< p < ce, Re + m > i/p and 4, E 

	

(I4,)(x) = [r(a011J (xm - tm)l4,(t) d(t) 	 (2.20) 

with d(t) = rntm_l dt. The form of I is more elaborate for other values of t 

and we shall not state it explicitly here. 
Since Ta c S by construction, it is possible to define powers of Ta under 

appropriate circumstances. In particular, we quote the following index law which 
we shall use later. 

THEOREM 2.11. Let TE, la, a(3}A, l<p<co and 1LEflP.  Then, as operators 
on 

= T'. 	 (2.21) 

Proof. This is established in [6, Theorem 4.9]. 

0. 

Having outlined the theory of powers of operators in the class 	we now turn 
our attention to a certain subclass of S, consisting of ordinary differential 
operators of a particular kind. A typical operator is of the form 

xDx' 	 (3.1) 
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where n is a positive integer, a1 ,. . . , a, 1  are complex numbers, 

a=ak is real, 	 (3.2) 

rn=n—a>O 	 (3.3) 

and D = d/dx as usual. The domain of T is to be thought of as one of the F 
spaces. 

LEMMA 3.1. For lpco and any complex number g.i, T is a continuous linear 
mapping from 	into 1p,p.—m 

Proof. From Example 2. 10, T is a composition of 2n +1 continuous mappings 
and maps 	into Fp. ±ai+ ...+i_n  = Fp,p+a_n  = Fp,p_m  by (3.2) and (3.3). 

In trying to apply the theory in '2, we must try to find a suitable triple (h, Q, 'y) 
to generate T. Definition 2.8 entails that T maps F. into Comparison 
with Lemma 3.1 shows that y = —m. Finding h is not so easy. It might be thought 
that, since each of the 2n + 1 operators in (3.1) is a member of 9 and is generated 
by an appropriate triple, it should be possible to cobble together a triple 
generating T from the individual triples described in Example 2.10. Certainly, we 
can form a product of functions of s but rewriting this product in the form 
h(s+ m)/h(s) is another matter. In [4], we solved the problem by rewriting each 
Das 

D = mxm_lDm 	 (3.4) 

with m as in (3.3). Although (3.4), being a rearrangement of (1.2), is valid for any 
m >0, it is essential to use the particular value of m in (3.3); it seems that no 
other value will help our cause here. It is then possible to identify h and fl so that 
our triple to generate T is complete. Formally, we obtain 

(4(T))(s + rn) = m n F(bk + 1—s/rn) (4)(s) 
	 (3.5) 

k=1 F(bk — s/rn) 

where for k = 1,. .., n, 
/ n±1 

bk=( ai +k_n)/m. 	 (3.6) 
i=k±1 	 F 

Formula (3.5) is obtained by putting a = 1 in [4, formula (5.6)]. However, we shall 
supply a rigorous proof based solely on Example 2.10. To be rigorous, we must 
state the conditions on s or tL which ensure the validity of (3.5). Each factor in the 
product is reminiscent of the function F(1 - s/rn)/F(—s/m) which appeared in 
Example 2.10(u) and, by similar arguments, we require that Re (bk  + 1—s/rn) is 
not equal to zero or a negative integer for k = 1,. .. , n. Thus we let 

f={s:Re(b k +1 — s/rn)74 0,-1,-2,... for k=1,...,n}. 	(3.7) 

On using (2.5), we see that the condition on s in (3.7) becomes Re (mbk + ) + 
m1/p—ml for k=1,. . ., n and 1=0,1,2 ..... In [3] and [4], we made exten-
sive use of the sets Ap.. m  of complex numbers defined by 

Ap.. m ={TI: Re(rni+)+rn& 11p—mi for 1=0, 1, 2,. ..} 	(3.8) 
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and we shall use this notation, rather than f1p,  in what follows. The restriction 
above becomes bk E Ap,. m  (k = 1,.. . , n). Accordingly, we make the following 

statement. 

THEOREM 3.2. Let 1< p <co. let be any complex number and let bk c Ap m  
(k = 1,. . . , n). Then (3.5) holds for 4) E 	and s c fl (defined by (3.7)). 

Proof. We first note that by (1.2) and Example 2.10, 

(JU(Dm (IJ))(S - mbk  + rn) = m(.iU(Dqi))(s - mbk  + 1) = m(mbk - s)(4&Ii)(s - rnbk) 

or 

	

(A(Dmqi))(S - mb k  + m) = F(bk + 1—s/rn) (Uqi)(s - mbk ) 	(3.9) 
IT(bk  - s/rn) 

whenever j' 	 S E ( and k = 1,. . . , n. We note also that from (3.6), 

mb 1  = 1—a1  - m, mb = a 1 , mbk±l - mb k  = 1— 	(k = 1,.. . , n—i). 

(3.10) 

By repeated use of (3.9) (with various choices for &(i) and (3.10), we obtain 

(A(T4)))(s + m) 

= m (4(x a1 	lDXU +m_ lDm .. . xm_ lDmx4)))(s + m) 
= 	 . . . Xmbfl_1 mb 	 + m) 

= mn(Ai(Dmxmb1_mb2D ... x m l_mb+mD x mb,4)))( s _ mb+ m) 

= m n r(b1  + 1—s/rn) (A(Xm b,_m bz±mDm  . . . Xm 	fmDXmb(A))(S - mb 1) 
F(b1  - s/rn) 

1—s/rn) 
= m 

F(b1  - s/rn) 

X (41(DmXm b2_mi 3±mDm  .. .Xmb_,-mb,+mDXmb,4)))(5 - mb 2  -I- m) 

- 	I'(b1 +i—s/m)F(b 2 +1—s/m) 

—m F(b 1 —s/m) 	F(b2 —s/rn) 

X 	 . .. 	mb±mDXmb,4)))(S - mb 2) 

and so on, (3.5) following after n repetitions. 

COROLLARY 3.3. The operator T defined by (3.1) belongs to 9 and is generated 
by the triple (h, f, y) where fl is given by (3.7), -y = —m and 

h(s) = m"[ fl F(bk + 1—s/rn)] 	(s Ef). 	 (3.11) 

Proof. This follows immediately from (3.5) above. 

The next stage is to obtain the set A defined in (2.15) and this requires 
examination of the function 

h(s+ma) 	nafl F(bk+1—s/rn) 
m 

h(s) 	k=1F(bk+1—as/m) 
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As in Example 2.10(u), it transpires that A = C, since, by arguments similar to 
those in [6, §5],  each factor in the product is an multiplier for every complex 
number a and the same therefore applies to g,,(s). We can now use Definition 2.9 
to define T". 

THEOREM 3.4. For the operator T given by (3.1) and for any complex number 
a, T is the unique operator in 9 generated by the triple (h, fl, -y) where h is given by 
(3.11), fl by (3.7) and y=—ma. In particular, if bkEAp m  (k=1,. . .,n), then 

for l<p<cI, T is a continuous linear mapping from 	into 
for 1< p  2 and 4) a 

II 

fl 
IT(bk+1—s/m) 

(4(4))(s) (saQ). (3.12) 
k=l F(bk+ 1—a—s/rn) 

Proof. This is immediate from Definition 2.9 and Corollary 3.3. We mention 
that (3.12) also appears as [4, (5.6)] but has been derived here by an alternative 
approach. 

4. 

Formula (3.12) focuses attention on a function of the form F(r+ 1—s/rn)! 
F(i ±1+ a - s/rn) for complex numbers Tj and a. As indicated above, this function 
defines an multiplier under appropriate conditions, the corresponding 
operator being the Erdélyi-Kober operator I. In order to obtain a concrete 
representation of I, , it is convenient to introduce the related Erdélyi-Kober 
operator K with the rather similar multiplier F(71 + s/m)/F(i +a + s/rn). To 
avoid trouble, we must ensure that 71 + s/rn is not a non-positive integer. Use of 
(2.5) leads to the following analogue of (3.8). 

DEFINITION 4.1. For 1 p cc, m >0 and any complex number tL, we define the 
set 	of complex numbers by 

	

A, m ={i: Re(m—.t)-1/p—ml (1=0,1,2,.. .)}. 	
(4.1) 

In the case 1< p < cc, we find, as in the case of P,; - ,  that F(ri + s/m)/f(i + a + s/rn) 
is an multiplier provided that q EA, m  and a is any complex number. 
Accordingly, the following definition is meaningful. 

DEFINITION 4.2. 
For l<p <cc, m >0, r a Ap m  and any complex number a, I is the 

unique continuous linear mapping from 	into 	such that, if 1 <p 2, 

) 	(i1((I"4)))(s) 
= F(+ 	

(A14))(s) (4) a F). 	(4.2) 

For 1< p <-, in >0, E A m and any complex number a, K' is the 
unique continuous linear mapping from 	into 	such that, if 1<p2, 

T(i±s/m) (.414))(s) (4) 	 (4.3) 
+ s/in) 
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By using results in Example 2.10, notably (2.20), and various results in [3, 
Chap. 3], we can obtain the following descriptions of 	and KU .  

THEOREM 4.3. Let l<p<c', in >0, 1L and a be any complex numbers and 
4E F. 

Let Re(m-ri+ii)+m>l/p.  Then, if Rea>0, 

= xmmIxm 	 (4.4) 

as operators on 	where P,  is given by (2.20). The restriction Re a >0 is 
removed by successive applications of the formula 

I4 = (i + a + 1)I+14 +m - 1r 	11 so 	 (4.5) 

where 8 is given by (2.8). In particular, for Re a <0, 

I" = 	 (4.6) 

where D' is given by (2.18) (with a replaced by -a). 
Let Re (mi - ) > -i/p. Then, if Re a >0, 

K = xmKxmm" 	 (4.7) 

where, for jtaF, 

(K,&/j)(x)= [F(a)r1j (tm_xm)1q(t) d(tm) (x>0). 	(4.8) 

The restriction Re a >0 is removed by successive applications of the formula 

K4 = ( + a)K 1 4. - m 1K" 1 &/. 	 (4.9) 

Let T E Ap, m  and a be any complex number. For Re (m'r? + + m > lip, 
we define I' as in (i). Otherwise, if k is the unique positive integer such that 
11p-mk<Re(m+)+m<1/p-m(k-1), then 

I n'= 	 (4.10) 

where I ~ ' and 	are defined as in (i) and (ii) respectively. 
Let Tj EA,m  and a be any complex number. For Re (rn-ri -)>-l/p, K 

is as in (ii). Otherwise, if k is the unique positive integer such that -i/p - mk < 
(mTj 	then 

(4.11) 

where K "
k_k and I'" are defined as in (ii) and (i) respectively. 

Proof. The details are omitted. 

Remark 4.4. 
The expressions (4.4)-(4.11) can be used to obtain explicit expressions for 

I and 	as integral, differential or integro-differential operators, depending 
on the values of -r and a but we shall not require these here, except in the 
simplest cases such as (4.4) or (4.7). 

Once the explicit expressions referred to in (i) have been obtained, it can be 
checked that the operators I',;" and K" define continuous linear mappings from 
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F, into 	in the cases p = 1 and p = too (subject to the other restrictionsin 
Definition 4.2). Again, details can be found in [3, Chap. 3] and we shall use these 
facts below when we establish relationships between the Erdélyi-Kober operators. 

We can now rewrite the expression for T" in Theorem 3.4 in terms of 
Erdélyi-Kober operators. 

THEOREM 4.5. Let T be given by (3. 1), a be any complex number, 1 <p < 00  and 
bk a Ap,p, m  (k = 1,. . ., n). Then, as operators on F, 

T = mx"' fl 	 (4.12) 

Proof. First we note that the operators I' (k = 1,.. . , n) commute, since 
their multipliers do. Thus, the product on the right-hand side is unambiguous. 
Then, if 1 <p2 and 4)aF, 

(M(m 	
n

x_m fl 	 (s + ma) = (JA(m P 
I. 

 k=1 
t1 =mfl F(bk+1—s/m) 

k=1 F(bk + 1—a - 
s/rn) (A4))(s), by (4.2). 

The result follows in this case, by (3.12) and (4.2). For the case 2<p<oo, we 
choose 4) a C(O, 00)  (regarded as a subset of F,.,) and use continuity and density 
in the standard way to complete the proof. 

Remark 4.6 
We mention that similar results involving operators of the form K arise in 

the calculation of powers of T', the formal adjoint of T, as well as in the study of 
operators of the form (3.1) for which a> n (in contrast to (3.3)). Some instances 
can be found in [4] but, again, we need not quote them here. Instead, we shall 
indicate briefly in §5 how results for the operators I' can easily be converted into 
results for K. 

Formula (4.12) and related results turn up in [4]. The purpose of proving 
(4.12) again here is to show that the theory in [4] can be derived, from a different 
starting point, by using the more general theory in [5] and [6]. 

5. 

We are now ready to use the index law (2.21) in the case where a is replaced by 
a positive integer r and T is a differential operator of the type discussed above. It 
will be sufficient to restrict attention to an operator T of the form 

T=xDxa2; a1 +a2 =a is real; :m = 1—a>O. 	(5.1) 

As a preliminary, we must examine Tr which can be written down explicitly 
without recourse to Definition 2.9. We obtain formally 

T' = x1Dx c2D . .. x c,Dx , 	-: 
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where the numbers Ck (k = 1,. . . , r± 1) are related to a1  and a2  by 

C1 = a 1 , Cr±i = a2 , Ck = a1 + a2  (k = 2, . . . , r). 	 (5.2) 

From (5.2), 	= r(a1  + a2) = ra, while the order of T' is r and r - ra = 

r(1 - a) = rm >0. We see that T' is of the same form as the operator in (3.1) with 

n replaced by r, the numbers a1 ,.. ., a,, by c 1, . . . , a by ra and m by rm. 

By analogy with (3.6), we define the numbers dk  (k = 1, . . . , r) by 

dk=(
r±1 

c.+k—r)/rm. 	 (5.3) 
ik+1 

For T as defined by (5.1), (3.6) produces the single number b 1  = a2Im and a 

routine calculation shows that 

dk =(bl — r+k)/r (k=1,...,r). 	 (5.4) 

In order that an analogue of (4.12) should hold as an operator equation on 
we must ensure that dk  a Ap,, r,,. (k = 1,. . . , r) which means that 

Re{rm(b 1 — r+k)Ir+pJ+rm 1/p—rml 
or 

Re(mb 1 +it)±m1/p—m(rl±k—l) 	 (5.5) 

for k=1,. . . , r and 1=0,1,2,... Since rl+k-1 is a non-negative integer, (5.5) 

will be satisfied provided that b 1  a Ap, m. We can then summarise our discussion 
in a theorem. 

THEOREM 5.1. Let T be as in (5.1), let 13 be a complex number, r any positive 

integer, 1< p <co and b1  a Apm . Then, as operators on 

r 
)_()r3_fl(T 	 (5.6) 

k=1 

Proof. This follows from the preamble on replacing T, a, m, n, a and 

{b ...... b} in (4.12) by T ,  ra, rm, r, 3 and {(b 1 —r+k)Ir: k = 1,..., r}. 
On the other hand, if we apply (4.12) to the operator T in (5.1) and replace a 

by r3, we obtain at once 

= 	 (5.7) 

under the hypotheses in Theorem 5.1. We can now apply (2.21), observing that in 
the conditions stated in Theorem 2. 11, we may take A = C, while fk a f1, becomes 

b i EA p,.m . We deduce from (5.6) and (5.7) that, as operators on 

= 	
(b,—rk)/r.  r 	 (5.8) 

Remark 5.2. An interesting point arises at this stage. Theorem 2.11 involves 
the restriction 1 <p <c so that, in the first instance, (5.8) holds for this range of 
values of p (and subject to the other conditions in Theorem 5.1). However, the 
operators appearing on both sides of (5.8) remain continuous linear mappings 
from into itself even if p = 1 or p = co, as is shown in [3, Chap. 31. Since they 
agree when applied to functions in C(0, cc) (regarded as a subset of F2.  for 
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suitable p.) and since C(0, c)  is dense in F1  and F for any p. [3, Corollary .  
2.7], we deduce that (5.8) continues to hold if p = 1 or p = 

THEOREM 5.3. Let 1 p 	p. and a be arbitrary complex numbers, m >0, 

1 E App. ,, and r any positive integer. Then, as operators on 

= r 	1(i-r+k)/r.a/r. 	 - 	(5.9) 

Proof. This follows from Remark 5.2 and (5.8) on putting b 1  = i, 13 = — air. 

Remark 5.4. If we put m = 1 in (5.9), we obtain the result by Buschman [1, 
(3.8)] referred to earlier, in slightly different notation. We would emphasise that, 
in our approach, (5.9) arose naturally as an application of the index law but now 
that we have discovered the appropriate formula, we can check it independently 
by means of the duplication formula 

fl F(z + (k - 1)/r) = 	 (r = 2, 3,4,...) 	(5.10) 
k=1 

for the gamma function due to Gauss and Legendre [2, p.  4]. By (4.1), the 
right-hand side of (5.9) is a Mellin multiplier transform corresponding to the 
multiplier 

= - 	
F(('r1+k—s/m)Ir) 

g(s) r 
k=lF((+a+k—s/m)Ir) 

By applying (5.10) to the numerator and denominator on the right-hand side, with 
z replaced by ( + 1— s/m)/r and (ri + a + 1— s/m)/r respectively,  we obtain 

+ 1—s/rn) 
g(s)= 

+ a + 1—s/rn) 

1—s/rn) 

- f(i1 + a +1—s/rn) 

which shows that g(s) is also the multiplier for I and (5.9) follows in the, case 
where l<p<csz (with p = 1, p = being dealt with as before). 

EXAMPLE 5.5. In certain cases, '(5.9) can be proved from scratch by using results 
involving special functions. As an illustration, we consider the case r =2, Re a> 

0, Re (mi-i ± p.)+ m> i/p (1 p oo). Then all the operators in (5.9) are integral 
operators of the form described in Theorem 4.3(i). Also [3, Lemma 4.4] shows 
that, for 4' a 

2m 

= [F(a)]1x J 
(x2m - t2m)0 2Fi ((a  + 1)12, a/2; a; 1- x 2m/t 2m) 

0 

X  tm(_a(2rn)t2m_ (t) dt. . 	 . 

But, from [2, p.  101, (6)],  we see that, under appropriate conditions, 

2F1(a + 1/2, a; 2a; z) = (1— z) - '[21  + ( 1 _z)i12]12a 
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Accordingly, we obtain 

f[F(a)]1x"(x2m -t2m)_l(tm/Xm) 2m 
 

	

X [(tm  + 	 dt 

2a[F(a)]_1x _m)I
x 
 (Xm - tm) tm(t)mtm_l dt 

=2'(I4)(x) by (4.4). 

(5.9) then follows at once. It seems probable that other cases can also be handled 
by means of properties of generalised hypergeometric functions or the G-function 
but we shall not elaborate here. 

It is no surprise that there is an analogue of (5.9) for the Erdélyi-Kober 
operator defined by (4.3). 

THEOREM 5.6. Let 1 p 	and a be arbitrary complex numbers, in >0, 
T (E A m  and r be any positive integer. Then, as operators on 

	

K"= r 	K,_l+k)//r. 	 (5.11) 

Proof. This can be dealt with in various ways. To see that (5.11) is formally 
correct, we observe that the operator K' is the formal adjoint of I_1±h/m  while 

is the formal adjoint of 1(,i-1+k)/r-1±1/rm,,/r Since the I operators 
commute, the right-hand side of (5.11) is the formal adjoint of 

r 	 r 
r" fl 1,/r_ r fi 

k=1 	 k=1 

The condition r E A, m  is equivalent to Tj —1 + 1/rn e A0,_p,m(q = p/(p —1)). Thus 
(5.11) is obtained formally by replacing 11 by Tj - 1 + 1/rn in (5.9) and taking 
adjoints. Alternatively, it is possible to use (4.3), (5.10) and the method of 
Remark 5.4. A third possibility is to make use of results in [4]. We omit the 
details. 

Remark 5.7. 
Formula (5.11) which is the second formula referred to earlier does not 

seem to be present in the literature. 
We would emphasise that (5.9) and (5.11) have been proved rigorously and 

would draw attention to the very general conditions on the parameters under 
which the results are valid. 

6. 

In this final section, we indicate how formulae (5.9) and (5.11) lead to relations 
between fractional integrals and derivatives of the type mentioned in §1. We shall 
concentrate on (5.9) since (5.11) is similar. 

THEOREM 6.1. Let 1 p 	, m >0, p. be any complex number, 71 a A,p. m  and r 
be any positive integer. 
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If Re a >0, then as operators from Fp +m,i  into 

	

la = r_axm(x_m(l )IT 	 (6.1) 

where each I operator is defined by an appropriate version of (2.20) 
If Re 3 >0, then as operators from Fp, +m,i  into 

	

D13 =r  13 x m(-13+r)  (x -m(1- '3)DL1 y 	 (6.2) 

where each D operator is interpreted as in Example 2.10(u). 

Proof. Both parts can be handled simultaneously by means of multipliers since 
(2.18) is valid for any complex a and D = I, D= ir  by (2.19). This 
approach again uses (5.10). We omit the details but instead derive (6.1) formally 
from (5.9). If tpEFp, ±mfl , then qi(x)=xm'4(x) where 4cF so that, by (4.4) 
and (5.9), 

= x m+ [x _m 	)I]r_l[x_I xm'14(x)] 

= X  
= X 	[X_m 	)Iodr]r_2[Xrn(2—Wr. a/rTn/r, 

flit 	 flit 

= Xm() . x m(it_r)(fl I(i1 _r±k)/r.&r4)(X) 

= X 	ra(I)(x ) 

= rxm() . x _mit_mI x t4,(x ) 

(6.1) then follows at once. 

Remark 6.2. Although (6.1) and (6.2) have been proved under appropriate 
conditions within the 	structure, they are applicable to functions which do not 
belong to any 	class. In the case of derivatives, this arises because differentia- 
bility is a local property while in the case of integrals we can argue as follows. The 
validity of (6.1) entails checking that when the operators on both sides are applied 
to a suitable function 4) and the resulting functions are evaluated at each fixed 
xE(0, co),  we always get the same value in both cases. When x is fixed, the only 
values of 4) which are relevant are those attained on the interval (0, x). Accord-
ingly, we can replace 4) by an equivalent function 4),, defined by 

&(t) f 4)(t) tcO,x 
= 	 (6.3) 

0 	tc(x+1,00). 

Provided that 4),, 	for some p and g.e, we are in business and this can often be 
arranged by means of smooth cut-off functions. A case in point is when 4) has the 
form of a power of the variable, say 4)(t) = t' for some A. This function 4) does not 
belong to any 	space but the function 4),, defined via (6.3) is an element of 
provided that ipco and Re(A— pt) >-1/p. 

Exn't..0 6.3. With the last point in Remark 6.2 in mind, we give a simple 
illustration of (6.2) for the case 0 =4. If we take r =2 and apply the right-hand 
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side to the function mX  (m being inserted for convenience) we obtain 

24x m(-2) x 3mD 2  x 3mD 2  x = 24x mDx3mDmx (2m)(A/2) 

= 24x mD x 3m (A/2)(A/2 - 1)x 2" 22  

= 22 A  ( X  

= 22 A (A - 2)x- (X/2 -   1/2)(A/2 - 3/2) x  (2m125 12) 

= A(A - 1)(A - 2)(A - 3) xm_4) .  

On the other hand, with r =4, we get 

44 (X 3mD4m )4Xm )  = 44(X3mD4m)3X3mD4mX (4m)(A/4)  

= 44(XlmD4m )3 X 3m (A/4) x (4m )(1/4-1)  

= 43 A (X 3mD4m )2X 3mD4m X (4m ) _ )4  

= 43A( x 3mD4, ) 2x 3m((A - 1)/4)x (4-) (X -5 )/4 

= 42A(A - 1)(x3mD4m)x3mD4mX (4m)(X-2)/4 

= 42A(A - 1)X3mD4mX3m((A - 2)/4) x (4m)_64  

= 4A (A - 1)(A - 2)x 3mD4mx(434  

= 4A (A - 1)()L - 2)X3- ((A - 3)/4) x (4m)s_ 7) 4  

= ,k (,k - 1)(A - 2)(A - 3) x m 4) .  

In both cases, we obtain Dxmx,  as expected. These verifications are hardly novel. 
The novelty of (6.1) and (6.2) resides in the formulae obtained when a and 13  are 
non-integral. 

We shall not pursue the ramifications of (6.1) and (6.2) here but merely make 
the following concluding remarks. 

Remark 6.4. 

It is possible that some familiar results can be obtained by applying (6.1) and 
(6.2) to some special functions whose behaviour at 0 and is such that they do 

	

not belong to any 	space but can be handled in the 	spirit of Remark 6.2. 

(6.1) can be recast in the form 

	

(rx_r)I ,)lr 	 (6.4) 

where the right-hand side is interpreted as an r-th root in an appropriate sense. 
Similar comments apply to (6.2). 

There is an analogue of (6.1) for the operator K, defined by (4.8), which 
takes the form 

	

= rxm((x_mK)r 	 (6.5) 

for Re a >0. Conditions for the validity of (6.5) within the framework of the 
spaces can be derived from Theorem 5.6. The result can be extended by the use 
of cut-off functions since all activity is concentrated on an interval of the form 
(x, oo),  in contrast to the interval (0, x) in Remark 6.2. For an analogue of (6.2), 

we offer 

(Dm) = 	 (6.6) 

for Re 13>0.  Formulae (6.1), (6.2), (6.5) and (6.6) are the results promised in §1. 
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operators involving derivatives and integrals of fractional order 

often provides an elegant formalism for solving problems which 

might otherwise involve heavy manipulations with special functions. 

Examples can be found in [10), particularly in the article by 

Sneddon where the connections with mixed boundary value problems 

in potential theory are discussed. 

In this paper, the first of a series, we bring together strands 

from these two areas by presenting a method, based on Mellin 

multiplier transforms, of defining fractional powers of a certain 

class of operators. The class includes as particular cases oper-

ators which occur in many problems in applied mathematics. We hope 

to incorporate the useful aspects of the two separate areas and, by 

working distributionally in a later paper, to provide a full answer 

to questions of existence and uniqueness. Meanwhile, we introduce 

a little more detail in order to describe the motivation for our 

theory. 

If X is a non-empty set and T:X - X is an operator whose domain 

is the whole of X,' there is no difficulty in defining the operators 

T"(n = 1,2,...) by repeated composition. In recent years, much 

interest has centred on trying to define Ta for (real or complex) 

values of a other than positive integers, such powers being 

referred to as fractional powers of T. Significant progress was 

made by, amongst others, Balakrishnan (1) and Komatsu (4) within 

the framework of closed linear operators in Banach spaces. These 

investigations relied heavily on the apparatus of spectral theory, 

Dunford integrals, symbolic calculus and so on. The object was to 

find a suitable expression for T(n = 1,2,...) which continued to 

be meaningful when n was replaced by a complex number o subject to 

some restriction such as Re cz>O. With this definition of fract-

ional powers of T, it was possible to show that the index laws 

= T 

	= 

(T) 	-T 	 (1.2) 
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held under appropriate conditions. Typically, (1.2) was estab-

lished under the rather severe restrictions a real, O<a<1, Re 'O; 

see, for instance, [12). 

When the elements of X are themselves functions, other 

approaches are sometimes possible. Suppose, for example, that 

X = L 	 2  and that T is a bounded linear mapping from L  

into itself which has the form of a Fourier multiplier transform 

with symbol g. This means that, for f € L 2 (-,cx), 

(F(Tf)) () = g(E) (Ff) () 	(-o<<oo)  

where F is the Fourier transform. Since F is invertible on 

L2 (-,), it follows from (1.3) that the equation 

T = FgF 	 (1.4) 

holds in the sense of operators on L 2 (-co,co). Proceeding formally 

from (1.4), we have 

T = F 1gF 	(n = 1,2,...) 

which suggests that we might try to define T  by 

Ta = Fl gaF 	 (1.5) 

provided that some sense can be attached to the function ga (via 

Riemann surfaces, perhaps). Such a programme can be contemplated 

when X = L(-oz,cc) for any p in the range i<p<co since a precise 

characterisation can be given [11, Chapter 4] of a class of symbols 

g which generate bounded linear mappings from L P (—,-) into itself 

which are of the form (1.4) (with an appropriate interpretation). 

In theory it would seem possible to check whether or not g' 

belongs to this class of symbols. However, problems may well 

arise because of the existence of branch points, with a complete 

breakdown if g() = 0 for some real E. Thus, with this approach, 

which belongs to the realm of pseudodifferential operators, there 
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is no guarantee of success. 

By simple changes of variables, results for the Fourier trans-

form of functions defined on (-',') can be converted into results 

for the Mellin transform of functions defined on (O,°). Formally 

the Mellin. transform, M4', of a function q is defined by 

CO  

(M4')(s) = 
	

x s-i 
4'(x) dx. 	 (1.6) 

We shall spell out below conditions on the function 4' and the 

complex variable .s which ensure the. existence of (M) (s) . Mean-
while, we simply remark that there is a class of symbols g which 

give rise to bounded linear operators from L(O,co) into itself 

(1<p<co) which have the form 

-1 
T = M g?f 	 (1.7) 

so that, for 0 € L(O,), 

(M(T4'))(s) = g(s) (M4')(s) 	 (1.8) 

under suitable conditions. An operator T of the form (1.7) is 

sometimes called a Mellin multiplier transform. Such operators 

have been investigated in detail by Rooney in [8] and [9] and also 

figure in the work of Lewis and Parenti [5] on a class of pseudo-

differential operators. As before, (1.7) suggests the formula 

Ta = M gaM 	 (1.9) 

for general powers of T. However, similar problems arise with 

(1.9) to those encountered with (1.5), and the method may fail. 

In this paper, we shall avoid such problems by considering oper-

ators T which satisfy a modified version of (1.8). 

Suppose firstly that the symbol g is of the form 

g(s) - - h(s-y) 
 h(s) (1.10) 
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where y is a complex number and h is a function defined on an 

appropriate region of the complex plane. Suppose also that the 

operator T satisfies the relation 

(M(T))(s-y) = g(s) (M4)(s) 
	

(1.11) 

or, equivalently, 

- h(s-y) 
h(s) 
	

(W (S) . 	 ( 1.12) 

From (1.6) we see that the left-hand side of (1.12) can be written 

as (M(xT(x)))(s) so that, by comparison with (1.7), we are 

considering operators of the form 

T = x'MgM 	 (1.13) 

where x denotes the operation of multiplying a function of x by 

x'' and g is of the form (1.10). When y = 0, g(s) l and T reduces 

to the identity operator on the appropriate space. Needless to 

say, we shall be- more concerned with the case y 	0. The presence 

of the weight factor naturally leads to the use of weighted 

L(O,) spaces and, indeed, these are used extensively by Rooney 

in [8] and [9]. However, whereas operators of the form (1.7) map 

a weighted L(O,c.') space into itself, operators of the form (1.13) 

will map one such space into a different space in general. It 

might be thought that this would complicate matters considerably 

but, perhaps paradoxically, the reverse is the case. 

To give an inkling of what lies ahead, we present a little 

formal analysis. By two applications of (1.12), we obtain 

(M(T 2 ))(s-2y) = (M(T(T)) ) ((s-y)-y) 

h((s-)-y) (M(T))(s-y) h(s-y) 

- h(s-2y) h(s-y) (Mq)(s) 
- h(s-y) 	h(s) 
- h(s-2y) (M)(s). 
- h(s) 
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An easy induction argument shows that, formally, for n = 1,2,... 9  

h-n'r) 
(M(T 1 ))(s -n) - - (s  h(s) 	

(Mq')(s) 

This in turn suggests that the operator Ta should be defined in 

such a way that 

(M(Ta4))(sct.y) = h(s-a'T') 
 h(s) 	(MO (S) 	 (1.14) 

or, equivalently, 

T a = x a yM1g a M 
	 (1.15) 

where the symbol g is given by
CL 

h(s-ay) 	 (1.16) g(s) = 	h(s) 

There is now no difficulty over branch points. Instead we have to 

check whether or not g belongs to an appropriate class of symbols.
OL  

More importantly, some justification has to be supplied for the 

formal analysis and this gives rise to a number of interesting 

points. It is the intention of this paper to provide a rigorous 

discussion of these matters within the classical setting of weighted 

L(O,°) spaces. It is proposed to extend the theory to certain 

classes of generalised functions in a subsequent paper. 

In §2, we review a number of results for Mellin multipliers in 

weighted L(O,°) spaces and describe the particular class of 

multipliers which will concern us here.. The standard results refer 

to spaces for which 1 < p < 	but we shall indicate briefly our 

attitude to the cases p = 1 and p = . In §3, we develop the theory 

of powers of operators in a certain class.L and, in particular, we 

stateconditioflS under which the index laws (1.1) and (1.2) are 

valid. In 54 we showthat if anoperator T belongs to the class L, 

then so does its formal adjoint V. This is of some interest in 

its own right but is also an essential preparation for the 
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distributional sequel. Finally, in 5, we illustrate the results 

of the preceding sections in the case of certain simple operators, 

reproducing, in particular, some well-known facts in fractional 

calculus. Other more elaborate examples could have been given but 

these have been deferred to a later paper. 

2. In this section we shall collect together some notation and 

standard results which will be used extensively later. We begin 

with a few details concerning weighted L spaces. 

Definition 2.1 

For 1 < p 	and any complex number ii, 

L = {f : xUf(x) € L(O,c.)). 	 (2.1) 

Thus, L 1  is the space of (equivalence classes of) complex-valued 

measurable functions f defined (almost everywhere) on (O,co) such 

that the quantity 

If f II 	II p 	x U f(x)JI LP(o) 	 (2.2) "i 

is finite, where 1 H 	denotes the usual L(O,ø') norm. 
L(O,cx) 

Remark 2.2 

Here, and elsewhere, for 0 < x < 	and any complex number 

will mean'exp(A log x). where log denotes the principal 

value of the logarithm. 

The spaces (L11 II H 	) are Banach spaces. For .i real and 
1< p < , they correspond to Rooney's spaces in [8] and [93 
except for a slight change of notation, which means that our 

space (LP, If II) is Rooney's space (L1, II 11 
1-ljp,p 

However, it is convenient to allow complex values of 'j and 

the case p = 	can also be included without any difficulty. 
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(iii) It is easy to see that the mapping xA  defined on iY by 

(x)(x) = x(x) 	(0 < x < 	 (2.3) 

is a homeomorphism from L onto L P
+  with inverse x- \' for 

any complex numbers 'i and X and for I .. p . '. (There should 

be no confusion because of the use of the symbol x 
A

to denote 

the function x   as well as the operation of multiplying a 

function of x by xA.) 

Next we consider the behaviour of the Mellin transform on the 

spaces L 1 . 
Ij 

Lemma 2.3 

For 	E L, (M)(s), as defined by (1.6), exists provided that 

1 	p 	2 and 

Re s = 1/p 	Re u. 
	 (2.4) 

In that case, if s = c + it and (Mq)(o + it) is regarded as a 

function of t on (—c.,co) then M is a continuous linear mapping from 

L into 	 where q = p/(p-l). 

Proof:- 	The result follows immediately from [8, Lemma 4.11 via 

the change of notation mentioned in Remark 2.2 (ii). 

Remark 2.4 

(1) From now on, whenever we consider (M)(s) forE L 

it will always be the case that s and '.i are related by (2.4). 

(ii) For p = 1, the integral defining (M)(s) converges absolutely 

under the hypotheses of Lemma 2.3, while for 1 < p . 2, 

(M)(s) 	(Md)(a + it) has to be interpreted as a limit in 

the L(_c,,c) mean. 

We must now make clear what we shall mean by an L 1  multiplier. 
Ij 

Here we are influenced by particular examples, some of which will 

be discussed later. 
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Notation 2.5 

Throughout the paper, P will denote a domain in the complex 

pLine which is the union of a finite or countably infinite 

collection of disjoint, open strips parallel to the imaginary 

axis. In other words, P can be written as the union of a 

finite or countably infinite collection of disjoint strips, 

each of which has one of the forms 

a < Re s < b, 	Is 	Re s < c} or Is : Re s > d 

where a, b, c and d are real numbers. (There can be at most 

one strip of each of the second and third forms.) 

Let P be as in (.i). For each fixed p in the range 

we let 

	

Qp= hi : 1/p - i € c}. 	 (2.5) 

(2.5) ensures that, when s and ii are related by (2.4) and p is 

	

fixed, s € P if and only if 	€ P. 

Definition 2.6 

Let g be a complex-valued function analytic on a domain P (of the 

type in Notation 2.5(i)). We shall say that g is an L multiplier 

if there exists a (unique) linear transformation R (depending on g) 

such that 

for 1 < p < x and u € Li, R is a bounded linear transformation 

from L into L 
Lt 

for 1 < p , 2, u € P and 	€ L, 
p 

	

(M(R)) (s) = g(s) (M) (s) 
	

(2.6) 

We shall then say that g is the symbol of R and refer to R as a 

(Mellin) multiplier transform. 

Remark 2.7 

(1) The motivation for Definition 2.6 is to be found in the work 

of Rooney [9) which in turn is derived from corresponding 
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results for the Fourier transform described by Stein [ii). 

However, we differ in our approach in some respects. For 

instance, we are working in the domain Q whereas Rooney works 

in a single strip. Rooney's theory could be applied to each 

strip in f individually so that the difference might appear 

minor. In one sense this is so, but in another sense, a new 

facet enters since the form of T on L may vary as i/p - u 

moves from one component of 0 to another. We shall give an 

example in 55. 

(ii) A comment is in order regarding our attitude to the values 

p = 1 and p = . Rooney considers the range 1 < p < 	because 

then he can identify a large class of L multipliers [9, 

Theorem 1 ]. However, in this paper, we shall not be attempt- 

ing to characterise possible symbols g. We adopt the view 

that, by some means or another, it is possible to decide 

whether or not a given function g is an L multiplier and take 

it from there. Many of our proofs boil down to using the fact 

that 

C(O,co) = {: 4 is infinitely differentiable and has compact 

	

support in (O,c)} 	 (2.7) 

is dense in L for 1 < p < 	and any complex number u,  tog- 

ether with the continuity of the Mellin transform on L for
Ij 

1 < p < 2 (Remark 2.4(u)). But these properties of density 

and continuity hold also when p = 1. Thus, in the case when 

R is a bounded linear transformation from L 1  into L may 
U 	 U 

extend (2.6) to include p = 1. In contrast C(O,) is not 

dense in L for any choice of p so that our method of proof is 

doomed to failure in the case p = 	(although when we work 

distributionally, as we shall do in a later paper, we are back 

in business). To summarise, we shall examine L multipliers 

in the sense of Definition 2.6 with the attitude that, if the 

operator R also maps L 
1 
 into L 

1 or L into L OO , then that is a 
11 	 11 	 11 
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bonus. Again, we shall see examples in §5. 

As indicated in §1, we are particularly interested in the case 

where g(s) = h(s-y)/h(s). The following definition is suggested. 

Definition 2.8 

H will denote the set of all ordered triples (h,c?,y) such that 

c is a domain of the type considered in Notation 2.5(i) 
y  is a complex number 

h is a complex-valued function such that h is analytic on 

(s-y 	s E c) and 1/h is analytic on 0 

the function g defined on 0 by g(s) = h(s-y)/h(s) is an L p  
multiplier for 1 < p < 	and jj € Q, in the sense of 
Definition 2.6. 

(1) The conditions above are convenient for our purposes but could 

be made less restrictive. 

As mentioned in §1, we can allow y = 0 in which case the 

corresponding operator R is simply the identity operator on 

the appropriate L space. In useful applications, we usually 

have Re y  0 0. In this case, it is not the operator R which 

- matters to us but rather the operator T = x1R, with x' 
-defined via (2.3). We therefore state the following result. 

Theorem 2.10 

A triple (h,c2,y) € H generates a (unique) linear transformation T 

such that 

(1) for 1 < p < 	and u € 	, 
p 	

T € B(L 	
1+1 

, L 	) 1.  

	

(ii) for 1 <p< 2,'uEQ and 	€ L, 
 111 P 

(M(T))(s-y) = h(s-y) (M)(s). 
h(s) (2.8) 

Proof:- 	The result follows immediately on taking T = x 1R with Ras 
in Definition 2.6 since 
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(M(xRq))(s-.) = (M(Rq))(s) 

for q E L, Re s = i/p - Re u. U 

3. We now have a description of the type of operators whose powers 

we shall shortly construct. Theorem 2.10 suggests that the foll-

owing definition is appropriate. 

Definition 3.1 

L will denote the class of all operators T generated by triples 
(h,c,y) E H in the sense of Theorem 2.10. More precisely, T € L 
if there exists a triple (h,cl,y) € H (as in Definition 2.8) such 

that 

for 1 < p < 	and p € Q ,T € B(L, L) 

for 1 <p,<2,  p € 	and 	€ L, 

(M(T$))(s-y) = h(s-y) 
h(s 	(M) (s). 

(Recall that (2.4) and (2.5) apply.) 

We propose to define powers of operators T in the class L. 
However, we must first deal with a rather important matter, namely, 

that if T € L then T can be generated by infinitely many triples in 

H. Trivially, if T is generated by (h,2,y) € H, then T is also 

generated by the triple (ch,c2,y) € H where c is any non-zero 

constant. We mention another less trivial instance to which we 

shall refer again later. 

Lemma 3.2 

Let T € L be generated by the triple (h,c?,1) € H where y  0  0. For 
each integer k, define h  on the domain of h by 

hk(s) = exp(27kis/y) h(s) 	
(3.1) 

(so that h 0  E h). Then, for each integer k, the triple (h,c?,.y) 
also belongs to H and generates T. 
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Proof:- 	That (hk,,Y) € H is immediate from Definition 2.8 since 

the functions exp(2kis/y) and exp(-2nkis/y) are entire and h  

inherits the analyticity properties of h. That (hk ,2 ,Y) generates 

T follows since 

exp(2iikis/y) exp(-27ki) h(s-y) = h(s-y) 

bk(s) 	 exp(2iikis/y) h(i) 	 h(s) 

Remark 3.3 

As regards a representation for T, any one of the functions h*K is 

as good as any other. However, we shall see shortly that the 

choice of representation is crucial as regards defining general 

powers of T. Accordingly, we must declare that in the theory which 

follows, whenever T € L, it is to be understood that we are using 

a fixed representation (h,c2,y) € H for T and that the definitions 

and theorems are stated in terms of that fixed representation. For 

emphasis, we shall often write P E T(h,,y). 

Now we are ready to define powers of an operator T € L. The 

motivation is supplied by (1.14) which suggests that if T is gene-

rated by (h,c2,y), then T should be generated by (h,,cxy). To make 

sure that the latter triple is in the class H we make an extra 

assumption. 

Definition 3.4 

For any triple (h,c2,y) € H, we shall define the set A of complex 

numbers by 

A E A(h,,y) = {c: (h,c?,ay) € H). 	 (3.2) 

The alternative notation A(h,Q,y) indicates that A depends on the 

triple (h,2,y). However, we shall usually just write A on the 

understanding that it is constructed from the fixed representation 

for T which is under discussion. (See Remark 33,) 
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Definition 3.5 

Let T E T(h,c,Y) € L and let ci € A. We define Tci  to be the 

operator in L generated by the triple (h,Q,ci). More precisely, 

Tci is the linear operator such that 

for 1 < p < 	and p € SI , T  € B(L, L + ) u ci y p 	 p 

for 1 < p < 2, p € sl , and 	€ L, 
p 	 U 

(M(T))(s-ciy) 
- h(s-ay) 

NO (S) 	 (3.3) 
- h(s) 

Remark 3.6 

Definition 3.5 is meaningful in view of Definition 3.4. 

The actual composition of A will vary with T, as noted above. 

We shall not attempt to characterise the possible sets A that 

can arise but simply remark that for some choices of T, A is 

the whole complex plane while for other operators T conditions 

such as Re cx - 0 are typical. We shall give examples below. 

Meanwhile, we proceed with the theory on the assumption that, 

for a given operator T E T(h,2,y), the set A(h,2,y) can be 

calculated by some means or another, so that admissible values 

of a are known. 

We shall dispose first of a triviality. 

Lemma 3.7 

Let T E T(h,cl,y) € L. Then 0 € A and for 1 < p < , p € 0, T °  is 

the identity operator on L. 
11 

Proof:- 	This follows on putting a = 0 in (3.3) and using the 

fact that M is one-to-one on L for 1 <p .. 2, p € 2. 

Next we shall state conditions under which the first index law 

(1.1) is satisfied and give a rigorous (as opposed to formal) 

proof. 
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Theorem 3.8 

Let T 	T(h,,y) € L, 1 < p <co , {a,, a+} C A and f o, j+y} 

Then, as operators on L, 

CL TT = (3.4) 

Proof:- 	Since 6 € A and V € Q, T exists as an element of 

B(L, L 1' ) by Definition 3.5(i). Similarly, since a € A and 

p+y € S, T  € B(L + , L ~ ) and since a+ € A, 	€ ?, we 

have T 6  € B(L, L1' 	). Hence both sides of (3.4) define 
j 

elements of B(L, L 	) under the given conditions. To prove 
ii 

equality, it is therefore sufficient to prove that 

TaT 	= Ta 4  

for 4 € C(O,cG), since the latter set is dense in L. To do this, 

2 
	 11 

we regard q as an element of L with u chosen so that 

Then, for Re s = 1/2 - Re p, 

(M(TaT))(S 
- (a+)y) = (M(Ta(T)))((S_BY) 

- ay) 

h(s-y-ay) 
(M(T)) (s - 6y) 

- 	 h(s-y) 

= h(s-8y-ay) h(s-y)  NOW 

= h(s-(a+$)y) 
(M)(s) h(s) 

by two applications of (3.3) which are valid under the given 

conditions. But, by (3.3) again, the right-hand side is 

(M (T 	qD))(s-(c+)y) so that 

(M(TaT)) (s
- (a+)y) = (M(Tat)) (s

- (a+)y) 

and, since M is one-to-one on L 2 	 , we obtain TaT 4  = 

In view of our earlier remark, this completes the proof. 
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Ba 	ct+B 
The conditions under which T T = T 	are obtained from those 

in Theorem 3.8 by interchanging a and B. By taking both results 

together, we can obtain the following corollary. 

Corollary 3.9 

Let T E T(hj,y) € L, {ct, -a} c A, I < p < 	and Jjj, j+czy} c Q. 

Then T   is a homeomorphism from L onto L 1 	and, as operators on 
U 	1JY 

L 1  
p +(X y 

(Ta)i = Tot. 	 (3.5) 

Proof:- 	By (3.4) with a,B replaced by -a, a respectively we have, 

on using Lemma 3.7, 

TaTa = T °  = identity operator on L. 
Ij 

On the other hand, if we use (3.4) with B replaced by -a and p 

replaced by p+ay, we obtain 

TaTa = T°  = identity operator on L p+ay 

The result now follows easily. 

Remark 3.10 

Corollary 3.9 may seem very satisfactory but it must be emphasised 

that the restriction {a, -a) C A is a very severe one and is not 

satisfied in many particular cases. We shall illustrate this in 

95 for the case of simple integral operators. The failure of 

Corollary 3.9 supplies the motivation for the extension of the 

theory to appropriate classes of generalised functions, as hinted 

earlier. We shall pursue this extension in a subsequent paper. 

We come now to the precise formulation of the second index law 

(1.2). 

Theorem 3.11 

Let T R T(h,,y) € L, ct, aB) C A, 1 < p < 	and p € 9 	 Then, as 
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operators on L, 

B cc (To') 	= T 	. 	 (3.6) 

Proof:- 	Since at& € A and u € Q, we know that the right-hand side 

of (3.6) exists as an element of B(L 
-i 
 , L 	) by Definition 

3.5(i). Similarly, since 	€ A and p € ?, Ta exists as an oper- 

ator in B(L, L 	) of the class L. Since, by assumption, the 
p 

triple (h,Q, S(ay)) = (h,, (cxL3)'y) € H (as aB € A), we can con-

struct (Ta)B  E L according to Definition 3.5 and the resulting 

operator belongs to B(L, L 	) also. It remains to prove p 	u+aBy 
equality in (3.6) and, as in the proof of Theorem 3.8, it is 

sufficient to prove that 

(Ta)p = Tot 

for 	E C(O,00), where 	is regarded as an element of L 2
Ij  
 and p€c 2 . 

Then, for Re s = 1/2 - Re p,  repeated use of (3.3) gives 

= 

- h(s-B(a)) (M(T))s—ay 
h(s-ay) 

- h(s-(ciB)y) h(s-ay) 
00 (s) - h(s-ay) 	h(s) 

h( s-a By) 
- 	 00(s)s) 

h(s)  

= (M(T))(s-aBy) 

each step being valid under the given conditions. The proof is now 

completed as in Theorem 3.8. 

Remark 3.12 

At this stage it is interesting to examine the restrictions on the 

parameters in Theorems 3.8 and 3.11. We consider first Theorem 

3.8 and, in particular, the restrictions on u therein. The right- 
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hand side of (3.4) is meaningful provided that ii € 0 (and ci+8€A). 

The extra restriction +8y € 0 was needed in order that the oper-

ators T   and T appearing on the left-hand side of (3.4) should 

exist individually on the appropriate spaces. The proof of 

Theorem 3.8 shows that, if p8y V 0 or equivalently s-y V 0, the 

combination T T can still be regarded as existing on L in the 

sense that singularities caused by the factor h(s-fty) cancel out. 

We could then regard Ta4  as giving a continuation of TaTe  to a 

wider range of L spaces. It could even be regarded as a sort of 

analytic continuation in a rather weak sense. The proof shows 

that, if p, p, 	and s are fixed with 1 < p < 2, p € Q 	E L 

and Re s = i/p - Re p, then the functions 

f1(a,8) = (M(TaT))(s_ay_8y), f2(a.8) = 

are analytic functions of a and 8  in the region 

{(c&,8) : a E A, 8 € A, a+8 € A) 

provided that p8y € S, bothbeing equal to 

h(s-ay-- ) NO W. h(s) 

However, f 2  remains analytic without the extra restriction 

€ ç and provides an analytic continuation of f 1  to the 

larger region. It would appear that any stronger version of 

analytic continuation would require more precise information about 

h or a concrete. expression for Ta  (and T8 , T 8 ) obtained by other 

means. We shall return to this in 55. 

Just as the restriction p+8y € Q in Theorem 3.8 can be removed 

in the sense just described, so can the restriction p+ay € 0 in 

Corollary 3.9. Then we find that the conditions required for (3.5) 

to hold are precisely those required for (3.6) to hold in the case 

8 = -1. Thus Corollary 3.9 can also be deduced from Theorem 3.11 

and the conditions in the two approaches can be reconciled. 
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Finally, in this section we return to the matter mentioned in 

Remark 3.3. We indicated that we could use any of the functions 

defined in (3.1) to construct powers of T. We consider now how 

these are related. 

Definition 3.13 

Let T 	T(h,c?, -y) € L and let y 	0. For any integer k and for 

a € A, let [Ta l k  denote the a 
th

power of T calculated by means of 

the triple (hk,c2 ,y) where h   is given by (3.1). This means, in 

particular, that if I < p. 2, p € Q and 	€ L, then 

hk(s_ay) 
(M([Ta)k))(s_aY) 	

k(s) 	
(M)  (s) 	 (3.7) 

by (3.3). [Ta] 
0 

is simply Ta  again. 

Theorem 3.14 

Let T E T(h,cI,-1') € L and let y 0 0. Then for any integer k and 

p € SI p 

[Ta l k  = exp(-2rrkia) [Ta) = exp(_2Trkicz)Ta 	 (3.8) 

as operators in B(L, L 	). 
Ij 	p 4-ay 

Co 

Proof:- 	Let 	€ C(O,cc) and regard 4  as an element of L 2 . Then 

for p € 0 2 and Re s = 1/2 -' Re p, (3.7) gives 

exp(2irki(s-ay)/-y) h(s-ai) 
= 	exp(27Tkis/y) 	h() 

= exp(-2nkia) h(s-ay) 
h(s) 	(Mq)(s) 

= (M(exp 	 a-2ikia)T )4)(s -ay) 

by (3.3). The proof of (3.8) is now completed by using density 

and continuity in the usual way. 
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Remark 3.15 

We see from Theorem 3.14 that the number of distinct operators 
[Ta J k  obtained as k varies over the set of all integers is deter-

mined by the behaviour of exp(-2itkia). Obviously, this is tant-

amount to elementary considerations of complex roots of unity. In 

particular, if a = 1/n where n is a positive integer, we obtain n 
th 	 i/n distinct n 	roots of T,, , namely, the operators fT 	for 

k = O,l,...,n-].. Again, we shall consider an example touching on 

this matter in §5. 

4. We now turn our attention to powers of the adjoint of an oper-
ator in the class L. This is an interesting investigation in its 

own right but the results will have an important role to play in 

the extension of the theory in §3 to generalised functions in a 

subsequent paper. We require a few preliminaries. 

Remark 4.1 

Once again, we shall be concerned principally with values of p in 

the range 1 < p < , although the ideas can be extended to p = 1 

or p = 	in certain cases. As usual, for 1 . p .. , we let 

q = p/ (p-1) so that lip + l/q = I 	 (4.1) 

with the understanding that if p = 1 then q = 	and that if p 
then q = 1. 

Definition 4.2 

Let 1 < p < , letij and P be complex numbers and let 

T € B(L , L ). Then we define T', the formal adjoint of T, to be 
"l 	u2 

the (unique) linear operator in, 	) such that p 2 	p 1  

I 	(T) (x) 1, (x)dx
JO 
 (x)(T')(x)dx 	 (4.2) 

 cc 

for all 0 € L , ip € 
P1 
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Remark 4.3 

	

That T' is well-defined and belongs to B ( Lq , 	
) is a standard 

result from duality theory based on Holder's inequality. Indeed, 

the result is much more general allowing different values of p in 

the two spaces and giving information on norms but we shall not 

need these extra facts here. We shall be concerned with the case 

when T € L. We might hope that then T' € L also and that, under 
appropriate conditions, we might have 

(Ta)? = (Tt)a .  
(4.3) 

We shall show that our expectations are realised. One of our main 

tools is Parseval's formula for the Mellin transform which we shall 

State in a version appropriate to L 2 (O,co) = L 2 . 
0 

Theorem 4.4 

For any functions 
l and 0 in L, 

f "OCO  
(M 1 )(l/ 2 +it)(M 2 )(l/2-jt)dt = 2 fo & 1 (x) 2 (x)dx. 	(4.4) 

Proof:- 	This can be derived by making simple changes of variable 

in the corresponding version of Parseval's formula for the Fourier 

transform on L 2 (-'.,co). 

We can now state our first main result. In the statement, we 

shall repeat for convenience some known facts about T in order to 

show the interplay between T and V. 

Theorem 4.5 

If T E T(h,Q,-y) € L, then T' € L and is generated by the triple 
(h', c2', y') where 

= {s': 1+Y -s'€ }, 'y'. = y, h'(s') = [h(l-s')] 	WE a'). 

(4.5) 
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In particular, let p € Q 
p 
 where 1 < p < . Then 

T € B(L, L1'  ) and T' € B(L 	, L ) 
Ii 	1-1+1 	 -p -Y 	-Ii 

for 1 < p, 2, • € L1', 

(M(T))(s-y) 
= h(s-y) 

(Mq)(s) 	(s € ç) 
h(s) 

for 1 < q< 2, Jj € L, 

- 

	

(M(T'))(s'-y) 	
h'(s'-y)

i(t) 	(Mip)(s') 	(s' € Q'). 	(4.6) 

(The use of h' should not cause confusion since we shall not be 

concerned with the derivative of h.) 

Proof:- 	As regards (i) the statement concerning T is immediate 

from Definition 3.1(i) and that for T' then follows from Remark 43. 

(ii) is repeated from Definition 3.1(u). It remains to deal with 

(iii). We shall first show that the expression h'(s'-y)/h'(s') 

can serve as a multiplier under the given conditions, calling the 

resulting multiplier transform T. Then we shall show that T = 

and the theorem will be proved. 

To simplify the presentation, we shall introduce two conventions. 

Firstly, we shall assume that p and 1.1+1 are real. There is no loss 

of generality since for any complex number v and 1 1< p . , the 

	

spaces L and L 	are identical. Secondly, the variables s and 
Rev 

s' will always be related by the formula 

	

s+s' = l+y. 
	 (4.7) 

Taken together, these two conventions and (2.4), (2.5) entail that 

if p € c7, then Re s = i/p - p and Re s' = i/q + p + y. Also, by 

(4.5) and (4.7), for S € 

h' (s'-'Y) - h(i-s') = h(s-y) 
h'(s') 	- E(l-s'+y) 	h(s) 

(4.8) 
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Consider the operator U defined by 

(U)(x) = x(x 1 ) 	(0 < x < 

It is easy to check that, for any p (real or complex) and 1 <p< 

U is a homeomorphisrn from if onto if 	with inverse 	= U. p 	2/p-i-p 
Also for 1 < p . 2, p € 0, we have 

(M(uq)) (i-s) = (Mq) (s) 	(s E 	. 	 (4.9) 

Define the operator T by 

= x'UTUx' 

where x'' is defined via (2.3). The condition p € Q is equivalent 

to 1/p-p € Q or 1/q-(2/q-l+p) € Q so that in this case 

T € B(L 1q_1p  L /q_1py) by Definition 3.1(i). Hence 

T € B(if, 	since T is the composition of five bounded linear 

operators. Further, for 1 < q ,. 2, p 	2, p € L 	and _  
Re s' = 1/q+p+y, 

(M()) (s'-y) = (M(x 1UTUx'ip)) (s'-y) 

= (M(UTUx))(s') 

= (M(TUx1 p))(l-s') 	 by (4.9) 

= (M(TUx))(s-y) 	 by (4.7) 

= h(s-y) (M(Ux'))(s) 	 by (2.8) 

= h'(s'-y) (M(Ux
1 ))(s) 	by (4.8) h' (s') 

h'(s'-y)  
(s 	(M(x1 ))(l-s) 	by (4.9) h'') 

- h'(s'-y) 
(WO-s+y) - h' (s) 

- h l (st-y) 
- 

	

h' (s') NOW) 	 by (4.7). 
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We have therefore obtained the multiplier operator T which we 

sought. 

For p € 0, both T' and T are elements of B(L, 	. Thus, 

to prove that T = T', it is sufficient to prove that T = VI for
00 

E C (O,). As before we regard 	as an element of L 2- — where 

u E 	Then both iji and T'4J  are elements of L. Let 4 € L so 

that T € L 2 . By applying Theorem 4.4 to both sides of (4.2) 

and cancelling the factors of 2n we get 

J COOO 

(M(Tq)) (l/2-p-y+it) (Mq) 
— 

=fOO 

 (1/2-p+it) (M(T')) 
-CO   

By (2.8) with s = 1/2-1j+it, the left-hand side can be written as 

h(1/2-p-y+it) 
(M)(1f2-p+it)(M)(1/2+p+y-it)dt. 

h(1/2-+it) 

It follows that 

f (M)(l/2-p+it)
_cX 	

h(l/2-p+it) 	
(MiL')(l/2+i+y- it) — 

— (M(Tt))(l/2+P_it)}dt = 0. 

Since the range of M on L2  is the whole of L 2 (_cx,cxO, we must have 
U 

(M(T'i))(l/2+p-it) - h(1/2-p-y+it) 
- 	

( 

h(l/2-p+ft) 
(M) (l/2+p+ -it) 

Then with s = 1/2-p+it, we have s' = 1/2+p+y-it by (4.7) so that, 

by (4.5), 

'). (M(T'p))(s'-y) = h' (s'-y) NO (s 

The right-hand side is (M(Tip))(s'-y) from above. Since M is one-
2 

to-one on L_  
	 00 

 we deduce that TiLi = VI for all 0 € C(O,co). In 
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view of our previous remarks, this completes the proof of the 

theorem. 

Remark 4.6 

As mentioned in §3, the operator T' in Theorem 4.5 can be gener-

ated by triples other than (h', s3', v'). However, we can regard 
(4.5) as the most natural choice of triple to generate T' and, 

from now on, whenever T is generated by (h,c2,-y) , we shall always 

use the triple (4.5) to generate V. 

Since T' € L, we can construct (TI)O' under appropriate 

conditions by using Definition 3.5 and the powers of T' will 

satisfy index laws in the usual way. We shall state the relevant 

results, mainly to draw attention to the conditions under which 

they are valid. 

Theorem 4.7 

Let T E T(h,c,y) € L, 1 < p < , i € Q and c € A (as given by 
(3.2)). Then (T') € 	 L) and is such that, for 

1 < q < 2 and ip € 

h'(s'—-y) 
(s' h' 	) 	NO (S') 	(5 '  € a'). 	(4.10) 

In particular, (T') °  is the identity operator on Lcl. 

Proof:- 	This follows in a fairly routine manner by the use of 

(4.6) and Definition 3.5. We merely mention that, since cEA, 

h(s-ciy)/h(s) is an L multiplier and hence h'(s' -cx -y)/h'(s') is an 

u-cry multiplier by considerations similar to those in Theorem 
— 

4.5. 

Theorem 4.8 

Let T E T(h,Q, -y) € L, 1 < p < . 

(i) If {ci,B, a+} C A and Ili, -p+-y} C Q p , then, as operators on 

-IJ-czy--y 

= (T?)a+. 	
(4.11) 
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(ii) if C(', -a) E A and tti, i j+cx) , } E c, then (Tt)a is a homeo- 
morphism from 1, 	 onto L 	 and 

- u 

[(Te)aJ 	= (Tv )a 
	

(4.12) 

Proof:- 	(i) is similar to Theorem 3.8 and the proof is omitted. 

The reversal of order on the left-hand side of (4.11) by comparison 

with (3.4) is to be expected. (ii) follows immediately from (i). 

Theorem 4.9 

Let T 	T(h,c,-y) € L, 1 < p 	, {a, cz} c A and p € Q . Then 
p ((T?)a) 6 € B(q 	 ) and 

-p-ay
, 
 -p 

(4.13) 

Proof:- 	This is similar to that of Theorem 3.11 and is omitted. 

Comments analogous to those in Remarks 3.10 and 3.12 apply to 

the index laws for T' but we shall not spell out the details. 

Instead we shall deal with the formula (4.3). 

Theorem 4.10 

Let T 	T(h,Q,y) € L, 1 < p < 	p € 2 and a € A. Then, as 

operators on -p-ay 

(Ta)? = (T'). 	 (4.3) 

Proof:- 	The hypotheses ensure that both operators exist and 

belong to B(L, 	by Definition 3.5, Theorem 4.5 and 

Theorem 4.7. For 1 < q 	2 and Jj € L 	 the method used in the 

proof of Theorem 4.5 (with y replaced by ay) shows that 

h' (s'-ay) 
h'(s') 	(Mij)(s') 	(s' € ç'). 

Comparison with (4.10) reveals that 

= (M((Tt)a))(st_ay) 
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from which (4.3) follows in the usual way. 

For future use, we note the more explicit form of (4.3) which 

guarantees that if 	€ L, 4 € 	and the conditions of Theorem 
—u—al 

4.10 are satisfied, then 

	

fW 

(T)(x)(x)dx 
= fco 

(x)((T'))(x)dx. 	 (4.14) 
0 	 0 

5. In this final section we give a few examples to illustrate the 

theory just developed. We start with a rather trivial case. 

Example 5.1 

Let X be a fixed complex number and take T to be the operator xX 

as defined by (2.3). Then, as mentioned in Remark 2.2(iii), 

x € B(L, L'+A) for any complex number u and 1 < p <. Also, for 

1 < p 	2 (and p = 1 too), 	€ L '  . 	and Re s = 1/p - Re u, 

(M(xX4))(s_X) = (M4)(s). 

By comparison with (2.8), we see that xA  can be generated by means 

of the triple (h,c,y) € H where 0 is the entire complex plane, 

h(s) F 1 (s € ) and y = X. Also, the set A corresponding to 
X  

(h,c,y) is the entire complex plane. Hence (x . ) can be defined 

as an operator on L for any complex number a and (3.3) shows that, 

as operators, 

Xa 	ax 
(x) =x 

as we might expect. (We have calculated [Ta]0  in the notation of 

Definition 3.13.) This example illustrates one of the possibil-

ities mentioned in Remark 3.6(u). Since T' = T, it is not sur-

prising that all the results in 93,4 hold in a trivial way. 

The next two examples are much more typical. The operators 

involved are simple enough to allow us to obtain concrete rep-

resentations for appropriate powers but at the same time are 
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sufficiently non-trivial to provide worthwhile illustrations of our 

theory. 

Example 5.2 

Let T = I where, for suitable functions , 

fX 
(I 1 )(x  W = q(t)dt 	(0 < x < co)

o  
(5.1) 

(The suffix 1, apart from the menial task of helping to prevent 

confusion with the identity operator, also serves to indicate that 

we are dealing with the case m = 1 of the operator I(m > 0) 

defined by 

	

x 	 x 

(Im)(X) 
= 	

~ ( t)d( t 
m 	f 

 = 	

t)mtmt 

which can be treated similarly.) We shall obtain a triple (h,c,y) 

generating T by working from first principles and shall see 

incidentally how (2.4) and (2.5) arise naturally. 

Firstly we mention that I € B(L, L 1) provided that lp 

and Re u + 1 > lip. This is an easy consequence of many results 

in the literature on Hardy kernels such as [3, Theorem 21. It 

would seem that, for this choice of T, y = 1 and c = {p: Re .>l/p-l} 

for 1 < p < co 

To obtain an appropriate relationship involving the Mellin 

transform and the restriction on the variable s, we shall make use 

of the case p = 1, which happens to be available for this T. 

Accordingly, let 4 € L 1  with Re ij > 0. From (2.4) we take 

Re s = 1 - Re u in calculating (M)(s), while for the Mellin trans-

form of Il € L 1 1 , the appropriate variable is s-l. We obtain 

r  I 

	

,

CO  
(M(114))(s-1) 	

f 
x 
s-2  (I 4(t)dt)dxkJ x

- 1 -Re 
(I 

x 
l(t) dt)dx. 

 CO 

Jo 	o 

Since 	€ L1, Ii(t,I) € L ' +1  as above, so that the repeated 

integral is absolutely convergent. By Fubini's Theorem, we may 
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invert the order of integration to obtain 

00 00  

(M(I1))(s-l) 
= fo 
	( 
 it x 

(t) 	
s-2dx)dt. 

For convergence of the inner integral we require Re(s-2) < -1 or 

Re s < 1. In this case, 

00  

(M(I 1 ))(s-l) = -(S-1)- I J0 t1(t)dt 

or 

(M(I 1 ))(s-l) = (1-s) 1 0)(s) 
	

(5.2) 

for 4 € L 1  and Re s < I. For 	€ L  with 1 < p < 2, Re p+l > l/p, 

(5.2) is still valid for Re s < 1. Indeed, we can handle 

€ C(O,co) as in the case p = 1 and then use density and continuity 

in the usual way. We see that 0 = fs: Re s < 1) while (2.4), (2.5) 

guarantee. that this is in accord with the choice of 0 
p 
 above. It 

1 
remains to find a function h such that h(s-l)/h(s) = (l-s) 	for 

Re s < 1. From various possibilities we shall opt for 

h(s) = [1'(1-s)] 1 . We can then check that h satisfies the conditions 

in Definition 2.8, (iv) being automatic since we started with T 

which was known to be bounded. Hence (h,y) € H where 

= {s: Re S < 1), y = 1, h(s) = [ r(l-s)1 1  (s € Q) 	(5.3) 

and this triple generates T = I. 

With respect to the triple (h,S2,y) in (5.3), the ath power of 

which we shall denote by I,must satisfy 

	

- h(s-c) 	 F( I -s) 
(M(I))(s-c) - h(s) (M4)(s) = r(i'-s+a) NO (s) 	(5.4) 

by (3.3). To find the set A of admissible values of a, we must 

examine the symbol F(l-s)ir(lS+c). In the notation of 18, Theorem 

5.11, our symbol may be written as m 1 (c,l,c,i+c) where c is at our 

disposal. Suppose that p and ii are fixed with 1 < p < 	and 
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Re p+l > i/p. We can choose c so that i/p + Re(c-) is not equal 

to zero or a negative integer. Then [8, Theorem 5.11 guarantees 

that F(l-s)/r(i-s+cL) is an L multiplier provided that Re a > 0. 

The case Re a = 0 raises some interesting points but we shall not 

discuss them here, apart from the usual observation that I o  is the 

identity operator. For the case Re a > 0, Theorem 2.10 shows that 

	

€ B(L, L 	

.. 

) provided that 1 < p < , u € 	and that I sat- 
11 	P 	

p 	p 	 1 
isfies (5.4) when 1 < p 	2 and 	€ L. It s not hard to check 

that this operator is the usual Riemann-Liouviile fractional 

integral operator of order a defined by 

	

(I)(x) 	 1 
[F(a)] 	(x-t)

,-1 
 •(t)dt. 	 (5.5) fo 

One way is to use Kober's work [3], which gives the extra infor-

mation that I € B(L, L) for p = 1 or p 	, Re p+1 > i/p also. 

When Re a < 0, the symbol r(i-s)/r(l-s+a) remains well-defined 

for Re s z  1 since the reciprocal of the gamma function is entire. 

However, Rooney's result quoted above no longer applies and this 

is no surprise since we have passed from the realms of integration 

into differentiation. For instance, when a = -1, the symbol 

collapses to -s and, for 	€ C(O,c.), integration by parts gives 

(M(Dq))(s+1) = 

So, as we might expect, the case a = -1 corresponds in some sense 

to D = d/dx, which is n Dt defined on the whole of L 
p 
 . Thus, within 

the framework of the L 
1.1 

spaces, Re a < 0 presents problems and the 

admissible set A is not the whole complex plane. We shall leave 

further consideration of this to a subsequent paper but remark 

that it gives a good motivation for a distributional treatment. 

Example  5. 3 

Let T = K where, for suitable functions , 
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(K 1 )(x) f= ( t)dt (0 < x < "i). (5.6) 

By arguing as in Example 5.2, we can show that K 1  is generated by 
the triple (h', c?', y') E H where 

Q' = {s': Re s' > l}, 	y' = 1, 	h'(s') = 1(s') 	WE Q').(5.7) 

(The reason for the use of dashes will become apparent in Example 

5.5.) The analogue of (5.4) is 

F(s'-a) 
h'(') 	- 	F(s') 	(Mq)(s') 	 (5.8) 

and [8, Theorem 5.11 guarantees that F(s'-a)/F(s') is an L 
Li 

multiplier for Re a > 0. For Re a > 0, we have the concrete 

representation 

1  (x) 	
j 

1 (K) 	= [F(a)J 
	

(t-x) 	(t)dt 	 (5.9) 
X 

revealing K as the usual Weyl fractional integral operator of 

order a. From [3], it follows that, in this case, K€B(L, L) 

for 1 11< p 	, Re(i-+-a) < 1/p. When Re a < 0, we experience the 

same difficulties as with I. 

Example 5.4 

We now examine the conditions under which the index laws hold for 

I and K, restricting attention to Re ci > 0 for the reasons out-

lined above. This will illustrate the ideas in Remarks 3.10 and 

3.12. Theorem 3.8 guarantees that for 1 < p < , Re a > 0, 

Re 8 > 0 and Li € Q 
p 

II1 = ]ci+( 
	

(5.10) 

as operators on L. Kober's results show that the result remains 



120 	 A. C. MCBRIDE 

	

true for p = 1 and p 	. Here the condition Re(ci+6) > 0 is a 

consequence of Re ci >0, Re B ' 0 and the extra condition u+S' € c? 
in the theorem is also redundant since, with y = 1, 

	

.i € 0 p , Re B > 0 	Re p > I/p - 1, Re B > 0 	Re(ti+B) > I/p - I 

u+B € c? 
p 

Thus both sides of (5.10) exist under identical conditions and no 

analytic continuation is needed in the sense of Remark 3.12. By 

way of a contrast, consider 

KK =  

as an operator equation in L for 1 < p < , Re ci > 0, Re S > 0. 
Ij 

Drawing on our results in Example 5.3, we see that the right-hand 

side of (5.11) is an element of B(L, L 1'+5 ) provided that 

Re(p+cx+B) < i/p while the left-hand side is an element of the same 

space provided that Re(p+S) < i/p and Re((p+B) + ci) < I/p. This 

time the extra condition Re(p+B) < lip is not a consequence of the 

others. However, for almost all x € (0,a), (KK4)(x) and 

(K)(x) are analytic in a and 8 when both inequalities are 

satisfied and it is in this sense that we can regard the right-hand 

side as providing an analytic continuation of the left-hand side 

when the restriction Re(p+8) < i/p is removed. This version of 

analytic continuation makes use of the concrete representation 

(5.9) which is available to us. 

We mention briefly that Corollary 3.9 fails miserably when 

T = I or T = K 1  because of the lack of differentiability of 

functions in L. As regards Theorem 311 we simply remark that 

the restriction Re(aB) > 0 is not a consequence of Re ci > 0, 

Re B > 0. 

Example 5.5 

Next we shall use I and K 1  to illustrate the ideas in §4. The 
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results obtained are familiar and can be derived by other means. 

However, it is useful to show how they fit into our theory. We 

generate l via the triple (h,c?,y) in (5.3) and proceed to find 

As in the proof of Theorem 4.5, we let s and s be the 

Mellin transform variables appropriate to L 1  and L_i respectively 

so that Re s = 1/p - Re u, Re s' = 1/q + Re ti+l and Re(s+s') = 

l/p+l/g+l = 2 by analogy with (4.7), since y = 1 here. (4.5) then 

shows that y' = 1 and 

Also, if s € Q, Re s < 1 so that Re s' = 2-Re s > 1, giving 

= {s': Re s' > 1). We have the precise triple (h', Q', y') in 

(5.7) which generates K 1 . Thus 1' = K 1 . We can then invoke 

Theorem 4.10 to deduce that for Re a > 0, 1 < p < 	and w € 
0, 

(I) = K as mappings from L 	into L 	and (5.8) is satisfied 

for 1 < q 	2, 0 € L,_ , s' € Q'. In Example 5.3, we mentioned 

that 	€ B(L, LP ) for 1 , p . 	and Re(+cz) < 1/p. The latter 

condition, when applied to K ot  as a mapping from L 	into 

becomes Re(-o) < 1/q or Re u+1/q > 0. This in turn becomes 

Re s' > 1 or s' € 2', so that the various conditions are all in 

accord. Equation (4.11) has the form 

J (I)(x)'(x)dx 	
j 	

(x)(K)(x)dx 
	

(5.12) 

for Re a > 0, 1 < p < , 	€ c, 	€ L and 4, € Lp_a 	(5.12) is 

sometimes referred to as "fractional integration by parts" and 

appears in the paper by Love and Young [6]. It can, of course, 

be obtained from (5.5) and (5.9) on writing the left-hand side as 

a repeated integral and inverting the order of integration. This 

approach, which is justified by a combination of Holder's 

inequality and Fubini's theorem, shows that the cases p = 1 and 

p = 	can be brought into the fold. 
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Example 5.6 

In our examples so far, we have started with T, found a generating 

triple (h,c2,y) and used the triple to find the set A of admissible 

values of a for which T  could then be defined. However, we could 

start with the triple and work backwards to find T. To illustrate 

this point, we stay with the quantities that turned up in our 

earlier examples and make a few modifications. 

Consider first the symbol F(l-s)/F(l--s+a) appearing in (5.4). 

In Example 5.2, the restriction Re s < I entered because of the 

definition of I in (5.1). However, the symbol is meaningful for 

any complex number s 	1,2,... (and any complex number a). Further, 

Rooney's result [8, Theorem 5.11 used previously shows that we 

still obtain an L multiplier in this more general situation for 

Re a > 0.. If 

= {s: Re s 0. k for k = 1,2,...), h(s) = [F(l-s)) 	(s € 
= 1 	

(5.13) 

the triple (h,Q,-y) € H and generates an operator T € L. This 
operator T will be an element of B(L, LP +1) for 1 < p < cc and 
p € Q, where 

PP =  Ui: Re p 	lip - k for k = 1,2,...). 	 (5.14) 

For values of p such that Re p > lip - 1, T is simply given by 

(5.1), as before. For other values of p E c2, the form of T is 

more complicated. Nevertheless we can still calculate Ta for 

Re a 	0 and obtain an element of L. Concentrating on Re a > 09 

we can say that for Re p > i/p - 1, T  is given by (5.5) while for 

k < l/p - Re p < k+l (k = 1,2,...), we obtain 

Ta = (1)k I D   K k
(5.15) 

where I is given by (5.5), K by (5.9) with a replaced by k and 

D k denotes differentiation k times. We shall not give a proof of 
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(5.15) here but similar situations will arise in our subsequent 

distributional approach where differentiation can be handled in a 

more routine fashion. Since T   is an extended form of I we shall 

use the stop-gap notation I for this operator. 

A similar programme can be carried out by starting with the 

symbol F(s'—a)/F(s') in (5.8). We can use the triple (h', ci', y') 

where 

= {s': Re(s'-a) i -k for k=0,1,2,..j, h'(s') = 

= 1 	 (5.16) 

to generate an extended version 	of K (Re a ' 0) as an operator 

in L). Since in that case Re(s'-a) = 1/q + Re p, we 

see that for Re p > -1/q or, equivalently, Re p > 1/p - 1, Kj = 

as given by (5.9) while for k < lip - Re p < k+1, 

= (_1)k K D   i 	 (5.17) 

with an appropriate interpretation. 

Finally, we mention that the arguments in Example 5.5 carry 

over to the extended operators so that for Re a > 0, 1 < p < 

p € c2, 

(I)' 	 (5.18) 

as operators in 	, 	). 
-p -a 	-p 

Example 5.7 

We pursue some of the ideas in Example 5.6 a little further by 

considering the triple 

= {s: Re s 	k for all integers k), h(s) = F(s) (s €c), y = 1. 

By comparison with (5.16) we have replaced s' by s in order to 

discuss an operator in B(L, L 1 ) rather than B (L1,  La), 
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altered ç but retained the same y and the same defining expression 

for h. By arguing as in Example 5.6, we see that (h,c,1) € H 

generates an operator which coincides with KE, the extended version 

of K 1 , on the spaces L' to be considered. Thus, for 1 < p 	2, 
uEc and 	€L, 

p 	 11  

F(s-1) (M(K))(s—l) - 
- r57 NOW 	(s—l) — (M)(s). 	(5.19) 

However, we can rewrite (5.19) in the form 

(M (K 	= -(l-s)(M)(s) = 	s-1) 
NO (S) 	 (5.20) 

'h (s) 

where 

h(s) = [F(1-s)) 	exp(is) 	(s € ç). 	 (5.21) 

Thus the triple 6,0,y) also generates K  on the spaces under 

discussion. We have here a variant of the ideas in Lemma 3.2. As 
in Definition 3.13 we can calculate ath powers of KE with respect 

to both triples (h,,y) and (h,ci,y), under appropriate conditions. 

The first triple produces K as described in Example 5.6, the 
operator being a member of B(L, L 1') provided that l/p -Re(ii+a)k 

(k any integer) and 1 < p < , Re a > 0 as usual. The second 

triple produces an operator T € L where 

(M(T))(s-a) - h(s-a) 
(M) (s)=exp(-ia) F(l-s) 	(M) (s) - 	 -' 

h(s) F(1-s+a) 	
(5.22) 

for 1 < p < 2, P € c, 	€ L and i/p - Re(+ci) 	k (k any integer). 
On comparing (5.22) with (5.4) and our results in Example 5.6, we 

can identify T as the operator exp(-irTcL)I under the appropriate 

conditions. Thus we have two different cxth powers of K , namely 

and exp(-i7rcx)I which bear a more curious relationship to each 

other than that exemplified by (3.8). However, we shall not pursue 

this relationship any further here. 
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Remark 5.8 

The discussions in Examples 5.6 and 5.7 bear out the point 

made in Remark 2.7(i). 

We have chosen simple examples to illustrate the theory but 

it should be emphasised that many more elaborate operators 

can also be studied. For instance, in [7), various Volterra 

integral operators involving Meijer's G-function or, in 

particular cases, the 
2  F  1 

 hypergeometric function arose as 

negative fractional powers of certain ordinary differential 

operators. Although [7J was geared to certain spaces of 

testing functions and distributions, the integral operators 

can be studied in L spaces even although the differential 

operators could not. In each case the integral operators can 

be written as the composition of operators each of which is of 

the form x  (as in (2.3)), I (as in (5.5)) or K (as in (5.9)) 

or simple modifications of them. Since we can handle each of 

the three types individually it might be thought that the 

composition could be handled also in a straightforward 

fashion. Unfortunately, this may not be so since, in general, 

if T 1  and T2  belong to the class L and Re a > 0, 

(T1T2) a 0 TT' 

Indeed T 
1  T  2 

 need not belong to L so that our theory cannot be 
applied until some reformulation is carried out. We shall 

not present any details here but merely sign off with one 

particular case in which progress can be made. 

Example 5.9 

Let 1 < p < 	and let 1j, a and b be complex numbers such that 

Re('+a) + 1 > i/p and Re(j+b) + 1 > l/p. Consider T defined on L 

by 

-a 	a-b-1 	b (Tp)(x) = x 	I x 	x 
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By Examples 5.1 and 5.2, T € B(L, L 1' 1 ). For Re ci > 0 we find 

that under the same conditions 

(T)(x)x 
-a 

 I 
 a a-b-a a b 

= 	x 	1 1x (x) (5.23) 

where I is as in (5.5). The expression (5.23) may alternatively 

be written in the form 

x 
-1 -a 	2ct-1 (T° P)(x)=[F(2a)] x 	(x-t) 	2F1 (b_ a+ci , a; 2a; 1_x/ t ) ta_( t)d t.  

JO 
(5.24) 

These facts can be found in [7, formulae (9.3) and (9.5)]. By 

using (5.4) we discover that the appropriate triple for T is (h,2,y) 

where h(s) = [F(1-s+a)F(1-s+b)], 0 = {s: Re s<min(Re a+1, Re b+l)}, 

y = 1. Theorem 3.11 then shows that if Re B > 0 and Re ciB > 0, 

then a B 
th 
 power of the integral operator in (5.24) can be obtained 

by replacing a by aB throughout. 
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§1 	In a previous paper {2 we developed a theory of fractional 

(that is, not necessarily integer) powers of a class £ of 

operators mapping one space of weighted L functions or. (O,) into 

another such space. These operators were characterised by a 

certain type of functional relation involving the Mellin transform 

Formally, 

CO 

= 	
s-1 	(x) dx. 	 (1.1) 

The Nellin transforms of a function 	and T, its image under an 

operator T of the class J , were such that 

(111 (T4))(s-') =  (7n..) (5) h(s) (1.2) 

for some (non-zero) complex number y and some suitable function h.
th The form of (1.2) suggests that an Q 	power of T, which ye denote 

by T , should be such that 

129 
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(Tc(O 	= h(s-dy) (1fl)(s) . 	 (1.3) h(s) 

[2] was devoted to the development of a rigorous theory based on 

thLse simple ideas. Extensive use was made of multipliers for 

the Mellin transform. In particular, for (1.3) to be meaningful 

w h:d to restrict • to He in a certain admissible set A, namely, 

the set of all complex numbers a for which the function 

h(s-a')/h(s) was a multiplier. 

The theory in [21 is fine as far as it goes but in many cases 

it does not go far enough. Suppose that we wish to solve the 

equation 

Tf = g 	 (1.4) 

where g is a given classical function and f is to be found. A 

classical f will exist provided that g is in the range of T and, 

if T were one-to-one, we would write f = T 1 g as usual. However, 

the range of T will not in general be the entire weighted L 

space which is serving as the codoinain. For instance, if T is a 

Volterra integral operator, the range will consist of functions 

which are differentiable almost everywhere and the inverse 

operator will be a differential operator which will be unbounded. 

Thus, within the context of f21, a = -1 will not belong to A. 
More generally, if a € A, the operator T will be bounded but will 

not in general be a homeomorphism so that questions of existence 

and uniqueness arise in connection with solutions f of the 

equation 

T f = g 	 (1.5) 

where g is given. In trying to make ure that (1.5) has a 

solution, we can either restrict the class of possible functions 

g on the right-hand side or enlarge the class of objects f which 
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we are prepared to accept as solutions. Since the first 

alternative is-somewhat defeatist, the second is to be preferred. 

The aim is then to imbed the original domain and codomain of T in 

larger spaces X and Y, respectively, with the functions f and g 

in (1.4), say, becoming f e X and g c ?, to extend T to a mapping 

T from X into Y, to try to choose X and ? in such a way that T 

becomes a homeomorphism and to ensure that 

Tf=g = 	Tf=g 	 (1.6) 

We are then assured of finding a generalised solution F € X of 

the equation 

TF = C 

for every C t Y. This solution F could be regarded as a 

generalised solution of (1.4). A classical solution f of (1.4) 

may not exist, in which case F is the best we can do, but if (1.4) 

does have a classical solution f, we can recover it from F in 

view of (1.6). Similar comments apply to (1.5). 

Our aim in this paper and its sequel fI is to extend the 

theory developed in [2] along the lines suggested in the previous 

paragraph. In our case, the spaces X and Y will be spaces of 

generalised functions so that the generalised solutions will be 

distributions. Those distributional solutions which are regular 

will provide classical solutions, when the latter exist. The 

method relies heavilyon adjoint operators. Thus, the extended 

operator T above turns out to be the adjoint of the operator T' 

(the L adjoint of T) acting.on appropriate spaces of testing-

functions. Since these testing-functions are smooth, analysis 

becomes easy yet rigorous and the mapping properties of T' improve 

greatly by comparison with the weighted L spaces. It turns out 

that if,T is in the class 	then so is T' and that if a € A, then 

can be defined as a continuous linear mapping, not merely 
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between two weighted L spaces but also between two testing-

function spaces. Furthermore, if we work with testing-functions, 

(T) c' may exist for values of a other than those in A; that is, we 

obtain an admissible set AF  at least as large as A and often very 

much larger. We can then define an extended version of Tci  as the 

adjoint of (T') for all ci € AF and this leads to a rapid solution 

of (1.5) in terms of generalised functions. It cannot be over -

emphasised that, by working distributionally, we obtain enormous 

advantages in many cases, as we hope to make clear by means of 

examples in [3] 

In §2, we introduce the weighted L spaces L and the testing-

function spaces F
p,u 

 along with some standard notation and simple 

properties. The chief results in §3 show that every L (Mellin) 

multiplier is also an F 	multiplier but that in the F 
p,u 

structure additional multipliers, corresponding to differential 

operators, become available. In §4, we introduce the class 13 of 

operators which are generated by F 	multipliers in the same way 

as the class tt is generated by the L multipliers, via (1.2). 

The admissible set AF  of an operator T 	3 is introduced (as 

mentioned above) and T   is defined for a € AF . A comment on 

choice of generating triples leads to the observation that we can 

associate n distinct nth  roots with T € 3 under appropriate 

conditions. The index laws 

Tci T  = T 8 	; 	(Tci) 	= Tci 

are established and conditions for the invertibility of Tci  derived. 

Next, we show that, if T € 3 , then T' € 3 where T' is the 

formal (L-structure) adjoint of T. This long 'section concludes 

with properties of powers of T' , including the observation 

that, for a € 

ci  = (TI) 
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The preparation for [3] is then complete. 

§2 	It is convenient to begin by recalling some material from 

V 

Definition 2.1 For 1 	p 	and any complex number i, 

L 	= (f 	xf 	c L(O,cx)}. 	 (2.1) 

Thus, L is the space of (equivalence classes of) complex-valued 

measurable functions f defined (almost everywhere) on (O,°) such 

that the quantity 

kit =  lix U f ( x )lI 
p,1J 	 L(O,co) 

(2.2) 

is finite, where II 11 	 denotes the usual L(O,°) norm. 
L(O,ct) 

For each p and U, (Lv, II II) is a Banach space. 

We summarise, without proof, the behaviour of the Mellin 
P .  transform on the spaces 

Lemma 2.2 For 1 	p 	2 and any complex number p, the Mellin 

transform (m4)(s)  of a function 	L exists provided that 

Res = i/p - Re i. 	 (2.3) 

For p = 1, the integral in (1.1) defining (Th.)(s) converges 

absolutely. For 1 < p 	2, and s = o + it (c=l/p-Re L), the 

integral in (1.1), regarded as a function of t on  

converges in the L(-ct,o) norm, where 1/p + i/c = 1. Further, 

IlL is a continuous linear mapping from L into L  

Remark 2.3 From now on, whenever we consider (IRd)(s) for 	€ L 

(1 	p 	2), s and .i will always. be  related by (2.3). 

Notation 2.4 

(i) .Q will denote a domain in the complex plane which is the 

union of a finite or countably infinite collection of disjoint, 
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open strips parallel to the imaginary axis, that is, strips 

having one or other of the forms 

Is 	a<Res<b}, Is :Rescc}or{s :Res>d} 

where a, b, c and d are real numbers. (There can be at most one 

strip of each of the second or third forms.) 

(ii) For any domain Q as in (i) and for any p in the range 

1 	p 	, we let 

= {p : i/p - i € 2) 	. 	 (2.4) 

Remark 2.5 	(2.3) and (2.4) together ensure that, for fixed p, 

s € 0 	if and only if p € c. 	 (2.5) 

We adopt the following definition of an L multiplier. 

Definition 2.6 	Let g be a complex-valued function analytic on 

a domain Q (as in Notation 2.4(i)). We shall say that g is an 

L multiplier if there exists a (unique) linear transformation 
11 

R (depending on g) such that 

for l< p < 	and p € 0 , R is a bounded linear transforma- 

tion from L into L, that is, R € B(L) 

for 1 < p 	2, p €and 0 € L, 

= g(s) (m)(s). 	 (2.6) 

Next, we summarise the basic properties of the F 	spaces
PIP 

required below. Full details can be found in [.i, Chapter 21. 

Definition 2.7 Let i be any complex number. 

(1) For 1 	p < 

F 	={ eC(O , ) :xkdk( x 	(x))/dxk€LP(O,) for k=0,1,2,...} 
p,p 

(2.7) 

while 
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F={4 f- 	
k k C (0,):x d (x - u 	k 

x))/dx -0 as x-0+ and as x- 

(2.8) 

for k = 0,1,2,...). 

(ii) For 1 	p 	a,and k =0,1,2,..., we define 	on F 	by 

= Ixkdk(x_(x)),dxkIt 	 . 	 (2.9) 
L(0,) 

For fixed p and i, 	is a serninorm on Fpu  for k = 1,2,..., 

while 
yj 

 is a norm. Accordingly, 	is equipped with the 

topology corresponding to the countable multinorrn {y 3, } 0  in 

the sense of [s, pp. 7-13]. 

Theorem 2.8 For 1 	p 	and any complex number ii, 

Fpu  is complete (and hence a Fréchet space) 

00 

C0 (0,o') is dense in F 

Since our aim is to exploit the differentiability of the 

functions in F 
p,uJ 

, we shall make extensive use of the operators 

D and 6 defined by 

(Dq)(x) = d4/dx , 	(6q)(x) = x d/dx. 	 (2.10) 

Theorem 2.9 Let i be any complex number. 

For 1 	p 	, D is a continuous linear mapping from F 	into 

F 
p,u - 1 	 p, u 

. Further, D is a homeomorphism from F 	onto 

F 	if and only if Re p 	lip and, for 	€ F 
p,u - 1 

(D 1 )(x) = 
f
x 
 () dt 
0 

Re p > i/p 

(2.11) 

-J 	t) dt x 
Rep<l/p 

For 1 	p < 2, c € 	 and Re s = lir - Re u, 

(Th(D4))(s+l) = -s(144)(s) 
	

(2.12) 

Corollary 2.10 Let p be any complex number. 
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For 1 < p 	, 6 is a Continuous linear mapping from F 
p Ili into F 	. 

p, 	Further, 6 is a horneomorphisin from F 	onto 

	

p 	 pip F 
p,p 

I 

f 
 tp(t) dt 	Re p 	I/p 

-1 	J 	0 (6 	)(x) = 	
(2.13). 

_f
. 
: t(t) dt 	Re p< i/p 

For 1 < p 	2, 4) € F 
p,p 

 and Re s = i/p - Re p, 

(71(64))(s) = -s Tfl4)(s). 	 (2.14) 

Remark 2.11 (2.12) and (2.14) are not proved explicitly in [i] 

However for 4) € C(O,cx), they can be established via integration 
by parts. The proof for any 4) € F 	then uses the density of 
- 	 p,u 

C 
0 	P 

(O,00) in F 	(Theorem 2.8(u)) and the continuity of lit as a '1: 
mapping from L' into L (_co,00) (Lemma 2.2). Since a similar but 

more complicated proof is given below, we omit further details. 

53 To start the extension of the theory from L to F , we 
U 	P, 11 

make the following definition, analogous to Definition 2.6. 

Definition 3.1 Let g be a complex-valued function analytic on a 

domain 0 (as in Notation 2.4(i)). We shall say that g is an 

multiplier if there exists a (unique) linear mapping R 

(depending on g) such that 

for 1 < p < 	and p € ?, R is a continuous linear mapping 

from F 	into F 
p,p 	p,p 

for 1 < p 1< 2, JJ € 0 and 4) € 
p 	 PIP ,  

(lTt(R4)))(s) = g(s) (Tfl4))(s). 	 (3.1) 

Remark 3.2 Our attitude to the cases p = I and p = 	is the 

same as that in [2, Remark 2.7(ii)]. It may happen that R is 
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a continuous linear mapping from F p,u 	p, u 
into F 	for either or both 

of the cases p = I and p = o, whereupon (3.1) will be valid for 

p = I, if appropriate. In the main, however, we shall be 

concerned with 1 < p < 	where classes of multipliers have been 

obtained relative to L, for example in [4] 

Our immediate aim is to demonstrate that the class of F plu 

multipliers is strictly larger than the class of L multipliers. 

Theorem 3.3 Every iY multiplier is an F multiplier. 
1i 	 PIIJ 

Proof:- In the previous notation, let g be an LID  multiplier so 

that g is the symbol of an operator Q E B(L) for 1 < p < 	and 

p € QTo obtain the required operator R involves a rather 

tedious argument which establishes the appropriate differentiabil-

ity. 

Let 	€ C(O,c.o) •and regard 4  as an element of L 2  with p
11 

chosen so that p € Q and, in addition, 1/2-Re p 0 0. Since 

(2.14) and (3.1) give 

(Tfl004)))(s) = g(s) (m(óq))(s) = - sg(s)fl4)(s)-s(lft(Q4))(s). 

By (2.3), Re s = 1/2 - Re p 0 0, so that we may write 

((Q4)) (s) = -s 1 (Tfl(Q(54)))(s). 	 (3.2) 

Again, Re p # 1/2 ensures that 	is the symbol of the operator 

on L defined formally by the appropriate part of (2.13); this 
Ij 

can be proved directly or by observing that, for Re p > 1/2, 

f i 	 2 
t p(t)dt) = (x) for any 	€ L (not merely in F 	) with  

r Ij 
 o 	

1i 

a similar result for Re p < 1/2. Hence (3.2) can be written in 

the form 

(Th(Q))(s) = (Th(6 1Q6))(s). 	 (3.3) 

	

Note that on the right-hand side of (3.3) we are using 	to 

stand for the appropriate version of the integral operator in 

(2.13) and we are not supposing that Q64 - is differentiable, since 
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that is what we are trying to prove:] Since mis one-to-one on 

L , we obtain 
Ii 

W = 	 a.e. on (0,"). 	 (3.4) 

We wish to turn equality a.e. into equality everywhere on (0,). 

Define R 	C (O,c=) C L 2 - L 
2 
 by 0 	

- U 	U 

	

I t 	(Q6)(t) dt 	Re jj > 1/2 
0 

(R4)(x) = 

-J 	t 1 (Q)(t) dt 	Re P < 1/2 
x 

The form of R is suggested by (2.13) and (3.4). First note that 

(R4)(x) exists for all x € (0,co) since Q64 € L 2  so that, for 
Re p > 1/2, 

 
J 
 x  

t 	
- 

1 (Q 6 ) (t)dtl 	(jx  Jt - U(Q 6) (t) I2dtJ x I t 	2 dt)L 
o 

by the Cauchy-Schwarz inequality, with a similar argument for 

Re p < 1/2. By considering integrals with limits x and x + h, 

we can easily show that R4 is Continuous on (O,). This in turn 

enables us to prove that R is differentiable on (0,). Indeed, 

	

for any p € C(O,c"), Rp = 	a.e. In particular, for i,L = & and 
Re p > 1/2, 

(R)(x) 
= 

 fo  t 1 (R6)(t) dt 	(x >0). 

Thus, for x > 0 and x + h > 0, 

x+h 
=1h1ft

-

, (R 6~ )(t)dt-x- 1 (HOW1  
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tends to zero as h - 0 by the mean-value theorem for integrals. 

A similar argument applies when Re u < 1/2. In either case Rq 

is differentiable and (D(R4,))(x) = x ' (R64,)(x) or 

6R4, = R64, 	 (4, 	c(0 1 )). 

A simple induction argument proves that R4, € C(O,co) and that, 

for k = 0,1,2,..., 

k 	k 	 00 

6 R4, = R 6.0 	(4, € C(0,cx)). 

Equivalently, since xkDk4, = ( 6 ( 6-1)( 6-k+1)4,)(x) for 

k = 0,1,2,..., 

xk(D<i4,)(x) = (R(xkDk4,))(x) 	(4, € C(0 1 co)). 	 (3.5) 

Having used p = 2 and the extra condition Re p # 1/2 to 

derive (3.5), we now return to the general case 1 < p < , i 

Since Q t B(L) and Qp = a.e. for 4.' € C(O,00), (2.2), (2.9) p 
11 	 0 

and (3.5) give, for 4, € C(0,00), 

= 11k Dk(xR,)I 	 by (2.9) 
L(O,co) 

k 
E a lix I x r DrR4,ii 	 by Leibnitz rule 

r=0 r 
	

L1'(O,cz) 
k 

=E 	a 	Jix' Dr R4,jI 	 by (2.2) 
r0 r 	 p,iJ 

k 
= 	E 	a 	JJR r D r 4,11 	 by' (3.5) 

r=C 	r 	 p,1_l 
k 

= 	E a MQx
r 
 D 

r
4,J 

r=0 r 
	 p,u 

k 
E 	a 	IIQ1I lixr D r 

r=0 r 

k 
= 	E 	

a 	IIQII Ilx 	
xr 

D 
 r, 11 	

by (2.2) 
r=0 	 L(0,°) 
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k 	 r 

ar  lIQIl ( E 
r=O 
	

S=O 

k 	r 
= JJQJJ 	Z 	ar(  E 

r=O 	S=O 

s S 

b rs l i x 	D (x)ll 	) 

b 	 by (2.9) rs S 

where a   
and  brs  (s = 0,..., r; r = O,...,k) are constants 

independent of 	and IIQII is the operator norm of Q € B(L). It 

follows that, as an operator from C (O,x) C F 	into F 	, R is 
0  

Continuous. By Theorem 2.8(u), we can extend R by continuity to 

the whole of F 	 and the resulting operator, which we also denote 

by R, is that mentioned at the start of the proof. Indeed, part 

(i) in Definition 3.1 has been dealt with above. As regards (ii) 

in Definition 3.1, if $ € COO  (0,-) 

(1fl(R))(s) = (11L(Q))(s) = g(s) (m4)(s),  by (2.6) applied 

to Q. Thus ,for 1 < p < 2, (3.1) is valid on F 
p 	

by the 
,p 

continuity of R on F 	and of the Mellin transform on L (Lemma 
p,p 	 • i.1  

2.2). Thus, g is an F 	 multiplier, as required.
PIP  

Remark 3.4 Theorem 3.3 can be regarded as an extension of ideas 

in [ 1 , pp. 158-9]. The latter can be used to obtain conditions 

under.which an operator R ( B(L1') which has the form 
Ij 

OD 

(R4) (x) = 	k(x/t) 4(t) dt/t 

of a Nellin convolution with kernel k is also a continuous linear 

mapping from F 	into F 	. However, there are L multipliers 
p,p 	p,ij 	 U 

g which do not correspond to any such kernel k, a trivial example 

being g(s) 	1. 

Theorem 3.3 shows that the class of F 	multipliers is at 
P,U 

least as large as the class of L multipliers. That it is 

strictly larger is easily seen. 

Example 3.5 Letbe the entire complex plane and define g on Q 

by g(s) = -s. Then,by Corollary 2.10,g is an F 	multiplier 
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corresponding to the contiuous linear mapping 6. However g is 

not an L multiplier, in view of the fact that 6 is not a member of 

B(L) for any p and w . Notice that this is a case where the values 
p = 1 and p = = can be included (Remark 3.2) in view of Corollary 

2.10. 

Example 3.5 is a special case of the next result. 

Theorem 3.6 Let g be an L multiplier. Then, for any polynomial 

F, the function Pg is an 	multiplier. More explicitly, if R 

is the continuous linear mapping from F 	into F 	(1 < p < 
p,IJ 	 p,1J 

	00, 

i 	with symbol g, then Pg is the symbol of the operator 

P(-6)R = RP(-6). 

Proof:- Let P(s) = E a   s where n is a non-negative integer 
k=O 	 n 	

k and a 
0  ,...,a are complex numbers. Then P(-6) = 	a  (-6) =  

n 	 k=O 
k 

Z (-1) a   6 is a continuous linear mapping from F 	into 
k=0 

F 	for 1 	p 	and any u, by Corollary 2.10(i). The existence 
of the operator, R in the statement of the theorem is guaranteed 

by Theorem 3.3, and the composition of R and P(-ô), in either 

order, is also a continuous linear mapping from F 	into F 
p,p 	p,u when 1 < p < 	and j.i t 	. For 1 < p 1< 2 (also p = 1), 	€ F 

and Res=l/p-Re, 

(((6) k ))()  = k )()  

by induction based on (2.14) and this leads in turn to 

(m(P(-6)0))(s) = P(s)q)(s). 	 (3.6) 

(3.1) and (3.6) now give 

(m(P(-6)Rq))(s) = P(s)(m(R4))(s) = F(s) g(s) 1fl)(s) 

and, similarly, (m(RP(-6)4))(5) = F(s) g(s) (rfl4)(s). The result 

follows. 
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Remark 3.7 Theorem 3.6 shows that, as well as the symbols studied 

in [2] , some of which correspond to integral operators,we now have 

at our disposal symbols corresponding to certain differential 

operators and composition of the two types will give rise to 
certain i ntegro-differentialoperators. It would be interesting 

to have a characterisation of all symbols corresponding to 

continuous linear mappings from F 	into F 	but we shall not p,u 	p,u 
pursue this here. Instead, we shall turn to symbols of the form 
h(s-y)/h(s), as in [2], for which the operator T 	F 	-F 

	

pp 	p,p.ry defined by 

(T4)(x) = 

with R as above, satisfies (1.2) and so is suitable for our method 

of defining general powers Ta. The larger class of F 

multipliers means that, within the F 	framework,the class of 

admissible values of a can usually be extended, by comparison 

with the L 1  theory. 

§4 	We now present the analogues for F 	of the results forL P  PIP U developed in 12, Sections 3 and 4]. For our later convenience, 

we shall give the appropriate definitions for F 	and indicate 
p,U 

in brackets their respective counterparts in L. Detailed proofs 
of the theorems will be omitted as they resemble closely those in 

r2J. 
Definition 4.1 H  (respectively H) will denote the set of all 

ordered triples (h,c,y) such that 

Q is a domain of the type described in Notation 2.4(1) 

y is a complex number 

h is a complex-valued function such that the function g 

defined by 

g Cs)  
h(s) 	 (4.1) 

is analytic on 0 and is an F 	(respectively L) 
p,p 	 11 
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multiplier in the sense of Definition 3.1 (respectively 

Definition 2.6). 

Theorem 4.2 A triple (h,cl,y) € H  (respectively H) generates a 

(unique) linear transformation T such that 

for 1 < p < 	and i € 2, T is a Continuous linear mapping 

from F 	into F 	(respectively from L into L 	) p,u 	p,u+Y 	 Ii 	Ij+Y 
for 1 < p 	2, p t P and 	€ F 	(respectively 4 € LP), 

(s-y) = h (s -y) (11t(T))  
h(s) 	(m4)(s). 	 (4.2) 

Proof:- The result follows immediately on taking T to be the 

operator defined by 

(T4) (x) = x'(R)(x) 
	

(4.3) 

where R is as in Definition 3.1 (respectively Definition 2.6). 

Definition 4.3 1 (respectively £) will denote the class of 

operators T generated by triples (h,2,y) in HF kespectively H). 

More precisely,T € 3 (respectively T €) if there exists a 

triple (h,?,y ) in H   (respectively in H) such that (i) and (ii) 

in Theorem 4.2 are satisfied. 

Remark 4.4 As in [2, Lemma 3.2 and Remark 3.3], if T € 3 is 

generated by the triple (h,I,y) f HF,  where y 0 0, then T is also 

generated by the triple 	 where, for any integer k, 

hk(s) = exp(27ksi/y) h(s) 	(s e c) . 	 (4.4) 

From the point of view of defining powers of T, it is essential 

to know which generating triple is being used and, for that 

reason, we shall often write T 	T(h,c,y) to emphasise that we 

regard T as being generated by (h,P,y). 

Next, we define the admissible set for T 	T(h,c2,1) which 

gives the values of a for which we shall be able to define Ta. 

Definition 4.5 For any triple (h,p,y) E H ' we define the Set 

AF of complex numbers by 
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AF = (ci: (h,c2,ay) €F 1 	 (4.5) 

with an analogous definition of a set A for triples in H [2, 

Definition 3.41. Again we could write AF 	AF(h,c2,y) for emphasis, 

but usually the triple under consideration will be displayed beside 

T. 

Definition 4.6 Let T E T(h,1,y) c 3 (respectively L) and let 

a € AF (respectively € A). We define T   to be the operator in '3 
(respectively in ) generated by the triple (h,c,ay). Thus, for 

T € '3 and ci € A Ff T  is the linear operator such that 

for 1 < p < 	and u € 2, Tci  is a continuous linear mapping 

from F 	into F 
p,u 	p,p+ay 

for 1 < p 	2, p € 2 and 	€ F 	, 
p 	 p,p 

= h(s-ay) (1fl)(s). h(s) (4.6) 

Remark 4.7 Definition 4.6 is meaningful in view of Definitions 

4.1 and 4.3. Calculation of the admissible set AF  for a given 

operator. T(h,cl,y) € 3 may, of course, present some difficulties. 

We shall not attempt to characterise possible admissible sets but 

merely assume that, in principle, A can be calculated. We shall 

give examples in [3]. 

The basic properties of the powers of T now follow. In each 

case, results in 12, §31 carry over on replacing H, 	and A by 

HF. •3 and A. 

Theorem 4.8 Let T E T(h,Q,y) € '3 and let 1 < p < 

0 € A.F  and for p € ç , To  is the identity operator on F 

If {a,B,a+} C AF and (p,p+y} c 2, then, as operators on 

F 
p,p 

TaTB = Tci 	. 	 (4.7) 

If {a,-a}cAF and {p,p+ay} C 	then T  is a homeomorphism 
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from F 
p,u 	p, +ay 

onto F 	with 
i  

	

(T) 1  = Ta 	
(4.8) 

as operators on F 
pIII +a y 

	

Theorem 4.9 If T 	T(hJ,y) f '), (cz,ct} C Ar,, 1 < p < 00 and 

	

€ Q, then (Ta) 	exists as a Continuous linear mapping from 
F 
p 	

into F 	and ,u 

(Ta) 	= T° 	
. 	 (4.9) 

Remark 4.10 As mentioned in r2 , Remark 3.121, it is possible 
to relax the restrictions on the parameters further by a sort of 

analytic continuation. For instance, in (4.7), the right-hand 

side is meaningful without the restriction p+By € c2 so that we 

could use the right-hand side to extend the definition of the 

left-hand side to cases where j.i8y I P.  Similar comments apply 
to (4.8) and (4.9). 

Theorem 4.11 Let T F T(h,cl,y) € J where y j 0.  
th 	

As usual, for 
a € AF , let T o'  be the a - power of T constructed from the triple 
(h,c,y). 	Also, for any integer 1, let [Ta] k  denote the ath 
power of T constructed from the triple 

( h.K , c2, y) where h  is 
defined by (4.4). Then, for 1 < p < 	and p € ç2, 

[Talk = 	
(4.10) 

	

as operators from F 	into F 
p,p+a -y 

Proof:- As mentioned in Remark 4.4, ( hk , cl , y) generates T and 
by (4.6), with h replaced by hk,  we see that, for 1 < p 	2, 
i€c2 and q€F 

p 	 p,u 

= hk( 5_a) 

hk(s) 	
(im.)(s) 

= exp(-27ikai) h(s-ay) 
h(s) 
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exp(-2nkai) 	Ofl(T Z 4))( sc(y ) 

= (( exp (_2 7 ka i)Ta) q )( s _a .y ) 

from which the result follows easily. 

Remark 4.12 As a particular case of Theorems 4.8(u) and 4.11, 

we see that if n is a positive integer such that 1/n € AF(h,ci,.r), 

then T 	T(h,ci,y) has n distinct 	roots" namely the 
Operators IT 	 for k = 0,1,...,n-1. 

Remark 4.13 We briefly relate the results for F 	just stated 
- 	 p,p 
to their analogues for L in 12] . Formally they look the same 

but the crux lies in the conditions on the parameters involved. 

Firstly, Theorem 3.3 and Example 3.5 show that H  is strictly 

larger than 11 (Definition 4.1), so that 3 is strictly larger 
than L (Definition 4.3). Another consequence is that AF J A 

(Definition 4.5) and we might hope that in particular cases AF 

would be strictly larger than A. This is so, as we shall show by 

example in tJ• For such operators we are able to define T o' for 
a larger class of values of a within the F 	framework than 

p,l.1  
within the L 

U  framework. Also the conditions on a and 8 in 

Theorems 4.8 and 4.9 will be satisfied by a larger range of values 

and, in particular, there will be a better chance of Ta being a 

horneomorphism (Theorem 4.8(iii)) relative to the F 	spaces than 

relative to the L spaces. Since obtaining homeomorphisms on the 

F .  spaces is one of the main objects of the exercise, the 

reformulation of the results in [2] within the F 	spaces is 
p,1J 

essential to what follows in 133. 

To complete this Section we state analogues of results in 

[2,4J for adjoint (or conjugate) operators. In 12J, we defined 

the formal adjoint, T', of an operator T c I and showed, among 

other things, that T' also belongs to 	and that (1?)a = 

under appropriate conditions. We shall see there are correspond-

ing results for operators in the class 3. As usual, for 
1 < p 	, we write 
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q = p/(p-1) 	so that i/p + l/q = 1. 	 (4.11) 

Definition 4.14 Let T i T(h,c2,'y) E J . We define T', the formal 

adjoint of T, to be the (unique) linear mapping such that, for 

I < p < 	and p € 

j 	
(T4)(x) ,(x)dx =J 	(x) (T'P)(x)dx 0 	 0 

(4.12) 

for all 	€ F 	and all ip € F 
p,ii 	 q,-p-y 

Remark 4.15 In the L structure with T € I , it was possible to 

obtain the existence of T' very easily by standard duality 

arguments. However, the structure of the dual space of F 	is 
p,p 

rather more complicated than that of the dual of L. Accordingly, 

we shall obtain the existence of T' by displaying an explicit 

expression which arose in the proof of [2, Theorem 4.51 

Lemma 4.16 Let T 	T(h,c2,y) e I. Then, for 1 < p < 	and 
Ij 	c2, T' exists as a continuous linear mapping from F q 	into 
F 
q 	and satisfies the relation ,-p 

(T'ip)(x) = xUTUxp(x) 	(p € F 
q -ii-y ) 	 (4.13) 

,  

where, for suitable functions ip, 

NIP 	= x(x 1 ) 	(0 < x < ). 	 (4.14) 

proof: - It is easy to check that, for 1 < p < 	and any complex 

number p, U is a hotneomorphism from F 	onto F 	 with 
-1 	 p,p 	p,2/p-l-p 

inverse U 	= U. Consequently, if ip € F, Ux''iS 	Fq2/q....1+u 
Next, p € ç if and only if 2/q-1+p € c2 (by (2.4)). By Theorem 

4.2(i) T is a continuous linear mapping from F 2 , 1 	into 

F 	 whence TUx'p € F 	 - UTUx' € F q,2/q-1+p+y 	 q,21q-1+p+y  

x'UTUx 	€ 	Thus the right-hand side of (4.13), being the 

composition of five continuous linear mappings, defines a 
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continuous linear mapping from F 
q,-u-y 

 into F 	. To show that 

this mapping is T', we must verify (4.12). This is done by 

using a version of Parseval's theorem for the Mellin transform 

but the details, being almost identical to those in 12,  Theorem 

4.5], are omitted. This completes the proof. 

With the existence of T' guaranteed, we can proceed to the 

main results for adjoints in 3 

Theorem 4.17 	If T 	T(h,ci,y) € 3, then T' € 3 and is generated 

by the triple (h',S?',y') where 

= {s':l+y-s'€ 	}, y' = y, h'(s') = 
(4.15) 

In particular, if 1 < p < co and i 
€

p , then 

T' is a continuous linear mapping from F 	into F 
q,-p-y 	q, -u 

for 1 < q 	2 and p € F, 

	

= h'(s'-y) 
(in)(s') 	(5 '  € a'). 	 (4.16) 

h' (s') 

Proof:- The details are similar to those in [2, Theorem 4.5] and 

are therefore omitted. 

Since T' 	3, we can define (T') for values of cx in the 

admissible set for T' T'(h',ç',y'). It turns out that this 

admissible set is the same as the admissible set AF =  AF (h.P,y) 

corresponding to T(h,c2,') and that (TI)cx  is related to (Ta)t  in 

the expected way. As a consequence of this, we can derive the 

conditions for validity of index laws for powers of T' from the 

corresponding conditions for T. We state these results without 

proofs. 

Theorem 4.18 	Le t T 	T(h,c?,y) € 3 and a c A (given by (4.5)). 

Then (T)a  exists as an element of 3 and is generated by the 

triple (h',ci',ciy' ) where h',c' and y' are defined by (4.15). Ir 

particular, for 1 < q 	2, p € 
	and 0 € Fq,_ij_a.y 
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h'(s'y) 	
)(s') 	(s'€'). 	(4.17)00 h' (s') 

Theorem 4.19 Let T E T(h,2,y) e 7 and let 1 < p ' 

0 € A.F and for p c 0, (T') °  is the identity operator on 

q, -p 
If a € AF and p € Q, then, as operators on F , 

(Tt)a = (T a),. 	 (4.18) 

If {a,e,cx+} C AF  and {p,p+-y} C 0 then, as operators on 

F 
q, -u-ay--y 

(T') (T')' = (T?)B. 	 (4.19) 

If {a,-a) C AF and {u,p+ay} C Qp1  then (T') 
cc 
 is a 

homeomorphism from. F q,-u-cty onto F q,-p and, as operators on 

F 
q, -u 

	

= (T') 
_0L 	 (4.20) 

If {ct,cx} C AF  and ji 
€

P , then ((T) a)8 exists and, as 

operators on F 
q,-p-cy 

((T?)a) 	= (T1)a8. 	 (4.21), 

As mentioned earlier, we shall illustrate the results of this 

paper in r] 
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INTRODUCTION 

This paper is a sequel to [6] to which the reader should refer 

throughout for notation, terminology, etc. For simplicity, the 

sections in this paper are numbered 5, 6 and 7 to follow on from 

1-4 in [6]. Likewise, reference to (2.10) or Theorem 4.9 will mean 

the appropriate formula or theorem in [6], unless the contrary is 
indicated. 

In §5, we illustrate the theory in [6] with a number of 

examples, starting with simple operators and building up to more 

elaborate differential operators and an integral operator involving 

Meijer's G-function. These examples illustrate many points in 16], 

particularly the fact that AF can be much larger than A; typically 

A is a half-plane while A}.. is the whole complex plane. In §6, we 

extend the theory to the spaces F' 	of generalised functions, by 

means of standard theorems on adjoints. Finally, in §7, we apply 

our theory to the original problem., of finding classical solutions in 

L 1'  of (1.4) and (1.5) and give an example. 

§5. We shall first review the examples in ts, §5] and discover that 
much greater progress can be made within the F 	 spaces than in L J• 
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Example 5.1 We consider the triple (h,12,y) where 

h(s) = tr(1 -s)] ' , p = {s : Re slk for k=1,2,,..}, y=l. 	(5.1) 
The expression h(s-ay)/h(s) in (4.6) becomes r(l - s),r(1-s+a) which 
shows that Q is the largest s domain of the type we are considering 

which avoids the poles of the multiplier. For fixed p, the 

corresponding maximal p domain is 

= {p: Rep 	I/p - k for k = l,2,...}. 	 (5.2) 
In 	Examples 5.2 and 5.6 we saw that (h,c?,y) € H (as in 

Definition 4.1) and that the corresponding operator T E T(h,,) 
could be written down explicitly. In connection with the 

correspPndjng admissible set A (see Definition 4.5), apart from 

a = 0 which is trivial, we saw that {a: Re a > 0} C A and obtained 

explicit expressions for Ta. In the simplest case corresponding 
to Re s < 1 or Re p > J ./p, -  1,  Ta was the Riexnann-Ljouvilie 
fractional integral I of order a defined by 

(I)(x) = tF(a)J 	(x-t)+(t) dt 	( ( LP). 	(5.3) 

a  We shall write I 	 a])  rather than T , in the case of other ranges of 

p (or s) also, although the explicit form of IQ# (+ c L) will 

then be different t1 formula (5.l5)J. We were unable to handle 
Re a < 0 in the L case. For a = -1, the expression 

collapses to -s, which is related to D by (2.12), as we would 

expect. Since D is not defined on all of L let alone bounded, 

the theory collapses. However,, working in 3 rather than £ saves 
the day, as we shall now show. 

Let a be any complex number and n a positive integer such that 
Re a + n > 0. Then for s c Q (defined in (5.1)), we may apply the 
formula 1'(z+l) = zr(z) repeatedly to obtain 

r(1-s) 	- 
- P(s) g(s) 



MELLIN TRANSFORMS III 	 153 

where 

P(s) = (n-s+c&)(n-l-s+a). ..(l-s+cx) 

(5.4) 
and 

1(l-s) 
g(s) - 

- f(l-s+ct+n) 

Since Re(c+n) > 0, our work in [5] shows that g is an L 

multiplier. Also P is evidently a polynomial. Hence, by 

Theorem 3.6, P(s) g(s) is an F 	multiplier. Thus we have
PIP 

arrived at conditions of great generality, namely, that for 

1 < p < , i E 2 and any complex number c, there is an operator, 

still denoted by I, which belongs to the class I and satisfies 

r(l-s) (fl(I4)))(s-ct) 	
r(l-s+a) 	n;4) (s) 	(S £ 	 (5.5) 

for 1 < p < 2 and 4)  e F 	• 
phi 	

Further,  

I4) = D' 
	

(5.6) 

for any non-negative integer n. To see this, let • c C(O,co) be 
regarded as an element of F 2 	and let u e Q2 ' By Theorem 2.9, 
D'I " $ & F 	and, for Re S - i/p - Re ii, n applications of 

(2.12) give 

n- ( 7k (D I ' 4)))(s-a) = (l-s+c)Cflt(D1 11+flq))(1) 

= (l-s+ci)(2-s+cz)((D n-2  I 
a+n

4)))(s-ct-2) 

= (l-s+cz)(2-s+c&) ... (n -s+cz)Ofl(I
Q+fl 
 4)))(s-c - n) 

- P(s) 	1'(l-s) - 	r(l-s++n) (7fl4))(s) by (5.5) 

= P(s) g(s) (m4)) (s) 

where P(s) and g(s) are as in (5.4). From (5.5), we have 

= 
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so that (5.6) holds in this case. Since C(O,) is dense in F 
0 	 plu 

and the operators involved are all Continuous under the appropriate 
fl 

conditions (D in view of Theorem 2.9 and I, 1 	in view of their 
belonging to 3), (5.6) is established for all 	F 	by 

continuity and density under the stated conditions. In particular, 

if Re ij > i/p - 1 and the non-negative integer n is such that 

Re a + n > 0, then 
X 

(I'4)(x) =D(TF(a+n)J' 	
- Q 9- fl - i fo  

	

(x t) 	q(t)dt) 	 (5.7) 

for 0 € 	with similar expressions in other cases. 

Remark 5.2 The ideas presented in Example 5.1 are discussed 

without the use of multipliers in [3]. The latter approach shows 

that the results remain true in the cases p = 1 and p = 	also. 

(See Remark 3.2.) This applies in all the other examples in this 

section too but this can only be checked because explicit 

representations of the operators can be obtained, essentially by 

taking the inverse Mellin transform of their symbols. Such 

representations as (5.3), (5.6) and (5.7) then enable us to study 

the cases p = 1 and p = 	along with 1 < p < by other means, as 

in [3]. Having made this point, we shall not pursue it further 
here. 

We shall require a very simple generalisation of Example 5.1. 

Example 5.3 Let m be a fixed positive real number. We consider 

the triple (h,cl,y) where 

h(s) = [r(l-s/m)J 	, 2 = {s: Re s 	mk for k = 1,2,...), y=m. 

(5.8) 

Example 5.1 deals with the case m = 1 but the general case is no 

harder. We find that (h,S,y) € H and that A contains a = 0 and 

{a: Re a > 0) but not a = - 1, say. However, (h,c,y) C H  and 

is the set of all complex numbers. The corresponding operator 

T(h,,y) C I will be denoted by I. The multiplier of 1a is 
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r(l - s/m)/r'(l_s/m+a) by analogy with (5.5), while (5.6) becomes 

=(D)' 	
, 	 (59) 

where a is any complex nutnber,n is a non-negative integer, 

	

1 < p sco,p € ? , 	€ F 	and D is defined by 

(D)(x) = d,dXm = _11( 	
(5.10) 

The explicit form of s2 is 

	

= tp: Re p J I/p - mk for k = 1,2,....) 	 (5.11) 

and when Re p > i/p - m, (5.9) gives 
x 

m mcz+n-i rn-i (I) (x) (D )([F(a+n)] 	J 	(x - t ) 	m 	(t)dt) 	(5.12) m 	m 

with the non-negative integer n such that Re a + n > 0. Let us look 
at Theorem 4.8 for T = I. Since AF. is the entire complex plane, 
AF  puts no restrictions on the parameters. Thus (4.7) and (4.8) are 

valid subject only to the restrictions involving 	. These are the 
same restrictions as in [3, Theorem 3.36 and Theorem •()] since 

p + mn C ? 
p 
 if and only if n c A 	where the latter set is 

defined, as in [3, p.60J, by 

A 	= { n: Re(mn+p)+m i/p - m for L = 0,l,2,....}. 	(5.13) i 

From the point of view of the semigroup or group. property for powers 

of I, our theory reproduces a previous result. However, when we 

consider Theorem 4.9 we have something new. The problem of 
defining the 6 t 

power of 1a 
 for general B was not mentioned in 

[3]. Here it emerges naturally and (4.9) is established under 

conditions of great generality, namely, 

(Ia) = I 	
(5.14) 

as operators on F 	provided only that (1 < p < 	and) 
{p,p+am} C c or, equivalently, {0,a} C A 	• This generality p 	 p,,m 
is in marked contrast to the conditions required for the validity 
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of (4.9) when the spectral approach is used. 

Example 5.4 In connection with adjoints, we shall require the 

following analogue of Example 5.3. Consider the triple (h,,y) 

where 

h(s) - I'(s/m), Q - {s: Re s -mk for k 	0,1,2,...), '-m. (5415) 

(h,,y) c H and we shall denote the operator generated by this 

triple by K. As before, A contains a - 0 and (a: Re a > o) but 

not a = -1, say. However, if we regard K as an element of 3 

we can accommodate all complex numbers ci. The multiplier of 

	

.r(s/m-a) 	a 
is r(s/rn) 	

and Km  wi ll define a continuous linear mapping from 

F q 	
into F 	provided only that ]/q + Re i C . The ,-.i-mci 

analogue of (5.9) is 

	

-K 	(•D)+ 	 (5.16) 

and, if Re u > - l/q and the non-negative integer n is such that 

Rea + n > 0, then, for • c F 

CD 

(Kciq,)(x) - (_ j)fl 
tr(ci+n)J'rn 
	cz m +n-1 t -x ) 	((Da)n$)(t)mtm_ldt 

Jx 
(5.17) 

which gives a concrete expression in terms of Weyl fractional 

integrals. (The use of q and -V rather than p and i is to help us 

in the next example.) 

Example 5.5 We now illustrate our results for adjoints in the 

case of the operator I in Example 5.3. According to (4.15) and 

(5.8) we. are concerned with the triple (h',c',y') where 

h'(s') = r(s'/rn+l-1/m), 1' 	{s': Re s' 0 l-mk for k  

y'=m. 	(5.18) 

Denoting the adjoint of I in  by Iin', 
 we have formally 

rn-i 
I' = x 	K x 	, 	 (5.19) in 	in 

where K in  is as in Example 5.4, and the result is valid as an operator 
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equation on F 

q,-p- 	 p 
for p c 2 	where ? is given by (5.8). Indeed, 

let 	c C 0 (O,) be
m 
 regarded as an element of F 	and let Li 

C Then Xm+(X) C 
F2 , _ p _2m+i * By Example 5.4, K is a COfltjflu05 

m linear mapping from F 	 into Fprovided that 2, p-m+1 

112 + Re(p+2m-1) -m i -mk (k = 	0,1,2 9 ,.,) 

112 - Re p i m(k+].) (k  

which is precisely the condition p € c 2 • Thus, the right-hand 
side of (5.19) defines a cOfltjfluOu5 linear mapping from F 2  
into F 

2,-w* Further, if s' c S11 denotes the Melljn. transform 
variable in F2 , _ p _rn 1 then s 	1 + m - s' (as given in (5.15)) and 
for P  c F2,_p...m 

((Xm_l Km xm+l))(s,_m) 

=(m(Kx-m+ 1  )) (s '+m-l-m) 

-m+i (7fl(x 	it'))(s'+m-l) by  (5.15) 

= r(  (s '- 1)/rn) 
F((s'+m-l)/rn) (flip)(s') 

_h' (s'-in) 
- h'(s') 	04) (s 	 by (5.18). 

Since 11) is one-to-one on F2, _. (5.19) is valid when the operators 

are applied to functions in C (0,). Density and Continuity 

complete the proof as usual. More generally, we can prove in a 

similar fashion that, for any complex number a, 
(1c1) = rn-i K a -m+1 X 	x m 	 m (5.20) 

as operators on F 
q,-p-ma when p € ? , 

Ka being as in Example 5.4.  
In 	 p 	m 

other words, for 	€ F 	and 	c F 
q,-p-ma 

i.e. 
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(Ia,) (X) (x) dx 	J •(x)(x rn-I K x a m+1 
co  

') (x) dx 	(5.21) m 
0 	 0 

by (4.12). (5.21) may be regarded as a generalisation of "fractional 

integration by parts". By applying Definition 4.6 to (5.19), we can 

verify that ((1))a is also given by (5.20), as required by Theorem 

4.19(u). Explicit forms of the operators on the right-hand sides 

of (5.19) and (5.20) can be obtained from those in Example 5.4. 

Alternatively it is possible to use the expressions for I and I a  

found in Example 5.3 and to substitute these for T in formula (4.13), 

this being fairly straightforward if Re u > -l/q and Re a > 0 (when 

1a is the simple Riemann-Liouville fractional integral) but rather 

more complicated otherwise. 

In our examples so far we have been looking again at triples 

generating integral operators in .t and comparing their previous 

behaviour with that as members of Y . However, we have many more 

triples available in H   than in H, particularly, the triples that 

generate differential operators. In our next example, we look at 

our previous work from the other end, so to speak. 

Example 5.6(i) Consider the triple (h,2,y) c Ri. given by 

h(s) = [F(l-s/m)] 	, ) = fs: Re s 0 mk for k = 1,2,...), y=-m. 

(5.22) 

The multiplier h(s+m)/h(s) collapses to - s/rn and the triple 

generates D, as defined by (5.10). Indeed, by (2.12), 

= (,TL(n,lxl_mDq))(s+m) = 

= m 1 OU(D0)(s+l) = - S/rn (7ft)(s). 

(Obviously (h,l,y)H.) As before, A is the entire complex plane 

and Da,  the 	power of D, satisfies 
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1(1-s/rn) 
Tfl 	 r(1-a-s/m) 	(Tfl4)(s) (5.23) 

for 1 ' p .,  2,  u € c?, 0 C F 	and any complex number a.P 1i 
Comparison with Example 5.3 shows that, under the stated Conditions, 

Da = 1 ct (1 c1 ) 1 
M 	m 	m 	 (5.24) 

as operators on F 	(as might be expected). 

In a similar vein, consider the triple 

h(s) = Ns/m), 2 = {s: Re s V -mk for k = 0,1,2,...), -y=-m. 

(5.25) 

The triple (h,c?,y) € R, and since h(s+m)/h(s) = s/rn, the operator 

in .3 generated by (h,c,'y) is Dm by our calculations above. The 

admissible set is again the entire complex plane and the ctth power 

of -D m satisfies 

= F(s/m+cx) 
F(s/xn) 	(1n4)(s) 	 (5.26) 

for 1 < p 	2, ijcQpP  Of-F 	 and any complex number a. 
Comparison with Example 5.4 shows that, under the stated 
conditions, 

(-D )a = 	= (K) 1  m 	m 	rn 

as operators on F 
pJ-f ma 

(5.27) 

Use of (5.24) and (5.27) leads to a rather curious state 

of affairs. Formally it would appear that, in some sense or 

another, 

= ((exp ir)D )a = exp (ilrcx)Da = exp (i lrcx )Ia m 	 m 	 - m 	 m 

or, on replacing a by -a, 
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K 
m  
U 	exp(_j vTcx )IU 

m (5.28) 

This is so provided that some care is taken over the interpretation 

of the cith powers. Consider the triple (h,,y) where 

h(s) = [F(i— s/m)]exp(i,Ts/m) S = fs: Re smk for any integer k}, 
= M. 

For 5 € 2 

h(s-m) - r(l-s/m) 	 - ____ - I'(s/m-l) - h(s-m) 
- F(2-s/m7 exp(-iIT) - s/rn-i - F(s/m) 	- h(s) h(s) 

where h(s) = r(s/m) for s c S1. Hence both triples (hM,y) and 

(h,c2,y) generate a continuous linear mapping from F 	into F
PIP 	 p,i+m provided that v € 0 , that is,]/p - Re P V mk for any integer k. 

From (5.15), we see that this mapping is K. The ci 	power of K 

calculated using the triple (h,c2,czy) is the operator KU in Example 

5.4 (since Q is a subset of the set of values of s in (5.15)). As 

regards the triple (h,c2,czy), we obtain 

h(s-ma) = F(l-s/m) 

h(s) 

whence the ctth power of K, calculated via (h,cl,czy) is exp(-i,a) x 

where I is as in Example 5.3. It is in this sense that (5.28) 

holds on suitable spaces F
p,u . 	This is a variant of the theme 

discussed in Remark 4.4. 

Remark 5.7 The results in Example 5.6 can be used to illustrate a 

general point. Under the conditions stated in Example 5.6(1) 

' =D or (Dm) 1 = I 	(2.11) is the particular case m = 1. 

If we compare the triples in (5.8) and (5.22), we see that they are 

identical apart from the change of sign in y. Similar comments 

apply to the triples (5.15) and (5.25). These are instances of 
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Definition 4.6 applied to the case a = -1 (which belongs to A. in 
these cases). 

In our next example we turn to a class of more interesting 

differential operators. 

Example 5.8 Define the operator T by 

a 	a 	a 	a 
(T)(x) = x 'D x 2D.. 	n 	n+l .x Dx 	(x) (5.29) 

where n is a positive integer, a 1 ,...,a 1  are complex numbers and 

n+l 
m = I 	. 	a. -n I > 0. 

i=l (5.30) 

We studied such operators T, sometimes referred to as operators of 

Bessel type, in 14 without making explicit mention of 3 
Nevertheless, our theory above gives an elegant alternative approach. 

Indeed, there are so many interesting aspects that we shall defer 

detailed consideration until a later paper and merely outline here 

a few salient points. T is the composition of n + 1 multiplications 

by powers of x and n differentiations D. Each of these 2n+1 

operators belongs to the class 3 since D has been dealt with in 

Example 5.6 while the operator of multiplication by 	is 
generated by the triple (h,c,y) € H  where h(s) 1, j2 = C, the 
complex plane,and y = A. However, it is unfortunately the case 
that 

T 1 €,T2 €3 	T1T2 c 

as is easily seen by example. Thus, in the first instance, there 

is no reason why T in (5.29) should belong to 3. That T does 

belong to 3'only becomes apparent on rewriting T, each D being 

replaced. by mxm 	D (see (5.10)), where m is given by (5.30), and 

the numbers a,. - - - a n+l exchanged for the numbers b 1 ,...,b where 

n+1 
bk = ( 	Z a. 

1 + 
k - n)/m 	(k = l...,n). 	(5.31) i=k+l  
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The alternative expression for I is different in the two cases 

a < n and a > n where 

n+1 
a = Z a. 

1  is assumed to be real 
1=1 (5.32) 

(a = n being excluded by (5.30)). For simplicity we Consider only 

the case a < n. Then, as will be shown in detail in the later 

paper, T € I and is generated by (h,f2,y) where 

n 
flS /m 

h(s) = m[ 11 F(bk+1_s/m)] 
k= 1 

= {s: Re(bk + l_s/m) 	0,-1,-2,. . . for k=l,. . ,n} 	(5.33) 

Y 	=-tn. 

Again AF = C and, from Definition 4.6(u), for 
1 < p 	2, V € sip 1 0 e F 	and any complex number a,

PIU 

n ncz 	r (bk + l_s/m) 
= m 

 
IT 

k=l 	K a  u7 	(mq)(s) (s € c2). 	(5.34) 

Formula (5.34) appears as formula (5.6) in [41 and the condition 
u € f2 

p 	 k 
is equivalent to b € A 	(k = l,...,n), which is thePOWSM

condition in T4], as is easily shown via (5.13). We can use (5.23) 
to deal with each individual quotient of gamma functions, thereby 

obtaining a representation for Ta in the form 

- na -ma 	-mb +mQ mb 
- m 	x 	( fl 	k 	Dax k (T) (x) 	 )() 	

(5.35) k=l 	 in 

or, by (5.24), 

-ma ncx 	n 	_mbk +mcz 	mb 
(T

a 
 q)(x) = in 	x 	( ii x 	I-  x 	 (5.36) k=l 	 in 

In the case Re a < 0, (5.36) is essentially an integral operator. 
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Instead of the product of n operators, we can use the definition of 

Meijer's C-function as an inverse Hell in transform [i, p.337, formula 

(14)] together with the multiplier appearing in (5.34) to get, in the 

simplest case, 

(T)(x)-ma na+1 fo 0   1 m 	 ,-b= xm C 	I
-b1,... 	

) 
$(t)dt/t 

	

 tmI_b l +a, ... 	

\ 

 

(5-37) 

the appropriate conditions on the parameters being Re a < 0, 

Re(mbk+) + in 	1/p fork = l,...,n. This appears in slightly 

disguised form as E4 , Theorem 6.6J. 
Example 5.9 As a further illustration of Remark 5.7 and in 

preparation for 57, consider the triple (h,c?,y) £ H  defined by 

flS/fli h(s) = in 	

k=l 

= {s: Re(bk+ l_s/m) i 0,-].,-2,... for k = l,...,n} 	(5.38) 

'y=m 

where in is positive. By Remark 5.7, the operator I e 3 generated by 
the triple (5.38) will be the inverse of the differential operator 

in Example 5.8. The set AF will be C and, by (5.37), for • € F 

with Re(mbk+u) + in > i/p (k 

	

in -n+l 	GOn(I 	
\ (t)dt/t. 	(5.39) 

(T:)(x) = x in 	

t -b -1 ,... , -b -1/ 
j o   

n,n 	m 1  
n 

This integral operator belongs to I as well as to I and we shall 
return to it in 57 in connection with existence and uniqueness of 

generalised and classical solutions. 

§6 	We are now ready to work within the framework of the classes 

F' 	of generalised functions. Our intention is to extend operators p,1J 
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from classical functions to generalised functions by making 

systematic use of adjoint operators. Obviously, operators in our 

classes J and ) are candidates for this treatment. However, if an 

operator T belongs to the class 3 , T maps one space of smooth 

functions into another and because its domain and codomain are so 

restricted, the mapping properties of T may already be good, as we 

have seen in the previous section. From one point of view, therefore, 

there is little to be gained by working distributionally in this 

case. Much more is to be gained when we start with a operator T 

in the class I , which will map the whole of one weighted L space 

into another. For the reasons indicated in [6], we do not want to 

restrict the domain and codomain. In other words, although T could 

be studied as a member of 3 (by Theorem 3.3), it is more convenient 

to remain within the class L . Accordingly, we make the following 

remark. 

Remark 6.1 In what follows,, we shall restrict attention to operators 

T in the class I. mapping one weighted L space into another. 

Analogous results can be stated for operators T in the class I 
mapping one F 	space into another.

POU  

Let T B T(hj2,y) e 	1 < p < 	and i t Q. Then, by 

Theorem 4.2, T £ B(L,L). Any element f € L can be used to 

generate a functional I on F - (where i/p + l/q 1) which 
assigns to each function • €F 	the complex number 	defined 

by 	 0 

= 	f(x)(x)dx 	( C F 	). 	 (6.1) J o  

Holder's inequality shows that 	c F' -  and the mapping f - q,p 
imbeds L into 	We propose to extend T to a mapping, T say, 

defined on all of F' - . To obtain the appropriate definition, we 
q, p 

observe that if f t L, then Tf € L 	so that Tf will generate an 
p 	 1i +Y 	

11 

element T1 € F' 	in the manner of (6.1). For T to be an 

extension of T, we require 
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f 
V 

the equality being in the space F' 
q,-ii-'r 

let 	(F 	Then 

(6.2) 

To see what (6.2) entails, 

(T) = J (Tf)(x)+(x)dx. 

Since F 	C L 	 , we apply [5, Definition 4.2] to obtain q,-i-y - -p-y 

00  =
f(T'd = (,T') (6.3) 

where T' is the formal adjoint of T. By Lemma 4.16, T'4 c Fq  

under the stated conditions. Accordingly, the right-hand side of 

(6.3) remains meaningful if 	is replaced by any functional in 

F' - , whether the functional be regular (generated from a function 

inL via (6.1)) or not. This suggests that we should define 	on 

F' 	to be the adjoint of T' on F 	. This will produce a q, - u 
mapping from F' 	into F' , , under the stated conditions. 

q,--y 

Remark 6.2 Until further notice we simplify notation by dropping 

the tildes. Thus we shall wrjteT rather than i for the 

extended or generalised version of T. Also, f will denote a 

typical functional, regular or not, and the value assigned by f to 

a testing-function 0 will be denoted by (f,4), and similarly for 

other letters. 

Definition 6.3 Let T E T(h,c2,y) € , 1 < p < 	and p ( 	• We 

define T : F' 	- F' 	by 

(Tf,4) = (f,T'o) 	(f € F', 	£ F 	). q, - u 	q, -u -y (6.4) 

Definition 6.3 is meaningful in view of the preamble. The 

properties of the extended operator T are easily obtained from 

those of T' by using standard theorems on adjoint operators such 

as those in [8, §1.10]. 
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Theorem 6.4 Let T 	T(h,cl,y) C 	, I < p 	and j c 0• Then 

the extended operator T is a continuous linear mapping 

from F' 	into F' 

	

q, - ii 	q, - u - y 

if T' is a homeomorphism from F q,-,-,  onto F - , then I 

is a homeomorphism from F' 	onto F' 
q, - u 

Proof:- By Lemma 4.16, T' is a continuous linear mapping from 

F 
q,-p-y 

 into F 	under the stated conditions. (1) and (ii) follow 

immediately from Theorems 1.10-1 and 1.10-2 in f8J. 

Remark 6.5 Although we are studying T classically within the spaces 

L, we shall exploit to the full the mapping properties of I' 

relative to the F 	spaces. The assumption in (ii) that T' is a 

homeornorphism is not blind optimism. As we have seen in §5 for the 

case of powers of I and K, it is perfectly feasible to have an 

operator I E B(L,L 	) which is not a homeornorphism from L onto 
Ii p+y 

L lJY but is such that T' is a homeomorphism from F 	onto F 

It is this which provides the motivation for the extension process 

in the first place. 

If T c I , then T  € L for all a € A in view of Definitions 

4.5 and 46. Consequently, we can carry out the extension 

procedure for Ta.  First, we must obtain the formal adjoint of Ta 

In the L structure. This is provided by [5, Theorem 4.10] which 

states that, under appropriate conditions, (Ta) = (T)a. (We have 

	

the analogue for the F 	structure in Theorem 4.19(u).) In 

particular, if 1 < p < , p € ? and a € A, then, by analogy with 

(6.4), (Taf,4,) = (f,(T') ' ) whenever f € F' 	and • € F . But - 

u- 
 

we can go further and, again, this is part of the justification for 

the whole process. By Theorem 4.18, the right-hand side remains 

meaningful if a € AF. and, while AF  D A always, AF may well be much 

larger than A, as in the examples in §5. Accordingly we can define 

an extended version of Ta  not merely for a € A (as in the classical 

a 
u 	 F 

L treatment) but for a € A . Further, since (T) is well-behaved 
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under these conditions, so also is Ta in its extended form. We now 

give the rigorous definition suggested by this preamble. 
Definition 6.6 Let T E T(h,cl,y) E L , 1 < p < co o U c ? and a€ AF. We define T':F' 	-F' 	by q,-p q, - u-ay 

(Taf,q) = (f,(T')) 	(f FE F' 	4' £ F (6.5) 

The stated conditions ensure that the definition is meaningful by 

Theorems 4.17 and 4.18. 

We now list some properties of the extended operator Ta .  
Theorem 6.7 Let T H T(h,c2,y) 	, 1 < p < 	and 'j t S. Then 

(1) if a € A,,, Ta is a Continuous linear mapping from F' AF, 	

,-u 
into F' 	

q 
 
q , - u -ay 

if {a,B,cx+8) C AF and {p,u+By} C Q, then, as operators 
on F' 

q9-1j 

TaTB = Ta +8  

if {cz,-) C AF and {1.i,Ii+ay} C f2 , then T is a 
homeomorphism from F' 	onto F' 	with inverse Ta .  

Proof:- All parts follow easily from results in §4. Consider (ii), 

for instance. Let f € F' 	and 4' € F 	 • Then q, -p-ay-8y 

(TaTBf,4') = (Ta(TBf),4') = (TBf,(Ta),) = (T o 
 f,(T')) 

the last equality being valid by Theorem 4.19(u) since 11+8y 
C c 

and a € Ar.. The same hypotheses ensure that (Tt)a, £ F _ 8y by 

Theorems 4.17 and 4.18. Then, since 8 c A, and p € 
p 

(T 8f,(T')) = (f,(T8)1(T)a4') = (f,(T1)8(Tv)a4') 

by similar arguments. Next, by Theorem 4.19(jjj), the last 

expression becomes 

(f,(T?)B+a4')= (f,(T')84'). 
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Finally, by Definition 6.6, we obtain 

(TaTBf,4,) = (f(11) G+B 
4,) 	(T 	f,$) 

from which the result follows. (iii) is now immediate while (j) 

follows from Theorem 4.18 and [8, Theorem 1.10-1]. 

Remark 6.8(i) As regards (iii), we emphasise again that the 

extended operator T  may be invertible when the original classical 

operator is not, as shown in §5. Looked at from another angle, it 

is possible to solve in a generalised sense certain equations which 

cannot be solved classically in the setting of the L spaces. 

(ii) As regards (ii), the restriction .i+By E Q can be dropped if 

we use analytic continuation. More precisely, we can regard T T 

as the adjoint of the analytic continuation of (TI)B(Tt)a in the 

case ij+8y j sl ; see Remark 4.10. 

Another matter related to analytic continuation arises when we 

deal with the second index law (Ta)B TaB in the extended sense. 

There is no problem in interpreting the right-hand side via 

Definition 66. However, on the left-hand side we must first 

calculate T classically which will restrict a to the set A (rather 

than AF) in the first instance. We can then calculate (T) 8  via 
Definition 6.6 as the adjoint of ((TU))B provided that aB c A 
Since (To )' 	(T') by [5, Theorem 4.10], (T O ) emerges as the 

adjoint of ((T?)a)8 as we would expect. Thus in the first instance 

we can prove the following result. 

Theorem 6.9 Let T E T(h,c?,y) 	, 1 < p <, a C A, aS c  A and F 
p E . Then T :LP-Lp 	exists as a member of L and, as operators p 	 p p+ay 
from F' 	into F' 

q, - u 

(Ta)S = TaB . 
	 (6.6) 

Proof:- The result follows from Theorem 4.19(v) and the preamble. 

On closer inspection we see that the result (4.21) used in the 

proof is valid for a 	AF aS € AF  by Theorem 4.19(v) , the only 
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difficulty being that Ta  will not exist classically for any values 

of a which lie in AF  but not in A. One way to resolve this would 

be to interpret (6.6) differently. For a c AF we can work Out the 

extended operator T by means of Definition 6.6. We could then 

use (6.6) as the definition of the B 
th

power of the extended 

operator T   subject only to the extra condition uB f A.. Such an 

interpretation would not lead to any inconsistencies but we shall 

not explore it further here. 

Finally in this section, if T 	T(h,1,y) € 1 , then the adjoint 

T' regarded as an operator from L into L, can be subjected to 

the same extension procedure. The roles of T and T' are interchanged 

but the basic results are similar. We state the analogue of Theorem 

6.7 to show the small changes which have to be made. 

Theorem 6.10 Let T 	T(h,2,y) C 	, I < p < 	and u e S1. Then 

(i) if 	A, (Tt)a  is a continuous linear mapping from 

F' 	into F' p,IJ+ciY 	p,i 

(ii.) if {a,B,a+B} CA. and {,ii+8y) C fl , then as operators 

on F' p ,p+czy+By 

(T')8 (Tt)U = 

(iii) if (a,-a} C A1. and (1j,1J+ay) C 11 , then (T') is a 

hotneomorphism from F' 	onto F' 	withinverse  

Proof:- This is omitted. 

§7 	In this final section we return to equation (1.5) and see what 

our theory has to say about existence and uniqueness of both 

classical and generalised solutions. Here it isconvenient to 

reinstate tildes to indicate extended operators. Also, we shall 

write f (as before) to denote the functional generated from the 

classical function f by means of (6.1). The general position can 

be summarised as follows. 
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Theorem 7.1 Let I E T(h,2,y) c t , I < p < , a c A. tu,+il C S 

and g€L 1' 
u+ay 

If -a € A.f . (1.5) has a unique generalised solution; 

that is, there exists a unique functional h e F' 	such 

a 	 a-1 
that T h = g, namely, h = (T ) g. 

If -a E AF ,  (1.5) has at most one classical solution 

f c L. 
ii 

If -a E A, (1.5) has exactly one classical solution 

f c L, namely, f = Tag.  

Proof:- (i) By definition, a generalised solution of (1.5) 

satisfies T h = g. However, under the stated conditions, 1a 

is a homeotnorphism from F' 	onto F' 	by Theorem 6.7(111). 
q, - u 	q, - 1. -ay 

The result follows. 

Let f 9 f 2  ( L be two classical solutions of (1.5) and let 
U 
aa 	a 	". 	a 

= 12 = 	2 	
Then T f 1  = g and T f 2  = g 	T f 1  = g = I f 2=. 

Ta(1_2) = 0 or Tab = 0 where 0 denotes the zero functional in 

F' 	. By (1), h 	0, the zero functional in F' 
- 

f -f 	0 as elements of L 	I = f as elements of L 12 	 1 	2 

follows from [5, Corollary 3.93 and is repeated here for 

convenience. This completes the proof of the theorem. 

As regards finding a classical solution of (1.5) by the 

distributional approach, subject to the conditions stated, the 

position is this. If -a £ A, T a 	£ so that we can construct the 

extended operator Ta I which is then the inverse of Ta by Theorem 

6 .Z(iii). Thus we may write the generalised solution h in M as 
-". 

(T c') g = (1 0 ) g  = T g so that h is regular and generated by T g, 

which is therefore the unique classical solution, as promised in 

(iii). On the other hand, if -a € A F  but -a I A, then we are not 

entitled to write (Ta) = (Tag) since  Ta  will only be defined on 

F 	and not on the whole of L 	. In this case, we are p,ii+ay 	 1Jay 
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stranded in mid-air and the generalised solution, no longer regular 

(in the sense of being generated by an element,  of LP ) is the best 

we can do, unless we are given extra information about g, such as 

an appropriate degree of differentiability of g. To illustrate 

these points we present an example of considerable generality 

involving the C-function operator of §5. 

Example 7.2 For f € L, define Tf on (O,a) by 

Tn 	 0 -n+l 	n 	m 	-b 11 ...,-b 	't 
(Tf)(x) = x m 

-1,...,-b 	) f(t) dt/t 	(7.1) 
n 

as in (5.39). Here rn is real and positive, n is a positive integer 

and b 1 ,...,b are given complex numbers. Let (h,cl,y) be the triple 

defined by (5.38). Then (h,c2,y) € H as can be checked using 

Rooney's class A t.71 and the set A (Definition 4.5) contains 

{a: Re a > 0} as well as 0, but not -1 since T 1 would correspond 

to the differential operator in Example 5.8. (7.1) represents the 

form of T 	T(h,,y) when b 
1 	n 
,...,b satisfy Re(mb +.i) + m > I/p 

(k 	l,...,n) and in this case, for Re a > 0, T has the form 

ma -na+l 	 x 	-b1,...,-b \ (T°f)(x) = x m 	
- 	

f(t)dt/t. fo 
n,n 	m -b  t 

(7.2) 
Then, by definition of t , T E T(h,,y) is a Continuous linear 
mapping from L into L 	and, for Re a > 0, Ta € B(L, L 	

). p 	um 	 P 	1.i+ma 
(Recall that y  m here.) Accordingly, it is meaningful to 

consider the Volterra integral equation 

Taf = g 	
(7.3) 

under the above conditions, 

and a solution f € L is so 
P 

of L p +ma and some degree of 

a solution f c L to exist. 
'a 

where g is a given element of Lp 
a 	 'a 

i ught. The range of T 	s not the whole 

differentiability is required of g for 

This is fairly clear from the nature of 
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(7.2) but can also be seen by rewriting the formal inverse of 

I 
a
, via (5.35), as 

na -ma n 	-mb+tncz 	mb 
M x 	( ii x 	k 	

Dx k)g(x) 	
(74) 

k=]. 

which reveals the need for n derivatives of order a to exist. We 

therefore have a suitable candidate for our extension process and 

can apply Theorem 7.1. As regards the conditions of the theorem, 

Re a > 0, assumed above, ensures that cx c A while Re(mbk+p)+m>1/p 
(k = l,...,n) ensures that .i t ?. By Example 5.9, A = C so that 
the restriction -a c AF  is automatically satisfied. The condition 

g C L p
(=L ) was included above, so that the only extra j.i+czm 	p+cxy 

assumption is v + am c 	. Then, Theorem 7.1 guarantees a unique 
- 

generalised solution (T') -  g = T g and at most one classical 
solution. Since -a 	A is not satisfied when Re a > 0, part (iii) 

of the theorem does not apply. Instead, existence of a (unique) 

classical solution depends on whether we can write Tcx = TUg or 

not. This in turn depends on whether or not (7.4) can be evaluated 

classically. If so, (7.4) provides the unique classical solution; 

if not, we obtain only a generalised solution. The discussion  
above gives an alternative treatment of ideas from t4,583, wherein 

will also be found an explicit function g for which to classical 

solution f € L of (703) exists. Many special cases can be 

handled by particular choices of m,n,b 1 ,...,b. The case n = 2 in 

particular produces operators involving the 2 F  1 hypergeoinetrjc 
function [4, §93 and results obtained can be related to previous 

work on classical and general ised.solutions of hypergeornetric 

integral equations [2,6]. 

Other examples could be given but we shall leave these to the 

reader. In t] 	t6J and the present paper, we have studied, both 

classically and distributionally, a large class of operators in L 

spaces, the operators typically being Volterra or convolution 

integral operators, for which general powers can be defined in a 
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systematic manner which avoids the complications of spectral theory. 

We have shown by examples that a distributional treatment allows 

differential operators to be handled, a larger range of powers to 

be defined and existence and uniqueness theorems to be stated for 

generalised solutions of classical equations. The generality of the 

conditions under which results such as the index law (T a )

s  = Ta8 

hold would be hard to beat. 
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In this paper, two methods are discussed for defining fractional powers of the n th 
order ordinary differential expression L = XaDXa2D . xa,Dxa,, I (D = d/dx), where 

each a, (i= 1,2 ..... n+ 1) is a complex number and xis real and positive. An impor-
tant role is played by the number m = I'  a, - n I. When m = 0, spectral theory is 
used to obtain a suitable formula for L ( cC) while the case m >0, considered 
in a previous paper by A. C. McBride (Proc. London Math. Soc. (3) 45(1982), 
519-546), is dealt with by expressing L 2  in terms of Erdélyi—Kober operators. We 
give accounts of each approach and go on to consider how the results for m =0 can 
be obtained as limiting cases of the results for m > 0. © 1988 Academic Press, Inc. 

1. INTRODUCTION 

In any theory of fractional powers of operators, the objective is to obtain 
a formula which, for suitable operators T and a range of parameters a, will 
generate a family of operators { T " I possessing properties associated with 
powers. In particular, TY  should coincide with the iterated power 
T" = T. T.. T (n terms) when a is a positive integer n and the index law 

TaTfi =  

should hold whenever T,  T, and T" 1'  are all defined. 
Several methods now exist for constructing such families {T 2 }, each 

applicable to a particular class of operators. For example, various authors, 
including Balakrishnan [1], Hovel and Westphal [5], Komatsu [6], and 
Yosida [14], have examined the problem of deriving an expression for 
(A)' when A is a closed operator on a Banach space X. In each of [1, 5, 
6, 14], the starting point is the integral 

xeX,  

590 
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which essentially defines the fractional power ( - A )' (0 < Re a < 1) as an 
operator on X provided that the resolvent operator R; A) exists for each 
)>0 and behaves suitably as ).-+ 0+ and as cc. Integral (1.1) has also 
been used in [7] to produce a corresponding theory for operators defined 
on a Fréchet space. A summary of this is given in Section 4. 

An alternative to this spectral approach in the case of certain differential 
operators has recently been discussed in [10], where representations of 
arbitrary powers of the differential operator 

L = xoDxa2D . . . x°"Dx", 

and other associated operators, have been obtained in terms of the 
Erdélyi—Kober operators of fractional calculus; see Sections 2, 3 below. A 
requirement for the formulation of L in this theory is the condition that 
the sum a= i a, of the indices appearing in L is a real number which 
differs from n, the order of the operator. 

The role played by the parameter a can be illustrated simply by consider-
ing the action of L on the function x' (x>0, ,eC). Since LX ;  =Cx''', 
where C is a constant, we see that in the exceptional case a= n the 
operator L, defined on some suitable function space X, will map X into X. 
This suggests the possibility of using the spectral approach to define Lc 

when a=n. Simple cases have already been considered in the literature. 
For example, in [8], the first-order operator 5 = xd/dx (which corresponds 
to L with n= 1, a1  = 1, a-, =0) is examined and an expression for ö involv-
ing logarithmic-type fractional integrals obtained via (1.1). The exceptional 
cases a = n = 2, 3. .... however, present problems mainly due to the difficulty 
in verifying that the spectral conditions required for the convergence of 
(1.1) are satisfied. In this paper, we bypass these difficulties by making cer-
tain modifications to the spectral approach which allow us to define powers 
of products of commuting operators and, in particular, enable us to define 
L 2  when a = n, for any n E N. We also demonstrate that the expressions 
derived for L (a = n) are not totally unexpected since they can be obtained 
as limiting cases of those given in [10] for n>a. 

It is worth mentioning that the differential operators discussed in [10] 
have since been shown to belong to a class of Mellin multiplier operators 
for which a theory of fractional powers exists; see [12, pp.  99-140]. 
Moreover, the results presented in [10] are simply a special case of those 
given in [12]. At the end of the paper, we indicate briefly how certain 
aspects of this Mellin multiplier theory can be used to deduce, in a 
non-rigorous manner, some of the results given earlier. 
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2. NOTATION AND PRELIMINARY RESULTS 

Various conventions are adhered to throughout the paper. Unless the 
contrary is explicitly stated, p is a real number satisfying 1 < p < cc, while 
p, i, and oc represent appropriate complex numbers. If x> 0 and A is com-
plex then x = exp(A log x), where log x is real. Moreover, the expression 
xip will denote the function (xp)(x) = xp(x), x >0. No confusion should 
arise from the use of x 2  as both a function and the operator coresponding 
to multiplication by x. Throughout II 11 P  denotes the usual L"(O, cc) norm 
defined by 

\IIP 

k'  II=( J 	co(x)j°dx I ) , 	1 p<co, 

II q II =ess -sup{ I 	: XE (0, co)}. 

The function spaces which form the domains for the differential and 
integral operators considered in the paper are the spaces F,,,, defined as 
follows. 

DEFINITION 2.1. (i) For 1 < p < cc, 

F 
,. 

= { e C(0, cc): II xkDk( x _)II p  < cc 	for k = 0, 1, 2, ...}, 	(2.1) 

where D d/dx. 

F,.= q,e C(0, cc): x(Dk(x_p(x))+0as x-+0+ 

and asx—*cc for k=0,1,2,...}. 	 (2.2) 

For 1 	cc and k=0, 1,2,..., we define y"2  on F,,, by 

y ,  '((P) = II xD k(X_(o)II p . 	 (2.3) 

For each p and i, F,,, becomes a Fréchet space when equipped with the 
topology generated by the separating family of seminorms { y' } ,; see 
[11, Chap. 2]. 

Remark 2.2. An equivalent topology can be generated on F, by the 
separating family of norms {p} 0  defined by 

p14( (p)= max  {yPP(p);  i=0, 1,..., k} 	(k=0, 1,2,...; pEF,.). 

In this way, F,,,u  becomes a complete countably normed space; see 
[3, Chap. 1, Section 3]. The significance of this remark will be seen in the 
proof of Lemma 5.1. 
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LEMMA 2.3. Let (PEF. Then 

q(x)I 	 Vx>O, 	 (2.4) 

where M is a constant which depends upon q. 

Proof. See [11, p. 14, Theorem 2.2]. 

THEOREM 2.4. For any complex number i., the mapping x defined by 

(x(P)(x)=x'q(x), 	O<x<ci, 

is a homeomorphism from 	onto 	with inverse x'. 

Proof. See [11, p.21, Theorem 2.11]. 

DEFINITION 2.5. For 9 EF /1 , we define öq by &p=xDQ, where 

D d/dx. 

THEOREM 2.6. 6 is a continuous linear mapping from F,, into F,, ,, and is 
a homeomorphism from F,, , onto F,, if and only if Re p i/p. 

Proof. See [11, pp. 25-26, Corollary 2.14]. 

DEFINITION 2.7. (i)Let Re(m+p)+1 >l/p, and qEF,1 . For Re o>O, 

we define H"-'q  by 

(H"(p)(x)= [F()] 	." 	J [log(x/t)]' 	t"(t)dt, 	x>O. 	(2.5) 

This definition is extended to Re 7 < 0 by means of the formula 

	

H"p=(ij+ 1)11 + +H1+I3p. 	 (2.6) 

(ii) Let Re(ij—p)> —lip, and pEF. For Re x>O, we define 

G", 1 (p by 

(G"')(x)= [F()]' X ,  f [log(t/x)]2 	t'(t)dt, 	x>0. 	(2.7) 

This definition is extended to Re a,<0 by 

G"p = mjG" 	' - 	1 6q. 	 (2.8) 

	

THEOREM 2.8. (i) For ceC and Re(+p)+ 1> l/p, H"' 	is a 
horneomorphism from F,,,. Onto Ft ,. and (H"' 	= H"' 

(ii) For ceC and Re(m—p)> —l/p, G"' 2  is a homeomorphism from 
F,,,,. onto FP, , and (G.2) 	=G"' . 
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Proof. This theorem can be proved directly by applying a 
generalisation of an inequality due to Hardy [4, Theorem 319]; see [9]. It 
can also be obtained as a particular case of the fractional power theory 
discussed in Section 4. 

To conclude this section, we introduce the Erdélyi—Kober operators of 
fractional calculus and describe their mapping properties on F,, ,. For 
brevity, only the salient points are included; further details and proofs can 
be found in [11, Chap. 3]. The various results we require can be expressed 
concisely in terms of the following sets of complex numbers. 

DEFINITION 2.9. For each m >0, ju and p, the sets A,,'..,  m  and A,,, P , m are 
given by 

for k=0l2...} 

_!_ mk for k=0, 

DEFINITION 2.10. (i) Let Re(m + ,u )  + rn> l/p, and p e F,, ,. For 
Rex>O, we define P.,  ~ ~o by 

(Iço)(x)= [F(cc)]' MX 	Ma  

xj
(xm_tm)a_l tmm_(t)dt, 	x>0. 	(2.9) 

0 

This definition is extended to Re x 0 by means of the formula 

Iq = ( + 'X +  1)I 	'q, +rnhI 1 &p. 	 (2.10) 

Let Re(mj - jt)> - i/p and qp E F,,, 
,. 

For Re cx >0, we define 
Kp by 

(Kp)(x)= [F(cx)]' rnxml 

03 

xJ (tm—xm) ' t_m m_lp(t) di, 	x>0. 	(2.11) 
'V 

This definition is extended to Re 	0 by means of the formula 

(2.12) 

Let JEA p, p , m , peF,,, and ot be any complex number. For 
Re(rn + i) + rn> lip, we define Ij 1  as in (i). Otherwise, if k is the unique 
positive integer such that 

- - Mk < Re(rn + it) + rn <- - rn(k - 1), 
P 	 p 
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then 

_I 
 )

k p + k, - k v - 'i - k, k 	 (2.13) m 

where pi+k- k and Km _ (k  are defined as in (i) and (ii), respectively. 

(iv) Let 	 'peF,., and Y be any complex number. For 
Re(mij 	— l/p, we define 	as in (ii). Otherwise, if k is the unique 

positive integer such that 

_!_ mk < R e ( m1 _ fj )< —'— m (k—l), 
p 	 p 

then 

K ; p = (_l)kK,,±k_kI, _kk(P, 	 (2.14) 

where 	and 	are defined as in (ii) and (i), respectively. 

THEOREM 2.11. (i) if q e A,, Al . ,,,, then I; is a continuous linear mapping 
from F,, into F,,,.. If also ij + 1 e Ar,, ,,, then I,; is a homeomorphism 
from F,,,, onto F,,,, and 

=i?' - 

(ii) If j A, ,,,, then K; is a continuous linear mapping from F,, 
into F ,,. If also tj + c A, ,, ,,,, then K; is a homeomorphism from F,, ,. 

onto F,,,, and 

3. FRACTIONAL POWERS OF DIFFERENTIAL OPERATORS- 

THE DIRECT APPROACH 

In [10], formulae are given under appropriate conditions for arbitrary 
powers of the nth order differential operators 

L = .v 1 Dx" 2Dx 3  . . . '"JJ"-- 1 	 (3.1) 

and 

M=(— 1)" L. 	 (3.2) 

In each case, the initial step in obtaining the appropriate formula for the 
Ith power T of the operator T (=L or M) under consideration is the 
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derivation of an expression for T  (r n ) which exhibits clearly the depen-
dence on r and continues to make sense when r assumes suitably restricted 
non-integral values. T is then defined by this expression with r replaced 
throughout by a. This approach, which we shall refer to as the direct 
approach for defining a fractional power, is standard in the theory of 
fractional calculus. For example, the r-fold repeated integral operator jr, 

given by 

(I'(o)(x) = [F(r)] -' 	(x - t) 	q(t) dt 	(r e ), 

leads immediately to the familiar formula 

.(Ip)(x) = [F()]1 J (x - t) '  q, (t) dt 	(Re a >0) 

for the Riemann-Liouville fractional integral of order x. 
If we examine the operator L, given by (3.1), and assume that 

n+1 

akefl 	 (3.3) 
k= 1 

and 

	

m=n-a>0, 	 (3.4) 

then we an show that 

Lrço = m 1 rx_mrfl Jbk. -r 	(q e FP, , re N ), 	(3.5) 

where, for k=1,2,...,n, 

In-I-i 	 \/ 

bk=ç 	a 1 +k-n)/m; 	 (3.6) 

see [10, pp.  525-526]. It follows from Theorem 2.11 that the right-hand 
side of (3.5) is well defined as a continuous mapping from into F,,2 _,,,., 
provided that bkEAppm  for k= 1,2,..., n. Formula (3.5) leads immediately 
to the following definition. 

DEFINITION 3.1. Let m = n - a >0, let oc be any complex number and let 
bk EA p, p , m  for k= 1,2..... n. Then we define L on F,1  by 

'I 

	

Lp=m'xm fl I'p 	(peF,,). 	 (3.7) 
k= I 
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Note 3.2. (i) Formula (3.7) is obtained formally on replacing r by 

in (3.5). 

Since the operators I' 	commute [10, Theorem 2.8], the 
product on the right-hand side of (3.7) is unambiguous. 

The case when m = a - n> 0 can also be dealt with. We shall not 
consider this here but details can be found in [10]. 

The various properties possessed by the Erdélyi—Kober operators can 
now be used to establish the following results. 

THEOREM 3.3. Let m=n—a>0, let bkE AP,  Jfllfor  k= 1,2,..., n and let 

Lp he defined, for coeF, by (3.7). 

L is a continuous linear mapping from F into F, - m for all 

e C. If, in addition, b k  - e A P. / I. for k = 1, 2, ..., n, then L is a 

homeomorphism from F /  onto Fp M _,x and (L')' =Lx. 

L °  is the identity operator on F,, 1,. 

If { b, - , b,, - fl )f 	A P. ,,, for k = 1, 2, ..., n, then 

L'Lp = Lp = L 11L9. 

Proof. See [10, pp. 528-529]. 

Similar results can also be obtained for M defined on F, , by 

= iii"x" 	 K, b1. - 	
((p e F ) 	( 3.8) 

k=l  

where, as before, a =I a,, is real but in is now given by a - n. In this 

case, it can be shown that M is a continuous linear mapping from 
into F,,,, + ,,,, whenever I —b,,EA, 	(k= 1,2,..., n). Other properties are 
given in [10, Theorem 4.12]. 

Having considered the case in >0, we now prepare to consider the case 
in =0. 

4. FRACTIONAL POWERS OF OPERATORS—THE SPECTRAL APPROACH 

In the sequel, X denotes a Fréchet space with topology generated by a 
separating family of seminorms S= {v k } o . We say that A: X— X is in 

the class P(X) if the following conditions are satisfied: 

A is linear and continuous; 

(0, co)p(A) (the resolvent set of A); 
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(III) for each Vk cS, there exists v 1  e  such that 

Vk([C 2R;A)]X)<Vf(X) 	(VxeX, 2>0 and n=1, 2,...), 

where C is a positive constant independent of x, 2, and n. 
If AeP(X) has a continuous inverse A - ' onX, then it is possible to 

define ( - A )' on X, for a e C, by means of the formulae 

(_AYx=_ 1 sin(1t)j2 1 [R(2;A)_2/(1+2 2 )]Axd2 

-sin(itc/2)Ax, 	0<Rex<2, 	 (4.1) 

(-A)x=(-A)(-A)x, 	n<Rex<n+2,n= ±1, ±2,..., 	(4.2) 

where, in (4.2), (- A )' = (- A - ') -  when n is a negative integer. The con-
ditions (I)-(III) listed above ensure that the integral in (4.1), interpreted as 
an improper Riemann integral of the form 

Jim 
	

j 2'[R(2;A)-2/(1+22)]Axd2, 

converges in X for each fixed x E X. The main properties of the operators 
(- A )' are given below. 

THEOREM 4.1. Let A e P(X) have a continuous inverse A - ' on X and let 
(_A)a be defined by (4.1) and (4.2). Then 

(-A) is a homeomorphism from X onto Xfor each ot e  and 
= (-A); 

(- A )x is a strongly holomorphic X-valued function of a in C for 
each xeX; 

(-A)x = n' sin ir(c + 1 - n)$ 2R(1;A)(-A)"x.d2, 
n - 1 <Re a <n; 

A'eP(X) and(-A')x=(-A)x,VcC,xeX; 

 

[(-A)]'x=(-A)x, V/icC, -lc1 andxeX; 

( - A) 2  is equal to the nth iterate of -A (respectively -A ') 
when a= n (respectively a = -n), where n is a positive integer. 

Proof. See [7]. 

As an illustration of this approach for defining fractional powers of 
operators, let X = F , and consider the Erdélyi-Kober operator 111- 1, 
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When Re(ij + i) + 1> l/p, it follows from Theorem 2.11(i) and (2.10) that 
is a homeomorphism from F,, onto F,,, and has inverse given by 

11± 1,-i ='l '(5x" 1 = +1+ (5, 

where 5= xd/dx. Furthermore, since 

21+ 17' 1 = 	'(21+ (5 1 ) x "  

the spectrum of —17' on F,, is identical to the spectrum of 6 - 1  on 
F,, + , ±,• Bearing this in mind, we consider the equation 

(21+ (5_i) x = 0 	(x Ii eF,, + ± ). 	 (4.3) 

Applying 6 to each side of (4.3) produces 

((5+2') x=2''. 

Since this can be written as 

x11(5x1 7=)_I5( 

we deduce, from Theorems 2.4 and 2.6, that 

7_)_iv-1 ;(5-ii 

l 0 — 	(5 

provided that Re(p + q + I + 1/2) 0 1/p. In particular, when Re( j  + j + 
l+l/A)>l/p we obtain 

= 	- ;-21l-1. 1 

and consequently, for i. >0, Re( +,u) + I > i/p and (p e F,, , 

R(i.; _Il)(p_j_i(p_)_2J7+l/I4 	 (4.4) 

and 

y''1 (2R(2; —17'') 	i.'I7 '' 1 y' P() 

<,[I+ (1 +i.[Re(j+p)+ 1— 1/p]) 1 ] y P((p ) 

<2y' l((p). 

The norm which appears in the above inequlity is the operator norm of 
I— ). '17 + i" , regarded as an operator on the Banach space L, where the 
latter is defined as in [10, p.  533]. The upper bound on this norm is easily 
obtained from the inequality of Hardy [4, Theorem 319] referred to earlier. 
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It follows that - 17' is an invertible operator in P(F ,) for Re( +,U) + 

1> i/p and therefore, from Theorem 4.1, (17' ') exists for any a E C. In 
particular, for Re a e (0, 1), we can use Theorem 4.1 (iii) and the continuity 
of the translated delta distribution 5 on (where (ä,  p)=q(x), 
lpeF,,x>0) to obtain 

(ö (17' 'Y ) 

= it' sin(m)j 	'R(A; —17") 17' 'q(x) d2 

= ir' sin(ir)J 2_1(J  2R(; —17")) q(x) d2 

= ir' sin(irc.) I 2_2(J7± 	'q)(x) d2 	 (from (4.4)) 
J o  

= 7-1 sin(itcx) I 	 jt+ 11A 4,() dt d2 	(from (2.9)). 
Jo 	 0 

(4.5) 

On applying Fubini's theorem to interchange the order of integration, (4.5) 
becomes 

i 	sin (it) x' J tp(t)  j 	
2  exp( —)' log(x/t)) dA dt 

1t' Sin()x 11 f [log(x/t)]' t q (t)j u _ e _udu dt 

(where u = 2' log(x/t)) 

= [F()] 	x' J [log(x/t)] 1  t(t)dt 

= (if" (o)(x), 

where H", 'qo is defined by (2.5) and (2.6). Thus 
(JPJ. 1 ) p = H' p 	 (4.6) 

for pe FP'  , 0<Rex< 1 and Re(+p)+ 1> lIp, and, since each side 
of (4.6) is a strongly holomorphic function of a in C, it follows that this 
identity is valid for all complex values of a. 

In a similar manner, it is possible to show that 

(K7' 1 ) 	= G' p 	 (4.7) 

for qe FP,  , cCEC, and Re(—z)> —i/p. 
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Formulae (4.6) and (4.7) enable us to define fractional powers of the 
differential operators L and M, given by (3.1) and (3.2), respectively, when 
a=n= I. To see this, consider the operator L with n= 1, a 1  = 1 -,, and 
a 2  = . If we denote this operator by T, then, for (p € F,, ,, 

Tp=xöxp 	 (4.8) 

and, from Theorem 2.11(i) and Definition 2.10(i), 

T q = (17-1. 1)-i p 

provided that Re( +,u) >  i/p. Consequently, from the above analysis and 
Theorem 4.1 (i), (iv), we can state that, for Re(ij+p)> l/p, -TeP(F,) 
and (T)' exists as a homeomorphism on F,, 11  for all ceC, with 

(T 	, = [(in- I. l)_l] 	= ( Jn- 1. 	q = HI - " - 	( eF). 	(4.9) 

Similarly, for Re(+p)< l/p, ot eC, and eF,, 11 , 

(4.10) 

It should he noted that the theory outlined in Section 3 cannot be 
applied to define powers of T and - T, since, in each case, m = 0. Thus the 
spectral approach enables us to deal with the first-order versions of L and 
M which fall outside the range of applicability of the direct approach. To 
cater for the higher order exceptional cases (i.e., a = n 2) of L and M, the 
spectral approach must first be modified in such a way that arbitrary 
powers of products of operators of the form T can be defined. 

5. FRACTIONAL POWERS OF PRODUCTS OF OPERATORS 

We now consider operators T which can be expressed as 

T=I ) N A 1 A 2 ...A N =fl (—A k ), 	 (5.1) 

where N is a positive integer which depends upon T and 

Ak is a homeomorphism from X onto X for k= 1,2,..., N; 

A k EP(X) for k=1,2,...,N; 

A k A,x=A l A k x for k,l=1,2,...,Nand xeX. 

The collection of all operators T of this type will be denoted by FM(X). 
From Theorem 4.1, fractional powers (-A k ) can be defined as 
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homeomorphisms on X for all a e C and k = 1, 2, ..;, N, and therefore the 
obvious definition for T, when TEPM(X), is 

Tx=(_Ai)(_A2)'...(_A)a 	(xeX,eC). 

To enable us to verify that this formula leads to the usual properties 
associated with powers, we require the following preliminary results. 

LEMMA 5.1. Let x e X and let A 1 , A 2  e P(X) be homeomorphisms from X 
onto X. Then 

for fixed c, (— A1  ) (— A2 ) x is strongly holomorphic with 
respect to fl in C; 

for fixed fl, (—A1 ) (— A 2)fl  x is strongly holomorphic with 
respect to a in C; 

(—A 1 ) ( — A 2Y x is strongly holomorphic with respect to a in C. 

Proof. Since (ii) follows from Theorem 4.1(u), and (i) can be deduced 
from (iii), it is sufficient to prove (iii). To simplify the proof, we assume 
that X can be equipped with an equivalent topology generated by a coun-
table collection of norms. Although this restriction is not strictly necessary 
(see Remark 5.2 below), it is satisfied by the spaces F ,. (see Remark 2.2) 
and, moreover, it allows us to apply standard results on countably normed 
spaces. In particular, from [3, p.  75], we can deduce that (—A 1 )a (—A 2 )' x 
is weak*  -holomorphic for a e  and therefore, since weak*  holomorphy 
implies strong holomorphy in a Fréchet space X [13, p.  79], the result 
follows. 

Remark 5.2. Lemma 5.1 (iii) is still valid when X is not topologically 
equivalent to a countably normed space. The proof, however, is more com-
plicated and relies on the fact that for each Vk e S, there exist seminorms 
Vk(j) (i= 1, 2, ..., m) in S and a positive constant M(k) for which 

11  I 	sin[ 1r(—n)] 	I 
Vk(( —A)x) 	

smElt Re( — n)/2] + I sin [a(,% - n)12 ]I 

x M(k) max {vk(j) (x), i= 1, 2, ..., m} 

where x e X and n < Re a < n + 2, n e N. Further details are omitted. 

LEMMA 5.3. Let A 1 , A 2  E P(X) be homeomorphisms from X onto X and 
let A 1 A 2 =A 2 A 1 . Then 

(—A 1 )(—A 2 )x=(—A 2 )(—A 1 )x, 	V, fieC,xeX. 	(5.2) 
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Proof. Suppose initially that 0 < Re ot, Re 13 < 1. Then, from 
Theorem 4.1(iii), 

(—A 1 ) (— A 2 ) x 

	

= -2 sin(ir) sin(x13)J J' 	'R(A; A 1 ) A 1 R(j; A 2 ) A 2 x dJU  d 

sin(7roo 	'p'R(ji;A 2 )A 2 R(2;A 1 )A 1 xdjd 

(xeX), 	(5.3) 

where the last step follows from the commutativity of the operators and 
hence of their resolvents. Interchanging the order of integration in (5.3) 
produces the required result. This can be justified in the following manner. 
Let f be any continuous linear functional on X and consider 

(J: J 	
1iiR(;A2)A2R(i.;Ai)Aixdd).) 

	

=1 J 
i. 'p '(f, R(p; A,)A,R(; A 1 )A 1 x) dp d). 	(5.4) 

Since f, A, and A-, are continuous on X and A 1 , A 2 eP(X), there exist 
seminorms Vk(i), i= 1, 2, ..., ni, and a positive constant M such that the 
integral in (5.4) is bounded above by MB max {v k(j) (x), 1= 1, 2, ..., m}, 
where 

B=J
1 1 	 x 

	

J 	
_I1dpd+j 

1 J

0I 
i.2p'djd). 

00  

+FJ 	_1p 	 fl  X JI 
)2p2dpd)<. 

Consequently, Fubini's theorem can be applied to rewrite (5.4) as 

$ j 	'(f, R(j; A 2 )A 2 R(; A 1 ) A i x) d2 dji 

=(f j J 	''R(; A 2 )A 2 R(; AJ A, x dA diz) 

and since the dual space X' separates points in X, we conclude that (5.3) is 
equal to 

	

1r 2  sin(n) 	 f"'  f ) 	 ' i 	' R(/A; A 2 ) A 2 R(,; A 1 ) A 1 x dA dJL. 
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Finally, the result for all complex values of a and $ follows from 
Lemma 5.1(i), (ii). 

DEFINITION 5.4. Let TEPM (X) with 

T=(_1)N A I A 2 ...A N =fl (—A k ). 	 (5.5) 

Then, for any x e C, we define T on X by 

	

Tx=(—A 1 ) 
(— A 2 )' •••(—A N )x 	(xeX), 	(5.6) 

where each (—A k ) is defined via (4.1) and (4.2). 

Note 5.5. It follows from Lemma 5.3, with oc = fl, that the definition of 
TZ given above is independent of the order of the factors, in T. 

THEOREM 5.6. Let TEPM (X) and let T be given by (5.6). Then 

T 2  is a homeomorphism from A' onto A' for each x e C and 
(Tm' = 

'Tax is a strongly holomorphic X-valued function of a in C for 
each x e A'; 

'T- 'C-Pm(X) and (T' ) x = T x, Vx e C, xc X; 
TZTP X =T±$X, V cZ, I3 E C,XE X ;  

(T)X=TX,V/3EC, —1.c1 and xeX; 

T is equal to the nth iterate of T (respectively T -1 ) when a= n 
(respectively a = —n), n e N. 

Proof. (i), (iv), and (vi) follow immediately from Theorem 4.1 and 
Lemma 5.3. 

The case when N=2  has already been proved in Lemma 5.1 (iii). 
The general case follows by induction. 

Since 	T' = (—A')(—A' 1 ) 	 (— Aj'), 	where each 
A'eP(X) (by Theorem 4.1 (iv)), is invertible, and A'A[ 1 =A['A' 
(k, 1=1,2,..., N), it follows that T' EPM (X) and 

(xeX,eC) 

	

=(—AN)(—A_1)_...(—A1)X 	(= Tx) 

(by Theorem 4.l(iv) and Lemma 5.3).. 

(by Theorem 4.1(i)) 

(T") X. 
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(v) By definition, T'= (-A  1 )(-A 2 ) 2 ... (-AN) =(-1 )N  B,B2  BN, 
where Bk= - ( - Ak) (k= 1,2,..., N). Now, for -1 1, each operator 
B k  is a homeomorphism in P(X) and B k B /x=B/ Bk x for k, /=1,2,..., N, 
and x e X (by Lemma 5.3). Consequently, T 2  e PM(X) for - 1 1 and 

(Tx=(-B l )(-B 2 )...(-B N)x 	(xeX,fieC) 

= [(-A 1 )] [(_A2)2].. {(-AN)]x 

=(-A l )(-A 2 ).••(-A NY"  x 	(by Theorem 4.1 (vi)) 

= Tx. 

This completes the proof. 

If we now re-examine the operator L, given by (3.1), and assume that 
a=n, then 

L=fl(-A k ) 9 	(eF), 

where -A k =x5x= T, with j=k- 1  a, (k=1, 2,..., n). Each 
operator A k  is a homeomorphism from F /, onto F, provided that 
Re(ij+j1) I/p and, for Re(?l k +p)> l/p, is in the class P(F). Also, it 
can easily be verified that A k A,= A / A k  on Fp. , for k, 1=1,2,..., n. 
Consequently, L exists as a homeomorphism from Fp,, onto Fp,, if 
Re( ,Jk + ii)> 1 I for k = 1, 2..... n, and is given by 

((p eF) 	
(5.7) 

(by (4.9)). 

Applying the results of Theorem 5.6, we can also state that, when 
Re( k +ji)>l/p (k = 1, 2,..., n) and qeF, 

(L)' =L 2 q 

= (IV - ' ) ( p72 - 
 '. ') . . . ( 17"- 1 1 ) p 

=H'Hl2 ' 	 (VceC); 	(5.8) 

L"Lp=Lp 	(Vol, /3cC); 	 (5.9) 

(L 	p = Lp 	(Vf3 e C, -1 	1). 	(5.10) 

The operator M can be handled in a similar manner when a = n. In this 
case an appropriate formula is 

lWp = G" G 2 ' 	. . . G'" 

((,eF, Re( k +p)< l/p, k= 1,2,..., n). 
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6. CONNECTION BETWEEN THE SPECTRAL AND DIRECT APPROACHES 

The methods described in the preceding sections enable us to define L 
on 	by the formulae 

Lp = mxm 	
1 

j' q 	(m = n - a >0, a 
= 	

a, q, e F 
,) 

(6.1) 
k 

 

Lp =H'7k— 1, - m (P 	(a=n, 	 (6.2) 
k=I 

 

where b=(7jf,)~ i a.+k—n)/m and Ilk=k  — 1  aI =mbk  (k= 1,2,...,n). 
Our aim now is to demonstrate that formula (6.2) emerges when m is 
allowed to converge to 0 in (6.1). 

We examine initially the simplest case of a first-order differential 
operator given by 

L ,:  co = x5xp 	((p e F,, ,, ? 0). 	 (6.3) 

When e = 0, L q, = T -p,  where T p  is defined by (4.8), and therefore, on 
applying the spectral approach, (L 0 ) can be de fined as a homeomorphism 
from F,,, , onto F,,, , by 

	

= HI - , 	((p e F,,,, Re(i + ,q) >  l/p, ot cc). 	(6.4) 

On the other hand, if 8 >0 then m = n - a = 1 - (1 - c) = e and the direct 
approach produces 

(L 	(P = X  -  2P,: 	ap 	((p e F,, ,, 	 e 	, xc C, . >0), (6.5) 

where b 1  =i/c. If Re(ij+)> lip then i/EeA,for all e >0, and, for Re 
<0, we can write 

[(Lo )" p ](x ) = [F(_)]_1 J [log(1/u)]'u(xu)du 

	

(x>'O) 	(6.6) 

[(Lx ](x)= [F(—)] 1  x 

	

	J [(1— uc)ic]l u'(xu) du 
o 

	

(x>'O). 	(6.7) 
Now 

I 	'[(1 - u)i]. 	' q(xu)I 

(Vu, 8E (0, 1), x> 0) (by Lemma 2.3), 	(6.8) 
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and, since (1 — u')1&, regarded as a function of s, increases as c —+ 0+, it 
follows that the quantity in (6.8) is bounded above by 

MXRe p — 

where 

1— IIP[log(1/u)]_Re , — 	Re a < —1,0< u < 1  

17 g(u)= uRe(±P)_ - I/P( _ U )— R 	1 	—1 <Re oc <0,0< u <1. 

Since g is integrable over (0, 1), Lebesgue's dominated convergence 
theorem applies and, on allowing e —+ 0+, we find that 

[(L 1 ) 	 ](x) 	[T(—)] 	J [log(l/u)]' u'(xu) du 

= [(L0 ) q,](x) 	(Re a <0), 	 (6.9) 

for fixed qo e F,,,, and fixed x> 0. 
When 0 Re a < r, r e N , and e is small enough to ensure that 

Re(ij + J1)> i/p + (r — 1) r, we can use Theorem 3.3(iii) to write 

(L)Z q = (L,)' -  (L,,) q', 	 (6.10) 

where 

— [(6+;7)'4](x) 	as e-+0+ ((peF,x>0). 	(6.11) 

Consequently, from (6.4), (6.9)-(6.11 ), and (2.6), we deduce that 

[(L) ço](x) — [(L 0 )'' (6 + j)' (P (X) 

(H" - ' -  -'(P)(x) 	(peFx>0), 

as g — 0+. The passage of the limit under the integral sign can be justified 
by making slight adjustments to the argument used above. Since r e N is 
arbitrary, it follows that, when Re( +,u) >  lip, 

	

[(L e )' p](x) —+ [(L 0 ) 2  (p](x) 	((p E F ,, x >0) 	(6.12) 

as r —p 0+, for all complex values of c. 
The nth order case can be dealt with in a similar fashion by considering 

the operator 
it 

	

L E H X6X' 	(c>0) 
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for which a=n — c, m=, and bk=(nk—(n—k)/n)/c  (k=1, 2,..., n). If we 
assume that Re( k +)> I/p for k= 1,2,..., n, then bkeA P, for each k 
and the direct and spectral approaches lead to 

n 
(L E ) çø = 9 na X 	 fl J'k. - ' qo 	e 	>0) 	(6.13) 

k=1 

(L0) 	
= 
	

H17k 	- 	 ( E F, ). 	 (6.14) 
k I  

When Re x<0, (6.13) can be written as 

	

i 	if's 
[(L)](x)= [T(—)]x 2  I .. j (fl [(1—u)/]' 

	

O 	0 \k1 

xço(xu1u2 ... u)du  ... du1, 

where thk + E - 1 __* 11k - 1 as c -+0 + for each k. Lebesgue's dominated 
convergence theorem can once again be applied and, on letting S —+ 0+, we 
find that [(L) p](x) converges to 

J...J ( k I [log(1/uk)]__1uZk_1)(xul 
... 

ufl)dufl 
 ... dul 

= (H71 	H"2 	. . H'' 

= [(L0 ) p](x), 

for each fixed q  e Fr,,. and fixed x> 0. The extension of this result to Re 
c<r follows as above by first writing (L' as (L€)_r  (L )r and then 
establishing that [(LE )' (L i )' *p](x) —+ [(L 0 )_r (L o y q](x). 

It should be emphasised that the various limits considered above are all 
pointwise limits, each being valid for fixed p  e F , and x> 0. If we look for 
stronger versions of these limits with, for example, pointwise convergence 
replaced by convergence in FP, , then problems arise because the range of 
(L) varies with e. 

It is also of interest to note that the results of this section emerge 
naturally from the fractional power theory for Mellin multiplier operators, 
mentioned in Section 1. If we define the Mellin transform .Ifq,  of a function 
lpEFP, ( 1 < p 2 ) by 

Jfq,(s)=J xs_I çD ( x )dx 	(Re s= 1/p—Rej), 

and, for simplicity, examine the first-order operator L given by (6.3), then 
we can show that 

F([j—s]/+ 1) 
JI[(L) p](s+&&) =8 0, 	 .illço(s) 	(6.15) 

F([j—s]/e+ 1 -) 
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and 

	

JI[(L0 ) (p](s) = (ii —s) 2  .IItp(s). 	 (6.16) 

Since T(z+)/F(z+fi)=z[l+O(z)] (argzI<ir—t,0<t<n) as 
z -* co (see [2, P.  47, (4)]), it follows that 

=([ — s]/[1 + OWN —s])] 	(for small c) 

-*(j—s) 	as i-*0+. 	 (6.17) 

From (6.15)-(6.17), we are led formally to the conclusion that (L) 
converges, in some sense, to (L 0 ) as c-+0+. 

Finally, we remark that analogous results and comments hold for the 
operator M given by (3.2). For example, if 

Mr(p=—x'5xp 	 Re( ij  

then 

[(M) 2  (p](x) - [(M 0 ) p](x) 

= [( — T,,) 2  q](x) = (G - 'I -  - 2 (p)(x) 	(from (4. 10)), 

as e - 0+, for all complex values of a. 
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Fractional Integrals and Semigroups 	or It 

Adam C. McBride 

Introduction 

In this paper we shall survey some of the connections between 

operators of fractional integration and seniigroups of operators. 

For simplicity we shall restrict attention to operators related to 

the Riemann-Liouville fractional integral. On the one hand, such 

operators provide illustrations of the general theory of semigroups, 

particularly fractional power semigroups. On the other hand, it 

could be said that the operators have provided the stimulus for 

extensions of the general theory. 

The paper is divided into four sections as follows. 

Boundary values of holomorphic semigroups. 

Fractional powers of certain operators mapping one space 

into a different space. 

Fractional powers of certain operators mapping a space 

into itself. 

a-times integrated semigroups. 

1. For Rea > 0 and a suitable function 0 we define I°çó, the 

Riernann-Liouville fractional integral of order a of 0 , by 

(Ia4)(x) = 1 DX-tr -1 0(t)dt. 	(1) r(a)  
205 

G. R. Goldstein and J. A. Goldstein (eds.), 
Semigroups of Linear and Nonlinear Operations and Applications, 205-224. 
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When a = n, we obtain an operator corresponding to repeated 

(n-fold) integration. 

First consider the properties of Ja relative to the spaces LP(o, 1) 

so that we take 0 < z < 1 in (1). From [9, pp. 664 et seq.] we 

know that {I° : Rea > 01 gives rise to a holomorphic semigroup 

of bounded linear operators on LP(0,l) (for 1 < p :5 oo) and the 

first index law 

I°I=I°=II° (Rca> 0, Re13>0) 
	

(2) 

holds in the sense of operators on LP(0, 1). 

On writing a = p + iv(p, ii real with p > 0), we may consider 

the behaviour of I as p = Re  —+ 0+. For I < p < 00, it 

was proved by Kalisch [13] and Fisher [6] that, for each fixed 

E L"(0,1), the limit 

I"ç = urn 1Z+IL'0 	 (3) 

was well-defined, the limit existing in the LP(0, 1) norm. Further-

more, the family of operators 11"' : v E R} so defined forms a 

strongly continuous group of bounded operators on LP(0, 1). We 

can think of this group as giving the boundary values of the orig-

inal holomorphic semigroup and, as one might expect from (2), 

p l ip = JQ+tV = 1u'1a (Rea > 0, ii E R) 
	

(4) 

in the sense of operators on LP(O, 1) for 1 <p < oo. 

Now let us replace LP(0,1) by LP(0,00) where 1 < p < 00. 
The operators I (Re a > 0) are now unbounded operators whose 

domains are proper subspaces of LP(0, oo). Nevertheless, Fisher 

[6] proved that it was still possible to obtain a boundary group 
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{ IP 
. 
" : v E R} of bounded linear operators on the whole space 

LP(O, oo), although the limit process was more elaborate than that 

in (3). Equation (4) remains valid in the sense that 

I°I''q = I°" = I"'I 	(Rea > 0, v E R) 

whenever 

E D(I) = { 0 E L"(O,00) : I4 E L"(O,00)}. 

Theseresults have led to more general investigations into bound-

ary values of holomorphic semigroups of (possibly) unbounded 

linear operators in a Banach space X. We mention in partic-

ular the work of Hughes and Kantorovitz [12) who introduced 

the concept of a regular 3ernigroup of operator.; and showed that 

such semigroups {T(a) : Rea > O} gave rise to boundary groups 

{T(iv) : v E R} of bounded linear operators, the boundary groups 

being strongly continuous. As indicated in [12], this is one instance 

where results for fractional integrals have suggested an, extension 

of the general theory of semigroups. 

2. We have already mentioned that, in the setting of LP(0,i), 

the Riemana-Liouville fractional integral is an unbounded oper-

ator. One way to remedy the situation is to introduce weighted 

spaces with simple powers as weights. In this section and the 

next we shall work within the framework of the Banach spaces 

(1 <p < 00, it E C) where 

= {q :110 IIp,p< cx} 
cc 

I x(z)  IP dx/x}. 	(5) 

It is clear that L p ,,L  is homeomorphic to the usual space LP(0,cc) 

under the mapping 4(z) - x 1' 11P4(x). (We shall exclude the 
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cases p = 1 and p = 00 although many of our results apply in such 

spaces also.) 

If we take #(x) = x' with Re  > —1, then 

1 	 r(A+1) 
PO(X) = r(a) I - ) 1t'di = r(\ + a + 

i.e. 

PXA 
= r( + 1) A+a 	 (6 

F(.X+a+1) 

The change in power from .\ to ...\ + a can easily be accommodated 

within the structure of our weighted spaces. It can be shown that 

10 is a continuous linear mapping from LP,Ainto 

L +0  provided that Rey > —1, Rea > 0. 	 (7) 

Thus each JO  (and V in particular) maps from one weighted space 

into a different one. 

We shall now consider a class of operators, each of which maps 

from one space into a different one. For each such operator T 
we shall define a general power T 0  (Rea > 0) and thereby obtain 

a fractional power semigroup. The Riemann-Liouville fractional 

integral can be recovered as a special case. However, by restricting 

attention to smooth functions, we can also treat fractional deriva-

tives and powers of "Bessel type" differential operators. We shall 

merely outline the theory here. Full details can be found in [21), 

[22] and [23], with an edited version in [24, pp. 99-139]. 

We shall make extensive use of the Mellin transform M defined 

formally by 
00 

(M)(3) = 1 1 )d. 	 (8) 
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(For 4 E 	the integral exists via mean convergence provided 

that 1 <p <2 and Re a = — Ret.) The Mellin convolution k * 

of two functions k and 0 is defined by 

00 

(k * )(x) = j k()cb(1)- 	(z > 0). 	(9) 

Under appropriate conditions, we obtain 

(M(k * ))(s) = (Mk)()(Mc6)(s). 	(10) 

For fixed k, we can think of the transform S defined by 

S= k*. 	 (11) 

It follows from (10) and (11) that 

(12) 

It is then possible to obtain the mapping properties of the trans-

form S bystudying its multiplier Mk and extensive investigations 

have been carried out by Rooney [26], [27]. (A change of variable 

relates this to symbols of pseudo-differential operators defined via 

the Fourier transform.) Under appropriate conditions on Mk, S 

will map into itself and we then call Mk an L PIA multiplier. 

Now let y  be a non-zero complex number. Let 

T = zS 	 (13) 

where S is as in (11). (This means (T)(z) = x(S)(z).) Then 

from (12) and (13) we get 

(M(Tqf,))(a - 7) = (Mk)(s)(Mj)(i). 	(14) 
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We now assume that the multiplier Mk has a particular 'fac-

torised" form, namely h(.9 - ')/h(s) for some function h. Thus 

we finally arrive at operators T which satisfy an equation of the 

form 

(M(T4'))(3 - = h(_7)(MJ)() 	(15) 

A simple induction based on (15) gives formally 

,rvy) 
(M(T"4))(a - ivy) = 

h(i _ 
 (Mq5)(3) (n = 1,2,...) 

h(s) 

and this immediately suggests that an operator T° can be defined 

by requiring that 

(M(T))(s - cry) = h(s - cry) (M)(3). 	(16) 
h(s) 

This will work provided that h(s - cx7)/h(s) is an acceptable L v ,, 
multiplier, in which case T  will be a continuous linear mapping 

from L P,, into under appropriate conditions. We may 

feel justified in referring to T  as an czth power of T. 

It is worth remarking that a general cth power defined in this 

way is not unique. To see this we note that if (15) holds for a 

particular function h then it will also hold for each of the functions 

h r(r = 1,2,...) where 

= exp(2riris/-y)h(s). 	 (17) 

However, as regards (16), 

hr(S - cr-Y)
= exp(-2riri) 

hr(3) 	 h(s) 

and, since exp(-2r7ria) 	1 in general, we may obtain infinitely 

many possibilities for T'. 
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Suppose now that T satisfies (15) and that we use the same 

choice of Ii throughout (i.e. for the calculation of all powers). 

Then it is routine to check the validity of the first index law 

T'T16 = 	= TT° 	 (18) 

under appropriate conditions. Perhaps more surprisingly it is also 

easy to deal with the second index law 

(T°) 	T'. 	 (19) 

Indeed, with the same h throughout we calculate (Tc)fi  by re-

placing T,cr and 7 by and ay respectively in (16). This 

produces (16) with a replaced by cz/3 and (19) is proved formally. 

The simplicity contrasts with the difficulties encountered in the 

spectral approach which is introduced in the next section. 

It is time to illustrate our theory and, as promised, we shall 

show first how to recover I.  All we need to do here (and in 

subsequent cases) is to identify and a suitable h. 

We start with T = I where 

(I')(x) 
= f (t)dt 

and find that (under appropriate conditions, e.g. for 0 E C'°(O, )) 

1 
(M(1 1 q5))(s  

1-3 

Comparison with (15) gives = 1 and a suitable choice for h is 

h(s) = 	
1 	

(20) 
r(1—s) 
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Formula (16) then says that I' (I' )° has to be such that 

(M(I))(a - a) 
- r(l — a) 

(Mc6)(a). 	(21) 
- (1 - a + or) 

We can check directly that this gives the operator in (1) so that 

the choice of h in (20) is in a sense canonical. 

To discuss derivatives we need to use smooth functions. With 

D 	and qS E C( '°( 0,00), we may integrate by parts to obtain 

(M(Db))(s + 1) = —a(M94)(a). 

Comparison with (15) gives 7 = —1 and a suitable choice for h is 
given once again by (20). Then DI  has to be such that 

(M(D))(3 + a) = 
	(1 —3) 

(A4)(3). 	(22) 
F(1 - s - a) 

Examination of (21) and (22) leads us to conclude formally that 

= D; D = 	 (23) 

as one might expect. 

It is worth commenting briefly on the validity of our formal 

calculations. The multiplier (1 - .)/F(1 - 3 + a) in (21) can 
serve as an L P , J

,multiplier if Rea > 0 (or if a = 0, in which case 

we obtain the identity operator) but not if Rea < 0. When we 

restrict attention to smooth functions in a subspace of L,, 
(see Definition 6.1 in [24], for instance), we discover that (21) can 

serve as an multiplier for any a and can then proceed to 

establish (22) and (23). Again see [24] for further details. 

Sometimes we may wish to differentiate or integrate with re-

spect to a positive power m of the variable rather than x itself. 
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It is possible to define operators 10,, and Do which extend the 

previous results for m = 1. Thus, in with Re  > 0, (21) 

becomes 

-) 
(M(Iq))(a - ma 	

r(i 
) 

= - + a)(M(á 	(24) 
M 

Such generalisations are important in connection with special func-

tions 

One way of justifying the last remark is to consider an n-th 

order differential operator of the general form 

T = z°'Dz° 2 D . •z°'Dz°. 	 (25) 

As an example, consider 

B,, = 

= z 2 (z 2 D2  + zD - v 2 ) 	 ( 26) 

The equation B,,y = —y is Bessel's equation of order v. Con-

sequently the operator (26) is sometimes called a hyper-Bessel 
n+1 

operator. To define T° via (16), we assume that >2 a2  is real and 
j= 1 

that 
n+ 1 

m=l.>2aj_nI>0. 	 (27) 
j=1 

(If the modulus is zero we are in the situation of the next section.) 

On replacing each D in (25) by mz m_l L-, with m as in (27), a 
dzm 

concrete expression can be obtained. See [20] and [24], these pa- 

pers having been motivated by Sprinkhuizen-Kuyper [29]. Notice 

that for B,, in (26) we get m = 2. This explains the appearance of 

fractional integrals with respect to z 2  in formulae for the Bessel 

functions such as Sonine's integral [5, §7.12]. 



214 	 A. C. McBride 

To summarise our theory, we may say that the formula (15) 

leads to a very simple method of defining T° and hence of ob-

taining a fractional power seinigroup (or even a group). The fact 

that T maps between different spaces means that some features 

are missing by comparison with what will follow in the next sec-

tion. For example, since )J - T is meaningless, we do not have 

resolvent operators available. Analyticity with respect to a has to 

be handled at a lower level, with Fréchet derivatives unavailable. 

Thus we are forced to fix not only 0 E L but also z E (0,00) 

and then to investigate (T'q5)(z) as a function of a. Our final 

comment here is that the above results are thirled to the Mellin 

transform and the weighted spaces LP,J.1 In  contrast we shall now 

turn to the spectral approach for operators mapping a general 

Banach space into itself. 

3. We now consider operators mapping a space (or a subspace 

of it) into the same space. Precisely, let X be a Banach space and 

let A be a linear operator whose domain D(A) and range R(A) 
are linear subspaces of X. We shall review the basic method of 

defining powers of —A. See [3], [11] and [17]. 

First recall that, if A is a positive real number and a is a 

complex number satisfying 0< Re  < 1, then 

A' 	
sinira f D  An — ' 

= ir J 	(28) 

The formal analogue of (28) for operators is 

siniraj 
A' (I - 

0 

or 
00 

IA'R(,A)(—A)zdA 	(29) 
r J0 
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where R(A,A) = (Al -A) - ' and 0 < Re  < 1 as before. For (29) 

to exist we certainly need z € D(A) as well as requiring R(A, A) to 

exist for all A > 0. To guarantee convergence of (29) as a Bochner 

integral we assume that 

(0, ) C p(A), the resolvent set of A 

11 AR(A,A) 11 < M for all A > 0 	 (30) 

where M is a positive constant. 

We observe that condition (30) is satisfied when A is the in-

finitesimal generator of a uniformly bounded C o -semigroup, as a 

consequence of the Hille-Yosida Theorem. 

In order to define (_A)a  for Rea > 0 rather than for the 

restricted range 0 < Rea < 1, we first observe that (29) can be 

rewritten in the form 

A (-A)ax = S1flir I A'[R(A,A) - 1+A2 ](-A)zdA 
Jo  

+sin 
ira  
-j-(-A)x. 	 (31) 

However the expression (31) is meaningful for the larger range of 

values 0 < Rea < 2. (Basically R(A,A) - 	,,I behaves like 
1 ± ) 

A 2  as A -+ c,o.) We can therefore use (31) to extend the definition 

of (-A)'x to this larger range for x E D(A). Finally, if a satisfies 

n - 1 <Re a <n + 1 for a positive integer ii, we define (-A)° via 

(-A)x = (-A)'(-A)'x 	 (32) 

for suitable x. If for simplicity we assume that D(A) 	X and 

that A is bounded, then the family {(-A)° : Rea > 0} is a 

holomorphic semigroup. 
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To illustrate this theory we return to our theme of the Riemann-

Liouville fractional integral. In considering (6) in the previous 

section, we introduced a family of different spaces. Alternatively 

we can modify JQ  by considering the operator P 7,0  defined by 

(J?7)() = 

	

I(z - i)'t'(i)dt. 	 (33) 
o  - F(c) 

In contrast to (6) we find that, for Rea > 0 and Re(i7 + A) > —1 

= r( + A  + 1) 	
A. 	 (34) 

F( + a + A + 1) 

In view of (34) it is no surprise that 

I' :3 a continuous linear mapping from 

	

into itself if Re  > 0, Re(77 + /1) > — 1. 	 (35) 

The operator (33) is an example of an Erdélyi-Kober operator. 

Such operators were studied by Erdélyi and Kober in a series 

of papers [4], [15] and [16]. Modifications involving fractional 

integrals with respect to z 2  rather than z subsequently led to 

an elegant method for solving dual integral equations arising in 

potential theory. (This is related to the emergence of rn = 2 in 

connection with the Bessel operator (26).) For further details see 

the article by Sneddon in [28] as well as Chapter 7 in [19]. 

Consider the operator I'" on LP(O,00) for simplicity. (The 

results go through for any L,,4  space with minor changes.) Take 

A = —I'' in order to define powers of I". The results which 

follow are due to Lamb [18]. As regards (30) we find that, for 

A> 0, 

= A2 	
(36) 



Fractional Integrals 	 217 

provided that Re71 > —1 (where the first I on the right-hand 

side denotes the identity operator!). We remark that (36) can be 

checked by showing that both sides have the same Mellin multi-

plier in the sense of (12), namely (i + 1 - .$)/(Ai1 + A + 1 - A.,). 

We then obtain 

II AR(A, 	II = U 1— I'+" II 

< 1 ++ 
A(i1 + 1) 

~ 1 + = 2 for Re  >0, Rei> —1. 

This completes the verification of (30). On substituting (36) into 

(31) and then using (32) we find that, for Rea > O and Rer> —1, 

(I)" = 

where the operator H  is defined by 

.1 f , [Iog( z d
(H)(x) = 	 )})-. 	(37) 

r(a) 	t 

The operator H in (37) corresponds to integrating c times with 

respect to log z. It is often linked with the name of Hadamard. 

In the above example, everything could be calculated explicitly. 

However the case of 1 17,2  presents more difficulty and the case of 

(I0) for general a and 8 seems hopeless. 

/ 

4. In this final section we shall consider families of bounded op-

erators obtained as fractional integrals of semigroups. Consider a 

Co -sernigroup {T(i)} g >o of bounded linear operators on a Banach 

space X and let A : D(A) -* X be its infinitesimal generator. 

Then the abstract Cauchy problem (ACP) 

du 
- = Au (t > 0); u(0) = u0 	 (38) 
di 
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has a unique "classical" solution u : [0,00) -* X for any given 

uo  E D(A) and u is given by 

u(i) = T()u o  (i > 0). 

It is of interest to ask what happens if A does not generate 

Co -sernigroup. 

Let cr be real and positive and let {T(t)} € >0  be as above. We 

define a new family {S(s)} 3 > o  of bounded linear operators on X 

by 

S(3) 	 1,(.9
=

( 39) 

the integral converging with respect to the operator norm on 

B(X). We shall refer to the family {S(3)} 3 > o  as an cc-times inte-

grated semigroup. 

This concept was introduced in the case a = 1 by Arendt [1] 

and thereafter the theory has been extended to positive integers a 

and finally to all positive values of a. Details can be found in the 

papers of Kellermann and Hieber [14], Neubrander [25], Theme 

[30] and Hieber [7], [8]. Basically (39) is an operator version of 

(1) and we could express this briefly in the form 

5PT. 	 (40) 

If A denotes the infinitesimal generator of {T(t)}, we may apply 

the convolution theorem for the (operator-valued) Laplace trans-

form to deduce from (39) that 

I eS(s)d = 

i.e. 
00 

R(A,A) = 	fo C -A SS(s)ds 	 (41) 
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for all sufficiently large (real) A. It is evident that A not only 

generates {T(t)}> o  but also generates {S(a)}.>o in a sense em-

bodied in (41). However, it is possible to find operators A which 

will "generate" a family {S(s)} 1>o  satisfying (41) without gener-

ating a Co -seniigroup. We shall use the following definition. 

Definition A linear operator A : D(A) - X is said to be the 

generator of an a-times integrated semigroup (for a > 0) if 

the resolvent set, p(A), of A contains (w,00) for some 

ER 

there exists a mapping 5: [O,cxD) -+ X which is strongly 

continuous and satisfies 

11 S(s) jj< Me" (i > 0) 

(where M is a positive constant) and 

00 

R(A,A) = 	10 eS(3)dJ 

for A > max(ci.,O). 

For a = 0, the above definition coincides with the usual 

infinitesimal generator in view of the Hille-Yosida Theorem. A 

"Hille-Yosida Theorem" can be proved for a > 0 too and the 

theory in this case bears some similarities with that for a = 0. 

For example {S(s)} is uniquely determined by A. There are also 

some differences, notably that 

for a > 0,D(A) need not be dense in X. 	(42) 

A useful fact is that 

if A generates an a—times integrated sernigroup, then A 

generates a /3—Limes integiated semigroup for all /3 > a. 
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This means that we can accommodate more operators as genera-

tors by increasing a. 

With this in mind let us return to the ACP (38) and sup-

pose that A generates an r-times integrated semigroup for some 

non-negative integer r. It is well known (see, for instance [2]) that 

(38) will have a unique "classical" solution for each u0 E D(A'+'). 

This has been extended to positive non-integral values of a by 

Hieber [7]. 

Theorem Let a > 0 1  e > 0 and assume that A generates an 

a-times integrated semigroup {S(3)} 9 >o satisfying 

I! S(.)  11:5 M?e'3  (3 > 0) 

for non-negative constants M,. Then there exists a unique clas-

sical solution of (38) for all u 0  E D((—A) 1 ). 

This result indicates a connection with the theory of frac-

tional powers of operators discussed in the previous section. At 

this juncture, it is legitimate to ask if there are any important 

applications which require the use of a non-integral value of a, 

thereby justifying the use of "fractional" integration. To provide 

this justification, we mention another result of Hieber. 

Consider the ACP (38) for the Schrödinger equation 

du 
- = iu (i > 0); u(0) = UO 	 (43) 
dt 

in the Banach space LP(R") where we take 1 < p < co for sim-

plicity. Hôrmander [10] proved that (when defined on its natural 

domain) iA generates a C o -seniigroup on LP(R") if and only if 

p = 2. In contrast Hieber [8] has shown that iA generates an 
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-times integrated semigroup on L'(R") if and only if 

a>nI—I. 	 (44) 

:This confirms that a = 0 is only possible when p = 2.) It is of 

nterest to investigate the space of initial conditions u 0  for which 

:4) has a unique classical solution u. The "optimal" space turns 

)ut to be the Sobolev space W 2 '. To obtain this when n is 

)dd it is necessary to use fractional values of a, as use of r-times 

ntegrated semigroups with r a non-negative integer will give a 

weaker result which only guarantees existence and uniqueness of 

a. classical solution for u 0  E W" 3 P. 

Conclusion This survey paper has touched on a few of the inter-

connections between the Riemann-Liouville fractional integrals, 

tractional powers of operators and semigroups of operators. It 

may be expected that all three areas will continue to play a role 

in the future study of evolution equations and abstract Cauchy 

problems. 
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ABSTRACT 

Ordinary differential equations of m-th order with variable coefficients: 

B y(x) 	y(x) + f(x) , ). = const, f(x) 	a given function, 

are considered, where B is the so-called "hyper-Bessel"("Bessel-type") operator: 

B 	x 0  D x 	0... 	m-1  0 xm 	( 0 	d/dx) 	, Ox<oQ, 

arising in the problems of Mathematical Physics mainly in the equivalent forms: 

(2 1 ) B = x 3 	xD ) = X a ( XmDm + a1xm_lDm_l + ... + a1xD + a ) 

It is a generalization of the classical 2-nd order operator of Bessel, related to 

the Bessel functions J(x) . In [24] we have obtained explicit, solutions of the 

equations B y(x) =,.. y(x) and B y(x) = f(x) , satisfying arbitrary initial con-

ditions at x=O . All of them are special cases of the generalized hypergeometric 

C-functions of Meijer. Now, in order to solve the problem entirely, we propose a 

particular solution to the nonhomogeneous equation (1). It is represented by,means 

of a series of integrals also involving G-functions.The transmutation method, based 

on a Poisson-type integral transformation is used, combined with the Techniques of 

the Laplace and Mellin transforms and Generalized Fractional ealculus.Some known 

special functions such as Lommel and Struve functions are shown to be particular 

cases of the solution found here. The results of both papers confirm the close re-

lation between the hyper-Bessel operators of arbitrary order and C-functions. 
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1. Introduction 

Let m)l 	be an integer,fi)O be arbitrary real numbers. 

hroughout the paper, 0 = d/dx , 	D m = 	(d/dx) 	, rn:1, 	2,... 	and 	xD = 	x(d/dx) 	is 

he Euler differential operator. m 

Definition 1.1. Let 	Qm  fl 4fiJ be a m-th degree polynomial whose 

eros 	/i41,= - RV- , 	k=1, . . . ,m 	are counted with their multiplicities. 	The linear 

lifferential operator 

1.1) 	B = x 	 x 	fl ( xD 	) 

	

0x°O 

s said to be a hyper-Bessel differential operator. 

The term "Bessel-type differential operator of order in" is also used for ope-

ator (1.1), introduced and studied by Dimovski [5], [6], [7], Dimovski and Kirya- 

ova 	[10], [ii] and McBride 	[28], [29] 

1.2) 	B 
Ot' 

= x 
d 

D  'm-i 0... 	x 	D 4 
in the form 

0 cx°r, 

here: 
oC -) 

_/+1 	' k j 	- 	+1 , k=1 . . ,rn-i; 	,4J7 

r, 	m - (c+ Ce +. . . -+c)> o 	J1 	• . . + d-m+k ) /,,6 , k=1 . . . , m. 

Depending on the arrangement of the zeros /Uk= -,&f<, k=1,. . .,m of the poly-

omial 	m544'  operator (1.1) has different representations in form (1.2). To avoid 

his, we shall assume that 

-r 	or f'.. >1 
pecified according to our convenience. 

In general, operators (1.1), (1.2) are singular linear differential operators 

ith variable coefficients, arising in Analysis and Differential Equations usually 

n the equivalent forms (often with ,1 =m, or 
R 

1.3) 	B = x 	( x"D' + a 1  x" 	+ 	a 	xD + a + rn-i 	m ) 

here 
J 

a 	(i/j!)  
1 m-j 	

1=0 
f] yti  + i + 1)] j=O,1,. . .,m-1. 

Particular cases. The best known example, giving rise to the name of operators 

1.1),(1.2),(1.3), is the second order singular differential operator of Bessel: 

1.4) 	B = x 2  C XD + 1 )( xD - )) = x'_1 D -2)'+1  D x = 	D 2)'+l  D x 

= D2  + X- 
1 
 o 
 - 2 x 2  , that is, ,,.B =m=2, el  = >/2 , '= - ))/2 
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related to the Bessel function y(x) = J(x) which is a solution of the equation 

x& y''(x) + x Y ,  (x) + (xZ_V) y(x) = 0 , that is, Bvy(x) = -y(x). 

Among the other Bessel-type operators of 2-nd order, we shall mention: 

B 	o2 + (k/x) 0 ( k~t1 ), related to the "generalized" heat equation; 

-n 2 B 	x D 	C n>O integer), arising in P.D.E. of mixed type; 

B 	D x D , B = x -  D x(*i  D ; etc. (see [24:1 for more details). 

The simplest higher order hyper-Bessel differential operator is the operator 

of the rn-fold differentiation ( m> 1 , integer ): 
kfl 

B 	D 	(d/dx) 	with "hyper-Bessel" parameters: 
(1.5) t ft 	rn 

, 3= (k/m)-1 	, k1,...,m. 

Operational Calculi and Integral Transforms for special m-th order Bessel-type 

differential operators such as 

- 1 
Bx 	(xD) 

have been developed by 

movski [5] 
, [61, [7] 

of McBride [28 , 

differential operators 

D x 0 x D ... x 0 ; B 	=D (h/m' ( X 1 _ 1 /mD)m_ 1  )'+1-2M4  
4t 

different authors (see [24]) and in the general case by Di-

Dirnovski and Kiryakova [9], [iOJ , [11 J. In the papers 

and Dimovski and Kiryakova [iij the negative powers of 

(1.2) , found earlier in [5] in terms of convolutional 

products, have been represented explicitly by means of integral operators invol-

ving Meijer's G-functions. 

It is worth pointing out that the history of the Bessel functions and corres-

ponding differential operators can be traced back to Bernoulli, Euler and Poisson, 

who associated them to the P.D.E. of the potential, wave motion, diffusion, etc. 

Actually, in the P.D.E. of Mathematical Physics, hyper-Bessel operators arise often, 

at least in one of the variables: x, y, z (Cartesian coordinates), or r (Polar, 

Cylindrical or Spherical coordinates), for example in the forms: 

(i/r)(/ar)r , (11 r )(è1 r ) r 2  , (1/rn )(/?r) 2 9 	(a/r)(l/r)(/r)r(/ ~ r) 

Usually, by separating the variables or applying a suitable integral transform we 

can reduce these problems to initial value problems for O.D.E. involving hyper-

Bessel operators. 
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Definition 1.2. Let B be an arbitrary Bessel-type differential operator 

1.1), (1.2), (1.3) of order m >1.  An ordinary differential equation of the form: 

1.6) 	B y(x) 	,y(x) + f(x) 	const , f(x) a given function, 

a said to be a hyper-Bessel differential equation. 

Cauchy initial value problems for equations (1.6) can be stated either by means 

i f the classical initial conditions 

1.7) 	urn S,(k_l)(x) /k  

r by means of the equivalent set of "Besse1 - t ype" initial conditions 

1.8) 	lim B,.y(x) = b 	, k:1,...,m 
x —p +0 

there Bk  are the "truncated" hyper-Bessel operators 

Bk 	x.11 	( xD +ft3. 	'k D 	k~ 1 	o 	m 	, 

B 

An important problem is to find a fundamental system of solutions of the hyper-

lessel differential equation B y(x) = A y(x) (that is, the eigen-functions of ope-

ator B) as well as to solve an arbitrary initial value problem for the nonhomoge-

eous equation B y(x) = f(x). Till now, many efforts by different authors have 

een made towards finding solutions of these problems in various special cases: mainly 

or m2 , or proposing algorithms only (see [1), [21, [4], [15], [17], [25) and 

:he other references in [241). Most of these solutions are modifications of the Bessel, 

-8essel functions ([1],[15]), hyper-Bessel functions ([4]),  etc. and all of them 

an be expressed in terms of the generalized hypergeometric functions p  F  q 
	or, in 

:he most general cases, as Meijer's C-functions. The close relation between the latter 

pecial functions and the hyper-Bessel operators of arbitrary order has been observed 

lready in [10), [ii), [19] . There, a G'2_function  has been shown to be a solu-

;ion of the equation B y(x) .2 y(x) as well as a kernel-function of the Obrechkoff 

:ransform ([31 ])corresponding to arbitrary hyper-Bessel operator B. Later on, all 

:he theory of the hyper-Bessel operators was revised from the point of view of the 

leijer's C-functions (see [19], [21], [22], [23], [301). The results in papers [28],[29] 



-5- 

by McBride confirmed 	the role of the 6-functions used as kernel-functions of re- 

lated integral operators and gave rise to the generalized fractional integrals 

introduced in [20) , [21] . In [24] we gave the explicit solutions of the ini-

tial value problems mentioned above, all of them also being Meijer's 6-functions. 

Before summarizing these results, we give the following 

Definition 1.3. By a Meijer's 6-function we mean a Mellin-Barnes type con-

tour integral of the form 

(1.9) 	Gm,n( X ) 	Gm,njx 	lp 	6m,nr 	J1 	1 	J 	m,n ( S ) xS  ds 
p,q 	p,q L 

I
b 1 •••bq J 

	I
(bki 	

p,q 

where 	is a suitably chOsen contour in C , x A 0 and the integrand is: 
m 	 n 

	

kI1 r(bk - s) 	j1 
 r(1 - a. + 

3 s) q 	 p 

1 r(1 - b + s) fl rCa - k 

	

k 	jn+1 	j 

The integers (m,n;p,q) (0mq , 0np) are said to be "orders" of the 6-

function and the parameters a3 , b  are such that a. - b <  A 0 1  ± 1 1  ± 2, ..., 

j=1,...,n , k=1,...,m. 

This function is analytic in: 1x1 < 1 	IxI) 1 , or in the whole complex plane 
C , this depending on the orders and parameters. It includes as special cases most 

of the Special Functions in Mathematical Physics and thus, provides an uniform ap-

proach to them, combined with a succinctness of notations and easy-to-use properties. 

For all the details we recommend the books 
11  4

1 v.1] , [26, v.1] , [27] , {323 

Let us define also the basic functional spaces in which we seek solutions of 

the hyper-Bessel equations (1.6) from a practical point of view. 

Definition 1.4. Let 	C[0,00) and c[0,Q) be the spaces of the continuous, 

respectively etimes smooth functions in 	We consider the following linear 

sets of functions 	o ,o(€ R, p € R ): 

(1.10) 	 = fY(X) = x 	(x) ; p>o( , 	€ C[0,o0)I , 	°:= C 

in particular, for the hyper-Bessel operators B (1.1) with 

max [-fi (
rk + 1)] 

1 5  k!5m 



Also, for a sequence 	1'2'' ••  'm we denote 

k1 m 	 1 	 m1 
(1.12) 	span .[x j1 : 	 c1  x 	+ c x 	+...+ ç,x 	j. 

Then, the following results hold (see Lemma 2.1, Theorem 2.2 , Theorem 2.3 

of [24] ): 

Lemma 1.5. Let condition 

(1.13) 	Jk. - 	j& integer for any 	i , j 	1, ... , m 

for the parameters of B be satisfied. Then, the functions 

(1.14) 	 = 	x 	, 	k=1,...,m 

form a fundamental system of solutions of the equation 

(1.15) 	B y(x) = 0 

in a neighbourhood of x = 0 and 

(1.16) 	y0 (x) = c1 Y1 
 (X) + c2 Y2  (X) + 	+ Cm ym 	 c  X 

FU k 

with coefficients 

(1.17) 	C 	n p( 	
-rk] 	

b  , k=1,...,m 

is the particular solution satisfying arbitrary initial conditions (1.8). 

This means that the kernel-space of the operator B is: 

S fitk.m 
(1.18) 	ker B = span ix 	

j 1 

Theorem 1.6. Let conditions (1.13) be satisfied and 	f E C Ot  . The solution 

of the initial value problem for the nonhomogeneous equation 

(1.19) 	B y(x) = f(x) 

defined by arbitrary initial conditions (1.8) has the representation 

(1.20) 	y(x) = y0 (x) + Y(x) 

with y0 (x) defined as in (1.16) and 

(1.21) 	
Y(x) = L f(x) = 
	mP5 6m : 0[ 	ti 	1] f(x1) d 

0 	 (ii 

L being the linear right-inverse perator of B C BL 	I , I - the identity 

operator in C ),.defined by zero initial conditions: lim Bk  Lf(x) = 0 , k=1,...,m. 
x-+0 
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Theorem 1.7. Let (1.13) be satisfied again. Then, in a neighbourhood of the 

point x = 0 a fundamental system ofsolutions of the hyper-Bessel O.D.E. 

(1.22) 	B y(x) 	.2y(x) , ,?= const 

(that is, eigen-functions of the operator B) consists of the Meijer's C-functions: 

10 
(1.23) 	yk(x) = C' [ - ( x./ pm)  

the latter representable also in terms of the generalized hypergeornetric functions 

DFM-1 	x 	
and the hyper-Bessel functions of Delerue J 	x) from 

f1'••' '"'(m 
[4] (for definition see also [241). 

It is seen now that the only problem that remains open for solving initial 

value problem (1.6),(1.8) in its generality, is to find a particular solution to 

the general nonhomogeneous equation B y(x) = .y(x) + f(x) ,.41 0 and f 	0 

In the sequel, we use the transmutation method (see [8], [161, [241): first sal-

ving the problem in a simpler case (with a simpler hyper-.Bessel operator like 0m) 

and then transforming it into the general case with arbitrary operator B. 

2. Solution to the simpler problem 

The simplest hyper-Bessel differential operator of order m 1 is the rn-fold 

differentiation B Dm,  (1.5). Let us consider the initial value problem 

(2.1) 	
_.(m) 	2 (x) + F(x) 

(2.2) 	 ,(°) 	
... = .(m.1)() 	

0 

To solve it, one can use the formal techniques of the Laplace transform ([131): 

00  (2.3) 	Y(s):= L{(x);s 	5 exp (-xs) y(x) dx , Re(s) 
considered in the linear spaces ° (compare with (1.10)): 

(2.4) 	C 	:= 	y(x) € C; y(x) 	(exp/x) as xk exp 	f 	-1 

The initial conditions (2.2) imply 

(2.5) 	Lt 
5 -(m) 
Y 	(x);sJ 	

m 
s Y(s) 

and thus, differential equation (2.1) is transformed into the algebraic one: 

m Y(s) = 	Y(s) + F(s) 	, where 	F(s) = L{F(x); 

Then, the Laplace image of the solution 	(x) is: 

(2.6) 	Y(s) = F(s).H(s) 	with 	H(s) = 1/(s-) = 1I[s/ 	
mm 



For Re(s)' 11/m , that is, for JP := pjl/m in (2.3),(2.4), H(s) is the Laplace 

transform of a function h(x) of following alternative forms (see [14, v.31, p.214, 

(15), respectively p.216,(32)): 

if 2- > 0 , then 

h(x) = h (x) = ,-1+1/m h 	(1/mX) 
+ 	 m,m 

where in general , we denote by 
COO 

(2.7) 	h 	(x) = 	mr~i-1 
m,i 	

r=O 
x 

 
the hyperbolic functions of order 

- 

I (mr+i-1)! 	, 	i=1,...,m 

(m)- 	- 

rn , the 	solutions of O.D.E. y 	= y 

if it < 0 , then 

	

h(x) = h(x) 	
()-1+1Im k 

m,m 

where 

/ 
(2.8) 	1< 	(x) 	

r 	

(-1)r mr+i-1 
/ x 	(mr+i-1)! 	, 

m,i 	0 -(m) - 

are the trigonometric functions of order rn, solutions of the equation y -y. 

Let us note that in [24] we have already used other functions of this kind, namely: 

cos m m,1 m (x) = k (x) and h C) m,1 h 	(x) 

Both functions h (x), h (x) have however the common power series form: 
00 

(2.9) 	h(x) = h(x) 	
mr+m_1 / (mr+m-1)! , 	convergent for (xJao 

or in terms of the generalized hypergeometric functions, 

(2.10) 	h(x) = ( xm_h,(m_l)!) 0Fm 1[ (1+i/m)1 ;.(x/m)m I 

F(21 	/m~ . G 110  [ -.2(x/m) 	(i/m)m-1  I O'm

Then, (2.6) and the convolution theorem for the Laplace transform ([13]) give the 

original solution of problem (2.1),(2.2) in terms of the Duhamel convolution: 

(2.11) 	(x) = F(x) * h(x)= 	F(x-t) h(t) dt 	F(t) h(x-t) dt 

r(t)[ (Xt) mr+m_l  / (mr+m-1)! 1 dt 

Thus, we can formulate the following 

Lemma 2.1. The solution of initial value problem (2.1),(2.2) with 	6 C _ 1 
Cm) 

belongs to Cm 1 C C 1 
 and has the integral.representation 

(2.12) 	(x) = 
	

x-t 	[ -(x/m) 	(i/m) 1 ] dt 

0 
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orby means of a series, 

00 

(2.13) 	(x) 	Z r 	5 	mr~m-.1 
x-t) 	rt) dt I 	a' Rm(r1)  F(x) 
(mr+rn-1)! 

r:O 	0 	 r0 

where 	R 	denotes the Riernann-Liouville integral of order 

integer,  

8'  
(2.14) 	R F(x) = 

X
(x-t) - - 

	 F(t) dt.. 

SO(if 9,  is 

Proof. Representation (2.12) follows immediately from (2.10),(2.11). The 

Heaviside-Mikusinski Operational Calculus (see [131) based on the same Duhamel 

convolution (2.11), however, avoids the formal restriction to the subspace CexpCC_i 

imposed by the use of the Laplace transformation. Since this convolution is an ope- 

ration in C 1 , F 

case, h(x) E C(m) CC_i rn-i 

and h EC 1  would imply F * h = i E C _ 1  too. In our 

(see (2.9), (2.10) and asymptotic behaviour of the G_  

functionsas x —p 0 , [14, v.11 ). Then, a more precise general theorem of Bozhi- 

(m) (ii) 
nov [3] states that 	C 1  )( Cm_i 	>C 

(m)  
m_i , that is, the solution y € 

C (m) 
m_i 

and has the integral representation (2.12). 	 Further, 	we can change 

the order of the integral and series (both of them absolutely convergent) in the 

second line of (2.11), namely: 
00 	 X 	 mr+m-1 

(x) 	
r ç 	(x -t) 	f 	dt I 

r=0 	0 	(mr+m-1)! 

or in terms of the Riemann-Liouville operators of fractional integration: 
00 

(x) 	
r 	m(r+1) F(x) 

the form of solution 	(x) we shall use in the sequel (Section 4 ). 

3. The Poisson-Dimovski transformation as a transmutation operator 

The transmutation method is based on the idea of transforming a complicated 

problem to a simpler one whose solution is known or easier to find. 	This method, 

dealing with operators of transformation (transmutation operators, similarity opera-

tors, etc ) is often used in solving initial and boundary value problems for diffe-

rential and integral equations ([81, [ii], [12], [16], see [24] for other refe-

rences and Definition 4.1). In this paper, we are interested in a transformation, 
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relating the m-th order hyper-Bessel differential operators Dm = (d/dX)m (with 

parameters as in (1.5)) and B of form (1.1). Definition 4.2 in [24] provides 

the general form of the so-called Poisson-Dimovski transformations P, transmu-

ting Dm into B. Let us assume now that 

(3.1) 	"1r2 	 m 

(we can freely rearrange the zero 	10 

_J' 	k1,.. .,m of 0m 
/4) in (1.1) Pd 

in order to satisfy (3.1)). Then, we obtain the simplest of these transformations, 

represented by means of (m-1)-tuple integral (compare with [24]: (4.4) with 

and (4.12)). 

Definition 3.1. Let B be an arbitrary hyper-Bessel operator of form 

(1.1) with r 1 -2 r •rm . The integral transformation P: 

= - .P (trn+1) , defined by 
-1+k/m 

1 	1 	m 	
(1tk) k m

- 1 
(3.2) 	P f(x) 	c (Xm) 	S ... S 	fl  I 

0 	0 	k=1 	
r(1+/=f=k/rn) 

X f[(m) ft/rn (t 1 . ..tm h/m ] dt 1  ... dtm  

is said to be a Poisson_Dimovski (P.-D.) transformation , corresponding to the 

hyper-BesSel operator B (1.1), where for convenience the constant c stands for 

c=7)m' fl rc+1) 

It is more convenient to use transformation P written in a single-integral 

form, as a special case of the "generalized fractional integrals" (see [20], [21), 

[22], [241) involving Meijer's G-functions (1.9) in kernels. 

Definition 3.2. Let m1 be an integer,>O , 	?O and J', k=1 .... m 

be real numbers. The set t = 	is said to be a multiweight and the set 

8 '= 	- a multiorder of integrat ion . The integral operator defined by 

1 

] f(xO) c16s, 

= 	

[ 	 ) rn,m 
< m1 

(3.3) 	I 	k f(x) 
L f(x) , 	if= 	= ... 	0 

is said to be a generalized fractional integral 	 type ), or 

a multiple (m-tuple) Erdelyi-Kober fractional integral. 
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Operators (3.3) generalize the Erdélyi-Kober operators of fractional inteqra 

Lion (see [33},[34]; t28],[21]) with (ER , 850 

(3.4) 	If(x) 	[r()]-1 	(1-) 	/ f(x) d 	= I 	f(x)
all .09  

as well as the Riemann_biouville °integrals (2.14): R= / I=x 	I' 	and 

various integral operators involving special functions as kernels. 

By using the Mellin Multipliers technique (see McBride [281,[291), namely 

the relation 

(3.5) 	M{Ikf(x);S 	[ 
 

	

k=1 	
+8i-l-s/'fr) 	- 	J 

00 

where 	 C' 
M 4f (x 5s := 3 x •1  f(x) dx 

is the Mellin transform, one can easily derive the following "Composition! De-

composition theorem" ([20]-[23]) in 	C 	if  (k > _
i_di) ,S > o , k=1,...,m: 

rl  
(3.6) 	 f(x) 	

'm 	 ... ( I' 	f(x) )] 	[fl I'f(x)] 

=(.1 ç)k 
	I f[ 	 .d 

representing the generalized fractional integrals (3.3) as products of commuting 

classical Erdélyi-Kober operators (3.4). 

It is seen now that the latter relation aiyes 	rise to the name "multiple" 

Erdélyi-Kober fractional integrals for (3.3). It happens that all the basic opera-

tors, related to the hyper-Bessel operators B and O.D.E. (1.6), can be stated in 

terms of the generalized fractional integrals (3.3). Thus, the linear right inverse 

operator L (1.21) of B is: 

L - -m 

fl ,m 	 ' 

its fractional (in particular, integer) powers L t',>0 (see McBride [28],[29]) 

are multiple fractional integrals too: 

(3.7) 	Jf(x) 	( x
f/pm) 	m,O 	 ] m,m 

	 27) 
= (Xm'1 	 f(x)

film 
	

m 
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so are the transmutation operators between two different hyper-Bessel operators 

B( 1 ) and B( 2 ) O f the same order m)1 (see Dimovski [7), Dimovski and Kiryakova 

[ii], Kiryakova [211). In particular, the Poisson-Dimovski transformation P (3.2) 

is the fractional (m-1)-tuple integral: 

(3.8) 	P f(x) 	c (x 	
m 

 ) 	fi,m_1 1 
	

f[(m/)x)'m] 

1)i:1 

kU 

J1(+i) (x/pm) 	G;_[ 	 f[1!L )CJB/mO#1 /m)dJ .  

There is a full list of operational properties of operators (3.3) ( [20] - [24), 

[281-[291), derived by using MeLElin's transform technique and the properties of the 

C-functions and they imply, in particular, the necessary corresponding properties 

of the P.-D. transformation (3.2)(3.8). We refer to a few of them only with expli-

cit use in the sequel, for example: 

I(3.9) 	p 	
xj 

3 	d..x 	, 	 j  

(3.10) P {x1 f(x)I= c 
8( - +q) 	(-i+q+k/m),(-+i+j/:)

9M-1 	

rk 

(3.11) 	(i)0 	d. 	 (i)(0) 	d. 	

m 

i=O i! (j-i)! f1 (-1gj-i+1) 
j = 0 , I , 2 

where the constant c is as in Def. 3.1 and 

d. 	c 	[ [( (k+j)/m) / r(J_+1+i/m) I 

It is easy to conclude now that: 

(3.12) P : C 1 j ° ( ,c= _/(+1) and 	P : 	 , o(~ = flf 
(3.13) If (2.2) is satisfied, then: y'(0) = fp y j(i)(o) 	0 

, j= 0, 1, 2 

According to Dimovski [6], [7], [8] transformation P is a similarity between 

the linear right inverse operators of Dm  and B, namely: between the integral ope-

rators R   (the m-fold integration defined by (2.14) and L (defined by (1.21)): 

(3.14) 	P Rm  F(x) = L P 1(x) 	for each r 6 C _ 
1 

Theorem 4.3 , [24], implies that P transmutes also 
0m 
 into B: 

(3.15) P Dm  (x) = B P (x) 	for 	Q C 	(i.e. 	3)() 
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Therefore, the Poisson-Dimovski transformation P transforms the simpler equation 

(2.1) into the general hyper-Bessel O.D.E. (1.6) for the image' y(x): P(x) with 

f(x) = P r(x), namely: 

(3.16) 	
[m)}= B P 	B y ; PA + r 	y + f =' B y = 	+ f 

preserving the zero initial conditions (see (3.13)). 

4. Solution to the nonhomogeneous hyper-Bessel differential equation 

Consider now the initial value problem 

(4.1) 	B y(x) 	2., y(x) + f(x) , 0 - x 	oo , 	f E C 	, d 	_/(+1) 

(4.2) 	y(0) = Y'(0) 	
y (m1)(0) 	0 

with arbitrary hyper-Bessel differential operator B of order m>1  and form (1.1), 

assuming for convenience arrangement (3.1) for its parameters, that is: 

>°;t>Y">Y ;mx[-)( r+1). 

Theorem 4.1. 	Under the conditions stated, initial value problem (4.1),(4.2) 

(m) 
has a solution y E 	, given by the series 

(4.3) 	y(x) = ( xi/pm ) 	(.X/m)r 	G(x) , 	convergent for 0 -f-x r 

where G(x), r = 0 9  1, 2, ... stand for the following generalized fractional in-

tegrals of f(x)(w.lth all the components of multiorder of integration equal to ri-i)): 

(4.4) 	6 (x) r 	g,m 	 f(x) 

6m,O 	I(+r+1)1f(xo1)dm,m
0 	(k) 

m
1  

Proof. According to the latter conclusions in Section 3, the solution y(x) 

of (4.1),(4.2) is nothing but the P- image of the solution 	(x), (2.13) of sim- 

pler problem (2.1),(2.2) with 	r(x) = P 	f(x), namely: 
00 

Y(X) = P (x) = p 	75-  ;L,r Rm(r1)  P 1  f(x) J 
r=0 

ue to the absolute convergence of integral P and of series (2.13), we can change 

their order, and so: 
00 

m(r+i) -i 
Y(X) 	 [ PR 	P 	1 f(x). 

r=u 
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Using repeatedly similarity relation (3.14), we obtain: 

	

P_ 1 	, 	L 	!  P_  = L 

	

m 	1 	m 	m -1 	Lr4- 	= L P P_i 	rr+1!LJ 	 '' 	=...= (r+1)-times 	 tie 

and then, we can represent the solution y(x) by series in the integer powers of 

the hyper-Bessel integral operator L, (1.21), the latter being generalized frac-

tional integrals with integral representations (3.7) involving Meijer's 6-func-

tions (McBride [28], [29:1, also Dimovski and Kiryakova [ii]). Hence, 

COO 

(4.5) 	(x) 	Lr+l f(x) 

= 	

(Xm)r-1 I
F(X) 

( x /pm) 	X/J3m)r S G[ 	 I (X crl 	dr, 

and denoting the integrals from 0 to 1 by Gr(x)  as in (4.4), we obtain (4.3). 

The absolute convergence of this series for all the finite x > 0 

can be derived from the conditions (3.1), f& C 	and the asymptotic behaviour 

of the 6-functions involved (see 	[14, v.11, [26], [321, etc ; this has been done 

repeatedly for the generalized fractional integrals 1j,m 	
in c in [201-[241). 

Now we would like to provide another approach from the point of view of the 

Convolutional Calculus ([81). P o  this end, let us come back to integral representa-

tion (2.12) of 	(x) based on the Duhamel convolution (*): 	(x) = r(x) 
* h(x). 

Denote by g(x) the P-image of h(x): g(x) = P h(x), that is 	h(x) = P 	g(x). 

It is not a problem to evaluate g(x) using a more general result on the I m 
1-" 

images of an arbitary 6-function 
6d' 	

C 	( in [211), based on the following 

useful formula for integral of a product of two 6-functions (see [26, v.11, p.159, 

(1), p.160-164 for the various conditions for its validity): 
00 

1 m,n r 	 k/e (Ci) 
	 fr. 	61_k) ~fi_l) 

6 	i1z 	I . 6 ' 	[C)z 	 ] dz 	(211) (4.6) 	 p,q 	(bj) 	 I ( 
0 

	

fM+kn, gy i-km 	1 6 

	6J,c l ) .... 9  &J1cJV); A(k9l - b 

	

U+(qp1) 	
+kq, 	+kp L 

A(Ec0_)] 

;ó(t, %1)...A(fdr) 
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where: k,l.O are integers, 
'7,,.z 

0 , COO , 	 m~n-(p~q)/2 ,/(.f-)_(6+)/2; 

U = 	b - 	:a +1-s-(p-q)/2 , v =E dfr _c+1+(r-c)/2 

.'- 	 i'ijk 1P-q) I ; the symbol 	A(k,c) stands for the sequence 

of parameters: c/k, (c+1)/k,... ,(c+k-1)/k ; the integral from 0 to 00 ranges 

often from 0 to 1 when at least one of the G-functions vanishes outside the 

unit disk. This is the key-formula for evaluating all the integrals 6r  in (4.4). 

• 	In particular, for evaluating g(x) it gives: 

(4.7) 	g(x) 	( --) 	II ~
m flrck+1) 

. C 	[ - 	 Xft/m 

The asymptotic behaviour of this C-function is (see [14, v.11, p. 212; [26, v.1)): 

g(x) 	O xi') 	as 	x -- 0 withmx[-fi1 = -4 
therefore, 	g(x) = P h(x) € 

According to this denotation, from 	(x) = T(x) * h(x) we obtain: 

(4.8) 	y(x) = P (x) = P [ (p1f) * (P- 

1 
g) I :: f(x) 4  g(x). 

Since the Duhamel convolution is a convolution of the integration operator R and 

its powers R 	(2.14) and P is a similarity between R 
	and' L (see (3.14)); 

Theorem 1.3.6 (Dimovski [8], p. 26) states that the operation () in (4.8) is 

a convolution (in the sense of [81) of the hyper-Bessel integral operator L (1.21) 

in C r 	That is, () is a commutative, associative and bilinear operation in C; 

C 	 , such that L [ f 	g I 	[ Lf I 	g 	f 	[ Lg ) , f,g E. 

In particular, we have however: f &C 	, g 	and then, again by the 

results of Dimovski [8] and Bozhinov [3] it follows that 

y(x) = P (x) = f(x) 	g(x) E 

and the same for the equivalent series representation (4.3) of solution y(x). 

This completes the proof. 

Note 4.2. One can guess that the same series (4.3) can be obtained formal-

ly by using the Functional Analysis Techniques of Neumann's series (see [ 35 ]p.69, 

Th.2) 	along 	the following lines: Equation B y = 	y + f can be rewritten as: 
00 It 

y 	( B _) 1 f = B 1  ( 1 - 	B 1 ) 	f = L ( 1 - 	 L ) 1 f 	L 	f 

rO 
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However, proving the convergence of this series is related to the problem 

of boundedness of the operator L in spaces C and we find both Convolutional 

and Transmutation Methods providing a considerable insight. 

Note 4.3. Instead of using the Laplace transform technique for solving 

first the simpler problem (2.1),(2.2), one can approach problem (4.1),(4.2) di-

rectly by means of the corresponding Obrechkoff integral transform ([61, [9]411I1). 

Then, the function C(s) = ( 1 / m5P_) I is to be interpretted as an Obrech-

koff transform of the C-function g(x) in (4.7) by the use of a complex inversion 

formula in [10]. In this way, the solution y(x) is to be obtained in the form 

(4.2): y(x) = g(x) 	f(x) , where () denotes the convolution of the Obrech- 

koff integral transform, the same as convolution (4.8) of L in 

Note 4.4. Since most of the right-hand side functions f(x) that could 

practically arise in equation (4.1) are special cases of the Meijer's C-function, 

Example 5.1 in next section gives the solution of (4.1),(4.2) in a closed ex- 

plicit form. 

5. Examples 

Example 5.1. Most of the elementary and special functions of Mathematical 

Physics are only special cases of the Meijer's C-function (1.9). Thus, let 

us consider the case when 	is an arbitrary C-function in C , that is: 

(5.1) 	f(x) = G 	x 	 I 	, 0 
Ic 

min d 	+ min 9k  
1 K1 

where Lfkl k=1,... ,m are the parameters of the operator 8 (1.1) and for the 

sake of briefness we assume that A = m. Using general formula (4.6) one can 
evaluate the integrals Gr(X) r = 0, 1, 2, ... in (4.4), namely: 
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(5.2) 	G(X) 	A 
. 	 m 

r  MIC 	
[ (x/m 

where the constant A stands for 

(1-m)V-(ø'+12] 	2dfr - 2c+ 1 +(T-T) 12  
A 	(211) 	 • m 

Each of these 6-functions is in C 	, and the solution y(x) takes the form of 

a series , convergent for all 	x 	U 

00 

/ x m 2: [\( /in )m]r Gm14,mV+m 	[( 
m t' ° 

 I •.. I (5.3) y(x) 	A .--- 	 x 	m+m,m+m 
rO 	

V 
 

More details on series of this kind can be seen in Luke [26, v.1] and some com-

putational methods in Luke [26, v.21. 

Example 5.2. The simplest but very common example in the case of equation 

(4.1) of arbitrary order m>1 is with a right-hand side function 

(5.4) 	f(x) = x , p > o( 	-4 	f E 

Then integrals (4.4) turn into: Cr(X) = bp,r 	x 	r = 0 	1, 2, ... with 

constants b p,r  (see [211); 
m 

b p,r 	S 6m,O 	I (Kk 	) do = [ I 	(+1+p),  CJ'+2+p/fi)r] m,m I 	k"ft'i 	
k 

and series (4.3) takes the form 

m 	 00 ui r  

(5.5) 	y(x) 	[ fl ( +p+fi )F1 	 m 	

(1) 	 (Xfi) 

r=0 

fl (+2+p/$) 	
r! 

M 

= ' 	+ 	1 	 '   ) im
f i(/)  

that is, the solution of the particular problem 

B y 	y + x 	, y(0)=y'(0). . 

is the generalized hypergeometric function 	x 	 F ( 2x'/fl) in (5.5), 

and it is also a 6 1 , 1 	-function of Meijer. 
1,m+1 

In the sequel we confine ourselves to some well-known examples related to 

O.D.E. involving the classical second order operator of Bessel By (1.4) with 
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/3 = m = 2 	)'I2 , 	- )/2 , namely equations of the form 

(5.6) 	x2  y 	x y' - 	x2  ) y = 1(x) , or: BVY =y + f 	=±1, f(x)x 2F(x). 

It is worth pointing out that the corresponding Poisson-Dimovski transforma-. 

Lion (3.2),(3.8), transmuting D 2  into By , is the well-known Poisson transformation: 

(5.7) 	P f(x) 	[2 (x/2) 
V  Iff r(+1/2) J 	( 	2 	- 1/2 f(x) d,)-112, 

generated by the Poisson integral for the Besel functions J y(x) (see [14, v.21, 

D. 14, 81 ; after a substitution 	:= sin 9 ): 

(5.8) 	3..,, (x) = P..,'fcosx] 	

¶12 

[ 2 (x/2) 	IF r(v+112)] 5 (Cos 	2V  cos[ x.sinr] d, ))> - 1/2 

In this case Theorem 4.1 provides the following solutions: 

	

Example 5.3. Consider equation (5.6) with A = +1 , f(x) = x 	 , that is 

(x) = x+1 , assuming ).'>/*1> 0 . Series (4.3) turns into 

00 

(5.9) 	y(x) = (x/2)2 
(/1/4)  ___ 

= 
	 x1s&I-1  

(-x 2  /4)r  

(yt + )+3)/2) 	3)/2) 

,i-y+3 	,A+V+3  

2 	 2 

(1) 

2 x 
) 

4 

= s 	(x) , the Lommel function 

<nown to be the solution y(x) with y(0) = y'(0) = 0 of the equation 

(5.10) x 2  y'' + x y' + ( x 2 	2 -) 
) 

y = x 

(compare with [26, v.11, p. 217-218, (1),(16) ). 

Example 5.4. Analogously (even as&special case of (5.9)), the solution y(x) 

f equation (5.6) with 	= +1 , f(x) = Er (1/2) F( Y+1/2)1. (x/2) 	that is, 

(5.11) 	x2  y'' + x y' + ( x2 	2) y = 4 ( x/2) V+1 / r(112) 	(Y+1/2) , V> 0 

is obtained as a Struve function H(x) (see [26, v.11, p.  217-218, (3),(21)): 

(5.12) 	y(x) 	[r(3/2)11(+3/2)] 	(x/2)+1 1 F  2  ( 1; 3/2; ))+3/2; - x2/4 ) 

[ 1.2 	(1/2) PT s 	,(x) = H),(x) 
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Example 5.5. An example of Bessel equation (5.6) with 1 = - 1 and another 

kind of right-hand side f(x) = exp (_x).x 	is the following: 

(5.13) 	x2  y'' + x y' - ( x2 	2) y = exp (_x).x/'+1 , 	V>/A#1> 0 

having the solution (as a special case of series (4.3) in Theorem 4.1): 

(5.14) y(x) 	
exp(x).x1 

X' +  ly(+ 3/2 V'/ 

	

U - +2  >.4+).'+2 ; 2x) = 	(x) 

the so-called "associated Bessel function " (see [26, v.11, p. 219, (25),(27)). 

It is easily seen that solutions (5.9), (5.12) and (5.14), related to the Bessel 

Bessel differential operator B, , belong to supspaces 

Cy 	
(m) 	- C 	C,2) (as suggested by Th.4.1). Arm-  c v 	of the space  

6. Concluding remarks 

The solution of the initial value problem 

(6.1) 	JB Y(x) 	Y(x) + f(x) , 

(6.2) 	urn B   Y(x) = b 	, k=1,.. .,m ; Bk as in (1.8) 

with arbitrary hyper-Bessel typeinitial conditions (equivalent to the classical 

initial conditions (1.7)), belonging to the space 	 jx'} 	(m) is: 

(6.3) 	Y(x) = y(x) + 	a  yk(x) 
k=1 

where: 
Y(X) E 	mi 	is the solution (4.3) of (4.1),(4.2) 

ak y(x) E spanjx kJ 
	 is the solution of the problem: 

B y(x) =2 y(x) 	, 	urn Bky(x) = b  f k=1,...,m 
x--+O 

found in [24], Theorem 2.3 (see here Theorem 1.7 ) with: 

y(x) -the G-functi ons, defined by (2.15), 

m 

ak = 	fl. [fl(_)] 	, k=1,...,rn-1 ; am = bm A.p tm  

J 
The results of [24) and this paper show 	that in the case of an arbitrary 

hyper-Bessel differential operator B (1.1)-(1.3) of order m)1, the solutions of 

the O.D.E. (1.6)=(6.1),(1.19),(1.22) are representable by means of Meijer's G-func-

tions which oniy in special cases are reduced to other known Special Functions. 
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MATHEMATIQUE 
Fonctions spécialles 

EXPLICIT SOLUTION OF THE NONHOMOGENEOUS HYPER-BESSEL 
DIFFERENTIAL EQUATION 
V. S. Kiryakova, A. C. McBride* 

(Submitted by Academician L. Iliev on February 2, 1993) 

By a hyper-Bessel differential equation we mean an arbitrary differential equation 
of m-th order with variable coefficients of the form: 	 - 

By(x)=Xy(x)+f(x), ?.=const, f(x) a given function; 

where 
m 

B=x Qm(XD)X H (XD+131, e), 0< X< 00 

k1 

with 13>0, 9k=-137k, k=1, . .. , m denoting the zeros of the m-th degree polynomial 
Qm (t) and D = d/dx. 

The so-called hyper-Bessel (Bessel-type) operators B (2) were introduced in the form: 

B = xo D XaI. 	am_1 D ram, : = m —(a0  + a1  + + a) >0, 

(Dimov ski [3'41, McBride [1I12])  and arise in many problems of Analysis and 
Mathematical Physics in the equivalent form 

B= x_I(xmDm+aixm_l Dml+ . +a— xD+am ), 13>0. 

Representations (2), (3), (4) follow each from the other by choosing for example 

a0 =-13—fry1+l; ak=13'yk-07k+1+1, k=1, .. rn—I; am=13ym 

and 

am_j=(11j)1 	[(_l)() 	 j=0, 1, . . - , M-1. 

The best known example, giving rise to the name of operators (2), (3), (4), is 

the second order differential operator of Bessel (13=m=2, 11,2 =  

B=x(x D+ v)(x Dv)=x D x 2 '+1  D x"=D2 +x D—x v 2 , 

related to the Bessel function y(x)=J(x) satisfying the equation By(x)=—y(x). 
Another simple example of higher order is the operator of rn-fold differentiation: 

ê'= Dm = (d/dx)m with P = M > 1 1 Yk = (k/tn)— I, k= 1,  ..., rn. 

This work was partially supported by the Bulgarian Ministry of Science and Education, under 
grant MM 65/91. 
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Operational Calculi, Integral Transforms and other tools of Analysis have been 
recently developed by many authors (see the reference in [4. ' 9]) for various particular 
cases of hyper-Bessel operators. This interest is motivated by their frequent appearance 
in initial or boundary value problems for P. D. E. of Potential Theory, Wave Motion, 
Diffusion, axially symmetric equations of Elasticity, Hydro-Aerodynamics, etc. Usually, 
by separating variables or applying a suitable integral transform, one can reduce these 
problems to initial value problems for the equation By=2y-j-f. For the special case 
By=f and the homogeneous equation By— ,%y with arbitrary initial conditions, the pro-
blem has been solved in [7.6.9]  by finding the explicit solutions in terms of the Meijer's 
0-function (see ['], v. 1). 

	

ll..... api 

0I 
I(aj)cQrn,n (x) = G'; (7) 	 pq bqj 	X(b)q] 

fllr(bk 	
x8ds. 

_s)n2l r ( l _ aJ+ s) = 	IL 
1 =m+1 r(l_bk+s) '=fl+i r(a1.-s) 

Namely, the following result has been proved: 
Theorem 1. Suppose 7—yj 4 0, ±1, ±2,...; i, j=1, . .. , m, then in neighbour-

hood of the point x=0 a fundamental system of solutions of the hyper-Bessel 0. D. E. 
By(x)=2y(x) consists of the Meijer's 0-functions: 

Yk(X)=G', 1_0x1f3m) 	7, 	. . . ' 	 Yb-11 Yk+1' . . ' 	 Ym]' k= 1, . . . , 

the latter being representable also in terms of the generalized hypergeometric  functions  
oFm_i(X/m) [1] and the hyper-Bessel functions of Delerue Jj),,

ym(X) (see [2]) 

It is seen now that only a problem that remains open is to solve explicitly the non-
homogeneous equation (1) under zero initial conditions. The denotation C) is further 
used for the basic functional spaces we consider from practical point of view: 

C: {f ( x) 	p >a, J( C(k) [0, oo)}, Ca:=C°) . Ct 

We are going to state the following new result to complete the circle of investi-
gations and to show that the 0-functions play an important role again. 

Theorem 2. Suppose the parameters of hyper-Bessel operator (2) are arranged 
in a decreasing (increasing) order, e. g. they satisfy 

>0; 	 . ~y, i. e. a: = max [— 1 (y + 1)] = 13  (y, ± 0. 
k 

Then the initial value problem 

J By(x)= y(x)+f(x),  f( C., 
1y(0)=y'(0)=... = y(m_l)(0)O 

has a solution y(Cm+), given by the series 

y(x)=(x/13m) y (2.x/13")'. Gr(X),  convergent for 0:!~;x< 00, 
r=0 

with 0(x), r=0, 1, 2, .. . standing for the integrals of 0-functions: 

G(x) =] 	
+ r+ 1)r (x& 1D) dcr. 

()çfl 

J1Iea of the proof. To solve problem (11) we use the transmutation method. It is 
based on the idea of transforming a new, complicated problem to a simpler one whose 
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solution is known or easier to find. In this special case the techniques of the Gene-
ralized Fractional Calculus are useful. The role -of transmutation operators (operators 
of transformation, similarity operators, etc.) is played by the generalized operators of 
fractional integration [5 8, 9] of the form 

(lk+ 3k)fl 	- 

Pi k) ,  6k))f(x) = 	 (i 	If (x &') d , if 	k >0; 

0, n
f 	 if 8 1 = 2 = 

Here n -:-1 is an integer, P >0, the l k's are real and the set 6=( , .. . , 6,,) is said 
to be a fractional multiorder of integration. By a suitable choice of these parameters, 
the classical fractional integrals of Riemann-Liouville and Erdelyi-Kober, the hypergeo-
metric fractional integrals and many other generalized integrals follow from (14). Here 
we are interested in a transmutation operator, transforming the simplest m-th order 
hyper-Bessel differential operator (6): B=Dm=(d/dx)m into the general one B of 
form (2). D i m o vs k i [4]  has found a Poisson-type integral transformation P: C_j— Ca 
which is a similarity between the integral operators RI and L, right inverse of 

B and B resp.: 

X  (x t)(m_I) 	 1 	 (+ 1)"' 
Rm f(x)=f 	I'(m) 	

f(t)dt, Lf(>c)=(x/13m)f  G,, 
°(I)m 

1 f(x&') do 

namely: 

PRm7(x)=L P7(x) for each 7( c_1 . 

As it is shown in [6],  this Poisson-Dimovski transform can be represented simpler as 
a generalized fractional integral of form (14), i. e., as an integral transform with 
a G-function: 

m 
Pf(x) = / m/(2ir)m' [ H T(yfr -i- 1)] I :1m U+m_ymkIm)f((mII) x/m). 

rn—I 
k=1 

Since P transforms (see []) the simpler initial value problem for '(C_ 1: 

1 ~ (0)=;'(0)=
D(x)=m)(x)=?j(x)+T(x), fEc_1, 

(rn_1)(0)O 

into initial value problem (11) for y(C,,, then P(x)=y(x) is the sought solution. 
By the techniques of Operational Calculus one can find the solution of (18) repre-

sented either by an integral involving G 01 -function, or by the series 

(x)= J(t)dtl= E X 7 Rm(r+ 1 )7(x)is: 
,-=o 	of 	(mr+m—I)! 

[

x 

I =  r=O 

Then, the solution y(x) as a P-image of (19) with Rx)=P 1 f(x) is: 

[PRrn ( +fl P 1 ]f(x)= 	xr L'+'f(x), 
r==O 

since PRm(r+l)P=Lr+I, due to (16). To find y(x) in form (12) it remains only 
to use the integral representation for the powers Lt+l, r=0, 1, 2, . .. of the hyper- 
Bessel integral operator L (see (15)), found by McBride [11,121  and later on in [] too: 
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L8f(x)=(x/fm)8 f G
[ Cr 1(Yt+5)-, 

 I f(x a 11 ) d t, 	>0. 

Examples. Solutions to various special cases of hyper-Bessel 0. D. E. can be 
obtained from the above general results. Theorem 1 leads, in particular, to the Bessel 
functions, hyper-Bessel functions of Delerue, etc. As an illustration, for the second 
order Bessel operator (5) Theorem 2 gives the Lommel, Struve and associated Bessel 
functions ([1],  v. 2). Let us have in mind that the Meijer's 0-functions include as special 
cases the basic elementary functions and almost all the known Special Functions of 
Mathematical Physics. That is why, by taking f(x) as an arbitrary Meijer's 0-function, 
we cover all the right-hand sides of nonhomogeneous equation (1) that could arise in 
practice. In this case integrals 0,. (13) are evaluated explicitly and solution (12) of (11) 
takes the form of a series in 0-functions. Methods for their numerical calculations are 
discussed in [10]  
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We study the range and invertibility, in weighted versions of L"(O, cc), of the 
operators N, and M, whose Mellin multipliers are T( + s/m) and T( - s/I), 
respectively. We deduce corresponding results for the Laplace transform which 
generalise those of Widder. The paper is the first of a series concerning operators 
whose multipliers involve products and quotients of gamma functions and which 
include as special cases operators with G-function kernels studied by Rooney. 
© 1991 Academic Press, Inc. 

1. This paper is the first of a series in which we shall study 
operators T satisfying a relation of the form 

./H(Tf))(s) = h(s)(.fff)(s).  

Here f is a suitable function defined on (0, cID), .%' denotes, the Mellin trans-
form and s is a'suitably restricted complex variable. The function h, which 
is the multiplier of the operator T, will have the general form 

(12)-  

where k, 1, K, L are non-negative integers satisfying 0<'k<'K, 0<1<L 
(empty products being unity by convention), the numbers r1, ..., 

t J, are real and positive, and 	... 	 are complex 
numbers. 

Multipliers of the form (1.2) are generalisations of those studied by 
Rooney in [10]. .His multipliers essentially correspond to the case when all 
the numbers 'r1  and t1  are unity, and, under appropriate conditions, the 

* Present address: 12 Hickory' Close, L'ytchett Minster, Poole, Dorset, England, U.K. 
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corresponding operators T are integral operators with kernels involving 
Meijer's G-function. Rooney discusses the range of his operators in the set-
ting of certain weighted L" spaces. The analysis is quite long and there are 
various different cases to be considered. Naturally, more general values of 
r, and t will introduce further complications. However, it turns out that a 
great simplification can be achieved by means of a distributional treatment 
relative to certain spaces of generalised functions in which the weighted L" 
spaces are imbedded. The development of this distributional theory is our 
ultimate aim. 

As a first step, this paper deals with two operators on the weighted 
spaces Lp,,U with multipliers F( + s/rn) and F(c - s/i), where I and m are 
real and positive. The operators, denoted by N and M, respectively, are 
both related to the classical Laplace transform. We shall concentrate on N 

with results for M, then following easily. We shall obtain a precise charac-
terisation of the range of N on L under conditions of great generality, 
namely, 1 <p < co and Re( - au/rn) 0 5  - 1, —2. .... Also we shall obtain 
a family of inversion formulae involving operators of fractional differentia-
tion. From these properties of N (and hence M) we are able to derive 
corresponding results for the Laplace transform on L , which generalise 
familiar results of Widder [12]. In particular we shall show how the 
Widder—Post inversion formula is a special case of our family of formulae. 

In a future paper we shall use these results to study the product 
M, N = N" 	on L . In principle it is possible to study more general 
finite products on 	but the situation becomes complicated. Fortunately 
the results of the present paper enable us to construct certain spaces of test-
ing functions relative to which many of the complications disappear. By the 
use of adjoint operators we are then able to use the two special cases 
studied here to develop a comprehensive study of the general operator T 
in (1.1) within the setting of generalised functions. Thus, although our 
results may be of interest in their own right, their main role is to provide 
the starting point for the later distributional theory. 

2. For 1 .p < cc and p e C, we shall denote by L 	the space of 
(equivalence classes of) complex-valued measurable functions f defined 

(a.e.) on (0, co) such that 

IIflI.{J Ixf(x)Vdx/x}<co. 	 (2.1) 

The expression (2.1) defines a norm on L p, and 	II II) is a Banach 

space. With D d/dx, let 

F 1 = { fE C(0, co) : x"D"feL,, 	for n=0, 1, 2, ...}. 	(2.2) 
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The space Fp,, is a Fréchet space with respect to the topology generated by 
the seminorms {y'} 0 , where 

y'(f)= IIfDfII, 	(feF; n=0, 1,2,...). 	(2.3) 

Remark 2.1. For properties of the spaces F , see [4, Chapter 2] but 
note that we have replaced p in [4] by p + i/p here, as a result of introduc-
ing the factor l/x in (2.1). The effect is to remove p from the conditions on 
the parameters. 

The Mellin transform .11 is defined formally by 

	

(dif)(s) =f X 'f(x) dx. 	 (2.4) 

When interpreted suitably (see [7] or [8], for instance), (.. i?f)(s) exists; 
(a.e.) on the line 

Re s= —Rep 	 (2.5) 

whenever fELPM  with 1 	pC. Condition (2.5) will be assumed 
throughout when working in LAW 

We state without proof the following standard result. 

THEOREM 2.2. For fixed peC and keL 1 , define the operator K by 

	

(Kf)(x) (k *f)(x) = J k(x/t) f(t) dt/t 	(fc L a ).. 	 (2.6) 

Then K is a bounded linear operator from L into itself with 

11 Kf 	IIkII 	If II P, 	 (2.7) 

and for 1 	peC andfeL PM  

(dI(Kf))(s) = (dIk)(s)(Jif)(s). 	 (2.8) 

Formula (2.8) shows that (ffk)(s) is the (Mellin) multiplier correspond-
ing to the operator K. Conversely, we may use suitable multipliers to define 
corresponding operators. 

Notation 2.3. Define the subsets Q(j=O, 1,2,...) and Q of the 
complex plane by 

Q o ={zeC : Rez>0} 

	

Q={zeC:—j<Rez<—(j—.1)} 	(j=i,2,...) 
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DEFINITION 2.4. Let 'i, p, and a be complex numbers and let rn be real 
and positive. 

For q + 1 + p/rn e 	and a cC, I 	is the unique continuous 
linear operator from 	into itself such that, when I < p 2, 

— 

(di(I, 1f))(s) = T(i+ 1 s/rn) (.ifff)(s) 	(fe F 1 ). 	(2.9) 
1—s/rn) 

For j - p/rn E Q and a e C, K,; is the unique continuous linear 
operator from Fp,, into itself such that, when 1 p < 2, 

(J1(Kf))(s) = T(j + s/rn) (.#f)(s) 	(fE 	(2.10) 
F( + a + s/rn) 

Remark 2.5. These are the familiar Erdélyi-Kober operators and explicit 
representations under various conditions on the parameters can be found 
in [4, Chapter 3]. When q + 1 + p/rn eQ0  (respectively, q - p/rn e Q0 ) 

and aeQ0 , the operator I (respectively, K ,",; ' ) is an integral operator 
belonging to B(LPM)  for 1 zp< oo , 1ieC. We shall make extensive use of 
these operators in the sequel. 

DEFINITION 2.6. Let il and p be complex numbers and rn > 0. For 
il - p/rn e Q, N,' is the unique operator in B(L) such that, when 
lp2, 

(Jf(N,,f))(s) = r( + s/rn)(Ji'f)(s) 	(fe 	 (2.11) 

We shall show that such an operator exists by obtaining an explicit 
representation via (2.6). For convenience, we shall assume until Section 7 
that ,j—p/rneDO, so that Re(+s/rn)>0 in view of (2.5). 

THEOREM 2.7. For 1 < p < oc and Re(i -,u/m ) >0, N,,, has the integral 
representation 

(N;,f)(x) = rn j i"7  exp( - t"')f(x/t) dt/t 	(fe 	(2.12) 

Proof. Apply Theorem 2.2 to the kernel k(x) = rnx"" exp( - x"), which 
belongs to Li !, under the stated conditions. 

Remark 2.8. (i) It might appear that we could take rn = 1 without loss 
of generality, since 

(2.13) 
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where 

(Pm f)(X)  =f W). 	 (2.14) 

However, the parameter m plays a crucial role in subsequent papers. 

(ii) N7 (and hence N" ) is simply related to the Laplace transform Y. 
Indeed, 

N7=X22RXI 	 (2.15) 

as operators on LAW where 

(Rf)(x) =f(1/x) 	 (2.16) 

In particular, it follows from Lerch's Theorem [6, Theorem 9.13] that N 
is one-to-one on 

3. We now set about characterising the range of N on L ,. It is 
fairly easy to prove that N" (L p,,) is dense in L,4 , but we can be much 
more precise. In view of Remark 2.8(u), our task is equivalent to charac-
terising the range of the Laplace transform on LAW  In [12, Chap. VII], 
Widder discusses the range of 2 on L"(O, x) L,, - but does not cater 
for a general u. Widder's results also suggest that the case p = 1 has added 
complications. (Compare Sections 15 and 17 in [12, Chap. VII].) Accord-
ingly we shall restrict attention to 1 <p < cx. 

For convenience, we shall use the notation 

<f g>. J f(t).g(1/t) dt/t 	(f c- L,g C L 4 ) 	. . ( 3.1) 

which is meaningful in view of Holder's inequality. We can then state a 
result involving weak compactness. 

	

THEOREM 3.1. Let .1 <p < c, It cC and let 	be a bounded 
sequence in LPM.  Then there is a subsequence {fi}r and a function fe LAJU 
such that 

as i—co, 	forall geL qp . 

Proof. This follows from [1, p.  130] by simple changes of variables. 

In the proof of the main theorem in this section, we shall also use the 
following, result. 	 S 	 S 
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LEMMA 3.2. Let 1i,eC with Re(j-,u)>0 and let aEF. For n1,2,..., 
define h, by 

h(x) = x"(l — x/n)"" /(O  fl )(X) 	(x >0), 

where X(0,n)  denotes the characteristic function of the interval (0, n). Then 

h(x)-+xe 	inL1 P 
as n -*o. 

Proof. Certainly heL 1  for all sufficiently large n, in particular for 
n> — a. We shall assume that n> — a in the rest of the proof. Since 
I +y<,ey for all yeD, (n_x)/(n+a)=1-(x+a)/(n+a)eXP(-(X+a)/ 
(n+a)) for all xeD. For 0<x<n, we obtain [(n-x)/(n+a)]''2  
exp(-(x + a)) whence ( 1 — x/n)'' 2  (1 + a/n) +a  e e _v or 

x 
) 	<Ciae 	for 0<x<n,n+a>0, 	(3.2) 

where 

a n±a 
el 	as 	 (3.3) 

By the triangle inequality 

xe 	- h,(x)I 1 	II — C, I II x"e'  I! , + II C,1  axen(x)II i,p 	(3.4) 

The first term on the right-hand side of (3.4) tends to 0 as n -+ by (3.3). 
So, it only remains to show that the second term on the right-hand side of 
(3.4) also tends to 0. We split the integral concerned into two parts corre-
sponding to 0 < x < n and x?>n. The latter gives S ICn,ax_Pe_x_0I 
(dx/x)-0 as n -fcc. The former gives 
(dxix) 	 [C,j , ae_v_(l_x/n)(] dx by (3.2) 

$ C,1 , aX' '  dx — J 
(fly)Re(I_/J) 1(1 _y)+a n dy = C,, F(Re( — 

_fl R e (1 _;L ) p(Re(_I))F(fl+a+1)/f(Re(,1_)+n+a+ 1). As n-+co, 
the first term tends to F(Re(tj 	by (3.3). The second term can be 
shown to tend to ['(Re(ij-u)) also by using the fact that 

T(n+c) 
-.1 as n -'cx 	for any real c 	(3.5) 

n'f(n) 

[3, 1.18(5)]. Hence the integral over (0, n) tends to zero as n —+ cc and in 
view of our previous comments this completes the proof. 

We can now state our characterisation of 	in the simplest case. 
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THEOREM 3.3. For.! <p<co and ( tj 	gEN(L) if and 
only if  e F, and there exists a constant A g  (depending on g but independ-
ent of n) such that 

1 K" + -n g 	A g  ['(Re(,i + n - 4u/m)) 	(n = 0, 1, 2, ...), 	(3.6) 

where 	-n  is the differential operator xmm(_D m )P7x_m. (We are 
dealing with a special case of (2.10) and Dm  d/dxm.) 

Proof. We shall only deal with the case m = 1. The results for general 
m then follow easily from (2.13). 

m= l. Necessity. Assume that 1 <p< cc and Re(—)>0. 
Suppose g = N7 J, where f 	so that, 

g(x)=J, (x/u)exp(_(x/u))f(u)du/u. 	 (3.7) 

With k(x)=xe_x,  g(x)=Jk(x/u)f(u) du/u and since k is smooth we 
shall differentiate under the integral sign to obtain formally 

00  (big) (x) = f" (ök)(x/u)f(u) du/u 	( 	xd/dx,j = 0, 1, 2, ...). 

Since 	k)(x)=i. o c i x?1 f ie_x for certain constants c,, 5geL, 
(j=0, 1,2,...), i.e., 	Similarly, (3.7) leads to 

x n(_D)n xg ( x ) =x 2(—D)j u exp(—(x/u))f(u)du/u 

=xJ00  u ( u L)n exp((x/u ))f( u )du/u  

= (x/u)' + Fl exp( - (x/u))f(u) du/u, 

i.e., 

K7" "g K?" "N7f= N7"f 	 (3.8) 

By (2.7), II K'! ± " '" g = IN'! + "f x 17 ± ne_x II II f lip,, = 
F(Re( + n - 11))II f lip,, so that we obtain (3.6) with Ag = If IL,,., which 
shows the dependence on f and hence on g. 

m = 1. Sufficiency. Assume that 1 <p < cc and Re( - ) >0. 
Let g e Fp,and suppose that g satisfies (3.6). Define f,,(n= 1,2,'...) by 

f,,(x) = [F(n)]' n(K7" 	g)(nx). 	. 	(3.9) 
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By [4, Theorems 2.11 and 2.13] f e Fp M  for all n and (3.6) shows that 

	

If,1 11PIP < [['(n)] —1 	Re + Re 
u A g [(Re( + n — ji)) 	(n = 1, 2, ...). 

	

By (3.5) the right-hand side tends to A  as n --+ cc so that {f1} 	1 is a 
bounded sequence in LAW  By Theorem 3.1, we can find a subsequence 

{f,}1 and a function fin L a, such that <f, 1  qj> —+ <f, i/i> as i—* cc, for 
all I/JEL q,,. In particular, for fixed x>0, let iJi(t)=(xt)exp(—xt). This 
function of t belongs to L qp  under the stated conditions. Also <f, Ji> = 
Jf 1(t)I(/t)dt/t =J (/t)exp(—(x/1))f,(t)dt/t = ( N7f,, 1 )(x) and  
similarly <f ',l'> = (N? f)(x). Hence (N?  f,)(x) —* (N? f)(x) for each fixed 
x >0. Our aim is to show that N'11  f= g, thereby establishing sufficiency. On 
inverting (3.9) we obtain 

g(x) = [F(n)] nx[f(n)] 	f (t — x)" 	t"f,,(t/n) dt. 

Routine manipulations show that g(x) = J h,,(x/t)f,,(t) dt/t, where 

h,,(x) = x(1 — _Y/n)" ' / ( O,, ) (X) 	(n = 1, 2, ...). 

Hence Nf,,—g=k,, *J,, where 

k,,(x) = xe 	— h,,(x) = xe 	— x(l — x/n)" - x(o.fl)(x). 

By Lemma 3.2 with a = — 1, Ilk,, II  - 0 as n — cc and hence by 
Theorem 2.2 

	

II N'11  f, — g I,,,, < Ilk,, 11 1, 11i,,  11 P. P -+0 	as n —+ cc 

since {f,,}t is a bounded sequence in L 1 . Hence N?f,,  converges to g 
in the L,, norm as n - cc, so that N'jf,,, converges to g in the L PIP  norm 
as i —+ cc. By standard results in integration theory, we conclude that 
N?f=g (both functions being continuous). This completes the proof. 

Remark 3.4. Under the conditions of Theorem 3.3 we can prove equiv-
alently that g e if and only if g e F,, / , and there exists a constant 
A g  such that 

	

11 K + 	g 	A g [iRe(i + y — 

for all ye C such that Re(j + y - jt/m) >0. 
Formula (3.8) is a special case of the second part of our next result, the 

first part of which sheds some light on ranges. (In both parts, p = 1 could 
be included.) 
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THEOREM 3.5. Let 1 <p < cc, Re (?7 - /m) >0. If a  C, then as iden-
tities on 

(i) = N,provided that Re >0 
(ii) = N provided that Re( + - ji/m) >0. 

Proof. For 1 <p.2, both parts are immediate via (2.10) and (2.11). 
For p > 2 we can use continuity and density arguments. Note that the 
weaker condition on a in (ii) arises because if 	 LAP  then N',7feF 
(not merely 

COROLLARY 3.6. Let l<p<cc, Re ?1,<Re 2  and Re( 1 —u/m)>0for 
i= 1, 2. Then N(L) is a proper subset of N(L). 

Proof. Let g = N'11  where fe 	By Theorem 3.5(i) with j = j and 
=12 - 11 we obtain g=Nq5, where This establishesPIP .

inclusion. NOw suppose that g = NF, where Fc-LP,,U does not belong to 
the range of on (Such an F exists for Re(i 2 - 1 )>0.) If g 
were to belong to N(LpM),  there would exist GE 	such that g = N GPIP
whence g=NK," 2 G by Theorem 3.5(i). Since N is one-to-one on 

we obtain F=K' 2 G, a contradiction. This gives strict inclusion PIP,
as required. 

Remark 3.7. Corollary 3.6 shows that N, (L) depends on q (as, well 
as p, ji and m). This may not be surprising but does lead to complications. 
In contrast we shall discover when we develop the Fp,, theory in a later 
paper that N" (Fp,,) is independent of j under very general conditions. This 
simplification provides one of the justifications for the Fp,, theory. 

4. We have noted that, for 1 <p< cc and Re(—j/m)>0, 
N"(L,) is a subspace of FP.L,  which is dense in. 	Thus 
(N(L), II 	is not a Banach space. However, N" (L,,,) can be turned 
into a Banach space by using a different norm. 

DEFINITION 4.1. Let 1 <p < cc and Re (j - t/m) >0, For g e N" (Lp , , , ) 
define II gIP1,. by 

I ' '  m = lim [Re(ii + n - ,i/m)] - fi K" "g Iflp. 	(4.1) II 	p,p,  

Remark 4.2. The slightly curious notation II 	m is to take account 
of the fact that 	and II II2m will turn up in connection with M 
(Section 8) and MN [5], respectively. 	 . 
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THEOREM 4.3. For l<p<cic and Re(ij—p/m)>O, 	defines a 
norm on N"(L, 1 ) and (N"(L,), II 	is a Banach space. 

Proof. First we must show that the limit in (4.1) is well defined. For 
g  N(L,.) F,1,,., 

	

K' g=K"'K"' _(fl±l)g 	[4, Chap. 3] M 	 m 

and by applying Theorem 2.2 to the integral operator 	, we obtain 

F(Re(i+n—p/m)) 11 K'_1 	 '' 1 g fl , z  

	

F(Re(+n+1—p/m)) 	,n 	 9 11 PIP* 

Hence the sequence { [Re(j + n - i/m)] ' K,'"' " gis non-
decreasing. By Theorem 3.3, the sequence is bounded above by the con-
stant A g  appearing in (3.6). Hence the sequence converges and I is 
well defined, with II g 11 A . Indeed we could alternatively write 

= inf{A, : Eq. (3.6) holds} 	(g e N,,(L,.)) 	(4.2) 

and obtain, for n=0, 1,2..... 

ii 
Jfl+U. -fl0 II 

p. 	g 	(Re( + n - i/m)) 	(g e N"(L 	(4.3) 
M 	

,  

Next we must check that II ii 	defines a norm on the range. 

(i' '  ii u"" =0= II gI,,11=O by (4.3) with n=0='g=0 (since 
p, II, III  

geF,, and is in particular continuous). 

) For A cC, 2gII,.,, 	i . i II a( 	by (4.1) and the correspond- 'P.  

ing property of 

Let g 1 , g 2  e 	Then by (4.3), 

II g1 + 92 	= "M,, [Re(ij + n - j/m)] ' K" "(g 1  + g2)II,. 

[Re(j + n —/1/ni)] -'II V'1" -n 
11 rn 	g t 1 	n,,. 

+lim,,[Re(j+n—p/m)]" H""'rn " "g2D,,. 

"+ 1192 IV = g1 u n.,.. P', :  f7. ) 4 01 

as required. 

Hence 1 	is a norm on N,, (L v,,.). 

Finally, to prove completeness let {g1}J0  be a Cauchy sequence in 
N,(L) with respect to 	X ,, , For e >0, IN (depending on ) such that 

II < 	for all i,j N. 
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Bearing in mind the monotonicity of the sequence on the right of (4.1) 

established above, we deduce that 

K7' - "( g, — g1)Il < eF(Re(, +n -,u/m )) 

	

forall i,jNandallnO. 	. 	 (4.4) 

In particular, 3 C (independent of j and n) such that 

K' 	s CF(Re(i + n - p/rn)) 

	

for all j?O and all nO. 	. 	. 	(4.5) 

Next we observe that the operator'K"' -n  is a polynomial of degree n in 
xd/dx. A routine but tedious calculation shows that the seminorms 

{v"} 0  defined on FPL, by 

	

v(çb) = K' ̀0II,,,, 	(n = 0, 1, 2, ...; q e F) 	(4.6) 

are equivalent to the seminorms {y"} 0  in (2.3). Thus, by (4.4), {g1 } 0  
is a Cauchy sequence in with its usual topology. As. the latter is a 
complete space, Ig e Fp,, such that g -* g in the topology of F,4  as j -+ cc. 
In particular, if we use the equivalent seminorms (4.6), we may let i - cc 
in (4.4) to obtain 

	

' 1 (g —g3 )Ij.0, 	eT'(Re( + n - p/rn)) 

	

for all jN and all nO. 	 (4.7) 

Hence by (4.5) and the triangle inequality 

IIK' 	 forn=0, 1', 2,... 

so that g e N (L) by Theorem 3.3. Finally by rearranging (4.7) and let-
ting n-+ cc, we obtain II for alljNN(c). Hence {g}J0 
converges to g in (N(L, 4 ), II II') asj -+ cc. 

This completes the proof of the theorem. 

THEOREM 4.4. Let 1 <p< cc and Re(tj 	Then 	is 
horneornorphisrnfroni 	 onto (N (L), II 11 1; ,). 

Proof. It is obvious that N is one-to-one and onto., Further, if fe 

11 N" f 	= urn [Re(?J + n - p/rn)]' Kr" "Nf IIp, /4 

= urn [Re(+n—p/rn)] 	N',7"f II 

urn. [Re( +n—p/rn)] 	II x'e 	f II, 
n-.x 
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where we have used Theorems 3.5(u) and 2.2. Hence N is continuous with 
respect to the norms stated. Finally, since we are now dealing with two 
Banach spaces, continuity of (N" )-' is automatic from the Open Mapping 
Theorem. 

Remark 4.5. We can actually go further and say that, in the situation 
of Theorem 4.4, N is an isometry. As this is easily proved using our inver-
sion formulae, we postpone the result until Theorem 5.6. 

5. Next we shall consider a family of inversion formulae for N 
which are similar in spirit to the familiar Widder-Post inversion formula 
for the Laplace transform. In this section we shall consider all values of p 
in the range 1 p < cc. 

DEFINITION 5.1. For each fixed jeC, DK, denotes the set of all 
sequences {k,,} 1 such that 

for all sufficiently large n, k,, E L 1  

for all sufficiently large n, k,,(x)O for almost all x>0 
Ik,,II 1 -* 1 as n -fcc 

for each 0 satisfying 0<0<1, f 	Ixk,,(x) I dx/x-* 1 as 
n -* cc. 

We can think of DK as a set of seqUences of kernels converging in some 
sense to a delta-type distribution, delta kernels in brief. The following 
results are proved in [11]. 

	

THEOREM 5.2. Let {k,,} 	E DK11 for some p e  and let a be real. Then, 
for each feL (l<p< cc), (x'k,,) *f converges tofwith respect to 11 
as n -+ cc, where * is as in (2.6). 

Proof. See [11, Lemma 4.27]. 

LEMMA 5.3. For fixed ij e R, define k,, (n = 1, 2, ...) by 

n" 

	

k,,(x) = 	x""e' 	(x >0). 	 (5.1) F(n) 

Then {k,,} 	e DK for all i cC. 

Proof. See [11, Lemma 4.29]. 

Our inversion formulae for N,,, will involve operators of the form )La 

(a> 0), where 

(2 a q5)(x)=çb(ax) 	(x>0). 	 (5.2) 
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THEOREM 5.4. Let ,j,  a, peC and m>0 with Re(i—p/m)>0 and let 
g=Nf, where feL P  (l.p<co). Then 

In 

f= (N,)' g= urn L" , ' 2 g,In  n -. co 

where (for n sufficiently large) 

n - ± _(+fl)g 	(geF) 	(5.3) 
F(n) 

and convergence is with respect to 

Proof. We give details for m = 1, the general case then following via 
(2.13). For n> —Re(,j+a—p) we obtain, from (5.3) and Theorem 3.5(u), 

— ('1 + ) 

L''g= 	2 Kn+._+P N 
n) 	

7f r(  

- 	1 	 (5.4) 
- ['(n) 	" 

By (2.12) and (5.2), it follows that 

*f, 

where 

fl 

k(x) = 	Re(,7 ±2)±ne_nx 	(x >0). 	 (5.5) 

Since (5.5) is obtained from (5.1) by replacing j by Re(+a), we see from 
Lemma 5.3 that {k} eDK. Finally, by Theorem 5.2 with a replaced by 
Irn( + a), we deduce that L?'' g—*f with respect to 	P, as n —+ cc. This 

completes the proof. 	 S. . 

Remark 5.5. Note that Theorem 5.4 holds for p = 1 even although we 
have not obtained a characterisation of N7(L) for p = 1. More impor-
tantly, for 1 <p < cc, we can now add one further piece of information to 
Theorem 4.4. 

THEOREM 5.6. For 1 <p < cc and Re( — p/rn)> 0, N is an isometry 
from 	II I) onto (Nn(L,,2), U

PIPIM 

Proof. Again it is enough to consider the case m = I. 
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We use (5.3) with c=O, and ni= 1. Then Re(tj 	for all n > 1 
and by continuity of 11 IlP,/2 we obtain 

Of II,,,,, = tim 11 L °N7f L 
,? - 

- Re j 

	

= tim 	A,K7' 1' " N7f II,,,,,, 

as in (5.4) 

	

_Re.7 Rep 

= tim 	 II K" 	N7f LM ['(n) 

F(Re( + n JL)) 

	

 
tim 	 {O K7" " N7f I,,,/F(Re( +n - =  

' = IN7fI, i)  ,,, 1  

by (3.5) and (4.1). This gives the required result. 

6. At this stage, we can use our results to obtain information about 
the Laplace transform on L,,. We shall show in particular how our results 
on the range of ,Q2  and our family of inversion formulae contain results of 
Widder [12] as special cases. A brief summary will suffice. 

THEOREM 6.1. For 1 <p  <cc and Re p> —1, g  2'(L,,) if and only if 
g E F,,, 	and there exists a constant A g  (independent of n) such that 

II x"D"g,, 	1 	A g ['(Re(n + 1 +,u)) 	(n = 0, 1, 2, ...). 	(6.1) 

Proof. Routine on using (2.15) and Theorem 3.3 with m = 1. 

EXAMPLE 6.2. We shall apply Theorem 6.1 to L _ 17 L"(O, cc) with 
l<p<cc. Then we have Re ft =  —l/p> —1 and (6.1) says that 

	

[r(Re(n+ 1— l/p))] 1  I Ix"D"gI 11 _ 1  < A 	(n=0, 1,2,...) 

for some constant A g . Writing out the norm explicitly we obtain 

[f(n + 1 - 11p)] - P 	Ix"D"g(x)I P x P_2  dx} 

<A' 	(n=0, 1,2,...). 	 (6.2) 

The corresponding formula in [12, p.  312] has the numerical factor /(!) 
on the left instead of [['(n+ 1— 1/p)]". However, by (3.5) 
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• 	1 	( n !)!' 

[F(n+1-1/p)]" n 

	

T  +!"_ 	as 
[ 	F(n+l—l/p) 	( 	ni 

Hence (6.2) is equivalent to Widder's formula. 

THEOREM 6.3. Let 1 < p < cia, Re > — 1 and g = 'f, where fe 
Then for any ceC 

f=l 
 ,in 	

RxA,,K""g, 	 (6.3) 

where convergence is with respect to the 	norm, and A,, is defined via 

(5.2). 

Proof. The result is immediate on using Theorem 5.4 and (2.15). 

EXAMPLE 6.4. We shall apply Theorem 6.3 to L - L"(O, c) for 

1 <p < oo, in which case Re u = — 1/p.> —1. Also we shall choose a= 0 in 
(6.3). Then 

Rx 2,,K' g(x) = Rx A,,x( — l) g(x) = (— 1) Rx(nx) g(nx) 

1  
Rx A,, K' 	

— 
g(x) 	n( 1/x) ±' g(n/x) 

F(n) 	 (n—i)! 

(n)"" (_ 1)fl 	 g(fl)(n ) 
 

n! 	X 	X 

Thus (6.3) becomes 

• 	 • 

with convergence in the L'1(O, co) norm. Thus we have recovered the familiar 
Widder—Postr inversion formula [12, Chap.-  Vll, Definition 6 (corrected) 
and Theorem I Sb] as a special case of our family of inversion formulae. As 
usual the case .p = 1 requires special treatment. 
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7. We now turn our attention to the strips Q (1= 1, 2, ...) in 
Notation 2.3 and we shall see that the results obtained above for Q 0  remain 
true with minor modifications. 

For a fixed positive integer j, we shall be considering s and i values 
satisfying 

	

Re( ij 	—(f—i), 	—j<Re(j—u/m)< — (f — i) (7.1) 

in connection with (2.11). 

THEOREM 7.1. Let 1 < p < oo and —1< Re( - u/m) < - (j - 1). Then 
the operator N", which satisfies (2.11) (for 1 < p2 and values of S satisfy-
ing (7.1)) is given by 

N, f= (— 1 )J  N'I,' --''f= (-1 )I"Nf 	(fE L) (7.2) 

when 	and 	are defined via (2.10) and (2.12), respectively. Furtherni  
N 1,, E B(L) with 

	

11 N"„f II 	(-1)' r(Re( — p/m))M f IL, 	(fe Lp M ). 	(7.3) 

Proof. First observe that, since Re( —?7 —j + ji/m + 1) > 0 and 
Re((j+j)—u1m)>0, I,' - ' and can be defined via (2.10) and 
(2.12) and have multipliers F(——j+ 1 —s/m)/F(—vj+ 1—s/rn) and 
r(+j+s/m), respectively. The operators both belong to B(L) and they 
commute since their multipliers do. By using F(z + 1) = zF(z) we obtain 

(-1)F(—i—j+ 1—s/rn) 

— j + 1 — s/rn) 
+j+s/m) 

fl(—n— 1+1 _s/rn)_1}  T( +j+s/m) 

J
. 

(,j +l-1 +s/rn)} F( +j+s/m) 

— Ij+s/m) 
F( +j+ s/rn)= f(j + s/rn), 

— F( +1+ s/rn) 

all the calculations being valid since Re(j+s/m) is not an integer. Equa-
tion (7.2) therefore follows, in the first instance for feL 2  (say) and 
then generally by continuity and density arguments in the usual way. 
Finally we can obtain (7.3) by using (2.7) and performing a similar calcula-
tion to the above (with s replaced by —ii). 

Remark 7.2. The form of N,,, appearing in (7.2) is reminiscent of the 
"cut” fractional integrals and Hankel transforms which first appeared in the 
work of Erdélyi and Kober and have subsequently been discussed by, 
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among others, Braaksma and Schuitman [2], McBride [4, Chaps. 3 and 
5], and Rooney [9]. 

Although the form of N',, is now different, our characterisation of its 
range on LP,.0 remains intact. - 

THEOREM 7.3. If 1 <p<  co and —1< Re(j-u/rn)< —(j— I) for some 
j=1,2..... then gEN(L) if and only if geF and there exists a con-
stant A g  such that (3.6) holds for all n = 0, 1, 2,..., with K' —n denoting the 
same differential operator as in Theorem 3.3. 

Proof. We shall make use of the properties of the Erdélyi-Kober 
operators on the spaces Fp,, as described in [4, Chap. 3] (with a slight 
change of notation). 

Let g e N (L) with g = Nf(fe L 11 ). Since both sides are in F,,,, by 
in

M  

(7.2) and Theorem 3.3, we can apply I," —J  to obtain 

= (— 1)f I;;.P7.-J  I T'Nf= N((-1)f) 

so that I 	3 g e 	(L,,,,). Conversely if I'b 'g = 	(Ge L,,,,) 
then g= (— 	 l) G= N,((- i)i G) by (7.2). Hence 

g e N 	 T ,(L,,) 	if 	'l. -'g e 	 (7.4) 
1 m 

Since Re(ij +1 — /m) >0, we can apply (3.6) with g and ij replaced. by 
I," 1 g and ij +1 respectively to obtain a necessary and sufficient condition 
involving A g  in the form - 

I KIM 	 " I' 	A g f(Re(;i +J+n- u/rn)) 	(n=0,4,2_.).    

(7.5) 

The composition Kn. Ij+n,  "I,'' —J  has multiplier 

F(77+j+n+s/m) r(-+1-s/m) 
F(+j+s/rn) i'(_j-j+ 1-s/rn) 

r(+i +n+s/m) ñ(l+l/) 
- F(ti 	, 

H (+l 1 +s/) 
F(+j+s/rn) 	1=1 

r(+j+n-Fs/m) (1)J F(?1+J+s/m) 

F( +1+ s/rn) 	( + s/rn) 

F(+s/rn) 	- 
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and the latter is the multiplier for (-1)K" 	Hence we arrive at 
(3.6) with n replaced by n +1. Equivalently (3.6) holds for all n j. 
However, the finite set of numbers 	[F(Re( tl  

1 K7 	
' 3
gII, : n = 0, 1, ...,j- 11 is bounded, so that we can adjust A g  to 

make (3.6) hold for all nO. This completes the proof. 

DEFINITION 7.4. Let 1 <p < oo and -f< Re(ij -,u/m ) < - (j - 1) for 
somej= 1,2.....For geN(L), define II gII 	as in (4.1). 

THEOREM 7.5. For 1 <p < co and -1< Re(ij - p/rn) <—(f—i) 
(j= 1, 2, ...), (N"fL), 	II,) is a Banach space.lm  

Proof. By (7.4), g e N"(L) if I/' 'g e 	 We then imitate 
the proof of Theorem 4.3, noting that, since we are working in 	I' 
is a homeomorphism under the given conditions. We omit further details. 

In view of the foregoing, the following should come as no surprise. 

THEOREM 7.6. The statements of Theorems 5.4 and 5.6 remain valid 
if the condition Re( -,u/m ) > 0 is replaced by the condition 
—j<Re(—p/m)<—(j—l), where j=I,2. ... . 

Proof. Both results are proved easily. For instance, we may apply 
Theorem 5.4 for Q 0 , with P1 and c replaced by il +j and a -j, respectively, 
to obtain the corresponding result in Q 1 . We omit further details. 

Remark 7.7. We may summarise by saying that the outcome in each 
strip Q is the same with j= 0 being a special case. For instance, (7.2) 
collapses to N,' on the right-hand side when j= 0, since I"' °  is the identity 
operator. 

8. In this final section we shall briefly discuss the operator M 
corresponding to the multiplier T(c - s/l). Thus M,' e B(L) satisfies 

(Jf(1%4f))(s) = r( - s/l)(Jif)(s) 	(fE P, 14) 	 (8.1) 

under appropriate restrictions on p, p, , 1, and s. An easy calculation 
shows that 

M'= RN; R, 	 (8.2) 

where R is given by (2.16). The properties of M, therefore follow readily 
from those of N. We shall list the main properties without proof since we 
shall require them in a subsequent paper concerning the composition of N 
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and M% (which also explains the change from ijto and from m to 1 here). 
The proofs make use of the relations 

K7'= RI7'R; 	I7 = RK7 	R 	 (8.3) 

as operator equations on L p. , or F,,,, under appropriate conditions. 

THEOREM 8.1. Let I <p< oo and Re(c + p/i) 0, —1, —2,.... Then 

MeB(L,,,) 

for Re( + p/I) >0, M, has the integral representation 

(M f)(x) = / J t 'exp( - t )f(x/t) dt/t 	 (84) 

on L,,,,, and 

11 M,f II,,,,, 	(Re(+/ hi  f ii 	 (8.5)   ,,,,  

for -1< Re( + u/l) < - (j- 1), where j= 1, 2, ..., M, has the 
representation 

Mf= 	 (8.6) 

on- Lv,,, and 

ii M1 f il,,, 	(-1) F(Re( + p/1)) 11 f Ii,, 	(8.7) 

M% is one-to-one on L u ,, and M(L,,) is dense in L; 

THEOREM 8.2. For 1 <p< oo and Re(+p/l) 0 0, —1,-2, ..., g E M(L,,) 
if and only if g e F,,,, and there exists a constant Bg  (depending on g but 
independent of n) such that 

iII' 	 (n=0, 1,21 ,...), 	(8.8) 

where j-1±n, —n is the differential operator x'(D,)'x' 4 " with 
D,d/dx'. 

DEFINITION 8.3. For. 1 <p < cc and Re( + p/l) 0, —1, —2 j  .... define 

ii 	on M,(L,,,,,) by 

iillJ=l 	[Re(+n+p/l)]' 	 (89) 

THEOREM 8.4. For 1 <p<ccand Re(+p//)0, —1, - . 
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(M,(L), II 	is a Banach space 

M, is an isometric isomorphism from J,,,) onto P1111 	 11
Il,t). 

THEOREM 8.5. Let , , p e  with Re( +,u/l ) 0, - 1, —2, ... and let 
g=Mf for some f e L p, (1 < p< cc). Then 

f= urn 	)Ic_I+x±n, 	 g, 	 (8.10) 
F(n) 

where convergence is with respect to 11 11 p , m  

Armed with these results we shall embark on a study of the operator 
with multiplier F( - s/i) F( + s/rn) relative to the Lp,,U spaces  in a subse-
quent paper [5]. However, we shall find that matters become complicated 
because of the dependence of N(L) on q and of M,(L 0 ) on , an 
inheritance from Corollary 3.6 already mentioned in Remark 3.7. 
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Abstract 

We study the range and invertibility, in weighted versions of 

of finite products of operators each of which has the form 

or N 1  studied in a previous paper. As a particular case we 

examine operators related to the Stieltjes transform and obtain 

generalisations of results of Widder on the range of the Stieltjes 

transform on 1P0,a),  as well as a family of inversion formulae which 

includes as special cases several formulae used previously by various 

authors. 



I 

§1 	This paper is a sequel to (4) to which the reader should refer 

for notation and terminology where necessary. 

In (4] we discussed, in the setting of the L 	 spaces, operators 

and M with corresponding multipliers r(n+s/m) and r(-s/l) 

respectively. These operators can be regarded as modifications of the 

Laplace transform. For each operator we obtained a characterisation of 

its range on L 	 (1 < p < ) as well as a family of inversion formulae 

similar to the Widder-Post formula for the Laplace transform but 

involving the use of fractional integrals or deriYatives. The aim of 

this paper is to carry through a similar programme for the composition 

of a finite number of operators each of which is of type M or N. 

The discussion of the most general case leads to a notational 

nightmare. Fortunately, it transpires that the general case is in 

principle no different from the particular case of the composition of 

two of the operators. Accordingly, we shall concentrate on this 

particular case and choose as a representative the composition of an 

operator of type M E with one of type N, order being immaterial as the 

operators commute. The composition of two operators of the same type is 

similar since 

RM R 	MCI = R'4R 	 (1.1' 
m 	m 	1 	1 

where 

(Rf)(x) = f(1/x). 	 (1.2 

We indicate briefly what happens in general in §6. 

A combination of the form MN n = NM produces an operator related 

to the Stieltjes transform and is of interest in its own right. In 

particular we shall see that, in a sense to be made clear in §5, our 

results generalise those of Widder (8] who studied the range of the 
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Stieltjes transform on I'O,00) E 1p,-1/p 	likewise our family of 

inversion formulae essentially contains a number of particular formulae 

which have been used by other authors such as [rdélyi (1), Love and 

Byrne (2), Pollard [6) and Widder (8]. 

As might be expected, our results look like a combination of those 

in [4] for M E  and N separately. However, there is more to this than 

meets the eye. For instance, we have studied M E on L 	but not on the 

subset N(L 	). So, sometimes we can use results from [4] whereas on m p,u 
other occasions we use techniques developed in [14) rather than actual 

results. 

§2. As in (4) we shall make use of the sets fZ (j = 0,1,2,...) defined 

by 

{z € C : Re z > 01 	 (2.1) 

= {z € C : 	-j < Re z < -(j-1)} 	(j = 1,2,...) 

Also we shall write 
Go 

= 	u c'..  
j:O ' 

In [,] we defined Nnon Lp 	for fl-u/in E 2 ( 	Theorems 2.7 and 7.1) 

and ME  on L 	for F+/lE ) (4, Theorem 8.1].  Accordingly we can make 

the following definition of their composition. 

Definition 2.1 Let C,n,v E C, 1 ' 0, in > 0 and let F+ u/i E S1, 

-p/m E S1. For 1 < P< we define 	on L 	by 

M N1  N M l,m 	1 n 	m 1 

where M, N1  are as in (14). 

(2.3) 



Remark 2.2 The actual form of S' will vary depending on the sets 

to which F+pIl, and fl-p/rn belong. For future use, we describe the 

simplest situation in the following example. 

Example 2.3 Let I = m = 1, Re(+p) > 0, Re(-p) > 0. Then 	and N 

have the simple integral representations given by formulae (8.4) and 

(.ii) in (4]. By inverting the order of integration, we obtain 

(S'f)(x) = ç(+fl) J'° 
(x/v) (i+x/v)f(v)dv/v 	 (2.4) 

for f E L 	(1 < p < co). We may rewrite (2.4) in the form 
p,p 

(S'f)(x) = r(ç+r1)x S 	x 	f(x) 
1,1 	 +fl  

(2.5) 

where S is the generalisation of the Stieltjes transform defined by 

f" g(t) dt 
(Sg)(x) = 	

(x+t) 
(2.6) 

, 
In particular S 1 0 11  is the usual Stieltjes transform. 

We can now consider the mapping properties ofon L p,u 

Theorem 2.4 Let ,n,u E t , +p/1 E fl , fl-p/rn E f2 and 1 < p< co 	Then 

€ B(L 	) 
p,ii 

/mES. andfEL ,  for +p/l E 	, 	
-p  

(,)12 r(Re(+u/l))r(Re(n-u/m)) fifIl 	(2.7) 
I'm p,p— 	 p,p 

S' is one-to-one on L 
1,m 	 p,p 

Proof:- All parts are immediate on using Definition 2.1 above along 

with Theorems 7.1 ) 8.1 in [4]. 

As regards the range of our operator we first observe that, 

4 



S 

under the hypotheses of Theorem 2.4,1P,U is dense in 	as 

is easily proved from the corresponding results for N and M. 

The dependence of the range on F; and fl is illustrated by the 

following result. 

Lemma 2.5 	For j = 1,2, let 	+ p/I E C2, 1 -pIm E n where 
F; 

Re F;, < Re 	Re 	< Re n2 . Then for 1 	P 	S1 m  1 '(L) is a
PIU 

proper subset of S 1 	(L). 

Proof:- 	This is similar to that of [4, Corollary 3.61. We omit the 

details 

Remark 2.6 The case 1 = m = 1 is a special case of Rooney's operators 

in [7]. With 1 < p < cc in [7, Theorem 7.21, the range of SC  	is given 

in terms of the range of the composition of two modified Laplace 

transforms. On sorting out notation, we find that this composition 

can be written as _(nR 5 	nfl_Re n and since multiplication 

of f(x) by x 	(0 real) is an isomorphism on L 	 we. simply end up 

with the range of MN on L 	which is reassuring but doesn't 

constitute progress. In the next section we do obtain something more 

substantial. 



§3 Throughout this section we shall assume that I < p < . 

Given that we have obtained characterisations of N ' (i 	) (4, Theorems m p,u 

3.3 and 7.3) and M(L,)  (4 Theorem 8.21, it is no surprise that we can 

obtain a characterisation of MN (L)  essentially by putting together 

formulae (3.6) and (8.8) in [4). This is not an Immediate consequence of 

our earlier results since we have not studied the behaviour of on N n (1 
m Pu 

However the proof is relatively straightforward, as we shall now see. 

Theorem 3.1 Let 	E E, +p/l E S1, -p/m E Q and 1 < p < co. Then 

'(L 	) if and only if g E F 	and there exists a constant C g E S  
,m p,U 	 p,t. 	 g 

(depending on g but independent of the non-negative integers n 1  and n2 ) 

such that 
-1+n 1  ,-n 1  n+n2,-n 2  

Km  gI I 	< 11 1 1 C9l'(Re(+n 1 +u/1))1 (Re (n+n 2 -u/m)) 	(3.1)  

for all n 1 ,n2  = 0,1,2,... 

(Recall that 	
y+n21-n2 	m+mn2  

' 	 m (-0 m  ) x 	. ) 1 

Proof:- Necessity let g = S'f where f E L 	Since g = MNf, it 

follows from [4, Theorems 7.3 and 8.21 that g E F 	Further 

-1+n1,-n1 
K 
 +n,-n2 	1 E-1+n1,-n1 

I 	 g: 	 M K 	Of 
1 	 m 	 1 	 Im 	m 

since all the operators commute. By  using multipliers we see that the 
+n 1  fl+n2  

last expression is M 1 	Nm 	f. (Alternatively, we can use results such as 

[4, Theorem 3.5(u)).) If we now apply [4, (7.3) and (8.7)) with 

and ri replaced by +n 1  and +n 2  respectively. we obtain (3.1) with 

C  g = (-1) j1+j2 IlfIl PIP in case +p/ 	£)
J  

E 	. , 	-/m E Q. . 	(See (2.1).) 
i 

Sufficiency Assume that g E F 	 and that g satisfies (3.1) for all
PIU 
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n.n ,-n2  
Then, for each fixed 	K 	

2 	gsatisfies (4, (8.8)J with 
it 2*

B = C F(Re(n+n.,-u/m)) and n replaced by n 1 . Hence, by (4, Theorem 
g 	g 	 - 

	

8.21, for each n 2 	0,1,2,.. .3h E I P U such tFtat 
2  

Mh 
+n2 ,-n2  

	

K 	g. 	 (3.2) 
in2 	m 

Further, by (, Definition 8.3 and Theorem 8.461)], 

lIh II 	= llMh II 	< C r(Re(n+n2 -u/m 	(n2:O,1,2 .... ). (3.3) 
1 n2 p'! - g 

By standard properties of the Erd4lyi-Kober operators on 	[ 

Chapter 3), (3.2) gives 

	

,. 	n,n2  

	

h 	-M  'K 	h 	foralln 7 :0,l,2,... g Km 	1 n 2 	1 m 	n2  

so that M [K 	h -h ) 	0 for all n 2 . Since 	is one-to-one on I 

	

1 rn 	n2  a 	 p,u 

[4, Theorem 8.1(iv)], we obtain 

h 	K 	h  
a 	m 	n 	

(n2  

A standard argument now shows that there exists a smooth function h E F p,)j 

such that 
ri+n2,-n  ., 

h 	K 	Lh 	(a. e. 	for n 2 	
0,1,2 	 (3.4) 

in  

On substituting in (3.3) and using [A, Theorem 7.31 we deduce that 

3 f E I 	such that Of = h. Finally, from (3.4) and (3.2) with fl 2 	0 
p,p 	 m 

MNf = Mh = Mh 	9 
l,m 	1  

so that g  E 	 and the proof is complete. I ' m p9V1  

Our aim is to turn the range into a Banach space by renorming. 

In studying 	and N separately we immediately defined new norms by 
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means of appropriate limits with respect to an integer variable n. 

However, this was equivalent (see (4, (4.2)) for instance) to taking 

the infimum of the set of constants for which certain formulae (4,0.6) 

and (8.8)1 were true for all n. Since we now have two integer variables 

and n 2  to contend with,it is perhaps slightly easier to start with the 

in f i mum. 

Definition 3.2 Let ,n.0 E f, ç+u/l € S1, fl-j/m E f2, 1 < p < co. For 

define 
1 ' m PIV 

= inf {C9  : (3.1) is true for all n 1 ,n2 	0,1,2,...). (3.5) 
p,u,],m 

Certainly (3.5) is meaningful in view of Theorem 3.1 and we shall 

shortly prove that we have a norm on the range. To help us, we show 

that we can trade in two integer variables n 1  and n2  for a single integer 

variable n. In particular, letting n 1 = n 2 	n in (3.1) gives 

	

111 -1+n,-n fl+fl_flg 	< C r(Re(+n+u/l))r(Re(n+n-u/m)). (3.6) 
m 	p,U —  g 

Lemma 3.3 	Under the hypotheses of Definition 3.2, 

	

inf{Cg 	(3.6) is true for all n 	0,1,2,...). 	(3.7) 
p p ,,l,m 

Proof:- 	In view of the preamble it is enough to show that, if C g  is 

such that (3.6) holds for all n = 0,1,2,..., then (3.1) holds for all 

n 1 ,n2 = 0,1,2.....Here we again make use of properties of the Erdélyi-

Kober operators on F p p . In particular for n 1  < 
, 

ç-1+n 1  ,-n 1  fl + n 2 ,-n 

m 	p,ii = 
	

-1+n 1 ,n2 -n 1 	-1+n2 ,-n2 	+n 2 ,-n 
K 	

, 

1 	
2111  m 	flip 

rcRe(+n 1 +p/1)) 	-1+n 2 ,-n2 	r+n2 ,-n 2  
_________________ 	 K 	fit - r(Re(+n2+,'1TY 11 1 1 	 m 	p,U 

r(Re(+n 1 +p/l)) 

- 	 YY 
C F(Re(+n+/l)) r(Re(n+n-u/m)) by assumption 

r(Re(+n2+pfl 	
g 	2 	 2  

from which (3.1) holds in this case. The case n 1  > n2  can be handled 
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by writing 

ç-1 ~n 1 ,-n 1  fl+n2 ,-n 2 	2f12 	'1'"1 v+n1,-n1 

I 	 K 	f = K 	 I 	 K 	f (the last 
1 	 m 	 m 	 1 	 m 

three operators commuting with each other). Since the case n 1  = n 2  is 

trivial, the proof is complete. 

Corollary 3.4 Under the hypotheses of Definition 3.2, 

urn [r(Re(c+n ~p/l))r(Re ( fl+flU/m))]' ll 	 m 	p,p 
lfl,n K''gtI 	. (3.8 

t 11 u p,. l,m 

Proof: - 

 Since we are dealing with a bounded sequence whose supremum is 

t1ll by Lemma 3.3, the result will follow if we can show that the 
p,ii, 1 9M 

sequence is monotonic non-decreasing. To this end we again use 

properties of the Erdélyi-Kober operators as in the previous proof to 

obtain 

m 	
= 
111-1+n,1 KVh1l 1 _1+(n+1),-(n+1) K+1),( l;! 

V i 
 l+n,n K' 

p,p 

r(Re(+n+/l)) 	F(Re(n+n-v/m)) 	i _1+(n+1-(n+1) 	+(n+1),-(n+1) 
______ ________ 	 K 	 gi; 

- r(Re+n+1+v!ln TfRe(ri+n+1-u/m) 	1 	 m 

The required monotonicity now follows and the proof is complete. 

We have thus obtained an analogue of the definitions of the norms on 

M(L 	) and PJ(L 	). With this version we can conveniently handle the 
Pill 	m p, 11 

next result. 

Theorem 3.5 Let 	E (t, E+p/l E Q, fl-p/rn E SI 3nd 1 < p < . Then 

i 

	

	 ) is a Banach 
p ) and (S'(L 	

1(;n) 
s a norm on l.m p, 	 p,J ' 	 p,U,1,m 

space. 

Proof:- That we have a norm follows fairly easily. For instance, 
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0 if and only if 111-1+n,-n 
	 = 0 for all IIqII p,p, 1 ,m

11  

n = 0,1,... and taking n = 0 gives llcIl 
p I 

IJ = 0 so that 	0 (since g 

is smooth). We omit proofs of the other norm properties. 

To prove completeness, we consider a Cauchy sequence 

(g.). 	
in 51fl(1 	) and let c > 0. There exists N (depending on c) 

	

1 i:0 	1,m p,u 

such that 

IIgi-gjII(;n) 	< c 	for all i,j > N. 
p,p,1,m 

By Lemma 3.3 and (3.6), for each n = 0,1,2,... 

-1+n,-n K 	''' 	\ II 

m 	
ij'p,U < c rRe+n./1))'( 

	

111 	 Re(n+n-u/m)). 	(3.9) 

For each fixed n = 0,1,2,..., let 

(n) 	1 -1+n,-n fl+n,n9 	(j = 0,1,2....). 	 (3.10) 

	

g1 	= 	 m 	1 

By (3.9), {g)}0 
	

p 
is a Cauchy sequence in I 

'1 
for each fixed n. 

By completeness of (L 	,Ij 	fl u  ) for each n = 0.1,2,..., 	E 
P, 	p, 	' 

such that 

(n) 	(n) 

	

g 	= urn g1 	. 	 ( 3.11) 

We may apply the operator 1' 	K' 	E 8(1 	) to (3.11) and use 1 	m 	p.p 

(3.10) to obtain 

-1,n K " 	Jim 
1 E-1,n Kfl,n  (n) — 	 (0) 	(0) 

1 
1  
1 	m 	 1• 	m 	

g. 	— iimg. 	Jim g 1 	g 
. 	1 

Once again (as in the derivation of (3.4)) we can deduce that 3 g 

such that 

(n) 	1ç-1+n,-n K""'g (a.e.) 	for n 	0,1,2 	 (3.12) 

	

9 	:1 	m 

Since Cauchy sequences are bounded in norm, we can deduce from (3.9) 

and (3.10) that there is a constant C (independent of i and n) such that 
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(n) 
11g 	< cr(Re(+n+u/1)) r(Re(n+n-u/m)' (i,n 	0,1,2,... 

. 	
). 

On letting i-. aid using (3.11), (3.12) and (3.7) in turn, we deduce 

that g E (1 	) with 
p,u,l,m 	 t1'1p,U,l,m 	

Also from (3.9) and 

(3.10), for n:O,l,2,..., 

	

< c F(Re+ri+u/lfl r(Ren+n-/mn 	(i,j > N). 

On letting j.co and using (3.11) we obtain, for r = 0,1,2,..., 

Ig i 	P,( 
 -g 	< c F(Re(+n+u/l)) f(Re(+r-i/m)) 	(i > N). 

Finally use of (3.10), (3.12) and (3.7) in turr, gives 

g 	 < c 	for all i > N. 
1  p,p,l,rn 

Thus the Cauchy sequence {g}7  converges to g with respect to 

II and this establishes completeness. 
p,p,l,m 

Corollary 3.6 	Let 	,n,u E (, 	+pIl E fl, fl-U/rn C Q and 1 < p < 	. 

Then 	is a homeomorphism from (L , p,U 
) P,U 

onto 	(S'(L 	),II l,m 	POP p,,l,m 
l,m 

Proof:- Consider only positive integers n such that 

ç+n+ii/l E go , 
fl+n-U/m €

0 
 . ( See (2.1).) 

For such n we obtain 

1I I _1+n,_nKfl+n,_n MT' fli 	
= 11+n 	I 	(by multipliers) 

1. m 	p.0 	1 	 p,U 

r(Re(c+n+v/l)) r(Re(n+n-u/m)) Ilf 1 p,tj .  

On rearranging, letting n- and using (3.8) we obtain 

(;n) 	
< I 	1, 	" 	IIfII 

	

M p,j,l,m - 	Pd.' 

which shows that S' is continuous. 

(f € 

It' is one-to-one by Theorem 2.4(iii). 
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and since we have two Banach spaces ( 5 1 ' ) 	 IS C014MUOUS t 	tL 

Open .Mapan9 Totetn 

Remark 3.7 We can go further and show that, in the situation of Corollary 

3.6, 	is an isometry. This can be extracted from the proof of 

Theorem 3.1 but it emerges naturally from our inversion formulae in the 

next section and so we postpone this result until then. 

§4. In this section we shall consider a family of inversion formulae 

for S E ,n .Formally these are found 	by combining those obtained 

previously for (M) 	and (N) -1  in (4, Theorems 5.4, 7,6 and 8.51. 

However, for reasons similar to those outlined at the start of §3, we 

shall start from scratch and use the results for delta kernels in 

(4, §51 to derive norm convergence of the appropriate sequences. We 

observe that p = 1 can be allowed here. 

Definition 4.1 For fixed E,n,u,a,B E C, 1 < p < 	and all sufficiently 

" 1 
large positive integers n 1  and n2  we define the operator L1m 

on F 	by 

n 1 ,n2 ,,n,ct,B 
 

	

g - 	
1/rn 

l,rn 	rn1)r(n2) 	'1 	'2 

(4.1) 

where the A operators are defined as in [4, (5.2)]. 

Remark 4.2 Note that (4.1) is the composition of the operators in 

(5.3 ) and (8.10)) and will certainly be well-defined when ç++n 1 +p/l E 

and +B+n2 -pIm E 	(See (2.1).) 	Further the I and K operators then 

commute with each other. 

Theorem 4.3 Under the hypotheses of Definitions 2.1 and 4.1, if 

g = S"f (f E I 	) then 
l,m 	p,p 
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f = (St')1 	- 	Jim 	
n1,n2,E,r,,8 

	

l,m 	g - 	n2-+ l,m 	 9 	 (4.2) 

where n 1  and n2  tend to infinity independently and convergence is with 

respect to 

Proof:- We shall break the proof up into a number of steps. 

(i) For f E L p u we use (4.1) and (2.3) to obtain 
, 

1n12,,qci,B S;,n f 

I ' m 	 I ' m 

> 	 MK 
-1+n1,-(+n1) 	

n28+n2)Nnf 

	

F(n 1 ) l'(fl 2 ) 	-i,'l 	1/rn 	1 Im 	 m 
"2 

(4.3) 

n i  -(+ct) 
'2- 

 (n+B) 	 +cz+n 1  n+B+n.. 
N 

	

A 14 n  r( 1 ) F(n2) 	
"1 	

1/rn M1 
 

by using multipliers. (See, for instance[4, (3.8) and Theorem 3.5).) 

These manipulations are valid for all n 1 ,n2  such that +a+n 1 +u/l € f2 
0 

and n+B+n 2 -i/m E S1 i.e. for n > -Re(++u/l), n 2  > -Re(+$-js/m). We 

shall assume henceforth that n and n 2  satisfy these inequalities. This 
r.4+n2  

means in particular that 	and Nm 	both have integral 

representations of the forms in (4, (8.4) and (2.12) respectively) which 

in turn can be written as Mellin convolutions with appropriate kernels. 

Incorporating the other items, we can thus write (4.3) in the form 

	

k 1  4k 	2 *f 	 (4.4) 
1 	2 	 (n2) 

where the kernels k 	 and k2 	are given by 

n 
In  

k 1 	(x) 	
r(n1) 	 exp(-n 1 x) 	 (4.5) 

mn2 	m(4+n2 ) 
() 	x 	 exp(-n2xm ) 	 (4.6) 

= r(n2) 
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and • denotes the usual Mellin convolution, i.e. 

(k'f)(x) = 	k(x/t)f(t)dt/t = 	 k(t)f(x/t)dt/t 	 (4.7) 

For convenience we have suppressed the dependence of the kernels on 

F,n,cz,B,1 and m. 

(ii) Next we shall use our results for delta kernels to show that, for 

any f € L 	9 
k'*f converges to f with respect to II II 	as 

(i 	1,2). Starting with k 2  , we write 

where 

k'(x) 	m P {' 1m(+08) k Cx)) 	 (4.8) 
m 	 n 

	

n 	
X Re(n+B)+n exp(-nx) 	(fl 	1,2,...) 	 (4.9) 

fl 	 nT k (x) 	rc  

and 1' is given by [4, (2.14)],i.e. (Pmf)(X) = f(Xm). We observe that 
m  

(4.9) is the same function as in [4, Lemma 5.31 except that Re(n+B) now 

replaces the real number ri. Hence k satisfies the conditions of 

[4, Definition 5.11 and so by [4, Theorem 5.21 applied with u  replaced 

by U/rn we deduce that 

ll(X Im(fl+B ) 	F•  k • - F l 	 as fl• 	for all F € L 
n 	p,Uim 	 .p,.iIrn 

But P is a homeomorphiSm from L 	/ onto L 	and limP ll 
m 	 p,u,m 	p, 	m p, 

for all g E 	Hence as n-. 

limPm { x i lm(fl+8+n)k n *1) - mP m III p,i -+0 for all FE I p,u, 
/ m . 	(4.10) 

A simple calculation based on (4.7) shows that mPm  (kh) = (mPmk) 4 (mPmh )  

under appropriate circumstances. Applying this to (4.10) and using (4.8), 

we obtain 
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• (mP F) - mP 	. 0 as n-' for all F E I 
m 	m p,u 	 p,U 

On writing f = mPj and using the homeomorphic property of P m 
 mentioned 

above, we see that k'f converges to f with respect to 11 11 	as 

Recall that this calculation assumed that 1)-U/rn E S1 and 

n+t3+n-u/m € S1 • 

To handle 	we shall use the operator R,defined by (1.2), which 

L$ eastLI seem to be 	on 	Uornetr.c 	.sorrortusrn 	fern 

Hence if +/l E S1 and +ci+n+u/1 E il we may apply the previous 

case with ,cz,-u and 1. replacing n,B,p and m respectively and noting 

that then k 	 becomes Rk'. Thus 
11(çfl).1)  F11 	-0 as n-. for all 

F E L - and hence 

I1R(Rkt*1)_RFII 	- 0 as n-' for all F € I (4.11) 
p,j 	 p, - Ij 

Another simple calculation based on (4.7) shows that R(k*h) = (Rk)e(Rh) 

under appropriate circumstances. Applying this to (4.11), writing f = Rf 

and using the homeomorphiC property of R mentioned above gives 

1lk ) *f_flI 	- 0 as n- 	for all f E 
Ip,u pqU 

This completes the second step. 

(iii) Finally we shall use (ii) along with (4.4) to prove the result 

stated. Indeed with 

g 	S'f , 	(4.3) and (4.4) give 

n1,n2,,r,cx,8 	 - 

IlL 	 g_f 	
u - p, Ilk1 	*k2 	f-ill 

(n 1 ) 	(n 2 ) 
Ilk 	*(k 	*f_f)ll 	+ Ilk 	f-ll - 	1 	2 	 p,u 	1 	p,u 

(n) 	(n2) 	 (n) 

:5. 
 

1 k 	II1 
 "l,p  tik 2 	 4' 	 p,u 

*f_fII 	+ Ilk 1 1 *f_fII 	 (4.12) 
P, 
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But Ilk 	

ni 
(n)  	in' 

x  	1   exp 1  	:   !,(1)  
f   

-Re(p+]Uici ~n   ))  	(-n1dx/x 

n  

	

____ 	Re(.+n +ii/j) 

	

T(n1) 	
1 	exp(-n 1 y)dy/y 

and by our calculations in (4, Lemma 5.31 with T) and p  replaced by 

	

1.

Re(+ct) and -V/I -  respectively, we deduce that Ilk, 	Il l 	 -, 1 as'IJ 

-.Co. Hence we may let n 1  and n 2  tend to infinity independently in 

(4.12) and use part (ii) to obtain the desired result. this finally 

completes the proof. 

Remark 4.4 If we let n 1 = n2  = n in (4.1) and (4.2) we obtain a 

particular case which on the one hand relates more closely to (3.6) 

and (3.8) and on the other hand ties in with the work of several 

authors mentioned earlier. As an illustration, we deal with the 

isometric property of ~ ' Tl  mentioned in Remark 3.7, althouyh p 

has to be excluded. 

Theorem 4.5 Under the hypotheses of Corollary 3.6, 	is an isometric 
I m 

isomorphism from ( 1 311 lI) onto (S'(L 	II 	). 

	

I ' m p.0 	p,u,i,m 

Proof: -  We have only to prove that 	is an sometry. Let I ' m 

g = S' f where f E L 	By taking cL = B = 0 and n 1  = n2 	n in 
I ' m 	 Pd" 

(4.2) and using continuity of fi IIp.0 , we obtain 

lifli 	= 	 hA 	 U Pd' 	n._ (r(nfl2 	-1/1+1/rn 
IKgII lim I 	m 	p, 

-Re(i4J/1+fl-11fm) 	
1ç+fl_fl H 

9 .  n 	 pp = urn 	 r(Re(+n+p/l))r(Re(n+n-p/n) TThe(+n+p/1))r(Re(n+B-u7iI 
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We observed in [4, (3.5)] that, for any real c, r(n+c)/ncr(n)..i as n -. 

Applying this to Re(ç+u/l) and Re(-p/m) and using (3.8) leads 

immediately to IIII This completes the proof. 
u p, 	'p,u,l.m 

§. As another illustration we show how our results encompass those 

of Widder (8], Erdélyi (1), Love and Byrne (2) and Pollard (6]. 
^.0 ,._.  

Example 5.1 The classical Stieltjes transform corresponds to the case 

l:m:1 ,fl:O 

of the operator S E , n by Example 2.3 and we shall write 
I ' m 

Si 1,1 

(5.1) 

(5.2) 

in the sequel. We shall examine Wjdder's results on the range and 

inversion of S on the usual iPo,  space. Note that this is the 

space L p,-1, , p in our notation so that we take 

p = - i/p. 
	 (5.3) 

(i) Consider first Theorem 3.1. For 1 <p< , the substitutions 

(5.1) and (5.3) lead to & + u/I = 1-1/p > 0,n-9/n = 1/p >0 so that 

the hypotheses of the theorem are all satisfied. Bearing in mind 

considerations in lemma 3.3, let n 1 = n, n2 = n-i in (3.1). We deduce 

that g E 5 1 (L(0,a)) if and only if g E Fp,_1Ip and there exists C 9 

such that 

111n,-n K fl _ 1, _ ( fl _ 1) gII < C T(n+1-1/p) f(n-1+1/p) 	(5.4) 
i p,- , p —  g 

	

for all n > 1. As noted in the statement of Theorem 3.1, with D 	d/dx, 

n, -n K_ 1 ,_(n_ 1 ) 	n-1,-(n-i) 1 n,-n 	n_1 	)r 	D) fl  x fl  (-1) 	x n-i 	1D21 ' g=x(-D 	g 	 x g. 1 	 g:K1 

Hence (5.4) demands that for all n  
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{r tx 11 ( - 1 ) 	x ' 1 D21  x 	
I/p 

Q¼X 
Ipdx/x} 	

< C r(n+1-1/p)r(n-1+1/p) 
— g  0 

i.e. (r(nl11/p)r(n _ 1+1/p)) 	
flxnp D21(xg(x)dxc 

In (8, p.3691 we find (with slightly changed notation) the statement 

c r 	D2h1'(xflg())P 	
< M 	(n 	1,2,...) 

° 	 (5.6) 

where c 1  = 1, 	c= [n(n-2).'] 	(n = 2,3,...) 

	

_______ r( n+ 1) n 1 	r(n i) nVP 

However r(n+i-iIp)rcn-i+i/p) 	r(+i-i/p) 	7,n-1+1/p) 	1 as n-. 
Hence (5.5) and (5.6) are equivalent. 

(ii) Now consider the inversion formula (4.2) for 1 < p < . Let 

n2 = n and also choose a = 0, $ = -1. Together with (5.1) these 

substitutions lead to 

f = jim 	 g = u 1 	1 n,  -n K_,_(n_1) 	rn 	1 	n-1,-(n-1)1n,-n 9. r(n)r(n) 	 n-. {F(n)} 2  

Arguing as in (i) we see that this gives 

f 	lim 	1 	-1 n-1 n-i 2n-1 n = 	 x 	 (5.7) 
{r(n)) 2  - 	

x 	D 
 

where convergence is with respect to fi 11 	i,'p 	The inversion formula 

suggested by the operators in [8,p.345) is 

n-i n-i 2n-1 n f 	llmC (-1) 	x 	D 	x g (5.8) 

________________ 

where c is given by (5.6). But for n > 2, 1 	2 - cn 	r(n+1)r(nT {r(n)} 



and by (5.4) 

n-i n-i 02n-1 n II(_ 	2 - - n ) (-1) 	x 	x 1I_1 
{f(n)} 

1 
F(n+l)I'(n) C

9  r(n+1-1/p) r(n-1+1/p) 

- 1 	r(n+1-1/p) F(n-1+1/p) -. a 	as n+ 
- n-i F(n+1)n 

Hence the inversion formulae (5.7) and (5.8) are equivalent both 

giving convergence with respect to the norm on L P.-1/P  which is the 

usual 1P(0,0) norm. Compare this with [8,p.372]. 

As regards p 	1 we have not obtained a characterisation of the 

range of S on L11 	L 1 (O ,co ) .  The form of (8, Definition 21, pp.  374-5) 

suggest3 how the theory for p > 1 would need to be modified to obtain this 

range but we shall not pursue the matter here. With similar modifications, 

the inversion formulae (5.7) and (5.8) are valid (and equivalent) for p = 1 

also. Since (5.4) has only been proved for 1 < p c , we have to use instead 

the fact that the sequence of functions appearing on the right-hand side of 

(5.8) is a Cauchy sequence in L(O,cD) and hence bounded in norm [8, p.375]. 

We may summarise the position by saying that for 1 < p< (and to a 

certain extent p = 1 too) we have greatly extended Widder's results by 

treating L 	 for arbitrary values of U (not merely p = -lip) and by providing
Pill 

a whole family of inversion formulae, one special case of which is equivalent 

to Widder's inversion formula. 

Example 5.2 Next we consider a connection.with formulae mentioned by Erdlyi 

[i) for inverting the generalised Stieltjes transform S defined in the first 

instance by (2.6) for suitable values of 0. Howeer we may extend the 
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definition of  S by rewriting (2.5) in the form 

(Sf)(x) 	[r(p)V 1  s' 	f(x) 	 (59) 

Defined in this way S will be a continuous linear mapping from 

into 	provided that p+l € S1, p_u-i € S1 and 1 < P< . By (4.1) 

and (4.2), we obtain the inversion formulae for Sf = g in the form 

' -(p+cz+B) 1ç_1+ci+n-(a+n 
f = Urn r() x 

{r(n)} 2  

for any ci,8 E . in particular, let a and B be integers (positive, 

negative or zero). Then the I. and K 1  operators are differential 

operators (for large enough n) and, as they commute, 

f = urn 	
)(P1+B) Dn p_ 1 +(a+n) 4( B+n)(_l) B+nDB+ng. 	(5.10) 

{r(n)} 2  

As in Example 5.1, we can replace n P 8 i{r(n)} 2  by 

[r(a+n+1)r(B+n+P-1)] 1  in (5.10) to obtain 

ct+n 	1:L+1jB+n9 	(5.11) 
f 	Urn r( 	+1)r(B+n+p-1 0 7  

fl4 

which agrees with one of the results in [1); see in particular 1:1, 

(6.1) and (6.6)) and replace p and q therein by a and B. Following 

Erdélyi, let us write (5.11) in abbreviated form as 

f = urn l,g• 	
(5.12) 

 
fl4 
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The formal adjoint C 	of L 	is obtained by interchanging a and B 

and multiplying by the factor {r(a+n.p_1)r(B+fl. 1 )/{r(a+fl+ 1 )r(B+P 1 )}: 

see (i,(6.2) and (6.6)]. Since the numerical factor tends to 1 as n-. 

and aand 8 are arbitrary integers, it follows from (5.12) that 

f = Urn L 	g 	 (5.13) 

also [1,p.2401. For us, convergence in formulae (5.1O)-(5.13) is in 
,  

the L 	
norm whereas results in (i) are with respect to the topology 

PIP 
 

on a space of testing functions. Similar inversion formulae also appear 

in the work of Love and Byrne [2) and there convergence is merely 

pointwise. Both [1) and (2) contain other related results but we shall 

not pursue these. 

Example 5.3 As a final indication of the flexibility of our results, we 

consider another inversion formula for S p 
 due to Pollard (6) which is 

discussed distributioflallY by Pathak (5). The formula is 

(_1)fl_1 21(2n_1)!r(P) D 
	2n4'-2 	g. 	(5.14) 

n f = Urn 	(n_2).r(2n+P-1) 

On taking a = 0 9  B = -1 in (5.11) we obtain 

urn 
(-i)r() Dx2" 2  D"g. 	 (5.15) 
n.r(n+p-2 

Comparing the numerical factors in (5.14) and (5.15) we obtain 

(for large enough n) 

21(2n-1)r(n+p-2) - (2n)F(2n) 	F(n+p-2 	t(n)n 

(n_2)r(2n-1) 	r(2n+p-1) 	F(n)n2 	
Rn-i) 	1 as 

fl4 

By the same argument as in Example 5.1, we deduce that Pollard's formula 

(5.14) is valid in the sense of convergence with respect to 11 11p,-1/p 
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§6 As mentioned at the start it is possible to obtain the corresponding 

results for the composition of two operators of type M or two operators 

of type N by using the relations (1.1). More importantly, the 

techniques used here can be used to study the range and invertibility 

of the composition of any finite number of operators each of which is 

either of type M or of type N. The theory is irherently no more 

difficult as we shall now indicate briefly. 

Let v and V
.

be two non-negative integers and introduce multi-

indices 

	

( 	,..., 	), 	n = (n ,...,n V ),1 = 01'...'. 
IV, 

 ), m = (m , ... ,m 	) 

where the components of E and n are complex numbers and those of 1 and m 

are positive real numbers. Define the operator 51m  by 

	

" 1 E ."2 	n. 	I fl 

	

Sj 	C ii M1 1 )( TI NmJ)  =MEN; 	 (6.1) 
i=1 	i j:1 	j 	-. - 

We make the convention that if V 1 = 0 the multi-index t is absent 

(corresponding to a product of operators of type h only) and similarly if 

v2 = 0, while empty products are regarded as unity or the identity 

operator as appropriate. The products in (6.1) are unambiguous since 

	

all operators commute and the operator S 	muUiplier 
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"1 
h(s) = 11 l'U-s/.l) 

"2 
II 	I'(.+s/m.). 	 (6.2) 

j=1 	J 

By examining the proofs of the results in §3 and S4 or proceeding 

inductively, we can see how to obtain analogues in the more general 

situation. To take one instance, (4.4) would be replaced by a 

multiple convolution with 	kernels all related to the standard 

delta kernel in (4, Lemma 5.3). For completeness we shall state 

without proofs the salient results for 	(with the above notation). 

Theorem 6.1 	If 	.-p/1 1  E Q (i 	1,... ,v 1 ), r._p/m. E 7 (j = 	,v ) - 
J 	J 	 2 

and 1 < p<cothengE Si- 	(L 	) if and only if g E F 	and therep 1i 

exists a constant C g  independent of the components of n 	(n,. 

and n (2) 	
(2) ,...p (2) )    such that 

"2 

1 	"2 	_1+n
(l)  

ll Ti 	n i 	

r4 1  n .+nc 2 ,_nc 2  
K 3  

M 
j:1 j=l  3 

1 "2 
( C 	TI 	ii r(Re( 

+n (1) +.1/1  yrCRe(n3+n2)_u/m3)) 	 (6.3) 
g_1 3 _1 

for all non-negative integers n1) (I:1,...,vi) and n 2 (j = 

Theorem 6.2 Under the hypotheses of Theorem 6.1. S 	(L 	) is a 
!!! 	PIP 

(;n) 
Banach space with respect to the norm 11 11 	defined by 

(1) 	2) 
gll 	:inf{C :(6.3) holds for all n. 	J 

,n. = O,1,2,...}. 	(6.4 

Equivalently (taking all n 	 and n 2)  to be the same non-negative integer n) 
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(;n) 	V) 

) 	* 
""p,p,l,rn 	

lim( fl1 fl2V(Re(1.n+/11))F(Re(fl+n-u/rn)) -1 
n4m i:1 j:1 

(.5 

V 1  V2 	.-1+n,-n fl.+n,-n 
liii 	n 	i1 	Km 
j=1 j:l 	 J 

An inversion formula analogous to (4.1) can be obtained involving 

a limit as all the components of n(1) and n 
(2)  (as above) tend to infinity 

independently. We shall content ourselves with the version where, as 

in (6.5), all the n 1) and n2)  are the same integer n. We require 

further multi-indices a = ( ct 1 ,... ,a ) and 	(,.. .,B ) of complex 

	

1 	 "2 
numbers and, as is customary, we write 

1 	 "2 

.j1 
 IaI 	I!l 	

j1 '81 

and similarly for 	 Also let 

"2 	
'vi 

y 	Z (1/rn.)  
j=1 	•) 	j=1 

Theorem 6.3 With the above notation and under the hypotheses of Theorem 

6.1, if g = S_1 _f where f E I 
	then 

f = lim 
 - 	

A Cfl 	1111 	
1 	1 	K 

	

J 	 m 	 g)(6.6) 

{l'(n)} 
" 1 "2 	n' 1:1 j:1 	• n-'  

Remark 6.4 	Formulae such as (6.3), (6.5) and (6.6) can be made to look 

less frightening by more extensive use of multi-index notation. For 

instance, with some obvious conventions, (6.3) can be turned into 
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(1) 	(2) 	(2) 
-1+n 	-! (1) 

	
i!! 	' -Q 

I - - 	IC 	
C r(Re(-+n(1),u/i))r(Re(n+n(2)_u/m) 

U 	
) 

	

m 	 P, —  g  

which is reminiscent of (3.1). Nevertheless, the situation remains 

very complicated with the range S7 	(L) depending on many parameters, 

in particular on all the components of E and n. Things become even 

worse if we want to study operators with multipliers of the farm 

h 1 (s)/h2 (S) where each of h 1  and h 2  has the form (6.2). Many such 

operators arise involving special functions and indeed can be regarded 

as extensions of the C-function operators studied by Rooney [7). It turns 

out, however, that such operators can be handled more simply in F PIP 

than in L p,1J . In future papers, we hope to present an F p 	
investigation 

,u 
and to deal with particular examples. 
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ON THE RANGE AND INVERTIBILITY OF A 
CLASS OF MELLIN MULTIPLIER TRANSFORMS III 

To Professor urn Rooney with best wishes 

A. C. MCBRIDE AND W. J. SPRATF 

Ausiicr. We continue to develop the theory of previous papers concerning trans-
forms corresponding to Mellin multipliers which involve products and/or quotients of 
r-functions. We show that, by working with certain subspaces of L consisting of 
smooth functions, we can simplify considerably the restrictions on the parameters which 
were necessary in the La,,. setting. As a result, operators in our class become borneo-
morphisms on these subspaces under conditions of great generality. 

1. In this paper we continue our investigations into Mellin multiplier transforms T 
satisfying a relation of the form 

(1. 1) 	 (7v((Tf))(s) = h(s)(!Mf)(s) 

under suitable conditions, where the multiplier h has the form 

H (1.2) 	 h(s)= 
ik+1 1701 + r1s) TT., t + 1 F( - tjs) 

f(ij, + r1 s) rif 1  17(e - tjs) 

Here k, £ , K, L are non-negative integers satisfying 0 < k < K, 0 < £ < L (empty 
products being unity by convention), the numbers r1 ..... rK and t1,... , tj, are real and 
positive, and ..... 17K' i .....L are complex numbers. 

In [5] and [6] we characterised the range of the operators corresponding to the multi- 
pliers 17(71 + s/ rn), 	- s/rn) and F(i + s/ rn)r( - s/rn), with in> 0, on the weighted 
spaces 	In the case of the third multiplier, the range was already becoming rather 
complicated and depended on ij and separately. In principle, it might be feasible to 
analyse the multiplier (1.2) relative to but, in practice, it would be a very tiresome 
business. A thorough investigation was carried out by Rooney in [9] but was restricted 
to the special case when all the numbers r, and t3  are unity. 

The purpose of the present paper is to develop a corresponding theory within the 
framework of certain subspaces 	of 	consisting of smooth functions. It turns out 
that the complexity associated with disappears and is replaced by a set of simple con-
ditions of great generality. In particular the range on F,1, of the operator T corresponding 
to (1.2) is a certain subspace Fp , i , r  which depends essentially on only a particular com-
bination of the numbers r1  and t, as given by (5.3). 

Received by the editors July 16, 1991 
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In § 2, we introduce the relevant spaces by examining the range on Fp,, of the op-

erator Am. corresponding to the simple multiplier F(i7 + s/ m) with m > 0. We obtain 

a characterisation of N(F,) as a set and then equip it with an appropriate topology 
which turns the set into a Fréchet space. We then discover that the range is essentially 

independent of ij  and relabel it as Fp,,,r  with the number r = I/ m often being more 

convenient to use than m itself. An equally simple multiplier which we might have tried 

at the start is f( - s/ m). This gives rise to an operator M which was studied along 

with n in [51 but produced a different range for every . In contrast we discover in § 3 

that is independent of and is just Fpjj ,r  back again. This is the first hint of the 

intrinsic importance of Fp,m ,r  for all operators with the same value of r given by (5.3). In 

§ 4, we examine a few simple operators relative to and review some known results. 
Finally, in § 5, we reveal the full details of how the spaces Fp,p ,r  emerge as the ranges of 

operators on with multipliers of the form (1.2). However, as we point out at the end, 
the theory can be extended in a number of ways and this we hope to do in a future paper. 

Throughout the paper we shall make use of notation, terminology and results from [5] 
and [6] to which the reader should refer as necessary. In particular, we use the notation 

(1.3) 	 Q ={zEC:Rez7O,-1,-2 .... }. 

2. We begin by recalling the following result from [5]. 

THEOREM 2.1. If 1 <p < oo, rn> 0 and 71 - p/rn E K2, then g E Mm' (Lp,,,) if and 

only if g E 	and there exists a constant A5  such that 

(2.1) 	[F(Re(71 +n -  Am   Ajorn = 0,1,2,... 

where 4'1 ' denotes the differential operator 

(2.2) 	 = f m (—D m)x m ; Dm  = d/dil. 

PROOF. See [5, Theorems 3.3 and 7.3]. 

Since the topology of 	is defined by a family of seminorms rather than a single 

norm as in the case of 	the next result represents the obvious modification to Theo- 

rem 2.1 which makes use of these seminorms. 

THEOREM 2.2. Ifl <p< oo,rn> Oandij _p/rn E11, then  gENm (Fp, i )ifand 

only if g E and, for each i = 0, 1,2 .....there exists a constant depending on g 

but independent of n, such that 

(2.3) 	Y'([F(Re(7) + n - p/rn))] 	n._ng) <Aforn = 0,1,2..... 

PROOF. Let g = Nf wheref E 	Then, for each i = 0,1,2.....6 'g = N% 6'f 

and since Yf E 	Theorem 2.1 shows that, for some constant 

(2.4) 	II[r(Re + n - 	 <B for n = 0, 1,2 
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However the operators and 6 commute and the operator x'D' appearing in the 
seminorm y[) is a polynomial of degree i in 6. Hence (2.3) follows from (2.4) with the 
constant A' being a linear combination of (k = 0, 1..... i). 

Conversely, let g E 	and let g satisfy (2.3) for certain constants 	Then g satis- 
fies (2.4) for certain constants 	By Theorem 2.1, for each i = 0, 1,2,... there exists 
ft E L,,4  such that 

(2.5) 	 big = Alf . 

If Re L  0, 6 is invertible on Fe,,, and, since 6' commutes with ! on 

(2.6) 	 9=(6)'ft=)V,(6')/ (i=O,1,2,...). 

Explicitly, 6' is given by 

{ JX 
(2.7) 	 (5'h)(x) 	

h(t) dt/ t 	(Re i > 0) = 
 _f h(t)dt/t (Rez <0) 

x 

and in either case defines a bounded integral operator on 	Hence (b — ' )'fi  E La,, for 
each i = 0, 1,2 ..... Further, IV is one-to-one on LPM  and (2.5), (2.6) therefore lead to 

(2.8) 	 fo=(6')'f, (i=0,1,2,...). 

A standard argument based on (2.7) and (2.8) now shows thatf o  is infinitely differentiable 
and is a function in Hence g = IV.fb E Zv(F,) in this case. Finally, to deal with 
the case Re i = 0, notice that (2.3) can be rewritten as 

+ n - / m))]'K_I+nx_mg) <A for n = 0, 1,2..... 

By the previous case with ij, it and g replaced by ij - 1, it - m and x_mg respectively, 
there exists h E Fp,_m  such that x_mg = N'h. A simple calculation shows that, as 
operators on 

Amm = xmNm 

under the stated conditions. Hence g = N,f wheref = f1 h E 	This completes the 
proof. 

REMARK 2.3. The necessary and sufficient condition obtained in Theorem 2.2 is 
equivalent to another condition in which the non-negative integer n is replaced by a 
more general complex number A. More precisely, under the hypotheses of Theorem 2.2, 
g E if and only if g E and there are constants independent of A such 
that 

(2.9) 	 'y 1  ([r(e (7) + A 	<Aw 

for all complex numbers A such that Re(7) + A - p/rn) L 0,—1,-2.....The 
operator 	is a general Erdélyi-Kober operator whose Mellin multiplier is 



1326 	 A. C. MCBRIDE AND W. J. SPRATT 

F(j + A + s/ m)/ f(ij + s/rn). The proof of (2.9) is omitted but we shall require this 

characterisation of the range in the sequel. 

In [5], we noted that 	depends on i  in the sense that, if Re 71, < Re 712  then 

N' (L,) is a subset of N 2  (L,) under appropriate conditions. See in particular [5, Corol-

lary 3.6]. This situation arose because a certain Erddlyi-Kober operator was not invertible 
in the setting. However, when we work in this difficulty disappears. 

THEOREM 2.4. Ill <p< oo,rn> Oandi j  — z/m Eclforj = 1,2then, as sets, 

(2.10) 	 NZI 	= 

PROOF. Under the stated conditions, the operator equation 

)vl = N11K""2'j 

holds on 	while K"2 ' is a homeomorphism from 	onto itself, with inverse 
2.711172 The result follows immediately. 
Our experience with N(L,) suggests that, to turn Nm7  into a homeomorphism in the 

setting, we should make use of (2.3) and imitate the construction in [5]. This time, 

however, we shall obtain a whole family of new seminorms on the range rather than just 
a single new norm. In what follows, we shall often write 

(2.11) 	 r= 1/rn (where m> 0). 

DEFINITION 2.5. Let m> 0, 1 <p < 00 and r, - t/m E Q . For i = 0,1,2,... 

and g E N',(F,) let 

(2.12) 	
P.lLr.Il(g) = inf{A : (2.3) holds for this fixed g and i}. 

REMARK 2.6. It is easy to check that, under the stated conditions, { 	} 	is a 

countable multinorm in the sense of Zemanian [13]. Having shown in Theorem 2.4 that 

the set Am (Fp,,,) is independent of ij, under the appropriate conditions, our aim is to show 

that N(F,) equipped with the multinorm { 
p4t,r,7 }.00 is independent of such ij as a 

topological vector space. 

LEMMA 2.7. If 1 <p < oo, m> OandTh - i/rn E clforj = 1,2 then 

N (F,) is continuously imbedded in N 2  

	

with respect to the topologies generated by the multinonns {'y"" 	and 

f p,14,r,172 Co 
1 'i 	Ji=O 

PROOF. Let g E N 	N 2 (F,). We shall make use of basic properties of 

the Erdelyi-Kober operators. Firstly, for n = 0, 1,2,... 

= J Ill .172_Ill 	_172_flg. 
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Under the given conditions, h = I2 	_?l2flg E 
FA ,,, and l,1.2-17I  is a Continuous 

linear mapping from Fr,,, into itself. By [13, Lemma 1.10-1], with 771 and 712 fixed, for 
each i = 0, 1,2 .....there exist a non-negative integer Ni  and non-negative constants C 
(j = 0, 1..... N,) which are independent of n such that 

Ni 
1P4' (24uI_?g) < 	CfrJ' (hI2+fl.'7l _I12_flg) 

for all n = 0, 1,2 .....Now divide both sides by the quantity 

invoke Remark 2.3 with 71 and \ replaced by 71 and 772 - 711 + n to handle the righthand 
side and take infima to get 

Ni 

(2.13) 	 y?P'lI2(g) <Cj'Y4'(g) 

The result now follows. 

THEOREM 2.8. Forfixedm,p and  such that m> 0,1 <p< ooandji EC,the 
topological vector space consisting of the set and the multinorm { "" } 00 

is independent of 7) E C satisfying 77 - m E L. 

PROOF. The two multinorms give equivalent topologies in view of (2.13) and a sim-
ilar inequality with 77 and 772 interchanged. This, together with (2.10), completes the 
proof. 

NOTATION 2.9. Under the conditions of Theorem 2.8, we shall write 
(2.14) IV,(Fp ,,A ) Fp,p ,r  and'Yf'" _yP4 (i = 0,1,2,...) 
to indicate independence of 77, subject to the condition 

(2.15) 

which will be assumed throughout. 

REMARK 2. 10. 
Since we have lost dependence on 71, we have the first indication that the operator 
Am is not the only candidate which can be used to generate Fp , t , r . The space 
depends intrinsically on r (equivalently on m) and we have one such space for 
every r> 0. We shall continue to use Amm  a little longer to develop properties of 
Fp,,,r  and return later to dependence on r only (for fixed p and ii). 
A fairly routine calculation shows that, with the relevant topologies 

(2.16) 	 Fp, j , r  is homeomorphic to Fp,,2r,i 
under the mapping P,- where (Pçi )(x) = 4 (x'). Hence any two spaces 
Fp,.r(r> 0) are homeomorphic to each other. 
It will be convenient to write 

(2.17) 	 Fr,,. 

i.e. to regard our original F,1, space as corresponding in some sense to r = 0. 
The reason for this will become clearer later. 
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THEOREM 2.11. The space 	0) is a Fréchet space with respect to 
f PM.fl. 00 
1. '1 	Ji=O• 

PROOF. Only completeness has to be established and in view of Remark 2.10(u) it 

is sufficient to prove the result for r = 1. Choose any 7) E C : 77 - u E Q. 

Let { 9k}1 I  be a Cauchy sequence in 	By (2.3) and (2.12), 

(2. 18) 	 - gk)) 	- gk)r (Re O7 + n - ti 

for each fixed i, n = 0,1,2,... and all j,k = 1,2 ..... Hence for each fixed n, 

{ 
is a Cauchy sequence in Since the latter space is complete, for 

each n = 0, 1,2,... we may define 

(2.19) 	 h = lim 
k—.cx, 

where the limit is with respect to the 	topology. In particular g - h0  as k - 00, 

and, since Ar" is a homeomorphism on 	under the given conditions, (2.19) shows 

that 

(2.20) 	 hn  = K'"h0  for all n = 0,1,2..... 

Next observe that, for fixed i = 0, 1,2 .....there is a constant C1  such that, for k > 1, 

'(K'"gk) <c1 r'(Re(r, + n - z)) for all n = 0, 1,2..... 

By letting k - 00 and using (2.19) and (2.20), we obtain 

Ci f(Re(i) +n— ii))I for all  = 0,1,2,... 

so that h0 E 	with yf"1(ho) < C1 . Also, from (2.18), for any r > 0, there exists a 

positive integer N, independent of n, such that 

L(+fl•_fl(gj —gk)) 
	elr'(Re(7) +n - )) I for all j,k > N. 

If we letj - oo and use (2.19) and (2.20) again, we obtain for n = 0, 1,2,... 

yP.P (K7'(ho - gk)) rlF(Re11 + n - 	for all k > N 

E for all k2N. 

Hence { g} 	converges to h0  with respect to { }. This completes the proof. 

THEOREM 2.12. Under condition (2.15), n is a homeomorphism from 	onto 

with respect to the multinorins { y' }, and { 	respectively. 

PROOF. Amm  is one-to-one (by the corresponding result in 	and onto (by con- 

struction). As regards continuity of N, note that, as operators on 

= N'7 	xD'P.I7 = N',x'D' (i = 0, 1,2,...) 
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so that, forf E 

y 4L 	 = y).!i (f..,Pl+flf) = x'D'P7fIl
It 

= 11/ 	' x'D'fII. 	 - 	 1 1 1  Ix' D'JiI,, 

where we have used [5, Theorem 7.1].  It then follows that 

<yP" (f) for all i = 0, 1, 2....  

from which continuity of Amn  follows. Finally, continuity of (N,)' is now automatic by 
Theorem 2.11 and the Open Mapping Theorem for Fréchet spaces [12, Theorem 17.1]. 

3. In [5],  we obtained characterisations of 	and 	and discovered 

that these spaces were not the same. In contrast, we shall show that the space Fp,p ,r, 
which represents the range of Amm  on 	for alli1 satisfying (2.15), is also the range of 

My,, on 	for all satisfying an analogue of (2.15). We achieve this by making use of 
the theory of multipliers developed by Rooney [8]. 

THEOREM 3A. Let  <p< oo,r> O and iz EC.1f is any complex number such 

that + rjz E Q then M,, is a homeomorphism from F,, 1  onto Fp,,,r  (where, as usual, 

m= 1/r). 

PROOF. Chooseiji EC such that Re(1j3 — rj)> max (0,Re( +rii)) and let 

(3.1) 	 hi(s) = F( - rs)/f(r i  + rs). 

Then we can find a strip S = Is E C : a < Re s < 0 1 such that 
S contains the line Re s = —Re ti 

Re(iii +rs) > Re( - rs) for ails ES 
h is analytic on S. 

By using the strip S we can check that h is in the class A introduced in [8, Definition 3.11. 
Indeed, by [1, 1.18(6)] 

(3.2) 	 IF(x+iy)I '- v IyIx_h/ 2e_' 2  

as I yj - oo, uniformly with respect to x in a bounded interval, and since Re( - rs) < 

Re(iii +rs), we can deduce that his bounded on any substrip of the form a' < Res < 
with  < a'< 0' < /3. The condition that 

Ih'(s)I = O(IImsI') (s E S) 

can be checked similarly by using the formula [1, 1.18(7)] for the asymptotic behaviour 
of the function = r/ r. Thus, by [8, Theorem 11, h is an multiplier and hence, 
by [4, Theorem 3.3],  an Fp,, multiplier. Hence there is a continuous linear mapping T1  

from Fp,, into such that 

(3.3) 	 (9iIT(TJ))(s) = h(s)(7s(f)(s) 
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whenever  E F fl F2 and Res = —Rep. 

Recall that the operators N and M have the respective multipliers 

f(71 1  +s/m)f(rii +rs) and F( —s/m)asF'( —rs). 

It follows from (3.1) and (3.3) that 

(M(zv' Tjf))(s) = (1(M.f))(s) 

whenever  E 	fl F2 and Res = —Rep. By a standard continuity and density 
argument we deduce that, under the given hypotheses, 

(3.4) 	 ZV'T1f= M,f for all f E 

so that MmC is a continuous linear mapping from 	into )V(F,) 	Fp ,p ,r  this being 
valid since rj 1  —rp Eby choice of7J i . 

To prove that M.0  is a homemorphism we choose 172 E C such that Re (712 - rp) < 
Re ( + rp) and 772 - rp E Q. Consider the multiplier 

hz(s) = 17072 + S)/ F( - rs) 

in a suitable strip containing the line Res = —Rep, throughout which h2 is analytic 
and Re (712  + rs) < Re ( - rs). By proceeding as above, we obtain a continuous linear 
operator T2 from Fp,, into Fr,,, such that 

MT2f = lV 2f for al If E F,,,, 

by analogy with (3.4). This shows that Fp,.j , r  N2(Fp,) c 	and hence from 
above we obtain M(F,) = Fp,,r . Furthermore, M is a homeomorphism by the Open 
Mapping Theorem for Fréchet spaces [12, Theorem 17.1] and the proof is complete. 

REMARK 3.2. Our proof above required us to choose two separate values of q in 
order to use the asymptotics of IF and and obtain a multiplier in the class A for both 
h1 and h2. An alternative approach can be found in [10, Theorem 6.22]. We shall make 
further use of multipliers in subsequent work which will reveal that Theorem 3.1 is only 
the tip of the iceberg. There are many continuous linear mappings and homeomorphisms, 
all mapping onto Fp, z ,r and all having their behaviour dictated by a common value 
of a parameter r. Any one of these operators could be used to study the space Fp,,r  but 
Am. and M5, (with m = 1 / r) are the two which have the simplest multipliers. 

4. Having obtained the topological structure of the spaces Fp,,r , we shall now look 
at a few simple operators relative to these spaces. Some of our results point the way 
ahead to more substantial results in § 5. 
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THEOREM 4.1. For 1 < p < oo, r > 0 and any complex numbers A and p,  the 
mapping x" is a homeomorphism from Fp ,,j ,r  onto ,r with inverse x. [Here, as 
usual, we are talking of the mapping which sends g(x) to x g(x).] 

PROOF. Choose any ij E C such that 17 - ri E Q. Then, with m = 1/r and 

g e Fp,p ,r  = N(Fp ,A ), we obtain 

Jç+fl._flg = x 1+r n_hI(xAg) for n = 0, 1,2..... 

Hence, for i=O,l,2..... 

78 
4i+A 

(117(Re ('i + rA) + n - 

= IIx'D'([F(Re(i+n 

= IIx'D'([F(Re(ii+n 
= Y([f(Re(ii + n - 

- ,jL + A )) ) ] -'K.q+rA +n,—n (X ,\ g)

) 

- ru)) ]x Kl+rA +n._n (xA g)) IIp. 
- ru))]'Khlf' 	\ii 

m 	)IIp.p 

- rL))]lK7?1g). 

It now follows that 

(4. 1) 	 ,1+A.r.,j+rk (x"g) = 

the lefthand side being well defined, as Re ((71  + rA) - r(u + A)) = Re (71 - ru) 
0,-1,-2 .... . (4. 1) proves thatxA  is acontinuous mapping from Fp . g , r  into Fp ,p+ ,r . A 
similar argument shows that x — A is a continuous mapping from Fp,+,r  into Fp,(+)_,r 

= Fp.p ,r  and the required result follows at once. 

THEOREM 4.2. For 1 <p < 00, r> 0 and p E C, the operator U defined by 

(4.2) 	 WOW =g(1/x) (x>0) 

is a homeomorphism from Fp ,,,r  onto Fp,_,r  and U-1  U. 

PROOF. Choose any ij E C such that Re (71 - ru) L 0,—i, —2.....A simple calcu-
lation involving multipliers [5, (8.2)] gives 

(4.3) 	 A4Uf=UNf (fEF,). 

(We shall use U rather than R, as used in [5],  to avoid any confusion with r.) The operator 
U is a homeomorphism from Fr,,. onto F,_,, so that both sides of (4.3) are well-defined 
under the given condition on 1 7. We can rewrite (4.3) in the form 

Ug = M."U(AP,)g (g E Fpjt ,r) 

and by Theorem 2.12, Theorem 3.1 and our previous remark concerning U, the required 
result now follows. 

REMARK 4.3. From earlier work, we know that Theorems 4.1 and 4.2 remain true 
when r = 0 if we make the convention in (2.17). Indeed such results justify the use of 
(2.17) to some extent and further justification will follow. 
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Suppose now that we look at things the other way. Under what circumstances will 
an operator which is well-behaved in the original F,,4  setting (r = 0) continue to be 
well-behaved relative to the Fp,p ,r  spaces for r> 0? The simplest situation is when an 

operator T is a continuous linear mapping (or homeomorphism) from into Fr,,. (i.e. 
no change in z). For r> 0, is a subset of and we may ask when Trestricted 
to Fp, i .r  gives a continuous linear mapping (or homeomorphism) from Fp,p ,r  into Fp,p ,r . 

There is a large class of operators T for which this is true, as we shall now see. 

THEOREM 4.4. For I < p < 00 and appropriate complex numbers p let T be a 
continuous linear mapping from Fp,t, into Fp,, corresponding to an 	Mellin multiplier 

h. Then (the restriction of) T is a continuous linear mapping from 	into Fp,p ,r  for all 

r> 0 (under the same conditions on p and t). 

PROOF. The differential operator K ,` appearing in (2.3) is a Mellin multiplier 
transform whose multiplier is fl7_ 1  (i +j - 1 + s/ m) where, as usual, m = 1 / rand ,j is 

such that Re (ij - rp) L  0, —1, —2 .....Since any two multiplier transforms commute, 
it follows that, in the notation of (2.3), 

y P.P ([r'(Re (ij + n - 

(4.4) 	 = i (T([I- (Re (ij + 
n - p/ m))]1,7n_ng)) 

N(i) 

+n 	 K7"g) 
j=0  

for some non-negative integer N(i) and constants C3 Q = 0, 1.....NW) by [13, Lemma 
1.10-1]. The inequality (4.4) now leads to 

N(i) 
< 	CyP4'1I(g) Vg E N(F,) 	Fp,,i ,r  

1=0 

and the result follows. 

COROLLARY 4.5. Let 1 <p < 00 and p E C. If T is a homeomorphisin from 

onto 	and T, T 1  are Mellin multiplier transforms (corresponding to multipliers h 
and I/ h, say) then (the restriction of) T is a homeomorphism from Fp, u ,r onto Fp,,,r  for 

all r> 0. 

PROOF. This is immediate on applying Theorem 4.4 to T and T' 

REMARK 4.6. Theorem 4.4 and Corollary 4.5 are further instances of results which 
hold for r> 0 as well as for r = 0, with the results for r> 0 being inherited from those 
for r = 0. 

EXAMPLE 4.7. The spaces 	 studied in [2] were developed for the study 
of the Erdélyi-Kober operators P and K" (the ij here not being the same ij as in N 
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necessarily!) In view of results obtained for r = 0, we can say that for 1 < p < 00, 
r> O and appropriate p EC (and with m= 1/r), 

pi.a  is a continuous linear mapping from Fp ,p .r  into Fp,p ,r  if q + 1 + rp E K2 and 
is a homeomorphism if, in addition, ij + a + 1 + rp E L. 
K is a continuous linear mapping from Fp,,, into Fp,j , r  if ij - rp E 0 and is 
a homeomorphism if, in addition, 77 + a - rp E Q. 

We therefore have a whole family of subspaces of the original 	spaces which are 
invariant under the Erddlyi-Kober operators, at least for 1 <p < oo. 

Use of Theorem 4.1 enables us to handle operators where p changes butp and r remain 
the same. An example of such operators is given by certain operators involving the 2F1 
hypergeometric function which were studied relative to the Fp,, spaces in [2]. 

EXAMPLE 4.8. Consider the operator H1 (a, b; C; m) = fwT i  (a, b; c; m) where 
T1 (a, b; c; m) is a Mellin multiplier transform with multiplier 

(4.5) 	f(a + 1 - s/ m)F'(b + I - s/ m)/ { F( + b + 1 - s/ m)JT(c + 1 - s/ m)}. 

Here a, b and c are suitably restricted complex numbers and m > 0. The multiplier in 
(4.5) is of a form which we shall be handling later in more generality. For the moment, 
we can proceed by factorising Hi (a, b; c; m) in the form 

H1 (a, b; c; m) = fc_mb Jo.c_bja_bbfb 

which can easily be checked via multipliers. Manipulations will be valid on F,,2  provided 
that a + 1 + p / m E Q and b + 1 + p / m E Q. Theorem 4.1 and Example 4.7 then 
show that H1  (a, b; c; m) is a continuous linear mapping from Fp i/ m  into Fpji+,nc,i/ m  for 
1 <p < 00, m> 0 and p as above. Furthermore, a homeomorphism will be obtained 
if, in addition, 

c+ 1 +p/m E K2 and a+b+ 1 +p/m.E n . 

WhenRe(a+ 1 + 1u/m)> 0 andRe(b+ 1+u/m)> 0, the operator H 1 (a,b;c;m)is 
the integral operator given by 

(4.6) 	(Hi  (a, b; c; m)f) (x) = f(f - t"')F(a,b;c; 1 —f/t")f(t)d(t') 

where P(a, b; c; z) is an analytic continuation of 2F1  (a, b; c; z)/ f(c) [2, p.  88,93]. These 
results for r = 1 / m > 0 accord with those in [2] for r = 0. The other operators in [2, 
Chapter 4] can be treated similarly. 

Hypergeometric functions also arise in our next example. In [11], differential oper -
ators of the form x" Dx'12 Dx' 3  (of so-called Bessel type) were studied and in [3] these 
considerations were extended to nth  order expressions. We shall review just one of the 
results. 

EXAMPLE 4.9. Consider the formal differential expression 

T= x'Dx'22D•• 
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of order n where ai.....a+i are complex numbers such that 

n+I 

m=n—a> 0, wherea=>a1. 
i= 1 

We showed that relative to 	spaces, it was possible to define an ct th  power T  of T 
to be such that 

JT(bk + 1 - 
s/rn) (91j)(s) (M(Taf))(s + ma) = rn [J 

F(bk+l —a — s/rn) 

under appropriate conditions, where 

bk=>ai+k—n)/rn (k=1,...,n). 
i=k+1 

Again, the product involving gamma functions is a special case of the type of general 
multiplier we shall discuss later but here we can use the factorisation 

(4.7) 	 = rnlx_rna fl jb,,-a 

in terms of Erdélyi-Kober operators. Theorem 4.1 and Example 4.7 show that T defines 
a continuous linear mapping from Fp i/ m  into Fp ,p _ma,i/ m  for every m > 0 provided 
that  <p< oo and bk +l+/i/mE fork = 1..... n. 

REMARK 4.10. Examples 4.8 and 4.9 both lead to multipliers which are special cases 
of the class we are interested in and, indeed, for Re a < 0 the operator in (4.7) is an 
integral operator involving Meijer's G-function However, in neither case do we 
effect a change in the value of r. This is because the product of quotients of gamma 
functions is "balanced" in a sense to be made precise. A change in the value of r occurs 
when the multiplier is not "balanced," as we shall discover when we develop the theory 
of our general class of Mellin multiplier transforms relative to the spaces (r> 0). 
We are now ready to embark upon this development. 

5. Consider again the multiplier h in (1.2) and let 

K 	t 	k 	L 
(5.1) 	c= E rj+>tj— >rj—  > ti 

i=k+1 	j=1 	i=1 	j=+1 
K 	L 	k 

(5.2) 	d=Re{>Th+J— > 1Ji — jL4- k+1 — (K+L) 
i=k+1 	j=+1 	i=1 	j=1 

K 	L 	k 	£ 
(5.3) 	r= > r,+ E ti — > ri — Et.. 

i=k+1 	j=t+1 	i=1 	j=1 

The use of r in (53) is deliberate and we shall reconcile this version of r with the previous 
version of r = I/ m shortly. Of course, c, d and r all depend on the multiplier h. The 
relevance of these quantities is shown in the following lemma. 
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LEMMA 5.1. For the multiplierh in (1.2), and with  = a+ ir  (a,r real) 

(5.4) 	1 h(s)I = 0(IrI'"exp{-1rrI7-I/2})as TI 	°°' 

the estimate holding uniformly for a in any compact subset of it 

PROOF. The result follows by applying (3.2) to each IF-function appearing in h. 
Recall next the class C of multipliers introduced in [7].  If we use the equivalent ver-

sion obtained in [7, Theorem 4.4], we can deduce 

COROLLARY 5.2. If r r(h) ~! 0, then the multiplierh in (1.2) belongs to the class 

C. 

PROOF. Chose any real numbers a and /3 such that the strip a < Re s < 0 contains 
none of the poles of h (which are finite in number). Then h is analytic on this strip and if 
we choose a positive integer N such that 

N> sup{ca +d: a <a = Res < 01, 

then, by (5.4), I s'"h(s)I will be bounded as I s - oo, uniformly with respect to or in any 
closed substrip a' < a < 0' where a < a' < 0' < /3, i.e. h(s) is uniformly of order 

I SI N as I s I - oo within such a strip. The result follows. 
In view of [7, Theorem 4.3],  we can conclude that h is the multiplier of a mapping T 

which maps F,, into F,, for  <p < oo and a < —Rep </3 wherea and /3 are any 
real numbers such that h is analytic on a < Re s < /3. Also we may allow a = —oo or 
/3 = 00, as appropriate. It is convenient to introduce the following notation. 

DEFINITION 5.3. For h as in (1.2), define the set i 	(h) by 

(5.5) 	 A(h) = {xE R: no pole ofh(s) lies on Res =x}. 

Our previous statement then becomes the statement that h is an 	multiplier for 1 < 
p < 00 and —Re ft E (h), provided that r(h) ? 0. 

We can think of multipliers (1.2) having r(h) = 0 as being "balanced" while those 
having r(h)> 0 are "top heavy." As might be expected, the properties of the multiplier 
transform T corresponding to h are simplest in the balanced case. 

THEOREM 5.4. Let T be the multiplier transform corresponding to the multiplier 

(1.2) with r(h) = 0. 
If! <p < oo and —Re .i E /t(h), then T is a continuous linear mapping from 

into 
If, in addition, —Re it E A( 1 / h), then T is a homeomorphism from 	onto 
whose inverse is the multiplier transform corresponding to 1 / h. 

PROOF. This is almost immediate from the preamble and the observation that, in 
general, 

(5.6) 	 r(1/h)=—r(h) 
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as is obvious from (5.3). In our case r(1/ h) = r(h) = 0. 

EXAMPLE 5.5. Individual Erdélyi-Kober operators are balanced as are products of 
such operators, a particular example being the hypergeometric operator T1 (a, b; c; m) in 
Example 4.8 corresponding to the balanced multiplier (4.5). 

However, the full significance of the Fp .p ,r  spaces begins to become apparent when 
r(h) > 0. The crux of the proof of the following theorem is to make the original top-
heavy multiplier balanced by introducing another IF-function in the denominator, the 
extra f-function being the multiplier associated with n (m = 1/ r). 

THEOREM 5.6. Let T be the multiplier transform corresponding to the multiplier 
(1.2) with r r(h)> 0. 

If 1 <p < 00 and —Re p E E,(h), then T is a continuous linear mapping from 
into Fp,,r. 

If, in addition, —Re p E i( 1 / h), then T is a homeomorphism from 	onto 

Fp,p,r* 

PROOF. For fixed p such that —Rep E i.(h), there exist numbers a and 3 such 
that h(s) is analytic on a strip a < Re s < $ which contains the line Re s = —Re P. 
Choose any ij such that Re (ij + ra) > 0. Then F(ij + rs) is also analytic on the strip 
a <Res < /3. Let 

(5.7) 
	 g(s) = h(s)/f(?, +rs). 

Then (h) c i(g), since no new poles have been created and the multiplierg is balanced, 
since r(g) = r(h)—r = 0. By Theorem 5.4(i), g gives rise to a Mellin multiplier transform 
T0 which is a continuous linear mapping from into for the given p and for 
1 <p < oo. However, (5.7) leads to 

h(s) = f(?J + rs)g(s) 

and, under the given conditions, f(ij + rs) is the multiplier of n with m = 1 / r, so that, 
as operators on 

(5.8) 	 Amm  

and since, by construction, Am. maps 	continuously onto Fp,,r, (i) of the theorem is 
proved. 

To prove (ii) assume also that —p E z( 1 / h). Then 

I/ g(s) = f(71 + rs)/ h(s) 

so that by choice of ij, with a and 0 as above, —p E i\(1 / g). By Theorem 5 .4(u), T0 
is a homeomorphism from Fp ,, onto Also JV is a homeomorphism from Fp ,, onto 

Fp .p .r. Part (ii) of the theorem therefore follows from (5.8). This completes the proof of 
the theorem. 
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REMARK 5.7. We can now see clearly how the theory of the multiplier (1.2) be-
comes so much simpler if we work relative to F,,1  rather than to In the case when 
the corresponding operator T is as well-behaved as possible, i.e. is a homeomorphism, 
the range depends only on the combination (5.3) of the parameters r,, t (1 < j < K, 
1 <j <L) and not on the parameters individually. Furthermore, for fixed u E C and 1 < 
p < oo, the range is independent of the parameters 'jj,j(  1 <i < K, 1 <j <L) provided 
only that these are chosen so that we avoid poles and ensure that -i E A(h) fl ,( 1/h). 

Theorem 5.6 can be extended further. Bearing in mind the convention adopted in 
(2.17), we have obtained a continuous linear mapping from 	into F,,1 , and, under 
additional conditions, a homeomorphism. Since any Fp,,,r  space is a subset of 	(with 
a different topology), we might enquire as to how the restriction of T to 	behaves, 
for any r' > 0. This question can be answered completely. We can state the answer rather 
imprecisely in the form of the final theorem. 

THEOREM 5.8. Let T be the multiplier transform corresponding to the multiplier 
(1.2) with r r(h) ~! 0. Then under conditions of great generality, T (restricted where 
appropriate) is a continuous linear mapping from into Fp., +r  for any r' > 0 and 
will be a homeomorphism under additional mild restrictions. 

REMARK 5.9. 

We shall not offer a proof of Theorem 5.8 here as a certain amount of extra ma-
chinery is needed. One approach is via duality and it seems appropriate to defer 
further details until a future paper where we hope to present a distributional ana-
logue of the classical Lp,  theory. Since the 	spaces are the underlying spaces 
of test-functions, the simple conditions on parameters exemplified in Theorem 5.6 
will be retained in the distributional theory, again in contrast to the classical the-
ory. 

Theorem 4.4 and Example 4.7 provide an illustration of Theorem 5.8, with 
and r being replaced by r and 0 respectively. In general, each Fpji .r  space will be 
invariant under any multiplier transform corresponding to a balanced multiplier. 
The question arises as to what can be done when r is negative. The multiplier 
(1.2) is then bottom heavy, a typical example being I / F(71 + rs) which should 
correspond to (N) with m = 1/ r. Since this operator maps the subspace 
onto 	it seems reasonable that (IV) — '(F,) will be a larger set than 
This leads to an attempt to define a "negative space" Fp,p ,r  for r < 0 as opposed 
to the "positive spaces" Fp,,,r  for r > 0. Such ideas are again related to duality 
and it is possible to mimic a construction often used for Hilbert spaces. We hope 
to pursue this topic also in a future paper. 
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A CLASS OF MELLIN MULTIPLIERS 

A. C. McBRIDE AND W. J. SPRA1T 

ABSTRACT. We examine a class of functions which can serve as Mellin multipliers 
in the setting of the spaces F., which we have used extensively in other papers. The 
conditions to be satisfied by such a multiplier h do not involve h' explicitly. This means 
that multipliers involving r-functions can be handled by means of the asymptotics of 
r(z) alone, without the need to study io = r, r, thereby saving effort in the case of 
complicated multipliers. 

In [7], Rooney introduced a class ..4 of Mellin multipliers such that each multiplier 
h € . gives rise to a corresponding bounded linear mapping T from La,,, into L for 
1 <p < oo and suitable complex numbers .i. In particular, the relation 

(9*1'(Tf))(s) = h(s)(7s(f)(s), Re s = - Re 

holds for al If € L,,,,. fl L2,,,, where 7I( denotes the Mellin transform. 
Recently we have been concerned with multipliers for continuous linear mappings 

from Fr,,. into Fe,,., where F,,,,, is a certain subspace of smooth functions in Lu,,.. It was 
proved in [3, Theorem 3.31 that every multiplier which gives rise to a continuous linear 
mapping from Lu,,, into L,,.,, does likewise for Fe,,., i.e. every L1,,., multiplier is an F,,,,. 
multiplier. However, the class of F,,,,, multipliers is strictly larger. 

The definition of Rooney's class . involves a condition on h', the derivative of h, 
and this condition can be tedious to verify if h is complicated. We have been particularly 
interested in multipliers involving products and/or quotients of gamma functions where 
the appropriate condition on can be checked via the asymptotics of r and 1P = r, r. 
However, the calculations involving ip are unnecessary. We shall obtain another criterion 
involving h, but not h', which will guarantee that h is an F1!,,,, multiplier and which will 
be applicable in particular to our 17-function multipliers. See [4], [5] and [6] for details 
of this application, along with the necessary background. 

First let us establish the notation to be used. Throughout we shall assume that 
1 <p < oo and that ti is a suitable complex number. 

DEFINITION 2.1. 

(i) We denote by L,,,, the set 

(2.1) 	 L,,,,, = {f: IL! lip.,. < oo} 
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where 

(2.2) 	 ILl IIP4L = 
{ I: Ixf(x)Vdr/x} 'IP 

(ii) We denote by Fp ., the set 

(2.3) 

where 

(2.4) 	 (tf)(x) = xf(x). 

For  = 0,1,2,... andf E F,,,, define v"(f)by 

(2.5) 	 j,PP(f)= 1 1 b 

REMARK 2.2. 
The expression 	in (2.2) defines a norm on Lp., and (L,, II II) is a 

Banach space. 
For each i = 0, 1,2,..., the expression r' (f) defines a seminorm on 	and 

v(f) defines a norm. The topology generated by the multinorm { v' } , turns 

into a Frdchet space. 
The seminorms { v }' are more convenient here than the equivalent family 

of seminorms { v°4' } defined by 

= Ix' 1Yf (X)IIp, 
which are used in [4] and elsewhere. 
Although p is assumed to be real in [7], we can allow p to be complex without 
any difficulty. The spaces 	fl IIP.M) and (LP.RC ,I . II lIpRep) are identical, so 
that there is no loss of generality in taking p real when it is convenient. 
Our set L corresponds to LL,in [7]. 

DEFINITION 2.3. For suitable functionsf, we define Mf, the Mellin transform off, 

by 

(2.6) 	 (7i4f)(s) = jx'f(x)dx 

for suitable complex numbers s. 

THEOREM 2.4. For 1 <p <2 andf E L1,,,, Mf exists almost everywhere on the 

line 

(2.7) 	 Res= —Rep 

the integral (2.6) being interpreted in terms of mean convergence. 

PROOF. See [7] but note Remark 2.2(v). 

DEFINITION 2.5. The set . consists of all functions h for which there exist extended 

real numbers a and /3 (depending on h) with a < /3 such that 

h(s) is analytic on the strip a < Res < /3 
h(s) is bounded on every closed substrip a' ( Res < 0' where 
a < a' </3' < 0 
for a < Res < 3, Ih'(s)I = 0(1 Imsj') as I !msl - co. 
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THEOREM 2.6. Every function h E i4 is an L p., multiplier More precisely, for a, /3 
as in Definition 2.5, there exists a linear operator T such that 

T is a bounded linear operator from Lp . 1, into L.,,,,, for I < p < 00 and a < 
—Rep <8 

(2.8) 	 (7i((Tf))(s) = h(s)(9v(f)(s) on the line Re s = - Re p 

wheneverf E L p., fl L21A,  1 <p < 00 and a < - Rep </3. 

PROOF. See [7, Theorem 1]. 

THEOREM 2.7. Every function h E A is an 	multiplier More precisely, for a, /3 
as in Definition 2.5, there exists a linear operator T such that 

(1) T is a continuous linear operator from Fr,,, into Fp4, for 1 <p < oo and a < 
—Rep < /3 
(2.8) holdsforf E Fp, M  fl F2,, where 1<p<  ooanda < —Rep </3. 

PROOF. See [3, Theorem 3.3]. 	 U 

REMARK 2.8. 
In the situation of Theorems 2.6 and 2.7 we shall call T a (Mellin) multiplier 
transform having h as its multiplier. 
Functions other than those in A can act as multipliers of continuous operators, 
simple examples being 1 and —s which correspond to the identity operator and 

as in (2.4), the latter only being meaningful in 	rather than in Lp.M . 

3. As indicated in § 1 we now introduce a class of functions which can serve as 
multipliers but which are characterised by conditions which do not involve a"growth" 
estimate of the derivative. It turns out that the growth estimate in Definition 2.5(iii) is a 
consequence of the alternative conditions, these being easier to check in certain cases. 

DEFINITION 3.1. The set B consists of all functions h for which there exist real num-
bers a and /3 (depending on h) with a < 0 such that 

h(s) is analytic on the strip a < Res < /3 
sh(s) is bounded on every closed substrip a' < Res < /3' where a < a' S 
13'</3. 

THEOREM 3.2. 'B is a subset of i4. 

PROOF. We check the conditions of Definition 2.5. Condition (i) for A follows from 
condition (i) for B. Also boundedness of sh(s) on the strip a' < Re s < 3' guarantees 
boundedness of h(s) on the same strip with Ih(s)I = O(ImsI) as I Imsi -' oo within 
the strip. It remains to get a similar estimate for the derivative. For given a' and /3', let 

= min(f3 —/3',a'—a) 
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M=sup{Jsh(s)I :a'—< Res </3'+f}. 

Note that [a'-  €, 0' + f  ] C (a,j3) so that M exists by Definition 3.1(u). Let p = / 2. 
Then for a' < Re s $ /3', we may write 

d, 	, 	1 j 	zh(z) 
sh(s)= —Ish(s))_h(s) 	i 	,dz—h(s) 

ds 	 2iri JC, (z - s)- 

where C. denotes the circle with centre s and radius p, C. lying entirely within the strip 
of - 	Res < 0'+ e by choice of p. By a standard estimate, we obtain 

Ish'(s)I < 	. 21rp + h(s) = 	+ Ih(s)I. 
21r p2 	 p 

As noted above, Ih(s)I is bounded on a' < Res < 3' and hence so is Ish'(s)l. It now 
follows that lh'(s)l = 0(1 ImsI') as I ImsJ -* oo within the strip a' < Res < 0'. This 
verifies the third condition in Definition 2.5 and therefore completes the proof. 	. 

The multiplier transforms corresponding to multipliers in B form a subset of those 
corresponding to those in A. For instance we lose the identity transformation whose 
multiplier h, given by h(s) 1, belongs to A but not to B. The transforms corresponding 
to multipliers in B can be characterised as convolution integral operators by virtue of the 
following result. 

THEOREM 3.3. Let h € fB and let a and /3 be as in Definition 3.1. Then there exists 
a function k such that 

k € L1,, for all p satisfying a < - Re p </3 
(9v(k)(s) = h(s) on the strip a < Re s < 3. 

The corresponding multiplier transform T is given by 

(3.1) 	(Tf)(x) = (k *f)(x) j k(x/ :)f(t) dt/ t (f € L,,) 

andisaboundedlinearmappingfromL into itselffor I <p < oo, a < - Rep < 

PROOF. See [8, Theorem 2.35]. 

EXAMPLE 3.4. Let us review a familiar operator in the context of the class B. Con-
sider the multiplier 

h(s) = F(,j + s)/ 	+Y + s) 

where 17 and '7 are complex numbers with Re')' > 0. h is analytic in the half-plane 
Re s > - Re i7. Take a = - Re i, 0 to be any real number such that 0 > a. For 
condition (ii) in Definition 3.1 we may make use of the formula [1, 1.18(6)] 

(3.2) 	 I r( + iy)I '' (27r) 1 /
2 y'' 2e't'2  as II -' 00. 

Then if we write')' = 'Yi + i'7, TI = 771 + 	= or + ir, take - < a' <a </3' < /3 
and note that (3.2) is uniform in x for  in a compact subset of R, we get 

I 	r(+.) I 	
n) I 	

1172 +,rjYjj+a-1/2  

(3.3) 	Ir( TI  +'Y +s)1 	
(C+ 	

1 772+12 +rI''/ 2  

xexp[-1r{I2+nI—I2+'72+rI}/2] 
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(C a constant) and for boundedness as ri -+ oo we require 1 - Y1 	0 i.e. Rey > 1. 
In this case the corresponding multiplier transform is the Erdélyi-Kober operator K11" 
given by 

(3.4) 	(K'"f)(x) = [r(y)]-'. zoo (t - 

which has the form (3.1) with the kernel 

(3.5) 	 k(s) 
= { [

rcy)] - '( l - t)t' 0<t < 1 

We deduce that, for Re -Y 	1, K' is a bounded linear mapping from 	into itself 
whenever Re ,i > Rep (as 3 > a was arbitrary). However, it is well-known that the 
resulting operator remains bounded under the weaker condition Re Y > 0 (and Re i > 
Re u as before). Indeed we can check that the kernel kin (3.5) belongs to L1. , under these 
conditions. Thus the set W does not tell the whole story in the Lp,, setting, i.e. h E B is 
sufficient to guarantee a convolution integral operator but not necessary. 

REMARK 3.5. At this stage the reader may wonder why we have introduced 'B at all. 
It is true that the multiplier h in Example 3.4 belongs to . under the weaker condition 
Re y > 0, as can be checked via the asymptotics of the function = r, r given by 
[1, 1.18(7)]. However, although our class 'B may seem to be deficient in the Lv ,,, setting, 
it comes into its own (suitably modified) in the Fp., setting. It is in that setting that we 
can obtain the most elegant theory for multipliers involving products and/or quotients of 
gamma functions. Accordingly, we shall proceed to Fp., for our subsequent discussions. 

4. When we are working in 	polynomials are available to us as multipliers, 
with the polynomial P(s) = E as corresponding to the continuous linear operator 
P(—t5) = E0 a,(— )'. We shall exploit this to the full in defining our next class of 
multipliers. 

DEFINITION 4.1. The set C consists of all functions h for which there exist extended 
real numbers a and /3 (depending on h) such that 

h(s) is analytic on the strip a < Re s < 3 
for each a0 and fib  satisfying a < a0 < fib < 3, there exists a non-negative 
integer N N(ao, fib,  h) such that 

(4.1) 	 1 ° — s)"sh(s) is bounded on every closed substrip 
a' <Res </3' where a0 < a' < 0' < fib. 

REMARK 4.2. 
Condition (ii) in Definition 4.1 says that if we restrict attention to a0 < Re s < 00 
we can find a non-negative integer N such that (a0 — s)"h(s) defines a multiplier 
in B. However if we change ao and fib,  we are allowed to change N in order to 
control the growth of h. 
Instead of introducing the factor (a0 — s), we could equally well have intro-
duced (00 — 5)_1V, with the same effect. 

Immediately we can prove 
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THEOREM 4.3. Let h E C and let a, /3 be as in Definition 4.1. Then there exists an 
operator T such that, for l <p< oo and a < —Rep <(3, 

T is a continuous linear operator from F,,,,, into Fe,,, 
(M(Tf))(s) = h(s)(9s1'f )(s) on the line Re s = - Re p for a/if € F,,,, fl F2,,,. 

PROOF. Choose a0 and /3o such that a < a0 < $o < 3. With N as in Definition 
4.1(u), let 

(4.2) 	 ho(s) = (a0 —s)h(s) (a0 < Res < /30). 

By Theorem 3.3 and Remark 4.2(1), there exists a function ho such that, for all p satisfying 
a0 < —Rep <Bo, 

(4.3) 	 /co € L1,,, and (9i1'k)(s) = ho(s) for Res = —Rep. 

Let T0  be the convolution integral operator generated by k0  via (3.1) and let 

(4.4) 	 T=(ao+5)'T0  

where a0  + S stands for a0! +5, 1 being the identity operator on Fe,,,. Under the stated 
conditions, To is a continuous linear mapping from La,,, into 1.,,,,,. Also, if f € F,,,,, a 
standard result involving the Mellin convolution * allows us to say that 

5'(T0f) = S'(k0 *f) = k0 *S'f= To(S'f) for i = 0,1,2..... 

Hence To defines a continuous linear mapping from F,,,,, into F,,,,, under the stated condi- 
tions and the same is therefore true of T. For appropriate p and p and forf € F,,,,, fl F2,,,, 

(M(Tf))(s) = ( ao - s)'(M'(Taf))(s) = (ao - s)N(fMk 0)(s)(94'f)( s) 

= (ao - 5)Nh (s)(9v(f)(s) = h(s)(9.l'f)(s) 

where we have used successively (4.4), (4.3) and (4.2). Since the above argument applies 
to any strip a0 < Re s < $o where a < a0 < $o < 3, we have constructed an oper-
ator T satisfying the requirements of the theorem. (That the versions of T coming from 
different substrips agree on the intersection of the substrips is proved by an argument 
similar to that in [7, Lemma 3.2].)  This completes the proof. . 

The conditions in Definition 4.1 led to the appearance of S and choice of ao ensured 
that a0 + S was an invertible operator. The operator S itself is invertible on F,,,, 1ff 
Re p 34 0, a condition which may or may not be satisfied throughout the range a < 
- Re p <)3, depending on the values of a and /3. Nevertheless, we can now obtain an 
equivalent characterisation of C which is easier to use in that there is no explicit mention 
of a0 and 00. 

THEOREM 4.4. A function h belongs to the class C if and only if there exist extended 
real numbers a and 0 (depending on h) such that 

(i) h(s) is analytic on the strip a < Re s < 8 
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(ii) for each closed substrip a' < Res < /3' with  < a' < /3' < /3, there exists  

non-negative integer N such that h(s) is uniformly of order I sIN as I sJ -i cc, in 

the sense that there exist constants M and K such that 

(4.5) 	 Is"hs)I <M Vs: a'< Res </3' and lsl > K. 

PROOF. Let h E C. Then condition (i) of the theorem is satisfied and it remains to 
check (ii). With a',,3' as stated in (ii), choose a0 and /3o : a < a0 < a' </3' < '3o < 
/3. By Definition 4.1 (ii), there exists a positive integer N' such that (a0 - s)'1sh(s) is 

bounded on the strip a' < Re s < 0' and from this (4.5) follows easily with N = N' - 1. 

Conversely, let h satisfy the conditions of Theorem 4.4. We need only check that h 

satisfies Definition 4.1(u). Given a and /3, choose a0 and $o : a < a0 < 00 < /3 
and consider the substrip a' < Res </3' where ao < a' < 13' < /30. The quantity 
sh(s)/(ao - s)N+I is bounded in modulus for a' < Res < /3' with N as in (4.5), since 
for such s satisfying I si > K we can use (4.5) and when I si K, we use boundedness 
of a continuous function on a compact set. This leads to (4.1) with N replaced by N + 1 

and the proof is complete. . 
We shall use Theorem 4.4 to rehabilitate the Erdélyi-Kober operator we discussed in 

§ 3. 

EXAMPLE 4.5. Consider again the function h(s) in Example 3.4. Let 

(4.6) 	 Q ={zEC:RezO,-1,-2,...}. 

'Men h(s)is analytic in the region corresponding toi+s E fl. Supposethatj —p € Q. We 
can find a strip containing the line Re s = - Rep where h(s) is analytic. Calling this strip 
a < Res < 0, we see that on any closed substrip a' < Res < /3' containing Res = 
- Re p in its interior, there is an estimate of the form (3.3) for F(,1 +s)/ 	+y +s) which 
shows that its modulus behaves like I s - Re as I s - cc in this substrip. Accordingly 
we may simply choose any integer N such that N > - Re 'Y to see that h satisfies the 
conditions of Theorem 4.4 for any 'y € C. By Theorems 4.3 and 4.4, h is the multiplier 
of an operator, called K7" as before, which is a continuous linear mapping from 
into 	provided only that 1 <p < cc and i - p E Q. 

For this operator we can say more. The function I/ h has the same form as h with i 
and replaced by i + and —Y respectively. Thus 1/h will be the multiplier of K' V 

which is a continuous linear mapping from into provided only that 1 <p < cc 
and i + 'y - p E LT2. Combining our results, 

47 	
i

ifl<p<co,
( ) 

	K7' is a homeomorphism from 	onto 	with inverse 

This is in accord with known results [2, Chapter 3],  which also hold forp = 1 andp = cc 
(although our theory here has to be modified to handle these values of p.) 
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REMARK 4.6. 

(1) Other Erdélyi-Kober operators can be handled similarly. It is worth repeating the 
point that in Example 4.5 we have made use of formula (3.2) for the 1--function 
but we did not require to use a corresponding result for = I'l V. When the 
multiplier h consists of products and quotients of many 17-functions, the saving 
in effort becomes well worthwhile, as illustrated in [6]. 

(ii) Statement (4.7) illustrates another point. In general, a multiplier h E C will give 
rise to a homeomorphism on Fp,, provided that 1/ h also belongs to C and that 
corresponding strips overlap. We shall summarise the situation briefly in the fol-
lowing theorem. 

THEOREM 4.7. Let h be such that 
h E C. with numbers a and /3 as in Theorem 4.4 
1/h E C, with corresponding numbers a1 and 0 
S {s: a <Res < f3} fl {s: a1 <Res < f3} isnon-emptv 

Then for 1 <p < 00 and —p E S, h is the multiplier of a homeomorphism Tfrom F, 0  
onto 

PROOF. This is almost immediate. 

5. In Theorem 3.3 we saw that multipliers in B gave rise to convolution integral 
operators, although there were convolution integral operators on Lp,M  which did not arise 
in this way, such as K'j' for 0 < Re -t < 1 in Example 3.4. It turns out that we can give 
a precise characterisation of the continuous linear operators on Fp,M  which correspond to 
multipliers in the class C. For this, we need one further simple piece of notation. 

DEFINITION 5.1. For any a> 0, define the dilation operator A,, on Fp,,L  by 

(5.1) 	 (AJ)(x) =f(ax) (x> 0). 

THEOREM 5.2. A function h is in the class C, with a, 0 as in Definition 4. 1, if and 
only if it is the Mellin multiplier of a mapping T such that 

T is a continuous linear mapping from 	into Fp, for 1 <p < 00 and a < 
- Re p < /3 
T commutes with A 0  for all a > 0. 

PROOF. Certainly if h E C, (i) will follow from Theorem 4.3 and (ii) is easily 
checked since, under the appropriate conditions, 

(M(Aaf))(s) = a(Mf)(s) 

and a 5  will commute with h(s). The reverse implication is more complicated and we 
omit details which can be found in [8, Theorem 3.241. 

REMARK 5.3. Condition (ii) in Theorem 5.2 is the analogue for the Mellin trans-
form of translation invariance for the Fourier transform. The theorem is an analogue of 
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results for Fourier multipliers to be found in [9],  and the proof uses techniques such as 
interpolation which are also found in [9]. 

This concludes our brief look at a class of multipliers which includes many of the 
Mellin multipliers which arise in common applications. 

ACKNOWLEDGEMENT. One of us (W. J. S.) gratefully acknowledges the award of a 
Carnegie Scholarship by the Carnegie Trust for the Universities of Scotland to enable 
this research to be carried out. 

REFERENCES 

A. Erdélyi et al.. Higher Transcendental Functions, 1, McGraw-Hill. New York. (1953). 
A. C. McBride, Fractional Calculus and integral Transforms of Generalised Functions, Pitman. London. 
(1979). 
______ Fractional powers of a class of Mellin multiplier transforms ii. AppI. Anal., 21(1986),129-149. 
A. C. McBride and W. I. Spratt. On the range and invertibility of a class of Mellin multiplier transforms!. 
J. Math. Anal. AppI., to appear. 
______ On the range and invertibility of a class of Mellin multiplier transforms Ii. submitted. 
______ On the range and invertibility of a class of Mellin multiplier transforms Iii. submitted. 
P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, 
Canad. J. Math. 25(1973),1090-1102. 

S. W. I. Spratt, A Classical and Distributional Theory of Mellin Multiplier Transforms, Ph. D. Thesis. Uni-
versity of Strathclyde, Glasgow. (1985). 

9. E. M. Stein. Singular integrals and the Differentiability Properties of Functions. University Press. Prince-
ton. (1970). 

Department of Mathematics 
University of Strathclyde. Livingstone Tower 

26 Richmond Street 

Glasgow GI IXH 
Scotland 

12 Hickory Close 
Lytchett Minster 

Poole, Dorset 

England 



UNIVERSITY OF STRATHCLYDE 
DEPARTMENT OF MATHEMATICS 

BOUNDEDNESS OF MELLIN 
MULTIPLIER TRANSFORMS 

ON LP-SPACES 
WITH POWER WEIGHTS 

Adam C. McBride 

Strathclyde Mathematics Research Report No. 1993/20 



--.--.- - 

BOUNDEDNESS OF MELLIN MULTIPLIER TRANSFORMS 
ON LP-SPACES WITH POWER WEIGHTS 

ADAM C. McBRIDE 

ABSTRACT 

Necessary and/ tent conditions are known for the boundedness of the Laplace trans-

form from on pace with power weight on (0, oo) into another such space. We review 

these conditioi\rom a new angle and show how they extend to a wide class of Mellm 

multiplier transforms. 

AMS Subject Classification: 42 A 45, 44 A 15, 26 D 15, 26 A 33. 

1 



§1. 	In [1, Theorem 3.11, Bloom gives necessary and sufficient conditions under 

which the Laplace transform is a bounded linear mapping from one LP space with power 

weight on (0, oo) into another such space. These conditions are obtained from properties 

of the so-called Hardy operator H defined by (Hf)(x) = f0X f(t)dt. 

In the present paper we shall first discuss these conditions from a different angle and 

then describe how similar results can be obtained for a large class of Mellin multiplier 

transforms. 

We shall make extensive use of results in [3] and [4] to which the reader should 

refer as necessary. However, to make our discussions reasonably self-contained, we shall 

introduce standard notation and quote some basic results in the next section. 

2. 	For simplicity we assume throughout that 1 <p < oo and that ji is real. 

Notation 2.1 (i) Lp ,,4  will denote the space of (equivalence classes of) Lebesgue mea-

surable functions f for which 

oo 	 1/p 

IIfII, = { 	1X_Af(x)jP dx/x} 	<00 . 	 (2.1) 1 
(ii) 	will denote the subspace of L 	consisting of all smooth functions f on 

(0,00) for which 

= IISfII, < 00 	for n = 0,1,2,... 	 (2.2) 

where (Sf)(x) xf'(x) 

Remark 2.2 Expressions (2.1) and (2.2) provide a convenient way of handling the 

parameters p and ,tt. To relate them to other work, note that 

our space 	corresponds to Bloom's space LP(z') with 

fl= — AP —1 	; 	 (2.3) 

the space 	here corresponds to 	in [2]. 

The space LP4, is a Banach space with respect to the norm 	while the space F,,1  

becomes a Fréchet space when equipped with the topology generated by the countable 

multinorm (See [2, Chapter 2].) We can consider the continuity relative to 

these spaces of the operators R, S and T defined formally by 

(Rf)(x) = f() 	 (2.4) 

(Sf)(x) = f k(xt)f(t)dt 	 (2.5) 
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00 

(Tf)(x) 
= j 

k(x/t)f(i)di/t 	 (2.6) 

where ic is a suitable kernel. 

Theorem 2.3 

R is a homeomorphism from L,,, onto L,_, 1  and from F,,,,1  onto F,,,_,1 . 

When k E L 1 ,_ 1 _, 1 , S is a continuous linear mapping from L,,,,1  into L,,,_ 1 _,1  
and from F,,,,1  into F,_,_,1 . 

When k E L 1 ,,1 , T is a continuous linear mapping from L,, 1  into L,, 1  and from 

F,,,,,1  into F,,,,1 . 

Remark 2.4 

For proofs, see [3] and [4]. The operator T can be handled via the Hausdorff-Young 

inequality. Results for S then follow easily from (i) and (iii) since 

(Sf)(x) = TR[xf(x)] 
	

(2.7) 

In what follows we shall concentrate on T rather than 5, as our theory in [3] and [4] 

applies immediately in that case. 

§3. 	To obtain the Laplace transform £ we take k(u) = e as the kernel in (2.5). 

The corresponding operator T in (2.6) is then the special case N1° of the general operator 

N studied in [3]. By Theorem 2.3(u), we see that £ is a continuous linear mapping 

from L,, 1  into L,_,_, 1  provided that 

£0 
xl+e_zdx/x < 00 

which happens if and only if u > —1. (Recall that ,u is real here.) By examining the 

statement and proof of [3, Theorem 3.3], we see that £ is a continuous linear mapping 

from Lp ,,1  into F,_1 _, under the same condition. 

At this stage we recall the following result 

Theorem 3.1 

Let 1 <p q <00 and let j,v be real. Then 

Fq ,v if and only if p. = i', 

in which case F,,,,1  is continuously imbedded in Fq , 1... 

Proof:- This is [2, Theorem 2.9] with the modification mentioned in Remark 2.2(u). 
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We can combine this with our previous result to show that 

£ maps LPJ, continuously into Lq,_i_, 	 (3.1) 

provided that p> —1 and 1 <p < q < 00. 

To return to the notation in [1], recall (2.3) and let 

a = (1 + )q - 1, /3 = — sip - 1. 	 (3.2) 

Then p.> —1 if a > —1. Further, by solving the equations in (3.2) we get 

p. = (a + 1)/q - 1 = —(1 + 13 )/p 

i.e. 

/3 = p - 1 - p(a + 1)/q. 

We have thus recovered one half of [1, Theorem 3.11, namely, 

Theorem 3.2 For l<p<q< 00, a>-1 and/3=p-1—p(a+1)/q,Lisabounded 

linear mapping from LP(x19 ) into L( X ). 

Further investigation would be needed to establish the necessity of the conditions 

on the parameters in Theorem 3.2. Such an investigation would use the full force of 

Theorem 3.1 as well as the precise characterisation of the range of N,',?, on L,,, 1  which 

formed the basis of the theory in [3] and [4]. Rather than discuss C further here, we 

shall instead consider how to extend [1, Theorem 3.1] from £ to a much larger class of 

operators. 

§4. As in [4] we consider a function h of the form 

K 	 L 
U r( + r.$) fl 	- t,$) 

i=k+1 	 j=1+1
h(s) 

= 	k 	 £ 	
(4.1) 

fl 	+ r1s) fi 	- ts) 
i=1 	 j=1 

Here k, t, K, L are non-negative integers satisfying 0 < k < K, 0 < £ < L (with 

empty products equal to unity by convention), the numbers ri,.4.,rj< and il,...,tL  are 

real while the numbers 77i, ..., rjjç  and , ..., are complex. 
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Under appropriate conditions on the parameters, h can serve as the multiplier of a 

Mellin multiplier transform T. This means that T is a bounded linear mapping from 

L v ,,., into itself for 1 <p < oo and suitable values of I.L. Further for f e (1 <p :5 2), 

(M(Tf))(s) = h(.$)(Mf)(s) 
	

(4.2) 

where M denotes the Mellin transform and Res = — i. 

In determining the behaviour of T in detail, a crucial role is played by the number 

r r(h) defined by 

r(h) = 	r + E tj - 	- 	. 	 (4.3) 
i=k+1 	 i=1 	j=1 

We are particularly concerned with the case r r(h) > 0. In this case we may use 

(4.3) to write 

h(s) = h 1 (s)r(rs) where r(h i ) = 0. 	 (4.4) 

The quantity r(rs) is the multiplier of an operator Er  of the form (2.6) with 

k(u) = (1/r ) exp (_u h/r) 

Note that Er is the operator denoted by Ni°ir  in [3] and [4]. The case r = 1 was 

mentioned at the start of §3. As before we can prove the following result. 

Theorem 4.1 

The operator Er with multiplier r(rs) is a continuous linear mapping from 	into 

for  <p<oo and p.<0. 

Proof:- See the statement and proof of [3, Theorem 3.31. 

Now let T1  be the operator corresponding to the "balanced" multiplier h 1 . Corre-

sponding to the factorisation (4.4) there is the operator equation 

	

TT 1Er . 	 (4.5) 

Since T1  is acting on a subspace of F,,4  (rather than just 	it has simple mapping 

properties therein. In particular, by [4, Theorem 5.41 T1  acts as a homeomorphism 

from 	onto itself under conditions of great generality. In those circumstances T is 

a continuous linear mapping from 	into 	and on applying T 1  to both sides of 

(4.5) we obtain 

	

Er  = T1- 'T 
	

(4.6) 

5 



Taken together, (4.5) and (4.6) show that T and Er behave in identical fashion as map-

pings from into F,,1 . By invoking Theorem 3.1 and making explicit the restrictions 

needed for T1  to be a homeomorphism on Fp ,,  we arrive at the following. 

Theorem 4.2 

Let T be the operator corresponding to the Mellin multiplier h given by (4.1). Let 

1 <p q <00 and let p ,v be real with 

Re(71-r1L)O (i=11 ...,K) 

Re( +ti) 	0 (j = i,...,L) 	 (4.7) 

Re p <0. 

Then T is a bounded linear mapping from L p ,,L into L q ,&, if and only if p. = ii. 

Proof:- By [1, Theorem 3.11 and a version of (2.7), it = v is a necessary and sufficient 

condition for Er to map L P,A  into L q , v  when 1 < p :!~_ q < oo. The proof can then be 

completed as indicated in the preamble by applying [4, Theorem 5.41: Further details 

are omitted. 

Finally, we can apply (2.7) to get information about the Laplace-type transformation 

S corresponding to the multiplier (4.1). This means that, for 1 <p < 2 and f E 

with suitable p., 

(M(Sf))(l - s) = h(1 - s)(Mf)(s) . 	 (4.8) 

Conditions (4.7) have to be applied with p. replaced by -1 - p.. 

Theorem 4.3 

Let S be the operator satisfying (4.8) where h is given by (4.1). Let 1 <p < q < 00 

and let J.L,v be real with 

Re(7 1  + r1  + r,p.) 0 0 (i = 1, ..., K) 

Re(j -t, -tip.) 	0 (j = 1,...,L) 	 (4.9) 

Rep.> -1. 

Then S is a bounded linear mapping from 	into L q ,_1- 1z if and only if p. = ii. 

Proof:- This follows easily from Theorem 4.2 and (2.7) as indicated in the preamble. 

Remark 4.4 

(i) Theorem 4.3 can be recast in the notation of [1] via the substitution (3.2) and 

the resulting theorem extends [1, Theorem 3.11 to a wide class of operators. For 

6 



relationships with Erdélyi-Kober operators, Stieltjes transforms and Meijer's G-

function, see [3] and [4]. 

(ii) As a final comment, we would emphasise the importance of the spaces 	in the 

above analysis. The condition r(h) > 0 means that the operator corresponding 

to the multiplier T maps L p ,, into Fp ,, (under appropriate conditions). Theo-

rem 3.1 can then be invoked to great effect. In contrast, no analogue of Theorem 

3.1 is available in the L P , A  spaces, except in the trivial case p = q, it = ii. 
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CONNECTIONS BETWEEN FRACTIONAL CALCULUS AND SOME 

MELLIN MULTIPLIER TRANSFORMS 

ADAM C. MCBIUDE 

ABSTRACT 

We consider a class of transforms in weighted versions of L 1 (0,00) whose 

Mellin multipliers involve products and quotients of F—functions. The 
Erdélyi—Kober operators are particular examples of these transforms, as 

are certain modifications of the Laplace transform. We discuss the range 

and invertibility of one such modification, indicating the connection 

between it and the Erdélyi—Kober operators and showing how the 
situation becomes much simpler when we restrict attention to certain 

subspaces of smooth functions. 

1. INTRODUCTION 

Many integral transforms of functions defined on (O,) have the form: 
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(T(p)(x)=ff[] 	 (1.1) 

where f is a fixed kernel. Formally, this leads to 

(J€(Tco))(s) = (Jtf)(s)(.A(cp)(s) , 	 (1.2) 

where A is the Mellin transform, defined (as usual) by 

00 

(J(b)(s) = f x 	(x) dx. 

In many cases, the multiplier h Jtf has the form: 

K 
H 

_ h(s)-i=k+1  k 
H 	F(i+rs) 

i= 1 

L 
H 	F(.-t.$) 

=e+i (1.3) 

Here k, £, K, L are non-negative integers satisfying 0 < k < K, 
0 < £ < L (empty products being 1, by convention), the numbers 

.,r1 , t1 ,.. 	are real and positive, while 77 1 ,  ...,,, 
are complex numbers. When all the rs and tj s are 1, the 

corresponding kernel 	f = A -  h in (1.1) is related to Meijer's 

G-function, while Fox's H-function can also be included. However, some 

light can be shed on these very general kernels and operators by looking 

at some simple cases. 

Example 1.1 (i). Consider 

F(i+ 1-s/rn) h(s) = F(1)+Y+1-s/m) . 	 (1.4) 



Mellin Multiplier Transforms 	 123 

Here m > 0, while 77 and a are complex. Equation (1.4) is of the 

form (1.3) with 	k= icT= 0, 	£= 1, 	L = 2, 	t1  = 12 = 1/rn, 

= and 2 = When Re(a) > 0, the corresponding 

operator T in (1.1) is the familiar Erdélyi—Kober operator j,&  given 

by 

—m11--m.a x (Ilfl&co)(x) = 
	F(a) f (Xm_lrn)-1 1m ç(t) d(tm), 	(1.5) 

where d(tm) = mtm_l dl. 

Example 1.1 (ii). Similarly, if 

h(s) = 
r(+s/m) 	 (1.6) 

we have k=1, K=2, £=L=0, r1 =r2 =1/m, 	=+a, and 

= 17. For Re(a) > 0, we obtain formally the Erdélyi—Kober operator 

K7,a given by 

M,71 
f 

 00 

(K 77  ' )(x) = 	
(tm_Xrn)l 1—rnima (t) d(tm). 	(1.7) 

F( a) 

Example 1.2 (i). Consider 

h(s) = F(ij+s/ni), 	 (1.8) 

which is almost the simplest special case of (1.3). The corresponding 

operator T in (1.1) will he denoted by N and is given formally by 

CO 

(NT 	 1mi exp(_tm) (x/t) dt/t. 	(1.9) c)(x) = m f  0 
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Example 1.2 (ii). If we take 

h(s) = [F(ifts/m)[1  , 	 (1.10) 

we get a multiplier of the form (1.3), but the corresponding operator, 

which we would expect to be (N7) in some sense or another, will not 

be of the form (1.1). Indeed, since N 17  is related to the Laplace 

transform 2#, (N) will be related to the Widder—Post inversion 
formula for I. 

2. FUNCTION SPACES AND THE ERDELYI—KOBER OPERATORS 

To provide rigour, we shall study the various multiplier operators in the 
setting of weighted LP spaces. The case of the G—function mentioned 
earlier has been treated in great detail by Rooney [3]. The more general 
multiplier (1.3) has been studied by Spratt [4] with further extensions by 

McBride. In the present paper we shall give a flavour of the theory, 

emphasising in particular the role played by the Erdélyi—Kober operators 

of fractional calculus. Indeed, the original results of Erdélyi and Kober 

around 1940 suggest that the following spaces might be useful. 

Definition 2.1. For 1 < p <co and p E C, let L 	be the space of 
PA 

(equivalence classes of) Lebesgue measurable functions' : (0,) - C such 
that IIwII 7 , < oo where 

I 	 1/p 

IIIl=J 	i(x)1P 	

} 	
( l<p<co) 

(2.1) 

II4L, 1 = ess.sup{Ix 	(X) 	x> 0}. 
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Note 2.2 (1). As in [4], we insert 11x when p < oo to harmonise with 

the Mellin convolution, but this is a slight change of notation by 

comparison with [1]. The present space L 	is the space LP +iI in 

[1]. 

Note 2.2 (ii). For 1 < p < 	and it E C,
PIP' II II) is a Banach 

PIP 
space. 

With our notation, the familiar results of Erdélyi and Kober turn into 

THEOKEM 2.3. For 1 < p < oo, p E C and Re() > 0, the operators 

I' and given by (1.5) and (1.7), respectively, are continuous 
In 	 M 

linear mappings from L 	 into L 	 provided that Re(ij+1±ji/m) > 0
PIP 

and Re(i—p/m) > 0, respectively. 

Note 2.4. It is well known that the integral defining the Mellin transform 

of an L 	 function exists (almost everywhere) on the line
PIP 

Re(s) = —Re(t) 	 (2.2) 

when 1 < p < 2. (The integral has to be interpreted via mean 

convergence for 1 < p < 2.) In the sequel, we shall assume that s and 

A are always related via (2.2). The conditions on 77 in Theorem 2.3 

then ensure that we avoid the poles of the gamma functions in the 

numerators of (1.4) and (1.6). 

Under the conditions of Theorem 2.3, 1 10  and K,a  do not map 

onto itself, but merely into. For instance, if b = I' 	, then t' 
PIP

must be differentiable almost everywhere. In general, the ranges of 177101  
In 

and K' 	on L 	are characterized by the existence of certain 

	

M 	 PP 
fractional derivatives.' More can he said if we work instead in the spaces 

F introduced by McBride [1, Chapter 2]. In what follows we shall
PIP 

write 
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TX (2.3) 

Definition 2.5. For 1 <p < oD and p E C, let 

F= {E c°(0,): 5kE L 	 for k= 0,1,2,.. 

(2.4) 

7P P() 
= 

116k,11 	(c 	k= 0,1,2,...)
III  

Note 2.6 (i). Here we again use the change of notation mentioned in 

Note 2.2(i). 

Note 2.6 (ii). With respect to the topology generated by the seminorms 

{7PP'b0D 	F 	is a Fréchet space. k k=0' p  

	

As noted in [2, p. 118], L 	multipliers are F 	multipliers. This 
PIP 	 PIP 

applies, in particular, to the multipliers (1.4) and (1.6) under the 

conditions of Theorem 2.3. However, the latter conditions can be relaxed 

in 	To avoid the poles, all we need is to ensure that i e A/tm (for
PIA 

(1.4)) or 17 E Ail  ' 7n  (for (1.6)) where 

A t,, m = In : Re(17+p/m) # —1,-2,-3, . . } , 	 (2.5) 

A',m = {17: F(e(i—p/m) 10,-1,-2,• . 	. 	 (2.6) p 

It then turns out that we end up with F 	 multipliers for any a E C,
PIP 

not merely for Re(a) > 0. Let us spell out some details for 

TIIEOItEM 2.7. Let 1 < p <oD, It E C, ni > 0, a e C, and 17 E 

Then there exists a unique linear operator K111?1,a  with the properties that 
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- I'(ri+s/m) 
- 

r(++s/m) (.Atço)(s) 	(2.7) 

whenever 1 < p < 2, W E 	and Re(s) = -Re(p); 

is a continuous linear mapping from F 	into F m 	 p,p 	p,p 

when, in addition, i+a E A;im K,a is a homeomorphism m 

from 	,p 	p,p 
om F 	onto F 	with (J() = 

m 	m 

Note 2.8 (i). The operators K' 	thus obtained are precisely those 
obtained in a more elementary but less elegant fashion in [1, Chapter 31, 
where concrete representations in terms of integrals and/or derivatives 
can be found. As a simple case, we observe that if q E A 	 and n is a 

positive integer, then 71+u E A 	so that K 11 ' is a homeomorphism 

with inverse j11+flfl  The multiplier for the latter operator collapses 

to H (ii+j-l+s/ni)  and the operator itself is simply the differential 
j= 1 

operator 

(K" +n,-nV)(x)  = mi]+mn (_Dm)  -m.11 p(z) (D m  = -). (2.8)
dxm 

Note 2.8 (ii). A similar theorem can he stated for 

3. THE RANGE OF N 7  ON 

	

m 	PIP 

Now that we have recovered familiar properties for the Erdélyi-Kober 

operators, let us try out the same process on the operator N 	in 
Example 1.2. 	For 	E L 	 a routine application of the 
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Hausdorff—Young inequality shows that N 77  p e 	with
PIP 

IIN calI 1 	F(Re(i—it/m)) IIII, 	(3.1) M 

provided that Re(i—i/rn) > 0, so that (1.9) certainly gives a continuous 
linear mapping from L into L in this case. However, much more

PIP 
can be said. Since N , given by (1.9), can be written as the Mellin 
convolution f* p, where f is the smooth kernel 

AX) = mz m exp (_xm), 	 (3.2) 

we conclude that, for any E L 	N 77  cp is smooth with 

b' N'? ço=(8f)* 	(n=O,1,2,...) 	(3.3) M 

so that bn N
1T co e L I  again by the Hausdorff—Young inequality. 

Bearing in mind Definition 2.5, we see that N 77  maps us from 
L PIP 

into That being so, it is no surprise that we can relax the
PIP 

condition Re(7)—ii/m) > 0 to the condition ij E A m  as for R,&.  J It I  

general, the extended operator N 77  will no longer have the simple form 
(1.9). More precisely, for —j< Re(77—fz/rn) <—(j—i) with j a fixed 
positive integer, we obtain 

N 	= (— i)3I 3'3  N 27 +j ç = (—i) 3 (3.4) in m 

where 	and 	are given via (1.5) and (1.9), respectively, in 
view of the conditions on the parameters. 
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The next step is to characterize N (L v ,) as a subset of 	To
I 	 PIP 

avoid technicalities, we shall assume that 1 < p < c (although some 

progress can be made for p = 1 and p = co, too). Spratt [4] used 

techniques such as weak compactness and delta convergent sequences of 
kernels to deal with the case Re(i—p/m) > 0. The general case 

17 E Am then follows fairly easily. However, we stick to the simplest 

case. 

THEOREM 3.1. Let 1 <p < oD, p € C, rn> 0, and Re(ri—p/m) > 0. Then 

b E N (L ) if and only if there is a constant c(), depending on 
M PIP 

but independent of the non—negative integer n, such that 

q)r(Re(17-1-n—/t/m)) 	(n=0,1,2,...), 	(3.5) 

where 

	

M 	
is given by (2.8). 

When (3.5) holds, we can seek the infimum of all possible constants 

C(0) and it turns Out that this provides a norm on the range N (L ). In PIP 
An equivalent expression for this norm can he obtained which does not 

involve c(i,t') explicitly. 

Definition 3.2. For 1 < p < oo, p € C, rn > 0, and Re(i—p/m) > 0, 

	

define 1111 	on N 17  (L 	) by p,p,m,17 	m p,p 

= urn [I'(Re(17+n—z/m))[' 11  1+n,n 	(3.6)V)ll 
n - 

ThEoREM 3.3. For 1 < p < co, p E C, m> 0, and Re(17—p/m) > 0, the 

expression (3.6) defines a norm on N (L). Further, (N (L)
M PIP M PIP

is a Banach space. 
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Note 3.4. When viewed as a subset of L I  N (L) is dense in 
PIP 	M PIP 

L 	, with respect to the norm (2.1), and hence does not become a
PIP 

Baach space with respect to the topology induced by (2.1). Thus the 

new norm (3.6) on the range has great advantages. In particular, as a 

consequence of the Open Mapping Theorem, we obtain 

TKEOREM 3.5. Under the hypotheses of Theorem 3.3, N 77 	is a 
homeomorphism when regarded as a mapping from 	II II,) onto 

(N'1  (L 	)11111 m PIP 	p,p,7n,77  

This leads us naturally to consideration of 	 which is 
continuous under the hypotheses of Theorem 3.5. As previously noted, 

we can think of this operator as corresponding to the multiplier (1.10) in 

some sense. However, we would like to have some sort of expression for 

(N7 1 . Problems arise with h, with h as in (1.10), so that 
another approach is needed. We offer a whole family of inversion 

formulae which involve an operator of the form A where 

(A a  ç)(x) = (ax) 	(a> 0, x> 0). 	 (3.7) 

THEOILEM 3.6. Let 1 <p < oo, p e C, m> 0, and Re(71—p/m) > 0. Then 

for 
m PIP 

(N) 	= urn n) Aii K'1+a+m,—(a+n) 	(3.8) m m 

for any a E C, the limit existing with respect to 11 11PIP* 



Mellin Multiplier Transforms 	 131 

Note 3.7. We emphasize that we may use any a E C in (3.8). For all 

large enough n, i1+a+n E A m  and Ka,—) can be  

interpreted as in Theorem 2.7. This leads to families of inversion 

formulae for a whole class of transforms which we can think of, roughly 

speaking, as of Laplace type. 

Example 3.8. Consider the usual Laplace transform d defined by 

	

OD 	
Vt 

('ç)(x) = f e_ a(t) dt 	(x> 0). 	(3.9) 

By comparing (3.9) and (1.9), we see that, under appropriate conditions, 

(N y)(x) = x2'R x 1 	(x), 	 (3.10) 

where 

	

(Rp)(z) = 
	

(x> 0). 	 (3.11) 

Formally, therefore 

(.2' 	&)(z) = Rx'1(N' x (x) 

The dependence on ij on the right—hand side is bogus.; So we may take 

71 = 0, say. Substituting 77 = 0, a = 0, and m = 1, and using (2.8) 

leads, after a short calculation, to the Widder—Post formula 

	

(..'' b)(x) = lini 	[i1 	001) [71 . 
	( 3.12) 

n-3 oo 

This will be valid in L(0,) 	L ,_11 	for 1 < P < co ; since the 

various conditions required are satisfied when It = —1/p. 
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Formula (3.8) gives one instance where the Erdélyi—Kober operators 

are relevant. We mention two others. Firstly, we may generalize (3.5) to 
fractional derivatives and integrals. 

THEOREM 3.9. For 1 < p < oo, p E C, m > 0, and Re(j—p/m) > 0, 
E N (L) if and only if there exists a constant 61(7/,),  independent of 

M PIP 
, such that 

IIK' 	011 	61(7/') F(Re(71+7—p/m)) 	(3.13) 

for all 7 e C such that Re(+ 7--p/ m) > 0. 

Of more significance is the following simple fact. 

THEOREM 3.10. Let 1 < p < oo, j E C, rn > 0, and Re(—t/m) > 0. 
Then, as operators on L PIP, 

	

K' = N11 	 (3.14) m m 	m 

provided that Re(a) > 0. 

Proof. For V E L PIP fl L2  and Re(s) = —Re(p), 

(-f (N 	K 	(p)) (s) = F(i+a+s/rn) ((K' co))(s) M 	In 

=F(11+&+s/rn) F(ii+s/m) 
F(11+o+s/m) 

Since A is one—to—one on L 9 	N 11+ Kh1,a  o p 	m 	m 	=N 	for 

E L 	 fl L 
,lL 	 p,p 

. The result then extends to all of L 	by continuity 
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and density. 

COILOLLAR.Y 3.11. Let 1 < p < o, p e C, m> 0, and Re(71—p/m) > 0 

ni (i = 1,2), where Re(771 ) < Re( 772)'  Then Nm  (L) is a proper subset 

of NZ2(L PIP ). 

1)1 
Proof. We apply (3.14) with a = 	- 	to deduce that, if & Nm  Wl 

1'21 then b = N m '°2  where p2  = " m cp,. Further, if V, E 
L PIP 

77 2 
then V2  E L 	 by Theorem 2.3. Conversely, suppose ' = N V2PIP 

nj 	 1'21 
where 2 	If 'b = N 	then 2  must be Km  

77  1'21 
However, w2  need not lie in the range of Km 	, as noted in 

Section 2, in which case V , will not exist in 	The result follows.
PIP  

Note 3.12. Corollary 3.11 shows that even in the simplest case when 

Re(i—p/m) > 0, as opposed to 1  e A,'j 	N (L) depends on i, as 
In PIP 

well as on m. If we were to study the operator on L 	 with multiplier
PIP  

(1.3), the range would depend on a plethora of parameters including all 

the i ' s and j 5. Fortunately, we can make life simpler for ourselves 

by restricting attention from L 	 to 	We have a clue that this
PIP 

will help from the proof of Corollary 3.11. The breakdown which 

occurred there will no longer trouble us, because K 
1'21 	

m is 

invertible on F 	if 	E A,'Lfll (i = 1,2). Let us see what happens. 
PIP 	2 
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4. THE RANGE OF N 7  ON F 
M 	p,p 

In view of Theorem 3.1 and the relation between the topologies on 
L PIP 

and F 
PIP  I 

 the following result should not come as a great surprise. 

THEOREM 4.1. For 1 < p < co, It E C, m > 0, and Re(i—it/m) > 0, 

E N (F) if and only if; for each k = O,1,2,•.., there exists a M PIP 
constant C'k(?,b),  depending on 0 and k, but independent of the 

non—negative integer n, such that 

fl, 	
) < C( ,) F( Re( ij+ n—p/rn)) 	(4.1) 

for all n=0,1,2,••. 

It is convenient, in order to handle the multiplier (1.3), to write 

r= j  (m>0) 	 (4.2) 

and to make the following definition. 

Definition 4.2. Let 1 <p < o, p E C, r> 0, and Re(i—rp) > 0. 

(i) F 	is the space of all functions ' e F 	such that for each p,p,r 	 p,p 
k= 0,1,2,•.• 

< Ck(b) F(Re(j+n—rp)) 	(4.3) 

for all ii = 0,1,2,•.., where C,() is independent of ii. 
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(ii) For 7P E Fppr and k= 0,1,2,• •, let 

= inf{Ck(*) (4.3) holds for all n = 0,1,2, j. 	(4.4) 

THEOREM 4.3. Under the conditions of Definition 4.2, Fppr  is a Fréchet 

space with respect to the topology generated by the multinorm 

1 ,p,p,r1  
''k 5 k=O 

Note 4.4. An important point now arises, a point to which we have 

already alluded. Although a number 77 satisfying Re(—rp) > 0 is 

introduced, the space Fpir  obtained is independent of the choice of 

such an 77. It depends only on p, p., and r. 

As a consequence of Theorem 4.1 and Definition 4.2, we immediately 

obtain 

THEOREM 4.5. For 1 < p < co, p. e C, r> 0, and Re(1)—rp) > 0, N/ r  
is a homeomoivhism from F p. onto Fpiir  I where these spaces have 

the topologies generated by { 	} o and { 7Pr}0 , respectively. 

A similar investigation can be carried out to relate Nl/r  (L,) to 

the F PIA, r 
 spaces when ii E A 117,. However, we shall not dwell on 

this and instead focus attention on the spaces themselves. 
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5. GENERAL RESULTS FOR A CLASS OF MELLIN MULTIPLIERS 

We have seen how the space F 	arises as N/r  77  (F). If that was 

its only occurrence, its usefulness would be limited. However, it turns 

out that we can now go back and study the operator corresponding to the 

multiplier (1.3) in this setting. So far, we have taken r to he positive. 

For convenience, we now add in r = 0 by adopting the convention that 

F 	(as in Definition 2.5). 	 (5.1) 

With the multiplier (1.3) we can associate the number 

K 	L k 	£ 
R R(h) = 	+ 	- 	+ 	ti- (5.2) 

i=k+1 	j=i+l 	i=1 	j=1 

where empty sums are taken to be zero. 

Example 5.1 (i). The multiplier (1.4) has R = (0+1/rn) - (0+1/rn) = 0, 

and the multiplier (1.6) also has I? = 0. The multipliers in (1.8) and 

(1.10) have R = +1/rn and R = — 1/rn, respectively. 

Example 5.1 (ii). We can think of multipliers with R = 0 as 

"balanced", those with R> 0 as "top heavy", and those with I? < 0 as 
"bottom heavy". In view of (i), we might expect balanced multipliers to 

produce operators with mapping properties akin to those of J,a  and 

and this is indeed so. Likewise, N 	is a prototype for R> 0, 

while R < 0 is more complicated but typified by (N7 ). 

Spratt [4] discussed such matters in detail. We shall state a typical 

result to justify our comments above. 
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THEOLEM 5.2. Let h be given by (1.3) and let R > 0 (R given by (5.2)). 
Assume that, for each i = 1,... ,K and each j= 1,.. 

17_rp, ,+t,tzø {O,-1,-2,...}. 	 (5.3) 

Then there exists an operator T such that, for 1 < p < oo, 

(J1(Tço))(s) = h(s)( J(ça)(s) (WE  F 10  fl 

Re(s) = —Re(p)) 

for each r > 0, T is a continuous linear mapping from F p,p,r 
into F 	and a homeomorphism in the case R = 0. p,p,r+R 

Note 5.3. Assumption 	ensures that we avoid the poles of all the 
gamma functions in h(s). ii we hit a pole of the denominator, we retain 

continuity of T, but lose the homeomorpliic property when R = 0. 

It is possible to take matters further. For instance, spaces Fppr  

can be defined for r < 0, although the process is rather technical. 

However, the upshot is that we obtain a family of spaces relative to which 

a wide class of multiplier operators can be studied. In particular, we have 

a family of spaces upon which the Erdélyi—Kober operators act as 

homeomorphisms, thereby extending Theorem 2.7 which corresponds to 

r= 0. A basis then exists for developing an extended theory for 

generalized functions, but that is another story. 
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MULTIDIMENSIONAL FRACTIONAL INTEGRALS 
AND DISTRIBUTIONS I 

Adam C. McBride and Boris Rubin 

SYNOPSIS 

New spaces of generalised functions on R' are introduced. These spaces generalise 

corresponding spaces on R+ studied previously by the first author. Basic properties are 

obtained in preparation for a study of fractional integrals, including Riesz potentials, in 

a companion paper. 

1. INTRODUCTION 

In [1] McBride introduced spaces 	F,,(R+) of test functions and correspond- 

ing spaces 	of generalised functions. These spaces provided a natural setting for the 

study of operators of fractional integration and differentiation [1, Chapter 3]. The spaces 

are also well suited to the study of other operators such as the Hankel and Laplace 

transforms. Our aim in the present paper is to generalise the theory from R+ to n 

dimensions. 

Our work was stimulated by the fact that a number of multidimensional fractional 

integrals arise in applications for which it is important to have invariant spaces of smooth 

functions. Examples of such spaces include the Schwartz space S(R') which is invariant 

under Bessel potentials and the Lizorkin-Semyanistyi space (Rz)  which is invariant 

under Riesz potentials. (See, for example, [5], p.132.)  These spaces are suitable for 

translation invariant operators which may be investigated in the framework of classical 

Fourier analysis. However, there are examples of fractional integrals which are invariant 

under quite different groups of transformations. Each such group C generates its own 

Fourier analysis and so we should seek new function spaces with good properties relative 

to C-invariant operators. 

In the present paper we introduce a multidimensional analogue of the spaces 
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F,(R+ ) based on the action of the group C = R x SO(n) of dilations and rotations 

in R' R\{O}. Essentially we use the theory of the one-dimensional spaces Fp ,,L(R+) 

from [1] and the harmonic analysis generated by R x SO(n), as developed in [4]. In a 

companion paper [2] we shall show the suitability of these spaces (and the corresponding 

spaces of generalised functions) for the study of various multidimensional integrals, which 

are important in applications. 

After listing some standard notation below, we shall assemble in Section 2 all relevant 

properties of the spaces F,,(R+) and the basic harmonic analysis from [4] which relies 

on standard results in [3]. We also list there some auxiliary formulae for future use. 

In Section 3, we define the multidimensional analogues of F,(R+) and develop their 

theory. The main result is Theorem 3.9 which characterises functions in these spaces by 

means of their expansions in terms of spherical harmonics. The stage is then set for the 

study of multidimensional fractional integrals in [2]. 

Notation 

Z (respectively N, Z) is the set of all integers (respectively all non-negative integers, 

all positive integers). 

R (respectively R) is the set of all real numbers (respectively all positive real 

numbers). C is the set of all complex numbers. 
Nn = { y = (7i,•,7n) : yj EN for  = 1,...,n} is the set of all multi-indices. 

RTh = {x = 	,x) : x 3  ER for  = 1,".,n}; jLn  =R'\{O}. 

For any multi-index -y E N', write 

I7IY1+"+fn 

9Y 	. _,q'̂1n W here' ,9j = 
49 

{x E Rn : jxj = 11 ; I 	I = 27r 2 r(n/2) 

Let S1 be an open subset of R. 

The notation C(1l), C°°(fl) and L"() (for 1 < p < oo) is standard. 

COO(0) is the set of all C(1l) functions with compact support in ft 

D'(1) is the dual of C'°(1) with respect to the usual topology. 

Co  (R+) = {f E C(R+ ): urn f(r) = O}. 
r-0 , oo 

= {q5  E C(R) 	urn 	(x) = O} 
1-1 	0, 
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The spaces Co(R+)  and Co (An) are Banach spaces with respect to the appropriate 

supremum norms. 

For 1 <p < oo, write p' = p/(p - 1) (with p' = oo when p = 1). 

CO 

= {f: 11f lip(/ lf(r)Idr/r) P <oo} 

lcp ( R = {: IIlIp 	(J 	(x)ldx/lz)* <00. 

Rn 

The notation £(R), £(R) will be used for the spaces C 0 (R) and C0 (:A) 
respectively. 

For 1 < p < 00 and ji E C, define the weighted Banach spaces 

	

{f: 11f llp, 	iIrf(r)Ilp < 00 } 

= {j 	I14I1p, 	1IIxI4(x)lI < oo}. 

(We hope the reader will not be confused by norms 	 of functions in R+ 

and in Rn.) 

I denotes the identity operator (on an appropriate space). 

El denotes the end of a proof. 

§2. PRELIMINARIES 

Here we present some auxiliary material which will be needed in subsequent sections. 

2.1 The spaces 

Below we quote basic properties of the spaces 	in R. For more detailed infor- 

mation see [1], where slightly different notation is used. 

Definition 2.1 Let u E C,ö = r. We define the spaces F,(R+ ) for 1 < p:5 oo by 

= If E C°°(R+): 8kf E £p,,L(R+) V/c E N} 	 (2.1) 

when 1 < p < 00, and 

= If E C(R): rf e C0 (R) Vk E N}. 	(2.2) 

Recall (see Notation) that C 0 (R) is the Banach space of all continuous functions f 
of r E R+ such that f(r) -+ 0 as r —4 0 and as r —' 00. 

For 1 <p <oo,i E C, the topology on F1 ,,(R) is generated by the family of norms 

{A "1 } r 0 where 
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= sup IImfIIp, = sup IIr 8mf lip 	 (2.3) 
m<k 	m<k 

In the case p = oo we interpret 	as the supremum norm on a space of continuous 

functions. 

An equivalent topology on F,,(R+) is given by the norms J)P ,1'1- 0  where 

5,,(f) = sup 116krfI1 . 	 (2.4) 
m<k 

Lemma 2.2 For 1 < p oo and it E C, the following statements hold. 

F,,(R+) is a Fre'chet space. 

C0(R+)  is dense in F,(R+). 

The mapping f(r) - rLIf(r) 13 a isomorphism from Fp ,,L (R+) onto Fp ,,L _ V (R+) 

for any ' E C. 

S is a continuous linear operator from Fp,,L(R+) into itself and is an automor-

phism when Re iz 0 0. 

If  e F,(R+), then 1(r) = o(r_1L) as r —i 0 and as r - oo. 

Proof. See [1, Chapter 2]. Note that (v) was formulated in [1, Theorem 2.2] with 

	

0(r') but analysis of the proof shows that o(r') holds. 	 LI 
The following pointwise estimates for functions in F,,(R+) will be used. 

Lemma 2.3 Let fEF(R), l<_poo, pEC and let r>O. 

For Re it 0, 

	

If(r)I :5 (p? lRe/.LI)_ 11Pl r_R eiL1IEfII p .0  . 	 (2.5) 

For any 1A E C and any 6> 0, 

If(r)I < (pl)_1/P'r_Re1L(,j - eIIIfIl,, + iifII,) 	 (2.6) 

Proof. (i) Write p! = Re /L. First consider the case z' > 0. By Lemma 2.2 (v) we have 

if (r)  cr I" for all r > 0, where c is a constant. Thus, f(r) - 0 as r - 00. It follows 

that 
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00 

f(r) = - I f'(t)dt 

and hence 

00 

If(r)I = J[t1_h1P(6f)(i))t_hh '1 1P1 dt 

r 

Ilfl,PIL{ 
f[t_'_1,P']P'dt} 	

= (p 

r 

)l/P'  11 6f Ilp't,  
r 

which gives (2.5) in this case. Similarly, for jil <0, we have 

If(r)l 
= J f(t)di 	I N lip.,, {J[t-;i'-1/P']P'dt}' 

= (p'(_l))l/P' IIfII,• 
0 	 0 

(ii) For /.L E C and e > 0,r/'- " f(r) E F,(R+) by Lemma 2.2 (iii). By (2.5) with it 

replaced by f, we obtain 

Ir'f(r)I !~ 	 Il 8rfIIp,€ < 	
r 	

(Iii - l IIfIlp,su + II 8fII,,) (pl)h/P' 	 - (€pI)/P' 

2.2 Radial-spherical Fourier transforms. 

In this section we present some definitions related to the type of harmonic analysis 

which is natural for operators commuting with rotations.and dilations in R'. Instead of 
Rn we consider R R'\{0} and use the group C R+ x 50(n) as our basic group 

of linear transformations in R'. 

Such Fourier analysis was developed in [4] although various fragments of it were used 

before in many papers. The main object in this analysis is a radial-spherical convolution 

operator defined by 

(K)(x) 
= J (Ix l  1 . 	dy  

IyI' 
Rn 

(2.7) 

where x' 	x/x is a point of the unit sphere 	and x'.y' 	xy + 	+ x'y is 

the usual inner product. Operator (2.7) is C-invariant, i.e., it commutes with rotations 

and dilations in R. Moreover, any C-invariant linear operator which is bounded from 



to £p2 ,,,, 2 (R) may be represented as a radial-spherical convolution in some 

distributional sense. (See [41 for the details.) 

A Fourier analysis in An generated by the action of the group G is constructed as 

follows. Denote by {Y 3 ,(z')} an orthonormal basis (in L2(E)) of spherical harmonics 

on >2• Here j = 0, 1,. . •, and ii = 1,2, . . , d 1  (j), where d,, (j) is the dimension of the 

subspace of spherical harmonics of the order j. Every spherical harmonic is the restriction 

to of a homogeneous polynomial of degree j (see, e.g., [3] for the details). 

Given a function O(x), x E R", we define 

J cb(rx l )Yj, zi (x l )dx l , j EN; '1 = 1,.•. ,d(j); 	 (2.8) 

= f j, ( r )rz_ 1 dr. 	 (2.9) 

The sequence {,(z)} is called the radial-spherical Fourier transform 

(RSF-transform) of qS. (Note that 	is the Mellin transform of 

We complete this sub-section by quoting some auxiliary facts related to spherical 

harmonics. 

Lemma 2.4 

With the previous notation 

d. (j) 	+ j)' 2 	where c c(n) 

If 3 E Nn then 

IYj,,.(x/IxI)l 	c(1 + j)(fl_2)/2+I$I 	 - 	(2.10) 

where c does not depend on j, ii. 

If AE is a Laplace- Beltrami operator on E , then 

(Yj,)(x') = —3'(J' + n - 2)Yj,(z'). 	 (2.11) 

Proof:- See [3], the relevant pages being 218 for (i), 225 for (ii) and 229 for (iii). 



2.3 Auxiliary relations for derivatives. 

Partial derivatives 

( x) = (ô)(z) == ( yC  , 7n) E N, 	(2.12) 

171. = Y1 + ••. + 	which commute with translations are not so convenient in our 

investigation where invariance of another sort (under dilations) is dominating. For that 

reason we shall introduce so-called "homogeneous derivatives" 

(D..,w)(z) = r 1 '(8.')(x), r = lxi, 	 (2.13) 

and 

(8w)(x) = r 
a 
ar 

 
—w(z), z = rx',z' = z/r E E. 	 (2.14) 

The following relations between (2.12)-(2.14) will be needed in the sequel. 

Lemma 2.5 Form E N 

M 

(61"w)(z) = E E P.(z)i.,)(z) , 	 (2.15) 
k=O NI=k 

where, for each y,  P_(z) is a polynomial of degree 171. 

Lemma 2.6 If A E C, m E N, f f(r), then 

= (6 - ,) rn f. 	 (2.16) 

Lemma 2.7 Let -Y E N",f(x) fo (r), r lxl,x' x/r. Then 

NI 
f(x) = rHI >(61 fo)(r)P,,.(z'), 	 (2.17) 

(=0 

where for each F and -y, Pt ,-,(x) is a polynomial of degree 171. 

We leave the proofs of these simple statements to the reader. 
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Let us obtain an analogue of (2.17) for functions which may not be radial. Let 

w(x) 	>wj,,,(r)Yj,p(x'),  r 	lxi, ' 	 /r. 	 (2.18) 

jIV 

Let 

w,(r)Yj,(x') 	r 3 w,,(r)Yj,(x). 

By making use of (2.17) we have 

j,V (z) = 	
() 

y ~ 13) 

= 	rYJ(x) 

e=o 

Fr-iI 
= r'' > 	(x') 	(S - j)wjp(r)P1,,r,p(x'), 

1=0 

III<i 

where P1,.,,3 (x) are polynomials of degree Il' - )31. Write 

= Ytz')Pe,.,(x'). 2' ' 	 I 'm 

Use of estimate (2.10) leads to 

Lemma 2.8 If 'y E N's, then 

-i- /I 
(2.19) 

e=o 

where 

(2.20) I 	3.11  

with the constant c being independent of 3)  1,, . 

E] 



§3. SPACES F,(R'2 ) 

In this section we generalise the theory of the one-dimensional spaces 

Fp ,,L(R+) to the multidimensional case. Our motivation for this investigation is the 

following. 

There should be a "good" harmonic analysis serving a new function space. 

It is desirable to have non-trivial families of operators under which a new space 

is invariant. 

In the present investigation we give a multidimensional generalisation of 

F,,(R') which is based on the action of the group C = R x SO(n) in it" = 

For convenience we shall write R" without "dot" with the exception of some 

special cases when the origin should be essentially dropped out. 

Definition 3.1 Given 1 < p 00, u E C we define a space F,,1 (R") by 

Fp,,L(R'2) = { 4 E C(R) V(k E £,(R'2 ) V7 E N'), 	(3.1) 

where V1 1  stands for the "homogeneous" derivative ( 2.13). As in the case of the half-line, 

if p = oo, we replace £(It) by the space Co (R) of continuous functions vanishing at 

the origin and at infinity. 

The space (3.1) may be endowed with the topology generated by the sequence of 

norms 

11011k = sup 	 k e N 	 (3.2) 

or 

1110111k = sup IIV.1r'jIP, k E N. 	 (3.3) 
I-yI<k 

It can be checked that the topologies generated by (3.2) and (3.3) are equivalent. 

Lemma 3.2 For any A E C, rI is an isomorphism from F,,(R'') onto F,,—>,(R'') 
and 

I Ir'' p,;t-A 
- - 	 N IIk 	II Ik 

This statement is an immediate consequence of (3.1), (3.3). 



Lemma 3.3 F,(R'1 ) is a Frdchet space. 

Proof. Let us prove that F,,1 (R') is complete. By Lemma 3.1, it is sufficient to consider 

the case y - n/p, when F,,(R") is a subspace of LP (R). Let 	be a Cauchy 

sequence in F,1(1V'). Then for each y E Nn there exists a function 	E LP(R") such 

that lim 	= 	in LP-norm. 
3 00 

Let 9 = (0,... , 0) and note that 0 -t = V,,q 9  in the sense of distributions in V'(Ev). 

Indeed, for any test function w E C'°(1) we have 

lim (V.,,w) = urn (0j, Dw) = (4)° ,Dw) = (D..,,q5° ,w) 	(3.4) 
3-CO 	 3-00 

where 	is an adjoint to 	Thus, 4° E LP(R) and has generalized derivatives D,,4 °  E 

L (R'). 

Our aim now is to show that there exists a function 0 E C 00(R') such that q = V y o 
almost everywhere in R for any E N'1 . This will imply that lim [D.(4 - 	= 0 V7 E j 00  
N n  in LP-norm and the lemma will be proved. 

We proceed to find 0 . For each Ic E Z let 

1 k ={x ER' :k' <Ixj<  k}. 

By (3.4) we have 

Vw E C'° (fZk). 	 (3.5) 

Since 4) 0  and r1 11 4) both belong to L(1k), then by the Sobolev embedding theorem 

there exists a function 10k E C 00(1k) such that 1,bk = 4)0 almost everywhere on fZk. For 

any k E N, ?)bk+1 is an extension of 'bk, and since U Qk = R", there exists 4) E C°°(R') 
k 

such that 4) 	on f1 k.  Hence  4) = 	a.e. on 	so that urn 4), = 4) in LP-norm. Let 
3 00 

us check that V.4 = 	a.e. for all E N'1 . Indeed, for any w E C'°(R'1 ), 

Since (k' and 	are locally integrable over R' 1 , they coincide almost everywhere. In 

view of our earlier comments, F1,,,(l") has been proved to be complete and hence it is a 

Fréchet space. 	 Eli] 
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Lemma 34 C(R) is dense in 

Proof. Let 77 E C'°(R) be such that 

77(4) 	1 for ll 	1; 	0 for ll > 2. 

Fork = 1,2,..., define ik on R" by 

?7k(x) = (k logr), r = z > 0. 

Then 

f 1 for e_k ~ lxi e', 
77k (X) = 	

0 for xl 	e2 and lxi > e2 k. 

Also 	e C'°(R") for each k > 1. By Lemma 2.7, 

Is' 
(Vfihlk)(x) = >(5'r,k)(r)Pj,fl(x'), x' = x/r , 	 (3.6) 

j=o 

where P,5(z) are polynomials of degree 

One can readily see that 

l(Vsik)(x)l 	Kj for some constant K5 independent of Ic. 	(3.7) 

This follows from the properties of i() in view of the relation 

(61 

. 
77k)(r) = k'77' ) (k 	logr). 

Now we take 0 E F,,(R') and put 4k = 47k, k E Z. Obviously Ok e C0(R72). 

Let us prove that ct'k -+ 4' in 	as Ic -f oo. Let 

Vk=Rh1 \{xERl2 :e_ k lxlel }, ji'=Re ,i. 

Then, for any -y E N", by making use of (3.7) we have 
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ID 	- k)IIp, 
= (I r 	 - 	

1 /P 

 ?7k)IlPdx 
) 

1 /P 

() () 
Vk 

/ 	 \1/P 

c 	IV, r'7'IVv_i3c5Iuidx 	-i 0 as k -p 00. 
 

Lemma 3.5. Let 1 < p _< 00, /1 E C. The Fourier-Laplace coefficients cbj,,(r) of a 

function 4' E F,,1 (R) belong to F,,1 (R + ) with the estimate 

2" c(k, n,p, N)(l + )_2 	
—2)/ 

IIIIk+2N (3.8) 

which holds for any k,N E N. 

Proof. For any positive integers k and N, according to (2.11) we have 

[(-j)(j +fl - 2)]N(64 j, ,,)( r ) 

=[(j)(j + n - 2)]N J 1',(x' )(S)(rx' )dz' 

= 
J Yjv(xl)( )(rzI)dzl. 

Thus, by (2.10) 

1/p 

c(1 + )_2N+(fl_2)/2 (f (N6k)(rzI)IPdzl) 

 

where the constant 	depends only on n and p. With u' = Re a, we therefore obtain 

1/p 

	

18k 	

= (7 Ir (6i v )(r)lPdr/r) 
 

0 

<c,(1 + j)_2N+(fl_2)/2 (7 	
'Ip 

ru"_ i  dr f I(S)(rx')lPdx') 
 

0 

~ 
 

	

c 11 ,(1 + ) 2N+ 	2V2 	

, (f 	
1/p 

Id=k+ 2 N 	Rn 
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from which (3.8) follows. 	 U 
The following lemma involves pointwise estimates of 	These estimates will play 

an important role in the sequel. 

Lemma 3.6 For 0 E 	 1 < p co, and any ic E N, 

Sk jv ( r)l <_Re { 

ciIsk+l4j ,il p ,. for Re it 	0, 

C , JJbkOj"JJP'J' + 	 for any • /.L E C, 
(3.9) 

where 	= (plRe1j)_11Pl C1 = Cj,Pp. - ii, C2 = CI,p . 

Proof. This is immediate from Lemma 2.3 on taking f = 	(which belongs to 

F,,(R+) by Lemma 3.5) and using e = 1 in (2.6). 	 LI 
Corollary 3.7 If 0 E F,.(R"), 1 < p :5 00, p. E C, then for any k e N and any 

E N'2 , the series 

> 
converge uniformly in x rx' in the annulus a < lxi b V[a,b] C (0,00) and represent 

corresponding derivatives (&I cb)( z ) and (V.q)(z) therein. 

Proof. For the first series the statement follows from (3.9), (3.8). The same estimates 

imply the required convergence of the second series according to Lemma 2.8. 	U 
Corollary 3.7 justifies term-by-term differentiation of the expansion of 0 E F,(R'2 ) 

in terms of spherical harmonics. Now we show how things work in the opposite direction. 

Lemma 3.8 For each j E N and xi = 1,... , d(j), let the function çb,, 1, E F,,1 (R+) be 

given. Define 0 on R' by 

(x) = 	j, 11 (r)Yj, 11 (x') = 	 (3.10) 

Assume that, for all j,k,N EN and for ii = 1,.• 

lIj,viip,!t 	Ck,N( 1  + j)_2N'2_2I2 	 (3.11) 

where ck,N  does not depend on j. Then 0 E F,11  (R'2 ). 

Proof. To prove that 0 E C°°(A.."), we must show that one can apply V.. 1  term-by-term 

in (3.10). Again we need uniform convergence in annuli of the form 0 < a < r < b < oo. 

By Lemma 2.8 
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I - I-lII 

>1 i2 
e=o 

1131 <j 

e 
: Ck , 

( n_2) 12 +lflI+ 1_kI(8kwj,p)(r)I 
k=O 

for certain coefficients Cke,$,-,,  i.e., 

I -il 
jV.&,(x)I 	j(n 2)/H 	(Sk gjj,)(r) . 	 (3.12) 

k—Q 

According to (2.6), for r E [a, b] C (0, oo) we get 

< Ca,b( II 	't'j,lIp,, + 

By (3.11) we deduce that IV.,(x)I is bounded by a constant multiple of 

(1 + )_2N+n2+IYI. This estimate gives the required uniform convergence with respect 

to x1 E E and 0<a <r < b < oo. Hence 0 E C°°(R"). 

We now show that 	is finite for each multi-index y. We have, with il = Re jt, 

1 /p 

IIVIIP, = 
(f r'I(V)(x)lPdx) 

I/p
= (j r "I p-nj  ED, (Oj,., (x )) jP dx) 

1 /p 
< C .Y 
	

(n-2)/2+H (1 rt _flI(8 k j,p)(r)IP dx) 
k=O j,v 

I7I 1 /p 

~ 	
(n -2)/2+1 - I 

(10 
 r 1 I(Sk q5j,t,)(r)IP dr 
 k=O j,v 

H 

~ c 1  
k=O j,v 

Id 

~ 2 L ISUP (1 +)elI5k ,V II P,/L } 

k=O 

( 00  

(1 
lj=o 

(Here c1 and c2  are constants independent of j and (3.12) has been used.) By Lemma 

2.4(i), d,,(j) c3(1+j) 2  so that the infinite series converges for 3(n-2)/2-e+171 < -2 
which is true for £ sufficiently large. In that case we shall have 

C4 sup sup(1 	 (3.13) 
k<I-I i,Li 
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where c4  depends on -y, and £ depends on n and 	With £ suitably chosen, (3.11) shows 

that, for any N E N 

(1 + 	 K(k, n, p, N)(1 + j)2+(72)/2. 

Choosing N such that £ - 2N + (n - 2)/2 < 0 guarantees that the right-hand side of 

(3.13) is finite. Thus, *j E F,, 1 (R'), and the theorem is proved. 	 El 
The statements above show that there exists "F,-correspondence" between func-

tions on jIn  and their Fourier-Laplace coefficients. In this correspondence the behaviour 

of coefficients with respect to j is very important. In order to give a precise form to these 

facts we consider a set of triples 

A = {(j,v,r) :j E N;zi= 1,...,d,,(j);r > O} 

and introduce a linear topological space 	(A) of functions b : A -p C with the topology 

generated by the sequence of norms 

- n k 
 (1 +j) t II'&(j,v,.)Ilsup sup 	 PP (R+),  k = 0,1,2,... 

I) 

Then Lemmas 3.4 1  3.6 with the estimates (3.8), (3.13) lead to the following statement. 

Theorem 3.9 Let 1 < p :5 00, t E C. Then the mapping (z) -p 4,(r) i3 an 

isomorphism from 	onto 	 - 

This statement enables us to characterise functions in F,,1 (R') in terms of their 

Fourier-Laplace coefficients belonging to F,(R+). This is extremely useful for studying 

operators which are invariant under rotations and dilations in R. Examples of such 

operators, namely fractional integrals, will be presented in [2]. 

Remark 3.10. By using the estimates above it is not difficult to obtain a multidimen-

sional analogue of statement (v) of Lemma 2.1 and an analogue of Lemma 2.3. Namely, 

we have the following 

Lemma 3.11. Let 1 < p < oô, IL E C, 4 E 	 Then for any multi-index , 

sup I(V)(rx')I < 	e;ii. 	 c = c(n,p,p,-y), 	(3.14) 
x' E E 

and hence 

(V)(rx') = 	 R eju as r —*0,00, 	 (3.15) 

uniformly in x' E E. 
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Proof. Put /.L 1  = Re jL and use "c" to denote different constants independent of j. 
According to (3.12), (2.6), (3.8) we have 

I -d 
l(V-)(rz')I ~5 cr_IL' 	(1 +j)(fl-2)/2+IYIL (jj6k Oj'. jj P'M  + 

k=O 

< cr' 	(l + j)2 
--n-2+I-d L lIlI':2N+J 

j,LI 	 k=O 

00 

<cr' 11011 PIlH+ 2N +I 	(1 + )-2N2(2), VN E Z 

By putting N = n + [(171 - 1)/2] we obtain (3.14). Relation (3.15) is implied 
by (3.14). Indeed, since C°(R") is dense in 	 then we can take a sequence 
{4'm()} = 1 in O(It") which converges to in F,(R')- topology. Then 

J(D)(rx')j :~ I(V(0 - m))(rz')I + I(Thy m)(r')I 

< crJ 
- 4'fl7II2-I + 272 + l(7/ m )(')J, 

and the result follows since the norm in the first term may be arbitrary small for suffi-
ciently large m. 	 D 

This completes the preparations for the study of fractional integrals in the companion 
paper [2]. 
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MULTIDIMENSIONAL FRACTIONAL INTEGRALS 

AND DISTRIBUTIONS II 

Adam C. McBride and Boris Rubin 

This paper continues the investigation started in [4]. Multidimensional fractional 

integrals and Riesz potentials are shown to have excellent mapping properties relative to 

the spaces of test functions and generalised functions introduced in [4]. 

§1. INTRODUCTION 

This paper is a sequel to our previous paper [4] to which the reader should constantly 

refer. In that paper we provided motivation for the development of a distributional the-

ory of multidimensional fractional integrals and Riesz potentials. We then introduced 

spaces Fp ,,L (R') and F(R) which were suitable analogues in n dimensions of cor-

responding spaces on the half-line, the latter having being introduced and extensively 

studied by McBride [3]. Basic properties of our new spaces were established in [4]. In the 

present paper we shall show how these spaces are very suitable for the study of certain 

multidimensional fractional integrals, including Riesz potentials. 

Our main tactic is to relate the multidimensional fractional integrals to corresponding 

one-dimensional operators, the so-called Erde'lyi-Kober operators, whose properties are 

developed fully in [3]. By making use of expansions in terms of spherical harmonics, we 

see that this relation is very simple. We have an example of a radial spherical Fourier 

transform (RSF-transform) in the sense of Rubin [5], the definition of which involves the 

use of the Mellin transform. 

In §2, we gather together for convenience all the required properties of the Erdélyi-

Kober operators on the spaces F,,1(R+). These properties are then used in §3 to obtain 

the mapping properties of certain multidimensional fractional integrals relative to our 

spaces F,(R'). The corresponding properties of Riesz potentials in these spaces are 

then easily deduced. Finally in §4 we derive the corresponding distributional theory by 

making use of adjoint operators. Applications similar to those for the corresponding 

theory in Sobolev spaces may be pursued later. 
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Notation Throughout we shall use the notation of [4] to which the reader should refer. 

For convenience, we briefly recall that for 1 < p cc and u E C 

F,(R+) = { 4 E C°°(R) : '() < cc for k E N} 	 (1.1) 

where the seminorms \' are defined for 1 < p < cc by 

00 

= {f Irhl(6)(r)IPdr/r}h /P 	 (1.2) 

while 

	

= ess 	 (Sk 	: r > O} . 	 (1.3) 

Here (60)(r) 	r dçt/dr 

The spaces 	are defined in [4, Definition 3.11. 

We shall require one additional piece of notation. 

For 4 : R -* C, we define the Mellin transform of 0 by 

00 

(z) = Jr 1 (r)dr. 	 (1.4) 

(An alternative notation for is M.) 

§2. ERDELYI - KOBER OPERATORS 

For Re a > 0 and suitable functions f defined on R+ let 

r 
(12' f 
	

2 

	

 r(a) f (r
2  - t 2 )f(t) idi, 	 (2.1) 

0 

(K'f)(r) = 
2 

	

F(a) 
f(i2 - r 2 )'f(t) idi. 	 (2.2) 

r 

The operators I,K2° map £,(R+ ) into £p,M_2&(R+)  under appropriate conditions. 

For our purposes it is convenient to use homogeneous modifications of I, K. These are 

the Erdélyi-Kober operators I' and K" (i E C) given by 

(I"f)(r) = r 2 2°Ir2 '7 f(r) 
	

(2.3) 
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(K' ° f)(r) = r2 "Kr 2 ' 2 °f(r) . 	 (2.4) 

The operators 	K' are particular cases of operators studied in [3, Chapter 3] which 

involve integration with respect to r"'(m > 0). Here m = 2. From (2.3) and (2.4) we 

obtain the representations 

1 

2 	f 
(I."f)(r) = r() J (1 - u2 )'u2 ''f(ru)du, 	 (2.5) 

0 

00 

(K'f)(r) = 
	J(U2 - l) 1 u 2 " 2 'f(ru)du 	 (2.6) 

I 

valid under appropriate conditions, as indicated in the following result. 

Lemma 2.1 Let 1 <p < oo,a E C, Re a > 0. Then 

is a bounded linear operator from L,(R+) into itself provided that 

Re(rj + 1 - a12) > 0; 

K' is a bounded linear operator from £,,(R+) into itself provided that 

Re(i + u/2) > 0. 

Proof. These statements are well known and may be obtained by applying the 

Minkowski inequality to (2.5) and (2.6). 	 0 
The Mellin transforms of I'° f and K.' ° f may be readily calculated in terms of the 

Mellin transform of f. 
Lemma 2.2 Let  E 1C 2 , 1L (R +),Re a > 0, Re z = Re. 1L. Then 

for Re(i+1—ji/2)>O 

+ 1 - z/2) 
(M(If))(z) = 	 (Mf)(z), 	 (2.7) 

+ a + 1 - z/2) 

for Re( + i/2) > 0 

(M(K'f))(z) = 
F(77 + z/2) 

(Mf)(z) . 	 (2.8) 
+a+  z/2) 

Proof. See [6], for example. 
	 0 

When the operators I'°  and 	are applied to smooth functions the range of 

admissible parameters becomes greatly extended. 
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Definition 2.3 Let 1 5 p :5 00, i E C, Re(tt12 - - 1) V N. We define I' ° f for 

f E F,,(R+) as follows. 

For Re(i+l —j.t/2) >0 and  E C, let  EN be such that Re(a+i) >0. Then 

I,af - 2 
	'1, ° 	= P,,,c ,t(5)I!"'f 	 (2.9) 

-  

where 127 "+' is defined via (2.5) (with a + £ replacing a) and 

= fl( + a + i + £12). 	 (2.10) 

(An empty product is regarded as unity.) 

Let —k < Re(r + 1 - ,a/2) < —k + 1 for some k E Z. Then 

I ,,af = (_l)kI7+k._kK_ 1i_k.kf = 	 ( 2.11) 

where 1q+k,Q—kf  zs defined via (2.9) and K7_k,J  via (2.6). 

Lemma 2.4 Let 1 < p :5 00, it E C, a E C. 

If Re(u12 - i' - 1) N, then I" is a continuous linear mapping from F,,(R+) 

into itself. 

If, in addition, Re(,u12 - ( i + a) - 1) N, then I' °  is an automorphism of 
F,,(R+) and 

V 	I1+a, _a . 	
(2.12) 

Proof. See [3, Theorem 3.311. 	 LI 
We shall require the following estimates with respect to the norms )' given by (1.2) 

and (1.3). 

Lemma 2.5 Let  < poo, ti EC,aEC, m>0, feF,(R+). 

(i) For Re(7+1-12) >0 and Re a >0 

F(Rea)F(Re(i + 1 - 
t  (12

- II'(a)I 1'(Re(i7 + a +1 - 	
(2.13) 
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For Re(i + 1 - ji/2) > 0 and a E C with Re(cx + £) > 0 (t E N), 

	

\P1A(I?7f) < 	+ £) r(Re( 	
( 

+ 1 - j/2)) 	£ 

r(a + £)IF(Re( + a + £ +1 - /2)) 	
c, a, 3)A 3 (f). 	(2.14) 

s=O 

For —k < Re(i7 + 1 - /2) < —k + 1 and Re a - k + t> 0 (k,t E N) 

< ['(Re(—i - k + /2)) F(Rea - k + £) f(Re(i + k + 1 - 

	

— 	 r(Re(— + ,u/2))Ir(a + £)II"(Re(il  + a + £ + 1 - 
£ 	 (2.15) 

x E c(i7+k,a—k,$)A'4 3 (f) 
s=O 

In (ii) and (iii) the notation c(rj, a, s) and c(ri + k, a - k, s) is used for COflStaflt3 which 

depend on arguments in brackets. 

Proof. 

follows from a standard result for Mellin convolutions. 

then follows easily from (2.9). 

follows from (ii) and the same result for Mdllin convolutions as in (i) but applied 

this time to K_L,k. 	 LI 

Remark 2.6 It is important to note that at each stage of the extension process the 

symbol for I 	remains unchanged, i.e. (2.7) continues to hold in all cases in Lemma 

2.4. A similar programme can now be carried through for K'° , at each stage of which 

(2.8) continues to hold. We shall indicate briefly the main points of the theory. 

Definition 2.7 Let 1 < p :5 00, i E C, a E C, —Re(i + / 2) V N. We define Kf 

for f E F,(R +) as follows. 

(i) For Re(i + i/2) > 0 and a E C, let £ E N be, such that Re(a + £) > 0. Then 

K2 Cf = K' ° Q,1 , 0 ,(5)f 	Q q,c,t(5)K" tf 	 (2.16) 

where K?' 	is defined via (2.6) and 

fl( + a + k - 1 - 5/2). 



(ii) For —k< Re(77+/1/2) < —k+l,k E Z, 

K"y1 f 	K, = ( l)kI_17_k.kKl7+kck_k 	 (217) 

where 	is defined via (2.16) and I'" via (2.5). 

Lemma 2.8 Let 1 <— p:5 oo,/.L E C,a E C. 

For —Re(i + -t/2) N, K" °  is a continuous linear mapping from Fp,,(R +) 

into itself. 

If, in addition, —Re(17 + a + i/2) 	N, then K." °  is an atttomorphism of 

F,(R+) and 

I T('7?'0\ 	- 
k 1t 2 ) 	_L2 (2.18) 

Estimates of the form obtained in Lemma 2.4 hold for 	For example, in 

the situation of Definition 2.7(i) we obtain as an analogue of (2.14) 

r(Rea + £) r(Re( + ji/2)) 	
£

IL(K?laf) 	 d(ir, a, s)A 3 (f) 	(2.19) 
Ir(a + t)jr(Re( + a + £ + /1/2)) 

for constants d depending on i, a and s. 

§3. MULTIDIMENSIONAL FRACTIONAL INTEGRALS 

In this section we exhibit the good mapping properties, relative to Fp ,,L (R), of 

some multidimensional modifications of the usual Riemann-Liouville fractional integrals. 

Let Re a > 0, Yn,& 	2/f IP(a)l E I}. For suitable functions 4(x), z E Rz, 

consider the fractional integrals 

(B)(x)=-y,, 	I 
IvI<I'l 

= 7IL( f 
1y1>1-1 

(1x12 - y12)a 

	

(y)dy, 	 (3.1) 

(1y12 - 1x1 2 ) 0  

	

4(y)dy, 	 (3.2) 
x y II 

N. 



(Icb)(x) = c 	f 

	

dy 	 (3.3) 
1X - Y1 

where 

cn,a  = 	 - a)/2)/['(a/2) , 0 <Re a < n 

Integrals (3.1) and (3.2) were introduced in [5] in connection with the inversion 

problem for Riesz potentials in a ball. Integral (3.3) is the usual Riesz potential; see, 

for example, [1],[6],[7]. For sufficiently good 0, integrals (3.1)-(3.3) possess a sernigroup 

property with respect to a, e.g., I'Iqf = I'0. 

In the sequel it will be convenient to consider the modifications of (3.1)-(3.3) 
defined by 

= r 2'B, Jq = rIçb. 	 (3.4) 

These operators commute with rotations and dilations and map 4,(R) into 

itself under appropriate conditions, which are stated in the following result. 

Lemma 3.1 Let 1 < p:5 00, Re a > 0, a E C. 

B is bounded on £,,(Rz)  provided that Re jA <n. 

Ba is bounded on £,, 1 (R) provided that Re(ji - 2a)> 0. 

If Re a < Re A < n then J' is bounded on 	and the following factori- 
sation holds: 

= 2B 2 13/2  = 2_a821312, 	E 	 (3.5) 

The statements in this lemma were proved in [5]. Here they are presented in 

slightly different notations. Note that the restrictions on a and A above are necessary 

for the existence of the integrals Jaq for 0 E £,,1 (R). 

Our purpose is to extend definitions (3.1)-(3.4) to all a E C and to investigate 

mapping properties of the extended operators in the spaces 	Since the integrals 
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(3.4) are radial-spherical convolutions it is natural to study them by using corresponding 

Fourier analysis outlined in [4, Section 2.2]. 

Lemma 3.2 Let 4 E £2 , 1 (R), Re a > 0. Then the RSF-transforms of l3çb are well-

defined for Re z = Re jL and have the forms 

1"((n+j—z)/2) - 
(l3c6)(z) 	

F((n +j - z)/2 + a)iP(Z) Re , < n; 
	 (3.6) 

(t3ic)(z) 	
F((j + z)/2) 	

Re(j - 2a) > 0. 	(3.7) 

Proof. This statement follows from Lemma 2.2 since the Fourier-Laplace coefficients 

belong to £9,,1 (R) and may be represented via Erdlyi-Kober op-

erators by the formulae 

(Bf4) - — 	 , 	 (3.8) 

(8) 	= 	 . 	 (3.9) 

See [5], where (3.8), (3.9) are proved and the right-hand sides are written in the 

form of Mellin convolutions.. 	 Li 

In order to define B, 0 E Fp ,,L(R"), for all a E C we shall use their RSF-

transforms (3.6), (3.7) or (what is the same) formulae (3.8), (3.9), the right-hand sides of 

which are interpreted in accordance with Definitions 2.3 and 2.7. Since 4L' E F,(R+), 

the Erdélyi-Kober integrals in (3.8), (3,9) also belong to F,(R+ ) and we can define 

Bao via spherical, harmonic expansions with the coefficients (3.8), (3.9) respectively. 

Let us proceed with this programme. 

We shall study !3 in detail, outline corresponding results for Ba and finally get 

similar statements for the fractional integrals Bçb and Içb, where 4 E F,,(R"), a E C. 

Lemma 3.3 Leta E C, 1 p :5 oo, f E F,,, (R+ ), Re IL — n N. Ifte  N is such 

that Re(a + £) > 0, then 

AP it c(l + 	 Vm,j E N, 	(3.10) 
11 

	2 



where )A(.)  is given by (1.2) and (1.8) and constant c is independent of j. 

Proof. We consider three cases. 

Re a > 0, Re(n 
- 
j) > 0, £ = 0. Since 5 commutes with any Erdélyi-Kober operator, 

it follows from (2.13) that 

Am
PIt(T(12+i)/21f) < c3 A'(f) 

where 

r(Rea) F((n + j)/2 - Rejz12) 
C 

= IF(a)Ir((n + j)/2 + Re(a - 	
= Q(j_Rea) , j 

1'(a + z) 	za_b, IzI -~ 00. (See, for Here we used the well-known relation 
F(b + z) 

example, [2].) 

Re a > 0, £ = 0, Re(n 
- 

t) < 0 (Re(n - p) 	—1,-2,.). For j sufficiently 

large, Re(n + j 
- 

t) > 0 (compare Lemma 2.5) and the estimate in (i) applies. For 

finitely many j we obtain c3  from (2.15) with 77 = (n + j)/2 - 1, £ = 0 and k such that 

—k < Re((n + j - )/2) < —Ic + 1. Again the set {c 3  j E N} is bounded and (3.10) 

holds. 

Re a < 0, Re It - n N. With £ as stated in the lemma we have 

r(n+i)/ 2-1 ,Y 	(n+j)/2 - 1,c+t 
- 

where 

Pn ,j,, o (S) = fl((n + j)/2 - 1 + a + i + 6/2) 

is a polynomial of degree £ in 6 whose coefficients involve f for i = 0 ,  1 , 	,t. (See 

(2.10).) This polynomial in 6 commutes with 6 so that 

)P.PI r(n+i)/2—l.of) - \7),p I 
,n t2 	 - Afl? 



< b)L 
- 	

b3  = O(j —t—R,, ), 

J -4 00 

by the previous cases. The last norm involves terms of the form 	for 0 < i, s 

£, 0 < k < m. Hence we can obtain powers of S up to £+m and powers of j up to £. From 

the definition of the norm 	(3.10) now follows. 	 0 

Theorem 3.4 If 1 < p :!~, oo, a E C, Re 4u - n N, then B, as defined by (3.8), is a 

continuous linear mapping from F,,1 (R 7') into itself. 

Proof. Let E Fp,,(R"), 	. - 
1(n+j)/2—I,c 5.  

Ji' - 2 

(L)(x) = >lIj,v(r)Yj,v(x'), r = lxi, x' = x/r. 	 (3.11) 

By making use of Lemma 3.3 and [4, Lemma 3.51 we have 	E F,,(R+ ) with the 

estimate 

A(ç&,,) 5  c(1 + j)_R_2Nn_2)/ 
IIPIIm-e+2N, 

211 	 VN e 	(3.12) 

where the constant c is independent of j. By [4, Theorem 3.9] it follows that the operator 

B defined by (3.11) is a continuous linear operator from F,,(R") into itself. 	0 

Motivated by (3.4) we make the following definition. 

Definition 3.5 For 1 —< p :!~, oo,a E C, Re u - n'  n N, define B on F,,(R') by 

	

B = r2 'Bf 	 (3.13) 

where the operator L3 is interpreted via (3.8) and Definition 2.3, as above. 

Lemma 3.6 Fora E C, Re j.t - n N and 0 E Fp,,L(R'), 

r((n+j—z)/2) 
(Mwj,,)(z) 	(3.14) (M(Bw)j,)(z - 2a) 

= r((n + j - z)/2 + a) 

for Re z = Re /L. 

Proof. Note that 	= r2 (84),. The result then follows easily from (3.8) and 

(2.17) by taking into account Remark 2.6. 	 0 
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Theorem 3.7 Let 1 <p < oo, a E C. 

B is a continuous linear mapping from F,,(R') into 	 provided 

that Re a - n N. 

If, in addition, Re(i - 2a) - n N, then BO is an isomorphism from F,, 1 (RTh) 

onto Fp ,,t_m 	 B(R") with inverse + 

Proof. 

is immediate from Theorem 3.4 and [4, Lemma 3.2]. 

Let 0 E F2 ,(R'). We prove that 	 = Oj , , by using symbols. 

The conditions ensure that B0 and B+  are continuous linear mappings from 

F,,(R") into F,,1 _ 20 (R") and from Fp ,,i_2 a(R) into 	respectively. 

By repeated applications of (3.14), we obtain 

(M (B 	)(z) 

- r((n + j - (z - 2a))/2) 
- r((n + j - (z - 

2a))/2 - ) (M(B),)(z - 2a) 

- F((n + j - z)/2 + a) r((n + j - z)/2) 
- r((n + j - z)/2) r((n + j - z)/2 + a) 

 

Hence for all j, 	 = oj , , so thatBB 	= 4 for all 0 E F2 ,,1 (R'). By con- 

tinuity and density, the result, holds for 0 E F,(R'2 ) VP > 1. 	 LI 

Remark 3.8 This completes the discussion for B. As indicated above, we shall outline 

briefly what happens for B, many of the details being very similar to those for B. 

Again BI is more convenient initially. 

The programme for 8 starts with (3.7), which leads to (3.9). The operator 

K" 2 " is extended as in Definition 2.7 to a continuous linear operator on 

provided that Re(j/2—a+j./2) 54 0,—i, 	This will be satisfied if Re(2a—/h) N. 

Under these conditions we use (3.9) to extend the definition of 13'. An estimate for 

K2 	analogous to (3.10) can be obtained. This leads to the following 

Theorem 3.9 If 1 <p 00, a E C, Re(2a - j) V N, then Sc'is a continuous linear 

mapping from F,(R') into itself. 

We then extend the definition of Ba by the relation B = r2aB, analogous to 

(3.13). An analogue of Lemma 3.6 leads to 

11 



Theorem 3.10 Let 1 <p < 00, a E C. 

B is a continuous linear mapping from F,,(R') into 	 provided 

that Re(2cx - 	N. 

If, in addition, —Re p. N then B is an isomorphism from 	onto 

F,,_20 (R) with inverse B. 

Now we can consider the Riesz potential I4 defined by (3.3). An extended def-

inition can be given via (3.5) where the operators on the right-hand sides are interpreted 

in their extended forms. 

Theorem 3.11 Let  < p < 00, a E C. 

I is a continuous linear mapping from Fp ,,L (R) into Fp ,, a (R 12 ), provided 

that Re(p. - n) V N, Re(a - p.) V N. 

If, in addition, Re(/.L - a - n) N, —Re p. N then J0  is an isomorphism from 

onto Fp ,,L _(R") with inverse 1-1 

Proof. All parts follow easily from Theorems 3.7 and 3.10. To obtain the formula for 

(Ia)-1 we use (3.5) to get formally 

(Ia)_ 1  = ( 2_(B 2 r_B/ 2 )_ 1  = 2aB:a12 r Bn/2  = I_a 

This calculation is valid under the stated conditions. 	m 	 I LI 

Remark 3.12 We have shown that all of B, B and ia are well-behaved in the context 

of the spaces. It should be emphasised that the extended operators coincide with 

the original expressions in (3.1)-(3.3) when the latter exist. When the integrals diverge, 

however, our results can be used to interpret the operators distributionally, a topic which 

we shall discuss in our final section. 

4. DISTRIBUTIONAL THEORY 

Our aim now is to apply B and ia  to distributions in the spaces F(Rz).  As 

in the one-dimensional case, we can imbed the spaces £,,(R") into these dual spaces 

by generating regular functionals. 

Let 0 E F,,1 (R") and f E £J , , _,L+ , i ( R hl ) where, as usual, p' = p/(p —1). Then, 

by Holder's inequality, 
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J f(x)(x)dx = f{IxI'f(x)}{IxI/(z)}dx 
ftn 	 Rn 

!~ IIIzIf(z)II' IIIzl(z)II = I!fIIp',-,+nIlIIp,, 	 (4.1) 

Thus f generates a regular functional f on Fp ,,L (R) via 

(f) =f f(x)(x)dx ( E F(R)). 	 (4.2) 

Rn 

Lemma 4.1 4,_,1 (R'1 ) is imbedded in F(R) under the mapping f - / defined 

by (4.2). 

Proof: This follows at once from the estimate (4.1). 
	 I 

We now use regular functionals to motivate the definition of B and Ja  on 

F,,(R'2 ). We shall consider B in detail and then state the analogous results for B 

and I. (We could also handle 13 and Jo.) 

Let us temporarily denote the extension of B to F,,(R') by b. We require 

that, for a regular functional / generated by f E £p,,_,1+ (Rvz), 

n I -  Bcf 
- 

(4.3) 

where the right-hand side is the regular functional generated by Bf on the appro-

priate space. Under suitable conditions, including Re a > 0, Bf is an element of 

£p',_+n_2Q(R'). See, for instance, [5] where slightly different notation is used. Then 

Bf E F 2 (R') by Lemma 4.1, with 1L replaced by it + 2a. Accordingly let 

5 E Fp ,,L+2a(RJL). Then in the usual notation, 

(Ef,) = (Bf,) j (B - f)(x) O(x)dx. 

Under appropriate conditions on f, we may invert the order of integration and, on noting 

(3.1) and (3.2), obtain 
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(ñ,) =f f(x)(Bq5)(x)dx = (f,Bct). 	 (4.4) 

Rn 

Note that, under appropriate conditions, Bçb E F,,4 (R) by Theorem 3.10 so that 

the right-hand side of (4.4) is well defined. Thus the extended operator on regular 

functionals is the adjoint of B on Fp,,t+2a(R'). The operator Ba is an extension of the 

classical operator B' in the sense of (4.3). We use (4.4) to define E on any functional, 

regular or not. Using f now for any functional and writing the extended operator as B 

rather than , we turn (4.4) into 

(Bf,c) = (f,Bq5) 

for f E 	 E Fp,p+2a(R'). 

By considering Bi similarly, we are led to the following definitions. 

Definition 4.2 Let f E 	 Under appropriate conditions on a and tt we define 

Bf, Bf as elements of F, +2(R) by 

(Bff,çb) = (f, B 2 0) (4 E Fp ,,4+2a(R')) 	 (4.5) 

(Bf,q) = (f,BL4') ( E Fp,,i+2a(R)). 	 (4.6) 

Theorem 4.3 Let 1 < p < oo, a E C. 

If—Re u N, then B is .a continuous linear mapping from F,(R') into 

p,,z+2c( 	). 

If, in addition, —Re(p. + 2a) N then Ba is a homeomorphism from F , .(R'2 ) 

onto F+2(R')  with inverse B. 

Proof- 

By Theorem 3.10 (i), B is a continuous linear mapping from Fp,,+2a(R')  into 

since Re(2a— (it +2a)) N. The result follows by standard properties 

of adjoint operators. 

follows in a similar fashion via Theorem 3.10 (ii). 	 El 
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Remark 4.4 The conditions in Theorem 4.3 are precisely those in Theorem 3.7, for the 

classical transform on F,,,(R"), with ji replaced by —a + n. This is a legacy of Lemma 

4.1 and recurs in the results below. 

Theorem 4.5 Let 1 <p < oo, a E C. 

If Re( + 2a - n) N, B is a continuous linear mapping from F,,(R') into 

F' p,tL+2cY 

If, in addition, Re jL - n N, then BL is a homeomorphism from F, , ,1 (R') 

onto F,+2a(R')  with inverse B:. 

Proof: This is similar to that for Theorem 4.3. 	 El 

For the Riesz potential, we start with (3.3) and proceed as before to produce 

the following definition. 

Definition 4.6 For f E F,(R'), under appropriate conditions on a and IL, define If 

as a member of F,,11+0(R')  by 

(If,cb) = (f,Icb) 	(0 E F,,1+ (R' 2 )). 	 (4.7) 

Theorem 4.7 Let 1 <p < 00,1L e C. 

I is a continuous linear mapping from FJ (R') into F,,,+(R'2)  provided that 

Re(,u+a—n)N, —Re jN. 

If, in addition, Re(/2 - n) N, —Re(j +.a) N then I is a homeomorphism 

from 	onto F,,,1+(R")  with inverse I. 

Proof: This follows from (4.7), Theorem 3.11 and properties of adjoints. 	 El 

Theorems 4.3, 4.5 and 4.7 immediately give uniqueness results for classical so-

lutions of certain equations involving B', B Ja  ' —, 

Example 4.8 Let 1 < p oo, Re a > 0, ti E C. 

We shall consider the Riesz potential Ic,  on 	 From results in [5] we 

can show that I is a bounded linear mapping from £,,1 (R') into 1p,,L_Y(1t ) provided 

that 

Rea <Re 1u < m. 	 (4.8) 
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Let g e 	 and consider the integral equation 

laf = 9. 	 (4.9) 

As before 9 E 	 (by Lemma 4.1). The condition Re a > 0 and (4.8) 

enable us to apply Theorem 4.7 with p. replaced by -IL + n to deduce that there is a 

unique solution h e 	 of the equation 

Iah = § . 	 (4.10) 

From (4.7), we see that (4.9) has at most one solution f E 4,,L (R) and the solution 

exists if and only if the solution h of (4.10) is a regular distribution with h = f. 

Example 4.9 Let 1 <p < oo, Re a > n/p. In this case, when the integral If  is gen-

erally divergent for f E L(R'), it is important to give a correct interpretation to it. Of 

course, one can consider If  as a 4'-distribution (of Lizorkin-Semyanistyi type, see [6]), 

but such an interpretation is too general and is not sensitive to concrete values of p and 

a. The theory presented above enables us to give an essentially different interpretation 

for If which is free from the last shortcoming. Namely, according to Lemma 4.1 and 

Theorem 4.7, If may be treated as a distribution in the space F1 nips+a(R') provided 

that 

	

Rea—n/p0,1,2,... 	 (4.11) 

In the framework of '-theory we have no such restriction, so that (4.11) is the price we 

have to pay. In a similar way one can interpret fractional integrals Bf when they are 

divergent. A '-theory fails for these operators because they are translation invariant. 

One can also include weighted spaces £,(R') in our scheme. A '-theory does not cater 

for them if Re it > n when the functions. from £ p,,L(R') are generally not summable at 

the origin. 

Further applications of Theorems 4.3, 4.5 and 4.7 may be pursued elsewhere. 
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Preface 

In recent years there has been a lot of interest in extending the standard 

classical integral transforms to classes of generalised functions or 

distributions. 	The theory of the Fourier transform has been documented in 

standard works such as [24] and [75] but it was not until the appearance of 

[87] that transforms on the half-line (O,) such as the Laplace, Mellin and 

Hankel transforms received much attention. 	In the ten years since [87] 

was published, interest has continued. 	However, most authors have used 

classes of generalised, functions which are ideal for the particular 

transform under consideration but for no others. 	The purpose of this book 

is to describe a class of spaces of generalised functions which are 

amenable to the study of a number of important operators and to use the 

theory to solve in some detail a number of standard problems. 	In 

particular, we show how various classical results are incorporated in our 

distributional theory. 

Since an indefinite integral is probably the simplest integral transform 

of all, no apology is needed for using this as the starting point for a 

theory of fractional calculus, another topic which has sprung to life in 

recent years with the publication of [so] and [74]. 	This distributional 

fractional calculus is used as a unifying theme in the later chapters of the 

book. 	We have concentrated on problems which are of general interest 

and where the theory is complete. Thus we consider hypergeornetric 

integral equations, Hankel transforms and dual integral equations of 

Titchmarsh type in detail. In the last chapter we mention how an 



incomplete theory can be developed in the case of most of the other 

standard transforms on (O,oz) and also indicate a number of directions in 

which the theory may develop in the future. 

On a personal note, my interest in this field began during the period 

1968-71 when it was my great pleasure and privilege to be a research 

student at the University of Edinburgh under the supervision of the late 

Professor Arthur Erdélyi. 	During that period and right up to his untimely 

death, his willing help and friendly advice were a great inspiration. 

Without him, this book would never have existed. 	I hope that it might 

serve as my modest tribute to a very great mathematician and friend. 

It is perhaps appropriate that the impetus for me to put pen to paper 

came from another of Professor Erdélyi's former students, David Colton, and 

I am pleased to record my appreciation of Professor Colton's advice and 

encouragement. 	My thanks also go to my colleague Dr. Gary Roach for his 

interest and for looking through the manuscript. 	Last but by no means 

least, I would like to record my sincere thanks to Mrs. Mary Sergeant and 

Miss Elaine Livsey for preparing the typescript so excellently and coping 

with my whims and fancies. 



0 Notation 

Here we introduce a few standard notations and conventions which will be 

used throughout the book. 

All functions will be complex-valued. 

An expression such as x, where x is a positive real number and A is 

complex, will be interpreted as exp(A log x) with log x real. 

All integrals will be Lebesgue integrals. 

Let I denote either the open interval (O,) or the whole real line R 1 . 

We consider (complex-valued) measurable functions defined almost 

everywhere (a.e.) on I. 

f is locally integrable on I if it is (Lebesgue) integrable over 

every compact sub-interval of I. 

Any equation involving locally integrable functions is to be 

interpreted as holding a.e. on the appropriate set. 	Alternat- 

ively, we may work.with equivalence classes of functions, two 

functions being in the same equivalence class if they are equal 

a. e. 

For 1 4 p < , L(I) is the set of (equivalence classes of) 

measurable functions f such that 

lifli p = 
{ I If(x)dx)' 	< 
	

(0.1) 

00  L 	is the set of (equivalence classes of) measurable functions 

f such that 

1 



llfIl= ess sup f 
I 

(0.2) 

For 1 < p 	, if(i) is a Banach space with respect to the norm 

II 	II. 
(iv) 	Let 1 < p 	and let .i be a complex number. 	Then if is the 

space of (equivalence classes of) functions f such that 

X_ W f(X) c L(0,co), i.e., 

L = {f: xf(x) E if(O,cx)}. 1.1 (0.3) 

(We shall not require this definition on (-,).) Occasionally 

we will write 

LP = L = L(O,co). 	 (0.4) 

if is a Banach space with respect to the norm 	defined by
ppw 

HfH 	= lix U f ( x)Il 
p,1-j 	 p (0.5) 

where II H is given by (0.1) or (0.2). 

(v) 	If 1 < p 4 co, the number q will always be related to p via the 

relation 

1 	1 
or 

p 	q 	 p-i (0.6) 

with the convention that if p = 1, q = 	while if p = , q = 1. 

5. Again, let I denote either (0,') or R 1 . 	Here we consider complex- 

valued functions defined everywhere on I. 

(i) 	C 	denotes the set of all (complex-valued) functions on I 

which are infinitely differentiable on I, i.e. which have 

derivatives of all orders at all points of I. 



GO 	C(I) is the subset of C(I) consisting of those functions 

which have compact support, i.e. which are such that (x) = 0 

outside some compact subset of I (the compact subset varying 

with q). 

co  The set C(I) will sometimes be denoted by (I) and, in the 

case I = (0,cx), simply by. 

6. If X is a topological vector space, we denote by X' the dual space of 

X, i.e. the set of all continuous linear functionals on X. 	The value 

assigned to 	c X by f c X' will be denoted by 

3 



I Introduction 

§1.1 Motivation and Background 

Let X, Y be two (non-empty) sets and T a mapping of X into Y. 	If g c Y 

does not lie in the range of T, then the equation 

Tf = g  

has no solution f C X. 	Nevertheless, it is sometimes possible to recover 

something from the wreck. 

Suppose, for instance, that it is possible to imbed the sets X and Y in 

sets x and Y respectively with f - t, g -* g etc. 	Suppose also that T can 

be extended to a mapping T of X onto 
lkl 

 Y in such a way that, for all f c 

TI = Tf. 	 (1.2) 

Then, if g is as in (1.1), the equation 

ih = g. 	 (1.3) 

will have at least one solution h C 3c. 	Such an h might be called a 

pralised (or weak) solution of (1.1) since, if (1.1) has a solution 

f C  X, h = 	will satisfy (1.3) in view of (1.2). 	Although the word 

"imbed" was used above, there may not be any topologies involved initially. 

However if X, Y, X ,Y are topological spaces and the imbeddings are 

Continuous, it would be ideal if 	turned out to be a homeomorphism of ) 

onto . 	Then we would have a unique generalised solution of (1.1). 

We shall be concerned with the case when X and Y are topological vector 

4 



spaces of functions (justifying the choice of f, g above) and T is an 

integral operator from X into Y but not onto. 	Indeed X and Y will be 

spaces of the form L as defined in (0.3). 	We give two instances for the 

case P = 0 involving operators which will attract much of our attention in 

the sequel. 

Example 1.1 

Let ri and ct be complex numbers with Re a > 0 and define 	by 

flCt fx () -
(Xt)t nf(t)dt 	(0 < x < 

) 

0 

1,a is one of the Erdélyi-Kober operators of fractional integration 

introduced in [32] and [34]. 	Indeed in [32, Theorem 21, Kober showed that 

is a continuous linear mapping of L(= L(0,-)) into itself provided 

that Re Ti > - lIq. However I' does not map L onto L. For instance, 

if 

I''f = g 	(f,g c L(0,co)) 

(equality holding almost everywhere on (0,)), then xrg(x) must be 

differentiable almost everywhere on (0,x). 

Example 1.2 

For suitable complex numbers v, 1 < p < 2 and f c L, we may define Hf, 

the Hankel transform of f of order v, by 

I. i.m. (q) (H OW = & 
-+ c 	 tJ (xt)f(t)dt 	(0 < x < co) 

0 

where l.i.m.(q) denotes the limit in the 	norm. 	Then by standard 

results in [1] and [78], H is a continuous linear mapping of L into 

when Re v > - 3/2 + i/p. 	However, except in the very special case of 

5 



p = 2, H 
V does not map L onto L and a useful characterisation of the 

range H(L) does not seem to be known. 

An even more extreme situation arises with the Laplace transform 

Example 1.3 

For f £ L (1 4 p 	), define Lf by 

(Lf)(x) = f 00 

e_xt  f (t)dt 	(0 < x < 

Then from [85, pp. 312-3], if 1 < p < , g = Lf (f C  L) if and only if g 

is infinitely differentiable and, for some constant M, 

	

k 	1 d' 	kp+p-2 F--f  I x 	dx < M 	(k = 0,1,2, 

	

(k!) 	J 	...). 

Thus L maps L into L 1 _ 1  but clearly not onto. 	The cases p = 1 and p = 

produce analogous results. 

Similar comments can be made about other standard integral transforms on 

the half-line (O,) but we have enough to be getting on with. 

Returning to the general case,we have to consider how to imbed our space 

	

X of functions in a suitable larger set. 	One method is to take 	= 

the dual space of some space Z of infinitely differentiable testing- 

	

functions. 	If Z is chosen appropriately, we might hope that each element 

f of X would generate a functional ? E z' according to the prescription 

() = 
fE f(xWx ) dx  

(1.4) 

where, for our present discussion, E will be either (O,co) or  

Examples of such spaces V are the spaces '(—co,c.') and(O,co) of Schwartz 

distributions and the space 8' of tempered distributions discussed in, for 

instance, [24], [75] , [79] and [86]. We cannot hope for a single space Z' 



which will be ideal for every operator I we care to consider. 	Hence, in 

the literature, many different spaces are introduced which are tailor-made 

for the problem in hand. 	However, in the case of functions defined on 

(O,), it is usual to demand that no,-) be dense in 2 so that the 

restrictions of the elements of Z' to (O,-) form a subspace of the Schwartz 

space '(O,) by [87, Corollary 1.8 -. 2a]. 	Similar comments apply to 

Thus Z' is a space of generalised functions in the sense of 

Zemanian [87, p.39]. 

The extension of integral transformations from classical functions to 

generalised functions has attracted a lot of attention in recent years and 

mention must be made of the work of Zemanian which appears in his book [87]. 

Since [87] was published, further developments have taken place and we shall 

mention briefly a few of these below, although no attempt has been made to 

make the list comprehensive. 	We do this in the course of outlining three 

methods which have been successfully used to carry out the extension 

process. 

The first method might be called "the adjoint operator method". 

Suppose we are dealing with two spaces X and Y of functions on (O,) which 

are imbedded in spaces Z,Z of generalised functions respectively and let 

T map X into Y. 	Then if, f c X, (1.2) decrees that, for any testing- 

function 	£ Z2 , 

f(Tf 	foq) = 	Tf(x)q(x)dx = 	f(x)T*(x)dx = (f,T*ç) 	 (1.5) o  

where 1*: Z2  - Z 1  is the formal adjoint of T ([87], 91.lO). 	(1.5) 

suggests that we define t: Z 4 Z by 

(h,T*q) 	(h E z, 	£ Z2). 	 (1.6) 
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The properties of T then follow from those of T* by standard theorems ([87], 

P. 29). 	Thus in this approach, we try to choose spaces Z 1  and Z 2  such 

that T*: Z2 -, 	is a homeomorphism. 	Then, by [87, Theorem 1.10 - 2], 

: Z -* 	is also a homeomorphism. 	This approach is used in [87) for a 

study of the Hankel transform. 	An earlier example of the same method (on 

(-,)) is the now standard theory of the Fourier transform on the space 

of tempered distributions; see, for instance, [24], [75] and [79]. 

A second, more specialised method might be called"the convolution method". 

Again, we shall work on (0,) only. 	The method treats an integral 

transform T of the form 

CO  

(Tf)(x) 
= fo 

k(x-t)f(t)dt 	(0 < x <) 	 (1.7) 

so. that Tf is the convolution of the kernel k and the unknown function f. 

Convolution is an operation which is meaningful for distributions in 

whose support is bounded on the left ([24, Ch. 1, § 5], [86, Ch. 5]) 

and in particular for elements of M'  (O,-). 	Hence if k generates a 
distribution 	cj'(0,c), we are led to define T on V (0,o') by 

(1.8) 

where * denotes distributional convolution. 	An example of this approach 

is afforded by the extension of the Riemann-Liouville fractional integral 

defined for Re a > 0 by 

x 
If(x) - 1 	(x-t)1f(t)dt - rr(a)

( 
 

so that Ia is one of the constituents of the operator in Example 1.1. 	In 

this case, the kernel generates the distribution x ' /() described in [24, 

	

p. 47] so that the extended operator, 	say, is given by 
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= x''/1(a) * h 	(h  

Using basic properties of convolution, a modest theory of fractional 

integration can be developed ([24], pp.  115 - 122). 

The third method might be called the "kernel method". 	This is somewhat 

different in that it maps a generalised function into a classical function 

rather than another generalised function. 	Again, to fix ideas, consider 

the operator T defined by 

(Tf)(x) = J k(x,t)f(t)dt 	(0 < x < c) 	 (1.9) 
0 

where k is a known kernel and f EX. 	To imbed f in V. we choose Z in 

such a way that, as a function of t, k(x,t) c Z for each fixed x c (0,°'). 

Then, under appropriate conditions, f c X will generate a functional ? c Z' 

and the right-hand side of (1.9) can be regarded as (rd,k)  where 

k x (t) = k(x,t) 	(0 < t < a). 	 (1.10) 

This suggests that if h c Z', we take Th to be the classical function 

defined by 

ih(x) = (h ,k) 	(0 < x < 
	

(1.11) 

This method is extensively used by Zemanian in [87J where we find applicat-

ions to the Laplace, Mellin, K, I and Weierstrass transforms (the K and I 

transforms being analogues of the Hankel transform with J replaced by the 

modified Bessel functions K and I). 	Perhaps paradoxically, a general 

convolution transform is also treated by this method in [87, Chapter 8]. 

In recent years, the adjoint operator method or kernel method has been 

applied to all the standard integral transforms on (O,') as well as many 



more off-beat generalisations. 	There have been studies using the adjoint 

operator method of 

fractional calculus by Erdlyi and McBride [17], [461,r47],[50] [74] 

Hankel transforms by Dube and Pandey [6], Koh [35], 736] and Lee [38], 

[39], 

Melljn, Hanke]. and Watson transforms and fractional integrals by 

Braaksma and Schuitman [2]. 

On the other hand, there have been studies using the kernel method of 

Stieltjes transforms by Erdélyi [15], Pandey [65] and Pathak [66] 

Hardy transforms by Pathak and Pandey [67]. 

However, as hinted above, there is a snag. 	In many cases the spaces of 

generalised functions introduced in the references quoted are expressly 

geared to one particular transform and seem to be of little or no use for 

any other transform. 	This is hardly surprising since the kernels of the 

various transforms behave so differently. 	Nevertheless, in all but the 

simplest problems, it will be necessary to apply a succession of operators 

in order to obtain a solution and we therefore need spaces of generalised 

functions relative to which all the relevant operators are well-behaved. 

The object of this book is to introduce and study certain spaces of 

generalised functions which, we believe, are of interest as regards the L 

theory of a number of important operators on the positive half-line (O,x). 

We have chosen to study a few operators in considerable detail rather than 

to deal sketchily with a lot of transforms. 	To provide some continuity, 

we have chosen fractional calculus as a unifying theme and we deal with a 

number of problems which are connected to this theme. 	Except in the last 

chapter, we use the "adjoint operator" method as described above. 

Perhaps the nearest relative of our approach in the literature is that 



in [2]. 	The spaces used therein are closely related to our spaces in the 

case p = . 	(Indeed, most of the spaces of testing-functions in the 

literature have topologies defined by "L-type" seminorms.) 	However, we 

will handle all values of p in the range 1 4 p 	simultaneously. 	Our 

spaces are homeomorphic images of the spaces D of Schwartz [75,pp.199-201] 
L 

and the latter spaces can in turn be related to the Sobolev spaces 

(see [75], p. 199). 	Thus we may think loosely of our spaces as 

modified Sobolev spaces on the half-line (O,co). 

Much of the material of Chapters 2 - 6 has appeared in a series of 

papers [47], [48], [49], [ so] and [51]. 	However, the opportunity has been 

taken to carry out revisions which we hope will make the text more readable. 

At various stages, there was a great temptation to wander off at a tangent 

to discuss something of perhaps marginal interest. 	We have resisted this 

as much as possible. 	We have tried to develop the theory as concisely as 

possible stating only those results which are relevant. 	We have tried to 

show its applicability to various types of problems and, in particular, we 

show how classical L-type results can be deduced from it. 	We have tried 

to show how the general theory incorporates the classical theory and, at 

the same time, provides a framework wherein the formal analysis found in 

many books and papers can be justified rigorously. 	It is up to the reader 

to judge whether we have been successful or not. 

To keep the bibliography as short as possible, we have only mentioned 

those works which are of direct relevance and no attempt has been made to 

give a comprehensive list of references. 	For instance, we shall frequently 

refer to Zemanian's book [87] which is unique in the field and contains an 

extensive bibliography which it would be pointless to repeat. 	Likewise, 

full lists of references covering the development and use of fractional 
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calculus will be found in [56] and [74]. 	Again, in Chapter 4, we do not 

list all the special cases of Love's work as these can be found in [40] and 

[41]. 

§1.2 Plan of Campaign 

In Chapter 2, we introduce the spaces F 	of testing- functions and F' 
p,',i 

of generalised functions and obtain their basic algebraic and topological 

properties. 	We also study a number of simple operators in these spaces. 

As indicated above, we will make extensive use of fractional calculus. 

Chapter 3, the longest in the book, develops the theory which we require 

later as well as giving a first example of our extension process at work. 

We start with a simple generalisation of the operator I" of Example 1.1 

and go on to study Erd1yi-Kober operators as well as the Riemann -Liouvjlle 

and Weyl fractional integrals. 	As we go along, the conditions on the 

parameters are relaxed more and more and the operators change their 

character from straight integrals to integro -differentialoperators. 	For 

instance, starting from Example l.l,we end up with an operator I' defined 

on F 	for all complex ot and values of n such that Re 
('+Li) $ - l/q - 

U = 0,1,2, ...). 	The properties of the operators on F' 	are obtained 

using the adjoint operator approach. 

Immediately, in Chapter 4, we apply our theory of fractional calculus to 

the solution of certain integral equations involving the 2F1 hypergeometrjc 

function; As we shall see, use of generalised functions again enables the 

restrictions necessary for a classical treatment to be relaxed greatly and 

interesting results emerge quite naturally. At the end of the chapter, we 

show how a typical classical result can be deduced. 

Chapter 5 is devoted to a treatment of the Hankel transform. 	We have 

chosen to deal with this transform for a number of reasons. 	Firstly, it is 
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an important and useful transform. 	Secondly, the methods are similar to 

those which would be tried for other transforms. Thirdly, the results 

obtained are particularly complete in the case of the Hankel transform. 

Finally, the connections with fractional calculus are very strong. Again 

we travel a long way from the simple situation of Example 1.2. 	We also 

discuss a simple modification of the Hankel transform which we use 

extensively later. 

Chapter 6 is devoted to stating conditions under which various connect-

ions between fractional calculus and the Hankel transform are valid in F 
p"J 

and F' 
p,1J 

Chapter 7 sees the application of the material in Chapters 3, 5 and 6 to 

dual integral equations of Titchmarsh type. 	Questions of existence and 

uniqueness are posed and solved for equations in F' 	and we then show how 
PIP 

this information can be transferred back to classical problems, dealing in 

detail with the simplest case and indicating briefly what happens otherwise. 

We might regard Chapter 7 as the climax of the theory described in the 

earlier chapters. 	Nevertheless, in the final chapter, we mention briefly 

a few other operators which can be studied in our spaces or in simple 

modifications of these spaces. 
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2 The spaces F 

§2.1 Definition and Simple Properties of the Spaces F 

We will be concerned with infinitely -differentiable complex-valued functions 

defined on the positive real line (O,oz) and will use the notation 

described in Chapter 0. 

Definition 2.1 

(1) 	For 1 < p < , we define F 0,0 
,O 

F 0  = 	cc (O,): xkd/dxk c L(0,a) for k = 0,1,2, ...}. 

(ii) 	We define F 	by 
,0 

F 	= 	c C(O,):xl(dI/dxk - 0 as x - 0 + and as x - 

for k = 0,192, ... 

For 1 ' p 	and any complex number u, we define F 	by 
PIIj 

F 	= 	c C(0,cz): x(x) c F 0 ). 

The reason for the slightly different definition in the case p = 	will 

perhaps be a little clearer after the following theorem which gives a very 

simple, but nevertheless very useful, growth estimate for functions in F. 

Theorem 2.2 

Let 1 . p 	and let i be any complex number.. Then,if 	c 

is bounded on (0,cz). 
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Proof: - 	It is sufficient to establish the result for u = 0 in view of 

Definition 2.1(iii) and the fact that Ix'f = 1 for all x c (O,). 	Since 

the case p = 	is trivial we take 1 < p < 	and, without loss of generality, 

take 	to be real-valued. 

Let 0 	a < b < 	and let 	€: F 0 . 	Integration by parts gives 

b 	 b 

fW Wp 	(x)}dx = [x{(x)}P]b - 	{(x)}dx. 	 (2.1) a a 	fa  
Since 	c l

(O,-), the integral on the right-hand side remains bounded as 

a - 0 + or b - 	(or both). 	As regards the integral on the left, we note 

that x'(x) c L(O,c) while {(x)} 1 	 (q = ——). 	Hence, by 

Holder's inequality, the left-hand side of (2.1) remains bounded as a - 0 + 

or as b - 	. 	Thus the same is true of xt(x)} as x -+0 + or x - and the 

proof is complete in view of our opening remarks. 

To return to Definition 2.1, we now see that the functions in 

F0(l . p < ) satisfy the conditions required in (ii). 	On the other 

hand, the conditions x k k 	k d /dx 	L .0 (0,-) for k = 0,1,2, ... (which would be 

the analogue of (i)) do not imply that ' satisfies the conditions in (ii). 

For technical reasons, the conditions in (ii) are essential for our theory. 

It is immediately desirable to introduce a topology on 

Definition 2.3 

For 1 < p 	and any complex ti,F 	is equipped with the topology 

generated by the semi-norms y' '  (k = 0,1,2, ...) defined by 

yPU (q) 	i  x k d 
 k 
/dx  k 
	- 

= 	 Cx 	)Il 	(q E F 	). 
'p 

Notes 

1. 	Here I I j I denotes the L(0,o') norm (1 < p 
p 
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That each 	is a semi-norm on 	is easily checked. 

For an explanation of how the topology IS generated, see [87, p.9]. 

It would be possible to develop the properties of F 	from scratch but 

it is much quicker to make use of results in 175]. 	For  convenience we 
recall the following definitions from [75, pp. 199 -201]. 

Definition 2.4 

(1) 	For 1 4 p < 	D L1' is the set defined by 

	

D L' = 
	c C (-x,co): d k q/dx 

k  c Lr 	for k = 0,1,2, •..J. 

D 
L' is equipped with the topology generated by the semi-norms 

VP (k = 0,1,2, •..) defined by 

VP(4).= 	Jd'p/dx'I  
L(u,co) 	 L 

(ii) 	is the set 

= ( 	c C(,cz): d/dxk - 0 as JxI - 	for k = 0,1,2, .. 

B is equipped with the topology generated by the semi-norms  
CO 

v(k = 0,1,2, ...) defined by 

	

V(q) = 	 (q c 
L 

To connect these Schwartz spaces with the F 	 spaces, we introduce 
operators T 

p,IJ 
as follows. 

Definition 2.5 

Let 1 4 p 4 co and let p be any complex number. 	If 	is a complex-valued 

function defined (a.e.) on (O,), we define 	on (-,) by 

16 
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(T 
p lJ 

4)(x) = e/X 	
x 

4(e ) 	(-a < x < 
, 

We then have the following theorem. 

Theorem 2.6 

(1) 	For 1 z p < 	and any complex number i., T 	is a homeomorphism of
POIJ 

F 	onto  
pqIj

L  

(ii) For any complex number u, 
TGOOP 
 is a horneomorphism of Fa 	onto B 

Proof:- 	(i) For lp<cand4eF 
p  

rw 	 00 	

1Jx 	x 	x 
JIT 	

q(X)l)X = j 

	
le-  4(e )jp e dx =  -CO fm jt -" q(t)j pdt

o  

so that 

v(T 	) = 
0 p,u 

By induction, it follows easily that for k = 0,1,2, 

Dk(T) = T 	t(l/p - i)I + x d/dx] 1  

k 
E c.T 	(x3 d3 q/dx3 ) 

3=0 

(2.2) 

(2.3) 

for certain constantsc. (j = 0,1, ..., k). 

we get 

(T 	) _VPDkT q) 
k p,p 	0 

k 

	

Ic 1,)(T 	(xd34/dx3 )) 
j=0 j 0 

p,u 

k 
= • 	Ic I Y PIIJ  

j=0 	
0 

Hence, using (2.2) and (2.3), 
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k 
v(T 	4)) 4 E d.y?'(q)) 	 (2.4) 

j=0 

for some constants d (j = 0,1, ..., k), the last step following by routine 

algebra using the definition of !" . 	(2.4) shows that T 	maps F 

	

3 	 pJ 	 pJ 

continuously into D . 	Indeed, T 	maps F 	onto D with inverse 
L 	 p' 

(T; ' P)(x) = x 	" tI'(log x) 	(0 < x < c.) 

where ij c D . 	A calculation similar to the above shows that 
L 

(2.5) 

POJ 	
D - F 	is continuous. 	This completes the proof of M. 
L 

(ii) is proved similarly but requires the extra observation that 

xkdk4)/dxk - 0 as x - 0 + and x - 	(for k = 0,1,2, ...) 

iff 	dk(T4))/dxk 	0 as Jx - 	 (for k = 0,1,2, .... 

The details are omitted. 

This completes the proof of Theorem 2.6. 

Theorem 2.6 states that from the topological point of view, 	and 

D 
L 
 have the same structure. 	Hence properties of F 	are easily obtained 

from known properties of D . 	We. mention some which are of impOrtance for 
L '  

US. 

Corollary 2.7 

C(0,x) is dense in F 	 for 1 r, p 	and any complex number u. 

Proof:- 	From [75, p.199], C(-oo,cx) is dense in D 0 	 (1 4 p < -).and 

in B. 	Since T_ 1  (C0 (-cz,cofl = C0 (O,x) for 1 4 p E 	and any u, the result 

follows at once from Theorem 2.6. 
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Corollary 2.8 

For 1 4 p 	and any complex number ii, F , 	is a Fréchet space. 

Proof: - 	Since D 	(I 41 p 

L 
F 

p IJ 
by Theorem 2.6. 	That 

, 

once from the definition of 

metrizable, a suitable metr: 

< o) and B are complete [75, p.199], so i s  

the space F 	is locally convex follows atpop 

its topology [87, p.9]. 	Finally, F 	is
pop 

Lc being given by 

Y 'I.I (' - Ip) 
cF 	)

pop 

	

k=O 
2k 
 l+y'-) 	

(, 

[79, p.71]. 

Theorem 2.6 is also used in proving our final result in this section. 

Theorem 2.9 

Let p 1  and p 2  be complex numbers and let 1 4 p 1 4 p2 < 	Then 

F 
p 1 '' l 	P2 P 2  

c F 	if and only if Re(p-p 2 ) = l/p 1 -l/p., with strict 

inclusion if p1 < p2. 

If Re(p1-p2) = l/p 1 -l/p2 , the imbedding of F 	into F 	is
P i I p i 

Continuous. 

Proof:- 	First we mention that if p is any complex number and 1 c p 

F 	=F . 	 (2.6) p,Re p 

This follows from 	 IM p 	 .1 the fact that x 	c C (O,) and ixIm p 	1. 	Hence, 

without loss of generality, we may take plop  to be real. 

Suppose then that p1 - 	= i/p1 - lip2 . 	The case p1 	p2  is now 

trivial. 	We are left with the case 1 4 p 1  < p2 < 	Assume also that 

< Co. 	Since 11' 1  - 	= 1 - 	T 	and T 	are formally thepi 1 
same. 	Hence 
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D 	CD 
Ll 	L2 	

by [75, p.200] 

=> T- I 	(D 	) c T- I 	(D 	) 

	

P1')j] 	
Ll 	 L2 

=> F 
p l 	P2 2  

c F 	 by Theorem 2.6. 

	

,U l 	,1J 

The case p2  = 	proceeds similarly with B replacing D 	. 	The strict 
L2 

inclusion and continuity of the imbedding follow from the corresponding 

properties of D Ll and D 	along with the homeomorphic properties of 
L2 

T 	and  

Now suppose that p 1  - p 2 0 i/p1 - i/p2  and let 

	

b = (1/p2 - 	- ( 1 /p 1  - p 1 ) 

so that b 0 0. 	Also, let 0 c C(0,cx) be such that 

	

10 	x<i 
0(x) = 

	

(l 	x>2 

If b > 0, we consider the function 

	

= 0(x)x 	 (0 < x < co) 

	

It is easy to check that 	c F 	. 	However, Since 
p l ,IJ l  

LI2 	 b/2-1/p2 
X -  c(x) = 0(x)x 

11  I F 	so that F P
1 , P 1 

0 F 
P 2  U2 in this case. 	The case h < 0 isP2 10 P2 	 ,  

handled similarly using 

1(x) = 8(1/x)x p 1/p
1 -b/2 
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This completes the proof of Theorem 2.9. 

Remarks 2.10 

The importance of Theorem 2.9 will become clear later when we attempt 

to find the range of fractional integrals and the Hankel transform 

on the F 
p,u 

 spaces. 

In view of (2.6) we could restrict our attention to F 	spaces 

with p real. 	However, since other parameters later on will be 

complex (so that, for instance, we can use analytic continuation), it 

seems sensible to take P complex as well. 

2.2 Simple Operators on the F 	Spaces
PIW 

In this section we discuss some simple operators which are used extensively 

later. 	We have already met the simplest of all namely the identity on 

F 	and,more generally,the imbedding of F 

A 	
into F 	in Theorem 2.9. 

p l '' l  
Another simple operator is x defined by 

A  
(x q) (x) = x A q(x) 	(0 < X. < cc) (2.7) 

(We will use the notation x  for the operation taking (x) to x(x); 

	

A 	 A there should be no confusion between the operator x and the function x .) 

Theorem 2.11 

For any complex numbers A, p and 1 . p 	, 	is a homeomorphism of F 

onto F 	with inverse x p, p +X 

Proof:- 	The result is trivial since 	(x)¼4) y 	U) 
for 0 c F 

and k = 0,1,2 ..... 

More interesting is the behaviour of the differentiation operator which 

we shall often denote by D, i.e. 
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04)(x) = d4/dx 
(2.8) 

	

for all suitable functions 4. 	We shall also need the operators 6,6' 

defined by 

( 6 0) (x) = xdcp/dx 	
(2.9) 

(ó'q)(x) = d/dx(x) = (6q)(x) + 	 (2.10) 

Remark 2.12 

It is easy to show that 0 c C(0,co) belongs to F 	iff for k = 0,1,2, 

L(O,cx) 	(1 4 p < co) 

or 	ok(x_u)() - 0 as 	- 0 + and as x - 	(p = cz)) 

with similar conmients for 6'. 

Theorem 2.13 

For any complex number p and 1 4 p 	, D is a continuous linear 

mapping from F 	into F 

	

p, 	p,u-1 

D is a homeomorphjsm from F 	onto F -  iff Re 	i/p and, if p,u. 	p,j 1 
PcF 	,then p,u-1 

f
x 

1 (D-  OW 
0 

	

L(t)dt 	(Re w>l/p) 
 

-j 	
q(t)dt 	(Re u < l/p) . 	 (2.11) x 

Proof:- 	(i) For k = 0,1,2, ..., and • C F 

p,p-1 
(DO) = llxkDk 

= IIxk (xfD(x) + 
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k 	k+1 	U 

	

= tix xD 	(x 	) + kDk(x) + u Dk( x ))II 

	

' 	 + (k+I u I) ,U () 

and in the case p = 	we obtain similarly that xkDk(xlUDp)(x) - 0 as 

x -. 0 + and as x - . 	The continuity of D is thus established. 

(ii) We will consider in detail the cases Re ji > I/p (the case 

Re u < lip 'being similar) and Re p = l/p. 

(a) Reu>lip 

If 	c F 
p,p 

 and D = 0, then (x) = c for all x c (O,°) where c is a 

constant. 	Since Re p > l/p, x' 	L(O,) (1 r. p < °) and in the case 

p = , x 	0 as x -* 0 +. 	Hence cx-lj  £ F 
P, U 

iff c = 0 so that D is one- 

one. 

	

To show that D maps F 
p IJ 	p, ul 

onto F 	, let 	c F 	. 	Then 
,  

f
x 

p p
4(t) dt belongs to F 	Indeed we may write 

o 	 , 

f  x 
	

01 
t)dt = XI l' (x) 

o 

where I' is as in Example 1.1 and our result is then a very simple 

special case of Lemma 3.3 belo'v. 	Thus although we could proceed from 

scratch, we merely refer the reader to that result. 	Now, in view of 

Theorem 2.2, for sdme constant C, 

J 	i X 	 Ct 1/p Re 

Jo 	o 	 o  

Thus since Re p > lip, the integral J j(t)dt converges absolutely and 
0 

uniformly on compact subsets of (0,'). 	In particular,-we conclude that 

fo 
X 

D( 	(t)dt) 	x). 
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Hence D is onto. 

Finally, the continuity of D- 1  follows again from Lemma 3.3 below but is 

also an automatic consequence of the Open Mapping Theorem for Fréchet spaces 

[79 , Theorem 17.1] . This completes the proof in case Re i > lip. 

(b) Re ii = lip 

Here we shall prove that D does not map F 
p 1J 

onto F 
p,1.1-1  . 
	Firstly, we 

,  

assume that 1 4 p < . 	Choose a such that -i/p < a < 0 and let 

8 c C(O,c) be such that 

10 O<x2 
8(x) = 

11 	xe. 

Next define 0 by 

•(x) = 8(x) (log X)a 	(0 < x < ). 	 (2.12) 

Finally we shall write 

= (6p)(x) 

where 6 is given by (2.9). 	For k 1  0,1,2, 

0< x 	2 

a(a-l) 	( 

0 
(6k ) W=  ( 6k+l) (x) = 	 - 	a-k-l '  

a k)(log x) 	 x > e 

and since for Re p = lip, 

f W 

I X-11 a-k-1 p I I (a-k-1 )p 
x (log x) dx = t dt 

,4.' c F p,u 	 P,,,-,
so that x c F 	where 
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X (x) = x -1 q'(x) 	(0 < x < CO) 

Notice that (D4))(x) = x(x). 	However, 

00  f 00 

1 xU4)(x)IPdx = I x- l(log x) ap  dx = 	u 1'du J 	
a

i 

is divergent since ap > -1 so that 4) v F 
p9p ,

Furthermore, if there were 

a function 	€ 	such that D4) 1 (x) = (x), we would obtainPt Ij 

= 4)(x) + c 	
(2.13) 

where c is a constant. 	By letting b - 	in (2.1) we deduce that 

uIP_Re p 4) 1 (x) = 1 (x) tends to a limit, L say, as x - 	. 	If L 0 0, 
00 

CO  
fXxl(xPdx 	L,21J (x 1 )dx for X sufficiently large and we have 

divergence. 	Hence L = 0, i.e. 4)1(x) - 0 as x - . 	Also, as a < 0, 

4)(x) - 0 as x - 	. 	Letting x -* 	in (2.13) gives c = 0 => 4 = 

=> 	c F 1J , a contradiction. 	Hence there is no function 4) c F 	such p, 	
p,1J 

that D4) = x and hence D does not map F 	onto F 	in this case. 
p,i.i -1 

When p = , Re p = 0 and we consider 4) as defined by (2.12) but with 

0 < a < 1 now. The proof is similar and is omitted; details are to be 

found in [50]. 

Corollary 2.14 

Let i be any complex number, 1 4 p 4 = and 6, 6' as in (2.9), (2.10). 

6 ,6' are continuous linear mappings from F 	into itself.
PP  

6 is a homeomorphism of F 	 onto itself iff Rep # l/r. 

6' is a homeomorphism of F 	 onto itself 1ff Re u # -l/q. 

Proof:- 	The results follow easily from Theorems 2.11 and 2.13. 

Later we shall require differentiation with respect to a positive power 
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of the variable. 	For m > 0, we define the operator D by 

(D4)(x) = d/dxm((x)). 	 (2.14) 

For reference, we state the following result. 

Corollary 2.15 

Let i be any complex number, 1 < p < 	m > 0. 

D m 	 p, u 
is a continuous linear mapping from F 	into F 

•D m 	 p, 1J 
is a homeomorphism from F 	onto F p, p-m iff Re p 	I/p. 

Proof: - 	These also follow from Theorems 2.11 and 2.13 on writing 

(D)(x) = m lx mD4(x ) 

Remark 2.16 

It is perhaps worthwhile to examine the exceptional cases occurring in the 

last few results. 	For simplicity, we shall look in detail at D 1  on F. 

Let 	c F 
p,1J 

 have compact support. 	Then so does ip = D1 	
p,p 

£ F 	- 

Further 

fdt
x  

(x) = 
	

t) 	+ c() 	(0 < x < 
0 

where c(i) is a constant depending on vP. 	There are three cases again. 

Re p > I/p. 	On taking c() E 0, the right-hand side becomes 

J P(t)dt as in (2.11). 	This is the only choice which leads to an operator 

cc 

0 

which can be extended from C(O,co) to a continuous linear mapping from all 

of F 
p,p-1 	p,p 

into F 	; the uniqueness follows from the fact that no non-zero 

constant function belongs to F 

Re p < lip. 	This time the only c(p) giving an operator which can be 
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extended as above is 

c(i) 
= - fo 

(t) 	pdt 

which again gives (2.11). 

(iii) Re p = I/p. If the support of 	lies in [a,b] (0 < a < b < ), then 

f
x 	 (c1 	(O<xa) 

(t)dt + c(iJ) = 
0 	 c2 
	

(x 	b) 

where c 1  and c 2  are constants and since Ic 1xI" = IcIx' (i = 1,2) in 

this case we must have C 
1 	2 = c = 0 in order to obtain an element of F 

Letting x - 0 gives c(j') = 0 and letting x - ° gives 

j 45(t)dt = 0. 
0 

00 

Only functions 1L c C 0 (0,co) satisfying this last condition can belong to the 

range of D on F 	 (Re IJ = l/) and for such • the values of c(P)  in (i)p 11 

and (ii) agree. 	This shows how case (iii) is a half-way house between (i) 

and (ii).. 	Also the proof of Theorem 2.13 shows that when Re p = 1/p 

neither of the expressions 

rx 	
jtt, - J 

00  

o 	
: tt 	( £ C(0,-)) 

can be extended to continuous linear mappings from F 	1 into F 
p,p 

	

Similar comments apply to 	6 and 6'. 	Formulae for the inverse 

operators can be written down in the non-exceptional cases. 	For instance, 

F) 

when Re p > lip, I 	as in Example 1.1. 	In the exceptional cases, 

there are complications. 	It would be possible, for instance, to study 
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(D 
m 	 m p, u 	p,P 
)1 as an operator from D (F 	) onto F 	when Re p = 1/p. 	However, 

we will not conduct this investigation any further here. 	We merely 

observe that the non-invertibility of D 
m 	 p, u 

	

, 6 and 5' on the F 	spaces in 

the exceptional cases has considerable repercussions in the sequel; see 

3.3 and 95.3. 

We now have sufficient knowledge of the spaces F 	to proceed to a 

study of their dual spaces. 

§2.3 The Spaces F' 	of Generalised Functions 

We shall use the following standard notation. 

Notation 2.17 

Let 1 . p 	and let p be any complex number. 

F' 
p 	

will denote the set of all continuous linear functionals on F 
,p 	 p,u 

equipped with the topology of pointwise (or weak) convergence. 

Typical elements of F' 	will be denoted by f, g etc. 	The value 

assigned by f c F' 	to a function 	c F 	will be denoted by (f,). 
p,p 

For an explanation of the terminology used in (i), see [87, p.21]. 

Example 2.18 

For 1 . p 	and any complex p, let f s L 	 (see (0.3)). 	Then f 

generates an element, I say, of F' 	via the formula 

C' 	 roo 

(f,) = JO f(x)q(x)dx 	( c F P ). 	 0 	 (2.15) 
,j 

Indeed this is a Simple consequence of H61der's inequality. 	Any functional 

f in F' 	generated from a classical function f via (2.15) will be called 
p,p 

a regular functional on F 	. 	Often we will write -if rather than f so that 
p,p 
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00 

	

(f,q) = J
o 	 p,u 
f(x)q(x)dx 	(4 c F 	). 	 (2.16) 

The mapping t defined by (2.16) gives an imbedding of L 	into F' 	and, _W 	p9Ij 

although strictly T depends on p and u, we will omit specific mention of 

the latter. 

	

Results for F' 	are easily obtained from those for F 	using standard p,ij 	 p,u 

theorems on duals of Fréchet spaces. 	Typical is the following result. 

Theorem 2.19 

For 1 E p 	and any complex p,  F' 	is complete. 
 Ij 

Proof:- 	The result is immediate from Corollary 2.8 above and [87, Theorem 

l.8-3. 

We should also note the following fact. 

Theorem 2.20 

For 1 . p 	and any complex p, F' 	in the sense that the 

restriction of any f c F' 	to 	defines an element of 	(The notation p,u 

is as in Chapter 0.) 

Proof: - 	The result follows at once from Corollary 2.7 above and [87, 

Corollary 1.8-2a]. 	Roughly speaking, the theorem states that our 

generalised functions are distributions in the sense of Schwartz' . 

We will obtain much more information shortly but, first, we consider 

some simple operators on F' 
p,1J 

§2.4 Simple Operators in F' 
P , p 

At this stage we return to. the question on extendability of operators which 

we discussed informally in §1.1 and show what happens in the case of the 
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simple operators x', 6, 6' and Dm  of 52.2. 	Since the situation in each 

case is similar we shall consider only one in detail, 6 being a suitable 

choice. 

As a temporary notation, we shall write 

Mp  = {f c L: 6f c L} 	(1 4 p 	, u complex). 
1.' 	 Ii 	 p 

Thus f c M if it is differentiable (almost everywhere) on (0,co) and 

x df/dx c L1'. 	The operator 6 maps M1  into L. 	On the other hand both 

can be imbedded in F' 	via (2.15). 	We would like to extend 6 to

P 	11 

-p 	-p 	 p,IJ 

an operator, 	say, mapping F' 	into itself. 	For ô to be an extension 
PIP 

of 6 we would require that 

6g6g 	(gM) 
- Ii (2.17) 

To see what this entails, let 0 c C(O,a). 	Then, 

== f g (6)(x)(x)dx = { xg'(x)(x)dx
O 	 JO 

and since 	has compact support, we may integrate by parts to obtain 

00  

-j g(x)d/dx(xq)dx = (9,-6') 
JO 

where 6' is defined by (2.10). 	Since C(0,o) is dense in F 	by 

Corollary 2.7, we may extend rg by continuity to the whole of F 	and we 

then have 

(óg,q) = (g,-6'q) 	(q c F). 

The last equation suggests that for any functional f c 	regular or not 

we should require that 

(f,-o'p) 	(q c F 	). 
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From now on we shall denote the extended operator by tS  rather than '. This 

should not cause any confusion, the context indicating whether 6  is the 

classical or extended operator. 

A similar argument can be applied to the other operators mentioned and 

we are led to the following definitions. 

Definition 2.21 

Let 1 	p - 	, let i be any complex number and let f c F' 
P,ii 

For any complex A, we define the functional x'f on F 	by 

(xXf,) = (f,x) 	( c Fp,U _A). 	 (2.18) 

The functionals 5f and Vf are defined on F 	 by 

(6f,) = (f,-') 	( 	F) 	 (2.19) 

(ó'f,q) = (f,-&) 	( c Fr ). 	 (2.20) 

For m > 0, we define the functional D 
m 
 f on F 	by 

(Dmf4) = (f,_mlD(xm)) 	( 	 (2.21) 

Notes 

The expressions on the right-hand sides of (2.18) - (2.21) are 

meaningful in view of Theorem 2.11, Corollary 2.14 (i) and Corollary 

2.15 (1). 

When m = 1, (2.21) takes the simple form 

(Df,q) = (f,-Dq) 	( c F+i). 

Using the fact that our extended operators on 	are formal adjoints 

of known operators on F 	 we can make use of standard results on adjoirit 
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operators in complete countably multinormed spaces (of which the spaces 

F 	are examples). 

Theorem 2.22 

Let 1 4 p 	and let p be any complex number. 

(i) 	For any complex number A, x   (as defined by (2.18))is a homeo- 

morphism of F' 	onto F' 	with inverse 
p,p 

6 is a continuous linear mapping of F' 	into itself and is a 

homeomorphism in case Re p 	- l/q. 

6' is a continuous linear mapping of F' 	into itself and is a 

homeomorphism in case Re u 0 i/p. 

D is a Continuous linear mapping of F' 	into F' 	and is a M 	 p,p 	p,p+m 

homeomorphism in case Re p 0 -l/q. 

Proof:- 	The results follow almost at once on using Theorem 2.11, Corollary 

2.14 and Corollary 2.15 above in conjunction with [87, Theorems 1.10-1 

and 1.10-21. 

Remark 2.23 

We notice that the restrictions on the parameters in the results for F' 
p,l.i 

are obtained from those for F 	 by interchanging the pairs p and q, u and 

-p; for example "Re p A lip" becomes "Re p A -l/q". 	This is a simple 

consequence of the duality in (2.15) and the trend continues throughout the 

sequel. 

As an example of the use of our results to date, we end this chapter 

with a structure theorem which gives a description of a typical element of 

F' . 	To prove this theorem, we return to the spaces D 	and B (in p,11 	
L1' 

Definition 2.4) whose dual spaces will be denoted by (D )' and (B 

L 
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re spectively. 

Lemma 2.24 

Any element f £ (D )' (1 4 p < c.) is of the form 
L 

n 
f = E D 	 (2.22) 

k=0 

where n is a non-negative integer, f 
k  c L 
	for k = 0,1, ..., 

') is defined by 

lu 
= J fk(x)x)dx 	( c D 

- 	 L 

and D denotes generalised differentiation. 

Any element f E (B)' is of the form (2.22) where f £ L 1 (-oo,c) 

(k = 0,1, ..., a) and 	is defined by 

= j_k ) x)dx 	( £ 

Proof: - 	See [75, p.  201]. 

We can now obtain our structure theorem easily. 

Theorem 2.25 

Let 1 . p < 	and let ij  be any complex number. 

is of the form 

f = k=Ok 

Then any element f c F' 
p,p 

(2.23) 

where a is a non-negative integer, f k £ L 	 (k = 0,1, ..., n), f is 

defined via (2.15) and 6 is defined via (2.19). 

Proof: - 	We shall consider the case 1 4  p < co , the case p = 	being 

similar. 
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We define T' 	(D )' - F' 	by 
P i p L  

(T' 9,4) = (g,T 	q) 	(g c (D )', 	F 	) 
L"  

where T p p is as in Definition 2.5. 	From Theorem 2.6 (i) above and [87, 
, 

Theorem 1.10-21,  T' 	is a homeomorphism of (D )' onto F' 1"P 	 L 
Let f c F' . 	Then 3 g c(D )':T 	g = f, and using Lemma 2.24 (i), 

p,p 	 L 
n k 

f=T' 	( 	D 
P,l.i k=O 

for some non-negative integer n and gk£ L(c,co) (k = 0,1, ..., n). 

Thus, if 

n 
(l)kDkT 	•) 

k=0 	 p,ij 

n 
=T 	(_6(p1/q))k4) 

k=0 

from (2.3) and (2.10). 	Let us write 

Ipk = (_6e(p1/q))k 	
(k = 0,1, ..., n) 
	

(2.24) 

so that 	 by Corollary 2.14 (iii).
Pill 

rVI 

(kTp,k) =  JID gk  (x) T p k M dx 

We consider the single term 

- . J 	(x)e 	 (e'5dx - - 

= f k(b0 t) t k ( t)dt  00  

= f thk(t)k(t)dt 
 co  

where hk(t) = t -1/q gk (log t) (0 < t < ce). 	Now for 1 < q < 

(2.25) 
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r co 

JIct)dt = 
 Jolgk(log f0c. 

g(u) j du  < 

- 

ess sup  = ess sup 
and 	q = 	tc(O,°) ft1kt)I 	xc(',) 	

•. 	Thus, in either 

case, h  . 
	 From (2.24) and (2.25) we obtain 

n 	'-'-.-' 	k 
(f,q) = E (x-  Phk , ( E ak(ô)4)) 

k=O 

n 	n ,------- 
( E akxk(5')) 

i=O k=2 

n 
= 	( 	f•,q,) 

2=0 

n 
where the a 's are constants and f = E a x 	c 	. 	Thus f is of 

k2. 	 k=2. k2. 
	K 

the form (2.23). 

Conversely any expression of the form (2.23) defines an element of 

F , . in view of Example 2.18. 	This completes the proof of Theorem 2.25, 

which we will require occasionally in the sequel, notably in §7.2. 

We now have all the basic results for F 	and F' 	which we shall need. p,IJ 	p,U 

As we have seen, some proofs required us to separate the cases 1 4 p < 

and p = 	although the end results were the same. 	To save repetition we 

make the following convention. 

Convention 2.26 

From now on, unless the contrary is stated explicitly, p will lie in the 

range 1 4 p 	and v will be any complex number. 
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3 Fractional calculus 

§3.1 Introduction 

The development of fractional calculus within the framework of classical 

functions is now well-known and no purpose would be served here by a 

detailed exposition. 	Most of the basic formal analysis can be found in 

[56]while some of the more theoretical issues as well as historical 

information can be found in [74]. 	We merely make a few comments relevant 

to our discussions. 

There are many different starting points for a discussion of classical 

fractional calculus. 	One development begins with a generalisation of 

repeated integration. 	If f is, for instance, locally integrable on (O,), 

we find that (a.e) 

	

t 	 t 

J 	 -i) 

	

dt nj 
I 	

n-i 
at 	

. 	
dt { 2 
	 1 	(x_t)tf(t)dt 	(3.1) 

2 t 

	

dt1 = (n 
f(t 

o 	 : x  

for n = 1,2, ... and 0 < x < co. 	On writing (n-l)! = r(n) we obtain an 

immediate generalisation in the form of the operator I defined for 

Re a > 0 and suitable functions f by 

(if)(x) - 1 	
a-i 

(xt) 	f(t)dt 	(0 < x < cx) 

- r(a) 1  
(3.2) 

If is the Riemann-Liouville fractional integral of order a of the function 

f. 	Similarly, there is the Weyl fractional integral of order a , denoted 

by K, and defined for Re a > 0 and suitable functions f by 

(f)(x) = 1 
r(a) 	

(t_x)alf()d 	(0 < x < ). 	 (3.3) 
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The conditions on f which ensure the existence of If, Kf (Re a,> 0) are 

we ll-known. 	For instance if f is locally integrable over (O,co), then 

I cE
f exists almost everywhere on (O,x.) and is again locally integrable; see 

for instance  [43]. 	We can then define a fractional derivative of order 

ci of a locally integrable function f to be a (locally integrable) solution 

g of the equation 

Jag = f 

if such a solution exists and in that case we write formally g = 

Questions of existence and uniqueness of fractional derivatives defined in 

this way are discussed in, for instance, [ 40], [4 3]. 	Similar comments 

apply to K. 

An entirely different approach begins with fractional derivatives, 

taking as starting point the Cauchy Integral Formula of complex analysis, 

namely 

	

f (n) ( Z ) = E!_ '• 
	f(w) 

dw 

	

(z-w)
2ni J C 	 n+l 

(valid under the usual conditions) and defining a fractional derivative of 

order a by means of the expression 

	

= F(ci+l) 	f 	
dw 

	

2iii 	 a+l fC (z-w) 

interpreted in an appropriate way. 	This approach has been used in a series 

of papers by Osler [60], [61], [62], [63], [64]. 	Yet another method 

defines fractional derivatives by differentiating power series formally "cx 

times" so that 
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a 	 = a 	n 	r(n+l) 	n-a 
E az)= E r(n+l_a)az dZa n=O 	n0 n 

These approaches and others are discussed and compared in the articles by 

Gaer and Rubel, by Lavoie, Tremblay and Osler and by Ross in [74]. 

In the classical framework, the approach to be used depends on the class 

of functions under consideration, since, clearly, functions of a real 

variable locally integrable over (O,) and functions of a complex variable 

analytic in a domain are very different objects. 	In particular the 

question arises as to which is most suitable for the spaces L. 	A clue 

is given by the wórk.of Kober who showed in [32] that, under suitable 

conditions, I and K, as defined by (3.2) and (3.3),are continuous linear 

mappings from L into Lp 	(although his results were stated slightly 

differently). 	Therefore our approach will be to start with integrals and 

a a obtain derivatives later. 	Further, we shall wish to extend I , K, to F 
1 	£ 

P,  11 
 

in the sense described in §1.1, using the imbedding defined by (2.16). 

However, we are not quite ready to begin at once, since I and K can be 

generalised in at least two useful ways. 	Firstly, we may wish to 

integrate with respect to a continuously differentiable, increasing 

function p of a positive real variable producing expressions such as 

r(a) fo 
PX_Pa_lfP?d. 

We shall only be concerned with the case where p(x) = XM (m real, m > 0). 

We therefore introduce the operators 1a Ka defined for Re a > 0 and 

suitable functions f by 

(1,f) (X) 	
m 	m m a-1 rn-i 

r(a) fo (x -t ) 	t 	f(t)dt (0 < x < cz) (3.4) 
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m 	

j"O

ct-I(Kaf)(x) = 
	

(t m
rn 	rn-I 

-x 	 t 	f(t)dt 	(0 < x < x) 	 (3.5) 
x 

The case m = 1, of cours , takes us back to (3.2) and (3.3) again. 

Secondly, the results of Kober in [32) indicate that it is useful to 

consider operators 
	 defined for Re a > 0, suitable complex numbers 

n and suitable functions f by 

(I"f)(x)=x flCLIxflf(x) 	(0 < x < CO) 	 (3.6) 

fl CL 	flCL 
(K'f)(x) = x K1 x 	f(x) 	(0 < x < o) 	 (3.7) 

Combining these to generalisations we arrive at the operators 
Iu, 

 K' 

defined by 

(I fl  "aMx) = x-mil tflct a mn I x fx) 	(0 < x < oo) 	 (3.8) 
m 

= xinn a x 	
-m  

K 	 00). (KflCLf)(x) 	-mna f(x) 	(0 < x < 	 (3.9)  
M 

Using (3.4), (3.5) and putting t = xu produces the expressions 

1 
) = ____ 	- 	u 	f(xu)du 	 (3.10) (1flCLf) x ( 	m 	(1 U) 	

mn+m-1 
F(a) J0  

CO  

in 	(Um_l)CLlU mlf(XU)dU 	 (3.11) (KCLf)(x) 	
r(c) ji 

which show that the operators iCL , Khl are,iri a certain sense, "homogeneous". 
in 

They are usually referred to as the Erdélyi-Kober operators after the two 

mathematicians who pioneered their systematic use. 

Two things should perhaps be said about these extensions. 	Firstly, 

although the results for a general value of in > 0 can be deduced from those 

for in = 1, it is no harder to deal with the general value from the start and 

the case m = 2 turns out to be very important in connection with Hankel 
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transforms; see Chapter 6. 	Secondly, the use of complex values of r and 

a is no more complicated than using real values and has the important 

advantage that powerful results on analytic continuation can then be applied. 

Although, as indicated in §1.1, some progress can be made using the idea 

of convolution for distributions, it is more convenient in view of Kober's 

results to start with the homogeneous operators given by (3.10) and (3.11) 

and then to derive results for the "inhomogeneous" operators 1a, Ka from 

them. 	The extension process is quite long but our aim is to define the 

operators for as large a set of values of ri and a as possible. 	We start 

with integrals and end up with more complicated integro-differential 

operators. 	We will split the process up into stages, the first of which 

we are ready to tackle now. 

§3.2 Fractional Calculus in F 	Stage I 

Initially in this section we assume that Re a > 0 and consider the operators 

1,a 
' Kfl,a as given by (3.10) and (3.11). 	These operators have been 

M.  

studied relative to the L spaces by a number of authors, for instance, 
11 

Erdélyi [16], Flett [23],  Okikiolu  [52],  [53] and Rooney [72], [73 ]. 

However, all we require at this stage is a result of Kober [32]. 	We shall 

deal in detail with 
1r,a  and merely state the corresponding facts for KllC. 

Also we recall that Convention 2.26 is operational. 

1 

If Rea >0, Re r > - 1/q, then 
1,a  is a continuous linear mapping of 

iY (= L) into L/r_i/p'  under the following additional alternative 

hypotheses: 

1 	 p=r 

1 < p < r < , 	1/p - hr < Re a < lip 
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(Iii) 	1 	p 	r ' 	Re ci > 1/p. 

Proof:- 	Given in [32, Theorem 2 1. 
S 

In the case of the spaces L, the results obtained in (i), (ii), 
p 

are independent. 	But in the case of the F p,u  spaces, the situation is 

very different. 	We might expect that under the same conditions, 

would map F p,O 	r,1/r-1/p into F 	 and this is indeed the case. 	However, 

Theorem 2.9 (i) shows that when 1 4 p < r 	, F 	c F 	with p,0 - r,l/r-1/p 

strict inclusion if p < r. 	Thus, as regards the range of I 
n,a

on F 0  

we see that the spaces Fr,i/r_l/p  (p < r) are ruled out, leaving only one 

candidate F 
p, 0 	 p, 0  

itself. 	We shall see that F 	is indeed the range, a 

consequence of our more general theorem below. 	We will use the conditions 

in. (1) above; our results will then incorporate those which can be 

obtained using (ii) and (iii). 

Because of the homogeneity of (3.10),it seems reasonable to expect 

that 	will map L into L under suitable conditions and this is so. 

	

m 	 Ii 	p 

If Re ci > 0, then I 
Ti,a

is  a continuous linear mapping of L into itself 

provided that Re(mn+p) + m > 1/p. 	- 

Proof:- 	We merely remark that the result is established by Rooney in 

[72] using slightly different notation. 	Alternatively, we may deduce the 

result from Lemma 3.1 (i) by using some simple changes of variable. 

It is fairly clear that 	does not map L onto L. 	For instance, if 

I''f = g (f L1' ), then x'Ixf g (a.e.) and this would require, for 

instance, that x 4 g(x) be differentiable almost everywhere on (0,). -In 

general, a characterisation of the range ofI' on L, other than some 

41 



statement using fractional derivatives, is not obvious. 	This makes 

a candidate for the treatment outlined in 51.1. 	It would be possible to 

develop the properties of all our operators relative to the L spaces 
11 

obtaining, for instance, the so-called index laws; again we should mention 

Rooney's papers [721, [73]. 	Howevei, we will only discuss these 

properties in F 	and F' 
p,p 	p,u 

With the aid of Lemma 3.2, we can obtain our first results for I' in 

F 
p,1 

If Re c > 0, then 1,n is a continuous linear mapping of F 	into itself 
m 	 PPP 

provided that Re(mn+u) + m > 1/p. 

Proof: 	First we assume that 1 4 p < 
	and that u = 0. 	We may use 

(3.10) and differentiate under the integral sign to obtain, for 	c F 0 , 

(6Ia4)(X) - m 	
m a-1 mn+m-1 

- j5 J (1t ) 	t 	(6)(xt)dt. 

0 

Since 6 	F 0  by corollary 2.14 (i), there exists a constant C such that 

() (xt) 	C (xt ) 11' ) 	(0 < x, t < 

in view of Theorem 2.2. 	It follows easily that the integral above is 

uniformly convergent when x lies in a compact subset of (0,x) so that the 

differentiation under the integral sign is justified. 	Indeed,, we may 

repeat the process to deduce that, for k = 0,1,2, . 

1 f (6kincx)() = m 
F(a) 	

(l_tm)a1tmn+ml(6)(xt)dt 

or 
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= 1,ct6k4 	
( c F 	). 

M 	 m 	 p,O 
(3.12) 

Since x k k 
	k 

d /dx 	is a polynomial of degree k in 6, we can deduce from (3.12) 

that, for k = 0,1,2, ..., and 	£ F P, 
1j ,  

x d /dX (I 
k k k 	,a 	= 

m 	m 
(3.13) 

xd'/dx £ L =>xkdk,dxk(I) c L (k = 0,1,2, ...) by Lemma 3.2. 	Hence 

DE 
c F. 	Also by (3.13) and Lemma 3.2 

m 	p,O 

P0 (1na )  

for some constant C 1 . 	Thus 	maps F 0 continuously into F m 	p. 

Next we consider the case p = , p = 0. 	The proof proceeds as above 

but in addition we must show that, if 	£ F. $ 01 

x k k 	k d /dx (Iacl)(x) - 0 as x - 0 + and as x - 	(k = 0,1,2, ...). 

It is sufficient to deal with k = 0 as the general result will then follow 

via (3.13). 	Now for 4 c F 	and Re a > 0,
110 

in 	jl(l—tm) altmn+ml4(xt)dtI II'(x)I = tr(ct)  

M 

sup I(u)ITpa) 	
I(l_m)Re a—lm Re n+mld 

0<u<x 	 Jo 

The integral is finite under the given conditions and since $(v) - 0 as 

v -). 0 + we deduce that Ina,(X) -+ 0 as x + 0 +. 	On the other hand, let 

{x} l  be any sequence of positive numbers tending to and let 

f (t) = (ltm)a tmfl +ml4 (x t) 	(0 < t < 1). 
n 

Since 	c F ,0 , f(t) -* 0 as n - 	for each fixed t so that f converges 
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pointwise to zero on (0,1). 	Also 

	

If (t)J 	(lm)Re alm Re +m-1 co,0 

n 	 0 	(it) 

and the right-hand side is integrable over (0,1). 	Hence, by the Lebesgue 

Dominated Convergence Theorem, j f(t)dt - 0 as n - 	so that I'p(x) - 0 
co 0 	 m 

as n - 	. 	Since fx) 1  was an arbitrary sequence tending to , we 

conclude that Iacj(x) - 0 as x - 	. 	In view of our previous remarks, 

this completes the proof for p = , p = 0. 

We have now established the result for 1 ' p < w, il, = 0. 	The case of a 

general value of p follows from the previous cases on writing 

	

= 	lJ 1 fl+I.i/m,a 	P 	
F E x 	x 	( 	) M 

and using Theorem 2.11. 	This finally completes the proof of Lemma 3.3. 

We shall want to remove the restriction Re a > 0 very soon and, for this, 

we need a result on analyticity of 1n,a with respect to a. 	It is 

convenient to recall the definition of the Fréchet derivative of an operator. 

Definition 3.4 

Let V1 , V2  be Hausdorff topological vector spaces and supDose that- fr 

each a in some domain D %of the complex plane, T  is a continuous linear 

mapping from V 1  into V 2 . 	The Fréchet derivative 3T/a of Ta  is the 

mapping from V 1  into V2  defined by 

(T/a)q = urn h 1 [Tcz 	-T ] 	( c V1 ) +h a h-0 

where the limit is taken with respect to the topology on V 2  as the 

(complex) increment h - 0 in any manner. 

Occasionally we will require some simple facts about Fréchet derivatives 

in topological vector spaces, all of which can be found in the article by 
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Nashed in [70]. 	Here we simply state the following result. 

Lemma 3.5 

For fixed m ' 0 and n such that Re(mn+u) + m > lip, I ri ,
as a M 

mapping from F 	into itself has a Fréchet derivative for all a in 

the half-plane Re a > 0. 

Under the same conditions and for fixed • C F 	and fixed x C 

I 
TI, 
 q(x) is an analytic function of a in the half-plane Re a > 0. 

Proof: - 	We shall omit this proof, details of which can be found in [46]. 

. 

As regards Fréchet derivatives in general, there will be a few occasions in 

the sequel when we will require this strong form of analyticity but in most 

cases, the weaker "pointwise" version, typified by (ii) above,will suffice. 

We are now ready to relax the restriction Re a > 0. 	Obviously we will 

have to leave the straightforward integral version (3.10) behind. 	The 

appropriate generalisation is suggested by the following simple result. 

. 

Let Re a > 0, Re(mri+i.i)+ in > l/p, 4 C F 	. 	Then 
p,u 

	

= (n+a+l)I'0 + mlIn,'o 	 (3.14) in 	 in 	 in 

Proof:- 	Integrating by parts we obtain 

,1 
- 	in 	(l_m)a infl+ifll 

	

t 	xt4 (xt)dt - r(a+1) 

1 urn 	 ___ 
LF(a+l) (l_

tm) tm m(xt)]l_ F(a+1) J0 
	

[a_tm)atmn+m](xt)dt. 
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The integrated terms vanish at 0 (using Theorem 2.2) and at 1 (since 

Re a > 0) and after differentiation (and a little algebra) the integral 

becomes 

M 1,a4 - m(+a+1) 
M 	 m 

from which the result follows. 

The right-hand side of (3.14) is meaningful provided only that Re a > -1 

(and Re (mri+Ii) + In > l/p). 	We can therefore use (3.14) to extend the 

definition of Ito all values of a in the half-plane Re a > -1 and, by 

repeated application,to all complex values of a. 	We can immediately state 

the following facts. 

• Q 

Let Re (mfl+11) + in > i/p. 	Then 

(i) 	1n,a defined by (3.10) for Re a > 0 and extended via (3.14), is a 

continuous linear mapping of F 	 into itself. 

1,a has a Fréchet derivative with respect to a for all complex a. 

In particular, for each fixed 	c 	and each fixed x c (0,c), 

M 
q(x) is an entire function of a. 	Similarly I 	has a Frechet 

derivative with respect to n in the half-plane Re(mn+i.i) + in > 1/p. 

I'' °  is the identity operator on F 
M 	 PdJ 

Proof:- 	(i) and (ii) follow easily on using (3.14) in conjunction with 

Lemmas 3.3 and 3.5. 

As regards (iii) if 	C F p  9(3.14) gives ,J 

I' °  (x) = I 
1 
 {(mn+m)tmfl+m -1  (xt)+t 

mn+m-1 
 xt (xt)}dt 

J o  

= [mfl+mX)] = 4(x) 
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the integrated terms vanishing at 0 in view of Theorem 2.2. 	The result 

follows. 

Lemma 3.8 (i) is a modest start while Lemma 3.8 (iii) is of importance 

for the next stage in the operation, as is the following result. 

Lemma 3.9 

Let Re(mn+ii) + m > lip, Re(mri+mct+u) + m > i/r' and let S be any complex 

number. 	Then, for . c F 
p,J 

= 1n,cx+B4 	
(3.15) In 	In 	In

Proof:- 	First we assume also that Re.a >. 0, Re B > 0. 	In this case 

(3.15) can be deduced from [32, Theorem 41 by simple changes of variable. 

Alternatively we may note that, in view of Corollary 2.7 and Lemma 3.8 (i), 

it is sufficient to establish (3.15) for 	C C0 (0,a). 	In this case we 

may easily justify inverting the order of integration on the left-hand side 

and, on evaluating the inner integral in terms of r-functions, the result 

follows. 

Next we see that if we evaluate both sides of (3.15) at a fixed point 

x c (0,cx), we obtain two entire functions of B, because of Lemma 3.8 (ii). 

Thus the restriction Re B > 0 may be removed by the principle of analytic 

continuation. 

Finally we would like to remove the restriction Re a > 0 (while still 

retaining Re(mn+xncz+u) + m > lip). 	This is slightly more complicated in 

that a appears twice on the left-hand side. However Lemma 3.8 (ii) and 

some routine calculations (using either Fréchet derivatives or the weaker 

"pointwise" version of analyticity) show that the condition Re ci > 0 may 

be removed by analytic continuation. This completes the proof. 
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Remark 3.10 

We have described the analytic continuation process at some length above. 

In future, however, we shall usually just mention that analytic continuation 

applies and omit details. 

At last, we are in a position to give a reasonably complete description 

of our operators I 
n,a as defined so far. 
m 

Theorem 3.11 

(1) 	If Re(mn+p) + m > l/p, then 	is a continuous linear mapping of 

F 	into itself. 
P, V,  

(ii) If also Re(mn+mcl+P) + m > l/p, then I' is a homeomorphism of 

F 	onto itself and 
p,1J 

(I)l = (3.16) 

Proof: - 	In view of Lemma 3.8 (i) only the last statement requ-ires comment. 

From (3.15) and Lemma 3.8 (iii), for 4 c F p,u 

1fl+ct,-c1n,cL = 1n,a-a 4  = 	= 

m 	m 	m 	m 

= 1(n+ct)-a,a1n+cxcLq, = 	= 

from which the result follows at once. 

Perhaps we should give one very simple example at this stage which ties 

in with earlier work. 

Example 3.12 

For simplicity, take m = 1, i = -1, a = 0 and assume that Re U > l/p. 	Then 

by (3.14) and Lemma 3.8 (iii) 
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=1 1,0- (_1+0+1)1 1 11 4) = 110 4) 	
(3.17) 

and since, by (3.12), 6I
1
11 4) 	I l 1l 64), we deduce that 6 is a homeomorphism 

of F 	 onto itself if Re u > 1/p and that 

rx 
6 1 4(x) = 14)(x) = 	t4)(t)dt 	(4) c F 	) p,p 

all of which is in accord with, for example, formula (2.11) and Corollary 

2.14 (ii). 	Alternatively we may use (3.17) to say that i 1 '' 1  is a 

homeomorphism of. F 	 onto itself with
pIIJ 

When taken in conjunction with (3.16) we find that if Re u + 1 > l/p, 

I0, 	- 
1 	- 

Remark 3.13 

This agrees with the intuitive idea that I' 	should have some connection 

with differentiating n times with respect to x m. 	This connection appears 

more clearly below when we discuss the "inhomogeneous" operators I and Ka. 

The next logical step would seem to be to attempt to relax the restrict-

ion Re(m+u) + m > lip which appears regularly above. 	However, our 

method of tackling this requires the properties of 	So, at this stage, 

we turn our attention to Kfla. 	As indicated above, we only mention the 

salient points and omit the details. 

We start with the integral representation (3.11) and find, using results 

in [32] or [72], that K'', as so defined, gives 	a continuous linear 
M. 

mapping of F 	into itself provided that Re(mn -p) > - 1/p and Re a  > 0. 

The restriction Re a > 0 is removed using 
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Kfl , a 4  = (fl+)Kfla4 '-m 1 K 
M 	 in (3.18) 

an analogue of (3.14) valid for q c F 	and Re (mr-u) > - lip; in 

particular, K' °  is the identity operator on F 	The extended operators 

satisfy the relation 

Kfl,aKfl, B= K 	 ( c F 	) 	 (3.19) M 	in 	 in 

provided that Re (mn-u) > - 1/p and Re (mri+ma-p) > - i/p. 	From these facts 

we can obtain the following information. 

Theorem 3.14 

(i) 	If Re (mn-u)> - lip, then K),a is a Continuous linear mapping of 

F 	into itself. 	If also Re (m+mcz-p) > - lip, then K' is a p,u 	 in 

homeotnorphism of F 
p,u 

 onto  F
p,u 

 and 

= Kr , a 
M 	 m 	 (3.20) 

If Re (nn-ii) > - 1/p and a is complex, then K' has Fréchet 

derivatives with respect to n (for fixed c) and cz (for fixed n). 

Proof: - 	Omitted. 

Remark 3.15 

We shall see below that I n,a and m 

such as (3.18), (3.19) and (3.20 

corresponding results for 

for K T1 ' are obtained from those 
M 

u by -p and p by q; we are thus 

Remark 2.23. 

-1 , cz K +1-m 	
are formal adjoints. 	Results in 

are essentially adjoint versions of the 

Also the restrictions on the parameters 

n,cz 	 -1 for 'in 
	

by replacing n by n - 1 + m 

continuing the trend referred to in 
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We could state further properties of 111,a 

in
, Kfla 

in 	
at this stage but in 

§3.4 we shall discuss these under conditions of greater generality. 	Here, 

we merely quote one which we will require shortly. 

Lena 3.16 

Let Re (mn+) + m > lip, Re (m+u) + in > 1/p and let a,B be any complex 

numbers. 	Then for 	F 

= 161flcz4) 	
(3.21) in 	in 	in 	in 

Proof :- 	When Re a > 0, Re B > 0, the left-hand side, evaluated at 

X c (0,a), is 

m 	I 1 	in ct-I m+m-1 	 (1 U)Bl m+m-1 r() JJ-t ) 	t 	dt F( 	fo - 	u 	xtu)du. 

Using Theorem 2.2 and Fubini's theorem, we may interchange the order of 

integration and the result follows at once in this case. 	The restrictions 

Re a > 0 and Re B > 0 can then be removed using analytic continuation. 

We shall have much more to say about the composition of Erdélyi-Kober 

operators in 53.4. 	However,, it is convenient now to return to the 

operators 
1a  and Ka. 

in 	in 

From (3.8) and (3.9), we see that for Re a > 0 and suitable functions •, 

Iaó(x) - MC( O,cz 
M 	

x I 	xx); 	K(x) = K0,cz xma (3.22) 

However, under appropriate conditions, the right-hand sides are meaningful 

for any complex number a and 4, C F 	using the extended definitions of 

0, (A 

	

	 O,ct 	
Thus, using Theorems 3.11 and 3.14 we can define a andK me . on M 	 m 	 in 

F 	for any a if Re ji + in > i/p while Ka requires Re (i+mcj) < l/p. 
p,1.J 	 in 

51 



Remark 3.17 

It is worth mentioning a minor technicality at this stage. 	(3.8) and 

(3.9) hold for Re a > 0; indeed that is how we defined 	K' to start 

with. 	However, if we extend 1i,a, Kfla via (3.14) and (3.18) and extend 

I:, K°  via (3.22), then (3.8) and (3.9) still hold even if Re a 	0. 	To 

see this we note that if Re (mn+u) + m > 1/p, 	c Fi then for any 

complex ), 

= A 1 +A/m,a -X 
m 	m 	 (3.23) 

using (3.8) for Re a > 0 and analytic continuation otherwise, Vhich is 

	

valid in view of Lemma 3.8 (ii). 	Thus if 	C F 
p,JJ

, Re (mfl+) + m > 1/p 

and a is arbitrary, then 

Inaq(X) = -mri 1O,a m q(x) 

a 

	

mfl-mauk:1iO, x 	W.  
M 

a - 	
'm 	•(x) 

as required. 	(3.9) is handled using 

Ol a o  = XKfl /aX X  

valid for 	c F 	Re (mfl-p) > - lip and any complex numbers a and A. 

We shall prove the standard results for 1a and merely state the 

analogues for K CL 
 M 

 

Theorem 3.18 

(i) 	If a is any complex number and Re p + tn > l/p, then 1a is a 

Continuous linear mapping of F 	into F 
p,1.j 	p,p+ma 

(3.2.) 
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GO If also Re (u+mct) + m > lip, then I' is a homeomorphism of F 	onto m 

F 	with (I()l = I _CL 

p,u+mct 	m 	m 

Proof:- 	(i) follows easily from (3.22), Theorem 3.11 and Theorem 2.11. 

The same results show that I is invertible under the hypotheses in (ii) 
M 

and that, for 4i  c F+m 	(I) 	= I'x 	. 	But from (3.22) and p 	cL   M 	 m 
-ma 0,-u.. 

(3.23), (1, ) -h i = x 	I 	= I 	and the proof is complete. 
M 	 m 	m 

Example 3.19 

Before proceeding, we examine the operators 1 (Re a < 0) in more detail, 

extending the ideas of Example 3.12. 

(1) 	If Re w + m > lip, i0 is the identity operator on F 	in view of 

(3.22) and Lemma 3.8 (iii). 

Next we can prove that, for any complex a, 	C F 	and Re u + m>1/p, 

I 	= 

where D is given by (2.14). 	To see this, we use (3.22) (3.14) and 

(3.12) in that order and obtain 

ama 

	

= 	
1O,a = 
	 )x (a+]. 

ma 
 I 	p+m- m 
O,a+1 	

-1 x 61I 
ma o,a+l 

M 	 m 	 m 	 m 

On the other hand, noting that D = m' 	
1. m 

x''D. 	-1 =m x 5, we have 

D W +  4 	D (x 
m(ct+l) 

 I 
 Oa+1) 

) =  

	

M m 	m 	m 

ma O,a+1 	m(a+l) -1 -in 0, a+1 

	

= (a+l)x ]q+x 	m x 'SI 

from which the result follows at once. 

(iii) Still assuming Re p + in > lip, it follows easily from (1) and (ii) 

that on F 	, 	= D and hence, by induction, that p,p 	in 	m 
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I=DonF 	(n=O,l,2,...). 
M 	m 	PVIJ 

(iv) 	(iii) is in agreement with Theorem 3.18 (ii) which states roughly 

that the operator 
1a 

 should correspond to differentiating a times 

with respect to xm  if Re a 	0. 	(ii) and (iii) enable us to obtain 

An explicit expression for 
1a 
 if required; namely if 	c 

Re p + m > 1/p and n is a non-negative integer such that 

Re a + n > 0, then 

rx 
x -u ) 	u 	•(u)du. I"4(x) = 
	m 	(D 

 )n J 	m m a+n-1 m-1 
r(a+n) 	m 

Remark 3.20 

The results in Example 3.19 are not surprising. 	Indeed, as mentioned 

earlier, we could have used these properties to develop the theory of 

1a first and then used this theory to study 	However, the point is 

that, although some familiar results, such as those in Example 3.19, appear 

somewhat later than might otherwise be the case, they emerge simply and 

naturally from the analytic continuation process. 	Of course this method 

relies heavily on the differentiability of the functions in F. 

Consequently the approach in the case of, for instance, locally integrable 

functions is much more complicated. 	Indeed, defining such an operator as 

I with Re a = 0 for such functions is a full-scale operation; see for 

instance [22] , [30], [31], [33] , [42] . 	Further, the restrictions on the 

parameters required also emerge clearly in our development whereas a glance 

at [40], [41] or [43] shows how complicated things can be in studying 1a 

first. 

Similar comments to the above apply to our treatment of the next results 

which are the so-called index laws for the operators I. 	These have been 
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discussed in great detail for certain classes of classical functions by 

Love [43] and for certain classes of generalised functions by Erdélyi [14]. 

In the spaces F 	 we obtain the following. 

Theorem 3.21 

Let 	c F 	 and let ct, 8 be any complex numbers. 

(First Index Law) 	If 1/p - m - Re w < min(O,m Re a,m Re B), then 

= 	= ii:. 	 (3.25) 

(Second Index Law). 	If a + B + y = 0 and 1/p-m-Rezcmin(0,m Re y), 

then 

ma 8 M 	-y -MB —cx 
x Ix p=I x 	I q5. m 	m 	in (3.26) 

Proof: - 	(i) 	Using (3.22), (3.23) and (3.15) in that order, we obtain 

ma O,a m8 0,8 	ma+mB B,cx 0,8 q=x I 	xl 	x 	I 	I mm 	m 	in 	 in 	in 

x 
ma 	

I 
+mB 0,cz+8 4,  = 

= 
in 	 in LI 

This is valid if i/p - in - Re p < mm (0,m Re 8). 	The second equality 

holds similarly if 1/p - in - Re p < min(0,m Re cx). 

(ii) 	Starting with the right-hand side, we obtain 

= 

=x m+m$O,a x +8 -mB I x  -cx mm+mB x -urzmB 	
by (3.22) 

in 	 in 

= mcx+m810,cx+81a+8,-a-ma--m5 	
by Remark 3.17 

in 	in 

= xmOC +m 	 by (3.21) 
in 	in 
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= fhQ +m iO,8 -ma-m8 X 	4) 	 by (3.15) m 

ma 8 my 
= x I x 4) 	 by (3.22) M 

each step being justified under the stated conditions. 

Remark 3.22 

(1) 	In the second law, there is, of course, no need to introduce y. 

However the use of y makes the statement slightly more elegant. 

(ii) An interesting point arises in connection with the conditions under 

which the first index law holds. 

are meaningful when 

The three expressions occurring 

f min(O,m Re 8)  for the first 

1/p - m - Re p < 	0 for the second 

L min(0,m Re a) for the third. 

This suggests the possibility that the first and third expressions 

can be extended to a wider range of validity. 	This is tied up with 

what we might call "removable singularities", a topic we will return 

to later in §3.4. 

We now have all the basic facts about 1 and can state the corresponding 

results for Ka,  defined for Re a > 0 by (3.5) and extended via (3.22). 

Theorem 3.23 

(i) 	If Re (p+ma) < lip, then K is a Continuous linear mapping of F 

into 	. 
P ,p+rna 

If also Re p < 1/p then Ka  is a honieomorphism of F 	onto F 
p,1J 	p,ii+ma 

with 
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(K) 1  = Kn. 

If Re w < lip, then K 
0  m is the identity operator on F 

PPW 

If n is a non-negative integer and Re u - mn, < lip, then 

= (-D 
)fl 

on F 
m 	m 	p,u 

Proof:- 	Omitted. 

Theorem 3.24 

Let 	c F 	and let 1,6 be any complex numbers. 

(j) 	(First Index Law) 	If 1/p - Re p > max(m Re a,m Re 6,m Re(cz+3)), 

then 

= K 	KK'4. 	 (3.27) 

(ii) (Second Index Law) 	If Re p - lip < min(O,m Re 'y), then 

ma 	 (3.28) x KX . = K x 
m 	m 

Proof:- 	Omitted. 

This completes the first stage of our theory during which the integral 

operators have been extended to integrodifferential operators by means of 

analytic continuation. We are now ready to start the second stage during 

which the operators will again change their natures. 

3.3 Fractional Calculus in F p,u : Stage II 

In describing the second stage of our operation, we will again concentrate 

on I' and only mention the salient points as regards the other operators. 

r 	- 
We have defined I' on F 	for all complex numbers a and values of Ti 

m 	p,u 

such that Re (m+) + m > I/p. 	Treating p and p as fixed, we now 
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investigate how to relax this restriction on ri. 	We can get no further 

using formulae such as (3.14) as they stand and some recasting is necessary. 

Our approach starts with (3.15) which shows that 

= 

for 	c 
FpIII 

 provided that Re (mri+ii) + m > lip. 	Next,from (3.8) 

1nl (  = -in-m 
I 
 1 mn 

x 	x q). 
M 	 rn 

Also, from Example 3.19 (ii), DmIXm = I xm 	= xm under the given 

conditions and similarly we can show that, for 1P £ F , ID p = p,mn+p+m m m 

It follow that, as a mapping from F 	into F , i l  is a .i p,mn++m m 

homeomorphism and I = (D) 1 . 	Finally, therefore, we may write 

= 1n+l,a1 -mn-m 	-1 
(D ) x Mn  

M 	 m 	 m (3.29) 

for any complex a, 	Es 	and Re (mn+p) + m > 1/p. 	The point of this 

manoeuvre is that the right-hand side is meaningful under more general 

conditions; namely 

Re (mn+m+u) + m > lip, 	Re (mn+i) + m A 1/p 
	

(3.30) 

by virtue of Theorem 3.11 and Corollary 2.15. 	We may therefore use (3.29) 

to define an operator, again denoted by I1,a,on Fpu subject only to (3.30). 

In view of the previous discussion, the new operator agrees with the old 

on spaces F 	with Re (mn+p) + m > lip. 	However, if
P, 111 

lip - m < Re (mn+p) + m < l/p, (DM 	to be replaced by -K' by Theorem 

3.23 and we obtain 

= - Inl,alKnl,l 	( C F 	) M 	 m 	m 	 p,3.J 
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in this case. 

Remark 3.25 

Before continuing this process, we are naturally led to ask what happens 

when Re (mn+p) + m = 1/p. 	From Corollary 2.15 (ii), we know that the 

range D (F 	) of D on F 	is a proper subset of F m p,mn+i+m 	m 	p,mn+p+m 	 p,mfl+p 

Certainly (3.29) is meaningful if 	is such that 	c Dm (Fpmn+i+m) but 

we are unable to define, by this method, an analogue of I 
n,a

as a continuous 

linear operator from all of F P, 
1i 	 p Ii 

into F 	if Re (mn+p+m) = i/p. 	As in 
, 

Remark 2.16, we will eliminate this exceptional case from our enquiries. 

Returning to our main theme, we have defined I' on F 	subject to 

(3.30). 	However the right-hand side of (3.30) involves 	 on F 

which now has a meaning provided only that 

Re (m(n+1) + m + ii) + m > 1/p , Re (m(n+1) + p + m) 	i/p 

or 	Re (mn + p + m) > I/p - 2m, 	Re (mn + u + m) 	i/p - M. 	(3.31) 

We can therefore use (3.29) to define 
1a 

 on F 	subject only to (3.31) 

and the condition Re (mn+11+m) 0 i/P. 	For 	c F 	 we obtain 

= 1n+2,c-2 x -m(n+i)--m(D )_ 1 x 
 m(n+1) 

 x 
 -mn-m 

 (D)_  I 
  
x 
 mfl 

m 	m 	 m 	 m 

or 	 = Ifl +2 •:x_ 2 x •_m(fl+2)(D)_2xmflc.  

The process can be repeated indefinitely and we can therefore define 1n,a on 

except in certain exceptional cases where Dm  fails to be invertible at 

some stage. 

Definition 3.26 

If m, p and p are fixed, we define the set AP, p,m of complex numbers by 
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A 
p,u,m 

 ={n: Re(mr+ii+m) # 1/p - m9, 	2. = 0,1,2, . . .} 

For fixed p,u and m, A 
p , p,m 

consists of all complex numbers n except 

those lying on a family of equally spaced lines parallel to the imaginary 

axis. 	If n lies on one of these lines, say Re (mn++m) = 1/p - mk, then 

our process will fail at the (k+l)th  stage. 	Remark 3.25 dealt with the 

case k = 0 and in the spirit of our comments there, we shall only consider 

on F 	if n £ A 	. 	We can now give the formal definition. 
M 	 P, 11 	 p,p,m 

Definition 3.27 

For n c A 	and any complex number a, we define 	on F 	by 
p,p,m 	 • 	 m 	P 111  

	

I'1'(x) = 1n+k,cz-k x 	(D 
-m(n+k) 	) 

x  
k mn 

E F 	) 	 (3.32) 4 	 p, m 	 m 	 m 	 u  

where k is any non-negative integer such that Re (mn+) + m > I/p - mk 

and 
1k,1( 

 is defined via (3.10) and (3.14). 

Notes 

Since Re (m(ni+k) + 	+ m > 	1n+k,cz-k can, indeed, be defined via 

(3.10) and (3.14) by virtue of Lemma 3.8 (i). 

The definition is independent of the choice of the non-negative integer 

k satisfying Re (mn+i) + m > lip - mk. 	To see this, suppose also that 

Re (mrl+p) + m > 1/p - mk and that, without loss of generality, 2. > k. 

Then for 	F 
p,p 

1 +k,a-k-m(+k) 	-k m 
m 	 (D) x q 

= Ifl +ia-2.Ifl +kZ-k -.in(fl +k)(D )_kXmfl 	 by (3.15) m 	in 	 m 

= 1 +2.,cz2.mi(+2.) i-k 	2.-k 	-2. inn I 	(D ) 	(D ) x 	 by Remark 3.17 
in 	 in 	in 	in 
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X 	 (D ) 	 from Example 3.19 rn 	 m 

and the result follows. 

3.. From Note 2, it follows that I' agrees with the previous definition 

for spaces F 	 with Re (mn+J) + m > i/P since in this case we can take 

k = 0. 

4. 	If n c A 
p,i,m  satisfies Re (mn+.i) + m < 1/p and if k is the unique 

positive integer such that 

i/p - mk < Re (mn+J) + m < lip - m(k-l), 

then Theorem 3.23 shows that (3.32) may be written in the form 

r, cc W= (_i)kI 	zi-k K- n-k,k 	G C F 	) 
p,1J 

(3.33) 

where, since Re (m(-n-k) - ii) > - lip, Knk,k  is defined via (3.11) 

and (3.18)(3.33) is, for many purposes, the easiest form of the 

definition to handle. 

Remark 3.28 

(3.33) shows clearly how the nature of 1,a has now changed. 	Roughly 

speaking, we now have to integrate k times from x to OD and "integrate" 

(c-k) times from 0 to x instead of "integrating" cz times over (0,x). 	Such 

operators have been considered before, for instance, by Erdélyi Is] in his 

work on cut Hankel transforms. 	To relate our work to his, we have to put 

= 0 and in .= 1 and then we see that the exceptional strips in [ 8], namely 

Re n = - l/q - Z emerge quite naturally as the complement of A 0 
p, 

(3.33) would seem to indicate that, under the conditions stated, our I 

operator begins to look more and more like a K operator. 	Indeed, we have 
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the following curious particular case. 

Example 3.29 

If i/p - mk < Re (mn+ij) + m < i/p - m(k -l), then for 0 E 

1n,k = (i)kKnkk4 . 	 (3.34) 

On the left 
1n,k  is defined via (3.32) and on the right K_ 

n-k,k 
 is defined 

by (3.11). 	This is, of course, a special case and in spite of it we will 

continue to use the notation 1m' 
 for the operator defined by (3.32), 

remembering that occasionally it is a K operator ! 	This is not unrelated 

to Remark 2.16. 

As regards the general properties of our extended operator, continuity 

presents no problems as we shall state in a moment. 	However, the validity 

of (3.16) under more general conditions is a little more awkward. 	Although 

is analytic on A 	, as we shall also see in a moment, we cannot use 
in 	 p,u,m 

the principle of analytic continuation since A p , u ,m is not simply connected. 

Hence an alternative approach is needed. It seems that (3.33) is not much 

help because of the fact that the value of k such that 

i/p - mk < Re (mri+u) + m < I/p - m(k-1) 

3 

does not ensure that 

lip - ink < Re (rnn+ma+p) + m < 1/p - tn(k-l). 

We therefore fall back on (3.32) and will use the following result. 

If rl c A 	and k is any non-negative integer, then, for • C F 
u p,,m 	 p,p 
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=x 	(D ) X 
k m(fl+cz+k)flQ+k ()  

M 	 m 	 m 

Proof:- 	First suppose that Re (mri+p) + m > I/p. 	If we put k 	1 in the 

expression on the right and use Example 3.19 (ii),we get 

m(fl41t) (D) 	= 	1n(n+cz) 

which is 	as required. 	A simple induction argument now establishes 

(3.35) in this case. 

Now let Re (mn+p) + m < i/p and let 2 be any integer such that 

Re (mfl-i-jj) + m > i/p - m2. Let 	cF 	and write 
p"J 

4) = x_m() (Dm)xmn . 

Then 	£ F 	and by (3.32) ,
p 1i 

= 	
(3.36) 

By the previous case with n,a and 4 replaced by n+, a-Z and , 

= 

= X m ( fl)(D) Xm(flk)Ifl,ak 

=  
x 	(D) x 
-m(+c) 	k m(n+a+k) 1 n,cz+k 

M 	 m 

	

where in the last line we have used (3.36) with a replaced by a+k. 	This 

completes the proof. 

Now we can state the final version of our results for f" ° on F m 	P 51 11  
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Theorem 3.31 

(i) 	If n C A 	then I 
n,a

is a Continuous linear mapping of F 	into ji p,,m' 	m 	 p,u 

itself. 

If also n + a C A 	,then 1n,a is a horneomorphism of F 	onto p,p,m 	m 

itself and 

(I",)- I = m 	 m 

If p, p and m are fixed, then 1a has Fréchet derivatives with 

respect to r on A p,p,m (for fixed a) and with respect to a (for fixed 

rl C  A 	). p , p ,m 

Proof:- 	(i) The continuity of 1,a follows from (3.33), Theorem 3.11 

and Theorem 3.14. 	As regards invertibility, suppose also that 

Re (mn+ma+IJ) + m > 1/p. 	Then Theorem 3.11 and (3.32) show that (1n51 

exists and that 

(1 1•i cx )  -1 

where Re(mri+p) 

(3.35) with fl,cx 

in this case. 

-m 
=x 	(U 

4- m > i/p 

replaced 

Finally, 

)kxm(fl+k)Ifl+a,_a+k 	C F) 

- mk. 	The latter expression is just 	 by  

by n+a, -ci respectively. 	This completes the proof 

if Re (mfl+mcx+p) + m < l/p, choose 2. such that 

Re (mfl+mci+p) + m > i/p - m2. 	Then, using (3.35) with k replaced by 

together with the previous case, we find that (1 nct ) 
 1 exists and is given 

by 

n,cz —1. = 1n+cx+2.,-cx-i x m(+a 	
(D) 

+2.) 	-2. x m(q+a) 	
( C F 	) 

M 

	 m 	 m 	 p,j 

and the latter expression is just I' 	in view of (3.32). 
M 

(ii) follows easily from (3.33), Theorem 3.11 and Theorem 3.14 and this 

completes the proof. 
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We now deal briefly with the second extension of 	Starting with 

the definition valid for Re (mn-u) > - lip, and obtained from (3.11) and 

(3.18), we can show that 

K 	Q 	x (D) 
= 	mn 	-1 x 	K 

-m(n+l) n+l i al q  
-  

m 	 m 	 m 

which is essentially an adjoint version of (3.29). 	The right-hand side is 

meaningful under the weaker conditions 

Re (mn-u) > - i/p - m, 	Re (mn-u) 0 - i/p. 

Repeating the process step-by-step leads to the following definitions. 

Definition 3.32 

If m, p and U are fixed, we define the set A' 	of complex numbers by 
p 011  

A' 	= {n: Re (mn-u) 0 - 1/p - mi, 	9. = 0,1,2, ...). 
p , u ,m 

We note in passing that 

E A 	if and only if n  + 1 - 1/rn C A' 	 (3.37) 
p,u,m 

a fact which is related to Remark 2.23 as we shall see in 0.5. 

Definition 3.33 

For n c A' 	and any complex number a, we define K 1 	on F 	by m 	p,u 

Kn.(X ) = ( l)kmn(D)k x  -m(n+k)Kn+kak m (3.38) 

where k is a non-negative integer such that Re (inn -u) > - I/p - ink and 

is defined via (3.11) and (3.18). 

Note 

Comments analogous to Notes 1-4 following Definition 3.27 are in order here. 
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In particular 

The definition is independent of the choice of non-negative integer k 

satisfying Re (mfl -1j) > - i/p -.ink. 

The extended definition agrees with the previous definition when 

Re (me-p) > - i/p. 

If Re (m -P) < - lip, and k is the unique positive integer such that 

- i/p - mk < Re (mn-u) < - i/p - m(k-1) 

then we obtain 

Kfla4) = (_1)k1-fl-kk.(fl+kCk4) 	
(4) C F 	). 

The final version of our results for K TI, 
 a on F 	is as follows. 

in 	 P, )j 

Theorem 3.34 

(1) 	If ru C  A' 	then Kfl)a is a continuous linear mapping of F 	into m 	 - 

itself. 	If also n + a C A' 	, then Kfl,a is a homeomorphism of 
p,1J,m 	m 

F 	onto itself and 
p,uJ 

(Kfla)l = 
in 	 in 

If p,p and in are fixed, then 00 has Fréchet derivatives with 

respect to r on A' 	(for fixed a) and with respect to a (for p , ,m 

fixed I)  C A' 	). 
p,u ,m 

Proof: - 	This is similar to that of Theorem 3.31 and is omitted. 

To complete the extension process for I and K, we fall back again on 

(3.22). 



Definition 3.35 

If 0 € A 	, 1a is defined on F 	by 
m 	 p,ii 

CL 	ma 
Ix 	

0,01 
	($cF 	) in 	 m 	 plu 

where I O'a is as in Definition 3.27. 

If a  c A' 	, I is defined on F 	by p,j,m 	In 	 p,u 

10 	KO,a fltz 
= 	x 	(cF 	) m 	 p,p 

O,a . K 	 i where 	is as n Definition 3.33. 
M 

The following results are almost immediate. 

Theorem 3.36 

If 0 c A 	, then I is a continuous linear mapping of F 	into F 
in 	 p,1J 	p,u+nrz 

If also a c A, then I is a homeomorphism of F 	onto F 	and 
in 	 pj 

(10') - 
 

Proof: - 	The first statement follows from Theorems 3.31 (i) and 2.11. 

For the second statement, we note that a C A 	if and only if p , ,m 

0 c A 	and in this case, Theorem 3.31 shows that 1a 
 is invertible 

in 

and that 

a -1 	a,m 1flc 
(I ) 	= I 	F 
m 	in 	 p,p+ma 

Using (3.23), (3.24) and (3.33) we then deduce easily that 

ci -1 	-mci O,-ci 	-a 
(I) 	=x 	Im 	

' 

as required and this completes the proof. 
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Theorem 3.37 

If -a c A' 	, then Ka  is a Continuous linear mapping of F 	into F p,p,m 	rn 	 p,p 	p,u+mcz 
If also 0 E A' 	, then Ka  is a homeomorphism of F 	onto F 	and p,u,m 	m 	 p,u 

(KC) 1 	K a 
. 

rn 	m 

Proof:- 	This is similar to that of Theorem 3.36 and is omitted. 

3.4 Some Consequences 

Now that we have completed the extension process on F 	we can pause and 

look at a few simple consequences. 

Results proved in §3.2 remain true when the operators are interpreted in 

terms of their extensions as in §3.3. 	We give a few simple examples. 

Example 3.38 

(1) 	If Ti c Appm ,then I'' °  is the identity mapping on F. 	Indeed, 

choosing k as in Definition 3.27 we obtain, for 4 C F, 

I''°q = 1n+k,k-nn(n+k) 	-k mn 
M 	 m 	 (D) x 

= -km 
(D ) x 

M 	in 

- x(D )k  (D 
rn) x 

-k inn 
- 

in  

by Remark 3.17 

by Example 3.19 (iii) 

and the result follows. 

Similarly if r c A' 	, K' °  is the identity mapping on F p,i,m 	in 	 p,p 

Example 3.39 -  

(1) 	(3.15) holds if n c A p, ,m and r + a c A 	. 	To see this, we 

choose a non -negative integer k such that Re (mfl+.i) + in > i/p - mk 

and Re (mn -s-mcx+p) + rn > i/p - ink. 	Then, by (3.32) and (3.35), for 

M. 



4€F 

fl+c(, 3n,a 
41 m 	m 

= In +, z +kt 3_kX -tn(n +a +k)(D  )kxm(fli.cz) x -rn(n+1) (D) x 	I 
k m(n+a+k) n,ci+k 

m 	 m 	 m 	 in 

= 1n4-a+k,3-k1n+k,z x 
	(D) 
-m(n+k) 	-k mn 

 x 	4) m 	m. 	 m 

1n+k,a+-k -m(n+k) 	) k mrl 
= 	 x 	(D 	x 4) 	 by Lemma 3.9 In 	 in 

= 1n,cz4) 	
by (3.32). 

Similarly (3.19) holds provided n c A' 	and r + a c A' 
p,u,m 

An interesting point arises at this stage and again we will 

concentrate on (3.15). 	The left-hand side of (3.15) is well-defined 

if n 	A 	and Ti + ci € A p,1J,m , whereas the right-hand side only 

requires ii E A 
p, 	

. 	This seems to indicate that the restriction 

+ a c A 	is, in some sense, removable here. 	In order to p,u,m 

investigate we shall temporarily write 

= 1n+a,1,a4) 	
(c C F 	) p,IJ (3.39) 

Let n  c A 	and let k be a non-negative integer such that 

Re (mn+mt+i) + m > 1/p - ink. 	Then the calculation in (i) shows that 

T"' 	= 1n++k,k1,+k - TTi'''k In 	 m 	in 	 In (3.40) 

Since (+cz+k) C A 
p 	, the last expression defines a continuous ,;-1, 

linear mapping of F 	 into itself. 	Since an appropriate k can 

always be found, we may use (3.40) to extend the definition of T'" 8  

to values of ri, ci with ri C A 	, fl + a A 	. 	As usual, this p,u,m 	 p,U,m 

extension is independent of the non-negative integer k satisfying 
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r + a + k e A 	. 	Furthermore, by Theorem 3.31 (ii), T"' 	is p,p,m 	
m 

analytic in n on A p,ji,m for fixed 	C F 	so that we can regard p,u 

(3.40) as providing an analytic continuation of T n ' a ' 6  to the whole 

of A p,i,m and the singularities corresponding to n + a 	A 	are 

thereby removed. 	In exactly the same way we find that (3.19) is valid 

for ri C A' 	provided that, if n + a 	A' 	, the left-hand side p,u,m 	 p,u,m 

is interpreted in terms of the appropriate analytic continuation. 

Remark 3.40 

The phenomenon of "removable singularities" mentioned above will turn up 

again later, for instance in §6.2 in connection with the Hankel transform. 

Example 3.39 deals with a special case of the composition of two of our 

operators and in Chapter 4, we shall examine in some detail operators 

arising from a more general composition. 	However, it is convenient to 

state here the following theorem on commutativity. 

Theorem 3.41 

Lt 	c F 	let a, B be complex numbers and let m, n be positive real 

numbers. 	Then 

 
M 	fl 

= 
n 	m 

Ifl,ctK, = 
m 	n n 	m 

KTiaK, 	= M 	n fl 	m 

if n C Apijm 	C A 
p,I-1,n 

if ii C A 	& C A' 
pp .n 

if T C A' 	 C A' p,p,m' 	p,i,n 

Proof:- 	
All are similar and, since we have already seen a simple version 

of (i) in Lemma 3.16, we shall consider (ii) for variety. 

First suppose that Re (m+ 3 ,) + m > lip, Re (n- ). ) > - l/p. 	If also 

Re a > 0, Re B > 0, both sides are given by absolutely convergent repeated 

integrals via (3.10) and (3.11) and hence the result follows easily from 
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Fubini's theorem in this case. 	The restrictions Re a ' 0, Re B > 0 can 

then be removed using analytic continuation. 

Next suppose n c A 	with Re (mn+lJ) + m < lip and let k be the unique 

positive integer such that 

i/p - mk 	Re (m"+::) + m < i/p - m(k-l). 

Then, still assuming that Re (nc -u) > - lip, 

= (_l)kIfl 4.k ,U _kK_fl_kIkKc,B. 	
by (3.33) 

The two K operators commute since, if Re B > 0, we have an absolutely 

convergent repeated integral and the case Re 	( 0 follows by analytic 

continuation. 	Thus 

= 	
by the previous case 

= K 	 by (3.33). n m 

The condition Re (nc-u) > - i/p can be relaxed to C E A' 	similarly 
p , u, n 

and this completes the proof. 

Remark 3.42 

We have given more details of the last proof than necessary because its 

anatomy is typical of many which follow. 	Namely, for results for 

(i) 

	

	we deal with the integral version for Re (mn+u) + m > lip, Re a > 0 

then remove Re a > 0 using analytic continuation 

(iii) finally relax Re (mn+u) + m > lip to n c A 
p, p PM

using, for instance, 

(3.32) and the previous cases. 
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Similar comments apply to 	and in future we shall not give such full 

details. 

To complete our present discussions in F, we use the last few results 

to obtain the final versions of the index laws for 1a and Ka. 
M 	m 

Theorem 3.43 

Let 	c F p and let a + S + y = 0. 
p, 

IfOcA
rn ' then  

= 1a+8 = 
mm 	m 

where if a 0 A 
p ,ji,m or a / A 	, the third or first expression 

respectively is to be interpreted in terms of its analytic contin-

uation via (3.40). 

If y c Athen 
p, p ,m' 

x 
ma 
Ix 

 my 	
i Y-m81-a = 

M 	 m 	m 

where if 0 0 A , the right-hand side is to be interpreted in terms 

of its analytic Continuation. 

Proof:- 	
The proof of Theorem 3.21 goes over by virtue of Example 3.39 (1) 

and Theorem 3.41 Ci) and the statements concerning analytic continuation 

emerge from Example 3.39 (ii). 	We omit the details. 

Theorem 3.44 

Let 	C F 	, a + 	+ y = 0, y C  A' 	. 	ThenP'V p,p,m 
M KO Ka  0= 	= KK Ot  

mm 	m 	mm 

where, if -a IA' 	or -$ t A' 	, the third or first expression p,p,m 

respectively is to be interpreted in terms of its analytic contin-

uation. 
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Kx Kx X') 
	mcf 	

x 
-m3 

 K 
 -y 

=  
in 	 in 	m 

where if 0 1 A' 	, the expression on the right is interpreted in p , . ,m. 

terms of its analytic continuation. 

Proof: - 	This is omitted. 

§3.5 Definition of the Operators in F' 
p"J 

At last, we are ready to extend our operators to F 	in the manner 

suggested in Chapter 1. 	Fortunately this is relatively easy after all the 

work of the previous sections and boils down to properties of adjoint 

operators in countably multinormed spaces as in §2.4. 

Again we will consider first I° on F' 	and go right back to the 

	

in 	 p,p 
simplest case where I n,a is defined via the integral (3.10). 	To follow 

the motivation in §l.l,let g E L 	and let Re a > 0. 	Then according to 

Lemma 3.2, Iag exists a.e. on (O,) and is an element of 	provided that 

Re (m - ) + in > l/q. 	In this case g and Iag generate elements of F' 

and, in the previous notation, we require that 

TI 	g= 

	

M. 	 M 	 (3.41) 

where the operator I n,a on the right is the desired extended operator. 	To 

see what this entails,let 4  c F 	. 	Then, from (2.16), 
p,IJ 

co  

(InaTg,) = (if'g,q) = 
fo 
f'g(x)q(x)dx. 

M 

The right-hand side can be written as a repeated integral to which Fubinj's 

theorem can be applied and we find that 

co 
IflQg(x)(x)dx = 

fog(x)K
J

in 

Alternatively we can regard this as "fractional integration by parts"; the 
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case m = 1, 	= 0 is contained in the work of Love and Young [44]and the 

general case follows by simple changes of variable. 	We are therefore led 

to the equation 

(I) aTg, ) = (Tg,Kl'm) 	
(3.42) 

valid for 	c Fpu Re(mn-) + m > l/q, Re a > 0. 	This in turn suggests 

that we should define 1n,a on Ft , under these conditions, by m 	p,p 

(1r1af) =(f,Kfl/mt) 

for all 	C 
F P) 11 	 p 

and for all f c F' 
-I ,I, 

regular or not. 	In view of Theorem 

3.14 1 the right-hand side is well-defined under the given conditions since 

Re[rn(n+l-1/m)-P] > - i/p. 	However, using our extended definition of 

Kfl+ll/m,a on F 	we can remove the restriction Re a > 0 and replace rn 	 p,u' 

Re(m-) + rn > l/q by n + 1 - 1/rn c A' 	, the latter being equivalent to p , ii ,rn 
r e A 

q,-u 	
in view of (3.37). ,rn 

definition. 

Hence we are led to the following 

Definition 3.45 

For n c A 	and any complex number ci, we define 	on F' 	by
71  

q,-p,m 	 m 

(1flcifq) = (f,Kn+.1/m) 	
(3.43) 

where f c F'
m  

	

, 	F 	and 
PSI, 	p, ij is defined via (3.38). 

Remark 3.46 

In arriving at our definition we ensured that (3.41) held for appropriate 

classical functions when Re (mfl -w) + m > 1/q, Re a > 0. 	In fact, (3.41) 

will still hold for functions g C L 	 such that IIcig 	even if these -p 	 m 	-p 

conditions do not necessarily hold. In this case the operator 	has to m 
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be interpreted in an appropriate extended sense incorporating, for instance, 

any differentiability properties of f and these extensions follow the same 

trend as those in the previous sections; see, for instance,[8]. Further-

more, our results are in accord with the theory of the extendability of the 

operators as discussed by Rooney in [73]. 

The properties of 	on F' 	are easily obtained from those of 

	

M 	pip 

using the theory of adjoints mentioned above. m 

Theorem 3.47 

Ci) 	If r C A 	then 
1n1,a 

 is a continuous linear mapping of F' 	into q,-u,m'  

itself. 

	

If also n + cz C A, then 1,a is a homeomorphistn of F' 	onto q,-p,m 	m 	 P,P 
itself and 

(1 h1n ) 1 = 

(ii) For fixed f C F' 	and fixed 0 c F 	, (1laf,4,) is an analytic 

	

p 3, 11 	 p,.i 	m 

function of r on A 
q 	(for fixed a ) and an entire function of a ,-u ,rn 

(for fixed n C A 	). 

Proof: - 	(i) follows on using Theorem 3.34 (i) (with n replaced by 

	

n + 1 - 1/rn) in conjunction with Theorems 1.10-1 and 1.10-2 in [87]. 	(ii) 

follows from Theorem 3.34 (ii) along with the continuity of f. 

Remark 3.48 

Note once again that the conditions in Theorem 3.47 are derived from those 

in Theorem 3.31 by interchanging p and q, p and -p(see Remark 2.23). 

Similar motivation leads to the following definition. 
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Definition 3.49 

For r c A' 	and any complex number a, we define K' on Ft 	by m 	p,p 

(KTaf ,q ) = (f1nl+1/mct) 	
(3.44) 

where f c F' , 	c F 	and is defined via (3.32). p,iJ 	 p,p 	m 

Theorem 3.50 

W If r c A' 	, then KT1,a is a Continuous linear mapping of F' 	into q,-p,m 	m 	
PJ 

itself. 

If also r + a E A' 	, then Kn,a is a homeomorphism of Ft 	onto q,- ij,m 	m 

itself and 

(Kn"51 = 
M 	 m 

For fixed f c F' 	and fixed 	c F 	, (KflPaf,) is an analytic p,p 	m 

function of r on A' 	(for each fixed a) and an entire function q,-.i ,m 

of a (for fixed n c A' 	). 
q, -u ,m 

Proof:- 	By (3.37) ri C  A' 	iffn - 1 + l/m.E A 	. 	With this • 	 p,u,m 
comment the proof is analogous to that of Theorem 3.47. 

Finally we consider 1a Ka on " . 	Again we can go through a preamble M m 	p,p 

similar to the above starting with fractional integration by parts. 	In 

this case we find that, for g C L , 	c F 	and Re a > 0, 
- u 

f 1dx = J 
co 	 00  

0 	 g(x)xm_lKax_m (x)dx 	 - 

provided in the first instance that Re p - m < - lIq. 	This provides the 

motivation for the following definition. 
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Definition 3.51 

If 0 ' A 	and if a is any complex number, we define Ia  on F' 	by rn 

rn-i x ci -m+1 (1f,q) = (f,x 	K  
M 	 (3.45) 

where f c F' 	, 4) c F 	and Ka  is as in Definition 3.35 (ii). p,i-m 	in 

Theorem 3.52 

If 0 C  A 	,then 1a  is a Continuous linear mapping of F' 	into q, -p,m 	in 	 pdJ 
F' 
p, i —ma 

If also a C A, then 	is a homeomorphism of F' 	onto F' 	and q,  

= I_c1 . 

M 	 m 

Proof:- 	0 C A 	= 
q,-p ,m 

Hence by Theorems 2.11 

of 	into 	so p,-ma 	p,p 

from Theorem 3.37 above 

1 - 1/rn C  A' 	=> -a C A' 	 by (3.37). p,p,m 	 p,j-ma--m+1 
rn-i a -m+l . and 3.37, x 	KX 	is a Continuous linear mapping 

that (3.45) is meaningful. 	The results now follow 

and Theorems 1.10-1 and 1.10-2 in [87] 

Likewise we have the following. 

Definition 3.53 

If - a cA' 	, we define K on F' 	by q, -p,m 	 m 	p,p 

(Kctf,4)) = (f,x rn-i I  x  a -m+1 
M 

where f c F' , 4) C F 	and I 
 is as in Definition 3.35 M. m 

Theorem 3.54 

If - ci CA? 	then Kt  is a Continuous linear mapping of F' 	into m 

F' 
P , p -ma 

If also 0 C A' 	, then Ka is a homeomorphism of F' 	onto F' q,p,m 	m 	
P,IJ 	 p,iflci 

and  
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(K)1 = Ka .  

Proof:- 	This is similar to that of Theorem 3.52 and is omitted. 

Finally we list a few simple consequences which we shall need later. 

Since all of these are obtained from the corresponding results above for 

F 
P911 

 by taking adjoints, we shall omit proofs. 

Theorem 3.55 

Let f c 	let a, 	be complex numbers and let m, n be positive real 

numbers. 	Then 

(1) 	11hc18f = 
M. n 	n m 

Ifl,aK,f = 
m 	ft 	•n 	in 

Kfl , aK , f = 
in 	n 	n 	in 

Theorem 3.56 

ifcA 	, 	cA 

	

q,-p,m 	q,-i.i,n 

ifricA 	, 	cA' 

	

q, -11 .,m 	q,-p,n 

ifncA' 	 E: A' 
q, -p ,m

, 
 q, -w ,n 

Let f c F' 	and let c, 	be complex numbers. 
P,ji 

If rl  cA 	,then 

= 1fl+ct1r)czf = 

where, if r + a j A 	, the first two expressions have to be 
q,-p ,m 

interpreted in terms of their analytic continuations. 

If n c 	 then 

KfltaKfl+a,f = K+c,Kfl,af = 
in m 	m 	m 	m 

where, if n + a j At ,-p ,m, the first two expressions have to be q  

interpreted in terms of their analytic continuations. 

To amplify the Statements about analytic continuation, let f c F t  
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E F 	and q E A' 	. 	Then if, also, r + a c A' P, 11 

= (f,I'/mB1fll/maq) 	
(3.46) 

from (3.44). 	But from Example 3.39 with n replaced by q - 1 + 1/rn, as 

well as (3.37), 1+a1/m,11+1/ 	can be continued analytically in m 	 m 

to all of A' 	as 1n-l+1/m,a+ 	From the continuity of f or Theorem m 

3.50 (ii), the right-hand side of (3.46) can be continued analytically to 

all of A' 	as (f,I n-l+l/ma+8.) = (K' 8f) which gives Theorem q, - .',m m 

3.56 (ii). 	Similar comments apply to Theorem 3.56 (i) and also to the 

statements on analytic continuation in the following theorems. 

Theorem 3.57 

Let f c F' 	and let a + a + y = 0. 
p,lJ 

If 0 c A 	, then 
q , i 

II8f =
j+ f  = 

mm 	m 	mm 

	

where if a ' A 	or 8 V A q,-p,m, the third or first expression 

respectively is to be interpreted in terms of its analytic contin-

uation. 

If -y  c A 	, then q , - u ,m 

x 

	

ma I x f=I 8 my 	YXm8Iaf 
m 	m 	m 

where if 0 j A q,-p,m, the right-hand side is to be interpreted in 

terms of its analytic continuation. 

Theorem 3.58 

Let f c F' , let a + 8 + y = 0 and let ycA' 	. 	Then 
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(1) 	KKBf = 	f = K8Kaf 

where if - cx 	A' 	or - B A' 	, the third or first expression 
q,-p,m 

respectively is to be interpreted in terms of its analytic contin-

uation. 

myma 	-cx-m-y 
(11) x Kx f=K x K f 

M. 	 m 	m 

where if 0 0 A' 	, the right-hand side is to be interpreted in 
q, - ii ,m 

terms of its analytic continuation. 

3.6 A Simple Application 

Although the main applications of our fractional calculus will come in the 

later chapters, we will discuss here one very simple application. 

For any complex number n we define the differential operator L by 

= 	+ 2n+l 
(L)(x) 	

dx2 	
x dx 

where 4'  is a suitable classical function. 	L 
Ti 

is the one-dimensional 

analogue of the partial differential operator 

32  + 2r+l 
r ar 

(3.47) 

(3.48) 

and the latter turns up in a number of important problems. 	One well-known 

instance is in connection with spherically symmetric solutions of Laplace's 

equation in a dimensions or axially symmetric solutions in n + 1 dimensions, 

in which (3.48) turns up with ii = n/2 - 1 (and where r denotes the usual 

radial co-ordinate). 	Weinstein [83], [84] considered (3.48) for general 

real values of ri in the process of developing his generalized axially 

symmetric potential theory (GASPT). 	(3.48) also occurs in the Euler- 

Poisson-Darboux equation 



12 + 'ifl 	- 

r 	r - (3.49) 

In [ii] , [12] and [131, Erdélyi has examined the role played by Erd].yj-

Kober operators in these two situations. 	For instance, he shows that, by 

the application of certain Erdlyi-Kober operators, the equation (3.49) can 

be transformed into the one-dimensional wave equation 

3r 2 	3t2 	 (3.50) 

where ip is simply related to 4). 	We will establish connections between L 

and Erdlyi-Kober operators within the spaces 	and,although we will be 

working with a single variable, it is not unreasonable to expect the results 

to carry over to higher dimensions and thus to be of use in the theory of 

the partial differential equations mentioned above. 

A number of trivial observations can be made about L on F 	. 	For 
V 	p,p 

instance, since (as is easily verified) 

L = x2fl2äx2fló = x 2 5(6+2) 
Ti 	 (3.51) 

L 
Ti 	 p 	p,p 

is a continuous linear mapping of F 	into F -2 for any complex ,ii  
numbers i-i and n (by Theorem 2.11 and Corollary 2:14 (i)) and is a homéo-

morphism of F 
p,lJ 

onto F 	-2 provided that Re u 0 i/p and Re (2rpi-) 	i/p 
(by Corollary 2.14 (ii)). 	Using (2.14), (3.51) can be written in the 

form 

L = x 212n+1  

	

D1x 	1 = 4x2TiD2x2Ti+2D2 	
(3.52) 

and it is also easy to check that 

1 	l-2n 	2 L 	D 
Ti 

= x 	1x 	D1x 	= 4D2x22TiD2x2Ti. 	
(3.53) 
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As a simple consequence of (3.52) and (3.53), we see that for any r, 

2 x L =L x 
n 	-n 

(3.54) 

while D L = 4D X_ 211D  x22D = L 	D . 	By induction, it follows that for 
2 	2 	2 	2 	n+l2 

any complex rj and any non-negative integer k, 

(D 2) k LTI 
	n +k 2 
= L 	(D )k 
	

(3.55) 

and hence, if 	c 

L(D2 ) '  = (D2 ) kL +k 	 (3.56) 

provided that Re p 	1/p - 29.. 	(9. = 0,1, ..., k) by Corollary 2.15 (ii). 

With all these preliminaries, we can now establish something of more 

substance. 

Theorem 3.59 

Let a be any complex number and let 	c F 

If n E 	then 

	

Ifl,aL 	= L 	 (357) 
2 	ri 	ri -i-ci2 

Ifr 	A' 	then 

	

L K' 	= K9  "'UL. 	 (3.58) 

	

n2 	2 	na 

Proof:- 	(i) Since n  c A 	PIP-2,2 = > 	
c A 	2' both sides of (3.57) 

define continuous linear mappings of F 	into F 	-v 	To establish p,•j 	p, -   

equality, assume first that Re (2+) > i/p. 	Then we may use the theory 

in §3.2. 	In particular, from (3.14), we obtain 

= 2I 
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X-2 	, 	 -2 , L 	
1,cz 

= x 12 ncz (6+2n+2)6 	2x 12 
n ci-1 

n + ''i 

by (3.12) and (3.51). 	Now 21,a16 	
Inla(o+2n)sq Using integration  

by parts when Re Q > 1 and analytic continuation otherwise. 	Hence by 

(3.23) and (3.51), 

L 	 -2 -i 
fl+cz 2 	= x 12 n 	a(6+2fl)6 = 12 n,a 

X-2 (6+2n)6 = Inot 

and (3.57) is proved in this case. 

Now let n c Ap, w-2,2 and let k be a non-negative integer such that 

Re(2ri+j.i) > i/p - 2k. 	Then 

n+c 2 

= L 	Ifl+kcx-k--2(fl+k)()-k2fl 
fl+cL 2 

- 1n+k,cz-k - 	2(n+k)(D -k 2 - 	L 
n 

x  
+k 	 ) x 

n+k,cz-k 2(+k) 
- 12 	x 	L_flk (D2 ) kx2  

= 1 fl+k,ct -k-2(fl+k)_k2 

= 1n+k2cz-k-2(+k) (D2)kx2nL4 

by (3.32) 

by the previous case 

by (3.54) 

by (3.56) 

by (3.54) 

= 
by (3.32). 

This completes the proof of (i). 	That of (ii) is similar and is omitted. 

Remark 3.60 

(3.57) and (3.58) enable us to relate any operator L to the simple 

operator L_ 1  = - via fractional calculus. 	For instance, (3.57) shows 
dx 2  

that under appropriate conditions 
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4' = 

	

n 	
LI'1'2 

which is typical of the results exploited by Erdélyi in, for instance, 

transforming (3.49) into (3.50). 

To obtain the analogue of Theorem 3.59 for F' 	we take adjoints as 

usual. 	Equivalently, we want to extend L to F' 	in such a way that, for 

functions g c L with L g c 

	

-p 	n 	-u-2 

	

LTg = tLg 
	

(3.59) 

Go 

as an equality in F' 2 . 	Then if 4'  c C0 (O,co) is regarded as an element 

of 	integration by parts gives 

I 

	

 
(Ltg,4') = 
	 = 

(L g)(x)4'(x)dx 	I x
-2r-1 

D.,x2ri  +l  D1g(x)4'(x)dx 

F0g(x)D 1  x 2n+1 D1x 

= (ig,xL_x 1 4') 

using (3.52) and (3.53). 	As in §2.4, we are thus led to define L n on 

F' 	by 
p 91 

(Lf,p) = (f,xL xP) 	(f c  F' 	c F 2 ) 
ri 	 - n 	 p,p. 

(3.60) 

L as so defined is a continuous linear mapping of F' 	into F' +2  for all 11 	 p -. 	 p,i.i 

complex n and ' and is a.homeomorphism under appropriate circumstances. 

However, we shall content ourselves with the following result, the proof 

of which shows that (3.57) and (3.58) are essentially adjoint versions of 

each other. 
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Theorem 3.61 

Let cc be any complex number and let f c F' 
ps 

If n C Aq, _. j _22  then 

ri I)aLf = L 	1flaf 
fl  +a 2 

If r E A' then q,-1j ,2' 

LKaf = KflIaL 	f. 2 	cz 

Proof: 	
(i) Both sides define Continuous linear mappings of F' 	into 

F' 	under the given Conditions since A 	c A 	. 	Let q, -p -2,2 	q,u,2 
E F 

p , +2. 	Then, 

(Iif,p) 

= (f,XLX 1K 112 ') 

= (f,xL K T' aX l q ) 
—n 2 

= (f ,xK , a 	1 L 	x- 2 

= (f,K1"2"Lx1p) 
- ri -a 

= (L. 	
1nafq) 

fl+cz 2 

by (3.43) and (3.60) 

by (3.24) 

by (3.58) 

by (3.24) 

by (3.43) and (3.60). 

In the above (3.58) is applied with 	and P replaced by x-10 and u + 1 

respectively and this is valid since A' +1 2 
	A - 	V 	This completes p,lJ 	, 	q,p-2  

the proof of (i) and that of (ii) is similar. 

The possible uses of this result have been suggested above and we will 

not elaborate here. 	In conclusion, we remark that the function 

x 9J(x) is a solution of the equation L 
9 
 0 + 	= 0, as is easily checked 
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using properties of the Bessel function J  of the first kind and order n. 

It is therefore no surprise to find strong connections between fractional 

calculus and.Hankel transforms and,in particular, results such as (6.4) and 

(6.8) in Chapter 6. 



4 Hypergeometric integral equations 

§4.1 Introduction 

For the first main application of the theory in Chapter 3 we consider in 

detail some integral equations involving the Gauss or 
2  F  1 hypergeometric 

function. We shall be concerned with four operators H. (a,b;c;m) 

(i 	1,2,3,4), typical of which is H 1 (a,b;c;m). 	For suitable functions 

•, Re c > 0, rn > 0 and suitably restricted complex numbers a and b, we 

define H1 (a,b;c;m)q on (O,o) by 

(H1(a,b;c;m)4)(x) = 1x ( mx-t m ) c-i 

1(c) 	2F1(a,b;c;l-x m It
m 
 )rnt rn-i  p(t)dt • (4.1) 

J
1 
0 

The other three operators are similar. 

It is well-known that there are intimate connections between the 

hypergeometric function and fractional calculus; see, for instance, [7], 

[9], [24 p.118]. 	It is therefore no surprise that equations involving 

hypergeometric functions can be solved via fractional calculus. 	In two 

comprehensive papers [40] and [41] , Love studied our four operators for 

the case m = 1 in the context of locally integrable classical functions. 

These papers unified the work of several authors who had dealt with 

various special cases using various different methods; references can be 

found in [40] and [41]. 	Our object is to study the - operators in the 

context of generalised functions and to extend them in the manner of 

Chapter 3. 	However, at the end of the section, we give an instance of how 

classical results can be recovered from this extension. 

For any complex numbers a, b c and z, we shall write 
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- 

F*(a,b; c; z) - r(c) 	2 F 1  (a,b;c;z) 	 (4.2) 

so that, for Izi < 1, 

OD 	

(a) (b) 	n n n 	z F*(a,b;c;z) = E 	
F(c+n) 	iT 

where, for example, (a) 0  = 1 and (a) = a(a+I) ... (a+n-l) (n 	1). 

F*(a,b;c;z), as defined by (4.3), is an entire function of a,b and c and 

an analytic function of z for Izi < 1. Since (4.1) requires F*(a,b;c;z) 

for real z c ( - ,0), we extend the definition of F*(a,b;c;z) to the half-

plane Re z <- by one of Kummer's relations ( [18], p.105) 

F*(a,b;c;z) = (1_z)aF*(a,c_b;c;z/(z_1)) 	 (4.4) 

where the principal branch of (1-z)- a  is used. By (4.2) and analytic con-

tinuation we note that 

F*(a,b;c;z) = F*(b,a;c;z) 
	

(4.5) 

for Re z < .. . Further, the extended function is an entire function of 

a,b and c and an analytic function of z for Re z < 

Most of the properties of F*(a,b;c;z) we require are in [18]. However, 

it is convenient to mention the following result. 

Lemma 4.1 

Let a, b and c be complex numbers and let 6 > 0. Then there is a constant 

M, independent of v e (0,1),such that the four expressions 

IF*(a,b;c;l_l/vm) , 	li— 
F*(a,b;c;l_l/vm) I 

2—F*(a,b;c;l_l/vm)[, 	_F*( a ,b ;c; l_l/ vm)I 
lab 

are all less than or equal to 1 min(m Re a, m Re b) - 6 

Proof:- The details for m = 1, which are rather involved, are to be found in 

[46] and the case for general m > 0 follows similarly. 
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With these preliminaries we can now start and, to save repetition, we 

assume throughout this chapter that ab and c are complex numbers and that 

m is real and positive. 

§4.2 The Operators H. 
1.  (a,b;c;m) on F 

For convenience we recall the definition of H 1 (a,b;c;m) 

Definition 4.2 

For Re c > 0 and suitable functions 4we define H 1 (a,b;c;m) on (O,) by 

H1(a,b;c;rn)(x) 
= J x 

	M_ 
(x t 

in c-i 
) 	F*(a,b;c;l_x

in 
 It

in 
 )rnt

rn-i 
 (t)dt 	(4.6) 

o 

As a first step we can prove 

Lemma 4.3 

Let Re c >O, -Re p - in + i/p < mm (in Re a, m Re b), 	EF 	Then 

H 1 (a,b;c;m)4(x) exists for all x c (O,) and defines a continuous 

function on (O,) 

for each fixed x E (O,), H1 (a,b;c;m)4(x) is analytic in a,b and c 

in the region -Re p - in + i/p 	< mm 	(in Re a, 	in Re b), Re c > 0. 

Proof:- By (4.6),. 

mc I l 	in c-i 	 in 	rn-i H 1 (a,b;c;rn)q(x) = x 	
j 	(1v ) 	F*(a,b;c;i_i/v )mv 	4'(xv)dv. 
0 

(4.7) 

By Theorem 2.2 and Lemma 4. 1, for any 5 > 0, there exists M, independent 

of v € (0,1) such that 

I (l_Vm)c 1 F*(a,b;c;l_i/vm)mvm 	(xv) 
M(l_Vin) Re c-i min(m Re a, m Re b) - S + in - l o Re p - i/p 

for v £ (0, 1). Thus, under the given conditions, the integral in (4.7) 

converges uniformly on compact subsets of (O,) and (i) follows. (ii) 



follows similarly since, by Lemma 4.1, we may differentiate under the 

integral sign with respect to a,b or c under the given conditions. 

To make further progress, we show how H 1 (a,b;c;m) is connected to our 

operators in Chapter 3. In Theorem 3.41 we saw that, under appropriate 

conditions, I 	 and I8  commute. In the case m = n we discover the 

following. 

T,,._,,-, 	I. 	I. 

Let Re a > 0, Re 8 > 0, -Re j - m + I/p < min (m Re , m Re n), 	c Fpu. 

Then 

inta 
I'8(X) 

= x-mn -ma 

	

 H1 (+8-n,8;ct+8;m)x 	x) 	 (4.8) 
m m 

Proof:- From (3.5) and (3.8), IflcI(x) 
m m 

-mn-mci x 	 -m-m3 u - 	fo (x-u ) 	 u 	du 	 fo (u — t ) 	 t 	4(t)dt. 
mx mm cl mq+m-1 	m m 8-1 m+m-1

r(ci) (8)  

Using Theorem 2.2, we see that, under the given conditions, this repeated 

integral is absolutely convergent and hence, by Fubini's theorem, is equal 

to 
-mfl-ma fX 

mx 	 m+m-1 	 m m czl m m - 1 mn -m-m3 rn- i 
t 	(t)dt j (x -u ) 	 (u -t ) 	u 	mu 	du 

F(ci)F(8) O 	 t 
M m 

U — t 
Under the substitution w = 	, the inner integral becomes 

M m 
x-t 

I 
8 1 m -  m mt 	ci-1 8-1 	m m m n+ 

(x —t ) 	 - 	 (1-w) 	w 	fl-w(i-x /t
m
)] " 8  dw fo  

(x F(a)F(8) 	m—t m )  ci+3-1 mn-m--m3 F*(+8_n,8;a+B;l_x 
m 
 /t 

m
.) =  

using Euler's Integral [18, p.59]. The result now follows easily. 

Corollary 4.5 

Let Re c > Re b > 0, -Re i - m + l/p < mm (m Re a, m Re b), 	c F 
P111* 

Then 



X_ 
	ma b H 1 (a,b;c;m) 	= I

c-b 
 x 	I x 4) m 	m (4.9) 

Proof:- In Lemma 4.4, we take c = c-b, 6 = b, & = +a-b and replace i and 

4,(x) by u -m + mb and x
-  mq+mb 

satisfied so that 

The conditions of Lemma 4.4 are 

H1(a,b;c;m)4, = mfl +mc-mb 1 fl,') 1 r,+a-b,b -mn+mb 
M 	m  (4.10) 

The free parameter n disappears on using (3.8) and the result follows. 

(4.9) indicates how we can extend the definition of H (a,b;c;m) on F 

	

1 	 p,ji 

to other values of i. First of all, the restriction Re c > Re b > 0 can 

be removed. However, there is a slight technicality here because 

H 1 (a,b;c;m) has already been defined for Re c > 0, not just for 

Re c .> Re b > 0. Fortunately, the extension given by (4.9) coincides with 

(4.6) in this case by virtue of Lemma 4.3(u) and the principle of analytic 

continuation. (Indeed, this was the sole purpose of stating Lemmas 4.1 

and 4.3.) . However, because of Theorem 3.36, the right-hand side of (4.9) 

is meaningful provided only that 0 c A 	and 0 c A 	or, 

equivalently ,  {a,b} c A 	• 
p,u,m 	Hence we make the following definition. -  

Definition 4.6 

For {a,b} c A 
p,u,m , we define H 1 (a,b;c;m) on F 	by 

-  

c-b -ma b ma H 1 (a,b;c;m) = I 	X. 	I x Tn 	 m (4.11) 

In view of the above motivation, this gives an extension of Definition 4.2. 

We can immediately obtain very full information about this extended 

operator. 

Theorem 4.7 

If a,b} c A 	, then H (a,b;c;m) is a continuous linear mapping of F - p,1i,m 	1 	 P,P 
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into F p, j+rn 

If also {c,a+b) c A
p, p ,m , 
	

1 then H (a,b;c;m) is a homeomorphiszn of F 	onto 
-  

F 	and, for 	c F p,i+mc 	 p,p+mc' 

-ma 
= x 	H 1 ( -a,b-c;-c;m)x m  (4.12) 

Proof:- The first statement follows from Theorems 2.11 and 3.36. For the 

second, we observe that under the given conditions, H 1 (a,b;c;m) is invertible 

and 

[H 1 (a,b;c;m)]ip=x 	I 	x 	I 
-ma -b ma b-c 

p. 
m 	m 

(4.12) now follows easily from (4.11). 

An interesting point arises here. Because of (4.5) we might expect to 

have 

H 1 (a,b;c;m) = H 1 (b,a;c;m) 	 (4.13) 

for a,b) c A 	. This is not obvious from (4.11) which is not 
- 

symmetrical in a and b. However 

c-b x 
	I x 	x 
-ma b ma-mb mb I  

M 	 m 

c-b b-a -mb a nib = I 	I 	x 	I x 	 by Theorem 3.43(u) m 	in 	m 

c-a -mb a mb = I 	x 	I x 	• 	 by Theorem 3.43(i) m 	 m 

so that (4.13) is indeed true if (a,b) c A 	. We have used the index - p,1j,m 

laws to verify (4.13) but it is also possible to derive the index laws as 

special cases of results for hypergeometric operators. 

The other three operators H. (a,b;c;m) (i = 2,3,4) can now be dealt with 

fairly quickly. As regards H 2 (a,b;c;rn), we start with the integral 

representation 
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H2(a,b;c;m)$(x) = I ( Xm_m)dl F*(a,b;c;1_tm/xm)mtml4)(t)dt 	(4.14) 

valid for Re c > 0 and appropriate functions 4). Imitating Love [40, p.195] 

we soon find that 

ma 	 -ma 
H2(a.,b;c;m)4)(x) = x 	H 1 (a,c-b;c;m)x 	4(x) 

- ma b 
or 	H2(a,b;c;rn)4)(x) - x 	I x

-ma c-b 
I 	4)(x) 

m 	m 

In particular, these are valid for 4) c F 	 provided that -Re p - m + 1/p
PIP 

mm (0,mRe(cba) ). Extending as before, we arrive at the following. 

Definition 4.8 

If {0,c-b-a) c A p, p , rn , we define H., 	
p,i. 

	

(a,b;c;m) on F 	by 

-ma c-b 
H2 (a,b;c;m)4) = x 

ma 
 I  b  x 	I 	4) 

M 	 m (4.15) 

In view of the above motivation, this extends (4.14) and we can quickly 

establish the main properties of the extended operator. 

Theorem 4.9 

If {0,c-b-a} c A p,p,m , then H 2 (a,b;c;m) is a continuous linear mapping of 
-  

F 	into F 
p,p 	p,p+nic 

If also {c-a, c-b) c A, then H2 (a,b;c;m) is a homeomorphism of F - p,u,m p,lJ 

onto F 	and, for 4.'e F p,p+mc 	 p,p+mc 

= H 1 (a, -b; -c; m) 
	

(4.16) 

Proof:- The results follow easily from Theorem 3.36. As regards (4.16), 

we observe that 1H2(a,b;c;m)J1ip = 
	ma m -b 

X 	I 	x-ma p and then use (4.11). 

Remark 4.10 

(4.16) is a rather interesting result which emerges quite naturally in our 
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setting of generalised functions but which does not appear at all clear 

in a classical approach such as that in [40]. 

For H 3 (a,b;c;rn) we start with the integral representation 

H 3 (a,b;c;rn)q(x) = mx
rn-i 1 

	
m- 

(t x 
rn c-1 

) 	F* Ca, b;c;l_x
m 
 It

m 
 )(t)dt 

x 

(4.17) 

valid for Re c > 0 and suitable functions . We then use an adjoint 

version of (4.8),namely 

K' K'(x) 	m-rn+i 	 -m--m3-ma+m-i 
m 	 = x 	H3(+-n,c;cx+;m)x 	 (x) (4.18) 

valid for P c F 	 provided that Re a > 0, Re 3 > 0 and Re .i -Pow 

min (m Re C, m Re ri). Disentangling (4.18) produces 

rn-i c-b -ma b ma-m+l H (a,b;c;m) = x 	K 	x 	K x 3 	 m 	m 

provided 0 c 	Re c > Re b > 0 and Re P - rn + iIq < min(-m Re c, 

-m Re(a+b)).. Extending as before,we obtain the following definition 

Definition 4.11 

If { -c, - a-b) c A q, -p,m , we define H 3 (a,b;c;m) on F 	by
p 11 

H3(a,b;c;m) 	
M-1

K 
 c-b x 
	K x 
-ma b ma-rn+l 

m 	m (4.19) 

For H4 (a,b;c;rn), we start with 

H4 (a,b;c;m)(x) =mx 	 Cm_Xm_1 F*(a,b;c;l_tm/xm)(t)dr 

(4.20) 

valid for Re c > 0 and suitable functions and are led, using Kunimer's 

relations, to 

ma+m-1 b -ma c-b -m+i 4  H(a,b;c;m) = x 	K x 	K 	x m 	m 

for Re c > Re b > 0, 	c Fp,p and Re p - m + llq < mm Cm Re (a-c), 

m Re(b - c)). This in turn suggests the following definition. 
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Definition 4. 12 

If ia-c, b - c) c  
q,-u , we define H,(a,b;c;m) on F 	by

POW - 	, m 

- ma+m-I b -ma c-b -m+1 H(a,b;c;m)4 - x 	K x 	K 	x 	 (4.21) m 	m 

The properties of H(a,b;c;m) (i = 3,4) are obtained from Theorem 3.44 

and we state them without proof. 

Theorem 4.13 

If {c, - a-b) c A 
q , -

ji ,m , then H 3 (a,b;c;m) is a continuous linear mapping of 

F 	into  
p,i+mc 

If also { - a, - b} c A 
q,-u,m, 

 then H 3 (a,b;c;m) is a homeomorphisrn of F p 
11 -  

onto F 	and 
P, 

H 3 (a,b;c;m)J 1  = H4 (-a,-b;-c;m). 

Theorem 4.14 

If (a-c, b - c) C A 
q,-p.m, 

 then H4 (a,b;c;m) is a continuous linear mapping of 

F 	into F. 
.p,u 	p,+mc 

If also (0, a+b -c) c A, then H4 (a,b;c;m) is a homeomorphism of F 
- P'IJ 

onto F 	and 
p ,  umc 

[114 (a,b;c;m)] 	= H3 (-a,-b;-c;m) 

Remark 4.15 

This completes our discussion of the four operators on F. Perhaps it 

would be in order 	to mention that, under appropriate conditions, an 

operator of the form I noa K' produces another type of hypergeometric 

operator. However, we shall not deal with this here and merely refer to 

[72] where there is a discussion in a classical setting. 
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§4.3 The Operators H. (a,b;c;m) on F' 
p,p 

We now consider how to extend the operators H. (a,b;c;m) to F' 

and once again we will concentrate on H 1 (a,b;c;m). 

As in previous cases, we begin with regular functionals. Let g c 

and let Re c > 0. Then, under appropriate conditions, H 1 (a,b;c;m)g c 

Indeed, if we use (4.10) along with Lemma 3.2, we find that H 1 (a,b;c;m) is 

a continuous linear mapping from L 	 into L 	 provided that Re c > Re b 

> 0 and Re p - in + l/q < mm (in Re a, in Re b). On closer examination we 

find that the condition Re c > Re b > 0 can be replaced by Re c > 0; see p  

for instance, [481. If our new operator H 1 (a,b;c;in) is to be an extension 

of the previous one, we would require that 

H 1 (a,b;c;m)Tg = T H 1 (a,b;c;m)g 	 (4.22) 

whenever both sides are meaningful; here we are using the notation of 

Example 2.18 again and (4.22) is to hold in the sense of equality in 

F' 	. To see what (4.22) entails, let 	F 	, Re c > 0 and p,u -mc 	 p,-mc 

Re p - in + 1/q < mm Cm Re a, in Re b). Then 

(H 1 (a,b;c;m)tg,q) = (tH 1 (a,b;c;m)g,) 

co  

=  J H 1 (a,b;c;m)g(x)4(x) dx 
0 

J. 	r x in mc-1 	 in in 	
rn-i g(t)dt)q(x)dx = I 	( 	( x -t ) 	F*(a,b;c;l-x It )rnt 	 • 

Ho J o  
By our comments above and Holder's inequality, the repeated integral is 

absolutely convergent. Hence, by Fubini's theorem, the last expression 

becomes 

M. 



J g(t) (mtrn-i f 
(x
m 
 -tm )c-i F*(a,b;c;l_xm/tm),(x)dx)dt 

0 	 t 

= f0* 
0 g(t) H4 (a,b;c;m)(t)dt 

SO that 

(H 1 (a,b;c;m)rg,) = (Tg, H 4 (a,b;c;m)q) 

This suggests that we would wish 

(H1(a,b;c;m)f,q) = (f,H 4 (a,b;c;rn)q) 

(cF 	). 
p , 

(0 c F 
I.i 	

) 	(4.23) p, -mc 

for all f c F' , regular or not. Further, by Theorem 4.14, the right-

hand side of (4.23) is meaningful provided only tha '  {a-c, b-c) c 

A 	 or, equivalently {a,b} c A 
q 	. Hence we are led to define - 	, - .i,m 

H 1 (a,b;c;m) on F' 	as the adjoint of H 4 (a,b;c;m) on F 	under these p,1J p,1.i -mc 
conditions. 

Just as H 1 (a,b;c;m) and H4 (a,b;c;m) are formal adjoints, so are 

H2 (a,b;c;m) and H 3 (a,b;c;m). Hence, by similar arguments, we are led to 

the following definition. 

Definition 4.16 

Let f c F' , $ c F 	. We define H.(a,b;c;m) (i 	1,2,3,4) on F' p,p 	p,.i-mc 	 1 

by the following equations under the conditions stated. 

If {a,b) £ A 	, then 

(H1(a,b;c;m)f,) = (f, H4 (a,b;c;m)q). 

If 10,c-b-a) c A 	, then 
- 

(H2(a,b;c;m)f,) = (f, H 3 (a,b;c;rn)q). 

If {-c, -a-b) c A 	, then 
- 

(H3 (a,b;c;m)f,+) = (f, H 2 (a,b;c;m)q). 
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(iv) If (a-c, b -c) c A 	, then 
p,i,m 

(H4 (a,b;c;m)f,q) = (f,H1 (a,b;c;m)). 

The properties of our extended operators follow at once from Theorems 

4.7, 4.9, 4.13 and 4.14 above together with Theorems 1.10-1 and 1.10-2 in 

[87]. Rather than list all the results separately, we give the details in 

tabular form, and omit details of the proof. 

Theorem 4.17 

The properties of the operators H.(a,b;c;m) on F 	are given in the 

following table. Column 2 gives the conditions under which the operators 

are continuous linear mappings (c.l.m.) from F' 	into F' 	, column 3 p,p 	p i ll-mc 

the conditions under which the operators are homeomorphisms (homeo.) and 

column 4 the inverse operators, which exist under the conditions of column 

3. 

c.l.m. homeo. inverse - 

1 (a,b;c;m) {a,b} 	c A {a,b,c,a+b} 	c A H2 (a, -b;-c;rn' 

H2 (a,b;c;nt) {O,c -a-b} 	c A 
- 	 q,-j,m {0,c- a,c-b,c--a-b} 	c A 

- q, - u,m 

H 3 (a,b;c;m) ( - c, - a-b} c A 
- 	 p,.i,m { -a,-b,-c,-a-b} 	c A H(-a-b;-c;m , 

 

4  
- p,i,m 

H4 (a,b;c;m) (a-c,b-c} c A 
- 	 p,u,m (0,a- c,b-c,a+b-c} C A 

p,i,m 

Again, as a check, we see that the conditions above are derived from 

those appropriate to F 	by interchanging p and q, p and -p. 

§4.4 The Classical Case 

We conclude this chapter with an indication of how our theory sheds some 

light on the classical problems from which the whole discussion started. 
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As mentioned above, Love in [40] and [41] has discussed the operators rela-

tive to certain classes of locally integrable classical functions. We will 

work in the L spaces and to provide a close analogy with Love's work, we 

take m = 1 for the remainder of this chapter. Again, we will concentrate on 

H 1 (a,b;c;l) and return to the case when we can use the simple integral 

representation (4.6). 

Our problem therefore is as follows; for a given classical function g 

defined (almost everywhere) on (0,00), does there exist f defined (almost 

everywhere) on (O,°°) such that 

1 
(x-t)

c-i 
 F*(a,b;c;lx/t) f(t)dt = g(x) 

JO 
(4.24) 

for almost all x c (0,00)? We mentioned in the previous section that if 

pi 	p f c L , then the left-hand side of (4.24) defines a function n L 	under U 	 U+c 

appropriate conditions (such as Re c > 0, -Re u - l/q < mm (Re a, Re b) ). 

Thus, we will assume that g c L 
1.j + c 

As regards uniqueness, we can prove the following. 

Theorem 4.18 

If -Re W -  l/q <mm (Re a, Re b, Re c, Re(a+b) ), Re c > 0 and g c L p  

then (4.24) has at most one solution f c 
Ii 

Proof 

Let f e L satisfy (4.24). Then H (a,b;c;l)f c L 	and so u 	 1 

T H 1 (a,b;c;i)f = Tg 

in the sense of equality in 	 But under the given conditions, (4.22) 

holds so that 

H1(a,b;c;l)tf = ig . 	 (4.25) 
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Also, by Theorem 4.17, with p and i replaced by q and - ,i respectively, the 

equation 

H1 (a,b;c;l)h = ig 	 (4.26) 

has a unique solution h c F' 	and by (3.45) and (4.21) q,-i 

-a -b a b-c h = x 	x 	tg . 	 ( 4.27) 

Hence, from (4.25) and (4.26), our equation (4.24) will have either one 

solution in L or no solution in L 	according as there does or does not 
Ii 	 U 

exist f c rY such that tf = h. (We are, of course, identifying any two 
Ij 

functions which differ only on a set of measure zero.) 

As regards existence, the proof of Theorem 4.18 shows that (4.24) has a 

solution f c L if and only if h, as defined by (4.27), is regular (in the 
11 

sense of Example 2.18). To guarantee this regularity, we have to impose 

extra conditions on the parameters and on g. This can be done in various 

ways and we thereby obtain analogues of Love's results. Here is one possi-

bility which is our equivalent of [40, Theorem iii 

Theorem 4.19 

Let Re b < 0, Re c > 0, -Re(.z+b) - l/q < tam (0, Re a). Furthermore, 

assume that there is a function G c L 
p  +b such that g = 1c-b C. Then 

(4.24) has a unique solution f c L given by 

f(x) = x -a -b a G(x) 
	

(4.28) 

Proof :- 

Since Re(c-b) > 0, and Re(U+b) > - 1/q, we see from Lemma 3.2 that if 

G c L 	, then g = Ic-bC = c-b 10,c-b c c L 	as we would like. Also 
p+b 	 1 	 1 

-Re U - l/q < min(Re a, Re b, Re c, Re(a+b) ) under the given conditions. 
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Hence,as in Theorem 4.18, we find that (4.24) has a Solution if and only if 

h, as defined by (4.27), is regular and generated by f. We shall show that 

h is indeed regular in the given situation. To do this, we recall that if 

n is any complex number, Re a > 0, F c L (v complex) and Re V > - l/q, then 
t(xf) = xrf 	(in F,__) 	 (4.29) 

and r(If) = Irf (in F,_v_a)• 	 (4.30) 

Indeed (4.29) supplied the motivation for Definition 2.21(j) while (4.30) is 

a consequence of (3.22) and (3.41). Thus, 

x- I 	X I 
-b a b-c 

tg 

-a -b a b-c 	c-b =X 	I 	x 	TI 	 c 

= -a 1-b a 1 b-c 1c-b TG 
	since Re(c-b) > O, Re(i+b)  > - l/q 

-a -b a = x 	Ii x TG 	 by Theorem 3.52 

-a -b 	a 
= X 	I 	TX G 	 by (4.29) 

= x 	 1b XaG 	
since Re(-b) > 0, Re(i+a+b) > - l/q 

a -b a TX 	I 	xG. 

Finally, since Re(-b) > 0, Re(i.i+a+b). > - 1/q and C c L+b, 
	

a 1b a 

by Lemma 3.2. Thus h = rf where f is given by (4.28) and hence f satisfies 

(4.24) in view of our previous remarks. That the solution is unique in 

L follows from Theorem 4.18. This completes the proof. 

To say, as in Theorem 4.19, that g = 1c-b C where C c LP +b effectively 

says that g has a fractional derivative of order'c-b belonging to L+b. 

Such a condition is typical of the type required in order to guarantee a 

classical solution; this theme is also discussed by Higgins in [29]. If 
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such a guarantee is not forthcoming, the process above breaks down. We 

can obtain h in (4.27) as before but now it may no longer be regular and 

we have to be content with a "generalised solution" of (4.24), namely the 

functional h. 

Finally, we should say that results for the special cases investigated 

by various authors (such as Jacobi polynomials and Legendre functions) 

can be obtained from the above by suitable choices of a, b, c and m. 
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5 The Hankel transform 

5.l Introduction 

The second main application of the theory in Chapter 3 will be in connection 

with dual integral equations of Titchrnarsh type which can be expressed in 

terms of operators simply related to the Hankel transform; see Chapter 7. 

Thus our immediate task is to Study the Hankel transform in F 	and F' p,J 	p,1.j 
This is a fairly extensive investigation but is justified on two counts; 

firstly, very full information can be obtained about the Hankel transform and, 

secondly, the method is typical of that which can be applied to other integral 

transforms (although such full information is not always obtained, as we 

shall see in Chapter 8). 

The Hankel transform is an ideal candidate for our treatment. If the 

transform is studied classically, there are problems as regards describing its 

range in general. To illustrate this point, we consider briefly the Fourier 

-  cosine transform (the Hankel transform of order - 1/2) on LP (= L P ). Formally, 

the Fourier cosine transform H, 

00 

(H)(x)=jC05t)tt 0   

is defined by 

(0 < X < cc) (5.1) 

However, if 	c L, the integral does not converge pointwise (almost every- 

where) in general and instead we have to use mean convergence. For instance, 

using Theorem 74 in [78]  for the Fourier transform, it can easily be shown 

that, if 1 < p 4 2 and H_ 	is defined by 
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l.i.m.(q)
= 	

'' 	I cos(xt)(t)dt 	 (5.2) (H_ OW n - 	 i 
Jo 

where l.i.m.(q) denotes the limit in the L norm, then H_ is a continuous 

linear mapping of L into L q.On the other hand, Theorem 80 in [78]  shows 

that 
I- 
 f

fl 

(H$)(x) = 21 
	l.i.tn.(P)l-2'P /2.. 	cos(xt)$(t)dt 	(5.3) 

n-' 	 lit  
0 

defines a continuous linear mapping of L into L p 	under the same con- 
21P - 1 

ditions. If p = 2, the situation is very clear since then H_ is an 

involutory homeomorphism of L 2 onto itself (so that H 	= H_ i ). However, 

if 1 < p < 2, there does not appear to be a simple characterisation of the 

range H_(L) as is noted in [78] again. What can be said is that the range 

is not the whole of L (for (5.2)) or L 	(for (5.3)). The case p > 2 
- 	 Wpl 

as well as the case of L(0) produces further difficulties which we will 

not dwell on here. 

A number of authors have extended the Hankel transform to various classes 

of generalised functions. One notable theory was developed by Zemanian and 

is described in detail in [87, Chapter 5. This theory has since been 

extended by Dube and Pandey [6] and Lee [383, 39J 	However, there is a 

drawback to this theory from our point of view. The spaces used are ideally 

suited to the Hankel transform but seem remarkably awkward from the point of 

view of other operators which are likely to arise in conjunction with the 

Hankel transform. The precise behaviour of even simple differentiation 

operators, such as D itself, is often troublesome to find while the behaviour 

of an operator such as I' is not at all clear or simple. These points are 

dealt with in a little more detail in [51]. Another approach has been 

adopted by Braaksma and Schuitman [2]. They use the Mellin transform to 

produce a theory for the case p - 	using spaces very similar to our 
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spaces 	Not surprisingly, our results for p 	are in accord with 

theirs. Our theory has the advantages over those mentioned above of dealing 

with all values of p in the range 1 4 p 	and allowing us to relate the 

Hankel transform to other operators, such as fractional integrals, very 

easily. 

As before, -we start with the simplest case when we have a straightforward 

integral operator and then extend this operator in a way analogous to that 

used in Chapter 3. Again the process is quite long so that we defer con-

nections with fractional calculus to the next chapter. However, we will 

deal with a particularly important modification of the Hankel transform which 

will be used extensively in Chapters 6 and 7. 

5.2 H 
V 

on F 	: the Simplest Case
poij

For any complex number v and suitable functions $, H, the Hankel trans- 

form of order v of 0 is defined formally by 

Hx)  T Vxt J v (xtWt)dt 	 (5.4) 
0 

where, as usual, J is the Bessel function of the first kind of order v. 

In view of our comments above, there is a problem as to how (5.4) is to be 

interpreted. Fortunately, if • is a function in Fand not merely in L, 

the differentiability of 0 enables us to use pointwise convergence in (5.4) 

under reasonably generous conditions, as we shall see in a moment. Our 

comments also indicate a possible difficulty in pinning down the range of 

H on F 	; we would expect H to map F 	into both F 	and F V 	 V 	 p,O 	 q,O 	P2fP- 1 
under appropriate conditions, including 1 < p < 2,and this is so. 

Fortunately, as in §3.2, Theorem 2.9(i) comes to the rescue; if 1 < p < 2, 

F 
p,2/p-1 - c F q,O  so that F P,2/ p-I  is indicated as a possible candidate for 

This, too, will be borne out in practice. 
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Our first little result sets the ball rolling. 

Lemma 5.1 

Let • c F 	 with - Re v - 3/2 + 1/p < Re u < l/. Then H 0, as 

defined by (5.4), is infinitely differentiable on (0,) and, for k  

k 	 k k 
6 H$ = (-1) H(6+I) $ 	 (5.5) 

(where, as usual, 6 = xD and 1 is the identity operator on F). 

Proof: - Integrating by parts, and using the fact 119, p.l]J that 

v+l 	 v+l 
z 	J (z) = d/dz(z 	J 1 (z)) 

we find that 

(H$)(x) = - 
	

(xt) 1  J 1 (xt)((6$)(t) - (v + 1/2)$(t))dt. 	(5.6). 

The integrated terms vanish by virtue of Theorem 2.2 and properties of J, 

while the latter also show that, since 6$ - (v + 1/2)$ c F 	 the integral 

in (5.6) converges absolutely and uniformly on compact subsets of (0,) under 

the given restrictions on the parameters. 

Further, if, temporarily,we write 

= 6$ - (v + 1/2)$ 	($ c F 	) p,u 
then 

Hence H$ is continuous on (0,"). 

(5.7). 

(H$)(x) = - J 	
-1/2 

j 
V14.1

(u)(R $)(u/x)du/x . 	 (5.8) 

Again we may differentiate under the integral sign to obtain 

D(H$) (x) = x 1 	u 1/2 J 1 (u) [(u/x) (DR$)  (u/x) + R$(u/x)du/x 

> 6H V$ ( x) = 
	 v+l 

-1/2 
j 	(u)[(6+I)R$](u/x)du/x. 	 (5.9) 

Finally since (6+I)R$ = R(6+I)$, (5.8) and (5.9) give 

= - H (6+I)$ 
V 

which is (5.5) for k = 1. A simple induction argument completes the proof. 

	

To obtain the continuity of H 
V 	 p, - 

as a mapping from F 	into F 2/1 
	we 

will Study the operator C defined for suitable functions $ by 
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CO  JO
-1/2G 	u 	J 	(u)4(u/x) iiu/x. 

u+l 	 (5.10) 

Lemma 5.2 

If -Re v - 3/2 + i/p < Re p < l/p, then G V  is a continuous linear mapping of 

L into L 
W 

Proof:- First we observe that, for 1 4 p < 	and f c L 2/p - I - u 

Jo ', 

u+i-2/p 
f (x) dx = f lxf 	ldx ix 

o 

so that I If(x)i 1p,2/p-l-p = lix 1f(1/x)j  I 	, 
p,p 	

using the notation of (0.5). 

Since the corresponding result for p = 	is trivial, it is sufficient to 

prove that (l/x)G(l/x) c L 

(l/x)(G)(1/x) = - f co"  

f 
 D 

0 

for all 	c L1' 
p
. But, from (5.10), 

-1/2 
U 	J 

- 1/2 
(v/x) 	1 1 (v/x)4, (v)dv/x 

=> x 1 (G )(l/x) = - 
I 	

(v/x) P+l/2 
	(v/x) vdv/v. 

V 	
o 	

v+l 	
(v) 

Since x(x) 	L , 	the result will follow from, for instance 

E72 Lemma 3.1,provided that 

J 	I i/p-it 
 x -p-l/2J v+l (l/x) dx 

o   

orRe 	
- i/p - l/ 2  1J 

v+ 1 (t) I J o   

This is so since Re p - i/p - 1/2 + Re v + 1 > -i (for t = 0) and 

Re p - 1/p - 1/2 - 1/2 < -i (for t = ). This completes the proof. 

This enables us to prove the following result. 

Corollary 5.3 

If -Re u - 3/2 + i/p < Re p < l/p, then H is a continuous linear mapping 

of F 
p,p into F 211 
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Proof:- Let 4)  c F 	. 
pap 	

We note that 	is a linear combination of the 

functions Cc d
2. 	2. 
4)/dx (2. = 0,l2 .... k) and x k k 	k i d 4)Idx 	s a linear combination 

of the functions 62.4)  (2. = 0,1,2,...,k). Also, from (5.7), (5.8) and (5.10), 

H =GR. Hence 
V 	VV 

'rk 

k 
p,2/p- l - ii E 	a2. 	 (6 2.H$) 

2. =0 

k 
p,2/p-1-p 	 2. = Z a2. y 	 (H(cS+I) 4)) 	 by (5.5) 

2. =0 

k 
b yP'  (R (6+1)2.4)) 	 by Lemma 5.2 
it 0 	V 

k+ 1 
E 	E C Y' )1  (61 4)) 	 by (5.7) 

2.. =0 

k+1 
• 	Z 	d2 y$Ii(4)) 

where a2., b2. (& = 0,1,...,k) and c2.,d2.(& = 0,1,.... ,k+l) are constants 

independent of 4). This completes the proof. 

It is natural to ask whether, in the circumstances of Corollary 5.3, 

H v  maps F
p,u 	p,2/p - 1 - 

onto F 	 . This is so, under certain additional 

conditions. To obtain the result we again fall back on analytic contin-

uation. 

Theorem 5.4 

Let -Re v - 3/2+ i/p < Re i < l/ and let 4) £ 	Then, H has 

Frchet derivatives D 
k 
 H V  P V (k = 0,1,2,...) with respect to v on F 	and 

00 

[akH,ak]4)() = 
	

f_kJ/ak d . 	 (5.11) 
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In particular for fixed x c (O,) and fixed • £ F 	with Re p < lip, H(x) 

is an analytic function of v in the half-plane Re v > -Re p - 3/2 + 

Proof:- We omit the details. A proof using the Cauchy integral formula is 

given'in [si, Theorem 3.3]. 

Corollary 5.5 

Let -l/q < Re p < lip. Then, for fixed • c F 	and fixed x c (O,), 

H v v H 4(x) is analytic in v in the half-plane 

Re v > max(-Re p - 3/2 + lip, Re p - 3/2 + liq) 

Proof:- If -Re v - 3/2 + l/, < Re .i < 1/r 	c Fy21 
p - i - u 

and if also 

-Re v - 3/2+ i/p < 21p - 1 - Re p <I/p, H H 4 e F 	, by Corollary 5.3. 
p,p 

Hence under the given conditions and with v in the stated half-plane, 

H v v 
H 	

p 
c F 	for all . Then, using Theorem 5.4 and the chain rule for ,p 

Frchet derivatives E70, p.164], we deduce that HH as an operator from 

F 	into F 	is Frchet differentiable for the stated values of v and the 
p,p 

result follows. 

The point of considering HH is that if, in addition to the various 

other conditions, Re v > - 1/2, the Hankel inversion theorem [82, p.456] 

states that HH is the identity operator. We can use analytic continuation 

to remove this extra restriction as follows. 

Lemma 5.6 

If max(-Re v - 3/2 + l/p, - 1/q) < Re p < min(iip, Re v + 3/2 - i/q), then 

= 	(c F pod (5.12) 

Proof:- First let 	c C(O,). Then, since • £ L 1 (O,), (5.12) follows by 

the Hankel inversion theorem if Re v > - 1/2 and by Corollary 5.5 otherwise. 

Finally, since HH 
V 

is a continuous linear mapping from F 	 into itself
poll 

under the given conditions, (5.12) holds for all 4 c F 	by Corollary 2.7.
Poll 
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We can therefore summarise our progress so far. 

Theorem 5.7 

If -Re v - 3/2 + 1/p < Re p < lip, then Fi 
V 

is a continuous linear mapping of 

F 	into F 
p.2/p 	1 	

. If, also, -l/q < Re p < Re v + 3/2 - i/q, then 
- 	-. p 

H 
v 

is a homeomorphism of F
P,, 	p,2/p - 1 onto F 	 and 

 - p 

H_ 	H . 	 (5.13) 

Proof:- The results follow at once from Corollary 5.3 and Lemma 5.6. 

The possible values of p and v in Theorem 5.7 are somewhat restricted. 

For instance, the condition - i/c < Re p < i/p restricts p to a strip of 

width 1. However, the next stage in our operation relaxes the restrictions 

considerably. 

§5.3 H on F 	 the Extended Operator.
POP  

It turns out that there is a fairly simple and natural way to remove the 

restriction Re p < 1/p which figures prominently in the previous section. 

We return to (5.6) and instead of using R,as  given by (5.7), we will find 

it more convenient to use the operator N, defined for any complex v and 

suitable functions 4) by 

	

N4)(x) = x 	/2d/dx(x_v_]/24))= d4)/dx - (v + 1/2) x 1 4).' 	 (5.14) 

Obviously N4)(x) = x 1 R4)(x) and from Theorem 2.11 and Corollary 2.15, N 

is a continuous linear mapping of F 	into F 	for any complex numbers 
p,p 	p,p 

p and v. (5.6) can then be written in the form 

H4)(x) = -X- 1 H 1  N4)(x) 
	

(5.15) 

provided that -Re v -3/2 + i/p < Re p < 1/p in the first instance. However, 

by Corollary 5.3, the rightrhand side is meaningful provided only that 

-Re(v+l) - 3/2 + l/p < Re(p-1) < i/p 

or -Re v - 3/2 + i/p < Re p < 1/p+ I. 
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We can therefore use (5.15) to define an extension of the operator H to 
V 

spaces F 	such that 1/p < Re u < i/ + 1 (and -Re v - 3/2 + i/p 

< Re p  still) and for these spaces H 
V 

is an integro-differential operator. 

When Re p < lip, H as given by (5.15) coincides with H as given by (5.4) 

because of the above motivation. Having replaced Re p < i/p by 

Re p < i/p + 1, we can now repeat the process and eventually obtain an 

operator H on F 	 subject only to the restriction -Re v - 3/2 + i/p 

< Re P. Here is the appropriate definition. 

Definition 5.8 

Let Re v > - Re p - 3/2 + i/p. For 	c F 	, we define H • by 
p,p 	 V 

H(x) = (_1)k 	
k H v+k v+k-1 	v+1 

N 	... N 	N(x) 	 (5.16) 

where k is any non-negative integer k such that Re p < i/p + k. 

Notes 

Since -Re(v+k) - 3/2 + i/p < Re p - k < l/p, the right-hand side of 

(5.16) exists and defines a continuous linear mapping of F 	into 

by Theorem 2.11, Corollary 2.15 and Corollary 5.3. 

As usual, we must check that this definition is independent of the choice 

of the non-negative integer k satisfying Re p < i/p + k. To see this, 

suppose also that Re p < i/p + & where k > 2  (without loss of generality) 

and that -Re v - 3/2 + i/p < Re P. Then for • c F 
P911 9 

(_i)k -k Hk NV+ki '. N 

= (-i) x 	 (z) 
H+k N +1 

 ... N+L(N £1 ••• N) 

= (1)L 	
HV+k_(k) N' 1  ...N 

The last step follows by (k-0 applications of (5.15) with 	replaced by 

N, this being justified since -Re(v+Z)-3/2+1/p < Re p - £ 

< i/p + (k-Z). The required result follows at once. 
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By Note 2, if + c F 	 where -Re v - 3/2 + 1/p < Re i < 1/p,H+. as 

given by (5.16) ,agrees with H4, as given by (5.4). 

If -Re v - 3/2 + 1/p < Re p < i/p + k, then (5.16) can be written expli-

citly in the form 

k -k I 
(H +)(x) 	(-1) x 	I "Xt J 	(xt)tv+h/2(td/dc)k t- v-1/2  4(t)dt 

o 

= (- 	x H 	x 	 x 2) 	-k 	v+k+1/2 	k -v-1/2 (D,) 	4(x) 	 (5.17) 

where D2  is defined via (2.14). 

cc 
For • c C(O,c) (regarded as a subspace of F 	(5.16) agrees with 

A similar process has been carried through by Zemanian [87, p.163] for 

his spaces. 

To help us to study the invertibility of our extended operator, we need 

Le=a 5.9 

Let Re v > - Re p - 3/2 + lip, + c F 	 and let L be any non-negative
p 11 

integer. Then 

= (1)9' N+t_i ... N 1  NH+ . 	 (5.18) 

If also Re(p+v) # - 3/2 + i/p - 2s (s = 0, 1, ..., t-1),then 

= 	N 1  N 1  •.. 	H +t (x+). 	 (5.19) 

Proof:- . Let $ c C(O,o). Then, by Definition 5.8, Note 5, H 	is given via 

(5.4) and since x4 e C(O,cc), the same applies to H+&(x+).  Hence in this 

case, (5.18) can be established by differentiating under the integral sign 

in (5.4), the details being as in [87, p.139]. Also, since -Re('+t) - 3/2 

+ i/p < Re p + L, Definition 5.8, Note 1, shows that both sides of (5.18) 

define Continuous mappings of F 
p , p 	p 9 2/p-i-p- 

into F 	 . Hence (5.18) holds 

for all + c F 	 by Corollary 2.7.
pow 

To establish (5.19), we recall that from (5.14), 

N 	v+ l/2 D 	v-1/2 
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Hence by Corollary 2.15, N 
V  is a horneomorphism of Fp,u 

Onto F 	provided 
that Re(p-v-1/2) 	i/p. Thus, if s-0,1, ... , Z - 1, N 	is a homeomorphism \)+5 
of  

p,2/p-l--p-s onto  p,2/p-i-p-s-1 since Re(2/P_l_P_S_ V _ $ l , 2)  

Up by hypothesis. (5.19) now follows at once from (5.18). 

We will find two uses for Lemma 5.9 in what follows. The first use is in 

proving the following result. 

Theorem 5.10 

If Re v > -Re p - 3/2 + lip, then H is a continuous linear mapping of 

F 	intoF p,p 	p,2/p - 1 - p 

H V is Frchet differentiable on F 	 for Re v > - Re j - 3/2 + 

If Re v > max (-Re p - 3/2 + l/p, Re p - 3/2 + liq), then H is a 

horneomorphism of F 	onto F 	 and 9 1  = H p,2/p-l-p 	v 	v 
Proof:- (i) Follows from Definition 5.8, Note 1. 

Since N 
V is Frchet differentiable on F 	 for all complex p and v,POIJ 

the result follows from (5.16), Theorem 5.4 and [70, p.164]. 

Since Re v > - Re p - 3/2 + lip and Re v > - Re(2/p - 1 - ii) - 3/2 

+ l/p, HH is a continuous linear mapping from F 	 into itself and 

Frchet differentiable under the given conditions, by (i) and (ii). 

We will show that H H is the identity operator on F 	• Let k be a vV 	
p,p 

non-negative integer such that Re p > - l/q - k and let • c F 

By Definition 5.8 and (5.18) 

H 
V V (H 4') 

= (_1)k 	
v+k v+k-1 	V 

-k H 
	N 	N H 4> 

k =x-k  H 	H 	x 4> v+k v+k 

Now HV+k x 4> c Fp ,2/ p_l_ p_k and since -Re(v+k) - 3/2 + l/p 

< Re(2/p - 1 - p - k) < l/p, we obtain, from (5.4), 

Hk(Hk xk4') 	 [H+k(xk4>)](t)dt. 

(5.20) 

(5.21) 
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If, in particular, 	 k c C(O,) (as a subset of F), x • c C(O,) (as a 

subset of F 
p,lj+k 

 and since Re(v+k) > - Re(ji+k) - 3/2 + 

[HV+k(xk)](t) 
• J/ -

t-u JV+k(tu) u(u)du 	 (5.22) 

by Definition 5.8, Note 5. Since x 4(x) c L (0,a') in this case, the Hankel 

inversion theorem [82, p.456] shows that, if also Re v > - 1/2 - k,then 

k 	k 
H+k(H+k x 4) = x 4 

from (5.21) and (5.22). Hence from (5.20), we have H 	$ =4 for  4  c C(0,o) 

and under the additional restriction Re v > - 1/2 - k. The latter can be 

removed by analytic continuation and then, by Corollary 2.7 and continuity, 

we find that H v v 
	 P11.1 

H 4 = 4 for all 4 c F 	under the stated conditions. Simi- 

larly H V 11V 4  = P for  P c F 	 and this completes the proof of the 

theorem. 

Remark 5.11 

This proof is typical of many we shall encounter and, in future, we shall 

not give such full details. 

Having dealt with the restriction Re i < lip, we now turn to the other 

restriction which figures prominently in §5.2, namely -Re v - 3/2 + i/p 

< Re U. (5.16) is no help to us because if H+k  is interpreted via 

Definition 5.8, both sides of (5.16) are meaningful under the same condition, 

namely that which we are trying to remove: This is where we come to the 

second use of Lemma 5.9. 

Both sides of (5.18) have a meaning when Re(u+v) > - 3/2 + i/p. However 

the left-hand side is meaningful under the weaker condition Re(p+v) > - 3/2 

+ 1/p - 21. To exploit this, we "solve" for H4 obtaining (5.19). But now 

we run up against the same problems as in §3.3 because of the non- 

invertibility of N 
V 

on F 	 when Re( -v- 1/2) = lip. Nevertheless, we can 

make some progress here. The conditions under which (5.19) is valid suggest 

114 



the following definition. 

Definition 5.12 

For 1 	p 	and any complex number .i, we define the set r 	of complex 
numbers by 

= (v: 	Re(.i+u) 	- 3/2 + i/p - 22. for 9 = 0, 1,2, ...} • 	( 5.23) 
Remark 5.13 

As we shall see later, there are close relationships between 	and the 
p,u 

sets A 	and A' 	as given by Definitions 3.26 and 3.32 (with m = 2). p,i,2 

These emerge when we discuss the connections between fractional calculus and 

the Hankel transform in Chapter 6. 

(5.19) ana the conditions for validity also suggest the following defi-

nition. 

Definition 5.14 

Let v c QP'p  and let k be a non-negative integer such that Re(i+v) > - 3/2 

+ i/p - 2k. We define H on F 	by 

H(x) = (_1)k 
NV 1  Ni 	NV k_i Hk(x) ( c F) 	(5.24) 

where H +k(x' q) is defined via (5.16). 

Notes 

Since Re(i+v) > - 3/2 + i/p - 2k and Re(p+v) # - 3/2 + i/p - 2s 

(s = 0, 1, ..., k-i) the right-hand 	side 	defines a continuous linear 

mapping of F 
pop 	p,2/p- i-p 

into F 	 by Theorem 5.10(i) and Lemma 5.9. 

The definition is independent of the non-negative integer k satisfying 

Re(+v) > - 3/2 + i/p - 2k. The proof is similar to that in Definition 5.8, 

Note 2 but uses (5.19) rather than (5.15). We omit the details. 

As a special case of Note 2, for spaces F p'p  such that Re(i+v) > - 3/2 + 

l/p, (5.24) agrees with (5.16). 
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4. If desired, an explicit expression for H can be obtained using (5.17). 

In passing 	we note that an alternative expression for 	is given by 

H(x) = (_2)k x V  / 2 (D)k -v-k--1/2 Hk x k 
• (5.25) 

In particurar, if Re(ji+v) < 
- 3/2 + lip and k is the unique positive integer 

such that 

- 3/2 + 1/p - 2k < Re(p+v) < 
- 3/2 + i/p 	2(k1), 

then (5.25) takes on the form 

H(x) 	(-2)x 1-v/2-1/4-k/2,k H+k 
x 	 (5.26) 

where 1-
v/2-1/4-k/2, k is defined via (3.11). (5.26) foreshadows the 

results in Chapter 6. 

5. If 	c C(O,ci) is regarded as an element of F 	where Re(.i+v) < 
- 3/2+ 

lip, then H V  0 as given by (5.24) does not collapse to (5.4), for reasons 

similar to those discussed in Example 3.29. The situation is analogous to 

tI
cut"  Hankel transforms as discussed.by , for instance, Erdlyi [8]. 

To obtain the mapping properties of this version of H we need 

Lemma 5.15 

Let v e il , 	c F p,p and let k be a non-negative integer. 

Then (5.16) holds if H and Hareinterpreted in the sense of Definition 

5.14. 

Proof:- Let 9. be a non-negative integer such that Re(j+v) > 
- 3/2 + i/p - 29.. 

Since also Re( - k + v +k) > - 3/2 + i/p - 29., we have,for • c F 
(-1) k x-k H +k Nk i . 

= (1)k 
x 	 N1k. 	v+k+9.-1 Hk9. X 9.Nkl...N 

= (1)k+L N _ 1 
... N_ 9._i x 	H ~ 9. Nk9.l ........N 9. x 0 	(5.27) 

since, by (5.14), xAN 
V 	\)+A 

= N 	xA, N 
v 
 1 X A = xAN 

v+A  i under the appropriate 

conditions. By (5.16) and Definition 5.8, Note 3, (5.27) can be written as 
(j)L N.N 1  H 9. x 9.  which is H 	by (5.24). This completes the proof. 
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Remark 5.16 

We can prove similarly that formulae such as (5.18), (5.19) and (5.24) still 

hold when each Hankel transform H 
V 	p,p 
on F 	is interpreted via 

(5.4) if -Re v - 3/2 + i/p < Re p < I/p 

(5.16) if -Re v - 3/2 + i/p < Re w but Re p 	Up 

and 	(5.24) if V £ Q 
Ph.' 

but Re(ij+v) < - 3/2 + 

However we shall omit details. 

We are now ready for the fullest description of H on F 
poll 

Theorem 5.17 

If v c Q 
pip 	V 

,then H is a continuous linear mapping of F 	into 
Pip 

Fp,2/p-l-p 	If also v c Q q,- u 	V 
, then H is a homeomorphism of F 	onto 

p,p 

Fa ndH 1 =H. p,2/p-l-p 	v 

H is Frchet differentiable on F 	for v c 2 
V 

	
Pop for  

Proof:- (i) The first statement is Note 1 following Definition 5.14. For 

the second, let k be a non-negative integer such that Re(p+v) > - 3/2 + i/p 

- 2k. Assume also 

FwithH 
p,p+k 	v+k 

invertible on F 
Pd.' 

Hp = (1) k 

that Re(-p+v) > - 3/2 + 1/q 

H 
v+k  by Theorem 5.10 (iii). 

and, for i £ F 
p, 2/p-i-p' 

X 	N 	... NH* v+k v+k-1 	v 	v 

Then H 
v+k  is invertible on 

Hence from (5.24), H 
V  is 

by Lemma 5.15. The restriction Re(p+v) > - 3/2 + 1/q can be relaxed to 

V c 0 q, - p by similar arguments. Notice that since S1 
p 	

is not simply con- 

nected, nected, we cannot merely use Theorem 5.10(iii) and analytic continuation. 

(ii) can be proved using Theorem 5.10(u) and [70, p.164]but we shall omit 

the details. This completes the proof. 

It should be noted that there are other equivalent methods of carrying 

out the above programme. For instance, in [51], we made use of the operator 
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defined for any complex number v and suitable functions 4) by 

M V0 = 	D x v+1/24) = d4)/dx + (v + 1/2) x14) . 	 (5.28) 

Thus M is the formal adjoint of -N and the following analogues of (5.16) 

and (5.24) come as no surprise. 

Theorem 5.18 

Let v c 	, let 4) c F 	and let k be a non-negative integer. Then 
p,p 	 p,IJ 

H V  4)(x) = M v v+1 . M 	.. M v+k —l v+k H 	(x k4)) 	 (5.29) 

H4)(x) = k H 	M•• M4)(x). 	 (5.30) 
u+k vk_l  

Proof:- (i) If 4) c C(0,°°) and Re(ji+v) > — 3/2 + l/p, (5.29) can be proved 

as in [87, p.140] since we can then make use of (5.4). By continuity and 

Corollary 2.7, (5.29) holds for all 4) c F 	in this case. Otherwise, we 

have to use (5.24) and the proof is similar to those of Lemma 5.15 and 

Theorem 5.17 and uses Theorem 3.41. (ii) is similar. We merely note that 

is invertible on F 	if and only if Re(ii + v + 1/2) # 1/p. Thus (5.30)
11  

is well -defined if ' c 2 

Remark 5.19 

Formula (5.30) was used as a definition in our approach in [51]. We now 

see that the two approaches are, indeed, equivalent. 

§5.4 H on F 1  
V 

Now that we have a complete description of H V  on F 	, we can obtain our 

results for 	very easily by using adjoint operators. The extension 

process takes on the familiar form. 

By standard classical results, the operator H .  as defined using mean con-

vergence in a manner analogous to (5.3), is a continuous linear mapping from 

into L / 	provided that Re v > — 3/2 + l/q and l.< q 	2. In fact, 
0 	q —  
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H can be extended to a Continuous linear mapping from L q into 

L1q + hr - 1 + p provided that I < q < r < 	and max(1/q, 1 - l/r) 

+ Re w < Re v + 3/2 as was shown by Rooney in [73]. We merely mention that 

our extension is consistent with Rooney's but allows the range of values of 

the parameters to be enlarged by passing to generalised functions. For 

simplicity, we will deal with the case i = 0, Re v > - 3/2 + l/q and 

1 < q 	2. Let g c L. Then g generates Tg e F' 0  according to (2.16). 

Also H g  C L 1q1  and generates tHu g c F,1_21q = F 21 _ 1 . We require 

H ig = t Hg 	
(5.31) 

as an equation in F p',2/p-]. , where the H 
v  on the left is the desired exten-

sion. To see what (5.31) entails, let c c C(0,-) be regarded as an element 

of F
p, 2/p 	. Then we have - 1 

(H rg, ) = (rHg,) 	f=
Hg(x)(x)dx = 
	

g(x)H(x)dx  fco  
where we have used a version of Parseva].'s formula. Since -Re 

v - 3/2 + 
1/p < 2 /p - 1 < lip under the given conditions, Corollary 5.3 and Holder's 

inequality lead to 

(H Tg,cP) = erg, H) 

for all 0 c F2, - . For g c 	we arrive at the same formal expression 

(under the appropriate conditions) but with 4 c F2, - 
	- . This in 

turn suggests that we require 

(Hf,q) = (f, H) 

for all 0 c F 
p 2/p - 1 - and all f c F' , regular or not. Further, the ,  

expression on the right is well -defined provided only that u c c 1 
 

= Q
q 	by Theorem 5.17. Hence we finally arrive at the following 

definition. 

Definition 5.20 

Let 1 < p 	and let i be any complex number. For v c 	we define 
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H on F' 	by 
p,ll 

(Hf,q) = (f, H4) (5.32) 

for f c F' 	and 0 £ F  
p,ii 	 p. 2/p 	, where H 

v  is as in Definition 5.14. - 1 - p  

As we mentioned above, (5.32) incorporates (5.31) for classical functions 

f for which Hf exists under the conditions of, for instance, Rooney [73]. 

	

The properties of H on F' 	are easily obtained. 
V 	p,p 

Theorem 5.21 

If v £ ) - , then H is a Continuous linear mapping of F' 	into q, p 	 V 	 p, 
F
p  
' 	. If also v c sl 

p,p, 
H 
v  is a homeomorphism of F' 	onto p,p 

F' 	and H' = H p,2/p-1-p 	v 	v 

For fixed f e F' 	and 	c F,, 	, (H f,4)  is an analytic function p,p 	 1. J 	V 

ofvinc 

Proof:- The results follow immediately from Theorem 5.17 above and Theorems 

1.10-1 and 1.10-2 in [87] together with the fact that 	= 
q,-p 	p,2/p-l-p 

We mention in passing that obvious analogues of formulae such as (5.16), 

(5.18), (5.19) and (5.24) can be established on Fby taking adjoints of 

the results in the previous Section and noting that the adjoints of M and 
V. 

N 
V 	 V 	 V 

are -N and -M respectively. We omit the details.' 

§5.5 The t'todified Hankel Transform 

It is a routine matter to deal with several operators closely related 

to H. For instance, there are obvious analogues of Rooney's results in 

[72] for the composition of two Hankel transforms and of Okikiolu's results 

in 
 [

i 
54], r 55j for operators of the form x

v112 Hx Vl/2 
. However, for 

our purposes, there is one modification which is of great importance and 

for which we will display results explicitly. This is the operator 

defined initially for suitable complex numbers ri and a and suitable 
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functions 	by 

S''4(x) = 2 ci x
- ci 

Ico 

 t1-ci 
 J2 	(xt)4(t)dt. 	 (533) 

0 

This operator appears in the work of Kober and Erdlyi [32], [34] and is 

extensively used by Sneddon [76] in connection with dual integral equations. 

It is this application which will also concern us in Chapter 7. Meanwhile 

we observe that, formally, 

S'(x) = 2cz-1/2_a H2x112(x) 

where H 2 	is defined via (5.4). However, the right-hand side is well- 

defined for 0 c F 
PIP provided only that 2n+ci £ 0 

pfl.j I l'2- ci 
that is, 

Re(2q+a++l/2-a) 0 - 3/2 + i/p - 2i 	(2. = 0,1,2, .. .) 

or Re(2n + 	+ 2 	lip - 22. 	 (2. = 0,1,2, ...) 

so that n c Ain the notation of Definition 3.26. Because of what p,i,2 

comes later, it is convenient to drop the suffix 2 from A 	and 

A' 	(as given by Definition 3.32). 

Notation 5.22 

For 1 c p 	and any complex number p, 

= {n: Re(2n+.) + 2 # l/p - 22. 	(2. = 0,1,2, ...)} 	(5.34) 

A 	= {: Re(2-) 	- i/p - 22. 	(2. = 0,1,2, . . .)} . 	(5.35) 

We then make the following definition, suggested by the preamble above. 

Definition 5.23 

For n £ A 	and any complex ci, we define 	on F 	by 
P, 1.1 

s'(x) = 	 H2 	x2(x) 	 (5.36) 

where H 2n+ci is defined via (5.24). 

The following theorem is almost immediate. 
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Theorem 5.24 

If n c A 	and ci is any complex number, then Sflci is a continuous linear 
p,u 

mapping of F 	into F 	 . If also n + ci c A' ,then S n,a is a 
p,ii 	p,2/p - 2 - p 	 p,p 

homeomorphiStfl of F 	onto F 	- 2 	
and (S0ci) l = 

- p 

Proof:- This follows in a routine manner from (5.36) and Theorem 5.17 

together with the observation that A 	 = A' 
p,2/p - 2 	1J 	p,i.' 

	

To see how to extend Sflci to V 	we proceed formally. From (5.36) and 

(5.32), we have 

(Sflcif,4)) 	(f, 2cix 	2ciH2+ci  x'24)) = (f,x Sflcixl4)) 

and the right-hand side is meaningful if f c F' , 4) c F 	and 

	

p,p 	p,21p—u 

n c A 	 = .A 	, by Theorem 5.24. Hence, we are led to the following. 
p,2/plii 

Definition 5.25 

For n c A -  and any complex number ci, we define 	on F' 	by 
q, _ 11 	 p,p 

= (f, xS (S 1 " f,4>) 	
,cz 

x 
 1$) 	(4) c F,21_) . 	 (5.37) 

This definition ensures that 

Tg=TS 
r,a g 
	 (5.38) 

for g c L under the appropriate conditions. 
- p 

Theorem 5.26 

If i-i c A 	ci is any complex number, then S 	 is a continuous linear 

mapping from F' 	into F 	. If also 	+ ac A' 	, then S 1 " is a 
P, 11 	p,2/pp 	 q,P 

	

ri,ci -1 	r+ci,-a 
homeomorphism of F 	onto F -  and (S 	) 	= S 

P,p 	p,2/p p 

Proof:- This follows easily from Theorem 5.24 above and Theorems 1.10-1 and 

1.10-2 in [87]. 

We now have all the information we require about H and S' on F' 	and, p,u 

whereas it would be possible to mention some consequences of a classical 

nature at this stage, there will be enough of these in Chapter 7. 
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6 Fractional calculus and the Hankel 
transform 

§6.1 Introduction 

The purpose of this chapter is to use results in Chapters 3 and 5 to 

establish some connections between fractional calculus and the operators 

H and S' within the context of our spaces F' . There are many such V 	
P,1J 

connections but we shall restrict attention to those which illustrate 

points of the theory already developed and to those which will be needed 

in the next chapter. 

It is not at all surprising that there are such connections, since many 

properties of the Bessel function J can be written in terms of fractional. 

integrals and derivatives. To give one instance, we see from [78, formula 

(7.1.11)] that 

1/2 (x)= 
2 V 

1-1/2,v (/(2/n) cos x) 	(x > 0) 	(6.1) 

if Re u > 0. Many others are to be found throughout [19], [78] and [82]. 

Again, as we saw in §3.6, there are relationships between Erd1yi-Kober 

operators and the operators L, the latter in turn being related to Bessel 

functions. A further selection of relevant material can be found in, for 

instance, [8], [32], [34], [54], [55], [72] and [73]. 

§6.2 Erdlyi-Kober Operators and H 
- 	 V 

We take as our starting point the work of Kober [32]. He studied the 

Hankel transform on L 2 (O,c.) and used Tricomi's form L defined by 
= 	

(2)Jfl 1(2)(t)dt 	(0 <x c ) 	 (6.2) 

Using Mellin transforms, he showed that, if Re n > 0, Re v > -1 and 
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£ L (O,), then 

v+2cz 1v/2,cz , 
	 (63) 

The operator J is not suitable for functions 0 in a general L space. 

However, by simple changes of variables such as u = t 2/2, we find, after 

some completely routine algebra, that (6.3) is equivalent to 

i/ 2  -1/4,a H 	H 	iv/2_l/4,cz 	 (6.4) 2 	 v 	v+2cz 2 

Of course, both sides of (6.4) can be interpreted under conditions of 

great generality using our previous theory and this we will explore in a 

moment. But first, we notice that in changing fromJ to H we have gone 

from an operator of the form 1,a to one of the form i' 8  (which has 

already appeared in (6.1)). Indeed, all our relations in the rest of this 

chapter will involve Ilt*aor K' with m 	2, rather than m = 1. 

Remark 6.1 

From now on we shall make extensive use of Notation 5.22, wherein the sub-

script 2 is dropped from A 	and A' 

We now consider in detail the conditions under which (6.4) might hold 

for • e F 	. By Theorems 3.31 and 5.17, the left-hand side of (6.4) 

defines a continuous linear mapping of F 	into F provided that 
PDIJ 	 p,2/p-l-u 

• £ Q 	 and v/2 - 1/4 c Aor, equivalently, that v c 2 	and q,-u 	 p,u 
• e 0 q-i.i 
	The corresponding conditions for the right-hand side are that 

• c Q 
p P Ij 	 I. 3J 

and v + 2a 	2 	. Since these pairs of conditions are not the ,  

same, some •further investigation is called for. It would seem that the 

potential "singularities" for values of v(e sl 	 ) such that v 	or 

	

Pd! 	 q,i 
v + 2ci j n 	are perhaps removable. (See Example 3.39 and Remark 3.40.) 

We now show that this is so. 

	

Let k be a non-negative integer and let v e cz 	. Then, if v c 
Pd' 

also, we may write 

124 



I'(x)I+kc_kX_2(n+k)(D2)-k 	 c F ,21 _ 1_). 	(6.5) 2 

	

	 2

Formally this is (3.32) which remains valid under the conditions stated; 

see our comments in §3.4. Hence if 4 c F 
p,11 9  (6.5), (5.28) and (5.29) give 

H 4,  ') 

= 2k 
I 
 v/2 - 1/4 + k,cz-k 

x 
	
(X- 

	

x -v+1/2- 2k -1 D)  -k 	X_ -k  v-1/2 (X- - D) 
1 k 

x 

	

u-1/2+k H 
	

-k4, 
v+k 

k -k (v+k)/2-l/4,cx-k Hv+k 
X
-k 4, =2 x 	12 

However the last expression is meaningful provided only that v + k c 

and v + k c 0 	or, equivalently, that v c 2 	and 'v + 2k £ 

	

q,p+k 	 q,—ii 

The second condition can be satisfied even if v i c?qjj  by taking k 

sufficiently large. Hence we may define 12 
v/2-1/4,aH on F 	subject only 

to the condition v c Q 	as follows. 
p,'J 

Definition 6.2 

If 	il 	we define 
12'4 	H on F 	by 

p,1J 

I v/2-1/4,c H 	2 
k 
 x 	I 

-k (v+k)/2-l/4,c&-k H 
	

-k1 	
(, 	F 	) 4,=  

2 	 v v+k 

(6.6) 

where k is any non-negative integer such that v + 2k c 9 and where the 

operators on the right are as in Definitions 3.27 and 5.14. 

Notes 

It is easy to check that this definition is independent of the choice of 

non-negative integer k. 

If v c 0 	
q, p,u 	 .z 

and v e 2 	, (6.6) coincides with the original definition 

since, in this case, we may take k = 0. 

(6.6) provides an analytic continuation of the expression 

H 4,(x) from Q 	- 	to all of 	2 
2 	 v 	 p,ii 	q,—l.1 	 p, Ii 
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4. The operator is still a Continuous linear mapping of F 	into 

F 	 by Theorems 3.31 and 5.17. p,2/p-l- 

The operator on the right-hand side of (6.4) requires similar treatment. 

Without going into the details, we merely say that the following extension 

is suggested. 

Definition 6.3 

If v c 0 	we define H 	
1v/2h/4,ci on F 
	by p,u 	 v+2a 2 	 p,p 

H2 i2-u/4, 	= 2 -k k H 
	 1 (v-k)/2-l/4, cz+k k 

X 4> (v-k) +2 (a+k) 

(4> £ F) 	(6.7) 

where k is a non-negative integer such that v+2cz+2k c ) 	and where the 

operators on the right-hand side are as in Definitions 3.27 and 5.14. 

Note 

Comments analogous to Notes 1-4 above apply. This time the singularities 

for v+2ct 1 0 	have been removed. 
p,u 

Having sorted out what we mean by (6.4), we can now find wh'en equality 

holds. 

. 	 I. 

If 4> c 
Fp,1J 

 and v c Q 
p,IJ 

, then (6.4) holds, the operators being interprete 

via Definitions 6.2 and 6.3. 

Proof:- When Re(i+v) > - 3/2 + lip, Re(i+v+2cz) > - 3/2 + i/p and 

Re( - i.i+v) > - 3/2 + l/q, the result can be obtained from Kober's by taking 

cc 

4> c C(O,o') and then using continuity, denseness and analytic continuatior 

as in several previous proofs. The three conditions can be relaxed 

successively to v c ) 	
p,u p,u , 

v + 2a 	Q and v c Q respectively. For 
q, - u 

instance, let Re(p+v+2cz) > -3/2 + lip, Re( - +v) > - 3/2 + l/q and V 
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and choose a non-negative integer k such that Re(.i+v) > - 3/2 + i/p - 2k. 

Then 

1v/2-1/4,a H 
V 

= 2k 1  21/4,a k 
H _v_k+l/2(D2 	X 

)_k v-1/2 	
by (5.30) 

H 	x =2 
k 

x  k 1(v+k)/2-i/4,ct 	 (D ) -k 
 v-k+1/2 	-k v-1/2 

2 	 .  

X_ = 2 x 
k k 	 (v+k)/2-l/4,cz 	v_k+l/2(D -k v-1/2 H +k+ 2 1 2 	 ) 	x  

by the previous case 

=H 	x v 2 cz+ l/ 2 ( D )k v+2ai-k-]./2  1 (v+k)/2-1/4,a 
\)+2a 2 

v-l/2 x 	 by (5.30) 

= H 	1v/2-1/4,a 
v+ 2a 

using the theory of §3.3. The other two conditions are relaxed similarly 

and can finally be removed using analytic continuation as described above. 

We omit the details. 

The following adjoint version of Lemma 6.4 comes as no surprise. 

IfqcF 	
p, p,u 	 u 

and vcc2 	,then 

H K 2+1/4,a4 = K)24.1.4,a H 
v2 v+ 2 a (6.8) 

where if v 4 Q - or v + 2a t 	, the left-hand or right-hand expression q, 	i.i 	 p,1.! 

respectively is to be interpreted in terms of its analytic continuation. 

Proof:- We omit the details merely remarking that the appropriate analytic 

continuations are adjoint versions of (6.6) and (6.7). 

The final piece of this little jigsaw is provided by Rooney. Using 

Me].lin transforms also, he shows in [72, Lemma 8.1], with slightly changed 

notation, that under appropriate conditions, 

H 	H 	= (KV/ 2+ 4 , 1/2 ) - i 1 v/2-1/4, y/2 	
(6.9) v+y v 	2 	 2 
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(6.9) is true, for instance, for 	c L2 (O,x) if Re v > -1 and Re y > 0. 

(6.9) can be recast in the form 

i2h/4, H 	= K2+1/4,H 	 ( c L 2 (0,co) ) v+2a 

in view of the Hankel Inversion Theorem. By applying the usual method we 

can prove the following, result. 

Theorem 6.6 

If+F 	and vcS 
PIP 

 ,then 

I v/2-1/4,oL H 0 =H 
	1v/2-l/4,ci = Kvt2+114, H 	= H Kvt2+1/4, 2 	 v 	v+2ct 2 	 2 	 'u+2c 	v2 

(6.10) 

the operators being interpreted in terms of analytic continuation where 

appropriate. 

Proof:- We use Lemmas 6.4 and 6.5 along with (6.9). The details are 

omitted. 

The corresponding result for F' 	is easily obtained. 
Poll 

Theorem 6.7 

IffcF' 	and vcc2 	,then 

Iv24I4,aH f = H 	I /2j4, f = K 2" 'H 	f = H K2J4f 2 	v 	v+2c 2 	 2 	v+2a 	v2 

(6.11) 

the operators being interpreted in terms of analytic continuation where 

appropriate. 

Proof:- (6.11) follows on taking adjoints in (6.10). For instance, if 

• c F 	 (H K2/4f,q) = (f, 12 v/2-1/4,a H4) and we can extend V 2 

the definition of the left-hand expression to all values of v in Q 	via 
q, - ii 

(6.6). Again we omit further details. 
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As an application of our last result, we prove the following result for 

three Hankel transforms, often attributed to Planchere]. [68]. 

Theorem 6.8. 

Ci) 	Let a E SI 
p p,iiJ

, 	 , y c ST? 
u 
 and 4) c F 	. 	Then 
 

H H H 4) =-H y 	a H H 4). 

Let a c sl 	, 	c 2 	, y c c 	and f c F' . Then 
p,u 	q, - u 	 p,ij 

H 
a 	y 	y 8 cz 
H H f = H H H f. 

Proof:- (i) HHH4) 

= H K 2+1/4,-y/2-12 
a2 	 2 

- H Ka/ 2+ h/ 4, y1 2- a/ 2 K8 / 2 / 4 ,a/ 2  12 1y/214,6/2-y12 
- a2 	 2 	 2 

(6.12) 

(6.13) 

by (6.9) 

= H 1 ct/2-l/4,y/2-a/2 1y/2-1/4,/2-y/2 K2+h/4,a/2/2 	by (6.10) y2 

= H ia! 2  ./4,/2a/2 Kf2fh/41a!28/2 

= HH8H4) 	 by (6.9). 

Here we have also made use of Example 3.39 and Theorem 3.41. Each step 

can be justified under the given conditions. (ii) follows on taking 

adjoints in (i) and the proof is complete. 

We should say that there are other ways of obtaining (6.12) for classi-

cal functions 4). For instance, de Snoo [5] uses Mellin transforms. Also, 

(6.12) and (6.13) are particular cases of a more general result for so-

called Watson transforms. 

56.3 Erdlyi-Kober Operators and Sfla 

Our second set of results concerns the well-known connections between 

the Erd1yi-Kober operators and the modified Hankel transform operator 

r1,a discussed in §5.5. We shall make extensive use of these connections 
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in the next chapter and our main concern here is to state the conditions 

for their validity relative to the spaces F 	and F' . The results con- 
p,u 	p,ij 

cerned can be found in [76, p.274  formulae 13A-18A] as well as in the 

survey article in [74, p.41]. 

Theorem 6.9 

Let $ c F 	• Then 
p,1J 

' 	S''$ 	if r c A 	, n+a c A' (1) 	1 2 	S 	 p,u 	p,lj 

Kfl , a 	= sna q, 

snaB I na, = s'8 

Sri  

Sn " S ' ' 	= 

if n £ A 	
, 

n+a c A 
P. 

if T) c A 	, n+a c A' 
p,1J p,u 

if n c A 	, fl+QCA 
p,u 

ifncA ,fl+cjcA' 
P, 1 1 Pop 

if n e A' 	, c A 
p, 1J p,1.1 

The right-hand sides provide analytic continuations of the left-hand sides 

to all values of ri in A 	(in cases (i)-(v)) or in A' 	(in case (Vi)). p,u 	 p, 1_L 

Proof:- All parts are similar; we consider only (i). 

If ri c A 
poll

,  the right-hand side of (i) is a continuous linear mapping 

of F P, 
11 

into F P.24-2-pby Theorem 5.24. The same is true of the left-hand 

side if n+a c A = A' 	initially. However, using (5.36) we can p,u 

write the left-hand side in the form 

x 2 
a -cz-l/2 I ri+cz/2-1/4,6 

H 	x 2 	 2n+cl 

to which we can apply Definition 6.2 with v and i replaced by 2n+c and 

j+1/2-cx respectively. This removes the restriction n+a c A 	 and 

it now remains to establish equality with the right-hand side for .r c A. 

This follows the familiar pattern. We first establish equality for 
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00 

c C(0,cr) and Re(2ri+p) + 2 > 1/p by proceeding as in [76], then extend 

to all 	c F 	by continuity and density and finally handle the case 

n c 	Re(2n+ij) + 2 < 1/p via Definitions 3.27 and 5.14. We omit the 

details. 

Finally, by taking adjoints we obtain the following result. 

Theorem 6.10 

Let f c F' . Then 
PIP 

(i) 	1fl+01, 	fl,a f = S' ' f 	if ri c A 	, fl+ 	c A' 

	

,-p 	q,-p  

K1 	sfl4a 	f = S' ' f 	if n c A 	, ri+cx c A 

	

p 	q,-p 

S +" S S na f = 	 if ri c A 	, n+a c A' 
, - u 

f = S'f 	if rj  c 	, nc c A 2 	 q,-Ap 

Sfla 	f = S'f 	if n c A 	, n+ E A' 
u 

S11" ri+a,f = K'f 	if r c A' 	11 r+cx c A 

	

2 	 q, -i 
The right-hand sides provide analytic continuations of the left-hand sides 

to all values of r in A (in cases (i)-(v)) or in A (in case (vi)). 

Proof:- These results follow easily from Theorem 6.9. For instance' if 
,  

p, 2/p-p 

(S T) 1, 
	K'f,) 

= (f, 	 x S' x) 	by (3.44) and (5.37) 

= 	 S' 

= (f, x snB x) 	 by Theorem 6.9(i) 

= (Sf,). 

as required. The other parts are similar. 
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Various classical results could be deduced from the above. However, we 

shall proceed to the most important application, namely dual integral 

equations. 
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Find functions f defined (a.e) on 

on (0,1) 

on (l,) (7.1) 

Dual integral equations of Titchmarsh type 

§7.1 Introduction 

In this chapter we will apply our theory to obtain results concerning 

the existence and uniqueness of classical solutions of dual integral 

equations of Titchmarsh type. Expressed very briefly and imprecisely, 

our problem is as follows. 

Problem 7.1 

Let g 2  and g be functions defined (almost everywhere) on (0,o') and let 
1. 

V19 v 2 , a 1  and a 2  be complex numbers. 

(O,) such that 

v 1 /2-a 1 ,2a 1  
S 	 f(x) 	g 1 (x) 

v 2 /2-c& 2 , 2cz 2  
S 	 f(x) = g 2 (x) 

More precisely, 81  and 
92  will be functions from some space whose values 

are known, at least on (0,1) and (l,) respectively. f is our unknown 

v/ 2-u. ,2a. 
function and initially, since we are working classically, S 	1 	1 

(i = 1,2) is defined,via (5.33), by 
v./2-ci.,2cz. 	 2cz. 	-2ct. 

	

r 	(xt)f(t)dt 	(7.2) S1 	
1 	

1f(x)=2 1 	1 
x 

	

0 	 V. 
1 

interpreted in the appropriate way. In our case f,g 1  and 9 2  will be 

elements of L spaces. 

Many problems in mathematical physics can be formulated as such a pair 

of dual integral equations. This matter is treated comprehensively in 

[76] to which we shall refer frequently. Suffice to say that, for instance, 

the choice of values 
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= 0 	v2  = 0 	a1  = 1 	and a 2  = 1/2 	 (7.3) 

gives rise to the classic problem of the electrified disk [76, Chapter 3] 

while the values 

= - 1/2 	v2  = - 1/2 	a1  = - 1/4 and a 2 = 1/4 	 (7.4) 

give rise to a problem involving the stress distribution across a 

Griffiths crack; see [81] and also [76, §4.5] where other similar pro-

blems are discussed. 

Associated with Problem 7.1 are the basic questions of existence and 

uniqueness and to deal with these we will use our generalised functions 

F. In addition to the motivation given in Chapter 1, there seems 

another natural reason why generalised functions should be employed here. 

The formulation of Problem 7.1 demands that something happens on (0,1) and 

something else on (l,00) and it seems conceivable that something fairly 

drastic may occur at the point 1. Possibly a Heaviside function of the 

form H(x-1) might suffice but it seems probable (and is indeed the case as 

we shall see) that a central role is played by the distribution 

defined by 

- 4(l) 	
(7.5) 

and distributional derivatives of 6 ] . (There should not beany confusion 

between 61 and the operator .6 = xD!) 

Our first task is to set up the analogue of Problem 7.1 for generalised 

functions in F' . For a classical function F such that Sfl)aF exists 
p,1j 

classically, our definitions in Chapter 5 and in particular (5.32) and 

(5.37) ensure that under appropriate conditions tS'F = Sl)aTF. Hence, 

if we now regard f, g 1  and g 2  as generalised functions, we will interpret 
V ./2-a. ,2ct. 

S 	 1f as in Definition 5.25. If our proposed solution f c F 

then Theorem 5.26 indicates that g. c F ,21 _ (i = 1,2) under appropriate 
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conditions and we will build this into our assumptions. Also, we need the 

usual idea of equality of two generalised functions on an open set. 

Definition 7.2 

Let G be an open subset of (0,) and let h i , h c F' . Then h 	h on 1 	2 	p,.i 	.1 	2 
C if (h1,4) = (h 2 ,) for all 	c F 	 whose support is a compact subset of 

C. We will require this for C = (0,1) and C = (l,). 

With this preamble, we are led to the following problem. 

Problem 7.3 

Let g 
1  . c F',2/p- (i = 1,2) and let v 1 ,v 2 ,c 1  and a 2  be complex numbers. p 

Find f c F' 	such that 
p,u 

v 1 /2a 1 , 2a 1  
S 	 = g 	on (0,1) 
v 2 /2 2 ,2a 2  

S 	 = g 	on (l,c) 	 (7.6)  

By studying this problem, we might hope to obtain information about 

Problem 7.1. In particular we will want to study existence and uniqueness 

for Problem 7.3. 

It should be mentioned that a similar investigation has been carried out 

by Walton [80], [81]. He uses Zemanian's theory and spaces and con-

sequently has to do some preliminary work in order to obtain analogues of 

our Theorems 6.9 and 6.10. Our theory is consistent with his but the use 

of extended operators allows us to handle more general conditions on the 

parameters. As Walton's work suggests, it is the uniqueness investigation 

which is, in many ways, the more interesting part of the exercise. 

§7.2 A Technicality 

Before dealing with the existence of solutions of Problem 7.3, we need 

to resolve a technicality. 
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Problem 7.4 

Let f , f c F' . Does there exist f e F' 	such that, in the sense of 1. 	2 	p,j 	 PIIJ 

Definition 7.2, 

= 	on (0,1); 	f = f 2  on (l,) ? 

The slight difficulty here is that standard results such as those in [24] 

or [75] cannot be applied as they stand since (0,=) 	(0,1) v (l,). 

Nevertheless, we can fall back on our structure theorem (Theorem 2.25) 

which reduces the problem to gluing together classical functions. 

Theorem 7.5 

Problem 7.4 has infinitely many solutions f c F', any two of which differ 

by a distribution whose support is concentrated at the point 1. 

Proof:- Let f 1 , f 2  be as in Problem 7.4. By Theorem 2.25, there exist a 

non-negative integer n and functions f1) c L 	 (1 = 1,2; k  

such that 
n 

=6k ?.(l) and f 2  = 	k (2) 

k=0 	 k=0 

using the notation of (2.15). (The same integer n can obviously be used 

for f 1 , f 2  by inserting zero functions if necessary.) 

everywhere) on (0,) by 

0<xl 

= 	(2) (x) 

Then f k 
	L( = 0,1, 	n) so that f defined by 

k=0 	k 

Define f 
k (almost 

is an element of F' 	which clearly solves Problem 7.4 and we have exist- 

ence. The second statement of the theorem is more or less immediate. We 
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can be more explicit and say that any two solutions of Problem 7.4 differ 

by an expression of the form 	
a 	where 	denotes the kth 	s di 

k=O 
tributional derivative of 61  (defined by (7.5)) atd a, ... aN are Constants. 

We shall require Theorem 7.5 almost immediately. 

§7.3 Existence of Solutions of Problem 7.3 

We are now ready to study Problem 7.3 and it is convenient to fix some 

notation. For the remainder of this chapter, v 1 , v2,a 
l 
 and a 

2  are fixed 

complex numbers and we shall write 

A = (v 1+v 2 )/2 - (cz1-a2) 	. 	 (7.7) 

We shall also require four non-negative integers k 1 , k2, 2..l and 

Notation 7.6 

Let j./2 + a. c A' 	(i = 1,2). We define k. (i = 1,2) as follows. 1 	 1 	q, - u 	 1 

If Re(v. + 2cz. + p) > - l/q, then k. = 0. 
1 	1 	 1 

Otherwise, k. is the unique positive integer such that 

Re (v. + 2cz. + ji) + 2(k. - 1) < - l/q < Re(v. + 2ci. + j.) + 2k.,. 

Let v/2 - 
	

c 	(i = 1,2). We define Z. (i 	1,2) as follows. 

If Re(v. - 2cz. - u) + 2 > 1/q, then 9.. = 0. 

Otherwise, 9.. is the unique positive integer such that 

Re(v. - 2cz. - ji) + 29.. < l/q < Re(v. - 2a. -u) + 29.. + 2. 

The need for these definitions will become clear as we proceed. 

The idea now is to modify the methods in [74, p.47] and [76] to take 

account of the extended operators and to incorporate k 1 , k 2 , L and Z 
2  in 

an appropriate way. As regards existence, we prove the following result. 

Theorem 7.7 

Let g.1  c F' 	, v.12 + . c A' 	and v.12-ct. 	A 	for i = 1,2. p,2/p-i 	1 	 1 	q,-i 	1 	1 

Then Problem 7.3 has a solution f c F' 
p,lj 
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Proof:- By the hypotheses and the facts that 

A 

	

	= A', we may conclude from Theorems 3. ii q,-2/p 
v 1 /2+cz 1 , X+k 2 v 1  v2 /2-ci 2 ,Q. 2  

1 2 	 K 2  g1 	 and K 2  

q,u-21p 

7 and 3.50 that 

£2 V 2 /2+a 2 ,k 2  

1 2 	 g 2  

exist as elements of F' 
p,2/p- . Hence, by Theorem 7.5, 3n e F' 	such 

that 

1 2 	 K 

h 	

v 1 /2+c 1 , A+k 2 v 1  v212- 
2 	

cz2,L2 	
on (0,1)  91  

= 	v 1 /2-a 1 ,v 2 -A+L 2 	v 2 /2+ 2 , k2 	
(l,) 	

(7.8) 
K2 	 1 2 	 9 2  

There are infinitely many such functionals h but any one will do here. 

Next we define H by 
v 2 /2cz22 , 2  

H=K 2 	 h. 

Since Re(v 2- 2cz 2+2 2-l+2/p-u) + 2 > l/p, H c F' 	also 
p , 

Finally, we define f by 
v 2 /2+Q 2 +k 2 , v 1 2cz 1 A-k 2  

(7.9) 

(7.10) 

Because of our choice of k
29  f c F' 	by Theorem 5.26. 

f is a solution of Problem 7.3. 

By Theorems 3.56 and 6. 10, we have 
S v1/2-cz1,2ci1 

A-v 1 /2+cx 1 , v 1 -A v 1 12-cz 1 ,A-v 1 +2cx 
= I, 	 S 	 f 

- Xv 1 /2+ci 1 ,v 1 -A Xv1i2+ci1+k2,-k2 
H - 2 	 1 2 

v 1 -A-k 
1 2 

We will show that 

)cv 1 /2+ci 1 +k2 , v1-X-k2 v2/2a221- 1 
 2  = 1 2 	 h  

If 0 c F 21 _ 1•  has support in (0,1), then so does 

Av 1 /2+cz 1 +k 2 +l/2, 'u 1 -A-k 2  
1( 2 	 0 since Re(v2 + 2cz2 + p) + 2k 2  > - l/q (so that 
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the K operator is given by (3.11)) . Hence, for such functions 4), 

(Sh1 ,2cz 4)) 

v 2 /2-c 2 +L 2-l/2,-t 2  Av 1 /2+a1+k2+1/2,v1-A-k2 
2 	 K2 	 by (7.11) 1   

v 1 /2+ct 1 ,A+k 2-v 1  v2/2a 2 , 2  
= (1 2 	 1( 2 	 g 1 , 

v /2-ci +2. - 1/2,-i A-v /2 +cz +k +1/2,v -A-k 

2 

= (g 1 ,4)) 
2cz 1  

on using Theorems 3.55 and 3.56. Thus S 	 f = g 1  on (0,1) 

Similarly, 
2a

S  

V /2—ci 2 ,A—v 2  Xv2 /2-ci 2 , 2ct 2 +v 2-A 
= K 2  2  

v 2 /2-a 2 ,A-v 2  v2/2+cz2+k2,-k2 H 
= K2  

v 2 /2-cz 2 ,A-v 2 	v2/2+a2+k2,-k2 K22 
	222 

h = K 2  

v 2 /2- cz 2+9, 2 ,A-v 2-2. 2 	v2/2+ci2+k2,-k2 
h = K2  

where we have used Theorems 3.50 and 3.55. As before, if 4)  c F 	has 

support in (l,co), then since Re(v 2-2a 2 +2& 2-1+2/p-) + 2 > 1/p,so does 
v2 /2+cx 2 +k2 +1/2,-k2  v1/2-a2+L2-1/2,A - v2 - £2 K2 	 12 

(so that we may use (3.10) and (3.14)). Hence, for such functions 4), 

V /2-cz2cz 
(S 2 
	2 , 	2 

f,4)) 

v 2 /2+ci 2 +k 2+1/2,-k 2  V 2 /2ci 2 +2.2 1/2,A-v 2-2. 
= (h, K 2  

0 
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V 1 /2-ci 1 ,v 2-A+L 	v2/2+c& 2 ,k 2  
= (K2 	 12 

K222'2 v2/2-cz2+&-1/2 , 
2 	 12 

V2/2ct 2 ,2cz 2  
= (g2 ,) as before so that S 	 f = g on (1,). Hence f, as 

given by (7.8) (7.9) and (7.10), is a solution of Problem 7.3. 

Remark 7.8 

Three comments are in order Concerning the proof of Theorem 7.7 

The hypotheses v./2+a. c A' 	, v.12-a. c A 	(i = 1,2) ensure that 1 	1 	q, - 11 	1 	1 	q,-i 
all the steps in the above analysis are valid. 

The integers k 1  and Z in Notation 7.6 are not required in this 

existence proof, but they will appear in the uniqueness investigation. 

However, k2  and £. 2 play a vital role. 

The fact that we chose any admissible h suggests that non-uniqueness 

is almost certain. This is borne out by the results in the next section. 

§7.4 Uniqueness for Problem 7.3 

To handle the question of uniqueness for Problem 7.3, it is clearly nec- 

essary and sufficient to decide whether there exists a non-zero solution of 

the corresponding homogeneous problem or not; 

	

non-zero element f in F' 	satisfying p,1J 

	

S v1/2-a1,2cz f = 0 
	 on (0,1) 

'' 2 1'2a 2 , 2cz 2  
S 	 f=0 on (1,co) 

in other words we seek a 

We shall proceed in two stages first identifying possible candidates for f 

and then finding which of these do indeed satisfy (7.12). We therefore 

begin with the following lemma. 
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Lemma 7.9 

Let v./2+c. C A' 	and v./2-cz. c A 	(i - 1,2). If f c F' 	satisfies 1 	1 	q,-  
(7.12), then 

v112+n1+k1,-k1 
v l /2_a l + 	 rlA_vl+2l_ti 

f = L a (6')S 
6 1 	(7.13) 

I 
2 	

s=O S 

where r is a non-negative integer, a,. .,a are constants, 61 is defined by 

(7.5) and 6' is defined by (2.20). 

Proof:- Using Theorems 3.56 and 6.10, we have 

V 	1  + 1 ,A-v 1  +2cz 1  \ 1 /2+cz 1 +k 1 ,-k 1 	/2- cx 
1 	 -L 

f 

- u1 /2+c& 1 +k 1 ,-k 1 	v1/2+ci1,A-v1 S V1/2_11,2a11 
- 2 	 1 2 	 f 

- V1/2+a1+k1,X-v1-k1 K' 
	lll 	v l /2_c1 l 2c l - 12 	 2 	 f 

If 4) c F 	has support in (0,1), then so does 12 
v 1 /2-a 1 +2. 1 - 1/2,-p 1  

	

4) since Re( v 1  + 2a 1 	1  + 2k + 1 - 2/p + i) > - 

(so that the theory in §3.2 applies). Hence, for such functions , 

lll'l S V 
I /2 	1v1+2a1-L1 f 4)) 

v 1 /2-cz 1  , 2cz 	v1/2cz1+L1-1/2,-L1 	v1/2+ci1+k1+1/2,A-v1-k 
-(S 	 f,12 	

2 
by (7.12). Thus the left-hand side of (7.13) is zero on (0,1). In a 

similar way, we can show that it vanishes on (1,o°). Hence the support of 

the left-hand side of (7.13) is {i} so that by [86, §3.5], 

v1/2+a1+k1,-k1 
s 	 r

i 	11111 f = 	I 	b D 5 6 	(7.14) 
8=0 

	

$ 	1 

where r is a non-negative integer, b, ••• b  are constants and D 8 6 1  is 

the 5th distributional derivative 
of di. Although (7.14) is quite 
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acceptable, there is a snag. To obtain an element of F 21 on the right we 

have to regard 6 
1  as an element of F' 	in using D56 . To avoid 

	

p, 2/p-si-s 	 1 
this, we merely note that formally 

( (61)69) = (610 - 6) = -4)'(l) = (6k. - D*) = (D6 15  4)) 

so that we can rewrite (7.14) in the form (7.12) and regard 6 1 as an 

element of 	 throughout. This completes the proof. 

Using Example 3.29, Theorem 6.10 and Lemma 7.9, we see that possible 

solutions of (7.12) must be of the form 

	

v 2/2+a2 ,A-v 2-2cz 2+L 1  -v 1 /2-cx -k 1 ,k 1 	r 
f 	S 	 1(2 	

1 	
( 1 	a (6') 	o i ) 	( 7.15) 

S =O 

and we must now identify the possible choices of a 01 ..., a. For simpli-

city, we will state our results in two parts. 

Lemma 7.10 

If v. 1  /2+ci. 1 
£ A' u 	1 

,-and v./2-cj. c A 	(i = 1,2), then f, as given by q 	 i. 

(7.15), satisfies 
v 1 /2 1 , 2ci 1  

S 	 f = 0 on (0,1) 

in the following circumstances. 

(i) 	If k1  = k 2  = 0, r and a,..., a  arbitrary. 

If k 1  = 0, k2  > 0, a,..., a  such that 

S=O a
s (_1) s (v 2+2 2 +1+2h 2 ) s  = 0 	for h 2  = 0,l,...,k2-1 * 	(7.16) 

If k1  > 0, k = 0, a,..., a  such that 

a(-l) 5  (v 1 +2a 1 +l+2h) 5  = 0 	for h 1  = 0,1,.. .k 1 -1 	. 	(7.17) S-0 

If k 1  > 0, k > 0, a,..., a  such that both (7.16) and (7.17) hold. 

Proof:- With f as in (7.15), we find from Theorem 6.10 that 
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V /2-cz 1 ,2ct 1  
S i  	 f 

= 1(2111 
5)i/2_i4ii2a1.1 

 s22_21 

K21 	i 
k 1 ,k1  r 

(E 	a(6')S 1 ) 
S=O 

	

V /2_cz 1 ,2 	v 2 /2.ct 7 ,v 	 r1 -A - 	

( 	a 
(t)S 	

) 

= K21 	 12 
s0 

So, 
 1 

2. 	-v / 2+_2. , 	 v/2+a+k, 1 	2  v-\-k 	v 2 /2-a 2 -k 2 ,k2  
1 	

i  i 	2 	2 	2 2  
2 1 

r 

	

£ 	
(a (ô')6) 
s=O $ 

where at the last stage we have used Definitions 3.27 and 3.33 (and 

their adjoints). Hence if 4) e F 
p,2/p-p' we may write 

(Sl1 2cz 1 

r 
= C 	a (dt)So 	

- v 1 I2-c 1 -k 1 -1/2,k 1  -v2 /2-cz 2 -k 2-1/2,k 2  

S=O S 

where 

	

k +2. 	v 2 /2+cz 2+k 2+1/2,'v 1 -A-k 2  -v /2+ci 1 -Z 1 +1/2,2. 1  
'K 	

' 2 	 4). 

If 4) has support in (0,1), so does 	as Re(v 2  + 2c 2  + 2k2  + 1 - 2/p + j) > 

- 1/p and Re(-v 1  + 2ct2 - 2Z  + 1 - 2/ + 	> - i/p. We now split the 

proof into four parts, corresponding to the cases listed above. 

v 1 /2-c 1 ,2cx 1 	r 
M k 1  = k 2  = 0 In this case (S 	 f,$) = (Z a(6') 5 6 90 = 0 

S=O 

for all choices of r and a o ,. . . ,a r  since i.i and all its derivatives 

vanish at 1. 

(ii) k 1  = 0, k2  > 0. In this case, it is easy to see from (3.8) that, 

for x 	1 

v2/2-cx2-k2-1/2,k2 	 v2+2c2+1 	
2 1 2 	 x) 	x 	P(x ) 

where P(t) is a polynomial of degree at most k 2 1 in t. 
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Notice that since Re(v 2 +2cx 2 +l+2k 2-2+ii-2/p) < - lip, all such poly-

nomials can arise from suitable functions p (and hence 4>) using the 

homeomorphic properties of the I and K operators. By taking 
v 1 /2-cz 1 ,2cz 1  

P(t) = t 	(h 2  = 0,1,... ,k 2-l) we deduce that S 	 f = 0 

on (0,1) if and only if 

r 	 v 	
2 2 +2

+2a +].+2h 
a (6 1 )s2) = 0 for h 2  = 0,1,...,k 2 -1  6 1 P x

s O  

from which (7.16) readily follows. (Strictly, in the last bracket
+2a 

2we mean a function in F 
P.2/p-,  which equals x 

L 	 L 
 for x ), 1.) 

k > 0, k = 0 is similar with suffices 1,2 interchanged. 

v 2/2a 2 k 2 l/ 2 
k 1  > 0, k 2  > 0. As in (ii) we have 1 2 	 (c) = 

V 
2 
 +2cz2+1 

x 	P(x 2 ) (where P(t) is a polynomial of degree < k 2-1 in t) 

for x > 1. A fairly routine calculation now shows that if 

Re(v 1 +2cs 1 ) + 2k 1  # Re(v 2+2c 2 ) + 2k 2 , then for x 	1, 

-v 1 / 2-a 1 -k1 -1/2,k 1 	v 2 /2-cz 2-k 2-1 /2 
1 2 	 12 	 p(x) 

v 1 +2a 1 +l 	 v 2 +2a 2+l 
= x 	 Q 1 (x') + x 	 Q 2 (x) 

where Q 1 (t), Q 2 (t) are polynomials in t of degrees at most k 1 -1,k 2-1 

respectively. Hence from (ii) and (iii), we obtain solutions by 

taking a,...a as stated. In the case Re(v 1 +2cz 1 )+2k 1  = Re(v 2 +2ci 2 ) + 

2k 2 , there is an added complication because logarithms appear in the 
v 1 +2cz 1 +2k 1 -1 

integration and we have to add on a term of the form x 	 X 

Q 3 (1/x 2) log(x 2 ) where Q 3 (t) is a polynomial in t of degree at most 

min(k 1-1,k 2-1). However, since log 1 = 0, the problem again reduces 

to evaluating polynomials at x = 1 and the proof goes through, but 

we shall omit the details of these calculations which are a little 
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tedious. 

This completes the proof of Lemma 7.10. 

The complementary result for (l,) is as follows. 

V 	 • 	 1, 

If v. 
1 	1 
/2+a. E A' ,-i and v./2-Q 

1  . £ A 	(i = 1,2), then f, as given by q 	1  

(7.15), satisfies 

V /2-cz 2 , 2c 2  
S 2 
	

f = 0 on (l,) 

in the following circumstances. 

If Z, = 2 = 0, r and a,... ,a arbitrary. 

If ki = 0, z > 0, a,... ,a such that 

S=O 

a5(u2_22+1+2j2)S = 0 for j 2  = 	'21. 	 (7.18) 

If Z > 0, z 2 = 0, a,...,a such that 

SO a5(v1_21+1+2j1)S = 0 for j1 = 0,1,... ,-l. 	 (7.19) 

If z >0, Z2 > 0, a ..... ,a such that both (7.18) and (7.19) hold.  

Proof:- This is similar to the previous lemma and is omitted. 

Remark 7.12 

The conditions in Lemmas 7.10 and 7.11 put some constraints on r. For 

instance (7.16)-(7.19) demand respectively that r > k 2 ,r ; k 1 ,r ) t and 

r 	2. However it is clear that each condition can be met in infinitely 

many ways. Furthermore we can combine our results to obtain the following 

theorem. 

Theorem 7.13 

Let u./2+c(. c A' 	, v./2-cx. c A 	Ci = 1,2). Then there are infinitely 1 	1 	q,-i 	1 	1 
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many solutions f c F' 	satisfying (7.12). 
p,lJ 

Proof: Any of the four cases in Lemma 7.10 can occur with any of the four 

in Lemma 7.11. The most restrictive situation (corresponding to (iv) in 

each lemma) imposes k 1 +k 2+L 1 +L 2  constraints which can be met in infinitely 

many ways if r is such that r+l>k 1 +k 2+ 1 +2 2 . We omit the details. 

As a consequence of the last result we can finally state the following 

non-uniqueness theorem for Problem 7.3. 

Theorem 7.14 

Let g. c F' 	, v./2+a. c A' 	and v./2-a. c A 	for i = 1,2. Then 1 	p.2/p-u 	1 	1 	q, -u 	 q,-p 

Problem 7.3 has infinitely many solutions f c F', each of which is of the 

form 
S v2/2+a2+k2,v1-2cz1-A-k2 H + 

	

v2/22A_v2_2a2l K
2 1 	 Z a(6')561) 	 (7.20) 

S=O 

where H is given by (7.8) and (7.9) and a,.. .,a are described by the 

appropriate cases in Lemmas 7.10 and 7.11. 

Proof:- The result is immediate from Theorems 7.7 and 7.13 and Lemmas 7.10 

and 7.11. 

This completes our study of Problem 7.3. Now we must try to see what 

light it sheds on Problem 7.1. 

§7.5 Uniqueness for Problem 7.1: 	The Simplest Case 

As indicated earlier, the uniqueness investigation for the classical 

problem is rather interesting. We shall not go into this in all its 

details but, rather, try to show how some well-known results emerge quite 

naturally from our work in the previous section. 
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We shall seek non-zero Solutions f £ L 	 of Problem 7.1 in the homo- 

geneous case g1  = g2  = 0. Our first problem is to ascertain the COfldjtj09 

under which S'f can be sensibly defined for f c L. We mentioned in §54 

that H can be extended to a bounded linear mapping from 	into V 	
-p 

provided that 1 < p < 	and max(l/p,l/q) 6 l/q + Re p < Re v + 3/2; this 

was proved by Rooney in [73, p.1100]. Although we could go further in the 

manner of §5.3,we shall not do so here and instead keep things as simple as 

possible. Using (5.36), it follows easily that Sfla can be defined on 

provided that 

max(l/p,1/q) .< 1/q + Re(p-1/2+a) < Re(2r+a) + 3/2 and 1 
< p < Co 

Theorem 7.15 

is a continuous linear mapping of L 	 into L,2 	Provided that 

max(l/p,1/q) < 1/q + Re(p-1/2+c) < Re(2r)+a) + 3/2 and 1 
< p < . 

Proof:- Immediate from [73, p.11001 and the above. 

Throughout this section, we shall use this Classical interpretation of 

	

S'f. Our work in 95.4 and. 5.5 ensures that if f c L 	 and the conditions —u 
in Theorem 7.15 hold, then 

= Sflla Tf 

as an equation in F' 21 . Hence we can immediately state the following 

result. 

Lemma 7.16 

If max(l/p,l/q) 4 l/q + Re(p-1/2+2a.) < Re v + 3/2(i = 1,2), if 1 < p ç co  

and if f £ L satisfies (7.1) with g 1  = g2  = 0, then tf satisfies (7.12). 

Proof:- This follows immediately from (7.21) and Theorem 7.15 together with 

the observation that,sirice Re(v. -2a.-p) + 2 > l/q, v 1 /2-c 1  £.Aq...p(i = 1,2). 

This also prompts the following comment. 

(7.21) 
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Remark 7.17 

In the sense of Notation 7.6, t i  = E 2 = 0 until further notice. To simplify 

matters still further, we will assume until further notice that k 1  = k 2  = 0 

also; in other words we assume also that Re(v.+2cz.+ij) > - lIq for i = 1,2. 

We can then state the following lemma. 

Lemma 7.18 

Let max (lip, 1/q) < 1/q + Re(i -1/2+2a.) < Re v.+3/2 and Re(v.+2cL.+) > 

- 1/q (i =  1,2) and let 1 <p'<co. If f c L 	 satisfies (7.1) with 

gl = 92  = 0, then Tf is of the form 

v2 /2+cz 2 ,A-v '2a 	r 
if = s 	 2 	

2 ( E a(6' 
)S 

 6) • 	 (7.22) 
S=O 

Proof:- This follows from Lemma 7.9 and (7.15). Note that the right-hand 

side of (7.22) satisfies (7.12) for all choices of r and a, ... a by Lemmas 

7.10 and 7.11 and Remark 7.17. 

We should observe that the conditions on the parameters in Lemma 7.18 

put restrictions on A. Indeed, on adding the inequalities 

Re(v1 -2c 1 -jj) + 2 > 1/q and Re(v 2 +2c 2+j) > - l/q 

we see that in this case 

Re A >-1. 	
(7.23) 

Fortunately, it is still possible to satisfy all the constraints so that 

we don't have a vacuous problem We will give an example shortly. 

It is clear that we must now examine (7.22) in some detail and to do 

this, we first choose 	c C(0,øô), regarding 	as an element of F. Then 
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V /2+c 2 ,A-v 2 -2a 

	

2 	 2 (6)S 6l,) 

	

= ( 	 xS 
V 2 /2+29A2-2 	

x) 	 by (5.37) 
(6')6,  

Au2  2a2 x lA+v2+2a2 

fo 

(6  )S 
ó, 2 	

A+v+2 	
J(t))) = (  

If we use the formula [19, p.11] 

d/dz (z 1J(z)) = z 'J 1 (z) 

and perform some routine algebra, we obtain 

r 
(S 	 2( E 
	a (6') 56),q) 

S=O 
S 

 

r 	 Au2 
 2a2 xlv2+224fo, = 	

S 
b (6

1  
, 2 

S=O 

by (5.33) 

J 
A- s (xt)(t)dt) 

r 	cc 	

= C 	to 	
v2+2a2 

s=0 	 _Tx_ 5 (t)t)dt 

Go  where b,...,b and co t ...... c  are constants. Thus, using 0 c C (0,00), we 

are led to the candidates 

r 
f 	= Z c x 	 J 	(x) 

S=O s 	 A-s (7.24) 

The -above analysis will hold for all functions • C F 	if f, as defined by 

(7.24), is an element of 	since, in that case, f will generate a Contin- 

uous linear functional on all of F 
P111, However, from properties of the 

Bessel function, it is fairly easy to prove that xa 
Jbc) e L 	 if and only 

if -Re b-3/2+1/p < Re(.i+a) - 1/2 < -1/q. Hence (7.24) defines an element 

of L 	if and only if -Re(A -s) - 3/2+1/p < Re(U-A+v2+2ct2+s)_1/2 < -l/q for 

each s = 	 r or equivalently, 

149 



-l/q < Re(v 2 +2cz2 +j.i) < 1/21/q+Re A-r • 	 (7.25) 

We can therefore prove the following theorem. 

Theorem 7.19 

Let max(l/p,l/q) 4 l/q + Re(i-1/2+2a.) < Re v. + 3/2 and Re(v.+2cz.+.i) > -l/q 

for i = 1,2 and let l<p <. Then 

f, as defined by (7.24), satisfies (7.1) with g 1  = 9 2  = 0 if and only 

if Re(v 2 +2a 2 +i.j) < 1/2-1/q+Re A-r. 

The homogeneous problem (7.1) has a non-zero solution f C L 

	

	if and 
- 11 

only if Re(v 2 +2cz 2 +) < 1/2-1/q+Re A. 

Proof:- Almost immediate from the preamrde and Lemma 7.18. 

Remark 7.20 

Perhaps it is worth mentioning that f in (7.24) generates a regular 

functional in F' 	if and only if 
POP 

- i/c < Re(v 2 +2ct 2 +p) < 1/2+1/p+Re A-r (7.26) 

as can be proved using, for instance, Corollary 5.3. (7.26) is slightly 

weaker than (7.25), the extra scope being provided by the differentiability 

of the functions in F 	.. However, we need the full force of (7.25) iii
PIP 

order to have a function f in 

It seems worthwhile to check from first principles that the proposed 

solutions are indeed solutions, as Theorem 7.19 suggests. To do this, we 

first make the following observation. 

Lemma 7.21 

The conditions on the parameters in Theorem 7.19 have the following con-

sequences: 
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Re A > -1, Re v. > -1 (i = 1,2), r < Re(v 1 -A) and r 	Re(A-v) 

Proof:- Re A ' -1 is (7.23) . Re v > -1 follows from the inequalities  

Re(2a.+21) > -Re v.-l/q and Re(2ci.+ij) < Re v.+2-l/q 

Next, max(l/p,1/q) 4 l/q+Re(ji-1/2+2.) s> Re(2.+p) > 1/2-1/q 

Also v2  + 2cz2  + U - A = A v 1  + 2cz 1  + P. Hence 

Re(v2+2ci2+p) < 1/2 - l/q + Re A - r 

=> Re(A-v 1 +2cx 1+p) < 1/2 - l/q - r 

> Re v > Re A + Re(2a1+p) - 1/2 + l/q + r > Re A + r 

whence r < Re(v 1-A). r < Re(A-v 2 ) is proved similarly. 

We can now proceed with the verification. For s = 

v. 1  /2-cz
i 
 0 2 	- A +v 

2 
 +2  2 s 

i  S 	 (x 	 JA_ S (x) ) 

2c. 	1/2-2ci. 	 l/2-2cz. -A+v +2 + 
= 2 1 

 x 	1 	
/ J(xt) 	 2 	2 	

JA_S(t)dt 

' l+A-v1+s 
1=1 We must consider J t 	 JA_s(t) J (xt)dt. For 0 < x < 1, this 

0 	 1 

integral is cx
V1 	

r(A+1) 	
- 	2 F 1  (A+1, s+1; v 1 +1; x 2) where c is a 

F(v 1 +l) 1'(-s) 

constant by [19, p.51, formula (29)] . Note that the conditions for con-

vergence, namely -1 < Re A < Re v 1 -s are satisfied by Lemma 7.21. Finally, 

using {r(s+1)r(-s)} 1 = 	sin i(s+l), we find that the integral is 0 for 

0 < x < 1. Alternatively, by integrating by parts s times and using pro-

perties of the Bessel functions, we can reduce the integral to a sum of 

integrals of the form 	l+a-b J
a (t) b(xt)dt which are zero by a simpler 

case of the Weber-Schafheitljn integral [19, p.92, formula (34)] . Thus 

	

S/2l2nl(XV2+2a2+5 	
) = 0 for 0 < x < 1. 	 (7.27) 
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i=2 Now we have to consider fo t 1-A+v2+s Jx(t) J 	(xt) dt.For x > 1, we  2 

may use [19, p.92, formula (34)] again to obtain 0, since -1 < Re v 2  < Re A-s 

by Lemma 7.21. Thus 

v2 /2-a2 ,2ci 2  -A+v2 +2cz 2 +s 
S 	 (x 	 J(x) ) = 0 for x > 1. 	 (7.28) 

Hence, under the conditions of Theorem 7.19, f, as given by (7.24) does 

indeed satisfy (7.1) with g 1  = 92  = 0 by virtue of (7.27) and (7.28). Our 

verification is complete. 

Remarks 7.22 

(7.27) and (7.28) may be obvious to anyone with intimate, knowledge of 

the Webèr-Schafheitlin discontinuous integral. However, our object 

was to show how the non-trivial solutions of the homogeneous problem 

(7.1) emerge naturally from our theory. 

The solution (7.24) can be written in various different ways. For 

instance, if we use the formula d/dz (z J(z) ) = -z- Y  J1(z) 

instead of d/dz(z' J(z) ) = z '' J_ 1 (z) we obtain an expression 

r -A+v +2ci, 

s 	 A+s 

+s 
d x 	

2 	
J 	(x) 	 (7.29) 

s=0 

valid under appropriate conditions. However (7.29) can be reconciled 

with (7.24) by using [is, p.99, Formula (10)]. 

In order to show that our theory is not vacuous, we give the following 

example 

Example 7.23 

Let c be any complex number with Re c > 1/2. 

(i) 	Let v 1  = 3c, v = c, cc, = a 2  = 0 so that A = 2c. The conditions of 

Lemma 7.18 require values of i and q such that (1 < g < 	and) 
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max(1/p,l/q) < l/q + Re .i 	1/2 < Re c + 3/2 and Re c + W > - l/q 

or max(1/p + 1/2, 1/q + 1/2) $ Re u + l/q < Re C + 2 (since Re c > 

These conditions can always be satisfied when Re c > 1/2 as 

max(1/p + 1/2, l/q + 1/2) 4 3/2. To get a non-trivial solution of the 

form(7.24) we need 

Re(c+P)<l/2 - l/q+Re2c_rorRe(p+j/q) <1/2+Rec-r 

Since 1/2 + Re c - r < Re c + 2, we seek p, q and r such that 

max(1/p + 1/2, l/q + 1/2) < Re p + l/q < 1/2 + Re c - r. 

Taking p = q = 2 we then seek p and r such that 1 4 Re p + 1/2 < 1/2 + 

Re c - r. We may take any value of r such that r < Re c - 1/2 and 

since Re c > 1/2, r = 0 is admissible. Finally, choosing p such that 

1/2 < Re p < Re c, we see that the homogeneous Problem 7.1 has a non-

trivial solution f in L 	 for the stated values of the parameters, 

namely f(x) = -c J 2 (x) from (7.24). 

(ii) Let vi = c, V = 3c, a, = a2  = 0 so that A = 2c. Proceeding as above, 

we seek r such that Re(3c + p) < 1/2 - 1/q + Re 2c - r or 

Re(p + l/q) < 1/2 - Re c - r 	in addition to the previous conditions. 

Hence we require 

1 4 max(l/p+1/2,1/q+1/2) . Re p + l/q < 1/2 - Re c - r 

which is impossible if Re c > 1/2 and r is a non-negative integer. 

Hence, under the hypotheses of Lemma 7.18, the homogeneous Problem 7.1 

has no non-trivial solution in L 	 for the stated values of the para- 

meters. 

Finally, in this section, we look at Problem 7.1 in the non-homogeneous 

case still assuming that k 1  = k2 = £1 = 2 = 0. We state the following 

theorem. 
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Theorem 7.24 

Let max(l/p,l/q) 4 l/q + Re(.i-1/2+2cz.) < Re v. + 3/2, Re(v.+2cz.+.j) > - l/q 

and g i  c L 1q _ 2 	(i = 1,2) and let 1 < p < co. Then Problem 7.1 has a 

unique solution f c L 	if also Re(A-v 1 ) > 0, Re(v 2 -A) > 0 and Re(v 2 +2cz 2 +j) 

Re A + 3/2 - l/q - max(l/p,l/q). 

Proof: g. 1.  generates ig.
1 
 c F' 

p,-2/q+2-p 	p 
= F' 2/p-p for i = 1,2. Let h be 

- 	
,  

constructed as in (7.8) with g, replaced by Tgi  for i = 1,2. Since 

k 1  = k2 	2 = 0, Remark 3.46 shows that h can be chosen to be a 

regular element of F' 	under the given conditions; this is where we 

require Re(A-v 1 ) > 0 and Re('v 2 -A) > 0. Next, observing that H in (7.9) 

coincides with h here, we proceed to (7.10) and find, using (5.38) and 
v 2 /2+ci 2  ,\ 1-2cz 1 -A 

Theorem 7.15 that S 	 h is a regular element of F' ; this 
p,u 

requires in particular that Re(v 2  + 2c 2  + u) < Re A+3/2- l/q-max(1/p, l/q). 

Hence using Theorem 7.7, this functional is generated by a 

function in L which is a solution of Problem 7.1. This gives existence. 

For uniqueness we note that any two solutions in L of Problem 7.1 

would differ by an expression of the form (7.24) where, by Lemma 7.21, r 

would satisfy 0 . r < Re(v 1 -A), 0 < r < Re(A-'j 2 ) which is impossible if 

Re(A-v 1 ) > 0 and Re(v 2 -A)> 0. This completes the proof. 

Remark 7.25 

Since Re A > -1 by (7.23) and Re(v 2 +2ct 2 +) > - l/q, the condition 

Re(v 2 +2cz 2 +.j) < Re A + 3/2 - 1/q - max(l/p,1/q) can be made non-vacuous by 

choosing p.= q = 2, for instance. 

If any one of the conditions stated in Theorem 7.24 is violated, the 

proof breaks down and various possibilities occur. For instance, we have 

the following. 
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(i) 	If Re(\-v 1 ) < 0, Re(v 2 -A) > 0, h as defined by (7.8) (with rg i  instead 

of g.) will only be regular if g 1  satisfies an appropriate condition 

involving fractional derivatives (Compare Theorem 4.19 .) Thus, Since 

0 	r < Re(A-v 2 ) is impossible, we get at most one classical solution 

in this case. 

(ii) If Re(A-v 1 ) < 0, Re(v 2-A) < 0, we now require restrictions on g 1  and 

92  involving fractional derivatives. Hence we may get no solution in 

But if we find one, we will have infinitely many under the con-

ditions of Theorem 7.19. 

Other results may be obtained as required but we shall not give details here. 

§ 7.6 Uniqueness for Problem 7.1. Other Cases 

To end this chapter, we mention briefly what can happen if one or more of 

the integers k 1 , k2, £1  and 2.2  is positive. For simplicity we shall restrict 

attention to the homogeneous case of Problem 7.1 with g 1  = 92  = 0. If 
v.12-cz.L  ,2cz. 

= 	= 0 so that we can interpret S 
1 	

1 (i 	1,2) as in Theorem 

7.15, the arguments for k 1  > 0 or k 2  > 0 or both are fairly similar to the 

above. We may have to apply one or two Erdlyi-Kober operators to the 

Bessel functions . obtaining either 
1  F  2  or  2  F  3 

 hypergeometric functions 

[20, pp.193-1951. By using results in [18] we can easily describe the 

behaviour of these functions at 0 and 	and results similar to those in the 

previous section can be obtained. We omit details. 

If i > 0 or 2.2 > 0, we run into difficulties over the classical defin-

ition o f S 	 L• To illustrate this point, we consider the 

following. 

Example 7.26 (The (un)electrified disk) 

By (7.3) this corresponds to the values 
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"2 
= 0, a = ' 	2 = 1/2 and A = - 1/2. If we were to try to use 

=1 = 0, we would require a space L with max(l/p,1/q) < 1/q + Re p - 

1/2 + 2 < 3/2 and max(l/p,l/q) 4 l/q + Re p - 1/2 + 1 < 3/2 which requires 

- 1/2 + max(1/p,1/q) j l/q + Re p < 0. However max(l/p,l/q) - 1/2 0 and 

we cannot find a suitable p and q. Thus we have to find an alternative 
V ./2- 1. , 2c. 

definition for at least one of S 
1 	

1 (i = 1,2). 
v/2-cz. ,2cx. 

By analogy with Definition 5.14, Note 4 and (5.36), we define S 1 	1 	1 

on 	with t > 0, by 

,2a. 

	

1 	1 
f(x) = 

Z. 2ci -L 	1/2-2cz.+t. -v /2-1/4-2. /2,2. 	1/2-2cz.+2.. 
1 1 

	

(-1) 12 	x 	1 3. 
1 2 	 H 	x 	 £ v+L. 

1. 

or equivalently 

Z. 	-v. /2+a -L ' ,9. 	v /2-ci +2. ,2cz -t 
S 1 	

3. 	1, 

	

f ¼x) 	(-1) 
1 

1 2 1 	 S 	 1 f. (730) 

If max(1/p,1/q) 4 l/q + Re(p-1/2+2ci.-2..) < Re(v.+t.) + 3/2 and 1 < p < 

the right-hand side is a continuous linear mapping of L 	into L/q_2+lJ  by 

Lemma 3.2 and Theorem 7.15. In particular we shall use this interpretation 

for i = 1, with 2.i = 1. 

Now take k, = k 2  = 0, t = , 1 = 0. The conditions to be satisfied by 

P and q are (1 < q < 	and) max(l/p,l/q) . l/q + Re p + 1/2 < 3/2, 

Re(p+l/q) > 0 or max(1/p-1/2,1/q-1/2,0) < Re(p+l/q) < 1. Such values of 

,q can be found and for these values we try to find a non-trivial solution 

f C L 	 of the equations 

S_ 1,2 f = 0 on (0,1); S_ 1/2,1 
 f = 0 on (l,) 

where S ' is interpreted via (7.30) and S 	' as in Theorem 7.15. The 

argument now proceeds as before and we obtain as a possible solution 
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r 
1/2+s L 	cx 

S 
S=O 

(7.31) 

where the admissible constants C,...,C are restricted by Lemma 7.11. For 

the right-hand side to belong to L 	we need - 1/q < Re(l+w) 	1 - l/q - r; 

in particular, we need Re(p+l/q) < -r. However, as Re(+l/q) > 0, no non-

negative integer is feasible. Hence our problem only has the trivial 

solution 	f = 0. This is in accord with the physics since when the disk 

is not charged, the potential at any point must be zero, in the absence-of 

an external field. 

A uniqueness investigation for the charged disk can be carried through in 

a similar way using the above in conjunction with Theorem 7.7. Likewise, 

the crack problem corresponding to the values in (7.4) can be studied 

using k 1  = k2 = 2.1 = 0, 2.2 = 1, for instance. However, perhaps we have gone 

as far as necessary in outlining the usefulness of generalised functions in 

the study of dual integral equations of Titchmarsh type. It would seem pro-

bable that similar methods can be applied to more general problems such as 

those producing triple integral equations of the type treated by Cooke 
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8 Other integral transforms 

§8.1 Introduction 

This final chapter is different from its predecessors. In it we will prove 

little but will state a few facts about the behaviour of certain other 

standard transforms relative to Ft . We will discover that the theory is 
pap 

by no means as complete as that for the operators discussed above. We will 

also indicate how some simple modifications of our spaces are suggested by 

the work of various authors. 

§8.2 Other Transforms 

Let T be an integral transform defined for suitable functions 	by 

To (x) = 
- Jo 

k(xt)(t)dt 	 (0 <x < ) . 	 (8.1) 

Then we can state the following result. 

Theorem 8.1 

If 1 < p 	and p is any complex number, then Tis a continuous, linear 

mapping-of L1' into LP/ _ 1 	provided that 

J x 	- 	k(x)dx < 	. 	 (8.2) 

Proof:— For 	defined almost everywhere on (O,co), define R by 

R+(x) = (l/x)q(l/x) 	(0 < x < °°). 	 (8.3) 

It is easy to check that 0 e L => 	c Lp  211_ and that 

11011 
PD11

= IIRII,21_1. 	.. 	 (8.4) 
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Also 

00  

T4(x) = J k(x/u)R4'(u)du/u 	 (8.5) 
0 

so that the result now follows from (8.4) and Lemma 3.1 in 	[72] (with a 

slight change of notation). 

The simple ideas behind the proof of Theorem 8.1 have already been used 

in Lemma 5.1 in connection with H. Other ideas from Chapter 5 easily go 

over. For instance, let 	c F 	and write 
pop 

co  

p 

Tp(x) = J k(v)4(v/x)dv/x. 
0 

We may differentiate under the integral sign to obtain 

= T(-6')' 	 (n = 0, 1, 2, ...) 

where 6' is defined via (2.10); the differentiation can be justified using 

uniform convergence and Theorem 2.2 provided that (8.2) holds. Hence we 

have the following result. 

Corollary 8.2 

T o  as defined by (8.1), is a continuous linear mapping of F 	into 

F ,21 _ 1_ provided that (8.2) holds. 

Proof:- This is immediate from the above. 

So far we have not demanded any continuity or differentiability of the 

kernel k, but obviously if k is, say, continuously differentiable, we may 

be able to relax (8.2). Indeed, for the Hankel.transform, k(x) = / J  

and (8.2) is satisfied provided that -Re v - 3/2 + l/p < Re p <- l/q. 

But, using integration by parts, we saw in Lemma 5.1 that Re p < - l/q 

may be relaxed to Re p < 1/p in the first instance and then, by repeating 

the process, we removed the restriction Re p < lip completely in Definition 

5.8. Finally, the restriction - Re v - 3/2 + l/p < Re p was relaxed in 
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Definition 5.14. We can carry out similar programmes for other transforms. 

For instance, let us consider briefly the Laplace transform 

For 0 c F P 
J. P , the Laplace transform, LO, of 0 is defined in the first 

instance by 

L(x) = FO 	
$(t)dt 	 (0 < x < ). 	 (8.6) 

By Corollary 8.2, L, as so defined, is a continuous linear mapping of 

F 
p 1-I 

into F p,., 
, p 	ji 	 ii provided that Re 	> - i/q. However, if we integrate ,  

by parts, we get 

co  

xt 	1 	

f 	-xt -1 L4(x) = [e- 	D- 4(t)]0 
+ 	

xe 	D •(t)dt 	 (8.7) 0 

(D = d/dx of course). Since Re .i > - I/q,O c F> D 14 c F 	
+1 by 

	

Fps 
1j 
	 p,J 

Theorem 2.13 and hence,by Theorem 2.2, the integrated terms vanish, leaving 

	

LO (x) = x L D 1+(x) 
. 	 (8.8) 

However the right-hand side defines a continuous linear mapping of F 

into F 	
provided only that Re U + 1 > - l/q (for L) and 

Re i 	- l/q (for D 	using Theorem 2.13(jj)). Repeating the process we 

can extend L to spaces F 	 such that Re ji 	- i/q - 2. (2. = 0, 1, 2, 
...),

p 1j 

or equivalently, such that 0 c A 	, using the notation in Definition 

3.26. Namely, if 0 c A 	, we define L on F 	by 

	

p,p,l 	
PIP 

L4(x) = xh1L(Dl)(x) 	
(8.9) 

where n is a non-negative integer such that Re p + n > - 1/q and L is 

given by (8.6). In particular, if Re p< - l/q and n is chosen such that 

Re p + (n-i) < - l/q < Re p + n 

then (8.9) takes on the form 

	

L4(x) = (-x)' L K(x) 	
(8.10) 

in the notation of (3.5). (8.10) can be regarded as the analogue of 
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formulae such as (3.33) or (5.26). 

This is all very well but unfortunately there is a snag. If we return 

to (8.6), we find that, for Re p > - l/q, L maps F 
IJ  into F 2 - - but p, 	p, /p 1 p 

not onto F ,21 _ 1_ 1 . For instance, under the given conditions, the function 

e 	is an element of F 
p,2/p-l-u  but there is no 0 c F 	such that 

f e-  xt
00 

	

4(t)dt = e-x 	(0 <x < oo). 

In the case p = 0, this follows from [85, p.3131 and the general case is 

similar. We deduce immediately from (8.9) -that L maps F 	into F 
p,p 	- 	p,2/p-l-p 

when 0 c A p p l also. In some ways we are now worse off than if we had ,., 

started with L instead of F 	. For instance, when p = 0, the range of L 
P 	 p , p 

on L = 	is characterised in [85, pp-313, 318]. All we have said so far 

is that the range of L on F 0  is some vaguely characterised subset of the 

range on L. Nor does it seem too hopeful to imbed L p  in V 	Since L is 

formally self-adjoint, we are led to define L on F' 	by 
Pd.' 

(Lf, ) = (f, L4,) 	 (f e F' 	, • c F 	 ). 	(8.12) p,u 

Certainly, (8.12) is meaningful if 0 c A  
_1j, in view of [87, Theorem 1.10-]] 

and our previous remarks. However, we can only deduce that L maps 

into F ,,21 _ 1 _ and it would appear that at best some rather incomplete 

results could be obtained. 

(8.11) gives a hint as to how things might be made better. If the 

unknown function 4 were replaced by a distribution, then we could solve 

(8.11) obtaining the ,  (unique) solution 6,  as defined by (7.5). More pre-

cisely, we are led to abandon the adjoint operator approach and to try 

instead the "kernel method" as described in §1.1. First we note that, for 

fixed x c (O,), eXt (as a function of t) is an element ofprovided 
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that Re .i < i/p. Hence, for such values of p and ii, we may define the 

Laplace transform, If say, of £ c F' 	by 

-xt 
Lf(x) = MO. e 	) (0 < x < a) (8.13) 

where, with the customary abuse of notation, f 	indicates that f acts on 

functions of the variable t. By the structure theorem (Theorem 2.25), 

= k=0 

for some non-negative integer n and f £ L 	(k = 0,1,...,n). (8.13) then 

becomes 
n 

Lf(x) = 
k =0 

for certain funct 

n 
Lf(x) = Z 

k =0 

e 	dt fo fk(t)(_5' 

ions g 
k 
 c L. Thus 

-u 

k 	k 
x L x gk 

n 	k f' 
t 	(t) e 	dt k 	_Xt g   

k=0 

(8.14) 

where L denotes the classical Laplace transform (Hence the use of L for the 

generalised transform here.) By Theorem 8.1, Lf £ L/q_l+u provided that 

Re(-ii+k) > - i/p for k = 0,1, . . ., n and this is satisfied if, as above, 

Re v < i/p. Indeed Lf t Fq,2/q-1+u and, from a characterisation of the 

range of L on L 	 (analogous to those in [85, Chapter 7])we could 

easily obtain a description of the range of L on F'u  As mentioned in 

51.1, Zemanian [87, Chapter 3] adopts this approach but uses different 

spaces. We might expect to be able to develop an analogous theory for 

F' but we will not embark on this here. 

Closely related to the Laplace transform is the K transform of order v, 

defined formally for suitable functions 	and complex numbers v by 

K(x) = fo / 	K(xt)(t)dt 	(0 < x < V
O 
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where K denotes the modified Bessel function of the third kind and order 

N.). The connection with L is simply explained using fractional calculus. 

From [19, p.18, formula (15)] we see that for Re v > - 1/2 and y > 0, 

K (y) = /;-7- (y/2) 1/
2 K2v'2 e' 

Thus formally we have 

00  K 	x) = fo 	
K (xt)(t)dt 

= 

 

CO  

2 e-  fo 	
xt 	v-1/2,v+l/2 (xt/2)v/2(t)dc 
 2 

(x/2) V+1/2 L 1v1/2,v+1/2 x v+1/2 
(8.15) 

(8.15) is a special case of results of Okikiolu [54], [55] and the paper 

[10] by Erd1yi is also relevant here. Conditions under which (8.15) is 

valid can easily be obtained from Lemma 3.1 and Theorem 8.1 and these are 

very reminiscent of the conditions encountered in §5.2 for H, which is 

perhaps not surprising as [19, pp4-6] 

J (x)= •. 1e'"2 K  (ix) - e- viri/2 K (-ix)]. V 	 it 	 V 

Using either the adjoint operator method or the kernel method, we can 

develop a theory of the K transform, proceeding either as in Chapter 5 or 

using results for L (or ) and (8.15). However, we will omit the details. 

Hypergeometric functions of one kind or another are never far away and 

it is worth mentioning that transforms involving the 
1  F confluent hyper-

geometric function have also attracted the attention of various authors. 

In [10] , Erd1yi discusses a transform of the form 

co  _)i 
F(b) j0 (x t) 
	1F 1  (a;b; -xt)(t)dt (8.16) 

where a = S + y + 1, b = a + S + y + 1 and a, 5, y are suitably restricted 
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complex numbers. Since, by [20, p.187, formula (14)] , 

-x  

e 	
= r(n++1) 	1  F 

 1 (n+l; n+ci+l; -x) 

it is no surprise that the transform can be written as the composition of 

an Erdlyi-Kober operator and the Laplace transform. The transform has 

been extended to distributions by Rao [71]. In view of our remarks on the 

Laplace transform, we could develop a theory for this 1  F  1 
 transform in 

F 1 	but the theory would have the shortcomings described above. It might 

be thought, since 

(a; c; x) = 
1 im 
b-~ 

2F 1  (a, b; c; x/b) 

that we might be able to deduce some properties of certain 1F 1  operators 

from our results in Chapter 4 but eventually troublesome factors involving 

or e   appear. As an instance of this, we mention the integral equation 

1 
r(c) J (x_t)Cl 1 F 1  (a; c; X(x-t))4(t)dt p(x) 	(0 < x < ). (8.17) 

In two almost identical papers, Habibullah [25] and Prabhakar [69] show 

thatunder appropriate conditions, the solution of (8.17) can be written 

in the form 

Xx -a -Xx 
p(x) = e 	I 	e 	4() (8.18) 

We may say that, although some results can be obtained in F' 	using 

standard results for convolutions e.g. [26, pp.396-7] these will be of a 

somewhat incomplete nature as regards the range of the operators on 

or F' 
p,J 

§8.3 Modifications of the Spaces 

We have probably said enough about how we might try to study most of the 

standard integral transforms in F p,J 	p 
and F' 

,IJ
, with varying degrees of 
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success. However, the work of several authors suggests that it might be 

fruitful to examine certain extensions and/or modifications of the Spaces 

F 	and F' . We give a brief indication of some possibilities. Pdi • 	p,lJ 

To provide a little motivation ,  let us consider the classical Mellin 

transform, which we will denote by M. Thus,for a classical function • on 

(O,), we define MO by 

M(x) = 
	

t1 (t)dt 	(0 < x <) (8.19) 

where the integral is interpreted appropriately. Since the formal adjoint 

of M involves integration with respect to a power, the adjoint operator 

approach does not look very promising. However, if we try the kernel 

approach in F' 	we are also in trouble. For fixed x, the function 

does not belong to F 	 for any p and u; there is trouble either at t=Oor 

t=. To get round this, Zemanian in [87, Chapter 4] introduces spaces of 

testing-functions whose behaviour at 0 may differ from that at . Using 

the notation of Erd1yi in [74, p.162], for real numbers a and b, 

M 	= a,b 	{cC(0,00): 	 < 	for k = 0,1,2,...) 	 (8.20) 

where 

- 	sup 	la(l+X)ab 	k k 	k 1  
- 0 < x 	x 	 x d •/dx . 	 (8.21) 

b is given the topology generated by the semi-norms ' b kk a, 	 a, , 	=0 

When b = a, F 	is a proper subspace of 1TI , since 
a,a 

C 1TL 
a,a >x 	d # 	1a+k k,dk 0 as x 0+ or'x 

The space Tfl(a,b) is then defined as the countable union space (in the 

00 sense of [87, §4.2]) of spaces 'ITL(a ,b) where 1a} 1 , {b} 1  are real 

sequences with a + a, b n tbas n-- (with a = - orb 	or both 

being allowed). It is not hard to see that 
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tx_i c 7fl a,b  when a < x < b. 

More generally, replacing x by a complex variable s, we have 

C Tfl 	when a < Re s < b 	 (8.22) 

which of course demands that a < b. We can then use the kernel method to 

define 1Yf for f c T71' (a, b) by 

(fl1f)(s) = (f(t), tSl) 	(a < Re s < b) . 	 (8.23) 

This produces a classical function of the complex variable s analytic in the 

strip stated. In [74], Erdlyi shows also how a theory of fractional cal-

culus can be developed in 1T1'(a,b) and establishes generalisations of 

familiar classical results such as 

1rha f(s)
TILf(s) 	(f c M (ab) ) r(a+n+l-s/m7 

(a < Re s < b < in Re n + in) where I' is interpreted in its generalised 

sense. 

	

Another transform which has been studied in the spaces iTt.' 	is the a,b 

Stieltjes transform. The classical Stieltjes transform is defined for 

suitable functions 1 by 

CO 

E4 (x) = 	 - I 	- 	dt 

	

x+t 	 (0 < x < co) 
(8.24) 

the integral being interpreted appropriately. A generalisation of (8.24) is 

the transform S defined formally by 

S(x) 
= fo 	

dt 	 (0 <x 	) 	 (8.25) p 
	(x+t) 

where p is a complex parameter. The operator S has been studied classically 

by Byrne and Love who note ([3], p.331, formula (2.2) ) that 

S4 = S 1 4 = 	
( 8.26) 
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under appropriate conditions, where K 1  is as in Chapter 3. Since S is 

essentially the square of the Laplace transform L, it is clear that we could 

use results for L along with (8.26) to obtain a theory of S in F'. 

However, several authors have proceeded from scratch. In [65], Pandey 

extended S to certain spaces which, in the above notation, are of the form 

1,1-a and Pathak [66] studied S in the same spaces. Both used the 

"kernel method". 

In [15], Erd1yi carries out 	a similar investigation for S in m'(a,b) 

and combines it with his fractional calculus mentioned above to deal with a 

hypergeornetric integral equation, which takes the form 

 co  2 
F  1 (a, b; c; - x/t)(t)dt = (x) J o  (8.27) 

In [ 74] , Love studies this equation classically and shows how the operator 

on the left is expressible in terms of fractional integrals and the 

Stieltjes transform S. The extension to generalised functions is then easy 

using Erdlyi's theory. The operator in (8.27) may look fairly similar to 

those we studied at length in Chapter 4 but its mapping properties on 

are rather different and imprecise because of the corresponding properties 

of S. 

Two general points are in order concerning the results obtained using 

the kernel method in the various cases quoted above. Firstly, the spaces 

used all involve L-type semi-norms; (8.21) is typical. It seems reason-

able to expect that a corresponding L theory could be obtained by making 

appropriate modifications. For instance, the analogues of (8.20) and (8.21) 

would be 

C C(0,-): IY bk ( ) 	fork  

where 
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Li 	(+) = I Jx a(1)ab xkdl,dxkI 
i a, , 

	 p 

The second remark concerns the inversion formulae for the transforms. 

It is a slight drawback in this approach that most such formulae hold for 
cc 

£ C(O,c') and not for all 4 • 	To be more precise, let us consider 

again the Mellin transform in 7fl'(a,b). (8.23) associates with each 

f c lfl'(a,b) the classical function lTtf, analytic in the strip 

a < Re s < b.. A precise characterisation of the range of Mon 	Ifl'(a,b) 

is given in [87, Theorem 4.3-5]. Conversely, suppose we are given a 

function, g say, in this range. Then-,according to [87, Theorem 4.3-3] 

g = lflf where f £ 711'(a,b) is such that 

urn 	1 	fo+ir f(x) 	r-s' 	
g(s) x-s ds 

where a is a real number satisfying a < a < b and convergence is in the 

sense of the space 	'(o,-) of distributions rather than in the sense of 

It remains to be seen whether anything can be done to get round this. 

To summarise our discussion in this section, we may say that there is 

scope for studying fractional calculus in spaces more general than F' 

(i.e. the L versions of 'lTt'(a,b) ), for studying various integral 

transforms in these spaces and, finally, connecting the transforms with 

the fractional calculus in order to solve practical problems. 

§8.4 Subspaces of F 
- 	p,1J 

As well as generalising F 
p 10 Ij on the lines indicated in the previous section, 

there is another idea which arises naturally, namely, the study of certain 

subspaces of 	For instance, we might want the subset 

F: OW = 0 for x c I} 	 (8.28) 
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(1 a 	sub-interval of (O,)), which, when given the topology induced by 

that on F P,,,,  is clearly a closed subspace of F p,u and a Frchet space in 

its own right. 

To give one instance of how this may arise, we return to the equation 

(8.17) which, as we mentioned, presents some difficulties when studied 

in Fpu.  However, let us define an operator R as follows; for a function 

4 defined (almost everywhere) on (_co,),  .define R4 on (0,°°) by 

R4(x) = 4(log x) 	 (0 < x < aD) 
	

(8.29) 

so that R is a particular case of the operator 	defined in (2.5). A 

number of simple observations can be made. 

For any complex A, Re 
Ax 

 4(x) = x 
A

R4(x) 

If 4  c CaD(co,co),  then for k = 0,1,2..., 

R4(x) = R Dk4(x) 

If 4 is continuous on (-,) and 4(x) = 0 for x < 0, then for Re a > 0, 
log 	 a-i 

R I4(x) 
= r(a) 	

(log x - t) 

_(log x - log u) a-i  4(log u) du/u 
r(a) fo

x 

IQ log R(x) 

where Iog  is defined as in the preamble to (3.4) with p(x) = log x. Using 

this operational calculus, we can transform (8.17) into a more amenable 

form. First we extend (8.17) 

and (x) =0for-aD<x0. 

c-a 	Xx 	a -Ax 
e 	I 	e 	4(x) 

as is shown in [25] or [69]. 

x < 0, we obtain formally 

to the whole real line by setting 4(x) 	0 

Next (8.17) can be written in the form 

=(x) 	(0<x<aD) 	 (8.30) 

Interpreting both sides of (8.30) as zero for 
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-Ax R 1a 
e  Ax I a  e 	x) = Rp(x) 

=> 1c-a 2 ]:a 	-A R(x) = R(x) 	(0 < x < log 	log 

Since R(x) = R(x) = 0 for 0 < x < 1, if q(x) = t(x) = 0 for - < x E 0, 

we are led to study the equation 

c-a A a 	-A I 	x I 	x 	= log 	log (8.31) 

in a set of functions defined on (0,) and vanishing on (0,1]. Further, 

since 

6 = x d/dx = d/d(log x) 

we might expect (taking courage in both hands) that 

Iog = (6l) 	
(8.32) 

in some sense or another and that (8.31) might have the unique solution 

A a -A c-a = x 6 x 	6 	V(x) 

Since we have studied x and 6 in F 
p,31 and we also require functions which 

vanish on (0,1] we are led to the set (8.28) where I = (0,1]. 

The above discussion involves much hand-waving and a lot requires 

checking. We won't give the details here but merely remark that from (2.11) ,  

1 is given by Erdlyi-Kober operators on F 	in the cases Re p > 1/p. and 

Re p < lip so that (8.32) involves the study of fractional powers of Erd1yi-

Kober operators. This seems to be fairly straightforward using results in 

[21] on the spectrum of the operators and the general theory of fractional 

powers of operators as developed by Komatsu in [37]. At the end we have 

to get back from , Y in (8.31) to q, i as in (8.30) or, indeed, (8.17). 

This requires the homeomorphic image under R -1  of our subspace of 

This programme has been successfully carried through by my research student, 

Wilson Lamb. 
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Similar conTnents apply to a number of other integral equations of con-

volution type which can be solved via fractional calculus and for which 

solutions are given formally in the literature. 

Various other subspaces arise naturally when we consider fractional 

integrals from a to x or x to b (a > 0, b < ) but we will not elaborate 

further here. 

18.5 Concluding Remarks 

We seem almost to have come back to where we started, talking about 

fractional calculus per se so perhaps it is time to stop before we start 

a second circuit. 

We have tried to give an idea of some of the work which has been and is 

being done in extending integral transforms from classical functions to 

generalised functions and have used fractional calculus as a unifying 

theme. We also concentrated on a few topics which led to the explicit 

solution of certain problems of interest. We made no attempt to go into 

the subject in great generality ,  preferring the concrete to the abstract. 

We ignored fractional integrals on (-,) and, even on (O,), we have 

not dealt with some useful generalisations such as operators introduced 

by Lowndes [45] to solve a diffraction problem and studied analytically 

by Heywood and Rooney [271 [28]. Likewise we have not ventured into R  

and grappled with results such as those of Stein and Weiss [77] nor into 

Orlicz spaces for the work of O'Neil [57] and others. Further, we only 

mentioned the most basic integral transforms on (O,°°) and did not discuss 

their more abstruse generalisations. Nor did we look at transforms on 

(_c,) including such as the Hilbert transform which has been studied in a 

distributional setting by Orton [58], [59] and others. These topics are 
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of Considerable interest but were not part of our general theme and so we 

will leave them to some other author preaching some other sermon. 
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