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Abstract

This thesis explores the use of invariant features for learning sprites from image sequences, and
for recognising object categories in images.

A popular framework for the interpretation of image sequences is the layers or sprite model
of e.g. Wang and Adelson (1994), Irani et al. (1994). Jojic and Frey (2001) provide a generative
probabilistic model framework for this task, but their algorithm is slow as it needs to search
over discretised transformations (e.g. translations, or affines) for each layer. We show that by
using invariant features (e.g. Lowe’s SIFT features) and clustering their motions we can reduce
or eliminate the search and thus learn the sprites much faster. The algorithm is demonstrated
on example image sequences.

We introduce the Generative Template of Features (GTF), a parts-based model for visual
object category detection. The GTF consists of a number of parts, and for each part there is
a corresponding spatial location distribution and a distribution over ‘visual words’ (clusters of
invariant features). We evaluate the performance of the GTF model for object localisation as
compared to other techniques, and show that such a relatively simple model can give state-
of-the-art performance. We also discuss the connection of the GTF to Hough-transform-like

methods for object localisation.
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Chapter 1

Introduction

One of the key problems in computer vision is object recognition: can we build a computer
system which is able to identify the objects present in images? In this thesis we address the
task of recognition of object categories (such as cars), using a generative model for invariant
features extracted from images. We also address the task of sprite extraction, using similar
invariant features extracted from image sequences to separate out the objects present in a scene
based on their motion, then creating a ‘cardboard cut-out’ sprite model of each specific object’s
appearance.

Objects can be dealt with either as specific objects, such as ‘the car you saw last Thursday’,
or as object categories, such as ‘cars in general’. In some applications we want to detect exactly
the same object we have seen before, such as the face of particular person who appeared in
our training data (see for example Jones and Viola, 2003). In other applications we want to
detect objects based on the class of objects they belong to, such as handwritten digits that
can take different forms while still meaning the same thing (see for example Le Cun et al.,
1990). For sprite extraction we will deal with specific objects present in a single scene, while
for object recognition we will deal with categories of object. The appearance of individual
objects varies as they are seen in different lighting conditions, positioned in different ways, and
viewed from different angles. To learn an object’s motion through an image sequence we need
to cope with this change in appearance, and also with occlusion caused by other objects coming
between the object and the camera. There is further variation between members of the same

category of objects: different examples of the same object category may have very different



Chapter 1. Introduction 2

shapes, textures, and colours. To recognise object categories we need to deal with both types
of appearance variation.

Specific objects or object categories can be modelled at a variety of levels. We can take an
image file and work directly with the pixel information it contains (as in Le Cun et al., 1990;
Jones and Viola, 2003), treating the image as an array of colour or intensity observations. Alter-
natively, instead of working directly with pixel data, we can preprocess the data and work with
features extracted from the images (see for example Weber et al., 2000b; Fergus et al., 2003).
Useful image features typically transform raw pixel data into a more efficient, higher-level rep-
resentation. In the experiments below, region detectors first select image regions which are
likely to be informative, then the SIFT descriptor (Lowe, 2004) is used to produce a compact
128-dimensional representation of the distribution of orientations in each local region. If the
features we select are not appropriate to the task we are performing, we risk throwing away im-
portant information that was present at the pixel level, but for many vision tasks using features
gives a huge reduction in the amount of computational work needed to train models. This can
make it practical to approach tasks which would be impractical if we worked directly with raw
pixels, as they would require more computational time than is available. In our sprite extraction
system we use feature-level information to speed up object motion learning, before learning the
sprites themselves at the pixel level.

We approach both object recognition and sprite extraction using probabilistic modelling
techniques. In both cases we use a generative model of the entire image including the back-
ground, rather than a discriminative model which only tries to distinguish the objects of interest.
For object recognition we take labelled example visual scenes as training data for the object
recognition system, then use the resulting models to detect in novel test data the object cat-
egories which were represented in the training data. For sprite extraction we fit a generative
sprite model to image sequences, jointly optimising the models for each object and for the
background to best fit the data.

This thesis examines how we can use invariant features of images to learn sprites for objects
from image sequences, and how we can use invariant features to learn to recognise and localise
categories of object. In both cases we use feature detectors to identify regions of interest in

images, use region descriptors to create compact descriptions of those regions, match features
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between images, then learn a probabilistic model of the objects. We define the tasks of sprite

learning and object localisation more closely below:

1.1 Fast learning of sprites

Given multiple views of a scene, such as the frames of a video sequence, the task is to learn
the appearance of each of the independently moving objects. Each object can be thought of
as a flat ‘cardboard cut-out’ with its own shape and surface texture, that has its own motion
independent of the other objects.

To achieve this in an efficient manner, we first use invariant features to separate out individ-
ual objects and to learn an approximation for the motion of each one. We learn the objects in a
scene by looking for consistent motion groupings, assuming that features belonging to a single
object will move together, and that separate objects will have features that move independently.
Once the objects have been learnt in this way, we use a probabilistic model which can reason
about object occlusion to fill out the sparse feature models for the objects with pixel-level sprite
and mask information. The objects in the scene are modelled as a number of ordered occluding
layers, with a background layer behind them all.

The object motions learnt by the system would in themselves be useful in many applica-
tions. For example in a conference room situation we might want to model the movements
of individual participants so that automatic cameras can keep them in view for remote partic-
ipants. In other applications we also want to perform sprite extraction. For example for video
editing we might need to extract the pixels corresponding to a particular object frame by frame,
to paste it into another scene. More generally we might want, for example, to extract a single

representative image of each object moving through a scene.

1.2 Obiject localisation

Given a set of annotated training images, the task is to learn models for object classes which
will allow us to recognise objects of those classes in novel images, and to specify their locations
in the images.

We model the object classes using the Generative Template of Features (GTF), a proba-
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bilistic model for objects in cluttered scenes. The GTF accounts for both features seen on the
foreground object and features seen in the background.

Like the layered object model for learning object motions in the first task, the GTF only
reasons about objects in terms of invariant features, not pixel-level sprite information. The
GTF uses high-level descriptors of local appearance grouped together into ‘visual words’: just
as the words present in a document let us make predictions about the topics it deals with, the
visual words present in an image let us make predictions about the object classes which appear
in it.

The data sets we use in the experiments mostly consist of street scenes, which might suggest
applications in, for example, automated vehicle control, with a computer system reacting to
other vehicles and pedestrians in its surroundings. However, there are far wider applications
for object recognition methods. Even for a computer in an ordinary home environment, human—
computer interaction could be significantly improved by the system understanding the objects
in its environment: for example, recognising when there are people in the room, or what objects

the people are holding.

1.3 Outline

Chapter 2 gives an overview of recent work on image features, including the difference-of-
Gaussians features used in the experiments in chapter 4, and the maximally stable extrema
regions and Harris affine features used in the experiments in chapter 6. We introduce methods
for matching image features to detect instances of specific objects, and for clustering features
to recognise object classes.

Chapter 3 describes a method for fast learning of sprites from image sequences, using
invariant features. After a summary of related work, we describe how we can match features
between the images in a sequence, and how we can learn object motions from the matched
features. We then give a generative model for the pixel-level sprite information in layered
image sequences and explain how this can be combined with the feature information previously
learnt.

Chapter 4 describes some experimental results using the system developed in chapter 3.
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We analyse the results of the feature extraction and feature-matching stages described above,
then demonstrate what the system can achieve on some example video sequences.

Chapter 5 describes a method for learning and detecting object classes, using invariant
features. After a summary of related work in object classification and localisation, we give a
generative model for features in images with cluttered backgrounds. Finally we show how the
Generative Template of Features model can be related to pose-clustering methods.

Chapter 6 describes some experimental results using the system developed in chapter 5,
using the data from the PASCAL 2005 Visual Object Classes challenge (Everingham et al.,
2005). After analysing the ‘visual words’ learnt by our clustering approach, we give some
implementation details about the Generative Template of Features system used subsequently.
A first set of experiments is carried out using the training and validation data, examining how
the detection performance varies with the choice of parameters. A second set of experiments
looks in more detail at the performance on the challenge test data.

Chapter 7 gives a summary of the thesis, and discusses some possible directions for future

work.



Chapter 2

Feature detection and extraction

2.1 Introduction

The work described in this thesis uses invariant features to provide a higher-level representation
of the objects in a scene than is given by raw image pixel data. This chapter looks at recent work
on image features, including the feature types which we use in the experiments in chapters 4
and 6 below.

In many computer vision tasks it is useful to be able to generalise across images. For
example, it is often useful for methods to be able to deal with large sets of transformations of
the objects in a scene and of the camera, without having to learn separately about every possible
arrangement of camera and objects. By providing a higher-level representation than is given
by raw image pixel data, image features make it easier to develop methods capable of this kind
of generalisation. Moreover, most images contain a great deal of information that is irrelevant
to any individual computer vision task. Image features can be used to focus computation on
areas of an image which are likely to be informative, while avoiding unnecessary computation
on, for example, textureless regions. In this way, using image features rather than raw image
data can allow faster inference about the objects in a scene.

In chapters 3 and 4 we use invariant features to speed up learning of object sprites from
image sequences. Higher-level features allow more efficient matching between images than
low-level pixel information. In chapters 5 and 6 we use invariant features to learn and recognise

object classes in images. Higher-level features allow efficient learning across different object
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scales and poses.

Section 2.2 begins a discussion of image features; sections 2.3 and 2.4 give more detail
on the particular region-based feature methods we use. Section 2.4.1 describes how we can
perform feature matching to detect instances of specific objects, while section 2.4.2 introduces

the feature-clustering approach that can be useful for matching more general object categories.

2.2 Image features

To match objects in different images, we can either use ‘direct’ pixel-based methods or ‘indi-
rect’ feature-based methods. Whereas a direct method works from raw image data, with each
image represented as a high-dimensional array of pixels, an indirect method may use only se-
lected regions of the image, where the local neighbourhood of each region is represented by a
low-dimensional descriptor. Indirect approaches can be thought of as feature selection on the
raw image data.

The system described in chapter 3 uses this kind of feature extraction to identify regions
whose motions can be reliably tracked through an image sequence, allowing sprite learning
for moving objects to be carried out many times faster than the direct approach without the
use of features. The object class learning system described in chapter 5 does not try to learn
an optimal set of image features directly from image data, but works indirectly with feature
extraction methods that have been shown to perform well in other situations. This makes
learning much more efficient, greatly reducing the amount of data needing to be processed.

The approach we follow first selects image regions to be used for matching between images,
then calculates a descriptor for each of these regions. Instead of using this kind of local feature,
it is also possible to calculate image features based on global image characteristics, such as
the characteristics of the image colour histogram, the global distribution of edge directions in
the image, or global shape characteristics (see for example Laaksonen et al., 2002). Another
whole-image approach to creating features is to use a mathematical decomposition of the data
set such as its principal components (see for example Turk and Pentland, 1991). This kind of
global approach cannot easily deal with the presence of multiple objects in an image, or with

occlusion.
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If local features are being used, the processes of choosing regions-of-interest and calculat-
ing descriptors for them can be combined, using a single sequence of filters. Combining region
selection and descriptor calculation in this way makes sense if features are being learnt for
particular data by optimising filter parameters. For example, Fukushima (1980) trained a neu-
ral network with alternating convolutional and subsampling layers to recognise digits across
changes in position, while Vaillant et al. (1994) used a similar system to localise faces in im-
ages. Here we use region selection and descriptor calculation methods with fixed parameters
for efficiency, so the choice of region-of-interest detector method and descriptor method can
be made independently.

In our experiments below we use feature detector and descriptor binaries made available by
David Lowe for difference-of-Gaussians features,' and by the Oxford Visual Geometry Group

for other feature types.?

2.3 Region-of-interest detectors

A region-of-interest detector processes an image to give a set of regions which can be used as
a summary of the image. This section describes the different region-of-interest detectors used
in chapters 4 and 6 below. These detector methods are intended to find regions which will
be identifiable in other images where the objects or camera have undergone transformations
compared to the initial view, and where the lighting may have changed.

We can divide typical image regions-of-interest into edges, corners, and blobs. Edges
are boundaries between image areas, providing scene segmentation information. Generally
only a small proportion of detected edges correspond to actual object boundaries, while most
correspond to transitions on object surfaces. Edge features are not well-suited to the approach
described in chapter 4 below, which relies on geometric matching of feature locations to a
model, as similar edge features will be detected all along a particular edge. Corner detectors
fix feature location, allowing easy geometric matching, by giving features where two edges
intersect. Just as not all edge features lie on object boundaries, corner features may arise from

object texture rather than shape. Blobs are simply image regions which are brighter or darker

Ihttp://www.cs.ubc.ca/spider/lowe/keypoints/
Znttp://www.robots.ox.ac.uk/ vgg/research/affine/
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than their surroundings. Because corners and blobs are geometrically fixed on an object, object
parts often give rise to similar features even when they are seen in very different views. In
practice many region-of-interest detectors find both corners and blobs.

If we run, for example, a corner detector on a raw image, there will typically be many
extraneous detections due to object texture and image noise, while object texture and image
noise may obscure some informative object features. If we know the scale of feature which we
are interested in, we can smooth the image to avoid detections at smaller scales, by convolving
it with a Gaussian kernel. In many cases we do not know the relevant scale for an image,
or there may be behaviour of interest at multiple scales. We can make our feature detection
scale-invariant by convolving the image with Gaussian kernels at a range of scales, and running
feature detection at each scale. If we consider all possible scales, we obtain a three dimensional
‘scale space’ (see for example Lindeberg, 1994) parameterised by x, y, and scale; detector
implementations typically approximate this scale space by considering, for example, each v/2
increase in scale.

Mikolajczyk et al. (2005) provide a good survey of region detector types. Below we sum-
marise three different region detection methods: the difference-of-Gaussians detector which
we use in the experiments in chapter 4, and the Harris affine and MSER detectors which we
use in chapter 6.

Each of these region detection methods tries to find the most informative regions of an
image given particular criteria. An alternative approach is simply to sample image regions
at random. Nowak et al. (2006) show that region sampling can perform well when very large
numbers of regions are used; while most detection methods have a ceiling on how many regions
they can provide per image — for example, the number of corners — sampling can provide an
unlimited number of regions. However, if we want to speed up processing by using relatively

small numbers of regions, non-random region selection performs better.

2.3.1 Harris affine

The Harris affine detector (Mikolajczyk and Schmid, 2002; Schaffalitzky and Zisserman, 2002)
is an affine-invariant version of the Harris detector.

The ordinary Harris detector finds corner features, by computing the Hessian of the smoothed
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image at each pixel, and calculating eigenvalues. Where one eigenvalue is significant (above
some threshold value), there is an edge; interest points are placed where both eigenvalues are
significant. This procedure can be made more efficient by first convolving the image with
an appropriate mask, then using an approximation rather than calculating the true eigenvalue
decomposition.

The Harris affine detector first uses the Harris method to find interest points. A scale is
then chosen for each interest point by examining the response of the local image region to
convolution with Gaussian kernels of different scales. Finally the shape of the elliptical region
around the interest point is optimised using the eigenvalues of the second moment matrix.

Figure 2.1 shows some example Harris affine region-of-interest detections.

2.3.2 Difference-of-Gaussians

The difference-of-Gaussians detector (Lowe, 1999, 2004) is a fast region-of-interest detector,
which tries to detect features that are invariant to scale change, by searching for features which
are stable across scales in scale space. It gives circular regions with a scale and orientation,
rather than arbitrary ellipses.

Interest points are placed at scale-space extrema of the difference-of-Gaussians function
convolved with the image. The required convolution can be efficiently computed as the differ-
ence between the smoothed image at two nearby scales. This difference computation can be
thought of as an approximation to the scale-normalised Laplacian which is used in the Harris
affine detector above.

Candidate interest points are filtered to reject edges and low-contrast extrema, then the
orientation for each interest point is found by computing a 36-bin orientation histogram for
its local neighbourhood in the Gaussian-smoothed image corresponding to the feature’s scale.
The bin with the maximum count determines the orientation. If there is another peak within
80% of this count, another feature is created.

Figure 2.2 shows some example difference-of-Gaussians region-of-interest detections.
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2.3.3 MSER

The maximally stable extremal region (MSER) detector (Matas et al., 2004) is a blob detector,
which searches for regions where all the contained pixels are brighter or darker than all the
pixels on the boundary.

MSERs can be found efficiently. First, image pixels are sorted by intensity, then image
pixels are marked in this order, maintaining a list of connected components. MSERSs are created
for minima in the relative change in area of a component as the intensity threshold changes.

The MSER detector we use here replaces each detected collection of pixel locations by an
approximating ellipse for further computation. Figure 2.3 shows some example MSER region-

of-interest detections.

2.4 Region-of-interest descriptors

A region descriptor processes an image and a set of local regions to give a description for each
region. A good region descriptor is invariant to a large range of transformations of a region,
so that regions can be matched across images where objects are seen in differing poses and
from different viewpoints. Mikolajczyk and Schmid (2005) provide a good survey of region
descriptor types. This section discusses the SIFT region descriptor used in chapters 4 and 6
below.

The scale-invariant feature transform (SIFT) descriptor (Lowe, 1999, 2004) is intended to
be invariant across a wide range of affine distortion, viewpoint and illumination. It describes
the distribution of orientations in local regions, normalised to provide illumination invariance.

The SIFT implementations we use here give a 128-dimensional descriptor, made up from a
4 x 4 grid of of orientation histograms each with 8 bins. A 4 x 4 grid is laid down on a copy of
the specified image region that has been transformed to a circle and convolved with a Gaussian
to filter for edges of appropriate scale. Each grid cell is subdivided into 4 x 4 smaller regions;
the dominant orientation and its magnitude is calculated for each smaller region, and these are
collated to generate an orientation histogram for each grid cell. The orientation measurements
are weighted by a Gaussian according to their distance from the region centre, and are smoothed

across adjacent grid cells. The final feature descriptor vector is normalised to unit length,
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Figure 2.1: Regions of interest found by the Harris affine detector in two sample images.
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Figure 2.2: Regions of interest found by the difference-of-Gaussians detector in two sample

images.
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Figure 2.3: Regions of interest found by the MSER detector in two sample images.
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with thresholding applied to prevent individual large gradients from swamping the rest of the

distribution.

2.4.1 Matching features

The system described in chapter 3 identifies where a specific object appears in a set of images
by looking for geometrically-consistent sets of matching features. We can match a new SIFT
feature to an existing database by looking for the feature in the database with the minimum
Euclidean distance to the new feature.

We use a procedure suggested by Lowe (2004) to reduce incorrect matches. The nearest
and second-nearest neighbours in the database are found, based on Euclidean distance in the
128-dimensional feature space. The nearest neighbour is then accepted as a good match if the
distance to it is less than 60% of the distance to the second-nearest neighbour. This means that
matches are rejected as ambiguous if there are several features in the database which match

equally well.

2.4.2 Clustering regions of interest

The system described in chapter 5 clusters SIFT features, vector-quantising the 128-dimensional
descriptors to a set of ‘visual words’. Object categories are then recognised based on the clus-
ters that are active for the features in a new image. Clustering features to produce a vector
quantised descriptor is a common technique in object recognition systems; we use the popular
k-means method to learn appropriate clusters from training data.

It is common to expand the detected interest regions before clustering descriptors. Scaling
up a detected elliptical region before running the region descriptor allows the descriptor to
capture a larger region of object texture, while still anchoring the region on an interest point
that should be detectable in other images. Chapter 6 gives some experimental results showing

improved object category recognition performance with expanded regions (see Table 6.3).



Chapter 3

Fast learning of sprites using invariant

features

3.1 Introduction

This chapter describes a method for fast learning of sprites from image sequences, using invari-
ant features. The goal is to create a system which takes as input multiple views of a scene, and
learns an appearance and mask for each of the objects in the scene, and also the background
appearance. Chapter 4 describes experiments using the sprite learning system described here,
and discusses the results obtained. Some of the material in this and the following chapter is
adapted from Allan et al. (2005).

We model a scene as a flat background, with two-dimensional layers in front of it. Each
layer, including the background, can move independently. This framework has been widely
used in previous work, since for example Wang and Adelson (1994) and Irani et al. (1994). The
layer appearance includes the object surface texture and colour, while the layer mask describes
which regions of the overall layer are solid, occluding the background and other layers, and
which are transparent, allowing the background and other layers to show through behind it.
We allow each layer, including the background, to undergo affine transformations, including
translation, rotation, and scaling.

The approach described in this chapter combines the use of invariant features (such as

SIFT features, Lowe, 2004) with the Titsias and Williams sprite-learning model. First the layer

16



Chapter 3. Fast learning of sprites using invariant features 17

motions are learnt approximately, using invariant features, then pixel-based expectation max-
imisation is used to learn the layer sprites and masks. Learning object motions during the ex-
pectation maximisation phase, without prior tracking, is slow, because we need to allow a large
set of discretised transformations for each layer between consecutive images in the sequence.
We use invariant features to quickly separate the object motions, and calculate transformations
which warp each layer from each image back to a reference frame. A sprite for the object in
question can then be quickly learnt using the set of images transformed back to the reference
frame. Pixel-based optic flow methods have trouble with regions of low texture, where flow
information is unreliable. These regions will also give few identifiable features, but by using
motion information about image features in textured areas to seed a dense appearance model
we can end up with a good model even for textureless regions.

Beyond the immediate task of sprite extraction, this kind of object learning is a useful
precursor to many other tasks. Many human—computer interaction scenarios would be much
simplified if the computer system could separate and recognise the objects in a scene. Separat-
ing scene images into independent objects allows object recognition to be run more accurately
on coherent parts of a scene. Motion-based segmentation aids reasoning about what events are
happening in a video scene (Chan et al., 2006). In an extended video, motion segmentation
is useful for unsupervised learning about what objects occur frequently (Quack et al., 2006).
Representing image sequences as combinations of transformed layers can also be viewed as a
compression technique. A set of appearances and masks, together with a set of layer transfor-
mations, can provide a much more compact representation of an image sequence than storing
all the original images directly (Sawhney and Ayer, 1996).

Section 3.2 below gives a summary of related work, both pixel-based ‘direct” methods and
feature-based methods. Section 3.3 describes how we match features between images in a
sequence, and section 3.4 describes how we learn object motions from the matched features,
using a sequence-based version of the RANSAC algorithm. Section 3.5 describes a generative
model which can be used to explain the images in a sequence, and gives details of how to

combine the feature-based and pixel-based methods.
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3.2 Literature review

This section describes some work related to our method for learning objects from image se-
quences. We discuss ‘direct’ pixel-based methods (section 3.2.1) and feature-based methods
(section 3.2.2) for object learning. Pixel-based methods have the advantage of providing an
image segmentation and extracted sprites. Feature-based methods provide a higher-level repre-
sentation of objects that can be used to identify the same object in new scenes: the techniques
we describe below aim to find a set of local patches of an object’s surface which can be matched
against images of the object seen from a wide range of viewpoints, so as to detect and locate
the object in novel views.

We describe here work using video streams made up of time sequences of single image
frames. In some applications additional data may be available: for example, Ginhoux and
Gutmann (2001) describe an object tracking system which uses pairs of stereo images, while
Beal et al. (2003) use audio as well as visual information to track people. Here we deal only

with single view video data, treating it as the most basic case to be modelled.

3.2.1 Direct methods

Some object-learning methods work directly from image pixel information, using for example
‘optic flow’ to determine local directions of motion, then clustering the local motions to find
overall object transformations.

Irani et al. (1994) describe a system to track objects in a video sequence, and extract their
appearance. Their system finds the dominant motion in a sequence, segments the images to
exclude the object corresponding to this motion, then repeats the process on the remaining
parts of the images. To track each object’s motion they calculate a weighted average of recent
frames, transformed to correct for the motion found so far, so that parts of the scene which
are not undergoing the same motion blur out over time. At each frame they search over the
parameter space of a selected transformation to find the motion which minimises the error
between the pixels in that frame and the current internal object representation.

Irani et al. obtain reasonable results, but, for example, their technique of removing back-

ground and occluding objects by blurring across frames does not seem ideal: Wang and Adel-
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son (1994) improve on this by modelling scene ‘layers’ which can move independently and
occlude each other. Wang and Adelson use optic flow to create a velocity map for each pair of
consecutive frames. From the velocity map they estimate affine transformations for local image
regions, then use an adaptive k-means algorithm to cluster these transformations. Each cluster
describes a larger image region with coherent motion. They iteratively calculate an image seg-
mentation in this way and re-estimate motions within the segmented regions, then accumulate
these regions across a sequence into moving ‘layers’. Layers are represented by sprites built
up by performing an inverse transformation from each frame to a stable view. Their system
successfully learns foreground and background layers for simple example video sequences.

Black and Anandan (1993, 1996) use a robust estimation framework to adapt a basic optic
flow framework to deal with multiple motions. Their approach is designed to deal with dis-
continuities in optic flow, but unlike Wang and Adelson they do not divide the motions into
layers. Instead they introduce robust statistics into their optic flow estimation, so that they can
recover the dominant motion for a whole frame without distraction from a secondary motion.
They then detect outliers and estimate the secondary motion from these regions. Black and
Anandan claim that their approach is more general, since it can deal with piecewise-smooth
flow fields, and that it is more efficient than previous layer methods. However, if we want to
learn objects rather than just analyse motion, layers are a natural way to divide up the scene;
Black and Anandan do not propose here a convincing alternative to layers for analysing video
sequences at a higher level than the motions present between individual pairs of frames.

Weiss and Adelson (1996) suggest a mixture model for motion segmentation based on the
optic flow between two images. Compared to previous approaches, they add a prior which en-
forces spatial consistency. They also discuss how to estimate the number of separate motions
that should be modelled, and describe an expectation maximisation algorithm which automati-
cally determines the number of motions.

Jojic and Frey (2001) learn ‘flexible sprites’ from input image sequences. Like Wang and
Adelson’s, their system models images as generated from layered sprites, but their sprites are
allowed to deform over time: for each sprite they learn a probabilistic appearance map and
mask. Each image is generated by superimposing each layer on the previous layers and back-

ground, where the masks provide matte alpha channels allowing parts of the foreground layers
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to be transparent. Sprite motions are found by searching over a discretised transformation
space. Jojic and Frey describe a probabilistic model to find the sprites given the image se-
quence and given the chosen number of layers and sprites. Since exact inference would be
intractable, they use an approximate variational inference scheme to learn the object sprites,
searching over translational object motions.

Williams and Titsias (2003, 2004) describe how object learning can be made more compu-
tationally efficient by using robust statistics and ‘greedy’ sequential learning of objects, learn-
ing one object at each stage. Unlike Jojic and Frey, their model allows them to use exact ex-
pectation maximisation to learn object models and masks. Their GLOMO algorithm removes
pixels belonging to objects already learnt from the images, so that secondary motions will be
learnt in their turn. Titsias and Williams (2004) further describe how the GLOMO algorithm
can be sped up by approximate tracking of objects before their full structure is known. Begin-
ning with approximate masks excluding any objects already learnt, they search over discrete
sets of transformations to track an object to the next frame, then robustly update its mask and
appearance model. Titsias and Williams show that using tracking greatly increases the speed
with which their system can learn object mask and appearance models.

Even with these speed-ups, searching for object motions in this generative model frame-
work is still slow. The discretised set of transformations searched over for each layer at each
frame cannot be made too small or tracking will fail. Fast Fourier transform tricks give in-
creased search efficiency for translational motion, but when more general classes of transfor-
mation are allowed the set of discrete transformations that must be considered grows quickly.
For example, allowing affine transformations gives each layer at each frame six degrees of
freedom, so even if only small motions are considered, the discrete set of transformations is
large.

Below we will describe how we can combine the use of invariant features with the Titsias
and Williams model to achieve approximate tracking before ‘direct’, pixel-based expectation
maximisation learning of object sprites and masks.

Some more recent work has looked at how to generalise layer-based models to deal with
changes in layer appearance over time. Winn and Blake (2005) add a dependency between the

object appearance in one frame of a sequence and its appearance in the next frame. This allows



Chapter 3. Fast learning of sprites using invariant features 21

better tracking of non-rigid objects such as people. Kannan et al. (2005) take this idea further
by using a deformation field to explicitly model variation within an object through an image
sequence. Kumar et al. (2004, 2005) represent articulated objects by multiple parts, and allow
lighting variation and motion blur. Object motion is estimated using cross-correlation between
an object fragment and an image, with a Markov Random Field controlling the relationship
between the fragment locations. Jojic et al. (2006) also allow deformation in appearance and
shape, due to non-rigid motion and illumination change. Hierarchical model selection is used,
with switch variables allowing a choice between a set of models of varying expressiveness
during expectation maximisation. This makes the overall model more robust against getting
stuck in local minima than if the most expressive model, with the most parameters to learn,
was used alone.

Another body of work, for example Wexler et al. (2002); Xiao and Shah (2005), has con-
centrated on improving the pixel-by-pixel quality of the learnt objects. For the best pixel-level
results, the learnt mask must be a smooth alpha channel, with individual image pixels some-
times coming from multiple layers. For example, hair viewed from a distance does not produce
a hard edge in the mask, since individual hairs are much thinner than an image pixel. Apos-
toloff and Fitzgibbon (2004) use ground-truth data for example images to learn priors on alpha
distribution and spatio-temporal consistency, improving the quality of the layer models they

can réeCover.

3.2.2 Feature-based methods

The object learning methods described above all work directly with pixel data from the images
of a video sequence. In this section we will consider methods which work with some higher-
level feature representation of the images. These object-learning methods extract features from
the images in a sequence, match the features between images, then cluster feature motions to
find overall object transformations.

Some older work used extremely simple feature detectors to allow tracking that would oth-
erwise have been computationally intractable — for example, Gee and Cipolla (1995) used a
dark-pixel finder to allow efficient head tracking by greatly narrowing the search space for the

eyes, nostrils and lips. With increased computing power we can efficiently use more complex
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types of features. We might consider, for example, an alternative image representation in terms
of ‘wavelets’ (see for example Graps, 1995). Jojic et al. (2003) learn ‘epitomes’ which repre-
sent images in terms of their texture and shape. The object learning methods we discuss below
generally use feature detectors which have been manually tuned to represent images in terms
of relatively small sets of features which are informative for particular tasks. For example, for
object tracking we might want to exclude edge features which may migrate along edges, if we
think that these will confuse our tracking algorithm.

Lowe (1999, 2001, 2004) uses the ‘Scale Invariant Feature Transform’ to create sets of
features from images, which are designed to be invariant to image translation, scaling, and
rotation. (Mikolajczyk and Schmid (2002) describe a method to find features which are also
invariant to significant affine transformations, but for many tasks the additional computation
this requires is not necessary.) Lowe uses these features for recognition of specific objects, by
learning a set of features from an image of an object then detecting a sufficient subset of the
same features in new images. Brown and Lowe (2002) describe how Hough transformation
clustering followed by RANSAC (Fischler and Bolles, 1981) can be used to clean the feature
matches, removing from consideration matches which are incompatible with a reconstruction
of the object’s geometry transformed from the view of the object that was originally learnt.
Lowe’s work here only deals with single views of objects, not video sequences, but his object
recognition techniques suggest taking a similar approach to object tracking and learning for
video data.

Fergus et al. (2003) and Fei-Fei et al. (2003) also learn invariant features of objects, and
use the models they learn to detect objects in new views. Their system is designed to learn not
individual objects but wider object classes, such as faces and cars. They use Kadir and Brady’s
feature detector (Kadir and Brady, 2001) to find features invariant to location and scale. To
deal with object classes they need to estimate the variability of object appearance; this kind
of estimation is in fact also desirable for individual objects, if we want to correctly recognise
them (and reject similar objects) over a wide range of scenes. Views of an object within a
video scene, or across multiple scenes, provide information about its variability similar to the
information about the variability of an object class from a set of example images of members

of that class.
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Sivic et al. (2004) describe a system similar to the one we set out below, which uses in-
variant features to learn objects from video sequences, but they extract 3D sets of points from
the data rather than 2D sprite models. They extract two types of features from their data, then
process matches between frames in a number of stages to carry out short- and long-range track
repair, and aggregate tracks to objects with coherent motion using RANSAC. It is likely that
our results below could also be improved by track repair, at the cost of extra computation. They
show that the sets of features they learn for an object can be used to detect that object in novel
views. Rothganger et al. (2004) use affine-invariant image patches found by a Kanade-Lucas-
Tomasi feature tracker to construct a similar model of the rigid three-dimensional parts of a
scene. Their object models have local affine patches centred on the feature locations, but do
not give overall appearance models. They use a RANSAC clustering algorithm to find motion
tracks which are consistent with each other through a video sequence, segmenting the motion
tracks into a number of three-dimensional models. To match these models with novel views,
they again use a RANSAC algorithm to find matches which are geometrically consistent, gen-
erating an alignment consensus from matches with low error, then expanding the match set by
including matches with higher error which fit with this alignment. Wills et al. (2003) also ex-
tract and match image features, then use RANSAC to cluster feature motions. However, their
system only deals with pairs of images, avoiding the additional issues raised by longer image
sequences.

A variety of approaches have used matrix factorisation to segment the motions in a scene
once individual features have been tracked over time. Costeira and Kanade (1995) describe
a multibody factorisation method to perform motion segmentation. Gruber and Weiss (2004)
give an improved algorithm which can deal with noise and missing data. They point out that
this approach can correctly segment, for example, cylinders rotating at different speeds on
the same axis. (Weiss (1997) also includes a discussion of cases such as rotating cylinders
which can confuse many motion segmentation algorithms.) Many other approaches which learn
object structure from motion in video sequences would segment the front and back of a rotating
cylinder as objects moving in opposite directions. Whether or not such oversegmentation is a
serious problem depends on the overall model being used in a system — in many applications

undersegmentation causes useful data to be lost, but oversegmentation can be corrected in post-
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processing.

Vidal and Sastry (2003) discuss the case of multiple moving objects seen in two perspec-
tive views, and suggest a nonlinear optimisation approach to learn the motion parameters for
the objects, avoiding the need to iterate between separate feature segmentation and motion es-
timation steps. Vidal and Hartley (2004) treat motion segmentation as a subspace clustering
problem, allowing missing data and partially-dependent motions; they suggest using power
factorisation to project the feature motion data into a five-dimensional space, and generalized

principal component analysis to cluster the projected subspaces.

3.3 Feature matching

If we have multiple views of a scene, as in the frames of a video sequence, the objects in
the scene can be learnt by looking for regions of the scene which move together. This section
describes how we can quickly obtain data for this kind of motion analysis, by extracting features
from each frame, and matching between frames to give information about how different object
regions move through the sequence.

We process video frames using the difference-of-Gaussians region detector and scale in-
variant feature transform (SIFT) region descriptor (Lowe, 2004), as described in chapter 2, to
find image features designed to be invariant to image translation, scaling, and rotation'. Each
feature is described by a 128-dimensional feature descriptor whose computation is based on
gradient orientation histograms for a number of regions local to the keypoint. (We emphasize
that these features are only one example of invariant features and that other features as proposed
in e.g. Mikolajczyk and Schmid (2002) could also be used and may possibly give better per-
formance.) By running over the frames in a video sequence, and comparing the image features
detected in each frame with the features already found, we build up a ‘dictionary’ of distinct
features, and a ‘concordance’ which records all the frames in which each feature was seen, and
its location in each of these frames. Features from each new frame are compared with those al-
ready in the dictionary using Lowe’s nearest neighbour matching technique, matching a feature

to its nearest neighbour in SIFT feature space if the distance to the nearest neighbour is less

I'We thank David Lowe for making his invariant feature detector code publically available at http://www.cs.
ubc.ca/spider/lowe/keypoints/.
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than 0.6 times the distance to the second nearest neighbour, as in Lowe (2004). We can reduce
the computation needed in feature matching and subsequently in clustering by only adding to
the feature dictionary features that have appeared in at least two consecutive frames, which are
likely to be the most informative. In the rest of this section we assume that this feature ex-
traction and matching has already been performed, and use ‘feature’ to refer to all the detected

image features across a sequence matched to the same entry in the feature dictionary.

3.4 Motion estimation

This section describes how, given feature information about how regions move through a video
sequence, we can combine information about the regions that move together to learn about
overall object motions in the sequence.

Given two views of a scene, we can use the RANSAC algorithm (Fischler and Bolles, 1981)
to find clusters of image features with consistent motion between the views. Candidate clusters
are initialised with randomly-chosen seed features, and expanded by adding other features
whose motion is consistent, then the cluster containing the most features is chosen as best. By
repeating this process from seed features which have not yet been assigned to a cluster, we can,
for example, find all the independently-moving clusters in two frames of video.

If we had full information on the location of all image features in every frame of a video
sequence, we could run RANSAC over the frames together to find the independently-moving
objects. However, in practice our feature information is sparse, with individual features usually
only detected in a few frames of a sequence. One solution to this problem would be to run
RANSAC between all adjacent pairs of frames in the sequence, since adjacent frames will
typically have many features in common, and then to cluster the clusters from each pair of
frames to find the objects. Alternatively, we could run RANSAC between individual frames
and a key frame of interest. If we only consider object transformations between adjacent pairs
of frames, we may not learn a sufficiently rigid group of object features to be useful for sprite
learning; choosing a single key frame would avoid this problem, since rigid transformations
can be enforced between the key frame and the other frames of the sequence where the object

occurs, but this introduces the problem of choosing an appropriate key frame. Indeed, in some
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image sequences there may not be any single useful key frame, since there may not be any one
frame where all the objects appear together. The approach we suggest instead uses a key frame
per object, chosen during a sequence-based RANSAC.

The algorithm described below deals with sparse feature location data, and avoids the prob-
lems of reconstructing objects from contradictory clusters in different frames by maintaining
a 2D geometric model for each object separate from its view in any individual frame. This
geometric model contains all the features which belong to the object, at positions learnt from

all the frames where they appear.

Algorithm 1 Object learning algorithm
repeat

Find all the features not yet assigned to an object.
for each of n candidate objects do
Initialise a new object with & features from some key frame, which are not yet assigned
to an object, creating a geometric model containing these features in the positions at
which they appeared in the key frame.
repeat
Use least squares to find transformations which project the features in the object
model from each frame to their positions in the object’s geometric model.
Project every feature from each frame where it appears to the object using these
transformations, and calculate its variance in position.
If the variance across all the frames was below a threshold, and lower than for any of
the previous objects, add the feature to the object.
until there is no change in the object, or the maximum number of iterations is reached.
end for
Choose the candidate object that accounts for most currently unassigned features.
until all features in the key frame are assigned to an object, or the maximum number of

objects is found.
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3.4.1 Sequence RANSAC algorithm

The objects in a sequence are learnt one after the other by a sequence-based version of the
RANSAC algorithm, summarised in Algorithm 1. This algorithm expands candidate objects
by finding all the features in the sequence whose motion is compatible with that of randomly-
chosen seed features, then instantiates the candidate which expands to include the greatest
number of features. This procedure of creating candidate objects and picking the best is re-
peated until all the features have been assigned to objects.

We start by randomly selecting a seed frame from the sequence, and randomly choosing
seed features from this frame. Since we want to find two-dimensional affine transformations
between objects and frames, we need three seed features. An initial geometric model for the
candidate object is created from the the three features’ positions in the seed frame.

In each of the frames where these three features appear together, we can find an affine

transformation between their positions in the frame and their positions in the geometric model.

We have
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and want to find an affine such that for each feature
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This gives a system of simultaneous equations with solution
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Solving for each frame gives a sequence of affine transformations which describes the motion
of the object. The features we should aim to add to the object are those whose positions

throughout the sequence are compatible with this motion.
ar br ¢k

If we already have an affine | ¢, ¢, f, | mapping an object from each image to its
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geometric model, and a new feature is added to the object’s geometric model at (p;,q;), the

sum squared error in this feature’s projected location is
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where k iterates over the N images in the sequence. We can decide the best location in the

object’s geometric model for the feature by minimising the sum squared error:
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It is also useful to consider the variance in the feature’s projected location, %E,-, as a measure
of how well the feature fits with the overall motion of the object.

In standard RANSAC all the features compatible with a proposed motion cluster can be
found directly, but when we cluster features across an image sequence our seed features might

only appear together in a small number of frames, and so only give us enough information to
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find compatible features in a few frames of the sequence. Therefore we need to iterate. At each
iteration we look at the frames about which we have information so far, and add to the current
object all the features which appear in them and are compatible with its motion there. Any
features which we add to the object can give us information about more frames to use at the
next iteration.

To judge if a given feature is compatible with the current candidate object we look at
all the frames where it appears along with at least three features from the object. We find
transformations that map features currently assigned to the object from their locations in the
frames to the object with the least squared error, and then project the feature onto the object
using each of these these transformations. If the feature matched the current object’s motion
precisely, it would always be projected to the same position on it. By setting different threshold
values for the variance of the projected positions, we can extract tighter or more relaxed motion
groupings. If the variance is below our set threshold, and is lower than the variance in projected
position which the feature had against the objects we have already extracted, then we assign it
to the current object for the next iteration.

A lower variance threshold will give a larger number of smaller motion groupings, and
will lead to affine transformations that more closely represent the motions of the features in
each grouping. A higher threshold will allow a single motion grouping to approximate a more
complex set of feature motions. The optimal threshold value is dependent not only on the video
data being used, but on how we want to use the resulting affine transformations. However,
for many video sequences a high threshold value (¢ = 20 pixels) will still give good results,
since features from one object will fit extremely badly to the motion of other objects. The
experiments we report below were run with 6 = 4 pixels. In general we have found that if
there appear to be k coherent moving objects in the sequence, these will correspond to to the
k motion groupings that contain the largest number of features. Any other motion groupings
detected typically correspond to local deviations from the affine model.

We continue iterating until the list of features belonging to the current object stops changing
or we reach some maximum number of iterations. Once we have created a number of candidate
objects, we pick the one which was able to explain the motion of the largest number of features.

We then mark all its features as ruled out from being seeds for any future objects, so that we
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avoid repeatedly extracting the same motion grouping.

We can continue extracting objects in this way as long as there are at least three potential
seed features remaining, but since we will tend to find objects in order by how many features’
motions they account for, we may decide to stop once we have extracted some predetermined
maximum number of objects.

The algorithm described above is quite similar to that presented in Rothganger et al. (2004),
although note that since we are building 2D instead of 3D models the initialization of a model

is much easier in our case.

3.5 Sprite learning

This section describes the layered generative model we use to explain the images in a sequence.
We use object transformation information learnt by the feature-based sequence RANSAC al-
gorithm described above to speed up object learning compared to using this pixel-based model
alone.

In the simplest case we have two layers, a foreground object and static background. Later in
this section we show how to extend the model to deal with multiple objects and with a moving
background. The background layer has an appearance model b, which is a vector of pixel
appearances b;. Here we treat b; as an intensity value from a greyscale image, but it can also
be a colour vector. The foreground layer has an appearance model f and a mask . The mask
allows the layer sprite to fit the shape of the object it models. The mask is also a vector with
one element per pixel, where each element is the probability that that pixel is generated from
the foreground object. The foreground layer may be bigger or smaller than the background.

At each frame in an image sequence the foreground object undergoes some transformation
T;. The sequence RANSAC algorithm above gives a sequence of affine transformations. Given
the transformation 7}, an image X is drawn according to the model described in Williams and
Titsias (2004). Each pixel in image j either comes from the background, or is occluded by the
foreground object and comes from the transformed foreground 7;f. The latent variable s is the

binary mask of the foreground object in the image, a vector that is one for pixels generated
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from the foreground object, and zero for pixels generated from the background.

~

P(s|Ty) = [[(Tm)f (1 — Tym); ", (3.14)
i=1

where T;7 is the transformed mask prior for the foreground and P is the number of pixels in
the image. If (7;m); ~ 0, pixel i has high probability of coming from the background, while if
(Tjm); ~ 1 it has high probability of coming from the foreground. Each pixel in an image X is

then drawn from a Gaussian,

~

p(x|T;,8) = [TIN(xis (Tjf)i, 67)]% [N (xi: b, 05)] (3.15)
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The likelihood of an observed image x can be found by marginalising over transformations
and masks. First marginalising over the latent variable s, the probability of an image given

transformation 7} is
P
p(x|T)) H N(xi; (Tjf);,07) + (1 — Tjm):N (xi; b:,03), (3.16)

In our experiments we assume a uniform prior over the set of permitted transformations. We
use expectation maximisation to learn b, f, © and ©.

It is straightforward to extend the model to deal with a moving background and multiple
foreground layers. If the background is not static, b is bigger than the individual images. With
two foreground layers, equation 3.16 becomes

P
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3.5.1 Learning the model

Learning the transformations for an image sequence using this model is intractable: the time
complexity for searching over transformations for a sequence with L foreground layers and a
background layer, each permitted a set of J transformations between images, is O(J-*1). Jojic
and Frey (2001) suggest an approximate method using variational expectation maximisation,
while Williams and Titsias (2004) learnt objects sequentially in a ‘greedy’ manner. We use

information from feature-based object learning to avoid this intractable search.
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We use the transformations found by the feature-based algorithm described above to pro-
vide estimates for each layer’s transformations. Effectively each frame of an image sequence
is warped through the appropriate inverse transformation for an object to create a new image
sequence where the object is stabilised, with the rest of the scene moving around it. We learn
the remaining parameters in two stages. First we make an independent prediction for each
layer’s mask and appearance. It is possible to allow some local search here to try to improve on
the transformations given by the feature-based method. Secondly we search across occlusion
orders for the layers to find the layer ordering with the highest likelihood. The parameters for
all the layers can then be optimised together using this occlusion ordering.

Local search on object transformations can be carried out by maximizing the variational

lower bound of the log likelihood,

p (n| N J
F = Z Y Q' 0 SgogZPjp(x”m,Tj;;), (3.18)
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where Q"(j) is a multinomial distribution over transformations of the object in the image n, so
that Q"(j) = O for any j" ¢ N(j"), where N() is the local neighbourhood of transformations,
and P; is a uniform prior over transformations.

Uniform components can be added to the foreground and background models to make them

robust (Rowe and Blake, 1995; Williams and Titsias, 2004):

pr(xis fi) = 0N (xi3 fi,67) + (1= ap)U (50); - pr(xisbi) = 0N (xi3bi,63) + (1 — o) U ().
(3.19)
This helps greedy learning where layers occlude each other, and also prevents problems if the
affine transformation produced by the feature tracking is inaccurate on a particular frame.
The log likelihood F for each layer can be maximised using variational expectation max-
imisation, optimising the parameters 7, f, and 6. Each object’s appearance model f is initialised

randomly, ¢ to a single high value, and the mask 7 to 0.5.

3.6 Summary

This chapter described a method for fast learning of sprites from image sequences, using invari-
ant features, and looked at related work. The next chapter looks at some experimental results

obtained with the sprite learning system described here.



Chapter 4

Fast learning of sprites:

implementation and results

4.1 Introduction

This chapter describes some experimental results on learning sprites for multiple moving ob-
jects from video sequences, using the methods described in chapter 3. Some of the material
here was published in Allan et al. (2005).

Section 4.2 looks at extracting features from the frames of a video sequence, and matching
them to build a database of features that occur in the sequence. Section 4.3 describes the results
obtained when we use the sequence RANSAC algorithm as described in section 3.4.1 above
to cluster features into objects based on their motion groupings, and examines the effect of the
motion consistency threshold parameter. Section 4.4 uses the results from sequence RANSAC
together with the pixel-based system of Titsias and Williams (2004), as described in section
3.5 above, to learn a sprite for each of the objects (including the background) in example video

sequences.

4.2 Feature matching

Given a number of images making up a video sequence, rather than using the full pixel informa-

tion from each image we can extract higher-level features that summarise the image contents.

33
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We can then match these features between images, to build up a database of consistent features,
with information on the frames of the sequence in which they occur and their locations in those
images.

As described in chapter 2, there are many possible feature representations which we can use
for image data. In the experiments described in this chapter we use a difference-of-Gaussians
region detector and SIFT region descriptor (Lowe, 1999), giving features which are intended
to be invariant under image translation, scaling and rotation. We could for example use affine-
invariant features, such as those described by Mikolajczyk and Schmid (2002). However, our
feature preprocessing over the sequence automatically discards features which do not match
between frames, so it might in fact give as much benefit to use a broader, less transformation-
invariant, feature set. In video sequences there are often long series of frames where objects’
transformations are close to simple translations, and detecting more features in the images
could potentially allow us to perform better tracking at such times.

We step through the video frames, building up a database of features. We can think of
this database as a ‘dictionary’ of ‘visual words’. At each frame we detect all difference-of-
Gaussians features (Figure 4.1), and add to the database all features which do not match a
feature already present there. We use Lowe’s suggested criterion for matching: we accept a
match as correct if the feature-space error between an image feature and the best candidate
match in the feature database is less than 0.6 times the error for the second-best match. For
each feature in the database, we keep a record of all the frames where it has a match. Once we
have run through the whole sequence, the database contains the information we need to quickly
find feature matches between given frames: we can simply run through the feature records and
check for features which had matches in both the frames in question.

In Figure 4.1 there are some uninformative features detected near the left and right edges of
the frames, where the Groundhog Day data has black lines which create artificial interest points.
While the frames could be trimmed down to remove these black edges, for the examples here
the frames have been left at their original size, since these uninformative features are automati-
cally filtered out when we perform feature matching and clustering between frames. Figure 4.2
shows the features which match between three frames of the Groundhog Day sequence.

Table 4.1 shows the number of features extracted from each image in the 41-frame Dekalog
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Figure 4.1: Features found in frames 46, 47, and 48 of Groundhog Day sequence, showing

feature size and orientation.
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Figure 4.2: Features matched between frames 46 and 47, and frames 47 and 48 of Groundhog

Day sequence: lines show the motion of a feature between consecutive frames.
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Figure 4.3: Dekalog sequence: number of features occuring in a given number of frames.

sequence, how many of these features do not match to any feature already in the database, and
a running count of the feature database size. The number of features extracted per frame varies
slightly through the sequence, but many fewer new features are added to the database after the
first frame, since many extracted features match with features already present in the database.
Table 4.2 shows the number of features in the final database which occur in a given number
of frames. Figure 4.3 shows the same data as a graph. For comparison, Table 4.3 shows the
number of features which occur in a given number of consecutive frames. Most ‘chains’ of
occurences in consecutive frames are short, but our feature matching algorithm increases the
data available for object learning by also using matches between more distant frames.

Figure 4.4 shows the frames where each feature is present in the Dekalog sequence, for a
sample of 200 features. Most of these features only occur in a few frames of the sequence.
There are a few long ‘chains’ of consecutive occurences, but even features that are present over
a large part of the sequence tend to be absent in many of the frames within that part.

After features have been extracted from the last frame in the sequence, all features which
have not matched to a feature found in any other frame are discarded, so the final dictionary

size falls to less than it was after the first seven frames of the sequence without this check. Table
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Frame | Features | New features | Total features kept
1 1576 1576 1576
2 1565 781 2357
3 1538 656 3013
4 1543 634 3647
5 1545 689 4336
6 1508 670 5006
7 1580 796 5802
8 1520 728 6530
9 1501 785 7315

10 1509 779 8094
11 1469 757 8851
12 1470 790 9641
13 1510 831 10472
14 1408 814 11286
15 1452 859 12145
16 1427 831 12976
17 1435 876 13852
18 1463 957 14809
19 1439 945 15754
20 1445 974 16728
21 1455 972 17700
22 1441 1004 18704
23 1450 978 19682
24 1365 901 20583
25 1428 992 21575
26 1380 956 22531
27 1314 916 23447
28 1349 959 24406
29 1321 928 25334
30 1321 949 26283
31 1329 967 27250
32 1313 930 28180
33 1276 912 29092
34 1302 948 30040
35 1283 924 30964
36 1332 961 31925
37 1304 947 32872
38 1357 981 33853
39 1390 1010 34863
40 1442 1063 35926
41 1462 1100 5312

Table 4.1: Feature matching statistics for Dekalog sequence.
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Number of occurrences | Frequency
(1) (31714)
2 2604
3 875
4 441
5 270
6 202
7 155
8 104
9 81
10 55
11 53
12 33
13 39
14 34
15 26
16 27
17 30
18 19
19 15
20 13
21 16
22 17
23 10
24 12
25 11
26 10
27 10
28 8
29 9
30 11
31 4
32 6
33 6
34 4
35 6
36 3
37 7
38 7
39 7
40 10
41 50

Table 4.2: Dekalog sequence: number of features occuring in a given number of frames.
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Consecutive occurences | Frequency
(1) (7440)
2 2497
3 726
4 359
5 213
6 139
7 104
8 74
9 56
10 36
11 28
12 30
13 22
14 22
15 18
16 9
17 21
18 9
19 5
20 9
21 10
22 6
23 5
24 3
25 5
26 6
27 6
28 8
29 8
30 1
31 2
32 1
33 1
34 1
35 4
36 1
37 1
38 1
39 1
40 1
41 50

40

Table 4.3: Dekalog sequence: number of features occuring in a given number of consecutive

frames.
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Figure 4.4: Dekalog sequence: feature presence/absence in each frame for a sample of 200
features. Each row represents a single feature in the database; each column represents a single

frame in the sequence.
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Figure 4.5: Feature counts for each frame in the Dekalog sequence: features per frame (thin

line), new features (dashed line), total features kept (thick line).

4.1 and Figure 4.5 show how the database size grows roughly linearly after the first frame of
the sequence, then drops again after matching has been performed between features from all
frames and unmatched features can be discarded.

Processing of long sequences can be sped up, and memory requirements reduced, by dis-
carding features that are only seen once more quickly. For example, features which have not
been seen again 10 frames after they first occured are unlikely to be informative. For the short
sequences given as examples here, this speed-up is unnecessary, so we match and store features

even if they only occur in two distant frames of the sequence.

4.3 Clustering features into objects

After the feature ‘dictionary’ is built, the sequence RANSAC algorithm described in section
3.4.1 above is used to cluster features into objects according to independent motion groupings.
Figure 4.6 shows the frames in which a sample of 200 features from the Dekalog sequence are

present (as in Figure 4.4), coloured according to the objects to which they are assigned. Figure
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4.7 shows some example frames of the Dekalog sequence, with the features again coloured
according to the objects to which they are assigned.

The great majority of the features belong to the near background (green) and far back-
ground (red); out of the two foreground objects, more features are found for the rear car (blue)
than the one which occludes it (yellow), since the car nearest the camera is quite blurry so gives

fewer good regions of interest.

4.3.1 Effect of motion consistency threshold

As described in section 3.4.1, the sequence RANSAC algorithm has a parameter which controls
how similar features’ motions are required to be before they are assigned to the same grouping.
Table 4.4 shows the number of objects found in the Dekalog sequence for different settings of
this parameter value: for example, when ¢ = 4 pixels, as used in the results shown so far in this
chapter and in the other experiments below, 7 objects are found. Figures 4.8 and 4.9 show how
the feature classifications change as the motion consistency threshold is varied, overlaying
all the feature motions in the sequence on a single frame and colouring the resulting tracks
according to the objects to which they are assigned. Large values of ¢ assign all the features to
a single object; as ¢ is reduced, more objects are found to explain increasingly fine differences
in motion.

Table 4.5 shows the number of features assigned to each object in each frame of the Dekalog
sequence with 6 = 4 pixels. Objects 1 and 7 correspond to the distant and near background (red
and green); objects 2 and 3 correspond to the two moving cars (blue and yellow). The other
motion groupings arise because the affine model we use in the sequence RANSAC algorithm
is not sufficient to explain all the feature motions seen in the sequence. For example, parts of
the trees in the background wave in the wind, and all the features of each car, if taken together,
display non-affine motion in relation to the camera position. If we simply wanted to group
features, it might be better to use a less tight motion consistency threshold which gave fewer
motion groupings, but for sprite extraction we would like each affine motion grouping to be as

tightly defined as possible.
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Figure 4.6: Dekalog sequence: feature classifications for a sample of 200 features.
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Figure 4.7: Dekalog sequence, frames 1, 20 and 39 with feature classifications.
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Figure 4.8: Dekalog sequence: classification of features as the motion consistency threshold is

varied: top to bottom, 32, 16, 8.
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Figure 4.9: Dekalog sequence: classification of features as the motion consistency threshold is

varied: top to bottom, 4, 2, 1.
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Threshold | Objects found
1 15
2 10
3 11
4 7
5 8
6 3
7 4
8 4
9 4

10 3
11 3
12 2
13 3
14 3
15 3
16 2
32 2
64 1

Table 4.4: Dekalog sequence: number of objects found as the motion consistency threshold is

varied.

4.4 Layered generative sprite model

So far this chapter has considered learning an object’s motion and the features which belong to
the object. For many applications it is useful to extract a sprite model of the object. The features
matched in a given frame already define an implicit mask for an object, and we could use this
information to seed an image segmentation algorithm, but to extract reliable sprites for objects
we need to combine sprite information across frames. This section describes results using the
method described in section 3.5 to learn a sprite for each object in a video sequence, linking our
feature-based object learning system to the pixel-based system of Titsias and Williams (2004).

We use the sequence RANSAC algorithm to find motion clusters, then learn sprites cor-
responding to the motions found. The sprite extraction algorithm receives as input the affine
transformations for each object and learns the mask and appearance for each object. Our MAT-
LAB implementation, which is by no means has been optimised for speed, uses the MATLAB
routine imtransform to carry out affine transformations of images.

Below we describe the results obtained on two different image sequences. The affines
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Frame | Unclassified | Obj. 1 | Obj. 2 | Obj. 3 | Obj.4 | Obj.5 | Obj. 6 | Obj. 7
1 5| 523 129 17 6 23 4 469
2 3| 522 128 15 6 31 6| 474
3 4] 537| 114 15 8 28 7| 452
4 1| 524 115 15 5 27 6| 409
5 3| 529 106 16 4 23 71 370
6 3| 520 93 11 3 26 6| 327
7 2| 529 98 6 5 22 71 284
8 2| 525 87 6 4 25 8| 258
9 2| 540 81 6 3 22 9| 218

10 1] 520 88 7 8 19 71 206
11 1| 523 81 9 9 13 5| 203
12 1| 443 62 10 9 15 6| 243
13 1| 427 57 10 8 13 7| 249
14 0| 389 43 14 10 13 8| 240
15 0| 398 34 18 9 12 6| 216
16 1| 351 28 17 9 11 9| 249
17 0| 357 12 16 9 17 10| 197
18 1| 398 8 25 7 17 9| 152
19 1] 387 4 11 6 9 6| 155
20 1| 332 10 13 4 10 8| 166
21 0| 375 11 8 3 4 7| 144
22 0| 316 21 14 5 7 41 153
23 0| 346 23 14 8 6 5| 147
24 0| 322 24 3 6 5 41 150
25 1] 329 15 8 2 6 41 156
26 1] 329 9 16 3 5 3| 130
27 1| 318 12 18 3 3 1] 105
28 1| 319 10 17 3 4 1 96
29 0| 329 4 21 5 11 1 79
30 0| 334 3 22 5 16 1 54
31 1] 337 2 20 5 16 0 53
32 0| 346 10 20 3 17 0 45
33 1] 332 25 10 4 12 1 31
34 0| 357 36 7 6 10 0 13
35 1| 334 44 3 8 5 0 15
36 1] 339 47 3 6 1 0 18
37 1| 316 62 2 5 4 0 24
38 2| 323 64 1 4 4 0 23
39 2| 311 81 1 2 5 0 17
40 1] 306 83 0 1 3 0 18
41 0| 269 71 0 0 2 0 17

49

Table 4.5: Dekalog sequence: number of features in each frame allocated to each object, at

motion consistency threshold ¢ = 4 pixels.
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Frame | Features | New features | Total features kept
1 1302 1302 1302
2 1263 538 1840
3 1268 438 2278
4 1207 378 2656
5 1185 407 3063
6 1127 422 3485
7 998 386 3871
8 990 407 4278
9 979 505 4783

10 923 449 5232
11 1022 495 5727
12 1278 657 6384
13 1439 712 7096
14 1012 495 7591
15 1107 498 8089
16 1003 534 8623
17 1131 611 9234
18 1050 551 9785
19 960 469 2815

Table 4.6: Feature matching statistics for books sequence.

from sequence RANSAC were used directly, without local search. Video files illustrating these

results can be found at http://www.tardis.ed.ac.uk/ moray/features/.

441 Books sequence

The ‘books’ sequence is a 19 frame stop-motion film of two books moving independently
against a background of three further books (see Figure 4.10). Each frame is of size 640 x 480.
The foreground books undergo translation and rotation, and one of the books occludes the other
for several frames. The camera moves slightly between frames, so the overall transformations
between frames involve further translation, rotation, and scaling.

Extracting features from the images and matching the extracted features across the se-
quence to compile a feature dictionary of distinct features took around 128 seconds. The re-
sulting feature dictionary contained 2815 features. Table 4.6 and Figure 4.11 show the number
of features extracted from each image, how many of these features do not match to any feature
already in the database, and a running count of the feature database size. Table 4.7 and Figure

4.12 show the number of features which occur in a given number of frames.
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Figure 4.10: Some example frames from the books sequence.
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Figure 4.11: Feature counts for each frame in the books sequence: features per frame (thin

line), new features (dashed line), total features kept (thick line).

Number of occurrences | Frequency
(1) (7439)
2 1077

3 429
4 265

5 194
6 158
7 114
8 93

9 69
10 65
11 51
12 47
13 64
14 23
15 28
16 32
17 15
18 12
19 32

Table 4.7: Books sequence: number of features occuring in a given number of frames.
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Figure 4.12: Books sequence: number of features occuring in a given number of frames.

Sequence RANSAC terminated after 4 seconds, when it finished assigning features to three
objects. In all the experiments here we produced 20 candidates at each stage of sequence
RANSAC. One of the objects corresponded to the background, a second to the right-hand
moving book, and a third to the left-hand moving book.

Figures 4.13, 4.14 and 4.15 show some example frames transformed onto the geometric
models for the background and the two books, stabilising the image sequence with respect to
each object.

The EM algorithm took 51 minutes to learn the background and the two books in the im-
age sequence, using 25 iterations of EM and no local search. A method that needs to search
explicitly over J transformations would take J times longer. For the books sequence a suitable
discretization scheme would need to consider at least translations and rotations. Unless addi-
tional information can be brought to bear we would need to consider 640 x 480 translations
and rotations at perhaps 2° intervals (although FFT tricks could be used for the translations).

Figure 4.16 shows the element-wise products of the masks (thresholded at 0.5) with the
books’ appearance models, and the appearance model for the background. We can see that the

objects in this sequence have been extracted well. The shadow of the second book, prominent
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Figure 4.13: Example frames from the books sequence, stabilised with respect to the back-

ground.
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Figure 4.14: Example frames from the books sequence, stabilised with respect to one of the

moving books.
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Figure 4.15: Example frames from the books sequence, stabilised with respect to one of the

moving books.
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Figure 4.16: Panel (a) displays the learnt background. Panels (b) and (c) show the element-wise

product of the thresholded mask and appearance model for the two books.



Chapter 4. Fast learning of sprites: implementation and results 58

at the start of the sequence, has been included in the mask for that book.

4.4.2 White sequence

Our second experiment uses a 35-frame, 720 x 576, sequence from the film White (see Figure
4.17). A jeep drives from the distance in the centre of the frame along a road passing to the
camera’s left. The camera pans to follow the jeep, viewing more of the background scene over
the course of the shot than is visible in each frame.

Feature extraction and matching took 99 minutes, giving a feature dictionary of 17475 fea-
tures. We compared each feature from an individual frame to entries in a flat list of features
already in the dictionary; the time for matching could be greatly reduced by using a more com-
plex data structure that would allow quicker access to the features most likely to match, as de-
scribed in Lowe (2004). Table 4.8 and Figure 4.18 show the number of features extracted from
each image, how many of these features do not match to any feature already in the database,
and a running count of the feature database size. Table 4.9 and Figure 4.19 show the number
of features which occur in a given number of frames.

Sequence RANSAC found objects corresponding to the background and the jeep in 87
seconds. Figures 4.20 and 4.21 show some example frames transformed onto the geometric
models for the background and the jeep. Note that these images have only been truncated to
the frame boundaries to give a consistent display; the model does not limit the objects’ size.
Sprite extraction took 31 minutes, using 30 iterations of EM.

The sprite models learnt for the jeep (with the mask thresholded at 0.5) and for the back-
ground are shown in Figure 4.22. Since the camera pans to view a background scene larger
than an individual frame, the background sprite we extract is a wide panoramic image. Part of
the centre of the background sprite is blank, since this area is occluded by the jeep throughout
the sequence, but the sprite is otherwise good. The jeep and its attached shadow have also been

learnt successfully.

4.4.3 Discussion

The results above show that the proposed algorithm for sprite learning is effective, success-

fully learning appearance models and masks for the foreground objects and background of the
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Figure 4.17: Some example frames from the White sequence.
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Frame | Features | New features | Total features kept
1 7030 7030 7030
2 6796 3863 10893
3 6774 3632 14525
4 6792 3696 18221
5 6787 3798 22019
6 6826 4081 26100
7 6841 4266 30366
8 6814 4283 34649
9 6721 4585 39234

10 6742 4833 44067
11 6705 4798 48865
12 6232 4599 53464
13 6213 4572 58036
14 5825 4324 62360
15 5583 4128 66488
16 5260 3928 70416
17 5196 3942 74358
18 5128 3819 78177
19 4578 3512 81689
20 4390 3372 85061
21 4212 3196 88257
22 4066 3087 91344
23 3971 2993 94337
24 3998 3030 97367
25 3761 2977 100344
26 3637 2845 103189
27 3503 2768 105957
28 3305 2623 108580
29 2981 2382 110962
30 2754 2239 113201
31 2626 2054 115255
32 2579 2068 117323
33 2472 1933 119256
34 2569 1986 121242
35 2509 1963 17475

Table 4.8: Feature matching statistics for White sequence.
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Figure 4.18: Feature counts for each frame in the White sequence: features per frame (thin

line), new features (dashed line), total features kept (thick line).
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Figure 4.19: White sequence: number of features occuring in a given number of frames.
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Number of occurrences | Frequency
(1) | (105730)
2 9164
3 3165
4 1494
5 966
6 605
7 426
8 337
9 261
10 167
11 146
12 124
13 91
14 69
15 65
16 59
17 45
18 48
19 32
20 35
21 26
22 24
23 12
24 14
25 12
26 16
27 14
28 9
29 4
30 5
31 10
32 2
33 2
34 2
35 6

Table 4.9: White sequence: number of features occuring in a given number of frames.
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Figure 4.20: Example frames from the White sequence, stabilised with respect to the back-

ground.
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Figure 4.21: Example frames from the White sequence, stabilised with respect to the jeep.
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Figure 4.22: Panel (a) displays the learnt background. Panel (b) shows the element-wise prod-

uct of the thresholded mask and appearance model for the jeep.
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example image sequences. The sequence RANSAC algorithm, using invariant features to dis-
cover motion groupings, makes the system much faster than methods that need to use extensive
search to learn object motions.

Since it does not depend on matching objects between consecutive frames in an image
sequence, the sequence RANSAC algorithm is robust to object occlusion, and works equally
well even if we do not know the correct temporal ordering for a set of image frames, or if
there are images taken simultaneously by multiple cameras from different viewpoints. How-
ever, for sequences where few features are detected on objects of interest, or where multiple
objects present a similar appearance, motion learning performance could be improved by mod-
elling frame-to-frame object motions across time, for example placing a Kalman filter on each
object’s sequence of affines.

The sprite model used above assumes that each object is rigid, and does not allow any
significant change in two-dimensional appearance for a single object. It would be possible
to allow more variation to deal with a wider range of objects. For example, Cootes et al.
(1998) described a deformable sprite model to deal with a wider range of internal variation
than is allowed by rigid sprites, demonstrating that it successfully modelled faces with different
expressions and changes in pose. The strong geometric consistency requirement enforced by
our sprite model means that an object with internal degrees of freedom might be incorrectly
split up into multiple layers.

Another source of variation in object appearance is changes in viewpoint. The model above
only learns a single appearance and mask for each object, but over a sequence, the appearance
of even a rigid object can change markedly, as the object moves relative to a fixed camera, or
as the camera moves. For example in the beginning of a sequence we may see a front view
of a car, while at the end we see a side view. The layered generative model can be modified
to allow the view of an object to vary significantly. We can achieve this by introducing a set
of mask and appearance pairs, each one associated with a different viewpoint of the object, as
proposed for example in Frey and Jojic (2003). Note also that this should not greatly increase
the time taken, as the number of viewpoints needed is typically small. While there may be a
continuous change in viewpoint through a sequence, we can cluster the observed viewpoints to

give a small set of appearance models and masks.



Chapter 4. Fast learning of sprites: implementation and results 67

The single parameter of the sequence RANSAC algorithm controls the tightness of the
motion groupings extracted. In many image sequences, the main motion groupings extracted
are insensitive to the parameter’s value within a wide range: there is only a small variation in the
position of features relative to the object to which they belong, while across a sequence there
are extremely large differences between separate objects’ motions. The sequence RANSAC
algorithm could be made more robust for difficult image sequences by avoiding the need to set
a fixed error threshold for learning object motions. Instead it might be possible to automatically
determine an error threshold for each motion grouping based on the the distribution of features’
motion variances relative to the motion model for the grouping under consideration.

Finally, we note that the extracted sprites could be improved by applying additional con-
straints. For example, an MRF prior over masks could be used to encourage coherent edges
and discourage holes in the mask due to noise (following for example Blake et al., 2004), and
object-specific colour models could enable the system to deal better with variation in object
appearance under changing lighting conditions while still distinguishing objects with similar

appearances but different colours.



Chapter 5

Object localisation using the

Generative Template of Features

5.1 Introduction

This chapter describes a method for learning and recognising object classes, using invariant
features. The goal is to create a system which can find instances of learnt object classes within
new images, identifying the class of the object and giving its bounding box. Chapter 6 describes
experiments using the object learning system described here, and discusses the results obtained.
Some of the material in this chapter is adapted from Williams and Allan (2006).

Over the last few years there has been a surge of interest in the problem of object recog-
nition for object classes. Current methods are better at recognising specific objects, such as a
particular model of car, than at recognising classes of objects, such as the wider category of
cars. Recognising classes of objects raises the same questions as recognising specific objects,
but in addition requires generalisation from the training examples rather than simply accurate
matching to training data.

We can distinguish between two related problems for object class recognition: classifi-
cation, meaning detecting whether an object of the given class is present in an image, and
localisation, meaning determining the position of an object in an image. We focus on using
the Generative Template of Features (GTF) model for object localisation. We assume that each

input image has been preprocessed by running a region-of-interest detector and matching the
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results to some set of ‘visual words’. The model, described fully in section 5.3 below, consists
of a number of parts, with each part having a spatial location distribution and a distribution over
visual words. Object localisation can be carried out by scanning the template over the image at
a variety of positions and scales.

While we will use the GTF to model objects as sparse collections of image features, we
can also view it as in a continuum with sprite models. At one end of the spectrum, dense
sprite models explain images pixel by pixel. Moving along the spectrum we can view the
pixel information as made up of a dense collage of local patches. These image patches can
be compared by, for example, their normalised greyscale correlation, but we can also move
towards more abstraction and use higher-level region descriptions with increased invariance.
Finally, as in our experiments in chapter 6 below, we can choose to use a sparse representation,
modelling only certain image regions that we expect to be especially informative.

Section 5.2 below gives a summary of related work on object class recognition. Section 5.3
describes the GTF model. Sections 5.4 and 5.5 looks at the relationship between the GTF and

scanning window and pose-clustering methods respectively.

5.2 Literature review

This section discusses a variety of approaches to object class recognition using invariant fea-
tures. We first discuss ‘bag of words’ approaches for image classification, in section 5.2.1.
Then we look at three groups of methods for classification and localisation: scanning window
methods in section 5.2.2, pose-clustering methods in section 5.2.3, and correspondence-based

methods in section 5.2.4.

5.2.1 Classification without localisation

A variety of approaches have used image statistics without any explicit use of geometry to
perform image classification. For example, Chapelle et al. (1999) use colour histograms to rep-
resent images, and perform classification using a support vector machine. The non-geometric
approach that is most relevant to the model we describe below is the ‘bag of words’ approach

that performs classification based on features extracted from local image regions.
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The bag-of-words approach is named from its use in text classification. Rather than try-
ing to parse the structure of a document, we can treat it as a set of unordered words, with a
frequency count for each word. We can then compare documents based on their respective his-
tograms of word frequency counts. Similarly, we can quantise local image features into ‘visual
word’ groups, then compare images in a bag-of-words way based on the histograms of visual
words that appear in them.

Dorko and Schmid (2005) use a bag-of-words approach with feature selection to choose the
most informative parts. They use Harris-Laplace and Kadir-and-Brady region-of-interest de-
tectors, and compute a SIFT descriptor for each region, then they cluster features from in-class
images to learn a Gaussian mixture model for the class features. The trained Gaussian mixture
model can be used as a classifier by imposing a separation boundary for each component. They
reduce the size of their class models by ranking the Gaussian mixture model components based
on their performance as individual classifiers, and choosing the best n components for the fi-
nal model. They set a threshold number of the selected components that must give a positive
classification for an overall image to be judged to belong to a given class.

Csurka et al. (2004) use a similar approach, with a Harris affine region-of-interest detector
and SIFT descriptors. They use k-means rather than a Gaussian mixture model to create image
feature clusters, and calculate a histogram of the number of activations of each cluster rather
than observing only the presence or absence of features belonging to each cluster. They com-
pare Naive Bayes and a support vector machine as overall classifiers, finding that the support
vector machine gives better performance. Deselaers et al. (2005) also take a similar approach,
using a discriminative log-linear classifier, which also outperforms baseline models including
Naive Bayes.

Sivic et al. (2005) use shape adapted and maximally stable regions with SIFT descrip-
tors, clustered using k-means clustering, as features for probabilistic Latent Semantic Analysis
and Latent Dirichlet Allocation. They show that these models can discover image classes as
‘topics’ in unlabelled image collections, based on feature co-occurence statistics. Wang et al.
(2006) use a more complex dependent hierarchical Dirichlet process, which models dependen-
cies between image patch occurences, to learn a tree-structured taxonomy for image classes in

an unsupervised manner. They achieve better classification performance from semi-supervised
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training with a small number of labelled images and visual words. They use Kadir-and-Brady
regions of interest, SIFT descriptors, and k-means clustering.

These non-geometric classification methods can be extended to give estimates of object
locations by, for example, identifying the image features which contribute to the classification
decision and drawing a bounding box around them. To achieve good localisation performance,
however, it is sensible to include some degree of geometric information in the model itself, like

the methods we discuss in the following sections.

5.2.2 Scanning window methods

Scanning window methods run an object detector at different possible object scales and lo-
cations across an image, considering each object bounding box hypothesis and searching for
maxima in the detector output. For example, Le Cun et al. (1990) used a scanning window
approach with a neural network-based handwritten-digit detector trained using backpropaga-
tion. More recently scanning window approaches were used for example with a face detector
using local image patches trained by boosting (Viola and Jones, 2004), and a car detector using
clustered interest regions (Agarwal et al., 2004).

Torralba et al. (2004) follow the Viola and Jones boosting approach, but shares features
across multiple classes. They show that this allows a given performance level to be achieved
using fewer features than are required if independently-trained classifiers are used, while the
features selected are more generic than those selected by independent training.

Shotton et al. (2006) use a conditional random field to learn an object classifier, using a
mixture of feature types incorporating information about shape, texture, colour, location, and
edges. They follow the approach of Torralba et al. (2004) to select discriminative features
shared between classes. They use the conditional random field to give an approximate pixel-

level labelling of the classes present in test images.

5.2.3 Pose-clustering methods

Pose-clustering methods (see Forsyth and Ponce (2003), §18.3) allow individual image features
to vote on object instantiation parameters, then look for maxima in the summed voting space.

For example, straight lines can be recognised by allowing noisy line segment features to vote
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for a range of line orientations passing through the feature’s location, then looking for vote re-
sponses above some predetermined threshold (Hough, 1962). This approach can be generalised
to detect arbitrary shapes (Ballard, 1981). Section 5.5 below looks at the relationship between
the GTF and pose-clustering methods.

Using informative features like visual words can allow us to make votes based on quite
specific predictions from individual features. For example, a single SIFT match allows us to
predict an object’s location, scale and orientation. Lowe (2001) matches images to models
for individual objects using a Hough transform approach. Each SIFT feature in a test image
is matched with its nearest neighbour in the database, and then votes for a model view along
with an approximate location, scale and orientation for the hypothesised object. After voting,
the winning hypothesis is verified by checking for overall geometry consistency between the
image and the model, as judged by small residuals on a best-fit similarity transformation.

Leibe et al. (2004) take a similar approach to the case of object category recognition. They
extract image patches at Harris interest points, cluster them using normalised greyscale corre-
lation, and then vote based on the offsets within the object bounding boxes at which a given
patch cluster was seen in the training data. Leibe and Schiele (2004) extend their method to
deal with objects of varying scale. Here they use visual words created by agglomerative clus-
tering of image patches extracted with radiuses proportional to the scales of the Harris-Laplace
or difference-of-Gaussians interest regions in question. Fritz et al. (2005) add a support vec-
tor machine to verify whether the winning hypothesis is genuinely an instance of the class in

question.

5.2.4 Correspondence-based methods

Correspondence-based methods (Grimson, 1990) match image features to features in a model.
For example, the ‘constellation model” (Burl et al., 1998) uses a number of object parts which
are found in characteristic positions relative to each other, matching each part to a region in
each image. For example, for faces we might think of having the eyes, nose, and mouth as
parts. The constellation model learns the joint probability density on part locations.

Weber et al. (2000b,a) use the constellation model approach to model object classes. They

first extract fixed size patches around interest points and cluster them using k-means to create
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candidate object parts, discarding small clusters. They then iteratively test the validation data
classification performance of different combinations of small numbers of parts, starting from a
random choice of parts and at each iteration testing the replacement of one part by a randomly
selected one to greedily search for the most useful set of parts. Fergus et al. (2003) enhance
the model to take into account variation in part appearance, and learn part appearances during
expectation maximisation along with part location. They use the Kadir and Brady region of
interest detector, giving circular regions of varying sizes. They also allow objects to vary in
scale.

The constellation model can be slow to train, and at test time potentially requires a search
over all possible correspondences between image features and object parts. As this is a com-
binatoric search it is exponentially slow unless aggressive pruning of the search tree can be
achieved.

Helmer and Lowe (2004) improve the learning efficiency of the constellation model, mak-
ing it practical to use up to 12 parts, rather than the 6 or 7 used by Fergus et al. (2003). They
initialise their model with the feature which has the highest density around it in SIFT ap-
pearance space, then greedily add parts one-by-one to increase the likelihood of the data. To
improve efficiency they suggest only considering adding parts from a sampled set of features,
sampling features which are near to matched features or which come from images which have
good matches to the existing model. They store the best match in each image for the parts
currently in the model, so that when they consider adding a part to the model they only need to
search for its own best matches and then calculate the change in the likelihood.

Fergus et al. (2005b) propose replacing the constellation model with a star model which
has a lower complexity for learning and recognition, also making it practical to use up to 12
parts. Instead of learning the parts’ relative locations as a joint Gaussian density, the parts’
locations are learnt relative to a single landmark part, such that their positions are conditionally
independent given the landmark. As well as being faster in learning and recognition, their star
model generally gives improved performance over the constellation model. Felzenszwalb and
Huttenlocher (2000) also proposed restricting the constellation model to a tree structure, to
allow a more efficient algorithm to be used to find the best match for an image.

Crandall et al. (2005) test a more general class of structures for parts, k-fans. When k=1
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the k-fan gives a star graph, while when k is one less than the number of parts the k-fan has
dependencies between all pairs of parts, like the constellation model. Learning with manually-
chosen parts, they find that increasing spatial dependencies improve performance, but that for
some classes the degree of improvement seen beyond a 1-fan model, or even a 0-fan model
with independent part locations, is small, while the low-k model is much quicker in learning and
recognition. Crandall and Huttenlocher (2006) show that the object parts and their relationships
can be learnt in an unsupervised manner, without hand-labelling part locations in the training

images.

5.3 Generative Template of Features

This section describes the Generative Template of Features model. We first discuss the main
points of the model, then give some information on modelling choices we have made in mod-
elling the background features (section 5.3.1), object scale (section 5.3.2), and mixing propor-
tion (section 5.3.3). The partial deriviatives used to optimise object hypotheses by gradient
ascent are given in appendix A.

We assume that a region-of-interest detector has been run on each image, and that a lo-
cal image descriptor like Lowe’s SIFT descriptor (Lowe, 2004) has been computed for each
region of interest. We cluster the descriptors obtained from a set of training images to cre-
ate a dictionary of ‘visual words’. Thus for image m with N, interest points we have pairs
(XpmisWmi), i = 1,...Ny, where X,,; denotes the position of feature i in image m, and w,,; de-
notes the visual word to which it matches. X,,, and W,, are matrices of all the feature positions
and matching visual words for image m.

Consider an object which has pose variables 6. Here 6 could denote for example the (x,y)
position of the object in the image, position plus scale and rotation, or it could be more complex
and include information on an object’s internal degrees of freedom. Under the model defined

in Sudderth et al. (2005) we have

=

m

P(&Xm?Wm) :P(e) P(thwmi’e)- (51)
1

Each feature (X,,;, wy;) is generated conditionally independently given 6.
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Figure 5.1: (a) GTF foreground model with grid of Gaussians; (b) background model.

Since image features may be generated either from background clutter or from an object of

interest, we propose a mixture model
P(th Wmi|e) = (1 - OC)Pb(Xmi, Wmi) + OCPf(th Wmi‘e)a (52)

where p;, denotes the background model, ps the foreground model for the object, and o is
the probability of choosing to generate from the foreground. The background model may, for
example, generate features anywhere in the image and with a broad distribution of visual word
types, with pp(x,w) = pp(X) pp(w). We use a more complex background model, which assigns
lower background probability to the foreground area (Figure 5.1(b)), described in section 5.3.1
below.
The term p ¢(X,ui, Wimi|®) can be further decomposed using the notion of parts. If z,,; is an
indicator variable for each of the P possible parts in the object, then we have
P
P (Xmis wimil0) = lef(xmilzmi,9)p(wmilzmi)p(zmi). (5.3)
i
This equation means that the location of feature mi, X,,;, depends on the part from which it
is generated and the object’s instantiation parameters, while the visual word w,,; is generated
from a multinomial distribution that depends on only the identity of the part that the visual
word is generated from. Note that it is not absolutely necessary to cluster the descriptors into
a discrete set of visual words; one could define p(w|z) over real-valued descriptors, using for
example a mixture of Gaussians, and possibly also make p(w|z,0) vary with the object pose 6.
Each p7(Xui|zmi,0) could be, for example, a Gaussian distribution. The foreground model

that we use consists of a spatial grid of Gaussians (one for each part), each with an associated
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multinomial p(w|z) in a canonical reference frame. Figure 5.1(a) shows a 6 x 4 GTF. In our
implementation this model is transformed under 6 by translation and separate x and y scalings
to define ps(x|z,0). A similar generative model was defined in Revow et al. (1996) for black
(ink) pixels, without the visual words component.

For any set of images of a particular class of objects which has been normalised to a com-
mon reference frame (by translation, scaling, etc.), we expect to see regions which have propen-
sities to generate particular visual words. For example, if we normalise a set of side views of
cars, there will be regions towards the bottom left and right of the views which tend to generate
visual words associated with wheels. While we define a spatial grid of object parts, it would
also be possible to adapt part locations during GTF training.

Support for the hypothesis that there is one object of a given type O; in the scene, plus

background features, can be evaluated by computing
PXsWal0)) = [ p(8. X, Wa|O;)d0 (5.4)

for each object model, including a pure background model Oy to account for the case where
there is no object of a known type present. In general the integral in equation 5.4 is not an-
alytically tractable but if 0 is low dimensional it can be approximated, for example by using
numerical quadrature based on a grid of points in 8-space, or by using Laplace’s approxima-
tion at a mode of p(0|X,,,W,,,0;). Localization of an object with respect to the 6 parameters
such as position and scale can be carried out with the GTF by scanning the template over the
image at a dense grid of 0 settings, and detecting maxima of p(6|X,,, W,,,0}) in this space, or
alternatively by using a coarse grid in 6 space with hill-climbing search.

Here we focus on the case where there is one foreground object. To deal with multiple
objects, equation 5.2 can be extended to have multiple foreground mixing proportions, as in
Sudderth et al. (2005). This approach ignores occlusion, but it would be quite straightforward
to use a layered model and to reason about occlusion so as to generate only from visible com-
ponents.

Unlike correspondence-based methods (see section 5.2.4), the GTF model does not enforce
generation from each part. The conditional independence assumption in the generative model

gives a non-zero probability that a part is not chosen on any of the draws from the foreground.
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Figure 5.2: Background feature-location model: uniform across image plus uniform outside the

object bounding box.

This is useful behaviour when part of an object is occluded, but it can also lead to incorrect
detections. This problem was observed by Revow et al. (1996) where it was called the ‘beads
in white space’ problem, as ink generators (beads) could occur in regions where there were no
black (ink) pixels. One way to deal with this is to use the GTF to find promising regions of
0 space, and then evaluate measures of model fit for instantiated models which can be fed to
discriminatively-trained classifiers. This strategy was used by Revow et al. (1996) on the digit
recognition problem, and more recently has been used, for example, by Fritz et al. (2005) for
the recognition of cars, motorbikes, cows and horses.

Most scanning window methods (see section 5.2.2) use discriminatively-trained classifiers,
but we can also use a scanning window approach with the GTF. Unlike discriminative classi-
fiers, the GTF is capable of being trained in an unsupervised manner. Note that even if we scan
an object hypothesis across an image, the GTF’s likelihood term p(X,,, W,,|0) still considers the
probability of the ‘background’ features outside the bounding box, not just the features within

the object hypothesis bounding box in question.

5.3.1 GTF background model

The background model used in our experiments below generates feature locations from a mix-
ture, with probability B assigned to a uniform distribution across the image (in our experiments
B = 0.05), and probability 1 — 3 assigned to a distribution that generates approximately from
a uniform distribution across locations in the image outside the object bounding box, as illus-

trated in figure 5.2.



Chapter 5. Object localisation using the Generative Template of Features 78

If we have indicator functions I(x), I,(x), I(x) which are respectively one in the object
bounding box, one in the background (outside the object bounding box), and one anywhere
in the image, and which are zero elsewhere, we can declare a background feature-location

distribution

= <E+A1__ff>1(x)— Ll Ir(x), (5.5)

where A is the area of the image and Ay = 5155 is the foreground area.
To give a differentiable function we approximate /(x) /A s using the GTF’s foreground grid
of Gaussians, such that

B, 18 1-B

Pb(thWmi‘e) = (A A—Af> pb(Wmi) _A_AfAfph(Xminmi|O)7 (5.6)

where pj(Xmi, wimi|0) gives a ‘hole’ the same shape as the foreground:

P
Ph(Ximi, Wimil0) = Z P (Xmilzmis 0) P (Wi ) p(2mi) - (5.7)

Zm,':l

5.3.2 Scale model

Objects of a given class tend to be seen at a particular range of sizes in an image data set.
Photographs could be taken at any distance from an object, making the object any size in an
image, but in practice the data sets we have used generally try to include some background
scene in addition to the primary object, stopping it from filling the image, and tend not to
include objects of interest that are very small in the images.

We define the GTF template as 1 x 1 pixels, and scale it by x and y scale factors sy and s> to
fit each object bounding box. The grid of GTF component parts is also scaled by s; and s7, so
that the parts retain their positions relative to the template bounding box. The location variance
with which each part generates feature locations is scaled similarly.

To model the probability of seeing an object bounding box of a given width s; and height

s, we fit a Gaussian in log scale space:

exp7 % (Sll (10gs1 —u )2+Szz(logsz7u2)2+2812(logsl —ui )(logszfyz)) (58)

1
S1,82) =
P 2m /18]
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where u and S are the mean and the inverse of the covariance matrix of the Gaussian.

We assume that the object centre is generated uniformly across the image.

5.3.3 Mixing proportion model

We learn a model for the mixing proportion o (see equation 5.2) from the training data, pa-
rameterised by the proportion of the image area covered by the foreground object. The model,

learnt by linear regression, is of the form
o=Y—, (5.9)

where A is the area of the image.

5.4 Relation to scanning window methods

The approaches of Fergus et al. (2005a) and Sudderth et al. (2005) are closely related to the
GTF model described above.

The translation and scale invariant probabilistic Latent Semantic Analysis model used in
Fergus et al. (2005a) is similar to our grid of Gaussians model, except that it has the features
associated with each part generated within hard ‘cells’ (or box basis functions) rather than
from overlapping Gaussians, and is applied in an unsupervised learning context. Fergus et al.
(2005a) concentrate on object categorisation; the average precision scores they report for object
localisation (their Table 3) are quite poor.

The model in Sudderth et al. (2005) does use a mixture of Gaussians. They learn general
spatial offsets for the parts rather than using a grid, though note that a sufficiently fine grid
of parts can approximate the effect of any learnt part distribution. Their focus is on learning
parts which can be shared across object categories such as various kinds of animal. Our system
can learn to generate the same visual words for multiple classes, but they also use a Dirichlet
process to share part visual word distributions across multiple classes.

Fergus et al. (2005a) and Sudderth et al. (2005) carry out training using unsupervised learn-
ing, but if we have training data for each object class annotated with bounding boxes, as in the

PASCAL Visual Object Classes challenge data set! dataset, then supervised learning can be

Uhttp://www.pascal-network.org/challenges/VOC/voc2005/
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used, as described in section 6.3 below. Our experiments in Chapter 6 focus on examining the
object category localisation performance that can be achieved by a GTF trained in a supervised

manner.

5.5 Relation to making predictions in pose-space

To consider different possible object pose parameters in the localisation task, we have to com-
pute p(0|X,,, W,,). Taking logs of equation 5.1 we obtain
Non
log p(6, X, W,u) = log p(8) + Z{logp(xmi,wm,-w). (5.10)
=
As the data (X,,,, W,,) are fixed we have p(0,X,,, Wy,) &< p(0|Xns, W,), With p(Xpni, wi|0) viewed
as a function of 0. Thus the generative model can be used to hypothesize detections in 6-space
by finding the maxima of p(8|X,,,W,,), for example by hill-climbing. Such an explanation of
the probabilistic Hough transform can be found, for example, in Stephens (1991), although
without the use of specific visual word features, which provide more information and thus
tighter distributions.

To spell this out further, consider a distinctive visual word which occurs in only one position
on an object. This feature will be predictive of the location of the centre of the object, but as
it can also be generated from the background part there is also an associated broad outlier
distribution as derived from equation 5.3.

Equation 5.10 shows how to run the generative model backwards to provide predictions
in parameter space. However, given training data with features {(Xu;, wy;)} it is natural to
build predictors for p(0|X,;, wn;), for example by creating a Parzen windows estimator for
P(0]Xi, Wini). How should we then combine these predictions from each feature in order to

obtain p(6|X,,, W,,)? Fortunately Bayes’ rule comes to our aid, as

P(efxmi, Wmi)p(xmi|wmi)p(wmi)
p(6) '

Here p(0|Xui, wmi) is obtained from the predictive model, p(wy,;) is just the marginal proba-

(5.11)

p(xmiawrni’e) =

bility of visual word w,,; over the training set, and p(X;,i|w;) is the probability of seeing a
visual word of type wy,; in position Xx;. This could be estimated using a density estimator for the

location of features of a given type in the collection of training data. Alternatively, if p(8) has a
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non-informative location component, then we might expect that p(X,,|wy;) should be uniform
across locations in the image. This use of Bayes’ theorem to replace likelihood terms with
predictive distributions has been called the scaled likelihood method, see for example Morgan
and Bourlard (1995).

Putting equations 5.10 and 5.11 together we obtain

Nin
log p(8]Xn, Win) = i_leogp(G\xmi,w,m) — (N — 1) log p(8) +c, (5.12)

where ¢ is a constant independent of 6. Thus we have shown rigorously how to obtain p(6|X,, W,,)
from individual predictions p(0|X;,;, wni) up to a normalization constant. Note, however, that to
compute the marginal likelihood (equation 5.4) from equation 5.12 additional terms involving
P (Xmi|wmi) and p(wy,;) must be included.

Recently, Leibe et al. (2004) have used such ideas to predict an object’s location based

on the observed position of visual words. However, we note that the equation they use (their

equation 6), is, in our notation,
N
score,, (0) = pr(6|xml~,wm,-). (5.13)
i=1

Equation 5.13 does not at first sight agree with equation 5.1: for a start it sums probabilities

rather than multiplying probabilities or summing log probabilities. However, using equation

5.2 we have
Nm IVW
Hp Xn’llvwlm‘e H Xmquz (5.14)

1 -0
[(1 — o)™ +a(l— Nm—l ZM +0(a2) )
i—1 Pb (sz ) Wml)

If o is small and p(0) is non-informative w.r.t. location then using equation 5.11 for p ¢ (X, Wpi|0)

we obtain to first order

Xonis W
(6|Xmavvm) - CO+CI Z M f(e‘xmiywmi)7 (515)

i—1 Pb(sz, Wmt)
where ¢ and ¢; depend on the image features but not on 0, and p ¢ (Xyui, Wii) = [ P r(Xmi, Wini|0) p(8)d6.
Minka (2003) has also discussed how a robustified product of probabilities gives rise to a sum

of probabilities to first order.
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Furthermore, if p(0) has a non-informative location component then the spatial part of

P #(Xmi, wmi) will be non-informative and we can refine equation 5.15 to obtain

pf(wmi)
Pb(Wii)

where pr(w) =Y | p(w|z)p(z), the weighted average of the multinomial vectors in the fore-

N
p(e|Xman) :CO+CZZ Pf(e‘Xmi,Wmi), (5.16)
i=1

ground parts. Equation 5.16 is close to equation 5.13, though note the weighting of each pre-
dictive distribution p(8|X,,;, W) by the factor p(wmi)/ps(Wpmi). If visual word w;y,; is more
probable under the background model then its prediction will be discounted. We note that
Dorko and Schmid (2005) have discussed selecting discriminative foreground features for use
in equation 5.13, but that their criterion is based on intuitive arguments rather than on a formal

derivation.

5.6 Summary

This chapter described the Generative Template of Features model for object class recognition,
and looked at related work, including a discussion of the relationship between the GTF and
pose-clustering methods. The next chapter describes some object class recognition experiments

using the GTF.



Chapter 6

Object localisation: implementation

and results

6.1 Introduction

This chapter describes some experimental results on learning and recognising object classes,
using invariant features, with the Generative Template of Features described in chapter 5.

In the experiments in this chapter we use the data from the PASCAL 2005 Visual Object
Classes challenge' (Everingham et al., 2005). The data set consists of a large set of images,
each of which contains at least one labelled object against cluttered backgrounds of many
unlabelled objects. The labelled objects belong to four categories: bicycles, cars, motorbikes,
and people. In the first set of experiments we use the ‘train’ and ‘val’ data sets as training and
test sets respectively to see how the GTF’s performance varies with different parameter choices,
while in the second set of experiments we use ‘train’ and ‘val’ combined as a training set, and
the ‘testl’ data set as test data. Table 6.1 shows the number of training and test examples for
each class.

Note that the PASCAL data set has different properties from many other data sets used in
image classification tasks, such as the ‘Caltech 5’ data: there may be multiple objects in each
image, and there is a high degree of background clutter.

The task is to detect objects of the four categories in test images: each detection should

Uhttp://www.pascal-network.org/challenges/VOC/voc2005/
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Bicycle Car Motorbike | Person
Training 57 (63) 136 (161) | 107 (109) | 42 (81)
Validation | 57 (60) 136 (163) | 107 (108) | 42 (71)
Test 114 (123) | 275 (341) | 216 (220) | 84 (149)

Table 6.1: Number of images (and objects) for each object class in the PASCAL VOC 2005 data.

state the type of the object, as well as its position in the image and the width and height of its
bounding box. A detection is accepted as correct if the intersection between the prediction and
true object covers at least half the area of a bounding box drawn to enclose both, as in Evering-
ham et al. (2005). Each detection must be assigned a confidence value. The PASCAL challenge
uses two evaluation measures to compare object detection systems: localisation performance is
measured by average precision, while image classification performance is measured by the area
under the receiver-operating-characteristics curve. The GTF is primarily an object localisation
system, but by assigning confidences to the detections it makes we can also use it as a classifier.

Section 6.2 below describes the image features we use, explains how we cluster the features
to learn visual words, and looks at an example clustering. Section 6.3 gives some details about
the GTF implementation we have used in this chapter. Section 6.4 examines how our GTF
implementation’s performance varies with the choice of parameters, using the PASCAL Visual
Object Classes Challenge 2005 training and validation data. Section 6.5 looks in more detail at

the GTF’s performance on the challenge test data.

6.2 Learning visual words

This section describes the features we extract from the data set of images, explains how we
cluster the extracted features to learn visual words, and looks at the clusters learnt in an example

clustering.
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6.2.1 Features

We preprocess the data by scaling down larger images to fit within a 640 x 640 pixel square,
preserving their aspect ratios, and then use two interest point detectors to find the Harris affine
and maximally stable extremal regions of interest, described in sections 2.3.1 and 2.3.3 above.?

For each image we run the two region detectors, combine the lists of regions which they
find, then calculate a descriptor for each region. The detected regions can optionally have a
scaling applied before descriptor calculation. We use a 128-dimensional SIFT descriptor to
represent each region’s appearance, as described in section 2.4 above.

Figure 6.1 shows as an example how the number of regions detected within car bounding
boxes varies with the object size. It can be seen that more regions are generally detected for
bigger objects, but for some objects rather fewer regions are detected than the general trend
might suggest.

Figure 6.2 shows how the number of regions detected outside all objects in images con-
taining cars varies with the area of the image outside all objects. The sharp cut-off in the
background area is due to the down-scaling of images larger than 640 x 640. It can be seen that
very few features are detected in some large image background areas. Some images contain
large background areas without the kind of texture which triggers the region detectors we are

using.

6.2.2 Clustering

To create ‘visual words’ we cluster features from training images. We take separately the
features found within the bounding boxes of each object type, and the features found in the
background of images outside all object bounding boxes, running k-means clustering on the
descriptors for each set of features. With four object classes, we run five separate clusterings,
one for each class and one for background features, then finally combine the five sets of cluster
centres. For example, if we use k-means clustering to find 120 cluster centres for each class,
we then combine these to obtain an overall clustering with 600 cluster centres.

Each object’s k-means clustering was run 12 times, with the cluster centres which gave

2We thank the Oxford Visual Geometry Group for making their feature detector code available at http: //www.
robots.ox.ac.uk/ vgg/research/affine/.
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Figure 6.1: Number of regions detected within car bounding boxes.
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Figure 6.2: Number of regions detected in the background of images containing cars.
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the lowest mean descriptor-to-centre distances chosen to go into the final combined clustering.
On each run the cluster centres were initialised to a different randomly-chosen set of k feature
descriptors.

Figure 6.3 shows an example plot of the mean distance from each feature descriptor to its
nearest cluster centre against the number of iterations of k-means clustering. 12 runs are shown,
with only small variations in descriptor-to-centre distances between the runs. Figure 6.4 shows
the distance from each feature descriptor to its nearest cluster centre for one of these runs.

Figure 6.5 shows the foreground feature count per cluster within car training set bounding
boxes, the background feature count per cluster in training set images where cars occur, and the
foreground count as a proportion of the sum of the two counts. This proportion is the ‘purity’
of the cluster, describing how strongly cluster membership identifies a feature as foreground
rather than background, and thus how useful it is in object localisation. Since the cars are
the second object class, clusters 81-160 of the 400 are those derived from k-means clustering
of the car foreground features. These clusters have the highest counts in the foreground, and
the highest car purity, while clusters 321-400, which were derived from clustering background
features, have the highest counts in the background, and lowest purity.

Figure 6.6 shows a representative image for each cluster of a combined clustering with 80 k-
means clusters per class, giving a total of 400 clusters. For each cluster, the image region whose
SIFT descriptor is nearest the cluster centre is displayed, rotated and scaled from the original
image region to a fixed-size square image. The images are shown sorted by the clusters’ purity
for the car class, left-to-right, top-to-bottom.

Figure 6.7 shows the clusters in the same order, choosing the representative images from
car foreground regions only. By comparing these two figures it can be seen how some car
features are matched to less specific clusters.

Using the same clustering, Figure 6.8 shows the 12 highest purity clusters for the car class.
The features from the training set cars which match to each cluster are shown, with each region
represented by a scaled image of the region contents displayed at the region centre’s position
in a normalised object bounding box. Normalising the object bounding boxes to a unit square
brings the objects into approximate correspondence, although the objects vary in shape, their

pose is not fully labelled, and the bounding boxes sometimes exclude parts of objects that are
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occluded or extend outside the image.

The highest-purity clusters largely correspond to wheel-like features, which are rarely
found in the background. These features tend to occur towards the bottom left and bottom
right of the bounding box. Note that the multi-scale character of the features in use means
that some features describe large regions of objects, such as a wheel in context with the car
bodywork, or even an entire car. Features belonging to the same cluster may look dissimilar,
since cluster membership is based on distance in SIFT descriptor space rather than on direct
comparisons between image patch appearances.

As a comparison Figure 6.9 shows the lowest-purity clusters for the car class. These clus-
ters match the car foreground fewer times than the high-purity clusters, and do not correspond

to readily-identifiable parts of cars.

6.3 GTF implementation

This section gives some details about the GTF implementation used in the experiments later in
this chapter.

We used a GTF with a grid of 8 by 8 Gaussian components for the GTF parts. x and y scale
factors s1 and s, are used to bring the template into registration with objects in training images,
and to fit it to object instantiation hypotheses in test images. For any given object centre and
scale factors we can translate and scale the template and its component Gaussians to calculate
(0, X, Wy,), where 0 = (t1,12,51,52).

To search for 8 to optimize p(X,,, W,,|0), we initially carry out a grid search on a coarse
grid of positions at a number of scales, and then use hill-climbing to refine 6. The scales for
grid search are chosen based on the range of scales seen in the training data, with a factor
of v/2 between each scale. Figure 6.10 shows the scales of the training example cars (blue
dots), and the scales chosen for the grid search (green circles). The grid for the search at each
selected scale is given by tiling the image with object hypotheses of that scale. We then use the
maximum probability object centres found at the various scales as initialisations for gradient
ascent. Expectation maximisation could also be used here. We perform gradient ascent in a

four dimensional space, searching on location (¢; and #,) and scale (s; and s;). After finding a
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local maximum from each scale, we use the Laplace approximation to compare the probability
mass in each corresponding region, and choose the maximum corresponding to the region with
highest mass as the best detection for the image. The partial derivatives used in gradient ascent
and in the Laplace approximation are given in appendix A.

In general learning the GTF requires estimation of the distributions p(z), p(x|z) and p(w|z)
for each part. However, we use a spatial grid of Gaussians for p(x|z), so this part is fixed. Given
training images for each object class annotated with bounding boxes we can use supervised
learning to estimate p(w|z). Each bounding box for a given object class is rescaled so as to be
centered and have the same area as the template. (We use separate x and y scaling factors, so
the rectangular bounding boxes can be brought into perfect alignment.) Given these aligned
data it is straightforward to learn the parameters of the template by EM. Since we keep the
background model’s uniform distribution mixing proportion, 3, small (see section 5.3.1), we

can learn the foreground and background visual word distributions separately, using training



Chapter 6. Object localisation: implementation and results 97

features from only inside or only outside bounding boxes appropriately, making training much

faster. p(w|z) is found by the following update equation:

N/71 b
_ o Am/lzl Zi:l p<Zmi - J‘Xmi’Wmi)S(Wmi = (1)
pw=dlz=j) < Ta— - :
m=1 Zi:] p(Zmi = J|Xmi’ Wmi)

(6.1)

Figure 6.12 illustrates a trained 600-cluster 8 x 8 GTF for each object class, by showing
the three visual words most strongly associated with each component part (highest p(z|w);
sorting by p(w|z) favours frequently-seen uninformative visual words). A representative image
is chosen for each visual word from the foreground for the object class in question. The bicycle
GTF shows a variety of wheel features all over the template, as bicycles are seen in many
different poses in the training images, from diverse viewpoints. For the car GTF various wheel
features can be seen at the bottom left and bottom right of the template. Wheel and handlebar
features can be seen on the motorbike GTF. The person GTF shows some face features near the
top of the template, and foot features at the bottom.

As described in section 5.3.3, the foreground mixing proportion  is set according to what
proportion of the image is filled by the object. Figure 6.11 plots the the the number of regions
in the object bounding box as a proportion of the total number of regions in the image (the true
mixing proportion) against the object area as a proportion of the total image area, and shows
the line o0 = y°L2.

As described in section 5.3.2, the probability of a scale (sy,s2) for p(0) is given by a
Gaussian fitted to the object scales seen for the relevant class in the training data. The red
ellipse in Figure 6.10 shows this Gaussian scale model learnt from the car training examples.
There is a uniform prior over translations within the image.

To generate precision-recall curves we need to assign a confidence to each hypothesis. We
set this confidence value based on the ratio between the probability of the hypothesis under
the fitted GTF model and its probability under a GTF where the foreground and background
components share the same ‘background’ visual word distribution. Making this comparison
between the probability under class and non-class models prevents the confidence values being
dominated by the probability assigned to the locations of the image features. We find the log

of the ratio of the probabilities, then set the confidence to its average per region of interest, to

allow a fair comparison between images where different numbers of regions are detected.
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Bicycle:

Car:

Figure 6.12: Visual words most strongly associated with the component parts of example 600-

cluster GTFs. Each GTF has an 8 x 8 grid of component parts.
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bicycle car | motorbike | person

AP | 0.268 | 0.472 0.743 | 0.030
AP2 | 0.493 | 0.488 0.865 | 0.034
AUC | 0.817 | 0.937 0.902 | 0.797
AUC2 | 0.935 | 0.939 0.985 | 0.846
recall 44 95 99 6
objects 60 163 108 71
images 57 136 107 42

_— : . 2 .
Table 6.2: Validation data performance evaluation of 8 x 8 GTF, variance = (%) , region scale
factor = 1, 120 clusters per class.

As in Everingham et al. (2005), the performance of each object category detector is mea-
sured by calculating the average precision (AP) and the area under the receiver-operating-
characteristics curve (AUC), for detections made on the whole set of test images, including
images where there is no object of the given category. The average precision here is the mean
precision at a set of 11 equally-spaced recall levels. The AP evaluates object detection and
localisation performance, while the AUC evaluates image classification performance.

In the experiments below we only look for a single object in each image. Higher recall

could be achieved by allowing multiple detections per image.

6.4 Choice of GTF parameters

This section looks at how the GTF performance varies with the choice of parameters, using the
PASCAL Visual Object Classes Challenge 2005 training and validation data.

Table 6.2 shows evaluation scores for the performance of four GTF object category de-
tectors trained using the same parameter settings. The AP and AUC rows give the average
precision and area under the ROC curve. A GTF with 8 x 8 component parts was used, with
each part generating feature locations from a Gaussian with variance (%)2. The image regions
were left at their detected scales, and visual words were created with 120 clusters for each of
the four classes and 120 for background features.

The AP2 and AUC2 rows make the assumption that there is only one class of object present

in the image, and compare each model’s output against the maximum output from the other

class models on the same image. Since in the PASCAL 2005 Visual Object Classes data there
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Figure 6.13: Precision-recall curves for GTF as in Table 6.2, as summarised in AP2 scores.
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are relatively few images with more than one object, this increases performance in all cases
except when the model for the class in question is much better than the other classes’ models.

The recall row shows the number of images where the chosen bounding box prediction
corresponded to a true object of the class in question. Since we only make one detection
per image, the maximum number of objects we could detect would be the number of images,
while the maximum AP score we could achieve would be the number of images divided by the
number of objects, if we detected this proportion of the objects with precision one.

The AP and recall numbers in Table 6.2 show that the best detection performance is achieved
for the motorbikes, with the cars then bicycles following, and only a few good detections are
made for the people. The AP2 scores show an improvement from taking the other class detec-
tors into account; once this is done, the bicycles overtake the cars in detection performance.
Figure 6.13 shows the precision-recall curves for these AP2 numbers.

The AUC numbers show that the best classification performance is achieved for the cars,
followed by the motorbikes, the bicycles and then the people. When the other class detectors
are taken into account in the AUC2 numbers, the motorbikes overtake the cars. The classifi-
cation performance for the people is relatively good compared to the localisation performance
for that class: even when the predicted bounding box is too inaccurate to meet the detection
criterion, the visual words present in the image sometimes allow a correct classification to be
made. Figure 6.14 shows the ROC curves for these AUC2 numbers.

Figures 6.15, 6.16, 6.17 and 6.18 show the highest-confidence images for the four AUC2
classifiers. The blue rectangles show the bounding boxes annotations from the data set, while
the red rectangles show the bounding box prediction for each image from the object detector
in question. The yellow dots show feature locations. All of the top detections for cars and
motorbikes are correct. There is one incorrect bicycle detection, for an image where the only
relevant object present (a car) is very small in the image, and where few features were detected.
Three of the six highest-confidence images for the person classifier contain people, but in only
one of these is the predicted bounding box accepted as correct.

Table 6.3 shows the effect of changing the scale factor applied to the regions of interest
before clustering regions to create visual words. For the bicycles and motorbikes there is some

benefit from expanding the regions by a scale factor of two or three, but the car detector AP
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Figure 6.15: Highest-confidence images for bicycle classifier for GTF as in Table 6.2.
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Figure 6.16: Highest-confidence images for car classifier for GTF as in Table 6.2.
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Figure 6.17: Highest-confidence images for motorbike classifier for GTF as in Table 6.2.
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Figure 6.18: Highest-confidence images for person classifier for GTF as in Table 6.2.
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Region scale factor = 0.5:

bicycle car | motorbike | person

AP 0.167 | 0.391 0.560 | 0.030

AP2 0.383 | 0.383 0.747 | 0.002

AUC 0.723 | 0.907 0.828 | 0.746

AUC2 0.899 | 0.857 0.952 | 0.808

recall 42 85 97 3

Region scale factor = 0.75:

bicycle car | motorbike | person

AP 0.249 | 0.380 0.657 | 0.035

AP2 0.459 | 0.392 0.778 | 0.052

AUC 0.838 | 0.928 0.895 | 0.779

AUC2 0.945 | 0.926 0984 | 0.869

recall 41 82 97 8
Region scale factor = 1:

bicycle car | motorbike | person

AP 0.268 | 0.472 0.743 | 0.030

AP2 0.493 | 0.488 0.865 | 0.034

AUC 0.817 | 0.937 0902 | 0.797

AUC2 0.935 | 0.939 0.985 | 0.846

recall 44 95 99 6
Region scale factor = 2:

bicycle car | motorbike | person

AP 0.311 | 0.353 0.812 | 0.012

AP2 0.522 | 0.371 0.903 | 0.045

AUC 0.836 | 0.957 0.929 | 0.761

AUC2 0.942 | 0.956 0.991 | 0.894

recall 45 81 102 6

Region scale factor = 3:

bicycle car | motorbike | person

AP | 0.309 | 0.352 0.822 | 0.006
AP2 | 0.507 | 0.372 0.904 | 0.045
AUC | 0.811 | 0.961 0.935 | 0.724
AUC2 | 0.934 | 0.965 0.995 | 0.907
recall 43 81 102 5

Table 6.3: Effect of changing region scale factor (8 x 8 GTF, variance = (%)2 120 clusters per

class).
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and AP2 numbers drop significantly when this is done. Reducing the regions to three quarters
of their original size improves the person detector performance slightly, but given the poor
overall performance of this classifier, this improvement may be due to chance. The overall
recall numbers are best when the regions are left at their originally-detected scales.

Table 6.4 shows the effect of changing the number of clusters used to create visual words.
Initially increasing the number of clusters increases performance significantly for the bicycle
and car detectors, although classification performance does not vary greatly. By 160 clusters
per class (800 clusters in total) the bicycle and car detectors’ performance drops off. Initially
there is a localisation benefit from having more specific clusters, but if there are too many
clusters then there are not enough examples for each cluster to maintain performance levels.
The overall recall numbers are best with 120 clusters per class.

Table 6.5 shows the effect of changing the variance used in the Gaussians p(x|z) in the GTF.
Too small a variance performs badly, but there is comparatively little difference between the
results for the final three variance settings. Different class detectors perform best at different
variance settings.

Table 6.6 shows the effect of changing the size of the grid of component parts used in
the GTF. The classification performance does not vary greatly across the different GTF sizes.
Localisation performance seems to improve with GTF size, though it falls for the cars with the
12 x 12 GTE.

Table 6.7 compares the performance of the GTF examined above with that achieved by two
variations on the model. The first comparison is with a GTF which has a single foreground
distribution shared by all the component parts, instead of having p(wy,;|z;) learnt separately
for each part. The performance on the people does not change greatly. The classification
performance for the other three classes falls. The localisation performance for the cars and
motorbikes falls significantly, with the recall level for the cars almost halving. The bicycle
localisation performance actually improves: this is probably because we have a fairly small
training data set, while bicycles are locally quite similar all over.

The second comparison in Table 6.7 is with a GTF with the distribution over background
feature locations pp(x) is uniform across the whole image, instead of the background feature

location distribution described in section 5.3.1 which has a ‘hole’ the same shape as the fore-
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10 clusters per class:

bicycle car | motorbike | person

AP | 0.251 | 0.276 0.700 | 0.095

AP2 | 0.465 | 0.274 0.847 | 0.034

AUC | 0.773 | 0.870 0.865 | 0.793

AUC2 | 0.926 | 0.888 0.978 | 0.866

recall 43 62 99 8
20 clusters per class:

bicycle car | motorbike | person

AP | 0.375 ] 0.348 0.698 | 0.023

AP2 | 0.515 | 0.345 0.849 | 0.021

AUC | 0.830 | 0.879 0.872 | 0.754

AUC2 | 0.934 | 0.894 0.974 | 0.842

recall 44 71 99 8
40 clusters per class:

bicycle car | motorbike | person

AP | 0.349 | 0.393 0.699 | 0.032

AP2 | 0.574 | 0.384 0.855 | 0.040

AUC | 0.835 | 0.908 0.874 | 0.763

AUC2 | 0.934 | 0.913 0.980 | 0.861

recall 44 76 99 11
80 clusters per class:

bicycle car | motorbike | person

AP | 0.323 | 0435 0.764 | 0.091

AP2 | 0.467 | 0.441 0.862 | 0.045

AUC | 0.835 | 0.943 0.918 | 0.768

AUC2 | 0.934 | 0.946 0.988 | 0.853

recall 41 88 100 6
120 clusters per class:

bicycle car | motorbike | person

AP | 0.268 | 0.472 0.743 | 0.030

AP2 | 0.493 | 0.488 0.865 | 0.034

AUC | 0.817 | 0.937 0.902 | 0.797

AUC2 | 0.935 | 0.939 0.985 | 0.846

recall 44 95 99 6
160 clusters per class:

bicycle car | motorbike | person

AP | 0.256 | 0412 0.781 | 0.045

AP2 | 0.458 | 0.407 0.874 | 0.016

AUC | 0.822 | 0.945 0913 | 0.803

AUC2 | 0.923 | 0.948 0.985 | 0.880

recall 41 87 100 5

Table 6.4: Effect of changing number of clusters per class (8 x 8 GTF, variance = (%)2 region-

scale = 1).
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Variance = (%)2 X %:
bicycle car | motorbike | person
AP | 0.157 | 0.358 0.716 | 0.018
AP2 | 0.347 | 0.382 0.852 | 0.023
AUC | 0.764 | 0.930 0.874 | 0.800
AUC2 | 0913 | 0917 0.979 | 0.799
recall 37 77 99 2

Variance = (%) 2:

bicycle car | motorbike | person

AP | 0.268 | 0472 0.743 | 0.030
AP2 | 0.493 | 0.488 0.865 | 0.034
AUC | 0.817 | 0.937 0.902 | 0.797
AUC2 | 0.935 | 0.939 0.985 | 0.846
recall 44 95 99 6

Variance = (%)2 X 2:

bicycle car | motorbike | person

AP | 0.360 | 0.480 0.765 | 0.055
AP2 | 0.558 | 0.486 0.873 | 0.048
AUC | 0.863 | 0.950 0914 | 0.812
AUC2 | 0.948 | 0.950 0.987 | 0.886
recall 46 92 100 10

Variance = (%)2 X 3:

bicycle car | motorbike | person

AP | 0.346 | 0.466 0.753 | 0.056
AP2 | 0.520 | 0.487 0.855 | 0.055
AUC | 0.878 | 0.953 0914 | 0.825
AUC2 | 0947 | 0.954 0.985 | 0.897
recall 44 91 99 11

Table 6.5: Effect of changing variance (8 x 8 GTF, region scale factor = 1, 120 clusters per

class).
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4 x4 GTF:
bicycle car | motorbike | person
AP | 0.293 | 0.453 0.741 | 0.030
AP2 | 0.564 | 0.463 0.860 | 0.030
AUC | 0.823 | 0.941 0.892 | 0.795
AUC2 | 0.928 | 0.939 0.974 | 0.851
recall 48 91 99 6
6 x 6 GTF:
bicycle car | motorbike | person
AP | 0.276 | 0.448 0.754 | 0.030
AP2 | 0.509 | 0.460 0.874 | 0.045
AUC | 0.828 | 0.943 0.905 | 0.802
AUC2 | 0.942 | 0.940 0.985 | 0.844
recall 45 89 100 4
8 x 8 GTF:
bicycle car | motorbike | person
AP | 0.268 | 0.472 0.743 | 0.030
AP2 | 0.493 | 0.488 0.865 | 0.034
AUC | 0.817 | 0.937 0.902 | 0.797
AUC2 | 0.935 | 0.939 0.985 | 0.846
recall 44 95 99 6
10 x 10 GTF:
bicycle car | motorbike | person
AP | 0.290 | 0.479 0.746 | 0.030
AP2 | 0.512 | 0.490 0.865 | 0.019
AUC | 0.822 | 0.938 0.902 | 0.806
AUC2 | 0.939 | 0.939 0.986 | 0.840
recall 44 97 99 6
12 x 12 GTF:
bicycle car | motorbike | person
AP | 0.290 | 0.469 0.747 | 0.030
AP2 | 0.553 | 0.487 0.875 | 0.036
AUC | 0.824 | 0.943 0.901 | 0.803
AUC2 | 0.940 | 0.941 0.985 | 0.854
recall 46 95 100 7

Table 6.6: Effect of changing GTF size (variance = (%)2 region scale factor = 1, 120 clusters

per class).
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Results as in Table 6.2 above:

bicycle car | motorbike | person

AP | 0.268 | 0472 0.743 | 0.030
AP2 | 0.493 | 0.488 0.865 | 0.034
AUC | 0.817 | 0.937 0.902 | 0.797
AUC2 | 0.935 | 0.939 0.985 | 0.846
recall 44 95 99 6

Single share

d foreground distribution:

bicycle car | motorbike | person

AP | 0.345 | 0.224 0.667 | 0.032

AP2 | 0498 | 0.213 0.767 | 0.022

AUC | 0.883 | 0.898 0.893 | 0.801

AUC2 | 0915 | 0913 0.954 | 0.848

recall 45 50 99 9
Uniform background model:

bicycle car | motorbike | person

AP | 0.278 | 0.350 0.712 | 0.010

AP2 | 0.432 | 0.349 0.794 | 0.004

AUC | 0.846 | 0.909 0.899 | 0.757

AUC2 | 0.922 | 0.921 0.981 | 0.839

recall 39 67 96 2
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Table 6.7: Comparison of the performance of the GTF as in Table 6.2 with variations on the

model.
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bicycle car | motorbike | person

AP | 0.265 | 0411 0.760 | 0.014
AP2 | 0.467 | 0.422 0.888 | 0.030
AUC | 0.855 | 0.936 0.908 | 0.822
AUC2 | 0.966 | 0.943 0.995 | 0.890
recall 75 176 205 13
objects 123 341 220 149
images 114 275 216 84

Table 6.8: Test data performance evaluation of 8 x 8 GTF, variance = (é)2 region scale factor

=1, 120 clusters per class.

ground bounding box. The classification performance and AP2 numbers fall for all the classes.
The recall levels fall, most notably for the cars. With the uniform background model, the car
predictions tend to expand to cover adjacent background features, whereas with the model we
use elsewhere assigns a lower probability to background features within the object bounding

box hypothesis.

6.5 Test data performance

This section looks in more detail at the GTF’s performance on the PASCAL Visual Object
Classes Challenge 2005 test data. We use a single set of parameters, chosen from inspection
of the above validation data results, with the aim of finding a compromise which gives good
localisation performance for all the object categories: we leave the regions at their original
scales, find 120 clusters per class, set the variance of the Gaussians p(x|z) to (%)2, and use an
8 x 8 grid of GTF component parts.

Table 6.8 shows evaluation scores for the performance on the PASCAL test data of four
GTF object category detectors trained with the same parameters on the combined training and
validation data. The AP scores for all the classes except the motorbikes are worse than the
validation data ones shown in Table 6.2, suggesting that the test data set is slightly harder
than the validation data for localisation. The AUC scores for classification are higher than for
the validation data, suggesting that here the increased amount of training data is increasing
performance.

Figures 6.19 and 6.20 show the precision-recall and ROC curves corresponding to the AP2
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Figure 6.19: Precision-recall curves for GTF as in Table 6.8.

and AUC2 numbers in the Table. The ROC curves make clear that there is a large variation
in classification performance across the classes, with the motorbike classifier by far the best,
then the bicycle classifier, then the car classifier, with the person classifier significantly worse
again. The precision-recall curves for the bicycle and car detectors show a similar fall-off to
different recall levels. As well as reaching a much higher recall, the precision curve for the
motorbike classifier remains much flatter, at a high precision level, until its final rapid fall. The
precision-recall curve for the person detector shows that only a few people are found, with a
low level of precision.

Figures 6.21, 6.22, 6.23 and 6.24 show the highest-confidence images with correct detec-
tions for each classifier. These figures illustrate what each class detector finds easiest. For the

cars and motorbikes, these are all unoccluded side-views; for the motorbikes they also have
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Figure 6.20: ROC curves for GTF as in Table 6.8.
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Figure 6.21: Highest-confidence images with correct detections for bicycle classifier for GTF as

in Table 6.8.
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Figure 6.22: Highest-confidence images with correct detections for car classifier for GTF as in

Table 6.8.
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Figure 6.23: Highest-confidence images with correct detections for motorbike classifier for GTF
as in Table 6.8.
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Figure 6.24: Highest-confidence images with correct detections for person classifier for GTF as

in Table 6.8.
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plain backgrounds. The bicycles are all fairly large in their images, with both wheels clearly
visible. The people are also comparatively large in their images, and are dark against light-
coloured backgrounds.

Figures 6.25, 6.26, 6.27 and 6.28 show the lowest-confidence images with correct detec-
tions for each classifier. These figures illustrate the limits of the capabilities of each class
detector. Three of the bicycles are seen from oblique angles, showing a smaller surface area
than a side-view and with fewer typical bicycle features visible. One bicycle has an unusual
type of wheels, one is partly outside the image, and one is against railings, which make the
local features harder to recognise as bicycle ones. The cars are comparatively small in their
images; one of the cars is seen in a three-quarters view, while one is occluded by a lamp-post.
Both the car and motorbike images here include vegetation and buildings in their backgrounds,
presenting distracting background texture. The people are comparatively small in their images;
they wear clothing that gives less contrast to the background, and in two of the images there
are multiple people.

Figures 6.29, 6.30, 6.31 and 6.32 show the highest-confidence images with incorrect de-
tections for each classifier. These figures illustrate what confuses each classifer. One of the
images for the bicycle classifier is a spurious detection, as are two of the images for the mo-
torbike classifier, and two of the images for the person classifer. The other bicycles are seen in
unusual poses or from unusual viewpoints, or in one case only one wheel is visible in the im-
age. For the rear-view bicycle the contents of the predicted bounding box do look like a bicycle
by themselves, while in the case where only one wheel is visible the predicted bounding box
would make sense if the bicycle was facing the other direction, with the rest occluded by the
bushes rather than outside the image; in the other three bicycle images the predicted bounding
box is in the right area of the image, but insufficiently accurate. All of the highest-confidence
incorrect car detections, and two of the highest-confidence incorrect motorbike detections, are
images where there are multiple objects of the class at similar scales, a case not dealt with
by our implementation of the model. In one of the motorbike images a dark group of peo-
ple behind the motorbike has been treated as an extension of the object, making the predicted
bounding box insufficiently accurate. In the highest-confidence person images there are several

insufficiently-accurate localisations where a head- or torso-sized bounding box prediction has
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Figure 6.25: Lowest-confidence images with correct detections for bicycle classifier for GTF as

in Table 6.8.
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Figure 6.26: Lowest-confidence images with correct detections for car classifier for GTF as in

Table 6.8.
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Figure 6.27: Lowest-confidence images with correct detections for motorbike classifier for GTF

as in Table 6.8.
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Figure 6.28: Lowest-confidence images with correct detections for person classifier for GTF as
in Table 6.8.
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Figure 6.29: Highest-confidence images with incorrect detections for bicycle classifier for GTF

as in Table 6.8.
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Figure 6.30: Highest-confidence images with incorrect detections for car classifier for GTF as in

Table 6.8.
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Figure 6.31: Highest-confidence images with incorrect detections for motorbike classifier for

GTF as in Table 6.8.
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Figure 6.32: Highest-confidence images with incorrect detections for person classifier for GTF

as in Table 6.8.
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bicycle car | motorbike | person

bicycle car | motorbike | person

AP | 0.547 | 0.775 0.823 | 0.345
AP2 | 0.766 | 0.781 0.897 | 0.455
AUC | 0.859 | 0.970 0.929 | 0.877
AUC2 | 0.962 | 0.975 0.992 | 0.938
recall 114 275 216 84
objects 123 341 220 149
images 114 275 216 84

Table 6.9: Classification-only test data performance evaluation of 8 x 8 GTF, variance = (%)2

region scale factor = 1, 120 clusters per class.

been made although more of the person is in fact visible in the image.

Table 6.9 shows the evaluation scores obtained when the true object locations are used
instead of predicted object locations. This isolates classification from localisation. Since the
overall system is not changed, we still only make one object detection per image. The AP
and AP2 numbers improve significantly due to the higher recall level from using the true object
locations. The AUC and AUC2 numbers are slightly improved. The classes where our detection
performance is worse improve more: the scores improve least on motorbikes, and most on
people.

Figure 6.33 shows p(0|X,,,W,,) for some example images, scanning the object hypothe-
sis centre across the image while keeping the object hypothesis scale fixed at the true object
size. The pixel intensities represent the log probability for each location, normalised to use the
whole range of intensities from full black to full white. The motorbike example shows a clear
distinction between class and non-class features, so that the probability density is a roughly
Gaussian blob around the true object location. The bicycle and car examples show significant
noise in textured regions of the background, though the true object position can still be clearly
seen. The person example has the highest relative probability level in the background, as some
of the background texture such as the window shutters on the building match quite well with
the person GTF.

Figure 6.34 compares p(0|X,,, W,,) under each of the four class GTFs for the bicycle image
from Figure 6.33. The four plots are shown using the same intensity scale. The probability

mass for the correct object class’s GTF is more concentrated than the other classes’, as well as
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Figure 6.33: Example probability surface for each class GTF as in Table 6.8. Top to bottom:

bicycle, car, motorbike, person.
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Bicycle GTF: Car GTF:

Motorbike GTF: Person GTF:

Figure 6.34: Example probability surfaces for bicycle image from Figure 6.33, for each class

GTF as in Table 6.8.



Chapter 6. Object localisation: implementation and results 132

this class distribution’s peak being higher than the others’.

Figure 6.35 compares p(6|X,,,W,,) as the scale of the object hypothesis changes, for the
bicycle image as in Figures 6.33 and 6.34. Each plot shows the probability distribution across
the image for an object hypothesis based on the true object bounding box’s proportions, but
scaled by some factor in x and y. The four plots are shown using the same intensity scale.
There is a higher probability across the image at the correct object scale than for the smaller or
larger object hypotheses. A maximum is visible at the true object location in each of the plots,
but in the plots for smaller object hypotheses there are an increasing number of local maxima,
as it is easier for the image background to match the learnt GTF when it is examined at smaller
scales.

Figure 6.36 shows p(6|X,,,W,,) for two example images with multiple objects. The two
cars in the first image are in fact clearly visible in the plot of the probability distribution, and
multiple maxima are visible for the image with people. This suggests that even without extend-
ing the model search to deal with multiple objects, a ‘greedy’ approach that removed image
features responsible for a detection and searched again could find some additional objects and
increase performance.

Figure 6.37 compares p(0|X,,, W,,) for a number of object hypothesis scales, for the highest-
confidence car image with an incorrect detection, the first in Figure 6.30. The top left plot
shows the location probability distribution for the scale of the left-hand car, 132 x 53. As in
the example in Figure 6.36, both cars are clearly visible; a lower peak can also be seen midway
between the two cars, for a hypothesis which uses the back wheel of the first car and the front
wheel of the second. Unlike the example in Figure 6.36, where a correct localisation was made,
the global maximum for this image corresponds to a stretched bounding box of 365 x 35, much
wider than, and less tall than the true objects. The plot for this scale is shown at the bottom
right. Here the maximum probability location is between the two cars, with the bounding box
now including both cars, as shown in Figure 6.30.

Table 6.10 compares the AP and AUC performance of the GTF as in Table 6.8 with the per-
formance achieved by other methods. The Table includes AP and AUC scores for the Darmstadt
ISM entry in the Visual Object Classes challenge, and for the best entry for each class in each

category, taken from Everingham et al. (2005). The ISM result is included as it is the method
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Figure 6.35: Example probability surfaces at various hypothesis scales for bicycle image from

Figure 6.33, for GTF as in Table 6.8.
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Figure 6.36: Example probability surfaces for car and person GTFs as in Table 6.8.

bicycle car | motorbike | person

GTF AP2 | 0.467 | 0.422 0.888 | 0.030

ISM AP — | 0.468 0.865 —

best PASCAL AP | 0.119 | 0.613 0.886 | 0.013
GTF AUC2 | 0.966 | 0.943 0.995 | 0.890

ISM AUC — | 0.578 0.919 —

best PASCAL AUC | 0.982 | 0.992 0.998 | 0.979

Table 6.10: Comparison of performance of GTF as in Table 6.8 with other

mance.

methods’ perfor-
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132 x 53 (true object scale) 365 x 53
132 x 35 365 x 35 (detected scale)

Figure 6.37: Example probability surfaces at various hypothesis scales for highest-probability

car image from Figure 6.30, for GTF as in Table 6.8.
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in the challenge most similar to the GTF.

For object detection and localisation, as measured by average precision, the GTF beats all
the methods from the challenge on the bicycle, motorbike and person classes. On the cars,
the class where we lose most from not dealing with multiple objects per image, we have a
performance level similar to the ISM.

The GTF is primarily a detection method, and its classification performance, as measured
by the area under the ROC curve, is less competitive. It performs better than the ISM, but
is beaten by support vector machine-based bag-of-features methods. The GTF parameters we
have been using here were chosen primarily to give good localisation performance; further
exploration of the GTF parameter space would give improved classification results.

Both the AP and AUC scores here could be improved by optimising the parameters for
each class GTF separately, rather than using the same compromise GTF parameters for all four

classes, and by optimising the parameters for AUC separately from AP.



7.1

Chapter 7

Discussion and future work

Summary

This section summarises the contributions of this thesis:

e We developed a method for learning object motions from image sequences. The se-

quence RANSAC algorithm uses invariant features to learn object motions much more

quickly than by searching over transformations using pixel information.

We showed how to combine the sequence RANSAC algorithm with a pixel-based ob-
ject model to learn appearance models for objects, and analysed the performance of the
combined system, showing that it successfully learnt sprites and masks for the objects in

example sequences.

We described the Generative Template of Features model, and showed how it can be used
to recognise and localise object classes, from invariant features clustered into ‘visual

words’. The relationship of the GTF to making predictions in pose-space was explained.

We examined the behaviour of the GTF in response to parameter changes, and assessed
its performance on the PASCAL Visual Object Classes Challenge data, showing that it

achieves results competitive with other state-of-the-art methods.

137
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7.2 Future work

This section sets out some directions for future work.

7.2.1 Image features

Using more informative features could give improved performance to both the object learning
and the object category recognition methods we have described. Better feature sets might sim-
ply consist of more features, might use additional information, or might give feature descriptors
better suited to the particular task. While image features need to be invariant across a range of
transformations and lighting changes to be useful for sprite learning or object category recog-
nition, it is possible that better performance would be given with a lower degree of invariance
than provided by the features used above: for example in our object category recognition data
no objects appear upside-down, so matching image regions with opposite orientations may be
counterproductive.

An increased number of features slows down processing, but in general provides additional
information and allows increased accuracy. An alternative to detecting regions of interest for
object category recognition would be to sample image regions densely (see Nowak et al., 2006):
even textureless areas of the image may be informative about the presence or absence of an
object there.

One possible source of additional information that would almost certainly improve perfor-
mance for both sprite learning and object category recognition is colour. We have used only
greyscale information in feature extraction but, for example, van de Weijer and Schmid (2006)
proposed extensions of the SIFT descriptor that use colour as well as texture, and showed
that augmenting region descriptors with colour information can make feature matching more
reliable.

There are many alternative feature descriptors to the SIFT descriptor we have used in our
experiments, such as the shape context descriptor (Mori et al., 2005). It would be possible
to optimise the choice of feature descriptor for a particular task, whether by adjusting the
parameters of a single descriptor type to improve the performance of the overall system, or by

comparing the system’s performance with competing descriptor types.
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7.2.2 Fast learning of sprites

The sequence RANSAC algorithm could be made more robust by avoiding the need to choose
a fixed error threshold to be used in judging whether features belong to the same motion group-
ing. Instead it might be possible to automatically determine an error threshold for each motion
grouping based on the motion variance distribution.

Rather than extracting only a single sprite for each object, we could extract a number
of representative sprites, by clustering different views. This would be especially useful for
longer sequences of images, where objects are more likely to undergo motion that cannot be
adequately modelled as transformations of a single flat sprite.

Individual objects’ appearance many vary considerably across scenes. Many objects’ inter-
nal variability can be viewed in terms of connected ‘parts’ — for example, the limbs of a person.
Modelling parts, rather than having a single geometric model for each object, would allow
more complex object behaviour to be dealt with. For example, Felzenszwalb and Huttenlocher
(2000, 2005) used ‘pictorial structure models’ to model the connected parts of objects, such
as eyes, noses and the corners of the mouth in faces, representing an object as a collection of
parts, related to each other in an acyclic graph. Titsias and Williams (2004) learn parts in an
unsupervised manner, in the same way that they previously modelled entire objects, allowing
overlapping parts to occlude each other. They demonstrate that their model can learn the mask

and appearance for individual limbs from an example video sequence.

7.2.3 Object localisation

The GTF’s performance could be improved by learning multiple aspects for each class, rather
than combining all views of a class into a single GTF as we do here (see for example Seemann
et al., 2006). For example, we could learn separate visual word distributions for front, side,
and rear views of cars. It would also be possible to alter the GTF to use a 3D geometric model,
either with additional annotation data or with unsupervised learning of the 3D object poses.

It is straightforward to extend the Generative Template of Features model to allow multiple
objects. One way to handle multiple objects in a scene is to follow the treatment of Sudderth
et al. (2005). They extend 0 to hold the instantiation parameters for each object, and define

mixing proportions for each object and the background. This approach ignores occlusion, but
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it would be quite straightforward to use a layered model and to reason about occlusion so as to
only generate from visible components. Alternatively, we might expect that individual models
could be run to find good regions of 8-space for the given model, and that the robust background
model would explain features from other objects. This parallels the work of Williams and
Titsias (2004) where such an approach was used to propose good locations for sprite models
individually, and a layer ordering was determined in a second pass. Extending the model to
allow multiple objects directly makes the search space much larger, but object detection can
be sped up by using a greedy approximation to this model: we can start by searching for a
single object, then discount image features which have been used in the foreground of the first
detection and search again.

It would be interesting to make a direct experimental comparison to investigate how well
the approximation we derive in equation 5.16 agrees with equation 5.13 as used in Leibe et al.
(2004), using precisely the same feature information in both cases.

The GTF’s performance could be improved by using additional contextual information
from the rest of the image. The GTF can already use a class-specific background model, but
this model is a ‘bag of words’ within the background area of the image, without any geometric
model. This can be compared with, for example, the approach of Murphy et al. (2004) which
links object category appearance to a global scene ‘gist’: particular object types are more
likely to be seen in some locations than in others. Hoiem et al. (2006) use a geometric model
for the relationship of objects in a scene, considering whether possible object detections in
an image are at plausibly-consistent scales based on the distance of their locations below the
labelled horizon. Even if we do not have an annotation labelling the horizon, Saxena et al.
(2006) demonstrated that reasonable depth-maps can be recovered from single-view images
using monocular cues such as the distribution of edge directions.

Finally, it would be possible to combine the GTF with an object learning method to detect
and classify moving objects in video, using together cues from how feature motions cluster,

from visual word distributions, and from object geometry.
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Partial derivatives for GTF model

We can improve an object hypothesis by using gradient ascent to optimise its location and scale
0 = (t1,12,51,52). This appendix gives the partial derivatives needed to perform this gradient
ascent efficiently. Since only one object class model is considered during gradient ascent, we
omit the conditioning of the probabilities below on the object class O;.

For a particular position and scale choice, the joint probability of the object hypothesis,

feature locations X, and the corresponding visual words W, is as given above:

N
p(eaxm7Wm) :p(e)Hp(Xmiani|e) (=5.1)
i=1
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with 0 = ;50 x = 150 sis.

It is straightforward to calculate the partial derivatives of p(X;, Wmi|0):

Ve (p<xmi7 Wmi‘e)) :VG((X')Pf(Xmiani‘e> + O('VG (pf(xmivwmi‘e)) (A2)

— Vo (0) P (Ximi, Wii|0) + (1 — &) Ve (pp (Ximi, wimi|0))
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P

Vo (Pf (Xmia Wmi‘e)) = Z p(Wmi |Zmi)p(zmi)ve (p(Xmi |Zmia 9)) (A3)
Zmi=1

Vo (Pb(Xmis Wimil8)) =Ve(0) po(Wmi) (A4)

- VG (X)Ph (Xmia Wmi‘e) - XVe (Ph (th Wmi‘e))

0
Vo (0) 0 AS
W= g, (A2)
(A—s152)?
(1=B)s1
(A—s152)?
Vo(x) =AVe(9) (A.6)
P
Ve (Ph (Xmia Wmi‘e)) = Z Pb (Wmi)p(zmi)ve (p(Xmi |Zmia 9)) . (A7)
Zmi=1
uj mi .
Each GTF component part, with position u,,, = ) relative to the template centre,
u2Z111i

generates feature locations from a Gaussian F(0) = p(Xi|zmi, 0), with standard deviation ¢ =
O1

(03]

—(xj1 — s1ui; -—l‘l)2 (xip — s2u2; ~—l2)2
F 6 — mi _ mi AS
( ) 27’5(5162.9]5‘2 P < 2(0151)2 2(62.92)2 ( )
aF(e) Xi1 — S1U1z,, — 1
= N F(© A9
o (o1m)? (6) (A.9)
aF(e) Xip — SaUp; . — 1
= = F(6 A.10
o (am2)? (6) (A.10)
OF (8) _ (xit — s1u1z,, — 11)* + S141,,, (it — S141z,, — 1) — (01S1)2F(9) (A1)
s} (o151)2s1
oF i — —1)? (X2 — . —1)— 2
(0) _ (xvia — souas,,, — 12)™ + sau41s,,, (Xi — $2u2z,,, — 12) — (G252) F(0). (A.12)
aS2 (62S2)2S2
The second partial derivatives are as follows:
02 p(Xpmi, Wimil0) 0%t o0l 9P ¢ (Xmi, Wii|0)
= = mi> Wi |0 — A.13
96,6, 50,0, P Fmio Wnil®) + 5538, @a-13)
aj apf (Xmia Wmi|9) (xazpf(xmia Wmi’e)
20y 09; 006
820(, aa apb(xm,- wm,-|6)
~ 30 0o Ximis Wmi 0) —=— :
30,0, ©)=36, " o8
aiaapb(xmivwmi‘e) azpb(xmiawmi’e)

+(1—a)

08, 9, 266,
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He (pf(Ximir Wmi|0)) = le(wmi|zmi)p(2mi)H9 (P(Xmilzmi» ©))

Imi=
0% Py (Xmis wimil0) 970 0%y
aejek _aejekpbwmi - mph (Xmi,wmife)
X 9Ph(Xmi, Wini|0) +alaph(xmi,wmi\9)
aej 06y 00 aej

+XPn (th Wmi‘e)

00 0 0

. 00 0 0
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+ ((6131)2 +2(xil — Sillg,, —h +Slulzmi)s1ulzmi) F(e)

2
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2 2
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The mixing proportion o is modelled as a function of the object scale as in equation 5.9, so

0
0
V(o) = (A.35)
%
i
00 0 O
00 0 O
Hp (a) = (A.36)
000 I
00 %o
In practice we work with log p(6, X,,, W,,) and use
3 9 ( )
3o, 8 £(8) = ( (A37)
i -1 (9) ( ) A.38
9%£(8)
a”’ "5 (A.39)
(
)

To optimise the full joint probability p(0,X,,,W,,) we also need the partial derivatives of
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the scale model given in equation 5.8:

Vs(logP(s)) =

Hg(logP(s)) =

Ly (logsi —uy)+E12(log sy —up)
S1

L1 (logsi —u1 )+ (logsy —p)
)

L1 (logsi —ui —1)4+X1p(logs; —)

S1

=
S1852
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5182

Lo1(logsy—up)+Exn(logsa—up—1)

52
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