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Abstract

The testability of integrated circuits becomes worse with transistor dimensiactsing nanome-
ter scales. Testing, the process of ensuring that circuits are fabrigdbeait defects, becomes
inevitably part of the design process; a technique called design foxE3t)( Asynchronous
circuits have a number of desirable properties making them suitable for #lerapes posed
by modern technologies, but are severely limited by the unavailability of EDK foo DFT
and automatic test-pattern generation (ATPG).

This thesis is motivated towards developing test generation methodologiasyiochronous
circuits. In total four methods were developed which are aimed at two eliffeault mod-

els: stuck-at faults at the basic logic gate level and transistor-level fallis methods were
evaluated using a set of benchmark circuits and compared favorablevmpsly published
work.

First, ABALLAST is a partial-scan DFT method adapting the well-known BALSRAtech-
nique for asynchronous circuits where balanced structures aretaigpnde the selection of
the state-holding elements that will be scanned. The test inputs are automaticailyed
by a novel test pattern generator, which uses time frame unrolling to deatheitremain-
ing, non-scanned sequential C-elements. The second method, callédB\Gkes algorithms
from strongly-connected components in graph graph theory as a methédding the opti-
mal position of breaking the loops in the asynchronous circuit and addargregisters. The
corresponding ATPG method converts cyclic circuits into acyclic for whiahdard tools can
provide test patterns. These patterns are then automatically convertesefor the original
cyclic circuits. The third method, ASCP, employs a new cycle enumeration maiHiodl the
loops present in a circuit. Enumerated cycles are then processed ns#fiiceent set cover-
ing heuristic to select the scan elements for the circuit to be tested.Applyirgyriretods to
the benchmark circuits shows an improvement in fault coverage compapgdvious work,
which, for some circuits, was substantial. As no single method consistentlgréutps the
others in all benchmarks, they are all valuable as a designer’s suitel®fdotesting. More-
over, since they are all scan-based, they are compatible and thus siamuiftaneously used in
different parts of a larger circuit.

In the final method, ATRANTE, the main motivation of developing ATPG is supgeleted by
transistor level test generation. It is developed for asynchronongtsidesigned using a State
Transition Graph (STG) as their specification. The transistor-levelitiiauits are efficiently
mapped onto faults that modify the original STG. For each potential STG faalATPG tool
provides a sequence of test vectors that expose the differencedsibeto the output ports.
The fault coverage obtained was 52-72 % higher than the coveragieeibtasing the gate

level tests.



Overall, four different design for test (DFT) methods for automatic testepn generation
(ATPG) for asynchronous circuits at both gate and transistor leved ingpduced in this thesis.
A circuit extraction method for representing the asynchronous circuits tagher level of
abstraction was also implemented.

Developing new methods for the test generation of asynchronous ciituiits thesis facili-
tates the test generation for asynchronous designs using the CAD taibébe/for testing the
synchronous designs. Lessons learned and the research quesitedsdue to this work will
impact the future work to probe the possibilities of developing robust CAIB foo testing the
future asynchronous designs.
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Chapter 1

Introduction

1.1 Introduction

Synchronous circuit design has been considered the standard fistriati practice due to the
availability of advanced CAD tools and testing strategies. At deep sub micvels|elobal
clock synchronization, power consumption and noise factors aretiafjethe design perfor-
mance, as a result asynchronous circuit design is gaining its momentuanttyrover its
synchronous counterpart. On the other hand, asynchronous cimeeitisthorough research on
CAD tool development for the whole design flow with test generation [BES@hchronous
designs are classified into speed independent, delay insensitive, asddglay insensitive
circuits.Thus it has different models and architectures to be designed mdtkach of them
has its own circuit models and delay assumptions. Significant efforts lemrethken to de-
velop CAD tools for synthesis of asynchronous circuits which lead toraktaols like Petrify
[CKK*96b] ,Tangram[KPO01], Balsa [BEQOQ] etc.,. Currently,very few tools (conesmétool
from [Han])are available for test generation for asynchronousiitirc Testing is essential for
the designed systems, as the fabrication and component aging will cdasts diethe circuits.

1.1.1 Past work

Several attempts to generate tests for asynchronous circuits have badeemrifee recent years.
Some of the methods involved test generation based on the STG (State Tra@s#jh) spec-
ification of the design. The test methods were introduced mostly by travehsimggh states of
the state transition graph of the circuit. Some attempts have been made to gt Eagerns
for these circuits at the gate level. Also the test generation was specifiaatyllon DFT meth-
ods, which makes the test generation methods dependent on the desigdatwghof the cir-

cuits. Several methods for generating acyclic circuit(circuits withoutfaek) from cyclic cir-
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cuits(circuits with feedback) have been introduced lately [EdwO03],[Md@&i72],[Niv04].
But the methods are restricted for the cyclic circuit without state holding elenae which
does not oscillate. But oscillations are predominant in asynchronolis cyrcuits and also
presence of state holding elements like c-elements are common in them. Fulleseahtést
generation for the circuits have been proposed in [Bee03]. Partialtssed method for self-
timed circuit was proposed in [KB95]. The work in [BCR96] introducesyachironous test
generation to generate test for asynchronous circuits. A STG(Statsifloa Graph) based
approach of test pattern generation was carried out in [RCPP97@]pa#srn generated were
applied synchronously to test the target asynchronous circuits. Aeestraion method for
testing redundant circuits in asynchronous designs was introduced&lrd9fl] which used a
method called “Variable Phase Splitting” to generate test patterns for theseil@its which
is acyclic. A partial scan based delay fault testing of asynchronousitciwas acclaimed in
[KKL 798]. An algorithm similar to the proposed algorithm on this paper was usedt foats
delay faults. The work in [KSS02] introduced a test method for a subolfaasynchronous
circuits called NCL(Null Convention Logic). This method is also based otighacan test
generation by breaking feedback loops. A partial scan test genenagittrod for asynchronous
SOC interconnect was presented in [ABEO5]. The method focusedrarajeng test for asyn-
chronous interconnect named CHAIN. In [Ron94], a partial scangesération method for
DCC error corrector was provided. A fault simulator called FSIM wagluse fault sim-
ulation. Micropipelines form the vital components in AMULET processoligtesnd Scan
testing for these micropipelines was introduced in [PF95b]. Lately a systestatitinser-
tion technique was introduced to test Asynchronous interconnects [SQI88 a recent work
on automating test generation for asynchronous NCL circuits was puthlisifg/A08]. This
method promises near 100% test coverage for most of the NCL librariestaskdign the
NCL circuits. A detailed literature review on related works is given in chapter

1.1.2 Motivation

Most commonly used testing methods for testing digital circuits are structuddiuaictional
testing. Both these methods have its own pros and cons.

Structural Vs Functional

Functional testing is the type of testing which is carried out by validating thgmesder test
by its functional specification. This method is more closer to the verificatioothier hand, the
structural testing is more closer to the implemented circuit structure of the D&yhohronous
circuit design does not have a clear standard for its specification. r@itfeesearch groups
have different design methodologies for asynchronous circuit dekapk of standard design
methodology makes the functional testing harder. So taking the route ofistaliesting will
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increase the developed test method more generic for all the design mefrasisiochronous
circuits. Hence this thesis follows one of the structural testing method calledt&sting for
the DFT and preprocessing.

Partial scan based test generation is a promising approach to genfetigestest patterns for
sequential circuits. Several methods have already been implementeahétregous sequen-
tial circuit. Adapting those methods for testing asynchronous sequentialtds considered
effective. Because the test generation process for asynchroinoutss can be followed in the
same manner as that of synchronous circuits for most of the steps dRaepihe feedback
loops/cycles have to be appropriately handled. Though it seems easidliflg the cycles and
oscillations due to them is a harder task. Thus two different ATPG methadsldgr syn-
chronous sequential circuits are studied and the useful aspects efrttatsods were adapted
to develop the algorithms for asynchronous circuit based ATPG methods .

Ballast methodology of generating test for sequential circuit is a promigipgpach for par-
tial scan based test generation of synchronous sequential circuésndin technique used in
this method involved generating a balanced sub-graph from the circuibtppgraph of the
sequential circuit which was proved to have equivalent combinationaitate when the mem-
ory elements in the sub-graph are replaced by a wire. Thus the test pdtiethe sequential
circuits are generated by treating them as combinational equivalent. Thésteahnique can
be applied to the asynchronous sequential circuit to generate test.

As a next step, another partial scan synchronous sequential ciaseitlbest generation method
was adapted to define a test methodology for asynchronous sequentiasc The main tech-
nique used in this method involved selecting the memory elements based on firedatigptigly
connected components (SCC) from the circuit topology graph of theeséiglicircuit. Thus
the test pattern for the sequential circuits is generated by convertingl&oeesememory ele-
ments in to the scan elements. This technique can be applied to the asynshsegaential
circuit to generate test. The main challenges faced by applying these teehnithe asyn-

chronous circuits are

« Asynchronous circuits have loops which makes them cyclic circuit vasetkee syn-
chronous method operates only on acyclic circuits.

« Asynchronous circuits consist of memory element other than latchetements are
the frequently appearing memory elements in asynchronous design. @leasents

constitute the local loop in overall circuit structure.

» The operation of all the c-elements cannot be controlled during their hanpeaation
compared to normal latches controlled by clock.

Until now only the gate level test generation for asynchronous circuite @iscussed. The
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transistor level test generation is still an active research in synchsatesign field also. The
reason is that infamous stuck-at fault model cannot model all the defadtfaults [FS88b]
[Mal87]. Thus the transistor level test generation is one level furthemdbe gate level test
generation scenario. This level of test generation provides highdrdétault coverage and
a closer realization of the physical defects. But this has to be tradeditbfftive longer test
generation time due to the drastic increase in the number of nodes to be testkgirRulation
of the circuit at transistor level will take relatively longer time compared to the devel
simulation. Thus the test generation at transistor level design poses fajlowawbacks:

* Increase in number of fault sites to be tested
» Transistor level net list handling

« Longer fault simulation and test generation time

1.1.3 Asynchronous Design and Testing in Industry
Recently, asynchronous circuits based chip designs and their praghottapplications are
introduced in industry. Several companies that design asynchroitoug based chips are

* ARM,

« Tiempo,

Elastix Corporation,
« Achronix,

Handshake Solutions and

Silistix.

1.1.3.1 Elastix Corporation

The quote from the Elastix Corporation [Ela] on testing asynchronousitsnaamed "Elastic
Circuits" is shown below:

"Elastic circuits are tested in the very same way as synchronous circuits faththat the
circuit looks like its synchronous counterpart makes it possible to usethe test structures
(e.g., scan chains, BIST) and patterns that were initially designed foytfodnous circuit.
Additionally, the elastic circuit requires some specific logic to test the Elastik€lddis is a
negligible extra logic and a small set of extra test patterns.”
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As stated above, "specific logic" is required to test the elastic circuits. Smsh@rocess is
more specific to the elastic circuits.

1.1.3.2 Tiempo

In Tiempo [Tie], test process is aided by the type of design method usedigndbe asyn-
chronous circuits. The design method is based on implementation of groupdoefesaom-
municating using the handshaking protocols. They use the very well kdoatrail logic or
other multi-rail encoding for the data detection between the modules. Theyirhalemented
this design method by a succession of wavefronts. It has been claimdtddhaicurrence of
the stuck-at-fault in these designs will eventually stop the flow of data in thigras they are
implemented as a succession of wave-fronts. Then the fault eventualksliteehandshaking
protocol to continue to next stage. The faulty system is detected baseis e liaviour.

1.1.3.3 ARM and Handshake Solutions

ARM996HS [BY07], A first licensable clockless processor was dexigmased on the TiDE
design flow Haste. ARM [ARM] released this processor partnering withddhake solutions.
The testing process of this design is based on the full scan method which isasg lon

synchronous full scan method.

1.1.3.4 Other Companies

Achronix, Silistix , Timeless design automation are the other startups workisgdban the
asynchronous design to extend it to SOC, NOC, FPGA and etherneat Appkcations. The
test method applied by them is still based on synchronous design methodologie

As discussed above, the test methods applied in industry are more spetiéctsign method
used by them for implementing the asynchronous circuits. A generic orasthadynchronous
circuit test methodology is not yet introduced at industry standard.

1.2 Contributions

This thesis is motivated towards developing several automatic test patteratien (ATPG)
methodologies for the asynchronous circuits that can be incorporatedhia tarrently avail-
able industrial synchronous testing tool. Fig.1.1 gives the overview ofdhtibution of the
thesis to the asynchronous circuit test flow.
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A high level extraction tool named ACLARION (chapter 5) for extractinghigh level circuit
structure of the asynchronous circuits was implemented. Always the D#SIdD For Test)
methods demanded clear partition and clustering of the registers and comimhgéites which
will aid the test generation. To fulfill this demand, the tool was implemented. The ma

contributions based on this tool are
« circuit extraction algorithm for asynchronous circuits
» completely implemented extraction tool based on this algorithm

Next the work on ABALLAST(chapter 6) is motivated towards developingaatomatic test
pattern generation methodology which uses cyclic to acyclic circuit coioverpartial scan
based test generation and Ballast methodology as aids. Thus the contshuitihis method

are

» Effective handling of the cyclic asynchronous circuits to accommodaie thé¢he usual
synchronous test generation flow

 Partial scan element selection based on balanced sequential structures
< Automatic Test pattern generation for the partial scan design generated

The test generation process in AGLOB(chapter 7) also uses cyclic¢baciycuit conversion,
partial scan based test generation and SCC based memory element seledlids Thus the

contributions of this method are

« Effective handling of the cyclic asynchronous circuits to accommodaie th¢he usual
synchronous test generation flow

« Partial scan element selection based on SCC
« Automatic Test pattern generation for the partial scan design generated

The method ASCP (chapter 8) proposed in this thesis is based on the mapgppagtibl scan
selection problem to the set covering problem.

» A new partial scan selection algorithm based cycle enumeration andvieg guoblem
« Automatic Test pattern generation for the partial scan design generated

Also, a case study on the proposed test methods is carried out by cogibese three methods
based on the figure of merits of each method.

For ATRANTE (chapter 9), the main motivation of developing ATPG is suppiegeteby tran-
sistor level test generation. Here the Petri net based representatizmasfynchronous circuits
and efficient mapping of transistor level faults to state transition graph Y8&&ed fault mod-
els are used to implement the ATPG methodology. The contribution of this method is:
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Figure 1.1: Contributation of the Thesis

Using the transition fault model to generate fault lists

» Mapping of the transistor level faults to transition faults on STG

< Automatic Test Pattern generation method using the transition fault model wiéh ST

Implemented test pattern generator
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1.3 Publications

Parts of this thesis work have been published in the following conferemmka/orkshops.

e D.P.Vasudevan and A.Efthymiou,"“ Automatic Test Pattern Generation Farchsgnous
Circuits”, SIGDA PhD Forum, 48 th Design Automation Conference (DACED0QSan
Diego, June 2011.

« D.P.Vasudevan and A.Efthymiou, “A Transistor Level Test GeneratioA$ynchronous
Circuits”, IEEE International Workshop on Design and Test (IDT,8%yadh,April 2009.
(Accepted)

D.P.Vasudevan and A.Efthymiou, “Partial Scan Test Generation foné&spnous Cir-
cuits Based on Breaking Global Loops”, 20th UK Asynchronous ForuemdWester,
September 2008.

D.P.Vasudevan and A.Efthymiou, "A Partial scan based test generatiasyfnchronous
Circuits", 11th IEEE International Symposium on Design and Diagnosti&deaftronic
Circuits and Systems (DDECS’08), 2008

D.P.Vasudevan, "A Novel method of Test generation for Asynchusr@ircuits,", 2nd
IEEE International Workshop on Design and Test (IDT'07), 2007

D.P.Vasudevan and A.Efthymiou, " Comparative Analsysis stuck at tesrgton in
asynchronous circuits” 1st IEEE International Workshop on DesighTest (IDT'06),
2006

1.3.1 Thesis Overview

The proposed thesis structure is as presented below. The organiZatiertioesis is shown in
the Fig.1.2

A detailed background on Asynchronous circuit design, testing chateimghe asynchronous
paradigm will be given in chapter 2. Then the chapter follows furtherildegaver the topics
on testing (especially scan design) with details on full scan and partialdesign. Then
several ATPG methods will be introduced and briefed followed by introduseveral fault

models.

Chapter 3 briefs the detail literature on the testing asynchronous circhgschapter is divided
based on the following topics1) Design for test (DFT) for asynchremmrcuits, 2) ATPG
methods for asynchronous circuits, 3) Self checking designs of heymgus circuits, and 4)



Chapter 1. Introduction 9

Testable asynchronous circuit design,5)Test Generation at defesigta level.5) Delay fault
testing of asynchronous circuits. The related works on each of theiss ame reviewed.

Chapter 4 carries out a comparison study on the two automatic test pattematymm meth-
ods.Background on the State Transition Graph (STG) based automatiatesnpgenera-
tion are briefed.The test pattern generation based on the scan insertioigtecare intro-
duced.Then a comparison of test generated by these two approacteeadmber of small
benchmarks are presented. The chapter is concluded by stating theadkswand improve-
ments to be incorporated in the proposed test methods.

The ABALLAST method is described in Chapter 5. The chapter givesdurdietailed back-
ground followed by the introduction of overall test methodology. The dlgms involved in

this method will be briefed in detail. The following section will be on providing king ex-

amples for the test flow and comparison of results. The chapter will bdumet with the
results.

The AGLOB method is described in Chapter 6. The chapter follows the sanwust as of
the chapter 5. Algorithms will be detailed in section 3, followed by the workirageles and
results in the section 4. The chapter is concluded with the results comparison.

Chapter 7 introduces the method ASCP based on Set Covering Problekgr@aud on Set
Covering Problem and cycle enumeration were provided. Then the algaritivolved in
developing the test methodology are briefed. Next section will be desgriboverall test
methodology. Results are presented and analysis of the experimenttd egsudone. Next,
overall case study is carried out as the second part of this chaptetheAthree gate level
test generation methods of ATPG are compared in terms of fault coveesjeoverage,test
patterns, and area overhead.Detailed results of these three methodalgredand then the
chapter is concluded.

Chapter 8 ACLARION is motivated towards development of an high levebetitm tool. It

gives the background required for the description of the extraction meEwy giving foresight
of the ATRANTE method in this chapter , a brief introduction to Petri nets, ST®G G

will be provided first. Then it briefs the basic functions required for the inmgletation of the
ACLARION extraction method and the overview of the methodology.Next sect@scribes
the proposed heuristics for the Register clustering process. Nextrsécteds the heuristics
for the combination logic unit (CLU) clustering. Fanout clustering heuristiesintroduced
in detail in section6. Experimental results are analyzed with one working@es and the
chapter is concluded.

Chapter 9 introduces the method ATRANTE. This chapter provides fuddigils justifying
the need for transistor level test generation in the introduction. Then theétsodology for
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Figure 1.2: Organization of the Thesis

this method is briefed. Working examples and results are detailed in the trns®llowed

by conclusion.

Final chapter 10 is on conclusion and future work.
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1.4 Summary

This chapter gave a brief introduction about this thesis. The need focksynous design
testing based on partial scan testing was discussed. The main motivatiodsaeseloping

test generation methods for asynchronous circuits was stated briedlyulitications resulted
from the several works carried out in this thesis were also listed. Thehapter will be giving

a brief introduction to asynchronous design as a first part and thadeeot of the chapter will
provide the introduction to the testing and testable design. This thesis wasuicgbah this

chapter. The main motivation towards developing test generation methodsyiochronous
circuits was stated briefly. The publications resulted from the severddswoarried out in this
thesis were also listed. The next chapter will be giving a brief introducticasymchronous
design as a first part and the second part of the chapter will providimttiogluction to the

testing and testable design.
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Background

2.1 Asynchronous Design

2.1.1 Introduction

Asynchronous Design Methodologies follow the same procedure afhirsyraus design in

most cases, except that the global clocking scheme is not present ie itlddk skew problem

is overcome in this design due to the lack of global clock and this problemrmimmore local

for the circuits with fewer gates. Moreover, asynchronous circuitansidered as circuits
modeled by the interconnection of gates and delay models.

Advantages: The main advantages of using asynchronous design are
» Modularity
* Average Case Performance
* Power Management
» Improved Electro-Magnetic Compatibility
Also the disadvantages in asynchronous design based systems are
* Increased Circuit Cost
» Complexity
 Lack of Tools
» Testing is harder
Fig.2.1 overall view of the asynchronous design methodology. The gdtdelay models of

the asynchronous circuit design is introduced further.

12
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Asynchronous Design
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Figure 2.1: Asynchronous Design

2.1.2 Gates and Delay Models

Gates are composed of several inputs and outputs whose value is evalyidsscorresponding
logic functions. Delay models are single input-single output elements whiels, it evaluate
any logic, but reproduce the input after a specified amount of time. Baséioe magnitude,
delay can further be classified as Bounded and Unbounded.

If the upper and lower bounds of the delay magnitude are known,then it isl tedlended. If
the bound for the magnitude is not known (but finite) with the only informatiowbather it
is positive or negative is known, then it is unbounded delay. Based amtle@nt of memory
associated with the delay element they are classified further as pure dial aelays.

If the delay element duplicates the exact wave at its input to the output afteletay mag-
nitude, they are pure If the pulses shorter than the delay magnitudes aesifiigt they are
called inertial delay

Based on the place where the delays are inserted, delay models arestlassillows

» Feedback Delay Model In this model, every feedback loop preseunt &l replaced by
at least one delay element.
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» Gate Delay Model Here the circuit is modeled with every gate followed bgtgxane
delay element

« Wire Delay Model In this model, the delay is associated with each wire in theitcénad
this can seen as, each input of the gates being associated with a delay.

Based on different magnitudes and models of delay, some of the commoniy lasyn-
chronous models are given below:

* Huffman Model

Huffman model introduced by Huffman[[Mye01]] is based on repréagrasynchronous
circuits in to two components: the combinational network followed by the badiimebe-

tial wire delay model and feedback lines, modeled by using unboundetilrieedback
delays. This model led to the introduction of several other models with a little variatio

e Muller Model

Muller[[MyeO01]] introduced the class of asynchronous circuits in wigiabh gate output
is associated with an unbounded inertial delay element with delay of the wdieg b
neglected. This type of circuits are called speed-independent cirdnits, they operate
correctly even in the presence of delays in their components.

2.1.3 Types of circuits

» Delay Insensitive circuits[[Mye01]] Delay insensitive circuits form thest robust class
of asynchronous circuits. The circuits are modeled based on unbdbunide delay
model . It is similar to the Muller model in terms of wires connecting a single out-
put to a single input. The delay at the different ends of a fork vary (ariput fanned
out to more than one input) by placing a delay element at each gate inputs.tiidse
forks are not isochronic due to the variation in delay. But only a small fanfityrouits
constitutes this model.

» Quasi delay-insensitive and speed-independent circuits[[Mye01]]

Quasi delay insensitive circuits[[Mye01]] are the versatile and popuitss of asyn-
chronous circuits which is derived from the delay insensitive circuitsthis type of
circuits, the forks are considered to be isochronic. For a Delay insansiticuit, the
delays d1, d2 and d3 along with the gate delay dA, dB and dC are arbiffagbtain
the quasi delay insensitive circuit, the condition d2 = d3 should be satigfiesbme
forks.
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» Bounded-delay Circuits [[Mye01]] Bounded-delay circuits are thest# asynchronous
circuits which use the fundamental-mode assumption that the environment aiti&iw
long enough for the output data to stabilize on the circuit inputs. The furnlatr®ode
of operation was introduced by Huffman[[Mye01]] and later extendediger[Unger1969].

2.1.4 Logic Synthesis and Simulation:

As stated earlier, design flow of the asynchronous circuits can be sunechaiinilar to that
of synchronous circuits depending up on the asynchronous desigrusd. A typical syn-
thesis flow for the CAD tool Tangram developed by Phillips is shown in Fig Bl@xdshake
circuits used in this design flow are the special class of circuits introdugc@&htitlips, which
is implemented based on the handshake protocol. Here the circuit spedifisdtased on the
description language.

Several CAD tools for logic synthesis were developed and are furdiegbesearched. Some
of the CAD tools like Petrify use graph based (petri net) representatitedfircuits and the
design is synthesized by BDD mapping of the graph specifications. Onogaihyging is done,
the design flow follows the same steps as used conventionally. A typical kggibesis cycle
which uses petri net as the input net list specifications is shown in Fig 2.3
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2.2 Testing

2.2.1 Introduction

Testing is essential for the designed systems, as the fabrication and aamhpgimg will cause
defects in the designs. The defects in the design can be modeled as felulis stuck-at, delay,
bridging faults, etc. Thus for testing a circuit, fault model plays a major rolsimulating the

faults. Once the fault model is defined, it is applied to the design undermtegéheration of

the test patterns which are used to validate the design.

2.2.2 Fault Modeling

Before proceeding for testing the circuit, the specific fault models for wthe test has to
be done should be selected. There are several types of fault modet$ cvaghe kind of
fault which occur during the physical design process like Short, Ojenitetc., some of the
commonly used fault models are:

1. Stuck At Fault (Fig.2.4)
stuck-at-1A Fault at a node is said to be stuck-at-0, if it generates '0’ output signal
both the value of input signals 0/1 and the node being observed througtirieey out-
put.
Stuck-at-0: A fault at a node is said to be stuck-at-1, if it generates "1’ output signal
for both the value of input signals 0/1 and the node being observed thtbegrimary
output.

2. Transistor Level Faults (Fig.2.5)
Stuck-Open FaulThe Stuck-open fault occurs in the transistor when the transistor is
always open due to physical defect. If considered as switch, thdidunatity of the
transistor with this fault will always be that of a open (hon-conductingdctw
Stuck-On FaulThe Stuck-On fault occurs in the transistor when the transistor is always
conducting due to the physical defect. If considered as switch, theidaatity of the
transistor with this fault will always be that of a closed/shorted switch.
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3. Bridging Fault: Bridging fault occurs when two nodes of the circuit angistor/gate

level were shorted together.

4. Transient Fault: Transient fault occurs at the event level or atgber fall transition of
the signal either by getting inhibited or by unintended triggering.

5. Delay Fault: Delay faults are modeled based on the timing assumption of théscirc
Two types of delay faults are gate delay fault and path delay faults. Thereace of
this fault will cause the circuit to produce delayed response in the ouwpthd specific

input stimuli to the circuit.
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2.2.3 Terminologies

1. Controllability:
It is a testability measure, which defines whether the logic value at givemis@dntrol-
lable by effectively applying the vectors through the primary inputs.

2. Observability:
It is a testability measure, which defines whether a fault excited at a givéa is ob-
servable at the primary output of the circuit.

3. Fault Equivalence:
If every test in the test set of one fault A, also detects the fault B, thetwihéaults are
equivalent. This is used to reduce the number of faults that need to be tested

4, Fault Dominance:
If for two faults A and B, the test set of B is a subset of the test for A, therfault A is
said to be dominating the fault B.

5. D-Frontier:
The D-frontier is composed of all the gates in the circuit being tested, whapet value
is x(don't care), but one or more of their input has been set to eithefX(where D and
D’ are the logic values used in D-algorithm to differentiate the good and faiurltyit
logic values of a node). The D-Frontier is used in error propagatiotess

6. J-Frontier:
J-Frontier is composed of the set of all the gates in the circuit, whose owdfud is
known,but are not implied(assumed based on the gate’s functionality anidtreon-
nection) by their input values. This happens during the justification ps@uexess of
setting logic values on each node of the circuit during fault simulation), ahgarticular
node is assigned a value to imply the value at the target fault node.

2.2.4 Automatic Test Pattern Generation

Test generation involves following basic steps to generate test vectors
1. Fault List Generation
2. Test Vector Generation
3. Fault Simulation

4. Test compaction
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Figure 2.6: An ATPG System in a VLSI Design Process [MVO00]

These steps can be automated to generate a automatic test generation syggesTaPATPG
system flow is shown in Fig.2.6.[MV00]

Verified net list is fed to the fault simulator, where the modeled faults are sinduteter the
input design net list. Once the fault is detected, the fault is removed frofaultdist. The test
generator generates the test vectors to be used to test the modeled fauérliste design net
list using the fault simulator. Test compactor is used to generate optimal nainbestors to
test the design by using the fault dominance and equivalence propéties.all the faults are
simulated and the test vectors are compact, the design is checked forltleoiauage. If the
coverage is satisfactory, the system exists, otherwise the steps aaterepeget the desired
fault coverage. At the event of not finding the optimal test coveragesybtem exists with the
low coverage test vectors or with a report on untestable faults anddadoies

2.2.5 ATPG Algorithms
Some of the classic ATPG algorithms are reviewed in this section. The algoritviesved
are

» D-algorithm

* FAN
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» PODEM

2.25.1 D algorithm

The pseudo code for the D-algorithm[[JPRS67]] is shown in Fig.2.7[[@&F This is the
first algorithm proposed for the automatic test pattern generation foheymaus circuits. The
algorithm is based on a newly introduced concept called D-Algebra. Tdie \@lues used
in this algebra are 0,1,X,D,D’. The values D and D’ are the newly introducgid k@lues to
implement the proposed D-algorithm. The value of D(D’) will be represemtvdiue of the
node being testing in the circuit. It will be 0(1) for good circuit and 1(@)dad circuit. Thus
a value D (D) placed on a node a, during test generation will place @(th@node for good
circuit simulation and 1(0) for the bad circuit simulation. The crux of this algor is of
setting this value on the testable nodes and propagating this to the output.

A terminology named singular cube was also introduced in this method. Thdaingbe of
the Boolean function is defined as an assignni@nt.xn,y1...ym) = (I1,12,....,Imtn). Where
X are inputsy; are outputs andl € { 0,1,X }. Also the fault model for the D-algorithm is
called the Primitive D-Cube of Failure (PDCF). PDCF is defined as the degfvalues on
the input and output of a gate that will prove the fault on its output. The stepksed in the
D-algorithm are defined below. First the fault for which the test has tcebegted is selected
from the fault list. Then the PDCF for the fault is generated. Then it isl@tewhether there
is D or D’ on the primary output after applying the PDCF.

a. If there is a D or D’ in the primary outputtf there is a D or D’ then it is checked whether
there are more lines to justify. If there are no lines to justify, then the pattetorisdsas the
test for the fault. If there are more lines to justify, a line should be selectedtifyjall other
lines. If there is no inconsistency, then further it is checked for anyrdimes to justify. If
there is an inconsistency, availability of an alternative path is searchedstdication. If an
alternative path is found then, it is checked whether there are more linestify ptherwise
backtrack one level and select another path. While backtracking it cketievhether the node
is revisited or not. If the node is already visited, then it is reported that tierpaexits. If it
is not a revisited node then the same steps of finding more lines to justify aiedoaut. This
forms one branch of the whole D-algorithm process, when the D or Dusdmn the primary
output after applying the PDCF.



Chapter 2. Background 22

D-alg()
begin
if Imply and_check() = FAILURE then return FAILURE
if (error not at PO) then
begin
if D-frontier = & then return FAILURE
repeat
begin
select an untried gate (G) from D-frontier
¢ = controlling value of G
assign ¢ to every input of G with value x
if D-alg() = SUCCESS then return SUCCESS
end
until all gates from D-frontier have been tried
return FAILURE
end
[* error propagated to a PO */
if J-frontier = & then return SUCCESS
select a gate (G) from the J-frontier
¢ = controlling value of G
repeat
begin
select an input (j) of G with value x
assign c to j
if D-alg() = SUCCESS then return SUCCESS
assign ¢ to j /* reverse decision */
end
until all inputs of G are specified
return FAILURE
end

Figure 2.7: D-Algorithm [[MAF90]]

b. If there is no D or D’ in the primary output:

If there is no D or D’, the D cube is propagated and intersected. If thexeyisnconsistency,
check for an alternative gate for propagation. If the alternative gatauisdf, then follow the
same steps of propagating the D-cube. If the alternative gate is not,ftherdbacktrack one
level and select another path. If the PDCF is reached then it is repodtktthéhpattern does not
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exist otherwise the process of propagating the D-cube is continuedluing the first step of
propagation the D-cube, if inconsistency is not found then the lines to bigdsare marked
and go back to the step of finding whether the D or D’ is present in the primaput.

Thus by looping through the above two decision branches, either theitebewenerated if
it exists or else it will be reported that there is no pattern for the fault. Onemaihes this
decision, then the algorithm again loops through this process for theadkt Thus the test
for all the faults in the circuit will be generated using the D-algorithm.

2.2.5.2 PODEM

The pseudo code for the PODEM(Path-Oriented-Decision-MakingdB&]] algorithm is shown
in Fig.2.8[[MAF90]]. This algorithm is straight forward compared to the IDeaithm. This
algorithm generates test pattern for the target fault in the circuit by implicitnemnation of all
possible input vectors to the primary inputs of the circuit. The assignmeng d@fplut values is
carried out by constructing the search tree for each input line of theitdlrg setting values of
either 0 or 1 and checking the implication of setting them. The detailed steps in tbigtaig
are briefed below.

First step involves selecting fault from the fault list for which the test halet@enerated.
Initially, the value X is assigned to all the inputs. Select a primary input fromligtef
primary inputs of the circuit. Assign a binary value to that input and determinédations
of all other inputs and other nodes due to this assignment. Check whetheiigtzeD or D’
found in the primary outputs. If there is a D or D’ then, store the input patiglre as the test
for the target fault. If there is no D or D’, then check whether the test $sipée by assigning
values for more inputs. If possible, then start the step of assigning they vialae to the new
input from the list of primary inputs that are not assigned values. Conthiggrocess until
all the primary inputs are exhausted. If still the test is not found, checklven there is any
unassigned input pattern combination. If so, then go to the step of deterrttimiimgplications
of that pattern over the other nodes. In other case if all the combinaticine @fatterns are
tried, then report that there exists no test pattern for this fault.

The main advantage of this method is that, the number of backtracking taking iplde-
algorithm is considerably reduced and thus it speeds up the test paterh.sEhe method for
assigning the binary values to the primary inputs is carried out by consgubtnsearch tree
over the list of inputs along with the process of checking the implication.
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PODEM()
begin

if (error at PO) then return SUCCESS

if (test not possible) then return FAILURE

(k,vi) = Objective()

(»v;) = Backtrace(k,vy) [* jis a PI */

Imply (j,v;)

if PODEM() = SUCCESS then return SUCCESS
/* reverse decision */

if PODEM() = SUCCESS then return SUCCESS
Imply (j.x)

return FAILURE

end

Figure 2.8: PODEM Algorithm [[MAF90]]

2.253 FAN

The pseudo code for the FAN [[Fuj85]](FAN-out-oriented) algorithrstiswn in Fig.2.9 [[MAF90]].

24

The exhaustive searching of all the input combination patterns in PODEithlign is avoided
in this algorithm. This speeds up the search for the test pattern considerdidystrategies

used in the FAN algorithm are

determined.

When the D-frontier has a single gate,apply a unique sensitization

later

multiple backtracking is more efficient that single path backtracking

At each step of the enumeration, as many signal values that are uniqudigdrape

assign the value D or D’ that is uniquely determined or implied by the targkt fau

stop the backtracking at a headline, and postpone the line justificationeftretidline

in the multiple backtrack, if an objective at the fanout point has a cont@glicequire-
ment, then stop at the backtrack so as to assign a binary value to the faindut p

Applying these strategies, the test search time of the FAN algorithm was eoaisigireduced.
The multiple backtracking and the justification and implication on either directioarerds

the test pattern finding capability of the algorithm.
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FAN()
begin
if Imply and check() = FAILURE then return FAILURE
if (error at PO and all bound lines are justified) then
begin
justify all unjustified head lines
return SUCCESS
end
if (error not at PO and D-frontier = &) then return FAILURE
/* initialize objectives */
add every unjustified bound line to Current_objectives
select one gate (G) from the D-frontier
¢ = controlling value of G
for every input (j) of G with value x
add (j,c) to Current_objectives
/* multiple backtrace */
(i,v;) = Mbacktrace(Current_objectives)
Assign(i,v;)
if FAN() = SUCCESS then return SUCCESS
Assign(1,v;) [* reverse decision */
if FAN() = SUCCESS then return SUCCESS
Assign(i,x)
return FAILURE
end

Figure 2.9: FAN Algorithm[[MAF90]]

2.2.6 Scan Design

The full scan architecture with test control and scan in/out pins arershofig.2.10. The flip-
flops SFF1, SFF2 and SFF3 form the scan flip-flop group and they tfeerscan chain. The
circuit is designed using the predefined design rules. A test contral pipus added to the
design to control the scan flip-flops operation in normal and test mode. cBa@moriginates
from the scan-in pin and terminates at the scan out pin. The DUT (combiabbtwtk) will
be operated in its usual mode through the primary inputs (PI) and primaryte iO).

Fig.2.11 gives the design flow for the automated scan design. Behavidugril logic design
is synthesized to gate level net list. Design and Test data generation fafanaming involves
two parallel flows, where, the scan insertion is carried out at one brand combinational
ATPG is carried out at the other. In the scan insertion flow, the scan hé&t Irsserted to the
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Figure 2.10: Full Scan Architecture [MVO0O0]

gate-level net list. Scan chain optimization and timing verification are carriethdlie next
level.

Then the mask data is produced which will be tested with the test programecagethe test
data for manufacture. In the ATPG flow, the gate level net list without the slesigns are
evaluated with combinational ATPG for the combinational test vectors. Fresethiectors
and the scan chain order obtained from the scan chain optimization, thedgstmp with scan
sequences is generated. Finally, test data along with the design data vahéeated from the
test program and the mask data which is available for manufacturing.

2.2.7 Partial Scan Design

To minimize the overhead caused by the full scan design, partial scamaessgntroduced. In
partial scan design, only minimal set of flip-flops are selected for scalimiate all cycles.
Sometimes, to keep the overhead low, only long cycles may be eliminated. Irs ayitle
self-loops, all cycles other than self loops may be eliminated.

Fig.2.12 shows typical partial scan architecture. The flip-flops F1 arfdria®s the non- scan
flip-flop group. The flip-flops SF1 and SF2 form the scan flip-flop grou

Test Generation: For a partial scan design, separate clocks arfousedn flip-flops and non-
scan flip-flops. Alternatively, separate design can be used for spdiofis, which will require
only one clock signal.

Cyclic to acyclic conversion of the circuit should be preformed for theatiffe test generation
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Figure 2.11: Automated Scan Design [MV0O0]

of asynchronous circuits using a synchronous sequential testegiemeCAD tool. The conver-
sion removes all the feedback loops formed in the cyclic circuit which dhedest generation
capability of the CAD tool. For instance, the original or actual cyclic asymrbus circuit fed
to tool will result in low fault coverage as the tool discards most of the ftds present in the
path of the feedback loop. So the cyclic to acyclic conversion will incréasgisibility of the
fault sites to the tool to generate test patterns.

2.3 Summary

A brief introduction to asynchronous design was given in this chaptefer@iit gate and delay
models of asynchronous circuits were briefed. Signaling protocols séttiesigns were intro-
duced. Logic synthesis design flows for asynchronous circuit desiga also described. Next
a brief introduction to the testing and test generation principles were intedd&®everal basic
terminologies involved in testing were listed. Several Fault models used forgesrcuits
were also discussed. The topic of automatic test pattern generation angdesign techniques
were briefed in detail. Several ATPG algorithms were described by syawapseudo code
of the algorithms. Two types of DFT scan architectures namely Full scarPartal Scan
design were introduced and briefed in detail, which will be used extdgsivéhis thesis. The
next chapter provides a comprehensive literature review over weftlited to the testing of
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asynchronous designs.



Chapter 3

Related Work

3.1 Introduction

This chapter briefs the literature review over the related works involvingléségn for testa-
bility(DFT) and test generation of asynchronous circuits. The literagwiew in this chapter
includes the topics 1) Design for test (DFT) for asynchronous circ2jt&TPG methods for
asynchronous circuits, 3) Self checking designs of asynchroricuisits, 4) Testable asyn-
chronous circuit design,5)Test Generation at defect/transistor [Basyachronous circuits. A
detailed survey on testing asynchronous circuit was elaborated in [HBB@ introduction to
defects in the circuit and the terminologies and method for testing are studidetafed de-
scription of self checking circuits was also given in a complete section. Betking property
for the delay-insensitive asynchronous circuits and speed indepeadeuits were briefed.
Several conventional test generation methods were listed and the algbsthind the meth-
ods were analyzed. Topics on Automatic test pattern generation and ifaulason were
described using a specific example. Topics on design for test (DFB also briefed in de-
tail. The topics on testability, controllability, observability were tutored. The entignal full
scan path design techniques were detailed using a specific example. Wplexzased on a
n-bit asynchronous counter design was demonstrated. Finally deliayefsting method was
described. Delay model used here was path delay fault model. The delayeist procedure
was demonstrated using the circuit equivalent to a majority gate circuit withsiioveon each
of its AND gates. Thus a broad coverage of all the topics in testing wasdetbwith respect
to the testing of asynchronous circuits.

29
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3.2 Related Work

The detailed flow of the asynchronous circuit testing topics covered indhisw is shown in
the Fig. 3.1.

Asynchronous Circuit

Testing
{
1. Design For Test 9. Fault 12. Fault
Test Methods Simulators Tolerant
Designs
|
5. ATPG
2. ScanTest 10. Fault
| Modeling
3. Synthesis 6',[1,{ a?.dom
For eshng 11. Transistor
Testability Level
Modeling
7. Offline
4. Testing Testing
C-elements

8. Funtional
Testing

Figure 3.1: Asynchronous Circuit Testing - A Short Review

3.2.1 Design For Test

1. Designing C-elements for testabilitf PF95a]
The designs of static symmetric and asymmetric C-elements that are testableKeatstu
faults and transistor level stuck-open faults was proposed in the wakerd CMOS
implementation of these C-element designs were proposed. Also C-elersegrt déth
scan features which aid the scan testable designs was proposed.sdsignventional
2 transistors based inverter and a testable 4 transistors based invegexxamined in
detail for the stuck-at and stuck-open faults. All the possible faults, dhegponding
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circuit response for faulty and good circuit and the test sequencéssfgsame were tab-
ulated.

Next the design of static symmetric C-element was studied. Three differelarimapta-
tions were studied. All the good and faulty circuit responses for all thekstpen faults
in the symmetric C-element were analyzed then and the correspondingdasheses
were generated. Next the design was examined for all the stuck-at faultslly 38
stuck-at faults were reported along with their test patterns to detect the. fBlext the
asymmetric C-element design style was studied. The circuit comprising of Sigran
tors was studied. Two different designs of asymmetric C-element weriedtpdrticu-
larly. They were OR-AND type asymmetric C-element and AND-OR type asynmnetr
C-element. The stuck-open faults on these designs were first analyzeas reported
that only 5 test sequences are enough to test all the stuck-open fehdtstuck-at fault
diagnosis was carried further. Totally 32 stuck-at faults were repamedtheir corre-
sponding fault response and the test sequences were tabulatedsigmaly made in the
design implementation in im, double layer metal CMOS process and simulated using
SPICE analysis.

Further, the scan testable designs of C-elements were introduced. dopstatic sym-
metric C-element with scan features was proposed first. The operatingsrmbdee
design were briefed further which involved normal mode, test mode aml isode.
The stuck-open faults and their corresponding output response arirthét and the
test sequence to detect them were described in detail. Finally the cost risonpaf
the testable C-elements were made with respect to the number of transistobgrrof
pins, area overhead, output nodal capacitance and the testability weee firansistor
overhead from 17 percent to 200 percent was reported over spngedArea overhead
of 17 percent to 115 percent was reported for the same six desigtput@odal capac-
itance was ranging 2 to 11fF. Two of the six designs were reported to bk-atiand
stuck-open fault testable.

2. Asynchronous Sequential machines designed for fault detectid®&M74]

Design of asynchronous sequential machines which can allow detecfiantsfin them
was introduced in this work. The circuits designed are assumed to beingéndhe fun-
damental mode. The operation of the circuits was described based onitialile. The
definition of flow table is also introduced here. Definitions on transition paititpn
pi were defined which was later used in the description of the machine dd3@fmi-
tions on internal states and proper stable states were introduced. A mettizdection
of internal state fault was briefed further. An additional equivaleriassccalled fault
equivalent class was introduced to facilitate the design of fault detectymglaonous
circuits. Stuck at 0 and stuck at 1 faults were considered here.
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Two main conditions were introduced which should be met while designing ghe as
chronous sequential circuit such that it is fault detecting. First condifahat the
equivalence class of different transition paths for a given input "I'5thave at least
a distance of two. The second condition is that for a single fault, the circust bacome
stable in the equivalence class of the transition path or a fault equivatéeee Due
to the static nature of the method proposed, the same technigue can be éxtetioe
faults other than stuck -at- 1 and stuck-at-0. The whole method is basedeomag
k-sets from the flow table of the given circuit. Then by applying a reductitsand as-
signing a variable value of 1 for each state in the set and a value of O fetates not in
the set. This produces a partition in such a way that the first condition $igrdag the
circuit is satisfied. Thus given a flow table of the circuit, a five step proeeyields the
design equation for the fault detecting equivalent of the asynchrocicuigt. Finally

a bound on the amount of logic required for designing the fault detectiogitivas
derived. The upper bound on the number of gate inputs for fault degectalizations
is less than or equal t§ hy +ds(m+1) +m , 1 < n < ds. Where d is the number of
distinct non trivial k-sets after the list has been reducgdls the number of stable states
that are contained in the nth k-sets, m is the number of input variables, trsithiger of

trivial input columns.

3. A TestableCMOS Asynchronous Countef{CB90]

An asynchronous counter design was introduced in this work along witkiTa(Design
for Test) logic inserted to make the counter testable. The counter was eegsigaed on
the two cycle transaction(transition signaling) method. The counter was cathpd n
identical two-cycle toggle modules and an XOR gate. Two designs, the lasyraus
toggle module and asynchronous toggle module with inverter were introdécedw
asynchronous toggle module with scan capability was designed to facilitatstaleiliey
of the counter design. Test method for the counter for testing the stumhebstuck
open faults was also introduced. Four test procedures namely togglshé#stest,
cycle test and XOR test were introduced which has to be carried out toletypest
the counter design. It was shown that the asynchronous counter téstsmgvas O(n)
which is less compared to the synchronous counter testing tin®.Qfne reduction in
time was attributed to the parallel testing of the cells in the counter due to the peesen
of the scan path and two bit of state in each cell. The base counter desigihen
testable asynchronous counter design layout were presented. Tloeuwers were 16
bit designs and were fabricated in 2 micron process. The experimestittisrof the chip
were given. The performance of the base design was with a countffate0dVIHZ and
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that of the testable design was 22.6 MHZ. The area overhead was 6 %reahtipabase
asynchronous design and 15% compared to the equivalent synasrdesign.

4. DFT for Fast Testing of self timed control circuits [PKB95]
A design for test method for fast testing of self timed control circuits wapgsed in
this work. The circuits used for the testing are compiled by a custom compitegiga
OCCAM based circuit compiler. The OCCAM program description is cairgein to an
interconnection of pre-compiled self-timed-macro-modules/library and therethod
was developed for the resulting circuits. The synthesis method for the OClasd
program description in to self-timed circuits was briefed further. The katina is syn-
tax directed. This method involves testing all the control paths simultaneoush n
turn means that all the paths in the design under test are excited cottiguifenr basic
requirements for the testing method to be applicable were listed. They inclusteal)
branching point all the branches should be activated, 2)When twelearare merged
through a Merge element a single event should be produced at the otithetMerge
element after both the branches finish their processing, 3) When thegbéresources
occur, it has to be guaranteed that progress on one control pathstopped because of
the progress in another control path, and 4) The control path shoulddmipled from
the data path during testing so that the control path can be tested separately.
Certain modifications were done in the pre-compiled modules to satisfy the atsve
tioned 4 requirements for testing the circuits built using these modules. Mditifisa
are done to three modules namely XOR, select and Call. Also modification®aee d
to the OCCAM program constructs to fulfill the requirement for testing. (BAOP and
ALT constructs were modified and an example showing this modification for &loF
struct was demonstrated.
To demonstrate this method, the control path of the self-timed circuit to implement the
GCD of two numbers was experimented. Faster testing time compared to anothedme
involving scan testing was reported. Low testing time, no need for test geeatod pos-
sibility of extension to other asynchronous circuit styles and automatiorepogted as
the advantages of this method. Area overhead for the DFT comes frdatirepthe
XORs with XOR/Celements and a performance degradation of 15 percentparted.
But it was justified with the percentage of area the control circuits take iveralb chip
layout.

3.2.2 Scan Testing

1. Scan Testing of asynchronous sequential circuiti®F95b]
A new method for testing the asynchronous sequential circuit based oapipielines
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was introduced in this work. The test method is based on Scan DFT methtidtHgo
stuck-at faults and the delay faults were considered during the testinggzoThe ba-
sic structure is composed of a combinational logic block, registers in thbdekdoop
storing the state of the circuit, two C-elements and a delay element. The cirsyitiha
mary inputs(P1), primary outputs (PO), secondary input(Sl) and skecgroutputs (SO)
along with the request signals Rin and Rout and the control acknowlégigals Ain
and Aout. At the initial state, the registers and the two C-elements are settoFzest
the input data on the primary inputs are generated by the sender whicktestilie Rin
signal in the circuit. The request signal is delayed long enough to stabibizeirituit
with output data on the primary and internal/secondary outputs. The delagilisated
by the delay element between the C-element of the request signal andribbRiyt.
Once the circuit is stabilized, the Rout signal is activated for the recbkivéne circuit.
Also after receiving the acknowledge signal (Aout) and storing the nate & register
2, the circuit activates the acknowledge signal (Ain) to the sender. fHimiprocedure
of processing data is repeated with the repeated reception/activationRifntkenal.
Three types of stuck-at faults were distinguished for the micropipelineglyal) faults
in the control part of the micropipelines, 2) faults in logic blocks, and 3)dan the
latches. A scan test approach for testing these faults was next intcbdlihe CMOS
implementation of the scan latch structure was introduced. The performatieemo-
posed scan latch was compared with the basic latch design in terms of delgpBsCE
simulations. The delay was basic design and proposed scan desigrepeated as 3.7ns
and 6.2 ns respectively. Next a two-bit scan register design was sgdgmased on the
scan latch. The register operates in three modes namely, normal mode, testintb
scan mode. Using the modules complete testable asynchronous sequentittiesign
was demonstrated. The testable design is composed of two blocks namelyuhle ac
circuit under test and the scan testable control logic (STCL). The STaikiproposed
is fully testable for stuck-at faults because of its asynchronous delapsiisre nature.
A complete test strategy for the testable design to test the faults in control dogdi-
national block and the latches were briefed in detail.

Next the path delay fault testability of the design was briefed. It is basetieowell
known path delay fault testability method for combinational circuits. Basicallyabe
pattern pair applied to the input of the combination logic module detects the delsy fa
in the paths of the block. This test method involves loading the state vectdrsefozg-
isters in the circuit and then the test vectors to the input of the circuit and miogitte
output signals of the circuit under test. In detail, the circuit is operated imtede, to
apply the test pattern p1 to the inputs along with generating a request sigtina mput
Ri. After receiving the acknowledgement event on the signal Aout thefes applied
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to the input. The test control signal is set to zero and request evemésajed in the
signal Ri. This results in the data path of the combinational block being adtivite
there is a delay fault in the path, it will result in a delayed response of theitjwhich
aids the detection of the delay fault in these circuits. Thus a scan testablednfietho
both the stuck-at and path delay faults was introduced in this method.

2. Optimal scan for pipelined testing:an asynchronous foundatiofRAV96]

A method for constructing optimal scan chain was proposed in this workobjeetive
of the optimal scan chain construction was to 1) reduce the area ovddndaith based
design and 2) reduction of the number of pipeline scan shifts. The diffisidtieoun-
tered in the scan testing and pipelined scan testing and standard LSSDfkegéive
Scan Design) based testing were detailed further.

Several pipelined scan testing types namely 1) simple sequential scan,r2semqeen-
tial scan, 3) simple parallel scan, and smart parallel scan were dakaritdetail. Then
the issues in LSSD based scan testing were discussed in detalil.

Next the heuristic for the optimal scan chain construction was introdudezgim&in ob-
jectives of the algorithm were 1) to keep the L1/L2 partition for the scan latohknced
and to keep the scan latches for each datapath close together. Thbjéictive aims at
reducing the area overhead while the first objective aims at reducingadheskift time.
The algorithm was applied to three industrial asynchronous circuits amdsb#s were
reported in terms of the scan shift time reduction, number of tests, and sciashiéts. The
size of the circuits was randing from 20k to 45 k transistors with the numbdaiaf
latches ranging from 417 to 1083 and the latch classes ranging from 3Wlto Thhe
pipelined LSSD based scan testing method was reported to have reduaaahtber
of scan shifts to around 60-75 percent and the pipelined L1L2* bastiddewith the
reduction percentage of 79-86 percent was reported. For all the destgns the num-
ber of shifts needed for the pipelined L1L2* was reported to be abdfitHtenumber
needed for the pipelined LSSD.

. The formal justification of these two problems to construct the optimal scain @ras
briefed further. First it was proved that the optimization problem for L*lte?ates to
the area overhead minimization. Next it was proved that the problem ofrootisg
the feasible scan chain by adding dummy latches was to minimize the total scan shift
time. Experimental results on three industrial asynchronous IC desigessivewn as
(1) less than 0.1% extra scan latches for Level-Sensitive Scan Desij(R)ascan shift
reductions up to 86% over traditional scan schemes.

3. Partial Scan Test for asynchronous circuits illustrated on a DCC Eror Corrector
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[Ron94]

A new design for testability method for testing asynchronous circuits usiriglpscan
was proposed in this work. Before introducing the method a gentle introdutctithe
VLSI programming in Tangram was given. An example of Tangram praeedamed
scanin was illustrated. The compilation of the Tangram programs in to asyrais
circuits via an intermediate representation called handshake circuits wadsdifteher.
Next the asynchronous circuit implementation focusing the design of Digaaip2ct
Cassette (DCC) Error corrector was discussed. For the implementatioipHase hand-
shake signaling and double-rail data encoding was used.

Detailed description of the DCC error corrector architecture was brieféiter. The ar-
chitecture is composed of a DRAM, controller and a detector. Testing thdenusing
partial scan method forms the crux of this work. Further the design anddpstts of
the detector and the controller were discussed in detail. Next the Tangogmamming
procedure for the partial scan design of 12S transfer procedusgvegposed. The scan
facility was added in to control the value in the DRAM address counter. Guwaent
handshake circuit compiled for this procedure was also demonstratedTekh perfor-
mance, circuit performance cost, reliability and the test solutions for theaoksdigs and
detection transferrers were discussed further. The scan test fi#Sheansferrer was
reported to be 19 DRAM addressing cycles which was 1800 times less thaof tha
design without the scan architecture. An area overhead of 3 pearehefscan circuitry
was reported for the design analysed. A fault coverage of 99.9 mtenees reported for
the scan design proposed on the circuit under test.

3.2.3 Synthesis For Testability

1. Synthesis of asynchronous circuits for stuck at and robust pathilelay fault testabil-
ity [NJC95]
A method for synthesis of multi-level asynchronous circuit with the hazaelgroperty
and also completely testable was introduced in this work. Stuck-at andt nedntinsde-
lay are focused for this testing method. A minimization algorithm for the synthésis o
hazard-free two level implementation of asynchronous circuits was firethiced. First
steps for minimizing the non-primes were introduced with an algorithm named npni-
row-dominate. Then the methods for minimizing the redundant covers wiefedxrAn
algorithm named rni-row-dominate-unopt was introduced for the same.
Then a method for converting the hazard-free two level implementation in toletatyp
testable multi-level implementation was introduced. Four different procediarged on

the type of two-level logic was detailed with example. The first proceduiiehwdtars
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with non-Prime and irredundant Two-level logic was described. Thers¢bend pro-
cedure starting with the redundant but prime two-level logic was introdutkd third
procedure starts with the redundant and prime two-level logic. In thehfguocedure,
the two level logic which is irredundant and prime was processed to dadimen in to
multi-level testable logic was described.

Experimental results for several benchmark circuits were reportekkatuend robust
path delay testability of 100 percent with pin overhead of zero or few eparted.

2. Synthesis of testability techniques for asynchronous circuitfKLSV91]

A logic synthesis method for asynchronous circuits without hazard andtectdpath
delay faults in them is proposed in this work. Two types of gate delay fauleleadere
used for the path delay fault testing namely hazard-free robust pathfdela (hfrpdft)
and robust gate delay fault (rgdft) models. A method for removing theriaZeom the
initial two level implementation of the circuit was introduced. A method for geliveya
guaranteed hfrpdft circuit was proposed. The crux of this method wetsomse a binate
variable x, in a given SOP representation S, of a Boolean function gndeose in to
Xx.G + X.H + R, in such a way that variable x does not appear in G,H and &niéthod
implements area efficient design which is a hfrpdft. Another heuristic druoegto fur-
ther improve the testability of the hfpdft was also proposed. This heurisgiEalgebraic
factorization to improve the delay fault testability of the circuit. Next a proceda
guarantee the generation of rgdft circuit was proposed. This metljodtes test inputs
to make it robustly path delay testable.

3.2.4 Testing C-element

1. Testing C-elements is not elementar{BR95]
This work analyses several designs of C-element for stuck-at fatatitity. Interesting
facts on the effect on the functionality of the circuit by the stuck-at fauliserC-element
designs were analyzed. Totally 7 different C-element design implementat@edaken
into account and the testability of these designs for stuck-at faults wengsdisd further.
First the majority gate implementation of the C-element was introduced and all tie stu
at faults in this design and the possible functional behaviours of the C-etadne to
these faults were tabularized. Test patterns for each faults were algedd®m one of
the columns of the table. Interestingly at most 2 test patterns were neadestiog
all the detectable single stuck-at and multiple stuck-at fault models. Fromm#igsis
of the circuit, a guaranteed time of stabilization for the circuit given the ciuény
stable state and the new input value was derived as d-max ={chasl,ds} + ds +
dassumingd> max{d,,ds}, where di is the transition delay of the gate i.
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The majority gate element is composed of the AND gates g1,92,g3 and the OR gate
g4 and hence the corresponding transition delays d1 to d4. Totally 18ediffeaulty
machines were derived for all the fault in the C-element. For the Wuu'siitiactest
length of 7 was reported and 38.5 percent of the single stuck-at faulesreqgorted not
to result in a halting state. For Koche and Brunvand’s circuit also redjiireectors
and 50 percent of the faults does not result in halt state. For Mayswvskguit, 7 test
vectors are required and 20 percent of the faults does not resulttisthie. Bartky’s
circuit again needed 7 test vectors but only 14.7 percent of the singjks fasults in
circuits that does not halt. For the dynamic implementation, the test vectorscheede

7 and 6 out of 14 fault machines do not result in halt state. The static impletoenta
has six additional transistor compared to dynamic one. For the asymmetrien€rele
14 out 18 faults does not result in the halt state and it requires test leihghyatl. Thus
this work concludes that detection of faults in C-elements is not trivial antbttability
properties are recommended to be considered during the design of tee€nes.

3.2.5 Test Pattern Generation for Asynchronous Circuits

1. Heuristic for testing asynchronous circuits -[Put70]
A heuristic algorithm for automatic test pattern generation for asyncheociotuits was
introduced in this work. This work is the most earliest work reported on@aRjorithm
for asynchronous circuits. The algorithm was implemented as an APLaogr his
method reads in the circuit netlist to be tested as a combinational asynchoetsork
which has feedback loops present in it. The test generation algorithmeisrastic and
thereby the test for the circuit is not guaranteed. This method involves tws st
the first step the test pattern or vector is generated for the CUT with a fsiuin Then
the generated test vector is simulated for both the good and faulty machinkdtmea
the test. Also in this method, given asynchronous sequential circuit iSdesad as
an iterative design of combinational blocks. In detail, when an asynohsssequential
circuit S with primary inputs RL Pl,....Pin and primary outputs R@PO;...PG, with "n"
feedbacks is given as input, the heuristic finds the points in S where ttileafele loops
will be cut to convert S in to an acyclic circuits.
Also, when delay elements are added in these cut sites, the circuit willtepesdhe
original circuit in functionality. Once the cut points are selected, pseyalatsriS..Shy,
are inserted for the m selected cut points. A Strongly Connected Comip(3€er)
based loop cutting procedure was employed to cut the feedback lodgpssimweights
and weights for each lines are introduced along with finding the SCCs toecaptimal
feedback loops. Once the acyclic circuits are obtained by cutting the ldapsyodified
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D-algorithm is applied to generate test patterns for the circuit. While gengthagrtests,
some restrictions are applied due to the presence of pseudo outputsesid frgpouts
present in the modified circuits. A working example of potential test generatid fault
simulation were shown. The whole heuristic was implemented in APL programlyame
CIRCUIT, CUT and GENERATE. Circuits with size of 50 blocks were use@€8T and

it took 25 to 130s. It was concluded that the test generation problenutixedime is
not dependent on the circuit size but only on the topology of the circuit.

2. Boolean Difference for fault detection in asynchronous sequenti@ircuits [HC71]
Major reasons for difficulty in detecting faults in asynchronous sequemiaorks were
outlined in this work. The four main reasons were 1) presence of fekdbaps makes
the test patterns order/time dependent, 2) The machine must be kept stgipéytthe
test patterns,3) an exact model of asynchronous sequential circifficisitito obtain and
4) large amount of information needed to execute the test being infeasildéde cir-
cuits. A Test pattern generation for asynchronous sequential netwasged on Boolean
difference is introduced in this work. The asynchronous sequentighima¢iuffman
model was used. Several definitions namely stable state, set state, hoonirepcs
Boolean difference, Boolean difference chain and total states wedstoslefine the test
generation methodology. The test generation algorithm is based on diegthie asyn-
chronous circuit as a set of Boolean equations. Then a primary inpoosen from the
set of inputs of the machine and a sensitizing path is found between the defgute
and the selected output. Homing sequence is used to facilitate the test gerngratiess
by moving the machine to known stable state. Two requirements namely stability and
compatibility have to be satisfied to generate test successfully using this metimod.
example of a gated latch was demonstrated to show the applicability of this method. |
has been summarized that the feedback variable assignment and the hequegce
generation algorithms were not discussed in this work.

3. Test pattern generation for circuits with asynchronous signals baed on scarfTF96]
A constrained test pattern generation method was introduced in this waskdnrtesting
circuits with asynchronous signals. The test patterns generated usimgetthied were
guaranteed to be valid even when a hazard occurs. Two differesifdatons of the
scan register were first introduced, namely concurrent capturatef@d-C-U) class and
the separate capture-update (S-C-U) class. The classification is draslee timing of
the capture and update operations during the scan testing processChCtheclass the
update operation occurs right after the capture operation. A latch aedgmtriggered
flip-flop are examples of this class. In the S-C-U class, the timing of the uElstpa-
rated from that of the capture. LSSD double latch is an example of this class.
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Next two problems were discussed: 1) destruction of scan chain vajuaschpture
clock and 2) destruction of the scan-in value by a hazard. The C-C4$ @damore
vulnerable to the first problem. A detailed example for these two problemsevasrd
strated. To solve these problems dynamic constraints were proposedeafties of
these constraints were 1) make a decision that scan-in values are natdetbmyed by
the capture clock, 2) justify a value of the D input so as not to destroy Hreiscvalues
and 3) propagate uncontrollable value where a hazard is possible.

The dynamic constraints for the asynchronous faults and synchrdaolis were pro-
posed separately. The constraints for the C-C-U scan register thattfeeasynchronous
inputs of registers or the control inputs of the tri-state devices are 1) wkean-in value
of a register is determined, justify the same value on the D input of the regiate?)a
when a value of the D input of the register is implied, make a decision to havarhe s
value on the register. For the C-C-U scan register that feeds the D ifjputegister
driven by the same clock, the constraints to be satisfied are 1) when-inseane of a
register is determined, justify the same value on the D input of the register) avite?

a value of the D input of a register is implied, make a decision to have the sang valu
on the register. For asynchronous faults, the following constraint wasoped. For
every register that feeds asynchronous inputs of registers or ti@doputs of tri-state
devices, the constraint to be satisfied is that when a value of a registetrigyaa by an
activated asynchronous signal, propagate the uncontrollable valumnitiie output of
the register.

An ATPG procedure for this test method was described further. Thandiynconstraints
were applied to both the decision process and the implication process which floe

main part of the ATPG flow. The justification or decision process was ¢xddased
on the result of the constraint checking process. When there is cdydtioeen the con-
straints and the existing values of the circuit, backtrack is performed.rigxpeats were
carried out on real chips for communication systems. Totally 5 chips weeriexented

and the results showing the number of gates, number of equivalent taelts,imber of
scan registers and the ratio of synchronous and asynchronouddethitotal number of
faults in the design were reported. Faults ranging from 89 to 96 peraesyfichronous
faults and 4 to 11 percent for the asynchronous faults were repastia a&haracteris-
tics of the chips being experimented. The resulting fault coverage foreatthips was
reported to be in the range of 97 to 99 percent. The test execution time pateckto

be between 355 to 11458 CPU seconds. This method seems to be efficidatsible

for industrial circuits.
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4. Synchronous test generation model for asynchronous circuit8CR96]
A test generation model which is synchronous in nature was introducedsinvtrk
testing asynchronous circuits. Main advantages of this method are 1)repocis se-
qguential test generation methods can be used to generate the test for tkle Zhdde
test generated using this model can be easily translated in to a test for tiobi@sous
circuit under test and 3) tests will not suffer from test invalidation duensiable states.
Automatic test generation for asynchronous circuits was discussethfitemparison
with the synchronous circuits. By adding a delay element in the feedbabkopghe
synchronous sequential circuit, increase in testing capability of the lasymaus cir-
cuits was pointed out with an example. Three key factors for properly hiragi¢he
asynchronous circuits were proposed namely 1) a new input pattentdstrdy be ap-
plied after the circuit becomes stabilized and when it is fault-free, 2) tleetedf the
faults should be observed only when the faulty and fault free circuite btabilized ,
and 3) The circuit should be allowed to cycle through the internal unsttdikssefore
it gets stabilized on application of the new input pattern.
The Synchronous Test Model (STM) was introduced next. The modslngposed of
the input and output signals and the asynchronous latches are repldabedocked
flip-flops. These flipflops are clocked at the period equal to the critathl gelay of the
circuit. These flipflops are called the model flipflops as they exist only inghesonous
model of the asynchronous circuits. The model is also composed of tueesmamely
Input Logic Block (ILB), Output Logic Block (OLB) and the input/outpugseal flow
generator (IOFG). These additional blocks will appear only in the sgmgus model
and not in the actual hardware. The IOFG is used to both apply the ingetpand
observe the output signals of the core circuits. The implementation of thesellocks
at the gate level was described further.
The testing framework using the STM for testing the asynchronous circaisowefed
further. The tests for faults in the STM can be generated using a comahtgn-
chronous sequential circuit test generator. The translation of te§Tbft to the test
for the actual asynchronous circuits was shown to be a linear prazedarautomated
procedure for the test generation based on this method was given asmp@acedure.
The Automatic Test Generation procedure is as follows

» Step 1: Construct the STM for the ACUT assuming either a user-specifidd
length or an estimated one.

» Step 2: Create the target fault list that contains only faults in the ACUT.

« Step 3: Perform test generation on the STM using any off the-shethsgnous
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test generator.
« Step4: Translate these test patterns into sequences for the ACUT.
« Step 5: Validate the translated patterns by fault simulation on the ACUT

The experimental results of applying this method over several asyramisdenchmarks
were reported. Two experiments were mainly performed. The first Bmpat was to
verify that the unstable states are the main source of test invalidation anddbeds
method was used to validate the STM model proposed and the fault cowdfiagancy
of the method. The fault coverage ranges from 88.5 to 100 percent.teh@vali-
dation was zero for all circuits in proposed method whereas it was raffiging4 to
17.9 percent in the Ad-hoc method. Next the application of the proposeathithiest
the embedded asynchronous circuits in the synchronous circuit wasga®. The test
results for the embedded circuits in the ISCAS benchmarks were repdtiecembed-
ding of the asynchronous circuit was nothing but replacing the flipflogheénSCAS
benchmarks with the actual gate level representation which is asynecisronpature by
itself. The fault coverage was ranging from 62.9 to 93.4 percent. Theffesency was
ranging from 89 to 99.9 percent.

Thus an effective synchronous model for testing asynchronouditsirand the embed-
ded asynchronous circuit in synchronous systems was proposethemdsults were
convincing enough to apply to the industrial circuits. Other applications of3fig
were reported as test generation for gated-clock circuits and felethidging faults.

3.2.6 Random Testing

1. Random Testing of Asynchronous VLSI circuits[Pet94]

This work is an attempt to find possible ways to test asynchronous VLSlitsiras-

ing random (or, more accurately, pseudo-random) patterns. The nsailtsrbave been
obtained in the field of random testing of stuck-at faults in micropipelines. gym-a
chronous random testing interface has been designed which includesymachronous
pseudo-random pattern generator and an asynchronous parafiglusey analyser. A
program model of the universal pseudo-random pattern generasobden developed.
The universal pseudo-random pattern generator can produce fityddudo-random
sequences without an obvious shift operation and it can also prodeighted pseudo-

random test patterns. Mathematical expressions have been denyeddecting the test
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length for random pattern testing of logic blocks of micropipelines by applingprob-

able and weighted random patterns to the inputs. The probabilistic propefrties n-

input Muller-C element have been investigated. It is shown that the optimabna test
procedure for the n-input Muller-C element is random testing using egjugie input
signals. Using the probabilistic properties of the Muller-C element and multigéxe

corporated into the circuit a certain class of asynchronous networkisecdesigned for
random pattern testability. It is also shown how it is possible to producelpsemndom

patterns to detect all stuck-at faults in micropipelines.

2. Designing asynchronous sequential circuits for random patterndstability [PFRG95]
A method for designing asynchronous sequential circuits for randdtarpaestability
was proposed in this work. The general structure of the asynchsoseqguential cir-
cuit was discussed first. Issues regarding the testing of micropipelinesdiseussed
in detail. The drawback of the scan testing that, in shifting the n-bit patternsthreto
DUT (Design Under Test) before actually applying it to the test object wasgd out.
This was pointed out as important fact to reduce the testing performartbe &ST
structures in which application of a large number of pseudo-random pafigims the
part of the BIST procedure. To overcome this, a solution is proposéhwivolves im-
plementing the scan testing by shifting the random patterns bit serially with centu
observation of the test results.

Design of random pattern testable asynchronous sequential circuésinterduced in
detail further. Two modes of operation of these circuits namely normal modidezst
mode were detailed further. The proposed testable circuit has the testistrwith addi-
tional hardware. It contains an additional register to collect the testdatethe internal
outputs of the combinational block, a block of XOR gates for mixing the testatada
multiplexer to switch the data flow during the test phase. In addition to this, to f&eilita
the control signalling properly, two XOR gates, multiplexers and a toggle elewene
added. The mechanism for applying the random test patterns to the inputsrapress-
ing the output responses of the combinational block were detailed futthersignature
analyser used for collecting the test data from the internal outputs of thbicational
circuit was described in detail. The signature analyser used was adeptethe well
known BILBO (Built-In-Logic-Block-Observer) signature analyzer.

The advantages of random testing the sequential circuit were repoitedijdow com-
plexity in testing procedure, 2) faster testing time of n-1 times, where n is theeturhb
latches of registers and 3) the number of test patters for detecting all tiie stack-at
faults in the circuit is equal to the number test patterns for detecting all thie-atdaults
in the combinational part of the circuit under test. The reason point 3 iswagdho the
following 3 factors namely 1) all the stuck at faults on the inputs of registegslRnd
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Reg2 are equivalent to the appropriate faults on the internal inputs obthbkicational
logic block, 2) all the stuck-at faults on the inputs/outputs of the block of Xfakes
and Reg3 are detected easily during the test of the combinational circus) ataick-at
faults on the control lines involved in the control of the random testing of itlceitare
detectable as they cause deadlock of the circuit or change the data fiog the test
which can be identified easily.

Hardware overhead and performance degradation were reportedite llisadvantage
of this method. An experiment was carried using the circuit called "regist&irdition
decoder" which is a part of the asynchronous version of the ARMgasar. Testable
implementation of this circuit was first designed. The testing mode and norma& aiod
the circuit were executed to detect the stuck-at faults in the circuits. Thedeson-
sisted of 47 test patterns including 1) one test pattern which containsadl, 2rsixteen
‘running one’ test patterns and 3) thirty test patterns everyone of vitnidhde only two
ones and all zeros. Up to a reduction of 165 times was reported for tesrajrtiuit us-
ing weighted random test patterns. The CMOS implementation of this circuitsteas
of 1011 transistors. The testable design of the same circuit was repoliedtonprised
of 1290 transistors and thus giving a hardware overhead of 27rgerce

3.2.7 Offline Testing

1. Offline testing of asynchronous circuits]Kop05]
This work introduces a new method for testing the asynchronous circuithwsob-
tained by the direct mapping technique from 1-safe petrinets. Signaltioangraphs
(STG) and 1-safe petrinet were used for the representation of thétaircler test. The
original petrinet based circuit description is converted in to a two levéitacture which
is composed of a tracker and a bouncer. The tracker and the bourcawranected by
means of read-arcs. Direct mapping from STG/petrinet involves intingacDavid cell
for each place in the petrinet or STG. David cells are sequential and-epegependent
circuits. The fault models used are based on the physical faults oagimrthe David
cells. The fault model proposed capture three different errors dtieetphysical faults
occurring in the David cells. First error is called token disappearing vetilth occurs
when the David cell executes its input handshake, but does not startgptst dland-
shake, causing a deadlock. Second error called stuck-at-fullascors when the David
cell has its output wire at in the stuck-at-active state, which starts the chapdshake
prematurely and never finishing it. Third error occurs when a David eedlives a token,
and starts its output handshake without finishing it. All these errors leaé tethdlock.

A pseudo clock was used to detect other two faults in addition to these thoes. er
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The crux of this work is that the chain of David cells present in the decoetpaiscuit

is converted into shift registers. An approach for testing single stuckudtsfwas also
proposed. The test generation algorithm involves three steps namelyn&@rsion of
the tracker in to an acyclic structure, b) generation of verilog netlist wittrobsignals

and demux-mux and c) test pattern generation. This approach was deatexhever the
benchmark, up-down counter. Case study on the benchmarks congfd3eadid cells

ranging from 5 to 17 were reported with 93% and 100% testability. Overimeadred

due to the addition of AND gate at the David cell interface was also reported.

3.2.8 Functional Testing

1. Fast functional testing of delay insensitive circuitfPag95]
A fast functional testing method for the test generation for delay inseagiticuits was
proposed in this work. The circuits tested were the four phase harelsigkalling
based circuits designed using Martin’s method [BM88]. A new block calleéd3block
was used to facilitate the testing process and also to preserve the delasitiviteof
the circuit under test. This block acts as an OR gate during normal opeddtibe cir-
cuit and as a C-element during the testing phase. The program flow gf épd circuit
is used for the test sequence generation and the OR/C block insertiooéraplat. A
synthesis method for the delay insensitive circuits represented in CSPrliuegge was
described using an example. The CSP-like specification is then reprssragrogram
flow graph. The guarded command present in the program flow gragledsin the test-
ing process of these circuits.
A testing method by simultaneous execution of the guarded sequencesigfad bur-
ther. An algorithm named "multi_path" for determining the paths to be traverséud
this process was also introduced. Following the test method, steps enth@iogrrect
operation of the circuit during the testing process were analysed. Tdw ef commu-
nicating multiple values was discussed with an example. The effects of simui&neo
execution of the guarded sequences were discussed further dueingsting process
by using an example. Behaviour of the environment during the testinggsocas dis-
cussed further. Due to the distributive nature of the delay insensitivaitsirthe testing
time is considerably reduced due to the simultaneous execution of more thgnarded
sequences in the program flow graph of the circuits. An extra oveifeagin is needed
to implement the testability feature during the synthesis process.
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3.2.9 Fault Simulators and Test methods

1. Testability of Asynchronous Self-Timed control circuits with delay assumptiongBM91]
A Testability method for timed asynchronous control circuits was propostisimork.
These circuits were built using standard logic cell with assigned min-max falube
rise and fall times. The circuit model was represented as a total state @ra@) to
practically realize all the possible state transitions of the circuit. Another stafihg
named, invalid state graph was also introduced which depicts the functiongtite o
circuit when it is faulty. Faults used in the testability of the self timed circuits in this
technique are single stuck-at-0 and stuck-at-1 faults. The controltsiane represented
by the signal transitions of the circuit which is composed of the partial mgeof the
signal transitions in a signal transition graph (STG). The memory elemetgreat is
assumed to be driven by the combinational logic block decoupled from imbets to
the C-element. This is to ensure the testability of the C-element. The testing environ
ment assumed in this work is considered slow enough to allow the circuit to be in th
stable state until other nodes in the circuit gets stabilized. In other word,gheohthe
circuit is not changed until the effect of the previous input to the circadt stabilized.
The stuck at faults in combinational logic block, C-element were dealt atgbar The
fault inside the C-element is not considered in this method. The C-elemersuised
as an atomic gate and the faults in the two inputs and the output were condiolered
testability.
A sufficient condition for full testability of an asynchronous control gitevas also pro-
posed. The conditions is that for an asynchronous control circuiti00% fault testable
for single stuck-at fault, when 1) for all the faults, the circuit is capabteawersing from
one reachable state in which the fault can propagate to another state intisdhmitputs
are different for the circuit, 2) for all the faults, the circuit will not trase from a valid
state to another state where the output of the circuits are as expected butpbeof
the memory elements are different. An automated testability checker tool waisnalso
plemented. The tool reads in the circuit under test with the minimum and maximum gate
delays assigned to each internal gate and outputs the declaration of thditgstbthe
circuit along with the list of states traversed for testing.

2. FSIMAC Simulator [SKROO]
A fault simulator called FSIMAC for stuck at faults and gate-delay faultsasyn-
chronous sequential circuits was developed in this work. The time franwdimg
method is used in this fault simulator to simulate the faulty and good machines which is
sequential. The time-frame boundaries for the synchronous circuitsatmtindaries
of their clock, but in case of the asynchronous circuits , feedbaclslpogsent in them
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bound the time frame. Hence a new feedback identification algorithm wass@dp
This algorithm was a variant of the conventional feedback loop breakgayithm ex-
cept that this new proposed algorithm used breadth first search instetapth first
search during the scan element selection process. Min-max timing analgdiseah3
valued logic were used by the simulator for the timing analysis of the frames.

The main target circuits for this fault simulator were those of RAPPID resemkiia
extend burst-mode machines. The delay model used here is the bouragdndeel

as the min-max timing analysis approach is based on bounded delay model.uén eq
nominal gate delays for rising and falling transitions, and zero wire del@y®ut sac-
rificing the simulation model. Some of the inertial delays were also modelled due to the
presence of domino gates in the target circuits chosen. 13 valued wavieigic was
used for the simulation, which is capable of dealing with the hazards duringjrtut
analysis. The signal waveforms were represented as a triple <b,m,e> vétiobrty the
begin state of the signal, e the end state and m the intermediate transition behBvéeou
class of waveforms in the 13-valued waveforms are constant, transit@ardy stabi-
lizing, unstabilizing and undefined. This classification is based on the transttithe
signals and also their stability.

A conversion method from 3-valued logic to 13-value logic was introduEedt, All the
input waveform sequences were taken and the correspondingneeguef states from
being state to end state is computed. Second, the function for the begin stéte @md
state were defined. Third, based on the function, the value of the m is ¢tedipyimon-
itoring the transitions occurring during the state change. These threenstepapplied

to develop a 13-value logic by storing all the 13-valued functions as agrguted look
up table. A demonstration of this fault simulator over the complex domino logicitircu
was demonstrated with the HDL description and the files generated by thedeSdivh-
ulator.

A algorithm named feedback_detect based on breadth first searcesaibed. The al-
gorithm involves storing two indices namely "level" and "flag” for each gathergraph
description of the circuit. The level computes the number of gates betweét Hrel
the current gate and the flag variable stores the completion of the level tatiopuTwo
traversal lists namely TRUE_LIST and FALSE_LIST were used to complétalerse

all the vertices/gates of the circuit. Feedbacks were added in the selistratemed
FEED and its evaluation is registered in the list called Eval_Feed_List. Thabgh
identification of feedbacks is on the fly and the method of finding them is nobedted.
The inputs to the fault simulator FSIMAC are a) verilog gate level descriptigmin-
imum and maximum gate delay bounds and c¢) a sequence of test vectorshd-feault
free good machine is simulated and then the fault machine is simulated for edich fa
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Fault models used are single stuck-at-0, stuck-at-1 and gate delay Farltee sequen-
tial circuit, the simulations are done frame-after-frame with bounds being#ubacks
detected by the feedback_detect algorithm. Once the circuit is initialized bpplé
values provided by the user, the current frame is simulated using the $irstitauli and
min-max timing analysis. When the primary output value becomes stable, the vélues
the output value of the fanin gate g for every feedback are fed as #hénpet value of
fanout gate f for every feedback. For stuck at faults the Primary ¢&ifputhe good and
faulty circuits are examined for fault detection. For the gate delay fault, tinmepstéor
the primary output signals at the end of each frame is examined for faultidetend
reporting. Several benchmarks from Phillips and Intel were experirdavité the fault
simulator and the results are reported.

3. Testing two-phase transition signalling based self-timed circuits in aygthesis envi-
ronment[KA94]
A testing technique for self-timed asynchronous circuits taking advantatpe @uto-
mated synthesis method of self-timed circuits was introduced in this work. Aeynth
sis environment named SHILPA was developed. The circuit descriptiothéoasyn-
chronous circuit was based on the hopCP, a high level concurrebt Which is based
on CSP. The circuits, are described as a collection of concurrerg#gges communicat-
ing through the synchronous channels via handshake through ressiaeed variables.
The transition signalling, known as two-phase or event-based signallingedsin these
designs attributing to its high performance and low power consumption. A eXan-
ple of the hopCP description of a self-timed asynchronous circuit wasmgnated. The
represented behaviour of the circuits is converted in to an annotateddPetiied HFG,
where the places denote the states of the system, the actions/Boolean avaldatiote
the transitions of the Petrinet. The HFG is then converted in to a self-timed disuit
ing a syntax-directed translation procedure called action refinement. Aefiiolement
involves a set of petrinet based transformations to convert the HFG td_deRél de-
scription. In the proposed synthesis framework, every block of thigdésrepresented
by an action block which implements the hopCP action. The action blocks were als
classified in to three types namely Control action blocks, Function action bhouks
Predicate action blocks which models the control flow, functions and theeBoredi-
cates respectively. Now this automated synthesis method is used to gersriiettee
synthesized circuits too.
Two types of fault models were considered during the testing processtutie-at fault
and the delay fault models. But only the stuck fault model was demonstrateelivork.
The fault model assumption over here is based on the capability of trengfar0 to 1
and a 1 to 0 transitions through a node and in which case the node is cedsiddre
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void of stuck-at-0 and stuck-at-1 faults. Thus to test a node for the-stutelst, two tran-
sitions have to be passed through the path from the input through the ntiaiedotput
of the circuit. This process still has a bottleneck over the proper justificagganence
needed to propagate the transitions. To overcome this, the SELECT modukelin th
brary of asynchronous circuits used by SHILPA is modified. Also, alhtheromodules
in the designs are considered to be atomic gates and thereby the faults insitadiles
are not considered during the test generation. The design of the SEIARCST module
which aids the test generation process was briefed. The proposeNSIACT mod-
ule is also considered as an atomic gate during the test pattern generation.

Next an algorithm for the test pattern generation was proposed. Thetllgdakes in
the output of the SHILPA synthesis system namely the NHFG, the set afnesoand
the physical netlist. The output of the testing algorithm proposed are 1)ghegetors
for all the stuck-at faults, 2) control sequences to test the controbpéne circuit and
to setup the conditions to test the data path, and 3) the points on the circuitsedbéu
setting up the scan chain. The top level flow of the algorithm is as followse @wcout-
put of the SHILPA system is read in, the circuit is partitioned in to datapattcanttol
path. Then the procedure called testCab is applied to test the control pathreturns
the control sequences for the control path testing. Next, the testDataf®atdpre is
run, which generates the test vectors for all stuck at faults and alsotiwksequences
. Then the algorithm returns the the control sequence of the control thetltontrol
sequences and the test vectors for the data path and the points seletitedstan chain
implementation.

The whole synthesis and testing flow was applied to several asynclgdeochmarks
and fault coverage of 100 percent was reported. The area @agefbethe circuit will be
contributed mainly by the modification in the SELECT module. The pin overhead wa
reported to be 7.

4. Testing Redundant asynchronous circuits by variable phase splittig[LKL94]

This work proposes a test generation approach for stuck-at anyg el testing of
asynchronous circuits without the addition of any logic. This method is basezhr-
titioning the asynchronous circuit into combinational and memory elements. ulhe f
stuck and delay testability was achieved under weak conditions with an atisarap
being able to drive both phases of the each combinational logic input indepgy. Any
two level circuit implementing a unate function is automatically prime and irredurifdan
it is free from single cube containment. This property is mainly exploited in thisadeth
The method proposed is called testing by variable phase splitting. Insteadddf/img
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the logic, the inputs of the circuit are modified to enable testability of the circuits. |
done by treating the positive and negative phase of each input variatile asparate
entities.

Next a design for testability for the test methodology was introduced. Spéogk are
needed to apply the proposed test methodology. The synthesis algorithtimetmain
classes of asynchronous circuits hamely 1) Huffman circuits, 2) BuosteMMachines
and 3) Bounded delay circuits are shown to be synthesizing the circuitsahatreserve
the single stuck-at and the delay fault testability if the synthesis procetiayes the con-
straint proposed during the synthesis. Experiments were carried oasyimehronous
benchmarks and results with full testability were reported. A greedy algomtas im-
plemented for carrying out the experiment which ensures full testabilityplityisg each
input signal. The heuristics used using this approach employ the ordefittihg by
considering signals that are at the near end of the untestable path arldemem-unate
signals. The number of split signals used are reported to be very lowlsmtha exe-
cution time reported were only of few seconds for the circuits with literal sipging
from 10 to 52.

Several other fault simulators for asynchronous circuits reported ifiténature lately
are [SM04a],[BR]

3.2.10 Fault Modelling

1. High level fault modelling of asynchronous circuits[Lu95]
A high level fault model was proposed in this method for testing asynchsooiocuits.
The fault model is based on the signal transition graph. The fault modetiinded here
is called Transitional fault models. Complete fault machines of the C-elemetitdo
stuck on, bridging and stuck faults were derived. The C-element impleti@ntdyle
was dynamic C-element.Total 34 possible faults were realized. Out of B4pamere
modelled by the stuck-at fault model. Rest of the 31 faults were modelled loasthe
proposed transitional fault model. Definitions of two new transitional fa@tsely tran-
sition unable fault and extra transition faults for the C-element behavituck %t-false
and stuck-at-true faults are the proposed transition fault models. Stdalsatin the
STG is that one of the pre-conditions of a transition is always false. Thisifrepre-
sented by adding a'0’ in the STG. Stuck-at-true fault is the fault in the SThioh one
of the preconditions of the transition is always true. This is representaddipg a’1’ in
the arc corresponding to that precondition. Further the transition fasltlivaded in to
single and multiple signal transition faults namely Single Signal Transition FaSiEEH
and Multiple Signal Transition Fault(MSTF). When only one signal transitautt foc-
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curs at a time in the STG, then it is called SSTF. When more than one SSTF dacur
the STG at a time, then the fault is called MSTF. Most of the functionally irrddan
faults can be modelled using the transition faults.

Further the fault collapsing technique for the signal transition faults is inted. Tran-
sition fault equivalence and Transition fault dominance were definegl pfdposed fault
models were used to generate test for the asynchronous benchmaiik asynehronous
neuron. The analog fault simulator was used to map all the transistor |eNefrfadels
to gate level transitional fault models. Then the gate level transitional fauemevere
used to generate test using the STG. It has been reported that mor® iharcént of the
transistor level faults could be covered by the proposed fault modelsaSgi of fault
namely parametric faults could not be detected by these models

2. Issues in fault modelling and testing of micropipeline§PVS92]

A testing technique for Micropipelines is introduced in this work. Micropipédiraal-
vantages over the synchronous pipelines are 1) it has the minimum possiptmse
time equal to the delay of all the stages, 2) the logic circuitry is simple, 3) optim&-wo
ing speed of each stage is guaranteed and 4) problems regarding isiaglelocking
schemes for synchronous pipelines are not encountered. In terms wfsthability fur-
ther three more advantages namely 1) control parts of the micropipelinesranarrently
testable, 2) test pattern generation for data part logic can be reduced ¢ the combi-
nation circuit with an update in the test application method, and 3)testing la&ipgisas
test pattern test which can be obtained from the usual test pattern tyemenathods for
combinational circuits. The stuck at fault model were used for the testpagg@eration
of micropipeline namely 1) faults in the control part of the pipelines, 2) faultiserogic
blocks and 3) faults in the latches. The faults in the latches considerediveesingle
stuck-at-faults, single stuck-at-capture faults and the single stucksattaaits.

3. Fault effects in asynchronous sequential logic circuitfSWF93]

This work studies three types of fault effects in the Huffman model of @symous cir-
cuits. The three types of fault effects are equivalent-state redufalty, invalid=state
redundant faults and state oscillations. In this work following assumptioneagin-
chronous circuit being analyzed is made, 1) the circuits are tested amategbén the
fundamental with only one input changing at a time, 2) circuit has the résetfsom

which all the input test sequences are started, 3)two-level implementatidmich anly

prime and non redundant implicants are present except the redundarfoliothe static
hazard protection and no shared logic for the next state equation anat egtpation
and 4) the single stuck at fault model is used. The equivalent-statedadiufaults are
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reported to be generated when there is a violation in the fundamental mosteadats.

The invalid state faults occur due to the presence of invalid states or im@sgignment
of don't care terms. State oscillations occur due to the presence of thalcritzes.
Three properties for the non occurrence of the oscillations were irteatduProperty
1 states that two-state oscillations will never occur in a race-free faultitiferoperty

2 states that if each input column contains either 1) atmost one k-connexdtedkp>

3 or b) k-connected paths , k <= 3, then no multistate oscillation occurs ineafeac
faulty circuit. Property 3 states that , if there exists two disjoint k-connguadios, k > 3
and dH(Sx,Sy)(distance between Sx and Sy) >1 for all Sx and Sy inetlifeonnected
paths, then no multistate oscillations occur in the fault circuit. And finally a setle$

for synthesizing testable asynchronous sequential logic circuit wagiatso.

3.2.11 Switch/Transistor Level Testing

1. A switch level test Generation for system for synchronous and asghronous cir-
cuits [ES95]
A switch-level test generation system for synchronous and asymousocircuits has
been developed in which a new algorithm for fully automatic switch-level teser-
tion and an existing fault simulator have been integrated. For test geneatgoritch-
level circuit is modelled as a logic network that correctly models the behatitreo
switch-level including bidirectionality, dynamic charge storage, and rafiogid. The
algorithm is able to generate tests for combinational and sequential circaitsnBIOS
and CMOS circuits can be modelled. In addition to the classical line stuckshs,fa
the algorithm is able to handle stuck-open and stuck-closed faults on tiststoas of
the circuit. In synchronous circuits, the time-frame based algorithm ugesta®nous
processing within each clock phase to achieve stability in the circuit anchsymous
processing between clock phases to model the passage of time. In @schcir-
cuits, the algorithm uses asynchronous processing to reach stability witthinesween
modules. Unlike earlier time-frame based test generators for genetsdreéd] circuits,
the test generator presented uses the monotonicity of the logic networke spehe
search for a solution. Results on benchmark circuits show that the testag@noutper-
forms an existing switch-level test generator both in time and space requienide
algorithm is adaptable to mixed-level test generation.

2. Test quality of asynchronous circuits: a defect oriented evaluatin [RB96]
A detailed analysis on the test quality of the asynchronous circuits usiegtdedised
fault models was undertaken in this work. The transistor level implementatitimeof
sequencer circuits with 14 transistors and 2 inverters was also presBieteédhe design
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and test aspects of handshake logic circuits were discussed.

Then, a detailed introduction to the defect-oriented testing was given. Phieach
namely inductive fault analysis and the tool in which it was implemented was also
pointed out. The testability of the opens and shorts in the handshake cirengsawa-
lyzed using this tool named Analog SystemQ. Next the fault models namely gpeck o
short and bridging fault models were described. Three differentrtettods were used
for the analysis and evaluation. The first method is based on the dead®dtidn. The
second method is based on voltage testing and the third one being the IDD@.testin
Next a detailed fault analysis for the component SEQ was carried outt tRérdault
free behaviour was simulated and the corresponding waveforms weralee for all
the nodes and also thgd. All the bridging fault and the stuck-at faults were considered
for the analysis, which accounted for totally 91 bridging faults and 30 sttuékults. A
fault coverage 88 percent for the bridging faults and 97 percenthfostuck at faults
were reported. Also 12 undetectable faults were reported. Based dhrésclasses of
faults were classified for this sequencer circuit. The percentage d@ibgdnd stuck-
at faults detected by each of the three testing methods was representgthesifenn
diagram. A DFT component named HOLD was introduced further and thsistan
level implementation of it was shown with 14 transistors and 3 inverters. Thiseele
facilitates the lock-stepping of the circuit operation to create sufficiensgarg states
for IDDQ and the scan test. The simulation results for the sequencer dradih the
HOLD element was reported in the same way using the Venn diagram. Stfmlhkat
coverage of 95 percent and 95 percent bridging fault coverageeparted for this DFT
based design of the sequencer.

Next the fault analysis for the other handshake components was ddreDHRT ap-
proach of adding HOLD element was carried out to analyze all these cwnfo The
components namely MUX, CASE, DO, PAR and HOLD were analyzed ancethéts
were reported. Test performance and the cost of all the test methodsawmedyzed fur-
ther. It was evident that the scan testing along with the IDDQ testing wasddedjet
good fault coverage. Costs with respect to area, power dissipationedend ere also
reported.

3.2.12 Self Testing Asynchronous Designs

1. Self-Timed is Self-DiagnostidDGY90]
A self diagnostic design of asynchronous circuits was introduced in thik. wotech-
nique for implementing any Boolean equation into a self checking asynansothe-

sign was proposed. A combinational module was implemented in ternary in vih&h,
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logic values will be 0,1,U, where U is an undefined value. The sequentiavioir of
the implemented combinational module was specified using a cycle of activitiedyname
E1,S1,E2,S2,.....E4,S4, where E’s are environments and S’s are netwotikfahcon-
straints. Also the ternary logic was employed using the dual-rail logic with thie log
values 0,1, and U represented as 10, 00, and 01 respectively. Wi@national mod-
ule was composed of 4 subnets name ORN, CEN, DRN and OUTN. ThetsOBR¢
detects when each of the input has become defined or undefined. Bimet SLEN is
designed in such a way that it detects when all the inputs are defined efinedl The
arbitrary set of Boolean equations are implemented by the subnet DRNeSOWTP
retains the output of the combination logic module’s outputs to undefined vatil@il
the inputs become defined and only after that the correct outputs will beiged. A de-
tailed self diagnostic model was described for the circuits with stuck-atdaljt The
self-diagnostic system was defined in this work as a design in which therence of a
single stuck-at-fault and a sequence of environment transitions E1ir, produces
the correct outputs or goes to a hung-up state or an illegal final stated Baghis defi-
nition, several theorems to prove the self-diagnostic design was funtieéed Sixteen
different cases involving stuck-at-1 and stuck-at-0 faults on the wiféseoproposed
designs were discussed further. The detection of faults in the proge#fediagnostic
design was aided by the four phase signalling protocol used for the coitation be-
tween the circuit and environment. Low hardware requirements was aladvantage
of this technique compared to the usual self-checking logic design.

Review:

3.2.13 Critical Analysis
Design For Test

Though several testable design methods targeting specific low level éuarevere introduced
for asynchronous circuits, they are very specific to certain design stytertain hardware
for specific application. No general asynchronous DFT is currentjiable which can be
applied in a generic manner for any type of asynchronous design stglecetseveral recent
methods addressed in literature still follows the synchronous design bestehethods for
asynchronous circuits.
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SCAN Testing

Full scan testing methods introduced for asynchronous circuits are oblstr test method
currently available for testing asynchronous. But the issue with this methbdtisthe area
over head will be higher compared to the original circuit. For the asymciumcontrol circuits
with too many C-elements , it will be important to develop partial scan test gemeraethod

to reduce the test area overhead. Not many partial scan methods aneddp the literature
for the asynchronous design. This paves way for the main motivation ahimsss to develop
test methods for asynchronous circuits.

Synthesis for Testability

Synthesis for testability for asynchronous circuits is a very rarely degilt to asynchronous
test community. As given in the review the methods in [KLSV91] and [NJC%weported
in late 90’s. Feasibility of these methods for the current technology noilldsevan important
question to address.

Test Pattern Generation for Asynchronous Circuits

Four different ATPG techniques were reviewed in the previous stibssc It should be noted
that these test methods were reported long back in 1970s. Only two Adde@tmethods were
reported in the literature ([SM04a] and [Roi97]). But these methodsasedon STG based
and random test vector based ATPGs. The number of test patternsigehiey these methods
is very high. A very effective test method with optimal number of test pattenasstill with
very good fault coverage similar to synchronous ATPG methods is yetdevsoped.

Fault Simulation

FSIMAC [SKR00], SPIN-SIM [SM04a] and [BR] are some of the fauthalators reported in
the literature. They still follow fault simulation methods used for synchromingsiit design
and are adapted to address the hazards in asynchronous circuigdoidey more fault simu-
lators with fault models targeting faults on asynchronous circuits will improgduture test
generation methods which will use these simulators.
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Fault Modeling and Transistor Level Testing

Fault models for asynchronous circuit test are still under very earjestaMost of the test
methods introduced for asynchronous circuit usually apply stucksétrfeodel as they are the
golden models for the past few decades. But transistor level fault modekstlikk-open faults
cannot be completely detected by this model. The discussion on this topic esaddrin the
Chapter 9. Developing new fault models is currently necessary as thetegly node already
reached sub 30nm. Several defects occurring at these nodes anchfdzet on asynchronous
design styles have to be addressed.

This thesis addresses most of the above mentioned topics. Firstly, as meiritdmeoutline of
the contribution of the thesis in the introduction chapter, three partial scamixdhods were
introduced in this thesis. This contribution aligns with the current challengeladfessing the
partial scan test methods for asynchronous circuits. Next the faultlmtus than stuck-at
fault model was considered to generate test for detecting transistofdeltsl. With the tran-
sistor feature size reducing this method addresses the important chalfengeaved testing
of asynchronous circuits for transistor level defects. Finally, a poegssing method aiding
the asynchronous test generation process was introduced. Thisduted¢he complexity of
the test generation algorithm proposed for asynchronous circuitsibgirey the problem size.

3.3 Conclusion

A brief literature review on testing for asynchronous circuits was cawigdn this chapter.
Several works related to the testing of asynchronous circuits weresatalyAutomatic test
pattern generation methods for generating test patterns for asynalromouits were also
reviewed. The defect level test generation system were also found litatature, but a very
few works were reported in actual test generation at defect level.viAalthe review in this
chapter, a comparative study of two test generation methods will be cawuieith the next
chapter to probe the test generation issues in asynchronous furémpmrde



Chapter 4

Automatic Test Pattern Generation for
Asynchronous Circuits: A

Comparative Study

4.1 Introduction

This chapter deals with the analysis of two approaches for test patteenagien of asyn-
chronous circuits. The first approach is uses a symbolic method bastaterraversal, while
the second one is based on an adaptation of the well-known scan insectioigtee.

A comparative analysis of two different methods of test generation farcisonous circuits is
carried out in this chapter. The two methods are

« Automatic Test Pattern Generation based on symbolic reachability analy3H&7]
» Scan insertion based test generation [BA05]

The organization of the chapter is as follows: Section 2 describes the Statsition

Graph (STG) based automatic test pattern generation; Section 3 desiceilbest pattern
generation based on the scan insertion technique; Section 4 gives arisumpud test
generated by two approaches for a number of small benchmarks; ihteciseconcluded
in Section 5.

57
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4.2 Automatic Test Pattern Generation based on Symbolic Rea  ch-

ability Analysis

This section briefly describes the approach of automatic test patterragienarsed in [RCPP97].
It proposed a testing strategy with the following features:

» The behaviour of the asynchronous circuit is modelled as a synahsdimite state ma-
chine.

» Test patterns are generated using symbolic technique from the modeNéd FS

Test patterns can be synchronously applied to the asynchronouiscand faults are made
available at the output. An asynchronous circuit in this approach is modslad interconnec-
tion of gates and delay elements. The delay model used here is an unbgateeelay model
[KF91].

4.2.1 Definition

State Graph (SGA state graph (SG) is a pair <S,E>, where s is the set of states an8 kE
S is the set of edges (transitions).

Circuit Stage Graph(CSG) circuit state graph (CSG) is a 7-tuple <S,E,P,E@A p,A >,
where

» <S,E>is a State Graph, P = {p...pn } is the set of primary inputs,

e G={0;....0h } is the set of gates

S C S is the set of initial states

The labeling functiond p : S— {0,1}™, and

A . S— {0,1}" map each state, s, with binary vector consisting of the values s of
primary inputs and gates, respectively.

The next state of a circuit under unbounded gate delay model deparigdspresent state. A
gate is said to be "excited", if its output differs from the function it implements"atable”
otherwise. A next state functiot SxG— S can be defined for each gate. Functigs, g)
returns either the state reached by switching the outputibftgs excited, or s, if g is stable.
A transition relation, R relates pairs of predecessor/ successor $tatase s’ is an immediate
successor of state s, it will be assumed that both states are in relationd®dieRs’, or (s,s")
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€ R. By using the next state function of each gate, the transition relationiatsbwith circuit
gates are defined as:

Rs = {(s,S) € Sx Ss is stable\ s=s1V (3g; € G)such thas' = &(s,gi) # )}

For each pair (s,s'¢ Rs, if s is stable, its successor is the same s; otherwise, the successor is
obtained by switching an excited gate. The transition relation associated tosigpals are
defined as follows:

R ={(s,9) € Sx 9 sis stablen Ap(S) # Ap(S) AAa(S) =Aa(S)}

Thus the transition relation of the circuit in test mode is defined as Rz Rs.
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Figure 4.1: Majority Gate Based C-Element

4.2.2 Synchronous Abstraction of the Circuit State

To calculate the synchronous abstraction of the testable Circuit State gnagiairs of states,
(s,s'), such that s’ is reached from s at the end of the test cycle is defiaeh pair has an asso-
ciated input pattern based on the different values of inputs in s and &’s@tof all these pairs
were called Test Cycle Relation (TCR). For practical reasons it wasressthat the circuit
must settle in at most k transitions. The k-step test cycle relation (Y @Rresents the pairs
(s,8") distant at most k transitions. TERY a given CSG in test mode <S,E,P,@/$ Ac> is
defined as:
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Figure 4.2: State Graph

Invalid pairs of states are removed in the next step. Vectors causingardiuence are detected
in pairs (s, s’) and (s, s”) such that s’ and s” with the same input vakiset ®atterns producing
oscillation or unacceptably long test cycles are found if s’ is unstable kT®enfluent Stable
State Graph, denoted as C3S@ formed by those pairs in TCRhat present neither non-
confluence nor cause the circuit to be unstable after k transitions. Foritrialtjefined as

Cssé = {(s,s’) e TCR

s’ is stableA 7i(s,§") € TCR'such thafs # 8" AA (S) = A, (s”)]}

Thus each one of CSSEs nodes represents a stable state. An arc between two nodes s and
s’ exists, if s’ is stable and the only state reachable from s in at most k trarshioapplying
some input pattern. An example to show the approach of the above theargndoglow using
the C-element, implemented by a majority gate, shown in Figure 4.1. The C-elemoant &

a model with two input signals, rl and r2, and four gates. The circuit stafghgnodelled for
this circuit is a 7 tuple <S,E,P,G3 p,Ac>, Where <S,E> is a State Graph, P = {rl1,r2,reset}
is the set of primary inputs (the reset signal is added by the Testify toohwhiitalizes any
memory element in the circuit), G={l,m,n,al} is the set of gates and S is the set of initial
states. The labelling functiorsp: S — {0,1}2 andA ¢ :S — {0,1}*, map each state s with
a binary vector consisting of the values s of primary inputs and gatesatasgy. Thus the
elements of set, S (set of reachable states), has a binary vector of Terigttotal, 128 states
form the set S. The reachable states can be calculated by using a synshaisat algorithm
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like the one used in [JRBD94]. The set for this circuit is obtained by enatingrover the (128
x 128) states. The next state functions for each gate defined for thig eirel(d;: S x | —
S),®Bm:Sxm—=S), B Sxn—=S), ©B:Sxy—S)which operate over the gates |, m, n
and y, respectively.

From this circuit state graph model and next state functions, the transitadioreR = R U

R 5 are obtained, which forms a set of stable state pairs. Next the syncsrafstraction
involving computation of TCK and CSS®is made. The state graph evaluated for this cir-
cuit model is as shown in Figure 4.2. Testify generated 34 edges whichtfa transition
relation between the states. For the sake of clarity, only part of the statlk igrahown. Af-
ter several iterations, the set of stable state pairs are ready for tesagen. With these set
of stable states, test pattern generation was performed in three phaskescfivation, state
justification and state differentiation, as described in [RCPP97]. The ¢esration is car-
ried out using Random TPG and Ternary simulation [RCPP97]. The stiahemirs picked
for test generation for this circuit are (s1, s127), (s127, s1),93R,(s127, s89), (s64, s65),
and (s127, s22). The encoded binary codes on these state pairgemerated which corre-
sponded to the test patterns covering 24 fault sites. The test patterireedtfiar this circuit
were (0000001, 1111111), (11211111, 0000001), (0000010, 0000@1111111, 1011001),
(1000000, 1000001), (1111111, 00101 1MhHe size of the test pattern was 7, which is equal to
the size of the binary encoded state variables in the state pairs. 12 patezengemerated for
24 faults. To validate the approach several benchmarks synthesiZ&etiify were tested and
the results are analyzed in Section 4.4.

4.3 Scan Latch Insertion Based Test Generation

This section describes the test pattern generation based on scan lattbririgé-91]. Asyn-
chronous circuits can be represented as combinational blocks withafdettimps. Effective
test pattern generation involves breaking these feedback loops amtingpsean latches in
these loops, thereby making the circuit completely combinational. Level senigitches are
used as they restore the asynchronous operation during the normabfregairation by keep-
ing them transparent. The loops may be global or local feedback oméke test mode, the
asynchronous circuit operates synchronously with the scan latchmegsfbd with test patterns
and the outputs scanned out.

The LSSD scan design [KF91] is shown in Figure 4.3. It was designedangth multiplexer
and two latches and operates using 2 phase, level sensitive clockssighiads 'x’ and 'y’

provide the path for normal operation of the circuit. The signals Sl andrmg fhe test mode
path. This design is fully stuck-at testable. Several optimized circuits [K&@®lpossible for
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Figure 4.3: LSSD Latch Desgin

the scan latch design inserted in the feedback loop of the C-element. Thesianuderobust
scan design is shown here. The scan mode is used for several cyalgdydhe test patterns
to the scan latches. The scanned output reveals the potential faults irsthe.do illustrate

this approach, once again a majority gate based C-element is considaeedirduit consists
of 2 input signals rl and r2 with the output signal al. Thus the LSSD Latielsésted at the
node 10 to break the feedback [KF91]. The modified circuit is shown iarEig.4.
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Figure 4.4: Celement Design with LSSD Latch

The test generation for the modified circuit is carried out using standstrddéern generation
tools. This is an important aspect of this method, since such tools are fegile@and produce
high-quality test patterns. This approach can be automated as shown below

« Read in the design net-list

» Remove local loops by adding scan latches for each C-element (ifrppyese

Break the global feedback loops

Insert the proposed scan latch at the feedback loop points
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» Generate the modified net-list of the original design file with local and gliologl scan
insertion

« Apply the net-list to the ATPG tool to generate the test patterns

The fault coverage obtained over different benchmarks by using thtisomhén comparison
with that obtained using the symbolic technique is discussed in the next section.

4.4 Comparison of results

This section compares the results of the two proposed approaches lginggpem to sev-
eral benchmarks synthesized using Petrify which is used in the asymtlya@ommunity
[CKK*96a]. The fault coverage and test patterns based on first methodewasated using
the tool Testify [R0i97] which is developed from the same approach. Pahlgives details on
fault coverage, number of test patterns, total number of faults, total eauafildetectable faults
and total number of detected faults for several benchmark circuits.

For the second approach, the fault coverage and test patterns erereatpd by cutting the
global loops manually and inserting the scan latch in the feedback paths. ingesting the
latches, the netlist was fed into the Synopsys Tetramax ATPG tool to getieedtsst patterns
and calculate the fault coverage. Table 4.2 gives the fault coverageef@ame benchmarks
and summarizes the test patterns generated using the scan insertion method.

4.4.1 Example

12(x/x)

6(1/0)

r2 1(1/0)

r1 4(1/0)

Figure 4.5: C-element-Faults detected by testify

For the C-element, the faults covered by testify are 24 out of 28 faultsomensih Figure 4.5.
As evident from the figure, testify generated tests based on the primanyangd the gates. So



Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study64

6 (X/X)

I ! 8(X/X)
I
10(0X)
11
_G
13 12 (x/x)

14
19
15
X/
18
]* )

Figure 4.6: Half-Faults detected by testify

it could not detect the faults at the nodes 11 and 12 which are reprddmn{g/x). Although
the test at node 10 covers the fault 11, it does not cover fault atIdEhe output of the gate
al, node 10, was taken into account as a single node which comprisedesf H0, 11 and 12.
But the fan-out nodes (13 and 14) from 12 are considered as tdssas they form the input
for the gates, n and m, respectively. Testify generated 12 test pattelersgth 7 covering
24 fault sites in the circuit. The test patterns should be applied synchslyrtoustabilize the
circuit at each pattern interval. Similarly for the benchmark circuit "halfy @&.6), the faults
covered by testify are only the inputs and outputs signals of all the gateghis®enchmark,
even 5 more faults at input/output fault sites namely 10(0/x), 12(0/1)/1p@nd 21(x/1) were
not detected by testify. Other intermediate node fault sites include 6(x//x}3.6(x/x), and
22(x/x). Testify generated 24 patterns of length 11. From these regufi®vident that any
proposed test generation algorithm to be developed should focus orytdstimtermediate
nodes which will be overseen by the circuit models which are modelled withtbalyput and
output signals of each gate.

4.4.2 Analysis

This section provides the insights for the undetectable faulty nodes in thelasyous circuits.
The intention is to give two working examples on how the fault simulation in two reiffe
methods compared, how it ignores the undetectable nodes and provitles faiglt coverage
without including these nodes.

4.4.2.1 Detectable Faults

First, we will compare the total number of nodes and total number of testabésisted by
these two methods. Figure 4.7 shows comparison of total number nodes lstbd tools
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Table 4.1: Fault Coverage using Symbolic Method

Benchmark | Number of Number of Testable Number of Fault
Patterns Faults Faults Faults(D) Coverage
(%)
chul33 10 60 40 40 100
chul50 19 64 52 52 100
converta 38 58 44 44 100
dff 34 52 44 44 100
ebergen 30 86 70 70 100
half 15 22 14 14 100
hazard 55 52 44 44 100
Master-read | - 160 130 126 96.92
mmu 203 166 136 128 94.12
mpforward 19 68 58 58 100
mrl - 170 140 135 96.43
nak-pa 19 100 80 80 100
nowick 13 68 54 54 100
ram-read- 69 102 82 82 100
sbuf
rcv-setup 12 46 36 36 100
rpdft 11 80 62 62 100
sbuf-ram- 72 124 102 102 100
write
sbuf-send-ctl| 60 106 86 85 96.51
sbuf-send- | 101 146 116 113 97.41
pkt2
seq4 145 104 86 86 100
seq_mix 245 178 142 138 97.18
trimos-send | 72 162 132 124 93.94
vbe5b 22 52 42 42 100
vbe5c 16 36 28 28 100
wrdatab 342 194 158 153 96.84
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Table 4.2: Fault Coverage for Scan Insertion based method

Benchmark | Number of Number of Testable Number of Fault
Patterns Faults Faults Faults(D) Coverage
(%)
chul33 5 34 34 28 84.85
chul50 8 48 44 44 100
converta 40 62 60 60 100
dff 49 52 50 50 100
ebergen 85 80 80 80 100
half 34 40 40 40 100
hazard 49 56 56 56 100
master-read | 242 186 180 179 96.76
mmu 192 151 139 137 91.95
mp-forward | 40 72 72 72 100
mrl 298 192 192 192 100
nak-pa 30 94 94 94 100
nowick 10 44 44 44 100
ram-read- 54 102 102 101 99.02
sbuf
rcv-setup 25 26 26 26 100
rpdft 38 47 47 47 100
sbuf-ram- 100 132 132 132 100
write
sbuf-send-ctl| 117 114 114 114 100
sbuf-send- 127 128 124 122 96.03
pkt2
seq4 110 138 138 138 100
seq_mix 128 158 154 152 97.44
trimos-send | 254 181 181 181 100
vbe5b 38 56 56 56 100
vbe5c 44 58 54 48 87.93
wrdatab 243 184 184 183 99.46
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Testify and Tetramax. It should be noted that for the same benchmarltgitoa number
of nodes accounted in the fault list varies. Since the full scan method ysaspés for the

scan-in and scan-out processes, the number of nodes will be higherinteresting point to
note here is that for some benchmarks the number of nodes accountelll $oan is equal to
or less than the symbolic method. This is due to the fact that those benchraskeat have
the memory elements present in them. For example, benchmarks such anpdit-setup
will have almost the same number of nodes in the fault list for both methodsigime=4.7,

the number of faults for these two benchmarks is lower for full scan comdgarthe symbolic
method. This is because, the Tetramax tool reports the collapsed fault listttwb Testify

does not use any collapsing.

Number of Faults

Symbolic |

200 - FullScan

150 - -

100 - -

50 - B

G4, G5, G, U O B3, %, 259, 7% &y, 2,56, %6, %6, %
%, 730 o 950 0, 00,0 0 0 5, 4 Lo G,

S, O &
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2, 2o %
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Figure 4.7: Total number of Faults - Symbolic versus Full Scan

Total faults Vs Testable Fault

From the fault coverage definition, the ratio of the number of faults detaotdte number
of testable faults is obtained as the metric for the testability of the circuit. Hencacthel
total number of faults that may occur in the circuit is different from the totahber of faults
in the fault list. This is illustrated in Figure 4.8 for the Testify tool and in the FiguBefor
the Tetramax tool. As shown in Figure 4.8, the actual number of faults/nodée icircuit
is always higher than the number of faults considered for test. The |efestable(sym)"
gives the total number of testable faults and the legend "Total(sym)" gieastdl number of
faults/nodes in the circuit simulated by the Testify tool. For example, the cinguitdtab" has
194 faults in total and the total number of testable faults considered for@astafion was
158. Some of these faults are the electrically equivalent faults, while atiherthe feedback
nodes. Similarly, in Figure 4.9, the comparison between total number of failfigive total
number of testable faults is shown. The legend "Total(full)" gives the hotuaber of faults
in the circuit and the legend "Testable(full)" gives the total number of testahlts. It should
be noted that for most of the benchmarks the number of total faults and thigenwf testable
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faults are almost equal or closer. Only circuits with drastic differencesvanu, mrl and
master-read. From these two figures (Fig. 4.8 and Figure 4.9), it is quderdgvthat Testify
dropped a number of nodes from the testable fault list. This factor wiltefifie fault coverage

metric eventually.

Total Faults Vs Testable Faults (Symbolic Method)
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Figure 4.8: Total Faults Vs Testable Faults - Symbolic Method

Total Faults Vs Testable Faults(Full Scan)
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Figure 4.9: Total Faults Vs Testable Faults - Full Scan Method

4.4.2.2 Fault Coverage

Next we will compare the fault coverage of these two methods are distusiggire 4.10 gives
the comparison between the fault coverage of the symbolic method anddaolhsethod. For
most of the benchmarks experiments, the fault coverage was the sanwffdhése methods.
It should be noted that although the full scan method considered moresitagtcompared
to the symbolic method and yet it has the same fault coverage percentagmdgoiof the

benchmarks. For the benchmarks chul33, master-read, mmu, shiybig@nand vbe5c, the
full scan method had a lower fault coverage. For the benchmarks nuftsshd-ctl, seq_mix,
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trimos-send and wrdatab, the full scan method had the higher fault gevefiehe full scan
method takes into account more fault sites than the symbolic method and gikies tiigilmost
same fault coverage. Thus the full scan method detected higher nunfbeitef

Fault Coverage Comparison (Symbolic Method Vs Full Scan Method)
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Figure 4.10: Fault Coverage Comparision - Symbolic Vs Full Scan

4.4.2.3 Number of Test Patterns

Finally, we compare the number of patterns generated by these two methslusultl be noted
that the symbolic method generates pattern by enumerating the State Grapwerdar the
full scan method, the test patterns are generated by the ATPG algorittenying the Tetra-
max tool, which enumerates the actual circuit nodes. Fig. 4.11 shows thedeorpbetween
the total number of test patterns generated by these two methods. Thesé§snabolic"
and "Fullscan” gives the total number of patterns generated by the syrabdlithe full scan
methods, respectively. Since the full scan method uses scan latchesinthernof patterns
generated by this method is expected to be higher. However, for sombarbarks namely
mmu, ram-read-sbuf, seq4, seq_mix and wrdatab the symbolic method tgeneigher test
pattern than the full scan method. All these benchmarks had more C-elemes#atin them.
For example, the benchmark "wrdatab" had 7 C-elements. On other hantetithmark
"trimos-send" had 8 C-elements, but the full scan method produced mibeensecompared to
the symbolic method. But the number of testable faults detected were 182 edliizpdts for
fullscan and only 132 for the symbolic method for this benchmark.

The difference in the total number of faults compared to the previous aglpris attributed
to two factors; the addition of scan latches, which increases the numbemtdrp inputs
and fault sites, and fault collapsing applied by the Tetramax tool in Full sesthod. Test
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Number of Patterns(Symbolic Vs Full Scan Method)
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Figure 4.11: Comparision of Test Patterns - Symbolic Vs Full Scan

pattern generated using the symbolic method seems to be expensive in teumsbef of test
patterns and provides lower fault coverage than the full scan method.itAjenerates longer
test vectors compared to that of scan insertion approach. With the indresest vector and
number of pins the test patterns can be further reduced by using padiatlesign instead of
the full scan. It also reduces the area overhead due to these scasladother advantage of
the fullscan approach is that currently available synchronous testrpggeeration tools can
be used to generate test patterns, thereby makes this approach forasgtingronous circuits
feasible on industrial scale.

4.4.3 Factors affecting the fault coverage

Currently available ATPG tools such as Tetramax, detect the feedbackgrattadd the corre-
sponding nodes to ATPG untestable faults list. Hence no effort is sper# lretifinning of the
test generation algorithm for creating test for these feedback nodes.

How does conventional fault simulation analyse faults?

Conventional fault simulation first assigns the test patterns to the coneisgoprimary in-
puts of the DUT. Based on these patterns all the nodes in the circuit agaeexsvith proper
justification and propagation. The node values propagated to the primgoytewvill be the
same as the output pin vectors in the test pattern. After the good machine simutadifaulty
machine simulation for a particular fault is carried out. First, the simulator astgc 1/0
to the node to be tested for stuck-at faults 0/1, respectively. Then thergrinput patterns
are applied to the primary inputs to justify and propagate the logic values thadlitne other
nodes in the circuit. The faulty value at the node being tested will also dffegtistification
and propagation process. As a result, the output pattern obtained wilfrean that of the
good machine. When this happens, the simulator considers that the test paketetected
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the fault and reports it as detected. This works well for synchronousittesting, but for
asynchronous circuits several more factors come in to play during thesfiauwlation.

Those factors affecting the testability/fault coverage of the asyncheodesigns are listed
below:

» Feedback paths present in the circuit
» Type of logic used for simulation
 Fault Simulator used
* Fault Collapsing
« location of the nodes in front of or after the C-elements
» Depth of the node in the circuit
« Observability of the nodes
 Controllability of the nodes
Conventional circuit structures affecting the test process:

Differences in the circuit structure of the asynchronous circuits coeapiar the synchronous
circuits has a major impact on the test pattern generation. The feedbachiiddse fanouts

originating from those feedback lines make the circuit difficult to be testekilece the syn-

chronous circuit design representation always deals with acyclic/ leeplesigns, most of the
CAD algorithms developed were based on acyclic graphs and data stsueiding them. So
there are no or very few methods using cyclic graphs for the test ganera

Type of logic used for simulation:

Representation of the node/line values in the circuit for logic simulation is anfatter that
affects the test pattern generation. Multi-valued logic had been usedresegp the hazards
in the circuits during the logic simulation. This eventually increases the efés&as of simu-
lating the asynchronous circuits which encounters the hazards andtomedlaften. Often, 3
valued, 6-valued and 9-valued logics were used for asynchronaust dogic and fault simu-

lations.

Fault Simulator:

Although the fault simulator used for synchronous circuits enable thedmaltiation for asyn-
chronous circuits, several updates have to be made to effectively sirthdate For example,
conventional fault simulator first generates the fault list of the circuiteuniest. During the
fault list generation, feedback lines and the fanouts originating from treromitted. This is
due to the fact that the synchronous circuits do not have feedback Mires by not adding
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these lines/nodes to the fault list, the fault simulation can be carried out witheatuption
and the fault coverage can be obtained. But the fault coveragetedp@ven though higher
values can be achieved) will not reflect the original fault coveragleogircuit under test. Sec-
ondly, the fault collapsing considered during the fault list generatiorfauitidropping phase
will affect the fault coverage. This is discussed next.

Fault Collapsing:

Two issues namely "Fault Dominance" and "Fault equivalence", alsatafthe fault coverage
reported by any ATPG tool. By definition, a test pattern for one fault istseddminate another
fault, if a subset of the test pattern of the latter detects the former. Two &eltonsidered to
be equivalent, if the test pattern of one fault also detects the test pattanotirer fault. These
fault collapsing steps were not carried out in the first method based Gnd&Etussed in this
section. In [SM04b], fault dominance and fault equivalence wersidened for asynchronous
circuits and are different from the conventional definitions for the Byorwous circuits.

Other factors, such as controllability and observability of the intermediatesffected by the
location of the C-elements in the circuits.

Changes required for asynchronous design:
In order to improve the testability of asynchronous designs, the followingesshave to be
addressed:

Logic level simulation should be changed

New method for realizing and simulating the feedback cycles should béogexdk:

» The issue of whether feedbacks and oscillations need to be simulated thulihsimu-
lation should be addressed

« How does the fault on the feedback node affects the good and faultyimesc respec-
tively?

45 Conclusion

A comparative study of two methods of test generation of asynchrorimusts namely, the
Symbolic method and the Full scan method, was carried out on a set ofeepatve bench-
mark circuits. The analysis of the results gave insights into factors affettientgstability of
the asynchronous circuits. The drawbacks identified are considaredoposals for improve-
ment of the new test generation methods presented in this thesis.



Chapter 5

ABALLAST-Asynchronous Circuit Test
Generation based on Balanced

Structures

5.1 Introduction

The first gate level test generation method proposed in this thesis is intahdwbich uses
cyclic to acyclic circuit conversion, partial scan based test generatidBALLAST method-
ology [GB90].

5.1.1 Problem statement

BALLAST methodology [GB90] of generating tests for sequential circuits pgomising ap-
proach for partial scan based test generation of synchronougrgegLcircuits. The main
technique used in this method involved generating a balanced graph kemethe circuit
topology graph of the sequential circuit which was demonstrated to haweatent combina-
tional structure when the memory elements in the kernel are replaced by Wiras the test
patterns for the sequential circuits are generated by treating them as ediothequivalent.
The same technique can be applied to the asynchronous sequentiakgigarierate tests. The
challenges faced by applying this technique to the asynchronous ciriits a

1) Asynchronous circuits have both combinational gates and memory elemieiots wakes
them cyclic, whereas BALLAST method operates only on synchronoakcagircuits with
memory elements in each cycle; 2) Balanced kernel consists of memory elethenthan
latches, whereas C-elements frequently appear as memory elements inraspns designs.

73
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These elements constitute the local loop in the circuit; 3) The operation of éhen@=nt cannot
be controlled during its normal operation as compared to normal latches agatontrolled
by the clock.

Any proposed method to generate the test patterns efficiently for thesésshould address
these three issues.

5.1.2 Motivation

The motivation underlying this work originates from the partial scan testrg¢ion method de-
veloped for synchronous circuits calle BALLAST methodology. Using tA&IBAST partial
scan methodology and cyclic-to-acyclic circuit conversion together, B&LAAST method-
ology for partial-scan testing the asynchronous circuits is developed.

The contributions of this method are:

« Effective handling of the cyclic asynchronous circuits to accommodate tiéhe usual
synchronous test generation flow

« Partial scan element selection based on balanced sequential structures
» Automatic Test pattern generation for the partial scan design generated

The chapter is organised as follows: Section 5.2 outlines some backgitfonchation on
partial scan test generation method and the BALLAST methodology; SecBateScribes the
algorithms proposed in the test methodology; Section 5.4 detailss the algorithsigobthe
test methodology; Section 5.5 gives a working example of the proposed anatidoanalyses
the result obtained by applying this method to the asynchronous sequéwtiétb¢ Section 5.6
concludes the chapter.

5.2 Background

5.2.1 Cyclic and Acyclic Circuits

In this chapter, for cyclic to acyclic conversion, a circuit is represehted Circuit Topology
graph (CTG), where the nodes of the graph form the gates in the ciralih& arcs form the
connection between the gates. Acyclic circuits are circuits comprising orfiyeaf forward
paths, where the output of one gate is fed to the input of the next gatecaod. sCyclic
structures occur in asynchronous circuits due to the presence oflodajlobal loops, due to
feedback and feedforward paths. In these circuits, either the outpl gate is fed back to
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its input or the output of the other gate in the forward path is fed to its input.fdrnger case
is called local loop and the later is called Global loop.

5.2.2 Loops in circuit

The CTG of a circuit will contain cycles due to the occurence of loops in iteelit Some
cycles occurring in the CTG are further studied here. Nested cyclemgardection of cycles
are most commonly found structures. Nested cycles are formed whernglaeself/global loop
present inside the global loop of the circuit. Intersection of cycles is fdrwigen a forward
path of one global loop is fed to the gate in another global loop.

5.2.2.1 C-element

A majority gate based C-element is shown in Figure 5.1. The circuit is cyclicansists of
four gates and two feedback loops. The corresponding acyclic ciecgitown lower in the
Figure 5.1. In this example, the number of copies of the feedforward paltle doop is taken
as three, assuming the loops stabilize in three cycles.

Cyclic Circuit

Acyclic Equivalent

Figure 5.1: C-element - Cyclic to Acyclic Conversion

The equivalent acyclic circuit consists of 3 inputs, 1 output and 11 gaéslitional input
formed in this circuit is the initialization input for the first copy of the forwastip
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5.2.2.2 Benchmark "half"

The benchmark circuit "half* shown in Figure 5.2 consists of 14 gatesideddback loops.
The corresponding acyclic circuit consists of 4 inputs, 2 outputs an@&2 gAdditional input
formed in this circuit is the initialization input for the first copy of the forwaattp

Figure 5.2: Benchmark "half* - Cyclic circuit and equivalent acyclic circuit

5.2.3 BALLAST

5.2.4 Circuit topology

The circuit topology used in the ABALLAST algorithm (detailed in Section 5.3hewn in
Figure 5.3. To convert the given circuit to the graph, all the elements aithigt are classified
as one of the following: combinational node, memory element, fanout nod&/PO node.
The conversion of a circuit to the shown circuit topology involves sperifees [GB90], such as
the following: all the combinational nodes fed by the same fanout nodeRI#R@ nodes can
be grouped in to a single cloud [GB90]; two clouds connected consebtutian be merged,;
all the memory elements fed by the same clock can be grouped together whitergreach
element is fed by exactly one cloud, (in case of higher number of memory eiereach
group forms a register); no two memory element/registers can be connexisecatively.
Figure 5.3(a) shows the circuit for the benchmark "chul50" with thevatpnt general graph
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G(V,E) shown in Figure 5.3(b), where V forms the nodes of the graphEaack set of edges
between the nodes. All the nodes of the graph correspond to the gates @fcuit and the
edges correspond to the connection between the gates. Fig 5.3(c) tleogmph with all
the PI/PO grouped, with them grouped as a single cloud in Fig 5.3(d). Fig8fe) shows
the grouping of two combinational nodes into another cloud, as they argyfsdame input
signals. In Figure 5.3(f) two other combinational nodes are groupedrio &mother cloud.
These clouds are separated as the top cloud and are fed by the memomtelEiges.3(g)
shows the arrangement of clouds and memory elements from the left to theTtighabstract
view of the equivalent graph obtained without the fanout nodes is slowigy 5.3(g). If the
clouds are converted to a set of nodes V and memory elements betweernréheomzerted to
set of arcs A, the resulting Graph G(V,A,w) forms the topology graph oictwABALLAST
algorithm can be applied. Set A can be partitioned further into (A-H,H), if nigraements
are present with "hold" functionality. "w" is the weight of the arc basedlmnumber of

memory elements in it, when it represents a register.
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(a) chul50 Benchmark (b) Equivalent nodes with gates and
fanouts as vertices

(c) /O converted to Pseudo 1/O (d) Pseudo I/O added to cloud (¢) Common gates merged into a
node single cloud

Combinational PI/PO

Nodes Node
Memory @ Fanout
Elements Node

Combinational
Clouds

(f) Common gates and fano(y) Abstract view without the
merged into a single cloud fanouts

Figure 5.3: Circuit to graph conversion for ABALLAST algorithm shown in (a), (b), (c), (d), (e),

(f), and (g), respectively

5.2.4.1 BALLAST Method

In [GB90] a synchronous circuit model is represented by blocks ofbioation logic con-
nected with each other either directly or through a register, which is a grbflip flops. A
circuit structure S is given by G = (V,A,H,w), where G is the graph formingdineuit, V is
the set of nodes in the graph representing the blocks of combination gdtethe set of arcs
between the nodes representing the register or the direct connectioeebetinem, H being
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the set of arcs representing the "Hold" registers or "Scan" registersvas the number of
flip-flops in the register. A sequential circuit structure S with the circuit kogp G is said to
be balanced if, G is acyclic, all the directed paths between each nodesgratite are equal
and should an arc from the set H be removed, then the graph becomasngisted. An ex-
ample of a balanced circuit structure and the partial scan circuit geddratthis method is
shown in Figure 5.4 and Figure 5.5, respectively. The circuit topologsgsentation described
in the previous subsection was used in this method which was introduced94][lTRe steps
involved in test generation based on BALLAST methodology are as follows:

» Represent the circuit topology as a graph

Make the graph acyclic and add the edges removed to the scan set

Balance the resulting acyclic graph and add the edges removed dulamgibg to the
scan set

Generate test for the balanced circuit

To illustrate the BALLAST test flow, a simple example based on the same abstrawit
shown in Figure 5.5 is considered in Figure 5.7. In Figure 5.7.a, the ciretotd the appli-
cation of partial scan selection is shown. There are 6 registers in thistcmarked by boxes
and four combinational clusters shown as clouds. The primary inputs andrgroutputs as
clusters in the form of a black box. The equivalent graph representatghown in Figure 5.6.
The graph contains two feedback edges, which are removed and theispanding registers
are added to the scan set according to step 2. The resulting equiveteittis shown in Figure
5.7.b with two boxes denoting "scan". Step 3 involves balancing the remaimngt called
"kernel" marked enclosed in the box. Since the kernel in this example isiglbedanced (de-
tails on balancing is discussed in section 5.4.4 and is detailed in [GB90]),abedure moves
to the next step. In the fourth step of test generation, the non-scatersgse converted into
wires (locations are marked as crosses in Figure 5.7.c) which is the combalaivalent
of a register/flipflop, when the clock is high. The resulting circuit is showRigure 5.7.c.
In this way, the test patterns are generated for this circuit which will testriigenal partially
scanned synchronous circuit in Figure 5.7.b.
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@
. Unbalanced

Figure 5.4: Unbalanced and Balanced structures

Balanced

I R2

Cl1 C4

R3 C3 R4

S2

C- Combinational Gates
R - Registers

S- Scan Registers
S1

Figure 5.5: Partial Scan Circuit using Balanced structures

Limitations of BALLAST for Asynchronous Circuits

When the suitability of the BALLAST method is explored for asynchronousudss, the fol-
lowing limitations were encountered:

« Should C-elements be represented as registers or be added in the damblirdoud?
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Figure 5.6: Example Circuit - Graph Representation

* What is the scan equivalent of the C-elements?
* What is the combinational equivalent of the C-element?

To illustrate these limitations a comparison is made on how BALLAST will handle the sy
chronous circuit and the asynchronous circuit. The comparison isrsirowigure 5.8: the
figures on the left-hand side gives the synchronous BALLAST flow] @ figures on the
right-hand side give the BALLAST flow of the asynchronous circuits. shewn in Figure
5.8.d, when converting the circuit into the graph structure, the reprémensd the C-elements
into registers or into combinational gates is not addressed in this method. i@vem they are
considered, as the registers and the partial C-elements set is choseiniplibe same flow,
conversion of the scan equivalent of these C-elements are not shewinis method was de-
signed for synchronous circuits. Finally, the combinational equivaletiteoC-elements that
are not scanned in the kernel are also another concern when tjegeeat patterns based on
this method.

These questions form the motivation for the development of the ABALLASThatewhich is
derived as an extension to BALLAST. How these questions are andwearkethe test flow of
Asynchronous BALLAST (ABALLAST) is described in next section.
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Figure 5.7: BALLAST Method Example
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Figure 5.8: BALLAST Method on Synchronous and Asynchronous Circuits

Further details on balancing the graph structure is dealt in detail, whenildegcthe test

methodology in the next section.

5.3 Test Methodology

This section describes the overall test flow of the ABALLAST methodolagyitlastrated in

Figure 5.9. There are two main stages in the test flow:

1. A partial scan DFT methodology based on BALLAST is applied to the ciinustrder

to improve its testability.
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2. The circuit is further transformed into a fully acyclic circuit only for therpose of
generating test vectors using conventional ATPG tool. The generattoryeare then
slightly modified and applied to the DFT circuit produced in the first stage.

ABALLAST

Petrify +——> BLIF2Graph—> Gyl

Detector
Cyclic Scan Selection Cyclic
to Acyclic r<{and Balancing to Acyclic
Converter (BALLAST) Converter

Test Generation

Acyclic Netlist | | | Acyclic Cirguit Test
Generation Test Generation Patterns

Test Application

—
Final

na Fault Fault
DFT || . . >

.. Simulation Coverage
Circuit

Figure 5.9: Test Methodology

The steps involved in this method are listed and explained below:

Convert the netlist into a suitable graph representation

The first step is to convert the circuit synthesized by Petrify into a graptesentation. This
is done by using the tool BLIF2Graph, which parses the BLIF (Berkkibyary Interchange
Format) netlist into a graph where the vertices correspond to the circug gateedges to the
wires connecting the gates. However, BALLAST requires a represemiahere the elements
(C-elements and latches) are the edges and all interconnections and atiomaingates are
modelled as vertices (clouds). This high level extraction is performed HyAXTON which
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was introduced in the previous chapter.

Detect and break global loops

The BALLAST algorithm cannot process a circuit with loops, so theselshue broken. Note
that, at this stage, only the global loops are exposed to the algorithms; lopa| kuch as those
inside memory elements, are hidden as each memory element is considerdd gatieg

The extracted graph from the previous step is processed by the Cyetd@reto find all the
cycles in the graph. This is carried out by detecting all the “backwardésdh the graph.

The back edges are determined using the GR algorithm explained in algo@th@rice the
loops are determined, the cyclic to acyclic conversion is straight forwelback edges are
simply removed. Since graph edges correspond to C-elements, an sdg@areneans that the
corresponding C-element is converted into a scanned C-element. Fuoplexaonsider the
graph shown in Figure 5.6 of the circuit shown in Figure 5.5. The straigbtva with larger
head correspond to the registers R1,R2,R3, and R4 in Figure 5.5. Thd doties/vertices
corresponds to the combinational clouds. The bent edges/arrows épthenoops are the
registers S1 and S2, which will be removed by the cyclic-to-acyclic ceewén make the
graph acyclic and hence they are converted to Scan-C-elements. stitingeacyclic circuit
(without the edges S1 and S2) will be balanced by the BALLAST algorithm.

Extract kernel using BALLAST. Produce partially scanned ci rcuit

The BALLAST tool takes the acyclic graph and generates the balanegdh gtructure by re-
moving some edges, if required. Any edges removed result in more C-dkeb®ng scanned.
Thus in addition to the C-elements being converted into scan C-elements in Weuprstep,
the C-elements returned by BALLAST are now converted into scan C-elsmdihe result
of this step is the final circuit containing Design-for-Test (DfT) struesuto aid testing. This
is essentially the circuit to be fabricated and the test coverage, at thef émel test flow, is

measured on it.

Detect local cycles and unroll them to generate acyclic circ uit

Standard ATPG tools cannot produce test vectors for the circuits @eddrom the previous
step because they still contain local loops inside C-elements. Howevee,thiads a partial-
scan method, the remaining C-elements are not scanned in order to kedf tre®overhead
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low. Instead a method similar to time frame unrolling [GB90] is used to converetles
elements into their acyclic equivalents. Essentially the loop is unrolled a nurhtieres and
eventually an extra primary input is added.

As mentioned earlier, the circuits of type shown in Figure 5.10 will still contaiallmops (the
C-elements inside the kernel in Figure 5.10.b form these local loops). iBaritttuit, there are
4 C-elements left in the circuit which are not scanned.

This step converts all the non-scan C-elements into their acyclic equitsienbstituting them
with acyclic (unrolled) instances. The resulting acyclic, balanced circtegidy for processing
by the test generator without it complaining about the presence of feledibgps. The graph
description is now converted back to netlist (Verilog in this case) and cdirdxetly sent to the
test generator.

Generate test vectors for the resulting circuit

The acyclic netlist is fed into Synopsys’s Tetramax to generate test vest@tsown in Figure
5.10.c.

Convert test vectors and fault-simulate partially scanned circuit

The length of the test vectors generated will be equal to the number of 1&opithe final
acyclic circuit which includes the initialization pins added when the local loog®Wwroken.
The actual DUT will not have these pins and hence the test vectors hdettonmed by
removing the bits which correspond to the initialisation pins.

The converted vectors are applied to the DUT and the fault coverag¢amet using a fault
simulator (Synopsys'’s Tetramax) as shown in Figure 5.10.d.

Thus to summarize the whole methodology, the resulting equivalent partratscait will be
of the form shown in Figure 5.10.b which contains both non-scan and&ekements (named
C and SC) respectively. The actual test pattern will be generated foirthit in Figure 5.10.c,
which has its non-scan C-element converted into acyclic equivalent (hak® in the shaded
box named "Kernel" in Figure 5.10.c). The initialization pins for the acyclideélrents are
marked "ini" in Figure 5.10.c. The test patterns generated for this circyppigeal to the circuit
in Figure 5.10.b, which is shown in Figure 5.10.d. The pseudoinput shemnis the input
equivalent to "ini" in the acyclic equivalent circuit in Figure 5.10.c.
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Figure 5.10: Test generation for cyclic circuit with state holding element
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5.3.1 Special Case - Cyclic circuits without C-elements

There is also a possibility that the benchmark will not contain C-elements dntare global

loops with combinational gates as in the case of the abstract circuit showiguneFs.11.

The dark circles denote only the combinational gates and no memory elemerniszaent
in this circuit. Thus the corresponding graph representation will be theesmrepresenting
the combinational gates and edges representing the connections betarmetthere is no
C-elements present in them, it is not necessary for the circuit to go thrinegbcan selec-
tion algorithm. For these circuits the circuit pre-processing for test padgslication ends at
this stage and can be sent to the test pattern generator by converting tgomviaent HDL

(Hardware Description Language) file.

(c)

Figure 5.11: Test generation for cyclic circuit without state holding elements

5.4 Algorithms

The circuit model and the algorithms involved in cycle detection, cyclic-t@laxgonversion
and graph balancing are discussed further in greater detail.

5.4.1 Circuit Topology Description

The circuit C is represented as a directed graph G (V, E) | {V is the sedrti€es of the graph,
E is the set of edges}. The set of vertices, V, corresponds to thef ggtt@s present in the
circuit. The set of edges, E, corresponds to the connections betwegatds. All types of
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5 D @ ()

(1)

Figure 5.12: Cyclic to Acyclic conversion - C-element

gates (C-elements and other two input gates) and Pl and PO are codsidexgeneric node
in the graph.

5.4.2 Cycle detection

Cycle detection problem in a graph is equivalent to the problem of findindethdback arc
set in graph theory. Given a graph represented by G (V, E), with Yessmting the set of
vertices and E representing the set of edges of the Graph G, findingttbieR(s) which forms
the feedback arc sets of G is called Feedback Arc Set Problem. Thiepraban N-P hard
problem [Kar72] and was first studied in [Sla61]. The FAS problemdpBisP hard problem is
solvable in polynomial time for planar graph was shown in [Luc76],[LY Ahding FAS up

to a size of ¥2||E||using the heuristics in Figure 1 was shown in [BS90].
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Algorithm 1 Heuristic for Finding Feedback Arc Set

F =0 while G#£0do

select a vertex in G(v) if d- (v) < d+ (v) then
| add all arcs incoming tato F

end

else
| add all arcs outgoing fromto F

end

removev and all arcs incident to it fror®
end

returnF

This algorithm runs in O (|V|]|E|) times, where |E]| is the number of edgkep/ais the number
of vertices. By exploiting vertex sequence ordering, a fast heurissanteoduced in [ES93].
In this method, all the vertices of the graph are ordered in sequencen iVége vertices are
placed in a horizontal line in this sequence, all the leftward arcs will fornfieedback arc set
of the graph. It runs in O(|E|) times. It has an asymptotic performanaedoair (G) <= m/2
—n/6, where r (G) is FAS of minimum cardinality. d(u) =@) + d (u) is the degree of the
vertex ue V. d—(u) is the indegree of the vertex and(d) is the out degree of the vertex. The
algorithm is shown in Algorithm 12 [ES93].

Algorithm 2 GR
input: G: DiGraph; vars: Vertex Sequence

sl=0 s2=0 while G#0do
while G contains a sinldo

‘ choose asink 2+ u2 G+ G-u
end
while G contains a sourceo

‘ choose a sourag sl + slu G «+ G-u
end
if G # 0then

‘ choose a vertey for which del (u) is a maximum sl«+ slu G« G- u
end
S < s1s?2

end

The procedure GR computes two sequences sl and s2 based on tbeeeftyertices in the
graph. Each node/vertex of the graph is removed from the graph aledl &d either s1 or s2.
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s1={4,3,2,1}
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Figure 5.13: Graph traversal in GR procedure

If the removed node is a sink, then it is added to the sequence s2. If teasradource then
it is added to the sequence s1. When all the sinks and sources are definoonehe graph, the
remaining vertices are added to the sequence sl in the descendingfadfle(\whered(u) =
d*(u) — d (u)). Once the graph becomes empty, both the sequences are cotezhterfarm
a single sequence S.

Theorem 1: Algorithm GR computes either an empty vertex sequence otex gequence s
for which R(sx m/2 - n/6.

The proof of the theorem is provided in [EdwO03] or alternatively in [BJS98n example
showing the GR algorithm over the graph equivalent of C-element is showigure 5.13.1
shows the graph equivalent of a C-element with four vertices and Seltdes 1 source and 3
nodes with both d+(u) ,d-(u) '= 0. Now the vertices are sorted basedeovatbe ofd(u). d(4)
=-1,0(1) =98(3) = 0, andd(2) = 1. By GR algorithm, the graph doesn’t have a sink and hence
it checks for sources. Source 2 is present and is added to the seqlen? is removed from

G and the resulting G is shown in Figure 5.13.2.

Since the resulting graph does not contain any sink or source, the geatieeemoved based
on the value od(u). Vertices 1,3,and 4 are removed from the graph in the order as shown
Figure 5.13.3, 5.13.4, and 5.13.5. The sequence formed by concatesihtamgl s2 is 2134.
When the vertices of the graph are placed in the horizontal line a set dfvegh edges and
a set of leftward edges are formed as shown in Figure 5.14. The lefedayes in the graph
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Feedbackl

°Feedback2 6

°Feedback1 G

Figure 5.14: Ordered Vertex Sequence

constitute the feedback arc set, (R(s)). In this example, edges (4,8 dhdorm the feedback
edges as shown in Figure 5.14 After the sequence is obtained, the R{s)sgfquence will be
used by the cyc_to_acyc algorithm to generate the acyclic equivalent.

5.4.3 Cyclic to Acyclic Conversion

The steps for generating the acyclic circuits from the cyclic one are shokigure 5.12. The
given circuit is first converted into a circuit topology graph (CTG). Ak thodes correspond
to the gates and all the edges corresponding to connections betweertetheldee conversion
algorithm requires user specified number of cycle copies. Cycle cogiegjaal to the number
of cycles it takes for the circuit to stabilize.



Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures93

Algorithm 3 Cyclic to Acyclic
Input numofcopyG (V,E) output Ge (V,E) CycToAcyc(G (V,E),Ge (V,E)) {

Run Algorithm.2 onG (V,E) ;

Update list Feedbackedgé from Algorithm 2.

Ga (V) =G (V);

Ga (E) =CreateVertices(G (E))

Ga (V,E) = Cycl ePat hDupl i cat i on( Gc (V,E),numofcopy)
Ga (V) =CreateVertices(Gc (V))

Ga (E) = Cr eat eEdges( Gc (E))

Ga (V,E) = Connect | ONodes( G (V,E),Ga (V,E))

returnGa (V,E) }
Creat eEdges( G () {

el =G (E) while eldo

if el # feedback_edgien
addelto Ga (E)

end

end
returnGa (E)

}

Cycl ePat hDupl i cat i on( Gc (V,E),numofcopy) {

for numofcopy = 1 to numofcopy do
Vncopy=Gc (V); Encopy=Gc (E) v3 = lastnode offncopy ¥ = firstnode ol ncopy+1
ec=v3— v4 addectoGce (E) Gc (V,E) =Gc (V,E) +Vncopy+ Encopy

end

}
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Algorithm 4 Cyclic to Acyclic Procedures
AddCycl eVertices(Gc (V) {

u2 =Gc (V) while u2do
v2 =Ga (V) while v2 do

if v2 7 u2then
| u2— Ga(Vv)

end

end

end
returnGa (V) }

AddCycl eEdges( Ge (E)) { €2 =Gc (E) while e2do

if e2 £ el then
| adde2 — Ga (E)

end
end
returnGa () }

Connect | ONodes( (G (V,E),G (V,E)) {

for all input nodes i inG do
if there is an edge e = G(E) with i as sourtteen

for j = 1to numofcopy do
| add edges = (i,Vncopy rightarrow Ga (E)

end

end

end
for all output nodes out i do

if there is an edge e = G(E) with v as targben
| add edges = (vncopyout)— Ga (E)

end
end
returnGa (V,E)

}

A cyclic graph description G(V,E) and the set of edges, Ec, of the cyelphgGce(V,E) ob-
tained from the cycle detector forms the input for the cyclic-to-acyclic emsion. Acyclic
graph Ga(V,E) is constructed by adding the vertices from the cyclic gaaphadding only
the feedforward edges. Vertex and Edge set in G¢(V,E) is added t@ylkbcagraph Ga(V,E)
. The graph Ga (V,E) is then updated with the edges corresponding to tmod€>s and the
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forward path copies. To obtain this, the cyclic graph I/O nodes conneatenompared with
corresponding nodes in Ga(V,E) and the corresponding edges @aigedp For example, if the
first node of the cycle path is fed by an input node, then all the clonesraréefed by the input
node. In case of a node from cycle forward path feeding an outplé,ribe clone node of the
last forward cycle copy is fed to the output node leaving other clonesadid@s ensures that,
only the final forward path node output is connected.

The resulting acyclic circuit will contain additional copies of the original gatepending on
the number of cycles the circuit takes to stabilize. For example, if the circussignaed that it
will stabilize in three cycles, the resulting acyclic circuit will have three fodyaath copies of
the path in the corresponding cycle in the cyclic circuit. The number of cepikalso depend
on the number of cycles present in the original cyclic circuit. Thus thdtheggraph forms
an acyclic equivalent of a cyclic graph.

5.4.4 ABALLAST

ABALLAST algorithm (Algorithm 20) involves the generation of a balancegdic asyn-
chronous circuit, which forms the asynchronous circuit with all the C-efesnim the ker-
nel converted into acyclic equivalent and the kernel being a balariogctise. BALLAST
methodology was introduced in [GB90], where the balanced graph stesctvere used to
select partial-scan flipflops for synchronous sequential circuit &sémtion. The circuit is
represented as a graph G (V, A, H, w), where V, the set of verticasgmonds to the com-
binational blocks or clouds [GB90] in the circuit; E, the set of edgesasmt the registers
between the clouds; H, a subset of A is the Hold registers; and w, beirmpshef converting
the registers to scan registers. A balanced circuit of the graph G, is gw& (V, A-R, H-R,
w) where, R being the arcs removed from the graph to make the graptcedlaRegisters
in the set of removed arcs R will form the scan registers of the circuit @amaining register
along with the clouds form the balanced structure or kernel. Here thnee ate carried out to
make the cyclic circuit to be testable: first, the circuit is checked whether dyidig; if the
circuit is acyclic, then the procedure ‘balance’ is applied to make the aayiotigit balanced:;
the procedure ‘check’ verifies whether the circuit is balanced.
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Algorithm 5 ABALLAST
input : G represented as set of edges, number of nodes, number of vertices

output: Kernel GraphGk and Scan Element Li®
ABALLAST( G (V,E)) {
Check(G (V,E)) if Successhen
‘ R =Bal ance( G (V,E))
end
else
‘ return Failure
end
Gk (V,E) = Get Kernel (G (V,E)) Gak (V,E) =CycToAcyc(Gk (V,E)) returnGk (V,E),R }

Algorithm 6 ABALLAST Procedures

CGet Kernel (G (V,E)) { Check(G (V,E)) Rk=Bal ance(G (V,E)) for Vr € Rkdo
| GK(V,E)=GK (V)-r

end
returnGK (V,E) }

}

Although, the circuit is balanced and the scan registers are found, thel kdotained by using
the check and balance procedures contain C-elements which only aéootire local loops.
In BALLAST, only synchronous circuits are used and hence the ké&smeady for generating
test. But in case of ABALLAST, the cyc_to_acyclic algorithm is applied to temkl again
to convert the C-elements present in them to acyclic equivalent. Thusljaeguivalent of
the kernel and the list of registers to be scanned are obtained as theatps ABALLAST
algorithm. It should be note that, in case of BALLAST method, only the list gisters to be
scanned is obtained as output. This netlist will be used for test generdtieracyclic circuit
will be then fed to the Synopsys 's Tetramax. The test vector generatéitefacyclic circuit
using Tetramax is how used to fault simulate the equivalent cyclic circuit.

5.5 Evaluation methodology

The proposed test flow was evaluated by applying it to a number of asymmis benchmark
circuits and comparing the results to 3 other methods with respect to faulagevand DfT
area overhead.
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5.5.1 Choice of Benchmarks

The benchmarks selected for evaluation of the proposed method areftakefiSM04a].
These benchmarks are basically a latch controller and interface circuihaoly used in
asynchronous circuits. The benchmarks provided in the above mentmuede is only in
STG format. Hence the STG specifications are synthesized to gate leeédlcgi®ns using
the Petrify tool. The gate library used for synthesizing the STG specificaisothe inbuilt
library in the Petrify tool.

5.5.2 Methods Evaluated

The proposed method was compared with the following existing methods: SRINE$044],
Eichelberger's method [Eic65] and the full-scan method [BAOS5].

5.5.2.1 Eichelberger's Method

In Eichelberger's method [Eic65], a novel method for detection of hzer both combina-
tional and sequential circuits was introduced. It was implemented as aapndgr[SMO04a]
and the fault simulation results were compared for 10000 random vectors.

5.5.2.2 SPIN-SIM

SPIN-SIM is a simulation-based test approach [SM04a] adapted frar@gHo integrate with
the fault simulator for synchronous sequential circuit (namely HOPH)tneg in a fault sim-
ulation strategy for asynchronous circuits. Issues addressed in thigdreth 1) adaptation
of Eichelberger's method , 2) Preserving relative Transition ordedu8jcious time frame
unrolling, and 4) handling complex gates

Some of the drawbacks of this method are: 1) pseudo gates are used forelements, 2)
C-elements are considered as a single gate and faults inside the C-eleeneatt @onsidered
in the fault list, 3) Random vectors are used for fault simulation which caort®000 vectors,
4) Fault collapsing is based on the method introduced in the HOPE simulatsg(fonronous
circuits), and only a subset of the fault classes are used during doljaps

5.5.2.3 Full Scan Method

This method [BAO5] is a straight forward DFT method involving the replaceméall the
memory elements in the design by their equivalent scan latch design. Usingpnzaah
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considerably increases the area overhead. Few partial scan metwedbden proposed for
asynchronous circuits testing and the method advocated in this thesis séshdament a
new partial-scan method.

5.5.3 Metrics used for Evaluation

The metrics used to compare the different test methods are:
« Fault Coverage
» Scan Area Overhead
» Test Vectors

Before defining the metrics used in the evaluation, the fault classes usettamiax are intro-
duced. The five main fault classes represented by Tetramax are:

e DT - Detected

PT - Possibly Detected

UD - Undetectable

AU - ATPG Untestable

ND - Not Detected

The subclasses of these faults are listed in Table 5.1, which are useatbthepfault cover-
ages. Most of the fault names are intuitive, and the detailed definitionsecabthined from
the Tetramax userguide.

The definitions of the three metrics mentioned are defined next:

 Fault Coverage - This the ratio of the number of faults detected to the totddenfault
sites in the circuit. The fault coverage of the circuit therefore depemtisextotal number
of detectable faults taken into account in the fault list. The fault coveraiipeiproposed
method is calculated by the Tetramax tool. The fault collapsing, test generatidaut
simulation steps are carried out by the Tetramax tool. The equation for treotesage
used in Tetramax is as follows.

Allrauits

Fault Coverage = 100 (5.1)

"PT"in equation 5.1 stands for "Possibly Detected" fault, and "PT_crexi##t to 1.
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Table 5.1: Fault Classes in Tetramax

Fault Classes
DR | Detected Robustly
DT detected DS | Detected by simulation

DI | Detected by Implication
AP | ATPG Untestable-Possibly Detected
NP | Not analyzed - Possibley Detected

PT:Possibly Detected

UU | undetectable unused

UT | undetectable tied

UB | undetectable blocked

UR | undetectable redundant

AU ATPG untestable AN | ATPG untestable-not detected
NC | not controlled

UD Undetectable

ND not detected

NO | not observed

« Scan Area Overhead - It is the amount of extra logic used to convetie@alnemory
elements present in the DUT to make it testable. The percentage of scawvarkead
reduction is the ratio of the number of scan latches in the partial scan destbe to
number of scan latches used in the full scan design. Itis given aserpage in equation
5.2:

N
Scan Area Overhead Reduction Percentage 1 — N—p x 100 (5.2)
f

where, N, is the number of scan elements in the partial scan, anthe number of
scan elements in the full scan design.

* Number of Test Vectors - This is the number of stimulus and the corregppresponses
of the DUT needed to test all the detectable faults accounting for the fardtage of
the DUT.

5.6 Results and Analysis

Two circuits, namely the majority gate based C-element and benchiadffkare discussed
in detail. The C-element was used in Section 5.3 to demonstrate local loop detactio
unrolling. Its fault coverage is evaluated in this section.
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5.6.1 C-element

The majority gate implementation of C-element is shown in Figure 5.12.1 and tlespond-

ing unrolled, acyclic circuit is shown in Figure 5.12.4. The C-element with ite gades

labelled is shown in Figure 5.15. The Tetramax convention has been admrieth ease fault
analysis. The fault sites and the detection results for the original circditesults of fault

simulation of the acyclic circuit patterns over the original circuit obtainechfiiietramax is

given in Table 5.2.

The test vectors obtained for the acyclic circuit are: 111, 000, 100, 011, 101, 011 for
the pins a,b,c respectively, with ¢ being added as an initialisation input. Im ra@gply the
vectors to the original circuit, which only has 2 inputs (a, b), the last bitashevector is
removed. The list of faults in the C-element and the detection results arenshdable 5.2.
The third column gives the results for running the Tetramax on the origiralitifThe fourth

column gives the results for fault simulation of the acyclic circuit patterns the original

circuit. All faults are detected by the test pattern which gives a 100 % faudirage.

al
T_ andl z

a2

al
and3 4
a2

.

Figure 5.15: C-element -Majority Gate Implementation
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Table 5.2: Fault Sites and Detection Results

Faults | Stuck-at type Detection Detection
Result(orignal) Result(acyclic

patterns)
A 1 NO DS
B 1 NO DS
And1lAl 1 AN NP
And1A2 1 AN NP
And2A1 1 NO DS
And2A2 1 AN DS
And3A1 1 NO DS
And3A2 1 AN DS
Orlz 1 DS DS
C 1 DS DS
A 0 NO DS
B 0 NO DS
Andl/z 0 AN DS
And2/z 0 AN DS
And3/z 0 AN DS
Orl/z 0 DS DS
C 0 DS DS

5.6.2 Benchmark "chul50"

Test generation for benchmark circuit chul50 is shown in Figure 5.1 cbmplex gate
implementation of chul50 synthesized by petrify has 2 C-elements forming tHedaldeed-
back loops (Figure 5.16.1). The graph representation of the circuitifigrthe clouds and
state holding elements is shown in Figure 5.16.2. Then the balanced grapaleofuwith
cyclic kernel formed with only one C-element is obtained (Figure 5.16.3¢ rémoved el-
ement forms the scan latch based C-element. Now the balanced circuit whihlamel is
obtained (Figure 5.16.4). In order to generate the efficient test vethersyclic kernel with
one C-element should be converted in to an acyclic kernel; the cyclicywi@aalgorithm,
which is applied to the cyclic kernel converts the local loop or C-elemesepten kernel in to
an acyclic equivalent as shown in Figure 5.16.5. The circuit with acycticét¢Figure 5.16.5
and Figure 5.16.6) is now ready for test generation. The test patterteiget for this circuit
using Tetramax. These test patterns are then fault simulated over the witbuit/clic kernel
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which is the original partial scan circuit as shown in Figure 5.16.7. Fau#rage obtained by
the test vectors generated is 95.83%.

°@

) @ ®)

-

(6) @)

Figure 5.16: Test Generation for chu150

5.6.3 Results

Results of the proposed method are described in detail in this section. Fer&pthcoverage
of the experimented benchmarks are shown and they analysed. Steoachn area overhead
is discussed. Finally the number patterns generated for attaining the tefaartecoverages is

discussed.
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Fault Coverage Comparison (ABALLAST Vs Full Scan Method)
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Figure 5.17: Fault Coverage comparison - ABALLAST vs Full scan

5.6.3.1 Fault Coverage

The fault coverage results and comparison with full scan method arenshotable 5.3. The
fault coverage for the benchmarks chul50, mp-fw-pkt and sbufeteviigher than all other
benchmarks in the range closer to 90 percent. nakpa , rcv-setup antaartbwer fault
coverage. Reduction in fault coverage of nak-pa and rcv-setugeisodine fact that the actual
effect of partial scan design cannot be seen in these circuits duedenge= of only one or
two memory elements. Benchmarks such as, half, hazard, nak-pagetugy-spdft , vbe5c
and vbe5b also fall in to this category. They either have one or two C-etsroemone at
all. The main reason for reduction in the fault coverage is the presenglelud! loops. For
the benchmarks: ebergen, half, chul50, sbuf-ram-write and wrdaBblL LAST achieved
fault coverages of over 95 %. Significant improvement in fault covefag the benchmark,
"wrdatab", was achieved which has many C-elements and more global Iégshown in
Figure 5.17, yellow lines gives the fault coverage for full scan methodyageh lines give the
fault coverage for ABALLAST. Clearly full scan has higher fault eo&ge than ABALLAST.
It should be noted that for the benchmarks masterread, mmu and vbeZuthedverage is
comparable to fault coverage obtained by full scan.

The comparison results of several benchmarks with other two methods mehiticthe eval-
uation methodology section is shown in Table 5.4. It shows the nhumber of émdtthe fault
coverage for the circuits. They are obtained from [SM04b]. The faaverage for the method
in [Eic65] (shown in [SM04b]) was between 21.4% - 100%. For the meth¢8N04b], the
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fault coverage ranges between 85.7 - 100%. The benchmarks with coRi@and 4 marked

"-" are not reported in [SM04b]. From the comparison, ABALLAST igefes higher fault cov-

erage for all the benchmarks with higher number of C-elements presernm #or example,

the benchmarks chul50, converta, dff, ebergen, half , mastemeagsbuf-send-ctl and seq4
had higher fault coverage than those in [Eic65]. ABALLAST also hadhéidault coverage

than the method in [SMO04b] for the benchmarks converta, dff, and eberg

5.6.3.2 Scan Area Overhead

The comparison of scan area overhead is shown in the Table 5.5. Asdle&ier, this metric
gives the difference in the number of scanned memory elements chosea $gatin methods.
The second and third column lists the number of C-elements scanned fardaolhsethod and
ABALLAST, respectively. The last column in the table gives the scan eveahead percent-
age. Figure 5.18 depicts the difference in the number of scan C-elemestscihe proposed
method clearly chose fewer C-elements compared to the full scan methodhrBarks that
show better reduction in patterns also have shown better reduction in thenah@®-elements
scanned. For some benchmarks, namely nowick, rcv-setup, rpd8b\dred vbe5c, only red
line is shown in the graph. This means that no C-element was scanned by#id AST.
The fault coverage gets reduced by 10 % for this reason. Since theesmaller benchmarks,
they can be full scanned to get the maximum coverage.

Scan Area Overhead Comparison (ABALLAST Vs Full Scan Method)
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Figure 5.18: Scan area overhead comparison
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5.6.3.3 Number of patterns

The number of test patterns generated by the test pattern generatowisistthe Table 5.6.
Most of the benchmarks had lower number of patterns for the propostthcheompared to
the full scan method due to the reduction in the number of scan flipflops. @vensim Figure

5.19, the taller green lines for the benchmarks mrl, mmu, trimos-send anthlviddicates
the full scan method requiring higher number of patterns to achieve thetatage. It should
be noted that ABALLAST required 20 - 40 % lower number of patterns.dxample, to test
the benchmark mrl ABALLAST needed only 29 test patterns, whereasdali required 48
patterns. But, in the case of benchmarks chul50,converta, half anchisetfhe number of test
patterns increased for the proposed method.

Number of Patterns(ABALLAST Vs Full Scan Method)
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Figure 5.19: Comparison of Number of Patterns Generated -ABALLAST Vs Full Scan

5.6.3.4 Analysis of Undetectable Faults

Table 5.7 gives the complete distribution of fault classes for all the ben&ismahe last four
columns gives the four different fault types, namely, Not Observatie)( Not Controllable
(NC), Detected(DT) and Possibly Detected (PT), respectively. Fidses of interest are the
NO and NC faults. These are the main faults causing the fault coverage asyimchronous
circuits to be lower. Figure 5.20 shows the distribution of these faults ovrealenchmarks.
The blue stack is the number of faults detected and striped blue stackd ébthe tip of each
line) are the number of possibly detected faults. Given that ABALLASTIHt®0 -100 %
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fault coverage, the blue stacks dominate the graph. But, the focus afshiethis graph is the
two stacks: NO (red mesh pattern) and NC (checked green patterm).tReozoomed area in
the graph, NO faults dominate all the benchmarks. For example sbuframediitelnNO faults
and trimos-send had 13 NO faults. The main reason underlying the difficuitysarvability
is the local loops in the unscanned C-elements. To probe this further, daheelmenchmarks
were selected and analyzed in the next subsection.

Fault Class Distribution
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Figure 5.20: Distribution of different fault classes, PT- Possible Detected, DT- Detected, NO -
Not observable, NC - Not Controllable

The list of undetectable faults and their classification based on their cobtliofiand observ-
ability and structural location is given in the Table 5.8.

Un-Controllable(NO) and Un-observable(NO) Faults

Most of the faults which occured were unobservable as opposed tg beaontrollable. For
example, in the benchmarks ram-rd-sbuf, out of 10 undetectable, 9rofileee unobservable.
The reason for this condition is the location of the fault sites: most of the fandts the nodes
that are either feeding or fed by the C-element.

Faults sites before or after the C-element

Out of 10 faults in the same benchmark, 7 of them are either fed by or fe@ G-#tlements
(in this case 2 of the 7 nodes are feeding C-element, and the other 5 arg @@lement).
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The trend of undetectable fault sites in the global loop path is very low, as&kis only in the
benchmarks, sbufsndctl and ram-rd-sbuf.

Faults inside unscanned C-elements

For some of the benchmarks, most of the faults occured in the unscanaEan€nts. For
example, in the benchmark sbuf-ram-write, 9 out of 17 faults occurrectindldes inside the
C-elements.

5.6.3.5 Number of Copies

It will be interesting to see how well the fault coverage improves when wease the number
of copies of the forward path added to the acyclic circuit conversiomxptore this, the num-
ber of copies of the forward path of the cycles is increased in the cyclicytdia conversion
process. Thatis, only one copy of the forward path was considened wutting the loops and
now it will be more than one copy cascaded with one other. In total, 8 diffengperiments
for all the benchmarks were carried out, with each one having 1 to 8 cofiiles forward path
for the cyclic-to-acyclic operations, respectively. The trend of faoltecage and the number
of patterns generation for the test are next analyzed.

Fault Coverage

Table. 5.9 shows the fault coverage impact over the number of copies nraffggure 5.21
shows the fault coverage comparison of the proposed method with 1 toiésamipforward
path. Figure 5.21. (a -c ) shows the trend for benchmarks with lower nuoflig-elements.
Figure 5.21.d has the benchmarks with higher number of C-elements. Frorasfigigure
5.21.(d) it is evident that the fault coverage is highly impacted by the inergasumber of
copies as the benchmarks have higher number of C-elements and glgisl loo
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Figure 5.21: Fault coverage of Benchmarks with copies 1 to 8 shown in (a), (b) ,(c), and (d)

For example
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erage. For seq4 benchmark the fault coverage varied from 68.634%3 For the benchmark
trimos-send, the variation was from 84.85 - 93.35%. Benchmark vbeSbigchthe highest

difference in faultcoverage. The single copy version of the bencharieved 90.79% fault
coverage while the siz xopy version achieved only 47.37%. For soméhimamks namely,

chul50, nowick, nak-pa and mp-forward-pkt had no impact due to timease in copies. Most
of these had either one or two C-elements or had no global loops.

Number of Patterns

Table 5.10 lists the number of patterns generated for 1 to 8 copies circuitBALLAAST.
Figure 5.22 shows the impact on number of patterns generated with 1 to & adgarward
path. The benchmarks that had no impact on the fault coverage was the fet that the
increase in number of copies did not find more patterns for those benkhimas shown
in Figure 5.22.(a-d), the benchmarks chul50, nak-pa, and mp-fividgazksame number of
patterns generated for all the 8 versions. But the benchmark nowickahiadion in the number
of test patterns. For example, the 1-6 copies of circuit had generateslraamber of patterns
(9 patterns). But, the circuits with 7 and 8 copies generated lower numlpatteirns. But,
it should be noted that with lower number of patterns these two circuits prebvite same
fault coverage as previous 5 versions. Hence increasing the nurhibepies reduced the
number of patterns needed to test the same circuit in this benchmark. Fdmiarks mrl,
ram-read-sbuf, wrdatab increasing the number of copies increasadniteer of patterns. For
other benchmarks the increase was not monotonic with increase in numbepiet. The
impact of making several copies of the circuit for test generation ovefaille coverage is
shown as a 3D plot in Figure 5.23. The level in the middle of the plot shows e ionpact
on fault coverage over the benchmarks with fewer C-elements. The irapdbe number of
patterns is shown in the Figure 5.24. It should be noted that the benchwraidab, shows
a steep rise in the number of patterns for the "8" copy circuit. Increasmdpthit coverage
of the acyclic equivalents of the circuit will increase the fault coverdgé®DUT. So some
advanced method has to be applied to find the test for the redundant faeskspin the acyclic

equivalent circuit.

ComplexityThe complexity of the ABALLAST method is the summation of the complexity
of the three steps namely, BALANCE, the Cyclic-to-Acyclic Conversione Thmplexity of
the Balance procedure is @¢). This is derived from the fact that the balance procedure
computes the minimum cutest for O(m) times and the size of each cutest is bdunaetht
worst case) and the procedure check (which has the bound of O(raildd over each of these
cute. For the cyclic2acyclic conversion, the performance is dominatedebgytiie detection
process with the upper bound ofi@(2).
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Figure 5.23: 3D Plot depicting the impact on fault coverage

5.6.3.6 Summary

The prime factors affecting the testability of the asynchronous circuitsuanengirised.
Factors affecting the fault coverage are:

« Depth of the node in the circuit

Memory elements present in the circuit

Feedback paths present in the circuit

Observability of the nodes

Controllability of the nodes
» Type of logic used for simulation

location of the nodes in front of or after the C-elements

Conventional circuit structures affecting the test quality are:
» Reconvergent fanout

» Feedback paths
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Number of Patterns(ABALLAST Vs Full Scan Method)

Impact on Number Copies E—

Number of Patterns

Figure 5.24: 3D Plot depicting the impact on number of patterns

» Blocking Scan paths

Hence, the following changes are required for improving the testability odslgachronous
design:

* Logic level of the fault simulation should be changed.

* New method for realizing and simulating the feedback cycles seperataljdshe de-

vised.

» DFT for feedback paths should be designed

5.7 Conclusion

A test pattern generation method for asynchronous circuits was prdsemgetest method
provided the following:

» An effective way of handling the cyclic asynchronous circuits suchttiey can be used
with the Tetramax test generator

« Partial scan element selection based on balanced sequential structures

« Automatic Test pattern generation for the partial scan design generated
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This method gives a better fault coverage compared to [Eic65]. But & doeout-perform
[SMO04a]. In [SM04a], the test generation was based on randoma#stips and custom fault
simulation, which constributes to the higher number of test vectors and deéeiaaltlist. The
area overhead is effectively reduced compared to the full scan basegh.
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Table 5.3: Fault Coverage

Benchmarks | Full Scan| ABALLAST
chul50 100 95.83
converta 100 94.83
dff 100 92.50
ebergen 100 97.06
half 100 96.43
hazard 100 86.36
master-read 96.76 96.55
mmu 91.95 91.29
mp-fw-pkt 100 92.31
mrl 100 82.77
nak-pa 100 83.55
nowick 100 94.44
ram-read-sbuf, 99.02 86.49
rcv-setup 100 72.22
rpdft 100 92.31
sbufctl 100 91.20
sbuf-ram-write 100 96.43
sbuf-send-pkt2  96.03 84.48
seqg4 100 93.14
seq_mix 97.44 94.29
trimos-send 100 89.87
vbe5b 100 90.79
vbe5c 87.93 86.67
wrdatab 99.46 96.49
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Table 5.4: Result — Fault Coverage Comparison

Benchmark | No of faults | [Eic65] | [SM04a] | Proposed
chul50 56 97.1 97.1 95.83
converta 54 56.8 91.9 94.83

dff 44 214 85.7 92.5
ebergen 74 47.8 95.7 97.06
half 22 40 100 96.43
hazard 48 87.9 97 90.91
masterread 144 65.1 97.7 97.13
mmu - - - 91.61
mp-forward-pkt 60 100 100 92.31
mrl 152 10.8 93.5 83.78
nak-pa 82 100 100 84.21
nowick 56 100 100 97.22
ram-read-sbuf 90 100 100 86.49
rcv-setup 40 100 100 77.78
rpdft 62 100 100 92.31
sbuf-send-ctl 94 59.3 94.9 91.67
sbuf-ram-write 110 100 100 82
sbufsend-pkt2 - - - 86.21
seqg4 96 54 95.2 93.14
seq_mix - - - 94.29
trimos-send - - - 90.51
vbebb - - - 92.11
vbebc - - - 90
wrdatab - - - 97.08
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Table 5.5: Scan Area Overhead

Benchmarks | Full Scan| ABALLAST | Area Overhead Reduction (%)
chul50 2 1 50.00
converta 3 1 66.67

dff 2 1 50.00
ebergen 3 2 33.33
half 2 1 50.00
hazard 2 1 50.00
master-read 9 8 11.11
mmu 6 5 16.67
mp-fw-pkt 3 1 66.67
mrl 9 5 44.44
nak-pa 4 1 75.00
nowick 1 0 100.00

ram-read-sbuf 4 1 75.00

rcv-setup 1 0 100.00
rpdft 1 0 100.00
sbufctl 4 1 75.00
sbuf-ram-write 6 3 50.00
sbuf-send-pkt2 4 1 75.00
seg4 7 3 57.14
seq_mix 6 5 16.67
trimos-send 8 5 37.50
vbe5b 2 0 100.00
vbe5c 3 0 100.00
wrdatab 7 5 28.57
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Table 5.6: Number of Patterns

Benchmarks | Full Scan| Proposed
chul50 12 9
converta 14 12
dff 11 13
ebergen 15 19
half 11 9
hazard 12 12
mmu 32 39
mp-fw-pkt 14 16
mrl 29 48
nak-pa 16 14
nowick 9 10
ram-read-sbuf 18 19
rcv-setup 7 8
rpdft 11 16
sbufctl 18 27
sbuf-ram-write 24 26
sbuf-send-pkt2 27 29
seg4 28 31
seq_mix 34 31
trimos-send 35 46
vbe5b 10 12
vbe5c 11 8
wrdatab 37 46
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Table 5.7: Fault Class Distribution

Benchmarks | NO | NC | DT | PT
chul50 2 0 |46 | 0
converta 2 1 55| 0
dff 3 0 |37] 0
ebergen 2 0 66 | O
half 1 0 27 | 0O
hazard 5 0O | 36 | 4
master-read | 3 2 | 167| 2
mmu 7 6 [141| 1
mp-fw-pkt 3 1148 | 0
mrl 20| 4 | 121 3
nak-pa 7 5 63 | 1
nowick 1 0 | 33| 2
ram-read-sbuf, 9 1 /64| 0
rcv-setup 4 0 12 | 2
rpdft 3 0 |36 |0
sbufctl 3 0 98 | 1
sbuf-ram-write| 11 | 7 | 77 | 5
sbuf-send-pkt2 9 | 96 | 4
seq4 0 95 | 0
seq_mix 2 1132 0
trimos-send | 13 | 2 | 141| 2
vbe5b 113 |1
vbebc 0 25| 2
wrdatab 4 | 80| 2
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Table 5.8: Undetectable Fault Locations

Bench Total Un- NO NC feeding | fed by inside faults in
detectable| faults Faults cele cele cele Global
loop

chul50 2 2 0 2 - - -
nakpa 13 8 5 6 - 4 -
mp-fw-pkt 4 3 1 3 - - -
ram-rd-sbuf 10 9 1 2 5 3 3
sbuf-ram-write 17 10 7 3 9 -
sbufsndctl 9 9 0 - - 6 3
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Table 5.9: Fault Coverage Comparison of proposed method using 1 to 8 copies of forward path

during acyclic conversion

Benchmarks | copyl | copy2| copy3| copy4 | copy5 | copy6 | copy7 | copy8
chul50 95.83 | 95.83| 95.83 | 95.83 | 95.83 | 95.83 | 95.83 | 95.83
converta 94.83| 94.83| 94.83| 94.83 | 94.83 | 93.97 | 97.41| 97.41

dff 925 | 925 | 925 | 925 | 925 | 925 90 95
ebergen 97.06 | 97.06 | 97.06 | 97.06 | 95.59 | 98.53 | 98.53 | 98.53
half 96.43| 100 100 100 100 100 100 100
hazard 86.36| 87.5 | 89.77| 89.77| 89.77 | 81.82| 81.82| 87.5
mmu 91.29 | 90.97 | 90.97 | 90.97 | 85.81 | 85.81 | 85.81 | 90.97
mp-fw-pkt 92.31| 92.31| 92.31| 92.31| 92.31| 92.31 | 92.31| 92.31
mrl 82.77 | 89.53 | 93.58 | 80.07 | 85.47 | 85.81| 84.8 | 78.38

nak-pa 83.55| 83.55| 83.55| 83.55| 83.55| 83.55| 83.55| 83.55
nowick 94.44 | 94.44 | 94.44 | 94.44 | 94.44 | 94.44 | 80.56 | 80.56
ram-read-sbuf| 86.49 | 82.43 | 85.14 | 83.78 | 88.51 | 84.46| 77.7 | 86.49
rcv-setup 7222 | 7222 | 72.22| 7222 | 7222 | 72.22 | 72.22 | 69.44
rpdft 92.31| 92.31| 92.31| 92.31 | 92.31 | 94.87 | 94.87 | 94.87
sbufctl 912 | 912 | 912 | 912 | 91.2 | 91.2 | 91.2 | 91.2
sbuf-ram-write| 79.5 95 87 84 98 84 81.5 | 855
sbuf-send-pkt2 84.48 | 83.62 | 83.62 | 83.62 | 86.64 | 86.64 | 86.64 | 86.64
seq4 93.14 | 90.2 | 86.27 | 82.84| 68.63| 79.9 | 77.94 | 93.14
seqg_mix 94.29 | 93.57 | 94.29| 9429 | 94.29| 95 95 95
trimos-send | 89.87 | 91.14 | 87.03 | 93.35| 93.35| 87.66 | 89.56 | 84.81
vbe5b 90.79 | 80.26 | 51.32 | 56.58 | 56.58 | 47.37 | 60.53 | 72.37
vbebc 86.67| 60 60 60 60 86.67| 60 86.67
wrdatab 96.49 | 9591 | 95.91| 96.49| 96.49| 96.49 | 96.49 | 91.81
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Table 5.10: Comparision of Number of patterns generated for the circuits with 1 to 8 copies of

forward path during acyclic conversion

Benchmarks | copyl | copy2| copy3| copy4 | copy5 | copy6 | copy7 | copy8
chul50 12 12 12 12 12 12 12 12
converta 14 14 14 14 14 14 14 14
dff 11 8 9 9 9 9 10 9
ebergen 15 15 15 15 14 14 15 15
half 11 10 10 10 10 10 10 9
hazard 12 13 11 11 11 11 11 12
mmu 32 32 32 32 29 29 29 32
mp-fw-pkt 14 14 14 14 14 14 14 14
mrl 29 28 29 29 28 30 34 30
nak-pa 16 16 16 16 16 16 16 16
nowick 9 9 9 9 9 9 6 7
ram-read-sbuf| 18 14 18 17 17 13 17 20
rcv-setup 7 7 7 7 7 7 7 6
rpdft 11 11 11 11 11 12 12 11
sbufctl 18 18 18 18 18 18 18 18
sbuf-ram-write| 24 22 21 21 24 19 19 20
sbuf-send-pkt2 27 29 29 29 25 25 25 25
seq4 28 24 21 24 23 27 27 22
seq_mix 34 34 34 34 34 33 33 33
trimos-send 35 34 37 36 31 35 32 35
vbe5b 10 8 8 8 8
vbe5c 11 10
wrdatab 37 38 35 36 33 33 42 42




Chapter 6

AGLOB - Asynchronous Circuit Test
Generation Based on Breaking Global

Loops

6.1 Introduction

This chapter proposes a novel partial scan design methodology anthégige for generating
test patterns for asynchronous circuits. Generating test patterns witrstigk-at fault cov-
erage and achieving a lower area overhead compared to existing fulhssthods forms the
motivation for this work. Some work related to this chapter is detailed below.

Partial scan and full scan test methods for asynchronous circuittopedeso far are for spe-
cific asynchronous design styles and methods. The roadblock for téstaigthese design
methods seems to be the cyclic circuits present in them. Also converging thedsiéthan
industrial test generation tools poses another problem. This chapter istedtiewards devel-
oping a partial scan based ATPG method aiding the synchronous CAD togéh&vate tests
for asynchronous cyclic sequential circuits.

Two main contributions made in this work are: 1) extending the synchronar®lpscan
method to be used for test generation of cyclic asynchronous circuit)aryclic-to-acyclic
circuit conversion method to prepare the circuit for test pattern generdtault coverage of
76-96% was obtained using this method. The organization of the chaptdplkas: Section
2 gives the background; Section 3 describes the proposed algoriththe fiest method; Sec-
tion 4 describes the test methodology; the results are analyzed in Section tvavitvorking

examples, with conclusions in section 6.

122
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6.2 Background

Asynchronous circuits use combinational loops to store state. There argyes of loops,
namely global and local loops. Local loops are the combinational loogeprén the state-
holding gates such as C-elements or set-reset latches. The familiar flgstopontains a local
loop, but it is hidden from test tools since a flip-flop is a cell on its own in steshdell libraries
and does not pose any problems in testing. Global loops are longer wopsd outside these
gates and are used for creating asynchronous state machines. rsymahfull-scan methods
[BPVBKO3] break all these loops in test mode using LSSD-type scan ktdhgs simplifies
testing as the circuit is transformed in to a purely combinational one in test nktmleever,
the area overhead is enormous, hence motivating our work on partialrsthods.

6.3 Test Methodology

Several steps involved in this test methodology are discussed in this sddgone 6.1 shows
the components involved in test generation. As the circuits dealt in this metkoasgn-
chronous circuits, the state graph level description of the circuits is ssintiteusing Petrify[CKK 97]
. The synthesized circuits are converted to graph level represent&ldR2Graph genera-
tor converts the circuit representation to graph in which nodes reprise=gates and edges
represent the connection between the gates. In order to apply comargian selection
method[CA9Q] , the abstract representation of the graph called s-@4®0], with only
memory elements are needed. The abstract level of graph with memory elemecides and
paths between the elements as edges is created. In the next step, thlg stongcted com-
ponents are identified which aids the scan selection algorithm. A graplsespeel by G (V,E)
,where V forms the set of vertices and E forms the set of edges is said tstbengly con-
nected graph if there exists a path from each vertex of the graph to @bemyvertex. Strongly
connected components of the graph are its maximal strongly connecte@dghibgThe algo-
rithm for finding the strongly connected components is a linear time O (V+Ejh®graph
represented as an adjacency list [THCRO1]. It uses depth-firsttstafind the components of
the graph. By applying the scan selection method(AGLOB1,AGLOBZ2) the meaiements
to be scanned are selected. With synchronous designs, the circuidysfoeacan test gener-
ation as the global loops are broken, but for asynchronous desigynirtuits still contain the
local loops. The C-elements that have not been selected to be scamsitLio® these loops.
Therefore the circuit has to be passed to the cyclic-to-acyclic converter
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6.3.1 Cyclic-to-Acyclic Conversion

Cyclic-to-acyclic conversion of the circuit should be performed for tffecéve test gen-
eration of asynchronous circuits using a synchronous TPG tool. Theersion removes
all the feedback loops formed in the cyclic circuit. As a result the tool’s visibditythe

fault sites will increase so that it will be able to generate test patterns of fhigh cov-

erage. The produced patterns will then be applied to the acyclic (partiahed) circuit.
Several methods for generating an acyclic circuit from cyclic circuiteeHasen introduced
[EdwO03],[Mal93],[Wei72],[Niv04]. Unfortunately, these methods agstricted for cyclic cir-
cuits without state holding elements and which do not oscillate. Oscillations edempinant
in asynchronous cyclic circuits and also state holding elements like C-elermertsramonly
found in them.

Thus, the acyclic partially scannable equivalent of the cyclic partiallyreale circuit is ob-
tained. Now the design is passed through a conventional test pattemrageneSynopsys’s
Tetramax was used for test generation and fault simulation.

AGLOB

Netlist to Graph ®BLIF2Graph)
Cyclic2Acyclic
Aglob Scan Selection

I '

- STIL Verilog
Nei“St Protocol Library

TMAX
Full Acy Eqn Partial

Test Generation

Fault Simulation

Test Test
vectors Reports

Figure 6.1: Test Methodology
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6.4 Algorithms

The circuit model and the algorithms involved in Global loop breaking, selatson, cyclic
to acyclic conversion are discussed further in detail.

6.4.1 Global loop breaking

In [CA90], the method of global loop breaking involves representing gsegm in an abstract
circuit topology graph. All the vertices in the graph represents the fljgsfio the design and
the edges forms the path between the flops comprising of combinational gdtedras. Then
the graph is processed to find the strongly connected components [H®8@ht in it, which
constitutes to the global loops in the circuit. All the cycles or loops are stoet Ist to
be processed by the flip-flop selection algorithm. The Breakloop algorithttined below,
selects the minimum number of flipflops in the design. Scanning the selectedoBipflth cut
all the global loops in the design.

The flipflops selected will form the scan elements in case of synchromsiggd In the case of
an asynchronous circuit, the C-elements present in the circuit are alsweped as local loop
or memory elements. Thus C-elements are added as vertices during theapegdentation,
before applying the scan selection algorithm. After applying the scan seledtorithm, the
selected C-elements and latches will form the scan elements for the desigm éample,
Figure 6.2.a shows a benchmark seg4 with 7 memory elements with the combingttesl
and I/0O pins shown as circles. The graph representation of the circhibwasin Figure 6.2.b.
As explained earlier, the vertices represent all the memory elements firegencircuit. Four
strongly-connected components can be identified from the graph anertiees list forming
each component is shown in Fig 6.2.c. These components form the cyesenpin the circuit.
Note that, the vertex Ce3 appears in the second, third and fourth cycteehienen the scan
selection algorithm is applied vertex Ce3 will be selected in the first passctdeal®f this
vertex will remove cycle 2,3 and 4 from the cycle list. Vertex Cel will be seteaiethe
second pass, which is present in the cycle 1. Thus the cycle list is empigedhef selection
of vertex Cel and the algorithm is halted. Thus the resulting partial scariteiith Cel and
Ce3 forming the scan elements is shown in Fig 6.2.d. Though the scan eleneséieated,
the resulting partially scanned circuit may contain C-elements that are notextaThese C-
elements constitute the local loops of the circuit. Hence another step is nedusutlle these
local loops and create the acyclic equivalent of the design.

Two algorithms are proposed for selecting the scan chains, namely AGla@8 AGLOB2
and one algorithm for converting the cyclic circuits to acyclic ones. Theeional scan
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Algorithm 7 Conventional Scan Selection algorithm
Conventional_SCC

For a s-graph G(V,E) {
If the graph has cycle {

Find all the Cycles of the graph (heuristically)

Cenerate a list of cycles

Find the frequency of occurance of each vertex in all SCC
Choose the vertex/c-elenent with higher frequency

add to scan el enments set

Renove the SCC s containing the vertex }

}

selection algorithm is shown in Algorithm 7.

6.4.1.1 Algorithm 1- AGLOB1

In the first algorithm AGLOB 1 (shown in Algorithm 8)the c-elements and flipdlare selected
based on maximum occurrence of them in all the cycles. This is similar to themboral
scan selection algorithm in which all the flipflops are selected based on tweirrence. We
have extended this algorithm to be used in selection of C-elements in the emyoeh circuit
and adding cyclic-to-acyclic conversion to the resulting circuit. Thus, iIh@6 1 finding set
of the memory elements is followed by converting the resulting partial scantdiocacyclic
circuit.

6.4.1.2 Algorithm 2-AGLOB2

The second algorithm AGLOB 2 (shown in Algorithm 9) deals with selecting tiede@ents

based on maximum degree of the vertices/C-elements present in the cirhétdedree of a
vertex is the sum of incoming arcs and outgoing arcs. Once the scan elereatdected, the
partial scan circuit is converted to its acyclic equivalent by applying the28gyc algorithm.

6.4.2 Cyclic-to-Acyclic Conversion

Once the scan elements are identified, for the purpose of test pattematiymmethe resulting
circuit must be converted into an acyclic one by replicating the approprate pf the cir-
cuit. This is similar to the time frame unrolling method, used in sequential pattermagieme
[[MAF90]]. The conversion method, (Algorithm 10), requires a ugecified number of cycle
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Algorithm 8 AGLOB 1 -Asynchronous SCC based Scalgorithm
For a s-graph G(V,E) {

If the graph has cycle {
Find all the SCC of the graph
CGenerate a list of SCC s
Find the frequency of occurance of each vertex in all SCC

Choose the vertex/c-element with higher frequency
add to scan elenments set
Renove the SCC s containing the vertex
}
Create V-S,E), Were S is scan elenent set,
and Sel ected Scan el enentsS(n)
Check G(V-S,E) for c-el ements.

If present{

Acyclic Gaph G(V-S,E) = Cyc2Acyc(E V-9),E);
}
Qutput QV-S),E), G&(V-S),E), S

}

Algorithm 9 AGLOB 2
For a s-graph G(V,E) {

if the graph has cycle {

find the degree of each vertex /c-elenent
choose the vertex with high degree

remove the vertex fromthe graph

}

Create V-S E), Were Sis scan el ement set,
and Sel ected Scan el ement Set S

Check G V-S,E) for c-elenents.

If present{
Acyclic Gaph Ga(M _S,E) = Cyc2Acyc(E V-S,E));
}

Qutput QV-5),E), G(V-9,E), S

}

copies. The number of cycle copies is equal to the number of time framesstftakee circuit
to stabilize. For example, if the circuit is assumed that it will stabilize in three tinmeefsathe
resulting acyclic circuit will have three forward path copies of the path inctireesponding
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Figure 6.3: C-element Cyclic to Acyclic Conversion

cycle in the cyclic circuit. Since the feedback path is broken, the nodeentherfeedback
is broken is initialized with an input pin. The number of copies (ncopy in gtoes of Al-
gorithm 10) will also depend upon the number of cycles present in the aligyelic circuit
and whether they are nested or intersected. It will be provided by thebased on the de-
sign library used. The typical example of converting the C-element fronydkcao acyclic
equivalent is shown in Figure 6.3

Algorithm 10 Cyclic-to-Acyclic Conversion
Algorithm: CycToAcyc

Inputs: Cyclic Graph G (V, E), Cycles graph Gc (V,E), ncopy
Output: Acyclic Graph Ga (V,E)
Cyc_To Acy (G V,E),Ge(V,E)) {
(V) =4V);
(E) = Create_Edges(Q E))
(V,E) = cycle_path_duplication(Cc(V,E),ncopy) ;
(
(

V) = add_cycle_vertices(CG(V))

E) = add_cycl e_edges(Cc(V))
(V,E) = add_I O nodes(Q V,E), Ga(V, E))
return Ga(V, E)
}

o e
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Algorithm 11 Procedures for Algorithm 10
Procedures:

Create Edges(G E)) {
el = E
Vhile (el){ // adding edges
if (e 1 != feedback\ edge)
add el ->&(E)
return Ge(E)
}

}
cycl e_path_duplicate(Ge(V, E), ncopy) {
For ncopy =1 to copy {
/1 maki ng ncopy duplications of cycle path
Vncopy = &(V), \[for exanple:vncopy = vl , if ncopy =1\]
Encopy = Gc(E)
v3
ec

| ast node of (Vncopy), v4 = firstnode of (Vncopy+l)
v3, v4
add ec -> &(E
G(V,E) = &(V,E) + (Vncopy, Encopy)
}
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Algorithm 12 Procedures for Algorithm 10
add _cycle vertices(CG(V)) {

u2 = (V)
Wile (u2) { //adding vertices in cycle
v2 = &(V)
while (v2){
if v2!1=wu2, add u2 -> @&(V)
}
}
return Ga(V)
}
add_cycl e_edges(CGc(E)) {
e2 = &(E) //adding edges in cycle
Wile (e2) {
if (e2 '=el) , add e2 -> &R(E)
}
return Ga(E)

}

Algorithm 13 Procedures for Algorithm 10
connect\ 1O _nodes(Ga(V,E), JV,E)) \{

for all input nodes i in G

if there is an edge e = GE) , withe =( i, v),
for ncopy =1 to copy,
add edge e = (i,vncopy) -> &(E)
for all output nodes out in G
if there is an edge e = GE) , with e =(v,out),
for ncopy =1 to copy,
add edge e = (vncopy,out) -> @G(E)
return G(V, E)

6.5 Working Example and Results

The overall methodology is explained further by showing the flow throughemample cir-
cuits, namely the majority gate-based C-element and benchmark ram-regg @K +97].
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Figure 6.4: C-element Testing

6.5.1 c-element

A majority gate-based C-element is shown in Figure 6.3. The circuit is cyaicansists of
four gates and two local feedback loops. Since the c-element doeavenhtemory elements,
the scan selection algorithm does not select any scan element. This examppieided to
show the cyclic-to-acyclic conversion in the absence of a memory elemeu.iffito memory
element is present and the circuit has loops, the cyclic to acyclic conweittgaroduce an
equivalent acyclic circuit.

The acyclic circuit in Figure 6.4 consists of 3 inputs, 1 output and 11 gdthke.converted
acyclic circuit is fed to the Synopsys’s Tetramax to obtain the test patteimstebt patterns
obtained are 111, 000, 100, 010, 111, 101, 011 for the pins A, BCamespectively, with C
being the initialization pin. The actual patterns used to test the real cycligtareutherefore
the first two bits of the above sequence. Tetramax was also used fosifaulation and the
fault coverage is 100%.
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6.5.2 ram-read-sbuf

The benchmark "ramreadsbuf" (shown in Figure 6.5 is cyclic and consfist® combina-
tional gates,2 buffers and 4 c-elements, constituting 4 local loops and 2l démip. Three
strongly-connected components are identified forming a cycle list with 1.cfyleapplying
scan selection algorithm, the c-element, "y0_ramreadsbuf", will be seldtwdt be selected
at the first pass as it constitutes the cycle 1, emptying the cycle list to halt tritlahg. As ex-
plained earlier, the circuit has 3 c-element left without being scannetiemzk it constitute to
the local loops. So the circuit is fed to the cyclic-to-acyclic converter.r€kalting circuit will
be a partially scanned circuit free from local loops. The acyclic circdidsto the Tetramax
tool, to generate the test patterns. These test patterns are then fault sinoukatéhe orginal
partially-scanned DUT to obtain the fault coverage. The test covemgais benchmark is
96.34% for the ABLOB1 method and 94.59% for the AGLOB2 method.

6.5.3 Experiments and Results

The proposed methods were applied to 24 asynchronous circuits syethasiag Petrify[CKK 97].
The experimental results and their analysis based on the evaluation metriely riault cov-
erage, number of patterns and the area overhead are discussedliim deasubsection. The
analysis is made based on comparing the two methods, AGLOB1 and AGLO®BZhe Full
scan first. Then the two proposed methods are compared with each dtieefault coverage
comparison of the proposed methods with Full scan method is shown in the6Tapénd the
Table 6.2 shows the comparison of the number of test patterns genenagedfiomethod.

AGLOB1 Vs Full Scan

The fault coverage comparison of the AGLOB1 method with the full scaigdés shown in
Fig 6.6. Except for the benchmarks master-read, mmu, seq_mix and WRp&B1 gener-
ated test provided fault coverage of 90% and above, for all the circlds the benchmarks
ebergen, nowick and subf-ram-write, this method achieved fault cgeeraf more than 97%.
It should be noted that for the benchmark mr1, which has the highest nwwhleelements
and global loops, this method achieved fault coverage of 95.51%. C@upaf the number
of patterns generated by the AGLOB1 method with that of the Full scan metsbdvg in the
Figure 6.7. Clearly, the number of patterns generated for the test ise@dicthe AGLOB1
method. This is especially true for the benchmarks mrl, mmu, master-read ,-s&mdsand
wrdatab, for which the reduction in the number of patterns was very hightrifos-send, the
reduction was more than 50%. For this benchmark full scan generatest4@teerns whereas
the AGLOBL1 generated only 21 test patterns. The reduction in fault ageatue to more than
halving the number of test patterns is approximately 10 %. For mrl, with 5%tiedun the
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Fault Coverage Comparison (AGLOB1 Vs Full Scan Method)
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Figure 6.6: Fault Coverage - Full Scan Vs AGLOB1
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Figure 6.7: Number of Patterns - Full Scan versus AGLOB1

fault coverage, AGLOB1 can generate tests with 10% reduction in nunfilbestgpatterns. It

whereas the full scan metnedia 47 patterns.

covered 95% of faults with only 41 patterns

AGLOB2 Vs Full Scan

The fault coverage comparison of the AGLOB1 method with the full scaigdes shown

in Figure 6.8. AGLOB2 achieved fault coverage closer to full scan methodost of the
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Fault Coverage Comparison (AGLOB2 Vs Full Scan Method)
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Figure 6.8: Fault Coverage - Full Scan versus AGLOB2

circuits. Only for three benchmarks, namely nak-pa, rcvsetup andsemaf-pkt2, was the
fault coverage lower. For most of the circuits, the fault coverage wasden 94 - 98%. For
the benchmarks, wrdatab, sbuf-send-ctl, and ebergen, the faahagw/was greater than 97%.
As this method concentrates on the nodes with higher degree, it eventuatipstof the loops
and provided higher fault coverage. Next the number of patterngatedefor the AGLOB2
and the full scan method were compared as shown in the Figure 6.11. dingtios in the
number of patterns was not as good as AGLOB1, which may be attributed kagiher fault
coverage. However, for the benchmarks, master-read, trimos-gsendrdatab, the reduction
in the number of patterns compared to the full scan method was higher. Fossiend and
wrdatab, AGLOB2 generated 35 and 37 patterns, respectively, adhrethe full scan method
there were 46 patterns each.

AGLOB1 Vs AGLOB2

Finally, the fault coverage comparison for the two proposed methods A3land AGLOB2
were carried out, as shown in Figure 6.10. For the benchmarks with the fwweber of
C-elements, these two methods have achieved similar fault coverage. This ie the fact
that, when the number of C-elements are lower, and if one of them is insidéotte tpops,
then both these algorithms will choose the same element. This is exhibited clearky in th
benchmarks, chul50, converta, dff, half and hazard. For thehbsar&s with higher number

of C-celements and global loops, AGLOB2 achieved higher fault cgeerd his is clearly
seen from the result for the benchmarks, sbufsend-ctl, seg4, trimdsas®l wrdatab. For

all these benchmarks, AGLOB2 achieved nearly 8% higher fault cgedfan the AGLOBL.
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Number of Patterns(AGLOB1 Vs AGLOB2)
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Figure 6.9: Number of Patterns - AGLOB1 vs AGLOB2
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Figure 6.10: Fault Coverage - AGLOB1 vs AGLOB2

Comparison of number of patterns generated by the AGLOB1 method, withftA&ldOB2
method is shown in Figure 6.9. As mentioned earlier, AGLOB2 generated rhigheber
of patterns compared to AGLOB1, due to the fact that AGLOB 2 selected @@lements
than AGLOBL1. But interestingly, for some benchmarks ALGOB2 genersdeae number of
patterns as AGLOBL1, but attained higher fault coverage. This candmefsethe benchmark
sbuf-send-ctl. Both the methods generated 19 patterns as test, but AGh&Bhigher fault
coverage of 97.83% and AGLOB1 achieved only 89.86%.
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Number of Patterns(AGLOB2 Vs Full Scan Method)
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Figure 6.11: Number of Patterns - Full Scan vs AGLOB2
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Figure 6.12: Results - Area Overhead comparison

The area overhead for the AGLOB1 and AGLOB2 method is shown in TaBleTthe Figure
6.12 shows the graph which differentiates the area overhead pereéot&ull scan, AGLOB1
and AGLOB2 methods. In several benchmarks scan elements weregnoeckat all (100%
reduction), while at the very least these methods required half the nurhbeam elements
compared to full-scan.

Complexity
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Since both AGLOB1 and AGLOB2 enumerates the S-graph (containing meshaments as
vertices) the complexity of these two algorithms is O(mn), where n is the numbregrabry el-

ements and n is the number of connections between them. For the cyclicel@ aoyversion
the upper bound is dominated by the GR algorithm of O(m/2).

6.6 Conclusion

A partial scan test pattern generation method for asynchronous cireisisllon strongly con-
nected components(SCC) and cyclic to acyclic conversion was introdudeid chapter. The
selection of the state elements that will be “scanned” is based on enumer&ti8g¢ @ of the
equivalent S-graph of the circuit similar to conventional method and géngrthe acyclic
version of the resulting partial scan circuit. Test coverage was improwegbared to test gen-
erated from original latch free circuit without applying DFT. The pragbsnethod has been
applied to a number of benchmarks achieving improvement in fault coveragpared to the
original circuit. In total, 24 circuits tested with the fault coverage range o8@2.35% for
original circuit, improved to the range of 66.24 - 97.83% with proposed metRadher im-
provement of fault coverage closer to full scan is achievable by addingr DFT circuit.
Future work will involve exploring more algorithms for scan selection andicyo acyclic

conversion of asynchronous circuits.
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Table 6.1: Fault Coverage Comparison

Benchmarks Full AGLOB1 AGLOB2
chul50 100 95.83 95.83
converta 100 94.83 94.83
dff 100 92.5 92.5
ebergen 100 97.06 97.06
half 100 96.43 96.43
hazard 100 90.91 90.91
master-read 96.76 81.01 97.13
mmu 91.95 81.3 88.49
mp-forward-pkt| 100 100 100
mrl 100 95.51 95.35
nak-pa 100 84.21 84.21
nowick 100 97.22 97.22
ram-read-sbuf | 99.02 96.34 94.59
rcv-setup 100 77.78 77.78
rpdft 100 92.31 92.31
sbuf-ram-write | 100 97.66 89.77
sbuf-send-ctl 100 89.53 97.87
sbuf-send-pkt2 | 96.03 91.67 72.22
seq_mix 100 83.62 90
seqg4 97.44 91.18 98.04
trimos-send 100 89.04 96.3
vbe5b 100 92.11 92.11
vbe5c 87.93 90 90
wrdatab 99.46 89.86 97.09
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Table 6.2: Comparison of Number of Patterns

Benchmarks FULL AGLOB1 AGLOB2
chul50 9 12 12
converta 12 14 14
dff 13 11 11
ebergen 19 15 15
half 9 11 11
hazard 12 12 12
master-read 46 32 39
mmu 39 22 37
mp-forward-pkt| 16 11 11
mrl 48 41 49
nak-pa 14 16 16
nowick 10 9 9
ram-read-sbuf | 19 18 18
rcv-setup 8 7 7
rpdft 16 11 11
sbuf-ram-write | 27 23 19
sbuf-send-ctl 26 19 19
sbuf-send-pkt2 | 29 24 23
seq_mix 31 21 31
seqg4 31 22 25
trimos-send 46 21 35
vbe5b 12 10 10
vbe5c 8 11 11
wrdatab 46 34 37
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Table 6.3: Area Overhead - expressed as percentage of extra scan elements

Benchmarks AGLOB1(%) AGLOB2(%)
chul50 - -
converta 66 33
dff - -
ebergen 66 33
half 50 50
hazard 50 50
master-read 55 11
mmu 80 0
mp-fwd-pkt 0 -
mrl 88 22
nak-pa 0 -
nowick - 0
ram-rd-sbuf 50 25
rcv-setup -

rpdft -

sbuf-ram-write 33 33
sbuf-snd-ctl 60 0
sbuf-snd-pkt2 80 20
seqg4 71 29
seq_mix 83 0
trimos-snd 88 25
vbe5b - -
vbebc 33 -
wrdatab 86 14




Chapter 7

ASCP - A Set Covering Problem based
Test Generation for Asynchronous

Circuits

7.1 Introduction

A partial scan test generation method for asynchronous circuits badbd eet covering prob-
lem is introduced in this chapter. A cycle enumeration algorithm with linear time caiityle
is used to efficiently enumerate the cyclic paths in the asynchronous cir@higsset cover-
ing problem is mapped over the partial scan selection problem to find the fEfflegdements
to be scanned for test purposes. The scan selection proceduramaser 27 asynchronous
benchmarks to compare the fault coverage and area overhead withl theafudesign. Scan
Area overhead reductions between 11% to 100% were achieved.

Contributions of this work are:
A partial scan selection procedure for asynchronous circuits
« Facilitating the automatic test pattern generation for asynchronous circuits.
* Integration of the partial scan procedure with an industrial ATPG tool

This Chapter is organized as follows: Section 2 gives a backgroungab& enumeration and
set covering problems; Section 3 briefly describes our approactaftalbscan selection; The
algorithms for the methodology are described in Section 4; experimentétisrasel analyzed
in Section 5, with conclusions presented in Section 6.
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7.2 Preliminaries

Due to the cyclic nature of the circuits being considered, the following preliyidefinitions

are added for clarity.

Definition.1S-graph

A S-graph S(V,E) is a graph induced from the original graph G(V,E)éwaving the node
set S1(V,E) , where the vertices in S1(V,E) contains only the verticegsqmonding to the
flipflops/memory elements.

Definition.2Path

A Path from vertex v1 to vertex v2 is a set of vertices encountered wheearing from v1 to
v2 by visiting each of them one time.

Definition.3Cycle A cycle in the graph is a set of vertices visited when traversing frenex

v1 and back to the same vertex.

7.3 Algorithms

7.3.1 Cycle enumeration

In [Uno03], a linear time cycle enumeration algorithm was proposed. Thésbaaed on the
path enumeration algorithm introduced by [RT75]. EnumPath takes in the G@HE), source
s, target vertex t, s-t path P and an empty set. If the source is the samdargdhethen the s-t
path is added to the empty set. Otherwise, h, the adjacent vertex to s is.cCAdseadth first
search is made from the target vertex t in the graph G-(s,h). If a patlis@ éoom s to h then a
recursive call of EnumPath is made with Q as the path, and G-(s,h) as tite gtherwise the
vertex s is removed from the graph and EnumPath (shown in Figure 7.Xuissieely called
over the graph G-s with h as the source. The empty set |, is updated @ilirthg calls. The
time complexity of this algorithm is O(|V|.(|[E|+|V|)) for each path/cycle simeeiteration takes
up to O(|V|+|E]) time, and the depth of the recursion is O(]V]). The time lesitypis further
reduced by noting the vertices visited in the previous iteration. Thereferedmplexity is
O(IVI+ED.

7.3.2 SCP algorithm

An efficient algorithm for the set covering problem was proposed inQBAThe set covering
problem can be formulated as follows.

Given a m-row, n-column matrig;j, and a n-dimensional integer vectoyf, the problem
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EnumPath (G=(V,E), s, t, P, I)
[f s =t then
output I$\cup$ {s} ;
return
h :=the next vertex tosinP
Breadth first search starting fromt in G (s,h)
If a path Qfroms to t exists then
call EnumPath (G (s,h), s, t, Q 1)
call EnunPath (Gs, h, t, P, 1$\cup$ {s})

EnunCycle (G(V,E))
For each edge (t,s)

Remove (t,s) fromG

Call EnumPath (G s,t, $\enptyset$)
End for

Figure 7.1: Function - EnumPath

consists of finding a subset of columns covering all the rows and havirigiomm total weight.
A row i is covered by a column j if the positioa; is equal to 1. In terms of a constrained
optimization problem, this can be formulated as,

Minimize 3 ,wjx;, Subject to the constraints

Xj€0,1,j=1,..n

z?_laij.xj >1i=1.,m

The variablex; denotes whether the column j belongs to the solution or not. The m constraint
inequalities are used to denote the requirement of each row being cowsriagleast one
column. The weightw;, is a positive integer giving the weight of the column.The algorithm is
shown in Figure 7.2 - 7.4.

The algorithm underlying the test methodology is shown in Figure 7.5 . Thghgrperated
over by the algorithm shown is the S-graph, which is the graph composadyofhe memory
elements as vertices. The list L is generated by running the Enum_ CyctefuimcFigure 7.5.
The resulting list of cycles and the corresponding vertices present@ytieare represented as
a matrix set with value 1 when the vertex is presentin the cycle, or 0 otheffliseconstructed
matrix is then processed by the function Wscp in Figure 7.2. The list of deareats selected
by Wscp is stored in Set S. Using the set S, the circuit under test is upolategplacing the
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Vécp()
Begi n
Recomput e_core()
Sbset <- {1..ncol}
S< {h
For {1.. param nunber of iterations} do
If(core_selection()) Reconpute_Core(); Endif;
S < Geedy(S);
S <- Optimze(S);
If (value (S) <= value(Shset) ) Then Shest <- S; Endif;
S <- Select_Partial _Cover(Shest);
Endf or
Return Shest
End

Figure 7.2: Function - Wscp

Funci ton G eedy(var S)
Begin
Wile(Sis not a cover) Do
//select and add one colum to S
S < S + select_add();
//remove 0 or nore colums fromsS
VWiile (renove_is_okay() ) Do
S < S- select_rm();
EndWhi | e;
End Wile
/IS is a cover, without redundant col ums
Return S
End

Figure 7.3: Greedy Heuristic
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Function Optimze (var §)
Begi n
Sup <- select_superior();
Wi le (sup not enpty) do
/'/sel ect best colum from Sup
Best <- select_best();
Sup <- Sup -best;
/'l add superior and renove redundant colums from S
| f(best superior)
S <- S + best;
S < S - select_redundant();
Endi f
Endwhi | e
/ls is a cover, wthout redundant col umms
Return S
End

Figure 7.4: Function - Optimize

corresponding set of C-elements into the scan-testable C-elements.tid@eesulting circuit
is converted into acyclic circuit by running the CyclictoAcyclic function. Hugclic circuit is
used for test generation and the test pattern generated is used to tgslithydat partial scan
circuit (The resulting partial-scan ready circuit is still cyclic, as there valféwv C-elements
not being scanned). At this point the coverage of the circuit is chefcked least an user given
percentage of coverage (X%), if the coverage is less than X%, the tisioing the number of
cycles each contribute to is created. If the contribution is more than 75% oythes, then the
vertex is added to the scan list. Thus scan set is updated further for ietpfawlt coverage.
The detailed test flow is described in the next section.
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Ascp ()
List L = Enum Cycl e(S-graph);

M= List of cycles x List of c=elenents;
S= list of scan elements = WSCP (M
update: Update the circuits in the design to scan testable using S
Run cyclic to Acyclic Conversion
Run the test generation
Check the fault coverage
[f fault coverage > X \% Go to "report"
El se {
List L = the nunber of cycles each vertex contribute
For each element E inL
[f the contributionis > 75 \%
add to scan list S
End For

Go to "update"
}

report: Report fault coverage

}

Figure 7.5: Algorithm:ASCP
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7.4 Methodology
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Figure 7.6: Test Methodology

The test methodology for the proposed partial scan test generatiorcigbaekin this section.
The Figure 7.6 gives the overall flow of the test method. The upper haihies the DFT
method and the lower half involves the test generation and fault simulation &ednarthe
left-most column. The first phase of the flow is the circuit parsing, peréor using the tool
BLIF2graph. The next phase is called cycle enumeration, which invelraemerating all the
cycles present in the s-graph. By applying the linear algorithm deschib&lure 7.1 in
Sub-section 7.3.2, all the cycles are listed with the corresponding vertegsaThis list of
cycles is passed to the "set cover" solution phase. Here the list of dgdiesated as rows
and the vertices are treated as columns. Thus the minimum set cover compUtestp” will
provide the list of vertices which forms the selected scan elements. At this, dtdge circuit
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is a synchronous one, then it is passed directly to the test generation fmoldioce the test
patterns. If the circuit is an asynchronous circuit, then it undergoathanphase of cyclic-to-
acyclic conversion. This should be taken care of in the asynchromou#s, as the C-elements
itself forms a self loop which is overlooked by the previous phases. Alsmnfe of the C-
elements constitute around 75% of all the cycles, then they are also addedtathlist. Thus
the acyclic equivalent of the asynchronous circuit is obtained at thefehé cyclic-to-acyclic
phase. This circuit is then sent to the test pattern generator for testingabi. cir

7.5 Experiments and Results

The same set of benchmarks as before was chosen for experimemishesinSCP method.
Table 7.1 shows the results for these benchmarks. The column markédyieetethe number
of C-elements in the circuits.The third column (marked 'scan’) in the table ghesumber
of scan C-elements selected. The fourth column gives the fault covéragle full scan

method and the fifth one gives the fault coverage for the ASCP methodarElaeoverhead
from original and reduction from full scan is shown in sixth column. Table2 gives the
comparison of number of patterns generated by the ASCP method with theifultsethod.

Fault Coverage

Figure 7.7 shows the graph comparing the fault coverage for the ASChdhatid the full
scan method. For the benchmarks, rcvsetup,hazard,chul50, coawdrszeq_mix, the fault
coverage was between 80-90%. Out of all the 24 benchmark circuitSPABethod achieved
the maximum value of 98.03% fault coverage for the benchmark trimos-skiuth vas more
global loops and C-elements present in them. The fault coverage foetmehimark was 100%
for the full scan. Also for the benchmarks ebergen, sbuf-sendsgki, vbe5b, vbe5c, and
wrdatab the fault coverage was more than 95%. This method achievedfaQli%overage for
the benchmarks mp-forward-pkt, vbe5c¢ and vbe5c. There reastrigancrease is that the al-
gorithm selected all the C-elements for scan. Thus the result obtainedmitas o a full scan.
On the other hand, for the benchmark rcv-setup, no C-element waseskdaw the resulting
circuit was same as the original circuit and hencee the fault coveraggemalow. In circuits
with one C-elements like this, scanning the single C-element will provide betii¢ctaverage.

Number of Patterns

In the graph in Figure 7.8, the comparison is made between the number ohpajtererated
by the ASCP method and the Full scan method. The number of test pattematgeney the
ASCP method is low compared to the full scan method for a majority of the benkbntzs-

pecially for the benchmarks masterread, mmu, trimossend and wrdatabnthemof patterns



Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits151

Fault Coverage Comparison (ASCP versus Full Scan Method)
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Figure 7.7: Fault Coverage Comparison - ASCP versus Full Scan Method

were less than 50% of that of the full scan method. For master-read theenwinpatterns
generated by the ASCP method was 23 whereas for the full scan it wagagly 50% more).
Also for the benchmarks, sbuf-send-pkt2 and wrdatab, the test pafarASCP were 8 and
18,respectively, whereas for full scan method it is, 29 and 46, régelyc Interestingly, for
sbuf-send-pkt2, the fault coverage attained was almost the same asfiilbscan with only
8 test patterns generated by ASCP. For wrdatab as well, almost 40%ioedinctest pattern
decreased the fault coverage only by approximately 4%.

Area Overhead

Figure 7.9 gives the area overhead comparison for the proposed A®@fd and the full
scan method. The scan area overhead for the ASCP method was proglddithe number of
patterns. As seen from the graph, the benchmarks master-read, mmu ;gentband wrdatab
had lower number of C-elements scanned compared to the full scan methbtheBiumber
of patterns generated were less and the fault coverage was almost @iy For the ones
with only red lines, the algorithm did not choose any C-elements as thereowigrene or two
C-elements present and they were not inside a global loop to be choserbtoken. But the
fault coverage obtained without scanning the C-element were redsonab

Complexity

The complexity of the ASCP method is the summation of the complexity of the WSCP al-
gorithm and the cycle enumeration WSCP. have been extensively exptrthveith the larger
graph benchmarks (larger compared to the millions of gates). The cyaieegation algorithm
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Table 7.1: ASCP Versus Full Scan - Fault Coverage Comparison

Ckt cele Scan Full% ASCP% Area%
chul50 2 1 100 83.61 50
converta 3 1 100 86.89 66.66
dff 2 1 100 92 50.66
ebergen 3 1 100 93.75 66.66
half 2 1 100 92.31 50
hazard 2 1 100 87.27 50
master-read 9 3 96.76 96.48 66.66
mmu 6 2 91.95 91.6 66.66
mp-for-pkt 3 1 100 100 66.66
mrl 9 8 100 96.95 11.11
nak-pa 4 1 100 100 75
nowick 1 0 100 97.22 100
ram-rd-sbuf 4 2 99.02 92.73 50
rcv-setup 1 0 100 73.33 100
Rpdft 1 0 100 92.68 100
sbuf-ram-write| 6 2 100 94.23 66.66
sbuf-snd-ctl 5 3 100 93.18 40
sbuf-snd-pkt | 5 3 96.03 95.69 40
seq4 7 4 100 96.55 42.88
seq_mix 6 3 97.44 84.81 50
trimos-send 8 4 100 98.03 50
vbe5b 2 1 100 100 50
vbe5c 3 1 87.93 100 66.66
wrdatab 8 4 99.46 95.15 50
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Number of Patterns (ASCP versus Full Scan Method)
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Figure 7.8: Number of Patterns - ASCP versus Full Scan Method
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Figure 7.9: Comparison of number of scanned C-elements for 27 benchmarks (X-axis=Circuit

name, Y-axis = Scan Area Overhead Percentage)

has a complexity of O (|V||E|).
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7.6 Conclusion

A partial scan selection method was introduced. A cycle enumeration algonttimiinear
time was used to efficiently enumerate the cyclic paths in the asynchronougscirthe set
covering problem was mapped over the partial scan selection problendtthérflipflops/C-
elements to be scanned for test purposes. The scan selection peoweduexcercised in 24
asynchronous benchmarks. The method proposed shows reasandbloverage with the
trade-off of area overhead and reduced area overhead conipate=ifull scan circuit with a
trade off in fault coverage.
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Table 7.2: Comparison of Number of Patterns

Benchmarks FULL ASCP
chul50 9 12
converta 12 8
dff 13 10
ebergen 19

half 9

hazard 12 12
master-read 46 23
mmu 39 16
mp-forward-pkt| 16 18
mrl 48 43
nak-pa 14 16
nowick 10 9
ram-read-sbuf | 19 19
rcv-setup 8 7
rpdft 16 10
sbuf-ram-write | 27 20
sbuf-send-ctl 26 16
sbuf-send-pkt2 | 29 8
seq_mix 31 19
seg4 31 25
trimos-send 46 11
vbe5b 12 12
vbebc 8 15
wrdatab 46 18




Chapter 8

ACLARION - High level circuit
extraction for Asynchronous Circuit

Testing

8.1 Introduction

This chapter is motivated by the requirements of a high-level extraction tdidthvean rep-
resent the asynchronous circuit at a higher level of abstraction ttifidére interconnection
of combinational logic, registers and fanout nodes, yet preserveettistitonnectivity of the
design.

The main contribution of this chapter is a high-level circuit extraction methoadgnchronous
circuits. Often sequential circuit test generation involves groupingwaraémemory elements
together. For example, in the partial scan design introduced in ChapterrBathenotivation
was to select the subset of memory elements. Usually, the design netlistibddsc terms of
combinational gates, memory elements, fanouts and interconnections. dfdihagits/design
representations can be represented at a higher level, then the preilemtse scan selection
algorithms can be considerably reduced. This chapter is motivated todewdbping such
an extraction method which will reduce the size of the circuit representatitmas the higher
level extracted representations can be used for the other DFT algorithms.

The organization of the chapter is as follows: Section 8.2 gives the baakdrrequired for the
description of the extraction method; Section 8.3 describes the basic fusatigmired for the
implementation of the ACLARION extraction method and an overview of the methgdp

Section 8.4 describes the proposed heuristics for the Register clustesiregg; Section 8.5

156
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describes the heuristics for the combination logic unit (CLU) clusteringp#aalustering
heuristics are introduced in detail in Section 8.6. Experimental results algzad in Section
8.7 with one working example, with the conclusion in Section 8.8.

8.2 Background

Asynchronous circuits use combinational loops to store state. There angpes of loops,
namely global and local loops. Local loops are the combinational loogepirén the state-
holding gates like C-elements or set-reset latches. The familiar flip-flop algaios a local
loop, but it is hidden from test tools since a flip-flop is a cell on its own in steshadell li-
braries and does not pose any problems during testing. Global loofsrared outside these
gates and are used for creating asynchronous state machines. fsmchfull-scan methods
[BPVBKO3] break all these loops in test mode using LSSD-type scan &tdhas simplifies
testing as the circuit becomes purely combinational in test mode. Howeverda®verhead
is enormous, hence motivating our work on partial-scan methods.

S-graph:

A S-graph S(V,E) is a graph induced from the original graphG (V,E)ef@lV is the set of
combinational gates/memory elements and E is the set of interconnectionshbyimg the
node set S1(V,E) , where the vertices in S1(V,E) contains only the veditessponding to the
flipflops/memory elements.

Path:
A Path from vertex v1 to vertex v2 is a set of vertices encountered wheearing from v1 to

v2 by visiting each of them one time.

Cycle:
A cycle in the graph is a set of vertices visited when traversing from verteend when the
traversal ends in the same vertex v1.

8.2.1 Clarion

Clarion is a circuit extraction tool [I.P94], in which a circuit is represerge@ s-graph with 5
different nodes namely Pl node, PO node, combinational node, siajiedement node, and
fanout node. The Pl and PO nodes are single nodes connecting allinfierypinputs and
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primary outputs of the circuit in to one node, respectively. A method for hegél circuit
extraction based on this graph was developed for synchronous a@ir¢uR94].

8.3 High Level Circuit Extraction

The extraction method proposed in this chapter is based on clustering thanatioral gates,
memory elements and fanout nodes which was used for the circuit extra¢tsymchronous
circuits in [1.P94]. Thus the three clustering methods used: 1) CombinatmgialClustering,
2) Register Clustering, and 3) Fanout Clustering forms the basis of thisiteh All the three
clustering processes are described next.

8.3.1 Method

The functions used in the construction of the heuristic for the Asyncluo@tarion (AClarion)
are namely Span, Union, Intersection and Span. The steps involveddiiofuispan is shown
in Figure 8.1. The function takes as input the graph G, the vertex, veaaiifiér (vertex_label
in Figure 8.1), c-element index and an empty set called spanset. Theivedunction makes
a depth first search (DFS) over the graph until all the vertices spafmuingthe vertex input
until it reaches the c-element boundaries. This function a plays major roledimdj the input
span and output span in the main algorithm. The gates spanned are addeckitoptly set
provided as input called spanset.

The function union is an implementation of the Union operation, taking in two setmdés2,
along with the referenced empty set result. The elements in the sets s1 areratad and
added to that of set s2 and the resulting set is assigned to the set result.

The function Intersection is an implementation of the intersection operationgtékinsets,
sl and s2, and enumerates the elements in set s1 and s2 to find the commotseechexd
them to the set result.

The pseudocode of the function Overlap is shown in Figure 8.3. Thigifumienplements the
overlap operationd” which is used to form the equivalence classes, namely input overlap and
output overlap in the main Aclarion algorithm. The function takes in a list of satsed setlist,
two sets s1 and s2, an array named intercheck and another empty seloaitdteck. The set
s2 is assigned to this set loopcheck. The intercheck array holds thesgttersinformation of
all the sets in the setlist.
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/**********************************************
Function Span
**********************************************/
void span ( graph g, vertex ver, vertex_|abe
gate_nane, int is_cele, set & spanset )
for(vertex ai2 = adjacent_vertices(*ver,Qg))
If ai2 != c-elenent{
spanset.insert(ai2);
span (g, ai 2, gate_nane,is_cel e, spanset);
}
el se
{
spanset.insert(ai?2);
}

Figure 8.1: Function Span

The overlap operator is defined as follows:
For two sets s1 and s2, g1s2, if
1)slns2# g,

2)slNs3 =@, s20 s3, s3¢ S.

The first condition is achieved by direct application of the intersectiontimmover the sets s1
and s2 to any intersecting elements in them in the first step. If there is an attensthen the
overlap function returns 1. If this condition is not true, then all the setstislsare enumerated
to find any set with which the set s1 is having an intersection. When the iatiersés found,
then that set s3 is checked for a overlap with the set s2. Thus, aivecaverlap function
is executed with set s2 and s3. When the called overlap returns 1, thamti®h returns 1
else the function returns 0. To avoid the looping of the function over theo¢he setlist, the
variable noloop is used to set a flag to check for the same set not beingeeated again and
again in the setlist.

These three functions are used extensively in implementing the sevecdbhmof the Aclar-
ion algorithm. In the next section the heuristics constructed to implement thedkckattrac-
tion method are described in detail. The overall framework of Aclarion isvehia Figure
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/***************************************

Function Overlap

****************************************/

int overlap (list_of sets setlist,set setl, set set2

{

array intercheck,set |oopcheck)

| oopcheck = set?2
set iterator setiter

if((setl !=set2) && (intercheck[setl][set2] == 1))
{ | oopcheck. cl ear ();
return 1;
}
el se
{

for(unsigned int j=setl; j < size of setlist; j++)
{
if(setl !=]j)
{
i f(intercheck[set1][j] == 1)
{

int noloop = 1;

for(setiter = | oopcheck. begin(); setiter
I'= loopcheck.end(); setiter ++)
{
i f((unsigned int)*setiter == j)
{
nol oop = 0;
}
}
i f(noloop == 1)
{
i f(overlap(setlist,set2,j,intercheck,!|oopcheck)== 1)
{
| oopcheck. cl ear();
return 1;

}
}
}
}

| oopcheck. cl ear ();
return O;

}

Figure 8.3: Function:Overlap



Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 162
8.4 Register clustering

To describe the register clustering process, the following terms have tebedfined.

8.4.0.1 Input span

Input span of a memory element is defined as the number of gates thatadpagshe path
from the input of that element until the path encounters another memory dlemen

8.4.0.2 Output span

Output span of a memory element is defined as the number of gates thabgpamthe path
from the output of that element until the path encounters another memoryrgleme

8.4.0.3 Wrapped span

Wrapped span is the input/output span defined in terms of cyclic/asyrasaircuits. Thus
the wrapped output span is the output span of the memory element in asyoghrcircuits
including the feedback/loop paths in the circuit. The wrapped input span iapgbéspan of
the memory element in asynchronous circuits including the feedback/loog ipatte circuit.

The definition of wrapped span was introduced in [I.P94] and was not imggiged as it was
for synchronous circuit. In this proposed method, wrapped span ésfas¢he clustering of
registers/c-elements.

8.4.0.4 Maximal input span

A maximal input span is the equivalence class formed by the relation overldge set of input
spans of the circuit.

8.4.0.5 Maximal output span

A maximal output span is the equivalence class formed by the relation owarlépe set of
output spans of the circuit.
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8.4.0.6 Maximal receiving register

The set of sinks of the input spans of the maximal input span is called maxéoaiving
register.

8.4.0.7 Maximal driving register

The set of sources of the output spans of the maximal output spans ctballmaximal driving
register.

8.4.0.8 Maximal Register

A maximal register R is defined as the maximal set of storage nodes givéortameR. and
R).[.P94] R belongs t& and R belongs t&), .

Thus by finding the Maximal registers for the given circuit, the memory elenietie circuit
can be clustered to form a set of maximal registers.

8.4.1 Method

The sequence of steps in register clustering process are:
« Find the Output Span and Input span of all c-elements present in tht circ
 Find the maximum output span and maximum input span
 Find the maximum driving register and maximum receiving register
* Find the maximal register

The register clustering forms the vital part of the entire circuit extractiocgss. The scat-
tered memory elements around the circuit are clustered strategically to btitigedugh-level
interconnection between the combinational gates. This is achieved byuiimgjran equiva-
lence class on the set of spans through the overlap relation. The mafiofimiavolved in the
register clustering process are Outspan, Outspan_wrap, Insgganinvrap, OutputOverlap,
InputOverlap, Maxspan_Output, Maxspan_Input, and Maximal_Register

The pseudocode of the function Outspan is shown in Figure 8.4. Théidartekes in the
graph "g" and outputs the list of spans for all the memory elements presgrit ifhis suffices
for the synchronous circuits as they do not have loops or feedbatksrimdue to their acyclic
nature. But for the asynchronous circuits as mentioned in the earlieitefiof wrapped
span, the feedbacks occur in them due to their cyclic nature.
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Figure 8.4 shows the pseudocode for the outspan_wrap function. uflsédn takes in the
graph "g", the list of outputspan created by the the outspan functionw@pdts an array out-
put_wrapspan_check. The array stores the flag of all the spans afeictrapped (containing
feedbacks) and those that are not (without feedback loops).

/**********************************************

Pseudocode: Qut SPAN --- Depth First Search
**********************************************/
I nput: Gaph gl

Qutput: |ist_outspanset - list of outputspans

Qutspan (graph g1){
For each vertex v in graph ¢
[f (v = c-elenment/latch) {
currVertex = v;

graph g2 = gl;

set outspanset = span(g2, currVertex);
| ist_outspanset[vertex] = outspanset;

}

return |ist_outspanset;

/**********************************************

Pseudocode: Qut SPAN Wap --- Depth First Search
**********************************************/
I nput: Gaph g1,!ist_outspanset

Qut put: Array output_wap_span_check

Qut span_wrap(graph gl1,1ist_outspan_set){
N = nunber of vertices of gl;
Qut put _span_wrap[n] = 0;
For each v in graph gl{
If (v = c-element/latch) {
For each vertex vl in list_outspanset[v] {
[f(vl == v){
out put _wrap_span_check[v] = 1;
Br eak;
}
}
}

return output_wrap_span_check[n];

Figure 8.4: Function:Outspan and Output WrapSpan
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This information plays a major role in clustering the asynchronous cyclicitsrcu

/**************************************************

INSPAN --- Depth First Search
****************************************************/
I nput: Gaph gl

Qutput: list_inspanset - list of input spans.

I nspan (graph gl){
G aph g2 = reverse graph of gi;
For each vertex v in graph g2{
If (v = c-elenment/latch) {
currVertex = v;

graph g2 = gl;
set inspanset = span(g2,currVertex);
list_inspanset[vertex] = inspanset;
}
}
return list_inspanset;

}

/************************************************

I nput wrap span of all vertices*/
*-k**********-k~k~k~k**-k*****~k***********************/
Input: Graph gl,!list_inspanset

Qutput: Array input_wap_span_check

i nspan_wrap(graph gi,|ist_outspan_set){
N = nunber of vertices of gl;
i nput _span_wrap[n]= 0;
For each v in graph gi1{
If (v = c-elenment/latch) {
For each vertex vl in list_outspanset[v] {
If(vl == v){
i nput _wrap_span_check[v] = 1;
Break;

}

Figure 8.5: Function:Input Spand and Input WrapSpan

The Inspan function’s pseudocode is shown in the Figure 8.5. Theidungperates on the
graph "g" to find all the inputspan of all the c-elements and latches prastrg circuit. To

use the span function defined previously, the graph is first reverstminoa new reversed
graph "g2" and then for each memory element vertex element in the grapspam function



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing

is executed over the graph for that element.

166

/**************************************************

Qut put Qverl ap
*~k~k~k**-k~k****~k~k~k***-k~k~k***~k~k~k***********************/
I nput: graph g,list_outspanset;

Qutput: matrix output_overl apcheck;

Qut put Qverl ap(g,list_outspanset){
size = size of |ist_outputspanset;
array intersection[size][size], intersectioncheck|size][size];
set | oopcheck;
For each set sl in list_outspanset{
For each set s2 in list_outspanset{
Intersection[sl][s2] = intersection(sl,s2);
If (sl ==s2 or interstion[sl][s2] = emty){
i ntersectioncheck[sl][s2] = 0;

}

el se{ Intersectioncheck[sl][s2] = 1;}

}

For each set sl in list_outspanset{
For each set s2 in list_outspanset{
Qut put _over | apcheck[set 1] [set2] =
overlap(setlist,set2,set2,intercheck, | oopcheck);

Figure 8.6: Function:Output Overlap

The list of all the input spans containing the set of gates is output by thatifum Figure
8.5 also give the pseudocode for the function inspan_wrap. This funteti@s in the graph g
and the input span list and constructs the array input_wrap_span. chi@aslarray stores the
information on the feedback loops on the input spans similar to the outputsmgmfunction.
Once all the outspans and inspans are constructed, the overlap ojsuaid over these spans
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to find out the overlapping of the sets of the list of spans. Figure 8.6 gieegseudocode for
the function Outputoverlap. The graph g and the list of outspans aregassnput to these
functions. First, an array named intersection of size nl1 x nl is construeteste nl is the
size of the list of outspans. The sets that are intersecting are assignitabthiein the place

in the array corresponding to these sets. Then a new array hamed @ugndpcheck is

constructed. For each set sl in the list of outspans, the overlap of thigtls¢he other set are
examined. This is carried out by passing the set s1 and other sets to tlsduaction along

with the intersection array and an empty set called loopcheck.

/**********************************************

[ nput Over | ap
***********************************************/
I nput: graph g,list_inspanset;

Qutput: matrix input_overlapcheck;

I nput Qverl ap(g,list_inspanset){
size = size of list_inputspanset;
array intersection[size][size], intersectioncheck|size][size];
set | oopcheck
For each set sl in list_inspanset{
For each set s2 in |list_inspanset{
Intersection[sl][s2] = intersection(sl,s2);
If (sl ==s2 or interstion[sl][s2] = enpty){
i ntersectioncheck[sl][s2] = 0;
}
el se{ Intersectioncheck[sl][s2] = 1;}
}
}
}

For each set sl in |ist_inspanset{
For each set s2 in list_inspanset{
| nput _over | apcheck[ setk][setl]
=overl ap(setlist,setk,setl,intercheck,|oopcheck);
}

}
}

Figure 8.7: Function:Input Overlap

The overlap function returns a 1, if there is a overlap else it will return dtus the Out-
put_overlapcheck array is constructed and returned as an outghisfdunction.

Similarly, the overlap of all the sets in the list of inspans are examined by ttaidanin-
put_overlap. The inputs to this function are the graph g and the list of inggspntersection
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array is constructed first for all the sets in the list of inputspans. Therathay along with
an empty set loopcheck is passed to the function overlap for each setreJileng matrix
input_overlapcheck is returned as the output from the function. Thuspl overlapcheck
and the output_overlapcheck matrices will be used to construct the maximaum & the
inspans and outspans.

Figure 8.8 gives the pseudocode for the function MaxSpan_Output furigson clusters the
sets in the list of outspans which overlap with each other. Basic steps idvimivéis pro-
cess are: 1) enumerating the matrix output_overlapcheck these two setisjoirat det, and
2) distinguish the wrapped span from unwrapped spans and construdtfferent maximum
outputspans. For the first step which is straight forward to enumerateitpetooverlapcheck.
It should be noted that the overlapping sets are added to the disjointsSewtiich creates
the sets of c-elements forming the maximal outputspan. In the step 2, the setdigt te
outputspan are enumerated and based on the flag in the output_sparcheparray, the
sets in ds corresponding to the memory element of the span set sl is faliadded to the
maxoutputspan and maxoutputspan_wrap sets, respectively. Thus twaunarutspan sets
for wrapped and unwrapped spans are constructed and returrieid fynction.

Figure 8.9 shows the pseudocode for the function Maxspan_input. Phétim this function
are graph "g" and the list of inputspans. The steps in this function are afimoi$ar to that
of the function Maxspan_output. Based on the flags in the input_ovedagamatrix, the
disjoint set ds is constructed for the list of memory elements whose spariapwath each
other. Then the two maximum input spans, namely maxinputspan and maxinpusga,
are constructed based on the flag information in the array input_wrap @aayenamed in-
put_span_wrap_check created by the function inspan_wrap). Tthataf this function are
the two sets, namely maxinputspan and the maxinputspan_wrap. Finally, the meedisa
ters are clustered by using the sets, maxoutputspan, maxoutputspan maxagputspan, and
maxinputspan_wrap.

The pseudocode of the function maximal_register is shown in the Figure 84.@iven in
the definition earlier, this function merges all the maximal spans that are ppiértato form
a maximal register. The function maximal_registers takes in the four sets of ttimmoma of
spans. First step involves enumerating the unwrapped maximum spans thehsets in the
maxinputspan and maxoutputspan are enumerated and when set sl in theutsagin has
an intersection with set s2 in the maxoutputspan, a set forming the intersetctibrand s2 is
added to the Maximal Register list named MaxRegister.
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/'k****************'k******************************

Maxspan - Qut put
************************************************/
I nput: graph g, list_outspanset;

Qut put: set maxout put span, maxout put span_w ap;

MaxSpan_out put (graph g, 1ist_out spanset){

di sjoint_set ds;
l'ist_of _set maxoutputspan, naxoutputspan_wr ap
For each vertex v in graph g{

create ds(vl); // adds a set with elenment vl to ds

}
For each set sl in |ist_outputspan {

For each set s2 in list_outputspan {

| f (out put _overlapcheck[s1][s2] =1){
Union(sl's c-elenment/latch,s2’s c-element/latch) in ds;

}

}

For each set sl in |ist_outputspan {
int i = order of the set containing the sl's c-elenent/latch
I f(output_wap[sl] != 1){maxoutputspan[i].insert(sl)}
If(output_wap[sl] = 1){ maxoutputspan_wap[i].insert(sl)}

}

Figure 8.8: Function: Maxspan Output
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\'k****************'k***********************************

Maxspan - | nput
*****************************************************\
I nput: graph g, list_inspanset;
Qutput: set maxinputspan, maxinputspan_w ap;

MaxSpan_i nput (graph g, list_inspanset){

di sjoint_set ds;
list_of set maxinputspan, maxinputspan_w ap;
For each vertex v in graph g{

create ds(vl); // adds a set with elenment vl to ds

}
For each set sl in list_inputspan {

For each set s2 in list_inputspan {

[ f(input_overlapcheck[sl][s2] =1){
Union(sl's c-elenment/latch,s2’s c-element/latch) in ds;

}

}

For each set sl in list_inputspan {
int i = order of the set containing the s1's c-el ement/| atch;
index = set index of sl's c-element in ds.
I f(input_wap[index] != 1){
in the disjoint set ds.

maxi nput span[i].insert(sl)

}
If(input_wap[index] = 1){

maxi nput span_wrap[i].insert(sl)

}

Figure 8.9: Function:Maxspan Input
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\'k****************************************

Maxi mal Regi st er
*****************************************\
Input: |ist_of _set maxinputspan, maxi nput span_w ap,
maxout put span, maxout put span_wr ap;
Qutput: |ist_of set MaxRegister;

MaxRegi st er ( maxi nput span, maxi nput span_wr ap,
maxout put span, maxout put span_wr ap) {
\\ inserting unw apped naxspans
For each set sl in Mxoutputspan {
For each set s2 in Maxinputspan {
[f(! ( Intersection(sl,s2) not enpty){
setl.insert( Intersection(sl,s2));

}

}
MaxRegi ster.insert(setl);

\\ inserting wapped maxspans
For each set sl in Maxoutputspan_wap {
For each set s2 in Maxinputspan_wap {
[f(! ( Intersection(sl,s2) not enpty){
set2.insert( Intersection(sl,s2));

}

}

Maxregi ster.insert(set2);
return MaxRegi ster;

}

Figure 8.10: Function:Maximal Register

The second step involves enumerating the sets in the maxinputspan and rtspanpwrap
sets and finding the intersecting sets. Then the sets formed with the interseletioants
are then added to the Maximal Register list, MaxRegister. Thus the Maximatereliss is
output by this function. This concludes the register clustering process vtrall flow of the
ACLARION. The next section details the Combinational logic unit (CLU) cltisteprocess.
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8.5 Combinational logic clustering

After clustering the memory elements to form set of maximal registers, the mgxirsolve
clustering all the combinational gates or combinational logic unit (CLU) in theitirOutspan
and inspan sets constructed during the registering clustering proceshnbkclustering eas-
ier. The pseudocode for the function implementing the CLU clustering naméd €ustering
is shown in the Figure 8.11 and Figure 8.12. The following steps are involtb procedure:

* Create the list containing the set of gates in Maximal registers

« Construct the matrix to set flag for the presence of a vertex (c-elenadrit® graph in
the maximal register list.

» Create the matrix for storing the flag information for presence of vertexnragimal

register

 Create a disjoint set which has the union of the set of maximal registeesaédr non-
memory element vertices

« Create the list of clouds having the clouds of combination gates using théntlisgh
created

» Update the disjoint set based on the connectivity of the fanout nodes
« Update the list of clouds using the updated disjoint set

The input to this function is the list of maximal registers named MaxRegister bhtpthe
function MaxRegister. The input to the CLU_clustering function are the figt@maximum
registers MaxRegister, the list of inscan set and the graph g. The qusmlelfor the function
CLU_Clustering is shown in Figure 8.11 and Figure 8.12. The first stepv@s@numerating
each set sl in the list MaxRegister and all the memory elements of set s1.thEhgates in
the input spans of these memory elements are stored in the multiset Max_ Ré&gjigtes. The
indexing of the sets is similar to those in the list MaxRegister. The gates of eggania of
the c-elements are retrieved from the list list_inscanset. The second stbgesereating the
matrix which stores the flag information on the presence of a vertex in the mavdgister set.
To construct this matrix named Max_reg_check, the vertices vi of thehgaes enumerated
along with the sets si in the list MaxRegister. If the set si contains the vertther the
Max_reg_check|vi][si] is flagged 1 otherwise it is flagged 0.

The third step involves creating list of maximal registers in which each vertéxeirgraph
which is not a memory element. It is simply to construct list of maximal registers tohwh
each combinational and fanout node belongs to. This is achieved by eatingethe set s2
in the list Max_Register_Gates and the vertices in the graph g. The vertidabh@ sets are
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verified with the matrix Max_reg_check to see whether the set s2 contaiverttes v. If it
contains then the set s2 is added to a temporary set max_sets. Once dfi tre smumerated,
the max_sets is added to the list of sets Max_Register_set. By the end ofratiamef all
the vertices, the Max_Register_set will be having the list of sets comegppto each non-
memory element vertices. The fourth step involves enumerating all the veatideshecking
whether each vertex belongs to same set of Maximal registers. For ttisyedex which is not
a memory element is enumerated in the graph g. The set in Max_Registarrssponding to
this vertex is compared to the same for all the other vertices. If both the sdtseasame then
the union operator is applied to these sets corresponding to these twos/ertice disjoint set
ds. The fifth step involves creating the set of clouds using the combinagaites. For each
vertex which is a combinational gate in the graph g, The vertex is added tottlo¢ dlouds
named cloudset with index N1 equal to the index of the set correspondinig teetitex in the
disjoint set ds.

The sixth step involves analysing the fanout nodes which can be addeid wahdset. For
each fanout vertex in the graph g, outedges of that vertex v4 is entadeltthe target vertex
v5 of each outedge is not a memory element, the set of maximal registers f@rtbe v4 and
v5 are compared in the list Max_Register_set. A flag 1 is set to the variatddgmi check, if
all the target vertices have the same set of maximal registers with the vertethedwise it is
set to 0. If the outedge_check is 1, then the union operation is applied tettbersesponding
to the vertex v5 and the set corresponding to the vertex v4 in disjoint s@®ydaow all the
fanout nodes which drive the same register as the clouds in the list ofsctoddset will be
added to the corresponding set in the disjoint set.



11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing

174

Input: graph g, list_of set MaxRegister, list_inscanset
Qutput: list_of clouds;

CLU C ustering( MaxRegi st er)
{
Li st _of set Max_Regi ster_Gates;
Array max_reg_check;
di sj oi nt _set ds;
list_of nultiset max_Regi ster_sets, max_sets;
list of sets |list_of clouds;
For each set sl in MaxRegister{
For each c-element/latch ¢l in sl {
N = order of cl in list_inscanset;
Max_Regi ster _Cates[sl] = conb gates in |ist_inscanset[N];
}
}

For each vertex v in graph g{
[f(v = c-elenment/latch){
For each set sl in MaxRegister{
[f (intersection(v,sl) != empty{
Max_reg_check[v][sl] = 1;
}
el se{Max_reg_check[v][sl] = 0;}
}
}
}

For each vertex v(except nenory el ements) in graph ¢f
For each set s2 in Max_Regi ster_Gat es{
I f(Max_reg_check[v][s2] = 1){
Max_sets.insert(s2);
}
}

Max_Regi ster_set.insert(Mx_sets);
Max_sets.clear();
}
For each vertex v in graph g{
create ds(vl); // adds a set with element vl to ds

}

-cont i nued

Figure 8.11: Function:CLU Clustering - partl
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- continuation frompart 1
For each vertex vl in graph g
For each vertex v2 in graph gf{
[f( (vl != c-elenment or fanout )and
(v2 '=c-element or fanout) and vl != v2){
| f (Max_Regi ster_set[vl] == Max_Register_set[v2]){
Uni on(set of v1, set of v2) in ds;
}
}
}
}

For each vertex v3 in graph ¢f
[f(v3 = conb gate){
N1 = order of the set corresponding to v3 in ds;
Cl oudset [N1].insert( v3);

}
}

Int outedge check =1;
For each vertex v4 in graph g{
I f(v4= fanout node){
For each outedge oe of v4{
Vertex v5 = target of oe;
[f(v5 != c-element){
| f (Max_Regi ster_set[v5] = Max_Register_set[v4]){
outedge_check = 1 * outedge_check;
}
el se{out edge_check = 0;}
}
| f (out edge_check = 1){
Uni on(set of v4, set of v5 in ds);
}
}
}
}

For each vertex v4 in graph g{
If(v4 = fanout){
N1 = order of the set corresponding to v4 in ds;
C oudset[N1].insert( v4);

}

Figure 8.12: Function:CLU Clustering:part 2

The final step involves updating the cloudset using the updated disjoids s&tor this, each

fanout node v4 in the graph is enumerated and the index of the setmamcsg to the enumer-
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ated vertex v4 is set to N1. Then the vertex v4 is added to the cloudset tet tt@rsesponding
to the index N1. The resulting cloudset has the set of clouds which con$islisthe combi-
national gates and some of the fanout nodes which drive the same maxjistdrein them.

Once the CLUs and some of the fanout nodes are clustered into cloudsmlitheodes left
to be clustered are the leftout fanout nodes. The next section disdireselustering process
involving these nodes to create the final complete high level extraction ofrthatc

8.6 Fanout clustering

Once the CLU and registers are clustered the fanout nodes in the ciiltligveft out, which
should be grouped in a way that it streamlines the whole structural viewe &ine two types of
fanout clustering possible, namely uniform and non-uniform. A unifcenofit cluster/cloud
is the set of fanout nodes fed by a register/CLU node in such a waydbhatffanout node feeds
exactly the same set of CLUs. A non-uniform fanout cluster/cloud is thefdanout nodes
fed by a register/CLU node and atleast a pair of fanout nodes feedatiffsets of CLUs.

8.6.1 Algorithm

The heuristics involved in the fanout clustering process are detailed inuthéestion. At this
stage as mentioned earlier, all the clustered clouds of CLU and the registeavailable to
construct the high level view with only the fanout node clustering begimpksfding. It should
be noted that some of the fanout nodes were already added to the CldUvefich drive the
same registers. The fanout nodes not included are the nodes whiochdiove the same clouds
and register. The steps involved in the fanout clustering process are:

» Find the maximum registers driving the each cloud

Find the clouds driving each fanout node

Find the fanout nodes driving the clouds

Construct the disjoint set to enumerate and cluster the fanout baseeliocanectivity
with the clouds and the maximum registers

Update the list of clouds cloudset based on the clustering information irirdisgt to
form the new cloudset update_cloudset.

The input to the Fanout_clustering function are the list of clouds gendvgtise CLU_Clustering
function, list of the maximum registers MaxRegister, the list of outscan sktrengraph "g".
The pseudocode for the function Fanout_Clustering is shown in FiguBea®d Figure 8.14.



Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 177

The first step involves finding all the maximal registers driving the cloudsanishof clouds

cloudset. Each set sl in the cloudset is enumerated for the preserogl®ietement set with
the fanout node as its element. This is because after the CLU clusterirgspraaly the fanout
nodes that do not drive the same maximal registers as the clouds in the etoarg $eft out

and are added as a separate cloud with only that node as the componentlofith For each
of these set s1, each c-element cl in the graph "g", each gate gl int t@responding to
the c-element cl in the list of outspans list_outputspan is enumerated. Ilftthglgaquals the
fanout element s1, then each gate g2 in each maximal register set mrl isratadnéf the

gate g2 equals the c-element c1, then the order N2 of the set s1 in theatlmucculated and
the set mrl is inserted to the list Maxdrivefo at the index N2.

The next step involves finding all the clouds driving the fanout node.ttis, each cloudset
s2 is enumerated in the list of clouds cloudset. For each outedge of the ghtedat s2, if

the target equals the fanout element of s1, then the set s2 is added to tloeaignset cloud-

driveset. After enumerating all the sets s2 in the cloudset, the clouddraetss added to the
set clouddrivefo which holds the sets of clouds driving one particalaodt node.

All the fanout nodes driving each cloud is constructed in the next stepe&ch set s2 in the
list of clouds cloudset, all the inedges of the gates of s2 is enumeratece $btirce of the
inedges is the same as the fanout element in s1, then the set s2 is added tapthrartge set
fodrivingset. After enumerating all the sets s2 in the cloudset, the fodseins added to the
fodrivingcloud list, which stores the list of sets having all the fanout sam®responding to
one cloud.
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\*******************************************

Pseudocode: Fanout _C ustering
\*****************-k*************************\
Input: |ist_of _clouds, Max_Regi sters, graph g, i st_out put span
Qutput:list_of clouds updated cloudset
FAnout _cl ustering(graph g,list_outputspan, Max_Registers, cloudset){
For each cloud set sl in list_of clouds{
If(sl = single fanout el ement set){
For each c-elenment/latch cl1 in graph gf
For each gate gl in list_outputspan]cl1]{
[f(gl = element in sl){
For each max register nrl in Maxi num Regi sters{
For each gate g2 in nmr1{
N2 = order of sl in cloudset;
[f(g2 = cl1){Maxdrivefo[ N2].insert(nrl)}

Set cl ouddri vi ngfo, cl ouddri vi ngset;
For each cloudset s2 in list_of _clouds{
[f(sl = s2){
For each gate g4 in s2{
For each out_edge oe in g4{
If(target of oe = elenent of s1){
Cl ouddriveset.insert(s2);

}
}
}
}
}

Coudrivingfo[sl] = clouddriveset;
C ouddriveset.clear();
Set fodrivingcloud, fodrivingset;
For each cloudset s2 in list_of clouds{
If(sl !'=s2){
For each gate g4 in s2{
For each in_edge ie in g4{
If(source of ie = elenent of sl1){
fodrivingset.insert(s2);

}
}
}
}
}

-conti nued

Figure 8.13: Function Fanout Clustering - part 1
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-continuation of partl
fodrivingcloud[sl] = fodrivingset;
fodrivingset.clear();
}
I nt MDCheck, focl oud_check;
For each cloud set sl in list_of_clouds{
If(sl = single fanout el ement set){
For each cloud set s2 in list_of clouds{
[f(s2 = single fanout element set and (sl != s2){
i f( Maxrdrivefo[sl] == Maxrdrivefo[s2] |]
Mdcheck =1;
}
el se{ Mbcheck=0; }
i f(fodrivingcloud[sl]= fodrivingcloud[s2]){
f ocl oud_check=1;
}
el se{focl oud_check=0; }
i f(Mdcheck * focloudcheck = 1){
union(set of sl's elenment, set of s2's element) in ds;

Li st _of clouds updated_cl oudset ;
For each vertex v in graph g{
[f(v!=latch/c-elenent){
N4 = order of the set that v belongs to in ds;
updat ed_cl oudset[ N4].insert(v);

}
}

return updated_cl oudset;

}

Figure 8.14: Function Fanout Clustering - part 2

Once all the sets sl in the cloudset has been enumerated the list Maxavilldfave the list
of all the maximal registers driving the fanout nodes, clouddrivefo veillehthe sets of clouds
driving each fanout node and the list fodrivingcloud has the setsufamriving all the clouds.

With these three lists, the next step of updating the disjoint set based onrthectiwity of
the fanout node with clouds and maximal registers is carried out. Two flgagoles, namely
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MDcheck and focloud_check, are used in this step. For each set sé listtlof clouds, s1

is compared with all the other sets in the cloudset for checking the common makimal

ing registers driving them. Also, each set sl is compared with all otheraettiécking the

common clouds driving them. In former case, MDcheck flag is set to 1 anckifatar case

focloud_check is set to 1. Otherwise, both the flags are assigned tleeOzaliuboth the flags

are 1, then the union operation is applied to the set corresponding to the faode element
of s1 and the set corresponding to the fanout node element of s2 ageds.tihis streamlines
the excluded fanout nodes to be added to the corresponding cloudgtothwy belong if they

drive the same clouds and are driven by the same maximal registers.

The final step involves updating the cloudset. For this all the vertices thaiodimemory ele-

ments are enumerated in graph g and the order N4 of the set each véoeysi® in the dis-

joint set ds is calculated. Then the vertex is added to the updated clopdset ucloudset with
index N4. After all the vertices are enumerated, the resulting list of clopdate_cloudset will

have the list of clouds containing the fanout nodes and the combinaticiesl Jais list is re-

turned by the fanout_clustering function.

Using the list updated_cloudset, list MaxRegisters and the connectivitymiat@mn from the
graph g, the overall high level structural view of the circuit can be tanged. The resulting
graph will be several order of magnitude smaller than the original grapie. ekperimental
results of this method applied to several asynchronous benchmark caceigmalyzed in the
next section.

8.7 Experiment

This circuit extraction method for asynchronous circuit was implemented+&S-an extractor
tool. Several asynchronous benchmarks were used for the exptalraaalysis. The results
obtained for the benchmark "master-read" is shown in Figure 8.15. FRjliBeshows the
color-coded partition of the fanout, CLU and c-elements. To distinguishltiséecing clearly,
the Figure 8.16 shows the clusters of CLU with number (with nodes of samiichesving
same number), fanout nodes named as fanout and the c-element left ewtlalfhabetical
name. The high-level extracted structural view of the benchmark is simowigure 8.17.
Table 8.1 shows the resulting high-level structural representation tiogsi$ 3 combinational
clouds, 6 fanout nodes and 2 maximal registers. The column named "oade'tige number of
C-elements present in the benchmark circuit. The column named "#gates'thg@number of
gates for the benchmark. The column named "# clouds" gives the numbleuos formed in
the extracted view. The maximal register column has two subcolumns nametidisizé#"”,
which give the number of C-elements in each register and the number dersgisspectively.
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The last column gives the time taken for execution of the implemented extractor too

The methodology is capable of executing over the industrial tool as therchaas demon-
strated on the industrial synchronous circuits. The profiling of the soode revealed the
function span being called extensively due to the construction of inspahsudspans. Further
optimization on the span function usage will reduce the execution time of the tool.
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Figure 8.15: Master-read Benchmark
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Figure 8.16: master-read benchmark - numbered clouds
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Figure 8.17: Extracted High Level View - master-read benchmark

8.8 Evaluation

To evaluate the proposed extraction methodology different asynahsaiest methods pro-
posed in this thesis namely ABALLAST, AGLOB1, AGLOB2 and ASCP wereesgised
with the high level netlist extracted by ACLARION. Evaluation metrics namelylyrsize in
vertices and edges, fault coverage, and number of patterns geharateompared and ana-
lyzed for these methods applied over the original circuit and the high letelated view of
the circuit.

Graph size reduction
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Benchmarks | Cele | #gates| #clouds| #fanout MaxReg MaxReg
# size
chul50 2 5 1 2
converta 3 4 1 3
dff 2 5 2 11
ebergen 3 11 10 7 2 2.1
half 2 1 2 1,1
hazard 2 6 6 2 1,1
master-read | 9 16 10 14 2 8,1
mmu 6 20 13 2 2,4
mp-for-pkt 3 8 5 1 3
mrl 9 18 12 16 2 7,2
nak-pa 4 12 4 5 1 4
pe-rcv-ifc 6 33 3 13 1 6
pe-send-ifc 6 23 6 11 2 2.4
ram-rd-sbuf 4 12 3 1 4
rcv-setup 1 6 3 1 1
rpdft 1 11 3 1 1
sbuf-ram-write| 6 14 6 11 1 6
sbuf-snd-ctl 5 12 10 8 2 2,3
sbuf-snd-pkt2 | 5 18 12 11 2 3,2
seqd 7 9 3 10 1 7
trimos-send 8 18 9 14 2 1,7
vbe5b 2 3 1 2
vbeb5c 3 5 2 1,2
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Comparison of Graph Size - Vertices

(ACLARION Generated Circuit versus Original Circuit)
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Figure 8.18: Graph Size Comparision - Vertices

The main motivation of generating the high level extraction is to reduce théegpnaize be-
fore applying further test algorithms applied. The extracted view geneatéACLARION
does indeed reduce the graph size as it is clustering several combihgatemand registers.
Figure 8.18 gives a comparison of the number of vertices of the origiaphgwith the graph
of the extracted view. The original graph/netlist is termed as "originalhjrapd the extracted
view graph/netlist is called as the "ACLARION graph". Almost all the benasibad greater
than 50 % reduction in the number of vertices. Bigger benchmarks suctdasaly, mmu and
master-read had considerably greater reduction. Figure 8.19 shawspaidson of the sizes
of the edges for the original and ACLARION graph. In relation to the nunalbeertices, the
number of edges is even lower. This is due to the fact that the intercormet@ween the
gates and memory elements are reduced when the latter were clusterede Bentthmark
wrdatab, the number of edges was reduced by 50%.

The interesting point to probe is how well the fault coverage and numipatterns obtained by
the test methods are retained when these methods process the extracfdivéesame netlist.
To do this analysis all the benchmarks were run in two different experini@ntise all the test

methods. First experiment involved running the test methods over the dfiginehmarks and
the second experiment involved running the test methods over the extbecteldmarks. After
running these two experiments, the fault coverage and the number ofngagtemerated for
both the experiments are compared for each test method. It should beRIOMnetlist type

was used by ABALLAST method, it is already running on the extracted \8evthe analysis



Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 187

Comparison of Graph Size - Edges
(ACLARION Generated Circuit versus Original Circuit)
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Figure 8.19: Graph Size Comparision - Edges

does not include ABALLAST method.

The following subsection discusses the impact on fault coverage and thaetioypthe number
of vertices.

8.8.1 Impact on Fault Coverage

Now the impact of fault coverage on the test methods AGLOB1, AGLOB2AS@P are dis-
cussed.

AGLOBI1 Test Method

The graph in Figure 8.20 gives the comparison of fault coverage foA@IeOB1 method
operated over original graph and the ACLARION graph. Along with thimparison the full
scan method is also included as the third data. For the smaller benchmarks)ltlteverage
based on original graph and the extracted view is almost same as therbésmoth difference
between the two graphs. This is very well exhibited by the benchmarkss6hwebnverta,
ebergen, vbe5b and vbe5c as they have same fault coverage fahbajhaphs. But a more
important observation is on the benchmarks masterread, mmu,mrl, sbutsend wrdatab.
For all the larger benchmarks, the fault coverage was improved with treceed netlist view
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but at the cost of increased scan element .

AGLOB2 Test Method

Next the fault coverage comparison for AGLOB2 method is analyzed.r&igi21 gives the
comparison of the fault coverage obtained using original and ACLARg@#ph. In contrast
to the AGLOB1 method, this method improved the fault coverage with reachinfgitreean
equivalent. For example, the benchmarks mmu and mrl had higher faulageveompared to
the original graph and almost same as full scan. But for the benchmafkmvprd-pkt2, the
fault coverage was improved without reaching the full scan memory sggnn

Impact on Fault Coverage
(Full Scan versus AGLOB1 versus AGLOB1-ACLARION)

120

Full E AGLOB1 mEEEAGLOB1-ACLARION s
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20
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Figure 8.20: Impact on Fault Coverage - Full Scan versus AGLOB1 versus AGLOB1-ACLARION

ASCP Test method

In Figure 8.22, impact of the extraction on fault coverage over the ASGQRadés shown. In
this method, most of the benchmark exhibited improvement in fault coveragjesf\CLAR-
ION graph-based experiments, with the exception on the benchmarksagrini, and trimos-
send. The overall impact on fault coverage of all these methods willd@ersht the end of the

next subsection.

8.8.2 Impact on Number of patterns

In this subsection the impact of extraction over the number of test pattenesaged is ana-
lyzed. For the three methods analyzed, the red bar in the graph giveartiteenof patterns
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Impact on Fault Coverage

(Full Scan versus AGLOB?2 versus AGLOB2-ACLARION)
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Figure 8.21: Impact on Fault Coverage - Full Scan versus AGLOB2 versus AGLOB2-ACLARION

generated for full scan method, the green bar gives the patterns forigfireal graph and the
blue bar gives the patterns for the ACLARION graph.

AGLOB1 Test Method

Figure 8.23 shows the comparison for the number of test patterns gehe@Glearly the ex-
tracted view had higher number for most benchmarks patterns as it setectedC-elements
compared to the original graph. For master-read, mmu and trimos-sendntibenaf patterns
increased, whereas for the benchmarks sbuf-ram-write and shdfesiethe number of patterns
reduced.

AGLOB2 Test Method

For the AGLOB2 method, the comparison is shown in the Figure 8.24. For thiooohedR-

tracted netlist view reduced the number test patterns generated for meobinterks. Bench-
marks mmu, master-read and trimos-send had higher reduction in numbéteohpa

For AGLOB1 and AGLOB2, the benchmarks, "master-read", "mmu", @nchds-send" had
their number of patterns increased. The reason for increase in thenpati®ber is of two-
fold. First one is that, they had 9, 6, and 8 C-elements, respectively angai the subset
of these C-elements selected for partial-scan impacts the number of pagerggbnerated.
And, when ACLARION extracted the clouds, several C-elements constitutdoud, which

resulted in increase of the number of partial-scan C-elements. With this secriest pattern
generation involved more scan test patterns to be added to test thesabdeabrelements.
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Impact on Fault Coverage
(Full Scan versus ASCP versus ASCP-ACLARION)
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Figure 8.22: Impact on Fault Coverage- Full Scan versus ASCP versus ASCP-ACLARION

Second reason is that, when some of the C-elements, which are notdeaarecated at the
higher depth of the circuit, reaching those nodes required more testzattéce versa, for the
benchmarks "sbuframwrite" and "sbufsendctrl", the C-elements natechfor scan were the
ones, which were closer to the input/output nodes, compared to the opgiril-scan circuit

generated without ACLARION. Hence, the number of patterns for thieseits reduced.

ASCP Test Method

Finally the impact on number of test patterns for the ASCP method is shown ineFRsgeb.
For this method also, the number of test patterns were reduced for mas$trbarks. This is
because, the ASCP method had lesser information on the location of the Gitdeand the
scan-selection was guided only by the efficent selection of lower nunilsean C-elements.
So, even when the number of scannable C-elements were reduced|ettteds€-elements
were not guaranteed to be at a lower depth of the circuit. But, interestiogtiié benchmark
seq_mix, there was a steep rise in the number of test patterns. For thisheakegation of
the subset of C-elements selected for partial-scan, resulted to be athiee tigpth of the cir-
cuit. There were totally 6 C-elements and when the full-scan method chosentalstiaese
C-elements, the scan-chain formed by the full-scan reduced the deptis path and hence
the number of patterns were lesser. And, for the ACLARION generateuit; the partial-scan
path was longer, which resulted in the higher number of test patterns.
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Number of Patterns
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Figure 8.23: Impact on Number of Patterns - Full Scan versus AGLOB1 versus AGLOB1-
ACLARION

With and without ACLARION

As analyzed in the previous subsections, the extracted netlist gave indpianyé coverage
for most benchmarks, but with some exceptions. To see the overalt effélse extracted
netlist on the fault coverage obtained with the different test methods, thE®&Dbf the fault
coverage of the AGLOB1, AGLOB2 and ASCP methods for the originalerithcted view
is shown in the Figure 8.26. The left side of the plot on Yaxis (tics 1,2, ande Hramed
AGLOB1,AGLOB2 AND ASCP) clearly shows lower fault coverage congghto the right
hand side(tics 4, 5 and 6 are named AGLOB1(ACL meaning ACLARION)LA82(ACL)
and ASCP(ASCP). The blue regions on the left shows the lower faudtrage and the peaks
on the right hand side shows the higher fault coverage for the extraettidt view. The
middle blue region is due to the benchmark rcvsetup which does not have-algments to
be chosen by the partial scan methods. Finally, a 3D plot showing the taudtage for the
methods namely Full scan, ABALLAST, AGLOB1, AGLOB2,ASCP, AGLOBGLARION,
AGLOB2-ACLARION and ASCP-ACLARION are plotted in Figure 8.27. Toosv the peaks
the graph is plotted as monochrome. It is evident from the graph that theL AB3T, and
all the methods with ACLARION graph based test generation had highkrcfaterage. This
can be seen from the peaks on the left side of the Y axis(initial one beirfglthean) and the
peaks on the extreme right hand side. There are lower number of spiktes imiddle which
attributes to the methods applied over the original graph.
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Figure 8.24: Impact on Number of Patterns - Full Scan versus AGLOB2 versus AGLOB2-
ACLARION

Complexity// The complexity of the ACLARION method is mainly dominated by the combi-
national clustering and the register clustering steps. The merging of the mefaorents has

a complexity of O §). The complexity of the combinational clustering is O (nm), where n and
m are number of vertices and, edges respectively.

8.9 Conclusion

A high-level circuit extraction method for asynchronous circuits wap@sed. Basic functions
required for the implementation of the ACLARION extraction method and the @wemf the
methodology were described. The proposed heuristics for the Redistégring process was
introduced next. The heuristics for the combination logic unit (CLU) clusgenias discussed
futher. Fanout clustering heuristics were introduced next. Experimergalts were analyzed
for various asynchronous benchmarks with one working examples dsratad.

The circuit extraciton method developed can be applied to any test genesgsiiem for asyn-
chronous circuits. The test generation time can be drastically reducqeebgtimg on the high
level graph generated by this method.
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Figure 8.25: Impact on Number of Patterns - Full Scan versus ASCP versus ASCP-ACLARION
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Chapter 9

ATRANTE - Transistor Level Test

Generation for Asynchronous Circuits

9.1 Introduction

With the increasing number of transistors per chip, the number of faults dpleysical de-
fect is increasing. This will lead to a higher probability that devices will maifiom. These
physical defects are mainly due to photo lithography errors, electromigyatiorosion, and
oxide effects to name a few. These defects cause adverse effedtswihbehaviour. Hence
several test methods and models have been created to detect the faultsrncuite[VCHSO09,
RDBO08, IRR"01, LM05, FMHGO05a, MAF90]. Gate-level stuck-at fault model is the mos
widely used model to test the circuits. The high-level abstraction of theitsratithe gate-
level is considered to test the designs in the stuck-at-fault based tesagen.

Although these models usually give significant fault coverage of the nlesag all the physi-
cal defects can be mapped accurately to these models [FMHGO5b]. Hansistor level fault
models are considered which increase the accuracy of the faults dueptboytsieal defects at
deeper level [FS88b] [Mal87]. In other words, the test effectigsrad the test patterns can be
improved by adding test patterns generated using transistor-level fadélsncompared with
those generated using stuck-at fault model. Again using detailed tradsigbmodels will in-
crease the simulation time and the size of the test patterns. So there should dbel &hatgpro-
vides high fault coverage with low test time. Several test generation mefiioasynchronous
circuits are proposed which is based on State Transition graph (ST@&7REOL02]. But
these methods deal with gate-level stuck-at-fault model-based testtjensr But test gen-
eration methods at transistor level for asynchronous circuits are notfm literature to the
best of the author’s knowledge. [ES95] deals with the switch level tewtrgéion problem for

196
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Figure 9.1: Open Defects. a) A foreign particle causing a line to open and a line thinning, b)
A contaminating particle causing 7 line opens, c) Defect which caused an open in metal 2 and
short in metal 1. [RMOOQ]

asynchronous circuits but only stuck open and stuck on faults aréeoed.

9.1.1 Motivation: Why transistor level testing?

As the stuck-open and stuck-on faults are transistor-level faults (lagi@node level as in
Stuck-at ones) , the behaviour of the circuit is changed from combiratiorsequential due
to the floating transistors occurring in the circuit due to the stuck-open falifis issue has
already been introduced and dealt with in detail for synchronous cifd(@siS09, RDBO0S,
IRR"01, LMO5, FMHGO054a]. It has been shown that even though the cdiovext stuck-at fault
model covers some of the transistors having the stuck-open or shibytitfaill not detect all
the transistor-level faults. The commonly occuring open defects arenshothie Fig.9.1. It
has been shown in [RMOQ] that several other defects cause the toansibecome open or
shorted and these defects occur commonly in the manufacturing process.

To detect these kinds of faults, two different directions were taken tradiio First one is
called "two pattern sequence" test generation. In this method, for eadista fault, two
test patterns are applied to detect the fault. In the second way, additemdaldre or different
CMOS logic design style was used to address this fault. The issue of seghased test was
explained in detail in [LM02]. An example showing the occurrence of akstymen fault and
the detection of fault based on the sequences of patterns was cleany shgLMO02]. It
was shown that even though these sequences detect the transidtsttiek®pen faults, their
order is very important for the detection. Change in the order will make théniedid. The
same issue is encountered with asynchronous circuits with the added ciynpldraving C-
elements in the design. Testing the stuck-at fault for C-elements is a compebytatself.
On further testing these transistor-level fault needs correct ordeegees of test patterns to
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test the single transistor fault than a set of stuck-at test patterns. Hhiungthe asynchronous
circuits at transistor level will increase the testability of the design for stpen@nd short
faults.

The main motivation behind this work is on developing a test pattern generatihiodngt the
transistor level for asynchronous circuit covering transistor stueki@md stuck on faults.

This chapter explores an automatic test pattern generation methodologyausintj model
called "Transition fault model", which covers the above-mentioned fautis.iiain contribu-
tion of the chapter is in presenting a novel method of test generation fockasnous circuits
using State-Transition Graph (STG) at transistor level and the fault simulisitgahod for the
same. The conventional switch level modelling techniques and the STG imgmwedentation
of asynchronous circuits are merged to develop this new method.

This chapter is organised as follows: Section 9.2 gives the backgrotordthiation to under-
stand the proposed method; Section 9.3 states the problem illustrated witmaplex@ection
9.4 describes the test methodology; Section 9.5 presents the experimgsultalwnéth analysis,
followed by an ending remarks in Section 9.6.

9.2 Background

Background on asynchronous circuit and transistor level testing én@is follows.

9.2.1 Asynchronous Circuit Representation

State-Transition Graph (STG) is an interpreted Free Choice Petri Nedirted by [CG86] for
representing asynchronous control circuits. The behaviour of thaitis modelled as a set
of transition rules with respect to I/O signals. A state graph is a finite automatoah is an
extended version of STG with all the state encoded with binary values

9.2.1.1 Petrinet

A Petrinet [CKK"97] is a compact model to represent concurrent systems. A Petri net is a
quadruple N = {P, T, F, m0}, where P is a finite set of places, T is a finit®@setnsitions, F

is the flow relation, and m0 is the initial marking. A transition is enabled at markingifrall

its input places are marked. An enabled transition, t, may fire, produciegvamarking, m2,

with one less token in each input place and one more token in each outpeit Al&ee choice
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Petri net (FCPN) where the value changes on input, output or intégredls of the specified
circuit are the interpretation of the transitions.

9.2.1.2 Signal Transition Graph (STG)

STG is an interpreted Free Choice Petri Net (FCPN) introduced by [(JHoBrepresenting
asynchronous control circuits. It is a quadruple {T, P, F, m0}, wheis a set of transitions
described by a x {+, -}, where a+ represents a 0 to 1 transition on sigreld a- represents a 1
to 0 transition; P is a set of places which can be used to specify conflibbare; F represents
flow transition relation between transitions and place; mO is the initial marking.xample
of an STG is shown in Figure 9.2

Figure 9.2: Stuck-at-false fault and Stuck-at-true fault

9.2.1.3 State Graph (SG)

A state graph [CKK 97] is a finite automaton given by G= A, ST,3,s0 >, where A is the

set of input and non-input (output and internal) signals such that, Teisa signal transitions,
each transition can be represented-aai, j)or(—ai, j) for the j-th 0— 1 or 1— 0 transition

of signal a .0 : SXT — S is a partial function representing the transition function such that if
o(s,t) = ¢, then signal tis said to be enabled and it takes the system frons $tesé sO is the
initial state. Each state in the state graph is labelled with a binary vector acgtodhme signal
values of the system at that state.



Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 200

9.3 Problem Statement

The test pattern generation problem is N-P hard. To focus furtherrttiem chosen in this
chapter is to create the test patterns to detect defect level faults. Tesadtis problem, two
fault models are used. First, the STG level fault model (stuck-at-true)fasised to generate
test pattern (shown as the top layer in Figure 9.3). Second, the test paterfault simulated
using defect level fault models (stuck-open/on) (shown as the bottanilayrigure 9.3).

STG to Gate Level Mappiﬁg/ _____

Transistor to Gate Level Mapping’
STG to Transistor Level Mapping -~~~ :

STG

TransiStq
Netlist

Figure 9.3: Fault Mapping in STG based asynchronous circuit netlist

9.3.1 Motivating Example

An example of transistor level test of C-element is shown in this subsecti@mriking exam-
ple of the test pattern generation for a single fault is described furthstiatie implementation
of the C-element is considered for the example (Figure 9.5) [ES95]. Thiemnegmtation has
12 transistors, 3 i/o and 7 other internal nodes, including Vdd and Grdtdh63 faults can be
modelled for the c-element, whereas, in the case of stuck-at fault oniyté &an be modelled
corresponding to the 3 I/O pins. To explain the test generation the stuwkfaplt on tran-
sistor P3 (shown in Figure 9.6). Figure 9.10 gives all the possible trarsitidine transistors
that can occur in the C-element(in Fig. 9.6). For 8 input combinations ('3, €-element,
possible transition characteristics of the transistors in the C-element (good)ds shown. In
Fig. 9.11, the possible transition characteristics of the C-element that is fasiywn. For
both the cases, the transistors that are switched on are denoted by thatows (red). The
transistors that are turned off are denoted by a cross (blue). Foaudhg C-element, the P3
transistor switched on due to the stuck-on fault is denoted by a down &hmwn in side the
bubble). Thus it should be noted from Figure 9.11, that possible trarsivbich affects the
operation of the P3 transistor are Figure 9.11.(c), Figure 9.11.(d),d-®ad.(g), and Figure
9.11.(h).
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Table 9.1: MOS Gate Output Table[JA85]

S1(Pull Up Net-| SO(Pull Down| Y(Output)

work) Network)

1 1 0

1 0 1

0 1 0

0 0 m=previous state

Table 9.2: Truth Table for Good(G) and Faulty(F) machine

State SO S1 Y

G| F| G| F G F
0601 |1]| O 0 0 0
o011 11| 0 0 0 0
oo 1|1]| 0 0 0 0
oOl1, 0| 0] O 0 | m=1| m=1
00| 1| 1] 0 0 0 0
101 | 0] 0| O 0 | m=1| m=1
il il EE B R
112 | 0 | 0 | 1 1 1 1

201
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(@) (b) (©) (d)

Figure 9.4: SG and STG for faulty circuit with transistor P3 Stuck-on fault shown in (a), (b), (c),
(d)respectively.

The faulty circuit is shown in Figure 9.6. The corresponding STG and 8&gé Graph) of
the good circuit are also shown in Figure 9.4. The MOS gate table introdnddé\85] is

shown in Table 9.1. This table derives the logic value of the output nodmllmasthe pull-up
and pull-down transistor network logic value. The MOS table equivalentadtelement in
Figure 9.6 is shown in Table 9.2. In this table, the pattern for abc, "110rdifh faulty and
good circuit. The output stays at 'O’ for a faulty circuit, whereas, it i6t a good circuit. This
faulty circuit behaviour causing the inhibition of transition from state 110 tbislshown as

dotted lines in Figure 9.4.

a—d[ P, a—db—b

b—dL P, P inv
a _| N N I

Figure 9.5: C-element Design

Test pattern for the transistor p3 stuck-on fault is obtained by travetisinggh the SG from
the initial state to the state next to where the inhibition occurs. Thus the testpiattehis
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inv

Figure 9.6: Transistor P3 Stuck-on fault in the C-element

fault will be "000-100-110-111" or "000-010-110-111". It sheboe noted that the circuit is
operated in the fundamental mode during the testing process and hendaeuitdsallowed
to stabilize before applying a new pattern. The equivalent STF is repiegsby a '0’ mark on
the arc from b+ to c+. Thus test patterns for the remaining faults can bimetytay traversing
the good circuit with the extracted logic of faulty machine. Once the test pateenobtained
they can be fault simulated to obtain the fault coverage. Fault coveragtsréor several
benchmark circuits are discussed in the "Experiments" section.

9.4 Test Method

The proposed test method involves three major steps: BLIF2Spice netiigersion, Test
pattern generation and Fault simulation. Figure 9.7 shows the component&hiotest gen-
eration and the test flow for the proposed method. The netlist of the Cinedétrurest (CUT)

is a BLIF (Berkeley Logic Interchange Format) file and its library file (géndjpnerated by
the petrify tool [CKK"97]. Along with the netlist the corresponding STG file of the circuit
is parsed in. The netlist file is pre-processed by the cusRIniF2Spice"tool written in perl
and bash script. The pre-processed netlist is then sent to the switcistoateel fault sim-
ulator. Meanwhile, the test pattern generator will read the STG file of the &tdiTfgenerate
the test vector for all the faults in the CUT. The test generator is written inuS#ig Standard
Template Libraries (STL). A custom transistor level (spice deck) faulatiofor all the gates
in the library generated by the petrify tool is generated and is availableddattt simulator.
The details of théblif2spice"tool, test pattern generator and the fault simulator are described

further.
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Figure 9.7: Test Methodology

First, the"blif2spice"tool is a pre-processor tool used to parse the BLIF file and convert the
in to standard library specific spice deck. Standard libraries of 0.18 umaéagy are used for
this conversion. Each gate in the blif file is converted in to its equivalent sparesentation
for 0.18 um technology. Thus the output of the tool will be a spice netlistodT. Second,
the test pattern generator follows the algorithm give in the algorithm 14. Defiailee test
generation algorithm are described in the subsection Test Generatiertodlimplemented
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with this algorithm reads in the STG file, SG file and enumerates the STG andsg@ tvathe
Algorithm 14 to generate test patterns and the output file is the test vectaréitefie) with

the list of test patterns.

Finally, the fault simulator is built using the Perl scripts and the commercially daitavitch

level logic simulator. The fault simulator reads in the spice fault library (fitolbp), spice
netlist from"blif2spice” (CUT.sp) and the test pattern file (.vec file).

First the fault list is generated by th&ultmachine-generatorcript. And then, this script
injects all possible stuck-open and stuck-ON in to the CUT and generatés glbssible fault
machines. The detailed process is shown in the subsection Fault simulatiom alDtne fault
machines are generated, the good machine simulation is carried out usingttidevel logic
simulator. The response of the good machine is stored. Then the fault reaeneésimulated
and their response is compared with the good machine response to regatiitio be detected
or undetected. This report is finally printed as the test report. One fuoitienization that can
be carried out will be the fault dropping, which further reduces thi &ulation time.

9.4.1 Fault Model

The fault models used in this method are: 1) stuck-at-true, and 2)stdeksatfor test gen-
eration. For fault simulation, stuck-at-open and stuck-at-close faultsaered. Thus this
method covers the defect level faults using the STG level fault models. Ppodoese, func-
tional level fault model is used to cover defect level fault.

9.4.1.1 Stuck-at-True Fault

Stuck-at-true fault is the fault in the STG level that one of the pre-conddfdhe transition
is always true. This fault is represented by a "1" in the arc (Rout+ to Aoutfdn 9.2)
corresponding to that precondition. Input stuck-at faults and faulisieg extra transitions
can be mapped in to this type of fault. For example, the stuck at true fault i® Rigdescribes
that the good circuit's STG will always have Aout+ transition after Routut the faulty circuit
with this fault will have Aout + transition before Rout + transition due to thelsatdfault in
the corresponding node in the circuit. At circuit level, this might be due toithéput being
short with other node with value 1 and the path driving Rout to Aout beirmgop

9.4.1.2 Stuck-at-False Fault

Stuck-at-false fault is the fault in the STG level that one of the pre-comditi@ transition is
always false. This fault is denoted in the STG by "0" in the arc (Rin- to AmuFigure 9.2)
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corresponding to that precondition. Figure 9.2 shows an example of this Tais fault may
occur when the node connected to Aout is stuck at 1 and hence Aouewdt igo to 0. Output
stuck-at faults and faults causing inhibition of transitions can be modeled witfathis

9.4.2 Test Algorithm

The test generation algorithm underlying this method is described in thistidrselhe STG
for the good machine is used to generate the test patterns. The test plaitdandt models
"stuck-at-true" and "stuck-at- false" are generated by enumeratingtabes over the STG.
For every test pattern, the traversal starts from the initial state of the Bii& provides the
assumption that the generated test pattern have to be applied after resttoigitse to the
intial state everytime before applying the test patterns. From the initial statéyathersal
continues through the STG to reach the faulty state provided by the faulttlm®bte path
traversed from the initial state to the faulty state provides the set of state¢hesdt of state
values. These state values are the test for the faulty state. The seteoftates are stored as
test sequences for the corresponding fault.

The above mentioned steps are continuously applied for all the stuckeadricustuck-at-false
faults to obtain all the test patterns for the DUT. The test generation algoritismown in
Algorithm 14. The algorithm takes a STG (graph g1) and a SG (graphesgihput. For each
edge "ei" of the STG is compared with each edge (eis) of the SG. Whenulmesertex of the
ei equals the transition name/edge name of the sgl, then following two stegaraeel out.
First, for each vertex of the sgl, a comparison is made to check whethegrte® is same as
the source vertex of the eis. If they are same, then for each vertex Vp préldecessor list of
the vertex, the pattern corresponding to each state is stored in the "tegtueCtpattern list.
The above steps are again carried out for generating the "testvésabnattern list, except
that instead of comparing the source vertex of the edge "eis", the taggek\us compared
with the transition/edge name of the STG. Thus two list of vectors namely "téstiree”
and "testvectorfalse" are created which contains the test patterns the atuck-at true and
stuck-at false faults.

Example: As an example to describe the test generation process Figure 9.8 shostsphe
by-step process of test generation for the fault in a C-element. The &bk gnd STG graph
shown in Figure 9.4 is used to generate the tests. This example shows tloe s&istk-at-false

fault on the arc "a+". As mentioned before, first the algorithm selectathie"h-" stuck-at-true

from the STG and enumerates the SG and finds the edge named a-. Aiteg fhreledge, since
the fault is stuck-at-true fault, it checks whether the output bits in the s@ud target pattern
of the edge "a-" are changing. In this example (shown in Figure 9.8.a}otlmee and target
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patterns of the edge "a-" are 111 and 011. Since the third bit is same, trighatgtraces the
successor list of the target to find the node with its pattern having a flippitpyiobit. Thus
in this example, the successor of the target pattern is the node with pattert{st@vn in
Figure 9.8.b). But its output is not flipping yet. So the successor of this H@@0" reached.
The pattern has its last bit flipped. Thus the algorithm chooses this pattdre fust pattern.
From this node, it traces back each node to add the patterns of thosetodtie test vector
list. Thus in Figure 9.8. c, the node with pattern 001 is reached and is adtesl test vector
list with the updated list 001,000. Similarly, the test vector list gets updated {6001},
{011,001,000}, ... {000,100,110,111,011,001,000} as shown in the figkigure 9.8. d - h.

Figure 9.8: Test Generation Example

9.4.3 Fault Simulation

The fault simulation process is detailed in this section with a relevant exampléngfault
Injection, the faulty transistor representing either stuck-open or stndkut is plugged in
to the good circuit spice deck. The hierarchical view of the good ciraudt faulty circuit
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from DUT to transistor level description is shown in the Figure 9.9. The D@ devel
description of the circuit (shown at the top level of hierarchy) is mappetastandard gate
module library with common gates(including C-element) which is shown in the ddewal
of the hierarchy. Until these two levels, both the good and faulty circuitrggson will be
same. For the third(bottom) level, the spice deck for each gate is creatdibesafile. The
library file includes not only good circuit spice decks(bottom left) but #igdault circuit spice
decks(bottom right). Thus to inject a fault in the DUT, the faulty spice deckesponding to
the faulty transistor is plugged in to the DUT by replacing the original spick deihe gate in
which the transistor fault has to be injected. For example, to inject a stufudiron one of
the p-transistor in an OR gate, the OR-gate spice deck will be replaced BRHeaulty gate
spice deck.

Good Circuit  Faulty Circuit

Fault Intection
Standard ~v] 1A
Gate Module Library ﬂzI

i 35130 B[S

Spice N
__Subeireuit /8  — NOR
g - good DUT-Design Under o
_—Circuit
f - faulty ‘ Test |— Gate
nl - n transistor E — Transistor

pl- p transitor

Figure 9.9: Fault Injection
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9.5 Experiment Results

This section provides the experimental results on the proposed tesatieneystem. Both
the test generation algorithm and the fault simulation method were implemented iarch+
scripts to automate and integrate the whole ATPG system. The logic simulator is a chaime
switch level simulator.

9.5.1 Test Generation and Fault Simulation

The results of the test generation algorithm are shown here. The rektdt pattern gener-
ation algorithm for the asynchronous benchmarks are shown in the TabldBe transistor
level characteristic of the benchmarks is shown in the Table 9.3. The faultation results
are shown in the Table 9.5.

Table 9.3: Transistor Level Circuit Characteristics

Ckt No No No No No
of of of of of
In- Out- | tran- | STTF| Tx
puts | puts | sis- faults
tors
chul50 3 3 32 64 240
converta 2 3 32 64 503
dff 2 1 52 104 | 288
ebergen 2 3 16 32 336
hazard 2 2 54 108 | 108
mstr-rd 6 7 80 160 | 840
mp-fd-pkt 3 5 52 104 | 264
nak-pa 4 6 48 96 528
nowick 3 3 42 84 336
rm-rd-sbf 5 6 54 108 | 576
rcv-setup 3 2 40 80 216
rpdft 4 1 44 88 408
sbf-rm-wr 5 7 58 116 | 504
sbf-snd-ctl | 3 5 62 124 | 552
sbf-snd-pkt2| 4 5 60 120 | 672
tri-snd 3 6 60 120 | 840
vbe5b 3 3 32 64 216
vbe5c 3 3 30 60 120
wrdatab 4 6 66 132 | 1008
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Table 9.4: ATRANTE Test Generator Results

Ckt No No Test | No Cycles

of of Vec- | of

states| STTF| tor Test

Size | Pat-
terns

chul50 26 32 6 48 2
converta 18 32 5 28 1
dff 36 52 4 36 1
ebergen 18 16 5 30 2
hazard 12 24 4 22 1
mstr-rd 2108 | 80 14 8942 | 7

mp-f-pkt 22 52 8 46
nak-pa 58 48 10 124 | -
nowick 20 42 6 47 -
pe-send-ifc| 117 | 164 | 10 442 | 12
rm-rd-sbf | 39 54 11 67 -

rcv-setup | 14 40 5 23 -
Rpdft 22 44 5 49 -
sbf-rm-wr | 64 58 12 119 | 2
sbf-snd-ctl | 27 62 8 50 8
sbf-snd-pkt| 28 60 9 49 6
tri-snd 336 | 60 9 1296 | 44
vbe5b 24 32 6 46 -
vbe5c 24 30 6 43 -

wrdatab 216 66 10 723 222

9.5.2 Analysis

Detailed analysis on the fault coverage and performance of the algoritisimoign in this
example.

9.5.2.1 Fault Simulation

Since the fault coverage results reported in [RCPP97],[EOL02] desstyack-at-fault coverage
percentage, they will be a subset of the total fault coverage. Theciawdgtage comparison is
shown in Table 9.5. Only three benchmarks were reported in [EOLO2hwinze synthesized
using the same library used in [RCPP97]. Hence the comparison can beomigaéth these
benchmarks. Furthermore, test patterns for several benchmarkgyaeerated using the test
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Table 9.5: Fault Coverage Results from Fault Simulator

Ckt No No No Fault | No
of of of Cov- | of
Faults| De- Un- erage| pat-

tected| De- terns
tected
chul50 112 | 99 13 88.39 | 240
converta | 87 80 7 91.95| 503
ebergen | 89 84 5 94.38 | 336

hazard 108 | 98 10 90.74 | 108
mp-fd-pkt | 140 | 130 | 10 92.85| 264
nak-pa 244 | 234 | 10 95.90 | 124
nowick 160 | 139 |21 86.87 | 336
rm-rd-sbf | 312 268 | 44 85.89 | 576

rcv-setup | 94 89 5 94.68 | 216
rpdfft 172 159 13 92.44 | 408
vbe5hb 110 | 101 |9 91.81| 216
vbe5c 89 84 5 94.38 | 120

pattern generator implemented. The results of the tests generated by thatteyst generator
is shown in the Table 9.4. The transistor level circuit characteristics ofeab¢imchmarks used
by the test generator is shown in the Table 9.3

Most of the faulty machines are redundant faults (are confirmed to t@pereor free in the

presence of the fault) and hence the fault coverage will be actually Wigdn) these faults are
dropped during fault coverage calculations. The test patterns adHiayeer fault coverage for
the benchmark nak-pa. Totally 244 fault machines were simulated and@85vieere detected
leading to a fault coverage of 97%.

9.5.2.2 Comparison with State-of-the-art

An attempt on complete ATPG system for asynchronous circuits at trankgtdrs not re-
ported in the literature until now(up to author’s knowledge). Hence da@eiparison with the
current state-of-the-art is not possible. Comparison that can be nilde with the work in
[Eic65] and [SM04a], but they are for gate level fault. Comparison wétte devel test methods
will not be appropriate.
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9.5.2.3 Complexity and Scalability

The method introduced is completely scalable for the asynchronous cointuats. The test

generation algorithm traverses through two graphs(STG) for comptrangdge values and
also enumerates the adjacency vertices of source edges. The compi¢ixé@yast generation
algorithm is|E?|.|V|.|Va
andV; is the number of adjacent vertices in worst case.

, Where E is number of edges of the graphs, V, the number of vertices

9.5.2.4 Limitations

In this analysis, fault simulation was carried without any fault collapsinggepplied. Hence
the fault simulation time can be considerably reduced. Also, the number afaedte re-
duced when the fault dropping is carried out during every test patteralaion. Also the
fault simulation process uses switch level logic simulator to detect faultseeffiswitch level
fault simulation tool at transistor level will improve the fault simulation time and cedhe
resource/memory needed for the same.

9.6 Summary

In this chapter, a transistor level test generation methodology basednaititna fault model

on STG was proposed. A test generation algorithm was proposed anelsiglss of the imple-
mented test pattern generator were reported. Fault coverage oP8&tthe transistor level
is obtained by applying this method. The test patterns generated in the @dopethod is
higher compared to the gate level fault simulation. This is because, only th sitructure is

enumerated for the fault simulation in gate level simulation, whereas in the sgdpoethod,
the state graph is enumerated and the test patterns are generated fardis¢otréevel faults.
Though fault coverage for several benchmarks were reportedibg a transistor level logic
simulator in this chapter, not all the benchmarks could be fault simulated in thersanmeer.

A robust transistor level fault simulator is needed for fault coveragertang. Implementing a

custom transistor level fault simulator will be the future work/extension.
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Algorithm 14 Proposed Test Generation Algorithm
Input: State Transition Graph STG,State Graph SG

Output: Test Pattern vector - "Testvector"

begin
Data: vector pattern-true,pattern-false vector<vector> testvectortrue etgstfalse int

parent
resetstate— resetstateo f SGshortest_path(State graph S&)reach each edge ei in
STG g1(V,Ejlo
foreach each edge eis in graph sg1(Vs,Eg)
if source vertex of ei = name of the edge thisn
foreach vertex usg in graph sigdo
if (usg = source of eis) & (out-bits flighen
foreach vertex ‘us@ in succ. list of usglo
if outbit of us@ # usgthen
usdl=usR exit
end
end
if no usd then
“No pattern!”
end
end
else
foreachvertex V p in pred. list of usdo
repeat
pattern.push_bac¥(p)
until V p = reset_state
pattern.push_back(reset_state) testvectortrue.push_back(pattern)

pattern.clear
end

end
if (usg = target of eis) & (out-bits flipdhen
Same steps as line 9to 17
end
else
Same steps as lines 20-27 test stored in testvectorfalse
end

end

end

end

end
return testvector = testvectortrue + testvectorfalse;

end
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Figure 9.10: Eight different transitions in the transistor level Symmetric C-element design shown
in (a), (b), (c), (d), (e), (f, (g), and (h) for values of abc’ = 000,010,100,110,001,011,101,111

respectively.
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(g) abc 101 (h) abc 111

Figure 9.11: Eight different transitions in the transistor-level symmetric C-element design
with transistor p3 stuck-on shown in (a), (b),(c),(d),(e),(),(g), and (h) for values of abc’ =
000,010,100,110,001,011,101,111 respectively.



Chapter 10

Conclusion

10.1 Summary

This thesis has explored the possibility of generating good test patternstteetasynchronous
circuits with higher fault coverage and optimum area overhead. Foerelift methods were
introduced in this thesis each of them exploiting the circuit structure of thechsynous cir-
cuits, models and algorithms from graph theory and the currently availahistina tool for
synchronous circuits to develop robust test generation methods. Asbriehary of the thesis
is presented below.

A detailed background on Asynchronous circuit design and testing chabemm the asyn-
chronous paradigm was provided @hapter 2. The chapter further covered the topics on
testing (especially ATPG and scan design) with details on full scan and|paréia design.
Several ATPG methods were described followed by the introduction efakfault models.

Chapter 3 covered the literature review over the related works involving the desigiesta-
bility (DFT) and test generation of asynchronous circuits. The literatwiew in this chapter
included the topics: 1) Design for test (DFT) for asynchronous circ2)t&TPG methods for
asynchronous circuits, 3) Self checking designs of asynchroniouigts, 4) Testable asyn-
chronous circuit design, 5)Test Generation at defect/transistor Eavelg) Delay fault testing
of asynchronous circuits.

Chapter 4 carried out a comparison study on two automatic test pattern generation method
Background on the State Transition Graph (STG) based automatic teshgdteration was
described. The test pattern generation based on the scan insertioiguechre introduced.
Then a comparison of test generated by these two approaches for @mafdmall bench-
marks are presented. The chapter was concluded by stating the dkavelpatimprovements
to be incorporated in the proposed test methods.

216
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ABALLAST method was introduced i€@hapter 5. The chapter presented detailed background
on the balanced structures which was used in the BALLAST method. The tdsbdatogy
proposed applied the balanced structures in the asynchronous conatgktand effective test
pattern generation method was developed. The algorithms involved in this nveghetriefed
in detail. This method used the "check" and the "balance" routine used i B8TL method
to check and create the balanced structure of the asynchronous nathsts.cyclic to acyclic
conversion algorithm proposed forms the main contribution of this method.

AGLOB Method was introduced i€hapter 6. This chapter introduced two different meth-
ods of partial scan selection for asynchronous circuits namely AglobAgluth2. The cyclic
to acyclic circuit conversion technique was also used here to developsthgetterns for the
asynchronous circuits. Global loops present in the asynchronausitsie broken to create
an equivalent asynchronous circuit that can provide higher fautrege. Area overhead was
reduced considerably in this method.

Chapter 7 introduces the method based on Set Covering Problem. Background @oge
ering Problem and cycle enumeration methods were provided. The methoeigiited set
covering problem to find the minimum set cover was chosen as it had rdpgote perfor-
mance. This method reported good fault coverage and reduction in\agzead. A critical
analysis of impact of number of C-elements present in the benchmark arari¢gsgonding
fault coverage was carried out. Eventhough, a concrete conclusida ot be reached on the
impact, it gave a good insight on the impact of the circuit structure and thédoa# memory
elements over the fault coverage of the same. Following this analysis/|lmasa study was
carried out finally. All the three gate level test methods of test generatéva studied with
respect to fault coverage, test coverage and area overheade®etaults of these three meth-
ods were analyzed.

In Chapter 8 a high level extraction method for asynchronous circuits was constructed
method was based on partitioning all the memory elements into registers and ctiomaiha
gates in to combinational cloud. Several asynchronous benchmarksp@ied to this method
to extract their corresponding high level representation. These highrigpresentations can
be used to process the design at high level for test pattern generatiggwill considerably
increases the performance of the algorithm/test method developed on togsefektracted
views.

Chapter 9 introduced the method ATRANTE, a transistor level test generation methud. T
chapter provided further details justifying the need for transistor levelgeseration in the
introduction. Then the test methodology for this method was briefed. Thengrspace for
the test pattern generation and fault list generation was the State Transitiph (STG) rather
than the circuit netlist. The fault model used in this method of test generatisrawaodel
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different from conventional circuit oriented models (ex.stuck-at modéig new fault model
is called transition fault model which was modelled over the STG specificatitredfircuits.
This method provided additional fault coverage for the faults at trandestercompared to the
other test generation methods that used the same STG based pruningiéeieilt coverage
was obtained by mapping the transition fault model to the gate level and traneisbfaults
in the original circuit.

10.2 Future Works

Following future avenues are possible to work further and continue thsssthe

1. Delay Fault Testing

Delay fault testing of asynchronous circuits is the area which is not eeghlmuch until
now. Only few works are available in the literature for delay fault testingghahronous
circuits as mentioned in the chapter 3. Since the asynchronous circuitsrapesed of
delay components, testing the delay faults of asynchronous circuits ismportant.
Delay fault testing is still an active research in the synchronous desigwligen too.
Developing DFT methods and ATPG techniques for the delay faults in asymins
circuits will be needed in coming years as ITRS predicts more than 50% oé#igndin
the middle of the next decade will be DFT blocks requiring delay fault test.

2. Fault Simulator at Transistor Level
In [FS88a],[FS88b], [Cor91] inductive fault analysis for defegkldaults were analysed
extensively. The fault simulator at transistor level were explored inqexsides, but due
to the complexity of transistor level simulation and resource constraints tlamesiment
is slowed down. But with the current advancement in parallel programnmdgreany-
core processing power, new simulator implemented by parallel programmimgdees

can be anticipated to handle the complexity of these simulators.

3. New ATPG algorithm design
The gate level test methods proposed in this th&dmpter 6, Chapter 7 and Chapter
8 ) have incorporated synopysys’s Tetramax in the methodology for geoerof test
patterns for asynchronous circuits. Hence the effectiveness of ttieodseis confined
within the test generation and fault reporting effectiveness of the Tekrémoh So de-
veloping new ATPG algorithms for gate level testing of asynchronousititttat can
compare with the algorithm of Tetramax will be a promising contribution towaroigsto
ATPG for asynchronous circuits. One such effort was made in Ch@gtieer the lessons
learned from the Chapter 6 to Chapter 8. The new algorithm should takedoooirat
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the hazards caused by the asynchronous circuits and should alquelidedesting asyn-
chronous circuits that is operating in non-fundamental mode also. Thishegastate of
the art for asynchronous circuit test generation can be advanced.

4. New Fault Models
Fault models currently available for gate level testing are sufficient féintgstuck-at
faults. But for defect level faults it is necessary to model new fault nsod&lso with
the current technology node reaching deep submicron level, it is raegdesuild new
fault models to handle the defects that will be rising due to the compressioaturde

size in these nodes.

5. Ant colony optimization based test generation
Bio-inspired methods for developing test generation methods for asymahs circuits
are not explored yet up to the knowledge of the author. These algoritreneffactive
for developing scan selection algorithms. For example, Ant Colony Optimizhtiead
set covering problem can be formalized to develop a new partial scastiselenethod
for asynchronous and synchronous circuits. Some literatures argiemar the field
of synchronous circuit testing. Hence the same idea can be passedasyrichronous

circuit test generation.

6. Reversible Asynchronous test generation
Reversible computing is a newly emerging computing paradigm which is prommsing f
the beyond CMOS Era. For these types of computing architectures,haieyocis cir-
cuits based designs are best match. So developing new test generatiodsrethithese
Reversible Asynchronous designs will be a long term investment in termstajdaer-
ation for future designs.

Thus in author’s opinion, the basics of test generation principles newdplete refinement
and advancement in terms of fault models, test generation, fault simulatioREh methods
for developing successful test methods for asynchronous circuits.

10.3 Conclusion

This thesis was motivated towards developing four different test gemeraethodologies for
the asynchronous circuits. ABALLAST method presents a partial schaatomatic test gen-
eration methodology based on a novel adaptation of BALLAST for agymdus circuits and
time frame unrolling. Balanced structures are used to guide the selection siththeholding
elements that will be scanned. Fault coverage was improved from r&hg226-69.57 to
76.78 -94.37%. Three CAD tools written in C/C++ namely "Aballast","Cyclic2éicy and
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"Blif2graph" were outcome of this work. In AGLOB two test generation alfpmns((aglobl)
and(aglob2)) were proposed in this project which uses cyclic to acyietaitconversion,
partial scan based test generation and SCC based, graph densdyniesery element se-
lection as aids. The fault coverage was improved from 0 - 85% to 71 - 983 %AD tool
named AGLOB12 in C++ was also an outcome of this work. For ATRANTE metthmdmain
motivation of developing ATPG is supplemented by transistor level test gémer Here the
Petrinet based representation of the asynchronous circuits andreffitégping of transistor
level faults to STG based fault models were used to implement this ATPG metlggddlbe
test patterns generated covered the transistor level faults in addition tatthkegel faults. The
CAD tool ATRANTE developed for this tool is believed to be the first asyonbus transis-
tor level test generator. ASCP is a test methodology developed basedamtd &et covering
problem solution. Future work can be focused towards developing matgds for delay
fault testing. Developing a new fault simulator for the asynchronousitsreuill aid a swift
test development research. New ATPG method for transistor/defettdstvenethod could be
a promising track to carry on. New fault models are needed to accuragsadthe faults to
be tested in asynchronous circuits.
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