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Abstract 

 

This study employed a systems biology approach to determine how the environment 

impacts plant growth, combining models in a modular fashion that integrates 

information from the molecular level up to the ecosystem level. This provides a 

means to understand the combined effects of environmental signalling on cellular 

function and metabolic flux, hence on carbon partitioning and ultimately plant form. 

It also allows us to predict how daily or seasonal changes in the weather, combined 

for the first time with gene network dynamics, alter plant morphology.  

 

In this study, theoretical and experimental approaches were combined, using 

Arabidopsis as the studied species. The multi-scale model incorporates the following, 

existing sub-models: a phenology model that can predict the flowering time of plants 

grown in the field, a gene circuit of the circadian clock network that regulates 

flowering through the photoperiod pathway, a process-based model describing 

carbon assimilation and resource partitioning, and a functional-structural module that 

determines shoot structure for light interception and root growth. First, the phenology 

model was examined on its ability to predict the flowering time of field plantings at 

different sites and seasons in light of the specific meteorological conditions that 

pertained. This analysis suggested that the synchrony of temperature and light cycles 

is important in promoting floral initiation. New features were incorporated into the 

phenology model that improved its predictive accuracy across seasons. Using both 

lab and field data, this study has revealed an important seasonal effect of night 

temperatures on flowering time. Further model adjustments to describe phytochrome 

(phy) mutants supported the findings and implicated phyB in the temporal gating of 

temperature-induced flowering. The improved phenology model was next linked to 

the clock gene circuit model. Simulation of clock mutants with different free-running 

periods highlighted the complex mechanism associated with daylength responses for 

the induction of flowering. Finally, the carbon assimilation and functional-structural 

growth modules were integrated to form the multi-component, whole-plant model. 

The integrated model was successfully validated with experimental data from a few 

genotypes grown in the laboratory.  
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In conclusion, the model has the ability to predict the flowering time, leaf biomass 

and ecosystem exchange of plants grown under conditions of varying light intensity, 

temperature, CO2 level and photoperiod, though extensions of some model 

components to incorporate more biological details would be relevant. Nevertheless, 

this meso-scale model creates obvious application routes from molecular and cellular 

biology to crop improvement and biosphere management.  It could provide a 

framework for whole-organism modelling to help address global issues such as food 

security and the energy crisis.     
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Chapter 1 

 

Introduction 

 

 

1.1 Background of study 

 

A systems approach to model biological events is becoming an important tool to 

understand how plants respond to changes in the environment, which is central to 

crop improvements and biosphere management. As crop yields are predicted to 

decline in light of climate change (Estrella, Sparks, & Menzel, 2007; Luterbacher et 

al., 2007; Tao, Yokozawa, Xu, Hayashi, & Zhang, 2006), renewed efforts would be 

required that bring together studies addressing the interaction between plants and the 

environment at all levels of organisation. 

 

On the smaller scale, genetic studies at the molecular level have revealed specific 

genes associated with the sensing of environmental factors. These ‘sensors’ activate 

a suite of downstream pathways to regulate metabolic reactions at the cellular level, 

which in turn control growth at the tissue and organ level, as well as development at 

the whole-plant level (Lucas, Laplaze, & Bennett, 2011). All these interactions 

collectively enable individual plants to survive and cope with extremely variable 

conditions.  

 

In recent years, our understanding of plant systems at each level has improved 

significantly with the development of new analytical tools, both in wet and dry 

laboratories. As the vast amount of experimental data being generated is becoming 

difficult to handle manually, the emergence of bioinformatics has facilitated the 

analysis of complicated networks, which helps to identify novel components and 

biological pathways. Mathematical modelling of these pathways in turn drives new 

hypotheses and experimental designs (Di Ventura, Lemerle, Michalodimitrakis, & 

Serrano, 2006).  
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Plant models have been in existence since the eighteenth century. Early phenology 

models studied the effects of observable environmental factors such as temperature 

and daylength on developmental events at the whole-plant level (Robertson, 1968). 

Since then different types of models have surfaced, ranging from spatial to temporal 

and simple statistical relationships to mechanistic models (Lucas et al., 2011). The 

complexity of these models depends on the level of study, desired outcome and the 

amount of data available. Most of the classical models were limited to mainly one 

level of organisation with little consideration of the interaction or feedback between 

levels. Contemporary models now make use of our growing knowledge by 

incorporating genetic and metabolic information either explicitly or through indirect 

representation (Salazar et al., 2009; Thomas, 1973; White & Hoogenboom, 1996; 

Wilczek et al., 2009). The interaction between plant architecture and function has 

also received attention with the development of functional-structural models 

(Mathieu, Cournede, Barthelemy, & De Reffye, 2008; Sievanen et al., 2000; Vos et 

al., 2010). The systems approach has now triggered the emergence of cross-scaled 

models which could provide improved predictive power while offering better 

capacity to understand system behaviour (Lucas et al., 2011). With this in mind, the 

main aim of this study was to develop a multi-scale whole-plant model that integrates 

information from the molecular level up to the ecosystem level, using Arabidopsis 

thaliana as the studied species.  
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1.2 Overview of study 

 

Light and temperature are among the primary environmental factors regulating plant 

growth and development. Therefore, these factors have large impact on crop yield. 

Studies on the model species Arabidopsis thaliana have improved our understanding 

on the regulatory system in plants in response to these factors.  

 

In Arabidopsis, photoreceptors such as phytochromes and cryptochromes act as 

sensors to provide light-signalling input for the regulations (Sullivan & Deng, 2003). 

They interact with the endogenous circadian oscillator (Yanovsky & Kay, 2002), 

which synchronises plant physiological and metabolic rhythms with the diurnal and 

seasonal timing (Mas & Yanovsky, 2009). Some photoreceptors have been found to 

be temperature-sensitive (Blazquez, Ahn, & Weigel, 2003; Halliday, Salter, 

Thingnaes, & Whitelam, 2003). In the development to flowering, temperature effects 

can occur in two ways, i.e. warm ambient temperature promotes floral initiation 

(Balasubramanian, Sureshkumar, Lempe, & Weigel, 2006; Kumar et al., 2012), 

while long period of cold temperature accelerates flowering in a process known as 

vernalisation (Amasino, 2010). These plant responses ensure that the transition from 

vegetative to reproductive growth match seasonal changes, which can increase 

survival rate. Biomass accumulation can also be affected following this 

developmental switch due to changes in resource allocation. In addition, temperature 

influences growth-related processes such as respiration (ap Rees et al., 1988) and 

photosynthesis (Berry & Bjorkman, 1980), which is dependent on light intensity, 

CO2 level and plant architecture.  

 

As there is a large concentrate of data available on Arabidopsis, this model species 

was therefore selected for the current study, where a multi-scale model was 

developed to describe Arabidopsis growth and development to flowering. A 

combination of theoretical and experimental approaches was used and the interaction 

between external and internal regulations was considered. Various models that 

describe the plant system at different levels of organisation were combined in a 

modular fashion and tested in physiological experiments (Fig. 1.1). The integrated 



 4 

model incorporates four existing sub-models. These include a phenology model that 

can predict the flowering time of plants grown in the field (Wilczek et al., 2009), a 

gene circuit of the circadian clock network that regulates flowering through the 

photoperiod pathway (Salazar et al., 2009), a process-based model describing carbon 

assimilation and resource partitioning (Rasse & Tocquin, 2006), and a functional-

structural module (Christophe et al., 2008) that determines shoot structure for light 

interception and root growth. This multi-scale model estimates plant yield from 

germination to flowering given environmental inputs such as daylength, temperature, 

light intensity and CO2 level (Fig 1.1). Such a model could provide a framework for 

whole-organism modelling to help address global issues such as food security and 

the energy crisis.  
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Figure 1.1: A schematic diagram showing the components of the multi-scale integrated model. Texts in brackets indicate the levels 

of organisation involved in the components. The dashed arrows illustrate the feedforward and feedback of information between the 

carbon assimilation and metabolism components. 
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1.2.1 Chapter layout 

 

Chapter 2 presents a literature review of the flowering studies in Arabidopsis and the 

advancement in multi-scale plant modelling, including its challenges and current 

limitations. The research methodology adopted in the current study is described in 

Chapter 3, followed by the results and discussions in Chapter 4, which is divided into 

three sub-chapters. First, a detailed analysis of the Wilczek et al. phenology model 

alongside meteorological data and field measurements is presented (Chapter 4: Part 

I). This analysis was conducted to re-assess the contributions of temperature and 

light period to promoting floral induction, and the results led to the development of 

an improved version of the model. Following this, the role of the circadian clock and 

its importance in plant life cycle were investigated by combining meteorological data 

with gene network dynamics (Part II). The integrated multi-scale model is presented 

in Part III, where the model was validated and tested using experimental data of 

single plants and small populations to explore model potential at a broader scope. 

Chapter 5 presents a general discussion highlighting model limitations, future 

extensions and the implications of study. Finally, Chapter 6 concludes the study with 

a brief summary of the findings. 
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Chapter 2 

 

Literature Review 

 

 

2.1 Genetic and environmental control of flowering in Arabidopsis 

 

Arabidopsis thaliana is a rosette plant. During its vegetative phase, rosette leaves are 

formed at the shoot apical meristem with minimal internode elongation. Upon 

transition to the reproductive phase, leaf development is suppressed and floral 

primordia are initiated at the shoot apical meristem (Poethig, 2003). A 

morphogenetic unit comprising a cauline leaf, an axillary flowering shoot and an 

internode is produced (Pouteau & Albertini, 2009) to denote the beginning of 

internode elongation and floral transition. This intermediate region between rosette 

and true inflorescence is known as the ‘cauline leaf zone’ and the event is called 

bolting. The flowering of Arabidopsis has been studied extensively in the last two 

decades. Two indicators are usually used to define ‘flowering time’. The first 

indicator, also known as flowering time or days to bolting (DTB), measures the time 

taken from germination to flowering initiation. The second indicator records the 

number of leaves produced before floral initiation. It has been found that flowering 

time often correlates to total leaf number at bolting (TLN) (Steynen, Bolokoski, & 

Schultz, 2001). 

 

A number of major genetic pathways that regulate flowering time in Arabidopsis 

have been identified (Fig. 2.1). Photoperiod is one of the important inductive signals 

for flowering in Arabidopsis. As a facultative long-day plant, its flowering is 

accelerated under long days and the ability to perceive daylength is due to a clock-

controlled mechanism through the photoperiod pathway (Imaizumi, Schultz, 

Harmon, Ho, & Kay, 2005; Salazar et al., 2009; Song, Smith, To, Millar, & 

Imaizumi, 2012; Suarez-Lopez et al., 2001). The circadian clock component 

GIGANTEA (GI) regulates the daily cycle of CONSTANS (CO) transcription in the 
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photoperiod pathway, which in turn activates the transcription of floral promoter 

FLOWERING LOCUS T (FT) (David, Armbruster, Tama, & Putterill, 2006; Fowler 

et al., 1999; Imaizumi & Kay, 2006; Park et al., 1999; Tiwari et al., 2010; Yu et al., 

2008). In day/night cycles, the timing of the peak CO mRNA relative to the day 

length ensures that CO promotes flowering only in long-day (LD) photoperiods that 

exceed a critical day length (Fig. 2.2) (Suarez-Lopez et al., 2001; Yanovsky & Kay, 

2002). Under LDs CO mRNA peaks before the end of the day as a result of both 

direct interaction with clock-controlled and light-activated FLAVIN-BINDING, 

KELCH-REPEAT, F-BOX (FKF1) (Song et al., 2012) and the indirect activity of 

FKF1 with GI, which degrades CYCLING DOF FACTOR 1 (CDF1) and related 

repressors of CO (Fornara et al., 2009; Imaizumi et al., 2005; Yanovsky & Kay, 

2002). As this peak occurs during daylight, CO protein is stabilised by the action of 

phytochrome A (phyA) and cryptochrome 2 (cry2) and flowering is thus promoted 

through CO regulation of FT (Valverde et al., 2004). In short days (SD), as CO 

mRNA peaks during the night, CO transcript levels are relatively low during the day. 

Under these conditions, the CO protein does not accumulate and FT mRNA levels 

remain low (Corbesier et al., 2007b; Valverde et al., 2004; Yanovsky & Kay, 2002). 

Arabidopsis does eventually flower in SDs, as the gibberellin (GA) pathway takes 

over to promote floral induction (Dorca-Fornell et al., 2011; Mai, Wang, & Yang, 

2011; Moon et al., 2003; Mutasa-Gottgens & Hedden, 2009; Wilson, Heckman, & 

Somerville, 1992).  
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Figure 2.1: The major genetic pathways that regulate flowering time in Arabidopsis. 

This diagram was reproduced from Wilczek et al. (2009), with the addition of the 

aging and thermosensory pathways.  
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Figure 2.2: Regulation of CO gene at both the mRNA (curves) and protein (spheres) 

levels. In short days, CO protein level remains low at day time due to the degradation 

(as indicated by the split spheres) promoted by activated PhyB. In long days, CO 

protein is stabilised near the end of the day as a result of the combined action of 

light-activated PhyA and Cry2, and the antagonistic action of clock-controlled FKF1 

and GI on repressor CDF1. This diagram was reproduced from Lagercrantz (2009). 

Keys: Clock sign – component(s) regulated by the clock; Full arrow – positive 

activation; Dashed arrow – light activation; Bar-headed line – inhibition. Note: Not 

all known components and/or activities in the regulation of CO are included in the 

diagram. 
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Flowering can also be accelerated by exposure to periods of prolonged cold in a 

process known as vernalisation. This is a strategy adopted by many species that 

overwinter to ensure that flowering occurs in more favourable spring conditions 

(Amasino, 2010). A central regulator of the vernalisation pathway is FLOWERING 

LOCUS C (FLC) that represses flowering (Michaels & Amasino, 1999) through FT 

and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) inhibition (Hepworth, 

Valverde, Ravenscroft, Mouradov, & Coupland, 2002). FLC is gradually inactivated 

through epigenetic silencing when plants are exposed to a sustained period of cold.  

This time-dependent process relieves FLC suppression of flowering (Bastow et al., 

2004; Gendall, Levy, Wilson, & Dean, 2001; Greb et al., 2007; Heo & Sung, 2011; 

Sung & Amasino, 2004; Swiezewski, Liu, Magusin, & Dean, 2009). In contrast to 

vernalisation however, short periods of cold can delay flowering (Kim et al., 2004) 

while warm temperature accelerates flowering (Balasubramanian et al., 2006; 

Blazquez et al., 2003). A number of genes such as TERMINAL FLOWER 1 (TFL1), 

SHORT VEGETATIVE PHASE (SVP), FVE and FCA from the classical autonomous 

pathway, and some micro-RNAs have been reported to mediate these effects of 

ambient growth temperature on flowering (Blazquez et al., 2003; Hanano & Goto, 

2011; Kim et al., 2004; Kim, Ahn, Chiou, & Ahn, 2011; Lee et al., 2010; Lee et al., 

2007; Strasser, Alvarez, Califano, & Cerdan, 2009). A more recent study suggested a 

thermosensory pathway mediated through direct activation of FT by 

PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) (Kumar et al., 2012).  
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Besides photoperiod and temperature, environmental light signals are known to 

impose strong regulation on flowering time. High vegetative shade or high light 

intensity can lead to a dramatic acceleration in flowering time (Franklin & Quail, 

2010; King, Hisamatsu, Goldschmidt, & Blundell, 2008). These effects are largely 

mediated through the phytochrome photoreceptors that are accurate sensors of light 

quality and fluence rates. Two members of this photoreceptor family, phyA and 

phyB have been shown to operate, at least in part, by regulating the stability of CO 

protein (Valverde et al., 2004).  PhyA promotes flowering by boosting CO 

accumulation towards the end of a long day, while phyB suppresses flowering by 

preventing CO accumulation in the morning (Fig. 2.2). phyA and phyB mutants have 

been shown to have altered flowering responses to different day lengths compared to 

wild-type (Giakountis et al., 2010). It has also been shown that the effects of 

photoreceptors on flowering are temperature sensitive (Blazquez et al., 2003; 

Halliday et al., 2003), illustrating that the photoreceptor pathways may provide a link 

between the temperature and photoperiod pathways in the regulation of flowering. 

This link was further examined in the current study using a modelling approach 

(Section 4.1). 
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2.2  Experimental systems to study flowering 

 

Most of the genetic pathways outlined in the previous section were identified in the 

laboratory where specific environmental factors can be isolated and tightly 

controlled. However, to understand the genetics of flowering variation, natural 

conditions are more desirable. Weinig et al. (2002) initiated the first Arabidopsis 

field study of Quantitative Trait Loci (QTL) for bolting time, and they identified a 

large number of QTLs with major effects on bolting time in the field environments 

that were not detectable in controlled conditions. A number of studies have attempted 

to simulate natural seasonal variation in the lab by programming growth chambers 

based on the day length, temperature, light quality and intensity, as well as relative 

humidity from native geographic locations (Li, Huang, Bergelson, Nordborg, & 

Borevitz, 2010; Li, Roycewicz, Smith, & Borevitz, 2006). By using such artificial 

natural conditions, these studies have managed to isolate the standard local 

conditions to understand local adaptation while eliminating any effects of random 

factors that only corresponded to particular years. A more common alternative in 

studies opting for natural conditions is the greenhouse, but a comparison study 

involving 20 000 plants of 184 worldwide natural accessions found a poor 

correlation in flowering time variation between data from field experiment and those 

previously obtained under greenhouse conditions, possibly due to the effects of 

greenhouse-specific factors (Brachi et al., 2010). This highlighted the need to study 

adaptive variation in flowering time using real field conditions.  

 

Recently, a large-scale co-ordinated field study was conducted at various sites and 

seasons, covering a range of genotypes that included mutants impaired in specific 

response to the environment (Wilczek et al., 2009). The data collected from this field 

study was used to parameterise the Wilczek et al. phenology model. Following 

parameterisation with field data, the model was tested on independent lab data and 

managed to predict the flowering time of these validation data.  Such combinatory 

use of lab and field data is therefore useful not only for testing model applicability, 

but also to validate its ability to capture the effect of an isolated environmental 

factor, e.g. night temperatures, as shown in the the current study (Section 4.1.4).   
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2.3 Approaches to modelling plant biology 

 

In the context of systems biology, modelling can be generally divided into two: 1) 

static graphical representations of the relationships between elements in a network 

and; 2) spatio-temporal dynamic models. The following sub-sections only covers 

dynamic modelling, as it is the approach used in the current study. 

 

 

2.3.1 Types of models 

 

The types of models used in plant modelling are very diverse, ranging from simple 

statistical relationships to models with comprehensive details. Statistical plant 

models mainly consider the overall relationship between independent variables 

(environmental factors such as temperature, humidity, soil moisture and rainfall) and 

dependent variables (growth, yields and plant distribution) (Prasad et al., 2006; 

Thuiller, Araújo, & Lavorel, 2003; Yee & Mitchell, 1991). The parameters in these 

models do not usually represent any biological or physical functions. On the other 

hand, process-based mechanistic models attempt to describe the relevant 

physiological processes that channel the environmental effects to the growth 

outcome. For example, mass balance principles are used in CROPGRO 

(Hoogenboom et al., 1994) and CERES-Maize (Jones & Kiniry, 1986) to simulate 

daily crop growth in response to carbon, nitrogen and water availability. These two 

groups of models are widely used in ecological studies, and a comparison between 

both model types has shown that they can complement each other to offset 

uncertainties, but statistical models do not take phenotypic plasticity and local 

adaptation into account (Morin & Thuiller, 2009). In agronomy, process-based 

models have gained considerable attention with the advent of modern computers 

(Vos et al., 2010). However, classical process-based models considered plant 

canopies as one big leaf that does not distinguish between layers or individual leaves 

(Allen, Pereira, Raes, & Smith, 1998; Jones & Kiniry, 1986), and this concept clearly 

could not describe any environmental and genetic control of morphogenesis in plants 

(Dingkuhn, Luquet, Quilot, & de Reffye, 2005). This called for models that consider 
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plant architecture, which were pioneered by Honda (1971) and Lindenmayer (1968a, 

1968b). Early 3D plant models were mainly descriptive and static, and they were 

built to determine light interception or for landscaping purposes (Chelle & Andrieu, 

1998; Dauzat, 1994; Dauzat & Eroy, 1997; Jaeger & De Reffye, 1992). Functional-

structural plant modelling (Godin & Sinoquet, 2005; Vos, Marcelis, & Evers, 2007; 

Yan, Kang, de Reffye, & Dingkuhn, 2004), which combined process-based and 

architectural models, later emerged to capture the dynamic feedbacks between plant 

structure (shaped by individual organs) and plant function as a whole (Vos et al., 

2010).           

 

The types of models presented so far mainly describe biological events at the 

ecosystem, population, whole-organism and organ levels. Recent advances in 

molecular biology and systems biology have facilitated the modelling of events at 

scales as small as the genetic level. Gene regulatory network (GRN) models are used 

in representing the dynamics of genes, mRNA or proteins that are often entangled in 

complex interactions. Early GRN models of plant development described the 

dynamics of floral organ specification and root hair development (Mendoza & 

Alvarez-Buylla, 1998; Mendoza & Alvarez-Buylla, 2000). Others include gene 

network model of plant development to flowering (Welch et al., 2005) and the 

circadian clock network (Locke et al., 2005; Locke et al., 2006).    

       

 

2.3.2 Model formalism 

 

Models can also be classified based on the formalism used. For example, 

architectural models adopting the Lindenmayer-Systems use a formal language 

comprising a set of rules for rewriting a string of symbols (Prusinkiewicz & Hanan, 

1990; Prusinkiewicz, Karwowski, & Lane, 2007). Each symbol represents a plant 

structure such as an internode or a leaf, which together forms a repetitive growth unit 

known as the phytomer (Vos et al., 2010). GreenLab is another type of architectural 

models and it also adopts the concept of phytomer. In GreenLab, new phytomers 

appear at the beginning of each growth cycle to form new branches, therefore each 
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phytomer can be described by its order relative to the main axis (physiological age) 

and the time elapsed since its emergence (chronological age) (Cournede et al., 2006; 

Yan et al., 2004). Both the Lindenmayer-Systems and GreenLab formalisms have 

been very useful in simulating the topological structures in plants. Process-based 

models, on the other hand, do not have any fixed form. The mathematical 

representations used can range from a simple proportionality to mass-action or more 

complex kinetic models, depending on the process to be described and how much 

mechanistic details are known (Allen et al., 1998; Farquhar, Caemmerer, & Berry, 

1980; Rasse & Tocquin, 2006). However, environment x genotype interactions are 

actually governed by a complex series of molecular reactions and feedback loops, 

and most crop models employ simple empirical relationships to represent the 

interactions. Yin and Struik (2010) highlighted the need to reduce the empiricism of 

these models by either adding mechanistic details or introducing alternative 

mathematical functions to describe the biological processes. It was suggested that 

crop models should be revised to incorporate the vast information from functional 

genomics and biochemistry, which have seen rapid progress with the emergence of 

systems biology. Approaches for modelling biological events at the cellular and 

molecular levels include ordinary differential equations (ODE) (Jonsson, Heisler, 

Shapiro, Meyerowitz, & Mjolsness, 2006; Locke et al., 2005), Boolean network 

modelling (Espinosa-soto, Padilla-Longoria, & Alvarez-Buylla, 2004; Schlatter et al., 

2009) and flux balance analysis (Grafahrend-Belau, Schreiber, Koschutzki, & 

Junker, 2009; Shastri & Morgan, 2005). On the other hand, systems biology should 

also draw on the existing development in crop modelling (Yin and Struik, 2010).   

 

In general, plant models can be deterministic or stochastic. Deterministic models 

compute the same output given the same input variables, while stochastic models 

contain some probabilistic functions causing each simulation output to be different. 

Stochasticity has been applied to different types of models. For instance, the 

GreenLab functional-structural model comes in both deterministic and stochastic 

versions (Cournede et al., 2006). In the latter, stochasticity is introduced in the 

branching either by adding a simple randomising function in phytomer appearance 

and bud death, or through feedback from biomass acquisition (Cournede et al., 2006; 
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Kang, Cournede, de Reffye, Auclair, & Hu, 2008). At the cellular and molecular 

levels, stochastic ODE and Boolean models are used to account for any noise due to 

small numbers of molecules or other sources of uncertainties (Shmulevich, 

Dougherty, Kim, & Zhang, 2002; Shmulevich, Dougherty, & Mang, 2002; Tian & 

Burrage, 2006).  Recent studies on fluctuations in biochemical activities have 

garnered new perspectives on noise-induced phenomena, suggesting that they are not 

random behaviours but could enhance sensitivity and perform certain biological 

functions (Qian, 2012). Stochastic simulations of these events could reveal such non-

trivial behaviours and therefore provide additional information on biological systems 

(Twycross, Band, Bennett, King, & Krasnogor, 2010).      
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2.4 Multi-scale plant modelling 

 

Multi-scale modelling is not a distinct type of approach; it only indicates that 

multiple spatial and/or temporal scales are considered, and it can take any types and 

forms outlined in Section 2.3. As the current study attempted to link independent 

models of different scales, a review of the current progress in multi-scale modelling 

and problems asscociated with it is therefore presented as a separate section here.  

 

Multi-scale modelling is not something new; it has been widely used in physics, 

chemistry and engineering (Flemisch et al., 2011; Gates, Odegard, Frankland, & 

Clancy, 2005; Raghavan, Bai, & Ghosh, 2004). In biology, this field has emerged in 

biomedical sciences such as cardiology (e.g. heart models) and oncology (e.g. cell 

cycle and tissue dynamics models) with the aims of enhancing systemic 

understanding and improving therapeutic effects (Qu, Garfinkel, Weiss, & Nivala, 

2011; Schnell, Grima, & Maini, 2007; Southern et al., 2008; Stolarska, Kim, & 

Othmer, 2009). For plant systems, multi-scale models have been applied over a wide 

range of spatial and temporal scales, though these models mainly cluster around 

opposite ends of the scales. On one end, ecological models are developed to 

understand the interaction between hierarchical scales from individual plant species 

to the whole vegetation (Koniak & Noy-Meir, 2009; van Wijk, 2007), and these 

models can describe events from one season to a few decades. On the other end, 

there are multi-scale models describing cellular and tissue dynamics in the fruits, 

vascular system, shoot apical meristem and roots (Feugier, Mochizuki, & Iwasa, 

2005; Ho, Verboven, Verlinden, & Nicolai, 2010; Jonsson et al., 2006; Swarup et al., 

2005), which are systems with a relatively shorter time scale. Studies bridging these 

clusters have surfaced and one notable attempt was a wheat growth-and-development 

model (Evers et al., 2010), which linked together a 3D architectural model that 

determines organ-level light interception and photosynthesis to whole-plant 

assimilate partitioning for a small plot of wheat plants. Attempts have also been 

made to incorporate genotype-phenotype relationships into crop models using 

information from QTL analyses (Letort, Mahe, Cournede, De Reffye, & Courtois, 

2008; Xu, Henke, Zhu, Kurth, & Buck-Sorlin, 2011; Yin, Chasalow, Dourleijn, 
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Stam, & Kropff, 2000). Model parameters were linked to specific traits and modified 

either based on measured values extracted from the literature or through model 

optimisation. By incorporating such links, the random errors associated with the 

measured crop model input parameters were partly removed by the QTL analysis 

statistics, thus improving model prediction of yield differences among different 

inbred lines (Yin, Kropff, Goudriaan, & Stam, 2000; Yin, Stam, Kropff, & 

Schapendonk, 2003). These studies therefore demonstrated how physiological 

modelling and genetic mapping can be combined to resolve environment x genotype 

interactions to support plant breeding efforts. 
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2.5 A systems biology approach in the current study  

 

Plants display plasticity by altering development and metabolism, allowing them to 

adapt to fluctuating environment. To facilitate predictive biology and crop 

improvement, there is a need to fully understand plant physiology at all levels of 

organisation, including interlevel interactions. This can be achieved using the 

systems biology approach, which attempts to understand the behaviour and 

functional relationships between all the elements in the whole system or organism 

(Ideker, Galitski & Hood, 2001). To do this, it is necessary to develop whole-

organism models comprising sub-models that describe biological events at different 

levels of organisation. There already exist mathematical models describing various 

plant processes and Arabidopsis has the concentrate of data sets required to support 

and test such models. However, these data may be incompatible if there is excessive 

variation in growth across labs. The current study aimed to explore the feasibility of 

capitalising on the vast existing plant models by integrating four models from 

different domains and scales in a modular fashion, and validating the integrated 

model using independent data.   

     

Each of the four models utilised in this study adopts a different modelling approach. 

The models include: 1) a GRN model of the circadian clock in the form of ODEs 

(Salazar et al., 2009); 2) a phenology (crop) model containing empirical functions 

and scaling factors (Wilczek et al., 2009); 3) a processed-based model of carbon 

assimilation and resource partitioning (Rasse & Tocquin, 2006); 4) a functional-

structural model based on GreenLab (Christophe et al., 2008). As illustrated in the 

approaches outlined in Section 2.3, different types of models are built for different 

purposes. It is therefore not desirable to adopt any one type of model to describe a 

whole organism, particularly for complex multi-scale systems like plants. A recently 

published bacteria whole-cell model showed a good example of how different types 

of models could be separately developed, parameterised and then combined using a 

modular approach (Karr et al., 2012). Thus, the current study adopted a similar 

approach to develop a multi-scale whole-plant growth model for Arabidopsis.  
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For model validation, as the integrated model comprises existing models of different 

types, it is difficult to generalise the type of data that is suitable. Usually, each type 

of models utilises a specific type of experimental data for both model training and 

validation. For instance, ecological models are mostly trained and validated using on-

site measurement of gas exchange, precipitation, soil composition etc., and/or remote 

satellite imaging or monitoring system. Functional-structural models, on the other 

hand, require data of plant architecture such as branching patterns, plant geometry or 

spatial orientation, and shoot morphology, e.g. the size and shape of leaves. Many 

3D digitising devices have been developed for these purposes (Sinoquet & Rivet, 

1997; Watanabe et al., 2005). For validation of growth and resource partitioning 

models, some of the common data used include biomass of whole plants and 

individual organs, carbon composition and nitrogen content. At the cellular and 

molecular levels, ODE modelling utilises time-series data of model components, 

while stochastic models most often require high-resolution data down to the copy 

number of molecular components in a single cell. These examples are only 

generalisations; however, a trend can be seen where the type of data correlates with 

the spatio-temporal scale of the model and also depends on the objective(s) of the 

model development. For this study, one possibility would be to generate various data 

to validate all sub-models of different scales. Alternatively, since most model 

variables are correlated, validation can be conducted on a few selected output 

variables. The latter was adopted here, where the multi-scale model was validated 

using biomass data of individual leaves and gas exchange measurement of small 

plant populations taken at different time points in the vegetative stage.  

 

This study also aimed to bridge between crop modelling and plant systems biology, 

which not only links models from both domains but also reduces empiricisms in 

doing so. For example, an empirical function in the phenology (crop) model 

(Wilczek et al., 2009) was linked to a clock (gene network) model for Arabidopsis 

(Salazar et al., 2009). The GreenLab growth model (Christophe et al., 2008) that 

links plant architecture to light interception was also incorporated, where its simple 

light use efficiency function was replaced by a (biochemical) model describing leaf-
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level photosynthesis and resource partitioning (Rasse & Tocquin, 2006). A full 

description of the multi-scale model is presented in Chapter 4 (Part III).   

 

As mentioned earlier, one of the many advantages of a systems approach is the 

ability to define an organisation both as a whole and as smaller constituents that 

make up the whole system. Therefore, in addition to developing a multi-scale plant 

model, this study also aimed to achieve the following objectives: 

 

1. To enhance our understanding on how external signals, i.e. light and 

temperature, regulate flowering time; 

2. To gain insight into the circadian clock regulation of flowering under natural 

environments;  

3. To test the applicability of the integrated plant model at different scales and 

levels of organisation. 

 

These objectives build on the current understanding of the genetic pathways 

controlling flowering time in Arabidopsis (Section 2.1), using the experimental 

systems described in Section 2.2. 
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Chapter 3 

 

Methodology 

 

 

This study adopted a combination of experimental and theoretical approaches. 

Experimental data from both the field and the laboratory were used in the study. 

Field measurement and meteorological data were kindly provided by collaborators 

Professor Dr. Amity Wilczek, Professor Dr. Stephen Welch and Professor Dr. 

Johanna Schmidt. Data from controlled chamber experiments were either generated 

as part of this study or were unpublished data of other members in the laboratory. 

This chapter only described the procedures for experimental work conducted as part 

of the current study.     

 

 

3.1 Computational methods and statistical analysis 

 

Modelling work was carried out in MATLAB (Mathworks, Cambridge, UK). Of the 

four existing sub-models used, only the clock model (Salazar et al., 2009) was 

readily available in the MATLAB m-file format. Therefore, existing submodels that 

were not available in Matlab codes had to be re-written in m-files and compared to 

the original implementation to ensure minimum numerical differences. First, the 

Wilczek et al. phenology model, which was originally in the Excel Spreadsheet 

format, was re-coded. The carbon-assimilation-and-metabolic model was originally 

published in FORTRAN, but was later rebuilt by Simulistics in Simile, which is an 

object-based modelling platform with a Graphic User Interface. The Simile version 

of this model has been deposited in the model repository PlaSMo (Plant Systems-

biology Modelling). Using the Simile version as a reference, this model was next re-

coded. As for the functional-structural model used in this study, it was based on the 

concept of the GreenLab model (Christophe et al., 2008). Even though the GreenLab 

model exists in the MATLAB format, it was developed in a structure aimed at model 
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parameterisation and is not suitable for integration with other models. Therefore, a 

new functional-structural model was developed in MATLAB to facilitate the 

integration work in the current study, while re-using the concept and parameter 

values of the GreenLab model (Christophe et al., 2008).      

 

Model analysis such as parameter estimation and statistical work were also 

conducted in MATLAB. For model re-parameterisation of the Wilczek et al. 

phenology model (Chapter 4: Part I), the global optimisation tool (active-set 

algorithm) was used. Analysis of covariance (ANCOVA) was conducted using the 

statistics toolbox and interactive tool (Chapter 4: Part II). Ordinary differential 

equations (ODEs) in the circadian clock model were solved using the MATLAB 

ode15s variable-step solver.  
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3.2 Plant materials and growth conditions 

 

Arabidopsis thaliana from the Landsberg erecta (Ler) and Feira (Fei) (kindly 

provided by Dr. Ronan Sulpice from Max Planck Institute for Molecular Plant 

Physiology, Potsdam-Golm, Germany) accessions were used in this study. All seeds 

were first sown on half strength Murashige and Skoog (MS) solution and stratified in 

darkness at 4 
0
C for 5 days before being exposed to white light at the desired 

photoperiod and temperature. Four-day-old seedlings were then transferred to trays 

of 6 x 4 pots containing Levington seed and modular compost (plus sand). Light was 

provided by Polylux XLR 835 (GE Lighting) triphosphor white fluorescent tubes, 

130 μmol m
-2

 s
-1

. 

 

 

3.3 Gas exchange measurement 

 

An EGM-4 Environmental Gas Monitor for CO2 (PP Systems, US) was used for 

CO2 flux measurement. A 50 cm x 35 cm x 20 cm perspex chamber was fabricated 

and connected to the EGM-4 with two butyl tubes for closed-loop measurement (Fig. 

3.1a). An airtight seal was created between shelf top and chamber by lining adjoining 

surfaces with neoprene and pressing the chamber tightly to the shelf during 

measurement. Each individual measurement was taken by placing a tray of plants 

inside the chamber for approximately 60 seconds, during which the EGM-4 recorded 

CO2 concentration (μmol mol
-1

) every 4.6 seconds. The air in the chamber was 

mixed using two small fans. CO2 flux was calculated from the slope of CO2 

concentration plotted against time as follows: 

 

V
dt

dC
Fc  .                 (3.1) 

 

RT

P
 ,                             (3.2) 

 

where  
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Fc   =  net CO2 flux (μmol s
-1

)   

          ρ     =  air density (mol m
-3

)            

          V  =  air volume in the chamber (m
3
) 

          dC/dt  =  slope of CO2 concentration against time (umol mol
-1

 s
-1

) 

P    =  pressure (Pa)  

          R   =  ideal gas constant, 8.314 (m
3
 Pa mol

-1
 K

-1
) 

          T   =  temperature (K) 

        

CO2 flux of 4-week-old plants was measured every few days until flower buds first 

became visible to the naked eye. As a control, gas exchange from a tray of soil 

without plants was also measured. Hourly CO2 concentration at leaf level was also 

monitored by connecting the EGM-4 to a computer for data logging. The average 

hourly CO2 level logged over the weekend, when there was no human interference, 

was used as input to the model (Fig. 3.1b). 

 

 

3.4 Leaf number and biomass assay 

 

The number of total leaves (including the cotyledons) was recorded every 3-4 days 

from germination until the flower buds appeared. Any leaves exceeding 1 mm
2
 in 

size (estimated with the naked eye) were considered in the total leaf count. Biomass 

assay was also conducted at different time points throughout the vegetative stage. 

Plants were selected randomly from each accession and rosettes were dissected for 

the measurement of individual leaf biomass. For dry biomass assay, dissected plants 

were dried in the oven at 80 
0
C for 7 days. For the assay at the final time point, only 

plants with visible flower buds were selected to ensure they were all at the same 

developmental stage. Area analysis was conducted using Image J (Schneider, 

Rasband & Eliceiri, 2012). Each image was first processed with colour thresholding 

to isolate the green region and convert it into the binary format. The area was then 

determined using the Analyze Particles tool.  
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Figure 3.1: a) Experimental setup for gas exchange measurement; b) Hourly CO2 

concentration at leaf level in the growth room.    

 

(a) 

(b) 
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Chapter 4 

 

Results and Discussions 

 

PART I: Phenology Model 

 

 

This section is now a published work (Chew et al., 2012). All the analyses conducted 

in this section were the original work of this thesis. Field data used were either from 

a published work (Wilczek et al., 2009) or kindly provided by Professor Dr. Amity 

Wilczek, Professor Dr. Stephen Welch and Professor Dr. Johanna Schmidt. The field 

experiments were supported by the NSF Frontiers in Integrative Biological Research 

program grant EF-0425759 and an Alexander von Humboldt Research Award to 

Professor Schmidt. 

 

 

Summary: In this section, the behaviour of an earlier published phenology model 

(Wilczek et al., 2009) was analysed together with meteorological data. Results 

revealed a seasonal temperature control of flowering time in Arabidopsis. An 

improved version of the model was also developed and extended to describe 

photoreceptor mutants, which brought to light a potential mechanism that explains 

the temperature-dependent role of phyB.  

 

 

4.1.1 Description of the Arabidopsis phenology model  

 

The basic concept for phenology models was conceived in the eighteenth century by 

Réaumur, who suggested that transitional events such as flowering occurred when a 

critical level of accrued daily temperature was exceeded (as reviewed in Robertson 

(1968)). The notion of accumulated temperature, referred to as ‘degree-days’ or 

thermal time, suggested that developmental rate was a linear function of temperature 
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(Monteith, 1981). It was later discovered that the accumulated temperature threshold 

required to trigger flowering changed with day length. This observation led to the 

development of a number of improved models that incorporated both temperature 

and photoperiod data (Robertson, 1968; Weir, Bragg, Porter, & Rayner, 1984; 

Williams, 1974). Early photothermal models offered good predictive power even 

though they were based solely on field observations, recorded dates and 

meteorological data. The early phenology models, however, did not consider genetic 

variability or the underlying biological pathways. A number of contemporary models 

exploit our growing knowledge of the molecular pathways that interpret 

environmental cues. In these models the incorporation of genetic and molecular 

information improved their predictive power as well as offering improved capability 

to decipher network behaviour (Messina, Jones, Boote, & Vallejos, 2006; Salazar et 

al., 2009; Wenden et al., 2009; White & Hoogenboom, 1996). This class of model is 

more applicable to crop forecasting and molecular-assisted breeding programmes.  

 

The Arabidopsis phenology model (Wilczek et al., 2009) used in this study was 

developed based on the classical crop modelling concepts, which integrate 

photoperiod and thermal time. This model also incorporated the impact of 

vernalisation, a feature that is considered in many phenology models for temperate 

species (Chuine, 2000; Harrington, Gould, & St Clair, 2010; Wang & Engel, 1998). 

In addition, this model is contemporary as individual scaling factors were used to 

link model parameters to the activities of specific genes, particularly in the 

photoperiod and vernalisation pathways, enabling it to consider genetic variability. 

  

There are three main components in the model: photoperiod, thermal time, and 

vernalisation (Fig. 4.1.1). It calculates a modified photothermal unit (MPTU), which 

is a product of the main components, on an hourly basis.  
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Figure 4.1.1: The three components of the Wilczek et al. photothermal model, with 

each consisting of a piece-wise linear transition function. (a) Photoperiod 

component, which is divided into three sections by two critical day lengths; (b) 

Thermal time component, which considers only daytime hourly temperatures above 3 
0
C; (c) Vernalisation component, which has two sub-components. The modifier 

represents the extent of vernalisation and depends on the accumulated vernalisation 

effectiveness at different temperatures; (d) The Modified Photothermal Unit (MPTU) 

is a product of the three components. MPTU is accumulated every hour until a 

threshold value is reached to indicate the reproductive switch. 
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The photoperiod component consists of a piece-wise linear transition function, with 

three sections divided by two critical day lengths. At day length (dl) below the 

critical short day length (CSDL), rate to bolting is at its minimum. As photoperiod 

lengthens, the rate increases linearly until the critical long day length (CLDL) is 

reached, where there is no further increase. The effect of photoperiod on rate to 

bolting at each time-point t is therefore: 
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        (4.1.1) 

 

where DSD and DLD are the minimum and maximum rates respectively. This 

photoperiodic response has been observed experimentally (Pouteau & Albertini, 

2009; Pouteau et al., 2008; Pouteau, Ferret, & Lefebvre, 2006; Wilczek et al., 2009) 

and could be reproduced theoretically using the clock gene circuit model (Salazar et 

al., 2009). Genotypes which are insensitive to photoperiod induction maintain a 

constant minimum rate.  

  

The second component calculates the thermal time in degree-hour, as follows:  
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where t24 is the time of the day expressed in the 24-hour format. Only day 

temperatures above a base value, Tb, of 3 
0
C (Granier et al., 2002) are considered in 

the model. The P function is included in the equation to filter out night temperatures.   
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The effect of vernalisation is computed in the model by using first a beta function to 

represent vernalisation effectiveness (ve) at different temperatures within a 

vernalising-temperature range: 

 

.))(())()(exp()( maxmin

 tTTTtTtv VVe            (4.1.4) 

 

κ, ω and ξ are parameters in the beta function. The minimum (TVmin) and maximum 

(TVmax) vernalising-temperatures were fixed at -3.5 and 6 
0
C and the three beta 

function parameters were determined based on statistical analysis and fitting to 

laboratory and field data (Napp-Zinn, 1957; Wilczek et al., 2009). 

 

Cumulative vernalisation hours (Vh) up to and including the hour that ends at t is 

computed using a summation function to determine the period of time exposed to the 

effective vernalising temperatures, as follows: 
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Δt is the time step used in the model, which is set to one hour. The extent of 

vernalisation, Vern(t), is then determined using the following: 
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Fb is a parameter representing baseline FLC repression. As the period of cold 

exposure increases, FLC becomes more repressed until a point when it is 

permanently inactivated. This is known as the saturation point, Vsat, which has a 

value of 960 hours or 40 days (Lee & Amasino, 1995; Napp-Zinn, 1957). For 

vernalisation insensitive genotypes, Vern(t) remains at the Fb value regardless of the 

period of exposure to vernalising temperatures.   
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Every hour, MPTU is calculated using equation 4.1.7 and accumulates until a 

threshold Th is reached:  

 

).()()()( tVerntThermaltdPhotoperiotMPTU            (4.1.7) 
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The threshold feature in the model is similar to that used in classical crop models. It 

is also consistent with molecular switch-like traits such as those shown by FT, 

LEAFY (LFY) and APETALA1 (AP1) (Corbesier et al., 2007a; Jack, 2004; Sablowski, 

2007). 

 

The model was parameterised in Wilczek et al. (2009) using field data from seven 

genotypes: two in the Landsberg erecta (Ler) background, i.e. wild type and co-2; 

and five in the Columbia (Col) background, i.e. wild type, gi-2, Col-FRI-Sf2, vin3-1 

(in Col-FRI-Sf2) and fve-3.  Field experiments were carried out at five sites across 

Europe, i.e. Valencia, Oulu, Cologne, Halle and Norwich in the spring, summer 

and/or autumn (Fig. 4.1.2a) (Wilczek et al., 2009). The sites cover a range of 

latitudes and local climates, such as Mediterranean in Valencia, oceanic in Norwich, 

and subarctic in Oulu. Cologne and Halle are located at approximately the same 

latitude as Norwich but experience a continental climate, so cohorts at these sites 

would experience comparable day lengths but different local weather at similar times 

of the year. There were a total of nine plantings, including a repeat of Norwich 

Summer in 2007. Planting was timed to coincide with the observed natural 

germination flush in the wild population except in Oulu, where natural germination 

occurs in September.   

 

The optimisation strategy used in this study was similar to that in Wilczek et al. 

(2009), which was to minimise the coefficient of variation for the set of line x 

planting MPTU totals. The active-set algorithm in MATLAB was used. Only DSD 

and Fb were optimised, and constrained to values between 0 and 1 as they were 
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scaling factors. DLD was therefore set to 1 to represent maximal scaling. CLDL and 

CSDL were set based on experimental data of flowering time response to 

photoperiod (Wilczek et al., 2009). The threshold value Th would take the mean of 

planting MPTU totals calculated from the optimised parameter values. This 

optimisation strategy was adopted as it enabled parameter values to be driven by 

environmental inputs (Stephen Welch, Personal communication 2011). Parameters 

for Ler and Col were estimated separately to ensure switch-gene isogenicity.   

 

     

4.1.2 Analysis of model behaviour   

 

The attributes of the Wilczek et al. model was first investigated by analysing model 

performance alongside meteorological data. According to Fig. 4.1.2b, the model 

displayed a good fit for cohorts in the Summer and Spring plantings. For Autumn 

cohorts, however, there are three distinctive regions of fit: 1) the Valencia Autumn 

cohort scattered along the diagonal line, indicating a good match between observed 

and predicted values (e); 2) flowering times of Halle and Cologne Autumn cohorts 

were mostly overestimated (f and g); 3) flowering times of late flowering genotypes 

(gi-2, Col-FRI-Sf2, vin3-1 and fve-3) from Norwich Autumn were considerably 

underestimated (h). Therefore, the model was further analysed by breaking the data 

into subsets based on the three groups of goodness of fit (GoF), then matched with 

the respective meteorological data (Fig. 4.1.2c-h). Comparison of GoF was based on 

the root mean squared error (RMSE) expressed in days, or RMSE normalised by the 

mean value of the observations which forms the coefficient of variation, also known 

as CV(RMSE) expressed as a percentage. Larger values of the RMSE or CV(RMSE) 

indicate more substantial relative differences between model predictions and field 

data. 
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Figure 4.1.2: Analysis of model behaviour and meteorological data. (a) The timing 

of sowing (●) and Col bolting (*) in eight experimental plantings, which were timed 

to coincide with the germination of local natural populations (except Oulu, where 

natural germination occurs in September). A ninth planting, Norwich Summer 2007, 

took place within one week from the Julian dates of the 2006 Summer cohort. The 

latitude for each site is shown in brackets. This diagram was reproduced from 

Wilczek et al. (2009); (b) Predicted versus observed bolting times, with the diagonal 

line representing perfect fit. Error bars represent one standard error. The goodness of 

fit (GoF) showed distinctive regions as highlighted. Letters in parentheses link each 

region to the illustrations of associated meteorological data of a few representative 

days shown in (c) to (h). Model GoF (root mean squared error or RMSE shown in 

days and as a percentage) are shown at the top of each meteorological plot. 

Norwich  
(52.6240N) 

Cologne  
(50.9580N) 

Halle  
(51.4950N) 

Oulu  
(65.0580N) 

Valencia  
(39.6110N) 

(a) (b) 

(d) 

RMSE for all spring cohorts: 1.4 days 

CV(RMSE) = 2.5 % 

RMSE for all summer cohorts: 2.1 days 
CV(RMSE) = 7.5 % 

            
Cologne Spring Norwich Summer Valencia Autumn 

    

Norwich Autumn 

    

Halle Autumn 

RMSE for Cologne Autumn cohorts: 23.4 days 
CV(RMSE) = 20.1 % 

    

Cologne Autumn 

Overall RMSE: 12.8 days 

CV(RMSE) = 17.1 % 

(d) (c) (e) 

(f) (g) (h) 

(c) 

(e) 

(h) 

(f) & (g) 

 
 

 

RMSE for Halle Autumn cohorts: 14.3 days 
CV(RMSE) = 10.7 % 

Date 

Observed values (Days to bolting) 

P
re

d
ic

te
d
 v

a
lu

e
s
 (

D
a
y
s
 t

o
 b

o
lt
in

g
) 

RMSE for Norwich Autumn cohorts: 24.2 days 
CV(RMSE) = 21.7 % 

RMSE for Valencia Autumn cohorts: 8.6 days 
CV(RMSE) = 8.8 % 
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Fig. 4.1.2c-h shows the seasonal variation in daily temperature time series for a few 

representative days. Extended through time, this variation leads to distinctly different 

patterns of day vs. night thermal time accumulation (Fig. 4.1.3). It was found that 

RMSE was low for cohorts that experienced daily temperature cycles (Fig. 4.1.2c-e). 

The model could reliably match the flowering time data from Summer, Spring and 

Valencia Autumn cohorts, where plants typically experienced cooler night and 

warmer day-time temperatures. However, an incremental rise in RMSE was seen for 

the Autumn cohorts at Halle, followed by Cologne and Norwich, where the 

deviations between model predictions and field data were the largest (Fig. 4.1.2f-h). 

At these sites, the temperature rhythm was less predictable, with occasional peaks at 

night. These results suggested that the model could match the flowering time data 

when plants had experienced strong phase synchrony between light and temperature 

cycles, but was less accurate when this was not the case.  

 

A different behaviour was observed for the Norwich Autumn cohort, where plants 

fell into two discreet groups, i.e. rapid-cyclers and winter-annuals. As the planting of 

this cohort began earlier compared to other sites to coincide with its natural 

germination flush (Fig. 4.1.2a), plants experienced long hours of day light (11 to 13 

hours) and relatively warm daytime temperatures during early development. This 

early induction triggered plants to bolt in late autumn without much vernalisation. 

Model prediction was good for Ler, co-2 and Col genotypes from this cohort which 

displayed the rapid life cycle. However, the model underestimated late flowering 

genotypes, i.e. gi-2, Col-FRI-Sf2, vin3-1 and fve-3, from Norwich Autumn. These 

genotypes did not flower until the following spring, and experienced periods of 

unsynchronised light-temperature cycles. 
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Figure 4.1.3: Day-cumulative (solid lines) and night-cumulative (dashed lines) 

thermal time (temperature above 3 
0
C) at different sites and seasons. In the spring (a) 

and summer (b), accrued thermal time during the day was always higher than during 

the night on all sites. In the autumn (c), daytime accumulation rate was also higher in 

Valencia due to its diurnal temperature pattern (Fig. 4.1.2e). On other sites however, 

the occurrence of non-vernalising promotory temperatures during the night was 

comparable to that during the day. Cologne in particular experienced a long period 

during which thermal time accumulated at a higher rate in the night than in the day. 

As the season proceeded towards late winter and early spring, the relative 

contribution of day and night thermal time resumed to the spring/summer profile.        

(a) (b) 

(c) 

Spring Summer 

Autumn 
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4.1.3 New model variants 

 

The synchrony of thermal and photo-cycles was not explicitly included in the 

Wilczek et al. photothermal model. However, the lowest cost function was achieved 

during model optimisation when the “thermal time” component (see Fig. 4.1.1) 

considered only daytime temperatures (Wilczek et al., 2009). The model was 

therefore developed to include a filter P (equation 4.1.3) that captured the effect of 

temperature during the day, and night temperatures were ignored in the accumulation 

of degree-days (Fig. 4.1.4a). This simple function generated higher MPTUs for 

genotypes exposed to highly synchronised light-temperature cycles as those 

experienced in the Summer, Spring and Valencia Autumn. On the other hand, 

meteorological data for Cologne and Halle Autumn illustrates that the temperature 

profile was more inconsistent with extended periods of instability and occasional 

rises in night temperature relative to day (Fig. 4.1.2). As night temperatures can 

affect floral initiation (Moe, 1990; Thingnaes, Torre, Ernstsen, & Moe, 2003; Yin, 

Kropff, & Goudriaan, 1996), the model may be less accurate at predicting flowering 

time of autumn/winter cohorts because warm temperatures for the accumulation of 

degree-hours occurred frequently during the night but were disregarded. 
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Figure 4.1.4: Filter functions P that account for the differential effects of day and 

night temperatures. The black and white bars represent light-dark cycles. (a) In the 

Wilczek et al. model, only day temperatures are considered in the thermal time 

component by multiplying by a factor of 1 at day-time (Pday) and 0 at night-time 

(Pnight), thus forming a square waveform; (b) In Model 1 (gradual gating), a ‘triangle’ 

waveform is used with maximum factor (1) at mid-day and minimum factor (0) at 

mid-night. A constant factor Pdd is locked to dawn and dusk; (c) In Model 2 (step 

gating), a square waveform with a non-zero night factor (Pnight) is used. 
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In order to improve model performance, two new models which incorporated night 

temperatures in the accrued degree-hours were developed. Variations of the filter 

function P that considered night temperatures were introduced in these models (Fig. 

4.1.4). In the Wilczek et al. model, day temperatures were effectively taken into 

account by multiplying by a factor of 1 (Pday), while night temperatures were 

disregarded using a factor of 0 (Pnight), thus forming a square waveform (equation 

4.1.3 and Fig. 4.1.4a). In the first model variant (Model 1), a ‘triangle’ waveform 

function was used instead, where 1 and 0 were fixed to the middle of day and night 

respectively (Fig. 4.1.4b). Such a function allows both day and night time 

temperatures to be considered in the accumulation of thermal time units that promote 

flowering, with the highest effect at mid-day and the lowest effect in the middle of 

the night. This function could serve as a proxy for circadian gating of the temperature 

response that is known to occur in Arabidopsis and other species (Espinoza et al., 

2010; Fowler, Cook, & Thomashow, 2005; Rikin, Dillwith, & Bergman, 1993). 

Thus, Model 1 accounts for a gradual gating of temperature effects. A constant factor 

(Pdd) was locked to sunrise and sunset to allow tracking of dawn and dusk (Edwards 

et al., 2010). In the second model variant (Model 2), a step gating function was 

introduced by setting (a priori) Pday as 1 as in the Wilczek et al. model, however a 

non-zero night temperature factor (Pnight) applied universally across all plantings was 

estimated through model-fitting of field data (Fig. 4.1.4c). Both model variants 

contained each an additional parameter to be optimised, i.e. Pdd for Model 1 and 

Pnight for Model 2. 

 

The new models achieved comparable GoF of Spring, Summer and Valencia 

Autumn cohort data when compared to the Wilczek et al. model (with changes in 

RMSE less than 0.5 day). In addition, both new models improved the fit for Autumn 

data. For the Cologne Autumn cohort, the RMSE was reduced from 23.4 days (20.1 

%) in the Wilczek et al. model to 16.1 days (13.8 %) in Model 1 and 16.4 days (14.0 

%) in Model 2 (Fig. 4.1.2 and Fig. 4.1.5). There was also improvement for the Halle 

Autumn cohort, where RMSE decreased from 14.3 days (10.7 %) in the Wilczek et 

al. model to 8.8 days (6.6 %) in Model 1 and 10.2 days (7.7 %) in Model 2. 

According to Fig. 4.1.3, thermal time accumulated at a faster rate during the day time 
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compared to the night at the Spring, Summer and Valencia Autumn sites, which was 

in agreement with the observed daily temperature cycles (Fig. 4.1.2). On the 

contrary, thermal time accumulation during the day and night time was comparable 

at the Halle and Cologne sites. This seasonal difference in thermal time accumulation 

rate was due to both reduced day-night amplitudes as well as longer nocturnal 

durations in the autumn. These collective results indicate that the inclusion of night 

temperature effects in the thermal time component could be important for 

determining flowering time of Autumn cohorts.  
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Figure 4.1.5: Bolting times as observed experimentally and predicted using Model 1 

(a) and Model 2 (b). The diagonal lines represent perfect fit. Error bars represent one 

standard error.     
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Interestingly, the new model variants could still not describe the late flowering gi-2, 

Col-FRI-Sf2, vin3-1 and fve-3 in Norwich Autumn. This put forward the possibility 

that the relatively poor performance of the Wilczek et al. model for Autumn cohorts 

was only a bias as the optimiser tried to fit and divide between divergent groups, i.e. 

the four ‘outlier’ genotypes vs. the others. If that were true, removing the outliers 

should improve the fits of both the Wilczek et al. model as well as the new model 

variants. Therefore the Wilczek et al. model and both the new models were re-

parameterised without the gi-2, Col-FRI-Sf2, vin3-1 and fve-3 data from Norwich 

Autumn. As can be seen in Table 4.1.1, there was not much improvement in the 

Wilczek et al. model even without the ‘outlier’ data, but both the new models which 

incorporated night temperature improved significantly. These results supported the 

inclusion of night temperature in the models to accurately describe Autumn cohort 

data. As the proportion of temperature data considered by the Wilczek et al. model 

reduced with decreasing day length, model improvements may simply arise from 

extending the period during which temperature was considered in the autumn and 

winter. However, this possibility has been explored previously and a degrading fit 

was found with the incremental inclusion of temperature hours after dusk (Wilczek et 

al., 2009). Alternatively, the improved fitting in the new model variants may reflect 

seasonal differences in the effectiveness of day and night time temperatures in 

controlling flowering time. 
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Table 4.1.1: Comparison between photothermal model variants 

 

Model No. of Estimated Parameters Dataset RMSE AICc 

Col Ler 

Wilczek et 

al. model 

Ler: 2 (DSD, Fb) 

Col: 4 (DSD, Fbfri, FbFRI, Fbfve) 

+ 12.8 days 102 46 

- 9.9 days 76 

Model 1 Ler: 3 (DSD, Fb) 

Col: 5 (DSD, Fbfri, FbFRI, Fbfve, Pdd) 

+ 10.0 days 100 41 

- 7.0 days 74 

Model 2 Ler: 3 (DSD, Fb) 

Col: 5 (DSD, Fbfri, FbFRI, Fbfve, Pnight) 

+ 11.8 days 107 41 

- 7.1 days 75 

 

Note: + Using all field data 

 - Excluding gi-2, Col-FRI-Sf2, vin3-1 and fve-3 from Norwich Autumn 

 

Lower RMSE indicates a better goodness of fit while lower AICc values indicate the 

more strongly supported models. As the optimisation was conducted separately for 

Ler and Col with different number of estimated parameters, the AICc value for each 

model was calculated separately for each line. AICc can only be compared when the 

number of datasets used are similar, so different comparisons were performed for 

model with (+) and without (-) the late-flowering genotypes from Norwich Autumn.  
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Both the new model variants displayed improved fit, which was statistically expected 

with an increase in the number of parameters but this could cause overfitting. 

Therefore, the second-order Akaike Information Criterion (AICc), which compares 

model performance but penalises for increase in the number of parameters or model 

complexity, was used to assist model selection (Table 4.1.1). Models with lower 

AICc values indicate that they have stronger statistical support in terms of the 

balance between model accuracy and model complexity. In general, both the new 

model variants displayed lower AICc values compared to the original model in all 

cases except one, indicating that they have strong statistical backing. Model 1 

displayed the best improved fit and lowest AICc values compared to Model 2. 

Nevertheless, due to the additional flexibility offered by the P function in Model 2 

(see section 4.1.5), this step-gating model variant was selected for subsequent study. 

The parameter values for Model 2 are listed in Appendices A1 and A2. 
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4.1.4 Seasonal effects of night temperature 

 

Results from the previous sections have shown that the inclusion of night 

temperature markedly improved the ability of the models to describe the field data, 

particularly for the Autumn cohorts (Fig. 4.1.6). This model adjustment was also 

applicable to published data generated in controlled conditions where plants were 

grown under laboratory conditions that combined day/night temperatures of 12, 17, 

22 and 27 
0
C (Thingnaes et al., 2003). The Wilczek et al. model predicted the same 

flowering time for plants grown under the same day temperature, regardless of night 

temperatures (Fig. 4.1.7). In contrast, for each set of day temperatures, step-gating 

Model 2 predicted a decreasing trend in flowering time as night temperature 

increased. This improved the overall GoF considerably, reducing the RMSE from 

12.6 days (30.2%) in the Wilczek et al. model to 7.7 days (18.5%) in the new model. 

Improvement was especially significant when plants were grown under low day 

temperature (12 
0
C) in combination with various night temperatures, conditions that 

had naturally occurred in Cologne and Halle during the autumn (Fig. 4.1.2f-g and 

Fig. 4.1.3c). These results indicate that in comparison to the earlier Wilczek et al. 

model, the new model can more accurately simulate flowering time of plants subject 

to cool days vs. warm nights, while retaining ability to describe plants grown under 

warm days vs. cool nights. 
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Figure 4.1.6: Bolting times as observed in the field and predicted using step-gating 

Model 2, with the diagonal line representing perfect fit. Late-flowering genotypes gi-

2, Col-FRI-Sf2, vin3-1 and fve-3 from Norwich Autumn were excluded during 

parameter estimation. Therefore, these data points are not included in the figure. 
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Figure 4.1.7: Validation of Model 2 on its ability to describe the effect of day/night 

temperatures on flowering time using lab data. The goodness of fit (GoF) of the 

Wilczek et al. model (open markers) and step-gating Model 2 (closed markers) are 

indicated by the CV(RMSE). Model predictions were generated without re-

optimisation to fit these lab data. The observed experimental data were taken from 

Thingnaes et al. (2003). In the experiments, plants were grown in controlled 

chambers under 16 different combinations of day and night temperatures (12, 17, 22, 

27 
0
C). Square markers indicate the data of plants grown under a day temperature of 

12 
0
C in combination with various night temperatures. 
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4.1.5 Model extension to phyA and phyB mutants 

 

Photoreceptors phyA and phyB play important roles in the control of flowering time 

(Halliday, Koornneef, & Whitelam, 1994; Halliday & Whitelam, 2003; Valverde et 

al., 2004). Modelling of genotypes lacking these receptors may therefore increase our 

understanding on light and temperature regulation of flowering time.  

 

As phyA and phyB are involved in the control of CO stability in the photoperiod 

pathway (Valverde et al., 2004), the published leaf number data of phyA-201 and 

phyB-1 mutants at different photoperiods (Giakountis et al., 2010) was compared to 

that of the Ler wild-type (Fig. 4.1.8a). These mutant alleles were also included in the 

field study (Wilczek et al., 2009). Leaf number data was used for phenotypic 

comparison as this indicator has been shown to be tightly coupled to bolting time 

within a wide photoperiod window (Koornneef, Hanhart, & Vanderveen, 1991; 

Pouteau, et al., 2006). Leaf number data are also more widely available in the 

literature. Model was extended for phyA and phyB mutants by modifying the 

parameters in the photoperiod component (CSDL, CLDL, DSD and DLD in equation 

4.1.1) in Model 2 based on the proportional differences between the mutants and 

wild type (Fig. 4.1.8a). While a proportional rate informed by leaf number data may 

not be quantitatively accurate, the data displayed a qualitative photoperiod response 

that supports the role of these mutants in the photoperiod pathway (see Fig. 4.1.8a 

and the next paragraph). This qualitative response also concurs with early flowering 

time phenotype that has been reported for phyB mutants in both long and short days 

(Cerdan & Chory, 2003; Mockler, Guo, Yang, Duong, & Lin, 1999).    
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Figure 4.1.8: Model adjustment for phyA-201 and phyB-1 mutants. (a) Rate to 

bolting as estimated by the reciprocal of Total Leaf Number (TLN). The TLN data 

were taken from Giakountis et al. (2010), where experiments were conducted over a 

range of photoperiod from 6 to 16 hours. Curly brackets indicate the proportional 

differences between wild type and mutant. For phyB-1 mutant, it was assumed that a 

maximum rate would be achieved at 16 hours and above (blue dotted line); (b) 

Predicted versus observed bolting times of phyA-201 and phyB-1 mutants using 

Model 2 after modification in the photoperiod component. Error bars represent one 

standard error.     
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According to Fig. 4.1.8a, the rate to bolting for phyA-201 during long days (with 

photoperiod above 10 hours) was lower, correlating with a loss of phyA activity in 

stabilising CO protein (Fig. 2.2) (Valverde et al., 2004). However, the maximum rate 

was not altered, as there are other layers of CO regulation by FKF1 and GI (Salazar 

et al., 2009). For phyB-1, the rate was higher in general, following the role of 

activated phyB in promoting the degradation of CO protein in the morning (Valverde 

et al., 2004). In the model adjustment, it was assumed that phyB-1 rate to bolting 

would achieve its maximum at photoperiods of 16 hours or above. Adjusted 

parameters are listed in Appendix A. Fig. 4.1.8b shows that the modified model 

could predict the bolting times of phyA-201 mutant grown in the same field plantings 

in Wilczek et al. (2009) (Appendix A3), with a RMSE of 7.4 days (14.2 %). The 

RMSE for phyB-1 was 7.6 days (19.1 %) but deviations were uneven, with all 

Spring/Summer cohorts underestimated while Autumn cohorts were overestimated.   

 

Published data have shown that phyB has a temperature-dependent role in flowering 

in addition to its function in the photoperiod pathway (Halliday et al., 2003; Halliday 

& Whitelam, 2003; Valverde et al., 2004). Earlier results in this study suggested that 

the phase relationship between light and temperature cycles was important. Therefore 

analysis of the P function in the thermal-gating model (Fig. 4.1.4) might reveal 

information regarding the dual role of phyB in light and temperature signalling. 

Using the new photoperiod parameters for phyB-1 as described above (Fig. 4.1.8a), 

both the day and night factors (Pday and Pnight) in step gating Model 2 (Fig. 4.1.4c) 

were re-parameterised to fit the phyB-1 field data while holding all other parameters 

to the values estimated earlier for wild-type. Intriguingly, an optimal fitting was 

achieved when Pday and Pnight were at values of 0.5959 and 0.6856, respectively. This 

unexpected result suggested that temperature gating was almost abolished in phyB-

deficient plants. To test this, the model for phyB-1 was re-parameterised by 

constraining Pday and Pnight to be equal and constant (Fig. 4.1.9b), in other words 

abolishing the gating effect. The modified model, with a constant ‘gating’ factor of 

0.6279, showed a marked improvement with a RMSE of 4.9 days (12.5 %) (Fig. 

4.1.9a) compared to 7.6 days (19.1 %) in Fig. 4.1.8b. Nevertheless, this improvement 

could be a mathematical artefact to compensate for the changes made in the 
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photoperiod component. However, using Model 2 alone without any modification, 

i.e. the model for wild-type Ler, resulted in a RMSE of 19.8 days (50.0 %) 

suggesting that modification(s) was indeed required to describe phyB-1 field data. To 

further investigate this, the estimation of Pday and Pnight was repeated but without 

altering the photoperiod parameters. In this case, phyB-1 mutants experienced fully 

accelerated rate on days of intermediate (14 hr) and not just very long (16 hr) 

photoperiods. The optimised values for Pday and Pnight were 0.8291 and 0.6992, 

respectively, which again displayed a reduced gating effect. Comparison of AICc 

values for different modification schemes (Table 4.1.2) supported the notion of 

constant gating for phyB-1. In addition, the model with double modifications that 

embodied a constant gating showed the lowest set of RMSE and AICc values. These 

results suggested that in order to describe the phyB-1 mutant field data, both the 

photoperiod and thermal-gating modifications were required.  
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Figure 4.1.9: Dual role of phyB in light and temperature signalling: (a) Predicted 

versus observed bolting times of phyA-201 and phyB-1 mutants using Model 2 (step 

gating). The photoperiod component was modified according to Fig. 4.1.8a for both 

mutants. For phyB-1 a constant gating of 0.6279 was adopted. The observed values 

are field data from the same plantings in Wilczek et al. (2009). The diagonal line 

represents perfect fit; (b) Proposed thermal-gating mechanisms of wild-type plant 

(Ler wt) and phyB-1 mutant. 
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Table 4.1.2: Comparison between model adjustments for phyA and phyB mutants 

 

Modification in Model 2 for 

phyB-1 

No. of Estimated 

Parameters 

RMSE AICc 

Photoperiod and Gating 2  

(Pday, Pnight) 

4.7 days 18 

Photoperiod and Constant Gating 1 

(Pday=night) 

4.9 days 15 

Gating only 2 

(Pday, Pnight) 

6.1 days 20 

Constant gating only 1 

(Pday=night) 

5.5 days 16 
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4.1.6 Discussion  

 

Modelling is a useful tool not only for predictive study, but analysis of model 

behaviour could extract additional information out of complicated data. The variation 

in model performance (Fig. 4.1.2) and improvement of model GoF (Fig. 4.1.6 and 

Fig. 4.1.7) in the current study suggested a seasonal effect of night temperature on 

flowering time.  Meteorological data indicated that Spring/Summer cohorts typically 

experienced warmer days than nights and photoperiods of 10 to 20 hours (Fig. 4.1.3; 

Wilczek et al. (2009)). The original Wilczek et al. photothermal model, which 

considered vernalising temperatures during both day and night but only daytime 

temperatures in the accumulated thermal time, was able to accurately predict the 

flowering time of Spring/Summer cohorts, but performed less well for the majority 

of Autumn cohorts (Fig. 4.1.2b). This suggests that, at least under long photoperiods, 

the dramatic rise (of up to 20
0
C) in near-ground daytime temperature is a strong 

determinant of flowering time, while reduced night temperatures have little impact so 

they can be ignored in the model. Incorporating night temperature in the model either 

through gradual gating (Model 1) or step gating (Model 2) improved the fit for the 

Autumn data without causing changes for the Spring/Summer data. These results 

comply with the dramatic switch in diurnal temperature pattern in the autumn where 

the occurrence of non-vernalising promotory temperatures during the night was 

comparable to that during the day (Fig. 4.1.3). Model validation using flowering data 

of plants subjected to a range of day/night temperatures in the laboratory (Thingnaes 

et al., 2003) confirmed the importance of including night temperature effects (Fig. 

4.1.7), particularly when day temperatures are cooler. 

 

Increased overall accuracy in the thermal-gating models was due to the improved fit 

to Autumn data, where plants had been subject to cooler but still inductive 

temperatures, with less predictable daily fluctuations. The GA pathway is known to 

regulate flowering time across photoperiods, but it has a predominant role in SDs 

(Mutasa-Gottgens & Hedden, 2009). As day length shortens in the autumn, there is a 

switch from the CO-photoperiod to GA floral regulatory pathway (Moon et al., 2003; 

Wilson et al., 1992). The increased responsiveness to night temperature under SDs 
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may reflect the changeover to GA signalling that is known to have differential 

sensitivity to day and night temperatures (Arana, Marin-de la Rosa, Maloof, 

Blazquez, & Alabadi, 2011; Stavang et al., 2009; Stavang, Junttila, Moe, & Olsen, 

2007). Modelling approach in the current study highlights the importance of this 

change in responsiveness to non-vernalising promotory temperatures from daytime in 

LDs to day/night in SDs.  

 

Neither the original nor the improved models could fit the Norwich Autumn gi-2, 

Col-FRI-Sf2, vin3-1 and fve-3 data as these genotypes were unusually late flowering 

at this location. As the Norwich planting occurred earlier in contrast to Cologne and 

Halle, plants in Norwich were not exposed to vernalisation for a considerable time 

post-germination (Appendix A4). Instead plants were exposed to frequent drops in 

daily temperature, conditions that have been shown to induce C-REPEAT BINDING 

FACTORS (CBFs) and boost FLC expression levels (Seo et al., 2009). This period 

of intermittent cold could have caused an increase in FLC levels and thus increased 

the vernalisation requirement for these late flowering genotypes. Additionally, there 

appears to be a feedback loop where FLC also enhances CBF expression through 

inhibition of SOC1, a negative regulator of CBFs (Seo et al., 2009). This causes a 

further delay of flowering. Including the crosstalk between CBFs and FLC in future 

models therefore may improve their accuracy. 

 

Previous work in the literature has implicated the photoreceptors phyA and phyB in 

flowering time regulation, operating through both CO-dependent and independent 

pathways (Cerdan & Chory, 2003; Ishikawa, Kiba, & Chua, 2006; Suarez-Lopez et 

al., 2001; Valverde et al., 2004). Model with modified photoperiod parameters in the 

current study could predict phyA-201 bolting time of the field cohorts with 

reasonable accuracy. This result suggests that under field conditions phyA may 

operate largely through the photoperiod pathway. On the contrary, modification of 

photoperiod parameters alone was insufficient to match the phyB-1 bolting data. 

Remarkably, an accurate fit to data was in fact only achieved when the temperature 

gating was removed in addition to the photoperiod adjustments. The implication here 

is that wild type phyB is not only required for photoperiod perception, it also 
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mediates the impact of day and night temperature on flowering time. This potential 

role for phyB in temperature gating is in agreement with the reported temperature-

dependent phenotype of phyB in flowering time (Blazquez et al., 2003; Halliday et 

al., 2003; Mazzella, Bertero, & Casal, 2000). This proposition also offers a 

mechanistic explanation for the paradoxical observation that phyB-overexpressors 

and phyB loss-of-function mutants are both early flowering (Bagnall et al., 1995; 

Reed, Nagpal, Poole, Furuya, & Chory, 1993). If phyB-null mutants lose the ability 

to sense day temperature effectively compared to the wild type (Fig. 4.1.9b), phyB-

overexpressors would be predicted to have increased sensitivity to day temperature 

and this could lead to a more rapid accumulation of MPTUs at day time and thus 

early flowering. Certainly, co-ordination between light signalling, temperature 

perception, the circadian clock regulation and the photoperiod pathway enables 

tracking of seasons and ensures plants flower under favourable conditions (Franklin, 

2009).      
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PART II: Linking the Clock to Phenology  

 

 

Summary: This section describes how a clock gene circuit model was connected to 

the phenology model. Model 2 (step gating) from the previous section was used. The 

combined model allowed the study of gene circuit dynamics in response to changes 

in the natural environments. Simulation of clock mutants with different free-running 

periods also highlighted the complex mechanism associated with daylength 

responses in the induction of flowering.   

 

 

4.2.1 Photoperiodic and clock control of flowering in Arabidopsis 

 

It has been outlined earlier in Chapter 2 how the circadian clock regulates flowering 

time through a cascade of activities at the molecular level (Fig. 2.2). The combined 

antagonistic and protagonistic actions of clock-regulated GI, FKF1 and CDF1 

(Fornara et al., 2009; Imaizumi et al., 2005; Song et al., 2012; Yanovsky & Kay, 

2002) collectively result in CO peaking before the end of LDs, thus promoting FT 

expression. In SDs, as CO mRNA peaks during the night and CO protein is unstable 

at day time, FT mRNA levels remain low (Corbesier et al., 2007b; Valverde et al., 

2004; Yanovsky & Kay, 2002). Such regulatory mechanism of FT provides a means 

for plants to time their life cycle according to the season. Here, a gene circuit model 

describing the regulation of FT by the clock (Salazar et al., 2009) was integrated into 

the Wilczek et al. phenology model, thus associating molecular dynamics to their 

effects at the phenological level. 
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4.2.2 Linking the clock gene network to the Arabidopsis phenology 

model 

 

The clock gene circuit model (Locke et al., 2006; Locke et al., 2005) consists of a 

system of ODEs representing the dynamics of core genes in the clock network that 

are inter-regulated in feedback loops. Previous work has combined the clock model 

to the photoperiodic regulation of flowering time by modelling the activation of FT 

through CO (Fig. 4.2.1a) (Salazar et al., 2009). In that study, a few model variants 

were explored by considering different mechanisms for the activation of CO and FT 

with or without FKF1. These model variants have managed to reproduce the different 

FT mRNA abundance profiles during LD and SD. A recent study (Song et al., 2012) 

has also incorporated into the model the CDF1 component and its interaction with 

FKF1, which are responsible for producing the first CO peak at the end of long days 

(Fornara et al., 2009; Imaizumi et al., 2005). However, these models used 

experimental data of CDF1 and FKF1 as model inputs and thus could only describe 

flowering regulation at the few photoperiods where data were available. Future 

models that include these regulators as part of the modelled components would be 

required for studies under the natural range of photoperiod that varies daily. 

Therefore the current study utilised the simplest form of the Salazar et al. model 

(Model 3 that does not include FKF1). This simple model may not fully represent the 

exact biphasic dynamics of CO (Fig. 2.2) or the phase relations of all clock 

components; however it could provide good qualitative output of flowering 

regulation relative to light period (Fig. 4.2.1) (Salazar et al., 2009), which was the 

aim of this study. All the equations and parameter values for this model are displayed 

in Appendix B.  
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Figure 4.2.1: Calibrating the clock gene circuit model (Salazar et al., 2009) to the 

photoperiod component of the Arabidopsis phenology model (Wilczek et al., 2009). 

(a) Schematic diagram of the clock-photoperiod circuit model (Model 3 in Salazar et 

al. (2009)). In this model, X and Y are hypothetical components required to describe 

experimental data, and GI was found to be a strong candidate for Y (Locke et al., 

2006). The time series of FT mRNA simulated by the clock model for: (b) 8-hour 

photoperiod and; (c) 16-hour photoperiod; (d) A plot of the integral (area under the 

curve) of simulated FT mRNA time series at different photoperiods. Letters in 

brackets link to the associated time series. These integrals were translated into the 

photoperiod component using the sigmoid function in equation 4.2.1; (e) Comparison 

between the piece-wise linear transition function in Wilczek et al. (2009) (dashed 

line) and the calibrated photoperiod component (full line). The parameter values of 

this component are constrained to values between 0 and 1 as they are used as scaling 

factors. 
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To link both models, the piece-wise linear transition function of the photoperiod 

component in the phenology model was replaced by the Salazar et al. clock-

photoperiod circuit using the following calibration equation (equation 4.2.1). A 

sigmoid function as described in Salazar et al. (2009) was used, where 

developmental rate reached its limits at both photoperiod extremes after certain 

critical day lengths (Welch, Dong, Roe, & Das, 2005; Welch, Roe, et al., 2005; 

Wilczek et al., 2009). This function relates the integral of FT mRNA over 24 hours 

produced by the clock model for each photoperiod, to the associated scaling factor in 

the photoperiod component (equation 4.1.1), which is bounded by a minimum value 

DSD and a maximum value of 1 (DLD). 
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All the constant values are listed in Table 4.2.1. 

 

 

Table 4.2.1: Parameter values for the sigmoid function that calibrates the integral of 

simulated FT mRNA to the photoperiod component in the phenology model for both 

the Wilczek et al. and Model 2 (step gating) variant. 

 

Parameter Wilczek et al. model Model 2 

Ler Col Ler Col 

a 1 1 1 1 

b -0.3374 -0.3985 -0.3635 -0.3985 

c 5.733241 5.733241 5.733241 5.733241 

n 7 7 7 7 

 

Theses values were optimised using Excel Solver by constraining the maximum and 

minimum values of the sigmoid function to equal DLD and DSD (equation 4.1.1), 

respectively. n was also constrained to take an integer value.  
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All the parameter values in equations 4.2.1 were determined by entraining the clock 

model to different constant photoperiods. During each model entrainment, a unique 

solution was reached for every photoperiod where the concentration level of each 

component achieved a stable cycle of 24-hour period (Figs. 4.2.1a and 4.2.1b). In the 

natural environment, day length changes every day, and the concentration level of 

each component is carried forward to the following day. Therefore, for simulation of 

flowering time using the combined model, only the first day was entrained. The 

concentration levels of all components at the end of each day were then used as the 

initial values in the ODE simulation for the next day.  

 

One feature of the Wilczek et al. phenology model (Chapter 4: Part I) is that the 

photoperiod component for every hour on the same day shares the same value, 

because day length is determined by the sunrise and sunset times of the associated 

day. This indirectly assigns the notion that plants know in advance the time of 

sunrise and sunset before the instant, which should not be the case biologically 

speaking. However, as the phenology model was parameterised with this inherent 

feature (Wilczek et al., 2009), the formality was retained in the calibrated model. 

Therefore the photoperiod component for every hour of the same day was calculated 

by summing up the concentration of FT mRNA from hour 0 to hour 24, and then 

calibrated using equation 4.2.1.   

 

Both the models calibrated to the Wilczek et al. phenology model and step-gating 

Model 2 could reproduce all the predicted values from the original non-calibrated 

models as shown in Fig. 4.2.2. In the subsequent study, only Model 2 was utilised. 
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Figure 4.2.2: Days to bolting of different genotypes as predicted by the clock-linked 

(open circles) and non-linked (closed circles) models for: a) Wilczek et al. version; 

b) Model 2 (step gating) version of the photothermal model. The genotypes shown 

were those published in Wilczek et al. (2009). Closed circles are not really seen 

because they overlap with the open circles, indicating that the clock-linked models 

could successfully reproduce the predictions of the original non-linked models.     
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As shown in the previous section (Chapter 4: Part I), each genotype behaved 

differently depending on the growing season and the model has managed to capture 

this behaviour by changing the genotype-associated parameter(s). Therefore, linking 

the clock gene circuit to the phenology model could enable the prediction of 

flowering time behaviour caused by mutations of the clock components. This would 

increase our understanding of clock functions and its implications on flowering time, 

as described next. 

    

 

4.2.3  Simulation of clock period mutants 

 

To generate clock mutants with different free-running periods, the expression rate of 

the clock component LHY (and a partially redundant gene CCA1) was modified in 

the model. Short-period mutants were generated by simulating a single and double 

mutation of LHY/CCA1 through reduction of LHY translation rate (v6 in equation 

B2.3) to 0.5 and 0.001 of its original value, respectively. A long-period mutant was 

simulated by increasing LHY translation rate (v6) by a factor of 10. The free-running 

period of these mutants under constant light, τLL, was measured as the time interval 

between successive expression peaks of TIMING OF CAB 1 (TOC1), a clock 

component upstream of CO in the model. The values are as shown in Table 4.2.2.  

 

 

Table 4.2.2: Modification and scaling factors used to generate clock period mutants 

 

Genotypes Modification 

factor of LHY 

translation rate 

Scaling factor 

(SF) for TOC1 

protein level 

Free-running period 

under constant 

light, τLL 

Wild type - - 25 

lhy/cca1 single mutant 0.5 0.79 23 

lhy/cca1 double mutant 0.001 0.34 18.5 

Long-period mutant 10 1.44 27 
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As the simulated expression level of TOC1 was affected by the parameter 

modifications (Fig. 4.2.3a), a scaling factor (SF) was used to re-adjust TOC1 protein 

peak level using wild type as the standard (equation 4.2.2, from equation B2.14). 

This was done to ensure that changes in the expression level of the photoperiod 

components, CO and FT, were caused only by phase shift of the clock components.  

 

 
][CO

]CO[1
]TOC1[

]CO[






kCOp

vCOp
SFvCOm

dt

d light

n ,                                  (4.2.2) 

 

where vCOm is the rate constant of CO (or TOC1) mRNA translation, vCOp is the 

maximum rate of light-dependent CO protein degradation, and kCOp is the Michaelis 

constant of CO protein degradation. 

 

The period mutants were next simulated using as entrainment input the naturally 

changing photoperiod in various latitudes (Wilczek et al., 2009). This enabled the 

study of clock gene dynamics in real seasonally changing daylength, performed for 

the first time in our clock gene circuit models. The flowering time of period mutants 

simulated in different seasons were also generated using the newly calibrated 

phenology model (Section 4.2.2). Additionally, simulation of plants without any 

functional clock was conducted where the modelled plants were not sensitive to 

changing photoperiods. In these control studies, flowering time was generated by 

setting the photoperiod parameter of the phenology model always at the lowest (as if 

under constant SD), medium (12 hours’ daylight) or highest (LD) photoperiod 

induction. 
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Figure 4.2.3: Phase relationship of simulated TOC1 mRNA (a), TOC1 protein/CO 

mRNA (b), CO protein (c) and FT mRNA (d) time series between clocks with 

different free-running periods, entrained under a 12:12 light/dark cycle. The peak 

levels of TOC1 protein for the period mutants have been re-scaled during simulation, 

therefore the different levels of CO protein (c) and FT mRNA (d) shown were only 

due to the phase shift in the period mutants relative to the wild type as indicated by 

the arrows in panel (b).    
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4.2.4 Simulation of flowering time for period mutants in different 

seasons 

 

The calibrated phenology model predicted that all the period mutants would flower 

much earlier than the wild type if planted in the autumn (Fig. 4.2.4). The long-period 

mutant simulation (τLL = 27 hrs) deviated from wild type the most, flowering at the 

same time as the control study with constant maximal photoperiod induction. The 

18.5-hour-period and 23-hour-period mutants were also predicted to flower earlier 

than the wild type, though slightly later than the long-period mutant. All genotypes 

with different free-running periods were expected to flower at the same time in the 

Spring/Summer.  

 

 

 

 

Figure 4.2.4: Predicted days to bolting of Ler wild type, period mutants (with the 

legend showing the free-running period) and controls (which are simulated plants 

without a functional clock). The abscissa represent the observed days to bolting of 

wild type plants in different plantings in the field (Wilczek et al., 2009), while the 

ordinate shows the values predicted by the calibrated model for each simulated 

genotype. The three controls were generated by setting the photoperiod component 

constantly at high (long-day induction), medium (12-hour photoperiod) or low 

(short-day) value.                 
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To determine the basis for the early flowering observed here in all the mutants, the 

dynamics of CO and FT in the period mutants were compared (Fig. 4.2.3b-d). Phase 

shifts in CO expression were observed in the period mutants (Fig. 4.2.3b), as has 

been reported previously (Mizoguchi et al., 2005) and these changed the relative 

abundance of CO protein during the photoperiod (Fig. 4.2.3c). In short-period 

mutants, a large part of the expression peak was advanced into the light period. On 

the other hand, the phase of CO mRNA in the long-period mutant was delayed such 

that the level at dawn was still high (Fig. 4.2.3b), which led to a high abundance of 

CO protein that remained throughout the day (Fig. 4.2.3c). Consequently a sharp 

increase in FT expression was simulated early in the morning from ZT1 (or 1 hour 

after dawn) onwards in the long-period mutant (Fig. 4.2.3d). Consistent with this, 

analysis at different photoperiods illustrated that a large percentage of the daily 

abundance of CO mRNA was expressed during the day in long-period mutant under 

most conditions, while the percentage in short-period mutants increased sharply from 

very low photoperiod onwards compared to the wild type (Fig. 4.2.5a). Concurrently, 

the photoperiodic window for floral induction shifted dramatically in the period 

mutants (Fig. 4.2.5b). For short-period mutants, their critical day lengths were 2 

hours earlier than wild type but the photoperiodic response in long-period mutant 

was 6 hours in advance. Thus, the simulated long-period mutant started being 

responsive to photoperiod at a critical short day length of 4 hours and reached its 

maximum at around 8 hours, a condition commonly adopted as SD in most studies. 

These again explained the early-flowering phenotype of the simulated mutants, 

particularly for the autumn cohort.  
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Figure 4.2.5: (a) The percentage of CO mRNA in the light relative to its total 

expression for each simulated period mutant at different photoperiods; (b) Parameter 

values of the photoperiod component at different photoperiods for each simulated 

genotype. The parameter values were computed from equation 4.2.1.  
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4.2.5 Gene dynamics in naturally occurring photoperiods 

 

Molecular mechanisms in response to the environment are usually discovered based 

on laboratory studies that implement discriminating and often unnatural conditions. 

Therefore, comprehensive ecological observations are essential for the collection of 

meteorological, physiological and genomic data to reveal the adaptive strategies of 

plants in their natural habitats.  

 

This study has linked for the first time the clock gene circuit to meteorological 

conditions at various latitudes and in different seasons, and this could facilitate the 

study of gene dynamics in realistically varying conditions. For example, the 

dynamics of FT mRNA across the season between sites at different latitudes could be 

compared (Fig. 4.2.6 and Appendix B4). For wild type plants, sensitivities of FT 

expression were higher at long photoperiods (sharp peaks against flat troughs). This 

increased sensitivity to LD in the simulation corresponds with Arabidopsis as a long-

day plant. All simulated mutants displayed sharp troughs, indicating higher 

sensitivity relative to wild type in short days. Simulation for long-period mutant 

displayed steeper peaks compared to short-period mutants, suggesting it has a higher 

sensitivity at long photoperiods. Noisy fluctuations could be seen in the beginning of 

the simulation for Norwich and Oulu Summer plantings (Appendix B4), when the 

initial photoperiods were high. This was due to the unstable entrainment of the clock 

model at photoperiods above 16 hours, which is a characteristic of this model 

version. Nevertheless, this would not affect the simulation of flowering time as the 

developmental rate saturates at these photoperiods (Fig. 4.2.5).       
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Figure 4.2.6: Integral (over 24 hours) of simulated FT mRNA level (full line) for wild type and period mutants in the Norwich Autumn 

and Spring plantings. The plantings were the same as those published in Wilczek et al. (2009). The simulated free-running period of each 

genotype under constant light, τLL (after entrainment in 12:12 light/dark cycle), is shown at the top of the column. Dashed lines indicate the 

naturally occurring photoperiod. Arrows point to the peak and the trough of expression at high and low photoperiods, respectively.   
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Another behaviour that can be observed from this analysis is that photoperiodic 

induction does not seem to depend on the direction or rate of change in day length in 

wild type plants. Fig. 4.2.7 shows that the photoperiod induced FT mRNA 

abundance was symmetrical, indicating that it was not affected by whether day 

length was increasing or decreasing. Sensitivity analysis of FT expression was also 

conducted to determine the effect of rate of change in day length. Here, FT-

expression sensitivity was defined as the unit change in the integral of simulated FT 

mRNA for each unit of change in daily photoperiod, which is dependent on latitude. 

FT-expression sensitivity was then compared between sites of various latitudes 

(varying up to 20
0
), which experience different rates of photoperiod change (Fig. 

4.2.8). There was very little variation between sites, especially in low photoperiods. 

The scatter of data points at high photoperiods for some sites was a numerical 

artefact; the photoperiods (the denominator) were recorded to the nearest 0.6 minute, 

thus any small noise in the record was significantly amplified in the calculated 

sensitivity. An analysis of covariance (ANCOVA) was also conducted to investigate 

any variation between sites. First, the hypothesis that all the sites had different 

correlations was tested (Table 4.2.3a). However, no significant difference was found 

for the interaction between site and photoperiod (with a p-value of 0.1708, which 

was very much larger than the alpha value of 0.05), indicating that the slope of the 

correlations at different sites was similar. Therefore, the intercept was tested next, 

setting the correlations to be parallel (Table 4.2.3b). Again, no significant difference 

was found between the three sites (p-value = 0.2117). The conclusion here was that 

the clock had the same sensitivity regardless of sites or the rate of photoperiod 

change. When all the data were pooled together, a strong dependence of FT-

sensitivity on photoperiod was found (p-value = 9.7833e-151; R
2
 = 0.9517). This 

was consistent with the expression analysis in Fig. 4.2.6 showing an increased 

sensitivity at high photoperiods. These results collectively suggested that 

photoperiod induction of flowering in Arabidopsis is dependent mainly on the 

absolute photoperiod.       
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Figure 4.2.7: Integral (over 24 hours) of simulated FT mRNA level (full line) for 

wild type in naturally changing photoperiod (dashed line). The example shown here 

is data taken from Cologne in the spring. Brown lines indicate the symmetry in FT 

abundance on both sides of the maximum day length.    
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Figure 4.2.8: Sensitivity analysis of FT expression simulated in wild type plants at 

different sites. (a) Day length variation in Valencia, Cologne and Oulu; (b) Graph 

showing the unit change in the integral of FT mRNA per unit daily change in 

photoperiod at different day lengths for the three sites. The latitude of each site is 

shown in brackets in the legend. Only a photoperiod range between 10 and 14 hours 

(the critical day lengths) were considered as the effect of photoperiod on flowering 

plateaus at both extremes. The dashed line was the linear regression of all the data 

regardless of sites. The equation and regression coefficient are also displayed on the 

graph.     

(a) 

(b) 
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Table 4.2.3: Results from the analysis of covariance (ANCOVA) at alpha = 0.05 

comparing FT-expression sensitivity at different sites   

 

a) 

Source d.f. Sum Sq Mean Sq F Prob > F 

Site 2 0.0346 0.0173 1.57 0.2094 

Photoperiod 1 48.5317 48.5317 4413 0 

Site*Photoperiod 2 0.0392 0.0196 1.78 0.1708 

Error 222 2.4414 0.011   

 

b) 

Source d.f. Sum Sq Mean Sq F Prob > F 

Site 2 0.0346 0.0173 1.56 0.2117 

Photoperiod 1 48.5317 48.5317 4382.42 0 

Error 224 2.4806 0.0111   

 

c)  

Source d.f. Sum Sq Mean Sq F Prob > F 

Photoperiod 1 49.5927 49.5927 4456.01 9.78329e-151 

Error 226 2.5152 0.0111   
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4.2.6 Discussion 

 

Day length is one of the important environmental signals for plants to sense daily and 

seasonal changes (Franklin & Whitelam, 2004). Characteristics of the circadian 

oscillators enable the system to provide a good mechanism for sensing day length in 

the regulation of growth and development (Pittendrigh & Daan, 1976b). Without a 

clock (such as in the controls in Fig. 4.2.4), plants may flower either too early or 

extremely late regardless of the day length or season. Such a strategy would not be 

ideal for optimal plant growth and survival as abiotic stresses vary with seasons.   

 

In general, a circadian clock is the most stable under a 24-hour entrainment cycle, 

and allows plants to time their development according to the environment 

(Pittendrigh & Daan, 1976a, 1976b). However, natural variation in the free-running 

period of the clock (ranging from ~22 to 28 hours) has been reported and studies 

suggested that this variation was necessary to enhance plant fitness over a wide 

geographical range (Lou et al., 2011; Michael et al., 2003). The modelling work in 

this study has allowed us to understand the effects of clock variation, in a varying 

environment. When the external light/dark cycles differed from the plants’ internal 

period, the simulated timing of gene expression was shifted relative to dawn and 

dusk. Accordingly, flowering time was also predicted to alter. Results in the current 

study were in agreement with published data which showed that LHY/CCA1 loss-of-

function mutants had shorter period and flowered at the same time as the wild type in 

LD but were early flowering in SD (Mizoguchi et al., 2002). Fig. 4.2.4 also concurs 

with their results showing that a double mutation has a more severe flowering time 

phenotype compared to a single mutation. On the other hand, a semi-dominant loss 

of function mutation in ZEITLUPE (ZTL), which caused an increase in free-running 

period, has been reported to delay flowering in LD (Somers, Schultz, Milnamow, & 

Kay, 2000). In contrast, a dosage-dependent delayed in flowering was also observed 

in ZTL overexpressors under LD, though it was suggested to be caused by the direct 

ZTL regulation of CO/FT expression independent of the clock (Somers, Kim, & 

Geng, 2004). A double mutation of PSEUDO-RESPONSE REGULATOR 7 and 9 
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(PRR7/PRR9) that exhibited a long period also flowered late in LD (Nakamichi, 

Kita, Ito, Yamashino, & Mizuno, 2005). Thus, the flowering behaviour of long-

period mutants simulated in the current study contradicted most of those reported in 

the literature. In the model, early flowering was predicted for long-period mutants 

due to a delayed phase in the simulated CO mRNA causing a high level at dawn (Fig. 

4.2.3b), and this has been observed in wild type plants subjected to light/dark cycles 

shorter than 24 hours (Roden, Song, Jackson, Morris, & Carre, 2002). The 

disagreement in flowering behaviour therefore suggested that the long-period mutant, 

which has a delayed phase (Fig. 4.2.3b), may not be just a mirror image of the short-

period mutants, which have an advanced phase. Different molecular mechanisms 

may be involved in the opposite cases, as has been reported previously in hamsters 

(Schwartz, Tavakoli-Nezhad, Lambert, Weaver, & de la Iglesia, 2011), or more 

complex mechanisms may be involved in day length perception to increase flexibility 

of floral induction in different environments (Fornara et al., 2009; Roden et al., 2002; 

Song et al., 2012). Phase shift may also cause a difference in their coincidences with 

interacting factors. For example, studies using CO-overexpressors have shown that 

CO is highly unstable during the day (Fornara et al., 2009; Song et al., 2012) due to 

morning degradation of CO protein by phyB (Valverde et al., 2004) but this has not 

been included explicitly in the Salazar et al. model. Inclusion of phyB interaction in 

the photoperiod gene circuit model would be required to generate a more realistic CO 

level early in the morning, particularly to better match the effects of delayed phase 

observed in the literature.  

 

Interestingly, some studies have proposed that the rate of change in photoperiod or 

the change in sunset/sunrise time could be more important as seasonal cues 

especially for plants in the tropical regions, given the negligible variation in day 

length near the Equator (Borchert et al., 2005; Clerget et al., 2004). On the other 

hand, studies on temperate species have reached contrasting conclusions. Strong 

correlation was observed between the rate of photoperiod change and leaf appearance 

rate for wheat and barley in southern England and Scotland (Baker, Gallagher, & 

Monteith, 1980; Ellis & Russell, 1984; Kirby, Appleyard, & Fellowes, 1982), but no 

significant effect was found on the developmental and leaf emergence rate in both 
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species in southern Australia (Kernich, Slafer, & Halloran, 1995; Slafer, Connor, & 

Halloran, 1994; Slafer, Halloran, & Connor, 1994). The modelling results for 

Arabidopsis in this study seem to be consistent with the latter, where the photoperiod 

pathway is only sensitive to absolute photoperiod in the control of flowering time 

(Fig. 4.2.7 and 4.2.8). This is also in agreement with Salazar et al. (2009), which 

showed that after entrainment to 8-hour photoperiod, the integral of simulated FT 

increased linearly upon transfer to higher photoperiod up to a drastic change of 8 

hours in light period. However, as light intensity and light quality may also affect 

photoperiod sensitivity but are not currently considered in the model, future studies 

that incorporate these factors and comparisons with different plant species may 

increase our understanding on the diverse photoperiodic regulation of plant 

developmental event. 
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PART III: Arabidopsis Multi-Scale Model 

 

 

Summary: The Arabidopsis multi-scale model is presented in this section. This 

integrated model incorporates the following, existing sub-models: a phenology 

model for the prediction of flowering time from Part I, a gene circuit of the circadian 

clock network from Part II, a process-based model describing carbon assimilation 

and resource partitioning, and a functional-structural module that determines shoot 

structure for light interception and root growth. All models are simplified, to limit the 

total complexity. The latter two models are first presented briefly, followed by a 

description of how they were combined in a modular fashion to form the multi-scale 

model. Validation using experimental data demonstrated a synergy of all model 

components. The results suggested that the multi-scale model can provide application 

routes from molecular and cellular biology to crop improvement and biosphere 

management.   

 

 

4.3.1 Carbon assimilation and metabolism model 

 

This module (Fig. 4.3.1) consists of two mechanistic sub-models, i.e. carbon 

assimilation and sugar-starch metabolism (Rasse & Tocquin, 2006). In the carbon 

assimilation sub-model, leaf photosynthesis is determined using the Farquhar et al. 

(1980) equations that consider CO2 level, light intensity and temperature. This 

classical biochemical model considers the two rate-limiting factors in photosynthesis: 

the carboxylase activity of RuBisCO and electron transport (Farquhar, von 

Caemmerer, & Berry, 2001). An important parameter in the former is the maximum 

rate of carboxylation (Vcmax), which can be determined by conducting a series of gas 

exchange measurements at different CO2 levels under saturating irradiance. On the 

other hand, electron transport is light dependent with a potential rate of Jmax that can 

also be determined experimentally. In the Rasse and Tocquin (2006) study, only 

Vcmax was measured, while Jmax was set to 2.1 times Vcmax, the same ratio as 

calculated in Farquhar et al. (1980).    
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In the sugar-starch partitioning sub-model, a fixed proportion of the photoassimilate 

calculated from the assimilation sub-model is turned into transitory starch at a 

baseline rate as suggested previously (Dewar, Medlyn, & McMurtrie, 1998; Sun, 

Okita, & Edwards, 1999), while the rest is converted into soluble sugars which are 

used for growth and respiration. Two types of respiration are considered in the 

model: maintenance respiration that depends on sugar concentration (Ogren, 2000; 

Rasse & Tocquin, 2006), and growth respiration which is a fixed fraction of the 

growth demand. The remaining carbon available for growth is then allocated to 

leaves and roots based on the root-to-shoot allocation ratio, RS. As growth demand is 

limited to a maximum rate, any excess photoassimilate is converted into starch 

through an overflow mechanism as suggested by Eichelmann and Laisk (1994), and 

Stitt (1996). At night time when there is no photosynthesis, starch is broken down 

into sugar to sustain growth. The model adopted a linear breakdown rate where a 

constant percentage of the end-of-day starch is consumed by the end of the night 

regardless of the night length (Fig 4.3.2). Such a behaviour has been observed in 

Arabidopsis (Gibon et al., 2004; Gibon et al., 2009) and was found to be circadian 

regulated (Graf, Schlereth, Stitt, & Smith, 2010; Lu, Gehan, & Sharkey, 2005). 

Translocation from the organs, i.e. leaves and roots, is also allowed to maintain a 

minimum sugar level. This element was created in the Rasse and Tocquin model to 

reflect the observations in an Arabidopsis starchless mutant in which sugar was 

consumed rapidly in the dark period but never reached zero, while genes involved in 

the breakdown of non-starch energy sources were up-regulated at the end of the night 

(Caspar, Huber, & Somerville, 1985; Thimm et al., 2004). Model equations and 

parameter values are listed in Appendix C. The parameter values were either 

extracted from the literature or determined through experimental measurements in 

their study (Rasse & Tocquin, 2006).     
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Figure 4.3.1: Schematic diagram of the carbon assimilation and sugar-starch 

metabolism model for Arabidopsis (Rasse & Tocquin, 2006). Carbon is transported 

(solid arrows) in and/or out of four different pools (grey boxes) through various 

processes. Dashed arrows indicate information or feedback input. 
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Figure 4.3.2: Simulated time series of non-structural carbon (NSC). Two pools of 

NSC are considered in the model, i.e. sugar and starch. Starch is accumulated at day 

time and broken down at a linear rate during the night, while sugar content is 

maintained relatively low and stable. The time series shown was simulated using a 

12:12 light/dark cycle input. 

 

 

4.3.2 Functional-structural plant growth model  

 

The GreenLab functional-structural plant growth model for Arabidopsis (Christophe 

et al., 2008) was utilised here (Fig. 4.3.3). The general GreenLab model adopts the 

concept of the elementary growth unit known as the phytomer or metamer. For an 

Arabidopsis rosette, each phytomer consists of a leaf with negligible internode (stem) 

elongation. Therefore, the GreenLab model was adapted to the simpler non-

branching structure of Arabidopsis rosette, and physiological age was redefined as 

the time since organ emergence to reflect the physiological transition in leaves from 

sink to source as they mature. Plant age indicates the time since sowing (t) while the 

physiological age of each leaf (phytomer) is the thermal time elapsed since its 

appearance (n). A growth cycle (numbered in j) is the period between the 

appearances of two successive phytomers (phyllochron). 
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Figure 4.3.3: Schematic diagram of the Arabidopsis functional-structural plant 

model (Christophe et al., 2008). Biomass Q is distributed (solid arrows) to different 

organs (grey boxes) based on their physiological age. The above-ground structure, 

which determines the area for light interception (S), is also considered in the model. 

Dashed arrows indicate information or feedback input. 
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The first growth cycle starts from the time of sowing until plant emergence, which is 

the stage when the cotyledons (the first phytomer) are fully opened (Boyes et al., 

2001). Upon plant emergence, the juvenile stage follows, where one phytomer 

appears approximately every 30.3 degree days (
0
Cd) (Christophe et al., 2008). This is 

followed by the adult stage with one phytomer appearing every 11.9
0
Cd. Therefore, 

the number of phytomers (y) that exist at each thermal time since plant emergence 

(TT) is given by: 

 



 


otherwise.16.75,-)(0.084

Cd;355)(,1)(033.0
)(

0

jTT

jTTjTT
jy                      (4.3.1) 

 

As the first phytomer consists of two leaves, the number of existing leaves at any 

time point, L, is therefore: 

  

1)()(  jyjL .              (4.3.2) 

 

Besides organogenesis, growth processes are also computed in each growth cycle 

and they can be generally divided into two groups: the source and the sink (Fig. 

4.3.3). For the first growth cycle, seed biomass is assumed to be the only source 

(Christophe et al., 2008).  

 

From the second cycle onwards, biomass production Q (source) is determined by a 

simple function of radiation use efficiency (RUE), rosette area at the end of the 

previous cycle for light interception (S) and the photosynthetic active radiation (PAR) 

as in the following: 

 

)()1()()( jPARjSjRUEjQ  .            (4.3.3) 

 

Only the vertically projected rosette area is considered in the model, therefore S 

depends on the phyllotaxy and zenithal angle (from the horizontal surface) of each 

leaf. In Arabidopsis, both cotyledons appear opposite each other during plant 

emergence. The third leaf is initiated at an angle close to 90
0
 from one of the 
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cotyledons and the fourth leaf is almost 180
0
 from the third leaf. For the fifth leaf 

onwards, leaves appear with a spiral phyllotaxy (Medford, Behringer, Callos, & 

Feldmann, 1992) of angle varying from 137.5
0
 (Chenu et al., 2005) to 138.2

0
 

(Mundermann, Erasmus, Lane, Coen, & Prusinkiewicz, 2005). This range of angle is 

approximated by a phyllotaxy of 5/13 (138.46
0
), where after 5 rotations or 13 leaves, 

the fourteenth leaf appears on the same orientation as the first leaf. Therefore, when 

the rosette leaf number exceeds 15 (as the first three leaves do not follow the spiral 

phyllotaxy), only the 13 largest functional leaves are considered for light interception 

due to self-shading:  
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where Si is the area of leaf of rank i. The zenithal angle of each leaf, αi, changes from 

70
0
 at leaf emergence to 10

0
 at the end of leaf expansion (Chenu et al., 2005), which 

is calculated using:  
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where imax is the rank of the largest leaf while icurrent is the newest leaf in the growth 

cycle.  

 

The biomass produced in each cycle j is next distributed to two types of sink organ, 

i.e. leaves (l) and roots (r). Each leaf is considered as an individual organ while the 

roots are regarded as a single entity. In GreenLab, the incremental growth of each 

organ depends on the trophic competition among all the organs existing at each time 

point. This is decided based on the demand of each organ (dorgan), which is a function 

of sink strength (Porgan) and sink variation (forgan) as follows:  

 

)()( nfPnd organorganorgan  .             (4.3.6) 
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Sink strength is an organ-type specific parameter while sink variation is a beta-law 

(Yin, Goudriaan, Lantinga, Vos, & Spiertz, 2003) or bell-shaped curve that depends 

on the thermal time since organ emergence (or physiological age, n). This curve is 

normalised to its maximal value M as shown in the following: 

 

11

5.0
1

5.01
)(















 














 


organorgan b

organ

a

organ

organ
T

n

T

n

M
nf ,          (4.3.7) 

 

where aorgan and borgan are parameters for the organ-specific beta law and Torgan is the 

duration of organ expansion. The duration of leaf expansion was set to a constant 

value while the duration of root system expansion was set to 1.3 fold the flowering 

time, based on experimental observations (Christophe et al., 2008). 

 

The total sink demand (D) of each growth cycle is the sum of all the existing 

individual leaf (as illustrated in Fig. 4.3.4) and root demands as follows: 
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Figure 4.3.4: The sink variation of existing phytomer(s) at each thermal time after 

plant emergence. The first curve at the left represents the sink variation of the 

cotyledons. The curves are stacked closer to each other at later stage as phytomers 

appear at a higher rate during the adult phase.    

 

 

The increase in biomass for each organ is therefore: 
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organ  .            (4.3.9) 

 

The dry weight of each organ (morgan) at the end of every cycle can then be calculated 

by: 

 

)()1()( jqjmjm organorganorgan  .          (4.3.10) 

 

Next, the dry weight of each leaf (in g) is converted to leaf area (in m
2
) for use in the 

next cycle using the specific leaf area (SLA in m
2
 g

-1
) that changes with thermal time 

since plant emergence, TT (Christophe et al., 2008): 
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))(002.0exp(144.0)( jTTjSLA  .            (4.3.11) 

 

In the model, leaves are divided into three functional groups: (i) young leaves that 

function as both source and sink (from leaf emergence until the end of leaf 

expansion; (ii) mature leaves that function only as source (from the end of expansion 

till the end of its lifespan, Ts); (iii) senesced leaves that do not have any function. 

Only leaves in the first two groups are considered for light interception. All 

parameter values are listed in Table 4.3.1.  

 

 

Table 4.3.1: Parameter values for the functional-structural plant growth model 

 

Parameter description Symbol  Value and unit 

 

Measured parameters in Christophe et al. (2008): 

 

Seed input 

Duration of leaf expansion  

 

Leaf lifespan after full expansion 

 

Q(1) 

Tl  

 

Ts  

 

 

1.6 x 10
-5

 g 

300 
0
Cd (cotyledons) 

400 
0
Cd (true leaves) 

160 
0
Cd 

 

Optimised parameters in Christophe et al. (2008): 

 

Sink strengths: 

        Leaf 

        Root system 

 

Sink variation parameters: 

        Leaf 

 

        Root 

 

Pl 

Pr 

 

 

al 

bl 

ar 

br 

 

1 

2.64 

 

 

3.07 

5.59 

13.03 

9.58 
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The GreenLab growth model runs in steps of growth cycles. As this model is not 

linked to any phenology and assimilation models, input data from experimental 

measurement such as emergence and flowering time are required, while the RUE of 

each growth cycle has to be determined through model optimisation as demonstrated 

in Christophe et al. (2008). In the current study, this model was linked to a 

phenology component (Part I) where flowering time could be simulated based on 

environmental conditions. Biomass for growth (Q) would be computed using the 

photosynthesis and metabolic model (Section 4.3.1), as described next. 

 

 

4.3.3 Issues in linking models of different scales 

 

Two main issues required considerations in linking models of different scales in this 

study. They were:  

 

(i) Time step 

 

The phenology model runs on an hourly basis while the clock model has a 

small time step within seconds that is changed constantly by the ODE 

solver depending on the model dynamics. For the process-based 

metabolic model, a short time step of 6s was utilised in the original work 

(Rasse & Tocquin, 2006) whereas the growth model adopted a thermal-

time step of one growth cycle (Christophe et al., 2008);   

 

(ii) Biomass unit 

 

The metabolic model only considers carbon mass while the functional-

structural model was optimised using dry biomass, not all of which is 

carbon. 

 

To standardise the time unit for all the modules, an hourly step as used in the 

phenology model was adopted except for the clock module which maintained its 
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ODE time step. In the previous sub-chapter (Part II), it has been presented how the 

clock model was integrated into the phenology model. Daily sunrise and sunset times 

were sent to the clock model for the computation of the area under the curve over 24 

hours of FT mRNA simulated by equation B2.15. This daily information was then 

calibrated to a value in the phenology photoperiod component (equation 4.2.1), 

which was shared and used on an hourly basis in equation 4.1.7 until a new set of 

sunrise/sunset times was available the following day. Both the metabolic and growth 

models were also modified to run every one hour. Therefore, equations 4.3.1 to 

4.3.11 were re-annotated by replacing growth cycle j with plant age t in hour. The 

thermal time unit (in degree days) for every hour can thus be calculated as: 

 

24

)(
)( bTtT

teThermaltim


 ,                    (4.3.12) 

 

where the numerator is the temperature above a base value of Tb = 3 
0
C (as used 

previously in equation 4.1.2, Part I: Phenology Model).  

 

The different biomass units used in the metabolic and growth models were 

maintained to ensure compatibility with measurement and optimisation carried out in 

previous studies (Christophe et al., 2008; Rasse & Tocquin, 2006). However, unit 

conversion factors based on carbon content were introduced in the current work so 

that biomass information could be sent backwards and forwards between the two 

models. For simplicity, an average value of 0.3398 g carbon per g leaf dry mass was 

used based on the reported total leaf carbon content per dry weight minus sugar and 

starch contents (Gorsuch, Pandey, & Atkin, 2010a, 2010b). Root carbon content was 

fixed at 0.35 g per g dry weight (Kumar, Udawatta, & Anderson, 2010; Prendergast-

Miller & Sohi, 2010).  
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4.3.4 Model initialisation 

 

The GreenLab growth model requires as input data the thermal time after plant 

emergence, and any events or processes before this critical point are not considered. 

In the current study, the growth model remains inactive until plant emergence, TT0. It 

is marked as the time point corresponding to 110 
0
Cd, which was the accumulated 

thermal time when the cotyledons were fully opened (Stage 1) in Boyes et al. (2001). 

The thermal time post-plant emergence, TT, is therefore given by: 

 

0)()( TTteThermaltimtTT  .                     (4.3.13) 

 

As soon as TT0 is reached, both the metabolic and growth models are triggered. 

Initial plant biomass is assumed to be the same as seed input (Table 4.3.1) 

(Christophe et al., 2008), which is distributed to the sink organs, i.e. cotyledons, 

roots and hypocotyl, based on a constant fraction. This fraction is determined by the 

sink demand function (equations 4.3.8 and 4.3.9), assuming that the period of root 

expansion begins on the day of sowing and the above-ground sink strength is similar 

to that of rosette leaves (Pabove-ground = 1) and at its maximum (fabove-ground = 1). 

Above-ground biomass is shared between the cotyledons and hypocotyl by setting 

the initial cotyledon area as 1 mm
2
 and the specific cotyledon area as the SLA at plant 

emergence. These give: 

 

Hypocotyl biomass = Seed biomass – Root biomass – 2 x Cotyledon area x SLATT=0. 

                   (4.3.14) 

 

The biomass of hypocotyl is set as a constant thereafter and the secondary growth of 

stem is assumed to be negligible. Therefore, any subsequent allocation to the shoot is 

distributed to leaves only. 

 

Using the calculated biomass at emergence, the initial shoot and root carbon contents 

can next be generated with the biomass unit conversion factors. Initial sugar carbon 

and starch carbon for use in the metabolic model are also determined as: 
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Sugar_carbon(emergence) = 2 x Cotyledon area x Sugar content per unit area. 

              (4.3.15) 

 

Starch_carbon(emergence) = Initial starch:sugar ratio x Sugar_carbon(emergence). 

              (4.3.16) 

 

These initial ratio and specific sugar content are the same as those used during the 

initialisation of the metabolic model in Rasse and Tocquin (2006).  

 

 

4.3.5 Connecting growth and metabolic models 

 

In order to connect the process-based metabolic model (Section 4.3.1) and the 

functional-structural plant growth module (Section 4.3.2), a few connection points 

had to be identified and redundant equations were replaced or abolished. One 

redundant equation is 4.3.3 from the growth model (Section 4.3.2) which determines 

the biomass production Q (source). This component was replaced with the carbon 

assimilation and metabolic model in the current study (Fig. 4.3.5). Both models are 

executed simultaneously with information passed back and forth in between.   
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Figure 4.3.5: Schematic diagram illustrating the combined growth and metabolic 

model. It is a combination of Figs. 4.3.1 and 4.3.3. Texts in red highlight the new 

features that were introduced in the current work. The red double-sided arrows 

indicate the connection points where biomass information between the two models is 

sent back and forth.  

 

Soluble 

sugars 

Starch 

 
 

Photosynthesis 
 
 

Maintenance 
respiration 

Growth 
Growth respiration 

Rosette area 

Maximum growth demand 
/ Minimum sugar level 

Translocation 

Baseline conversion 

Night break down 

Overflow 

Roots Leaf of rank 1  2  3 … i
 

Biomass distribution based 
on physiological age 

Thermal time 
(temperature) Leaf emergence 

Leaf expansion Leaf carbon 
content 

Root carbon 
content 

Aboveground structure 

Individual leaf biomass 

Individual leaf area, Si 

Specific leaf area (SLA) 
/ Previous area  

Phyllotaxy 
Leaf zenithal angle, α 

Thermal time 
(temperature) 

Leaf senescence Petiole correction 

SINK 

SOURCE Light intensity 

Temperature 

CO2 level 

Sunset/sunrise 
time 



 94 

To begin simulation, the number of leaves (equations 4.3.1 and 4.3.2) are first 

calculated so the dry biomass sink demand for each of the organs can be computed 

(equation 4.3.6) and converted to carbon sink demand using the unit conversion 

factors. These values are then used to determine the carbon root-to-shoot allocation 

ratio (RS) by summing all the leaf demands as follows: 
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contentcarbon Root 
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where t is the plant age (or hours after sowing), n is the physiological age of each 

organ (thermal time after organ emergence) and Lt is the number of existing leaves at 

time t.  The area for light interception (equations 4.3.4 and 4.3.5) is also calculated 

but a simple crowding correction was introduced in the current study to account for 

petiole elongation which reduced self-shading among the leaves when they exceeded 

15 in number. Equation 4.3.4 therefore was replaced by: 
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where pet is the maximum petiole correction factor, which would be determined 

from experimental data (see Table 4.3.4).   

 

Information on rosette area is passed to the carbon assimilation model (together with 

environmental input such as light intensity, temperature and CO2 level) for 

determination of photosynthesis, respiration and carbon flow. The growth pool in this 

model (Fig. 4.3.1) is then allocated to the roots and shoots using the RS ratio in 

equation 4.3.17, which replaced the RS ratio (as a function of rosette area, equation 

C1.29) that was originally used (Rasse & Tocquin, 2006). Once the carbon has been 
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allocated, contents in the roots and shoots are re-converted to dry mass unit. 

Distribution of the incremental shoot dry mass to different leaves is later determined 

using a modified version of equation 4.3.9 that was adjusted to represent trophic 

competition among the leaves, as shown in the following:   
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The new dry biomass for each leaf can thus be calculated using equation 4.3.10 and 

the individual leaf area determined from the specific leaf area, SLA (equation 4.3.11). 

As SLA decreases with thermal time, a constraint is applied to ensure that leaf area 

does not shrink in later time points, as follows: 

 

 )1(),()(Max)(  tStmtSLAtS iii .         (4.3.21) 

 

All the parameter values required in the combined model are listed in Table 4.3.2. 
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Table 4.3.2: Parameter values for the combined plant growth and metabolic model. 

 

Parameter description Symbol  Value and unit 

 

Thermal time at plant emergence 

 

Initial area of cotyledons 

 

 

Sugar content per unit area  

 

Initial starch:sugar ratio 

 

Leaf carbon content 

 

 

Root carbon content 

 

 

 

TT0 

 

S1(emergence) 

S2(emergence) 

 

 

 

 

 

 

 

 

 

 

 

110 
0
Cd 

 

1 mm
2 

1 mm
2 

 

0.1 g sugar-C m
-2

 

 

2 

 

0.3398 g C per g leaf 

dry mass 

 

0.35 g C per g root dry 

mass 
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4.3.6 Integrated multi-scale model 

 

The phenology model (Part I and Part II) only predicts the flowering time of 

Arabidopsis without giving any information on plant size and biomass. On the other 

hand, the combined growth-and-metabolic model in Section 4.3.5 has unlimited run-

time as long as input data are provided, unless execution is terminated. In other 

words, the simulation process could run incessantly, though simulated rosette growth 

may eventually end when the carbon budget runs out due to self-shading, leaf 

senescence, and/or suboptimal growth conditions. The current study therefore 

connected both models together, with the phenology component providing the time 

of flowering to the growth-and-metabolic component so that rosette growth can be 

terminated accordingly. Four input data, i.e. temperature, light intensity, CO2 level 

and sunrise/sunset time, are necessary to run the integrated model. The former three 

input data are read hourly, while sunrise/sunset times are read by the clock model 

once at the start of each calendar day (Fig. 4.3.6). The phenology component starts 

execution instantaneously without any conditions, whereas the growth-and-metabolic 

compartment has a conditional feature. The latter is only activated when the 

accumulated thermal time exceeds the threshold for seedling emergence. Once 

activated, this compartment begins its implementation using initial values from 

model initialisation. The circuit runs continuously until flowering time, as informed 

by the phenology component, is reached. At this point, the whole integrated model 

stops execution. Outputs from the model include time series data of sugar and starch 

contents, and the biomass and size of the whole plant and individual organs.     
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Figure 4.3.6: Time-stepping scheme of the integrated multi-scale model. Integral of 

FT mRNA is simulated by the clock model using input data of sunrise and sunset 

times (in the 24-hour format), which are the same for the same calendar day. Output 

from the clock model is therefore used repeatedly for each one-hour time step at 

which the other models are running, until the next calendar day. This is repeated until 

flowering time.        
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4.3.7 Model validation  

 

The original growth (Christophe et al., 2008), assimilation and resource partitioning 

(Rasse & Tocquin, 2006) models were developed and optimised using experimental 

data of the Col ecotype. Therefore, the model was first validated using Col data from 

an experiment conducted earlier in the lab (B. Wenden and C. I. Garcia, unpublished 

data).  

 

Two modifications were made in the model for the Col data (Table 4.3.4). As the 

plants bolted slightly later than the flowering time predicted by the phenology model, 

flowering threshold was adjusted to extend the simulation of the plants’ exponential 

growth until the last biomass assay. Another modification was the Jmax:Vcmax ratio (or 

JVR in equation C1.8). The reported values of this ratio in the literatures suggested a 

photoperiod-dependent tendency (Table 4.3.3), with an increasing ratio as 

photoperiod shortened. The ratio used in Rasse and Tocquin (2006) was 2.1, where 

the model was tested on plants grown under an 8-hour photoperiod. As the Col data 

were collected from plants grown under a 12-hour photoperiod, the current study 

adopted the Jmax:Vcmax ratio measured under the same photoperiod, which 

corresponded to 1.7 (Flexas et al., 2007). The value for pet was calculated from the 

last biomass assay by taking the ratio between measured rosette area and the total 

measured area of the 13 largest leaves corrected with zenithal angle (equation 4.3.4).   
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Table 4.3.3: The measured ratio of Jmax:Vcmax at different photoperiods from the 

literatures  

 

Photoperiod 

(Light:Dark) 

Jmax:Vcmax Source 

 

8:16 

 

12:12 

 

14:10 

 

2.04 – 2.26 

 

1.7 

 

1.36 

 

(Pons, 2012) 

 

(Flexas et al., 2007) 

 

(Bunce, 2008) 
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Figure 4.3.7: Model simulation (solid line) and experimental data (symbol) of Col: 

a) above-ground biomass and; (b) individual leaf biomass at different time points. 

Leaves were ranked according to the order of appearance. Growth conditions: ~21.3 
0
C; 12:12 light/dark cycle; light intensity = 110 μmol m

-2
 s

-1
; CO2 level as measured 

in the growth room (Fig 3.1 in Chapter 3). Error bars shown were the standard errors 

of 5 plants.      

 

(a) 

(b) 
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In general, the integrated multi-scale model managed to capture the dynamics of 

rosette growth in Col (Fig. 4.3.7). A diurnal growth rhythm can be seen in the model 

simulation. The biomass of each individual leaf during the early and late stages was 

also well described by the model. There was however an overestimation of the 

biomass measured on 25 days after sowing (DAS) and for young leaves of high 

ranking on 38 DAS. Model performance, as measured by the normalised root mean 

squared error, is summarised in Table 4.3.5.       

 

As the integrated growth component is a combination of modules independently 

parameterised with different experimental data (Christophe et al., 2008; Rasse & 

Tocquin, 2006), model consistency was also examined at the connection points 

where certain elements have been replaced. In this case, the root-to-shoot allocation 

ratio (RS) simulated by the integrated model (equation 4.3.17) was compared (Fig. 

4.3.8) to the original ratio calibrated from experimental measurement in Rasse and 

Tocquin (2006) (equation C1.29). In the Rasse and Tocquin model, RS has a 

minimum threshold of 0.12 when the rosette area is 1.22 cm
2
, which was the earliest 

available measurement to calibrate the model in that study. No comparison was 

therefore feasible before this stage. In contrast, the integrated model was initialised at 

plant emergence when the total cotyledon area was 0.02 cm
2
 and the calculated RS 

was 2.85e-06. As leaf surface increased, the RS values simulated by both models also 

increased, with the new model producing a lower value until the area reached ~15 

cm
2
, then exceeded the calibrated ratio (by about 8.8 % at the maximum point) 

before decreasing to values below the extrapolated plateau. Altogether, the 

comparison between both models displayed some differences at different stages; 

however the new model could generally re-produce the calibrated ratio to a 

consistent magnitude, suggesting sufficient compatibility within the integrated 

modules. 
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Figure 4.3.8: Comparison between Rasse and Tocquin (2006) (thin line) and the 

current study (thick line) for modelled root-to-shoot allocation ratio (RS) as a 

function of rosette area. In the Rasse and Tocquin model, the function was derived 

numerically by assuming a minimum threshold and a maximum plateau, based on 

experimental measurement of plants from a size of 1.22 cm
2
 up to ~28 cm

2
. Ratios at 

rosette area outside the measured regions were extrapolated (dashed lines). For the 

integrated model, simulation began at plant emergence (0.02 cm
2
) until flowering 

time. 
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4.3.8 Model applicability to Ler and Fei 

 

One application of plant (crop) modelling is the prediction of growth and 

development of different plant varieties under an ever-changing environment. This 

could facilitate the selection for varieties with desired traits or breeding of super-

hardy crops. The multi-scale model was therefore tested on its ability to predict the 

growth of Arabidopsis accessions with different traits by only modifying model 

parameters associated with the specific traits, without re-optimisation to fit 

experimental data. Two accessions were selected for this purpose, as follows:  

 

1. Ler, which is another one of the most popular Arabidopsis accessions 

used in molecular and genetic studies (Anderson & Mulligan, 1992). Due 

to a mutation in ERECTA (ER), Ler plants have different leaf 

morphology, i.e. round leaves and short petioles (Bowman, 1993; Redei, 

1992; Torii et al., 1996) (inset of Fig. 4.3.10a). 

 

2. Fei, a relatively less studied ecotype, which has been reported to have a 

higher leaf appearance rate (Mendez-Vigo, de Andres, Ramiro, Martinez-

Zapater, & Alonso-Blanco, 2010) (Fig. 4.3.9a). 

 

Parameter modifications for the two accessions are summarised in Table 4.3.4. 

Similar adjustments as applied to Col, i.e. flowering threshold, petiole correction 

factor and Jmax:Vcmax ratio, were also applied to Ler and Fei. In addition, parameters 

associated with leaf appearance were altered based on experimental data. Consistent 

with its characteristic as a fast-growing ecotype, Fei was found to reach plant 

emergence early. This was incorporated by modifying the thermal time at plant 

emergence to that observed for Fei, which was enough for the model to re-produce 

its leaf appearance rate (Fig. 4.3.9b). Ler on the other hand emerged at the expected 

time, but its leaf appearance rate at the adult stage was slightly lower than the rate 

derived from Col data that was used in the GreenLab model (Christophe et al., 2008). 

Therefore, the leaf appearance rate for Ler was modified in the model to reflect this 

observation (Table 4.3.4).    
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Figure 4.3.9: Vegetative shoot growth of Ler and Fei from germination until the 

appearance of flower buds. (a) Leaf number plotted against days after sowing; (b) 

Phytomer number plotted as a function of thermal time after plant emergence. Also 

shown are phytomer numbers as modelled using equation 4.3.1 derived from Col 

data in the GreenLab model (Christophe et al., 2008) and the modified rate for Ler 

(Table 4.3.4). Error bars showing the standard error of 24 plants were very small and 

therefore hidden by the data markers.   

(a) 

(b) 
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The multi-scale model could fit the biomass data of both Ler and Fei at different time 

points to a good accuracy (Figs. 4.3.10 and 4.3.11). For Ler, the model was able to 

predict all data of the total above-ground biomass except for a slight underestimation 

at 29 DAS. The model also displayed good fit of the individual leaf biomass 

particularly at the early stages. However, the biomass of early leaves (rank 5 – 10) 

was well matched at 23 DAS (Fig. 4.3.10b) but underestimated at 29 DAS, when the 

model predicted leaves 6 – 8 to be fully expanded. The measured biomass of these 

leaves showed that they continued to grow, as observed at 37 DAS (arrow in Fig. 

4.3.10b). This suggested that the duration of leaf expansion used in the model was 

too low, causing the model to direct all carbon sources to newer sink organs which 

were still expanding. Simulation results for Fei were in general similar though 

biomass at the last two time points were overestimated (Fig. 4.3.11a), and these 

overestimations were mainly distributed among young leaves (Fig. 4.3.11b). Model 

goodness-of-fit for both accessions are shown in Table 4.3.5.            
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Figure 4.3.10: Model simulation (solid line) and experimental data (symbol) of 

above-ground (a) and individual leaf biomass (b) at different time points for Ler. 

Leaves were ranked according to the order of appearance. Inset: The rosette structure 

of Ler. Growth conditions: 22 
0
C; 12:12 light/dark cycle; light intensity = 130 μmol 

m
-2

 s
-1

; CO2 level as measured in the growth room (Fig 3.1 in Chapter 3). Error bars 

shown were the standard errors of: n = 10 plants for total above-ground biomass; n = 

5 plants for individual leaf biomass. The arrow indicates that early leaves continued 

to grow, in contrast to model prediction.     

(a) 

(b) 
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Figure 4.3.11: Model simulation (solid line) and experimental data (symbol) of 

above-ground (a) and individual leaf biomass (b) at different time points for Fei. 

Leaves were ranked according to the order of appearance. Inset: The rosette structure 

of Fei. Growth conditions: 22 
0
C; 12:12 light/dark cycle; light intensity = 130 μmol 

m
-2

 s
-1

; CO2 level as measured in the growth room (Fig 3.1 in Chapter 3). Error bars 

shown were the standard errors of: n = 10 plants for total above-ground biomass; n = 

5 plants for individual leaf biomass.     

 

(a) 

(b) 
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Table 4.3.4: Modifications of parameters in the multi-scale model for different genotypes 

   

Parameter description Symbol and equation Col Ler Fei Source 

 

Phenology model: 

 

Flowering threshold 

  

Growth model: 

 

Thermal time at plant emergence 

 

Leaf appearance rate in the adult 

phase (TT(t) > 355 
0
Cd) 

 

Maximum petiole correction 

factor 

 

Assimilation model: 

 
Ratio of maximum electron 

transport  to maximum 

carboxylation capacity  

 

 

 

 

Th ( 4.1.8) 

 

 

 

TT0 ( 4.3.13) 

 

(4.3.1) 

 

 

pet (4.3.19) 

 

 

 

 

Jmax:Vcmax 

or JVR (C1.8) 

 

 

 

3955 [3212] 

 

 

 

[110] 

 

[y(t) = 0.084TT(t) – 

16.75] 

 

1.1 

 

 

 

 

1.7 [2.1] 

 

 

 

3560 [2907] 

 

 

 

[110] 

 

y(t) = 0.06TT(t) – 

7.6 

 

1.06 

 

 

 

 

1.7 [2.1] 

 

 

 

2886* [2907] 

 

 

 

57 [110] 

 

[y(t) = 0.084TT(t) – 

16.75] 

 

1.1 

 

 

 

 

1.7 [2.1] 

 

 

 

This study 

 

 

 

This study 

 

This study 

 

 

This study 

 

 

 

 

(Flexas et al., 

2007) 

 

Notes: Numbers and equations in square brackets (where applicable) indicate the original parameter values before modifications. If no new 

values are shown, no modifications have been employed.  

*This value was optimised by assuming that all other parameters in the phenology component adopted the values of Ler’s  
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Table 4.3.5: Goodness of fit of the multi-scale model as indicated by root mean 

squared error (RMSE) normalised to the mean of observations, also known as the 

coefficient of variation of RMSE (CV(RMSE)) 

 

Model output Col Ler Fei 

 

Fresh biomass (FW): 

 

Total shoot 

 

Individual leaves 

 

 

 

 

Dry biomass (DW): 

 

Total shoot 

 

Individual leaves 

 

 

 

 

Leaf number 

 

 

 

 

0.2394 

 

0.3925 (18 DAS) 

3.0095 (25 DAS) 

 0.4907 (27 DAS) 

 0.3316 (38 DAS) 

 

 

 

0.1947 

 

0.4772 (18 DAS) 

1.6707 (25 DAS) 

0.3869 (27 DAS) 

 0.2742 (38 DAS) 

 

0.1482 

 

 

 

0.0493 

 

0.2486 (18 DAS) 

 0.6150 (23 DAS) 

0.2812 (29 DAS) 

0.5388 (37 DAS) 

 

 

 

0.1338 

 

0.5353 (18 DAS) 

0.3808 (23 DAS) 

 0.4240 (29 DAS) 

 0.4615 (37 DAS) 

 

0.0945 

 

 

 

0.1552 

 

0.4184 (18 DAS) 

0.3493 (25 DAS) 

0.3475 (30 DAS) 

 

 

 

 

0.1758 

 

0.7781 (18 DAS) 

0.3612 (25 DAS) 

 0.2681 (30 DAS) 

 

 

0.0620 

 

Note: In the simulation of fresh and dry biomass, water content measured in the 

experiments was used in the model. The measured water content for each accession 

was as follows: Col (92.0 %); Ler (90.7 %); Fei (88.2 %). 

 

 

 

 



 111 

4.3.9 Model scale-up: Net ecosystem exchange (NEE) 

 

Net ecosystem exchange (NEE) is defined as the net CO2 flux from the ecosystem to 

the atmosphere, and it is one of the main components of carbon (C) cycling that 

plays a central role in climate change studies (Chapin et al., 2006). In this section the 

integrated model, which describes the growth of a single plant, was scaled up to a 

small population to examine its applicability at the higher level of organisation. 

Assuming no interaction such as competition for light between each plant in the 

population, model output in terms of (negative) net carbon uptake was multiplied by 

the number of plants on a tray and compared to the NEE measured from the whole 

tray (Figs. 4.3.12 and 4.3.13). Two types of measured values were used for 

comparison: measured values corrected with the control, which comprised a tray of 

soil without plants; and non-corrected measured values. The control measurement 

was included to account for heterotrophic respiration or gas-exchange activities of 

other autotrophs on the soil surface. All the control measurements had negative NEE 

(Appendix C4), indicating a dominance of autotrophic activities on the soil from 

moss and photosynthetic microbes. For Ler, simulated NEE values mostly fell 

between the corrected and non-corrected measured values. Simulation results were 

closer to the measured values corrected with control when the plants were still small. 

As the plants grew larger, modelled NEE values shifted towards the non-corrected 

measurements and eventually deviated from both measured values. This trend was 

expected since the larger plants covered more soil surface and this suppressed other 

gas-exchange activities on the soil. The bigger rosettes also started shading one 

another (Fig. 4.3.12c) but this was not considered in the simulation, thus explaining 

the overestimation of NEE for older plants. For Fei, only three measurements were 

available as the plants flowered earlier. Simulation results for Fei did not follow the 

same trend as Ler. Modelled values overlapped with the non-corrected values, and 

there was a slight negative deviation at the last time point even though plant 

coverage of soil surface and inter-shading were relatively low compared to Ler (Fig. 

4.3.13c). This pointed to a general overestimation of NEE by the model at all time 

points. An overestimation has also been observed earlier of biomass in Fei (Fig. 

4.3.11a), offering a possible explanation to the higher NEE simulated by the model.  
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To test if the qualitative interdependence between biomass and NEE could account 

for the quantitative overestimation, the model was adjusted to reduce its biomass 

output. This was done by changing a parameter that only has an indirect effect on 

biomass but no direct connection to daytime NEE in the model. Starch turnover at 

night (STc in equation C1.15) was selected as an example for this purpose. Graded 

changes in STc and therefore biomass led to changes in simulated NEE (Fig. 4.3.14). 

In the worst case scenario (70% reduction in STc) where biomass was 

underestimated, there was also an underestimation in the NEE simulation, as 

indicated by the overlapping of modelled and corrected values at the first time point 

even though the plants already covered quite a large area of soil surface that should 

have led to less negative control (Fig. 4.3.13b). On the other hand, the simulation that 

corrected the biomass fit, i.e. 85% reduction in STc, translated into NEE values 

between the corrected and non-corrected measurements, which were the expected 

trend. However, as the biomass and NEE are interdependent, increasing or 

decreasing one naturally affects the other and vice versa. Reducing photosynthesis 

itself (thus NEE) could also lead to a decrease in biomass (Appendix C5). This 

suggested that there could be various ways of improving data fit for Fei, but the 

relation between variables in the integrated model is still realistic despite all its 

multi-scale components.  
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Figure 4.3.12: Modelled and measured net ecosystem exchange (NEE) for a small 

population of Ler (a). Measurements were either corrected (by subtraction) or not 

corrected with the control, which was a tray of soil without plants (see Appendix C3 

for calculation details). Images of plant population at two different time points are 

also illustrated (b and c). Note: NEE has a negative sign here by convention as it is 

defined by atmospheric scientists as a C input to the atmosphere (Chapin et al., 

2006).  

 

(a) 

(b) (c) 28 DAS 
 

37 DAS  
(Flower buds detected) 
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Figure 4.3.13: Modelled and measured net ecosystem exchange (NEE) for a small 

population of Fei (a). Images of plant population at two different time points are also 

illustrated (b and c).  

 

 

 

(a) 

(b) (c) 
28 DAS 

 

30 DAS  
(Flower buds detected) 
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Figure 4.3.14: Interdependence between simulated biomass (a) and net ecosystem 

exchange (NEE) (b). STc was reduced progressively in each simulation run. The 

percentage of reduction is shown in the legend. Dashed lines indicate the corrected 

and non-corrected measured values as in Fig. 4.3.13a.  

 

 

 

 

(a) 

(b) 
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4.3.10 Discussion 

 

One of the challenges in linking existing models is their compatibility upon 

integration. Each existing model is usually parameterised using different data sets, 

and there may be inconsistency among different scales and model types. The 

Arabidopsis multi-scale model developed in this study has demonstrated that 

combining plant models in a modular fashion is feasible given observed experimental 

variation across laboratories.  

 

Validation with different accessions, i.e. Col, Ler and Fei, produced results with 

fairly good accuracy (Figs. 4.3.7, 4.3.10 and 4.3.11). There were some small 

discrepancies between modelled and measured biomass for Col in the early stage, 

which could be due to a different sowing method that affected early development. In 

that experiment, seeds were sown directly onto soil and thinned later, while in the 

current study seeds were first sown on agar and seedlings were later transplanted to 

soil (Chapter 3). Nevertheless, the coefficient of variation of RMSE (CV(RMSE)) for 

total Col shoot biomass was less than 25% (Table 4.3.5). The model also showed 

surprisingly good results when tested with Ler and Fei by adjusting only four 

genotype-specific parameters based on experimental data. Model performed the best 

in describing Ler data (CV(RMSE)) for total shoot biomass ~ 5%), followed by Fei 

(~15%). This demonstrated the robustness of the model framework. Inspection of the 

result (Fig. 4.3.10b) suggested that model performance might be further improved 

such as by modifying leaf expansion duration for Ler. However, it was the aim of the 

validation test to have minimal modification unless supported by experimental data. 

As leaf expansion duration was not measured specifically in the experiment, this 

parameter was not adjusted in the model.  

 

The model also predicted realistic NEE values for both Ler and Fei, showing that it 

has potential for the application of scaling up to a small population. There was an 

overestimation of NEE for Fei which correlated with model overestimation of 

biomass. Reducing starch turnover (STc) or carbon assimilation rate improved model 

prediction of both variables (Fig. 4.3.14 and Appendix C5). Recently, a study has 
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found a duplication-and-loss event in the RuBisCO small subunit (RBCS) gene 

family in Fei (Schwarte & Tiedemann, 2011), though this does not seem to have 

affected its RuBisCO protein content (5.567 mg/g FW) relative to Col (5.426 mg/g 

FW) and Ler (5.114 mg/g FW) (Supplemental Dataset 1 in Sulpice et al. (2010)). 

Starch content at the end of the day was found to be slightly lower in Fei (35 μmol/g 

FW) compared to Col (40 μmol/g FW) and Ler (39 μmol/g FW) in that same dataset 

of 129 Arabidopsis accessions (mean = 40 μmol/g FW, standard error = 0.44 μmol/g 

FW) (Sulpice et al., 2010). However, attempt at reducing baseline starch synthesis in 

the model (equation C1.13) did not generate any change in the simulation as it was 

compensated by the overflow mechanism in the model (equation C1.37). Further 

information and detailed analyses would be required to determine how Fei compares 

to the others for additional model adjustment(s). Nevertheless, the results altogether 

still demonstrated that the integrated multi-scale model could simulate carbon 

cycling, usually described using simple big-leaf models in ecosystem studies, to a 

good accuracy.  

 

Phenotyping assay of Fei to parameterise the model has generated interesting 

observations that are usually not analysed. Leaf production rate of Fei was found to 

be faster than Ler as has been reported earlier (Mendez-Vigo et al., 2010), but when 

plotted against thermal time after plant emergence, the difference was reduced and 

Fei could be described using the Col rate (Fig. 4.3.9). The timing of plant emergence 

is seldom recorded, but it could be an important dimension that affects observed leaf 

production rate and leaf number at flowering. Future studies may therefore benefit 

from comparative analyses of plant emergence across genotypes and treatments. In 

terms of flowering time, flower buds appeared slightly earlier in Fei than in Ler 

under 12:12 light/dark cycle in this study (Fig. 4.3.9). This contradicted published 

data where Fei was shown to flower later than Ler in both LD (16-hour photoperiod) 

and SD (8-hour photoperiod) conditions (Mendez-Vigo et al., 2010). One possibility 

was that Fei already achieved its maximum developmental rate at 12-hour 

photoperiod, as suggested by the comparable leaf number at flowering here (27.8) 

and that published (~31) under LD (Mendez-Vigo et al., 2010). Indeed, a large 

variation has been found in photoperiod response among different accessions, with 
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some deviating from the typical critical daylengths (Giakountis et al., 2010). There is 

currently very limited data on this accession in the literature, thus the photoperiodic 

window for Fei is not clear. Unfortunately, it is not feasible to refer to data of 

accessions collected from similar latitude as no strong correlation was found between 

photoperiod response and latitude (Giakountis et al., 2010). As both the photoperiod 

pathway and starch degradation rate are regulated by the circadian clock (Graf et al., 

2010; Lu et al., 2005), it is tempting to hypothesise that Fei has a lower critical 

daylength and that the same regulatory mechanism is causing starch turnover to 

decrease, thus supporting the STc adjustment exercise. This is however only a 

speculation, and until more data are available for Fei and which support the 

assumption, it will remain one.  

 

 

4.3.11 Model synergy 

 

Models with increased complexity often come with improved fit but reduced 

flexibility. In the case of integrating existing models of biological processes either by 

direct linking or component replacement, the increased complexity offers more 

biological details but does not necessarily improve fit, while flexibility comes in the 

form of species specificity down to the molecular level.  

 

In this study, the multi-scale whole-plant model not only displayed reasonably good 

fit to validation data of different accessions, but it could also provide extra 

information and synergy compared to the individual model components. For 

example, the integrated model could now simulate growth from plant emergence 

until flowering, displaying a synergy between the Rasse and Tocquin carbon 

assimilation model and the Wilczek et al. phenology model. Whereas the 

assimilation model only considers the rosette as one big leaf, including the GreenLab 

functional-structural growth model (Christophe et al., 2008) gave information on the 

growth of individual organs and how each organ contributes to the whole plant 

structure. In return, model integration diminishes dependency of the GreenLab model 



 119 

on optimisation for radiation use efficiency, which is a lumped parameter of 

photosynthesis, sugar-starch partitioning, respiration and daily allowable growth rate.  

 

In addition to model synergy, the multi-scale model could simulate the diurnal 

growth rhythm for the whole vegetative stage, which interestingly illustrated a sink-

limited phase in young plants, as indicated by the spikes in sugar content during the 

night (Fig. 4.3.15). Since the model has not been validated with any metabolite data, 

this might be the result of limited biological details in the model, but it also points 

out that the source-sink relation throughout plant life cycle could be very dynamic, as 

has been demonstrated in some plants (Lewis, Wang, Griffin, & Tissue, 2002) and 

crop cultivars (Egli, 1999; Pavel & Dejong, 1993). Studies have shown that starch 

degradation rate can adjust very quickly to night length to avoid immediate carbon 

starvation (Gibon et al., 2004; Gibon et al., 2009; Graf et al., 2010; Lu et al., 2005), 

and this rate adjustment is included in the model from Rasse and Tocquin (2006). By 

the same logic, carbon utilisation could be optimised in the long run if starch 

turnover rate is adjusted according to sink status to avoid carbon wastage. If the sink 

demand is low, transitory starch would be better saved for future use instead of being 

converted to non-needed sugar (Fig. 4.3.15a), which could in turn lead to high 

maintenance respiration (Ogren, 2000). Alternatively, photosynthesis rate can be 

reduced to lower the overall costs (Krapp, Hofmann, Schafer, & Stitt, 1993). These 

feedback relations between the source and the sink are not currently described in the 

model. A cost-benefit analysis of the whole plant system throughout its life cycle 

may provide a better understanding of the need for any tight coupling or feedback 

mechanisms between different pathways. Such analysis might also explain the diel 

and/or circadian rhythm of growth that has been reported in leaves, hypocotyls and 

roots (Dowson-Day & Millar, 1999; Nozue et al., 2007; Poire et al., 2010; Wiese, 

Christ, Virnich, Schurr, & Walter, 2007; Yazdanbakhsh, Sulpice, Graf, Stitt, & 

Fisahn, 2011). These emergent properties can only be analysed using whole-plant 

models that describe biological processes to a certain level of detail.  
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Figure 4.3.15: Simulated time series during the vegetative stage for Ler using the 

same input conditions as in Fig. 4.3.10. (a) Sugar content per total shoot dry mass; 

(b) Starch content per total shoot dry mass; (c) Growth respiration per total shoot dry 

mass. Dashed lines indicate end-of-day (red) and end-of night (blue) in the time 

series. A change from sink-limited (indicated by high sugar content at night and a 

constantly high growth respiration) to source-limited growth (indicated by low sugar 

content and very low growth respiration at night) was observed.  

(a) 

(b) 

(c) 
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Chapter 5 

 

General Discussion 

 

 

Results presented in the previous chapter have demonstrated how the integrated 

model can provide a framework that already matched biomass and gas exchange data 

from the lab to good accuracies, and upon further extension, may facilitate analyses 

for improving our understanding of the whole-plant system. In this chapter, model 

limitations and future extensions are presented, followed by the implications of 

study.    

 

 

5.1 Model limitations and future extensions 

 

At present, the Arabidopsis multi-scale model is necessarily simplistic. Complex 

biological pathways, biochemical reactions and physiological responses are only 

represented by simple equations due to incomplete understanding of the system, 

technical limitations in data collection and model availabilities. 

 

The most detailed module in the framework is currently the clock network 

(Appendix B), where the early two-loop model (Appendix B1) (Locke et al., 2005) is 

utilised. Many new clock components have since been added to the clock gene 

circuit (Pokhilko et al., 2012; Pokhilko et al., 2010), which improves model 

behaviour under a wider range of light conditions and more genotypes can be 

described. Once the FT-activation component is connected to the new model 

versions and re-parameterised in the future, the two-loop model can be replaced in a 

straightforward manner by re-calibrating integral of FT to the phenology photoperiod 

component (Section 4.2.2). Comprehensive analyses of flowering data, i.e. flowering 

time and leaf number, and FT expression levels across a range of photoperiods would 

improve such calibration method in the future. A technical limitation of the 
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phenology model, however, is that it uses the times of sunrise and sunset in hourly 

calculations throughout the day (Section 4.2.2). While the clock may allow plants to 

anticipate dawn and dusk, the relevant molecular events are dynamically modulated 

by ongoing environmental stimuli, which may either cause immediate responses or 

be stored as “memory” that affects later processes (Tafforeau, Verdus, Norris, Ripoll, 

& Thellier, 2006; Verdus, Ripoll, Norris, & Thellier, 2012). An immediate response 

in this case would mean that photoperiodic induction of flowering changes 

depending on the hourly level of FT. A memory concept may be more applicable, 

where the total amount (or integral) of FT accumulated over the previous 24 hours 

from the hour at hand is considered. This is consistent with the observation that a 

single long day is insufficient for photoperiodic induction in young Arabidopsis, 

suggesting that information accumulates over several days (Corbesier, Gadisseur, 

Silvestre, Jacqmard, & Bernier, 1996). It could also embody the lag time required to 

transport FT protein from the leaves to the meristem (Corbesier et al., 2007a). 

Implementing this change in the model would not affect the simulation for constant 

photoperiod conditions; however, under varying photoperiods the predicted 

flowering time may be different. This dynamic (memory) response may therefore 

increase model precision, and more importantly, analysis of the differences will 

allow us to identify potential challenges in the direct linking of gene dynamics to 

scaling factors that are widely used in crop phenology models.                                              

  

Another module with more kinetic details in the integrated model is the carbon 

assimilation component. In this component, the Farquhar et al. (1980) model utilises 

a combination of mass-action kinetics, the Michaelis-Menten model, and specially-

derived functions to consider the first two of the main stages in the Calvin-Benson 

cycle, i.e. carboxylation, reduction and regeneration. Arnold and Nikoloski (2011) 

highlighted that this model is overall the best in terms of accuracy, robustness and 

sensitivity in describing carbon fixation processes, but it would not be suitable for 

metabolic engineering applications compared to some of its counterparts, which 

described sub-processes down to the level of single reactions (Giersch, Lammel, & 

Farquhar, 1990; Laisk, Eichelmann, & Oja, 2006; Poolman, Fell, & Thomas, 2000). 

The necessity of adding more kinetic details therefore depends on the objectives to 
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be achieved. In any case, linking model parameters such as carboxylation and 

electron transport capacities, i.e. Vcmax and Jmax, to protein or molecular contents 

would be useful. Studies have shown that these two parameters are dependent on 

temperature and light intensity (Bunce, 2008; Pons, 2012), and comparison of their 

measured values seems to indicate a dependency on photoperiod (Table 4.3.3). This 

suggested a possible regulation by either the clock, carbon status, or both. Many key 

metabolic pathways are regulated by the clock (Harmer et al., 2000), one of which is 

starch degradation rate (Graf et al., 2010). In the model, this regulation is simplified 

to a linear rate adjusted automatically to night length (C1.15). Linking the clock 

module to automate this rate (and other clock-regulated metabolic reactions) would 

require knowledge of the responsible clock component(s) and its downstream 

mechanism. These, and other feedback machineries, are the subject of ongoing 

investigations (Pyl et al., 2012; Stitt & Zeeman, 2012; Timm et al., 2012). Most 

components of the Rasse and Tocquin model are parameterised with data from 

optimal growth conditions, and under these conditions regulatory effects may well 

not be obvious. Consequently, the model’s capacity to describe carbon assimilation 

and partitioning under excessive conditions is still very limited. A previous study 

applying a range of constant photoperiods down to 3 hours revealed a close 

coordinated adjustment of starch turnover, protein content and relative growth rate to 

avoid carbon starvation (Gibon et al., 2009). This study is one example of how 

artificial conditions that are not natural in the field could sometimes reveal new 

testable hypotheses. Therefore, identification and inclusion of the underlying 

metabolic and growth regulations in the multi-scale model could enable simulation of 

plant behaviour under extreme conditions such as constant light and skeleton 

photoperiods (light pulses), which may reveal additional emergent properties.  
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The multi-scale model also included a module of biomass allocation to the shoots 

and the roots based on organ sink strength and expansion duration (equations 4.3.6 

and 4.3.7). Currently, the model assumes the root expansion period to be a function 

of flowering time (and indirectly temperature and photoperiod) founded on only one 

set of experimental observation (Christophe et al., 2008). This expansion period has 

significant effect on the root-to-shoot allocation ratio (RS) since it determines root 

sink variation (equation 4.3.7). The integrated model has not been validated with any 

root data, and examination of module compatibility in RS illustrated some 

differences between models during the early and later stages (Fig. 4.3.8). The Rasse 

and Tocquin model employs a minimum RS threshold for seedlings, whereas the 

multi-scale model determines the ratio based on organ sink variation that depends on 

temperature (roots and leaves) and photoperiod (roots). It is not clear if a minimum 

ratio exists since the Rasse and Tocquin model was not calibrated with data from 

young seedlings, but roots appear first during germination supporting a high RS 

assumption. On the other hand, root and shoot development can be very plastic 

depending on nutrient availability (Roycewicz & Malamy, 2012), and they are also 

coordinated by light (Salisbury, Hall, Grierson, & Halliday, 2007; Sassi et al., 2012). 

At the moment, germination events and the early seedling stage are not described in 

the multi-scale model, and most initial values such as sugar/starch level and 

cotyledon size at plant emergence are assumed to be constant regardless of earlier 

events (Section 4.3.4). Studies on seedlings are already well established, with large 

amount of data available on hypocotyl and cotyledon growth for various light and 

temperature conditions. Incorporating a module that describes these events in the 

future would allow impact study of early events on plant life cycle. As the plants age, 

a general rule for herbaceous plants is that RS decreases (Bourdot, Saville, & Field, 

1984; Bray, 1963; Ryle, Arnott, & Powell, 1981; Troughton, 1956), and this trend 

was also shown in the simulation for older plants in the integrated model (Fig. 4.3.8). 

A periodic harvest of roots from germination until senescence of plants grown under 

different conditions would be required to establish any relationship between root 

growth and flowering time and/or other variables, though such data are still limited 

due to experimental difficulties.  
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Besides root growth, a correlation between leaf expansion and photoperiod has been 

reported (Cookson, Chenu, & Granier, 2007). In short days, leaf expansion rate was 

found to decrease while the expansion duration increased. These two variables are 

very plastic in dicotyledonous leaves, and their opposing responses to environmental 

changes may sometimes offer partial or complete compensation such that the final 

leaf area is not affected (Granier & Tardieu, 2009). At present, leaf expansion 

duration in the model is controlled only by temperature (thermal time) without any 

effect from photoperiod. The model also assumes that all leaves that are still 

expanding function as carbon sink, such that the ontogenic switch from metabolic to 

hydraulic control in leaf expansion (Pantin, Simonneau, Rolland, Dauzat, & Muller, 

2011) is not considered. Nor does the model consider any environmental regulation 

of petiole elongation and circadian control of leaf movement. A comprehensive 

analysis of published data and additional experiments would enhance our 

understanding and provide correlations that improve the environmental-functional-

structural relationship in the model.                     

 

The model is of a deterministic nature at the moment. Stochasticity occurs at all 

levels of organisation, but the non-symmetrical branching in trees provides strong 

evidence that organogenesis is highly variable and plastic to the environment. Data 

of leaf appearance rate observed under long and short day conditions for Arabidopsis 

(Mendez-Vigo et al., 2010) seemed to indicate an effect of photoperiod, possibly due 

to a feedback mechanism of carbon availability as has been observed on plants 

grown under different sucrose concentrations (Roldan, Gomez-Mena, Ruiz-Garcia, 

Salinas, & Martinez-Zapater, 1999). Studies on the shoot apical meristem have 

revealed that leaf formation and phyllotaxis are regulated by auxin transport and 

signalling (Benkova et al., 2003; Leyser, 2006; Reinhardt et al., 2003). There are 

already models, both deterministic and stochastic, that describe these regulations 

(Jonsson et al., 2006; Twycross et al., 2010). Therefore, integrating these modules in 

the future not only connects the current work to hormone signalling and 

developmental biology, but it could also introduce some stochasticity into the model 

to explain variability in plant growth to better represent a population.  
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Most of the model extensions discussed so far would require data generated under 

controlled conditions in the lab. Eventually, it would also be important to test the 

model on plants grown in the field as part of the validation process. Analysis of any 

discrepancies that arise could help identify model components that may require 

further extension. Only with such iterative process can the model be truly exploited 

to its full potential, both in knowledge discovery and to help address global issues.     

 

 

5.2 Implications of study   

 

The Arabidopsis multi-scale whole-plant model developed here represents a new 

class of models that embody the concept of crop systems biology (Yin & Struik, 

2010), and it can provide a framework to bridge between the reductionism and 

holistic approaches. The model is a good example of how information from 

functional genomics can be applied at the whole-plant level. Not only are gene 

functions incorporated by simple modification of parameter values, but gene 

dynamics at the transcriptional and translational levels are linked to model 

parameters. Analysis of the model has revealed emergent properties associated with 

competition for carbon sources within the plants at the organ and metabolic levels. It 

is also possible to incorporate more biological mechanisms in the future due to the 

modular structure of the model. These properties are in line with the attributes of 

crop systems biology outlined in Yin and Struik (2010). 

 

Global concerns regarding the impact of climate change have recently generated 

various research activities to identify alternatives that improve plant yield and 

productivity. Ongoing efforts to improve photosynthetic capacity include 

manipulating the function of enzymes such as RuBisCO, and exploring the potential 

engineering of photosynthetic components in C4 plants into C3 plants (Leakey & 

Lau, 2012). Another group of studies focuses on enhancing starch storage by 

manipulating starch biosynthesis and remobilisation to improve growth at night or 

during carbon shortage (Geigenberger, 2011). These elements are also considered in 

the Arabidopsis multi-scale model, either with kinetic details or as simple functions 
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where more details can be incorporated. As a model species, the genome of 

Arabidopsis has been fully sequenced (Kaul et al., 2000), followed by crop species 

such as rice (Goff et al., 2002; Matsumoto et al., 2005; Yu et al., 2002), maize 

(Schnable et al., 2009) and soybean (Schmutz et al., 2010). There is still a long way 

towards developing a plant model that considers the full genome, as has been 

successfully demonstrated in the breakthrough bacteria whole-cell model (Karr et al., 

2012). Nevertheless, the current study is part of the initial steps, and coupled with the 

knowledge-swapping efforts between Arabidopsis and crops (Chew & Halliday, 

2011), could pave the way for a full-genome plant model and facilitate synthetic 

biology (Collins, 2012). 
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Chapter 6 

 

Conclusions 

 

 

In conclusion, this study demonstrated how a multi-scale whole-plant model was 

developed for Arabidopsis using a modular approach. The model was successfully 

validated with biomass data from individual plants and gas exchange measurements 

for a small population. Modifying model parameters associated with measured traits 

enabled the model to describe various genotypes. As each module is independent and 

can be analysed separately, examination of the phenology component and 

meteorological data has revealed a seasonal effect of night temperatures on flowering 

time. Further analysis suggested the involvement of photoreceptor phyB in the gating 

of temperature effects on flowering. This study has also linked a simple phenology 

model to gene dynamics, an initiative that could bridge the gap between classical 

crop modelling, which have a long-standing history, and modern science. Future 

work that addresses model limitations would improve its capability and provide 

application routes from fundamental biology to crop improvement and biosphere 

management.               
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Appendices 

 

Appendix A 

 

A1. Parameter values of the Wilczek et al. model and Model 2 (step gating) for the 

Ler lines 

 

Parameter Wilczek et al. Model
1
 Model 2 (step gating) 

Threshold MPTU 2392 2907 

Non-vernalising development 

Tb 3 

CSDL 10 

CLDL 14 

DLD 1 

DSD 0.6626 0.6365 

Pday 1 1 (set a priori) 

Pnight 0 0.2118 

Vernalisation submodel parameters 

TVmin -3.5 
0
C 

TVmax 6 
0
C 

Vsat 960 

Fb 0.3756 0.4259 

κ -5.17 

ω 2.23 

ξ 1.00 
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Adjustments in Model 2 for phyA-201 and phyB-1 mutants (in the Ler background): 

 

Parameter phyA-201 phyB-1 

CSDL 11 10.5 

CLDL 15 16 

DLD No change 1.350 

DSD No change 0.8084 

Pday No change 0.6279 

Pnight No change 0.6279 

 

1
 For consistency, the parameter values for the Wilczek et al. model listed here were 

re-optimised using the global optimisation tool in MATLAB (Mathworks, 

Cambridge, UK) in contrast to the Excel Solver used in Wilczek et al. (2009).  
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A2. Parameter values of the Wilczek et al. model and Model 2 (step gating) for the 

Col lines 

 

Parameter Wilczek et al. Model
1
 Model 2 (step gating)

2
 

Threshold MPTU 2604 3212 

Non-vernalising development 

Tb 3 

CSDL 10 

CLDL 14 

DLD 1 

DSD 0.6015 0.6015 

Pday 1 1 (set a priori) 

Pnight 0 0.1782 

Vernalisation submodel parameters 

TVmin -3.5 
0
C 

TVmax 6 
0
C 

Vsat 960 

Fb Col fri 0.4075 0.4743 

Col-FRI-Sf2 0.2635 0.3176 

fve 0.2722 0.3307 

κ -5.17 

ω 2.23 

ξ 1.00 

 

1
 For consistency, the parameter values for the Wilczek et al. model listed here were 

re-optimised using the global optimisation tool in MATLAB (Mathworks, 

Cambridge, UK) in contrast to the Excel Solver used in Wilczek et al. (2009).  

 
2
The parameter values listed here were estimated without the four late-flowering 

genotypes (gi-2, Col-FRI-Sf2, vin3-1 and fve-3) from Norwich Autumn.  
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A3. Field data of Ler wt, phyA-201 and phyB-1 mutants 

 

 

Plantings 

Ler wt phyA-201 phyB-1 

Mean 

DTB 

Standard 

error 

Number of 

plants 

Mean 

DTB 

Standard 

error 

Number of 

plants 

Mean 

DTB 

Standard 

error 

Number of 

plants 

Norwich Summer ‘06 21 0.40 5 22 0.70 8 22 1.11 4 

Oulu Summer 18 0.44 24 19 0.43 23 19 0.55 20 

Norwich Autumn 42 2.83 11 48 4.16 12 37 1.92 11 

Cologne Autumn 63 5.47 10 79 4.87 13 42 2.20 12 

Halle Autumn 101 2.46 17 104 2.09 17 69 3.08 16 

Valencia Autumn 75 5.05 14 72 4.42 13 52 6.32 10 

Norwich Spring 50 0.32 14 54 0.60 12 48 1.10 14 

Cologne Spring 48 0.18 9 49 0.21 6 48 2.00 7 

Norwich Summer ‘07 22 0.74 14 22 0.83 11 20 0.36 10 
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A4. Leaf-level temperature and day length experienced by the plants at different 

sites in the autumn.  

 

(c) 

(b) 

  Ler   Col              co-2 

Day length = 10 hrs 

Day length = 10 hrs 

Day length = 10 hrs 

 Period of intermittent cold 

Cologne Autumn 

Halle Autumn 

Norwich Autumn (a) 
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In these experiments, plants were kept in the greenhouse for 2 weeks before being 

transplanted to the field. The black dashed lines represent the critical point when day 

length decreased below 10 hours (CSDL). The green arrows indicate the bolting 

times of Ler, co-2 and Col at Norwich Autumn.  



 153 

Appendix B 

 

B1.  The ODEs of the clock-photoperiod circuit model (Model 3 in Salazar et al. 

(2009)). 
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Assuming that CO mRNA is the same as TOC1 nuclear protein, and FT mRNA is 

activated by CO protein: 
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The concentration (indicated by [ ]) of each component is written in italics to 

represent the corresponding mRNA, or in non-italics to represent the protein form. 

The subscripts c (cytoplasm) and n (nucleus) indicate the corresponding 

compartment. 



 155 

B2. Parameter values of the Salazar et al. model 

 

 

Symbol Parameter 

value 

Unit Parameter description 

v1 2.4514 h
-1 

Coupling constant of light activation of LHY 

transcription 

v2 5.1694 nM h
-1 

Maximum rate of light-independent LHY 

transcription 

v3 0.6473 nM Constant of activation by protein X 

v4 1.5283 nM h
-1 

Maximum rate of LHY mRNA degradation 

v5 1.8170 nM Michaelis constant of LHY mRNA degradation 

v6 0.8295 h
-1 

Rate constant of LHY mRNA translation 

v7 16.8363 h
-1 

Rate constant of LHY transport into the nucleus 

v8 0.1687 h
-1 

Rate constant of LHY transport out of the nucleus 

v9 20.4400 nM h
-1 

Maximum rate of cytoplasmic LHY degradation 

v10 1.5644 nM Michaelis constant of cytoplasmic LHY degradation 

v11 3.6888 nM h
-1 

Maximum rate of nuclear LHY degradation 

v12 1.2765 nM Michaelis constant of nuclear LHY degradation 

v13 1.3956 nM h
-1 

Maximum activation by protein Y 

v14 0.0338 nM Constant of activation by protein Y 

v15 0.5539 nM
-1 

Maximum rate of TOC1 transcription 

v16 0.2569 nM Constant of repression by LHY 

v17 3.8231 nM h
-1 

Maximum rate of TOC1 mRNA degradation 

v18 2.5734 nM Michaelis constant of TOC1 mRNA degradation 

v19 4.3240 h
-1 

Rate constant of TOC1 mRNA translation 

v20 0.3166 h
-1 

Rate constant of TOC1 movement into the nucleus 

v21 2.1509 h
-1 

Rate constant of TOC1 movement out of the 

nucleus 

v22 0.0013 nM h
-1 

Maximum rate of light-dependent cytoplasmic 

TOC1 degradation 
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Symbol Parameter 

value 

Unit Parameter description 

v23 3.1741 nM h
-1 

Maximum rate of light-independent cytoplasmic 

TOC1 degradation 

v24 2.7454 nM Michaelis constant of cytoplasmic TOC1 

degradation 

v25 0.0492 nM h
-1 

Maximum rate of light-dependent nuclear TOC1 

degradation 

v26 4.0424 nM h
-1 

Maximum rate of light-independent nuclear TOC1 

degradation 

v27 0.4033 nM Michaelis constant of nuclear TOC1 degradation 

v28 0.2431 nM h
-1 

Maximum transcription rate of protein X 

v29 0.4099 nM Constant of activation by TOC1 protein 

v30 10.1132 nM h
-1 

Maximum rate of degradation of X mRNA 

v31 6.5585 nM Michaelis constant of X mRNA degradation 

v32 2.1470 h
-1 

Rate constant of X mRNA translation 

v33 1.0352 h
-1 

Rate constant of protein X movement into the 

nucleus 

v34 3.3017 h
-1 

Rate constant of protein X movement out of the 

nucleus 

v35 0.2179 nM h
-1 

Maximum rate of degradation of cytoplasmic 

protein X 

v36 0.6632 nM Michaelis constant of cytoplasmic protein X 

degradation 

v37 3.3442 nM h
-1 

Maximum rate of degradation of nuclear protein X 

v38 17.111 nM Michaelis constant of nuclear protein X degradation 

v39 1.8272 nM h
-1 

Light-dependent component of Y transcription 

v40 3.5159 nM h
-1 

Light-independent component of Y transcription 

v41 1.8056 nM Constant of repression by TOC1 

v42 4.2970 nM h
-1 

Maximum rate of degradation of Y mRNA 

v43 1.7303 nM Michaelis constant of Y mRNA degradation 
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Symbol Parameter 

value 

Unit Parameter description 

v44 0.2485 h
-1 

Rate constant of Y mRNA translation 

v45 2.2123 h
-1 

Rate constant of protein Y movement into the 

nucleus 

v46 0.2002 h
-1 

Rate constant of protein Y movement out of the 

nucleus 

v47 0.1347 nM h
-1 

Maximum rate of degradation of cytoplasmic 

protein Y 

v48 1.8258 nM Michaelis constant of cytoplasmic protein Y 

degradation 

v49 0.6114 nM h
-1 

Maximum rate of degradation of nuclear protein Y 

v50 1.8066 nM Michaelis constant of nuclear protein Y degradation 

v51 0.0051 nM h
-1

 Maximum rate of Y transcription 

v52 0.0604 nM Constant of repression by LHY 

v53 28.3562 h
-1 

Coupling constant of light activation of Y mRNA 

transcription 

nu 1.0258  Hill coefficient of activation by protein Y 

mu 3.3064  Hill coefficient of activation by protein X 

xi 1.4422  Hill coefficient of activation by TOC1 

ylhy 1.0237  Hill coefficient of repression by LHY 

ytoc 3.6064  Hill coefficient of repression by TOC1 

vCOm 1.1452 h
-1 

Rate constant of CO (or TOC1) mRNA translation 

vCOp 9.2242 nM h
-1

 Maximum rate of light-dependent CO protein 

degradation 

kCOp 2.0976 nM Michaelis constant of CO protein degradation 

VCO 0.5800 nM h
-1 

Maximum rate of FT activation by CO  

KCO 7.3533 nM Michaelis constant of FT activation by CO 

vFT 1.8974 nM h
-1

 Maximum rate of FT mRNA degradation 

kFT 5.3925 nM Michaelis constant of FT mRNA degradation 

Bco 0 nM h
-1

 Basal rate of FT transcription 
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B3. Integral of simulated FT mRNA level across the season 

 

 

Cologne  
Autumn 

 
τLL = 23 hrs 

 
τLL = 18.5 hrs 

 
τLL = 27 hrs  

Cologne  
Spring 

Halle  
Autumn 

Wild type 
τLL = 25 hrs 
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Appendix C 

 

 

C1. Equations of the carbon assimilation and partitioning model (Rasse & Tocquin, 

2006) 

 

Carbon assimilation: 

 

The following equations represent the biochemical model of photosynthetic CO2 

assimilation in C3 plants developed by Farquhar et al. (1980). In general, this model 

considers two rate limiting factors in the Calvin-Benson cycle: (1) RuBisCO 

carboxylation; and (2) electron transport. For more information on the model, please 

refer to Farquhar et al. (1980).  

 

RuBisCO activity: 

 

The parameter values of kinetic constants at leaf temperature, Tleaf, are first 

determined using values at the standard temperature 25
0
 C as follows:   
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Rate of assimilation limited by RuBisCO, Ac, is then calculated as:  

 


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where [O2] is the O2 partial pressure having a constant value of 20500 Pa, while 

[CO2]i is the intercellular CO2 partial pressure given by 

 

]CO[1]CO[ 22  pi .              (C1.5) 

 

The CO2 compensation point in the absence of mitochondrial respiration, Г*, is 

determined as 

 

2)25(4)25(32*  leafleaf TpTpp .          (C1.6) 

 

Electron transport: 

 

The potential rate of electron transport at leaf temperature, Jmax (Tleaf), is determined 

using the following equation:   
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Jmax (25
0
 C) can be measured experimentally, but in Rasse and Tocquin (2006) and in 

the current study, this parameter is estimated as  
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The rate of electron transport, J, depends on the irradiance PAR (μmol photon m
-2

 s
-1

) 

and is calculated by solving the following quadratic function: 
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Rate of assimilation limited by electron transport, Aj, is determined as:  
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Net rate of carbon assimilation: 

 

The net rate of leaf photosynthesis per unit area, Anet (μmol CO2 m
-2

 s
-1

), is given by 

the minimum of the two rate limiting factors described earlier. Therefore: 

 

 jcnet AAA ,Min .            (C1.11) 

 

In the case where no solution can be found for equation C1.9, Anet takes the value of 

Ac.  

 

The total amount of carbon assimilated per plant (in g C) in each hour, which is the 

time step used in this study, is calculated using conversion factors as follows: 

 

Carbon assimilation (t) = 12 x 10
-6

 x 3600 x Anet (t) x Rosette area (t-1).      (C1.12) 

 

The projected rosette area at the end of the previous time point is used as the total 

area available for light interception. 
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Carbon partitioning: 

 

The following equations represent the mechanistic allocation and growth model for 

Arabidopsis developed by Rasse and Tocquin (2006). This model considers four 

carbon pools (Fig. 4.3.1): (1) Starch carbon; (2) Sugar carbon; (3) Leaf carbon; and 

(4) Root carbon. Please refer to Rasse and Tocquin (2006) for more information on 

model assumptions and calibrated parameters.  

 

Starch-sugar partitioning: 

 

At day time, a fixed baseline portion of carbon assimilates is stored as transitory 

starch and the rest is turned into sugar. Therefore: 

 

Starch synthesis (t) = STbr x Carbon assimilation (t) .            (C1.13) 

 

Partition to sugar (t) = Carbon assimilation (t) – Starch synthesis (t).     (C1.14) 

 

At night time when there is no photosynthesis, a fixed portion of the starch 

accumulated at the end of the day is degraded at a linear rate to form sugar, as 

follows: 

 

Starch degradation (t) = 
lengthNight 

starchday ofEnd cST
,                  (C1.15) 

 

where night length is measured in hour. 

 

Maintenance respiration: 

 

Carbon is constantly respired for plant maintenance, and leaf maintenance respiration 

per unit area, Rl, at 20
0
 C was found to have the following linear correlation with 

sugar content (Rasse & Tocquin, 2006): 
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91)-( area rosetteunit per content Sugar 8)C20( 0 ptpRl  .      (C1.16) 

 

The amount of carbon respired for maintenance in each corresponding time step is 

estimated from the sugar content at the end of the previous time step. If sugar content 

is 0, Rl is set to 0.  

 

The above-ground and below-ground maintenance respirations at leaf temperature 

are computed as: 
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Total leaf maintenance respiration: 

  

Rabove (t) = Rl(Tleaf) x Rosette area (t-1).                (C1.18) 

 

Total root maintenance respiration:  
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)1(carbon  Leaf
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t
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Carbon available for growth: 

 

The transient amount of carbon available for growth, Qtrans, is the excess from the 

sugar pool after balancing all the carbon fluxes in the corresponding time step as 

follows: 

 

Qtrans(t) = Sugar carbon (t-1) + S(t)  –  Rabove(t) – Rbelow(t),                  (C1.20) 

 

where  
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However, a minimum sugar content of SSUmin (g sugar-C m
-2

) has to be maintained. 

Therefore carbon availability, Cavail, is calculated as: 

 

Cavail (t) = Qtrans(t) – SSUmin x Rosette area (t-1).                   (C1.22)

  

If Cavail has a negative value, no carbon is available for growth in that time step. 

Instead, carbon is translocated from the leaf and root carbon pools to the sugar pool 

to maintain its minimum level. As such: 
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where 

 

Total (t-1) = Leaf carbon (t-1) + Root carbon (t-1).                   (C1.26) 
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Organ growth demand: 

 

Leaf (or rosette) growth demand per time step, dL (in g C per hour), is limited by a 

maximum daily relative growth rate, GRmax (g g
-1

 d
-1

), as shown in the following: 

 

dL (t) = GRmax x Leaf carbon (t-1) x 
24

1
.               (C1.27) 

 

Note: In the Rasse and Tocquin model, the whole rosette is treated as one big leaf 

without consideration of each individual leaf. 

 

A fraction of the total growth demand is used for growth respiration, therefore the 

required leaf growth respiration, dRL, is:  
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)(tdL .                  (C1.28) 

 

Root growth demand, dR, is calculated from the leaf growth demand using the root-

to-shoot allocation ratio, RS, as in the following: 

 

otherwise.
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               (C1.29) 

 

dR (t) = RS(t) x dL (t).                   (C1.30) 

 

Note: In the current study, RS in equation C1.29 has been replaced by the ratio of 

root sink demand to shoot sink demand (equation 4.3.17).  

 

Similarly, the required root growth respiration, dRR, can be calculated as: 
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dRR (t) =  








1

)(tdR .                  (C1.31) 

 

Therefore, the total growth demand for carbon, Dc, is given by: 

 

Dc(t) = dL (t) + dRL (t) + dR (t) + dRR (t).                (C1.32) 

 

Allocation: 

 

The actual growth depends on whether the total growth demand is met by the carbon 

available for growth, as shown below:  

 

 

Growth component 

Value used 

Full demand is met 

)()( tQtD cc   

Full demand is not met 

)()( tQtD cc   

 

Leaf growth, L(t) dL(t) 
)(

)(

)(
tQ

tD

td
c

c

L   
(C1.33) 

Leaf growth respiration, 

Rml(t) 

dRL(t) 
)(

)(

)(
tQ

tD

td
c

c

RL   
(C1.34) 

Root growth, R(t) dR(t) 
)(

)(

)(
tQ

tD

td
c

c

R   
(C1.35) 

Root growth 

respiration, Rmr(t) 

dRR(t) 
)(

)(

)(
tQ

tD

td
c

c

RR   
(C1.36) 

 

In the case where the full demand is met, any excess carbon is transferred to the 

starch pool in the model to represent starch production through an overflow 

mechanism, Osta. This overflow starch production is constrained to the light period. 

 

otherwise.
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Amount of carbon in each pool: 

 

Leaf carbon (t) = Leaf carbon (t-1) + L(t) – TransL(t).       (C1.38) 

 

Root carbon (t) = Root carbon (t-1) + R(t) – TransR(t).       (C1.39) 

 

Starch carbon (t) = Starch carbon (t-1) + Starch synthesis (t) –  

                               Starch degradation (t) + Osta(t).          (C1.40) 

 

Sugar carbon (t) = Sugar carbon (t-1) + S(t) – Rabove(t) – Rbelow(t) –  

                              Rml(t) – Rmr(t) – Osta(t) – L(t) – R(t) + TransL(t) +  

      TransR(t).           (C1.41) 
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C2. Parameter values of the carbon assimilation and partitioning model (Rasse & 

Tocquin, 2006) 

 

Symbol Parameter 

value 

Unit Parameter description 

R 8.314 J K
-1

 mol
-1 

Gas constant 

)C25( 0

cK  40.4 Pa Michaelis constant of carboxylation at 

25
0
 C 

cH  59400 J mol
-1 

Activation energy for carboxylation 

constant 

)C25( 0

2oK  24800 Pa Michaelis constant of oxygenation at 

25
0
 C 

2oH  36000 J mol
-1

 Activation energy for oxygenation 

constant 

)C25( 0

maxcV  29.6875 μmol m
-2

 s
-1

 Maximum carboxylation rate at 25
0
 C 

VH  64800 J mol
-1

 Activation energy for maximum 

carboxylation rate 

[O2] 20500 Pa O2 partial pressure 

JH  37000 J mol
-1

 Activation energy for maximum 

electron transport 

JVR  2.1 

 

 

1.7 

 (Rasse & Tocquin, 2006) (for an 8-h 

photoperiod simulation) 

  

This study (for 12-h photoperiod 

specf  0.15  Spectral correction factor due to 

absorbance of irradiance by tissues 

other than the chloroplast lamella 

STbr 0.125  Baseline starch production coefficient 

STc 0.84  Proportion of night-time starch 

breakdown 

rH  66400 J mol
-1

 Activation energy for leaf respiration 
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Symbol Parameter 

value 

Unit Parameter description 

SSUmin 0.05 g sugar-C m
-2

 Minimum sugar content in the leaves 

GRmax 0.408 g g
-1

 d
-1 

Maximum relative growth rate 

α 0.195  Growth respiration coefficient 

p1 0.7  Ratio of intercellular to ambient CO2 

level 

p2 3.69 Pa Quadratic constant of the CO2 

compensation point 

p3 0.188 Pa K
-1 

Quadratic constant of the CO2 

compensation point 

p4 0.0036 Pa K
-2 

Quadratic constant of the CO2 

compensation point 

p5 710 J K
-1

 mol
-1

 Electron transport temperature 

response parameter 

p6 220000 J mol
-1

 Curvature parameter of Jmax 

p7 0.7  Curvature of electron transport 

response to irradiance 

p8 0.085  Slope of the linear regression between 

sugar content and maintenance 

respiration 

p9 0.016 g C m
-2

 Slope of the linear regression between 

sugar content and maintenance 

respiration  
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C3. Modelled and measured values of net ecosystem exchange (NEE) 

 

Due to human presence in the growth room during gas exchange measurement, the 

CO2 level inside the perplex chamber was higher than usual (Fig. 3.1 in Chapter 3 

and figure below). To ensure a valid comparison with measured values, simulated 

NEE were generated separately by using the CO2 level measured in the chamber as 

model input but only at the specific time points as described below.  

 

 

 

Measured NEE: 

 

The graph shown above was the measurement for Ler on 37 DAS. Net ecosystem 

exchange (NEE) was determined from the slope of regression using equation 3.1 

(Chapter 3). Measurements were corrected with the control by the following 

equation: 

 

Corrected = [Non-corrected] – ]Control[
]CO[

]CO[

2

2


control

plants
.           (C1.42) 
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As there was a difference in CO2 level during the measurement of the plants and the 

control, the control term in the equation above was scaled to the CO2 level of the 

measurement with plants, assuming that the CO2 levels were at the linear region of 

the A-Ci curve (the plot of assimilation vs. CO2 level) for the autotrophs.  

 

 

Modelled NEE: 

 

First, the model was executed using as inputs the usual growth room conditions. To 

simulate the NEE at the specific time points when gas exchange was measured, 

model outputs such as rosette area and sugar content at those time points were 

extracted. The model was then executed for one time step using the extracted data 

together with the measured CO2 level. In the example shown above, the measured 

CO2 level was 740.77 ppm at time zero. Other growth conditions were maintained. 

Modelled NEE per plant (g C h
-1

) was calculated as follows: 

 

NEE per plant = – (Carbon assimilation – Rabove – Rbelow – Rml – Rmr).              (C1.43) 

 

 

The NEE per tray in μmol m
-2

 s
-1

 was estimated by: 

 

NEE per tray = NEE per plant x 24 plants per tray x
12

1

3600

1
 610 .     (C1.44) 

 

Note: NEE has a negative value here as it represents carbon loss from the 

atmosphere (surroundings) as measured.  
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C4. Experimental data from the gas exchange measurements of control and plants during the vegetative phase 

 

 

DAS 

Control Ler Fei 

Intercept 

(CO2 

level) 

Slope 

(Gas exchange 

rate) 

R
2
 Intercept 

(CO2 

level) 

Slope 

(Gas exchange 

rate) 

R
2
 Intercept 

(CO2 

level) 

Slope 

(Gas exchange 

rate) 

R
2
 

28 686.94 -0.0721 0.9506 623.54 -0.1830 0.9894 664.00 -0.2174 1 

29 736.11 -0.0540 0.8018 662.63 -0.1882 0.9918 688.00 -0.2174 1 

30 723.26 -0.0755 0.5276 633.63 -0.2145 0.9787 647.40 -0.2427 0.9721 

31 1227.50 -0.1524 0.8951 1050.9 -0.3459 0.9839    

33 743.66 -0.1414 0.9882 806.2 -0.3817 0.9960    

34 696.89 -0.0965 0.8623 647.00 -0.2891 0.9459    

36 729.51 -0.1366 0.9621 658.03 -0.3330 0.9190    

37 712.40 -0.1304 0.9808 740.77 -0.4056 0.9986    
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C5. Simulation of biomass and net ecosystem exchange (NEE) at 98 % of original 

 carbon assimilation (C1.12)  

 

 

 

  

 

(a) 

(b) 
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