

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Automatic Test Pattern Generation for Asynchronous

Circuits

Dilip P. Vasudevan

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2011

Abstract

The testability of integrated circuits becomes worse with transistor dimensions reaching nanome-

ter scales. Testing, the process of ensuring that circuits are fabricatedwithout defects, becomes

inevitably part of the design process; a technique called design for test (DFT). Asynchronous

circuits have a number of desirable properties making them suitable for the challenges posed

by modern technologies, but are severely limited by the unavailability of EDA tools for DFT

and automatic test-pattern generation (ATPG).

This thesis is motivated towards developing test generation methodologies forasynchronous

circuits. In total four methods were developed which are aimed at two different fault mod-

els: stuck-at faults at the basic logic gate level and transistor-level faults. The methods were

evaluated using a set of benchmark circuits and compared favorably to previously published

work.

First, ABALLAST is a partial-scan DFT method adapting the well-known BALLAST tech-

nique for asynchronous circuits where balanced structures are usedto guide the selection of

the state-holding elements that will be scanned. The test inputs are automaticallyprovided

by a novel test pattern generator, which uses time frame unrolling to deal withthe remain-

ing, non-scanned sequential C-elements. The second method, called AGLOB, uses algorithms

from strongly-connected components in graph graph theory as a method for finding the opti-

mal position of breaking the loops in the asynchronous circuit and adding scan registers. The

corresponding ATPG method converts cyclic circuits into acyclic for which standard tools can

provide test patterns. These patterns are then automatically converted foruse in the original

cyclic circuits. The third method, ASCP, employs a new cycle enumeration methodto find the

loops present in a circuit. Enumerated cycles are then processed using an efficient set cover-

ing heuristic to select the scan elements for the circuit to be tested.Applying these methods to

the benchmark circuits shows an improvement in fault coverage compared toprevious work,

which, for some circuits, was substantial. As no single method consistently outperforms the

others in all benchmarks, they are all valuable as a designer’s suite of tools for testing. More-

over, since they are all scan-based, they are compatible and thus can besimultaneously used in

different parts of a larger circuit.

In the final method, ATRANTE, the main motivation of developing ATPG is supplemented by

transistor level test generation. It is developed for asynchronous circuits designed using a State

Transition Graph (STG) as their specification. The transistor-level circuit faults are efficiently

mapped onto faults that modify the original STG. For each potential STG fault,the ATPG tool

provides a sequence of test vectors that expose the difference in behavior to the output ports.

The fault coverage obtained was 52-72 % higher than the coverage obtained using the gate

level tests.

i

Overall, four different design for test (DFT) methods for automatic test pattern generation

(ATPG) for asynchronous circuits at both gate and transistor level were introduced in this thesis.

A circuit extraction method for representing the asynchronous circuits ata higher level of

abstraction was also implemented.

Developing new methods for the test generation of asynchronous circuitsin this thesis facili-

tates the test generation for asynchronous designs using the CAD tools available for testing the

synchronous designs. Lessons learned and the research questionsraised due to this work will

impact the future work to probe the possibilities of developing robust CAD tools for testing the

future asynchronous designs.

ii

Acknowledgements

I would like to extend my sincere gratitude to my supervisor Dr. Aristides Efthymiou for his

patience and guidance during my research endeavor. I am very thankful to him for mentoring

and supporting during these years. I would like to take this opportunity to thank my second

supervisors Prof. Nigel Topham, Dr. Murray Cole and Prof. D.K. Arvind for their continuous

guidance.

I would like to thank my postdoctoral mentors Prof. Michel Schellekens and Dr. Emanuel

Popovici during my Thesis writing periods. Their support was invaluable and I would like to

acknowledge their guidance for my smooth transition in to next stage of my academic career. I

would like to thank my external examiner and my internal examiner for providingvery helpful

and guiding recommendations.

I would also like to thank Prof. Parag K. Lala and Prof. Patrick Parkerson who introduced me

to research career during my postgraduate studies.

I would like to acknowledge the support offered by Engineering and Physical Sciences Re-

search Council EPSRC and School of Informatics for my three years ofstudy. I would like to

thank UK ASYNC Forum for providing me a platform to network with other Asynchronous

Design researchers.

I am grateful to my parents and my brother for their loving support. I would like to extend

my sincere thanks to all my friends, relatives and acquaintances who played significant part in

keeping me going during my PhD years.

I would like to extend my thanks to the Edinburgh Tango Society, which helped mespend my

leisure time embarking something creative.

Finally, I would like to acknowledge my sincere thanks to the comments and reviews of all

the blind reviewers of my conference papers, who made me a stronger andstronger academic

writer and researcher.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has notbeen submitted

for any other degree or professional qualification except as specified.

(Dilip P. Vasudevan)

iv

Contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Past work . 1

1.1.2 Motivation . 2

1.1.3 Asynchronous Design and Testing in Industry 4

1.2 Contributions . 5

1.3 Publications . 8

1.3.1 Thesis Overview . 8

1.4 Summary . 11

2 Background 12

2.1 Asynchronous Design . 12

2.1.1 Introduction . 12

2.1.2 Gates and Delay Models . 13

2.1.3 Types of circuits . 14

2.1.4 Logic Synthesis and Simulation: . 15

2.2 Testing . 17

2.2.1 Introduction . 17

2.2.2 Fault Modeling . 17

2.2.3 Terminologies . 19

2.2.4 Automatic Test Pattern Generation 19

2.2.5 ATPG Algorithms . 20

2.2.6 Scan Design . 25

2.2.7 Partial Scan Design . 26

2.3 Summary . 27

3 Related Work 29

3.1 Introduction . 29

3.2 Related Work . 30

v

3.2.1 Design For Test . 30

3.2.2 Scan Testing . 33

3.2.3 Synthesis For Testability . 36

3.2.4 Testing C-element . 37

3.2.5 Test Pattern Generation for Asynchronous Circuits38

3.2.6 Random Testing . 42

3.2.7 Offline Testing . 44

3.2.8 Functional Testing . 45

3.2.9 Fault Simulators and Test methods . 46

3.2.10 Fault Modelling . 50

3.2.11 Switch/Transistor Level Testing . 52

3.2.12 Self Testing Asynchronous Designs 53

3.2.13 Critical Analysis . 54

3.3 Conclusion . 56

4 Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative

Study 57

4.1 Introduction . 57

4.2 Automatic Test Pattern Generation based on Symbolic Reachability Analysis .58

4.2.1 Definition . 58

4.2.2 Synchronous Abstraction of the Circuit State 59

4.3 Scan Latch Insertion Based Test Generation 61

4.4 Comparison of results . 63

4.4.1 Example . 63

4.4.2 Analysis . 64

4.4.3 Factors affecting the fault coverage 70

4.5 Conclusion . 72

5 ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures 73

5.1 Introduction . 73

5.1.1 Problem statement . 73

5.1.2 Motivation . 74

5.2 Background . 74

5.2.1 Cyclic and Acyclic Circuits . 74

5.2.2 Loops in circuit . 75

5.2.3 BALLAST . 76

5.2.4 Circuit topology . 76

5.3 Test Methodology . 83

vi

5.3.1 Special Case - Cyclic circuits without C-elements 88

5.4 Algorithms . 88

5.4.1 Circuit Topology Description . 88

5.4.2 Cycle detection . 89

5.4.3 Cyclic to Acyclic Conversion . 92

5.4.4 ABALLAST . 95

5.5 Evaluation methodology . 96

5.5.1 Choice of Benchmarks . 97

5.5.2 Methods Evaluated . 97

5.5.3 Metrics used for Evaluation . 98

5.6 Results and Analysis . 99

5.6.1 C-element . 100

5.6.2 Benchmark "chu150" . 101

5.6.3 Results . 102

5.7 Conclusion . 112

6 AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops122

6.1 Introduction . 122

6.2 Background . 123

6.3 Test Methodology . 123

6.3.1 Cyclic-to-Acyclic Conversion . 124

6.4 Algorithms . 125

6.4.1 Global loop breaking . 125

6.4.2 Cyclic-to-Acyclic Conversion . 126

6.5 Working Example and Results . 131

6.5.1 c-element . 132

6.5.2 ram-read-sbuf . 134

6.5.3 Experiments and Results . 134

6.6 Conclusion . 139

7 ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits143

7.1 Introduction . 143

7.2 Preliminaries . 144

7.3 Algorithms . 144

7.3.1 Cycle enumeration . 144

7.3.2 SCP algorithm . 144

7.4 Methodology . 149

7.5 Experiments and Results . 150

vii

7.6 Conclusion . 154

8 ACLARION - High level circuit extraction for Asynchronous Circuit Te sting 156

8.1 Introduction . 156

8.2 Background . 157

8.2.1 Clarion . 157

8.3 High Level Circuit Extraction . 158

8.3.1 Method . 158

8.4 Register clustering . 162

8.4.1 Method . 163

8.5 Combinational logic clustering . 172

8.6 Fanout clustering . 176

8.6.1 Algorithm . 176

8.7 Experiment . 180

8.8 Evaluation . 184

8.8.1 Impact on Fault Coverage . 187

8.8.2 Impact on Number of patterns . 188

8.9 Conclusion . 192

9 ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 196

9.1 Introduction . 196

9.1.1 Motivation: Why transistor level testing? 197

9.2 Background . 198

9.2.1 Asynchronous Circuit Representation 198

9.3 Problem Statement . 200

9.3.1 Motivating Example . 200

9.4 Test Method . 203

9.4.1 Fault Model . 205

9.4.2 Test Algorithm . 206

9.4.3 Fault Simulation . 207

9.5 Experiment Results . 209

9.5.1 Test Generation and Fault Simulation 209

9.5.2 Analysis . 210

9.6 Summary . 212

10 Conclusion 216

10.1 Summary . 216

10.2 Future Works . 218

viii

10.3 Conclusion . 219

Bibliography 221

ix

List of Figures

1.1 Contributation of the Thesis . 7

1.2 Organization of the Thesis . 10

2.1 Asynchronous Design . 13

2.2 Asynchronous Design Flow - language based [KF91] 15

2.3 Asynchronous Design Flow: Graph based(Derived from petri net) [E.P97] . . . 16

2.4 Stuck-at Faults . 18

2.5 Stuck-Open/Close Faults . 18

2.6 An ATPG System in a VLSI Design Process [MV00]20

2.7 D-Algorithm [[MAF90]] . 22

2.8 PODEM Algorithm [[MAF90]] . 24

2.9 FAN Algorithm[[MAF90]] . 25

2.10 Full Scan Architecture [MV00] . 26

2.11 Automated Scan Design [MV00] . 27

2.12 Partial Scan Architecture [MV00] .28

3.1 Asynchronous Circuit Testing - A Short Review 30

4.1 Majority Gate Based C-Element . 59

4.2 State Graph . 60

4.3 LSSD Latch Desgin . 62

4.4 Celement Design with LSSD Latch . 62

4.5 C-element-Faults detected by testify . 63

4.6 Half-Faults detected by testify . 64

4.7 Total number of Faults - Symbolic versus Full Scan67

4.8 Total Faults Vs Testable Faults - Symbolic Method 68

4.9 Total Faults Vs Testable Faults - Full Scan Method 68

4.10 Fault Coverage Comparision - Symbolic Vs Full Scan 69

4.11 Comparision of Test Patterns - Symbolic Vs Full Scan 70

x

5.1 C-element - Cyclic to Acyclic Conversion . 75

5.2 Benchmark "half" - Cyclic circuit and equivalent acyclic circuit 76

5.4 Unbalanced and Balanced structures .. 80

5.5 Partial Scan Circuit using Balanced structures 80

5.6 Example Circuit - Graph Representation . 81

5.7 BALLAST Method Example . 82

5.8 BALLAST Method on Synchronous and Asynchronous Circuits 83

5.9 Test Methodology . 84

5.10 Optional caption for list of figures1 .. 87

5.11 Test generation for cyclic circuit without state holding elements 88

5.12 Cyclic to Acyclic conversion - C-element . 89

5.13 Graph traversal in GR procedure .. . 91

5.14 Ordered Vertex Sequence .. 92

5.15 C-element -Majority Gate Implementation . 100

5.16 Test Generation for chu150 .. 102

5.17 Fault Coverage comparison - ABALLAST vs Full scan 103

5.18 Scan area overhead comparison .. . 104

5.19 Comparison of Number of Patterns Generated -ABALLAST Vs Full Scan . . . 105

5.20 Distribution of different fault classes, PT- Possible Detected, DT- Detected, NO

- Not observable, NC - Not Controllable . 106

5.21 Fault Coverage of Benchmarks with copies 1 to 8 108

5.22 Number of Test Patterns for Benchmarks with copies 1 to 2 110

5.23 3D Plot depicting the impact on fault coverage 111

5.24 3D Plot depicting the impact on number of patterns 112

6.1 Test Methodology . 124

6.2 Scan Selection . 127

6.3 C-element Cyclic to Acyclic Conversion . 129

6.4 C-element Testing . 132

6.5 Benchmark "ramreadsbuf" . 133

6.6 Fault Coverage - Full Scan Vs AGLOB1 . 135

6.7 Number of Patterns - Full Scan versus AGLOB1 135

6.8 Fault Coverage - Full Scan versus AGLOB2 136

6.9 Number of Patterns - AGLOB1 vs AGLOB2 137

6.10 Fault Coverage - AGLOB1 vs AGLOB2 .137

6.11 Number of Patterns - Full Scan vs AGLOB2138

6.12 Results - Area Overhead comparison .. 138

xi

7.1 Function - EnumPath . 145

7.2 Function - Wscp . 146

7.3 Greedy Heuristic . 146

7.4 Function - Optimize . 147

7.5 Algorithm:ASCP . 148

7.6 Test Methodology . 149

7.7 Fault Coverage Comparison - ASCP versus Full Scan Method 151

7.8 Number of Patterns - ASCP versus Full Scan Method 153

7.9 Comparison of number of scanned C-elements for 27 benchmarks (X-axis=Circuit

name, Y-axis = Scan Area Overhead Percentage) 153

8.1 Function Span . 159

8.2 ACLARION Framework - Top-level View . 160

8.3 Function:Overlap . 161

8.4 Function:Outspan and Output WrapSpan .164

8.5 Function:Input Spand and Input WrapSpan 165

8.6 Function:Output Overlap . 166

8.7 Function:Input Overlap . 167

8.8 Function: Maxspan Output . 169

8.9 Function:Maxspan Input . 170

8.10 Function:Maximal Register . 171

8.11 Function:CLU Clustering - part1 . 174

8.12 Function:CLU Clustering:part 2 . 175

8.13 Function Fanout Clustering - part 1 .. 178

8.14 Function Fanout Clustering - part 2 .. 179

8.15 Master-read Benchmark .182

8.16 master-read benchmark - numbered clouds 183

8.17 Extracted High Level View - master-read benchmark 184

8.18 Graph Size Comparision - Vertices . 186

8.19 Graph Size Comparision - Edges . 187

8.20 Impact on Fault Coverage - Full Scan versus AGLOB1 versus AGLOB1-ACLARION188

8.21 Impact on Fault Coverage - Full Scan versus AGLOB2 versus AGLOB2-ACLARION189

8.22 Impact on Fault Coverage- Full Scan versus ASCP versus ASCP-ACLARION . 190

8.23 Impact on Number of Patterns - Full Scan versus AGLOB1 versus AGLOB1-

ACLARION . 191

8.24 Impact on Number of Patterns - Full Scan versus AGLOB2 versus AGLOB2-

ACLARION . 192

8.25 Impact on Number of Patterns - Full Scan versus ASCP versus ASCP-ACLARION193

xii

8.26 Impact on Fault Coverage for three methods- with and without ACLARION . . 194

8.27 Fault Coverage Comparison - All methods .195

9.1 Open Defects. a) A foreign particle causing a line to open and a line thinning,

b) A contaminating particle causing 7 line opens, c) Defect which caused an

open in metal 2 and short in metal 1. [RM00] 197

9.2 Stuck-at-false fault and Stuck-at-true fault 199

9.3 Fault Mapping in STG based asynchronous circuit netlist 200

9.4 SG and STG for faulty circuit with transistor P3 Stuck-on fault shown in (a),

(b), (c), (d)respectively. .. 202

9.5 C-element Design . 202

9.6 Transistor P3 Stuck-on fault in the C-element203

9.7 Test Methodology . 204

9.8 Test Generation Example . 207

9.9 Fault Injection . 208

9.10 Optional caption for list of figures .214

9.11 Optional caption for list of figures1 .. 215

xiii

List of Tables

4.1 Fault Coverage using Symbolic Method . 65

4.2 Fault Coverage for Scan Insertion based method 66

5.1 Fault Classes in Tetramax . 99

5.2 Fault Sites and Detection Results . 101

5.3 Fault Coverage . 114

5.4 Result – Fault Coverage Comparison .115

5.5 Scan Area Overhead . 116

5.6 Number of Patterns . 117

5.7 Fault Class Distribution . 118

5.8 Undetectable Fault Locations . 119

5.9 Fault Coverage Comparison of proposed method using 1 to 8 copies of forward

path during acyclic conversion . 120

5.10 Comparision of Number of patterns generated for the circuits with 1 to 8 copies

of forward path during acyclic conversion .121

6.1 Fault Coverage Comparison . 140

6.2 Comparison of Number of Patterns . 141

6.3 Area Overhead - expressed as percentage of extra scan elements 142

7.1 ASCP Versus Full Scan - Fault Coverage Comparison 152

7.2 Comparison of Number of Patterns . 155

8.1 Circuit Extraction Results . 185

9.1 MOS Gate Output Table[JA85] . 201

9.2 Truth Table for Good(G) and Faulty(F) machine 201

9.3 Transistor Level Circuit Characteristics .. 209

9.4 ATRANTE Test Generator Results . 210

9.5 Fault Coverage Results from Fault Simulator 211

xiv

Chapter 1

Introduction

1.1 Introduction

Synchronous circuit design has been considered the standard for industrial practice due to the

availability of advanced CAD tools and testing strategies. At deep sub micron levels, global

clock synchronization, power consumption and noise factors are affecting the design perfor-

mance, as a result asynchronous circuit design is gaining its momentum currently over its

synchronous counterpart. On the other hand, asynchronous circuitsneed thorough research on

CAD tool development for the whole design flow with test generation [BE00]Asynchronous

designs are classified into speed independent, delay insensitive, and quasi delay insensitive

circuits.Thus it has different models and architectures to be designed with and each of them

has its own circuit models and delay assumptions. Significant efforts have been taken to de-

velop CAD tools for synthesis of asynchronous circuits which lead to several tools like Petrify

[CKK+96b] ,Tangram[KP01], Balsa [BE00] etc.,. Currently,very few tools (commercial tool

from [Han])are available for test generation for asynchronous circuits. Testing is essential for

the designed systems, as the fabrication and component aging will cause defects in the circuits.

1.1.1 Past work

Several attempts to generate tests for asynchronous circuits have been made in the recent years.

Some of the methods involved test generation based on the STG (State Transition Graph) spec-

ification of the design. The test methods were introduced mostly by traversingthrough states of

the state transition graph of the circuit. Some attempts have been made to generatetest patterns

for these circuits at the gate level. Also the test generation was specifically based on DFT meth-

ods, which makes the test generation methods dependent on the design methodology of the cir-

cuits. Several methods for generating acyclic circuit(circuits without feedback) from cyclic cir-

1

Chapter 1. Introduction 2

cuits(circuits with feedback) have been introduced lately [Edw03],[Mal93],[Wei72],[Niv04].

But the methods are restricted for the cyclic circuit without state holding elements and which

does not oscillate. But oscillations are predominant in asynchronous cyclic circuits and also

presence of state holding elements like c-elements are common in them. Full scan based test

generation for the circuits have been proposed in [Bee03]. Partial scan based method for self-

timed circuit was proposed in [KB95]. The work in [BCR96] introduces a synchronous test

generation to generate test for asynchronous circuits. A STG(State Transition Graph) based

approach of test pattern generation was carried out in [RCPP97]. Test pattern generated were

applied synchronously to test the target asynchronous circuits. A test generation method for

testing redundant circuits in asynchronous designs was introduced in [LKL94] which used a

method called “Variable Phase Splitting” to generate test patterns for these NCL circuits which

is acyclic. A partial scan based delay fault testing of asynchronous circuit was acclaimed in

[KKL +98]. An algorithm similar to the proposed algorithm on this paper was used to test path

delay faults. The work in [KSS02] introduced a test method for a subclassof asynchronous

circuits called NCL(Null Convention Logic). This method is also based on partial scan test

generation by breaking feedback loops. A partial scan test generationmethod for asynchronous

SOC interconnect was presented in [ABE05]. The method focused on generating test for asyn-

chronous interconnect named CHAIN. In [Ron94], a partial scan testgeneration method for

DCC error corrector was provided. A fault simulator called FSIM was used for fault sim-

ulation. Micropipelines form the vital components in AMULET processor design and Scan

testing for these micropipelines was introduced in [PF95b]. Lately a systematicscan inser-

tion technique was introduced to test Asynchronous interconnects [SO08]. Also a recent work

on automating test generation for asynchronous NCL circuits was published in [WA08]. This

method promises near 100% test coverage for most of the NCL libraries usedto design the

NCL circuits. A detailed literature review on related works is given in chapter3.

1.1.2 Motivation

Most commonly used testing methods for testing digital circuits are structural and functional

testing. Both these methods have its own pros and cons.

Structural Vs Functional

Functional testing is the type of testing which is carried out by validating the design under test

by its functional specification. This method is more closer to the verification. Inother hand, the

structural testing is more closer to the implemented circuit structure of the DUT. Asynchronous

circuit design does not have a clear standard for its specification. Different research groups

have different design methodologies for asynchronous circuit design. Lack of standard design

methodology makes the functional testing harder. So taking the route of structural testing will

Chapter 1. Introduction 3

increase the developed test method more generic for all the design methods of asynchronous

circuits. Hence this thesis follows one of the structural testing method called Scan testing for

the DFT and preprocessing.

Partial scan based test generation is a promising approach to generate effective test patterns for

sequential circuits. Several methods have already been implemented for synchronous sequen-

tial circuit. Adapting those methods for testing asynchronous sequential circuit is considered

effective. Because the test generation process for asynchronouscircuits can be followed in the

same manner as that of synchronous circuits for most of the steps exceptthat the feedback

loops/cycles have to be appropriately handled. Though it seems easier, handling the cycles and

oscillations due to them is a harder task. Thus two different ATPG methodologies for syn-

chronous sequential circuits are studied and the useful aspects of those methods were adapted

to develop the algorithms for asynchronous circuit based ATPG methods .

Ballast methodology of generating test for sequential circuit is a promising approach for par-

tial scan based test generation of synchronous sequential circuits. The main technique used in

this method involved generating a balanced sub-graph from the circuit topology graph of the

sequential circuit which was proved to have equivalent combinational structure when the mem-

ory elements in the sub-graph are replaced by a wire. Thus the test patterns for the sequential

circuits are generated by treating them as combinational equivalent. This same technique can

be applied to the asynchronous sequential circuit to generate test.

As a next step, another partial scan synchronous sequential circuit based test generation method

was adapted to define a test methodology for asynchronous sequential circuits. The main tech-

nique used in this method involved selecting the memory elements based on finding the strongly

connected components (SCC) from the circuit topology graph of the sequential circuit. Thus

the test pattern for the sequential circuits is generated by converting the selected memory ele-

ments in to the scan elements. This technique can be applied to the asynchronous sequential

circuit to generate test. The main challenges faced by applying these technique to the asyn-

chronous circuits are

• Asynchronous circuits have loops which makes them cyclic circuit whereas the syn-

chronous method operates only on acyclic circuits.

• Asynchronous circuits consist of memory element other than latches. c-elements are

the frequently appearing memory elements in asynchronous design. Theseelements

constitute the local loop in overall circuit structure.

• The operation of all the c-elements cannot be controlled during their normal operation

compared to normal latches controlled by clock.

Until now only the gate level test generation for asynchronous circuits were discussed. The

Chapter 1. Introduction 4

transistor level test generation is still an active research in synchronous design field also. The

reason is that infamous stuck-at fault model cannot model all the defectlevel faults [FS88b]

[Mal87]. Thus the transistor level test generation is one level further down the gate level test

generation scenario. This level of test generation provides higher level of fault coverage and

a closer realization of the physical defects. But this has to be traded off with the longer test

generation time due to the drastic increase in the number of nodes to be tested. Fault simulation

of the circuit at transistor level will take relatively longer time compared to the gate level

simulation. Thus the test generation at transistor level design poses following drawbacks:

• Increase in number of fault sites to be tested

• Transistor level net list handling

• Longer fault simulation and test generation time

1.1.3 Asynchronous Design and Testing in Industry

Recently, asynchronous circuits based chip designs and their productsand applications are

introduced in industry. Several companies that design asynchronous circuit based chips are

• ARM,

• Tiempo,

• Elastix Corporation,

• Achronix,

• Handshake Solutions and

• Silistix.

1.1.3.1 Elastix Corporation

The quote from the Elastix Corporation [Ela] on testing asynchronous circuits named "Elastic

Circuits" is shown below:

"Elastic circuits are tested in the very same way as synchronous circuits. The fact that the

circuit looks like its synchronous counterpart makes it possible to use the same test structures

(e.g., scan chains, BIST) and patterns that were initially designed for the synchronous circuit.

Additionally, the elastic circuit requires some specific logic to test the Elastic Clocks. This is a

negligible extra logic and a small set of extra test patterns."

Chapter 1. Introduction 5

As stated above, "specific logic" is required to test the elastic circuits. So thetest process is

more specific to the elastic circuits.

1.1.3.2 Tiempo

In Tiempo [Tie], test process is aided by the type of design method used to design the asyn-

chronous circuits. The design method is based on implementation of group of modules com-

municating using the handshaking protocols. They use the very well knowndual rail logic or

other multi-rail encoding for the data detection between the modules. They have implemented

this design method by a succession of wavefronts. It has been claimed thatthe occurrence of

the stuck-at-fault in these designs will eventually stop the flow of data in the design as they are

implemented as a succession of wave-fronts. Then the fault eventually blocks the handshaking

protocol to continue to next stage. The faulty system is detected based on this behaviour.

1.1.3.3 ARM and Handshake Solutions

ARM996HS [BY07], A first licensable clockless processor was designed based on the TiDE

design flow Haste. ARM [ARM] released this processor partnering with Handshake solutions.

The testing process of this design is based on the full scan method which is still based on

synchronous full scan method.

1.1.3.4 Other Companies

Achronix, Silistix , Timeless design automation are the other startups working based on the

asynchronous design to extend it to SOC, NOC, FPGA and ethernet based applications. The

test method applied by them is still based on synchronous design methodologies.

As discussed above, the test methods applied in industry are more specific tothe design method

used by them for implementing the asynchronous circuits. A generic or standard asynchronous

circuit test methodology is not yet introduced at industry standard.

1.2 Contributions

This thesis is motivated towards developing several automatic test pattern generation (ATPG)

methodologies for the asynchronous circuits that can be incorporated in tothe currently avail-

able industrial synchronous testing tool. Fig.1.1 gives the overview of the contribution of the

thesis to the asynchronous circuit test flow.

Chapter 1. Introduction 6

A high level extraction tool named ACLARION (chapter 5) for extracting thehigh level circuit

structure of the asynchronous circuits was implemented. Always the DFT(Design For Test)

methods demanded clear partition and clustering of the registers and combinational gates which

will aid the test generation. To fulfill this demand, the tool was implemented. The main

contributions based on this tool are

• circuit extraction algorithm for asynchronous circuits

• completely implemented extraction tool based on this algorithm

Next the work on ABALLAST(chapter 6) is motivated towards developing an automatic test

pattern generation methodology which uses cyclic to acyclic circuit conversion, partial scan

based test generation and Ballast methodology as aids. Thus the contributions of this method

are

• Effective handling of the cyclic asynchronous circuits to accommodate them to the usual

synchronous test generation flow

• Partial scan element selection based on balanced sequential structures

• Automatic Test pattern generation for the partial scan design generated

The test generation process in AGLOB(chapter 7) also uses cyclic to acyclic circuit conversion,

partial scan based test generation and SCC based memory element selectionas aids. Thus the

contributions of this method are

• Effective handling of the cyclic asynchronous circuits to accommodate them to the usual

synchronous test generation flow

• Partial scan element selection based on SCC

• Automatic Test pattern generation for the partial scan design generated

The method ASCP (chapter 8) proposed in this thesis is based on the mapping the partial scan

selection problem to the set covering problem.

• A new partial scan selection algorithm based cycle enumeration and set coving problem

• Automatic Test pattern generation for the partial scan design generated

Also, a case study on the proposed test methods is carried out by comparing these three methods

based on the figure of merits of each method.

For ATRANTE (chapter 9), the main motivation of developing ATPG is supplemented by tran-

sistor level test generation. Here the Petri net based representation ofthe asynchronous circuits

and efficient mapping of transistor level faults to state transition graph (STG) based fault mod-

els are used to implement the ATPG methodology. The contribution of this method is:

Chapter 1. Introduction 7

Circuit

Specification

Design

For

Test

Full ScanPartial Scan

Test

Generation

Fault Coverage

Report

Chapter 5

(ABALLAST)

Circuit

Preprocessing/

Representation

Fault

Simulation

Chapter 6

(AGLOB)

Chapter 7

(ASCP)

Chapter 9

(ATRANTE)

Chapter 8

(ACLARION

Chapter 4

Comparative

Analysis

Test Generation Flow

Figure 1.1: Contributation of the Thesis

• Using the transition fault model to generate fault lists

• Mapping of the transistor level faults to transition faults on STG

• Automatic Test Pattern generation method using the transition fault model with STG

• Implemented test pattern generator

Chapter 1. Introduction 8

1.3 Publications

Parts of this thesis work have been published in the following conferencesand workshops.

• D.P.Vasudevan and A.Efthymiou,“ Automatic Test Pattern Generation For Asynchronous

Circuits”, SIGDA PhD Forum, 48 th Design Automation Conference (DAC - 2011), San

Diego, June 2011.

• D.P.Vasudevan and A.Efthymiou, “A Transistor Level Test Generation for Asynchronous

Circuits”, IEEE International Workshop on Design and Test (IDT’09),Riyadh,April 2009.

(Accepted)

• D.P.Vasudevan and A.Efthymiou, “Partial Scan Test Generation for Asynchronous Cir-

cuits Based on Breaking Global Loops”, 20th UK Asynchronous Forum,Manchester,

September 2008.

• D.P.Vasudevan and A.Efthymiou, "A Partial scan based test generation for asynchronous

Circuits", 11th IEEE International Symposium on Design and Diagnostics ofElectronic

Circuits and Systems (DDECS’08), 2008

• D.P.Vasudevan, "A Novel method of Test generation for Asynchronous Circuits,", 2nd

IEEE International Workshop on Design and Test (IDT’07), 2007

• D.P.Vasudevan and A.Efthymiou, " Comparative Analsysis stuck at test generation in

asynchronous circuits” 1st IEEE International Workshop on Design and Test (IDT’06),

2006

1.3.1 Thesis Overview

The proposed thesis structure is as presented below. The organization of the thesis is shown in

the Fig.1.2

A detailed background on Asynchronous circuit design, testing challenges in the asynchronous

paradigm will be given in chapter 2. Then the chapter follows further detailing over the topics

on testing (especially scan design) with details on full scan and partial scandesign. Then

several ATPG methods will be introduced and briefed followed by introducing several fault

models.

Chapter 3 briefs the detail literature on the testing asynchronous circuits. The chapter is divided

based on the following topics1) Design for test (DFT) for asynchronous circuits, 2) ATPG

methods for asynchronous circuits, 3) Self checking designs of asynchronous circuits, and 4)

Chapter 1. Introduction 9

Testable asynchronous circuit design,5)Test Generation at defect/transistor level.5) Delay fault

testing of asynchronous circuits. The related works on each of these topics are reviewed.

Chapter 4 carries out a comparison study on the two automatic test pattern generation meth-

ods.Background on the State Transition Graph (STG) based automatic test pattern genera-

tion are briefed.The test pattern generation based on the scan insertion technique are intro-

duced.Then a comparison of test generated by these two approaches for a number of small

benchmarks are presented. The chapter is concluded by stating the drawbacks and improve-

ments to be incorporated in the proposed test methods.

The ABALLAST method is described in Chapter 5. The chapter gives further detailed back-

ground followed by the introduction of overall test methodology. The algorithms involved in

this method will be briefed in detail. The following section will be on providing working ex-

amples for the test flow and comparison of results. The chapter will be concluded with the

results.

The AGLOB method is described in Chapter 6. The chapter follows the same structure as of

the chapter 5. Algorithms will be detailed in section 3, followed by the working examples and

results in the section 4. The chapter is concluded with the results comparison.

Chapter 7 introduces the method ASCP based on Set Covering Problem. Background on Set

Covering Problem and cycle enumeration were provided. Then the algorithms involved in

developing the test methodology are briefed. Next section will be describing the overall test

methodology. Results are presented and analysis of the experimental results are done. Next,

overall case study is carried out as the second part of this chapter. Allthe three gate level

test generation methods of ATPG are compared in terms of fault coverage,test coverage,test

patterns, and area overhead.Detailed results of these three methods are analyzed and then the

chapter is concluded.

Chapter 8 ACLARION is motivated towards development of an high level extraction tool. It

gives the background required for the description of the extraction method. For giving foresight

of the ATRANTE method in this chapter , a brief introduction to Petri nets, STG and SG

will be provided first.Then it briefs the basic functions required for the implementation of the

ACLARION extraction method and the overview of the methodology.Next section describes

the proposed heuristics for the Register clustering process. Next section briefs the heuristics

for the combination logic unit (CLU) clustering. Fanout clustering heuristicsare introduced

in detail in section6. Experimental results are analyzed with one working examples and the

chapter is concluded.

Chapter 9 introduces the method ATRANTE. This chapter provides furtherdetails justifying

the need for transistor level test generation in the introduction. Then the test methodology for

Chapter 1. Introduction 10

Chapter 1

Introduction

Chapter 6

AGLOB

Chapter 7

ASCP

Chapter 5

ABALLAST

Chapter 3

Literature

Review

Chapter 4

Comparative

Analysis

Chapter 8

ACLARION

Chapter 9

ATRANTE

Chapter 10

Conclusion

Chapter 2

Background

AGLOB

A partial Scan

methodology developed

by Cutting Global Loops in

Asynchronous Circuist

ABALLAST

A partial Scan

methodology based on

BALLAST, a partial scan

method for Synchronous

Circuits

ASCP

A partial Scan

Test Methodology

using Set Covering

Problem

ACLARION

A high level circuit extraction

method for asynchronous circuit

representation aiding test generation

ATRANTE

A transistor level test generation

method involving custom fault simulation

and test generation.

Background on Asynchronous Circuits,

Test Methodology for Asynchronous Circuits

and Different Automatic Test Pattern Generation

Methods

Literature review on past works on

Asynchronous Circuit Test generation,

Design for Test methods and Fault Models

`

Comparision of two different asynchronous circuit

 test methods and their results analysis.

Figure 1.2: Organization of the Thesis

this method is briefed. Working examples and results are detailed in the next section followed

by conclusion.

Final chapter 10 is on conclusion and future work.

Chapter 1. Introduction 11

1.4 Summary

This chapter gave a brief introduction about this thesis. The need for asynchronous design

testing based on partial scan testing was discussed. The main motivation towards developing

test generation methods for asynchronous circuits was stated briefly. The publications resulted

from the several works carried out in this thesis were also listed. The next chapter will be giving

a brief introduction to asynchronous design as a first part and the second part of the chapter will

provide the introduction to the testing and testable design. This thesis was introduced in this

chapter. The main motivation towards developing test generation methods forasynchronous

circuits was stated briefly. The publications resulted from the several works carried out in this

thesis were also listed. The next chapter will be giving a brief introduction toasynchronous

design as a first part and the second part of the chapter will provide theintroduction to the

testing and testable design.

Chapter 2

Background

2.1 Asynchronous Design

2.1.1 Introduction

Asynchronous Design Methodologies follow the same procedure as synchronous design in

most cases, except that the global clocking scheme is not present in it. The clock skew problem

is overcome in this design due to the lack of global clock and this problem becomes more local

for the circuits with fewer gates. Moreover, asynchronous circuits areconsidered as circuits

modeled by the interconnection of gates and delay models.

Advantages: The main advantages of using asynchronous design are

• Modularity

• Average Case Performance

• Power Management

• Improved Electro-Magnetic Compatibility

Also the disadvantages in asynchronous design based systems are

• Increased Circuit Cost

• Complexity

• Lack of Tools

• Testing is harder

Fig.2.1 overall view of the asynchronous design methodology. The gate and delay models of

the asynchronous circuit design is introduced further.

12

Chapter 2. Background 13

Figure 2.1: Asynchronous Design

2.1.2 Gates and Delay Models

Gates are composed of several inputs and outputs whose value is evaluated by its corresponding

logic functions. Delay models are single input-single output elements which, does not evaluate

any logic, but reproduce the input after a specified amount of time. Basedon the magnitude,

delay can further be classified as Bounded and Unbounded.

If the upper and lower bounds of the delay magnitude are known,then it is called bounded. If

the bound for the magnitude is not known (but finite) with the only information onwhether it

is positive or negative is known, then it is unbounded delay. Based on theamount of memory

associated with the delay element they are classified further as pure and inertial delays.

If the delay element duplicates the exact wave at its input to the output after the delay mag-

nitude, they are pure If the pulses shorter than the delay magnitudes are filtered out they are

called inertial delay

Based on the place where the delays are inserted, delay models are classified as follows

• Feedback Delay Model In this model, every feedback loop present is cut and replaced by

at least one delay element.

Chapter 2. Background 14

• Gate Delay Model Here the circuit is modeled with every gate followed by exactly one

delay element

• Wire Delay Model In this model, the delay is associated with each wire in the circuit and

this can seen as, each input of the gates being associated with a delay.

Based on different magnitudes and models of delay, some of the commonly known asyn-

chronous models are given below:

• Huffman Model

Huffman model introduced by Huffman[[Mye01]] is based on representing asynchronous

circuits in to two components: the combinational network followed by the bounded iner-

tial wire delay model and feedback lines, modeled by using unbounded inertial feedback

delays. This model led to the introduction of several other models with a little variation

• Muller Model

Muller[[Mye01]] introduced the class of asynchronous circuits in whicheach gate output

is associated with an unbounded inertial delay element with delay of the wires being

neglected. This type of circuits are called speed-independent circuits, since they operate

correctly even in the presence of delays in their components.

2.1.3 Types of circuits

• Delay Insensitive circuits[[Mye01]] Delay insensitive circuits form themost robust class

of asynchronous circuits. The circuits are modeled based on unbounded wire delay

model . It is similar to the Muller model in terms of wires connecting a single out-

put to a single input. The delay at the different ends of a fork vary (oneoutput fanned

out to more than one input) by placing a delay element at each gate inputs. Thus these

forks are not isochronic due to the variation in delay. But only a small family of circuits

constitutes this model.

• Quasi delay-insensitive and speed-independent circuits[[Mye01]]

Quasi delay insensitive circuits[[Mye01]] are the versatile and popularclass of asyn-

chronous circuits which is derived from the delay insensitive circuits. Inthis type of

circuits, the forks are considered to be isochronic. For a Delay insensitive circuit, the

delays d1, d2 and d3 along with the gate delay dA, dB and dC are arbitrary.To obtain

the quasi delay insensitive circuit, the condition d2 = d3 should be satisfied for some

forks.

Chapter 2. Background 15

Figure 2.2: Asynchronous Design Flow - language based [KF91]

• Bounded-delay Circuits [[Mye01]] Bounded-delay circuits are the class of asynchronous

circuits which use the fundamental-mode assumption that the environment must wait for

long enough for the output data to stabilize on the circuit inputs. The fundamental-mode

of operation was introduced by Huffman[[Mye01]] and later extended by Unger[Unger1969].

2.1.4 Logic Synthesis and Simulation:

As stated earlier, design flow of the asynchronous circuits can be summarized similar to that

of synchronous circuits depending up on the asynchronous design style used. A typical syn-

thesis flow for the CAD tool Tangram developed by Phillips is shown in Fig 2.2.Handshake

circuits used in this design flow are the special class of circuits introduced by Phillips, which

is implemented based on the handshake protocol. Here the circuit specification is based on the

description language.

Several CAD tools for logic synthesis were developed and are further being researched. Some

of the CAD tools like Petrify use graph based (petri net) representation ofthe circuits and the

design is synthesized by BDD mapping of the graph specifications. Once themapping is done,

the design flow follows the same steps as used conventionally. A typical Logicsynthesis cycle

which uses petri net as the input net list specifications is shown in Fig 2.3

Chapter 2. Background 16

Figure 2.3: Asynchronous Design Flow: Graph based(Derived from petri net) [E.P97]

Chapter 2. Background 17

2.2 Testing

2.2.1 Introduction

Testing is essential for the designed systems, as the fabrication and component aging will cause

defects in the designs. The defects in the design can be modeled as faults such as stuck-at, delay,

bridging faults, etc. Thus for testing a circuit, fault model plays a major role on simulating the

faults. Once the fault model is defined, it is applied to the design under test for generation of

the test patterns which are used to validate the design.

2.2.2 Fault Modeling

Before proceeding for testing the circuit, the specific fault models for which the test has to

be done should be selected. There are several types of fault models based on the kind of

fault which occur during the physical design process like Short, Open circuit etc., some of the

commonly used fault models are:

1. Stuck At Fault (Fig.2.4)

stuck-at-1:A Fault at a node is said to be stuck-at-0, if it generates ’0’ output signalfor

both the value of input signals 0/1 and the node being observed through theprimary out-

put.

Stuck-at-0:A fault at a node is said to be stuck-at-1, if it generates ’1’ output signal

for both the value of input signals 0/1 and the node being observed through the primary

output.

2. Transistor Level Faults (Fig.2.5)

Stuck-Open FaultThe Stuck-open fault occurs in the transistor when the transistor is

always open due to physical defect. If considered as switch, the functionality of the

transistor with this fault will always be that of a open (non-conducting) switch.

Stuck-On FaultThe Stuck-On fault occurs in the transistor when the transistor is always

conducting due to the physical defect. If considered as switch, the functionality of the

transistor with this fault will always be that of a closed/shorted switch.

Chapter 2. Background 18

Figure 2.4: Stuck-at Faults

Figure 2.5: Stuck-Open/Close Faults

3. Bridging Fault: Bridging fault occurs when two nodes of the circuit at transistor/gate

level were shorted together.

4. Transient Fault: Transient fault occurs at the event level or at therise or fall transition of

the signal either by getting inhibited or by unintended triggering.

5. Delay Fault: Delay faults are modeled based on the timing assumption of the circuits.

Two types of delay faults are gate delay fault and path delay faults. The occurrence of

this fault will cause the circuit to produce delayed response in the output for the specific

input stimuli to the circuit.

Chapter 2. Background 19

2.2.3 Terminologies

1. Controllability:

It is a testability measure, which defines whether the logic value at given node is control-

lable by effectively applying the vectors through the primary inputs.

2. Observability:

It is a testability measure, which defines whether a fault excited at a given node is ob-

servable at the primary output of the circuit.

3. Fault Equivalence:

If every test in the test set of one fault A, also detects the fault B, then thetwo faults are

equivalent. This is used to reduce the number of faults that need to be tested.

4. Fault Dominance:

If for two faults A and B, the test set of B is a subset of the test for A, thenthe fault A is

said to be dominating the fault B.

5. D-Frontier:

The D-frontier is composed of all the gates in the circuit being tested, whoseoutput value

is x(don’t care), but one or more of their input has been set to either D or D’(where D and

D’ are the logic values used in D-algorithm to differentiate the good and faultycircuit

logic values of a node). The D-Frontier is used in error propagation process.

6. J-Frontier:

J-Frontier is composed of the set of all the gates in the circuit, whose outputvalue is

known,but are not implied(assumed based on the gate’s functionality and net list con-

nection) by their input values. This happens during the justification process(process of

setting logic values on each node of the circuit during fault simulation), whena particular

node is assigned a value to imply the value at the target fault node.

2.2.4 Automatic Test Pattern Generation

Test generation involves following basic steps to generate test vectors

1. Fault List Generation

2. Test Vector Generation

3. Fault Simulation

4. Test compaction

Chapter 2. Background 20

Figure 2.6: An ATPG System in a VLSI Design Process [MV00]

These steps can be automated to generate a automatic test generation system. Ageneral ATPG

system flow is shown in Fig.2.6.[MV00]

Verified net list is fed to the fault simulator, where the modeled faults are simulated over the

input design net list. Once the fault is detected, the fault is removed from thefault list. The test

generator generates the test vectors to be used to test the modeled fault listover the design net

list using the fault simulator. Test compactor is used to generate optimal numberof vectors to

test the design by using the fault dominance and equivalence properties.Once all the faults are

simulated and the test vectors are compact, the design is checked for the fault coverage. If the

coverage is satisfactory, the system exists, otherwise the steps are repeated to get the desired

fault coverage. At the event of not finding the optimal test coverage, the system exists with the

low coverage test vectors or with a report on untestable faults and redundancies

2.2.5 ATPG Algorithms

Some of the classic ATPG algorithms are reviewed in this section. The algorithms reviewed

are

• D-algorithm

• FAN

Chapter 2. Background 21

• PODEM

2.2.5.1 D algorithm

The pseudo code for the D-algorithm[[JPRS67]] is shown in Fig.2.7[[MAF90]]. This is the

first algorithm proposed for the automatic test pattern generation for synchronous circuits. The

algorithm is based on a newly introduced concept called D-Algebra. The logic values used

in this algebra are 0,1,X,D,D’. The values D and D’ are the newly introduced logic values to

implement the proposed D-algorithm. The value of D(D’) will be represent the value of the

node being testing in the circuit. It will be 0(1) for good circuit and 1(0) for bad circuit. Thus

a value D (D’) placed on a node a, during test generation will place 0(1) on the node for good

circuit simulation and 1(0) for the bad circuit simulation. The crux of this algorithm is of

setting this value on the testable nodes and propagating this to the output.

A terminology named singular cube was also introduced in this method. The singular cube of

the Boolean function is defined as an assignment(x1...xn,y1...ym) = (l1, l2,, lm+n). where

xi are inputs,yi are outputs andl i ∈ { 0,1,X }. Also the fault model for the D-algorithm is

called the Primitive D-Cube of Failure (PDCF). PDCF is defined as the set oflogic values on

the input and output of a gate that will prove the fault on its output. The stepsinvolved in the

D-algorithm are defined below. First the fault for which the test has to be generated is selected

from the fault list. Then the PDCF for the fault is generated. Then it is checked whether there

is D or D’ on the primary output after applying the PDCF.

a. If there is a D or D’ in the primary output:If there is a D or D’ then it is checked whether

there are more lines to justify. If there are no lines to justify, then the pattern is stored as the

test for the fault. If there are more lines to justify, a line should be selected to justify all other

lines. If there is no inconsistency, then further it is checked for any other lines to justify. If

there is an inconsistency, availability of an alternative path is searched forjustification. If an

alternative path is found then, it is checked whether there are more lines to justify otherwise

backtrack one level and select another path. While backtracking it is checked whether the node

is revisited or not. If the node is already visited, then it is reported that no pattern exits. If it

is not a revisited node then the same steps of finding more lines to justify are carried out. This

forms one branch of the whole D-algorithm process, when the D or D’ is found on the primary

output after applying the PDCF.

Chapter 2. Background 22

Figure 2.7: D-Algorithm [[MAF90]]

b. If there is no D or D’ in the primary output:

If there is no D or D’, the D cube is propagated and intersected. If there isany inconsistency,

check for an alternative gate for propagation. If the alternative gate is found, then follow the

same steps of propagating the D-cube. If the alternative gate is not found, then backtrack one

level and select another path. If the PDCF is reached then it is reported that the pattern does not

Chapter 2. Background 23

exist otherwise the process of propagating the D-cube is continued. Butduring the first step of

propagation the D-cube, if inconsistency is not found then the lines to be justified are marked

and go back to the step of finding whether the D or D’ is present in the primaryoutput.

Thus by looping through the above two decision branches, either the test will be generated if

it exists or else it will be reported that there is no pattern for the fault. Once itreaches this

decision, then the algorithm again loops through this process for the next fault. Thus the test

for all the faults in the circuit will be generated using the D-algorithm.

2.2.5.2 PODEM

The pseudo code for the PODEM(Path-Oriented-Decision-Making)[[Goe81]] algorithm is shown

in Fig.2.8[[MAF90]]. This algorithm is straight forward compared to the D-algorithm. This

algorithm generates test pattern for the target fault in the circuit by implicit enumeration of all

possible input vectors to the primary inputs of the circuit. The assignment of the input values is

carried out by constructing the search tree for each input line of the circuit by setting values of

either 0 or 1 and checking the implication of setting them. The detailed steps in this algorithm

are briefed below.

First step involves selecting fault from the fault list for which the test has tobe generated.

Initially, the value X is assigned to all the inputs. Select a primary input from thelist of

primary inputs of the circuit. Assign a binary value to that input and determine implications

of all other inputs and other nodes due to this assignment. Check whether there is a D or D’

found in the primary outputs. If there is a D or D’ then, store the input patternvalue as the test

for the target fault. If there is no D or D’, then check whether the test is possible by assigning

values for more inputs. If possible, then start the step of assigning the binary value to the new

input from the list of primary inputs that are not assigned values. Continuethis process until

all the primary inputs are exhausted. If still the test is not found, check whether there is any

unassigned input pattern combination. If so, then go to the step of determiningthe implications

of that pattern over the other nodes. In other case if all the combinations ofthe patterns are

tried, then report that there exists no test pattern for this fault.

The main advantage of this method is that, the number of backtracking taking place in D-

algorithm is considerably reduced and thus it speeds up the test pattern search. The method for

assigning the binary values to the primary inputs is carried out by constructing the search tree

over the list of inputs along with the process of checking the implication.

Chapter 2. Background 24

Figure 2.8: PODEM Algorithm [[MAF90]]

2.2.5.3 FAN

The pseudo code for the FAN [[Fuj85]](FAN-out-oriented) algorithm isshown in Fig.2.9 [[MAF90]].

The exhaustive searching of all the input combination patterns in PODEM algorithm is avoided

in this algorithm. This speeds up the search for the test pattern considerably. The strategies

used in the FAN algorithm are

• At each step of the enumeration, as many signal values that are uniquely implied are

determined.

• assign the value D or D’ that is uniquely determined or implied by the target fault

• When the D-frontier has a single gate,apply a unique sensitization

• stop the backtracking at a headline, and postpone the line justification for the headline

later

• multiple backtracking is more efficient that single path backtracking

• in the multiple backtrack, if an objective at the fanout point has a contradictory require-

ment, then stop at the backtrack so as to assign a binary value to the fanout point.

Applying these strategies, the test search time of the FAN algorithm was considerably reduced.

The multiple backtracking and the justification and implication on either direction enhances

the test pattern finding capability of the algorithm.

Chapter 2. Background 25

Figure 2.9: FAN Algorithm[[MAF90]]

2.2.6 Scan Design

The full scan architecture with test control and scan in/out pins are shown in fig.2.10. The flip-

flops SFF1, SFF2 and SFF3 form the scan flip-flop group and they formthe scan chain. The

circuit is designed using the predefined design rules. A test control input pin is added to the

design to control the scan flip-flops operation in normal and test mode. Scanchain originates

from the scan-in pin and terminates at the scan out pin. The DUT (combinational block) will

be operated in its usual mode through the primary inputs (PI) and primary outputs (PO).

Fig.2.11 gives the design flow for the automated scan design. Behaviour, RTL and logic design

is synthesized to gate level net list. Design and Test data generation for manufacturing involves

two parallel flows, where, the scan insertion is carried out at one branch and combinational

ATPG is carried out at the other. In the scan insertion flow, the scan net list is inserted to the

Chapter 2. Background 26

Figure 2.10: Full Scan Architecture [MV00]

gate-level net list. Scan chain optimization and timing verification are carried out in the next

level.

Then the mask data is produced which will be tested with the test program to generate the test

data for manufacture. In the ATPG flow, the gate level net list without the scan designs are

evaluated with combinational ATPG for the combinational test vectors. From these vectors

and the scan chain order obtained from the scan chain optimization, the test program with scan

sequences is generated. Finally, test data along with the design data will be generated from the

test program and the mask data which is available for manufacturing.

2.2.7 Partial Scan Design

To minimize the overhead caused by the full scan design, partial scan design was introduced. In

partial scan design, only minimal set of flip-flops are selected for scan to eliminate all cycles.

Sometimes, to keep the overhead low, only long cycles may be eliminated. In cycles with

self-loops, all cycles other than self loops may be eliminated.

Fig.2.12 shows typical partial scan architecture. The flip-flops F1 and F2forms the non- scan

flip-flop group. The flip-flops SF1 and SF2 form the scan flip-flop group.

Test Generation: For a partial scan design, separate clocks are usedfor scan flip-flops and non-

scan flip-flops. Alternatively, separate design can be used for scan flip flops, which will require

only one clock signal.

Cyclic to acyclic conversion of the circuit should be preformed for the effective test generation

Chapter 2. Background 27

Figure 2.11: Automated Scan Design [MV00]

of asynchronous circuits using a synchronous sequential test generation CAD tool. The conver-

sion removes all the feedback loops formed in the cyclic circuit which easesthe test generation

capability of the CAD tool. For instance, the original or actual cyclic asynchronous circuit fed

to tool will result in low fault coverage as the tool discards most of the faultsites present in the

path of the feedback loop. So the cyclic to acyclic conversion will increasethe visibility of the

fault sites to the tool to generate test patterns.

2.3 Summary

A brief introduction to asynchronous design was given in this chapter. Different gate and delay

models of asynchronous circuits were briefed. Signaling protocols of these designs were intro-

duced. Logic synthesis design flows for asynchronous circuit designwere also described. Next

a brief introduction to the testing and test generation principles were introduced. Several basic

terminologies involved in testing were listed. Several Fault models used for testing circuits

were also discussed. The topic of automatic test pattern generation and scan design techniques

were briefed in detail. Several ATPG algorithms were described by showing the pseudo code

of the algorithms. Two types of DFT scan architectures namely Full scan andPartial Scan

design were introduced and briefed in detail, which will be used extensively in this thesis. The

next chapter provides a comprehensive literature review over works related to the testing of

Chapter 2. Background 28

Figure 2.12: Partial Scan Architecture [MV00]

asynchronous designs.

Chapter 3

Related Work

3.1 Introduction

This chapter briefs the literature review over the related works involving thedesign for testa-

bility(DFT) and test generation of asynchronous circuits. The literature review in this chapter

includes the topics 1) Design for test (DFT) for asynchronous circuits,2) ATPG methods for

asynchronous circuits, 3) Self checking designs of asynchronous circuits, 4) Testable asyn-

chronous circuit design,5)Test Generation at defect/transistor level of asynchronous circuits. A

detailed survey on testing asynchronous circuit was elaborated in [HBB94]. An introduction to

defects in the circuit and the terminologies and method for testing are studied. Adetailed de-

scription of self checking circuits was also given in a complete section. Self checking property

for the delay-insensitive asynchronous circuits and speed independent circuits were briefed.

Several conventional test generation methods were listed and the algorithmbehind the meth-

ods were analyzed. Topics on Automatic test pattern generation and fault simulation were

described using a specific example. Topics on design for test (DFT) were also briefed in de-

tail. The topics on testability, controllability, observability were tutored. The conventional full

scan path design techniques were detailed using a specific example. An example based on a

n-bit asynchronous counter design was demonstrated. Finally delay fault testing method was

described. Delay model used here was path delay fault model. The delay fault test procedure

was demonstrated using the circuit equivalent to a majority gate circuit with inversion on each

of its AND gates. Thus a broad coverage of all the topics in testing was provided with respect

to the testing of asynchronous circuits.

29

Chapter 3. Related Work 30

3.2 Related Work

The detailed flow of the asynchronous circuit testing topics covered in this review is shown in

the Fig. 3.1.

1. Design For

Test

5. ATPG

Test

Methods

3. Synthesis

For

Testability

4. Testing

C-elements

12. Fault

Tolerant

Designs

10. Fault

Modeling

11. Transistor

Level

Modeling

6. Random

Testing

2. ScanTest

Asynchronous Circuit

Testing

7. Offline

Testing

8. Funtional

Testing

9. Fault

Simulators

Figure 3.1: Asynchronous Circuit Testing - A Short Review

3.2.1 Design For Test

1. Designing C-elements for testability[PF95a]

The designs of static symmetric and asymmetric C-elements that are testable for stuck-at

faults and transistor level stuck-open faults was proposed in the work. Several CMOS

implementation of these C-element designs were proposed. Also C-element design with

scan features which aid the scan testable designs was proposed. Designs of conventional

2 transistors based inverter and a testable 4 transistors based inverter were examined in

detail for the stuck-at and stuck-open faults. All the possible faults, the corresponding

Chapter 3. Related Work 31

circuit response for faulty and good circuit and the test sequences for the same were tab-

ulated.

Next the design of static symmetric C-element was studied. Three different implementa-

tions were studied. All the good and faulty circuit responses for all the stuck-open faults

in the symmetric C-element were analyzed then and the corresponding test sequences

were generated. Next the design was examined for all the stuck-at faults. Totally 38

stuck-at faults were reported along with their test patterns to detect the faults. Next the

asymmetric C-element design style was studied. The circuit comprising of 8 transis-

tors was studied. Two different designs of asymmetric C-element were studied particu-

larly. They were OR-AND type asymmetric C-element and AND-OR type asymmetric

C-element. The stuck-open faults on these designs were first analyzed.It was reported

that only 5 test sequences are enough to test all the stuck-open faults. The stuck-at fault

diagnosis was carried further. Totally 32 stuck-at faults were reportedand their corre-

sponding fault response and the test sequences were tabulated. Analysis was made in the

design implementation in 1µm, double layer metal CMOS process and simulated using

SPICE analysis.

Further, the scan testable designs of C-elements were introduced. A pseudo-static sym-

metric C-element with scan features was proposed first. The operating modes of the

design were briefed further which involved normal mode, test mode and scan mode.

The stuck-open faults and their corresponding output response on thecircuit and the

test sequence to detect them were described in detail. Finally the cost comparison of

the testable C-elements were made with respect to the number of transistors, number of

pins, area overhead, output nodal capacitance and the testability were made. Transistor

overhead from 17 percent to 200 percent was reported over six designs. Area overhead

of 17 percent to 115 percent was reported for the same six designs. Output nodal capac-

itance was ranging 2 to 11fF. Two of the six designs were reported to be stuck-at and

stuck-open fault testable.

2. Asynchronous Sequential machines designed for fault detection[SM74]

Design of asynchronous sequential machines which can allow detection offaults in them

was introduced in this work. The circuits designed are assumed to be operating in the fun-

damental mode. The operation of the circuits was described based on the flow table. The

definition of flow table is also introduced here. Definitions on transition pair, partition

pi were defined which was later used in the description of the machine design. Defini-

tions on internal states and proper stable states were introduced. A method for detection

of internal state fault was briefed further. An additional equivalence class called fault

equivalent class was introduced to facilitate the design of fault detecting asynchronous

circuits. Stuck at 0 and stuck at 1 faults were considered here.

Chapter 3. Related Work 32

Two main conditions were introduced which should be met while designing the asyn-

chronous sequential circuit such that it is fault detecting. First conditionis that the

equivalence class of different transition paths for a given input "I" must have at least

a distance of two. The second condition is that for a single fault, the circuit must become

stable in the equivalence class of the transition path or a fault equivalenceclass. Due

to the static nature of the method proposed, the same technique can be extended to the

faults other than stuck -at- 1 and stuck-at-0. The whole method is based on developing

k-sets from the flow table of the given circuit. Then by applying a reductionrule and as-

signing a variable value of 1 for each state in the set and a value of 0 for thestates not in

the set. This produces a partition in such a way that the first condition for designing the

circuit is satisfied. Thus given a flow table of the circuit, a five step procedure yields the

design equation for the fault detecting equivalent of the asynchronouscircuit. Finally

a bound on the amount of logic required for designing the fault detecting circuit was

derived. The upper bound on the number of gate inputs for fault detecting realizations

is less than or equal to∑hn+ds(m+1)+mt , 1≤ n≤ ds. Where ds is the number of

distinct non trivial k-sets after the list has been reduced, hn is the number of stable states

that are contained in the nth k-sets, m is the number of input variables, t is thenumber of

trivial input columns.

3. A TestableCMOS Asynchronous Counter[CB90]

An asynchronous counter design was introduced in this work along with a DFT (Design

for Test) logic inserted to make the counter testable. The counter was designed based on

the two cycle transaction(transition signaling) method. The counter was composed of n

identical two-cycle toggle modules and an XOR gate. Two designs, the asynchronous

toggle module and asynchronous toggle module with inverter were introduced. A new

asynchronous toggle module with scan capability was designed to facilitate the testability

of the counter design. Test method for the counter for testing the stuck-atand stuck

open faults was also introduced. Four test procedures namely toggle test,shift test,

cycle test and XOR test were introduced which has to be carried out to completely test

the counter design. It was shown that the asynchronous counter testingtime was O(n)

which is less compared to the synchronous counter testing time O(n2). The reduction in

time was attributed to the parallel testing of the cells in the counter due to the presence

of the scan path and two bit of state in each cell. The base counter design and the

testable asynchronous counter design layout were presented. The twocounters were 16

bit designs and were fabricated in 2 micron process. The experimental results of the chip

were given. The performance of the base design was with a count rate of 21.0 MHZ and

Chapter 3. Related Work 33

that of the testable design was 22.6 MHZ. The area overhead was 6 % compared the base

asynchronous design and 15% compared to the equivalent synchronous design.

4. DFT for Fast Testing of self timed control circuits [PKB95]

A design for test method for fast testing of self timed control circuits was proposed in

this work. The circuits used for the testing are compiled by a custom compiler namely

OCCAM based circuit compiler. The OCCAM program description is converted in to an

interconnection of pre-compiled self-timed-macro-modules/library and the test method

was developed for the resulting circuits. The synthesis method for the OCCAMbased

program description in to self-timed circuits was briefed further. The translation is syn-

tax directed. This method involves testing all the control paths simultaneously, which in

turn means that all the paths in the design under test are excited concurrently. Four basic

requirements for the testing method to be applicable were listed. They include 1)At a

branching point all the branches should be activated, 2)When two branches are merged

through a Merge element a single event should be produced at the outputof the Merge

element after both the branches finish their processing, 3) When the sharing of resources

occur, it has to be guaranteed that progress on one control path is notstopped because of

the progress in another control path, and 4) The control path should bedecoupled from

the data path during testing so that the control path can be tested separately.

Certain modifications were done in the pre-compiled modules to satisfy the abovemen-

tioned 4 requirements for testing the circuits built using these modules. Modifications

are done to three modules namely XOR, select and Call. Also modifications are done

to the OCCAM program constructs to fulfill the requirement for testing. IF, LOOP and

ALT constructs were modified and an example showing this modification for ALTcon-

struct was demonstrated.

To demonstrate this method, the control path of the self-timed circuit to implement the

GCD of two numbers was experimented. Faster testing time compared to another method

involving scan testing was reported. Low testing time, no need for test vectors, and pos-

sibility of extension to other asynchronous circuit styles and automation are reported as

the advantages of this method. Area overhead for the DFT comes from replacing the

XORs with XOR/Celements and a performance degradation of 15 percent was reported.

But it was justified with the percentage of area the control circuits take in an overall chip

layout.

3.2.2 Scan Testing

1. Scan Testing of asynchronous sequential circuits[PF95b]

A new method for testing the asynchronous sequential circuit based on micropipelines

Chapter 3. Related Work 34

was introduced in this work. The test method is based on Scan DFT method. Both the

stuck-at faults and the delay faults were considered during the testing process. The ba-

sic structure is composed of a combinational logic block, registers in the feedback loop

storing the state of the circuit, two C-elements and a delay element. The circuit has pri-

mary inputs(PI), primary outputs (PO), secondary input(SI) and secondary outputs (SO)

along with the request signals Rin and Rout and the control acknowledge signals Ain

and Aout. At the initial state, the registers and the two C-elements are set to zero. First

the input data on the primary inputs are generated by the sender which activates the Rin

signal in the circuit. The request signal is delayed long enough to stabilize the circuit

with output data on the primary and internal/secondary outputs. The delay is facilitated

by the delay element between the C-element of the request signal and the signal Rout.

Once the circuit is stabilized, the Rout signal is activated for the receiverby the circuit.

Also after receiving the acknowledge signal (Aout) and storing the new state in register

2, the circuit activates the acknowledge signal (Ain) to the sender. Thusthis procedure

of processing data is repeated with the repeated reception/activation of theRin signal.

Three types of stuck-at faults were distinguished for the micropipelines namely 1) faults

in the control part of the micropipelines, 2) faults in logic blocks, and 3) faults in the

latches. A scan test approach for testing these faults was next introduced. The CMOS

implementation of the scan latch structure was introduced. The performance of the pro-

posed scan latch was compared with the basic latch design in terms of delay using SPICE

simulations. The delay was basic design and proposed scan design were reported as 3.7ns

and 6.2 ns respectively. Next a two-bit scan register design was proposed based on the

scan latch. The register operates in three modes namely, normal mode, test mode and

scan mode. Using the modules complete testable asynchronous sequential circuit design

was demonstrated. The testable design is composed of two blocks namely the actual

circuit under test and the scan testable control logic (STCL). The STCL block proposed

is fully testable for stuck-at faults because of its asynchronous delay insensitive nature.

A complete test strategy for the testable design to test the faults in control logic,combi-

national block and the latches were briefed in detail.

Next the path delay fault testability of the design was briefed. It is based onthe well

known path delay fault testability method for combinational circuits. Basically thetest

pattern pair applied to the input of the combination logic module detects the delay faults

in the paths of the block. This test method involves loading the state vectors forthe reg-

isters in the circuit and then the test vectors to the input of the circuit and monitoring the

output signals of the circuit under test. In detail, the circuit is operated in test mode, to

apply the test pattern p1 to the inputs along with generating a request signal on the input

Ri. After receiving the acknowledgement event on the signal Aout the test p2 is applied

Chapter 3. Related Work 35

to the input. The test control signal is set to zero and request event is generated in the

signal Ri. This results in the data path of the combinational block being activated. If

there is a delay fault in the path, it will result in a delayed response of the circuit ,which

aids the detection of the delay fault in these circuits. Thus a scan testable method for

both the stuck-at and path delay faults was introduced in this method.

2. Optimal scan for pipelined testing:an asynchronous foundation[RAV96]

A method for constructing optimal scan chain was proposed in this work. Theobjective

of the optimal scan chain construction was to 1) reduce the area overheadfor latch based

design and 2) reduction of the number of pipeline scan shifts. The difficulties encoun-

tered in the scan testing and pipelined scan testing and standard LSSD(Level Sensitive

Scan Design) based testing were detailed further.

Several pipelined scan testing types namely 1) simple sequential scan, 2) smart sequen-

tial scan, 3) simple parallel scan, and smart parallel scan were described in detail. Then

the issues in LSSD based scan testing were discussed in detail.

Next the heuristic for the optimal scan chain construction was introduced. The main ob-

jectives of the algorithm were 1) to keep the L1/L2 partition for the scan latches balanced

and to keep the scan latches for each datapath close together. The first objective aims at

reducing the area overhead while the first objective aims at reducing the scan shift time.

The algorithm was applied to three industrial asynchronous circuits and theresults were

reported in terms of the scan shift time reduction, number of tests, and scan latch shifts.The

size of the circuits was randing from 20k to 45 k transistors with the number ofdata

latches ranging from 417 to 1083 and the latch classes ranging from 30 to 101. The

pipelined LSSD based scan testing method was reported to have reduced thenumber

of scan shifts to around 60-75 percent and the pipelined L1L2* based testing with the

reduction percentage of 79-86 percent was reported. For all the three designs the num-

ber of shifts needed for the pipelined L1L2* was reported to be about half the number

needed for the pipelined LSSD.

. The formal justification of these two problems to construct the optimal scan chain was

briefed further. First it was proved that the optimization problem for L1L2* relates to

the area overhead minimization. Next it was proved that the problem of constructing

the feasible scan chain by adding dummy latches was to minimize the total scan shift

time. Experimental results on three industrial asynchronous IC designs were shown as

(1) less than 0.1% extra scan latches for Level-Sensitive Scan Design, and (2) scan shift

reductions up to 86% over traditional scan schemes.

3. Partial Scan Test for asynchronous circuits illustrated on a DCC Error Corrector

Chapter 3. Related Work 36

[Ron94]

A new design for testability method for testing asynchronous circuits using partial scan

was proposed in this work. Before introducing the method a gentle introduction to the

VLSI programming in Tangram was given. An example of Tangram procedure named

scanin was illustrated. The compilation of the Tangram programs in to asynchronous

circuits via an intermediate representation called handshake circuits was detailed further.

Next the asynchronous circuit implementation focusing the design of Digital Compact

Cassette (DCC) Error corrector was discussed. For the implementation, four-phase hand-

shake signaling and double-rail data encoding was used.

Detailed description of the DCC error corrector architecture was briefedfurther. The ar-

chitecture is composed of a DRAM, controller and a detector. Testing the controller using

partial scan method forms the crux of this work. Further the design and testaspects of

the detector and the controller were discussed in detail. Next the Tangram programming

procedure for the partial scan design of I2S transfer procedure was proposed. The scan

facility was added in to control the value in the DRAM address counter. The equivalent

handshake circuit compiled for this procedure was also demonstrated. The Test perfor-

mance, circuit performance cost, reliability and the test solutions for the diagnostics and

detection transferrers were discussed further. The scan test for theI2S transferrer was

reported to be 19 DRAM addressing cycles which was 1800 times less than that of the

design without the scan architecture. An area overhead of 3 percent for the scan circuitry

was reported for the design analysed. A fault coverage of 99.9 percent was reported for

the scan design proposed on the circuit under test.

3.2.3 Synthesis For Testability

1. Synthesis of asynchronous circuits for stuck at and robust pathdelay fault testabil-

ity [NJC95]

A method for synthesis of multi-level asynchronous circuit with the hazard free property

and also completely testable was introduced in this work. Stuck-at and robust path de-

lay are focused for this testing method. A minimization algorithm for the synthesis of

hazard-free two level implementation of asynchronous circuits was first introduced. First

steps for minimizing the non-primes were introduced with an algorithm named npni-

row-dominate. Then the methods for minimizing the redundant covers were briefed. An

algorithm named rni-row-dominate-unopt was introduced for the same.

Then a method for converting the hazard-free two level implementation in to completely

testable multi-level implementation was introduced. Four different procedures based on

the type of two-level logic was detailed with example. The first procedure which stars

Chapter 3. Related Work 37

with non-Prime and irredundant Two-level logic was described. Then thesecond pro-

cedure starting with the redundant but prime two-level logic was introduced. The third

procedure starts with the redundant and prime two-level logic. In the fourth procedure,

the two level logic which is irredundant and prime was processed to convert them in to

multi-level testable logic was described.

Experimental results for several benchmark circuits were reported.stuck-at and robust

path delay testability of 100 percent with pin overhead of zero or few was reported.

2. Synthesis of testability techniques for asynchronous circuits[KLSV91]

A logic synthesis method for asynchronous circuits without hazard and to detect path

delay faults in them is proposed in this work. Two types of gate delay fault models were

used for the path delay fault testing namely hazard-free robust path delay fault (hfrpdft)

and robust gate delay fault (rgdft) models. A method for removing the hazards from the

initial two level implementation of the circuit was introduced. A method for generating a

guaranteed hfrpdft circuit was proposed. The crux of this method was tochoose a binate

variable x, in a given SOP representation S, of a Boolean function f, decompose in to

x.G + x’.H + R, in such a way that variable x does not appear in G,H and R. The method

implements area efficient design which is a hfrpdft. Another heuristic procedure to fur-

ther improve the testability of the hfpdft was also proposed. This heuristic uses algebraic

factorization to improve the delay fault testability of the circuit. Next a procedure to

guarantee the generation of rgdft circuit was proposed. This method requires test inputs

to make it robustly path delay testable.

3.2.4 Testing C-element

1. Testing C-elements is not elementary[BR95]

This work analyses several designs of C-element for stuck-at fault testability. Interesting

facts on the effect on the functionality of the circuit by the stuck-at faults inthe C-element

designs were analyzed. Totally 7 different C-element design implementationswere taken

into account and the testability of these designs for stuck-at faults were discussed further.

First the majority gate implementation of the C-element was introduced and all the stuck-

at faults in this design and the possible functional behaviours of the C-element due to

these faults were tabularized. Test patterns for each faults were also derived in one of

the columns of the table. Interestingly at most 2 test patterns were needed for testing

all the detectable single stuck-at and multiple stuck-at fault models. From the analysis

of the circuit, a guaranteed time of stabilization for the circuit given the circuitat any

stable state and the new input value was derived as d-max = max{d1,d2,d3}+ d4 +

dassumingd> max{d2,d3}, where di is the transition delay of the gate i.

Chapter 3. Related Work 38

The majority gate element is composed of the AND gates g1,g2,g3 and the OR gate

g4 and hence the corresponding transition delays d1 to d4. Totally 18 different faulty

machines were derived for all the fault in the C-element. For the Wuu’s circuit a test

length of 7 was reported and 38.5 percent of the single stuck-at faults were reported not

to result in a halting state. For Koche and Brunvand’s circuit also required 7 vectors

and 50 percent of the faults does not result in halt state. For Mayevsky’s circuit, 7 test

vectors are required and 20 percent of the faults does not result in halt state. Bartky’s

circuit again needed 7 test vectors but only 14.7 percent of the single faults results in

circuits that does not halt. For the dynamic implementation, the test vectors needed were

7 and 6 out of 14 fault machines do not result in halt state. The static implementation

has six additional transistor compared to dynamic one. For the asymmetric C-element

14 out 18 faults does not result in the halt state and it requires test length of only 4. Thus

this work concludes that detection of faults in C-elements is not trivial and thetestability

properties are recommended to be considered during the design of the C-elements.

3.2.5 Test Pattern Generation for Asynchronous Circuits

1. Heuristic for testing asynchronous circuits -[Put70]

A heuristic algorithm for automatic test pattern generation for asynchronous circuits was

introduced in this work. This work is the most earliest work reported on ATPG algorithm

for asynchronous circuits. The algorithm was implemented as an APL program. This

method reads in the circuit netlist to be tested as a combinational asynchronous network

which has feedback loops present in it. The test generation algorithm is a heuristic and

thereby the test for the circuit is not guaranteed. This method involves two steps . In

the first step the test pattern or vector is generated for the CUT with a givenfault. Then

the generated test vector is simulated for both the good and faulty machine to validate

the test. Also in this method, given asynchronous sequential circuit is considered as

an iterative design of combinational blocks. In detail, when an asynchronous sequential

circuit S with primary inputs PI1,PI2....Pin and primary outputs PO1,PO2...POn with "n"

feedbacks is given as input, the heuristic finds the points in S where the feedback loops

will be cut to convert S in to an acyclic circuits.

Also, when delay elements are added in these cut sites, the circuit will operate as the

original circuit in functionality. Once the cut points are selected, pseudo inputs SI1..SIm

are inserted for the m selected cut points. A Strongly Connected Component (SCC)

based loop cutting procedure was employed to cut the feedback loops. Intrinsic weights

and weights for each lines are introduced along with finding the SCCs to cut the optimal

feedback loops. Once the acyclic circuits are obtained by cutting the loops,the modified

Chapter 3. Related Work 39

D-algorithm is applied to generate test patterns for the circuit. While generating the tests,

some restrictions are applied due to the presence of pseudo outputs and pseudo inputs

present in the modified circuits. A working example of potential test generation and fault

simulation were shown. The whole heuristic was implemented in APL program namely

CIRCUIT, CUT and GENERATE. Circuits with size of 50 blocks were used as CUT and

it took 25 to 130s. It was concluded that the test generation problem execution time is

not dependent on the circuit size but only on the topology of the circuit.

2. Boolean Difference for fault detection in asynchronous sequential circuits [HC71]

Major reasons for difficulty in detecting faults in asynchronous sequential networks were

outlined in this work. The four main reasons were 1) presence of feedback loops makes

the test patterns order/time dependent, 2) The machine must be kept stable to apply the

test patterns,3) an exact model of asynchronous sequential circuit is difficult to obtain and

4) large amount of information needed to execute the test being infeasible for large cir-

cuits. A Test pattern generation for asynchronous sequential networks based on Boolean

difference is introduced in this work. The asynchronous sequential machine Huffman

model was used. Several definitions namely stable state, set state, homing sequence,

Boolean difference, Boolean difference chain and total states were used to define the test

generation methodology. The test generation algorithm is based on describing the asyn-

chronous circuit as a set of Boolean equations. Then a primary input is chosen from the

set of inputs of the machine and a sensitizing path is found between the selected input

and the selected output. Homing sequence is used to facilitate the test generation process

by moving the machine to known stable state. Two requirements namely stability and

compatibility have to be satisfied to generate test successfully using this method.An

example of a gated latch was demonstrated to show the applicability of this method. It

has been summarized that the feedback variable assignment and the homing sequence

generation algorithms were not discussed in this work.

3. Test pattern generation for circuits with asynchronous signals based on scan[TF96]

A constrained test pattern generation method was introduced in this work forscan testing

circuits with asynchronous signals. The test patterns generated using thismethod were

guaranteed to be valid even when a hazard occurs. Two different classifications of the

scan register were first introduced, namely concurrent capture-update (C-C-U) class and

the separate capture-update (S-C-U) class. The classification is basedon the timing of

the capture and update operations during the scan testing process. In theC-C-U class the

update operation occurs right after the capture operation. A latch and anedge triggered

flip-flop are examples of this class. In the S-C-U class, the timing of the updateis sepa-

rated from that of the capture. LSSD double latch is an example of this class.

Chapter 3. Related Work 40

Next two problems were discussed: 1) destruction of scan chain values by a capture

clock and 2) destruction of the scan-in value by a hazard. The C-C-U class is more

vulnerable to the first problem. A detailed example for these two problems was demon-

strated. To solve these problems dynamic constraints were proposed. Thefeatures of

these constraints were 1) make a decision that scan-in values are not to bedestroyed by

the capture clock, 2) justify a value of the D input so as not to destroy the scan-in values

and 3) propagate uncontrollable value where a hazard is possible.

The dynamic constraints for the asynchronous faults and synchronousfaults were pro-

posed separately. The constraints for the C-C-U scan register that feeds the asynchronous

inputs of registers or the control inputs of the tri-state devices are 1) whena scan-in value

of a register is determined, justify the same value on the D input of the register and 2)

when a value of the D input of the register is implied, make a decision to have the same

value on the register. For the C-C-U scan register that feeds the D input of a register

driven by the same clock, the constraints to be satisfied are 1) when a scan-in value of a

register is determined, justify the same value on the D input of the register and 2) when

a value of the D input of a register is implied, make a decision to have the same value

on the register. For asynchronous faults, the following constraint was proposed. For

every register that feeds asynchronous inputs of registers or the control inputs of tri-state

devices, the constraint to be satisfied is that when a value of a register is destroyed by an

activated asynchronous signal, propagate the uncontrollable value U from the output of

the register.

An ATPG procedure for this test method was described further. The dynamic constraints

were applied to both the decision process and the implication process which forms the

main part of the ATPG flow. The justification or decision process was executed based

on the result of the constraint checking process. When there is conflictbetween the con-

straints and the existing values of the circuit, backtrack is performed. Experiments were

carried out on real chips for communication systems. Totally 5 chips were experimented

and the results showing the number of gates, number of equivalent faults,the number of

scan registers and the ratio of synchronous and asynchronous faultsto the total number of

faults in the design were reported. Faults ranging from 89 to 96 percent for synchronous

faults and 4 to 11 percent for the asynchronous faults were reported as the characteris-

tics of the chips being experimented. The resulting fault coverage for all the chips was

reported to be in the range of 97 to 99 percent. The test execution time was reported to

be between 355 to 11458 CPU seconds. This method seems to be efficient and feasible

for industrial circuits.

Chapter 3. Related Work 41

4. Synchronous test generation model for asynchronous circuits[BCR96]

A test generation model which is synchronous in nature was introduced in this work

testing asynchronous circuits. Main advantages of this method are 1) synchronous se-

quential test generation methods can be used to generate the test for the model, 2) the

test generated using this model can be easily translated in to a test for the asynchronous

circuit under test and 3) tests will not suffer from test invalidation due to unstable states.

Automatic test generation for asynchronous circuits was discussed firstin comparison

with the synchronous circuits. By adding a delay element in the feedback path of the

synchronous sequential circuit, increase in testing capability of the asynchronous cir-

cuits was pointed out with an example. Three key factors for properly modelling the

asynchronous circuits were proposed namely 1) a new input pattern should only be ap-

plied after the circuit becomes stabilized and when it is fault-free, 2) the effect of the

faults should be observed only when the faulty and fault free circuits have stabilized ,

and 3) The circuit should be allowed to cycle through the internal unstable states before

it gets stabilized on application of the new input pattern.

The Synchronous Test Model (STM) was introduced next. The model iscomposed of

the input and output signals and the asynchronous latches are replacedwith clocked

flip-flops. These flipflops are clocked at the period equal to the critical path delay of the

circuit. These flipflops are called the model flipflops as they exist only in the synchronous

model of the asynchronous circuits. The model is also composed of three blocks namely

Input Logic Block (ILB), Output Logic Block (OLB) and the input/output signal flow

generator (IOFG). These additional blocks will appear only in the synchronous model

and not in the actual hardware. The IOFG is used to both apply the input pattern and

observe the output signals of the core circuits. The implementation of these three blocks

at the gate level was described further.

The testing framework using the STM for testing the asynchronous circuits was briefed

further. The tests for faults in the STM can be generated using a conventional syn-

chronous sequential circuit test generator. The translation of test forSTM to the test

for the actual asynchronous circuits was shown to be a linear procedure. An automated

procedure for the test generation based on this method was given as a 5 step procedure.

The Automatic Test Generation procedure is as follows

• Step 1: Construct the STM for the ACUT assuming either a user-specifiedcycle

length or an estimated one.

• Step 2: Create the target fault list that contains only faults in the ACUT.

• Step 3: Perform test generation on the STM using any off the-shelf synchronous

Chapter 3. Related Work 42

test generator.

• Step4: Translate these test patterns into sequences for the ACUT.

• Step 5: Validate the translated patterns by fault simulation on the ACUT

The experimental results of applying this method over several asynchronous benchmarks

were reported. Two experiments were mainly performed. The first experiment was to

verify that the unstable states are the main source of test invalidation and the second

method was used to validate the STM model proposed and the fault coverageefficiency

of the method. The fault coverage ranges from 88.5 to 100 percent. Thetest invali-

dation was zero for all circuits in proposed method whereas it was rangingfrom 4 to

17.9 percent in the Ad-hoc method. Next the application of the proposed method to test

the embedded asynchronous circuits in the synchronous circuit was proposed. The test

results for the embedded circuits in the ISCAS benchmarks were reported.The embed-

ding of the asynchronous circuit was nothing but replacing the flipflops inthe ISCAS

benchmarks with the actual gate level representation which is asynchronous in nature by

itself. The fault coverage was ranging from 62.9 to 93.4 percent. The test efficiency was

ranging from 89 to 99.9 percent.

Thus an effective synchronous model for testing asynchronous circuits and the embed-

ded asynchronous circuit in synchronous systems was proposed andthe results were

convincing enough to apply to the industrial circuits. Other applications of thisSTM

were reported as test generation for gated-clock circuits and feedback bridging faults.

3.2.6 Random Testing

1. Random Testing of Asynchronous VLSI circuits[Pet94]

This work is an attempt to find possible ways to test asynchronous VLSI circuits us-

ing random (or, more accurately, pseudo-random) patterns. The main results have been

obtained in the field of random testing of stuck-at faults in micropipelines. An asyn-

chronous random testing interface has been designed which includes anasynchronous

pseudo-random pattern generator and an asynchronous parallel signature analyser. A

program model of the universal pseudo-random pattern generator has been developed.

The universal pseudo-random pattern generator can produce multi-bit pseudo-random

sequences without an obvious shift operation and it can also produce weighted pseudo-

random test patterns. Mathematical expressions have been derived for predicting the test

Chapter 3. Related Work 43

length for random pattern testing of logic blocks of micropipelines by applyingequiprob-

able and weighted random patterns to the inputs. The probabilistic propertiesof the n-

input Muller-C element have been investigated. It is shown that the optimal random test

procedure for the n-input Muller-C element is random testing using equiprobable input

signals. Using the probabilistic properties of the Muller-C element and multiplexers in-

corporated into the circuit a certain class of asynchronous networks can be designed for

random pattern testability. It is also shown how it is possible to produce pseudo-random

patterns to detect all stuck-at faults in micropipelines.

2. Designing asynchronous sequential circuits for random pattern testability [PFRG95]

A method for designing asynchronous sequential circuits for random pattern testability

was proposed in this work. The general structure of the asynchronous sequential cir-

cuit was discussed first. Issues regarding the testing of micropipelines were discussed

in detail. The drawback of the scan testing that, in shifting the n-bit patterns in tothe

DUT (Design Under Test) before actually applying it to the test object was pointed out.

This was pointed out as important fact to reduce the testing performance ofthe BIST

structures in which application of a large number of pseudo-random patterns forms the

part of the BIST procedure. To overcome this, a solution is proposed which involves im-

plementing the scan testing by shifting the random patterns bit serially with concurrent

observation of the test results.

Design of random pattern testable asynchronous sequential circuits were introduced in

detail further. Two modes of operation of these circuits namely normal mode and test

mode were detailed further. The proposed testable circuit has the test structure with addi-

tional hardware. It contains an additional register to collect the test data from the internal

outputs of the combinational block, a block of XOR gates for mixing the test dataand

multiplexer to switch the data flow during the test phase. In addition to this, to facilitate

the control signalling properly, two XOR gates, multiplexers and a toggle element were

added. The mechanism for applying the random test patterns to the inputs and compress-

ing the output responses of the combinational block were detailed further.The signature

analyser used for collecting the test data from the internal outputs of the combinational

circuit was described in detail. The signature analyser used was adaptedfrom the well

known BILBO (Built-In-Logic-Block-Observer) signature analyzer.

The advantages of random testing the sequential circuit were reported tobe 1) low com-

plexity in testing procedure, 2) faster testing time of n-1 times, where n is the number of

latches of registers and 3) the number of test patters for detecting all the single stuck-at

faults in the circuit is equal to the number test patterns for detecting all the stuck-at faults

in the combinational part of the circuit under test. The reason point 3 is attributed to the

following 3 factors namely 1) all the stuck at faults on the inputs of registers Reg1 and

Chapter 3. Related Work 44

Reg2 are equivalent to the appropriate faults on the internal inputs of the combinational

logic block, 2) all the stuck-at faults on the inputs/outputs of the block of XORgates

and Reg3 are detected easily during the test of the combinational circuit and3) stuck-at

faults on the control lines involved in the control of the random testing of the circuit are

detectable as they cause deadlock of the circuit or change the data flow during the test

which can be identified easily.

Hardware overhead and performance degradation were reported to be the disadvantage

of this method. An experiment was carried using the circuit called "register destination

decoder" which is a part of the asynchronous version of the ARM processor. Testable

implementation of this circuit was first designed. The testing mode and normal mode of

the circuit were executed to detect the stuck-at faults in the circuits. The test set con-

sisted of 47 test patterns including 1) one test pattern which contains all zeros, 2) sixteen

’running one’ test patterns and 3) thirty test patterns everyone of whichinclude only two

ones and all zeros. Up to a reduction of 165 times was reported for testing this circuit us-

ing weighted random test patterns. The CMOS implementation of this circuit consisted

of 1011 transistors. The testable design of the same circuit was reported tobe comprised

of 1290 transistors and thus giving a hardware overhead of 27 percent.

3.2.7 Offline Testing

1. Offline testing of asynchronous circuits[Kop05]

This work introduces a new method for testing the asynchronous circuits which is ob-

tained by the direct mapping technique from 1-safe petrinets. Signal transition graphs

(STG) and 1-safe petrinet were used for the representation of the circuit under test. The

original petrinet based circuit description is converted in to a two level architecture which

is composed of a tracker and a bouncer. The tracker and the bouncer are connected by

means of read-arcs. Direct mapping from STG/petrinet involves introducing a David cell

for each place in the petrinet or STG. David cells are sequential and speed-independent

circuits. The fault models used are based on the physical faults occurring in the David

cells. The fault model proposed capture three different errors due tothe physical faults

occurring in the David cells. First error is called token disappearing faultwhich occurs

when the David cell executes its input handshake, but does not starts its output hand-

shake, causing a deadlock. Second error called stuck-at-full erroroccurs when the David

cell has its output wire at in the stuck-at-active state, which starts the outputhandshake

prematurely and never finishing it. Third error occurs when a David cell receives a token,

and starts its output handshake without finishing it. All these errors lead to the deadlock.

A pseudo clock was used to detect other two faults in addition to these three errors.

Chapter 3. Related Work 45

The crux of this work is that the chain of David cells present in the decomposed circuit

is converted into shift registers. An approach for testing single stuck at faults was also

proposed. The test generation algorithm involves three steps namely a) conversion of

the tracker in to an acyclic structure, b) generation of verilog netlist with control signals

and demux-mux and c) test pattern generation. This approach was demonstrated over the

benchmark, up-down counter. Case study on the benchmarks composedof David cells

ranging from 5 to 17 were reported with 93% and 100% testability. Overheadincurred

due to the addition of AND gate at the David cell interface was also reported.

3.2.8 Functional Testing

1. Fast functional testing of delay insensitive circuits[Pag95]

A fast functional testing method for the test generation for delay insensitive circuits was

proposed in this work. The circuits tested were the four phase handshake signalling

based circuits designed using Martin’s method [BM88]. A new block called OR/C block

was used to facilitate the testing process and also to preserve the delay insensitivity of

the circuit under test. This block acts as an OR gate during normal operationof the cir-

cuit and as a C-element during the testing phase. The program flow graphof the circuit

is used for the test sequence generation and the OR/C block insertion/replacement. A

synthesis method for the delay insensitive circuits represented in CSP-like language was

described using an example. The CSP-like specification is then represented as a program

flow graph. The guarded command present in the program flow graph is used in the test-

ing process of these circuits.

A testing method by simultaneous execution of the guarded sequences was briefed fur-

ther. An algorithm named "multi_path" for determining the paths to be traversed during

this process was also introduced. Following the test method, steps ensuringthe correct

operation of the circuit during the testing process were analysed. The effect of commu-

nicating multiple values was discussed with an example. The effects of simultaneous

execution of the guarded sequences were discussed further during the testing process

by using an example. Behaviour of the environment during the testing process was dis-

cussed further. Due to the distributive nature of the delay insensitive circuits, the testing

time is considerably reduced due to the simultaneous execution of more than oneguarded

sequences in the program flow graph of the circuits. An extra overheadof 1 pin is needed

to implement the testability feature during the synthesis process.

Chapter 3. Related Work 46

3.2.9 Fault Simulators and Test methods

1. Testability of Asynchronous Self-Timed control circuits with delay assumptions[BM91]

A Testability method for timed asynchronous control circuits was proposed inthis work.

These circuits were built using standard logic cell with assigned min-max valuefor the

rise and fall times. The circuit model was represented as a total state graph(TSG) to

practically realize all the possible state transitions of the circuit. Another state graph

named, invalid state graph was also introduced which depicts the functionality of the

circuit when it is faulty. Faults used in the testability of the self timed circuits in this

technique are single stuck-at-0 and stuck-at-1 faults. The control circuits are represented

by the signal transitions of the circuit which is composed of the partial orderings of the

signal transitions in a signal transition graph (STG). The memory element C-element is

assumed to be driven by the combinational logic block decoupled from otherinputs to

the C-element. This is to ensure the testability of the C-element. The testing environ-

ment assumed in this work is considered slow enough to allow the circuit to be in the

stable state until other nodes in the circuit gets stabilized. In other word, the input of the

circuit is not changed until the effect of the previous input to the circuit has stabilized.

The stuck at faults in combinational logic block, C-element were dealt separately. The

fault inside the C-element is not considered in this method. The C-element is assumed

as an atomic gate and the faults in the two inputs and the output were consideredfor

testability.

A sufficient condition for full testability of an asynchronous control circuit was also pro-

posed. The conditions is that for an asynchronous control circuit to be100% fault testable

for single stuck-at fault, when 1) for all the faults, the circuit is capable of traversing from

one reachable state in which the fault can propagate to another state in whichthe outputs

are different for the circuit, 2) for all the faults, the circuit will not traverse from a valid

state to another state where the output of the circuits are as expected but theoutput of

the memory elements are different. An automated testability checker tool was alsoim-

plemented. The tool reads in the circuit under test with the minimum and maximum gate

delays assigned to each internal gate and outputs the declaration of the testability of the

circuit along with the list of states traversed for testing.

2. FSIMAC Simulator [SKR00]

A fault simulator called FSIMAC for stuck at faults and gate-delay faults forasyn-

chronous sequential circuits was developed in this work. The time frame unfolding

method is used in this fault simulator to simulate the faulty and good machines which is

sequential. The time-frame boundaries for the synchronous circuits are the boundaries

of their clock, but in case of the asynchronous circuits , feedback loops present in them

Chapter 3. Related Work 47

bound the time frame. Hence a new feedback identification algorithm was proposed.

This algorithm was a variant of the conventional feedback loop breakingalgorithm ex-

cept that this new proposed algorithm used breadth first search insteadof depth first

search during the scan element selection process. Min-max timing analysis and the 13

valued logic were used by the simulator for the timing analysis of the frames.

The main target circuits for this fault simulator were those of RAPPID resembling the

extend burst-mode machines. The delay model used here is the bounded delay model

as the min-max timing analysis approach is based on bounded delay model. An equal

nominal gate delays for rising and falling transitions, and zero wire delays without sac-

rificing the simulation model. Some of the inertial delays were also modelled due to the

presence of domino gates in the target circuits chosen. 13 valued waveform logic was

used for the simulation, which is capable of dealing with the hazards during thecircuit

analysis. The signal waveforms were represented as a triple <b,m,e> with b denoting the

begin state of the signal, e the end state and m the intermediate transition behaviour. The

class of waveforms in the 13-valued waveforms are constant, transition, hazard, stabi-

lizing, unstabilizing and undefined. This classification is based on the transition of the

signals and also their stability.

A conversion method from 3-valued logic to 13-value logic was introduced.First, All the

input waveform sequences were taken and the corresponding sequences of states from

being state to end state is computed. Second, the function for the begin state and the end

state were defined. Third, based on the function, the value of the m is computed by mon-

itoring the transitions occurring during the state change. These three stepswere applied

to develop a 13-value logic by storing all the 13-valued functions as a pre-computed look

up table. A demonstration of this fault simulator over the complex domino logic circuit

was demonstrated with the HDL description and the files generated by the FSIMAC sim-

ulator.

A algorithm named feedback_detect based on breadth first search wasdescribed. The al-

gorithm involves storing two indices namely "level" and "flag" for each gate inthe graph

description of the circuit. The level computes the number of gates between thePI and

the current gate and the flag variable stores the completion of the level computation. Two

traversal lists namely TRUE_LIST and FALSE_LIST were used to completelytraverse

all the vertices/gates of the circuit. Feedbacks were added in the separatelist named

FEED and its evaluation is registered in the list called Eval_Feed_List. Thought the

identification of feedbacks is on the fly and the method of finding them is not elaborated.

The inputs to the fault simulator FSIMAC are a) verilog gate level description ,b) min-

imum and maximum gate delay bounds and c) a sequence of test vectors. First the fault

free good machine is simulated and then the fault machine is simulated for each fault.

Chapter 3. Related Work 48

Fault models used are single stuck-at-0, stuck-at-1 and gate delay faults.For the sequen-

tial circuit, the simulations are done frame-after-frame with bounds being the feedbacks

detected by the feedback_detect algorithm. Once the circuit is initialized by theinput

values provided by the user, the current frame is simulated using the first test stimuli and

min-max timing analysis. When the primary output value becomes stable, the valuesof

the output value of the fanin gate g for every feedback are fed as the next input value of

fanout gate f for every feedback. For stuck at faults the Primary outputs for the good and

faulty circuits are examined for fault detection. For the gate delay fault, time stamps for

the primary output signals at the end of each frame is examined for fault detection and

reporting. Several benchmarks from Phillips and Intel were experimented with the fault

simulator and the results are reported.

3. Testing two-phase transition signalling based self-timed circuits in a synthesis envi-

ronment[KA94]

A testing technique for self-timed asynchronous circuits taking advantage of the auto-

mated synthesis method of self-timed circuits was introduced in this work. A synthe-

sis environment named SHILPA was developed. The circuit description for the asyn-

chronous circuit was based on the hopCP, a high level concurrent HDL, which is based

on CSP. The circuits, are described as a collection of concurrent processes communicat-

ing through the synchronous channels via handshake through restricted shared variables.

The transition signalling, known as two-phase or event-based signalling, isused in these

designs attributing to its high performance and low power consumption. A clearexam-

ple of the hopCP description of a self-timed asynchronous circuit was demonstrated. The

represented behaviour of the circuits is converted in to an annotated Petrinet called HFG,

where the places denote the states of the system, the actions/Boolean evaluations denote

the transitions of the Petrinet. The HFG is then converted in to a self-timed circuitus-

ing a syntax-directed translation procedure called action refinement. Actionrefinement

involves a set of petrinet based transformations to convert the HFG to a RTL level de-

scription. In the proposed synthesis framework, every block of the design is represented

by an action block which implements the hopCP action. The action blocks were also

classified in to three types namely Control action blocks, Function action blocksand

Predicate action blocks which models the control flow, functions and the Boolean predi-

cates respectively. Now this automated synthesis method is used to generate test for the

synthesized circuits too.

Two types of fault models were considered during the testing process: thestuck-at fault

and the delay fault models. But only the stuck fault model was demonstrated inthe work.

The fault model assumption over here is based on the capability of transferring a 0 to 1

and a 1 to 0 transitions through a node and in which case the node is considered to be

Chapter 3. Related Work 49

void of stuck-at-0 and stuck-at-1 faults. Thus to test a node for the stuck-at test, two tran-

sitions have to be passed through the path from the input through the node tothe output

of the circuit. This process still has a bottleneck over the proper justificationsequence

needed to propagate the transitions. To overcome this, the SELECT module in the li-

brary of asynchronous circuits used by SHILPA is modified. Also, all themacromodules

in the designs are considered to be atomic gates and thereby the faults inside the modules

are not considered during the test generation. The design of the SCANSELECT module

which aids the test generation process was briefed. The proposed SCANSELECT mod-

ule is also considered as an atomic gate during the test pattern generation.

Next an algorithm for the test pattern generation was proposed. The algorithm takes in

the output of the SHILPA synthesis system namely the NHFG, the set of resources and

the physical netlist. The output of the testing algorithm proposed are 1) the test vectors

for all the stuck-at faults, 2) control sequences to test the control part of the circuit and

to setup the conditions to test the data path, and 3) the points on the circuit to be used in

setting up the scan chain. The top level flow of the algorithm is as follows. Once the out-

put of the SHILPA system is read in, the circuit is partitioned in to datapath andcontrol

path. Then the procedure called testCab is applied to test the control path which returns

the control sequences for the control path testing. Next, the testDataPath procedure is

run, which generates the test vectors for all stuck at faults and also the control sequences

. Then the algorithm returns the the control sequence of the control path,the control

sequences and the test vectors for the data path and the points selected for the scan chain

implementation.

The whole synthesis and testing flow was applied to several asynchronous benchmarks

and fault coverage of 100 percent was reported. The area overhead for the circuit will be

contributed mainly by the modification in the SELECT module. The pin overhead was

reported to be 7.

4. Testing Redundant asynchronous circuits by variable phase splitting[LKL94]

This work proposes a test generation approach for stuck-at and delay fault testing of

asynchronous circuits without the addition of any logic. This method is basedon par-

titioning the asynchronous circuit into combinational and memory elements. The full

stuck and delay testability was achieved under weak conditions with an assumption of

being able to drive both phases of the each combinational logic input independently. Any

two level circuit implementing a unate function is automatically prime and irredundant if

it is free from single cube containment. This property is mainly exploited in this method.

The method proposed is called testing by variable phase splitting. Instead of modifying

Chapter 3. Related Work 50

the logic, the inputs of the circuit are modified to enable testability of the circuits. It is

done by treating the positive and negative phase of each input variable asthe separate

entities.

Next a design for testability for the test methodology was introduced. Scan flipflops are

needed to apply the proposed test methodology. The synthesis algorithms for three main

classes of asynchronous circuits namely 1) Huffman circuits, 2) Burst Mode Machines

and 3) Bounded delay circuits are shown to be synthesizing the circuits thatcan preserve

the single stuck-at and the delay fault testability if the synthesis procedure obeys the con-

straint proposed during the synthesis. Experiments were carried out theasynchronous

benchmarks and results with full testability were reported. A greedy algorithm was im-

plemented for carrying out the experiment which ensures full testability by splitting each

input signal. The heuristics used using this approach employ the order of splitting by

considering signals that are at the near end of the untestable path and thenthe non-unate

signals. The number of split signals used are reported to be very low and also the exe-

cution time reported were only of few seconds for the circuits with literal size ranging

from 10 to 52.

Several other fault simulators for asynchronous circuits reported in theliterature lately

are [SM04a],[BR]

3.2.10 Fault Modelling

1. High level fault modelling of asynchronous circuits[Lu95]

A high level fault model was proposed in this method for testing asynchronous circuits.

The fault model is based on the signal transition graph. The fault model introduced here

is called Transitional fault models. Complete fault machines of the C-element for the

stuck on, bridging and stuck faults were derived. The C-element implementation style

was dynamic C-element.Total 34 possible faults were realized. Out of 34, only 6 were

modelled by the stuck-at fault model. Rest of the 31 faults were modelled based on the

proposed transitional fault model. Definitions of two new transitional faults namely tran-

sition unable fault and extra transition faults for the C-element behaviour. Stuck-at-false

and stuck-at-true faults are the proposed transition fault models. Stuck-at-false in the

STG is that one of the pre-conditions of a transition is always false. This fault is repre-

sented by adding a ’0’ in the STG. Stuck-at-true fault is the fault in the STG inwhich one

of the preconditions of the transition is always true. This is represented byadding a ’1’ in

the arc corresponding to that precondition. Further the transition fault was divided in to

single and multiple signal transition faults namely Single Signal Transition Fault (SSTF)

and Multiple Signal Transition Fault(MSTF). When only one signal transition fault oc-

Chapter 3. Related Work 51

curs at a time in the STG, then it is called SSTF. When more than one SSTF occurs in

the STG at a time, then the fault is called MSTF. Most of the functionally irredundant

faults can be modelled using the transition faults.

Further the fault collapsing technique for the signal transition faults is introduced. Tran-

sition fault equivalence and Transition fault dominance were defined. The proposed fault

models were used to generate test for the asynchronous benchmark namely asynchronous

neuron. The analog fault simulator was used to map all the transistor level fault models

to gate level transitional fault models. Then the gate level transitional fault models were

used to generate test using the STG. It has been reported that more than 90 percent of the

transistor level faults could be covered by the proposed fault models. Stilla set of fault

namely parametric faults could not be detected by these models

2. Issues in fault modelling and testing of micropipelines[PVS92]

A testing technique for Micropipelines is introduced in this work. Micropipeline’s ad-

vantages over the synchronous pipelines are 1) it has the minimum possible response

time equal to the delay of all the stages, 2) the logic circuitry is simple, 3) optimal work-

ing speed of each stage is guaranteed and 4) problems regarding the devising clocking

schemes for synchronous pipelines are not encountered. In terms of the testability fur-

ther three more advantages namely 1) control parts of the micropipelines areconcurrently

testable, 2) test pattern generation for data part logic can be reduced to that of the combi-

nation circuit with an update in the test application method, and 3)testing latches requires

test pattern test which can be obtained from the usual test pattern generation methods for

combinational circuits. The stuck at fault model were used for the test pattern generation

of micropipeline namely 1) faults in the control part of the pipelines, 2) faults inthe logic

blocks and 3) faults in the latches. The faults in the latches considered werethe single

stuck-at-faults, single stuck-at-capture faults and the single stuck-at-pass faults.

3. Fault effects in asynchronous sequential logic circuits[SWF93]

This work studies three types of fault effects in the Huffman model of asynchronous cir-

cuits. The three types of fault effects are equivalent-state redundantfaults, invalid=state

redundant faults and state oscillations. In this work following assumption on the asyn-

chronous circuit being analyzed is made, 1) the circuits are tested and operated in the

fundamental with only one input changing at a time, 2) circuit has the reset state from

which all the input test sequences are started, 3)two-level implementation in which only

prime and non redundant implicants are present except the redundant logic for the static

hazard protection and no shared logic for the next state equation and output equation

and 4) the single stuck at fault model is used. The equivalent-state redundant faults are

Chapter 3. Related Work 52

reported to be generated when there is a violation in the fundamental mode constraints.

The invalid state faults occur due to the presence of invalid states or improperassignment

of don’t care terms. State oscillations occur due to the presence of the critical races.

Three properties for the non occurrence of the oscillations were introduced. Property

1 states that two-state oscillations will never occur in a race-free fault circuit. Property

2 states that if each input column contains either 1) atmost one k-connected path, k >

3 or b) k-connected paths , k <= 3, then no multistate oscillation occurs in a race-fee

faulty circuit. Property 3 states that , if there exists two disjoint k-connectedpaths, k > 3

and dH(Sx,Sy)(distance between Sx and Sy) >1 for all Sx and Sy in different connected

paths, then no multistate oscillations occur in the fault circuit. And finally a set ofrules

for synthesizing testable asynchronous sequential logic circuit was alsogiven.

3.2.11 Switch/Transistor Level Testing

1. A switch level test Generation for system for synchronous and asynchronous cir-

cuits [ES95]

A switch-level test generation system for synchronous and asynchronous circuits has

been developed in which a new algorithm for fully automatic switch-level test genera-

tion and an existing fault simulator have been integrated. For test generation, a switch-

level circuit is modelled as a logic network that correctly models the behavior of the

switch-level including bidirectionality, dynamic charge storage, and ratioedlogic. The

algorithm is able to generate tests for combinational and sequential circuits. Both nMOS

and CMOS circuits can be modelled. In addition to the classical line stuck-at faults,

the algorithm is able to handle stuck-open and stuck-closed faults on the transistors of

the circuit. In synchronous circuits, the time-frame based algorithm uses asynchronous

processing within each clock phase to achieve stability in the circuit and synchronous

processing between clock phases to model the passage of time. In asynchronous cir-

cuits, the algorithm uses asynchronous processing to reach stability within and between

modules. Unlike earlier time-frame based test generators for general sequential circuits,

the test generator presented uses the monotonicity of the logic network to speed up the

search for a solution. Results on benchmark circuits show that the test generator outper-

forms an existing switch-level test generator both in time and space requirements. The

algorithm is adaptable to mixed-level test generation.

2. Test quality of asynchronous circuits: a defect oriented evaluation [RB96]

A detailed analysis on the test quality of the asynchronous circuits using defect based

fault models was undertaken in this work. The transistor level implementation ofthe

sequencer circuits with 14 transistors and 2 inverters was also presented. Next the design

Chapter 3. Related Work 53

and test aspects of handshake logic circuits were discussed.

Then, a detailed introduction to the defect-oriented testing was given. This approach

namely inductive fault analysis and the tool in which it was implemented was also

pointed out. The testability of the opens and shorts in the handshake circuits were ana-

lyzed using this tool named Analog SystemQ. Next the fault models namely stuck open,

short and bridging fault models were described. Three different testmethods were used

for the analysis and evaluation. The first method is based on the deadlock detection. The

second method is based on voltage testing and the third one being the IDDQ testing.

Next a detailed fault analysis for the component SEQ was carried out. First the fault

free behaviour was simulated and the corresponding waveforms were recorded for all

the nodes and also the IDD. All the bridging fault and the stuck-at faults were considered

for the analysis, which accounted for totally 91 bridging faults and 30 stuckat faults. A

fault coverage 88 percent for the bridging faults and 97 percent forthe stuck at faults

were reported. Also 12 undetectable faults were reported. Based on thisthree classes of

faults were classified for this sequencer circuit. The percentage of bridging and stuck-

at faults detected by each of the three testing methods was represented using the Venn

diagram. A DFT component named HOLD was introduced further and the transistor

level implementation of it was shown with 14 transistors and 3 inverters. This element

facilitates the lock-stepping of the circuit operation to create sufficient quiescent states

for IDDQ and the scan test. The simulation results for the sequencer circuits with the

HOLD element was reported in the same way using the Venn diagram. Stuck-atfault

coverage of 95 percent and 95 percent bridging fault coverage was reported for this DFT

based design of the sequencer.

Next the fault analysis for the other handshake components was done. The DFT ap-

proach of adding HOLD element was carried out to analyze all these components. The

components namely MUX, CASE, DO, PAR and HOLD were analyzed and the results

were reported. Test performance and the cost of all the test methods were analyzed fur-

ther. It was evident that the scan testing along with the IDDQ testing was needed to get

good fault coverage. Costs with respect to area, power dissipation and delay were also

reported.

3.2.12 Self Testing Asynchronous Designs

1. Self-Timed is Self-Diagnostic[DGY90]

A self diagnostic design of asynchronous circuits was introduced in this work. A tech-

nique for implementing any Boolean equation into a self checking asynchronous de-

sign was proposed. A combinational module was implemented in ternary in which,the

Chapter 3. Related Work 54

logic values will be 0,1,U, where U is an undefined value. The sequential behaviour of

the implemented combinational module was specified using a cycle of activities namely

E1,S1,E2,S2,.....E4,S4, where E’s are environments and S’s are network functional con-

straints. Also the ternary logic was employed using the dual-rail logic with the logic

values 0,1, and U represented as 10, 00, and 01 respectively. The combinational mod-

ule was composed of 4 subnets name ORN, CEN, DRN and OUTN. The subnet ORN

detects when each of the input has become defined or undefined. The subnet CEN is

designed in such a way that it detects when all the inputs are defined or undefined. The

arbitrary set of Boolean equations are implemented by the subnet DRN. Subnet OUTP

retains the output of the combination logic module’s outputs to undefined value until all

the inputs become defined and only after that the correct outputs will be produced. A de-

tailed self diagnostic model was described for the circuits with stuck-at-faultonly. The

self-diagnostic system was defined in this work as a design in which the occurrence of a

single stuck-at-fault and a sequence of environment transitions E1-E4 , either produces

the correct outputs or goes to a hung-up state or an illegal final state. Based on this defi-

nition, several theorems to prove the self-diagnostic design was further briefed. Sixteen

different cases involving stuck-at-1 and stuck-at-0 faults on the wires of the proposed

designs were discussed further. The detection of faults in the proposedself-diagnostic

design was aided by the four phase signalling protocol used for the communication be-

tween the circuit and environment. Low hardware requirements was also anadvantage

of this technique compared to the usual self-checking logic design.

Review:

3.2.13 Critical Analysis

Design For Test

Though several testable design methods targeting specific low level hardware were introduced

for asynchronous circuits, they are very specific to certain design styleor certain hardware

for specific application. No general asynchronous DFT is currently available which can be

applied in a generic manner for any type of asynchronous design style. Hence several recent

methods addressed in literature still follows the synchronous design basedtest methods for

asynchronous circuits.

Chapter 3. Related Work 55

SCAN Testing

Full scan testing methods introduced for asynchronous circuits are only robust test method

currently available for testing asynchronous. But the issue with this method isthat, the area

over head will be higher compared to the original circuit. For the asynchronous control circuits

with too many C-elements , it will be important to develop partial scan test generation method

to reduce the test area overhead. Not many partial scan methods are reported in the literature

for the asynchronous design. This paves way for the main motivation of thisthesis to develop

test methods for asynchronous circuits.

Synthesis for Testability

Synthesis for testability for asynchronous circuits is a very rarely dealt topic in asynchronous

test community. As given in the review the methods in [KLSV91] and [NJC95] were reported

in late 90’s. Feasibility of these methods for the current technology nodes will be an important

question to address.

Test Pattern Generation for Asynchronous Circuits

Four different ATPG techniques were reviewed in the previous subsections. It should be noted

that these test methods were reported long back in 1970s. Only two recentATPG methods were

reported in the literature ([SM04a] and [Roi97]). But these methods are based on STG based

and random test vector based ATPGs. The number of test patterns generated by these methods

is very high. A very effective test method with optimal number of test patternsand still with

very good fault coverage similar to synchronous ATPG methods is yet to bedeveloped.

Fault Simulation

FSIMAC [SKR00], SPIN-SIM [SM04a] and [BR] are some of the fault simulators reported in

the literature. They still follow fault simulation methods used for synchronouscircuit design

and are adapted to address the hazards in asynchronous circuits. Developing more fault simu-

lators with fault models targeting faults on asynchronous circuits will improve the future test

generation methods which will use these simulators.

Chapter 3. Related Work 56

Fault Modeling and Transistor Level Testing

Fault models for asynchronous circuit test are still under very early stages. Most of the test

methods introduced for asynchronous circuit usually apply stuck-at fault model as they are the

golden models for the past few decades. But transistor level fault models like stuck-open faults

cannot be completely detected by this model. The discussion on this topic is addressed in the

Chapter 9. Developing new fault models is currently necessary as the technology node already

reached sub 30nm. Several defects occurring at these nodes and their impact on asynchronous

design styles have to be addressed.

This thesis addresses most of the above mentioned topics. Firstly, as mentioned in the outline of

the contribution of the thesis in the introduction chapter, three partial scan DFT methods were

introduced in this thesis. This contribution aligns with the current challenge ofaddressing the

partial scan test methods for asynchronous circuits. Next the fault model other than stuck-at

fault model was considered to generate test for detecting transistor levelfaults. With the tran-

sistor feature size reducing this method addresses the important challenge of improved testing

of asynchronous circuits for transistor level defects. Finally, a pre-processing method aiding

the asynchronous test generation process was introduced. This will reduce the complexity of

the test generation algorithm proposed for asynchronous circuits by reducing the problem size.

3.3 Conclusion

A brief literature review on testing for asynchronous circuits was carriedout in this chapter.

Several works related to the testing of asynchronous circuits were analysed. Automatic test

pattern generation methods for generating test patterns for asynchronous circuits were also

reviewed. The defect level test generation system were also found in the literature, but a very

few works were reported in actual test generation at defect level. Following the review in this

chapter, a comparative study of two test generation methods will be carriedout in the next

chapter to probe the test generation issues in asynchronous further deeper.

Chapter 4

Automatic Test Pattern Generation for

Asynchronous Circuits: A

Comparative Study

4.1 Introduction

This chapter deals with the analysis of two approaches for test pattern generation of asyn-

chronous circuits. The first approach is uses a symbolic method based onstate traversal, while

the second one is based on an adaptation of the well-known scan insertion technique.

A comparative analysis of two different methods of test generation for asynchronous circuits is

carried out in this chapter. The two methods are

• Automatic Test Pattern Generation based on symbolic reachability analysis [RCPP97]

• Scan insertion based test generation [BA05]

The organization of the chapter is as follows: Section 2 describes the State Transition

Graph (STG) based automatic test pattern generation; Section 3 describesthe test pattern

generation based on the scan insertion technique; Section 4 gives a comparison of test

generated by two approaches for a number of small benchmarks; the chapter is concluded

in Section 5.

57

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study58

4.2 Automatic Test Pattern Generation based on Symbolic Rea ch-

ability Analysis

This section briefly describes the approach of automatic test pattern generation used in [RCPP97].

It proposed a testing strategy with the following features:

• The behaviour of the asynchronous circuit is modelled as a synchronous finite state ma-

chine.

• Test patterns are generated using symbolic technique from the modelled FSM.

Test patterns can be synchronously applied to the asynchronous circuits and faults are made

available at the output. An asynchronous circuit in this approach is modeledas an interconnec-

tion of gates and delay elements. The delay model used here is an unbounded gate delay model

[KF91].

4.2.1 Definition

State Graph (SG)A state graph (SG) is a pair <S,E>, where s is the set of states and E⊆ S×

S is the set of edges (transitions).

Circuit Stage Graph(CSG)A circuit state graph (CSG) is a 7-tuple <S,E,P,G,SF0,λ P,λ G> ,

where

• <S,E> is a State Graph, P = {p1....pm } is the set of primary inputs,

• G={g1....gn } is the set of gates

• S0 ⊆ S is the set of initial states

• The labeling functionsλ P : S→ {0,1} m, and

• λ G: S→ {0,1} n map each state, s, with binary vector consisting of the values s of

primary inputs and gates, respectively.

The next state of a circuit under unbounded gate delay model depends on its present state. A

gate is said to be "excited", if its output differs from the function it implements and "stable"

otherwise. A next state functionδ: SxG→ S can be defined for each gate. Functionδ(s, gi)

returns either the state reached by switching the output of gi if it is excited, or s, if gi is stable.

A transition relation, R relates pairs of predecessor/ successor states.If state s’ is an immediate

successor of state s, it will be assumed that both states are in relation R, denoted sRs’, or (s,s’)

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study59

∈ R. By using the next state function of each gate, the transition relation associated with circuit

gates are defined as:

Rδ = {(s,s
′) ∈ S×S|s is stable∧s= s1∨ (∃gi ∈G)such thats′ = δ(s,gi) 6= s)}

For each pair (s,s’)∈ Rδ, if s is stable, its successor is the same s; otherwise, the successor is

obtained by switching an excited gate. The transition relation associated to input signals are

defined as follows:

RI = {(s,s
′) ∈ S×S| s is stable∧λp(s) 6= λp(s)∧λG(s) = λG(s

′)}

Thus the transition relation of the circuit in test mode is defined as R = RI ∪ R δ.

Figure 4.1: Majority Gate Based C-Element

4.2.2 Synchronous Abstraction of the Circuit State

To calculate the synchronous abstraction of the testable Circuit State graph, the pairs of states,

(s,s’), such that s’ is reached from s at the end of the test cycle is defined. Each pair has an asso-

ciated input pattern based on the different values of inputs in s and s’. The set of all these pairs

were called Test Cycle Relation (TCR). For practical reasons it was assumed that the circuit

must settle in at most k transitions. The k-step test cycle relation (TCRk) represents the pairs

(s,s’) distant at most k transitions. TCRk for a given CSG in test mode <S,E,P,G,S0,λP,λG> is

defined as:

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study60

Figure 4.2: State Graph

TCRk =
{

(s,s′) ∈ S×S|∃s1......,sk such thatsRI s1∧ (
kΛi=2si−1Rδsi)∧sk = s′

}

Invalid pairs of states are removed in the next step. Vectors causing non-confluence are detected

in pairs (s, s’) and (s, s”) such that s’ and s” with the same input values exist. Patterns producing

oscillation or unacceptably long test cycles are found if s’ is unstable. Thek-Confluent Stable

State Graph, denoted as CSSGk, is formed by those pairs in TCRk that present neither non-

confluence nor cause the circuit to be unstable after k transitions. Formallyit is defined as

CSSGk =
{

(s,s′) ∈ TCRk|s’ is stable∧∄(s,s′′) ∈ TCRksuch that[s′ 6= s′′∧λI (s
′) = λI (s

′′)]
}

Thus each one of CSSGk ’s nodes represents a stable state. An arc between two nodes s and

s’ exists, if s’ is stable and the only state reachable from s in at most k transitions by applying

some input pattern. An example to show the approach of the above theory is given below using

the C-element, implemented by a majority gate, shown in Figure 4.1. The C-element shown is

a model with two input signals, r1 and r2, and four gates. The circuit state graph modelled for

this circuit is a 7 tuple <S,E,P,G,S0,λ P,λG>, where <S,E> is a State Graph, P = {r1,r2,reset}

is the set of primary inputs (the reset signal is added by the Testify tool which initializes any

memory element in the circuit), G={l,m,n,a1} is the set of gates and S0 ∈ S is the set of initial

states. The labelling functionsλ P: S→ {0,1} 3 andλ G :S→ {0,1} 4, map each state s with

a binary vector consisting of the values s of primary inputs and gates, respectively. Thus the

elements of set, S (set of reachable states), has a binary vector of length7. In total, 128 states

form the set S. The reachable states can be calculated by using a symbolic traversal algorithm

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study61

like the one used in [JRBD94]. The set for this circuit is obtained by enumerating over the (128

× 128) states. The next state functions for each gate defined for this circuit are (δl : S× l →

S), (δm : S× m→ S), (δn: S× n→ S), (δy: S× y→ S) which operate over the gates l, m, n

and y, respectively.

From this circuit state graph model and next state functions, the transition relation R = RI ∪

R δ are obtained, which forms a set of stable state pairs. Next the synchronous abstraction

involving computation of TCRk and CSSGk is made. The state graph evaluated for this cir-

cuit model is as shown in Figure 4.2. Testify generated 34 edges which form the transition

relation between the states. For the sake of clarity, only part of the state graph is shown. Af-

ter several iterations, the set of stable state pairs are ready for test generation. With these set

of stable states, test pattern generation was performed in three phases: fault activation, state

justification and state differentiation, as described in [RCPP97]. The test generation is car-

ried out using Random TPG and Ternary simulation [RCPP97]. The stable state pairs picked

for test generation for this circuit are (s1, s127), (s127, s1), (s2,s3), (s127, s89), (s64, s65),

and (s127, s22). The encoded binary codes on these state pairs weregenerated which corre-

sponded to the test patterns covering 24 fault sites. The test patterns obtained for this circuit

were (0000001, 1111111), (1111111, 0000001), (0000010, 0000011), (1111111, 1011001),

(1000000, 1000001), (1111111, 0010111).The size of the test pattern was 7, which is equal to

the size of the binary encoded state variables in the state pairs. 12 patterns were generated for

24 faults. To validate the approach several benchmarks synthesized byPetrify were tested and

the results are analyzed in Section 4.4.

4.3 Scan Latch Insertion Based Test Generation

This section describes the test pattern generation based on scan latch insertion [KF91]. Asyn-

chronous circuits can be represented as combinational blocks with feedback loops. Effective

test pattern generation involves breaking these feedback loops and inserting scan latches in

these loops, thereby making the circuit completely combinational. Level sensitive latches are

used as they restore the asynchronous operation during the normal modeof operation by keep-

ing them transparent. The loops may be global or local feedback ones. In the test mode, the

asynchronous circuit operates synchronously with the scan latches being fed with test patterns

and the outputs scanned out.

The LSSD scan design [KF91] is shown in Figure 4.3. It was designed witha 2:1 multiplexer

and two latches and operates using 2 phase, level sensitive clocks. Thesignals ’x’ and ’y’

provide the path for normal operation of the circuit. The signals SI and y form the test mode

path. This design is fully stuck-at testable. Several optimized circuits [KF91] are possible for

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study62

Figure 4.3: LSSD Latch Desgin

the scan latch design inserted in the feedback loop of the C-element. The simplest and robust

scan design is shown here. The scan mode is used for several cycles toapply the test patterns

to the scan latches. The scanned output reveals the potential faults in the design. To illustrate

this approach, once again a majority gate based C-element is considered. The circuit consists

of 2 input signals r1 and r2 with the output signal a1. Thus the LSSD Latch isinserted at the

node 10 to break the feedback [KF91]. The modified circuit is shown in Figure 4.4.

Figure 4.4: Celement Design with LSSD Latch

The test generation for the modified circuit is carried out using standard test pattern generation

tools. This is an important aspect of this method, since such tools are fast, reliable and produce

high-quality test patterns. This approach can be automated as shown below:

• Read in the design net-list

• Remove local loops by adding scan latches for each C-element (if present)

• Break the global feedback loops

• Insert the proposed scan latch at the feedback loop points

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study63

• Generate the modified net-list of the original design file with local and globalloop scan

insertion

• Apply the net-list to the ATPG tool to generate the test patterns

The fault coverage obtained over different benchmarks by using this method in comparison

with that obtained using the symbolic technique is discussed in the next section.

4.4 Comparison of results

This section compares the results of the two proposed approaches by applying them to sev-

eral benchmarks synthesized using Petrify which is used in the asynchronous community

[CKK+96a]. The fault coverage and test patterns based on first method was generated using

the tool Testify [Roi97] which is developed from the same approach. Table4.1 gives details on

fault coverage, number of test patterns, total number of faults, total number of detectable faults

and total number of detected faults for several benchmark circuits.

For the second approach, the fault coverage and test patterns were generated by cutting the

global loops manually and inserting the scan latch in the feedback paths. After inserting the

latches, the netlist was fed into the Synopsys Tetramax ATPG tool to generatethe test patterns

and calculate the fault coverage. Table 4.2 gives the fault coverage for the same benchmarks

and summarizes the test patterns generated using the scan insertion method.

4.4.1 Example

Figure 4.5: C-element-Faults detected by testify

For the C-element, the faults covered by testify are 24 out of 28 faults as shown in Figure 4.5.

As evident from the figure, testify generated tests based on the primary input and the gates. So

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study64

Figure 4.6: Half-Faults detected by testify

it could not detect the faults at the nodes 11 and 12 which are represented by (x/x). Although

the test at node 10 covers the fault 11, it does not cover fault at node12. The output of the gate

a1, node 10, was taken into account as a single node which comprises of nodes 10, 11 and 12.

But the fan-out nodes (13 and 14) from 12 are considered as test nodes as they form the input

for the gates, n and m, respectively. Testify generated 12 test patterns of length 7 covering

24 fault sites in the circuit. The test patterns should be applied synchronously to stabilize the

circuit at each pattern interval. Similarly for the benchmark circuit "half" (Fig.4.6), the faults

covered by testify are only the inputs and outputs signals of all the gates. For this benchmark,

even 5 more faults at input/output fault sites namely 10(0/x), 12(0/1), 15(x/1), and 21(x/1) were

not detected by testify. Other intermediate node fault sites include 6(x/x), 13(x/x) 16(x/x), and

22(x/x). Testify generated 24 patterns of length 11. From these results,it is evident that any

proposed test generation algorithm to be developed should focus on testing the intermediate

nodes which will be overseen by the circuit models which are modelled with onlythe input and

output signals of each gate.

4.4.2 Analysis

This section provides the insights for the undetectable faulty nodes in the asynchronous circuits.

The intention is to give two working examples on how the fault simulation in two different

methods compared, how it ignores the undetectable nodes and provides higher fault coverage

without including these nodes.

4.4.2.1 Detectable Faults

First, we will compare the total number of nodes and total number of testable nodes listed by

these two methods. Figure 4.7 shows comparison of total number nodes listed by the tools

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study65

Table 4.1: Fault Coverage using Symbolic Method

Benchmark Number of Number of Testable Number of Fault

Patterns Faults Faults Faults(D) Coverage

(%)

chu133 10 60 40 40 100

chu150 19 64 52 52 100

converta 38 58 44 44 100

dff 34 52 44 44 100

ebergen 30 86 70 70 100

half 15 22 14 14 100

hazard 55 52 44 44 100

Master-read - 160 130 126 96.92

mmu 203 166 136 128 94.12

mpforward 19 68 58 58 100

mr1 - 170 140 135 96.43

nak-pa 19 100 80 80 100

nowick 13 68 54 54 100

ram-read-

sbuf

69 102 82 82 100

rcv-setup 12 46 36 36 100

rpdft 11 80 62 62 100

sbuf-ram-

write

72 124 102 102 100

sbuf-send-ctl 60 106 86 85 96.51

sbuf-send-

pkt2

101 146 116 113 97.41

seq4 145 104 86 86 100

seq_mix 245 178 142 138 97.18

trimos-send 72 162 132 124 93.94

vbe5b 22 52 42 42 100

vbe5c 16 36 28 28 100

wrdatab 342 194 158 153 96.84

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study66

Table 4.2: Fault Coverage for Scan Insertion based method

Benchmark Number of Number of Testable Number of Fault

Patterns Faults Faults Faults(D) Coverage

(%)

chu133 5 34 34 28 84.85

chu150 8 48 44 44 100

converta 40 62 60 60 100

dff 49 52 50 50 100

ebergen 85 80 80 80 100

half 34 40 40 40 100

hazard 49 56 56 56 100

master-read 242 186 180 179 96.76

mmu 192 151 139 137 91.95

mp-forward 40 72 72 72 100

mr1 298 192 192 192 100

nak-pa 30 94 94 94 100

nowick 10 44 44 44 100

ram-read-

sbuf

54 102 102 101 99.02

rcv-setup 25 26 26 26 100

rpdft 38 47 47 47 100

sbuf-ram-

write

100 132 132 132 100

sbuf-send-ctl 117 114 114 114 100

sbuf-send-

pkt2

127 128 124 122 96.03

seq4 110 138 138 138 100

seq_mix 128 158 154 152 97.44

trimos-send 254 181 181 181 100

vbe5b 38 56 56 56 100

vbe5c 44 58 54 48 87.93

wrdatab 243 184 184 183 99.46

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study67

Testify and Tetramax. It should be noted that for the same benchmark circuits the number

of nodes accounted in the fault list varies. Since the full scan method uses extra pins for the

scan-in and scan-out processes, the number of nodes will be higher.One interesting point to

note here is that for some benchmarks the number of nodes accounted forfull scan is equal to

or less than the symbolic method. This is due to the fact that those benchmarks does not have

the memory elements present in them. For example, benchmarks such as rpdftand rcv-setup

will have almost the same number of nodes in the fault list for both methods. In Figure 4.7,

the number of faults for these two benchmarks is lower for full scan compared to the symbolic

method. This is because, the Tetramax tool reports the collapsed fault list while the Testify

does not use any collapsing.

Figure 4.7: Total number of Faults - Symbolic versus Full Scan

Total faults Vs Testable Fault

From the fault coverage definition, the ratio of the number of faults detectedto the number

of testable faults is obtained as the metric for the testability of the circuit. Hence theactual

total number of faults that may occur in the circuit is different from the total number of faults

in the fault list. This is illustrated in Figure 4.8 for the Testify tool and in the Figure4.9 for

the Tetramax tool. As shown in Figure 4.8, the actual number of faults/nodes inthe circuit

is always higher than the number of faults considered for test. The legend"Testable(sym)"

gives the total number of testable faults and the legend "Total(sym)" gives the total number of

faults/nodes in the circuit simulated by the Testify tool. For example, the circuit "wrdatab" has

194 faults in total and the total number of testable faults considered for test generation was

158. Some of these faults are the electrically equivalent faults, while othersare the feedback

nodes. Similarly, in Figure 4.9, the comparison between total number of faults with the total

number of testable faults is shown. The legend "Total(full)" gives the actual number of faults

in the circuit and the legend "Testable(full)" gives the total number of testable faults. It should

be noted that for most of the benchmarks the number of total faults and the number of testable

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study68

faults are almost equal or closer. Only circuits with drastic differences are mmu, mr1 and

master-read. From these two figures (Fig. 4.8 and Figure 4.9), it is quite evident that Testify

dropped a number of nodes from the testable fault list. This factor will affect the fault coverage

metric eventually.

Figure 4.8: Total Faults Vs Testable Faults - Symbolic Method

Figure 4.9: Total Faults Vs Testable Faults - Full Scan Method

4.4.2.2 Fault Coverage

Next we will compare the fault coverage of these two methods are discussed. Figure 4.10 gives

the comparison between the fault coverage of the symbolic method and full scan method. For

most of the benchmarks experiments, the fault coverage was the same for both these methods.

It should be noted that although the full scan method considered more faultsites compared

to the symbolic method and yet it has the same fault coverage percentage formost of the

benchmarks. For the benchmarks chu133, master-read, mmu, sbuf-send-pkt2 and vbe5c, the

full scan method had a lower fault coverage. For the benchmarks mr1, sbuf-send-ctl, seq_mix,

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study69

trimos-send and wrdatab, the full scan method had the higher fault coverage. The full scan

method takes into account more fault sites than the symbolic method and gives higher or almost

same fault coverage. Thus the full scan method detected higher number offaults.

Figure 4.10: Fault Coverage Comparision - Symbolic Vs Full Scan

4.4.2.3 Number of Test Patterns

Finally, we compare the number of patterns generated by these two methods. It should be noted

that the symbolic method generates pattern by enumerating the State Graph. However, for the

full scan method, the test patterns are generated by the ATPG algorithm underlying the Tetra-

max tool, which enumerates the actual circuit nodes. Fig. 4.11 shows the comparison between

the total number of test patterns generated by these two methods. The legends "Symbolic"

and "Fullscan" gives the total number of patterns generated by the symbolicand the full scan

methods, respectively. Since the full scan method uses scan latches, the number of patterns

generated by this method is expected to be higher. However, for some benchmarks namely

mmu, ram-read-sbuf, seq4, seq_mix and wrdatab the symbolic method generated higher test

pattern than the full scan method. All these benchmarks had more C-elements present in them.

For example, the benchmark "wrdatab" had 7 C-elements. On other hand, the benchmark

"trimos-send" had 8 C-elements, but the full scan method produced more patterns compared to

the symbolic method. But the number of testable faults detected were 182 collapsed faults for

fullscan and only 132 for the symbolic method for this benchmark.

The difference in the total number of faults compared to the previous approach is attributed

to two factors; the addition of scan latches, which increases the number of primary inputs

and fault sites, and fault collapsing applied by the Tetramax tool in Full scanmethod. Test

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study70

Figure 4.11: Comparision of Test Patterns - Symbolic Vs Full Scan

pattern generated using the symbolic method seems to be expensive in terms of number of test

patterns and provides lower fault coverage than the full scan method. Also it generates longer

test vectors compared to that of scan insertion approach. With the increase in test vector and

number of pins the test patterns can be further reduced by using partial scan design instead of

the full scan. It also reduces the area overhead due to these scan latches. Another advantage of

the fullscan approach is that currently available synchronous test pattern generation tools can

be used to generate test patterns, thereby makes this approach for testingasynchronous circuits

feasible on industrial scale.

4.4.3 Factors affecting the fault coverage

Currently available ATPG tools such as Tetramax, detect the feedback paths and add the corre-

sponding nodes to ATPG untestable faults list. Hence no effort is spent in the beginning of the

test generation algorithm for creating test for these feedback nodes.

How does conventional fault simulation analyse faults?

Conventional fault simulation first assigns the test patterns to the corresponding primary in-

puts of the DUT. Based on these patterns all the nodes in the circuit are assigned with proper

justification and propagation. The node values propagated to the primary outputs will be the

same as the output pin vectors in the test pattern. After the good machine simulation, the faulty

machine simulation for a particular fault is carried out. First, the simulator assigns logic 1/0

to the node to be tested for stuck-at faults 0/1, respectively. Then the primary input patterns

are applied to the primary inputs to justify and propagate the logic values through all the other

nodes in the circuit. The faulty value at the node being tested will also affectthe justification

and propagation process. As a result, the output pattern obtained will vary from that of the

good machine. When this happens, the simulator considers that the test pattern has detected

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study71

the fault and reports it as detected. This works well for synchronous circuit testing, but for

asynchronous circuits several more factors come in to play during the fault simulation.

Those factors affecting the testability/fault coverage of the asynchronous designs are listed

below:

• Feedback paths present in the circuit

• Type of logic used for simulation

• Fault Simulator used

• Fault Collapsing

• location of the nodes in front of or after the C-elements

• Depth of the node in the circuit

• Observability of the nodes

• Controllability of the nodes

Conventional circuit structures affecting the test process:

Differences in the circuit structure of the asynchronous circuits compared to the synchronous

circuits has a major impact on the test pattern generation. The feedback linesand the fanouts

originating from those feedback lines make the circuit difficult to be testable.Since the syn-

chronous circuit design representation always deals with acyclic/ loop free designs, most of the

CAD algorithms developed were based on acyclic graphs and data structures aiding them. So

there are no or very few methods using cyclic graphs for the test generation.

Type of logic used for simulation:

Representation of the node/line values in the circuit for logic simulation is another factor that

affects the test pattern generation. Multi-valued logic had been used to represent the hazards

in the circuits during the logic simulation. This eventually increases the effectiveness of simu-

lating the asynchronous circuits which encounters the hazards and oscillations often. Often, 3

valued, 6-valued and 9-valued logics were used for asynchronous circuit logic and fault simu-

lations.

Fault Simulator:

Although the fault simulator used for synchronous circuits enable the faultsimulation for asyn-

chronous circuits, several updates have to be made to effectively simulatethem. For example,

conventional fault simulator first generates the fault list of the circuit under test. During the

fault list generation, feedback lines and the fanouts originating from themare omitted. This is

due to the fact that the synchronous circuits do not have feedback lines. Thus by not adding

Chapter 4. Automatic Test Pattern Generation for Asynchronous Circuits: A Comparative Study72

these lines/nodes to the fault list, the fault simulation can be carried out withoutinterruption

and the fault coverage can be obtained. But the fault coverage reported (even though higher

values can be achieved) will not reflect the original fault coverage ofthe circuit under test. Sec-

ondly, the fault collapsing considered during the fault list generation andfault dropping phase

will affect the fault coverage. This is discussed next.

Fault Collapsing:

Two issues namely "Fault Dominance" and "Fault equivalence", also affects the fault coverage

reported by any ATPG tool. By definition, a test pattern for one fault is saidto dominate another

fault, if a subset of the test pattern of the latter detects the former. Two faultsare considered to

be equivalent, if the test pattern of one fault also detects the test pattern onanother fault. These

fault collapsing steps were not carried out in the first method based on STG discussed in this

section. In [SM04b], fault dominance and fault equivalence were considered for asynchronous

circuits and are different from the conventional definitions for the synchronous circuits.

Other factors, such as controllability and observability of the intermediates, are affected by the

location of the C-elements in the circuits.

Changes required for asynchronous design:

In order to improve the testability of asynchronous designs, the following issues have to be

addressed:

• Logic level simulation should be changed

• New method for realizing and simulating the feedback cycles should be developed

• The issue of whether feedbacks and oscillations need to be simulated during fault simu-

lation should be addressed

• How does the fault on the feedback node affects the good and faulty machines, respec-

tively?

4.5 Conclusion

A comparative study of two methods of test generation of asynchronous circuits namely, the

Symbolic method and the Full scan method, was carried out on a set of representative bench-

mark circuits. The analysis of the results gave insights into factors affectingthe testability of

the asynchronous circuits. The drawbacks identified are considered for proposals for improve-

ment of the new test generation methods presented in this thesis.

Chapter 5

ABALLAST-Asynchronous Circuit Test

Generation based on Balanced

Structures

5.1 Introduction

The first gate level test generation method proposed in this thesis is introduced, which uses

cyclic to acyclic circuit conversion, partial scan based test generation and BALLAST method-

ology [GB90].

5.1.1 Problem statement

BALLAST methodology [GB90] of generating tests for sequential circuits isa promising ap-

proach for partial scan based test generation of synchronous sequential circuits. The main

technique used in this method involved generating a balanced graph kernelfrom the circuit

topology graph of the sequential circuit which was demonstrated to have equivalent combina-

tional structure when the memory elements in the kernel are replaced by wires. Thus the test

patterns for the sequential circuits are generated by treating them as combinational equivalent.

The same technique can be applied to the asynchronous sequential circuitto generate tests. The

challenges faced by applying this technique to the asynchronous circuits are:

1) Asynchronous circuits have both combinational gates and memory elements which makes

them cyclic, whereas BALLAST method operates only on synchronous cyclic circuits with

memory elements in each cycle; 2) Balanced kernel consists of memory elementother than

latches, whereas C-elements frequently appear as memory elements in asynchronous designs.

73

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures74

These elements constitute the local loop in the circuit; 3) The operation of the C-element cannot

be controlled during its normal operation as compared to normal latches whichare controlled

by the clock.

Any proposed method to generate the test patterns efficiently for these circuits should address

these three issues.

5.1.2 Motivation

The motivation underlying this work originates from the partial scan test generation method de-

veloped for synchronous circuits calle BALLAST methodology. Using the BALLAST partial

scan methodology and cyclic-to-acyclic circuit conversion together, the ABALLAST method-

ology for partial-scan testing the asynchronous circuits is developed.

The contributions of this method are:

• Effective handling of the cyclic asynchronous circuits to accommodate them in the usual

synchronous test generation flow

• Partial scan element selection based on balanced sequential structures

• Automatic Test pattern generation for the partial scan design generated

The chapter is organised as follows: Section 5.2 outlines some backgroundinformation on

partial scan test generation method and the BALLAST methodology; Section 5.3 describes the

algorithms proposed in the test methodology; Section 5.4 detailss the algorithmic basis of the

test methodology; Section 5.5 gives a working example of the proposed method and analyses

the result obtained by applying this method to the asynchronous sequential circuits; Section 5.6

concludes the chapter.

5.2 Background

5.2.1 Cyclic and Acyclic Circuits

In this chapter, for cyclic to acyclic conversion, a circuit is representedby a Circuit Topology

graph (CTG), where the nodes of the graph form the gates in the circuit and the arcs form the

connection between the gates. Acyclic circuits are circuits comprising only offeed forward

paths, where the output of one gate is fed to the input of the next gate and so on. Cyclic

structures occur in asynchronous circuits due to the presence of localand global loops, due to

feedback and feedforward paths. In these circuits, either the output of the gate is fed back to

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures75

its input or the output of the other gate in the forward path is fed to its input. Theformer case

is called local loop and the later is called Global loop.

5.2.2 Loops in circuit

The CTG of a circuit will contain cycles due to the occurence of loops in the circuit. Some

cycles occurring in the CTG are further studied here. Nested cycles andintersection of cycles

are most commonly found structures. Nested cycles are formed when thereis a self/global loop

present inside the global loop of the circuit. Intersection of cycles is formed when a forward

path of one global loop is fed to the gate in another global loop.

5.2.2.1 C-element

A majority gate based C-element is shown in Figure 5.1. The circuit is cyclic andconsists of

four gates and two feedback loops. The corresponding acyclic circuitis shown lower in the

Figure 5.1. In this example, the number of copies of the feedforward path of the loop is taken

as three, assuming the loops stabilize in three cycles.

AND

AND

AND

OR

IO

IO

IO

Cyclic Circuit

Acyclic Equivalent

a

i

b

j

c

od

Ini
AND

AND

AND

OR

IO

IO IO

AND

AND

OR

AND

AND

OR

a

i

b

j

c

o

d

d

d

a

a

c

c

Figure 5.1: C-element - Cyclic to Acyclic Conversion

The equivalent acyclic circuit consists of 3 inputs, 1 output and 11 gates. Additional input

formed in this circuit is the initialization input for the first copy of the forward path.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures76

5.2.2.2 Benchmark "half"

The benchmark circuit "half" shown in Figure 5.2 consists of 14 gates and4 feedback loops.

The corresponding acyclic circuit consists of 4 inputs, 2 outputs and 52 gates. Additional input

formed in this circuit is the initialization input for the first copy of the forward path.

n a

a o oni oa

o

o o

nj

i

nj

o n oa

n a o o

o n oa

n a o o

o n oa

n a o o

a

a

a o

o

Init
_A

Init
_B

Init
_C

Init
_D

Figure 5.2: Benchmark "half" - Cyclic circuit and equivalent acyclic circuit

5.2.3 BALLAST

5.2.4 Circuit topology

The circuit topology used in the ABALLAST algorithm (detailed in Section 5.3) isshown in

Figure 5.3. To convert the given circuit to the graph, all the elements of thecircuit are classified

as one of the following: combinational node, memory element, fanout node, or PI/PO node.

The conversion of a circuit to the shown circuit topology involves specificrules [GB90], such as

the following: all the combinational nodes fed by the same fanout nodes andPI/PO nodes can

be grouped in to a single cloud [GB90]; two clouds connected consecutively can be merged;

all the memory elements fed by the same clock can be grouped together while ensuring each

element is fed by exactly one cloud, (in case of higher number of memory elements each

group forms a register); no two memory element/registers can be connected consecutively.

Figure 5.3(a) shows the circuit for the benchmark "chu150" with the equivalent general graph

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures77

G(V,E) shown in Figure 5.3(b), where V forms the nodes of the graph andE are set of edges

between the nodes. All the nodes of the graph correspond to the gates ofthe circuit and the

edges correspond to the connection between the gates. Fig 5.3(c) showsthe graph with all

the PI/PO grouped, with them grouped as a single cloud in Fig 5.3(d). Figure5.3(e) shows

the grouping of two combinational nodes into another cloud, as they are fedby same input

signals. In Figure 5.3(f) two other combinational nodes are grouped to form another cloud.

These clouds are separated as the top cloud and are fed by the memory element. Fig 5.3(g)

shows the arrangement of clouds and memory elements from the left to the right. The abstract

view of the equivalent graph obtained without the fanout nodes is shownin Fig 5.3(g). If the

clouds are converted to a set of nodes V and memory elements between them are converted to

set of arcs A, the resulting Graph G(V,A,w) forms the topology graph on which ABALLAST

algorithm can be applied. Set A can be partitioned further into (A-H,H), if memory elements

are present with "hold" functionality. "w" is the weight of the arc based onthe number of

memory elements in it, when it represents a register.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures78

(a) chu150 Benchmark (b) Equivalent nodes with gates and

fanouts as vertices

(c) I/O converted to Pseudo I/O

node

(d) Pseudo I/O added to cloud (e) Common gates merged into a

single cloud

(f) Common gates and fanout

merged into a single cloud

(g) Abstract view without the

fanouts

Figure 5.3: Circuit to graph conversion for ABALLAST algorithm shown in (a), (b), (c), (d), (e),

(f), and (g), respectively

5.2.4.1 BALLAST Method

In [GB90] a synchronous circuit model is represented by blocks of combination logic con-

nected with each other either directly or through a register, which is a groupof flip flops. A

circuit structure S is given by G = (V,A,H,w), where G is the graph forming thecircuit, V is

the set of nodes in the graph representing the blocks of combination gates,A is the set of arcs

between the nodes representing the register or the direct connection between them, H being

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures79

the set of arcs representing the "Hold" registers or "Scan" registers and w is the number of

flip-flops in the register. A sequential circuit structure S with the circuit topology G is said to

be balanced if, G is acyclic, all the directed paths between each nodes in thegraph are equal

and should an arc from the set H be removed, then the graph becomes disconnected. An ex-

ample of a balanced circuit structure and the partial scan circuit generated by this method is

shown in Figure 5.4 and Figure 5.5, respectively. The circuit topology/representation described

in the previous subsection was used in this method which was introduced in [I.P94].The steps

involved in test generation based on BALLAST methodology are as follows:

• Represent the circuit topology as a graph

• Make the graph acyclic and add the edges removed to the scan set

• Balance the resulting acyclic graph and add the edges removed during balancing to the

scan set

• Generate test for the balanced circuit

To illustrate the BALLAST test flow, a simple example based on the same abstractcircuit

shown in Figure 5.5 is considered in Figure 5.7. In Figure 5.7.a, the circuit before the appli-

cation of partial scan selection is shown. There are 6 registers in this circuit, marked by boxes

and four combinational clusters shown as clouds. The primary inputs and primary outputs as

clusters in the form of a black box. The equivalent graph representation is shown in Figure 5.6.

The graph contains two feedback edges, which are removed and their corresponding registers

are added to the scan set according to step 2. The resulting equivalent circuit is shown in Figure

5.7.b with two boxes denoting "scan". Step 3 involves balancing the remaining circuit called

"kernel" marked enclosed in the box. Since the kernel in this example is already balanced (de-

tails on balancing is discussed in section 5.4.4 and is detailed in [GB90]), the procedure moves

to the next step. In the fourth step of test generation, the non-scan registers are converted into

wires (locations are marked as crosses in Figure 5.7.c) which is the combinational equivalent

of a register/flipflop, when the clock is high. The resulting circuit is shown inFigure 5.7.c.

In this way, the test patterns are generated for this circuit which will test theoriginal partially

scanned synchronous circuit in Figure 5.7.b.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures80

Figure 5.4: Unbalanced and Balanced structures

Figure 5.5: Partial Scan Circuit using Balanced structures

Limitations of BALLAST for Asynchronous Circuits

When the suitability of the BALLAST method is explored for asynchronous circuits, the fol-

lowing limitations were encountered:

• Should C-elements be represented as registers or be added in the combinational cloud?

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures81

Figure 5.6: Example Circuit - Graph Representation

• What is the scan equivalent of the C-elements?

• What is the combinational equivalent of the C-element?

To illustrate these limitations a comparison is made on how BALLAST will handle the syn-

chronous circuit and the asynchronous circuit. The comparison is shown in Figure 5.8: the

figures on the left-hand side gives the synchronous BALLAST flow, and the figures on the

right-hand side give the BALLAST flow of the asynchronous circuits. Asshown in Figure

5.8.d, when converting the circuit into the graph structure, the representation of the C-elements

into registers or into combinational gates is not addressed in this method. Even, when they are

considered, as the registers and the partial C-elements set is chosen following the same flow,

conversion of the scan equivalent of these C-elements are not shown,as this method was de-

signed for synchronous circuits. Finally, the combinational equivalent of the C-elements that

are not scanned in the kernel are also another concern when generating test patterns based on

this method.

These questions form the motivation for the development of the ABALLAST method which is

derived as an extension to BALLAST. How these questions are answered and the test flow of

Asynchronous BALLAST (ABALLAST) is described in next section.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures82

Figure 5.7: BALLAST Method Example

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures83

(b) Partial Scan Synchronous Circuit

Scan

Scan

Figure 5.8: BALLAST Method on Synchronous and Asynchronous Circuits

Further details on balancing the graph structure is dealt in detail, when describing the test

methodology in the next section.

5.3 Test Methodology

This section describes the overall test flow of the ABALLAST methodology as illustrated in

Figure 5.9. There are two main stages in the test flow:

1. A partial scan DFT methodology based on BALLAST is applied to the circuitin order

to improve its testability.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures84

2. The circuit is further transformed into a fully acyclic circuit only for the purpose of

generating test vectors using conventional ATPG tool. The generated vectors are then

slightly modified and applied to the DFT circuit produced in the first stage.

DFT

Test Generation

Test Application

BLIF2Graph

Acyclic Circuit

Test Generation

Fault

Simulation

Fault

Coverage

ABALLAST

Acyclic Netlist

Generation

Final

DFT

Circuit

Test

Patterns

Figure 5.9: Test Methodology

The steps involved in this method are listed and explained below:

Convert the netlist into a suitable graph representation

The first step is to convert the circuit synthesized by Petrify into a graph representation. This

is done by using the tool BLIF2Graph, which parses the BLIF (BerkeleyLibrary Interchange

Format) netlist into a graph where the vertices correspond to the circuit gates and edges to the

wires connecting the gates. However, BALLAST requires a representation where the elements

(C-elements and latches) are the edges and all interconnections and combinational gates are

modelled as vertices (clouds). This high level extraction is performed by ACLARION which

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures85

was introduced in the previous chapter.

Detect and break global loops

The BALLAST algorithm cannot process a circuit with loops, so these should be broken. Note

that, at this stage, only the global loops are exposed to the algorithms; local loops, such as those

inside memory elements, are hidden as each memory element is considered a single gate.

The extracted graph from the previous step is processed by the CycleDetector to find all the

cycles in the graph. This is carried out by detecting all the “backward” edges in the graph.

The back edges are determined using the GR algorithm explained in algorithm 12. Once the

loops are determined, the cyclic to acyclic conversion is straight forward:the back edges are

simply removed. Since graph edges correspond to C-elements, an edge removal means that the

corresponding C-element is converted into a scanned C-element. For example, consider the

graph shown in Figure 5.6 of the circuit shown in Figure 5.5. The straight arrows with larger

head correspond to the registers R1,R2,R3, and R4 in Figure 5.5. The dotted circles/vertices

corresponds to the combinational clouds. The bent edges/arrows forming the loops are the

registers S1 and S2, which will be removed by the cyclic-to-acyclic converter to make the

graph acyclic and hence they are converted to Scan-C-elements. The resulting acyclic circuit

(without the edges S1 and S2) will be balanced by the BALLAST algorithm.

Extract kernel using BALLAST. Produce partially scanned ci rcuit

The BALLAST tool takes the acyclic graph and generates the balanced graph structure by re-

moving some edges, if required. Any edges removed result in more C-elements being scanned.

Thus in addition to the C-elements being converted into scan C-elements in the previous step,

the C-elements returned by BALLAST are now converted into scan C-elements. The result

of this step is the final circuit containing Design-for-Test (DfT) structures to aid testing. This

is essentially the circuit to be fabricated and the test coverage, at the end of the test flow, is

measured on it.

Detect local cycles and unroll them to generate acyclic circ uit

Standard ATPG tools cannot produce test vectors for the circuits generated from the previous

step because they still contain local loops inside C-elements. However, since this is a partial-

scan method, the remaining C-elements are not scanned in order to keep the DfT area overhead

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures86

low. Instead a method similar to time frame unrolling [GB90] is used to convert these C-

elements into their acyclic equivalents. Essentially the loop is unrolled a number of times and

eventually an extra primary input is added.

As mentioned earlier, the circuits of type shown in Figure 5.10 will still contain local loops (the

C-elements inside the kernel in Figure 5.10.b form these local loops). For this circuit, there are

4 C-elements left in the circuit which are not scanned.

This step converts all the non-scan C-elements into their acyclic equivalentby substituting them

with acyclic (unrolled) instances. The resulting acyclic, balanced circuit isready for processing

by the test generator without it complaining about the presence of feedback loops. The graph

description is now converted back to netlist (Verilog in this case) and can bedirectly sent to the

test generator.

Generate test vectors for the resulting circuit

The acyclic netlist is fed into Synopsys’s Tetramax to generate test vectorsas shown in Figure

5.10.c.

Convert test vectors and fault-simulate partially scanned circuit

The length of the test vectors generated will be equal to the number of I/O pins of the final

acyclic circuit which includes the initialization pins added when the local loops were broken.

The actual DUT will not have these pins and hence the test vectors have tobe trimmed by

removing the bits which correspond to the initialisation pins.

The converted vectors are applied to the DUT and the fault coverage is obtained using a fault

simulator (Synopsys’s Tetramax) as shown in Figure 5.10.d.

Thus to summarize the whole methodology, the resulting equivalent partial scan circuit will be

of the form shown in Figure 5.10.b which contains both non-scan and scanC-elements (named

C and SC) respectively. The actual test pattern will be generated for thecircuit in Figure 5.10.c,

which has its non-scan C-element converted into acyclic equivalent (named "AC" in the shaded

box named "Kernel" in Figure 5.10.c). The initialization pins for the acyclic C-elements are

marked "ini" in Figure 5.10.c. The test patterns generated for this circuit is applied to the circuit

in Figure 5.10.b, which is shown in Figure 5.10.d. The pseudoinput shown here is the input

equivalent to "ini" in the acyclic equivalent circuit in Figure 5.10.c.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures87

(a) Cyclic Asynchronous Circuit

(b) Partial Scan Cyclic Asynchronous Circuit

(c) Partial Scan Acyclic Asynchronous Circuit

(d) Partial Scan Testable Cyclie Asynchronous Circuit

Figure 5.10: Test generation for cyclic circuit with state holding element

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures88

5.3.1 Special Case - Cyclic circuits without C-elements

There is also a possibility that the benchmark will not contain C-elements and only have global

loops with combinational gates as in the case of the abstract circuit shown in Figure 5.11.

The dark circles denote only the combinational gates and no memory elements are present

in this circuit. Thus the corresponding graph representation will be the vertices representing

the combinational gates and edges representing the connections between them. As there is no

C-elements present in them, it is not necessary for the circuit to go throughthe scan selec-

tion algorithm. For these circuits the circuit pre-processing for test patternapplication ends at

this stage and can be sent to the test pattern generator by converting them toequivalent HDL

(Hardware Description Language) file.

Figure 5.11: Test generation for cyclic circuit without state holding elements

5.4 Algorithms

The circuit model and the algorithms involved in cycle detection, cyclic-to-acyclic conversion

and graph balancing are discussed further in greater detail.

5.4.1 Circuit Topology Description

The circuit C is represented as a directed graph G (V, E) | {V is the set ofvertices of the graph,

E is the set of edges}. The set of vertices, V, corresponds to the set of gates present in the

circuit. The set of edges, E, corresponds to the connections between the gates. All types of

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures89

(1)

(2)
(3)

(4)

Figure 5.12: Cyclic to Acyclic conversion - C-element

gates (C-elements and other two input gates) and PI and PO are considered as a generic node

in the graph.

5.4.2 Cycle detection

Cycle detection problem in a graph is equivalent to the problem of finding thefeedback arc

set in graph theory. Given a graph represented by G (V, E), with V representing the set of

vertices and E representing the set of edges of the Graph G, finding the set of R(s) which forms

the feedback arc sets of G is called Feedback Arc Set Problem. This problem is an N-P hard

problem [Kar72] and was first studied in [Sla61]. The FAS problem being N-P hard problem is

solvable in polynomial time for planar graph was shown in [Luc76],[LY78].Finding FAS up

to a size of 1/2‖E‖using the heuristics in Figure 1 was shown in [BS90].

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures90

Algorithm 1 Heuristic for Finding Feedback Arc Set

F = /0 while G 6= /0 do

select a vertexv in G(v) if d- (v)< d+ (v) then
add all arcs incoming tov to F

end

else
add all arcs outgoing fromv to F

end

removev and all arcs incident to it fromG
end

returnF

This algorithm runs in O (|V||E|) times, where |E| is the number of edges and |V| is the number

of vertices. By exploiting vertex sequence ordering, a fast heuristic was introduced in [ES93].

In this method, all the vertices of the graph are ordered in sequence. When these vertices are

placed in a horizontal line in this sequence, all the leftward arcs will form thefeedback arc set

of the graph. It runs in O(|E|) times. It has an asymptotic performance bound of r (G) <= m/2

– n/6, where r (G) is FAS of minimum cardinality. d(u) = d+(u) + d−(u) is the degree of the

vertex u∈ V. d−(u) is the indegree of the vertex and d−(u) is the out degree of the vertex. The

algorithm is shown in Algorithm 12 [ES93].

Algorithm 2 GR
input : G: DiGraph; varS: Vertex Sequence

1 s1= /0 s2= /0 while G 6= /0 do

2 while G contains a sinkdo

3 choose a sinku s2← us2 G← G- u

4 end

5 while G contains a sourcedo

6 choose a sourceu s1← s1u G← G-u

7 end

8 if G 6= /0 then

9 choose a vertexu for which del (u) is a maximum s1← s1u G← G- u

10 end

11 S← s1s2

12 end

The procedure GR computes two sequences s1 and s2 based on three types of vertices in the

graph. Each node/vertex of the graph is removed from the graph and added to either s1 or s2.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures91

1

2

3

4

1

3

4

3

4
4

s1 = {} s1={2}

s1={2,1} s1={3,2,1}

s1={4,3,2,1}

(1) (2)

(3) (4)

(5)

Figure 5.13: Graph traversal in GR procedure

If the removed node is a sink, then it is added to the sequence s2. If the node is a source then

it is added to the sequence s1. When all the sinks and sources are removed from the graph, the

remaining vertices are added to the sequence s1 in the descending order of δ(u)(whereδ(u) =

d+(u) – d−(u)). Once the graph becomes empty, both the sequences are concatenated to form

a single sequence S.

Theorem 1: Algorithm GR computes either an empty vertex sequence or a vertex sequence s

for which R(s)≤m/2 - n/6.

The proof of the theorem is provided in [Edw03] or alternatively in [BS90]. An example

showing the GR algorithm over the graph equivalent of C-element is shownin Figure 5.13.1

shows the graph equivalent of a C-element with four vertices and 5 edges. It has 1 source and 3

nodes with both d+(u) ,d-(u) != 0. Now the vertices are sorted based on the value ofδ(u). δ(4)

= -1,δ(1) = δ(3) = 0, andδ(2) = 1. By GR algorithm, the graph doesn’t have a sink and hence

it checks for sources. Source 2 is present and is added to the sequence s1. 2 is removed from

G and the resulting G is shown in Figure 5.13.2.

Since the resulting graph does not contain any sink or source, the vertices are removed based

on the value ofδ(u). Vertices 1,3,and 4 are removed from the graph in the order as shownin

Figure 5.13.3, 5.13.4, and 5.13.5. The sequence formed by concatenatings1 and s2 is 2134.

When the vertices of the graph are placed in the horizontal line a set of rightward edges and

a set of leftward edges are formed as shown in Figure 5.14. The leftwardedges in the graph

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures92

1 2 3 4

4 3

4 1

Feedback1

Feedback2

Feedback2

Feedback1

Figure 5.14: Ordered Vertex Sequence

constitute the feedback arc set, (R(s)). In this example, edges (4,3) and(4,1) form the feedback

edges as shown in Figure 5.14 After the sequence is obtained, the R(s) ofthe sequence will be

used by the cyc_to_acyc algorithm to generate the acyclic equivalent.

5.4.3 Cyclic to Acyclic Conversion

The steps for generating the acyclic circuits from the cyclic one are shownin Figure 5.12. The

given circuit is first converted into a circuit topology graph (CTG). All the nodes correspond

to the gates and all the edges corresponding to connections between the gates. The conversion

algorithm requires user specified number of cycle copies. Cycle copies are equal to the number

of cycles it takes for the circuit to stabilize.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures93

Algorithm 3 Cyclic to Acyclic

Input numofcopyG (V,E) output Gc (V,E) CycToAcyc(G (V,E),Gc (V,E)) {

Run Algorithm.2 onG (V,E) ;

Update list ”Feedback_edge” from Algorithm 2.

Ga (V) = G (V);

Ga (E) = CreateVertices(G (E))

Ga (V,E) = CyclePathDuplication(Gc (V,E),numofcopy)

Ga (V) = CreateVertices(Gc (V))

Ga (E) = CreateEdges(Gc (E))

Ga (V,E) = ConnectIONodes(G (V,E),Ga (V,E))

returnGa (V,E) }

CreateEdges(G ().) {

e1 = G (E) while e1 do

if e1 6= f eedback_edgethen
adde1 to Ga (E)

end

end

returnGa (E)

}

CyclePathDuplication(Gc (V,E),numofcopy) {

for numofcopy = 1 to numofcopy do
Vncopy= Gc (V); Encopy= Gc (E) v3 = lastnode ofvncopy v4 = firstnode ofVncopy+1

ec= v3→ v4 addec toGc (E) Gc (V,E) = Gc (V,E) + Vncopy+ Encopy

end

}

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures94

Algorithm 4 Cyclic to Acyclic Procedures
AddCycleVertices(Gc (V)) {

u2 = Gc (V) while u2 do

v2 = Ga (V) while v2 do

if v2 6= u2 then
u2→ Ga (V)

end

end

end

returnGa (V) }

AddCycleEdges(Gc (E)){ e2 = Gc (E) while e2 do

if e2 6= e1 then
adde2→ Ga (E)

end

end

returnGa (E) }

ConnectIONodes((G (V,E),G (V,E)) {

for all input nodes i inG do

if there is an edge e = G(E) with i as sourcethen

for j = 1 to numofcopy do
add edgee= (i,Vncopy) rightarrow Ga (E)

end

end

end

for all output nodes out inG do

if there is an edge e = G(E) with v as targetthen
add edgee= (vncopy,out)→ Ga (E)

end

end

returnGa (V,E)

}

A cyclic graph description G(V,E) and the set of edges, Ec, of the cycle graph Gc(V,E) ob-

tained from the cycle detector forms the input for the cyclic-to-acyclic conversion. Acyclic

graph Ga(V,E) is constructed by adding the vertices from the cyclic graphand adding only

the feedforward edges. Vertex and Edge set in Gc(V,E) is added to the acyclic graph Ga(V,E)

. The graph Ga (V,E) is then updated with the edges corresponding to the I/Onodes and the

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures95

forward path copies. To obtain this, the cyclic graph I/O nodes connectionare compared with

corresponding nodes in Ga(V,E) and the corresponding edges are updated. For example, if the

first node of the cycle path is fed by an input node, then all the clone nodes are fed by the input

node. In case of a node from cycle forward path feeding an output node, the clone node of the

last forward cycle copy is fed to the output node leaving other clone nodes. This ensures that,

only the final forward path node output is connected.

The resulting acyclic circuit will contain additional copies of the original gates depending on

the number of cycles the circuit takes to stabilize. For example, if the circuit is assumed that it

will stabilize in three cycles, the resulting acyclic circuit will have three forward path copies of

the path in the corresponding cycle in the cyclic circuit. The number of copieswill also depend

on the number of cycles present in the original cyclic circuit. Thus the resulting graph forms

an acyclic equivalent of a cyclic graph.

5.4.4 ABALLAST

ABALLAST algorithm (Algorithm 20) involves the generation of a balanced acyclic asyn-

chronous circuit, which forms the asynchronous circuit with all the C-elements in the ker-

nel converted into acyclic equivalent and the kernel being a balanced structure. BALLAST

methodology was introduced in [GB90], where the balanced graph structures were used to

select partial-scan flipflops for synchronous sequential circuit test generation. The circuit is

represented as a graph G (V, A, H, w), where V, the set of vertices corresponds to the com-

binational blocks or clouds [GB90] in the circuit; E, the set of edges represent the registers

between the clouds; H, a subset of A is the Hold registers; and w, being thecost of converting

the registers to scan registers. A balanced circuit of the graph G, is given by G (V, A-R, H-R,

w) where, R being the arcs removed from the graph to make the graph balanced. Registers

in the set of removed arcs R will form the scan registers of the circuit and remaining register

along with the clouds form the balanced structure or kernel. Here three steps are carried out to

make the cyclic circuit to be testable: first, the circuit is checked whether it is acyclic; if the

circuit is acyclic, then the procedure ‘balance’ is applied to make the acycliccircuit balanced;

the procedure ‘check’ verifies whether the circuit is balanced.

‘

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures96

Algorithm 5 ABALLAST
input : G represented as set of edges, number of nodes, number of vertices

output: Kernel GraphGk and Scan Element ListR

13 ABALLAST(G (V,E)) {

14 Check(G (V,E)) if Successthen

15 R = Balance(G (V,E))

16 end

17 else

18 return Failure

19 end

20 Gk (V,E) = GetKernel(G (V,E)) Gak (V,E) = CycToAcyc(Gk (V,E)) returnGk (V,E), R }

Algorithm 6 ABALLAST Procedures

GetKernel(G (V,E)) { Check(G (V,E)) Rk = Balance(G (V,E)) for ∀ r ∈ Rk do
GK (V,E) = GK (V) - r

end

returnGK (V,E) }

}

Although, the circuit is balanced and the scan registers are found, the kernel obtained by using

the check and balance procedures contain C-elements which only account for the local loops.

In BALLAST, only synchronous circuits are used and hence the kernel is ready for generating

test. But in case of ABALLAST, the cyc_to_acyclic algorithm is applied to the kernel again

to convert the C-elements present in them to acyclic equivalent. Thus, acyclic equivalent of

the kernel and the list of registers to be scanned are obtained as the output of this ABALLAST

algorithm. It should be note that, in case of BALLAST method, only the list of registers to be

scanned is obtained as output. This netlist will be used for test generation.The acyclic circuit

will be then fed to the Synopsys ’s Tetramax. The test vector generated for the acyclic circuit

using Tetramax is now used to fault simulate the equivalent cyclic circuit.

5.5 Evaluation methodology

The proposed test flow was evaluated by applying it to a number of asynchronous benchmark

circuits and comparing the results to 3 other methods with respect to fault coverage and DfT

area overhead.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures97

5.5.1 Choice of Benchmarks

The benchmarks selected for evaluation of the proposed method are takenfrom [SM04a].

These benchmarks are basically a latch controller and interface circuits commonly used in

asynchronous circuits. The benchmarks provided in the above mentionedsource is only in

STG format. Hence the STG specifications are synthesized to gate level specifications using

the Petrify tool. The gate library used for synthesizing the STG specifications is the inbuilt

library in the Petrify tool.

5.5.2 Methods Evaluated

The proposed method was compared with the following existing methods: SPIN-SIM [SM04a],

Eichelberger’s method [Eic65] and the full-scan method [BA05].

5.5.2.1 Eichelberger’s Method

In Eichelberger’s method [Eic65], a novel method for detection of hazards in both combina-

tional and sequential circuits was introduced. It was implemented as a program in [SM04a]

and the fault simulation results were compared for 10000 random vectors.

5.5.2.2 SPIN-SIM

SPIN-SIM is a simulation-based test approach [SM04a] adapted from [Eic65] to integrate with

the fault simulator for synchronous sequential circuit (namely HOPE) resulting in a fault sim-

ulation strategy for asynchronous circuits. Issues addressed in this method are 1) adaptation

of Eichelberger’s method , 2) Preserving relative Transition order, 3)Judicious time frame

unrolling, and 4) handling complex gates

Some of the drawbacks of this method are: 1) pseudo gates are used for the C-elements, 2)

C-elements are considered as a single gate and faults inside the C-element are not considered

in the fault list, 3) Random vectors are used for fault simulation which countsto 10000 vectors,

4) Fault collapsing is based on the method introduced in the HOPE simulator (forsynchronous

circuits), and only a subset of the fault classes are used during collapsing.

5.5.2.3 Full Scan Method

This method [BA05] is a straight forward DFT method involving the replacement of all the

memory elements in the design by their equivalent scan latch design. Using this approach

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures98

considerably increases the area overhead. Few partial scan methods have been proposed for

asynchronous circuits testing and the method advocated in this thesis seeks toimplement a

new partial-scan method.

5.5.3 Metrics used for Evaluation

The metrics used to compare the different test methods are:

• Fault Coverage

• Scan Area Overhead

• Test Vectors

Before defining the metrics used in the evaluation, the fault classes used in Tetramax are intro-

duced. The five main fault classes represented by Tetramax are:

• DT - Detected

• PT - Possibly Detected

• UD - Undetectable

• AU - ATPG Untestable

• ND - Not Detected

The subclasses of these faults are listed in Table 5.1, which are used to report the fault cover-

ages. Most of the fault names are intuitive, and the detailed definitions can be obtained from

the Tetramax userguide.

The definitions of the three metrics mentioned are defined next:

• Fault Coverage - This the ratio of the number of faults detected to the total number fault

sites in the circuit. The fault coverage of the circuit therefore depends on the total number

of detectable faults taken into account in the fault list. The fault coverage inthe proposed

method is calculated by the Tetramax tool. The fault collapsing, test generation and fault

simulation steps are carried out by the Tetramax tool. The equation for the testcoverage

used in Tetramax is as follows.

Fault Coverage =
DT + (PT × PTcredit)

AllFaults
× 100 (5.1)

"PT" in equation 5.1 stands for "Possibly Detected" fault, and "PT_credit"is set to 1.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures99

Table 5.1: Fault Classes in Tetramax

Fault Classes

DT detected

DR Detected Robustly

DS Detected by simulation

DI Detected by Implication

PT:Possibly Detected
AP ATPG Untestable-Possibly Detected

NP Not analyzed - Possibley Detected

UD Undetectable

UU undetectable unused

UT undetectable tied

UB undetectable blocked

UR undetectable redundant

AU ATPG untestable AN ATPG untestable-not detected

ND not detected
NC not controlled

NO not observed

• Scan Area Overhead - It is the amount of extra logic used to convert allthe memory

elements present in the DUT to make it testable. The percentage of scan areaoverhead

reduction is the ratio of the number of scan latches in the partial scan design tothe

number of scan latches used in the full scan design. It is given as a percentage in equation

5.2:

Scan Area Overhead Reduction Percentage= 1 −
Np

Nf
× 100 (5.2)

where, Np is the number of scan elements in the partial scan, and Nf is the number of

scan elements in the full scan design.

• Number of Test Vectors - This is the number of stimulus and the corresponding responses

of the DUT needed to test all the detectable faults accounting for the fault coverage of

the DUT.

5.6 Results and Analysis

Two circuits, namely the majority gate based C-element and benchmarkhalf, are discussed

in detail. The C-element was used in Section 5.3 to demonstrate local loop detection and

unrolling. Its fault coverage is evaluated in this section.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures100

5.6.1 C-element

The majority gate implementation of C-element is shown in Figure 5.12.1 and the correspond-

ing unrolled, acyclic circuit is shown in Figure 5.12.4. The C-element with its gate nodes

labelled is shown in Figure 5.15. The Tetramax convention has been adoptedhere to ease fault

analysis. The fault sites and the detection results for the original circuit and results of fault

simulation of the acyclic circuit patterns over the original circuit obtained from Tetramax is

given in Table 5.2.

The test vectors obtained for the acyclic circuit are: 111, 000, 100, 010, 111, 101, 011 for

the pins a,b,c respectively, with c being added as an initialisation input. In order to apply the

vectors to the original circuit, which only has 2 inputs (a, b), the last bit of each vector is

removed. The list of faults in the C-element and the detection results are shown in Table 5.2.

The third column gives the results for running the Tetramax on the original circuit. The fourth

column gives the results for fault simulation of the acyclic circuit patterns over the original

circuit. All faults are detected by the test pattern which gives a 100 % fault coverage.

Figure 5.15: C-element -Majority Gate Implementation

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures101

Table 5.2: Fault Sites and Detection Results

Faults Stuck-at type Detection

Result(orignal)

Detection

Result(acyclic

patterns)

A 1 NO DS

B 1 NO DS

And1A1 1 AN NP

And1A2 1 AN NP

And2A1 1 NO DS

And2A2 1 AN DS

And3A1 1 NO DS

And3A2 1 AN DS

Or1Z 1 DS DS

C 1 DS DS

A 0 NO DS

B 0 NO DS

And1/z 0 AN DS

And2/z 0 AN DS

And3/z 0 AN DS

Or1/z 0 DS DS

C 0 DS DS

5.6.2 Benchmark "chu150"

Test generation for benchmark circuit chu150 is shown in Figure 5.16. The complex gate

implementation of chu150 synthesized by petrify has 2 C-elements forming the twolocal feed-

back loops (Figure 5.16.1). The graph representation of the circuit forming the clouds and

state holding elements is shown in Figure 5.16.2. Then the balanced graph equivalent with

cyclic kernel formed with only one C-element is obtained (Figure 5.16.3). The removed el-

ement forms the scan latch based C-element. Now the balanced circuit with cyclic kernel is

obtained (Figure 5.16.4). In order to generate the efficient test vectors, the cyclic kernel with

one C-element should be converted in to an acyclic kernel; the cyclic-to-acyclic algorithm,

which is applied to the cyclic kernel converts the local loop or C-element present in kernel in to

an acyclic equivalent as shown in Figure 5.16.5. The circuit with acyclic kernel (Figure 5.16.5

and Figure 5.16.6) is now ready for test generation. The test pattern is obtained for this circuit

using Tetramax. These test patterns are then fault simulated over the circuitwith cyclic kernel

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures102

which is the original partial scan circuit as shown in Figure 5.16.7. Fault coverage obtained by

the test vectors generated is 95.83%.

Figure 5.16: Test Generation for chu150

5.6.3 Results

Results of the proposed method are described in detail in this section. First, the fault coverage

of the experimented benchmarks are shown and they analysed. Second,the scan area overhead

is discussed. Finally the number patterns generated for attaining the reported fault coverages is

discussed.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures103

Figure 5.17: Fault Coverage comparison - ABALLAST vs Full scan

5.6.3.1 Fault Coverage

The fault coverage results and comparison with full scan method are shown in Table 5.3. The

fault coverage for the benchmarks chu150, mp-fw-pkt and sbufctl were higher than all other

benchmarks in the range closer to 90 percent. nakpa , rcv-setup and mr1had lower fault

coverage. Reduction in fault coverage of nak-pa and rcv-setup is due to the fact that the actual

effect of partial scan design cannot be seen in these circuits due to presence of only one or

two memory elements. Benchmarks such as, half, hazard, nak-pa, rcv-setup, rpdft , vbe5c

and vbe5b also fall in to this category. They either have one or two C-elements or none at

all. The main reason for reduction in the fault coverage is the presence ofglobal loops. For

the benchmarks: ebergen, half, chu150, sbuf-ram-write and wrdatab, ABALLAST achieved

fault coverages of over 95 %. Significant improvement in fault coverage for the benchmark,

"wrdatab", was achieved which has many C-elements and more global loops. As shown in

Figure 5.17, yellow lines gives the fault coverage for full scan method andgreen lines give the

fault coverage for ABALLAST. Clearly full scan has higher fault coverage than ABALLAST.

It should be noted that for the benchmarks masterread, mmu and vbe5c the fault coverage is

comparable to fault coverage obtained by full scan.

The comparison results of several benchmarks with other two methods mentioned in the eval-

uation methodology section is shown in Table 5.4. It shows the number of faultsand the fault

coverage for the circuits. They are obtained from [SM04b]. The faultcoverage for the method

in [Eic65] (shown in [SM04b]) was between 21.4% - 100%. For the method in[SM04b], the

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures104

fault coverage ranges between 85.7 - 100%. The benchmarks with columns 2,3 and 4 marked

"-" are not reported in [SM04b]. From the comparison, ABALLAST achieves higher fault cov-

erage for all the benchmarks with higher number of C-elements present in them. For example,

the benchmarks chu150, converta, dff, ebergen, half , masterread,mr1,sbuf-send-ctl and seq4

had higher fault coverage than those in [Eic65]. ABALLAST also had higher fault coverage

than the method in [SM04b] for the benchmarks converta, dff, and ebergen.

5.6.3.2 Scan Area Overhead

The comparison of scan area overhead is shown in the Table 5.5. As defined earlier, this metric

gives the difference in the number of scanned memory elements chosen by the scan methods.

The second and third column lists the number of C-elements scanned for full scan method and

ABALLAST, respectively. The last column in the table gives the scan areaover head percent-

age. Figure 5.18 depicts the difference in the number of scan C-elements chosen. The proposed

method clearly chose fewer C-elements compared to the full scan method. Benchmarks that

show better reduction in patterns also have shown better reduction in the number of C-elements

scanned. For some benchmarks, namely nowick, rcv-setup, rpdft, vbe5b and vbe5c, only red

line is shown in the graph. This means that no C-element was scanned by the ABALLAST.

The fault coverage gets reduced by 10 % for this reason. Since these are smaller benchmarks,

they can be full scanned to get the maximum coverage.

Figure 5.18: Scan area overhead comparison

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures105

5.6.3.3 Number of patterns

The number of test patterns generated by the test pattern generator is shown in the Table 5.6.

Most of the benchmarks had lower number of patterns for the proposed method compared to

the full scan method due to the reduction in the number of scan flipflops. As shown in Figure

5.19, the taller green lines for the benchmarks mr1, mmu, trimos-send and wrdatab indicates

the full scan method requiring higher number of patterns to achieve the faultcoverage. It should

be noted that ABALLAST required 20 - 40 % lower number of patterns. Forexample, to test

the benchmark mr1 ABALLAST needed only 29 test patterns, whereas fullscan required 48

patterns. But, in the case of benchmarks chu150,converta, half and seq_mix the number of test

patterns increased for the proposed method.

Figure 5.19: Comparison of Number of Patterns Generated -ABALLAST Vs Full Scan

5.6.3.4 Analysis of Undetectable Faults

Table 5.7 gives the complete distribution of fault classes for all the benchmarks. The last four

columns gives the four different fault types, namely, Not Observable (NO), Not Controllable

(NC), Detected(DT) and Possibly Detected (PT), respectively. Fault classes of interest are the

NO and NC faults. These are the main faults causing the fault coverage of the asynchronous

circuits to be lower. Figure 5.20 shows the distribution of these faults over allthe benchmarks.

The blue stack is the number of faults detected and striped blue stacks (found at the tip of each

line) are the number of possibly detected faults. Given that ABALLAST having 80 -100 %

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures106

fault coverage, the blue stacks dominate the graph. But, the focus of interest in this graph is the

two stacks: NO (red mesh pattern) and NC (checked green pattern). From the zoomed area in

the graph, NO faults dominate all the benchmarks. For example sbuframwrite had 11 NO faults

and trimos-send had 13 NO faults. The main reason underlying the difficulty inobservability

is the local loops in the unscanned C-elements. To probe this further, some of the benchmarks

were selected and analyzed in the next subsection.

Figure 5.20: Distribution of different fault classes, PT- Possible Detected, DT- Detected, NO -

Not observable, NC - Not Controllable

The list of undetectable faults and their classification based on their controllability and observ-

ability and structural location is given in the Table 5.8.

Un-Controllable(NO) and Un-observable(NO) Faults

Most of the faults which occured were unobservable as opposed to being uncontrollable. For

example, in the benchmarks ram-rd-sbuf, out of 10 undetectable, 9 of them were unobservable.

The reason for this condition is the location of the fault sites: most of the faultsare in the nodes

that are either feeding or fed by the C-element.

Faults sites before or after the C-element

Out of 10 faults in the same benchmark, 7 of them are either fed by or fed to the C-elements

(in this case 2 of the 7 nodes are feeding C-element, and the other 5 are fedby C-element).

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures107

The trend of undetectable fault sites in the global loop path is very low, and isseen only in the

benchmarks, sbufsndctl and ram-rd-sbuf.

Faults inside unscanned C-elements

For some of the benchmarks, most of the faults occured in the unscanned C-elements. For

example, in the benchmark sbuf-ram-write, 9 out of 17 faults occurred in the nodes inside the

C-elements.

5.6.3.5 Number of Copies

It will be interesting to see how well the fault coverage improves when we increase the number

of copies of the forward path added to the acyclic circuit conversion. Toexplore this, the num-

ber of copies of the forward path of the cycles is increased in the cyclic to acyclic conversion

process. That is, only one copy of the forward path was considered when cutting the loops and

now it will be more than one copy cascaded with one other. In total, 8 different experiments

for all the benchmarks were carried out, with each one having 1 to 8 copiesof the forward path

for the cyclic-to-acyclic operations, respectively. The trend of fault coverage and the number

of patterns generation for the test are next analyzed.

Fault Coverage

Table. 5.9 shows the fault coverage impact over the number of copies made. In Figure 5.21

shows the fault coverage comparison of the proposed method with 1 to 8 copies of forward

path. Figure 5.21. (a -c) shows the trend for benchmarks with lower number of C-elements.

Figure 5.21.d has the benchmarks with higher number of C-elements. From figures Figure

5.21.(d) it is evident that the fault coverage is highly impacted by the increase in number of

copies as the benchmarks have higher number of C-elements and global loops.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures108

(a) (b)

(c) (d)

Figure 5.21: Fault coverage of Benchmarks with copies 1 to 8 shown in (a), (b) ,(c), and (d)

For example, the fault coverage of the seq4 and trimos-send had a high variation in fault cov-

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures109

erage. For seq4 benchmark the fault coverage varied from 68.63 - 93.14%. For the benchmark

trimos-send, the variation was from 84.85 - 93.35%. Benchmark vbe5b exhibited the highest

difference in faultcoverage. The single copy version of the benchmarkachieved 90.79% fault

coverage while the siz xopy version achieved only 47.37%. For some benchmarks namely,

chu150, nowick, nak-pa and mp-forward-pkt had no impact due to the increase in copies. Most

of these had either one or two C-elements or had no global loops.

Number of Patterns

Table 5.10 lists the number of patterns generated for 1 to 8 copies circuits by ABALLAST.

Figure 5.22 shows the impact on number of patterns generated with 1 to 8 copies of forward

path. The benchmarks that had no impact on the fault coverage was due tothe fact that the

increase in number of copies did not find more patterns for those benchmarks. As shown

in Figure 5.22.(a-d), the benchmarks chu150, nak-pa, and mp-fwd-pkt had same number of

patterns generated for all the 8 versions. But the benchmark nowick hadvariation in the number

of test patterns. For example, the 1-6 copies of circuit had generated same number of patterns

(9 patterns). But, the circuits with 7 and 8 copies generated lower number ofpatterns. But,

it should be noted that with lower number of patterns these two circuits provided the same

fault coverage as previous 5 versions. Hence increasing the number of copies reduced the

number of patterns needed to test the same circuit in this benchmark. For benchmarks mr1,

ram-read-sbuf, wrdatab increasing the number of copies increased thenumber of patterns. For

other benchmarks the increase was not monotonic with increase in number ofcopies. The

impact of making several copies of the circuit for test generation over thefault coverage is

shown as a 3D plot in Figure 5.23. The level in the middle of the plot shows the lower impact

on fault coverage over the benchmarks with fewer C-elements. The impacton the number of

patterns is shown in the Figure 5.24. It should be noted that the benchmark,wrdatab, shows

a steep rise in the number of patterns for the "8" copy circuit. Increasing the fault coverage

of the acyclic equivalents of the circuit will increase the fault coverage of the DUT. So some

advanced method has to be applied to find the test for the redundant faults present in the acyclic

equivalent circuit.

ComplexityThe complexity of the ABALLAST method is the summation of the complexity

of the three steps namely, BALANCE, the Cyclic-to-Acyclic Conversion. The complexity of

the Balance procedure is O(nm3). This is derived from the fact that the balance procedure

computes the minimum cutest for O(m) times and the size of each cutest is boundedby m (at

worst case) and the procedure check (which has the bound of O(mn) iscalled over each of these

cute. For the cyclic2acyclic conversion, the performance is dominated by the cycle detection

process with the upper bound of O(m/2).

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures110

(a) (b)

(c) (d)

Figure 5.22: Number of Test Patterns generated for Benchmarks with copies 1 to 8 shown in

(a), (b) ,(c), and (d)

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures111

Fault Coverage Variation

c h u 1 5 0

c n v r ta
d f f

e b r g n

h a l f

h a z a r d

m
m

u

m
p - f - p k t

m
r1

n a k - p a

n o w
ic

k

r r s b u f
r s tp

r p d f t

s b u fc
t l

s rw
r i te

s s p k t2

s e q 4

s e q m
ix

ts
e n d

v b e 5 b

v b e 5 c

w
rd a ta

b 1
2

3
4

5
6

7
8

75

80

85

90

95

100

Asynchronous Benchmarks
1

F
a

u
lt
 C

o
v
e
ra

g
e

 P
e

rc
e
n

ta
g
e

Number of Copies

Impact on Fault Coverage with increase in number of copies

Figure 5.23: 3D Plot depicting the impact on fault coverage

5.6.3.6 Summary

The prime factors affecting the testability of the asynchronous circuits are summarised.

Factors affecting the fault coverage are:

• Depth of the node in the circuit

• Memory elements present in the circuit

• Feedback paths present in the circuit

• Observability of the nodes

• Controllability of the nodes

• Type of logic used for simulation

• location of the nodes in front of or after the C-elements

Conventional circuit structures affecting the test quality are:

• Reconvergent fanout

• Feedback paths

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures112

Number of Patterns(ABALLAST Vs Full Scan Method)

Impact on Number Copies

Asynchronous Benchmarks
1

2
3

4
5

6
7

8

N
u
m

b
e
r

o
f
P

a
tt
e
rn

s

10

15

20

25

30

35

40

45

c h u 1 5 0

c n v r ta
d f f

e b r g n

h a l f

h a z a r d

m
m

u

m
p - f - p k t

m
r1

n a k - p a

n o w
ic

k

r r s b u f
r s tp

r p d f t

s b u fc
t l

s rw
r i te

s s p k t2

s e q 4

s e q m
ix

ts
e n d

v b e 5 b

v b e 5 c

w
rd a ta

b Number of Copies

Figure 5.24: 3D Plot depicting the impact on number of patterns

• Blocking Scan paths

Hence, the following changes are required for improving the testability of theasynchronous

design:

• Logic level of the fault simulation should be changed.

• New method for realizing and simulating the feedback cycles seperately should be de-

vised.

• DFT for feedback paths should be designed

5.7 Conclusion

A test pattern generation method for asynchronous circuits was presented.This test method

provided the following:

• An effective way of handling the cyclic asynchronous circuits such that they can be used

with the Tetramax test generator

• Partial scan element selection based on balanced sequential structures

• Automatic Test pattern generation for the partial scan design generated

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures113

This method gives a better fault coverage compared to [Eic65]. But it does not out-perform

[SM04a]. In [SM04a], the test generation was based on random test patterns and custom fault

simulation, which constributes to the higher number of test vectors and detectable faultlist. The

area overhead is effectively reduced compared to the full scan baseddesign.

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures114

Table 5.3: Fault Coverage

Benchmarks Full Scan ABALLAST

chu150 100 95.83

converta 100 94.83

dff 100 92.50

ebergen 100 97.06

half 100 96.43

hazard 100 86.36

master-read 96.76 96.55

mmu 91.95 91.29

mp-fw-pkt 100 92.31

mr1 100 82.77

nak-pa 100 83.55

nowick 100 94.44

ram-read-sbuf 99.02 86.49

rcv-setup 100 72.22

rpdft 100 92.31

sbufctl 100 91.20

sbuf-ram-write 100 96.43

sbuf-send-pkt2 96.03 84.48

seq4 100 93.14

seq_mix 97.44 94.29

trimos-send 100 89.87

vbe5b 100 90.79

vbe5c 87.93 86.67

wrdatab 99.46 96.49

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures115

Table 5.4: Result – Fault Coverage Comparison

Benchmark No of faults [Eic65] [SM04a] Proposed

chu150 56 97.1 97.1 95.83

converta 54 56.8 91.9 94.83

dff 44 21.4 85.7 92.5

ebergen 74 47.8 95.7 97.06

half 22 40 100 96.43

hazard 48 87.9 97 90.91

masterread 144 65.1 97.7 97.13

mmu - - - 91.61

mp-forward-pkt 60 100 100 92.31

mr1 152 10.8 93.5 83.78

nak-pa 82 100 100 84.21

nowick 56 100 100 97.22

ram-read-sbuf 90 100 100 86.49

rcv-setup 40 100 100 77.78

rpdft 62 100 100 92.31

sbuf-send-ctl 94 59.3 94.9 91.67

sbuf-ram-write 110 100 100 82

sbufsend-pkt2 - - - 86.21

seq4 96 54 95.2 93.14

seq_mix - - - 94.29

trimos-send - - - 90.51

vbe5b - - - 92.11

vbe5c - - - 90

wrdatab - - - 97.08

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures116

Table 5.5: Scan Area Overhead

Benchmarks Full Scan ABALLAST Area Overhead Reduction (%)

chu150 2 1 50.00

converta 3 1 66.67

dff 2 1 50.00

ebergen 3 2 33.33

half 2 1 50.00

hazard 2 1 50.00

master-read 9 8 11.11

mmu 6 5 16.67

mp-fw-pkt 3 1 66.67

mr1 9 5 44.44

nak-pa 4 1 75.00

nowick 1 0 100.00

ram-read-sbuf 4 1 75.00

rcv-setup 1 0 100.00

rpdft 1 0 100.00

sbufctl 4 1 75.00

sbuf-ram-write 6 3 50.00

sbuf-send-pkt2 4 1 75.00

seq4 7 3 57.14

seq_mix 6 5 16.67

trimos-send 8 5 37.50

vbe5b 2 0 100.00

vbe5c 3 0 100.00

wrdatab 7 5 28.57

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures117

Table 5.6: Number of Patterns

Benchmarks Full Scan Proposed

chu150 12 9

converta 14 12

dff 11 13

ebergen 15 19

half 11 9

hazard 12 12

mmu 32 39

mp-fw-pkt 14 16

mr1 29 48

nak-pa 16 14

nowick 9 10

ram-read-sbuf 18 19

rcv-setup 7 8

rpdft 11 16

sbufctl 18 27

sbuf-ram-write 24 26

sbuf-send-pkt2 27 29

seq4 28 31

seq_mix 34 31

trimos-send 35 46

vbe5b 10 12

vbe5c 11 8

wrdatab 37 46

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures118

Table 5.7: Fault Class Distribution

Benchmarks NO NC DT PT

chu150 2 0 46 0

converta 2 1 55 0

dff 3 0 37 0

ebergen 2 0 66 0

half 1 0 27 0

hazard 5 0 36 4

master-read 3 2 167 2

mmu 7 6 141 1

mp-fw-pkt 3 1 48 0

mr1 20 4 121 3

nak-pa 7 5 63 1

nowick 1 0 33 2

ram-read-sbuf 9 1 64 0

rcv-setup 4 0 12 2

rpdft 3 0 36 0

sbufctl 3 0 98 1

sbuf-ram-write 11 7 77 5

sbuf-send-pkt2 7 9 96 4

seq4 7 0 95 0

seq_mix 6 2 132 0

trimos-send 13 2 141 2

vbe5b 2 1 34 1

vbe5c 3 0 25 2

wrdatab 1 4 80 2

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures119

Table 5.8: Undetectable Fault Locations

Bench Total Un-

detectable

NO

faults

NC

Faults

feeding

cele

fed by

cele

inside

cele

faults in

Global

loop

chu150 2 2 0 2 - - -

nakpa 13 8 5 6 - 4 -

mp-fw-pkt 4 3 1 3 - - -

ram-rd-sbuf 10 9 1 2 5 3 3

sbuf-ram-write 17 10 7 3 1 9 -

sbufsndctl 9 9 0 - - 6 3

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures120

Table 5.9: Fault Coverage Comparison of proposed method using 1 to 8 copies of forward path

during acyclic conversion

Benchmarks copy1 copy2 copy3 copy4 copy5 copy6 copy7 copy8

chu150 95.83 95.83 95.83 95.83 95.83 95.83 95.83 95.83

converta 94.83 94.83 94.83 94.83 94.83 93.97 97.41 97.41

dff 92.5 92.5 92.5 92.5 92.5 92.5 90 95

ebergen 97.06 97.06 97.06 97.06 95.59 98.53 98.53 98.53

half 96.43 100 100 100 100 100 100 100

hazard 86.36 87.5 89.77 89.77 89.77 81.82 81.82 87.5

mmu 91.29 90.97 90.97 90.97 85.81 85.81 85.81 90.97

mp-fw-pkt 92.31 92.31 92.31 92.31 92.31 92.31 92.31 92.31

mr1 82.77 89.53 93.58 80.07 85.47 85.81 84.8 78.38

nak-pa 83.55 83.55 83.55 83.55 83.55 83.55 83.55 83.55

nowick 94.44 94.44 94.44 94.44 94.44 94.44 80.56 80.56

ram-read-sbuf 86.49 82.43 85.14 83.78 88.51 84.46 77.7 86.49

rcv-setup 72.22 72.22 72.22 72.22 72.22 72.22 72.22 69.44

rpdft 92.31 92.31 92.31 92.31 92.31 94.87 94.87 94.87

sbufctl 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

sbuf-ram-write 79.5 95 87 84 98 84 81.5 85.5

sbuf-send-pkt2 84.48 83.62 83.62 83.62 86.64 86.64 86.64 86.64

seq4 93.14 90.2 86.27 82.84 68.63 79.9 77.94 93.14

seq_mix 94.29 93.57 94.29 94.29 94.29 95 95 95

trimos-send 89.87 91.14 87.03 93.35 93.35 87.66 89.56 84.81

vbe5b 90.79 80.26 51.32 56.58 56.58 47.37 60.53 72.37

vbe5c 86.67 60 60 60 60 86.67 60 86.67

wrdatab 96.49 95.91 95.91 96.49 96.49 96.49 96.49 91.81

Chapter 5. ABALLAST-Asynchronous Circuit Test Generation based on Balanced Structures121

Table 5.10: Comparision of Number of patterns generated for the circuits with 1 to 8 copies of

forward path during acyclic conversion

Benchmarks copy1 copy2 copy3 copy4 copy5 copy6 copy7 copy8

chu150 12 12 12 12 12 12 12 12

converta 14 14 14 14 14 14 14 14

dff 11 8 9 9 9 9 10 9

ebergen 15 15 15 15 14 14 15 15

half 11 10 10 10 10 10 10 9

hazard 12 13 11 11 11 11 11 12

mmu 32 32 32 32 29 29 29 32

mp-fw-pkt 14 14 14 14 14 14 14 14

mr1 29 28 29 29 28 30 34 30

nak-pa 16 16 16 16 16 16 16 16

nowick 9 9 9 9 9 9 6 7

ram-read-sbuf 18 14 18 17 17 13 17 20

rcv-setup 7 7 7 7 7 7 7 6

rpdft 11 11 11 11 11 12 12 11

sbufctl 18 18 18 18 18 18 18 18

sbuf-ram-write 24 22 21 21 24 19 19 20

sbuf-send-pkt2 27 29 29 29 25 25 25 25

seq4 28 24 21 24 23 27 27 22

seq_mix 34 34 34 34 34 33 33 33

trimos-send 35 34 37 36 31 35 32 35

vbe5b 10 8 8 8 8 8 9 8

vbe5c 11 10 7 7 7 9 7 9

wrdatab 37 38 35 36 33 33 42 42

Chapter 6

AGLOB - Asynchronous Circuit Test

Generation Based on Breaking Global

Loops

6.1 Introduction

This chapter proposes a novel partial scan design methodology and a technique for generating

test patterns for asynchronous circuits. Generating test patterns with high stuck-at fault cov-

erage and achieving a lower area overhead compared to existing full scan methods forms the

motivation for this work. Some work related to this chapter is detailed below.

Partial scan and full scan test methods for asynchronous circuits developed so far are for spe-

cific asynchronous design styles and methods. The roadblock for testingin all these design

methods seems to be the cyclic circuits present in them. Also converging the methods to an

industrial test generation tools poses another problem. This chapter is motivated towards devel-

oping a partial scan based ATPG method aiding the synchronous CAD tools togenerate tests

for asynchronous cyclic sequential circuits.

Two main contributions made in this work are: 1) extending the synchronous partial scan

method to be used for test generation of cyclic asynchronous circuits, and 2) cyclic-to-acyclic

circuit conversion method to prepare the circuit for test pattern generation. Fault coverage of

76-96% was obtained using this method. The organization of the chapter is asfollows: Section

2 gives the background; Section 3 describes the proposed algorithms for the test method; Sec-

tion 4 describes the test methodology; the results are analyzed in Section 5 withtwo working

examples, with conclusions in section 6.

122

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops123

6.2 Background

Asynchronous circuits use combinational loops to store state. There are two types of loops,

namely global and local loops. Local loops are the combinational loops present in the state-

holding gates such as C-elements or set-reset latches. The familiar flip-flopalso contains a local

loop, but it is hidden from test tools since a flip-flop is a cell on its own in standard cell libraries

and does not pose any problems in testing. Global loops are longer loops formed outside these

gates and are used for creating asynchronous state machines. Asynchronous full-scan methods

[BPvBK03] break all these loops in test mode using LSSD-type scan latches. This simplifies

testing as the circuit is transformed in to a purely combinational one in test mode.However,

the area overhead is enormous, hence motivating our work on partial-scan methods.

6.3 Test Methodology

Several steps involved in this test methodology are discussed in this section.Figure 6.1 shows

the components involved in test generation. As the circuits dealt in this method are asyn-

chronous circuits, the state graph level description of the circuits is synthesized using Petrify[CKK+97]

. The synthesized circuits are converted to graph level representation.BLIF2Graph genera-

tor converts the circuit representation to graph in which nodes represent the gates and edges

represent the connection between the gates. In order to apply conventional scan selection

method[CA90] , the abstract representation of the graph called s-graph[CA90], with only

memory elements are needed. The abstract level of graph with memory elementsas nodes and

paths between the elements as edges is created. In the next step, the strongly connected com-

ponents are identified which aids the scan selection algorithm. A graph represented by G (V,E)

,where V forms the set of vertices and E forms the set of edges is said to be astrongly con-

nected graph if there exists a path from each vertex of the graph to everyother vertex. Strongly

connected components of the graph are its maximal strongly connected subgraphs. The algo-

rithm for finding the strongly connected components is a linear time O (V+E) forthe graph

represented as an adjacency list [THCR01]. It uses depth-first search to find the components of

the graph. By applying the scan selection method(AGLOB1,AGLOB2) the memory elements

to be scanned are selected. With synchronous designs, the circuit is ready for scan test gener-

ation as the global loops are broken, but for asynchronous design, the circuits still contain the

local loops. The C-elements that have not been selected to be scanned constitute these loops.

Therefore the circuit has to be passed to the cyclic-to-acyclic converter.

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops124

6.3.1 Cyclic-to-Acyclic Conversion

Cyclic-to-acyclic conversion of the circuit should be performed for the effective test gen-

eration of asynchronous circuits using a synchronous TPG tool. The conversion removes

all the feedback loops formed in the cyclic circuit. As a result the tool’s visibilityof the

fault sites will increase so that it will be able to generate test patterns of highfault cov-

erage. The produced patterns will then be applied to the acyclic (partial-scanned) circuit.

Several methods for generating an acyclic circuit from cyclic circuits have been introduced

[Edw03],[Mal93],[Wei72],[Niv04]. Unfortunately, these methods are restricted for cyclic cir-

cuits without state holding elements and which do not oscillate. Oscillations are predominant

in asynchronous cyclic circuits and also state holding elements like C-elements are commonly

found in them.

Thus, the acyclic partially scannable equivalent of the cyclic partially scannable circuit is ob-

tained. Now the design is passed through a conventional test pattern generator. Synopsys’s

Tetramax was used for test generation and fault simulation.

Figure 6.1: Test Methodology

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops125

6.4 Algorithms

The circuit model and the algorithms involved in Global loop breaking, scan selection, cyclic

to acyclic conversion are discussed further in detail.

6.4.1 Global loop breaking

In [CA90], the method of global loop breaking involves representing the design in an abstract

circuit topology graph. All the vertices in the graph represents the flip-flops in the design and

the edges forms the path between the flops comprising of combinational gates and wires. Then

the graph is processed to find the strongly connected components [HS89]present in it, which

constitutes to the global loops in the circuit. All the cycles or loops are stored as a list to

be processed by the flip-flop selection algorithm. The Breakloop algorithm, outlined below,

selects the minimum number of flipflops in the design. Scanning the selected flipflops will cut

all the global loops in the design.

The flipflops selected will form the scan elements in case of synchronous design. In the case of

an asynchronous circuit, the C-elements present in the circuit are also considered as local loop

or memory elements. Thus C-elements are added as vertices during the graphrepresentation,

before applying the scan selection algorithm. After applying the scan selection algorithm, the

selected C-elements and latches will form the scan elements for the design. Asan example,

Figure 6.2.a shows a benchmark seq4 with 7 memory elements with the combinationalgates

and I/O pins shown as circles. The graph representation of the circuit is shown in Figure 6.2.b.

As explained earlier, the vertices represent all the memory elements present in the circuit. Four

strongly-connected components can be identified from the graph and the vertices list forming

each component is shown in Fig 6.2.c. These components form the cycles present in the circuit.

Note that, the vertex Ce3 appears in the second, third and fourth cycle. Hence when the scan

selection algorithm is applied vertex Ce3 will be selected in the first pass. Selection of this

vertex will remove cycle 2,3 and 4 from the cycle list. Vertex Ce1 will be selected in the

second pass, which is present in the cycle 1. Thus the cycle list is emptied after the selection

of vertex Ce1 and the algorithm is halted. Thus the resulting partial scan circuit with Ce1 and

Ce3 forming the scan elements is shown in Fig 6.2.d. Though the scan elements are selected,

the resulting partially scanned circuit may contain C-elements that are not scanned. These C-

elements constitute the local loops of the circuit. Hence another step is neededto handle these

local loops and create the acyclic equivalent of the design.

Two algorithms are proposed for selecting the scan chains, namely AGLOB1and AGLOB2

and one algorithm for converting the cyclic circuits to acyclic ones. The conventional scan

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops126

Algorithm 7 Conventional Scan Selection algorithm
Conventional_SCC

For a s-graph G(V,E) {

If the graph has cycle {

Find all the Cycles of the graph (heuristically)

Generate a list of cycles

Find the frequency of occurance of each vertex in all SCC

Choose the vertex/c-element with higher frequency

add to scan elements set

Remove the SCC’s containing the vertex }

}

selection algorithm is shown in Algorithm 7.

6.4.1.1 Algorithm 1- AGLOB1

In the first algorithm AGLOB 1 (shown in Algorithm 8)the c-elements and flipflops are selected

based on maximum occurrence of them in all the cycles. This is similar to the conventional

scan selection algorithm in which all the flipflops are selected based on their occurrence. We

have extended this algorithm to be used in selection of C-elements in the asynchronous circuit

and adding cyclic-to-acyclic conversion to the resulting circuit. Thus, in AGLOB 1 finding set

of the memory elements is followed by converting the resulting partial scan circuit to acyclic

circuit.

6.4.1.2 Algorithm 2-AGLOB2

The second algorithm AGLOB 2 (shown in Algorithm 9) deals with selecting the C-elements

based on maximum degree of the vertices/C-elements present in the circuits. The degree of a

vertex is the sum of incoming arcs and outgoing arcs. Once the scan elementsare selected, the

partial scan circuit is converted to its acyclic equivalent by applying the Cyc2Acyc algorithm.

6.4.2 Cyclic-to-Acyclic Conversion

Once the scan elements are identified, for the purpose of test pattern generation, the resulting

circuit must be converted into an acyclic one by replicating the appropriate parts of the cir-

cuit. This is similar to the time frame unrolling method, used in sequential pattern generation

[[MAF90]]. The conversion method, (Algorithm 10), requires a user specified number of cycle

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops127

(d)

7Ce7

Figure 6.2: Scan Selection

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops128

Algorithm 8 AGLOB 1 -Asynchronous SCC based Scalgorithm
For a s-graph G(V,E) {

If the graph has cycle {

Find all the SCC of the graph

Generate a list of SCC’s

Find the frequency of occurance of each vertex in all SCC

Choose the vertex/c-element with higher frequency

add to scan elements set

Remove the SCC’s containing the vertex

}

Create G(V-S,E),Where S is scan element set,

and Selected Scan elementsS(n)

Check G(V-S,E) for c-elements.

If present{

Acyclic Graph Ga(V-S,E) = Cyc2Acyc(G(V-S),E);

}

Output G(V-S),E), Ga(V-S),E), S

}

Algorithm 9 AGLOB 2
For a s-graph G(V,E) {

if the graph has cycle {

find the degree of each vertex /c-element

choose the vertex with high degree

remove the vertex from the graph

}

Create G(V-S,E),Where S is scan element set,

and Selected Scan element Set S

Check G(V-S,E) for c-elements.

If present{

Acyclic Graph Ga(V_S,E) = Cyc2Acyc(G(V-S,E));

}

Output G(V-S),E), Ga(V-S),E), S

}

copies. The number of cycle copies is equal to the number of time frames it takes for the circuit

to stabilize. For example, if the circuit is assumed that it will stabilize in three time frames, the

resulting acyclic circuit will have three forward path copies of the path in thecorresponding

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops129

Figure 6.3: C-element Cyclic to Acyclic Conversion

cycle in the cyclic circuit. Since the feedback path is broken, the node where the feedback

is broken is initialized with an input pin. The number of copies (ncopy in procedures of Al-

gorithm 10) will also depend upon the number of cycles present in the original cyclic circuit

and whether they are nested or intersected. It will be provided by the user based on the de-

sign library used. The typical example of converting the C-element from its cyclic to acyclic

equivalent is shown in Figure 6.3

Algorithm 10 Cyclic-to-Acyclic Conversion
Algorithm: CycToAcyc

Inputs: Cyclic Graph G (V, E), Cycles graph Gc (V,E), ncopy

Output: Acyclic Graph Ga (V,E)

Cyc_To_Acy (G(V,E),Gc(V,E)) {

Ga(V) = G(V));

Ga(E) = Create_Edges(G(E))

Gc(V,E) = cycle_path_duplication(Gc(V,E),ncopy) ;

Ga(V) = add_cycle_vertices(Gc(V))

Ga(E) = add_cycle_edges(Gc(V))

Ga(V,E) = add_IO_nodes(G(V,E),Ga(V,E))

return Ga(V,E)

}

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops130

Algorithm 11 Procedures for Algorithm 10
Procedures:

Create_Edges(G(E)) {

e1 = G(E)

While (e1){ // adding edges

if (e 1 != feedback_edge)

add e1 ->Ga(E)

return Ge(E)

}

}

cycle_path_duplicate(Gc(V,E),ncopy) {

For ncopy =1 to copy {

// making ncopy duplications of cycle path

Vncopy = Gc(V), \[for example:vncopy = v1 , if ncopy =1\]

Encopy = Gc(E)

v3 = lastnode of (Vncopy), v4 = firstnode of (Vncopy+1)

ec = v3,v4

add ec -> Gc(E)

Gc(V,E) = Gc(V,E) + (Vncopy,Encopy)

}

}

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops131

Algorithm 12 Procedures for Algorithm 10
add_cycle_vertices(Gc(V)) {

u2 = Gc(V)

While (u2) { //adding vertices in cycle

v2 = Ga(V)

while (v2){

if v2 != u2 , add u2 -> Ga(V)

}

}

return Ga(V)

}

add_cycle_edges(Gc(E)) {

e2 = Gc(E) //adding edges in cycle

While (e2) {

if (e2 !=e1) , add e2 -> Ga(E)

}

return Ga(E)

}

Algorithm 13 Procedures for Algorithm 10
connect_IO_nodes(Ga(V,E),G(V,E)) \{

for all input nodes i in G,

if there is an edge e = G(E) , with e =(i, v),

for ncopy =1 to copy,

add edge e = (i,vncopy) -> Ga(E)

for all output nodes out in G.

if there is an edge e = G(E) , with e =(v,out),

for ncopy =1 to copy,

add edge e = (vncopy,out) -> Ga(E)

return Ga(V,E)

6.5 Working Example and Results

The overall methodology is explained further by showing the flow through two example cir-

cuits, namely the majority gate-based C-element and benchmark ram-read-sbuf [CKK+97].

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops132

Figure 6.4: C-element Testing

6.5.1 c-element

A majority gate-based C-element is shown in Figure 6.3. The circuit is cyclic and consists of

four gates and two local feedback loops. Since the c-element does not have memory elements,

the scan selection algorithm does not select any scan element. This example isprovided to

show the cyclic-to-acyclic conversion in the absence of a memory element. Thus if no memory

element is present and the circuit has loops, the cyclic to acyclic converterwill produce an

equivalent acyclic circuit.

The acyclic circuit in Figure 6.4 consists of 3 inputs, 1 output and 11 gates.The converted

acyclic circuit is fed to the Synopsys’s Tetramax to obtain the test patterns. The test patterns

obtained are 111, 000, 100, 010, 111, 101, 011 for the pins A, B, andC, respectively, with C

being the initialization pin. The actual patterns used to test the real cyclic circuit are therefore

the first two bits of the above sequence. Tetramax was also used for faultsimulation and the

fault coverage is 100%.

C
hapter6.

A
G

LO
B

-A
synchronous

C
ircuitTestG

eneration
B

ased
on

B
reaking

G
lobalLoops133

C

wsenwsen_C2

wen

ack_C1

prnot_c1

map1

wen

precharged

req

prnotin

buf

y0_ramreadsbuf_C1

wenin

Cwsldin
y0_ramreadsubf

map0

[wsld] buf
wsld

C

C

prnot wsen_C1

ack_C2

ack
ack

F
igure

6.5:
B

enchm
ark

"ram
readsbuf"

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops134

6.5.2 ram-read-sbuf

The benchmark "ramreadsbuf" (shown in Figure 6.5 is cyclic and consistsof 10 combina-

tional gates,2 buffers and 4 c-elements, constituting 4 local loops and 2 global loop. Three

strongly-connected components are identified forming a cycle list with 1 cycle. By applying

scan selection algorithm, the c-element, "y0_ramreadsbuf", will be selected. It will be selected

at the first pass as it constitutes the cycle 1, emptying the cycle list to halt the algorithm. As ex-

plained earlier, the circuit has 3 c-element left without being scanned andhence it constitute to

the local loops. So the circuit is fed to the cyclic-to-acyclic converter. Theresulting circuit will

be a partially scanned circuit free from local loops. The acyclic circuit isfed to the Tetramax

tool, to generate the test patterns. These test patterns are then fault simulated over the orginal

partially-scanned DUT to obtain the fault coverage. The test coverage for this benchmark is

96.34% for the ABLOB1 method and 94.59% for the AGLOB2 method.

6.5.3 Experiments and Results

The proposed methods were applied to 24 asynchronous circuits synthesized using Petrify[CKK+97].

The experimental results and their analysis based on the evaluation metrics namely fault cov-

erage, number of patterns and the area overhead are discussed in detail in this subsection. The

analysis is made based on comparing the two methods, AGLOB1 and AGLOB2, with the Full

scan first. Then the two proposed methods are compared with each other. The fault coverage

comparison of the proposed methods with Full scan method is shown in the Table6.1, and the

Table 6.2 shows the comparison of the number of test patterns generated for each method.

AGLOB1 Vs Full Scan

The fault coverage comparison of the AGLOB1 method with the full scan design is shown in

Fig 6.6. Except for the benchmarks master-read, mmu, seq_mix and nakpa,AGLOB1 gener-

ated test provided fault coverage of 90% and above, for all the circuits. For the benchmarks

ebergen, nowick and subf-ram-write, this method achieved fault coverages of more than 97%.

It should be noted that for the benchmark mr1, which has the highest numberof C-elements

and global loops, this method achieved fault coverage of 95.51%. Comparison of the number

of patterns generated by the AGLOB1 method with that of the Full scan method isshown in the

Figure 6.7. Clearly, the number of patterns generated for the test is reduced for the AGLOB1

method. This is especially true for the benchmarks mr1, mmu, master-read , trimos-send and

wrdatab, for which the reduction in the number of patterns was very high. For trimos-send, the

reduction was more than 50%. For this benchmark full scan generated 46 test patterns whereas

the AGLOB1 generated only 21 test patterns. The reduction in fault coverage due to more than

halving the number of test patterns is approximately 10 %. For mr1, with 5% reduction in the

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops135

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

Asynchronous Benchmarks

Fault Coverage Comparison (AGLOB1 Vs Full Scan Method)

FullScan

AGlOB1

Figure 6.6: Fault Coverage - Full Scan Vs AGLOB1

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b

e
r

o
f
P

a
tt
e

rn
s

Asynchronous Benchmarks

Number of Patterns(AGLOB1 Vs Full Scan Method)

FULL

AGLOB1

Figure 6.7: Number of Patterns - Full Scan versus AGLOB1

fault coverage, AGLOB1 can generate tests with 10% reduction in number of test patterns. It

covered 95% of faults with only 41 patterns, whereas the full scan method needed 47 patterns.

AGLOB2 Vs Full Scan

The fault coverage comparison of the AGLOB1 method with the full scan design is shown

in Figure 6.8. AGLOB2 achieved fault coverage closer to full scan methodfor most of the

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops136

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

Asynchronous Benchmarks

Fault Coverage Comparison (AGLOB2 Vs Full Scan Method)

Full

AGLOB2

Figure 6.8: Fault Coverage - Full Scan versus AGLOB2

circuits. Only for three benchmarks, namely nak-pa, rcvsetup and sbuf-send-pkt2, was the

fault coverage lower. For most of the circuits, the fault coverage was between 94 - 98%. For

the benchmarks, wrdatab, sbuf-send-ctl, and ebergen, the fault coverage was greater than 97%.

As this method concentrates on the nodes with higher degree, it eventually cut most of the loops

and provided higher fault coverage. Next the number of patterns generated for the AGLOB2

and the full scan method were compared as shown in the Figure 6.11. The reduction in the

number of patterns was not as good as AGLOB1, which may be attributed to thehigher fault

coverage. However, for the benchmarks, master-read, trimos-send and wrdatab, the reduction

in the number of patterns compared to the full scan method was higher. For trimos-send and

wrdatab, AGLOB2 generated 35 and 37 patterns, respectively, whereas for the full scan method

there were 46 patterns each.

AGLOB1 Vs AGLOB2

Finally, the fault coverage comparison for the two proposed methods AGLOB1 and AGLOB2

were carried out, as shown in Figure 6.10. For the benchmarks with the lower number of

C-elements, these two methods have achieved similar fault coverage. This is due to the fact

that, when the number of C-elements are lower, and if one of them is inside the global loops,

then both these algorithms will choose the same element. This is exhibited clearly in the

benchmarks, chu150, converta, dff, half and hazard. For the benchmarks with higher number

of C-celements and global loops, AGLOB2 achieved higher fault coverage. This is clearly

seen from the result for the benchmarks, sbufsend-ctl, seq4, trimos-send and wrdatab. For

all these benchmarks, AGLOB2 achieved nearly 8% higher fault coverage than the AGLOB1.

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops137

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b

e
r

o
f
P

a
tt
e

rn
s

Asynchronous Benchmarks

Number of Patterns(AGLOB1 Vs AGLOB2)

AGLOB1

AGLOB2

Figure 6.9: Number of Patterns - AGLOB1 vs AGLOB2

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

Asynchronous Benchmarks

Fault Coverage Comparison (AGLOB1 Vs AGLOB2)

AGLOB1

AGLOB2

Figure 6.10: Fault Coverage - AGLOB1 vs AGLOB2

Comparison of number of patterns generated by the AGLOB1 method, with that of AGLOB2

method is shown in Figure 6.9. As mentioned earlier, AGLOB2 generated higher number

of patterns compared to AGLOB1, due to the fact that AGLOB 2 selected moreC-elements

than AGLOB1. But interestingly, for some benchmarks ALGOB2 generatedsame number of

patterns as AGLOB1, but attained higher fault coverage. This can be seen for the benchmark

sbuf-send-ctl. Both the methods generated 19 patterns as test, but AGLOB2 had higher fault

coverage of 97.83% and AGLOB1 achieved only 89.86%.

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops138

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b

e
r

o
f
P

a
tt
e

rn
s

Asynchronous Benchmarks

Number of Patterns(AGLOB2 Vs Full Scan Method)

FULL

AGLOB2

Figure 6.11: Number of Patterns - Full Scan vs AGLOB2

Figure 6.12: Results - Area Overhead comparison

The area overhead for the AGLOB1 and AGLOB2 method is shown in Table 6.3. The Figure

6.12 shows the graph which differentiates the area overhead percentage for Full scan, AGLOB1

and AGLOB2 methods. In several benchmarks scan elements were not required at all (100%

reduction), while at the very least these methods required half the number of scan elements

compared to full-scan.

Complexity

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops139

Since both AGLOB1 and AGLOB2 enumerates the S-graph (containing memoryelements as

vertices) the complexity of these two algorithms is O(mn), where n is the number ofmemory el-

ements and n is the number of connections between them. For the cyclic-to-acyclic conversion

the upper bound is dominated by the GR algorithm of O(m/2).

6.6 Conclusion

A partial scan test pattern generation method for asynchronous circuits based on strongly con-

nected components(SCC) and cyclic to acyclic conversion was introducedin this chapter. The

selection of the state elements that will be “scanned” is based on enumerating the SCC of the

equivalent S-graph of the circuit similar to conventional method and generating the acyclic

version of the resulting partial scan circuit. Test coverage was improvedcompared to test gen-

erated from original latch free circuit without applying DFT. The proposed method has been

applied to a number of benchmarks achieving improvement in fault coveragecompared to the

original circuit. In total, 24 circuits tested with the fault coverage range of 0- 82.35% for

original circuit, improved to the range of 66.24 - 97.83% with proposed method. Further im-

provement of fault coverage closer to full scan is achievable by addingminor DFT circuit.

Future work will involve exploring more algorithms for scan selection and cyclic to acyclic

conversion of asynchronous circuits.

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops140

Table 6.1: Fault Coverage Comparison

Benchmarks Full AGLOB1 AGLOB2

chu150 100 95.83 95.83

converta 100 94.83 94.83

dff 100 92.5 92.5

ebergen 100 97.06 97.06

half 100 96.43 96.43

hazard 100 90.91 90.91

master-read 96.76 81.01 97.13

mmu 91.95 81.3 88.49

mp-forward-pkt 100 100 100

mr1 100 95.51 95.35

nak-pa 100 84.21 84.21

nowick 100 97.22 97.22

ram-read-sbuf 99.02 96.34 94.59

rcv-setup 100 77.78 77.78

rpdft 100 92.31 92.31

sbuf-ram-write 100 97.66 89.77

sbuf-send-ctl 100 89.53 97.87

sbuf-send-pkt2 96.03 91.67 72.22

seq_mix 100 83.62 90

seq4 97.44 91.18 98.04

trimos-send 100 89.04 96.3

vbe5b 100 92.11 92.11

vbe5c 87.93 90 90

wrdatab 99.46 89.86 97.09

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops141

Table 6.2: Comparison of Number of Patterns

Benchmarks FULL AGLOB1 AGLOB2

chu150 9 12 12

converta 12 14 14

dff 13 11 11

ebergen 19 15 15

half 9 11 11

hazard 12 12 12

master-read 46 32 39

mmu 39 22 37

mp-forward-pkt 16 11 11

mr1 48 41 49

nak-pa 14 16 16

nowick 10 9 9

ram-read-sbuf 19 18 18

rcv-setup 8 7 7

rpdft 16 11 11

sbuf-ram-write 27 23 19

sbuf-send-ctl 26 19 19

sbuf-send-pkt2 29 24 23

seq_mix 31 21 31

seq4 31 22 25

trimos-send 46 21 35

vbe5b 12 10 10

vbe5c 8 11 11

wrdatab 46 34 37

Chapter 6. AGLOB - Asynchronous Circuit Test Generation Based on Breaking Global Loops142

Table 6.3: Area Overhead - expressed as percentage of extra scan elements

Benchmarks AGLOB1(%) AGLOB2(%)

chu150 - -

converta 66 33

dff - -

ebergen 66 33

half 50 50

hazard 50 50

master-read 55 11

mmu 80 0

mp-fwd-pkt 0 -

mr1 88 22

nak-pa 0 -

nowick - 0

ram-rd-sbuf 50 25

rcv-setup - 0

rpdft - 0

sbuf-ram-write 33 33

sbuf-snd-ctl 60 0

sbuf-snd-pkt2 80 20

seq4 71 29

seq_mix 83 0

trimos-snd 88 25

vbe5b - -

vbe5c 33 -

wrdatab 86 14

Chapter 7

ASCP - A Set Covering Problem based

Test Generation for Asynchronous

Circuits

7.1 Introduction

A partial scan test generation method for asynchronous circuits based on the set covering prob-

lem is introduced in this chapter. A cycle enumeration algorithm with linear time complexity

is used to efficiently enumerate the cyclic paths in the asynchronous circuits.The set cover-

ing problem is mapped over the partial scan selection problem to find the flipflops/C-elements

to be scanned for test purposes. The scan selection procedure was run over 27 asynchronous

benchmarks to compare the fault coverage and area overhead with the full scan design. Scan

Area overhead reductions between 11% to 100% were achieved.

Contributions of this work are:

• A partial scan selection procedure for asynchronous circuits

• Facilitating the automatic test pattern generation for asynchronous circuits.

• Integration of the partial scan procedure with an industrial ATPG tool

This Chapter is organized as follows: Section 2 gives a background on cycle enumeration and

set covering problems; Section 3 briefly describes our approach for partial scan selection; The

algorithms for the methodology are described in Section 4; experimental results are analyzed

in Section 5, with conclusions presented in Section 6.

143

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits144

7.2 Preliminaries

Due to the cyclic nature of the circuits being considered, the following preliminary definitions

are added for clarity.

Definition.1S-graph

A S-graph S(V,E) is a graph induced from the original graph G(V,E) by removing the node

set S1(V,E) , where the vertices in S1(V,E) contains only the vertices corresponding to the

flipflops/memory elements.

Definition.2Path

A Path from vertex v1 to vertex v2 is a set of vertices encountered when traversing from v1 to

v2 by visiting each of them one time.

Definition.3Cycle A cycle in the graph is a set of vertices visited when traversing from vertex

v1 and back to the same vertex.

7.3 Algorithms

7.3.1 Cycle enumeration

In [Uno03], a linear time cycle enumeration algorithm was proposed. This was based on the

path enumeration algorithm introduced by [RT75]. EnumPath takes in the graph G(V,E), source

s, target vertex t, s-t path P and an empty set. If the source is the same as thetarget, then the s-t

path is added to the empty set. Otherwise, h, the adjacent vertex to s is chosen. A breadth first

search is made from the target vertex t in the graph G-(s,h). If a path Q exists from s to h then a

recursive call of EnumPath is made with Q as the path, and G-(s,h) as the graph, otherwise the

vertex s is removed from the graph and EnumPath (shown in Figure 7.1) is recursively called

over the graph G-s with h as the source. The empty set I, is updated duringall the calls. The

time complexity of this algorithm is O(|V|.(|E|+|V|)) for each path/cycle sinceone iteration takes

up to O(|V|+|E|) time, and the depth of the recursion is O(|V|). The time complexity is further

reduced by noting the vertices visited in the previous iteration. Therefore the complexity is

O(|V|+|E|).

7.3.2 SCP algorithm

An efficient algorithm for the set covering problem was proposed in [EA00]. The set covering

problem can be formulated as follows.

Given a m-row, n-column matrixai j , and a n-dimensional integer vector(w j), the problem

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits145

1 EnumPath (G=(V,E), s, t, P, I)
2 If s = t then
3 output I\cup {s} ;
4 return
5 h := the next vertex to s in P
6 Breadth first search starting from t in G-(s,h)
7 If a path Q from s to t exists then
8 call EnumPath (G-(s,h), s, t, Q, I)
9 call EnumPath (G-s, h, t, P, I\cup {s})

10

11

12 EnumCycle (G=(V,E))
13 For each edge (t,s)
14 Remove (t,s) from G
15 Call EnumPath (G,s,t,\emptyset)
16 End for

Figure 7.1: Function - EnumPath

consists of finding a subset of columns covering all the rows and having minimum total weight.

A row i is covered by a column j if the positionai j is equal to 1. In terms of a constrained

optimization problem, this can be formulated as,

Minimize ∑n
i=0w jx j , Subject to the constraints

x j ∈ 0,1, j = 1, ...n

∑n
j−1ai j .x j ≥ 1, i = 1, ..,m.

The variablex j denotes whether the column j belongs to the solution or not. The m constraint

inequalities are used to denote the requirement of each row being coveringby at least one

column. The weight,w j , is a positive integer giving the weight of the column.The algorithm is

shown in Figure 7.2 - 7.4.

The algorithm underlying the test methodology is shown in Figure 7.5 . The graph operated

over by the algorithm shown is the S-graph, which is the graph composed ofonly the memory

elements as vertices. The list L is generated by running the Enum_Cycle function in Figure 7.5.

The resulting list of cycles and the corresponding vertices present in thecycle are represented as

a matrix set with value 1 when the vertex is present in the cycle, or 0 otherwise. The constructed

matrix is then processed by the function Wscp in Figure 7.2. The list of scan elements selected

by Wscp is stored in Set S. Using the set S, the circuit under test is updatedby replacing the

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits146

1

2 Wscp()
3 Begin
4 Recompute_core()
5 Sbset <- {1..ncol}
6 S <- {};
7 For {1.. param.number_of_iterations} do
8 If(core_selection()) Recompute_Core(); Endif;
9 S <- Greedy(S);

10 S <- Optimize(S);
11 If (value (S) <= value(Sbset)) Then Sbest <- S; Endif;
12 S <- Select_Partial_Cover(Sbest);
13 Endfor
14 Return Sbest
15 End

Figure 7.2: Function - Wscp

1

2 Funciton Greedy(var S)
3 Begin
4 While(S is not a cover) Do
5 //select and add one column to S
6 S <- S + select_add();
7 //remove 0 or more columns from S
8 While (remove_is_okay()) Do
9 S <- S - select_rmv();

10 EndWhile;
11 End While
12 //S is a cover, without redundant columns
13 Return S;
14 End

Figure 7.3: Greedy Heuristic

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits147

1

2 Function Optimize (var S)
3 Begin
4 Sup <- select_superior();
5 While (sup not empty) do
6 //select best column from Sup
7 Best <- select_best();
8 Sup <- Sup -best;
9 // add superior and remove redundant columns from S

10 If(best superior)
11 S <- S + best;
12 S <- S - select_redundant();
13 Endif
14 Endwhile
15 //s is a cover, without redundant columns
16 Return S;
17 End

Figure 7.4: Function - Optimize

corresponding set of C-elements into the scan-testable C-elements. Then,the resulting circuit

is converted into acyclic circuit by running the CyclictoAcyclic function. Theacyclic circuit is

used for test generation and the test pattern generated is used to test the cyclic, but partial scan

circuit (The resulting partial-scan ready circuit is still cyclic, as there will be few C-elements

not being scanned). At this point the coverage of the circuit is checkedfor at least an user given

percentage of coverage (X%), if the coverage is less than X%, the list containing the number of

cycles each contribute to is created. If the contribution is more than 75% of thecycles, then the

vertex is added to the scan list. Thus scan set is updated further for improved fault coverage.

The detailed test flow is described in the next section.

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits148

1 Ascp (){
2 List L = Enum_Cycle(S-graph);
3

4 M = List of cycles x List of c=elements;
5

6 S= list of scan elements = WSCP (M)
7

8 update: Update the circuits in the design to scan testable using S.
9

10 Run cyclic to Acyclic Conversion.
11

12 Run the test generation
13

14 Check the fault coverage
15

16 If fault coverage > X \% Go to "report"
17

18 Else {
19

20 List L = the number of cycles each vertex contribute
21

22 For each element Ei in L
23

24 If the contribution is > 75 \%
25

26 add to scan list S.
27

28 End For
29

30 Go to "update"
31 }
32

33 report: Report fault coverage
34

35 }

Figure 7.5: Algorithm:ASCP

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits149

7.4 Methodology

Parse Cycle

Enumeration

Scan

Selection

Acyclic

Circuit

Generation

S
c
a
n

 E
le

m
e
n

t

S
e
le

c
ti

o
n

T
e
s
t

G
e
n

e
ra

ti
o

n

Blif2Graph Enum_Cycle WSCP

Selected

Scan

Elements

List of

Cycles

Sync

or

Async

Cyclic2Acyclic

Acyclic

Graph

Test

Generation

Fault

Simulation

Figure 7.6: Test Methodology

The test methodology for the proposed partial scan test generation is described in this section.

The Figure 7.6 gives the overall flow of the test method. The upper half involves the DFT

method and the lower half involves the test generation and fault simulation as marked in the

left-most column. The first phase of the flow is the circuit parsing, performed using the tool

BLIF2graph. The next phase is called cycle enumeration, which involvesenumerating all the

cycles present in the s-graph. By applying the linear algorithm describedin Figure 7.1 in

Sub-section 7.3.2, all the cycles are listed with the corresponding vertex names. This list of

cycles is passed to the "set cover" solution phase. Here the list of cyclesis treated as rows

and the vertices are treated as columns. Thus the minimum set cover computed by "wscp" will

provide the list of vertices which forms the selected scan elements. At this stage, if the circuit

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits150

is a synchronous one, then it is passed directly to the test generation tool toproduce the test

patterns. If the circuit is an asynchronous circuit, then it undergoes another phase of cyclic-to-

acyclic conversion. This should be taken care of in the asynchronous circuits, as the C-elements

itself forms a self loop which is overlooked by the previous phases. Also, ifsome of the C-

elements constitute around 75% of all the cycles, then they are also added to the scan list. Thus

the acyclic equivalent of the asynchronous circuit is obtained at the endof the cyclic-to-acyclic

phase. This circuit is then sent to the test pattern generator for testing the circuit.

7.5 Experiments and Results

The same set of benchmarks as before was chosen for experiments using the ASCP method.

Table 7.1 shows the results for these benchmarks. The column marked ’cele’ gives the number

of C-elements in the circuits.The third column (marked ’scan’) in the table givesthe number

of scan C-elements selected. The fourth column gives the fault coveragefor the full scan

method and the fifth one gives the fault coverage for the ASCP method. Thearea overhead

from original and reduction from full scan is shown in sixth column. Table.7.2 gives the

comparison of number of patterns generated by the ASCP method with the fullscan method.

Fault Coverage

Figure 7.7 shows the graph comparing the fault coverage for the ASCP method and the full

scan method. For the benchmarks, rcvsetup,hazard,chu150, convertaand seq_mix, the fault

coverage was between 80-90%. Out of all the 24 benchmark circuits, ASCP method achieved

the maximum value of 98.03% fault coverage for the benchmark trimos-send which has more

global loops and C-elements present in them. The fault coverage for this benchmark was 100%

for the full scan. Also for the benchmarks ebergen, sbuf-send-pkt,seq4, vbe5b, vbe5c, and

wrdatab the fault coverage was more than 95%. This method achieved 100%fault coverage for

the benchmarks mp-forward-pkt, vbe5c and vbe5c. There reason for this increase is that the al-

gorithm selected all the C-elements for scan. Thus the result obtained was similar to a full scan.

On the other hand, for the benchmark rcv-setup, no C-element was selected and the resulting

circuit was same as the original circuit and hencee the fault coverage was very low. In circuits

with one C-elements like this, scanning the single C-element will provide better fault coverage.

Number of Patterns

In the graph in Figure 7.8, the comparison is made between the number of patterns generated

by the ASCP method and the Full scan method. The number of test pattern generated by the

ASCP method is low compared to the full scan method for a majority of the benchmarks. Es-

pecially for the benchmarks masterread, mmu, trimossend and wrdatab, the number of patterns

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits151

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e
ra

g
e

 P
e

rc
e
n

ta
g
e

Asynchronous Benchmarks

Fault Coverage Comparison (ASCP

Full

ASCP

versus Full Scan Method)

Figure 7.7: Fault Coverage Comparison - ASCP versus Full Scan Method

were less than 50% of that of the full scan method. For master-read the number of patterns

generated by the ASCP method was 23 whereas for the full scan it was 46 (exactly 50% more).

Also for the benchmarks, sbuf-send-pkt2 and wrdatab, the test patterns for ASCP were 8 and

18,respectively, whereas for full scan method it is, 29 and 46, respectively. Interestingly, for

sbuf-send-pkt2, the fault coverage attained was almost the same as that of full scan with only

8 test patterns generated by ASCP. For wrdatab as well, almost 40% reduction in test pattern

decreased the fault coverage only by approximately 4%.

Area Overhead

Figure 7.9 gives the area overhead comparison for the proposed ASCPmethod and the full

scan method. The scan area overhead for the ASCP method was proportional to the number of

patterns. As seen from the graph, the benchmarks master-read, mmu , trimos-send and wrdatab

had lower number of C-elements scanned compared to the full scan method. But the number

of patterns generated were less and the fault coverage was almost above 95%. For the ones

with only red lines, the algorithm did not choose any C-elements as there wereonly one or two

C-elements present and they were not inside a global loop to be chosen to be broken. But the

fault coverage obtained without scanning the C-element were reasonable.

Complexity

The complexity of the ASCP method is the summation of the complexity of the WSCP al-

gorithm and the cycle enumeration WSCP. have been extensively experimented with the larger

graph benchmarks (larger compared to the millions of gates). The cycle enumeration algorithm

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits152

Table 7.1: ASCP Versus Full Scan - Fault Coverage Comparison

Ckt cele Scan Full% ASCP% Area%

chu150 2 1 100 83.61 50

converta 3 1 100 86.89 66.66

dff 2 1 100 92 50.66

ebergen 3 1 100 93.75 66.66

half 2 1 100 92.31 50

hazard 2 1 100 87.27 50

master-read 9 3 96.76 96.48 66.66

mmu 6 2 91.95 91.6 66.66

mp-for-pkt 3 1 100 100 66.66

mr1 9 8 100 96.95 11.11

nak-pa 4 1 100 100 75

nowick 1 0 100 97.22 100

ram-rd-sbuf 4 2 99.02 92.73 50

rcv-setup 1 0 100 73.33 100

Rpdft 1 0 100 92.68 100

sbuf-ram-write 6 2 100 94.23 66.66

sbuf-snd-ctl 5 3 100 93.18 40

sbuf-snd-pkt 5 3 96.03 95.69 40

seq4 7 4 100 96.55 42.88

seq_mix 6 3 97.44 84.81 50

trimos-send 8 4 100 98.03 50

vbe5b 2 1 100 100 50

vbe5c 3 1 87.93 100 66.66

wrdatab 8 4 99.46 95.15 50

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits153

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
P

a
tt
e

rn
s

Asynchronous B hmarks

Number of Patterns

Full

ASCP

(ASCP versus Full Scan Method)

Figure 7.8: Number of Patterns - ASCP versus Full Scan Method

0

2

4

6

8

10

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-for-pkt

m
r1

nak-pa

now
ick

ram
-rd-sbuf

rcv-setup

R
pdft

sbuf-ram
-w

rite

sbuf-snd-ctl

sbuf-snd-pkt

seq4
seq

m ix

trim
os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
C

-e
le

m
e
n

ts
 S

c
a

n
n

e
d

Asynchronous Benchmarks

Scan Area Overhead Comparison (ASCP

Full

ASCP

versus Full Scan Method)

Figure 7.9: Comparison of number of scanned C-elements for 27 benchmarks (X-axis=Circuit

name, Y-axis = Scan Area Overhead Percentage)

has a complexity of O (|V||E|).

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits154

7.6 Conclusion

A partial scan selection method was introduced. A cycle enumeration algorithmwith linear

time was used to efficiently enumerate the cyclic paths in the asynchronous circuits. The set

covering problem was mapped over the partial scan selection problem to find the flipflops/C-

elements to be scanned for test purposes. The scan selection procedure was excercised in 24

asynchronous benchmarks. The method proposed shows reasonable fault coverage with the

trade-off of area overhead and reduced area overhead comparedto the full scan circuit with a

trade off in fault coverage.

Chapter 7. ASCP - A Set Covering Problem based Test Generation for Asynchronous Circuits155

Table 7.2: Comparison of Number of Patterns

Benchmarks FULL ASCP

chu150 9 12

converta 12 8

dff 13 10

ebergen 19 8

half 9 8

hazard 12 12

master-read 46 23

mmu 39 16

mp-forward-pkt 16 18

mr1 48 43

nak-pa 14 16

nowick 10 9

ram-read-sbuf 19 19

rcv-setup 8 7

rpdft 16 10

sbuf-ram-write 27 20

sbuf-send-ctl 26 16

sbuf-send-pkt2 29 8

seq_mix 31 19

seq4 31 25

trimos-send 46 11

vbe5b 12 12

vbe5c 8 15

wrdatab 46 18

Chapter 8

ACLARION - High level circuit

extraction for Asynchronous Circuit

Testing

8.1 Introduction

This chapter is motivated by the requirements of a high-level extraction tool, which can rep-

resent the asynchronous circuit at a higher level of abstraction to identify the interconnection

of combinational logic, registers and fanout nodes, yet preserve the netlist connectivity of the

design.

The main contribution of this chapter is a high-level circuit extraction method for asynchronous

circuits. Often sequential circuit test generation involves grouping of several memory elements

together. For example, in the partial scan design introduced in Chapter 2, themain motivation

was to select the subset of memory elements. Usually, the design netlist is described in terms of

combinational gates, memory elements, fanouts and interconnections. If these circuits/design

representations can be represented at a higher level, then the problem set for the scan selection

algorithms can be considerably reduced. This chapter is motivated towardsdeveloping such

an extraction method which will reduce the size of the circuit representation so that the higher

level extracted representations can be used for the other DFT algorithms.

The organization of the chapter is as follows: Section 8.2 gives the background required for the

description of the extraction method; Section 8.3 describes the basic functions required for the

implementation of the ACLARION extraction method and an overview of the methodology;

Section 8.4 describes the proposed heuristics for the Register clustering process; Section 8.5

156

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 157

describes the heuristics for the combination logic unit (CLU) clustering; Fanout clustering

heuristics are introduced in detail in Section 8.6. Experimental results are analyzed in Section

8.7 with one working example, with the conclusion in Section 8.8.

8.2 Background

Asynchronous circuits use combinational loops to store state. There are two types of loops,

namely global and local loops. Local loops are the combinational loops present in the state-

holding gates like C-elements or set-reset latches. The familiar flip-flop also contains a local

loop, but it is hidden from test tools since a flip-flop is a cell on its own in standard cell li-

braries and does not pose any problems during testing. Global loops areformed outside these

gates and are used for creating asynchronous state machines. Asynchronous full-scan methods

[BPvBK03] break all these loops in test mode using LSSD-type scan latches. This simplifies

testing as the circuit becomes purely combinational in test mode. However, thearea overhead

is enormous, hence motivating our work on partial-scan methods.

S-graph:

A S-graph S(V,E) is a graph induced from the original graphG (V,E) (where V is the set of

combinational gates/memory elements and E is the set of interconnections) by removing the

node set S1(V,E) , where the vertices in S1(V,E) contains only the verticescorresponding to the

flipflops/memory elements.

Path:

A Path from vertex v1 to vertex v2 is a set of vertices encountered when traversing from v1 to

v2 by visiting each of them one time.

Cycle:

A cycle in the graph is a set of vertices visited when traversing from vertexv1 and when the

traversal ends in the same vertex v1.

8.2.1 Clarion

Clarion is a circuit extraction tool [I.P94], in which a circuit is representedas a s-graph with 5

different nodes namely PI node, PO node, combinational node, sequential element node, and

fanout node. The PI and PO nodes are single nodes connecting all the primary inputs and

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 158

primary outputs of the circuit in to one node, respectively. A method for highlevel circuit

extraction based on this graph was developed for synchronous circuitin [I.P94].

8.3 High Level Circuit Extraction

The extraction method proposed in this chapter is based on clustering the combinational gates,

memory elements and fanout nodes which was used for the circuit extractionof synchronous

circuits in [I.P94]. Thus the three clustering methods used: 1) Combinationallogic Clustering,

2) Register Clustering, and 3) Fanout Clustering forms the basis of this technique. All the three

clustering processes are described next.

8.3.1 Method

The functions used in the construction of the heuristic for the Asynchronous Clarion (AClarion)

are namely Span, Union, Intersection and Span. The steps involved in function Span is shown

in Figure 8.1. The function takes as input the graph G, the vertex, vertex identifier (vertex_label

in Figure 8.1), c-element index and an empty set called spanset. The recursive function makes

a depth first search (DFS) over the graph until all the vertices spanningfrom the vertex input

until it reaches the c-element boundaries. This function a plays major role in finding the input

span and output span in the main algorithm. The gates spanned are added to the empty set

provided as input called spanset.

The function union is an implementation of the Union operation, taking in two sets, s1 and s2,

along with the referenced empty set result. The elements in the sets s1 are enumerated and

added to that of set s2 and the resulting set is assigned to the set result.

The function Intersection is an implementation of the intersection operation, taking the sets,

s1 and s2, and enumerates the elements in set s1 and s2 to find the common elements and add

them to the set result.

The pseudocode of the function Overlap is shown in Figure 8.3. This function implements the

overlap operation "σ" which is used to form the equivalence classes, namely input overlap and

output overlap in the main Aclarion algorithm. The function takes in a list of sets named setlist,

two sets s1 and s2, an array named intercheck and another empty set calledloopcheck. The set

s2 is assigned to this set loopcheck. The intercheck array holds the intersection information of

all the sets in the setlist.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 159

1

2 /**
3 Function Span
4 **/
5 void span (graph g, vertex ver, vertex_label
6 gate_name, int is_cele, set & spanset)
7 {
8 for(vertex ai2 = adjacent_vertices(*ver,g))
9 {

10 If ai2 != c-element{
11 {
12 spanset.insert(ai2);
13 span (g,ai2,gate_name,is_cele,spanset);
14 }
15 else
16 {
17 spanset.insert(ai2);
18 }
19 }
20 }
21

Figure 8.1: Function Span

The overlap operator is defined as follows:

For two sets s1 and s2, s1σ s2, if

1) s1∩ s2 6= φ ,

2) s1∩ s3 =φ , s2σ s3, s3∈ S.

The first condition is achieved by direct application of the intersection function over the sets s1

and s2 to any intersecting elements in them in the first step. If there is an intersection then the

overlap function returns 1. If this condition is not true, then all the sets in set s1 are enumerated

to find any set with which the set s1 is having an intersection. When the intersection is found,

then that set s3 is checked for a overlap with the set s2. Thus, a recursive overlap function

is executed with set s2 and s3. When the called overlap returns 1, then the function returns 1

else the function returns 0. To avoid the looping of the function over the setsof the setlist, the

variable noloop is used to set a flag to check for the same set not being enumerated again and

again in the setlist.

These three functions are used extensively in implementing the several functions of the Aclar-

ion algorithm. In the next section the heuristics constructed to implement the Aclarion extrac-

tion method are described in detail. The overall framework of Aclarion is shown in Figure

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 160

8.2.

Figure 8.2: ACLARION Framework - Top-level View

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 161

1 /***************************************
2 Function Overlap
3 **/
4 int overlap (list_of_sets setlist,set set1,set set2,
5 array intercheck,set loopcheck)
6 {
7 loopcheck = set2;
8 set_iterator setiter;
9 if((set1 != set2) && (intercheck[set1][set2] == 1))

10 {
11 loopcheck.clear();
12 return 1;
13 }
14 else
15 {
16 for(unsigned int j=set1; j < size of setlist; j++)
17 {
18 if(set1 != j)
19 {
20 if(intercheck[set1][j] == 1)
21 {
22 int noloop = 1;
23

24 for(setiter = loopcheck.begin(); setiter
25 != loopcheck.end(); setiter ++)
26 {
27 if((unsigned int)*setiter == j)
28 {
29 noloop = 0;
30 }
31 }
32 if(noloop == 1)
33 {
34 if(overlap(setlist,set2,j,intercheck,loopcheck)== 1)
35 {
36 loopcheck.clear();
37 return 1;
38 }
39 }
40 }
41 }
42 }
43 loopcheck.clear();
44 return 0;
45 }
46

Figure 8.3: Function:Overlap

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 162

8.4 Register clustering

To describe the register clustering process, the following terms have to be first defined.

8.4.0.1 Input span

Input span of a memory element is defined as the number of gates that spansalong the path

from the input of that element until the path encounters another memory element.

8.4.0.2 Output span

Output span of a memory element is defined as the number of gates that spansalong the path

from the output of that element until the path encounters another memory element.

8.4.0.3 Wrapped span

Wrapped span is the input/output span defined in terms of cyclic/asynchronous circuits. Thus

the wrapped output span is the output span of the memory element in asynchronous circuits

including the feedback/loop paths in the circuit. The wrapped input span is theinput span of

the memory element in asynchronous circuits including the feedback/loop paths in the circuit.

The definition of wrapped span was introduced in [I.P94] and was not implemented as it was

for synchronous circuit. In this proposed method, wrapped span is used for the clustering of

registers/c-elements.

8.4.0.4 Maximal input span

A maximal input span is the equivalence class formed by the relation overlap on the set of input

spans of the circuit.

8.4.0.5 Maximal output span

A maximal output span is the equivalence class formed by the relation overlapon the set of

output spans of the circuit.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 163

8.4.0.6 Maximal receiving register

The set of sinks of the input spans of the maximal input span is called maximal receiving

register.

8.4.0.7 Maximal driving register

The set of sources of the output spans of the maximal output spans is called the maximal driving

register.

8.4.0.8 Maximal Register

A maximal register R is defined as the maximal set of storage nodes given thatfor someRi
r and

Rj
d,[I.P94] R belongs toRi

r and R belongs toRj
d .

Thus by finding the Maximal registers for the given circuit, the memory elementsin the circuit

can be clustered to form a set of maximal registers.

8.4.1 Method

The sequence of steps in register clustering process are:

• Find the Output Span and Input span of all c-elements present in the circuit

• Find the maximum output span and maximum input span

• Find the maximum driving register and maximum receiving register

• Find the maximal register

The register clustering forms the vital part of the entire circuit extraction process. The scat-

tered memory elements around the circuit are clustered strategically to bring out the high-level

interconnection between the combinational gates. This is achieved by constructing an equiva-

lence class on the set of spans through the overlap relation. The main functions involved in the

register clustering process are Outspan, Outspan_wrap, Inspan, Inspan_wrap, OutputOverlap,

InputOverlap, Maxspan_Output, Maxspan_Input, and Maximal_Register.

The pseudocode of the function Outspan is shown in Figure 8.4. The function takes in the

graph "g" and outputs the list of spans for all the memory elements present in"g". This suffices

for the synchronous circuits as they do not have loops or feedbacks inthem due to their acyclic

nature. But for the asynchronous circuits as mentioned in the earlier definition of wrapped

span, the feedbacks occur in them due to their cyclic nature.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 164

Figure 8.4 shows the pseudocode for the outspan_wrap function. The function takes in the

graph "g", the list of outputspan created by the the outspan function and outputs an array out-

put_wrapspan_check. The array stores the flag of all the spans whichare wrapped (containing

feedbacks) and those that are not (without feedback loops).

1 /**
2 Pseudocode: OutSPAN --- Depth First Search
3 **/
4 Input: Graph g1
5 Output: list_outspanset - list of outputspans
6

7 Outspan (graph g1){
8 For each vertex v in graph G{
9 If (v = c-element/latch) {

10 currVertex = v;
11 graph g2 = g1;
12 set outspanset = span(g2,currVertex);
13 list_outspanset[vertex] = outspanset;
14 }
15 }
16 return list_outspanset;
17 }
18

19

20 /**
21 Pseudocode: OutSPAN_Wrap --- Depth First Search
22 **/
23 Input: Graph g1,list_outspanset
24 Output:Array output_wrap_span_check
25

26 Outspan_wrap(graph g1,list_outspan_set){
27 N = number of vertices of g1;
28 Output_span_wrap[n]= 0;
29 For each v in graph g1{
30 If (v = c-element/latch) {
31 For each vertex v1 in list_outspanset[v] {
32 If(v1 == v){
33 output_wrap_span_check[v] = 1;
34 Break;
35 }
36 }
37 }
38 return output_wrap_span_check[n];
39 }

Figure 8.4: Function:Outspan and Output WrapSpan

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 165

This information plays a major role in clustering the asynchronous cyclic circuits.

1 /**
2 InSPAN --- Depth First Search
3 **/
4 Input: Graph g1
5 Output: list_inspanset - list of input spans.
6

7 Inspan (graph g1){
8 Graph g2 = reverse graph of g1;
9 For each vertex v in graph g2{

10 If (v = c-element/latch) {
11 currVertex = v;
12 graph g2 = g1;
13 set inspanset = span(g2,currVertex);
14 list_inspanset[vertex] = inspanset;
15 }
16 }
17 return list_inspanset;
18 }
19

20 /**
21 Input wrap span of all vertices*/
22 **/
23 Input: Graph g1,list_inspanset
24 Output:Array input_wrap_span_check
25

26 inspan_wrap(graph g1,list_outspan_set){
27 N = number of vertices of g1;
28 input_span_wrap[n]= 0;
29 For each v in graph g1{
30 If (v = c-element/latch) {
31 For each vertex v1 in list_outspanset[v] {
32 If(v1 == v){
33 input_wrap_span_check[v] = 1;
34 Break;
35 }
36 }
37 }

Figure 8.5: Function:Input Spand and Input WrapSpan

The Inspan function’s pseudocode is shown in the Figure 8.5. The function operates on the

graph "g" to find all the inputspan of all the c-elements and latches presentin the circuit. To

use the span function defined previously, the graph is first reversed toform a new reversed

graph "g2" and then for each memory element vertex element in the graph, the span function

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 166

is executed over the graph for that element.

1 /**

2 OutputOverlap

3 **/

4 Input: graph g,list_outspanset;

5 Output: matrix output_overlapcheck;

6

7 OutputOverlap(g,list_outspanset){

8 size = size of list_outputspanset;

9 array intersection[size][size], intersectioncheck[size][size];

10 set loopcheck;

11 For each set s1 in list_outspanset{

12 For each set s2 in list_outspanset{

13 Intersection[s1][s2] = intersection(s1,s2);

14 If (s1 == s2 or interstion[s1][s2] = empty){

15 intersectioncheck[s1][s2] = 0;

16 }

17 else{ Intersectioncheck[s1][s2] = 1;}

18 }

19 }

20

21 For each set s1 in list_outspanset{

22 For each set s2 in list_outspanset{

23 Output_overlapcheck[set1][set2] =

24 overlap(setlist,set2,set2,intercheck,loopcheck);

25 }

26 }

27 }

Figure 8.6: Function:Output Overlap

The list of all the input spans containing the set of gates is output by this function. Figure

8.5 also give the pseudocode for the function inspan_wrap. This function takes in the graph g

and the input span list and constructs the array input_wrap_span_check. This array stores the

information on the feedback loops on the input spans similar to the outputspan_wrap function.

Once all the outspans and inspans are constructed, the overlap operator is used over these spans

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 167

to find out the overlapping of the sets of the list of spans. Figure 8.6 givesthe pseudocode for

the function Outputoverlap. The graph g and the list of outspans are passed as input to these

functions. First, an array named intersection of size n1 x n1 is constructed, where n1 is the

size of the list of outspans. The sets that are intersecting are assigned theflag 1 in the place

in the array corresponding to these sets. Then a new array named Output_overlapcheck is

constructed. For each set s1 in the list of outspans, the overlap of this set with the other set are

examined. This is carried out by passing the set s1 and other sets to the overlap function along

with the intersection array and an empty set called loopcheck.

1 /**
2 InputOverlap
3 ***/
4 Input: graph g,list_inspanset;
5 Output: matrix input_overlapcheck;
6

7 InputOverlap(g,list_inspanset){
8 size = size of list_inputspanset;
9 array intersection[size][size], intersectioncheck[size][size];

10 set loopcheck;
11 For each set s1 in list_inspanset{
12 For each set s2 in list_inspanset{
13 Intersection[s1][s2] = intersection(s1,s2);
14 If (s1 == s2 or interstion[s1][s2] = empty){
15 intersectioncheck[s1][s2] = 0;
16 }
17 else{ Intersectioncheck[s1][s2] = 1;}
18 }
19 }
20 }
21 For each set s1 in list_inspanset{
22 For each set s2 in list_inspanset{
23 Input_overlapcheck[setk][setl]
24 =overlap(setlist,setk,setl,intercheck,loopcheck);
25 }
26 }
27 }

Figure 8.7: Function:Input Overlap

The overlap function returns a 1, if there is a overlap else it will return a 0.Thus the Out-

put_overlapcheck array is constructed and returned as an output forthis function.

Similarly, the overlap of all the sets in the list of inspans are examined by the function in-

put_overlap. The inputs to this function are the graph g and the list of inputspans. Intersection

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 168

array is constructed first for all the sets in the list of inputspans. Then thisarray along with

an empty set loopcheck is passed to the function overlap for each set. Theresulting matrix

input_overlapcheck is returned as the output from the function. Thus theinput_overlapcheck

and the output_overlapcheck matrices will be used to construct the maximum spans for the

inspans and outspans.

Figure 8.8 gives the pseudocode for the function MaxSpan_Output. Thisfunction clusters the

sets in the list of outspans which overlap with each other. Basic steps involved in this pro-

cess are: 1) enumerating the matrix output_overlapcheck these two sets to a disjoint set, and

2) distinguish the wrapped span from unwrapped spans and constructtwo different maximum

outputspans. For the first step which is straight forward to enumerate the output_overlapcheck.

It should be noted that the overlapping sets are added to the disjoint set "ds", which creates

the sets of c-elements forming the maximal outputspan. In the step 2, the sets in thelist of

outputspan are enumerated and based on the flag in the output_span_wrap_check array, the

sets in ds corresponding to the memory element of the span set s1 is found and added to the

maxoutputspan and maxoutputspan_wrap sets, respectively. Thus two maximum outspan sets

for wrapped and unwrapped spans are constructed and returned bythis function.

Figure 8.9 shows the pseudocode for the function Maxspan_input. The input to this function

are graph "g" and the list of inputspans. The steps in this function are almost similar to that

of the function Maxspan_output. Based on the flags in the input_overlapcheck matrix, the

disjoint set ds is constructed for the list of memory elements whose spans overlap with each

other. Then the two maximum input spans, namely maxinputspan and maxinputspan_wrap,

are constructed based on the flag information in the array input_wrap (samearray named in-

put_span_wrap_check created by the function inspan_wrap). The output of this function are

the two sets, namely maxinputspan and the maxinputspan_wrap. Finally, the maximal regis-

ters are clustered by using the sets, maxoutputspan, maxoutputspan _wrap, maxinputspan, and

maxinputspan_wrap.

The pseudocode of the function maximal_register is shown in the Figure 8.10.As given in

the definition earlier, this function merges all the maximal spans that are overlapping to form

a maximal register. The function maximal_registers takes in the four sets of the maximum of

spans. First step involves enumerating the unwrapped maximum spans. Thus the sets in the

maxinputspan and maxoutputspan are enumerated and when set s1 in the maxinputspan has

an intersection with set s2 in the maxoutputspan, a set forming the intersection of s1 and s2 is

added to the Maximal Register list named MaxRegister.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 169

1 /**

2 Maxspan - Output

3 **/

4 Input: graph g,list_outspanset;

5 Output: set maxoutputspan, maxoutputspan_wrap;

6

7 MaxSpan_output(graph g,list_outspanset){

8 disjoint_set ds;

9 list_of_set maxoutputspan, maxoutputspan_wrap;

10 For each vertex v in graph g{

11 create ds(v1); // adds a set with element v1 to ds

12 }

13 For each set s1 in list_outputspan {

14 For each set s2 in list_outputspan {

15 If(output_overlapcheck[s1][s2] =1){

16 Union(s1’s c-element/latch,s2’s c-element/latch) in ds;

17 }

18 }

19 }

20 For each set s1 in list_outputspan {

21 int i = order of the set containing the s1’s c-element/latch;

22 If(output_wrap[s1] != 1){maxoutputspan[i].insert(s1)}

23 If(output_wrap[s1] = 1){ maxoutputspan_wrap[i].insert(s1)}

24 }

25 }

Figure 8.8: Function: Maxspan Output

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 170

1 ***

2 Maxspan - Input

3 ***\

4 Input: graph g,list_inspanset;

5 Output: set maxinputspan, maxinputspan_wrap;

6

7 MaxSpan_input(graph g,list_inspanset){

8 disjoint_set ds;

9 list_of_set maxinputspan, maxinputspan_wrap;

10 For each vertex v in graph g{

11 create ds(v1); // adds a set with element v1 to ds

12 }

13 For each set s1 in list_inputspan {

14 For each set s2 in list_inputspan {

15 If(input_overlapcheck[s1][s2] =1){

16 Union(s1’s c-element/latch,s2’s c-element/latch) in ds;

17 }

18 }

19 }

20 For each set s1 in list_inputspan {

21 int i = order of the set containing the s1’s c-element/latch;

22 index = set index of s1’s c-element in ds.

23 If(input_wrap[index] != 1){

24 in the disjoint set ds.

25 maxinputspan[i].insert(s1)

26 }

27 If(input_wrap[index] = 1){

28 maxinputspan_wrap[i].insert(s1)

29 }

30 }

31 }

Figure 8.9: Function:Maxspan Input

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 171

1 ***

2 Maximal Register

3 ***\

4 Input: list_of_set maxinputspan,maxinputspan_wrap,

5 maxoutputspan,maxoutputspan_wrap;

6 Output: list_of_set MaxRegister;

7

8 MaxRegister(maxinputspan,maxinputspan_wrap,

9 maxoutputspan,maxoutputspan_wrap){

10 \\ inserting unwrapped maxspans

11 For each set s1 in Maxoutputspan {

12 For each set s2 in Maxinputspan {

13 If(! (Intersection(s1,s2) not empty){

14 set1.insert(Intersection(s1,s2));

15 }

16 }

17 }

18 MaxRegister.insert(set1);

19 \\ inserting wrapped maxspans

20 For each set s1 in Maxoutputspan_wrap {

21 For each set s2 in Maxinputspan_wrap {

22 If(! (Intersection(s1,s2) not empty){

23 set2.insert(Intersection(s1,s2));

24 }

25 }

26 }

27 Maxregister.insert(set2);

28 return MaxRegister;

29 }

Figure 8.10: Function:Maximal Register

The second step involves enumerating the sets in the maxinputspan and maxinputspan_wrap

sets and finding the intersecting sets. Then the sets formed with the intersectionelements

are then added to the Maximal Register list,MaxRegister. Thus the Maximal register list is

output by this function. This concludes the register clustering process in the overall flow of the

ACLARION. The next section details the Combinational logic unit (CLU) clustering process.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 172

8.5 Combinational logic clustering

After clustering the memory elements to form set of maximal registers, the next step involve

clustering all the combinational gates or combinational logic unit (CLU) in the circuit. Outspan

and inspan sets constructed during the registering clustering process make CLU clustering eas-

ier. The pseudocode for the function implementing the CLU clustering named CLU_clustering

is shown in the Figure 8.11 and Figure 8.12. The following steps are involvedin this procedure:

• Create the list containing the set of gates in Maximal registers

• Construct the matrix to set flag for the presence of a vertex (c-elements)of the graph in

the maximal register list.

• Create the matrix for storing the flag information for presence of vertex in amaximal

register

• Create a disjoint set which has the union of the set of maximal registers foreach non-

memory element vertices

• Create the list of clouds having the clouds of combination gates using the disjoint set

created

• Update the disjoint set based on the connectivity of the fanout nodes

• Update the list of clouds using the updated disjoint set

The input to this function is the list of maximal registers named MaxRegister output by the

function MaxRegister. The input to the CLU_clustering function are the list of the maximum

registers MaxRegister, the list of inscan set and the graph g. The pseudocode for the function

CLU_Clustering is shown in Figure 8.11 and Figure 8.12. The first step involves enumerating

each set s1 in the list MaxRegister and all the memory elements of set s1. Thenthe gates in

the input spans of these memory elements are stored in the multiset Max_Register_Gates. The

indexing of the sets is similar to those in the list MaxRegister. The gates of each inspans of

the c-elements are retrieved from the list list_inscanset. The second step involves creating the

matrix which stores the flag information on the presence of a vertex in the maximalregister set.

To construct this matrix named Max_reg_check, the vertices vi of the graph are enumerated

along with the sets si in the list MaxRegister. If the set si contains the vertex vi then the

Max_reg_check[vi][si] is flagged 1 otherwise it is flagged 0.

The third step involves creating list of maximal registers in which each vertex inthe graph

which is not a memory element. It is simply to construct list of maximal registers to which

each combinational and fanout node belongs to. This is achieved by enumerating the set s2

in the list Max_Register_Gates and the vertices in the graph g. The vertices and the sets are

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 173

verified with the matrix Max_reg_check to see whether the set s2 contains thevertex v. If it

contains then the set s2 is added to a temporary set max_sets. Once all the sets are enumerated,

the max_sets is added to the list of sets Max_Register_set. By the end of enumeration of all

the vertices, the Max_Register_set will be having the list of sets corresponding to each non-

memory element vertices. The fourth step involves enumerating all the verticesand checking

whether each vertex belongs to same set of Maximal registers. For this, each vertex which is not

a memory element is enumerated in the graph g. The set in Max_Register_set corresponding to

this vertex is compared to the same for all the other vertices. If both the sets are the same then

the union operator is applied to these sets corresponding to these two vertices in the disjoint set

ds. The fifth step involves creating the set of clouds using the combinationalgates. For each

vertex which is a combinational gate in the graph g, The vertex is added to the list of clouds

named cloudset with index N1 equal to the index of the set corresponding to this vertex in the

disjoint set ds.

The sixth step involves analysing the fanout nodes which can be added to this cloudset. For

each fanout vertex in the graph g, outedges of that vertex v4 is enumerated. If the target vertex

v5 of each outedge is not a memory element, the set of maximal registers for thevertex v4 and

v5 are compared in the list Max_Register_set. A flag 1 is set to the variable outedge_check, if

all the target vertices have the same set of maximal registers with the vertex v4, otherwise it is

set to 0. If the outedge_check is 1, then the union operation is applied to the set corresponding

to the vertex v5 and the set corresponding to the vertex v4 in disjoint set ds.By now all the

fanout nodes which drive the same register as the clouds in the list of clouds cloudset will be

added to the corresponding set in the disjoint set.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 174

1 Input: graph g, list_of_set MaxRegister, list_inscanset
2 Output: list_of_clouds;
3

4 CLU_Clustering(MaxRegister)
5 {
6 List_of_set Max_Register_Gates;
7 Array max_reg_check;
8 disjoint_set ds;
9 list_of_multiset max_Register_sets, max_sets;

10 list_of_sets list_of_clouds;
11 For each set s1 in MaxRegister{
12 For each c-element/latch c1 in s1 {
13 N = order of c1 in list_inscanset;
14 Max_Register_Gates[s1] = comb gates in list_inscanset[N];
15 }
16 }
17 For each vertex v in graph g{
18 If(v = c-element/latch){
19 For each set s1 in MaxRegister{
20 If (intersection(v,s1) != empty{
21 Max_reg_check[v][s1] = 1;
22 }
23 else{Max_reg_check[v][s1] = 0;}
24 }
25 }
26 }
27 For each vertex v(except memory elements) in graph g{
28 For each set s2 in Max_Register_Gates{
29 If(Max_reg_check[v][s2] = 1){
30 Max_sets.insert(s2);
31 }
32 }
33 Max_Register_set.insert(Max_sets);
34 Max_sets.clear();
35 }
36 For each vertex v in graph g{
37 create ds(v1); // adds a set with element v1 to ds
38 }
39 -continued

Figure 8.11: Function:CLU Clustering - part1

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 175

1 - continuation from part 1
2 For each vertex v1 in graph g{
3 For each vertex v2 in graph g{
4 If((v1 != c-element or fanout)and
5 (v2 != c-element or fanout) and v1 != v2){
6 If(Max_Register_set[v1] == Max_Register_set[v2]){
7 Union(set of v1, set of v2) in ds;
8 }
9 }

10 }
11 }
12 For each vertex v3 in graph g{
13 If(v3 = comb gate){
14 N1 = order of the set corresponding to v3 in ds;
15 Cloudset[N1].insert(v3);
16 }
17 }
18 Int outedge_check =1;
19 For each vertex v4 in graph g{
20 If(v4= fanout node){
21 For each outedge oe of v4{
22 Vertex v5 = target of oe;
23 If(v5 != c-element){
24 If(Max_Register_set[v5] = Max_Register_set[v4]){
25 outedge_check = 1 * outedge_check;
26 }
27 else{outedge_check = 0;}
28 }
29 If(outedge_check = 1){
30 Union(set of v4, set of v5 in ds);
31 }
32 }
33 }
34 }
35 For each vertex v4 in graph g{
36 If(v4 = fanout){
37 N1 = order of the set corresponding to v4 in ds;
38 Cloudset[N1].insert(v4);
39 }
40 }
41 }
42

Figure 8.12: Function:CLU Clustering:part 2

The final step involves updating the cloudset using the updated disjoint setds. For this, each

fanout node v4 in the graph is enumerated and the index of the set corresponding to the enumer-

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 176

ated vertex v4 is set to N1. Then the vertex v4 is added to the cloudset to the set corresponding

to the index N1. The resulting cloudset has the set of clouds which consistsof all the combi-

national gates and some of the fanout nodes which drive the same maximal registers in them.

Once the CLUs and some of the fanout nodes are clustered into clouds, theonly nodes left

to be clustered are the leftout fanout nodes. The next section discusses the clustering process

involving these nodes to create the final complete high level extraction of the circuit.

8.6 Fanout clustering

Once the CLU and registers are clustered the fanout nodes in the circuit will be left out, which

should be grouped in a way that it streamlines the whole structural view. There are two types of

fanout clustering possible, namely uniform and non-uniform. A uniform fanout cluster/cloud

is the set of fanout nodes fed by a register/CLU node in such a way that each fanout node feeds

exactly the same set of CLUs. A non-uniform fanout cluster/cloud is the set of fanout nodes

fed by a register/CLU node and atleast a pair of fanout nodes feed different sets of CLUs.

8.6.1 Algorithm

The heuristics involved in the fanout clustering process are detailed in this subsection. At this

stage as mentioned earlier, all the clustered clouds of CLU and the registersare available to

construct the high level view with only the fanout node clustering begin leftpending. It should

be noted that some of the fanout nodes were already added to the CLU cloud which drive the

same registers. The fanout nodes not included are the nodes which do not drive the same clouds

and register. The steps involved in the fanout clustering process are:

• Find the maximum registers driving the each cloud

• Find the clouds driving each fanout node

• Find the fanout nodes driving the clouds

• Construct the disjoint set to enumerate and cluster the fanout based on their connectivity

with the clouds and the maximum registers

• Update the list of clouds cloudset based on the clustering information in disjoint set to

form the new cloudset update_cloudset.

The input to the Fanout_clustering function are the list of clouds generatedby the CLU_Clustering

function, list of the maximum registers MaxRegister, the list of outscan set and the graph "g".

The pseudocode for the function Fanout_Clustering is shown in Figure 8.13 and Figure 8.14.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 177

The first step involves finding all the maximal registers driving the clouds in the list of clouds

cloudset. Each set s1 in the cloudset is enumerated for the presence of single element set with

the fanout node as its element. This is because after the CLU clustering process only the fanout

nodes that do not drive the same maximal registers as the clouds in the cloud set are left out

and are added as a separate cloud with only that node as the component of the cloud. For each

of these set s1, each c-element c1 in the graph "g", each gate g1 in the set corresponding to

the c-element c1 in the list of outspans list_outputspan is enumerated. If the gate g1 equals the

fanout element s1, then each gate g2 in each maximal register set mr1 is enumerated. If the

gate g2 equals the c-element c1, then the order N2 of the set s1 in the cloudset is calculated and

the set mr1 is inserted to the list Maxdrivefo at the index N2.

The next step involves finding all the clouds driving the fanout node. For this, each cloudset

s2 is enumerated in the list of clouds cloudset. For each outedge of the gate inthe set s2, if

the target equals the fanout element of s1, then the set s2 is added to the temporary set cloud-

driveset. After enumerating all the sets s2 in the cloudset, the clouddriveset set is added to the

set clouddrivefo which holds the sets of clouds driving one particular fanout node.

All the fanout nodes driving each cloud is constructed in the next step. For each set s2 in the

list of clouds cloudset, all the inedges of the gates of s2 is enumerated. If the source of the

inedges is the same as the fanout element in s1, then the set s2 is added to the temporary set

fodrivingset. After enumerating all the sets s2 in the cloudset, the fodrivingset is added to the

fodrivingcloud list, which stores the list of sets having all the fanout nodes corresponding to

one cloud.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 178

1 ***
2 Pseudocode: Fanout_Clustering
3 ***\
4 Input: list_of_clouds,Max_Registers,graph g,list_outputspan
5 Output:list_of_clouds updated_cloudset
6 FAnout_clustering(graph g,list_outputspan, Max_Registers,cloudset){
7 For each cloud set s1 in list_of_clouds{
8 If(s1 = single fanout element set){
9 For each c-element/latch cl1 in graph g{

10 For each gate g1 in list_outputspan[cl1]{
11 If(g1 = element in s1){
12 For each max register mr1 in Maximum_Registers{
13 For each gate g2 in mr1{
14 N2 = order of s1 in cloudset;
15 If(g2 = cl1){Maxdrivefo[N2].insert(mr1)}
16 }
17 }
18 }
19 }
20 }
21 }
22 }
23 Set clouddrivingfo,clouddrivingset;
24 For each cloudset s2 in list_of_clouds{
25 If(s1 != s2){
26 For each gate g4 in s2{
27 For each out_edge oe in g4{
28 If(target of oe = element of s1){
29 Clouddriveset.insert(s2);
30 }
31 }
32 }
33 }
34 }
35 Cloudrivingfo[s1] = clouddriveset;
36 Clouddriveset.clear();
37 Set fodrivingcloud,fodrivingset;
38 For each cloudset s2 in list_of_clouds{
39 If(s1 != s2){
40 For each gate g4 in s2{
41 For each in_edge ie in g4{
42 If(source of ie = element of s1){
43 fodrivingset.insert(s2);
44 }
45 }
46 }
47 }
48 }
49 -continued

Figure 8.13: Function Fanout Clustering - part 1

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 179

1 -continuation of part1
2 fodrivingcloud[s1] = fodrivingset;
3 fodrivingset.clear();
4 }
5 Int MDCheck,focloud_check;
6 For each cloud set s1 in list_of_clouds{
7 If(s1 = single fanout element set){
8 For each cloud set s2 in list_of_clouds{
9 If(s2 = single fanout element set and (s1 != s2){

10 if(Maxrdrivefo[s1] == Maxrdrivefo[s2] ||
11 MDcheck =1;
12 }
13 else{MDcheck=0;}
14 if(fodrivingcloud[s1]= fodrivingcloud[s2]){
15 focloud_check=1;
16 }
17 else{focloud_check=0;}
18 if(MDcheck * focloudcheck = 1){
19 union(set of s1’s element, set of s2’s element) in ds;
20 }
21 }
22 }
23 }
24 }
25 }
26 List_of_clouds updated_cloudset;
27 For each vertex v in graph g{
28 If(v!=latch/c-element){
29 N4 = order of the set that v belongs to in ds;
30 updated_cloudset[N4].insert(v);
31 }
32 }
33

34 return updated_cloudset;
35 }
36

37

Figure 8.14: Function Fanout Clustering - part 2

Once all the sets s1 in the cloudset has been enumerated the list Maxdrivefo will have the list

of all the maximal registers driving the fanout nodes, clouddrivefo will have the sets of clouds

driving each fanout node and the list fodrivingcloud has the sets fanouts driving all the clouds.

With these three lists, the next step of updating the disjoint set based on the connectivity of

the fanout node with clouds and maximal registers is carried out. Two flag variables, namely

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 180

MDcheck and focloud_check, are used in this step. For each set s1 in the list of clouds, s1

is compared with all the other sets in the cloudset for checking the common maximaldriv-

ing registers driving them. Also, each set s1 is compared with all other sets for checking the

common clouds driving them. In former case, MDcheck flag is set to 1 and in the later case

focloud_check is set to 1. Otherwise, both the flags are assigned the value 0. If both the flags

are 1, then the union operation is applied to the set corresponding to the fanout node element

of s1 and the set corresponding to the fanout node element of s2 are in the ds. This streamlines

the excluded fanout nodes to be added to the corresponding clouds to which they belong if they

drive the same clouds and are driven by the same maximal registers.

The final step involves updating the cloudset. For this all the vertices that are not memory ele-

ments are enumerated in graph g and the order N4 of the set each vertex belongs to in the dis-

joint set ds is calculated. Then the vertex is added to the updated cloudset update_cloudset with

index N4. After all the vertices are enumerated, the resulting list of clouds update_cloudset will

have the list of clouds containing the fanout nodes and the combinational gates. This list is re-

turned by the fanout_clustering function.

Using the list updated_cloudset, list MaxRegisters and the connectivity information from the

graph g, the overall high level structural view of the circuit can be constructed. The resulting

graph will be several order of magnitude smaller than the original graph. The experimental

results of this method applied to several asynchronous benchmark circuitsare analyzed in the

next section.

8.7 Experiment

This circuit extraction method for asynchronous circuit was implemented in C++ as an extractor

tool. Several asynchronous benchmarks were used for the experimental analysis. The results

obtained for the benchmark "master-read" is shown in Figure 8.15. Figure8.15 shows the

color-coded partition of the fanout, CLU and c-elements. To distinguish the clustering clearly,

the Figure 8.16 shows the clusters of CLU with number (with nodes of same cluster having

same number), fanout nodes named as fanout and the c-element left with their alphabetical

name. The high-level extracted structural view of the benchmark is shownin Figure 8.17.

Table 8.1 shows the resulting high-level structural representation consisting of 3 combinational

clouds, 6 fanout nodes and 2 maximal registers. The column named "cele" gives the number of

C-elements present in the benchmark circuit. The column named "#gates" gives the number of

gates for the benchmark. The column named "# clouds" gives the number ofclouds formed in

the extracted view. The maximal register column has two subcolumns named "size" and "#",

which give the number of C-elements in each register and the number of registers respectively.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 181

The last column gives the time taken for execution of the implemented extractor tool.

The methodology is capable of executing over the industrial tool as the clarion was demon-

strated on the industrial synchronous circuits. The profiling of the sourcecode revealed the

function span being called extensively due to the construction of inspans and outspans. Further

optimization on the span function usage will reduce the execution time of the tool.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 182

fmap7

map6

fari

pro

fdi

pdo

fpack

PObunch

aro

map7

map7FO

feedmap6C1

map5

map5FO

map4

map4FO

map3

map3FO

feedmap2C1

map2

map1

map1FO

map0

map0FO

feedmrdcC2

mrdc

feedmrdcC1

feedbusyC2

busy

feedbusyC1

feedbreqC2

breq

feedbreqC1

feedaro

pack di

diFO xack

bprn

pri

priFO

ari

map6FO

do

map2FO

csc0FO

mrdcFO

csc0

busyFO

breqFO

PIbunch

Figure 8.15: Master-read Benchmark

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 183

1

map6

1

pro

1

pdo

1

28

28

1

Fanout

1

17

Fanout

17

Fanout

1

Fanout

32

map2

1

Fanout

1

Fanout

1

mrdc

1

1

busy

1

1

breq

1

28

1 1

Fanout 1

32

1

Fanout

1

Fanout

do

Fanout

Fanout

Fanout

csc0

Fanout

Fanout

17

Figure 8.16: master-read benchmark - numbered clouds

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 184

Maxreg1

Fanout1

CLU-Cloud2

Fanout5

CLU-cloud1

Maxreg2

Fanout2

CLU-Cloud1

Fanout4

Fanout6

Fanout3 CLU-cloud3

CLU-cloud4

Figure 8.17: Extracted High Level View - master-read benchmark

8.8 Evaluation

To evaluate the proposed extraction methodology different asynchronous test methods pro-

posed in this thesis namely ABALLAST, AGLOB1, AGLOB2 and ASCP were excercised

with the high level netlist extracted by ACLARION. Evaluation metrics namely graph size in

vertices and edges, fault coverage, and number of patterns generated are compared and ana-

lyzed for these methods applied over the original circuit and the high level extracted view of

the circuit.

Graph size reduction

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 185

Table 8.1: Circuit Extraction Results

Benchmarks Cele #gates #clouds #fanout MaxReg MaxReg

size

chu150 2 8 3 5 1 2

converta 3 6 3 4 1 3

dff 2 6 8 5 2 1,1

ebergen 3 11 10 7 2 2,1

half 2 1 4 1 2 1,1

hazard 2 6 5 6 2 1,1

master-read 9 16 10 14 2 8,1

mmu 6 20 3 13 2 2,4

mp-for-pkt 3 8 4 5 1 3

mr1 9 18 12 16 2 7,2

nak-pa 4 12 4 5 1 4

pe-rcv-ifc 6 33 3 13 1 6

pe-send-ifc 6 23 6 11 2 2,4

ram-rd-sbuf 4 12 3 8 1 4

rcv-setup 1 6 3 4 1 1

rpdft 1 11 3 6 1 1

sbuf-ram-write 6 14 6 11 1 6

sbuf-snd-ctl 5 12 10 8 2 2,3

sbuf-snd-pkt2 5 18 12 11 2 3,2

seq4 7 9 3 10 1 7

trimos-send 8 18 9 14 2 1,7

vbe5b 2 6 3 5 1 2

vbe5c 3 2 5 3 2 1,2

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 186

0

5

10

15

20

25

30

35

40

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-fw

-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbufctl

sbuf-ram
-w

rite

sbuf-send-pkt2

seq4
seq

m ix

trim
os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
V

e
rt

ic
e

s

Asynchronous Benchmarks

Original ACLARION

Comparison of Graph Size - Vertices

(ACLARION Generated Circuit versus Original Circuit)

Figure 8.18: Graph Size Comparision - Vertices

The main motivation of generating the high level extraction is to reduce the problem size be-

fore applying further test algorithms applied. The extracted view generated by ACLARION

does indeed reduce the graph size as it is clustering several combinational gates and registers.

Figure 8.18 gives a comparison of the number of vertices of the original graph with the graph

of the extracted view. The original graph/netlist is termed as "original graph" and the extracted

view graph/netlist is called as the "ACLARION graph". Almost all the benchmarks had greater

than 50 % reduction in the number of vertices. Bigger benchmarks such as wrdatab, mmu and

master-read had considerably greater reduction. Figure 8.19 shows a comparison of the sizes

of the edges for the original and ACLARION graph. In relation to the number of vertices, the

number of edges is even lower. This is due to the fact that the interconnections between the

gates and memory elements are reduced when the latter were clustered. For the benchmark

wrdatab, the number of edges was reduced by 50%.

The interesting point to probe is how well the fault coverage and number ofpatterns obtained by

the test methods are retained when these methods process the extracted viewof the same netlist.

To do this analysis all the benchmarks were run in two different experimentsfor the all the test

methods. First experiment involved running the test methods over the original benchmarks and

the second experiment involved running the test methods over the extractedbenchmarks. After

running these two experiments, the fault coverage and the number of patterns generated for

both the experiments are compared for each test method. It should be ACLARION netlist type

was used by ABALLAST method, it is already running on the extracted view,so the analysis

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 187

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-fw

-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbufctl

sbuf-ram
-w

rite

sbuf-send-pkt2

seq4
seq

m ix

trim
os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
E

d
g

e
s

Asynchronous Benchmarks

Original ACLARION

Comparison of Graph Size - Edges

(ACLARION Generated Circuit versus Original Circuit)

Figure 8.19: Graph Size Comparision - Edges

does not include ABALLAST method.

The following subsection discusses the impact on fault coverage and the impact on the number

of vertices.

8.8.1 Impact on Fault Coverage

Now the impact of fault coverage on the test methods AGLOB1, AGLOB2 andASCP are dis-

cussed.

AGLOB1 Test Method

The graph in Figure 8.20 gives the comparison of fault coverage for theAGLOB1 method

operated over original graph and the ACLARION graph. Along with this comparison the full

scan method is also included as the third data. For the smaller benchmarks, the fault coverage

based on original graph and the extracted view is almost same as there is notbe much difference

between the two graphs. This is very well exhibited by the benchmarks chu150, converta,

ebergen, vbe5b and vbe5c as they have same fault coverage for boththe graphs. But a more

important observation is on the benchmarks masterread, mmu,mr1, sbuf-send-ctl and wrdatab.

For all the larger benchmarks, the fault coverage was improved with the extracted netlist view

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 188

but at the cost of increased scan element .

AGLOB2 Test Method

Next the fault coverage comparison for AGLOB2 method is analyzed. Figure 8.21 gives the

comparison of the fault coverage obtained using original and ACLARIONgraph. In contrast

to the AGLOB1 method, this method improved the fault coverage with reaching thefull scan

equivalent. For example, the benchmarks mmu and mr1 had higher fault coverage compared to

the original graph and almost same as full scan. But for the benchmark mp-forward-pkt2, the

fault coverage was improved without reaching the full scan memory scanning.

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e
ra

g
e

 P
e

rc
e
n

ta
g
e

Asynchronous Benchmarks

Full AGLOB1 AGLOB1-ACLARION

Impact on Fault Coverage

(Full Scan versus AGLOB1 versus AGLOB1-ACLARION)

Figure 8.20: Impact on Fault Coverage - Full Scan versus AGLOB1 versus AGLOB1-ACLARION

ASCP Test method

In Figure 8.22, impact of the extraction on fault coverage over the ASCP method is shown. In

this method, most of the benchmark exhibited improvement in fault coverage for the ACLAR-

ION graph-based experiments, with the exception on the benchmarks mr1, seq_mix, and trimos-

send. The overall impact on fault coverage of all these methods will be shown at the end of the

next subsection.

8.8.2 Impact on Number of patterns

In this subsection the impact of extraction over the number of test patterns generated is ana-

lyzed. For the three methods analyzed, the red bar in the graph gives the number of patterns

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 189

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e
ra

g
e

 P
e

rc
e
n

ta
g
e

Asynchronous Benchmarks

I

Full AGLOB2 AGLOB2-ACLARION

Impact on Fault Coverage

(Full Scan versus AGLOB us AGLOB2-ACLARION)

Figure 8.21: Impact on Fault Coverage - Full Scan versus AGLOB2 versus AGLOB2-ACLARION

generated for full scan method, the green bar gives the patterns for theoriginal graph and the

blue bar gives the patterns for the ACLARION graph.

AGLOB1 Test Method

Figure 8.23 shows the comparison for the number of test patterns generated. Clearly the ex-

tracted view had higher number for most benchmarks patterns as it selectedmore C-elements

compared to the original graph. For master-read, mmu and trimos-send the number of patterns

increased, whereas for the benchmarks sbuf-ram-write and sbuf-send-ctl the number of patterns

reduced.

AGLOB2 Test Method

For the AGLOB2 method, the comparison is shown in the Figure 8.24. For this method, ex-

tracted netlist view reduced the number test patterns generated for most benchmarks. Bench-

marks mmu, master-read and trimos-send had higher reduction in number of patterns.

For AGLOB1 and AGLOB2, the benchmarks, "master-read", "mmu", and "trimos-send" had

their number of patterns increased. The reason for increase in the pattern number is of two-

fold. First one is that, they had 9, 6, and 8 C-elements, respectively and the way the subset

of these C-elements selected for partial-scan impacts the number of patterns being generated.

And, when ACLARION extracted the clouds, several C-elements constituted a cloud, which

resulted in increase of the number of partial-scan C-elements. With this increase, test pattern

generation involved more scan test patterns to be added to test these scannable C-elements.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 190

0

20

40

60

80

100

120

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

F
a

u
lt
 C

o
v
e
ra

g
e

 P
e

rc
e
n

ta
g
e

Asynchronous Benchmarks

Full ASCP ASCP-ACLARI

Impact on Fault Coverage

(Full Scan versus ASCP versus ASCP-ACLARION)

Figure 8.22: Impact on Fault Coverage- Full Scan versus ASCP versus ASCP-ACLARION

Second reason is that, when some of the C-elements, which are not scanned are located at the

higher depth of the circuit, reaching those nodes required more test patterns. Vice versa, for the

benchmarks "sbuframwrite" and "sbufsendctrl", the C-elements not chosen for scan were the

ones, which were closer to the input/output nodes, compared to the originalpartial-scan circuit

generated without ACLARION. Hence, the number of patterns for these circuits reduced.

ASCP Test Method

Finally the impact on number of test patterns for the ASCP method is shown in Figure 8.25.

For this method also, the number of test patterns were reduced for most benchmarks. This is

because, the ASCP method had lesser information on the location of the C-elements and the

scan-selection was guided only by the efficent selection of lower number of scan C-elements.

So, even when the number of scannable C-elements were reduced, the selected C-elements

were not guaranteed to be at a lower depth of the circuit. But, interestingly for the benchmark

seq_mix, there was a steep rise in the number of test patterns. For this case,the location of

the subset of C-elements selected for partial-scan, resulted to be at the higher depth of the cir-

cuit. There were totally 6 C-elements and when the full-scan method chose to scan all these

C-elements, the scan-chain formed by the full-scan reduced the depth of this path and hence

the number of patterns were lesser. And, for the ACLARION generated circuit, the partial-scan

path was longer, which resulted in the higher number of test patterns.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 191

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
P

a
tt
e

rn
s

Asynchronous Benchmarks

Fullscan AGLOB1 AGLOB1-A LA ON

Number of Patterns

(Full Scan Method versus AGLOB1 versus AGLOB1-ACLARION)

Figure 8.23: Impact on Number of Patterns - Full Scan versus AGLOB1 versus AGLOB1-

ACLARION

With and without ACLARION

As analyzed in the previous subsections, the extracted netlist gave improved fault coverage

for most benchmarks, but with some exceptions. To see the overall effect of the extracted

netlist on the fault coverage obtained with the different test methods, the 3Dplot of the fault

coverage of the AGLOB1, AGLOB2 and ASCP methods for the original andextracted view

is shown in the Figure 8.26. The left side of the plot on Yaxis (tics 1,2, and 3 are named

AGLOB1,AGLOB2 AND ASCP) clearly shows lower fault coverage compared to the right

hand side(tics 4, 5 and 6 are named AGLOB1(ACL meaning ACLARION), AGLOB2(ACL)

and ASCP(ASCP). The blue regions on the left shows the lower fault coverage and the peaks

on the right hand side shows the higher fault coverage for the extractednetlist view. The

middle blue region is due to the benchmark rcvsetup which does not have anyC-elements to

be chosen by the partial scan methods. Finally, a 3D plot showing the fault coverage for the

methods namely Full scan, ABALLAST, AGLOB1, AGLOB2,ASCP, AGLOB1-ACLARION,

AGLOB2-ACLARION and ASCP-ACLARION are plotted in Figure 8.27. To show the peaks

the graph is plotted as monochrome. It is evident from the graph that the ABALLAST, and

all the methods with ACLARION graph based test generation had higher fault coverage. This

can be seen from the peaks on the left side of the Y axis(initial one being thefullscan) and the

peaks on the extreme right hand side. There are lower number of spikes inthe middle which

attributes to the methods applied over the original graph.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 192

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
P

a
tt
e

rn
s

Asynchronous Benchmarks

Fullscan AGLOB2 AGLOB2- LA ON

Number of Patterns

(Full Scan Method versus AGLOB2 versus AGLOB2-CLARION)

Figure 8.24: Impact on Number of Patterns - Full Scan versus AGLOB2 versus AGLOB2-

ACLARION

Complexity// The complexity of the ACLARION method is mainly dominated by the combi-

national clustering and the register clustering steps. The merging of the memory elements has

a complexity of O (n3). The complexity of the combinational clustering is O (nm), where n and

m are number of vertices and, edges respectively.

8.9 Conclusion

A high-level circuit extraction method for asynchronous circuits was proposed. Basic functions

required for the implementation of the ACLARION extraction method and the overview of the

methodology were described. The proposed heuristics for the Register clustering process was

introduced next. The heuristics for the combination logic unit (CLU) clustering was discussed

futher. Fanout clustering heuristics were introduced next. Experimentalresults were analyzed

for various asynchronous benchmarks with one working examples demonstrated.

The circuit extraciton method developed can be applied to any test generation system for asyn-

chronous circuits. The test generation time can be drastically reduced by operating on the high

level graph generated by this method.

Chapter 8. ACLARION - High level circuit extraction for Asynchronous Circuit Testing 193

0

10

20

30

40

50

60

chu150

converta

dff
ebergen

half
hazard

m
aster-read

m
m

u

m
p-forw

ard-pkt

m
r1

nak-pa

now
ick

ram
-read-sbuf

rcv-setup

rpdft

sbuf-ram
-w

rite

sbuf-send-ctl

sbuf-send-pkt2

seq
m ix

seq4
trim

os-send

vbe5b

vbe5c

w
rdatab

N
u

m
b
e

r
o

f
P

a
tt
e

rn
s

Asynchronous Benchmarks

FULL ASCP ASCP-ACLARION

Number of Patterns

(Full Scan Method versus A P versus ASCP-ACLARION)

Figure 8.25: Impact on Number of Patterns - Full Scan versus ASCP versus ASCP-ACLARION

C
hapter

8.
A

C
LA

R
IO

N
-

H
igh

levelcircuitextraction
for

A
synchronous

C
ircuitTesting

194

1

2

3

4

5

6

86

88

90

92

94

96

98

With and Without ACLARION

(AGLOB1,AGLOB2,ASCP)

86

88

90

92

94

96

98

c h u 1 5 0

c n v r ta
d f f

e b r g n

h a l f

h a z a r d

m m u

m p - f - p k t

m r 1

n a k - p a

n o w ic k

r r s b u f
r s tp

r p d f t

s b u fc t l

s r w r i te

s s p k t2

s e q 4

s e q m ix

ts e n d

v b e 5 b

v b e 5 c

w r d a ta b

AGLOB1

AGLOB2

ASCP

AGLOB1(ACL)

AGLOB2(ACL)

ASCP(ACL)

F
au

lt
 C

o
v
er

ag
e

P
er

ce
n
ta

g
e

Asynchronous

 Benchmarks

Impact on Fault Coverage (with and without ACLARION)F
igure

8.26:
Im

pacton
FaultC

overage
for

three
m

ethods-
w

ith
and

w
ithoutA

C
LA

R
IO

N

C
hapter

8.
A

C
LA

R
IO

N
-

H
igh

levelcircuitextraction
for

A
synchronous

C
ircuitTesting

195

Fault Coverage Impact on All methods

Fault Coverage Comparison - All methods

1
2

3
4

5
6

7
8

88

90

92

94

96

98

100

AGLOB1
AGLOB2

ASCP
AGLOB1(ACL)

AGLOB2(ACL)
ASCP(ACL)

ABALLAST
Full Scan

r p
d f t

s b u fc
t l

s rw
r i t

e

s s p k t2

s e q 4

s e q m
ix

ts
e n d

v b e 5 b

v b e 5 c

w
rd

a ta
b

c n v r t
a
d f f

e b r g
n

h a l f

h a z a r d

m
m

u

m
p - f

- p
k t

m
r1

n a k - p
a

n o w
ic

k

r r
s b u f

r s
tp

c h u 1 5 0

Asynchronous Benchmarks Test Methods including

Full Scan

F
au

lt
 C

o
v

er
ag

e

F
igure

8.27:
FaultC

overage
C

om
parison

-
A

llm
ethods

Chapter 9

ATRANTE - Transistor Level Test

Generation for Asynchronous Circuits

9.1 Introduction

With the increasing number of transistors per chip, the number of faults due tophysical de-

fect is increasing. This will lead to a higher probability that devices will malfunction. These

physical defects are mainly due to photo lithography errors, electromigration, corrosion, and

oxide effects to name a few. These defects cause adverse effects on circuit behaviour. Hence

several test methods and models have been created to detect the faults in thecircuits [VCHS09,

RDB08, IRR+01, LM05, FMHG05a, MAF90]. Gate-level stuck-at fault model is the most

widely used model to test the circuits. The high-level abstraction of the circuits at the gate-

level is considered to test the designs in the stuck-at-fault based test generation.

Although these models usually give significant fault coverage of the design, not all the physi-

cal defects can be mapped accurately to these models [FMHG05b]. Hencetransistor level fault

models are considered which increase the accuracy of the faults due to thephysical defects at

deeper level [FS88b] [Mal87]. In other words, the test effectiveness of the test patterns can be

improved by adding test patterns generated using transistor-level fault models compared with

those generated using stuck-at fault model. Again using detailed transistor-level models will in-

crease the simulation time and the size of the test patterns. So there should be a model that pro-

vides high fault coverage with low test time. Several test generation methodsfor asynchronous

circuits are proposed which is based on State Transition graph (STG) [Roi97][EOL02]. But

these methods deal with gate-level stuck-at-fault model-based test generations. But test gen-

eration methods at transistor level for asynchronous circuits are not found in literature to the

best of the author’s knowledge. [ES95] deals with the switch level test generation problem for

196

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 197

Figure 9.1: Open Defects. a) A foreign particle causing a line to open and a line thinning, b)

A contaminating particle causing 7 line opens, c) Defect which caused an open in metal 2 and

short in metal 1. [RM00]

asynchronous circuits but only stuck open and stuck on faults are considered.

9.1.1 Motivation: Why transistor level testing?

As the stuck-open and stuck-on faults are transistor-level faults (not alogic node level as in

Stuck-at ones) , the behaviour of the circuit is changed from combinational to sequential due

to the floating transistors occurring in the circuit due to the stuck-open faults. This issue has

already been introduced and dealt with in detail for synchronous circuits[VCHS09, RDB08,

IRR+01, LM05, FMHG05a]. It has been shown that even though the conventional stuck-at fault

model covers some of the transistors having the stuck-open or short fault, it will not detect all

the transistor-level faults. The commonly occuring open defects are shown in the Fig.9.1. It

has been shown in [RM00] that several other defects cause the transistor to become open or

shorted and these defects occur commonly in the manufacturing process.

To detect these kinds of faults, two different directions were taken traditionaly. First one is

called "two pattern sequence" test generation. In this method, for each transistor fault, two

test patterns are applied to detect the fault. In the second way, additional hardware or different

CMOS logic design style was used to address this fault. The issue of sequence-based test was

explained in detail in [LM02]. An example showing the occurrence of a stuck-open fault and

the detection of fault based on the sequences of patterns was clearly shown in [LM02]. It

was shown that even though these sequences detect the transistor-level stuck open faults, their

order is very important for the detection. Change in the order will make the test invalid. The

same issue is encountered with asynchronous circuits with the added complexity of having C-

elements in the design. Testing the stuck-at fault for C-elements is a complex task by itself.

On further testing these transistor-level fault needs correct order/sequences of test patterns to

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 198

test the single transistor fault than a set of stuck-at test patterns. Thus testing the asynchronous

circuits at transistor level will increase the testability of the design for stuck open and short

faults.

The main motivation behind this work is on developing a test pattern generation method at the

transistor level for asynchronous circuit covering transistor stuck open and stuck on faults.

This chapter explores an automatic test pattern generation methodology usinga fault model

called "Transition fault model", which covers the above-mentioned faults. The main contribu-

tion of the chapter is in presenting a novel method of test generation for asynchronous circuits

using State-Transition Graph (STG) at transistor level and the fault simulation method for the

same. The conventional switch level modelling techniques and the STG basedrepresentation

of asynchronous circuits are merged to develop this new method.

This chapter is organised as follows: Section 9.2 gives the background information to under-

stand the proposed method; Section 9.3 states the problem illustrated with an example; Section

9.4 describes the test methodology; Section 9.5 presents the experimental results with analysis,

followed by an ending remarks in Section 9.6.

9.2 Background

Background on asynchronous circuit and transistor level testing is given as follows.

9.2.1 Asynchronous Circuit Representation

State-Transition Graph (STG) is an interpreted Free Choice Petri Net introduced by [CG86] for

representing asynchronous control circuits. The behaviour of the circuit is modelled as a set

of transition rules with respect to I/O signals. A state graph is a finite automaton,which is an

extended version of STG with all the state encoded with binary values

9.2.1.1 Petrinet

A Petrinet [CKK+97] is a compact model to represent concurrent systems. A Petri net is a

quadruple N = {P, T, F, m0}, where P is a finite set of places, T is a finite setof transitions, F

is the flow relation, and m0 is the initial marking. A transition is enabled at marking, m1, if all

its input places are marked. An enabled transition, t, may fire, producing a new marking, m2,

with one less token in each input place and one more token in each output place. A free choice

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 199

Petri net (FCPN) where the value changes on input, output or internal signals of the specified

circuit are the interpretation of the transitions.

9.2.1.2 Signal Transition Graph (STG)

STG is an interpreted Free Choice Petri Net (FCPN) introduced by [Chu87] for representing

asynchronous control circuits. It is a quadruple {T, P, F, m0}, whereT is a set of transitions

described by a x {+, -}, where a+ represents a 0 to 1 transition on signala, and a- represents a 1

to 0 transition; P is a set of places which can be used to specify conflict or choice; F represents

flow transition relation between transitions and place; m0 is the initial marking. An example

of an STG is shown in Figure 9.2

Figure 9.2: Stuck-at-false fault and Stuck-at-true fault

9.2.1.3 State Graph (SG)

A state graph [CKK+97] is a finite automaton given by G =< A,S,T,δ,s0> , where A is the

set of input and non-input (output and internal) signals such that, T is a set of signal transitions,

each transition can be represented as(+ai, j)or(−ai, j) for the j-th 0→ 1 or 1→ 0 transition

of signal a .δ : SxT→ S is a partial function representing the transition function such that if

δ(s,t) = s’, then signal t is said to be enabled and it takes the system from states to s’. s0 is the

initial state. Each state in the state graph is labelled with a binary vector according to the signal

values of the system at that state.

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 200

9.3 Problem Statement

The test pattern generation problem is N-P hard. To focus further, the problem chosen in this

chapter is to create the test patterns to detect defect level faults. To address this problem, two

fault models are used. First, the STG level fault model (stuck-at-true/false) is used to generate

test pattern (shown as the top layer in Figure 9.3). Second, the test patterns are fault simulated

using defect level fault models (stuck-open/on) (shown as the bottom layer in Figure 9.3).

Figure 9.3: Fault Mapping in STG based asynchronous circuit netlist

9.3.1 Motivating Example

An example of transistor level test of C-element is shown in this subsection. Aworking exam-

ple of the test pattern generation for a single fault is described further. Astatic implementation

of the C-element is considered for the example (Figure 9.5) [ES95]. The implementation has

12 transistors, 3 i/o and 7 other internal nodes, including Vdd and Gnd. Intotal 63 faults can be

modelled for the c-element, whereas, in the case of stuck-at fault only 6 faults can be modelled

corresponding to the 3 I/O pins. To explain the test generation the stuck-open fault on tran-

sistor P3 (shown in Figure 9.6). Figure 9.10 gives all the possible transitions in the transistors

that can occur in the C-element(in Fig. 9.6). For 8 input combinations (’a,b,c’) of C-element,

possible transition characteristics of the transistors in the C-element (good circuit) is shown. In

Fig. 9.11, the possible transition characteristics of the C-element that is faultyis shown. For

both the cases, the transistors that are switched on are denoted by the down-arrows (red). The

transistors that are turned off are denoted by a cross (blue). For the faulty C-element, the P3

transistor switched on due to the stuck-on fault is denoted by a down arrow(shown in side the

bubble). Thus it should be noted from Figure 9.11, that possible transitions which affects the

operation of the P3 transistor are Figure 9.11.(c), Figure 9.11.(d), Figure 9.11.(g), and Figure

9.11.(h).

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 201

Table 9.1: MOS Gate Output Table[JA85]

S1(Pull Up Net-

work)

S0(Pull Down

Network)

Y(Output)

1 1 0

1 0 1

0 1 0

0 0 m=previous state

Table 9.2: Truth Table for Good(G) and Faulty(F) machine

State S0 S1 Y

G F G F G F

000 1 1 0 0 0 0

001 1 1 0 0 0 0

010 1 1 0 0 0 0

011 0 0 0 0 m=1 m=1

100 1 1 0 0 0 0

101 0 0 0 0 m=1 m=1

110 0 1 1 0 1 0

111 0 0 1 1 1 1

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 202

(a) (b) (c) (d)

Figure 9.4: SG and STG for faulty circuit with transistor P3 Stuck-on fault shown in (a), (b), (c),

(d)respectively.

The faulty circuit is shown in Figure 9.6. The corresponding STG and SG (Stage Graph) of

the good circuit are also shown in Figure 9.4. The MOS gate table introducedin [JA85] is

shown in Table 9.1. This table derives the logic value of the output node based on the pull-up

and pull-down transistor network logic value. The MOS table equivalent to the C-element in

Figure 9.6 is shown in Table 9.2. In this table, the pattern for abc, "110" differs in faulty and

good circuit. The output stays at ’0’ for a faulty circuit, whereas, it is ’1’ for a good circuit.This

faulty circuit behaviour causing the inhibition of transition from state 110 to 111 is shown as

dotted lines in Figure 9.4.

Figure 9.5: C-element Design

Test pattern for the transistor p3 stuck-on fault is obtained by traversingthrough the SG from

the initial state to the state next to where the inhibition occurs. Thus the test pattern for this

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 203

Figure 9.6: Transistor P3 Stuck-on fault in the C-element

fault will be "000-100-110-111" or "000-010-110-111". It should be noted that the circuit is

operated in the fundamental mode during the testing process and hence the circuit is allowed

to stabilize before applying a new pattern. The equivalent STF is represented by a ’0’ mark on

the arc from b+ to c+. Thus test patterns for the remaining faults can be obtained by traversing

the good circuit with the extracted logic of faulty machine. Once the test patterns are obtained

they can be fault simulated to obtain the fault coverage. Fault coverage results for several

benchmark circuits are discussed in the "Experiments" section.

9.4 Test Method

The proposed test method involves three major steps: BLIF2Spice netlist conversion, Test

pattern generation and Fault simulation. Figure 9.7 shows the components involved in test gen-

eration and the test flow for the proposed method. The netlist of the Circuit under Test (CUT)

is a BLIF (Berkeley Logic Interchange Format) file and its library file (genlib) generated by

the petrify tool [CKK+97]. Along with the netlist the corresponding STG file of the circuit

is parsed in. The netlist file is pre-processed by the custom"BLIF2Spice"tool written in perl

and bash script. The pre-processed netlist is then sent to the switch/transistor level fault sim-

ulator. Meanwhile, the test pattern generator will read the STG file of the CUTand generate

the test vector for all the faults in the CUT. The test generator is written in C++using Standard

Template Libraries (STL). A custom transistor level (spice deck) fault library for all the gates

in the library generated by the petrify tool is generated and is available for the fault simulator.

The details of the"blif2spice" tool, test pattern generator and the fault simulator are described

further.

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 204

B
L
IF
2
S
p
ic
e

Figure 9.7: Test Methodology

First, the"blif2spice" tool is a pre-processor tool used to parse the BLIF file and convert them

in to standard library specific spice deck. Standard libraries of 0.18 um technology are used for

this conversion. Each gate in the blif file is converted in to its equivalent spicerepresentation

for 0.18 um technology. Thus the output of the tool will be a spice netlist of the CUT. Second,

the test pattern generator follows the algorithm give in the algorithm 14. Detailsof the test

generation algorithm are described in the subsection Test Generation. The tool implemented

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 205

with this algorithm reads in the STG file, SG file and enumerates the STG and SG based on the

Algorithm 14 to generate test patterns and the output file is the test vector file (.vec file) with

the list of test patterns.

Finally, the fault simulator is built using the Perl scripts and the commercially available switch

level logic simulator. The fault simulator reads in the spice fault library (fault-lib.sp), spice

netlist from"blif2spice" (CUT.sp) and the test pattern file (.vec file).

First the fault list is generated by the"faultmachine-generator"script. And then, this script

injects all possible stuck-open and stuck-ON in to the CUT and generates allthe possible fault

machines. The detailed process is shown in the subsection Fault simulation. Once all the fault

machines are generated, the good machine simulation is carried out using the switch level logic

simulator. The response of the good machine is stored. Then the fault machines are simulated

and their response is compared with the good machine response to report the fault to be detected

or undetected. This report is finally printed as the test report. One further optimization that can

be carried out will be the fault dropping, which further reduces the fault simulation time.

9.4.1 Fault Model

The fault models used in this method are: 1) stuck-at-true, and 2)stuck-at-false for test gen-

eration. For fault simulation, stuck-at-open and stuck-at-close faults arecovered. Thus this

method covers the defect level faults using the STG level fault models. To beprecise, func-

tional level fault model is used to cover defect level fault.

9.4.1.1 Stuck-at-True Fault

Stuck-at-true fault is the fault in the STG level that one of the pre-conditionof the transition

is always true. This fault is represented by a "1" in the arc (Rout+ to Aout+ inFig. 9.2)

corresponding to that precondition. Input stuck-at faults and faults causing extra transitions

can be mapped in to this type of fault. For example, the stuck at true fault in Fig.9.2, describes

that the good circuit’s STG will always have Aout+ transition after Rout +, but the faulty circuit

with this fault will have Aout + transition before Rout + transition due to the stuck at fault in

the corresponding node in the circuit. At circuit level, this might be due to the pin Aout being

short with other node with value 1 and the path driving Rout to Aout being open.

9.4.1.2 Stuck-at-False Fault

Stuck-at-false fault is the fault in the STG level that one of the pre-condition of a transition is

always false. This fault is denoted in the STG by "0" in the arc (Rin- to Aout-in Figure 9.2)

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 206

corresponding to that precondition. Figure 9.2 shows an example of this fault. This fault may

occur when the node connected to Aout is stuck at 1 and hence Aout will never go to 0. Output

stuck-at faults and faults causing inhibition of transitions can be modeled with thisfault.

9.4.2 Test Algorithm

The test generation algorithm underlying this method is described in this subsection. The STG

for the good machine is used to generate the test patterns. The test patternsfor fault models

"stuck-at-true" and "stuck-at- false" are generated by enumerating thestates over the STG.

For every test pattern, the traversal starts from the initial state of the STG.This provides the

assumption that the generated test pattern have to be applied after restting thecircuits to the

intial state everytime before applying the test patterns. From the initial state, thetraversal

continues through the STG to reach the faulty state provided by the fault model. The path

traversed from the initial state to the faulty state provides the set of states andthe set of state

values. These state values are the test for the faulty state. The set of these states are stored as

test sequences for the corresponding fault.

The above mentioned steps are continuously applied for all the stuck-at-true and stuck-at-false

faults to obtain all the test patterns for the DUT. The test generation algorithmis shown in

Algorithm 14. The algorithm takes a STG (graph g1) and a SG (graph sg1)as input. For each

edge "ei" of the STG is compared with each edge (eis) of the SG. When the source vertex of the

ei equals the transition name/edge name of the sg1, then following two steps arecarried out.

First, for each vertex of the sg1, a comparison is made to check whether thevertex is same as

the source vertex of the eis. If they are same, then for each vertex Vp in the predecessor list of

the vertex, the pattern corresponding to each state is stored in the "testvectortrue" pattern list.

The above steps are again carried out for generating the "testvectorfalse" pattern list, except

that instead of comparing the source vertex of the edge "eis", the target vertex is compared

with the transition/edge name of the STG. Thus two list of vectors namely "testvectortrue"

and "testvectorfalse" are created which contains the test patterns for allthe stuck-at true and

stuck-at false faults.

Example: As an example to describe the test generation process Figure 9.8 shows thestep-

by-step process of test generation for the fault in a C-element. The SG graph and STG graph

shown in Figure 9.4 is used to generate the tests. This example shows the test for stuck-at-false

fault on the arc "a+". As mentioned before, first the algorithm selects the fault "a-" stuck-at-true

from the STG and enumerates the SG and finds the edge named a-. After finding the edge, since

the fault is stuck-at-true fault, it checks whether the output bits in the source and target pattern

of the edge "a-" are changing. In this example (shown in Figure 9.8.a), thesource and target

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 207

patterns of the edge "a-" are 111 and 011. Since the third bit is same, the algorithm traces the

successor list of the target to find the node with its pattern having a flipping output bit. Thus

in this example, the successor of the target pattern is the node with pattern "001"(shown in

Figure 9.8.b). But its output is not flipping yet. So the successor of this node "000" reached.

The pattern has its last bit flipped. Thus the algorithm chooses this pattern asthe first pattern.

From this node, it traces back each node to add the patterns of those nodes to the test vector

list. Thus in Figure 9.8. c, the node with pattern 001 is reached and is added tothe test vector

list with the updated list 001,000. Similarly, the test vector list gets updated from{001,001},

{011,001,000}, ... {000,100,110,111,011,001,000} as shown in the figures Figure 9.8. d - h.

Figure 9.8: Test Generation Example

9.4.3 Fault Simulation

The fault simulation process is detailed in this section with a relevant example. During fault

Injection, the faulty transistor representing either stuck-open or stuck-on fault is plugged in

to the good circuit spice deck. The hierarchical view of the good circuit and faulty circuit

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 208

from DUT to transistor level description is shown in the Figure 9.9. The DUT gate level

description of the circuit (shown at the top level of hierarchy) is mapped tothe standard gate

module library with common gates(including C-element) which is shown in the second level

of the hierarchy. Until these two levels, both the good and faulty circuit description will be

same. For the third(bottom) level, the spice deck for each gate is created as alibrary file. The

library file includes not only good circuit spice decks(bottom left) but alsothe fault circuit spice

decks(bottom right). Thus to inject a fault in the DUT, the faulty spice deck corresponding to

the faulty transistor is plugged in to the DUT by replacing the original spice deck of the gate in

which the transistor fault has to be injected. For example, to inject a stuck-onfault on one of

the p-transistor in an OR gate, the OR-gate spice deck will be replaced by theOR-Faulty gate

spice deck.

Figure 9.9: Fault Injection

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 209

9.5 Experiment Results

This section provides the experimental results on the proposed test generation system. Both

the test generation algorithm and the fault simulation method were implemented in C++and

scripts to automate and integrate the whole ATPG system. The logic simulator is a commercial

switch level simulator.

9.5.1 Test Generation and Fault Simulation

The results of the test generation algorithm are shown here. The results of test pattern gener-

ation algorithm for the asynchronous benchmarks are shown in the Table 9.4. The transistor

level characteristic of the benchmarks is shown in the Table 9.3. The fault simulation results

are shown in the Table 9.5.

Table 9.3: Transistor Level Circuit Characteristics

Ckt No

of

In-

puts

No

of

Out-

puts

No

of

tran-

sis-

tors

No

of

STTF

No

of

Tx

faults

chu150 3 3 32 64 240

converta 2 3 32 64 503

dff 2 1 52 104 288

ebergen 2 3 16 32 336

hazard 2 2 54 108 108

mstr-rd 6 7 80 160 840

mp-fd-pkt 3 5 52 104 264

nak-pa 4 6 48 96 528

nowick 3 3 42 84 336

rm-rd-sbf 5 6 54 108 576

rcv-setup 3 2 40 80 216

rpdft 4 1 44 88 408

sbf-rm-wr 5 7 58 116 504

sbf-snd-ctl 3 5 62 124 552

sbf-snd-pkt2 4 5 60 120 672

tri-snd 3 6 60 120 840

vbe5b 3 3 32 64 216

vbe5c 3 3 30 60 120

wrdatab 4 6 66 132 1008

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 210

Table 9.4: ATRANTE Test Generator Results

Ckt No

of

states

No

of

STTF

Test

Vec-

tor

Size

No

of

Test

Pat-

terns

Cycles

chu150 26 32 6 48 2

converta 18 32 5 28 1

dff 36 52 4 36 1

ebergen 18 16 5 30 2

hazard 12 24 4 22 1

mstr-rd 2108 80 14 8942 7

mp-f-pkt 22 52 8 46 -

nak-pa 58 48 10 124 -

nowick 20 42 6 47 -

pe-send-ifc 117 164 10 442 12

rm-rd-sbf 39 54 11 67 -

rcv-setup 14 40 5 23 -

Rpdft 22 44 5 49 -

sbf-rm-wr 64 58 12 119 2

sbf-snd-ctl 27 62 8 50 8

sbf-snd-pkt 28 60 9 49 6

tri-snd 336 60 9 1296 44

vbe5b 24 32 6 46 -

vbe5c 24 30 6 43 -

wrdatab 216 66 10 723 222

9.5.2 Analysis

Detailed analysis on the fault coverage and performance of the algorithm isshown in this

example.

9.5.2.1 Fault Simulation

Since the fault coverage results reported in [RCPP97],[EOL02] are gate stuck-at-fault coverage

percentage, they will be a subset of the total fault coverage. The faultcoverage comparison is

shown in Table 9.5. Only three benchmarks were reported in [EOL02] which were synthesized

using the same library used in [RCPP97]. Hence the comparison can be madeonly with these

benchmarks. Furthermore, test patterns for several benchmarks were generated using the test

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 211

Table 9.5: Fault Coverage Results from Fault Simulator

Ckt No

of

Faults

No

of

De-

tected

No

of

Un-

De-

tected

Fault

Cov-

erage

No

of

pat-

terns

chu150 112 99 13 88.39 240

converta 87 80 7 91.95 503

ebergen 89 84 5 94.38 336

hazard 108 98 10 90.74 108

mp-fd-pkt 140 130 10 92.85 264

nak-pa 244 234 10 95.90 124

nowick 160 139 21 86.87 336

rm-rd-sbf 312 268 44 85.89 576

rcv-setup 94 89 5 94.68 216

rpdfft 172 159 13 92.44 408

vbe5b 110 101 9 91.81 216

vbe5c 89 84 5 94.38 120

pattern generator implemented. The results of the tests generated by the test pattern generator

is shown in the Table 9.4. The transistor level circuit characteristics of all the benchmarks used

by the test generator is shown in the Table 9.3

Most of the faulty machines are redundant faults (are confirmed to operate error free in the

presence of the fault) and hence the fault coverage will be actually high,when these faults are

dropped during fault coverage calculations. The test patterns achieved higher fault coverage for

the benchmark nak-pa. Totally 244 fault machines were simulated and 235 faults were detected

leading to a fault coverage of 97%.

9.5.2.2 Comparison with State-of-the-art

An attempt on complete ATPG system for asynchronous circuits at transistorlevel is not re-

ported in the literature until now(up to author’s knowledge). Hence directcomparison with the

current state-of-the-art is not possible. Comparison that can be made will be with the work in

[Eic65] and [SM04a], but they are for gate level fault. Comparison with gate level test methods

will not be appropriate.

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 212

9.5.2.3 Complexity and Scalability

The method introduced is completely scalable for the asynchronous controlcircuits. The test

generation algorithm traverses through two graphs(STG) for comparingthe edge values and

also enumerates the adjacency vertices of source edges. The complexity of the test generation

algorithm is|E2|.|V|.|Va|, where E is number of edges of the graphs, V, the number of vertices

andVa is the number of adjacent vertices in worst case.

9.5.2.4 Limitations

In this analysis, fault simulation was carried without any fault collapsing being applied. Hence

the fault simulation time can be considerably reduced. Also, the number of testcan be re-

duced when the fault dropping is carried out during every test pattern simulation. Also the

fault simulation process uses switch level logic simulator to detect faults, efficient switch level

fault simulation tool at transistor level will improve the fault simulation time and reduce the

resource/memory needed for the same.

9.6 Summary

In this chapter, a transistor level test generation methodology based on transition fault model

on STG was proposed. A test generation algorithm was proposed and test results of the imple-

mented test pattern generator were reported. Fault coverage of 88-97% at the transistor level

is obtained by applying this method. The test patterns generated in the proposed method is

higher compared to the gate level fault simulation. This is because, only the circuit structure is

enumerated for the fault simulation in gate level simulation, whereas in the proposed method,

the state graph is enumerated and the test patterns are generated for the transistor level faults.

Though fault coverage for several benchmarks were reported by using a transistor level logic

simulator in this chapter, not all the benchmarks could be fault simulated in the samemanner.

A robust transistor level fault simulator is needed for fault coverage reporting. Implementing a

custom transistor level fault simulator will be the future work/extension.

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 213

Algorithm 14 Proposed Test Generation Algorithm
Input : State Transition Graph STG,State Graph SG

Output : Test Pattern vector - "Testvector"

21 begin
Data: vector pattern-true,pattern-false vector<vector> testvectortrue, testvectorfalse int

parent

22 resetstate←− resetstateo f SGshortest_path(State graph SG)foreach each edge ei in

STG g1(V,E)do

23 foreacheach edge eis in graph sg1(Vs,Es)do

24 if source vertex of ei = name of the edge eisthen

25 foreachvertex usg in graph sg1 do

26 if (usg = source of eis) & (out-bits flip)then

27 foreachvertex ‘usg2 in succ. list of usgdo

28 if outbit of usg2 6= usgthen

29 usg1=usg2 exit

30 end

31 end

32 if no usg1 then

33 “‘No pattern!”

34 end

35 end

36 else

37 foreachvertex V p in pred. list of usgdo

38 repeat

39 pattern.push_back(V p)

40 until V p = reset_state;

41 pattern.push_back(reset_state) testvectortrue.push_back(pattern)

pattern.clear

42 end

43 end

44 if (usg = target of eis) & (out-bits flip)then

45 Same steps as line 9 to 17

46 end

47 else

48 Same steps as lines 20-27 test stored in testvectorfalse

49 end

50 end

51 end

52 end

53 end

54 return testvector = testvectortrue + testvectorfalse;

55 end

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 214

(a) abc 000 (b) abc 010

(c) abc 100 (d) abc 110

(e) abc 001 (f) abc 011

(g) abc 101 (h) abc 111

Figure 9.10: Eight different transitions in the transistor level Symmetric C-element design shown

in (a), (b), (c), (d), (e), (f), (g), and (h) for values of abc’ = 000,010,100,110,001,011,101,111

respectively.

Chapter 9. ATRANTE - Transistor Level Test Generation for Asynchronous Circuits 215

(a) abc 000 (b) abc 010

(c) abc 100 (d) abc 110

(e) abc 001 (f) abc 011

(g) abc 101 (h) abc 111

Figure 9.11: Eight different transitions in the transistor-level symmetric C-element design

with transistor p3 stuck-on shown in (a), (b),(c),(d),(e),(f),(g), and (h) for values of abc’ =

000,010,100,110,001,011,101,111 respectively.

Chapter 10

Conclusion

10.1 Summary

This thesis has explored the possibility of generating good test patterns to test the asynchronous

circuits with higher fault coverage and optimum area overhead. Four different methods were

introduced in this thesis each of them exploiting the circuit structure of the asynchronous cir-

cuits, models and algorithms from graph theory and the currently available industrial tool for

synchronous circuits to develop robust test generation methods. A briefsummary of the thesis

is presented below.

A detailed background on Asynchronous circuit design and testing challenges in the asyn-

chronous paradigm was provided inChapter 2. The chapter further covered the topics on

testing (especially ATPG and scan design) with details on full scan and partial scan design.

Several ATPG methods were described followed by the introduction of several fault models.

Chapter 3 covered the literature review over the related works involving the design for testa-

bility (DFT) and test generation of asynchronous circuits. The literature review in this chapter

included the topics: 1) Design for test (DFT) for asynchronous circuits, 2) ATPG methods for

asynchronous circuits, 3) Self checking designs of asynchronous circuits, 4) Testable asyn-

chronous circuit design, 5)Test Generation at defect/transistor level,and 6) Delay fault testing

of asynchronous circuits.

Chapter 4 carried out a comparison study on two automatic test pattern generation methods.

Background on the State Transition Graph (STG) based automatic test pattern generation was

described. The test pattern generation based on the scan insertion technique are introduced.

Then a comparison of test generated by these two approaches for a number of small bench-

marks are presented. The chapter was concluded by stating the drawbacks and improvements

to be incorporated in the proposed test methods.

216

Chapter 10. Conclusion 217

ABALLAST method was introduced inChapter 5. The chapter presented detailed background

on the balanced structures which was used in the BALLAST method. The test methodology

proposed applied the balanced structures in the asynchronous circuit context and effective test

pattern generation method was developed. The algorithms involved in this methodwere briefed

in detail. This method used the "check" and the "balance" routine used in BALLAST method

to check and create the balanced structure of the asynchronous netlists.A new cyclic to acyclic

conversion algorithm proposed forms the main contribution of this method.

AGLOB Method was introduced inChapter 6. This chapter introduced two different meth-

ods of partial scan selection for asynchronous circuits namely Aglob1 andAglob2. The cyclic

to acyclic circuit conversion technique was also used here to develop the test patterns for the

asynchronous circuits. Global loops present in the asynchronous circuits e broken to create

an equivalent asynchronous circuit that can provide higher fault coverage. Area overhead was

reduced considerably in this method.

Chapter 7 introduces the method based on Set Covering Problem. Background on Set Cov-

ering Problem and cycle enumeration methods were provided. The method ofweighted set

covering problem to find the minimum set cover was chosen as it had reported good perfor-

mance. This method reported good fault coverage and reduction in area overhead. A critical

analysis of impact of number of C-elements present in the benchmark and its corresponding

fault coverage was carried out. Eventhough, a concrete conclusion could not be reached on the

impact, it gave a good insight on the impact of the circuit structure and the location of memory

elements over the fault coverage of the same. Following this analysis, overall case study was

carried out finally. All the three gate level test methods of test generation were studied with

respect to fault coverage, test coverage and area overhead. Detailed results of these three meth-

ods were analyzed.

In Chapter 8 a high level extraction method for asynchronous circuits was constructed. This

method was based on partitioning all the memory elements into registers and combinational

gates in to combinational cloud. Several asynchronous benchmarks were applied to this method

to extract their corresponding high level representation. These high level representations can

be used to process the design at high level for test pattern generation. This will considerably

increases the performance of the algorithm/test method developed on top of these extracted

views.

Chapter 9 introduced the method ATRANTE, a transistor level test generation method. This

chapter provided further details justifying the need for transistor level test generation in the

introduction. Then the test methodology for this method was briefed. The pruning space for

the test pattern generation and fault list generation was the State Transition Graph (STG) rather

than the circuit netlist. The fault model used in this method of test generation was a model

Chapter 10. Conclusion 218

different from conventional circuit oriented models (ex.stuck-at model).The new fault model

is called transition fault model which was modelled over the STG specification ofthe circuits.

This method provided additional fault coverage for the faults at transistorlevel compared to the

other test generation methods that used the same STG based pruning space. The fault coverage

was obtained by mapping the transition fault model to the gate level and transistor level faults

in the original circuit.

10.2 Future Works

Following future avenues are possible to work further and continue this thesis.

1. Delay Fault Testing

Delay fault testing of asynchronous circuits is the area which is not explored much until

now. Only few works are available in the literature for delay fault testing of asynchronous

circuits as mentioned in the chapter 3. Since the asynchronous circuits are composed of

delay components, testing the delay faults of asynchronous circuits is veryimportant.

Delay fault testing is still an active research in the synchronous design paradigm too.

Developing DFT methods and ATPG techniques for the delay faults in asynchronous

circuits will be needed in coming years as ITRS predicts more than 50% of the design in

the middle of the next decade will be DFT blocks requiring delay fault test.

2. Fault Simulator at Transistor Level

In [FS88a],[FS88b], [Cor91] inductive fault analysis for defect level faults were analysed

extensively. The fault simulator at transistor level were explored in pastdecades, but due

to the complexity of transistor level simulation and resource constraints the advancement

is slowed down. But with the current advancement in parallel programming and many-

core processing power, new simulator implemented by parallel programming techniques

can be anticipated to handle the complexity of these simulators.

3. New ATPG algorithm design

The gate level test methods proposed in this thesis (Chapter 6, Chapter 7 and Chapter

8) have incorporated synopysys’s Tetramax in the methodology for generation of test

patterns for asynchronous circuits. Hence the effectiveness of the methods is confined

within the test generation and fault reporting effectiveness of the Tetramax tool. So de-

veloping new ATPG algorithms for gate level testing of asynchronous circuit that can

compare with the algorithm of Tetramax will be a promising contribution towards robust

ATPG for asynchronous circuits. One such effort was made in Chapter9 after the lessons

learned from the Chapter 6 to Chapter 8. The new algorithm should take into account

Chapter 10. Conclusion 219

the hazards caused by the asynchronous circuits and should also be capable testing asyn-

chronous circuits that is operating in non-fundamental mode also. This waythe state of

the art for asynchronous circuit test generation can be advanced.

4. New Fault Models

Fault models currently available for gate level testing are sufficient for testing stuck-at

faults. But for defect level faults it is necessary to model new fault models. Also with

the current technology node reaching deep submicron level, it is necessary to build new

fault models to handle the defects that will be rising due to the compression in feature

size in these nodes.

5. Ant colony optimization based test generation

Bio-inspired methods for developing test generation methods for asynchronous circuits

are not explored yet up to the knowledge of the author. These algorithms are effective

for developing scan selection algorithms. For example, Ant Colony Optimizationbased

set covering problem can be formalized to develop a new partial scan selection method

for asynchronous and synchronous circuits. Some literatures are emerging in the field

of synchronous circuit testing. Hence the same idea can be passed on for asynchronous

circuit test generation.

6. Reversible Asynchronous test generation

Reversible computing is a newly emerging computing paradigm which is promising for

the beyond CMOS Era. For these types of computing architectures, asynchronous cir-

cuits based designs are best match. So developing new test generation methods for these

Reversible Asynchronous designs will be a long term investment in terms of test gener-

ation for future designs.

Thus in author’s opinion, the basics of test generation principles needs complete refinement

and advancement in terms of fault models, test generation, fault simulation and DFT methods

for developing successful test methods for asynchronous circuits.

10.3 Conclusion

This thesis was motivated towards developing four different test generation methodologies for

the asynchronous circuits. ABALLAST method presents a partial scan and automatic test gen-

eration methodology based on a novel adaptation of BALLAST for asynchronous circuits and

time frame unrolling. Balanced structures are used to guide the selection of thestate-holding

elements that will be scanned. Fault coverage was improved from range 16 .20 %-69.57 to

76.78 -94.37%. Three CAD tools written in C/C++ namely "Aballast","Cyclic2Acyclic" and

Chapter 10. Conclusion 220

"Blif2graph" were outcome of this work. In AGLOB two test generation algorithms((aglob1)

and(aglob2)) were proposed in this project which uses cyclic to acyclic circuit conversion,

partial scan based test generation and SCC based, graph density based memory element se-

lection as aids. The fault coverage was improved from 0 - 85% to 71 - 98 %.A CAD tool

named AGLOB12 in C++ was also an outcome of this work. For ATRANTE method, the main

motivation of developing ATPG is supplemented by transistor level test generation. Here the

Petrinet based representation of the asynchronous circuits and efficient mapping of transistor

level faults to STG based fault models were used to implement this ATPG methodology. The

test patterns generated covered the transistor level faults in addition to the gate level faults. The

CAD tool ATRANTE developed for this tool is believed to be the first asynchronous transis-

tor level test generator. ASCP is a test methodology developed based on agood set covering

problem solution. Future work can be focused towards developing methodologies for delay

fault testing. Developing a new fault simulator for the asynchronous circuits will aid a swift

test development research. New ATPG method for transistor/defect level test method could be

a promising track to carry on. New fault models are needed to accurately address the faults to

be tested in asynchronous circuits.

BIBLIOGRAPHY 221

Bibliography

[ABE05] A.Efthymiou, John Bainbridge, and Doug A. Edwards. Test pattern genera-
tion and partial-scan methodology for an asynchronous SoC interconnect. IEEE
Trans. VLSI Syst, 13(12):1384–1393, 2005.

[ARM] ARM. ARM.

[BA05] F.te Beest and A.Peeters. A multiplexer based test method for self-timed cir-
cuits. In In Proceedings. 11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 166–175, 2005.

[BCR96] Savita Banerjee, Srimat T. Chakradhar, and Rabindra K. Roy. Synchronous test
generation model for asynchronous circuits. InProc. International Conference
on VLSI Design, January 1996.

[BE00] A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit synthesis sys-
tem. InForum on Design Languages, September 2000.

[Bee03] Frank J. te Beest.Full scan testing of handshake circuits. PhD thesis, Twente
University, Enschede, The Netherlands, May 2003.

[BM88] Steven M. Burns and Alann J . Martin. Synthesis directed translation of con-
current programs into self-timed circuits.In J. Allen a.nd F. Leighton editors,
Proceedings of the Fifth MIT Conference on Advanced Resenrch in. VLSI,MIT
Press, pages 35–50, 1988.

[BM91] Peter A. Beerel and Teresa H.-Y. Meng. Testability of asynchronous self-timed
control circuits with delay assumptions. InProc. ACM/IEEE Design Automation
Conference, pages 446–451. IEEE Computer Society Press, June 1991.

[BPvBK03] Frank te Beest, Ad Peeters, Kees van Berkel, and Hans Kerkhoff. Synchronous
full-scan for asynchronous handshake circuits.Journal of Electronic Testing:
Theory and Applications, 19:397–406, 2003.

[BR] Girard P. Pravossoudovich S. Bernardi P. Bosio, A. and M. S.Reorda. An effi-
cient fault simulation technique for transition faults in non-scan sequential cir-
cuits. In Proceedings of the 2009 12th international Symposium on Design and
Diagnostics of Electronic Circuits&Systems (April 15 - 17, 2009). DDECS.IEEE
Computer Society, Washington, DC, pages 50–55.

[BR95] J. A. Brzozowski and K. Raahemifar. Testing C-elements is not elementary. In
Asynchronous Design Methodologies, pages 150–159. IEEE Computer Society
Press, May 1995.

[BS90] B. Berger and P.W. Shor. Approximation algorithms for the maximum acyclic
subgraph problem.In Proc. First ACM SIAM Symposium on Discrete Algorithms,
pages 236–244, 1990.

[BY07] Arjan Bink and Richard York. ARM996HS: The first licensable,clockless 32-bit
processor core.IEEE Micro, 27:58–68, March 2007.

[CA90] K. T. Cheng and V. D. Agrawal. A partial scan method for sequential circuits
with feedback.IEEE TRANSACTIONS ON COMPUTERS, 39(4):544–548, April
1990.

Bibliography 222

[CB90] Gerald Carson and Geatano Borriello. A testable CMOS asynchronous counter.
IEEE Journal of Solid-State Circuits, 25(4):952–960, August 1990.

[CG86] T.-A. Chu and L. A. Glasser. Synthesis of self-timed control circuits form graphs:
An example. InProc. International Conf. Computer Design (ICCD), pages 565–
571. IEEE Computer Society Press, 1986.

[Chu87] Tam Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic spec-
ifications. In International Conference on Computer Design, pages 220–223.
IEEE Computer Society Press, 1987.

[CKK+96a] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, andA. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis ofasyn-
chronous controllers. Technical report, Universitat Politècnica de Catalunya,
1996.

[CKK+96b] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexandre Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. InXI Conference on Design of Inte-
grated Circuits and Systems, Barcelona, November 1996.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis ofasyn-
chronous controllers.IEICE Transactions on Information and Systems, E80-
D(3):315–325, March 1997.

[Cor91] F. Corsi. Inductive fault analysis revisited [integrated circuits]. IEE Proceedings
G Circuits, Devices and Systems, 138(2):253–263, April 1991.

[DGY90] Ilana David, Ran Ginosar, and Michael Yoeli. Self-timed is self-diagnostic. Tech-
nical Report EE PUB No. 758, Department of Electrical Engineering, Technion,
November 1990.

[EA00] E.Marchiori and A.Steenbeek. An evolutionary algorithm for large scale set cov-
ering problems with application to airline crew scheduling.Real World Applica-
tions of Evolutionary Computing. Springer-Verlag, LNCS 1083, pages 367–381,
2000.

[Edw03] S. A. Edwards. Making cyclic circuits acyclic. InProc. Design Automation
Conference, pages 159–162, 2–6 June 2003.

[Eic65] E. B. Eichelberger. Hazard detection in combinational and sequential switching
circuits. IBM Journal of Research and Development, 9:90–99, March 1965.

[Ela] Elastix. Elastix corporation.

[EOL02] S-H.Kim E. Oh and D.-I. Lee. High level test generation for asynchronous cir-
cuits using signal transition graphs.Journal of the Korean Physical Society,
40-1:193–198, 2002.

[E.P97] E.Paster. Structural methods for synthesis of asynchronous circuits from Signal
Transistion Graphs.Thesis: Universitat Polytecnica de Catalyuna, 1997.

[ES93] X.Lin Eades, P. and W.F. Smyth. A fast and effective heuristic for feedbac arc
set problem.In Proc. Letter, 47:319–323, 1993.

Bibliography 223

[ES95] Kent L. Einspahr and Sharad C. Seth. A switch-level test generation system for
synchronous and asynchronous circuits.Journal of Electronic Testing: Theory
and Applications, 6(1):59–73, February 1995.

[FMHG05a] Xinyue Fan, W. Moore, C. Hora, and G. Gronthoud. A novel stuck-at based
method for transistor stuck-open fault diagnosis. pages 9 pp. –386, nov. 2005.

[FMHG05b] Xinyue Fan, W. Moore, C. Hora, and G. Gronthoud. A novel stuck-at based
method for transistor stuck-open fault diagnosis. InTest Conference, 2005. Pro-
ceedings. ITC 2005. IEEE International, pages 9 pp. –386, 2005.

[FS88a] F. J. Ferguson and J. P. Shen. A CMOS fault extractor for inductive fault analysis.
7(11):1181–1194, Nov. 1988.

[FS88b] F. J. Ferguson and J. P. Shen. Extraction and simulation of realistic CMOS faults
using inductive fault analysis. InProc. ’New Frontiers in Testing’. International
Test Conference, pages 475–484, 12–14 Sept. 1988.

[Fuj85] H. Fujiwara. Fan: A fanout-oriented test pattern generation algorithm. Proc. of
ISCAS 85, pages 671–674, June 1985.

[GB90] R. Gupta and M. A Breuer. The ballast methodology for structured partial scan
design.IEEE Trans. Comput., 39, 4:538–544, Apr. 1990.

[Goe81] P. Goel. An implicit enumeration algorithm to generate tests for combinational
logic circuits. IEEE Transactions on Computers, 30:215–222, 1981.

[Han] HandshakeSolutions. www.handshakesolutions.com.

[HBB94] Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testing asynchronous
circuits: A survey. Technical Report TR 94-03-06, Department of Computer
Science and Engineering, University of Washington, Seattle, 1994.

[HC71] M.Y. Hsiao and D.K. Chia. Boolean difference for fault detectionin asyn-
chronous sequential machines.IEEE Transactions on Computers, 20(11):1356–
1361, 1971.

[HS89] R. V. Hudli and S. C. Seth. Testability analysis of synchronous sequential circuits
based on structural data. InProc. Meeting the Tests of Time. International Test
Conference, pages 364–372, 29–31 Aug. 1989.

[I.P94] C.Njinda I.Parulkar, M.A.Breuer. Extraction of a highlevel structural represen-
tation from circuit descriptions with applications toDFT/BIST.31st Conference
on Design Automation,, pages 345–350, June 1994.

[IRR+01] A. Ivanov, S. Rafiq, M. Renovell, F. Azais, and Y. Bertrand. On the detectability
of cmos floating gate transistor faults.Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 20(1):116 –128, jan 2001.

[JA85] S. K. Jain and V. D. Agrawal. Modeling and test generation algorithms for MOS
circuits. (5):426–433, May 1985.

[JPRS67] W. G. Bouricius J. P. Roth and P. R. Schneider. Programmed algorithms to com-
pute tests to detect and distinguish between failures in logic circuits.IEEE Trans.
On Electronic Computers, Vol. EC-16, No. 10:567–579, Oct. 1967.

Bibliography 224

[JRBD94] D. E. Long K. L. McMillan J. R. Burch, E. M. Clarke and D. L.Dill. Symbolic
model checking for sequential circuit verification.IEEE Transactions on CAD,
page 401 424, 1994.

[KA94] Prabhakar Kudva and Venkatesh Akella. Testing two-phase transition signalling
based self-timed circuits in a synthesis environment. InProceedings of the 7th
International Symposium on High-Level Synthesis, pages 104–111. IEEE Com-
puter Society Press, May 1994.

[Kar72] R.M. Karp. Reducibility among combinatorial problems.in Complexity of Com-
puter Computations (Plenum Press,New York), pages 85–103, 1972.

[KB95] Ajay Khoche and Erik Brunvand. A partial scan methodology fortesting self-
timed circuits. InProc. IEEE VLSI Test Symposium, pages 283–289, 1995.

[KF91] M. Roncken R.Saeijs K.V.Berkel, J. Kessels and F.Schalij. The VLSI program-
ming language Tangram and its translation into handshake circuits. InIn Proc
European Conference on Design Automation, pages 384–389, 1991.

[KKL +98] Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Alex Saldanha, and
Alexander Taubin. Partial-scan delay fault testing of asynchronous circuits.IEEE
Transactions on Computer-Aided Design, 17(11):1184–1199, November 1998.

[KLSV91] Kurt Keutzer, Luciano Lavagno, and Alberto Sangiovanni-Vincentelli. Synthe-
sis for testability techniques for asynchronous circuits. InProc. International
Conf. Computer-Aided Design (ICCAD), pages 326–329. IEEE Computer Soci-
ety Press, November 1991.

[Kop05] Koppad.D. Off-line testing of asynchronous circuits.VLSI Design, International
Conference on, 0:730–735, 2005.

[KP01] Joep Kessels and Ad Peeters. The Tangram framework: Asynchronous circuits
for low power. InProc. of Asia and South Pacific Design Automation Conference,
pages 255–260, February 2001.

[KSS02] Alex Kondratyev, Lief Sorensen, and Amy Streich. Testing of asynchronous
designs by inappropriate means. synchronous approach. InProc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
171–180, April 2002.

[LKL94] Luciano Lavagno, Michael Kishinevsky, and Antonio Lioy. Testing redundant
asynchronous circuits by variable phase splitting. InProc. European Design
Automation Conference (EURO-DAC), pages 328–333. IEEE Computer Society
Press, September 1994.

[LM02] J.C.-M. Li and E.J. McCluskey. Diagnosis of sequence-dependent chips. InVLSI
Test Symposium, 2002. (VTS 2002). Proceedings 20th IEEE, pages 187 – 192,
2002.

[LM05] James Chien-Mo Li and E.J. McCluskey. Diagnosis of resistive-open and stuck-
open defects in digital cmos ics.Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 24(11):1748 – 1759, nov. 2005.

[Lu95] Shih-Lien Lu. Implementation of micropipelines in enable/disable CMOS dif-
ferential logic.IEEE Transactions on VLSI Systems, 3(2):338–341, June 1995.

Bibliography 225

[Luc76] C.L. Lucchesi. A minimax equality for directed graphs.Doctoral Thesis, Uni-
versity of Waterloo,Ontario, Canada., 1976.

[LY78] C.L. Lucchesi and D.H. Younger. A minimax theorem for directed graphs.
J.London Math Soc., 217:699–374, 1978.

[MAF90] M .A .Breuer M. Abramovici and A.D .Friedman.Digtal Systems Testing and
Testable Design. computer Science Press, 1990.

[Mal87] W. Maly. Realistic fault modeling for vlsi testing. InProc. 24th Conference on
Design Automation, pages 173–180, 28–1 June 1987.

[Mal93] S. Malik. Analysis of cyclic combinational circuits. InProc. IEEE/ACM Inter-
national Conference on Computer-Aided Design ICCAD-93. Digest of Technical
Papers, pages 618–625, 7–11 Nov. 1993.

[MV00] M.L.Bushnell and V.D.Agarwal. Essentials of Electronic Testing for Digi-
tal,Memory and Mixed-Signal VLSI Circuits,Series:Frontiers in electronic test-
ing. Springer Verlag, Boston, 2000.

[Mye01] Chris Myers.Asynchronous Circuit Design. John Wiley & Sons, 2001.

[Niv04] Gabriel Nivasch. Cycle detection using a stack.Inf. Process. Lett, Elsevier North-
Holland, Inc., Amsterdam, The Netherlands, 90,3:135–140, 2004.

[NJC95] S. Nowick, N. Jha, and F.-C. Cheng. Synthesis of asynchronous circuits for
stuck-at and robust path delay fault testability. InProc. International Conference
on VLSI Design, January 1995.

[Pag95] Sandeep Pagey. Fast functional testing of delay-insensitivecircuits. InProc. of
the Asian Test Symposium, pages 375–381, 1995.

[Pet94] O. A. Petlin. Random testing of asynchronous VLSI circuits. Master’s thesis,
Department of Computer Science, University of Manchester, 1994.

[PF95a] O. A. Petlin and S. B. Furber. Designing C-elements for testability.Technical
Report UMCS-95-10-2, Department of Computer Science, University of Manch-
ester, 1995.

[PF95b] O. A. Petlin and S. B. Furber. Scan testing of asynchronous sequential circuits.
In Proc. of the Great Lakes Symposium on VLSI, pages 224–229, March 1995.

[PFRG95] O. A. Petlin, S. B. Furber, A. M. Romankevich, and V. V. Groll. Designing
asynchronous sequential circuits for random pattern testability.IEE Proceedings,
Computers and Digital Techniques, 142(4), 1995.

[PKB95] Sandeep Pagey, Ajay Khoche, and Erik Brunvand. DFT forfast testing of self-
timed control circuits. InProc. of the Asian Test Symposium, pages 382–386,
1995.

[Put70] Gianfranco R. Putzolu. A heuristic algorithm for the testing of asynchronous
circuits. IEEE Transactions on Computers, 20(6):639–647, June 1970.

[PVS92] S. Pagey, G. Venkatesh, and S. Sherlekar. Issues in faultmodeling and testing
of micropipelines. InProc. of the Asian Test Symposium, Hiroshima, Japan,
November 1992.

Bibliography 226

[RAV96] Marly Roncken, Emile Aarts, and Wim Verhaegh. Optimal scan forpipelined
testing: An asynchronous foundation. InProc. International Test Conference,
pages 215–224, October 1996.

[RB96] Marly Roncken and Erik Bruls. Test quality of asynchronous circuits: A defect-
oriented evaluation. InProc. International Test Conference, pages 205–214, Oc-
tober 1996.

[RCPP97] Oriol Roig, Jordi Cortadella, Marco A. Peña, and Enric Pastor. Automatic gener-
ation of synchronous test patterns for asynchronous circuits. InProc. ACM/IEEE
Design Automation Conference, pages 620–625, June 1997.

[RDB08] H. Rahaman, D.K. Das, and B.B. Bhattacharya. An adaptive bist design for
detecting multiple stuck-open faults in a cmos complex cell.Instrumentation
and Measurement, IEEE Transactions on, 57(12):2838 –2845, dec. 2008.

[RM00] Rochit Rajsuman and Senior Member. Iddq testing for cmos vlsi.Proceedings
of the IEEE, 88:544–566, 2000.

[Roi97] Oriol Roig. Formal Verification and Testing of Asynchronous Circuits. PhD
thesis, Univsitat Politècnia de Catalunya, May 1997.

[Ron94] Marly Roncken. Partial scan test for asynchronous circuitsillustrated on a DCC
error corrector. InProc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 247–256, November 1994.

[RT75] R.C. Read and R. E. Tarjan. Bounds on backtrack algorithms forlisting cycles,
paths, and spanning trees.Networks, 5:237–252, 1975.

[SKR00] Roncken M. Stevens K. Chaudhuri P. P. Sur-Kolay, S. andR Roy. Fsimac: a
fault simulator for asynchronous sequential circuits.In Proceedings of the 9th
Asian Test Symposium (December 04 - 06, 2000). ATS. IEEE ComputerSociety,
Washington, DC., page 114, 2000.

[Sla61] P. Slater. Inconsistencies in a schedule of paired comparisons.Biometrika,
4:303–312, 1961.

[SM74] D. H. Sawin and G. K. Maki. Asynchronous sequential machinesdesigned
for fault detection.IEEE Transactions on Computers, C-23(3):239–249, March
1974.

[SM04a] F. Shi and Y. Makris. Spin-sim: Logic and fault simulation for speed-independent
circuits.In Proceedings of the international Test Conference on international Test
Conference (October 26 - 28, 2004). ITC. IEEE Computer Society, Washington,
DC, 2004.

[SM04b] Feng Shi and Y. Makris. Spin-test: automatic test pattern generation for speed-
independent circuits. InProc. ICCAD-2004 Computer Aided Design IEEE/ACM
International Conference on, pages 903–908, 7–11 Nov. 2004.

[SO08] Kewal K. Saluja Satoshi Ohtake. A systematic scan insertion technique for asyn-
chronous on-chip interconnects.Proceedings of the 1st International Workshop
on the impact of low power design on test and reliability(LPonTR), 2008.

[SWF93] M.-D. Shieh, C.-L. Wey, and P. D. Fisher. Fault effects in asynchronous se-

Bibliography 227

quential logic circuits. IEE Proceedings, Computers and Digital Techniques,
140(6):327–332, November 1993.

[TF96] M. Teramoto and F. Fukazawa. Test-pattern generation for circuits with asyn-
chronous signals based on scan. InProc. International Test Conference, October
1996.

[THCR01] Charles E. Leiserson Thomas H. Cormen and Ronald L. Rivest. Introduction to
algorithms. MIT Press, Cambridge, MA, USA, 2001.

[Tie] Tiempo. Tiemp inc.

[Uno03] Takeaki Uno. An output linear time algorithm for enumerating chordless cycles.
92th SIGAL of Information Processing Society Japan, pages 47– 53, 2003.

[VCHS09] Julio Vazquez, Victor Champac, Chuck Hawkins, and Jaume Segura. Stuck-open
fault leakage and testing in nanometer technologies.VLSI Test Symposium, IEEE,
0:315–320, 2009.

[WA08] S.Kakarla W.K.Al-Assadi. Design for test of asynchronous nullconvention logic
(ncl) circuits. International Test Conference, pages 1–9, 2008.

[Wei72] Herbert Weinblatt. A new search algorithm for finding the simple cycles of a
finite directed graph.J. ACM, ACM Press,New York, NY, USA., 19-1:43–56,
1972.

	PhD coversheet April 2012
	Dilip-Vasudevan-PhD-Thesis-2011

