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Abstract 

To account for overdispersion in count data, that is variation in excess of that jus-

tified from the assumed model, one may consider an additional source of variation, 

by assuming that each observation, Y2 , i = 1,... , m, arises from a conditionally 

independent Poisson distribution, given its respective mean O, i = 1,... , M. 

We review various frequentist methods for the estimation of the Poisson pa-

rameters O, i = 1,... , m, which are based on the inadmissibility of the usual 

unbiased maximum likelihood estimator, in terms of the associated risk in dimen-

sions greater than two. The so called shrinkage estimators adjust the maximum 

likelihood estimates towards a fixed or data-determined point, abandoning unbi-

asedness in favour of lower risk. 

Inferences for the parameters of interest can also be drawn employing Bayesian 

methods. Conjugate models are often adopted to facilitate the computational pro-

cedure. In this thesis we assume a nonconjugate log-normal prior distribution, 

which allows for more dispersion in the Poisson means and can also accommo-

date a correlation structure. We derive two empirical Bayes estimators, which 

approximate the posterior mean. The first is based on a linear shrinkage rule, 

while the second employs a non-iterative importance sampling technique. The 

frequency properties of the two estimators in terms of average risk are assessed 

and compared to other estimating approaches proposed in the literature. 

A full hierarchical Bayes analysis is also considered, assuming both informative 

and vague prior distributions at the lower stage of the hierarchy. Some analytical 

posterior inferences, based on simple approximations are obtained. We then em-

ploy stochastic simulation techniques, suggesting two Markov chain Monte Carlo 

methods which involve the Gibbs sampler and a hybrid strategy. They rely on a 

log-normal/gamma mixture approximation to the full conditional posterior dis-

tribution of the parameters O, i = 1,... , m. The shrinkage behaviour of the 

hierarchical Bayes estimator is explored, and its average risk is examined through 

frequency simulations. Examples and applications of the considered methods are 

given throughout the thesis. 
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Chapter 1 

Introduction 

1.1 Estimation of several Poisson means 

Poisson models are widely used to describe the distribution of events occurring 

independently throughout time or space. In many situations the numbers of 

events, expressed as count data, may exhibit variation which exceeds what would 

be justified under the assumed model. To account for this overdispersion, it is 

common to assume an additional source of variation in the data, by considering 

that given a parameter O,  each observation Y follows a conditionally independent 

Poisson distribution with mean 9,  i = 1,... , m, i.e. 

md 
yiIei .- Poisson(9) 	i=1,... ,m,  

where Oi  > 0. In doing so, not only can we accommodate some of the extra- 

Poisson variation, but we may also exploit the information included in all m 

parameters to obtain better estimates for the individual means O, i = 1,. . . , in. 

The main objective of this thesis is to develop methods for deriving estimators 

of the Poisson parameters 9, i = 1,... , m, in a Bayesian framework, and investi-

gate their frequency properties under the criterion of the associated average risk. 

The latter is a measure of the discrepancy between the produced estimates and 

the true parameters, averaged over both the conditional distribution of the data 

and the prior distribution, and will be formally introduced in Chapter 3. Combin-

ing the Bayesian methodology with frequentist criteria of performance evaluation, 

can be useful when one wishes to derive good inferential procedures irrespective 

of the underlying philosophical perspective (e.g. see Carlin and Louis, 1996). The 

estimation problem is approached from both the empirical and the hierarchical 

Bayesian point of view, employing analytical approximations and Monte Carlo in-

tegration methods. We also wish to explore the behaviour of the estimators when 

information from all the m simultaneously considered parameters is combined. 



1.2 Unbiased and shrinkage estimation for the 
Poisson means 

To draw inferences about the Poisson means O2,  i = 1,... , n , one may employ 

the usual maximum likelihood (ML) method. By using the Poisson probability 

function given in Appendix A, the log-likelihood function of 92,  denoted as 

is given by 

49I2) = y2  log(92) - 02 - log(y2 !), 	i = 1,... ,rn, 	02  > 0. 

Straightforward maximisation of this log-likelihood function implies that the max-

imum likelihood estimator (MLE) of the Poisson means Oi  is simply given by 

MLE 
ei 	=Y, 	z=1,... 

This can be shown to be the uniformly minimum variance unbiased estimator 

(UMVUE) for 9. However, in estimating Oi  by y1 , one ignores the remaining 

components of the data vector y = (yi, Y2,••• , y m ) T , which can be important in 

situations where the estimation of each individual element of the parameter vector 

o = (01, 02,... , 0m)" may benefit from the information incorporated in the entire 

parameter vector. For instance, one may utilise the occurrence of a disease in 

many neighbouring geographical regions, to obtain better estimates of the number 

of incidents of the disease in a single small area (e.g. see Clayton and Kaldor, 

1987). In fact, as discussed in Chapter 2, the MLE is inadmissible under various 

loss functions when two or more conditionally independent Poisson distributions 

are involved. This means that there exists at least one estimator with smaller 

risk than the MLE. It can be shown that estimating methods which shrink the 

ML estimates y2 , i = 1,... , in, towards a point that often depends on some or all 

of the remaining components of the data vector y, can result in estimators with 

better precision, and thus superior risk properties. These so-called shrinkage 

estimators are no longer unbiased for 9,  i = 1,... , m, but they have smaller 

variance than the MLE. The mean squared error (MSE) of an estimator, i.e. its 

risk under a squared error loss function, which can be expressed as the sum of 

the variance and the bias squared, motivates the intuition behind the trade-off 

between these two characteristics of the estimator, in order to obtain estimates 

that are closer to the true value of the parameters of interest. We therefore wish 

to estimate the Poisson means 0,  i = 1,... , in, in such a manner that we can 

exploit the multiparameter nature of the problem, to derive better inferences. 
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1.3 Bayesian analysis 

According to the Bayesian approach, a prior structure is assumed for the pa-

rameters O, i = 1,. .. , m, in addition to the distributional assumption in (1.1). 

Bayesian methods naturally behave as shrinkage estimators, exploiting the re-

lation between O,  i = 1,... , m, as this is provided through the prior distribu-

tion. Inferences for the parameters of interest are based on the posterior dis-

tribution p(OIy),  or the appropriate marginal distributions, which is derived by 

suitably applying Bayes' theorem. The latter gives 

	

PAY)
= L(01y) ir(0) 	

(1.2) 

where L(9y) and ir(0) denote the likelihood and the prior distribution of the 

parameter vector 0 respectively, and f(y)  is the marginal density of the data. 

The form of the posterior distribution p(OIy)  depends on the prior assumptions 

for the parameter vector 0. Conjugate prior structures are often used, since they 

offer an analytically closed form of the posterior distribution of interest. For the 

Poisson distribution conjugacy is achieved using a gamma prior. We let Ga(a, b) 

denote the gamma distribution with mean 1  and variance, where a, b> 0. The 
b 	 b2 

probability density function of this distribution is given in Appendix A. If we 

assume that the Poisson means 0, i = 1,... , m, independently follow a Ga(a, b) 

distribution, then the conjugate Bayesian formulation can be expressed as 
md 

Yi Ioi 	Poisson(02) 	
(1.3) 

iid Oa,b .' Ga(a,b), 

for i = 1,... , m. One advantage of using this Poisson/gamma conjugate structure 

is the mathematical convenience in the derivation of the posterior distributions 

of the parameters O, i = 1,.. . , m. Bayes' formula in (1.2) implies that 

p(921y) x L(0ly) ir(0) 
oyi 
	9'e'0 

- 0a+y1 -1  —(b+1)01  e 

meaning that the posterior distribution of 0, i = 1,... , rn, is given as an updated 

Ga(a + y2 , b + 1) distribution. We can then use the latter to obtain posterior 

inferences for the Poisson means 0, i = 1,... , M. 

1.3.1 The Poisson/log-normal formulation 

In this thesis we focus on an alternative Bayesian structure. We assume that 

the Poisson parameters 0, i = 1,... , m, are independently and identically dis- 

tributed according to a log-normal distribution with parameters ji and a 2 . If we 



let the notation LN(,a, a 2 ) indicate such a log-normal distribution, with probabil-

ity density function given in Appendix A, the model can be written as 

-'7 	m 
xO 2  d Poisson(91 ) 

iid 
Ui 	LN(jt,a 2 ), 

where i = 1,... , in. Under this prior structure, the properties of conjugate 

distributions no longer apply, and therefore we have to tackle the problem of 

intractable mathematical integrations, in order to perform a Bayesian analysis. 

However, employing a log-normal prior distribution offers the advantage of more 

flexible modelling, especially when little prior information for the parameters of 

the first stage prior distribution is available. In this case, under the hierarchical 

Bayesian framework discussed later, a vague prior distribution on the first stage 

prior parameters, that is a distribution which does not favour any values of the 

parameters, would be a reasonable assumption. The gamma prior structure in 

(1.3) would generally require proper distributions on a and b (e.g. see Leonard 

and Novick, 1986, Christiansen and Morris, 1997, Daniels, 1999). On the other 

hand, the log-normal prior specification leads to proper posterior distributions, 

even under improper flat priors for the first stage parameters. 

The assumption of a log-normal prior distribution for the Poisson means 

O, i = 1,... ' M, can also be justified by the need to allow for more variation 

and possible outliers in the parameters O, i = 1,... , m, as illustrated in ear-

lier work by Gayer and O'Muircheartaigh (1987), Carlin and Gelfand (1991) and 

Tierney (1994). Moreover, by employing the log-normal prior setting, one can 

assume a correlation structure in the Poisson means, which can be accommo-

dated through the covariance matrix of the multivariate normal distribution of 

the reparametrised parameter vector y = (- y 1 , -y2 ,... 'y)", where -fi  = log(92 ), 

i = 1,... , m. An application of this use of the Poisson/log-normal model can be 

found in Clayton and Kaldor (1987) and Breslow and Clayton (1993). 

1.4 Empirical Bayes estimation 

To obtain posterior inferences for the parameters of interest, we first need to 

evaluate the unknown parameters of the prior distribution, as demonstrated in 

the case of the Poisson/gamma conjugate model, where the parameters of the 

posterior distribution were given earlier as functions of the hyperparameters in 

the updated Ga(a+y 2 , b+ 1) distribution. As discussed in Chapter 3, the posterior 

distribution of Oi  under the Poisson/log-normal structure involves the parameters 

and cr2  of the log-normal prior density, and thus these must be evaluated in 

order to be able to proceed with the posterior estimation of 9, i = 1,... , m. 

ES 



One can estimate the unknown parameters of the prior distribution, often re-

ferred to as the hyperparameters, following an empirical Bayes (EB) methodology 

(e.g. Morris, 1983a). According to this approach, the parameters of the last prior 

stage may be estimated using the observed data. Often, the method of moments 

based on the marginal density of the data, or the maximisation of the marginal 

likelihood is employed to obtain estimates of the hyperparameters. Gayer and 0'-

Muircheartaigh (1987) describe an EB analysis for a Poisson/log-normal model. 

Based on the EB approach, we obtain an estimator of the posterior mean of 

O2 i = 1,... , m, which is derived as a minimum average risk approximation to 

E(02  jy); expressed in the form of a linear shrinkage rule. We also suggest an esti-

mator which relies on an importance sampling technique. Importance sampling 

methods (e.g. Geweke, 1989), generate random variates from an approximate dis-

tribution which is easier to simulate from, in relation to the original distribution of 

interest. Then, they suitably correct the sampled output, so that the generated 

values come from the distribution under consideration. The use of the importance 

sampling estimator in the Poisson/log-normal EB analysis was motivated by the 

resemblance of the conditional posterior distribution of 0, i = 1,... , m, given 

the hyperparameters p and 2,  to a suitably tuned gamma distribution. 

1.5 Hierarchical Bayes analysis 

The EB methodology neglects the uncertainty associated with the hyperparame-

ters. Accounting for this uncertainty would be a natural result of a full Bayesian 

modelling approach, as in that case it can be expressed through the assumption 

of a so-called second stage hyperprior distribution on the parameters p and 0,2  of 

the log-normal prior. The second stage hyperprior distribution will again depend 

on some unknown parameters, and thus further hyperprior distributions can be 

assumed in a similar manner, forming a hierarchy of prior stages. The parameters 

at the lower level of the hierarchical model will either be considered known, or a 

vague prior specification may be assumed. In the hierarchical Bayesian analysis 

of the Poisson/log-normal model we consider two cases, assuming a vague prior 

setting for the hyperparameter p, and both vague and informative prior informa-

tion for the hyperparameter a 2  of the log-normal distribution. The assumption 

of vague prior distributions can reflect a realistic and objective description of 

the problem under consideration when little prior knowledge is available. For 

the variance component a 2 , vague prior information is represented through a 

flat uniform distribution U(O, oo). This improper prior provides a proper poste-

rior distribution for a2 , unlike the uniform prior over the logarithm of a 2 , that 
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is log(a2 ) 	U(—oo, oo) or equivalently 7r(o 2) x 1/a2 , which would lead to a 

nonintegrable posterior density (e.g. see Berger, 1985). A proper scaled inverse 

chi-square prior distribution could be another possibility, but the difficulty in the 

choice of its parameters in order to provide vague information makes the adop-

tion of this prior more useful in the case when a more informative distribution is 

desired. 

Under a hierarchical Bayes analysis of the Poisson/log-normal model, the pos-

terior density of the Poisson means 02 , i = 1,... , m, is not given in a known form 

and does not permit further analytical integrations for the estimation of the char-

acteristics of the posterior distribution. To overcome the problem of mathematical 

intractability we present some analytical approximations for the estimation of the 

posterior mean. 

Numerical integration techniques, such as Gaussian quadrature, have also been 

used in the past to deal with such situations. However, this approach will still be 

inadequate in high dimensionality problems. Alternatively, inferences regarding 

the posterior distribution can also be drawn with the use of simulation techniques. 

The basic idea behind simulation-based inference methods, is to obtain a sufficient 

number of values generated from the distribution under consideration, and then 

use these values appropriately to estimate characteristics of interest. For example 

one may obtain the relevant moments and percentiles by suitable averaging and 

ordering of the simulation output, or the density function itself through a density 

estimation method. However, the nonstandard form of the posterior density of 

the parameters 02, i = 1,... , m, in the hierarchical Poisson/log-normal model, 

does not allow direct simulation. In such cases, one can employ various rejection 

or importance sampling techniques to simulate from the distribution of interest. 

We investigate the possibility of adopting an importance sampling method, which 

similarly to the EB case, is based on sampling from a gamma distribution and 

attaching a suitable weight to each simulated value. The gamma density again 

serves as an approximation to the posterior distribution of -y i  = log(0), i = 

1,... ,m. 
Modern computing facilities offer an alternative tool for tackling intractable 

integrations involved in Bayesian analysis. The basic idea is to construct a 

Markov chain which has the posterior distribution of interest as its stationary 

distribution, simulate the chain until it converges to that stationary distribu-

tion, and then use an appropriate sample for Monte Carlo integration. Hence, 

in essence we iteratively simulate from distributions that eventually converge to 

the distribution under estimation. These so-called Markov chain Monte Carlo 

(MCMC) methods have become increasingly popular in recent years, especially 
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after Gelfand and Smith (1990) and Gelfand et al. (1990) illustrated their po-

tential and general applicability in Bayesian inference. For the analysis of the 

hierarchical Poisson/log-normal model we consider the Gibbs sampler, which is 

an MCMC method that iteratively simulates from the full conditional posterior 

distributions of each model parameter, given all the remaining parameters in the 

model. Nevertheless, the full conditional posterior densities of the Poisson means 

02 , i = 1,... , m, in the considered model do not correspond to any known dis-

tribution, and therefore they cannot be sampled directly. We tackle this problem 

by developing a log-normal/gamma mixture approximation to p(0 2  Ji, 
2, y) in 

such a way that it has the same first three moments as the exact distribution, 

and is based on a discretisation of the prior log-normal distribution and an en-

tropy distance minimisation method. We also suggest a hybrid MCMC algorithm, 

which corrects the mixture approximation involved in the Gibbs sampling scheme 

by incorporating a Metropolis-Hastings acceptance step in each Gibbs sampling 

iteration. 

1.6 Overview of thesis 

In Chapter 2 we review methods that have been suggested in the literature for 

the estimation of several Poisson means. We present various linear shrinkage esti-

mators, which are developed under a frequentist philosophy and are constructed 

with the objective of dominating the unbiased estimator in terms of the risk under 

a specific loss function. Then, the Bayesian approach is considered, and empirical 

Bayes methods derived as linear shrinkage rules are investigated. 

Chapter 3 begins with the introduction of the Bayesian Poisson/log-normal 

formulation, and then the posterior inference under this structure is discussed. 

We derive two approximations to the posterior mean of the parameters of inter-

est 0, i = 1, . . . , rn. The first is a linear estimator which minimises the average 

risk with respect to a summed quadratic loss function. The second is a nonlin-

ear estimator based on Monte Carlo integration through a suitable importance 

sampling technique. The implementation of both methods requires knowledge 

of the parameters of the prior LN(p, a 2  ) distribution, and therefore the EB es-

timation methodology is considered. We illustrate the methods using real data 

examples, and the shrinking behaviour of the EB estimators is explored by means 

of simulated data. We also examine the frequency properties of the EB methods, 

assessing their average risk through repeated simulations, and we compare them 

with various methods proposed in the literature. 

In Chapter 4 we present a hierarchical Poisson/log-normal model, by intro- 

12 



ducing two different structures comprising a further prior stage for the log-normal 

parameters p and cr2 . We first assume that both the hyperparameters are dis-

tributed according to independent flat uniform distributions, and then we consider 

that while p is again uniformly distributed over its range, the variance parame-

ter cr2  independently follows an informative scaled inverse chi-square hyperprior 

distribution with suitably chosen parameters. We then derive some analytical ap-

proximations for the posterior mean of the Poisson means O,  i = 1,... , in, under 

both the conjugate Poisson/gamma and the considered Poisson/log-normal for-

mulations. 

Chapter 5 contains simulation-based methods for the analysis of the hier-

archical Poisson/log-normal model. We first attempt to estimate the Poisson 

parameters, under both hyperprior settings for p and a 2 , employing a nonitera-

tive importance sampling Monte Carlo integration technique, and the reliability 

of the method is assessed. An MCMC approach is then adopted that employs 

the Gibbs sampling algorithm. We derive a log-normal/gamma approximation to 

the full conditional posterior distribution of the Poisson means 0 2 , i = 1,... , in, 

that allows direct simulation for the implementation of the Gibbs sampler. We 

also suggest drawing exact posterior inferences by using a hybrid MCMC strategy 

which combines the Gibbs sampler with a Metropolis-Hastings algorithm, and is 

based on the same mixture approximation as before. Applications of the pro-

posed methods are given, and the shrinking behaviour of the hierarchical Bayes 

estimator is empirically assessed. 

In Chapter 6 we report the results from frequency simulations, in order to 

investigate the average risk of the estimators resulting from the full hierarchical 

Bayes analysis. Finally, thê use of the developed methods in possible extensions 

to the considered models is explored and illustrated by means of relevant appli-

cations. 

13 



Chapter 2 

Shrinkage estimators of several 
Poisson means 

2.1 Introduction 

We consider the problem of the multiparameter Poisson estimation, assuming that 

given the parameters 01,02,... , 0m, the counts l'i, Y2,... , Ym , are independent 

Poisson variables with respective means 01,02,... , 0, according to model (1.1). 

The aim is to draw inferences for the means of the m conditionally independent 

Poisson distributions, 0, i = 1,... , m, simultaneously. 

The problem of the simultaneous multiparameter estimation was initially ad-

dressed in the case of normal means. Stein (1956) showed that the usual estimator 

for the mean vector parameter, that is the MLE, is inadmissible with respect to 

the squared error loss function when the number of means exceeds two. James 

and Stein (1961) provided an estimator which dominates the MLE in terms of 

mean squared error (MSE), and Stein (1973) suggested an integration by parts 

technique for obtaining estimators with improved MSE properties when compared 

to the usual estimator. Based on this result, various methods have been proposed 

for tackling the problem of the multiparameter estimation in the normal case, as 

well as for the continuous exponential family in general (e.g. Hudson, 1978). 

Returning to the Poisson case in model (1.1), the usual estimator for the 

parameter vector 0 = (01 , °2,... , is given by Y (1', Y2,... , Ym )'', that 

being the MLE and the UMVUE, as mentioned in Chapter 1. However, if our 

objective is to obtain estimators with good MSE properties, we may be prepared 

to allow for some bias in order to decrease the variance of the estimator and 

obtain smaller MSE. 

Definition 2.1. Let 0' = (01, 02,... , 0)" be an estimator of the parameter vec- 

tor 9, and L(O*,  0) denote a loss function, that is a 'cost' involved when 0 is im- 

precisely estimated by 0*.  Then, the risk R(0 4 ) associated with the loss function 
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L(O*, 9), is defined as the expected value of L(9*,  9) with respect to the conditional 

distribution of Y given 0, i.e. 

R(0*) = Ey19 {L(0* , 0)} .  

Now, if we let 

SELk= 	
(0:-0)2 

i=1 

denote a weighted summed squared error loss function for a given nonnegative 

integer value of k, when the parameter Oi  is estimated by 0', then it is obvious 

that R(9*) gives the MSE of an estimator when L(O* ,  9) SEL0 . 

Definition 2.2. An estimator 9*  of 0 is inadmissible if there exists an estimator 

0' such that 

R(0') < R(0*) 

for all the parameter vectors 0, with strict inequality for at least one value of 0. 

Peng (1975) first proved that the MLE is inadmissible with respect to the SEL 0  

loss function for the simultaneous estimation of the means of several independent 

Poisson distributions, given that the number of the means is at least equal to 

three. Hudson (1978) provides improved estimators under the same loss function 

for the multiparameter estimation for distributions in the discrete exponential 

family. Other authors (e.g. see Ghosh, Hwang and Tsui, 1983) consider different 

loss functions and construct various estimators which universally dominate the 

MLE in terms of the risk associated with the loss function under consideration. 

Also, Efron and Morris (1973), Leonard (1976), Albert (1981) and others, have 

proposed estimators for which the improvement in comparison to the MLE over 

the entire parameter space cannot be proven theoretically. These authors argue 

that such an improvement is of no practical use, since the statistician will normally 

be interested in a certain region within which the parameter 0 is likely to lie. 

The estimators considered in this chapter can take the general form 

ö(Y)=Y+g(Y) 	 (2.1) 

with 5(Y) = {5 1 (Y), ö2 (Y),... , öm (Y)} T , and g(Y) = {g 1 (Y), g2(Y),... , g (Y)}T 

being a function to be specified later. They are known as shrinkage estimators 

since, depending on the nature of the function g(Y), they shrink the usual es-

timate Y towards a fixed or data-determined point. Various suggestions for the 

point of shrinkage include zero, the smallest observation of the data, the sample 
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mean, the geometric mean, the median, an arbitrary prior guess etc. Clearly, 

when g(Y) 0, any estimator given by (2.1) is no longer an unbiased estima-

tor. By smoothing the usual estimate Y towards a fixed or data-based point we 

introduce some bias in the estimates. However, at the same time we expect the 

variance to be reduced, resulting in estimates that will have better risk prop-

erties. In essence, with shrinkage estimators the inference regarding any single 

component of the parameter vector 0 is based on adjusting the corresponding 

component of the unbiased estimator Y, using information contained in the en-

tire vector 0 or Y. Also, by summing over the 0 components in the loss function, 

e.g. by employing a loss structure of the form SEL k  = >1{(Y) - 0, 12/0~ ' for 

a nonnegative integer k, we exploit the strength in all the elements of 0 as far 

as the risk evaluation is concerned. This offers an intuitive explanation to the 

fact that in multiparameter estimation we can improve over the risk properties 

of the MLE, although the latter is admissible when only one parameter is to be 

estimated (e.g. see Hodges and Lehmann, 1951). 

2.1.1 Inadmissibility of the MLE 

The possibility of improving upon the UMVUE in terms of risk in the problem 

of the simultaneous estimation of several Poisson means has been investigated by 

many authors. They consider various loss functions and show that estimators with 

universally smaller risk than that of the MLE can be obtained. Peng (1975) and 

Hudson (1978) consider the squared error loss function SEL 0  = 

Clevenson and Zidek (1975) obtain improved estimators under the normalised 

loss SEL 1  = >1{o(Y) - 0} 2/0, while Tsui and Press (1982) and Ghosh, 

Hwang and Tsui (1983) employ more general loss functions of the form SEL k  = 

- 
912/0, k = 0, 1, 2, and prove the inadmissibility of the MLE. 

The derived estimators take a common similar form, but differ mainly according 

to the point towards which the smoothing is directed. Shrinkage estimators are 

expected to exhibit low risk when they shift the usual estimate towards a region 

where the true parameter is likely to lie. We can distinguish them to fixed-point 

shrinkage estimators, which shrink the MLE towards some predetermined fixed 

point, and the so-called adaptive shrinkage estimators, for which the direction of 

shrinking depends on the observed data. 

We will now demonstrate the inadmissibility of the MLE in the multiparam-

eter Poisson estimation problem, by presenting a certain class of shrinkage rules 

that universally dominates this estimator under the summed squared error loss 

function SEL 0 . The arguments here correspond to a method resulting in fixed-

point estimators. 
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We let Y = (Y1 , Y2 , ... , YTh) ''  be the vector of rn conditionally independent 

Poisson random variables, given their respective means 91, 02,... , °m- We con-

sider estimators of the form given in (2.1), that is 5(Y) = Y + g(Y), where 

g(Y) = 191(Y),92(Y),... g(y)}T, 	 (2.2) 

with gj (Y), i = 1,... , m, being real-valued functions such that 

g2 (y)=O, 	if 	yO 
(2.3) 

Eg(Y) <00. 

	

Then, under the squared error loss function SEL 0  = 	1{S(Y) - 912, the 

difference in risk between the MLE and 6(Y) is given by 

AR = R(Y) - R{6(Y)} 
M 	 in 

= E10  {(1 - 9)2} - E19 	{Yj  + g(Y) - 0}2] 

= E 19 {(Y)}, 	 (2.4) 

where 

MM 

(Y) 
= 	

- 9)2 - 

	
{IY + g(Y) - 9}2 

Expanding the squares in the previous expression, we can write 

m 	 m 

= —2 	{}'g(Y) - g2 (Y)9} - 	{g(Y)} 2 . 	(2.5) 

The following lemma will allow us to eliminate the parameter Oi  from (2.5) when 

we take the expectation of i(Y) with respect to the conditional distribution of Y 

given 0. It is the discrete equivalent of Stein's integration by parts result (Stein, 

1973). 

Lemma 2.1. Let Y = (Y 1 , Y2,... , Ym )T, be a vector consisting of independent 

Poisson random variables with means 01,02,... , 0m, and g(•) be a real-valued 

function such that g(y) = 0 if y 0 and Eg(y) I < oo. We also let e2  denote the 

rn-dimensional vector having the i-th coordinate equal to one and all the others 

equal to zero. Then 

E{1 g(Y - e)} = E{g(Y) 0}. 	 (2.6) 
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Proof. We can write 

E{ g(Yi )} 

E {}' g(Y - e)} = E {Y g(1 - 1)} 
	

(2.7) 

E{Y g(ym )} 

We now notice that 

	

E {Y2  g()} = E() E{ g(1')} = 9 	 for 

When i = j we have 

00 	e0O 
E{Y1g(Yj-1)}=yg(y-1) y2! 

yi =o 
00 	 -oieyi 

=0+g(y-1) 
(:-)! 

00 	 _0y 
= 	9j g(yj) 

e 
yl 

yi =o 

= E {O g(Yj)} = Gi Eg(Y). 

Using (2.8) and (2.9), it is obvious that (2.7) can be written as 

Oi  Eg(Yi) 

E {} g(Y - e)} = Oi Eg(Y) = E {g(Y) O}. 

~Oj Eg(Y) 

LEI 

Returning to the difference in risk between the MLE and ö(Y), we notice that 

using the result (2.6), Equations (2.4) and(2.5) give 

AR = E1 9{(Y)} = —2 E19 {D(Y)}, 	 (2.10) 

with D(Y) given as 

(Y) = 	Yj  {g(Y) - g(Y - e)} + 

= ly  

	

i Lg1 (Y)} + 	>{gj(y)}2, 	 (2.11) 

i54 j (2.8) 

(2.9) 

I1z 



where for a function f(.) and a vector X we let z. 2 f(X) denote the difference 

f(X) - f(X - es ). 

Clearly, for the shrinkage estimator 5(Y) to dominate the MLE we need the 

difference in risk given in (2.10) to be nonnegative for all Y and positive for some 

Y. This follows if 

D(Y) 0 	for all 	Y, 	 (2.12) 

with strict inequality for some Y. This is true for estimators shrinking Y towards 

a vector A = (), '\ 2,..• , A,,, )T'  for which the solution to the difference inequality 

(2.12) is of the form 

g(Y)- C(Y) Hi  (Yi )  
- 	D(Y) 

(2.13) 

where C(Y) > 0, D(Y) = r=1 d3 (}) with d() being a nonnegative function 

of }',, and Hi  has the form 

H(Y) = h(1') - h(\) 

where 

Yi 

h(Y) 
j= 1  

The following theorem is similar to one given in Hwang (1982) and provides 

a nonpositive upper bound for D(Y). The proof is given in Appendix B. 

Theorem 2.1. Under the assumptions given in Appendix B, the vector g(Y) = 

191(Y),92(Y),... ,g(Y)}T  with g2 (Y) given by (2.13), satisfies (2.12), where 

for all Y, C(Y) is such that 

- 1) AC(Y) > 0, 	 (2.14) 

and 0 < C(Y) < K'{N(Y) - 01, (2.15) 

where N(Y) is the number of Y 3 , j = 1,... , m, that exceed A i  and {}+ denotes the 

positive part function. Furthermore, the difference O(Y) satisfies the inequality 

	

_C(Y) {N(Y) - 0 - K C(Y)I+ 	
(2.16) 

D(Y) 

with the strict inequality holding for the vectors Y satisfying 

C(Y) H(Y 2  - 1) Ad(') > 0 	for at least two i. 	(2.17) 
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Theorem 2.1 shows that a certain class of estimators that dominate the MLE 

in terms of risk under the squared error loss function SEL 0  = - 

0,12 can be found. It can be extended to the case where the more general loss 

function SEL k  = for integer k, is considered (Hwang, 1982). 

The exact form of the estimators is determined by the form of the functions 

C(Y), H 2 (Y) and D(Y), subject to the conditions (2.14) and (2.15) and the 

assumptions stated in Appendix B. We notice that the improvement over the 

MLE has an upper bound, given in (2.16), which depends on the functions C(Y) 

and D(Y) that form the estimator. For instance, a small D(Y) would be desirable 

to obtain greater improvement in risk compared to the usual estimator. Universal 

dominance of shrinkage estimators over the MLE under other loss functions can 

also be shown. In the subsequent sections we present a brief review of some 

methods that have appeared in the literature for the simultaneous estimation of 

several independent Poisson means. 

2.2 Linear shrinkage estimators 

We will now describe some estimators having the form (2.1) with the components 

of the vector g(Y) being of the type given in (2.13). We first introduce some 

general notation that will be used to present the various methods. 

Notation: 

{}+ = max{O, .} 

N(j) : number of Y, i = 1,... ,in, such that Yi > j; 

h() = 
Eyi  t 	when 	Y > 1; 

10, 	otherwise; 

Em 
h= ; 

Y( 2 ) : ith ordered observation; 

Ymed: median of data. 

The described estimators adjust the MLE towards a chosen fixed or data-

based point, that depending on the nature of the function H(}'). They are also 

constructed in such a way, that they dominate the usual estimator under a given 

loss function. 
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2.2.1 Peng estimator 

Peng (1975) showed that there exist estimators that dominate the MLE under 

SEL0  = 	 - 0, 12. He obtained the following estimator 

= Yi  - {N(0) - 21 	
h(Y) 

(2.18) 
>:: h2(Y2) 

which improves the risk of the unbiased estimator under SEL 0  when m > 3. 

His method shrinks towards zero and therefore should be expected to provide 

considerably lower risk than the MLE when the Poisson means are close to the 

origin. We notice that the transformation h(Y) = EY  corresponds to the 

square root transformation for small Y and to the logarithm transformation for 

large Y. These two transformations are widely used to approximate Poisson 

observations with normally distributed data. Therefore, considering the James 

and Stein (1961) estimator for normal data X = (X 1 , X2,... , X m )T, given as 

S(X) = X - (m_2)X 

we can clearly see the intuition behind Peng's estimator. In fact, the same in-

tuition and similarity to various Stein-type methods, is present in most of the 

estimators described in this chapter. 

Tsui (1981) and Hudson and Tsui (1981) suggested more general estimators 

that smooth towards a nonnegative prior guess A, which reduce to Peng's method 

when A = 0. 

2.2.2 Tsui estimator 

The methods given by Tsui (1981) and Hudson and Tsui (1981), mentioned in 

the preceding subsection, require that some prior guess of the true Poisson means 

can be obtained. However, for the case that such prior knowledge is not available, 

Tsui (1981) derived a shrinkage rule similar to that of Peng, which adjusts the 

data towards the direction of the minimum observation. The estimator is given 

by 

 

- {N(Y) - 2}+  
hy(l)(Yi) 	

(2.19) 
h 1) () 

where 

i+V L..'') j=2 	Y(i)+j' hy(1)(Yi) = 
if 	1'>Y(l)+l 

otherwise. 

This estimator dominates the MLE under SEL 0  when the number of Poisson 

means exceeds three. 
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2.2.3 Ghosh, Hwang and Tsui estimators 

Ghosh, Hwang and Tsui (1983) obtained several estimators which are constructed 

Z 16 under specific forms of the more general weighted loss function SELk 
012 /0 ,  with k being a nonnegative integer, and shrink to possibly different di-

rections. Under the squared error loss SEL 0  they suggest using 

	

5GHT1 ' =  Yi  - r N  r \ 
- 	

h(Y2 ) - h(Y( l)) 

	

Y(l)) 	
Ei= 1 Jh(Yi ) - h(Y( i))}{h(Y +1) - h(Y( l))} 

(2.20) 

which pools the data towards the minimum observation and dominates the MLE 

for m > 4. This method is similar to Tsui's estimator in (2.19). 

When the normalised squared error loss function SEL 1  = 

is considered, Ghosh, Hwang and Tsui (1983) propose the estimator 

6? 
HT2I  \ 

 - 

y

-   

I (  (1))  -  1 1 +  M 
Yi-Y(l)-1 

- Y( i)} - 1 

which dominates the MLE when three or more Poisson means are to be estimated. 

The shrinkage of rule (2.21) is again towards the minimum observation in the data. 

However, it can be easily modified to smooth towards any ordered observation 

according to a more general result given by the same authors. 

All the estimators presented until now adjust the MLE by shrinking towards 

zero or the first ordered observation. Despite the fact that they all dominate the 

usual estimator with respect to some specific loss function, the relative savings 

in risk are not expected to be considerable when the true means are large. To 

account for such situations, Ghosh, Hwang and Tsui (1983) consider an estimator 

that shrinks the MLE towards the median of the data, given by 

	

U
£

jG 
HT3IY\ -

_ 
	h(Yi) - h(Ymed) 

	

T
i 	IV/med)hJ+ 

 
v-tm dlv 
L_1i=i -i'i 

where 

	

d.(Y) 
- J{h(Y2) - h(Ymed)}2  +.1  {3h(Y med) - 2 1+ , 	if Y <med 

	

2 2 

- l{h(Yz) - h(Ymed )} {h(Y + 1) - h(Ymed)}, 	if Y ~! Ymed. 

This rule has universally smaller risk than the usual UMVUE estimator under 

SEL0  when m > 6. 

The same authors propose another method that smoothes towards some cen-

tral point of the data. We let Nh(h) denote the number of i for which h(Y1 ) > h. 
Then, the estimator 

h(1')—h 
(2.23) 8HT4 (y) = Yi - {Nh (h) - 2}+

>1{h() - h}2 
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shrinks the MLE towards h = h(Y3 )/m. But, for large 1's, h(Y3 ) = log(), 

and therefore h approximates the geometric mean of the data. Thus, estima-

tor (2.23) tends towards the geometric mean when the observations are large. 

However, the dominance of this method over the MLE has only been shown em-

pirically. 

2.2.4 Hudson estimator 

Hudson (1985) presents a method that is similar to estimator (2.23) in shrinking 

towards a value close to the geometric mean of the data. He shows that the 

estimator given by 

= 	
- {N(0)— 3} + 	 if 1' + 0.56> 

	

10.56 {exp(h) - 1}, 	 otherwise 	
(2.24) 

approximately dominates the usual estimator Y for large m under the squared 

error loss SEL 0 . We may also view the estimator (2.24) as a rule smoothing 

towards the fitted values of a reduced log-linear model. The transformation 

h(Y) = , if Y ~: 1, and h(0) = 0, can be approximated by the log-

like transformation log (6),  and therefore under this transformation of the 

data we have a form of a log-linear model. In that case, estimator (2.24) smoothes 

the transformed data values h() towards the fitted values h of an exchangeable 

model of a log-linear form. The condition in (2.24) ensures that the shrinkage 

does not exceed the fitted value. 

2.2.5 Clevenson and Zidek estimator 

Clevenson and Zidek (1975) developed estimators that dominate the MLE under 

the normalised squared error loss function SEL 1  = 1 {8(Y) - 9i } 2 /0. They 

show that the estimator 

5CZ(y)y 
	(/3+rn-1)Yi 	

(2.25) 

with 0 < ,8 < m - 1, outperforms Y in terms of risk under SEL 1  when m > 2. 

In the special case where 8 = 1, (2.25) is the same as one of the estimators 

proposed by Tsui and Press (1982). This method shrinks towards the origin 

and should therefore be expected to perform well when the Poisson means  Oi  

are small. Moreover, we notice that in the Clevenson and Zidek estimator, with 

0 = 1, the function D(Y) in (2.16) is given by D(Y) = Y +rn, whereas for 

the estimator 69HT2(y) in (2.21), which is also developed under SEL 1 , D(Y) is 
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equal to 	{Y - 	- 1. This implies that the latter method will produce 

greater relative savings in risk when the Poisson means are large but close to each 

other. 

2.2.6 Tsui and Press estimator 

Until now we have described improved estimators under the loss functions SEL 0  

and SEL 1 . The former is widely used in statistical decision making problems, 

whereas the latter may be useful when poor estimation for very small O i  is highly 

undesirable. Another intuitive reason for choosing the normalised squared error 

loss function SEL 1 , is that in the case of the simultaneous estimation of m inde-

pendent normal means, using the random variables X 2  N(p 1 , afl, i = 12... 7M) 

the loss function E1 (p - f)2/a, would seem a natural choice. However, if 

the inference is focused on the variance parameters o, a reasonable loss function 

could be 

Then, for the Poisson case one could consider the loss function SEL2 = Eil {ö (Y) - 

021/0 for the parameter 0, which also gives the variance of the Poisson distri-

bution. Tsui and Press (1982) show that under this weighted squared error loss 

function, the estimator 

Y2 (Y2 -1) 
(2.26) 6(Y)=-2(m-1) 

j=l(Yj 	(Yj 	(Yi 
j0i 

dominates the MLE when m > 2. Their method adjusts the usual estimator 

towards zero. 

2.3 Bayesian approach to shrinkage estimation 

In Section 2.2 we did not assume any prior knowledge on the Poisson means O. 

Let us now consider a general situation where given the parameters Oi, 92,... 

the random variables Yi , Y2,... , Ym , independently follow a sampling distribu-

tion with mean Oi  and variance V1 (91 ), for i = 1,... , m. We further assume 

that the parameters Oi  have independent prior distributions with mean M1  and 

variance A, i = 1,... , m. If we let the notation Y 's-' [E(Y), var(Y)] indicate 

that the random variable Y has mean E(Y) and variance var(Y), with no further 

assumptions for its distribution, we can write 

YjI 9 	[9, V1 (92 )] 	 (2.27) 

[Mi , A 2 ], 	 (2.28) 
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for i = 1,... , in. We also let G 1  denote the prior expectation of the variance of 

Y2  given 0, that is 

Gi  = Eo{var(l9)} = E 0 {V2 (9)}. 

Then, Ericson (1969) and Goldstein (1975) show that if the conditional posterior 

expectation of 92  can be written in the linear form 

E(92 1y) = aY2  + b, 	 (2.29) 

then 

, 

a = AA+G 	and 	b=(l—a)M2 , 	 ( 2.30) 

implying that the posterior mean is a shrinkage estimator for 9, adjusting the 

MLE towards the prior mean M2  according to a weight given by (1 - a), which is 

inversely proportional to the prior variance A 2 . An exact linear form (2.29) can 

be assumed for the posterior mean, as long as the prior distribution of 02  is the 

conjugate with respect to the conditional distribution of Y i  given 9. 

2.3.1 Empirical Bayes 

The quantities a and b in the linear estimator (2.29) are given as functions of the 

moments of the prior distribution of the Poisson means 0,  i = 1,... , M. In order 

to be able to use the estimator (2.29), the normally unknown moments M2 , A 2  

and G2  need to be evaluated. Several authors suggest to estimate them using the 

marginal distribution of the data, adopting an EB approach. 

Efron and Morris type estimators 

Under the general distributional assumptions (2.27) and (2.28), Efron and Morris 

(1973) suggest the linear shrinkage estimator 

82 (Y) = (1 - CEM) Y + GEM M, 	 (2.31) 

which smoothes the usual estimate Y1  of the parameter Oi  towards its prior mean 

M2  with a weight equal to 

CEM = A 2  + G 
 

Gi 

This means that, according to (2.29) and (2.30), the estimator proposed by Efron 

and Morris is the posterior mean of 0, whenever the later can take the linear form 

(2.29). Efron and Morris (1973) show that the rule given in (2.31) dominates the 
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MLE under the squared error loss SEL 0  asymptotically, that is when m —+ 00. 

However, it is expected to provide considerable improvement in risk when the 

parameter 0 lies in a region close to its prior mean. The authors suggest an EB 

solution when M2  and GEM  are unknown. 

More specifically, Leonard (1976) assumes a Poisson(0 2 ) distribution in (2.27) 

and tackles the problem of the simultaneous estimation of several Poisson means 

from a Bayesian perspective. He derives the estimator 

= (1 — CL) Y + CL Y 	 (2.32) 

where the shrinkage proportion CL is obtained in a way such that it minimises 

the risk of the estimator (2.32) under the squared error loss function SEL 0 , and 

is estimated from the data as 

CL= min l 	.,I ts2' 	
(2.33) 

where 2  denotes the sample variance, that is s2  = >i1 (Yj—Y) 2 /(m-1). Clearly, 

this EB rule shrinks the usual estimate Yj  towards, but not beyond, the sample 

mean Y of the data. We notice here that the risk of the MLE under the squared 

error loss SEL0  is given by 

R(Y) = E10  {(1i — 9)2} 

	

M 	 m 

= 	vary1o() = 

Leonard (1976) shows that in the limit m —p 00, the risk of the estimator (2.32) 

with respect to SEL 0  is approximately given by 

I S(0) 1 
S(0)+OJ iml 

where 0 = 	92 /m and S(0) = 	) 2 /(m - 1). Thus, the above 

expression means that as m approaches infinity, the risk of Leonard's estimator 

S(Y) is smaller than that of the MLE by an approximate multiplicative factor 
S(0) of S(8)+ 
For the same problem, Morris (1983b) suggests an EB method which is similar 

to Leonard's estimator in (2.32), with a slight modification for the shrinking 

weight. His estimator is given as 

= (1— CM)  Y + CM Y 	 (2.34) 



with 

CM= 
rn-3 	Y 

rn— i (82 _Y)++Y 
(2.35) 

and s2  as for (2.33). In fact, the second part in the right hand side of (2.35) is 

the same as the shrinkage proportion of CL in (2.33). However, the multiplicative 

adjustment serves as a correction to the fact that EB estimation ignores 

the variation in the parameters that are estimated from the data, and therefore 

results in more radical shrinking. With the same objective, Kass and Steffey 

(1989) suggest Laplacian approximations leading to estimates for the posterior 

variance of the Poisson means which account for the uncertainty involved with 

the hyperparameters. 

Albert type estimators 

Albert (1981) considers a conjugate Poisson/Gamma situation and derives a 

shrinkage estimator that smoothes towards the prior means of the Poisson pa-

rameters. His estimator is similar to the posterior mean, which in this case takes 

the linear form (2.29), and therefore improves significantly over the MLE in the 

region of the prior mean. Furthermore, this method performs better than the pos-

terior mean when the prior information is misleading, by restricting the amount 

of shrinking in this case. 

When the sampling distribution (2.27) is Poison(9j, and the prior distribu-

tion of O, i = 1,... , rn, in (2.28) is assumed to be gamma with parameters c 

and Pi  respectively, Albert's estimator takes a form which is similar to the Efron 

and Morris type, and is given as 

52(Y)C A )Yj +CA  M2 , 

where Mi  is the prior expectation ' and CA is the quantity minimising the risk 
Pi 

of 6(Y) under SEL 0 , with the involved unknown parameters 6, i = 1,... , rn, 

substituted by their MLE Y, that is 

CA= min {1CA(Y) fli  1 ,  
with 	

m 	
() 13j+l 

1- '  
CA (Y) 

= m I (Y_Mi)$J} 2 + my GO- jI1 	13j+l 

The requirement that CA does not exceed one prevents the estimator from shrink-

ing beyond the prior mean M2 , thus making the estimator behave like the Bayes 
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rule for the conjugate Poisson/Gamma model. However, the role of CA(Y) is 

to restrict the shrinkage of the EB estimator when the data are not close to the 

prior mean, leading to an estimator with better risk properties than the Bayes 

rule under prior misspecification. To use the estimator, the hyperparameters M 

and #i  can then be substituted by their method of moments estimates. However, 

assuming that the Poisson parameters 9, i = 1,... , m, come from a common 

gamma distribution with mean and variancewe obtain the EB estimator 02 

= (1 - CA) Y + CA Y 	 (2.36) 

where the shrinking coefficient is given by 

CA = 	
mY 
	 (2.37) 

(m_l)s 2 +mY 

This is the same as an estimator derived by Hudson (1974), and we will refer to 

it as the Albert type estimator. 

2.3.2 Hierarchical Bayes 

In a full Bayesian approach, the first stage hyperparameters, that is the parame-

ters of the prior distribution of 9, i = 1,... , m, are treated as random variables, 

rather than estimated from the data. Therefore, the idea of shrinkage estima-

tion can be extended to hierarchical modelling, by assuming one or more further 

levels of prior information for the hyperparameters. Albert (1985) and Leonard 

and Novick (1986) consider approximate shrinkage estimators for the conjugate 

hierarchical Poisson/Gamma model. Applications of such methods in one and 

two-way contingency tables can be also found in Albert (1988), while Chris-

tiansen and Morris (1997) suggest approximations which extend these ideas to 

hierarchical Poisson regression. Most of the recent work on the estimation for hi-

erarchical Poisson models has exploited the advance of simulation based methods 

for Bayesian inference, and mainly the Markov chain Monte Carlo methodology. 

The inference problem in the hierarchical model will be examined separately in 

subsequent chapters. 

2.4 Summary and conclusions 

In the present chapter we have reviewed some of the methods that have been 

proposed for tackling the problem of the simultaneous estimation of the means of 

several conditionally independent Poisson distributions using linear rules. 

The inadmissibility of the MLE in this situation has motivated an effort to de-

rive estimators with improved risk properties. The multiparameter nature of the 
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problem offers the possibility of exploiting information from all the involved pa-

rameters, thus leading to the so-called shrinkage linear estimators. These smooth 

the MLE towards a fixed, data-determined or prior-guess point, yielding improved 

estimates under a specific loss function. Various authors obtain such estimators 

constructing a rule that shrinks towards a chosen point in a way such that the 

resulting estimator universally dominates the MLE in terms of risk under the loss 

function of their choice. Other authors argue that one should only be interested 

in a limited region of the parameter space, that being the region within which 9 

is likely to lie, and derive their estimators accordingly. 

The' methodology reviewed in this chapter demonstrates that we can obtain 

estimators that have smaller risk than the MLE when several conditionally in-

dependent Poisson means are to be estimated simultaneously. However, in order 

to choose among the suggested methods, one should take into consideration that 

each rule is constructed so that it improves the risk of the MLE under a given 

loss function and it shrinks towards a possibly different point. The adoption 

of a unique loss function is usually a difficult task, depending on the nature of 

the problem for which a decision must be made. The choice of the direction 

of shrinkage may also require some knowledge of the distributional characteris-

tics of the problem under consideration, and can also demand appropriate use of 

prior information. In any case, if good risk properties is the primary aim, one 

should examine the performance of the considered methods in a wide range of 

the parameter space and under a variety of different loss functions. 
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Chapter 3 

Empirical Bayes estimation for a 
Poisson/log-normal model 

3.1 Introduction 

In Chapter 2 we reviewed various methods for simultaneously estimating several 

Poisson means. We initially considered, according to model (1.1), the case where 

no prior information was available and then, in (2.27) and (2.28), we assumed 

a prior mean and variance for the Poisson means 9, i = 1,... , m, without any 

further distributional assumptions. The case where a conjugate gamma prior dis-

tribution is specified was also mentioned. Conjugate models are mathematically 

tractable as they provide closed forms for the posterior densities of the parame-

ters of interest. Nevertheless, they do not always offer the possibility of flexible 

statistical modelling as they restrict the choice of prior and, in some cases, hy-

perprior specifications. In the Poisson case, assuming a conjugate gamma prior 

for the parameters 9, i = 1, ... , m, does not allow the assumption of certain 

forms of noninformative hyperpriors for the first stage parameters, as these may 

lead to improper posterior distributions. Using such noninformative priors would 

be a reasonable choice under the assumption that little on no prior knowledge is 

available as we move to lower stages of the hierarchy. 

We introduce an alternative formulation, assuming a log-normal prior distri-

bution for the Poisson means. This prior setting might also be preferred when 

we wish to allow for more dispersion in the parameters 9, i = 1,... , m, and 

possibly assume a correlation structure, which cannot be accommodated using 

the conjugate prior distribution. The Poisson/log-normal model has earlier been 

examined by Gayer and O'Muircheartaigh (1987), Carlin and Gelfand (1991), 

Tierney (1994), Christiansen and Morris (1997) and others. Clayton and Kaldor 

(1987) employ the aspect of shrinkage estimation in a Poisson/log-normal formu-

lation in a small area estimation case, and Breslow and Clayton (1993) consider 
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the same problem under the more general context of random effects models. 

3.1.1 The model formulation 

The Bayesian approach that we adopt requires that a prior stage should be 

added in model (1.1). Thus, given the parameters 01,02,... 9m we assume that 

Y1 , Y2 ,... , Yin , are independent Poisson random variables with means 0, 02,... 

respectively. Furthermore, for the specification of the prior structure, we assume 

that the logarithms of the Poisson means, that is -yi  = log(92 ), i = 1,... , m, 

are independently and normally distributed with a common mean and a com-

mon variance o-2  This is equivalent to assuming that the Poisson parameters 

0, i = 1,... , m, follow independent and identical log-normal distributions, with 

parameters M and a2 . The model can be expressed as following: 

md 

	

YiIOi 	Poisson(92) 
(3.1) 

iid 

	

ei 	LN(t,a2 ), 

where i = 1,... , m. From the theory of the log-normal distribution (e.g. Aitchi-

son and Brown, 1957) the mean and variance of 0, denoted by e and 0 respec-

tively, are given by 

= E(0) = exp (M + 012) 	
(3.2) 

= var(02) = e2 (e
or 
 - 

3.2 Posterior inference for the Poisson/log-normal 
model 

In model (3.1) the hierarchy stops at the first stage of prior specification, meaning 

that the hyperparameters p and a 2  will only enter the analysis either as known 

constants or as empirically estimated quantities. However, even when preliminary 

analyses have been conducted, the assignment of a fixed value to the hyperparam-

eters based on past experience, is not an easy task. Alternatively, their evaluation 

using the current data leads to the adoption of an EB approach, which will be 

the subject of a subsequent section. Once p and a2  have been evaluated, we can 

use the posterior distribution p(0 ly, p, a2 ) to draw inferences about the Poisson 

means Om , j = 1,... , m. Employing the parametrisation 1 = ('yr, 'Y2,• , y m ) T  

with 'yj = log(0j, we let L(7y) and 7r(-y1p,a2) denote the likelihood and the 

prior distribution of the parameter vector -y respectively. Then, according to the 
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model structure (3.1), these are given by 

L('yy) = -j , 
exp (7iYi_e 2 )} 

yi! 

and 

7r(yIi,a2) 	 exP{_cr_2(yi_it)2}]. 

Therefore, applying Bayes' theorem, the posterior density of the parameter vector 

-y is given by 

p(yIy) cc L('yy)ir('yi,a 2 ) 

cc exp [ 
	

{(- Yiyi - e) - 'or-2(7i - P)2  

where in the notation for the posterior density we suppress the dependence upon 

and 0.2  since they are treated as constants. The conditional independence of 

the 'yj, i = 1,... , m, implies that the posterior density of each component of the 

vector y can be written as 

P(7IY) cx exp{(yjyi  - &") - 1 a--2 (_Y, 	)2} 	 M. 	(3.4) 

The following definitions introduce the concepts of average risk and Bayes esti-

mator, which will be used throughout this thesis. 

Definition 3.1. Let 5(Y) denote an estimator of the parameter vector 9 and 

R{S(Y)} be the risk associated with a loss function L15(Y), 91, that is R{S(Y)} = 

E19 [L{5(Y), O}]. Also, let ,7r(.) be a prior distribution over the space of 9. Then, 

the average risk of the estimator 5(Y) with respect to ir(.), denoted by R,-{5(Y)}, 

is defined as (e.g. see Carlin and Louis, 1996) 

R,{5(Y)} = E0R{5(Y)} = E9 Ey 1 9 [L{5(Y), O}], 

where the first expectation is taken with respect to the prior distribution ir(.) of 0. 

Definition 3.2. An estimator 6(Y) of 9 is a Bayes estimator with respect to the 

prior distribution ir(0), if it minimises the average risk R,,.{S(Y)}. 

Inferences about the Poisson parameters O,  i = 1,... , m, may be based on 

the posterior density p(Oj ly), obtained with an appropriate transformation of the 

posterior density of -yj  in (3.4). We can estimate 02 , i = 1,... , in, employing the 

posterior mean, which is the Bayes estimator under the squared error loss func-

tion. According to Definition 3.2, this means that the posterior mean minimises 
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the average risk under the squared error loss function. The posterior mean of 

Oi  = 	is 

E(9y)- 
fep('yjIy)d'yj 

i=1,... ,m, 	 (3.5) 
- fi*)'ly)d-Y 

where the posterior density p(yjIy)  is given in (3.4) and the denominator provides 

for the normalising constant. 

As a result of our assumption for the prior distribution of the Poisson means, 

the posterior density p('y2Iy)  does not take a closed analytical form and the in-

tegrations needed in the computation of the posterior expectation in (3.5) do 

not have an analytical solution. This mathematical intractability is a common 

problem with Bayesian analysis when nonconjugate models are considered. A 

possible way to overcome this problem is to obtain approximations, either to the 

posterior distribution, or to the posterior mean directly. Two approximations to 

the posterior mean are derived in the remaining of this chapter. 

Other measures of location can be also used as estimates of the Poisson means 

9, i = 1,... , m. For instance, the median of the posterior distribution may be 

employed, this being the Bayes estimator under the absolute error loss func-

tion. Also, various percentiles of the posterior distribution can be used to obtain 

interval estimates. However, once again the nonclosed form of the posterior dis-

tribution implies that all these distributional characteristics cannot be derived 

analytically, nor can they be obtained with direct simulation. 

3.3 A linear approximation to the posterior mean 

In Section 2.3 the posterior mean was presented as a linear estimator of O, taking 

the form E(Oily) = aY2  + b. When the posterior mean can be given exactly in 

this form, that is when a conjugate prior distribution is assumed, the quantities 

a and b are explicitly expressed in terms of the prior moments, as given in (2.30). 

Although the Poisson/log-normal model does not allow this linear expression for 

the expectation of the posterior distribution, we can use a linear combination of 

functions of the data as an approximation. Then, the problem to be answered is 

how to determine the coefficients of such a linear estimator. 

3.3.1 General derivation of the best linear predictor 

We now describe a general derivation of a linear approximation to the posterior 

mean. Let Y = (Y1,... , Ym )T denote a vector of observable random variables 

and 9 = (Or, ... , Om ) T  the vector consisting of the parameters of interest. We 
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assume that given 0, Y has a joint distribution with population mean vector 

Ey 1 9 (Y) = p(0) and population covariance matrix cov y19 (Y) = V(0). We also 

assume a prior distribution for the parameter vector 0 and we let the prior ex-

pectation vector be E(0) = 0* and the prior covariance matrix cov(0) = A. Fur-

thermore, we denote the prior expectation vector of the population mean vector 

by E9{p(0)} = , its prior covariance matrix by cov g {ji(0)} = D and the prior 

expectation matrix of the population covariance matrix by E o {covy 1 o (Y)} = C. 

We want to derive an approximation to the posterior mean of the parameter 

vector 0, in such a way that it is the best linear predictor (BLP) for 0 in the 

sense that it is a linear function of the data and satisfies the property of minimum 

average risk. The latter implies that the BLP will be the closest linear approxi-

mation to the posterior mean in terms of expected distance from the true value 

0, with respect to both the prior and the data distribution. Suppose that 0 is a 

linear approximation to the posterior mean of 0, having the form 

0=a+AY, 

where the in x 1 vector a and the m x in matrix A are to be defined. We specify 

the summed quadratic loss function for 0, given by 

L(9,0) = (0_O)T(0_ 0). 

From Definition 3.1, the average risk is given as R,(0) = E9Ey0{L(0, 0)} = 

E0{R(0)}, where R(0) denotes the frequentist risk of 0, given in Definition 2.1. 

Under the summed quadratic loss function, R(9) is the MSE and can be written 

as 

R(0) = E19 {L(,o)} 

= Ey10{(a+AY_0)T(a+AY_0)} 
= Eyio { aT(a +AY_0)+YTAT(a +AY_0)_OT(a +AY_0)}. 

We can now use the first conditional moment of Y, that is E1 0 (Y) = IL(0), to 

obtain 

R(0) = aT{a + Ap(0) - 0} + /iT(9)ATa ± E10 (YTATAY) 

_T(0)ATO - OT {a + A(0) - 01 
= aT{a + Alt(0) - 01 - OT {a + Aii(0) - 0} 

+,.T(0)AT(a - 0) + E10 (YTATAY) 

and completing the square for {a + A li (0) - 0} we obtain 

R(0) = {a +A(0)_0}T{a +A t(0)_0} 

_,2T(0)ATAI(0) + E10 (YTATAY) 	(3.6) 

34 



Then, using that 

E19 (yyT) = covy1(Y) + Ey10(Y) E 19 (Y) 

= V(0)+ i (9),.tT(0), 

and from the properties of the trace of matrices, the expectation E19 (YT ATAY) 

in (3.6) is given by 

E10 (YTATAY) = E19 {tr (YTATAY) } = Ey19 {tr (ATAYYT) } 

= tr {ATAEyIO (yyT)} = tr {ATAV(0)  + ATAI&(0)ILT(9)} 

= tr {AV(9)AT}  + 

Therefore, the frequentist risk in (3.6) can be written as 

R(0) = {a + A /2(0) - 0}T {a + A /2(0) - 01 + tr {A V(0) AT). 

It follows that the average risk is given by 

R7 (0) = E0Ey10{L(0 7  0)} = E9 {R(0)} 

= Eo[{a + A/2(0) - 0}T {a + AIL(0) - 0}] + tr [Eo {AV(0)AT}]. 

Taking into account the prior expectations E(0) = 0, Eo{p(0)} = 1f and 

E9{V(0)} = C, the above equation gives 

aT (a + A1f - 9*) + 11*TATa  + E9 {,LT(o)ATA,2(0)} 

- E0 JILT (0)AT0} - 0*Ta - E9 JOT A,2(9)} + E0 (9T9)  + tr {ACA T}, 

and using that 

A = cov(0) = E (99T) - 

D = cove{/2(0)} = E{p(0)ILT(0)} - 

together with the trace properties, we have 

aT (a + Ap* - 9*) + /2*TATa  + tr {ATA  (D + 

- 2 tr [AE9 {12(o)OT}] - 0*Ta + tr {A + o*Tg*}  + tr {ACA T}. 

Then, completing the square for (a + AM* - 9*), we obtain 

R1 (9) = (a+ A/2* - 0*)T (a + A/2* - 9*) + /.L*TATO*  + 0*TA/2* 

+ tr [ADAT - 2A E0 {/2(Ø)OT}  +A] + tr {ACA T} 

= (a + AM* - Ø*)T (a+ A/2* - 9*) +2 tr (M*o*T  A) 

+ tr 1ADA T - 2A (G + /fO*T)  + A + ACAT} 	(37) 
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where 

G=E {,.t(0)OT}_.,fO*T 

	

= coy {/.L(0), 8T} 	 (3.8) 

Finally, (3.7) implies that the average risk is given by 

R,, (6) = (a±AIL* - 0*)T(a+Ati* - 0*) 

+tr{A+A(D+C)AT -2AG}. 	 (3.9) 

To minimise the average risk we first notice that the first term of the right hand 

side of (3.9) cannot be negative, and therefore it is minimised when it is equal to 

zero. This will give 

â = 0*_A L * . 	 ( 3.10) 

We then find A to satisfy j [tr{A + A (D + C) AT - 2A G}] = 0. Using the 

matrix differentiation properties in Appendix C, and since the matrices D, C and 

G are symmetric, we obtain 

2(D+C)A-2G=0 

=1 =(D+C)'G. 	 (3.11) 

Therefore the best linear predictor for 0 is 

	

=â+AY 	 (3.12) 

with a and A given in (3.10) and (3.11) respectively. 

3.3.2 BLP in the Poisson/log-normal case 

We will use the BLP as an estimator for the posterior mean of the parameters 

9, i = 1,... , m, in the Poisson/log-normal model. As stressed earlier, when a 

conjugate model structure is involved, the Bayes estimator under the quadratic 

loss function, that is the estimator with the smallest average risk with respect to 

the associated prior distribution, can be exactly expressed in a linear form, that 

being the posterior expectation of the parameters of interest. Therefore, when 

the nonconjugate Poisson/log-normal structure is assumed, the motivation is to 

obtain a linear approximation to the posterior mean which will again possess the 

property of minimum average risk within the class of all linear estimators of the 

same type, that is the BLP. 
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We can derive the BLP working from first principles and following the proce-

dure described in the preceding subsection. Adopting a component-wise formu-

lation, we let 9, be a linear estimator of 9,, having the form 

91 =a+AY2 . 

Then, under the summed squared error loss function 

M 

L(9,8) 	(6i - Oj) 2 

the average risk is given by 

R,(U) = E9E19  {(a + AY _ 9)2} 

Using the prior moments of Oi  given in (3.2), together with the moments of Y 

conditional on 9, i.e. 

= vary 1 e (}') = 9, 	i = I.... , m, 

we deduce that the average risk of 9,, under the summed squared error loss function 

is 

R) = 	[{a - 	- 	+ (1— A) 2  + A2 ]. 

We minimise the average risk in the above expression by setting 

and solving the equation J9 {(1 - A) 2 0 + A2 e} = 0. This will give aA 

A 
0+6 

It follows that the BLP for the Poisson means O,  i = 1,... , in, i.e. the linear 

estimator that has the smallest average risk under the summed squared error loss 

function is given as 

-BLP 
9i 	 (3.13) 

where = E(02 ) and 0 = var(02 ). 
We can also derive the BLP for the parameters 9,  i = 1,.. . , m, in the 

Poisson/log-normal model applying the general result (3.12) directly. We let e m  

denote the unit in x 1 vector, 'm  the m x m identity matrix, and diag(0) the 
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m x m matrix which has the vector 9 = (01, 02,... , Gm)" on its diagonal and zero 

elsewhere. We then notice that the specification of the Poisson/log-normal model 

in (3.1) implies that, according to the notation introduced in Subsection 3.3.1, 

the conditional mean vector and covariance matrix of Y given 9 are given as 

= Ey 1 9 (Y) = 0 

V(0) = covy 1 9 (Y) = diag(0), 

and the prior mean and covariance of the parameter vector 0 are 

9* = E(0) = eem 

A = cov(0) = øm. 

Furthermore, the expectation and the covariance of the mean vector JA(0) with 

respect to the prior distribution of 0, are given by 

= E9 {.t(0)} = E9(0) = 

D = cov 9 {(0)} = covo (0) = 01M) 

and finally, the prior expectation of the conditional covariance of vector Y given 

0, and the covariance matrix between vectors t(9) and 0, can be respectively 

expressed as 

C = Eo {covy 1 g (Y)} = E9{V(9)} = Eg {diag(0)} = 

G = coy {(o), 9T} = coy (9 0T) = cblm . 

Then, using (3.12) we obtain the BLP as 

—BLP 	 - o =a+AY 

=9* - {(D + C)'G} 1f + (D + C)'GY 

=6em -  {( q5Im  + eIm ) - ' 4)Im } 6em  + {(?51m + e1m) 1m} Y 

Y 

 + (
e )em 
+ e 

which component-wise gives the BLP for 02 in (3.13). We notice here that this 

linear estimator of the posterior mean of O i  can be written as 

BLP 
= (1 - c)1' + cE(02 ), 	 (3.14) 

where the coefficient c is given by 

E(02 ) 
C• 

var(02)+E(0) 

38 

(3.15) 



Equations (3.14) and (3.15) imply that our effort to obtain a linear estimator with 

minimum average risk, delivered a method which is the same as the conditional 

posterior mean (2.29) derived by Ericson (1969) and the Efron and Morris (1973) 

estimator in (2.31). The BLP of the Poisson means 9,, i = 1,... , m, is a shrinkage 

estimator, adjusting the usual estimate Y towards the prior mean of 0,  with a 

weight which is inversely proportional to the prior variance 5, thus reflecting 

our confidence in the prior assumptions. When the prior variance is small, the 

shrinking coefficient tends to the value one and the estimator smoothes more 

towards the prior mean . On the other hand, when our prior beliefs are rather 

vague, as this can be expressed by a large prior variance, the shrinking proportion 

tends to zero, attaching more weight to the MLE. One remaining problem with 

using the BLP to estimate the Poisson means, is the evaluation of the prior mean 

and variance of O, i = 1,... , m. We will return to this problem later in this 

chapter. 

3.4 Importance sampling approximation to the 
posterior mean 

The characteristics of a distribution which is not given in a known form can 

be estimated with the use of simulation methods. Inferences can be based on a 

sufficiently large number of values drawn from the distribution of interest. For in-

stance, suitable functions of the simulated values can be averaged to give estimates 

for the mean or the standard deviation; ordered values may be used to estimate 

various percentiles; scatter plots and other graphs can be employed to examine 

the whole distribution, etc. However, simulation methods rely on the ability to 

sample the distribution under consideration. When this distribution does not ap-

pear in a known form, direct simulation is not possible and therefore alternative 

techniques must be adopted. We will describe a method that copes with such 

situations, namely the importance sampling technique. Following the problem 

introduced in the present chapter, we first give a general presentation of how 

importance sampling may be used to estimate the posterior mean of a function 

of a parameter of interest. 

The general method 

Let g(9) be a function of a parameter 9. Here we take 9 to be a scalar, but the 

same results hold for a vector parameter. We also let (°I) denote the non- 

normalised posterior density of 9. Suppose we are interested in the posterior 
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expectation of g(0). This can be written as 

E{g(0)y} = f 
g(0)p(0y) dO 
f p(O y) dO 

fg(9)-1I(0)dO - E1 Ig(o)1ç)} 
- 	 I(0)  

- fP(°)I(o)do - E I(9) 	 I 	1(0)  J 

where I(.) denotes the so-called importance density, which is the probability den-

sity function of a distribution from which we can simulate, and the expectations in 

the last expression are taken with respect to 1(0). Then, the importance sampling 

approximation to the posterior expectation is given by 

{g(9)Iy} = 
Wi 

p - (°,Iy) where N is the number of Monte Carlo simulations, w3 - 1(0) 	= 1,... , N, 

are the so-called importance weights, and 03 , j = 1,... , N, are random variates 

simulated from the importance density 1(0). 

Under the conditions (Geweke, 1989) that the support of the importance den-

sity includes the support of the posterior density, that O, j = 1,... , N, are an 

independently and identically distributed sample from the importance density 

and that the expectation exists, the strong law of large numbers implies that 

E{g(9)y} - E{g(0)y} as N -+ 00. The choice of the importance density is 

critical to the performance of the method. In general 1(0) should be chosen to 

mimic p(Oiy)  as closely as possible, with tails that do not decay faster than those 

of the latter. We can therefore use importance sampling to estimate the posterior 

mean of a distribution, as long as we can find a suitable approximation to p(°l) 

and generate a sufficiently large number of values from this approximation. 

3.4.1 An importance sampling estimator for the Poisson/log-
normal model 

We now obtain an estimator for the Poisson means 0, i = 1,... , m, in the 

Poisson/log-normal model which approximates the posterior mean in (3.5), using 

the technique presented in the preceding paragraph. To derive the estimator, we 

first rewrite the posterior density of 'yj given in (3.4) adding y j  to the first part of 

the exponent and subtracting it from the second. This gives 

(iI) oc exp {i(Yi + 1) - 	- 01 -, bi - )
2 - 

	

oc I(7)  W(7j, 	 (3.16) 
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for i=1,... ,rn,where 

I(y) = exp {y(y  + 1) - e''} 

W(y) = exp 	 - )2 - 

	

(3.17) 

Then, if a random variable Zi  has a gamma distribution with mean and variance 

equal to y2  + 1, denoted by Ga(y1  + 1, 1), the density lr('yj) of -yj  = log(Z) is given 

by the appropriate transformation of the density of Z1 , denoted by p(Zj, that is 

I 
lr('yj ) O( p(Z2) 

dZ1 
 

cx e' exp ( - elt) 

= exp {yj(yj + 1) - e7'} 

= 

Therefore, I(-y2 ) is proportional to the probability density function of = log(Z2 ) 

where Z Ga(y2  + 1, 1). The expression for the posterior density of -Yj  was 

modified in (3.16) in order to allow for the case of zero counts, that is the case 

when y2  = 0. 

Using the above notation, the posterior mean of Oi  = e"i can be written as 

- f e' 	d7 
E(921y) 

- fp('yIy)d'y 
f e7' (I)  I(7) d72  

= f 
P('IY) I('y) d7 

- f e '7 W(-y 1 ) I('y)  d72  - E1  {&' W('yj} 

- fW(y)I('y)dy - E1 {W('y 2 )} 

The expectations in the last expression are taken with respect to the normalised 

distribution whose probability density function is proportional to I(-y). Hence, 

taking I(7) as the importance density and W(-y 2 ) as the weight function, the 

above expression leads to the importance sampling approximation to the posterior 

expectation of 02 , i = 1,... ,m, given by 

= (02 y) = 
	e7 W('y 13 ) 	

(3.18) 

with -yij  = log(Z23 ) and Z23 , j = 1,... , N, being independent random variables 

from a Ga(y2  + 1 7  1) distribution, N is the number of Monte Carlo simulations, 

and W(-y 3 ) is the importance weight given as 

W(y) = exp {- cr2('y - 	- 	 (3.19) 

for j=1,... ,N. 
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The computation of this estimator only requires the generation of a suffi-

ciently large number of independent random variates from a gamma distribution 

and therefore it provides a fairly easy implemented alternative to numerical in-

tegration. However, we notice that in order to use the importance sampling 

estimator of O, we first need to evaluate the hyperparameters p and cr2  involved 

in the importance weights (3.19). This is the same problem as evaluating the 

prior mean and variance of O i  in the estimator given in (3.14). The following 

section deals with this issue. 

3.5 Empirical Bayes estimation 

In the analysis leading to both the BLP and the importance sampling estimator of 

O, the hyperprior parameters p and 0r2 , or equivalently = E(92 ) and 5 = var(Oj, 

are treated as known constants. The hierarchical full Bayesian formulation, which 

will be presented in Chapter 4, requires that these parameters are included in the 

analysis, after some hyperprior distributions have been assigned to them. In the 

present model one could evaluate these parameters according to prior beliefs. 

However, such prior beliefs may be difficult to obtain, especially when previous 

analyses are not available, and could also be subject to criticism due to possible 

subjectivity. Alternatively, we can use the information included in the observed 

data to estimate and q,  or 1L and a2 , adopting an EB approach. 

In the EB framework we use the marginal distribution of the data to substitute 

the unknown hyperparameters either by their maximum likelihood (ML) or by 

their moments estimates. 

Method of moments estimation 

We first find the marginal mean and variance of the data. The marginal mean of 

Yi  is 

E() = E9 {E19()} = E9{9} 

= exp ( P1 + a2) = 	 (3.20) 

and the marginal variance is given by 

var(1') = E g {vary1o(Y)} + varo {Ey1o(1')} 

= E9 (0) + var0  (Of) 

=e+c5=e+e2 (ear2 	 (3.21) 
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where , > 0. If we let 9 denote the sample mean of the data and s2  the 

sample variance, i.e. s2  = - yi) 2 /(m - 1), then 6 and 0 may be estimated 

by equating the marginal moments to their sample estimates, that is solving the 

equations 

y= and s2 =+0, 

which give 

:= (s2_y), 
(3.22) 

where (•)+ 
denotes the positive part function. Solving for t and a2  we obtain 

	

i=log(g ) 	
1 

— 	62  

	

&2 log { 1 + 
	

(3.23) 
= 
	2 

Maximum Likelihood estimation 

The marginal likelihood of the data for the Poisson/log-normal model is not given 

in a closed analytical form and therefore we will assume a normal approximation 

using the marginal moments (3.20) and (3.21), i.e. we will assume that approxi- 

mately 
i=1,... ,m, 

where 

A=e+4, e, 0>0, and A>. 

Then the likelihood function, denoted here by L, is given by 

m 

L oc A -m  exp{—\' 	(y - 
i=1 

and is maximised for 

and 3=max I SYY • 

•=  

and thus 	

-91  m 	+ 

where Sy.  is the sum of squares corrected for the sample mean, i.e. S yy  = 

>i(yi 
- )2, and (.) 

denotes the positive part function. In the estimate for A 

we take the maximum of S/m and 9 following the restriction A = e + 5  ~! 6 . 

We will use the estimates obtained with the method of moments to evaluate 

the hyperparameters e and 0, or p. and a 2 , for the implementation of the BLP and 
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the importance sampling estimator respectively, thus following an EB approach. 

An EB solution for the Poisson/log-normal model is described by Gayer and 0'-

Muircheartaigh (1987) where numerical integration is employed for the estimation 

of the hyperparameters and the derivation of the posterior mean. Also, Clayton 

and Kaldor (1987) present an EB analysis for the same model using the EM 

algorithm for the hyperparameters and a multivariate normal approximation to 

the posterior distribution. The EB methodology in general is discussed in Morris 

(1983a). The Bayesian orientation of the EB approach has been criticised, since 

with the EB analysis we drop the hyperprior assumptions and instead we use the 

data to obtain information at that stage of the prior specification of the model. 

Also, by using the data to estimate the hyperparameters we underestimate the 

uncertainty associated with these parameters, which results in less variable esti-

mators. For the BLP and the importance sampling estimator this would imply 

more radical shrinking towards the prior mean and narrower Bayesian intervals. 

We finally notice that considering the method of moment estimates for and 

q5, and substituting in (3.14) and (3.15) for the BLP of O, yields 

-BLP 	f82_ 
= 	

S2 	
(3.24) 

i = 1,... , m, which is also the Leonard (1976) shrinkage estimator in (2.32). 

3.6 Example: Audit data 

We illustrate the use of the linear predictor and the importance sampling estima-

tor analysing two real data sets. In the first example the data, given in Table 3.1, 

concern the number of errors found in audit samples of 9 different accounts. The 

data set was first analysed in Matsumura and Tsui (1982). These authors con-

sider various linear shrinkage methods to estimate the mean number of auditing 

errors. 

Table 3.1: Audit data (Matsumura and Tsui, 1982). 

	

Auditing errors y 	0 	1 	2 	3 	6 

Observed frequency 	3 	2 	2 	1 	1 

In our analysis, following the distributional assumptions (3.1), given the pa-

rameters O, i = 1,... , 9, each observation is modelled as a conditionally indepen-

dent Poisson variable Y2  with corresponding means O, i = 1,... , 9, which are the 
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Table 3.2: EB estimates of the expected number of errors O, i = 1,... , 9, in the 

audit data example. 

par. y 

EB estimates 
- 	 - 

post. mean 	0 
IS 	

0 
BLP M 

 

01-03 0 0.91 0.91 0.74 0.56 

04 ,05  1 1.27 1.27 1.30 1.22 

06,07 2 1.71 1.71 1.85 1.89 

08 3 2.21 2.21 2.41 2.46 

09  6 4.06 4.06 4.07 4.56 

parameters to be estimated. We then assume that each mean Oi  independently 

follows a LN(, a2 ) distribution, or equivalently that the parameters -Yj = log(0 2 ), 

i = 1,... , 9, are independently and identically distributed as normal N(i, 0,2 ) 

random variables. 
We estimate the expected number of auditing errors applying the two methods 

developed in the preceding sections, that is the BLP in (3.13) and the importance 

sampling estimator (3.18). Here, as the prior mean and the prior variance 0, 

or equivalently the hyperparameters j.t and a2  are not known, we follow an EB 

approach for their estimation. Thus, we substitute the parameters , q, A and 

a2  involved in (3.13) and (3.18) by their method of moments estimates, given 

in (3.22) and (3.23). Using the data in Table 3.1 we obtain the sample mean 

= 1.667 and the sample variance .s2  = 3.75. Hence, we can estimate the 

prior mean as = = 1.667 and the prior variance as = 2 - = 2.083. 

Then, solving for the parameters of the log-normal distribution we calculate the 

estimates i = 0.231 and 6 2  = 0.559. The results from the implementation of 

the estimates are reported in Table 3.2. The importance sampling estimates were 

obtained with 10 5  Monte Carlo simulations. The usual ML estimates are given 

by the observed numerical values. For comparison reasons, we also report te 

estimates obtained using the EB Morris' estimator 5(Y) which was reviewed in 

Chapter 2 and is given in (2.34). Finally, we give the posterior means E(0 y), as 

these were derived with the use of numerical integration from (3.5) and employing 

the A ,  62 estimates obtained above. 

We first notice that the importance sampling estimates are identical to two 

decimal places to the posterior means, verifying that the method produces an 

excellent approximation to the exact solution. The BLP in the third column of 
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Table 3.2 shrinks the MLE towards the sample mean = 1.667 with a weight 

equal to c = = 0.444, meaning that the BLP estimates adjust the observed 

values towards the sample mean using a 44.4% proportion of the distance (y 2  - 

). As expected, Morris' ö"(Y) method shrinks less than the BLP, multiplying 

the smoothing coefficient by a factor equal to = 0.75, to account for the 

underestimation of the posterior variance occurred with EB estimation. 

It is also remarkable that although the linear predictor is constructed in a way 

such that it adjusts the MLE towards a data estimate of the prior mean, that is 

the sample mean y,  the shrinking direction of the importance sampling estimator 

is not evident. The method seems to smooth the observed values towards a central 

point in the data range, but we cannot definitely determine whether this point is 

the sample mean or not. We will return to this question with more examples in 

a subsequent section. 

3.7 Example: Oilwell discoveries data 

The oilwell discoveries data set was introduced by Clevenson and Zidek (1975), 

and refers to the number of oilwell discoveries obtained from wildcat exploration 

in Alberta, Canada, for 36 months during the period 1953-1970 (March and 

September of each year). The observations are given in Table 3.3. Again, we 

assume that each observation is an independent Poisson random variable Y con-

ditional on its respective mean O,  i = 1,... , 36, and that the Poisson means 

independently follow a LN(i, a 2 ) distribution. The data have also been analysed 

by Leonard (1976) and George, Makov and Smith (1994). 

Table 3.3: Oilwell discoveries data (Clevenson and Zidek, 1975). 

Oilwell discoveries y 	0 	1 	2 	3 	5 

Observed frequency 	19 	10 	4 	2 	1 

The expected number of discoveries 0, i = 1,... , 36, is estimated using the 

linear predictor (3.13) and the importance sampling method (3.18). Following 

the same EB approach as for the audit data example in the preceding section, 

we estimate the prior mean and the prior variance 0 using the data. For this 

data set the sample mean is 9 = 0.806 and the sample variance s2  = 1.304, 

and therefore we obtain the estimates = 9 = 0.806 and = 82  - = 0.498. 

The parameters of the LN(jt, a 2) distribution are then estimated as 	—0.501 

and 32 	0.570. Substituting these values in (3.13) and (3.18) we obtain the 
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Table 3.4: EB estimates of the expected number of discoveries 9, i = 1,... , 36, 
in the oilwell data example. 

par. y 

EB estimates 
-IS 	-BLP 

post. mean 	9 	9 A 

01-019 0 0.55 0.55 0.50 0.31 

020-029 1 0.81 0.81 0.88 0.92 

930-033 2 1.16 1.16 1.26 1.54 

0341 035 3 1.58 1.58 1.64 2.15 

036 5 2.63 2.64 2.41 3.37 

results shown in Table 3.4. Again, the importance sampling method estimates, 

derived with iO Monte Carlo simulations are compared against the EB posterior 

means calculated with numerical integration. In this data set, the large number 

of Poisson means (m = 36) implies that Morris' method (2.34), which was used 

in the audit data example, will only differ slightly from the BLP, multiplying the 

latter's shrinking proportion by a factor equal to = 0.94. Therefore, this 

method will not be included in the analysis, and instead we present the estimates 

obtained with Albert type estimator given in (2.36). 

The conclusions drawn from the estimates in Table 3.4 are similar to those 

for the audit data example. The EB importance sampling estimates show that 

we can rely on this Monte Carlo simulation technique to obtain an accurate 

and fast approximation to the posterior mean. The BLP shrinks the observed 

value y,  towards the estimated prior mean = 0.806 with a weight equal to 

c = = 0.618, reflecting a relatively strong belief in the prior specification as 

this is expressed by the = 0.498 estimate for the prior variance. On the other 

hand, the estimates produced with the Albert type method (2.36), reported in the 

last column of Table 3.4, suggest that this method yields conservative shrinkages 

compared to both the BLP and the importance sampling estimator, attaching 

less weight to the prior information, as a result of the largest observation being 

far from the estimated prior mean. 

Again, as with the audit data example, the importance sampling approxima-

tion to the posterior mean of the Poisson parameters 9, i = 1,... ,36, shrinks 

the MLE towards a central value. In the following section we consider simulated 

data sets in an effort to investigate whether this central value is the sample mean. 
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3.8 Shrinking behaviour of the EB posterior mean 

In both the audit data and the oilwell discoveries examples, the importance 

sampling approximation to the posterior mean of the Poisson parameters O, 

i = 1,... , m, appears to adjust the MLE towards a central value. The BLP and 

a large part of the EB methodology, as given by several authors and reviewed in 

Chapter 2, suggest that this value should be the sample mean. However, our ex-

perimentation with a large number of simulated data sets, showed that unlike the 

estimators proposed in the literature, the EB posterior mean, as approximated 

by the importance sampling estimator, shrinks the MLE towards a central point, 

which lies between the minimum observation and the sample mean, being close to 

the latter. In the following paragraph we consider two artificial data sets which 

illustrate this shrinkage behaviour. 

Examples: Further data 

To obtain the two data sets we first generated m independent random variables 

9, i = 1,... , m, from a log-normal LN(i, a 2 ) distribution with arbitrarily chosen 

parameters IL and a2 . Then, for each O,  an observation y2 , i = 1,... , m, was sim-

ulated independently from a Poisson(0 2 ) distribution. The number of the Poisson 

means is m = 9 and m = 15 for the first and second data set respectively. The 

data, together with the EB estimates using the importance sampling estimator 

and the BLP are given in Tables 3.5 and 3.6. 

Table 3.5: EB estimates of the Poisson parameters 9, i = 1,.. . , m, in the first 
simulated data example. The sample mean is equal to 9= 5.222 and the sample 
variance is s2  = 13.944. 

par. y 

EB estimates 
-IS 	-BLP 

01 

01  1 2.90 2.58 

02,93 2 3.35 3.21 

04  3 3.84 3.83 

05,96 5 4.93 5.08 

07  8 6.76 6.96 

08 9 7.40 7.58 

09  12 9.50 9.46 



Table 3.6: EB estimates of the Poisson parameters 0, i = 1,... , m, in the second 
simulated data example. The sample mean is equal to = 9.267 and the sample 
variance is s2  = 24.638. 

par. y 

EB estimates 
-IS 	-BLP 
9 

01,92 4 6.21 5.98 

03  5 6.72 6.60 

04 05  6 7.24 7.23 

06,97 7 7.79 7.85 

08 8 8.33 8.48 

09  9 8.93 9.10 

010,0 10 9.55 9.72 

012,913 12 10.77 10.97 

014 17 14.14 14.09 

015 22 17.61 17.21 

The sample mean of the first simulated data set, in Table 3.5 is 9 = 5.222 

and the sample variance is s2  = 13.944. The data estimates for the prior mean 

and variance are = 5.222 and q 8.722 respectively. We notice that the BLP 
 BL 

estimate for 05 is O5 ' = 5.08, obtained with observation y 5  = 5 adjusted towards 

the estimated prior mean = 5.222 with a weight equal to c = = 0.375. 

However, the importance sampling estimate for the same parameter is equal to 
051S 

= 4.93, implying that the EB posterior mean shrinks the observed value 

= 5 towards the opposite direction of that of the sample mean. The estimates 

for the second data set, reported in Table 3.6 reveal a similar shrinking behaviour. 

The importance sampling estimate for 09  is 
991S 

= 8.93, despite the fact that the 

estimated prior mean is e = = 9.267. 

3.9 Frequency properties of the EB estimators 

The two methods developed in this chapter for the simultaneous estimation of 

m Poisson means 02 , i = 1,... , m, under a log-normal prior structure, provide 

approximations to the mean of the posterior distribution of Oi  when an EB so-

lution is adopted for the estimation of the parameters of the log-normal prior 

distribution. The posterior mean is the Bayes rule under the assumed prior dis- 
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tribution with respect to the squared error loss function. Therefore, it minimises 

the average risk, giving excellent frequency properties especially in the region 

where 0 is more likely to lie, that is in the region to which the prior distribu-

tion attaches high probability. Thus, both the BLP and the importance sampling 

estimator are expected to possess good frequency properties, since the former is 

an approximation to the posterior mean constructed in such a way that it has 

the minimum average risk among the linear estimators of its form, and the latter 

was empirically shown to produce a highly accurate approximation. 

Many of the shrinkage methods proposed in the literature for the simultane-

ous estimation of several Poisson means, smooth the observed values towards a 

fixed point and therefore provide considerable improvement over the risk of the 

MLE only when the true unknown parameters are close to the chosen point of 

shrinkage. However, estimators that exhibit low risk for a variety of different 

values of the parameter vector 0 are preferred. Thus, we want to assess the fre-

quency properties of the estimators under consideration in a wide range of the 

parameter space. We examine their average risk when the Poisson parameters 

9, i = 1,... , m, are small, being close to the origin, moderate or relatively large. 

Also, since the magnitude of shrinkage depends on the variation in the parame-

ters 8,  i = 1,... , m, as suggested by the shrinking coefficient C = of 

the BLP, we are interested in assessing the risk behaviour of the estimators when 

9, i = 1,... ,rn, are close to each other, as well as when they lie in a wider range. 

3.9.1 Loss functions 

The posterior mean has minimum average risk under the quadratic loss function. 

However, the selection of a unique suitable loss function for a specific estimation 

problem is not always an easy task and hence, estimators that perform well un-

der various loss functions are often desired. We therefore consider different loss 

functions for the evaluation of the average risk of the examined methods. 

We suppose that the parameters O, i = 1,... , m are estimated using 6 j , 

m. The summed quadratic loss functions 

m 
ô —9)2 SELk=  (3.25) 2   9k 

j=1 	i 

where k = 0, 1, 2, which are widely used in the literature and under which most 

of the methods reviewed in Chapter 2 were developed, are initially considered. 

Another family of loss functions, often encountered in the literature, is the ab-

solute error loss. It is interesting to examine how our estimators will behave 

under this loss function, since in this case the posterior median rather than the 
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posterior mean would be expected to exhibit the lowest average risk with respect 

to the assumed prior distribution. In accordance to the weighted squared error 

loss functions in (3.25), we will assess the frequency properties of the considered 

estimators under the absolute error loss functions 

In  Ioi  — ei I 
AEL 	 (3.26) k  = 

j=1 	
9c 

for k = OA and 1. 

The loss functions considered until now, have the common characteristic of 

summing over the m components of the vector parameter 0. In essence, the 

possibility of improving upon the risk of the MLE is based on combining the 

strength of all the components of the estimator, and in fact the MLE has been 

shown to be inadmissible, only under loss functions that sum over at least two 

Poisson means (e.g. Clevenson and Zidek, 1975, Tsui and Press, 1982). We wish 

to investigate the behaviour of the estimators in the case that the maximum 

component of a squared error loss function is considered instead of the sum of all 

components. We therefore employ the maximum component loss functions 

MAXSELk  = max 
I(j, -  )2 

(3.27) 
1<i<m 	91c 	J'  

fork = 0,1,2. 

The average risk of the nonlinear importance sampling estimator under the 

considered loss functions can only be computed empirically, employing Monte 

Carlo simulations. This is also the case for the BLP, except when the squared 

error loss function SEL0 =EM  1(ö2 - 9)2 is involved. In this case, we can derive 

an exact analytical expression for the average risk, as follows. We first write the 

average risk as the expectation of the frequentist risk with respect to the prior 

distribution of 9, i.e. 

Rir 
 (6BLP

) = E0 JR 
(~BLP) I ) 	(3.28) 

where R (OLP ) is given by 

'1 
(ji 

 BLP/LP\
R(0 Ey1o' 	_e)

2 

 J, I 

and using the form of the BLP in (3.14) we obtain 

M 
(~BLP)

R 
	

[Ey19{(1—c)Y+c0}2] 
j=1 
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which gives 
m 

R(
—BLP' 
9 	

) 	 9)}2+(1—c)29}] 
j1 

c2(9 _)2 + (1— c) 2m, 

where 9 = m 1  Em, 9. Then, substituting the frequentist risk from the above 

expression into (3.28), and using the form of c in (3.15) we obtain 

R, 
(6BLP) 

= c2E9 	— )2} + (1— c) 2mE o () 
i=1 

= m {c2  + (1 — c) 2 } 
var(02 ) 

mE(9j. 	 (3.29) 
= var(9) + E(9) 

We notice here that, as mentioned in Subsection 2.3.1, when the EB estimator 

(3.24) is considered, the risk of the BLP as m —* oo is approximately given by 

I s-} m9, where = 9/m and S(0) = i1 (O — #) 2/(M— 1). The 

analogy between this expression and (3.29) suggests that the risk function of the 

considered estimators should be expected to exhibit a similar behaviour to the 

average risk results obtained in this thesis. 

Finally, the average risk of the MLE, to which the considered estimators will 

be compared, can be analytically obtained under the squared error loss functions 

SEL0  and SEL 1 . Using he former we obtain 

R1, (Y) = E9E10  {(Y — O)2} 

	

= E0 {varY i o (1/)} = mE(9). 	 (3.30) 

Under SEL 1  the average risk of the MLE is given by 

R (Y) = E0E19 	
( - 9)2 

	

9i 	I 
EoI 

	

(vary19(Yj) 	
= M. 	 (3.31) I 

3.9.2 Frequency simulations 

The considered estimators will be assessed and compared using the frequency 

criterion of average risk, which for an estimator ö of 0 is given by 

R110) = E9E19 {L(6, 0)}, 
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with L(6, 0) being one of the loss functions (3.25), (3.26) and (3.27) presented 

in the preceding subsection. The average risk of each examined estimator will 

be compared to the corresponding risk of the usual estimator Y, which is both 

the MLE and the UMVUE. As described in Subsection 3.9.1, the average risk of 

the MLE and the BLP can be analytically computed under a limited number of 

specific loss functions. However, for comparison reasons, we will use Monte Carlo 

simulations in all cases to estimate the average risk. For the simulation procedure, 

we first chose the true mean and the true variance 0 of the Poisson parameters, 

and calculated the corresponding /2 and a2  log-normal hyperparameters. We then 

generated a number m of Oi  values, independently from a LN(i, cr2 ) distribution. 

For each O, i = 1,... , m, a random variate Y was then drawn from a Poisson (0 j )

distribution, and the estimates of O, i = 1,... , in, were computed according 

to the estimating methods of interest, together with the associated sum and 

maximum component of the error loss. With the O, i = 1,... , m, fixed, the 

last step was repeated Nk times for the evaluation of the frequentist risk R(ö) = 

E10 {L(6, 0)}, and then new 9, i = 1',... ,rn, values were sampled and the 

whole procedure was repeated Nt  times to allow the computation of the average 

risk R(ö) = E0{R(6)}. The latter was estimated using 

	

1 	
Nt Nj, 

	

= {L(ö, 0)}. 	 (3.32) 
NtNk 

t=1 k=1 

For example, under the SEL 0  = i1 (ö—O) 2  loss function, the estimated average 

risk of an estimator 5 is given by 

NtNk 	m 

R,, (6) 
=It,IVk I itk 

- 9)2} 

t=1 k=1 

To compare the performance of the methods against that of the MLE, we calcu-

lated the relative average risk improvement (RARI) of each estimator with respect 

to MLE. This is defined as 

L(Y) - 

	

RARI(ö) = 	 x 100%, 	 (3.33) 
R(Y) 

and indicates the percentage of the improvement of the estimator S when com-

pared to the MLE in terms of average risk. 

In an attempt to investigate the performance of the estimators within a wide 

range of the 0 parameter space, the simulation procedure was applied to 9 different 

settings for the Poisson parameters, corresponding to 9 combinations of their 

mean 6 and their variance 0. These, together with the associated and 0 2  log-

normal parameters, are given in Table 3.7. We notice that the variance is set to 
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Table 3.7: Chosen values for the true mean 6 = E(01 ), true variance 0 = var(9) 

and corresponding hyperparameters p and a2  for the 9 specified combinations. 

moments 	parameters 

J.L 	or 2 

1.0 	0.5 -0.20 0.41 

1.0 -0.35 0.69 

2.0 -0.55 1.10 

5.0 	2.5 1.56 0.10 

5.0 1.52 0.18 

10.0 1.44 0.34 

10.0 	5.0 
	

2.28 0.05 

	

10.0 
	

2.26 0.10 

	

20.0 
	

2.21 0.18 

be half, equal and twice the magnitude of the mean. In terms of the marginal 

distribution of the data, this corresponds to the variance of each simulated data 

set ranging from one and a half times to three times the marginal mean. 

A total number of 4 x iO Monte Carlo simulations (N x Nk = 200 x 200) were 

used for the estimation of the average risk with (3.32). The simulation study was 

performed using the C computer programming language. A summarised outline 

of the algorithm used is shown in Figure 3.1. 

3.9.3 Results 

The average risk improvement (3.33) of the importance sampling estimator in 

(3.18) and the BLP in (3.24) when compared to the MLE, for the simultaneous 

estimation of m = 10 Poisson means is given in Tables 3.9 through 3.17. In 

each table we report the RARI of the considered estimators, corresponding to a 

specific loss function and calculated using the estimated average risk (3.32), for 

the 9 combinations of the true moments of 9. 

A general conclusion that can be drawn from all tables is that in most of 

the examined cases the importance sampling estimator and the BLP produce 

remarkably high relative improvement in average risk in comparison to the MLE. 

As shown in Table 3.8, the improvement yielded when the importance sampling 

estimator is used, is over 60% in 12 of the 81 examined cases, and between 
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Choose a pair off, 0 values 
for t=1 to N (no. of 0 samples) 

for i=1 to m 
ua 2 Generate 03  .' LN( 1a, a ) 

for k=1 to Nk (no. of data samples) 
Generate Yik Poisson(93) 
Compute estimators 

endfor k 
endfor i 
Calculate risk for estimators 

endfor t 
Calculate average risk and RARI 

Repeat with different e q values 

Figure 3.1: Pseudo-code for C program used for the computer simulation study. 

40% - 60% in 19 cases. The method fails to improve the MLE in only 6 out of 

the 81 examined cases. Table 3.8 also demonstrates that the number of times 

that the BLP improves the MLE with a percentage of 20% - 60% is similar to 

that for the importance sampling estimator. However, the latter has at least 60% 

lower average risk than the MLE 12 times, while the BLP only 7. Overall, the 

importance sampling estimator performs better than the BLP, producing higher 

savings than the linear method in 60 out of the 81 considered cases. 

Table 3.8: Summary of the relative improvement in average risk (RARI) of the 
importance sampling estimator and the BLP when compared to the MLE. A total 
number of 81 cases were examined. 

% RARI <0 	0 - 20  20 - 40 40 - 60 >60 

91S 	 6 	7 	33 	19 	12 

0BLP 	5 	11 	35 	19 	7 

For comparison reasons we also present the RARI of the methods reviewed in 

Chapter 2. These are arranged in categories according to the direction of shrink-

ing. Morris' 5M(y) in (2.34) and the Albert-type (2.36) 6A (Y) rules smooth the 

MLE towards the sample mean; Hudson's (2.24) method 6H (Y) and the Ghosh, 

Hwang and Tsui estimators 1T4(y) in (2.23) and 6IT3 (Y) in (2.22) adjust 

the MLE towards a central data point, that being approximately. the geometric 

mean for the first two and the median for the third; Tsui's (2.19) estimator 
T(y) 
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and the Ghosh, Hwang and Tsui rules 6G11T1(y) and 6IT2 (Y), given in (2.20) 

and (2.21) respectively, shrink to the minimum observation, with the first two 

developed under the SEL0 loss function and the third under SEL1; finally, Peng's 
6P(y) estimator in (2.18), the Clevenson and Zidek (2.25) method öcz(Y) and 

the Tsui and Press 5TP(Y) estimator in (2.26) smooth the usual estimate towards 

zero and are constructed under SEL0, SEL1 and SEL2 respectively. 
 El l  When the SEL0 = (j,-  9)2 loss function is used, both the importance 

sampling estimator and the BLP perform outstandingly. The results in Table 3.9 

reveal that the importance sampling method produces greater improvement than 

Table 3.9: Percentage of relative improvement in average risk (3.33) under SEL 0  

when the estimators are compared to the MLE. 

E(0) 1.0 5.0 10.0 

var(92 ) 0.5 	1.0 	2.0 2.5 	5.0 	10.0 5.0 	10.0 	20.0 

ols 62.9 	51.5 	37.8 60.6 	46.1 	26.7 61.1 	42.7 	26.7 

0BLP 60.7 	49.3 	36.0 59.9 	45.3 	25.8 60.7 	42.1 	26.1 

Shrink to sample mean 

56.1 	46.7 	35.4 	55.4 43.3 26.4 	56.0 40.7 26.7 

52.8 	45.6 	36.2 	52.3 43.0 28.2 	52.7 41.0 28.6 

Shrink to geometric mean or median 

35.4 	27.4 	19.6 	50.1 37.5 24.1 	52.5 39.4 25.5 

	

6GHT4 	41.2 	34.2 	26.5 	31.4 24.9 18.0 	31.7 25.0 17.2 

	

5GHT3 	15.3 	14.0 	12.4 	7.9 	7.4 	6.3 	3.7 	3.6 	3.3 

Shrink to minimum observation 

	

5GHT1 	22.1 	19.7 	16.5 	12.7 10.2 	7.3 	13.4 10.5 	7.1 

25.9 	22.7 	18.8 	6.4 	5.6 	4.5 	3.6 	3.2 	2.5 

	

GHT2 	61.4 	52.5 	41.9 	28.5 24.3 18.9 	20.5 17.7 13.7 

Shrink to zero 

25.2 	22.3 	18.5 	3.9 	3.6 	3.2 	1.2 	1.1 	1.0 

	

5CZ 	45.2 	37.1 	26.6 	16.9 14.2 10.9 	9.5 	8.3 	6.7 

	

öTP 	22.9 -25.7 -91.0 	33.9 19.0 	1.2 	25.2 19.8 	8.9 
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all the other EB estimators, except in the cases when E(9) = 5, var(9 2 ) = 10 and 

E(9) = 10, var(0) = 20, where the Albert-type estimator performs better. This is 

not surprising, since, as described in Subsection 2.3.1, the latter is derived in a way 

such that it behaves better than the posterior mean when the observations are not 

close to the prior mean. The BLP also seems to dominate the Morris and Albert-

type estimators when the variation in O i  is small to moderate. However, when 

the O,  i = 1,... , m, are not close to each other, öM(Y)  and 6A  (Y) restrict the 

shrinking towards the prior mean, which can give better average risk properties 

when overdispersed observations occur. In general, the RARI for all estimators 

drops as the O, i = 1,... , in, are less concentrated around their mean. Large 

variation in the true parameters leads to higher estimates for the prior variance, 

which in turn implies small confidence in the prior structure. The latter is then 

reflected in less shrinking towards the prior mean. Thus, as var(9) gets larger, 

the EB methods give estimates which are closer to the MLE, producing average 

risk that tends to be similar to that of the usual estimator. 

The performance of the remaining linear estimators is much less impressive 

than that of the EB rules, with only a few exceptions. Hudson's estimator öFT(Y), 

which approximately shrinks towards the geometric mean of the data does well, 

especially when the Poisson parameters O,  i = 1,... , m, are not close to the 

origin. On the other hand, the Ghosh, Hwang and Tsui 6(3HT4 (Y) method, which 

also approximately smoothes towards the geometric mean, performs better for 

small 0. Estimator 6GHT3(y)  does not give substantial savings in average risk, 

despite the fact that it also shrinks to a central data value, namely the median of 

the data. From the methods adjusting the observed value towards the minimum 

observation or zero, estimators 6GHT2(y) and ö (Jz(Y) produce good average risk 

results, but only when the 9,, i = 1,... , m, are close to the origin, as expected 

from the fact that they shrink towards small observation values. 

Table 3.10 contains the RARI results when the SEL 1  = loss 

function is involved. Again, as with SEL 0 , the nonlinear importance sampling 

estimator dominates the other methods in most of the various 0 regions. The 

linear EB estimators 5M(y) and 6A  (Y) have better average risk properties than 

both the importance sampling approximation to the posterior mean and the BLP 

when the Poisson parameters 9, i = 1,... , m, are widely scattered around their 

mean, due again to their reduced shrinking in overdispersed situations. The av-

erage risk behaviour of all the examined estimators follows a similar comparative 

pattern to that under the SEL 0  loss function. However, while the average risk 

relative savings of the importance sampling estimator and the BLP under SEL 0  

and SEL 1  are similar for O, i = 1,... , in, not being close to zero, there seems 
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Table 3.10: Percentage of relative improvement in average risk (3.33) under SEL 1  
when the considered estimators are compared to the MLE. 

E(Oj 1.0 5.0 10.0 

var(92 ) 0.5 	1.0 	2.0 2.5 	5.0 	10.0 5.0 	10.0 	20.0 

01S 60.3 	45.5 	15.5 60.9 	46.0 	25.0 61.1 	42.8 	26.7 

0BLP 58.1 	44.7 	21.3 59.8 	44.8 	24.4 60.6 	41.9 	25.9 

Shrink to minimum observation 

	

6GHT1 	25.1 25.2 24.8 

29.0 28.7 28.0 

	

5GHT2 	60.5 49.5 29.5 

Shrink to zero 

29.1 29.3 29.0 

51.9 52.4 53.1 

	

öTP 	39.7 28.2 14.9 

13.0 11.5 9.8 

6.8 6.8 6.6 

28.8 26.4 23.4 

3.8 	4.1 	4.7 

16.9 16.0 15.3 

35.3 27.8 19.7 

56.1 41.0 27.3 

52.7 41.2 29.2 

52.7 39.6 25.0 

32.7 26.7 19.4 

3.9 3.9 3.9 

13.5 11.3 8.8 

3.8 3.6 3.5 

20.4 18.2 15.5 

1.0 1.0 1.2 

9.1 8.5 8.2 

25.2 21.6 16.2 

Shrink to sample mean 

	

55.6 45.9 29.8 	55.6 43.7 26.9 

	

52.3 45.1 32.2 	52.4 43.3 28.7 

Shrink to geometric mean or median 

	

35.3 26.3 15.4 	50.4 37.9 19.2 

5GHT4 	44.2 37.1 27.0 	33.2 28.0 21.7 

6GHT3 	17.0 17.0 17.0 	8.5 	8.5 	8.2 



to be a decrease when E(0 2 ) = 1 and SEL 1  is involved. This is more evident 

when the variance var(9 2 ) is large, and can be explained from the fact that the 

SEL1 = E 
(9)2 loss function penalises heavily the cases where O is very 

close to zero. It is also interesting to examine the performance of the two estima-

tors constructed to universally dominate the MLE under the considered SEL 1  loss 

function, that is the Ghosh, Hwang and Tsui 5T2 (y) and the Clevenson and 

Zidek 8cz(y)  estimators. They both produce very large RARI when E(9 2 ) = 1, 

with the Clevenson and Zidek method dominating all estimators when var(0 2 ) = 1 

or 2. However, since they shrink towards the minimum observation and zero, their 

performance drops dramatically as E(0 2 ) increases, and therefore the importance 

sampling and linear methods developed in this chapter offer better average risk 

properties overall. 

When the SEL2 = 	 loss function is considered, we expect a consid- 

erable effect caused by small Oi  values attaching more weight to large discrepancies 

between 82 and 02. The RARI results in Table 3.11 show that the importance sam-

pling estimator does not perform well when the variance of Oi  is large, and can 

be much worse than the MLE when 9,  i = 1,... , m, are very close to zero. The 

linear EB estimators compare better to the MLE when the true variance var(0 2 ) 

is moderate to large. It is also remarkable that the rules shrinking towards zero or 

Y(i) perform very well when the 9, i = 1,... , m, are close to the origin and have 

moderate to large variance. We notice that when E(0 2 ) = 1, the Clevenson and 

Zidek 5c  (Y) estimator gives greater RARI with SEL 2  than under SEL 1 , despite 

the fact that it is developed to dominate universally the MLE under the latter. 

The Tsui and Press 5TP(y) estimator, which dominates the MLE under SEL 2 , 

in addition to the advantage of never being worse than the usual estimate, it also 

gives greater RARI than the importance sampling estimator when the variation 

of Oi  is large. However, it is dominated by the the importance sampling method 

and the other EB rules under SEL 2  in more of the examined cases. 

We will now examine the EB performance of the two approximations to the 

posterior mean of 92,  that is the importance sampling method and the BLP, un-

der the absolute error loss functions (3.26). The RARI results reported in Tables 

3.12, 3.13 and 3.14 show the same general patterns in the comparison of the exam-

ined estimators, as when the SEL k  loss functions in (3.25) were considered. The 

nonlinear importance sampling approximation to the posterior mean produces 

greater average risk savings than most of the other methods under consideration, 

with the BLP following in performance. As the variance in the Poisson param-

eters increases, the RARI of all estimators drops, with the Morris 8M(y)  and 

the Albert-type 6A  (Y) EB rules performing better. The weighted loss functions 
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Table 3.11: Percentage of relative improvement in average risk (3.33) under SEL 2  
when the considered estimators are compared to the MLE. 

E(0) 

var(0) 	0.5 

1.0 

1.0 2.0 2.5 

5.0 

5.0 10.0 5.0 

10.0 

10.0 20.0 

01S 	42.3 -8.5 -175.5 58.8 37.3 1.4 60.0 38.7 17.5 

0BLP 	42.0 0.2 -119.4 57.4 36.5 5.6 59.2 37.7 17.6 

Shrink to sample mean 

46.5 19.9 -54.4 54.5 39.1 16.0 55.4 38.6 22.6 

46.4 27.0 -31.1 51.6 39.9 18.9 52.3 39.5 24.9 

Shrink to geometric mean or median 

29.7 9.8 -35.6 48.8 31.6 -7.8 52.0 36.7 17.3 

6GHT4 	41.0 22.6 -17.7 34.6 29.7 21.7 33.5 27.6 19.9 

6GHT3 	18.4 18.5 17.4 9.3 9.7 10.1 4.1 4.3 4.6 

Shrink to minimum observation 

6GHT1 	28.2 30.1 31.6 13.3 12.6 11.9 13.6 12.0 10.2 

32.0 33.7 35.2 7.3 8.0 8.9 4.0 4.1 4.5 

6GHT2 	51.5 18.3 -60.2 29.0 27.6 25.8 20.2 18.4 16.3 

Shrink to zero 

33.0 35.6 37.5 3.8 4.7 6.7 0.8 0.9 1.5 

5CZ 	56.8 60.8 65.2 16.8 17.3 18.9 8.7 8.6 9.4 

40.5 32.3 23.3 35.6 31.2 26.2 24.9 22.5 19.6 
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Table 3.12: Percentage of relative improvement in average risk (3.33) under AEL 0  
when the considered estimators are compared to the MLE. 

E(0) 1.0 5.0 10.0 

var(02 ) 0.5 	1.0 	2.0 2.5 	5.0 	10.0 5.0 	10.0 	20.0 

91S 42.5 	34.6 	24.8 38.7 	28.5 	16.3 38.8 	25.2 	15.5 

0BLP 40.6 	33.2 	24.5 37.9 	27.6 	15.6 38.5 	24.6 	15.0 

Shrink to sample mean 

	

37.8 32.1 	24.9 	34.7 26.3 16.0 	35.0 23.9 15.4 

	

35.0 30.8 	25.1 	32.1 25.8 17.0 	32.2 24.0 16.4 

Shrink to geometric mean or median 

23.4 18.4 13.5 31.5 22.9 14.1 32.5 23.3 14.8 

öGHT4 	29.4 25.0 19.8 19.1 15.4 11.5 18.8 14.7 10.2 

öGHT3 	8.9 8.3 7.6 4.3 4.1 3.8 1.9 1.9 1.8 

Shrink to minimum observation 
5GHT1 	11.0 10.5 9.5 5.4 4.4 3.3 6.1 4.8 3.3 

12.9 12.0 10.7 2.5 2.3 2.0 1.4 1.2 1.0 

5GHT2 	41.5 35.4 27.2 14.5 12.4 9.9 10.3 8.8 6.8 

Shrink to zero 

12.5 12.1 10.9 0.7 0.7 0.7 0.1 0.0 0.0 

5CZ 	23.0 20.9 18.0 6.4 5.3 4.2 3.4 2.9 2.3 

6TP 	16.2 5.5 -6.7 17.9 10.8 3.7 12.5 9.6 5.1 
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Table 3.13: Percentage of relative improvement in average risk (3.33) under AEL'i 
when the considered estimators are compared to the MLE. 

E(02 ) 1.0 

vat(02 ) 0.5 1.0 2.0 

01S 41.2 31.2 14.2 

0BLP 39.6 30.9 17.5 

Shrink to sample mean 

38.1 31.8 21.7 

35.8 31.3 23.1 

Shrink to minimum observation 

6GHT1 12.0 11.9 11.2 

13.9 13.5 12.7 

6G1T2 41.9 33.7 19.7 

Shrink to zero 

13.9 13.9 13.2 

25.2 25.1 24.4 

öTP 18.1 12.1 6.1 

38.7 28.2 15.4 

37.8 27.3 14.9 

2.5 	5.0 10.0 

5.0 10.0 

5.0 10.0 20.0 

38.8 25.1 15.3 

38.4 24.4 14.7 

34.8 26.4 16.1 

32.3 26.0 17.1 

35.0 23.9 15.5 

32.2 24.0 16.6 

32.6 23.4 14.6 

19.2 15.3 10.9 

2.0 2.0 2.0 

5.5 4.8 3.9 

2.6 2.7 2.6 

14.6 13.1 11.2 

6.2 5.0 3.8 

1.4 1.4 1.3 

10.3 8.9 7.3 

0.6 0.7 1.0 

6.3 5.7 5.3 

18.3 13.2 8.2 

0.0 0.0 0.1 

3.2 2.9 2.7 

12.5 10.2 6.9 

Shrink to geometric mean or median 

	

23.9 18.5 12.5 	31.6 22.9 12.7 

6GHT4 	31.2 26.3 19.4 	19.8 16.5 12.9 

5GHT3 	9.6 	9.3 	8.6 	4.5 	4.5 	4.5 



Table 3.14: Percentage of relative improvement in average risk (3.33) under AEL 1  

when the considered estimators are compared to the MLE. 

E(01 ) 

var(01 ) 0.5 

1.0 

1.0 2.0 2.5 

5.0 

5.0 10.0 5.0 

10.0 

10.0 20.0 

01S 36.9 20.3 -18.4 38.3 26.6 11.3 38.6 24.3 13.8 

0BLP 36.1 22.3 -7.2 37.3 25.7 11.8 38.0 23.6 13.4 

Shrink to sample mean 
bm 36.8 27.2 5.6 34.7 25.7 14.6 34.9 23.5 14.8 

35.8 28.8 10.3 32.2 25.6 15.8 32.2 23.8 16.0 

Shrink to geometric mean or median 

23.6 16.2 6.0 31.4 21.9 8.8 32.6 23.0 13.5 

6GHT4 31.9 24.4 11.3 20.6 17.5 13.8 19.5 15.8 11.4 

5GHT3 10.4 10.0 8.7 4.7 4.9 5.2 2.0 2.1 2.2 

Shrink to minimum observation 
5GHT1 12.9 12.8 12.1 5.6 5.1 4.6 6.2 5.3 4.2 

14.7 14.5 13.8 2.8 3.0 3.2 1.5 1.5 1.6 

6GHT2 40.5 26.5 -1.9 14.7 13.6 12.3 10.2 9.1 7.7 

Shrink to zero 
bp 	15.1 15.3 	14.6 	0.5 	0.7 	1.4 	-0.1 -0.1 	0.1 

5CZ 	26.9 27.6 	27.8 	6.2 	6.0 	6.3 	3.1 	2.9 	3.0 

5TP 	17.8 13.3 	9.4 	18.6 14.7 11.0 	12.4 	10.6 	8.2 
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AEL1 and AEL 1  penalise heavily bad estimates in the region close to zero, and 

this is again shown for the importance sampling estimator and the BLP in Table 

3.14 for E(e) = 1, var(9 2 ) = 2. As with the squared error loss functions, Hud-

son's method 6H(y) performs well for large 9, i = 1,... , m, while the Ghosh, 

Hwang and Tsui rules 5GHT4 (y) ,  6GHT2(y) and the Clevenson and Zidek estima-

tor 5cz(y)  give good results when E(0 2 ) is close to zero. We finally notice that 

all methods yield smaller relative savings in average risk than they did under the 

squared error loss functions (3.25). This is due to the fact that with the absolute 

error loss, bad estimates pay a lower loss price than with squared error loss, and 

therefore the MLE seems to benefit more when the former loss function is pre-

ferred. Also, the decrease in RARI can be explained from the fact that nearly all 

estimators are developed with the aim to offer good risk properties specifically 

under a squared error loss function. 

Until now we have examined the average risk of the considered methods under 

summed loss functions, meaning that in the loss evaluation we sum over all the m 

components of the difference (6 2  - Oj, i = 1,.. . , m. It is interesting to investigate 

the average risk behaviour of the estimators under component-wise loss functions. 

We consider the worst case for each estimator, by evaluating the average risk when 

the maximum discrepancy between J i  and 9, occurs, for i = 1, . . . ,m. In Tables 

3.15 through 3.17 we present the RARI results for the considered methods under 

the loss functions MAXSELk = maxl<j<m 
{ (&

9s)2 }, k = 0, 1 1  2, respectively. 

The general impression given from these tables is that the considered estima-

tors, and especially the importance sampling estimator and the BLP which are 

the methods of main interest, still produce remarkably high average risk improve-

ment when compared to the MLE. The relative savings can be up to 63% for the 

importance sampling estimator, and the comparison among the examined meth-

ods gives, in most cases, the same conclusions as with the summed squared error 

loss functions. However, it is interesting to notice that the results shown in Table 

3.15 point out that under the MAXSEL O  loss function the BLP gives larger RAM 

than the importance sampling estimator in 5 out of the 9 settings for 0 that we 

consider. The reason for that seems to be that the maximum component of the 

loss function is likely to occur when an outlier observation Y is involved, in which 

case the importance sampling estimator can shrink less than the BLP and there-

fore result in larger component-wise average risk. It is also important to notice 

the excellent performance of the Ghosh, Hwang and Tsui estimator 611T2(y) and 

the Clevenson and Zidek method ÔCZ(y)  under the MAXSEL 1  and MAXSEL 2  

loss functions and when E(92 ) = 1. Also, the Tsui and Press 5TP(y)  rule dom-

inates the EB estimators under MAXSEL 2  in most of the settings for the true 



Table 3.15: Percentage of relative improvement in average risk (3.33) under 
MAXSEL O  when the considered estimators are compared to the MLE. 

E(Oj 	 1.0 

var(9) 	0.5 	1.0 	2.0 

OIS 62.2 49.0 33.7 

9BLP 60.8 47.7 32.6 

Shrink to sample mean 

55.6 44.8 32.2 

53.0 44.5 34.1 

Shrink to geometric mean or median 

32.9 25.0 17.2 

5GHT4 36.8 29.7 22.3 

5GHT3 15.0 13.7 11.7 

Shrink to minimum observation 
5GHT1 25.2 20.8 15.9 

30.1 24.6 18.7 

6GHT2 61.4 50.8 39.3 

5.0 

2.5 	5.0 	10.0 

	

59.5 43.1 	21.9 

59.7 43.2 21.8 

	

55.1 41.5 	23.0 

	

52.2 41.8 	25.3 

48.1 34.5 22.5 

28.6 21.3 14.7 

7.4 6.6 5.3 

17.5 13.2 8.9 

8.9 7.5 5.5 

33.2 27.2 19.9 

10.9 

5.0 10.0 20.0 

60.8 40.8 23.9 

61.0 40.9 24.1 

56.2 39.7 24.9 

52.9 40.2 27.0 

51.7 37.8 23.1 

30.1 22.9 14.8 

3.7 3.4 2.9 

17.4 13.2 8.3 

5.3 4.4 3.3 

23.9 20.5 15.2 

Shrink to zero 

c5' 	29.1 	23.6 	17.8 

5CZ 	52.8 	38.7 	22.1 

5TP 	10.4 -72.7 -176.4 

8.2 7.0 5.4 

25.4 20.6 14.6 

38.7 17.2 -8.0 

3.1 2.8 2.4 

15.1 13.3 10.1 

29.8 23.5 6.8 
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Table 3.16: Percentage of relative improvement in average risk (3.33) under 
MAXSEL 1  when the considered estimators are compared to the MLE. 

E(0) 

var(9) 0.5 

1.0 

1.0 2.0 2.5 

5.0 

5.0 10.0 5.0 

10.0 

10.0 20.0 

01S 62.7 49.0 20.7 60.4 43.9 22.3 61.0 41.9 25.5 

0BLP 60.2 47.1 24.6 59.9 43.2 21.6 60.9 41.3 24.9 

Shrink to sample mean 

55.8 46.5 31.9 55.4 42.3 24.2 56.3 40.4 26.2 

51.4 44.5 33.6 51.9 42.0 25.9 52.8 40.6 27.9 

Shrink to geometric mean or median 

32.6 24.2 13.3 48.3 35.5 12.4 51.8 37.6 21.9 

6GHT4 39.6 34.1 26.2 30.3 24.8 18.2 31.3 25.0 17.7 

17.9 18.6 19.3 8.1 7.8 6.9 4.0 3.8 3.7 

Shrink to minimum observation 

5GHT1 30.6 29.8 28.9 18.9 16.8 14.5 18.0 15.2 12.2 

36.3 34.9 33.2 10.0 9.9 9.8 5.7 5.4 5.2 

6GHT2 59.0 48.5 32.0 34.2 31.8 28.5 23.7 21.5 18.8 

Shrink to zero 

36.1 35.1 34.1 9.0 9.3 9.6 3.0 3.0 3.3 

5CZ 68.6 68.0 67.4 26.8 25.9 25.1 14.8 14.2 14.0 

5TP 52.5 35.9 16.3 41.2 35.4 28.4 29.7 27.0 22.3 



Table 3.17: Percentage of relative improvement in average risk (3.33) under 
MAXSEL 2  when the considered estimators are compared to the MLE. 

E(9) 

var(92 ) 	 0.5 

1.0 

1.0 2.0 2.5 

5.0 

5.0 10.0 5.0 

10.0 

10.0 20.0 

01S 	33.5 -31.9 -214.4 55.4 23.3 -28.3 58.0 31.7 3.4 

0BLP 	33.0 -19.8 -149.2 54.4 23.6 -19.4 57.5 30.9 5.0 

Shrink to sample mean 

39.1 6.5 -72.3 52.1 30.4 -1.3 54.3 34.1 14.0 

38.7 15.9 -44.1 49.3 32.6 2.9 51.3 35.7 16.8 

Shrink to geometric mean or median 

22.1 0.3 -52.2 43.7 20.8 -47.7 49.5 29.6 3.0 

5GHT4 	32.0 13.0 -28.5 31.8 25.8 14.2 32.2 25.6 16.8 

GHT3 	19.9 20.5 19.5 9.2 9.4 8.9 4.3 4.4 4.7 

Shrink to minimum observation 
5GHT1 	35.9 37.1 37.1 19.3 18.4 17.3 18.2 16.2 14.2 

41.5 42.0 41.4 10.5 11.4 12.6 6.0 6.2 6.8 

6GHT2 	41.7 4.1 -71.9 33.6 31.9 29.2 22.9 21.0 18.9 

Shrink to zero 

42.6 44.2 44.2 9.2 10.6 13.0 2.7 2.9 3.9 

5CZ 	77.5 78.5 78.6 26.2 26.8 28.5 13.8 13.9 15.1 

55.7 40.4 26.4 39.5 36.5 31.7 28.4 26.8 24.6 
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parameters, which was not the case under the summed loss function SEL 2 . This 

indicates that, as with the BLP under MAXSEL O , these estimators can outper-

form the importance sampling method in a wide region of the parameter space 

only when the behaviour of the worst estimate of O,  i = 1,. . . , m, is of interest 

and under a specific maximum component loss function. 

Finally, the average risk performance of the considered methods was assessed 

when a larger number of Poisson means, in = 50, are simultaneously estimated. 

The same parameter settings and loss functions were used. The RARI results 

showed that when m increases, the average risk behaviour of the estimators fol-

lows similar patterns as in the case when m = 10. However, as rn increases, it 

seems that the average risk performance of the importance sampling estimator 

and the BLP under the summed loss functions improves, especially in the cases 

that the Poisson means O,  i = 1,... , m, are not concentrated close to their 

mean. This implies that, as m 00, the EB methods are expected to perform as 

well as a hierarchical Bayes procedure which would account. for the uncertainty 

in the hyperprior parameters. This conclusion is also supported by the fact that, 

unlike in the in = 10 case, when m = 50 and var(9) is large, the average risk 

properties of the importance sampling estimator and the BLP under a summed 

loss function, are very close or even better than those of Morris' and Albert's 

methods, which are developed to better approximate the hierarchical Bayes esti-

mator. This is demonstrated in Figure 3.2 which displays the average risk savings 

of the importance sampling estimator, the BLP and the Albert-type rule, when 

compared to the usual ML estimator, for 3 of the examined loss functions. For 

large m, Morris' method gives very similar results to the BLP, and therefore it is 

not presented in the graphs. 

3.10 Summary and conclusions 

In this chapter we have introduced a Bayesian structure with a single level of prior 

information, that being a model where the Poisson means O, i = 1,... ,m, are 

assumed to follow independently a LN(t, a 2 ) prior distribution. Under this for-

mulation, a nonclosed form arises for the posterior distribution of the parameters 

of interest, and therefore we seek suitable approximations for their estimation. 

We consider the posterior means E(9y), i = 1,... , m, of the Poisson param-

eters and we obtain two approximating methods. The first is a linear method 

which, in its general form, gives an exact linear expression of the posterior mean 

in the case when a conjugate prior distribution is assumed. We derive the coeffi-

cients of the linear estimator in terms of the prior mean = E(9 1 ) and the prior 
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Figure 3.2: Percentage of relative average risk improvement (RARI), in compar-
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variance 0 = var(0) of the parameters O, i = 1,... , m, so that the resulting es-

timator has minimum average risk among the linear rules of the same form. The 

method, to which we refer as the best linear predictor (BLP), shrinks the usual 

estimates yj , i = 1,... , rn, towards the prior mean = E(9 2 ) with a weight which 

depends on the prior variance q = var(9 2 ), allowing more shrinkage under stronger 

prior beliefs. The second method is based on averaging simulated values drawn 

from the posterior distribution of Oi , i = 1,. . . , m, to estimate the posterior 

mean. It employs the importance sampling technique for sampling the nonclosed 

form of the posterior distribution, exploiting a convenient rearrangement of the 

latter in the logarithm scale. The resulting importance sampling estimator of-

fers a fast and accurate nonlinear approximation to the posterior means E(9Iy), 

i = 1,... , m. The implementation of both methods relies on the evaluation of 

the hyperparameters p and a 2 , that is the parameters of the log-normal prior 

distribution of 9, i = 1,... , m. As at this stage no further levels of prior knowl-

edge are assumed, we adopt an empirical Bayes approach by estimating these 

parameters using the available data. 

We illustrate the implementation of the developed methods for the simulta-

neous estimation of several Poisson means using two real data examples and two 

simulated data sets. The results verify that the importance sampling method 

yields very accurate estimates, when compared to the posterior mean derived 

with numerical integration. As far as the question of the shrinking direction is 

concerned, the importance sampling estimator seems to contradict the methods 

suggested until now, which adjust the MLE towards points such as zero, the min-

imum observation, the sample mean, the geometric mean etc. The importance 

sampling estimates demonstrate that the EB posterior mean shrinks the observed 

values towards a central value which lies between the minimum observation and 

the sample mean of the data. 

Finally, the risk properties of the developed methods were assessed and com-

pared to those of the estimators reviewed in Chapter 2. We considered the average 

risk, defined as the expectation of the frequentist risk with respect to the prior 

distribution of the parametes of interest. The relative average risk improvement 

of the estimators, when compared against the MLE, was recorded in a wide range 

of the parameter space. The average risk was examined under 9 different loss 

functions, falling in three general categories, namely the summed squared error 

loss, the summed absolute error loss and the maximum component squared er-

ror loss functions. The results show that the importance sampling estimator has 

excellent frequency properties, dominating all the considered methods in most of 

the examined cases. It performs well under most of the loss functions that we 
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employed and in the majority of the 0 regions, improving remarkably the average 

risk of the MLE. The only exceptions occur when a heavily weighted loss func-

tion is considered and the parameters 9, i = 1,... , m, are close to zero. The 

BLP also gives small average risk and it compares well to the other EB rules. 

The latter can perform better than the importance sampling estimator and the 

BLP when the Poisson parameters exhibit large variation. The remaining of the 

examined methods produce considerable relative average risk improvement only 

in the region of the point towards which they shrink, and when the loss function 

under which they are developed is considered. 

In the Bayesian formulation considered in the present chapter we only assumed 

one level of prior information and then proceeded with an EB approach for the 

estimation of the first stage hyperparameters tt and cr2 . In the remaining of this 

thesis, we will assume a Bayesian structure comprising more prior knowledge 

levels, thus forming a hierarchical Poisson model. 
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Chapter 4 

Analytical approximations for the 
full hierarchical model 

4.1 Introduction 

In Chapter 3 we allowed only one stage of prior information, that being the 

prior distribution of the Poisson means 01, 0,... °m This was a log-normal 

prior distribution with parameters p and a 2  which entered the analysis either 

as known constants or as quantities estimated from the data. Clearly, using 

these parameters in the former way implies very strong prior information which 

normally will not be available to the statistician. Even in the case that some 

preliminary analyses or experiments have been conducted, the statistician might 

be reluctant to use this knowledge as an expression of a unique possible value for 

the prior parameters. On the other hand, employing an empirical Bayes approach 

by using the data to estimate p and cr2 , comes under the criticism of involving 

the data twice in the inferential procedure. First to estimate the parameters in 

the prior and then to evaluate the posterior distribution via the likelihood. This 

procedure ignores any underlying uncertainty in the prior setting and estimation 

and therefore results in posterior estimates that tend to be less variable than 

otherwise would. Much of the opposition to the empirical Bayes methodology 

relies on the reasoning that it does not employ a probability distribution for the 

unknown parameters p and a 2 , hence leading to an approach which some authors 

claim that in essence is non-Bayesian (e.g. see Deely and Lindley, 1981). 

An alternative approach is to adopt a full Bayesian framework. According to 

this approach, at the first stage of the prior specification the population Poisson 

means 91,02,... , 0m, follow a prior distribution which depends on some unknown 

parameters, the so-called hyperparameters. We then assume a hyperprior distri-

bution for the hyperparameters, forming a second stage in the prior setting, which 

in turn may incorporate a third prior stage and so on. This procedure creates a 
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hierarchical model with several stages. In practice, assigning a hyperprior distri-

bution to the parameters at the lower stages of the model may be quite difficult, 

as little prior knowledge will be available at this level of the hierarchy. One way 

to overcome this problem is to use vague hyperprior distributions whenever there 

is inadequate prior information. By 'vague prior distribution', we mean a prior 

distribution that does not favour any specific values of the parameter of interest 

over the others, thus allowing the data to dominate the information contained in 

the prior (e.g. see Box and Tiao, 1973). This would also allow the analysis to be 

more objective in the case that we do not wish to be in favour of any particular 

set of values for the hyperparameters. 

4.1.1 The hierarchical Poisson/log-normal model 

We now introduce the hierarchical Poisson/log-normal model. Suppose that con-

ditional on 01,02,... ,0m, the observations Yi, IJ2,-- , Ym, come from independent 

Poisson distributions with means 01,02,... , °m, respectively. We assume that 

the parameters 0, i = 1,... ,m, are independently and identically distributed 

according to a log-normal distribution with parameters p and a2 . Equivalently 

if we let -yi  denote the natural logarithm of 0, then 'yj, i = 1,... ,m, indepen-

dently follow a normal N(p, a2 ) distribution. At the second stage of the prior 

assessment we can either assume that the hyperprior parameters p and cr2  are 

both distributed according to independent vague uniform priors, or we may let a2  

follow a scaled inverse chi-square distribution independently from p which again 

is U(—oo, oo). The first setting reflects an almost entire lack of prior information 

on both p and a2 , while the second allows some degree of prior knowledge for the 

population variation a2  to enter our analysis. Under the second specification we 

can still let this prior information be rather vague by selecting suitable parameters 

for the hyperprior scaled inverse chi-square distribution. 

We have therefore described a hierarchical Poisson model with two stages of 

prior specification. At the lower level, we will choose the values of the hyper-

parameters, wherever this is needed, in such a way that they express a relative 

ignorance of the behaviour of the parameter at the previous stage. The model 

can be written as follows: 

Y0 2 	Poisson(91 ) 

011p,a 
2 iid

LN(p,a2) 	
(4.1a) 

7r (p) x 1 

ir (or 2 ) oc 1 

where i = 1,... , m. If we assume a scaled inverse chi-square hyperprior distribu- 
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tion for cr2 , with parameters ii and A, denoted as Inv- 2 (v, A), the model can be 

expressed as 

md ' 	oisson(92 ) 

2 iid 
LN(i,a2) 	

(4.1b) 
7r (M) oc 1 

a2 	Inv- 2 (v, A) 

where i = 1,... , m. The probability density function of the Inv- 2 (v, A) is given 

in Appendix A. As noted above, we can equivalently express these models in 

terms of the logarithms of 9,  replacing the log-normal distribution for O i  with a 

normal N(p, a2 ) for 'yj, i = 1,... , m. As in Chapter 3, we let and 0, given in 

(3.2), denote respectively the common mean and variance of each 0, i = 1,... 

The hierarchical Poisson/log-normal formulation that we have assumed implies a 

nonconjugate model. Hence, the full Bayesian analysis involves nonclosed forms 

of posterior densities and for any inference we will have to overcome the problem 

of computing intractable integrals. Two approaches to solving this problem are: 

Use of analytical approximations which offer a general view and under-

standing of the inferential procedure, although they cannot yield the final 

results without the partial or more extensive use of numerical or simulation 

methods. 

Use of Monte Carlo integration methods, suitably adapted to this particular 

model which are implemented to obtain' extended and detailed inferences. 

In the present chapter the former approach will be investigated, while the latter 

is the subject of Chapter 5. 

4.2 Analytical approximations for the conjugate 
model 

We will attempt to estimate the unknown parameters of interest 01, 0,... , 

by approximating the means of the corresponding posterior distributions. Our 

analytical methods are based on a normal approximation of the marginal dis-

tribution of the data. This approach might be expected to work well when the 

observations are large, implying large Poisson means. 

We will first examine a hierarchical Poisson/Gamma model. At the first stage 

of the hierarchy we assume a conjugate gamma distribution for the Poisson means 
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with parameters /3( and 0. Thus, the prior probability density function of 92  is 

given by 

/313C 9' exp( - 1302) 

FC13() 

for i = 1,... , in, where 9, 0 and ( are positive numbers. This formulation is 

mathematically convenient as it will allow us to avoid using numerical integration 

at the early stages of our analysis. The mean of the gamma prior is ( and its 

variance is proportional to the mean and equal to i. The scale parameter /3 

expresses our belief in this prior assessment. When 3 is large, 92  concentrates 

more around its mean (, while as 0 approaches zero the prior distribution of 92 

is very dispersed around , reflecting a low confidence in the prior mean of 92. 

At the second level of the prior setting we assume that ( and 0 are indepen-

dent and we allow to have a flat uniform hyperprior over the positive real axis. 

We use the reparametrisation w = 0 < w < 1, and for this new hyperpa-

rameter we assume a noninformative uniform hyperprior over the unit interval. 

The parameter w is often referred to as the shrinkage proportion as it measures 

the proportion by which the conditional posterior mean of O i  shrinks the obser-

vation yj  towards the prior mean (, as shown later. The model can be written as 

following: 

yiIoi 
md  Poisson(92 ) 

l(,/3 	Ga(/3(,/3) 	 (4.2) 

1, w = (1 + 0 -1 ) - ' 	U(0, 1). 

Note that assuming a uniform U(0, 1) hyperprior for w is equivalent to assuming 

that the prior probability density function for 0 is 

=
0 </3 < 00. 	 (4.3) 

Leonard and Novick (1986) and Albert (1988) analyse model (4.2) in the context 

of two-way contingency tables and log-linear models respectively. Christiansen 

and Morris (1997) use a similar formulation with different parametrisation for 

Poisson regression modelling. They all use analytical approximations to obtain 

inferences about the Poisson parameters and the hyperparameters of the model. 

We will try to derive alternative approximations following the lines of the analysis 

given by Leonard (1977) for the multinomial-Dirichiet case. 

Let 0 = (01, 02,--- , 9"
' )T  denote the vector of the Poisson means and y = 

(yi, Y2, .. , ym )T denote the data vector. We also denote the sampling density of 
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the data vector y given 9 by f(yO). We finally use the notation p(.) and ir(.) for 

the posterior and prior distribution respectively of any parameter of interest. 

Under the conjugate gamma prior, the posterior density of the vector 9, con-

ditional on the hyperparameters (and 0 is given by 

PAY, (,/3) cx  f(yIO) 740I(, 3) 7r ((, 0) 

cc JJ I (e ° 9') ('1e°') } 

rl { 	e_(+1 ) 0t} , 	 (4.4) 

i.e. it is the product of in Ga(3( + y, /3+1) densities. Then the conditional inde-

pendence of 011 92) ... , 9, implies that the posterior density of each component 

of 0, conditional on ( and 0, is a gamma density, that is 

9Iy,(/3 	Ga(/3(+y,0 +1) 	 (4.5) 

for i = 1,... , m. Hence, the posterior expectation of O i  conditional on ( and 0 is 

given as 

- E(02 1y, (, 3) - /3( + yi  
0 + 1 , 

and this can be written in the linear form 

E(02 1y, (,3) = (1 - W)y j  + w( 
(4.6) 

__yi + W((yj), 

where w = (1 + 0 1 ) 1 , 0 < w < 1. The linearity of the above posterior mean 

is a direct consequence of the conjugacy in the first stage of the hierarchical 

model. From this linear form it can be seen that the posterior mean is a shrinkage 

estimator, with w giving the proportion of the distance between the MLE, that 

is the observation yj , and the prior mean (, in which y2  is 'pulled-in' towards the 

direction of (. Clearly, if we solve (4.6) for w we have that 

E(92 y, (, /3) - vi 

(_yi 	
0<w<l. 	 (4.7) 

To obtain the unconditional posterior expectations of the Poisson means O i  

we must average the conditional expectation (4.6) with respect to the posterior 

distribution of the hyperparameters (and 0. The latter is given by 

	

p((,/3 1y) cx f(y(,/3) 7r((,/3), 	 (4.8) 

where f(yI(,  0) denotes the marginal distribution of the data and 7r 	is the 

joint prior of the hyperparameters. 
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Exact derivation of E(Oi ly) 

We first consider the exact marginal density of the data. This can be calculated 

using the joint distribution of y and 0 given and 0, that is 

f(y,91(,/3) = f(yIO) 7r(0I(,/3) 

	

ocft 	e ' - _o29) (0~'—'e-00')} 

	

i=1 	(yi! 

= f { 1 	

}, i=1 
Yi! 

defined for y and 0 being rn-dimensional vectors of nonnegative integers and 

positive reals respectively. Then, the marginal density for y can be obtained by 

integrating the parameter vector 0 out of the above joint density, i.e. 

f(y,/3) = fe f(y, 0I,/3)d0  

	

 lIZ 	- 

	

f I-I 	
0(i3

(

+y)—1 	

} 

dO 
=1 y! 

m - 

cx J e(13(+Yi)—1 

i=1 1y! 	o 

where e denotes the domain of the 0 vector, that is the rn-dimensional space 

of positive reals. The integrand in the above expression is proportional to a 

Ga(/3( + y2 , 3 +1) density and therefore, ignoring the constant of proportionality 

we can write the probability function of the observations as 

f(yI(,fi) cx 
1 F(i3(+y) 

} i=1 ii (/3+ 1 )' 

	

m 
'F(y+,8() / 1 yi ~ '

y! 	/3+1  

for y = (Yi,... , Y m )T, where y,  i = 1,... , m, are nonnegative integers. The 

above expression shows that the resulting distribution of the data vector is a 

product of negative binomial densities with parameters /3( and 3, or equivalently, 

the marginal distribution of y, obtained by summing the rest of the observations, 

is negative binomial with the same parameters, i.e. 

	

d  Neg.Bin.(/3(,/3), 	i = 1,... ,m, 	 (4.9) 

with mean and variance given as 

	

E(Y) = (, 	var() = (1 +,3- 1 )(. 	 (4.10) 
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We can now return to the joint posterior distribution of ( and 8 in (4.8). Using 

the marginal distribution for y derived above and the prior for ((,/3) specified in 

model (4.2) and in (4.3) we obtain that 

M 

( 

(Yi
((,fiI) o (1+ )2 fl 	+ 	- i\ / 	 1 

. 

i=' 1 	I 	+i) (+) 	
(4.11) 

Therefore the unconditional posterior mean of O i  will be given by 

	

E(9Iy) = ffE(9i IY(/3) p(,I3Iy) ddf3 	(4.12) 

with the conditional mean E(02 1y, C, 0) given in (4.6) and p((, 0ly) given in (4.11). 

In practice, due to the form of the joint posterior of ( and 0, the evaluation of the 

above double integral is a complicated task which would not allow us to obtain 

any further analytical results without the use of numerical methods. This suggests 

that employing a simpler form for p((, /31y) would facilitate the calculation of the 

posterior expectation of 9, i = 1,... , m. 

4.2.1 Approximate E(Oi ly) using a normal approximation 

We will consider a normal approximation to the marginal distribution of the 

data, allowing the random variables Y1 , Y2 ,... , Ym , to follow independent normal 

distributions having the exact first two moments as these are given by the negative 

binomial distribution in (4.10). We will also use the reparametrisation 

w = (1 +,3 -1 ) - ' introduced earlier in this section. Then approximately 

Yj  N((, i = i,... , M. (4.13) 

Using this approximation we can derive the approximate posterior distribution of 

the hyperparameters ( and w from 

p((,wy) of(y,w) 7r((, w), 

where f(yK, w) is the approximate marginal multivariate normal density follow-

ing directly from (4.13) and ir((, w) is the prior for the hyperparameters defined 

in model (4.2). Hence, 

P(( , wly) 	
{ 

(w ' 	exp 	W(1(yj - 2] } 

Tm m 	1 	i(yi() 

	

oc (Twexp 	w 	
}, 	

(4.14) 



where 0 < w < 1 and 0 < C < oo. Equation (4.14) provides a simpler form for the 

posterior distribution of the hyperparameters. To obtain the unconditional ex-

pectation of Oi  we first notice that from (4.12) and under the w reparametrisation, 

we can write 

pOo 

I
l 

E(021y) = J 	E(Oy,(,w) p(,wy) dwd( 
0  

f0 oo Ifl 
 E(ety,(,w)p(w(,y)dw p((y)d 
 ) 

and as the integral in the brackets equals the posterior expectation of O i  condi-

tional only on (, we obtain 

00 

E(9y) = 10 E(9t(,y) p((y)d(. 	 (4.15) 

The posterior expectation of O i  conditional on (, as it appears in the integrand of 

the above expression, is given as 

j.1 

E(021(,y) = J E(O(,w,y) p(w,y) dw 
0 

and using (4.6) 

E(OI(,y) = 10  - W)yj +w}p(w(,y) dw 

= 11 - E(wl(,y)} y2  + E(wI(,y) C. 	(4.16) 

Now, expression (4.14) implies that, conditional on (, the posterior of w is a 

Ga ( + 1, 	 density truncated to the (0, 1) interval, i.e. 

.ç-m ( YiCi m 	1 1 	_ii—lkp(wy) cx wexp 	w 	I , 	0 < w < 1. 	(4.17) 

Therefore, the posterior expectation of w conditional on will be equal to 

1 	 ( 1 

E(w'(,y)=clJ wwTexpt_w 	 jdw,  
0 

where c is the normalising constant for the posterior density of w in (4.17). If we 

let 

X2 = :i(yi 
-()2 	

(4.18) 
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the conditional mean of w above becomes 

f w ()exp {- wX} dw 
E(wl(,y) = f0l wmexp{_ wX21dw  

Jm+2(X 2 ) (4.19) 
- Jm(X 2 ) 

where Jm+k(X2) is a function of X 2  defined as 

1 
Jm+k(X2) f 	tX 2 } dt. 	 (4.20) 

The posterior of C in the integrand of (4.15) can be derived if we integrate w out 

of their joint posterior distribution. From (4.14) we have 

= J
1 
p(,wy) dw 

0 

O( c!  f w mexp {_ Wx 2}dW 

cx Jm (X 2 ), 
(4.21) 

with X 2  and Jm(X2 ) defined in (4.18) and (4.20) respectively. We can now obtain 

the unconditional posterior mean of 9, by combining equations (4.15), (4.16), 

(4.19) and (4.21). This will give 

E(Oily) = f [{1 - E(wK, y)}y + E(wI(, y)(] ((I) dC 

'oo 
cx / (Jm(X2) 

{1 - 

Jm+2(X2)} yd 

Jo 	 Jm(-K2) 

fOO (—m+1jM(X2)J 

	

J

+ 	Jm(X2) }dc 

	

= [f 	{Jm(X2) - Jm+2(X2)}] Yi 

+ f 	Jm+2(X2)d(. 

(4.22) 



4.2.2 Approximate E(02 1y) based on the x2  statistic 

The evaluation of the posterior mean in (4.22) involves the computation of math-

ematically intractable integrals, including two-dimensional ones, which need to 

be carried out using numerical integration techniques. As this can be tedious and 

time consuming, we suggest an alternative approach employing the same normal 

approximation for the marginal distribution of the data and also an approxima-

tion based on the chi-square statistic. If, as earlier, we assume that marginally 

the data are approximately distributed as 

iid N((, w'(), 	i = 1,... , m, 

	

it follows that the quadratic form 	 conditional on ( and w has an 

approximate chi-square distribution with m degrees of freedom, as shown by 

Stuart and Ord (1994). Using the notation in (4.18) we can write 

wX2I(,w 
.-ZJ 	 (4.23) 

M. 

We then replace (in X 2  by its moment estimate, that is the sample mean of the 

data 7.  We let j2  denote the new statistic, i.e. we write 

m
lkYz - 

9\2 

	

= 	i= 	 (4.24) 
Y 

The estimation of (in X 2  results in a decrease of the degrees of freedom in the 

chi-square approximation (4.23) which now becomes 

w2Iw 	X-i• 	 (4.25) 

This means that given w the approximate probability density function of wX 2  is 

ir(w 2 Iw) cx (W 5~ 2)  m2'_1 exp 	w2} 

and hence the conditional distribution of X 2  is approximated by 

7r 
(5~ 2  JW)

cx 
 ( 5~ 2)  m21-  I exp 	w2}, 

where X 2  > 0, and 0 < w < 1. This is a Ga(!, ) density and allowing for the 

normalising constant we can write 

ir (i21 W
) 
- Y) (5,2 )  rn2 	exp{_w2}. 



Note that X 2  contains all the available information about the data. Thus, if we 

ignore the information about w possessed in the data and not included in the 

density above, the likelihood function of w will be given by 

1 1 

	

L(wy) oc w rnT -i exp c— wX2 } . 	 (4.26) 

The prior distribution of the hyperparameter w is specified in model (4.2) as 

uniform over the unit interval, and therefore we can now calculate the approximate 

posterior density of the hyperparameter w, using Bayes' formula to obtain 

p(wIy) tx L(wy) ir(w) 

	

oc wexp {_ 
	

(4.27) 

with 0<w<1. 

Comparing equations (4.17) and (4.27) we notice that estimating the hyper-

prior mean ( by 9 in the latter, rather than conditioning on it in the former, 

results in a similar approximate posterior density for w. The unconditional den- 

sity in (4.27) is Ga (--1  + 1, 	2)  truncated to (0, 1), which is an adjusted form 

of the previously conditional on 	Gamma ( + 1, X) density, reflecting the 

corresponding decrease in the degrees of freedom in the chi-square distribution of 

wX 2  in (4.25). 
We return now to the conditional posterior expectation of O, which was given 

earlier as 

E(Oi 	= (1— 'w)yj + w(. 

If we average with respect to the posterior distribution of w and c, the uncondi-

tional mean is given by 

E(Oi ly) = E{(1 - w)y} y2  + E(w(Iy) 

= (1 - w*) yi + * ( E(w(y) 

I_ 	w 	J 
' 	 (4.28) 

where w denotes the posterior mean of w, i.e 

	

= E(wy) 
	

(4.29) 

and E(w(Iy)  is the quantity towards which the posterior mean shrinks the observed 
W

. 

value y2 . Alternatively, if we estimate (in E(0 1 1y, (,8) by the data sample mean, 

we need only average over w to obtain 

	

E(02 1y) = ( 1 - w*) yi + w*  9 . 	 (4.30) 



We now use the posterior density of w derived earlier to obtain an approximate 

expression for w. Notice that 

w = E(wy) 
=in 

 w p(wly) dw 

1 
rn-i 

c1 I wwexp{_ w 2 } dw, 
Jo 

where c = L 1   w'exp {- w} dw is the normalising constant. Hence, ap-

proximately 

1 i 

 m±-1 dw j0 W 2 exp{- w 2 }  

f
1 rn-i 0wexp{_ wX2} dw 

- 

	

j.+1  (X 2) 	
(4.31) 

- Jm_i(X 2 ) '  

with Jm+i(X 2 ) introduced earlier in (4.20). Substituting w in (4.30) will yield 

the approximate posterior expectations of the Poisson parameters 9. In doing so 

we need only perform two numerical integrations. 

We can further simplify the form of w by using the incomplete gamma func-

tion and a simple integration by parts result. 

Lemma 4.1. Let 'y(a, x) denote the incomplete gamma function defined as 

(a, x) = / ua_le_Ldu . 	 (4.32) 
Jo 

Then, 

'y(a ± 1, x) = a 'y(a, x) - x ae_x. 	 (4.33) 

Proof. The integration by parts rule implies that 

(a, x) = 	e' 	+ 	e_u du 

=_xae_x + —7(a+1,x) 
a 	a 

	

which can be rearranged to give (4.33). 	 0 

Returning to w we first notice that we can express the function Jm+k  (X 2 ) in 

terms of the incomplete gamma function in (4.32). Applying the transformation 

RK 



U = t1 we obtain 

1 

Jm+k(X) = texp j- d2  
dt 

12 

= 2(m++1 (5~ 2)_(m+k)_1 

': 	
u(m+k)e_udu 

= 2(m+1 (~2)2() 	{(m + k) + 1, X2}. 

Therefore, from (4.31), w" can be written as 

-(m+3) I I
(M+1)+i 1 X22(m+3) (X2) 	 '2 

= 
2(m+ 1 ) (5~2)_ 

m+1) 
, 

{(m + 1), !i2} 

- 1i2 
()1 {(m+1)+1,2} 

- - 

and if we apply (4.33) from Lemma 4.1 we obtain 

(4.34) 

(m+1) {(m+1),2} - ( 15~ 2)(m+l) 12 

W* = (1j2) 2 	 2

-  

=(m+1)X 2  - 

i(M- 1) 	- 

(x2) 
2 	e22 

(4.35) 

The last expression of w implies that we can approximately evaluate the 

posterior mean E(92  y) from (4.30) performing only one numerical integration. 

We have therefore provided a simpler alternative method for the estimation of 

the Poisson means of the hierarchical model. Furthermore, form (4.35) allows 

a direct comparison with some of the EB approaches presented in Chapter 2. 

Remember that for the Leonard (1976) EB estimator in (2.32), the shrinkage 

coefficient CL is given in terms of 2 = Ell, (y , -9 )2 
by 

CL = mm {(m - 1)X 2 , i}, 	 (4.36) 

and Morris (1983) assumes a multiplicative adjustment term 	to the above 

shrinkage proportion, to obtain the coefficient CM in (2.35). The difference be- 



tween w" and the shrinking coefficient C, which can be either CL or CM,  is 

X 	
(m+1) 12 

	

(m+1) {(m +1), 2 } _(X2) 	erX 

\2 I 	 y {(m +1),X2} 

where ..\ equals 2 or 4 for Leonard's or Morris' estimator respectively. This sug-

gests, as shown in Figure 4.1, that the EB estimates provide more radical shrink-

ages for relatively small values of X 2 , that is when the observations are close to 

each other. On the other hand, as X 2  increases, indicating an increase in the 

dispersion of the data, the shrinking coefficients converge to the same value. The 

sign and magnitude of the difference between w and C as 5(2 approaches its 

limits, is explained by the asymptotic behaviour of each coefficient in the limiting 

cases. 
Clearly, as a consequence of the restriction in (4.36), the EB shrinkage coeffi-

cient lies within the interval (0, 1), or (0, for Morris' adjusted version. The 

parameter w never exceeds 1, unlike CL or CM in the EB estimators to which we 

need to impose certain constraints in order to lie in the unit interval. In fact w 

lies in the interval (0, EE)• The lower bound is attained when X 2  - oo, since 

from (4.34) we have 

* 	 1 ii 	
-1 fl)(2 u(m+1)e_du 

hmw = lim <i— _k 2  i 
\2 J fX2 u(m_1)e_udu 

F{ 1 (m+1)+1} 	1 
=Ox 	2 	 =Ox—(m+1)=0. 

F{(m+1)} 	2 

In the limiting case that X 2  approaches the origin we have 

1 (
1
2 

— 	1  15~ 2
u(m+1)e_udu 

lim w* = urn 	—X2
kz 	J fX2u(m_1)e_udu 

I f ()e2dv 
= hm < 

k 2 -+,o iX2f0x2 ()m+l) e_dv  

which results in an indeterminate 2  form. We proceed applying 1'Hospital's rule 

twice to obtain 

I (m+ 1)— (12)2 

limw*= lim 	 2 
(m + 3) - (1i2 )) 

m+l 

m+3 

Therefore, for small 5C2 values the shrinkage proportion approaches the ratio !Th 

which asymptotically tends to 1 as m gets large. 
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4.3 Analytical approximations for the Poisson/log-
normal model 

We will now consider an approximate Bayesian analysis for the Poisson/log-

normal model (4.1a). The analysis is based again on a normal approximation 

to the marginal density of the data and the procedure is similar to that of the 

preceding section. However, the absence of conjugacy in this formulation implies 

that supplying analytical forms of inference is even more difficult than before, 

and that the use of numerical methods will be required at an earlier stage of the 

analysis. 
According to model (4.1a), we replace the first stage gamma prior of the 

Poisson means 9, i = 1,... , m in the preceding section, with a log-normal distri-

bution, having p and a2  as parameters. As mentioned earlier this is equivalent to 

allowing the natural logarithms of the parameters 01,92,... , 9,, to be indepen-

dently and identically normally distributed with common mean P and common 

variance a 2 , that is yj = log(9) N(ji, a2 ). The hyperparameter a 2  expresses 

the variability within each -yj  = 1og(0), and thus large values of it indicate a low 

belief in the prior estimate M of 'y. At the second stage of the prior hierarchy we 

assume independent flat uniform hyperprior distributions for jt and a 2  over their 

domains, (—oo, oo) and (0, oc) respectively. 

Using the notation introduced earlier in this chapter, model (4.1a) implies 

that the posterior density for the vector of the Poisson means 0, conditional on 

t and a2  is given by 

p(0y,,a2 ) cx f(yI) 7r(0I 
IL, a2 ) x 

19'e °i 1 	( cx  fl I 

	

	—exp _a_2(log9j 
- 

1)2 

.1L 	j! 	9 	I 
M 	 Im 

cx rl (0r1) exp L 	{_ Oi - a_2 (log o, - )2}], 	(4.37) 

where Oi  > 0, i = 1,... , m. In terms of yj = log(91 ), we can write 

ph'ty,ii,a2) cx f(yI-i) 7r('y i,a2) 7r(,a2 ) 

cx fi [exp {'yiyi - e'} exp 
I — 21 

 Or-2(_Y, - 

el cx exp [ 	I 7iYi - 	- a_2(7j - )2}] 	(4.38) 

where -oo < 'yj < 00, i = 1,... , M. Clearly the posterior density in (4.37) 

or (4.38) does not assume any known form. Therefore the calculation of the 

M. 



unconditional posterior expectation relies on integration of a nonclosed function 

of 0, in addition to averaging with respect to the posterior distribution of the 

hyperparameters p and a 2 , i.e. 

E(OIy) = f 0 p(Oy) dO = N 0 p(OIy, /.L, 0.2) 	oily) dp 

4.3.1 A linear approximation to E(Oily) 

We will now attempt to simplify the above calculation. According to the model, 

the prior mean and variance of 9, i = 1,... , m, are given by and 0 in (3.2). In 

Chapter 3 we derived a linear approximation to the conditional posterior mean 

of 92  given and 0, that being the BLP. If we let E(02 1 y , 6, ) denote the approx-

imated conditional posterior mean, we can write 

= (1 _p)yi  + e 	 (4.39) 

where, from (3.15) 

E(92) 	 (4.40) 
[) var(02 )+E(92 ) 	 q+ 

Notice that the above result holds exactly for the conjugate Poisson/Gamma 

model, providing the exact linear form (4.6) for the posterior mean. 

To obtain the unconditional approximate posterior expectation of 9,  denoted 

hereafter as E(02 1y), we need to average (4.39) with respect to the posterior 

density of the hyperparameters and 0, i.e. 

= I z E(Oi ly, 6, 0) p(6, 0 1 y ) ddq 

= 	
1'1(1 - p)y + p} p(, I) ddq5 

= E{(1 - p)Iy}y + E(pIy) 	 (4.41) 

E(peIy) 	 (4.42) p*)yj + 	
E(ply) 

where p is the posterior expectation of p, i.e. 

p* = E(ply) 	 (4.43) 

and all the expectations are taken with respect to the posterior distribution of 

(, ), or equivalently the posterior distribution of p. 



There is a direct correspondence between p in (4.43) and the shrinkage pa-

rameter w in the Poisson/Gamma analysis of the preceding section. Here again, 

p* gives the magnitude of shrinkage of the MLE towards the direction of the ratio 
E(py) 
E(ply) 

The next step is to obtain the posterior density of 	q5). We will consider 

the parametrisation in (3.2), that is = 	= e (e a2 - i). In doing 

so we need only alter model (4.1a) by assigning a hyperprior distribution to the 

parameters (, ) rather than to (, 0r2 ). We take e and 0 to be independently 

distributed according to vague uniform priors over (0, oc), i.e. ir(e, q$) cx 1. Then 

their posterior distribution will be given by 

(e I) cx  f(yIe 0) 7r  (6, 0) 

f(yI,c 5) 

where f(y, q) denotes the marginal density of the data given the hyperparam-

eters 6 and 0 . Obtaining this marginal density requires integrating 0 out of the 

joint conditional density of (y, 0). According to the model, the latter is 

f(y, 0I, ) = f(yIO) ir(OIe, ) 
m 10y1_9. 1 

O( 
	L yj! 	

-exp {_ . ,j_2 (log  ei  - ri 
defined for y and 0 being rn-dimensional vectors of nonnegative integers and posi-

tive reals respectively. The above form implies an intractable integral with respect 

to 0, meaning that the marginal density of the data, and hence the posterior of 

the hyperparameters (, ), can not be derived in closed analytical form. 

4.3.2 Normal approximation to the marginal data distri-
bution 

To tackle this problem we will assume a normal approximation to the marginal 

distribution of y, as we did earlier with the conjugate model. The exact first 

two marginal moments of Y2  are derived in (3.20) and (3.21) as E(}) = and 

var() = + 0. If we let A = + q, the normal approximation is 

Yi 
iid 

N(e,A), 	i=1,... ,rn, 	 (4.44) 

and therefore the marginal density of y is approximately given by 

f(yI, A) cx 	IA-exp {_A_1(Y - e)2}] 

	

cx Aexp {_A_1 1(Yi - e)} 	 (4.45) 



for y = (yi,... , ym)" where y2  are nonnegative integers, and 0 < e < A < oo. 

The prior distribution on (, q) is invariant to the reparametrisation (, A), and 

consequently the hyperprior density of (, A) is 

r(,A)ocl. 	 (4.46) 

Therefore, from Bayes' theorem and using (4.45) and (4.46) we have that the 

joint posterior distribution of the hyperparameters (, A) is approximately 

(e Aly) oc  f(y, A)  ir(e,  A) 

	

oc Aexp {_A_1 E (Yi-  )2} 	 (4.47) 

which, by decomposing (y, - ) to {(y2 - - ( - )}, can be also written as 

p(, AIy) oc A ex1-2A  'S - A_1m( - ) 2} 	 (4.48) 
2 

where S is the sum of squares corrected for the sample mean. We will now 

use the joint posterior density of and A given in (4.47) to derive the shrinkage 

proportion p appearing in the approximate posterior mean (4.42) of O.  This can 

be expressed in terms of and A as 

p* =E(py) =E W O  
=E(). 

We first attempt to obtain the posterior density of using the bivariate trans-

formation 

0<p<1 	 (4.49) 
e<A<oo. 

Then, by the theory of transformations of multivariate random variables, we have 

that 

Pp,A(P, Ay) = Pe,A(e Aly) IJI 

where J denotes the Jacobian determinant, given by 

f 	\ 
Iäp axi 

J = det 	) = det ( 
	

= A. 

\ 	x/ 

nil 



Hence the joint posterior density of (p, A) is approximately given as 

( 	 m 
p(p,Ay) 	

+1expj1yi - 
PA)' 	(4.50) 

i=1 

0 < p < 1, < A < oo. The derivation of the posterior expectation of p 

requires to integrate A out of the joint posterior density of (p, A) and then average 

with respect to the marginal posterior of p, i.e 

PS 

E 
= 	- I y = f [ p p(p, AIy) dAdp 	(4.51) 

( 	

\ 	1 

I 	j 

which is a complicated task due to the form of p(p, AIy) in (4.50). 

4.3.3 Approximate E(Oi ly) based on conditional expecta-
tions 

An alternative way to derive p5  is to obtain the posterior expectation of p = 

conditional on the hyperparameter A and then average the conditional mean with 

respect to marginal posterior distribution of A, that is 

P5 = E x  {E(pA, y)}. 	 (4.52) 

We first calculate the conditional posterior density of p given A from the joint 

posterior p(p, Aly). Notice that working as for (4.48), the joint posterior in (4.50) 

can be written as 

p(p, Aly) oc A'exp (_A_ 1s) exp {_Am (p - 

0 < p < 1, < A < oo, where S is again the corrected sum of squares. If we 

ignore the terms not involving p, it follows that 

2) 

P(PIAY)cxexP{_Am(P_ ) I ,  
showing that the approximate posterior distribution of p given A is normal with 

mean and variance (Am)', truncated to the interval (0, 1), that is 

(A  Am) I  
0<p<1. 	 (4.53) 

We now give the following lemma regarding the moments of a truncated nor-

mal distribution. 



Lemma 4.2. Suppose that X is a truncated normal random variable. More 

specifically, we allow X ' N(ji, 0 .2 ) subject to the constraint a < X < b. Let 

f(.), F(.) denote the probability density function (p.d.f.) and the cumulative 

density function (c.d.f.) of X respectively, and f0(.), F0 (.) the p.d.f and the 

c.d.f. of an unrestricted normal variable. Then the following results hold (e.g. 

see Johnson, Kotz and Balakrishnan, 1994). 

The c.d.f. of X is given by 

o, 	if 

F(x) 
- F.(x)—Fo (a) 

~ 
- F0(b)—Fo(a)' if a < X 1 1, 	

b; 

 ifx>b 

and thus, its p.d.f. is 

	

Mx) 	fora <Xb; 
f 	

- F0 (b)—F0 (a)' 1 0, - 	otherwise. 

Also, the first moment of X is given by 

E(X) = i_a2')) 	aX <b, 	 (4.54) 

and if we let 0() and (.) denote the p.d.f and c.d.f of a standardised normal 

variable respectively, the above can be written as 

, (\ - ' (=& 

	

E(X)— 	''\ 	
/ 	'f'k 	

) 
	 (455) 

or 	 or 

Finally, the second moment of X will be 

E(X2) = A 2 +,g2 {i 
- (b + it) f0 (b) - (a + u)f0(a) 

} 	

(456) 
F. (b) -  F. (a) 

or in terms of the standardised normal distribution 

1— a  

	

E(X2) = ,. 2  + a2 { 	(±L) 	- 	 ( )  NA  
(J±) 

	(4.57) 
( a 

a 	 a 

Using the above results we can now derive the approximate conditional poste-

rior expectations of i and 
. 

According to the approximation (4.53), the former 

is equal to the first moment of a normal N 
(, ) 

distribution truncated to the 

interval (0, 1), and hence is given from (4.55) of Lemma 4.2 as 

0 	A-19 

E(pI,y) = E 
(lAY) 

Ai 	- 

A 	 i 	m(_y( 
I.' 

(4.58) 
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We also notice that E (cIA ,  y) is equal to A E ( . I A,  ) and therefore is given 

by the second moment of the truncated normal N (, ) distribution multiplied 

by A. Thus, from (4.57) we have that 

f2 
E(peIA,y) = E (jAY) 

92 

X  -  9  ) — 'D  ( — 

A   
A2 Am 	

VTIM- 

( +v._\  ( .41m )   =A' 12 + 	I I )I

-

(( 4.59) 

Remember that, as indicated in (4.42), the ratio 	provides the point 

towards which our estimate E(Oily) shrinks the MLE. Our approximate analysis, 

leading to the conditional expectations (4.58) and (4.59), suggests that this point 

approaches the data sample mean as m, the number of Poisson parameters, tends 

to infinity. However, it can be different than 9 when m is small. This is in 

agreement with our conclusion about the shrinkage behaviour of the EB posterior 

mean in Chapter 3. 
To obtain the unconditional approximate posterior means of p and pe we 

must average the conditional expectations in (4.58) and (4.59) with respect to 

the posterior distribution of the hyperparameter A. We first derive this posterior 

using the approximate joint posterior distribution of (, A) given in (4.48). We 

have 

p(AIy) 
= J p(, Ay) d 

0 

and approximately 

A 

p(Ay) oc I Aexp 
1-2

iA'S - A_1m(e - )2} d 
Jo 	2 

oc Ai exp {__i} f 'm(e - V) 2 } d. 

The integral in the last expression can be written in terms of the cdf of a normal 

N(, ) variate, denoted as F (. ; , ), and therefore the posterior density of A 
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is approximately 

p(Ay) cx vi exp 	 } 
( A) !  

{_ -'s _ {i' ; 	- F o; 
,m 	( 	m) 	m 

A" 
cx AA(M-1)exp 1-2 _is H F (A; , 

	

/ 
- F (0; , - } 

\ 	7n) 

or, in terms of the cdf of a standardised normal variable 

A 	

{   -  	
(4.60)p(Ay) cx _(m_1) 

	

1_ 	

_{ 	}( 	) 	
I( 	

)j  

where 	A <00. 

We can finally obtain our approximation to the posterior expectation of the 

Poisson means 0, 02,... , 9m, using the linear estimator (4.41), where the uncondi-

tional posterior expectations of pand pe are calculated by appropriate averagings 

as indicated in (4.52), with E(pIA,y) ,E(pA,y) and p(Ay) given in equations 

(4.58), (4.59) and (4.60) respectively. 

4.4 Summary and conclusions 

In this chapter we have considered a hierarchical Bayes approach for the analysis 

of Poisson models. Two hierarchical formulations were considered, one being the 

Poisson/Gamma first stage conjugate structure, and the other the Poisson/log-

normal model. - 

The hierarchical nature of both settings implies that analytically explicit ex-

act solutions cannot be obtained. We have therefore attempted to derive a full 

Bayesian solution employing analytical approximations. To obtain the uncondi-

tional posterior means of the Poisson parameters O,  i = 1,... , m, in the Pois-

son/gamma model, we consider a normal approximation to the marginal distri-

bution of the data, using the first two moments of the exact negative binomial 

marginal distribution. A further approximation based on the x2  statistic is em-

ployed in order to obtain a simpler expression for the posterior mean. The imple-

mentation of the approximate method requires the use of numerical integration, 

at the final stage of its evaluation. The approximate posterior mean suggests that 

the hierarchical Bayes analysis results in an estimator that shrinks less than the 

EB methods, in the case where the estimated parameters are close together. 

For the Poisson/log-normal model we have assumed vague prior distributions 

for the log-normal hyperparameters, and a linear approximation to the posterior 

mean conditional on these hyperparameters is considered, following the derivation 
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of the BLP for the Poisson/log-normal model in Chapter 3. Furthermore, a nor-

mal approximation to the marginal nonclosed distribution of the data is assumed, 

employing again the exact mean and variance. The unconditional posterior means 

of the parameters 92,  i = 1,... , n-i, are still given in mathematically intractable 

form. A more simplified form can be reached, considering the results conditioned 

on the normal variance, but again substantial numerical work is needed. However, 

the form of the conditional estimator of O, i = 1,... , m, suggests that, for small 

or moderate n-i, the approximate posterior mean does not shrink the observed 

values towards the sample mean. 

It is important to stress here that the approximate analysis and results for 

the Poisson/log-normal model in this chapter rely on two approximations: that 

of the linear estimator to the posterior mean and a normal approximation for the 

marginal distribution of the data. Moreover, the computation of the resulting 

estimators rests on several implementations of numerical integration techniques. 

An alternative is to use Monte Carlo integration methods for the estimation of the 

Poisson means in our hierarchical model. These are the subject of the following 

chapters of this thesis. 



Chapter 5 

Simulation methods for the full 
hierarchical Bayesian analysis 

5.1 Introduction 

As emphasised in Chapter 4, the full hierarchical analysis of the Poisson/log-

normal model, can only be approximately performed in analytical form. Aiming 

at the exact analysis, we may alternatively attempt to tackle the inferential prob-

lem using Monte Carlo integration techniques. The basis of the Monte Carlo 

integration methodology is to obtain a sufficient number of simulations from the 

distribution of interest and then estimate the required characteristics of that 

distribution using the generated values. In the Bayesian context the distribu-

tion under consideration will be the posterior distribution of the parameters of 

interest, and therefore we want to use the simulated values to obtain the char-

acteristics of the posterior distribution, such as moments, quantiles, confidence 

intervals, marginal and predictive densities etc. Simulating directly from the pos-

terior distribution might be difficult, or even impossible when the distribution of 

interest does not appear in a closed analytical form. Several Monte Carlo meth-

ods have been proposed to deal with such cases, including importance sampling 

and Markov chain Monte Carlo, which we will discuss in the present chapter. 

5.2 Importance sampling 

In Chapter 3 we employed the importance sampling technique to estimate the 

conditional expectations of the Poisson means E(9 1 l, a2 , y), i= 1,... , m. The 

idea was to express the conditional posterior density of -y j  = log(02 ) as 

p('yiIi,a2,y) 
OC 
 '(-) W(7), 	i = 1,... 
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where 

I() = exp {'y(y1 + 1) - 

and 

W(7) = exp{- a 2 ('yj  - p)2 - -Yi 

Notice that the quantity I('yj)  is proportional to the density of 'y 2 , where Oi  follows 

a Ga(y2  + 1, 1) distribution. We therefore approximated the conditional posterior 

expectations by averaging over the generated values e' W(y), j = 1,... , N, 

where the yij  variates were simulated such that j = 1,... , N, independently 

follow a Ga(y1  + 1, 1) distribution. 

We will investigate whether we can apply a similar approach to the estimation 

of the unconditional posterior means in the full hierarchical Poisson/log-normal 

model. We will consider both prior specifications for the hyperparameter 0-2 , that 

is the flat uniform prior distribution over the interval (0, oo) and the Inv- 2 (v, )) 

prior distribution. 

5.2.1 Model (4.1a): Uniform hyperprior on a 2  

Under model (4.1a) we can write the joint posterior density of the parameters 

= (yi, 72,... , y)T, p and a2 , as 

p('y,p,a2Iy) oc f(yy,p,cr) 7r(yIp,a2) 7r (pa2) 

 A)2  oc (a) 	exp I 	{ jy - e - a_2(7j - 

where _oo<7 	 . . . <oo,fori=1,,m,—oo<p<ooand0<a2 <OO.NoW,if 

we decompose ('yj - p) to ('y - - (p - '), and after some rearrangement, the 

above can be written as 

M 	 m 
EM 

cc (a) 	exp I E-yi (yi +l) - Eel e- i=C  

exp 

 {

1 _a_2(7i - exp {_a2m (IL - ) 2} (5.1) 

We must integrate both p and a 2  out of the joint posterior distribution (5.1) in 

order to obtain the unconditional posterior density of the vector parameter -y. 

We first derive p(-y, a 2  y) as following: 

00  p(,a2y) 
= 	00 

p(,p,2Iy) dp, 
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and substituting (5.1) in the above we obtain 

m 	m 
p',a2 I y ) cx (

a2)_m expj(yi+1)—e i1 	 j1 

exp_2 )2 f exp 	
1

1—a 2  m(—)2 } d. 

I 	 00 j=1 	J 	— 

The integrand involved in the above expression is proportional to a normal N(7', ¶) 

density, where ' = m1 > 'yj , and therefore the joint posterior density of y  and 

a2  is given by 

	

t m 	
m 

ph', aIy) cx (a 2)_m 1) exp 	yj(yj + 1) - 	e 	e- 2 	Yi 

	

i=i 	 i=1 	I 
exp {_a_2 >ey - 

e1 (a2)m1) exp {__2 	h' - )2} 	(5.2) 

where 
M 

I()=expj(yj+1)—e L 	(5.3) 

	

j=1 	 j=1 	J 
We now obtain the marginal posterior density of y  by integrating a 2  out of (5.2). 

This will give 

= 00 

ph' ay)da2 

00 

cx Ih') e'' f 0 

1 (a2)(m) exp {__a_2 	h' - )2} da2. 

Using the variable transformation y 2  - E1(YiY) 1 
- 	 2 	

, we have that 
L7  

fM = Ih') 	
- )

2} 

j=1 

f 00 

(r2 ) -(+1 ) exp(_r 2 ) 

We notice that the integrand in the above expression is proportional to the prob- 

ability density function of an inverse chi-square random variable r 2 , given in 

Appendix A, with (m - 3) degrees of freedom. Thus, the integral will be equal 



to the reciprocal of a normalising constant not involving y, and therefore the 

marginal posterior density of -y  is given by 

M 

p(1y) o I() 	
_)2} 	 (5.4) 

_—I(-y)W(y),E Wn 	 (5.5) 

where 

M 	
-(m-3) 

W(y) = 	{ ei - )2} 	, 	 (5.6) 

and I(-y) is given in (5.3). Then, in principle, we can use the idea introduced in 

Chapter 3 to obtain the posterior expectation of a function of y.  We first notice 

that the quantity 1(y) is proportional to the joint probability density function 

of m independent random variables 'Xi, 'Y2,.. , 'Xm, where for i = 1,... , m, e'" 

follows a Ga(y2  + 1, 1) distribution. Hence, the posterior expectation of 02 = 

is given by 

E(0y) = fRrn 
e7i p(yy) d1 

= C-1 f e W() 1(y) dy, 

with c = fRm W(y)I(y)dy being the normalising factor. It follows that 

- fm W(-y) 1(y) dy 
E(0Iy) 

- fRm W(y) 1(y) dy 

- Ej{eW(y)} 
- Ej {W(y)} 

(5.7) 

Here, E1  denotes the expectation with respect to the distribution whose proba-

bility density function is given by 1(y) multiplied by the appropriate normalising 

constant. We will refer to this normalised density as the importance density, and 

to the function W(y) as the weight function. Then, under the conditions stated 

in Section 3.4, as N -+ oc, expression (5.7) leads to the following importance 

sampling approximation to the posterior mean of 0: 

	

E's  (0) 
- 	e"'u W('y) (5.8) 

	

- 	1 W(y) 

where 

Im 
W(y) = 	 - )2} 	 (5.9) 

j=i 
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with 	= m 1  Em, 'y, and e, j = 1,... , N being independent realisations 

from a Ga(y 2  + 1, 1) distribution. 

The estimator given in (5.8) is of practical use only when it can be computed 

with a finite standard error of simulation. Geweke (1989) shows that the stan-

dard error of simulation for the importance sampling estimator of E(9 2 1y) can be 

estimated by 

{e - E'(ety)}2 W2(y)] 
(5.10) 

Ej= 1 

where W(y 3 ) and the simulated values Gj = &"i are obtained as for (5.8). Geweke 

(1989) also shows that (5.10) will be finite when the posterior expectations of 

W(-y) and (&')2 W(y) are finite, that is when 

	

E{W(y)Iy} = 
fRM 

W(y) p(y) dy <00 	 (5.11) 

and 

	

E {(ei)2W()y} fIRRM e 2-yi W(y) P(71Y) d7 < 00. 	(5.12) 

The above conditions are satisfied when the corresponding integrands are bounded. 

Thus, using (5.5), we require the functions 

M 	2 

w2( [ei 	
- )21

- (m-3) 

 ] 

exp 

 {

M 	 in 

i(Yi + 1)— 	e} (5.13) 

and 

-(m-3)1 2 

{e W()} 2  I() = [ee_1i 11(i - )
2} 	

] 
(m 	 in 	) 

exp 	'y(y + 1)— el 	(5.14) 

to be bounded. Unfortunately, this is not always true, as the functions (5.13) 

and (5.14) may tend to infinity for relatively large negative values of the variates 

	

Since the values are generated in such a manner that 	Ga(y2  + 1, 1), 

large negative values of 	are likely to occur when small observations y2  are 

involved, implying that the estimator (5.8) will probably behave poorly for data 
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sets containing many zero observations. The behaviour of functions (5.13) and 

(5.14) may be improved when the sample size in is large, although any possible 

improvement will still be reduced or even eliminated by the presence of many 

zero values in the data. 

5.2.2 Model (4.1b): Inv- 2 (v, A) hyperprior on a2  

We will now consider model (4.1b). In this case we assume that the hyperparam-

eter a2  has a scaled inverse chi-square prior distribution with parameters v and 

A and therefore, the joint posterior density of the vector parameter y and the 

hyperparameters j.t and 0,2  is now written as 

p(-y,p,a2Iy) 
C)C f(ya) 7r(11p,a2 ) 7r (a2 ) 

2
(a 	exp 	- e -aI m 

- 

1) 	/ 	VA 
(a2 )_ 	exp \ l 2a2) 

where —oo <yj < oo, i = 1,... ,m, —00< jt <00 and 0< a2  <00. Working as 

for (5.1) the above expression becomes 

p(yjL,a 2 Iy) o (a2)_P+1 ) I(y) 

1 	
( 

-2  {VA + >1: - ) 2}] exp 	
2

_a 2  m (i - )2}, (5.15) exp [ 2a 	
j1 

where I('7) is given in (5.3). To derive the marginal posterior density of y  we 

integrate (5.15) over t and 0r2  successively. The first integration is similar to that 

leading to (5.2), and hence it will give 

p(,a2y) 
= 	00 

p(,p,a2 Iy) d 

(_m+1) 
oc I1(^t) e -> 1 	(a2) 	2 

	

exp[_a 2  {VA + 	
- 

Then, integrating with respect to a 2  we obtain 

i 00  

*vI) = I 	p('y,a2 Iy) da2  
Jo 

r 2 (_1'+m+l) 	1 1 2 
(a) 	2 

 exPL_a {vA+ 
0 

(5.16) 

M 

da2 . 
j=1 
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If we now apply the variable transformation 
u2 - { 

	_'(  y ) 2  
- 	2 	 , the above 

is written as 

M 

	
_(+?fl_1) 

p(y) =I() 	{v+(i_)2} 

00 	 1 	2 (u) 	2
1) 

exp(—u ) du, 

and since the integrand involved in the above expression is proportional to the 

probability density function of an inverse chi-square distribution with (v + m —1) 

degrees of freedom, the marginal posterior density of y is given by 

p('yly) oc '(Y) e1" 

_,'v+m-1 

M 

	 2 

{1IA + 	
- yERm 	(5.17) 

We notice that, as in Subsection 5.2.1, the posterior density of the vector param-

eter -y can be expressed as the product of the importance density I(-y) and a new 

weight function U(-f), i.e. 

I('y) U('), 	 (5.18) 

where I('y) is the same as in (5.3) and the weight function takes the form 

"n
2  

U() = 	
{ 	

+ 	( i - 
	 . 	( 5.19) 

Then, in correspondence with the argument leading to estimator (5.8), the im-

portance sampling approximation to the posterior mean of O i  is now given as 

e' i U(y) 
E'5(OiIy) = 
	j_1 	. 	

(5.20) 
N U(y 3 ) 

where 

	

m 	 ' 2 

U() = e= 1 i 	+ 	— ) 21 7 	
(5.21) 

j=1 

with 'y,,  j = 1,... , N, simulated in such a way that the variates &",... , 

form an independent sample from a Ga(y 2  + 1, 1) distribution. 

The assumption of a scaled inverse chi-square prior distribution for the vari-

ance cr2 , rather than a uniform one in the previous subsection, has led to a different 

weight function for the importance sampling estimator. As a consequence, the 

required conditions for the estimates obtained with (5.20) to be computed with a 
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finite standard error of simulation, now imply that we need the posterior expec-

tations of U(-y) and (e7*) 2 U(y) to be finite. Thus, we require that the functions 

u2(7) 1(7) 	and 	{e ''U(7)} 2  1(7) 	 (5.22) 

are bounded. The form of U(-y) in (5.19) implies that the functions (5.22) may be 

unbounded for extreme negative values of the components of vector y. However, 

for all practical purposes, we can choose the degrees of freedom ii, of the prior 

distribution of a2 , in such a way that both functions (5.22) are bounded within 

the support of the importance density, that is for the entire range of values that 

can take in practice. Unfortunately though, when a large number of zeroes has 

been observed in the data, implying that contains large negative elements, the 

estimates resulting from (5.20) may exhibit considerable fluctuations even after 

a very large number of simulations as illustrated in the oilwell data example, 

analysed in a subsequent subsection. 

5.2.3 Example: Audit data 

We demonstrate the methods described in Subsections 5.2.1 and 5.2.2 using the 

two real data examples introduced in Chapter 3. The audit data set, presented 

in Section 3.6, concerns the number of errors found in audit samples of 9 different 

accounts. The observations, given in Table 3. 1, are 0, 0, 0, 1, 1, 2, 2, 3, 6. Here we 

will adopt a full hierarchical Bayesian approach and follow the methods presented 

in Subsections 5.2.1 and 5.2.2. According to the two models (4.1a) and (4.1b), 

we assume that each of the observations Y1 , Y2 ,... , Yg , independently follows 

a Poisson distribution, given its respective mean Oi, , 9m We set = 

log(9j, and we assume that the variables "y, 72,• , 7m, are independently and 

normally N(u, a 2  ) distributed. Then, for the second stage of the prior setting, 

we consider two separate cases in correspondence to the two models (4.1a) and 

(4.1b). We first assume that i and a 2  are independent and they both follow 

vague uniform distributions over (—oo, oo) and (0, oo) respectively. For the second 

case we assume that A is again uniformly distributed, while a 2  independently 

has a Inv-X2 (v, A) distribution. In the latter specification we assigned a crude 

informative prior to the prior variance a 2 , by taking ji = 10 and A = 0.45. The 

choice of these values was based on matching the mean of the scaled inverse 

chi-square distribution to a data driven estimate of a 2 , after fixing v equal to 10. 

The estimates from 3 implementations of the importance sampling algorithm, 

with N = 2 x ion, 105  and 107  simulations respectively, are reported. We notice 

here that N = 101  will normally be a prohibitively high number of simulations, 

in terms of computer time cost. 
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Table 5.1: Importance sampling estimates of the posterior mean for the audit 
data set when model (4.1a) is assumed. The standard error of simulation (5.10) 

is given in brackets. 

EIS (Oi l y ) 

par. yj  N=2x104  N=105  N=107  

01  0 0.665 (0.068) 0.515 (0.015) 0.477 (0.011) 

92 0 0.450 (0.114) 0.467 (0.056) 0.456 (0.022) 

93 0 0.504 (0.033) 0.511 (0.041) 0.483 (0.018) 

94 1 1.232 (0.039) 1.097 (0.026) 1.043 (0.026) 

95 1 1.272 (0.066) 1.139 (0.034) 1.071 (0.016) 

96 2 1.800 (0.091) 2.853 (0.652) 1.791 (0.028) 

97  2 1.762 (0.061) 1.761 (0.070) 1.793 (0.023) 

98 3 2.515 (0.082) 2.556 (0.071) 2.582 (0.029) 

99  6 5.116 (0.150) 4.986 (0.114) 5.178 (0.033) 

The results obtained assuming a uniform prior for the variance parameter 

a2  and using the estimator (5.8), are presented in Table 5.1. The first block of 

columns contains the results with N = 2 x 104  simulations, whereas the second 

and third blocks give the estimates when N = 105  and N = 107  simulations were 

involved respectively. The numbers in brackets provide the associated standard 

error of simulation, as the latter is computed using (5.10). Comparing the param-

eter estimates in the 3 blocks, it is obvious that even a number of N = 105  sim-

ulations is inadequate. The standard error of simulation is still remarkably high. 

The value 0.652 that the standard error takes for the estimate of 96,  is indicative 

of a presumed unbounded weight function. Figure 5.1(a) displays the trace of 

the posterior mean of 0 1  as the simulation procedure progresses. The dotted line 

corresponds to the correct estimate of the posterior mean, as this is derived by 

the methods suggested in later sections. These estimates are 0.50, 1.09, 1.81, 2.59 

and 5.14 when y is equal to 0, 1, 2, 3 and 6 respectively. Clearly, Figure 5.1(a) 

shows that the importance sampling estimator does not seem to provide an accu-

rate result, even after N = 106  simulations. Furthermore, the sharp fluctuations 

appearing in the graph, suggest that the method is not reliable. The numbers in 

the last block of columns of Table 5.1 show that after N = iOT  replications of 

the algorithm, the simulation standard error is still considerable, implying that 
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Figure 5.1: Trace of E'(9ily): (a) under model (4.1a); (b) under model (4.1b). 
The dotted line corresponds to the correct estimate of the posterior mean. 

the parameter estimates are not yet adequately close to the correct values. In 

fact, comparing the importance sampling results with the correct estimates given 

above, we notice that there still seems to exist some disagreement of a magnitude 

ranging from 0.01 to 0.05. This may suggest that, for this model, the importance 

sampling method that we have used fails to provide accurate estimates for the 

model parameters under any reasonable number of Monte Carlo simulations. 

Table 5.2 contains the results of the analysis of the same data set, assuming 

an Inv- 2 (1O, 0.45) prior distribution for cr2  and using the method described in 

Subsection 5.2.2. These results manifest that, under the light of stronger prior 

knowledge, the importance sampling estimator performs better, but still requires 

a remarkably high number of replications in order to provide the correct esti-

mates. This is also illustrated in Figure 5.1(b), where the importance sampling 

estimate of the posterior mean of 0 1  seems to coincide with the correct value after 

around 3 x 10 1  simulations, but still exhibits some variation during the rest of 

the simulation process. Similar checks for the estimates of the other model pa-

rameters indicated that obtaining an accurate and reliable result might take more 

than 106  simulations. For this case the correct estimates are 0.94, 1.29, 1.71, 2.19 

and 3.97 for y = 0, 1, 2, 3 and 6 respectively. Clearly, the importance sampling 

estimator yields the correct estimates after 10 7  replications, as also indicated by 
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Table 5.2: Importance sampling estimates of the posterior mean for the audit 
data set when model (4.1b) is assumed. The standard error of simulation (5.10) 
is given in brackets. 

par. y2  N = 2 x 104  

EIS (Oi ly) 

N = 105  N = 107  

01  0 0.957 (0.048) 0.925 (0.035) 0.944 (0.003) 

02 0 1.032 (0.081) 0.976 (0.018) 0.938 (0.004) 

03  0 0.914 (0.037) 0.974 (0.015) 0.940 (0.004) 

04  1 1.230 (0.057) 1.316 (0.036) 1.296 (0.007) 

05  1 1.254 (0.093) 1.292 (0.026) 1.291 (0.006) 

06 2 1.818 (0.053) 1.822 (0.037) 1.719 (0.007) 

97 2 1.489 (0.205). 1.739 (0.030) 1.709 (0.009) 

98 3 2.169 (0.150) 2.108 (0.134) 2.193 (0.015) 

09  6 4.021 (0.170) 3.914 (0.182) 3.987 (0.012) 

the low standard error of simulation in the last column of Table 5.2. However, as 

stressed before, the time cost for such an intensive computer simulation process 

is normally prohibitively high. 

5.2.4 Example: Oilwell discoveries data 

In this example the data, also considered in Section 3.7, record the number of 

oilwell discoveries in Canada for 36 months during the years 1953-1970. Two 

monthly readings, in March and September, are reported per year. The observed 

numbers of discoveries are displayed in Table 3.3. Clevenson and Zidek (1975) and 

Leonard (1976) propose two different shrinkage estimators for the estimation of 

the mEan number of discoveries, while George, Makov and Smith (1994) consider 

a hierarchical Bayesian approach and a Markov chain Monte Carlo solution to 

the problem. Their approach differs from ours in that, rather than the conjugate 

Poisson/gamma formulation that they adopt, we consider the Poisson/log-normal 

modelling that we used for the audit data example. We also follow the same 

procedure as before, with the only alteration being that the hyperparameters for 

the Inv-X 2 (v, A) prior distribution on or 2  are now equal to ii = 10 and A = 0.46, 

determined in the same manner as in Subsection 5.2.3. 

We attempted 3 separate implementations of the importance sampling algo- 
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Table 5.3: Maximum value of importance sampling standard error of simulation 
for the oilwell discoveries data set after 10 Monte Carlo simulations. 

par. yj  Model (4.1a) Model (4.1b) 

01 -019 0 0.201 0.196 

020 - 029 1 0.161 0.356 

030-033  2 0.351 0.227 

034 , 035  3 0.545 0.228 

036 	5 	0.362 	0.228 

rithm, with 105 ,  106  and 107  simulations respectively. Unfortunately the outcome 

was disappointing, as even with a number of 10 7  simulations the method provided 

very bad results, with the posterior mean estimates exhibiting severe instability 

and the standard error of simulation taking unusually high values. Table 5.3 dis-

plays the maximum value of the standard error of simulation for the estimates of 

the Poisson means, after 10 7  simulations, and for both the distributional assump-

tions for the variance parameter a 2  at the second stage of the prior specification. 

It is obvious that the method is not reliable, even when such a large number of 

replications is used. Furthermore, the assumption of an informative prior for a 2  

does not seem to offer considerable improvement, implying that the nature of 

this particular data set necessitates the use of a different approach. This suggests 

that the importance sampling technique that we presented in Subsections 5.2.1 

and 5.2.2, based on the particular importance function that we proposed, cannot 

be regarded as a general-purpose method, and should not be used without taking 

into consideration the nature of each particular problem. 

5.2.5 Importance sampling for marginal densities 

Until now we have used the importance sampling method for the estimation of 

posterior means. We can employ a similar procedure to derive the marginal 

posterior density of any single component of the parameter vector y,  say p(7k I) 
k = 1,... , m. We will describe the method for the case that a scaled inverse 

chi-square prior distribution is assumed for the variance parameter a 2 . We let 

Y-k denote the vector y without the kth element, that is 

=(,... ,7k-1,7k+1, 	m ) T . 	 (5.23) 
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We also use the notation >jOk 
for the summation excluding the k indexed element 

of a sequence. Then using (5.18), the marginal posterior density p('ykIy), for fixed 

'Yk, is given by 

P(fkly) = fRM-1  
p(fk,kIY) dy_i  

- fm-1 exp{y,(yj + 1) - e llk  exp{>1k 'y(y 2  + 1) - >liOk e'} U(-f) d'y_k 

- 	 fm U('7) I(7) d'7 

- fim_1 I(yk) U('7) (_k) d'y_ 

- 	fm U(f) I(-y) d 

E {I(7k ) U(7)} 	 (5.24)  
- 	Ej {U(y)} 

Here, U('y) is given in (5.19) and I('yk)is given by 

	

I(-yk) = exp{'yk(yk + 1) - Ole 1 	 (5.25) 

The expectation E 1  in the denominator is taken, as before, with respect to the 

joint distribution of m independent random variables 'fl, 'Y2, 	, Ym where e'' 

Ga(y2  + 1, 1). However, it is important to notice that in the numerator, 7k is 

fixed and therefore, the expectation E corresponds to the distribution of the 

(m - 1) remaining random variables 'y,... , ' yb-i, 7k+1,•• , 'y,, where again e 

Ga(y1  + 1, 1). 
Hence, we can estimate the marginal posterior density of Yk  using the impor-

tance sampling estimator 

pIS(71y) = Ei=1 	U(y) 	
(5.26) 

where 

= e'' {vA + 	(
jj - )2} 

and 

= 	,k-1,j,7k,k+1,j,••• ,mj)T 

being independently simulated such that e" 	Ga(y2  + 1, 1) for i k, with 'Yk 

kept fixed across the simulations j = 1,... , m. Also, each -y is generated in the 

same manner, but without fixing 'yb. 

We notice that under an appropriate Inv- 2  (v, A) hyperprior distribution for 

j2 , the importance sampling approximation (5.26) can be computed with a fi-

nite standard error of simulation. Then, we can transform back to the marginal 

posterior density of 9k,  using 

p(OkIY) = e 	P('YkIY). 



It is important to stress here that the importance sampling estimates described 

in this chapter may still be unreliable after a very large number of Monte Carlo 

simulations, even when the conditions for a finite standard error of simulation are 

met. In practice, the standard error of simulation may be considerably large for 

any practically feasible number of simulations as shown in the examples of Sub-

sections 5.2.3 and 5.2.4 and also demonstrated in Geweke (1989). Furthermore, 

as emphasised earlier in the present chapter, the efficiency of the method often 

depends on the data sample size or relies on selecting an informative scaled inverse 

chi-square prior distribution for a 2 , with the appropriate degrees of freedom. Our 

empirical experience suggested that, often, in the absence of a sufficiently large 

sample, we need to increase the prior information included in the model. This 

results in less flexible modelling, and implies that the satisfactory performance of 

the method requires that, for the prior setting we should also consider the techni-

cal characteristics of the method, rather than clearly reflect our prior knowledge 

and beliefs. 
The difficulties that we have encountered in implementing this particular im-

portance sampling method for the full hierarchical analysis of the Poisson/log-

normal model, may suggest that a different importance density should be chosen, 

depending on the specific data set and prior setting, or that an overall different 

approach should be adopted. 

5.3 Markov chain Monte Carlo methods 

In Section 5.2 we investigated the implementation of an importance sampling 

technique for simulating from the distribution of interest, that is the posterior 

distribution of the Poisson parameters 01, 0,... , 0m Importance sampling is a 

noniterative simulation method, in the sense that it only employs a sufficiently 

large sequence of generated values from a single distribution. The method requires 

that this distribution is an adequately good approximation to the target posterior 

distribution, otherwise it leads to poor estimation. 

When no such approximating distribution is available for simulation, we can 

sample from an appropriate Markov chain that converges to the desired posterior 

distribution. The idea is to create a Markov process whose stationary distribution 

is the distribution of interest, and run this stochastic process for long enough, so 

that the distribution of the current draws is adequately close to the stationary 

distribution. We can then sample the converged process to obtain the inferences 

of interest. This is an iterative procedure, since it consists of drawing values from 

an iterated sequence of distributions which eventually converges to the desired 
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target distribution. The method, which has become known under the general 

term Markov chain Monte Carlo (MCMC), originates in the context of statistical 

physics in Metropolis et al. (1953) and was generalised by Hastings (1970). Ge-

man and Geman (1984) introduced a special case of the more general methods 

presented by the previous authors, namely the Gibbs sampler, again in the con-

text of statistical physics. Gelfand and Smith (1990) and Gelfand et al. (1990) 

showed the potential of MCMC methodology, and mainly that of the Gibbs sam-

pler, in conventional statistical problems. Smith and Roberts (1993) and Tierney 

(1994) discuss its implementation to Bayesian computation, while also providing 

the necessary theoretical framework. Recent books from Gelman et al. (1995), 

Gilks, Richardson, and Spiegeihalter (1996) and Carlin and Louis (1996) provide 

a thorough presentation of the MCMC methodology. 

5.3.1 Markov chain theory 

Before we further discuss the construction of an appropriate Markov chain for 

simulation from the distribution under consideration, we provide a brief account 

of the main aspects of the theory of Markov chains, that will be used later in this 

section. 
Suppose we have a discrete time stochastic process {X 0 , X1 , X2.. .. }, 

with 

the property that given the history of the process, the future development may 

depend on the present, but does not depend on the past. Formally, we can write 

P(X +1  E AIX = s, X_ 1  E A_ 1 , X,_ 2  E A .-2, - . . , X0  E A 0 ) = 

P(X 1  E AIXTI = s), (5.27) 

for any sets A 0 , A l , A 2 ,... 	C S and s E S, where S is the state space 

of the process. A stochastic process with property (5.27) is known as a Markov 

chain. Here, for presentation purposes, we will assume that S is a discrete state 

space. Analogous results hold for general state spaces. We also assume that the 

probability P(X +1  =y lXn = x) for any x,y E S does not depend on n, in which 

case the chain is said to be homogeneous. Then, we can define P(x, y), the one 

step transition kernel, or probability, of the chain as 

P(x,y) = P(X+1 =y lXn = x), 	for all x,y e S. 	(5.28) 

For all x E 5, P(x, 
.) 

= P(. IX) defines a probability distribution over S, and 

thus, P(x,y) ~! 0 for all x,y E Sand EY  P(x,y) = 1,Vx EE S. 

The n-step transition probability, that is the probability that the chain is at 

state y in exactly n steps given that the system starts in x, is denoted by 

p(x,y) = P(X = yIXo = x), 	 (5.29) 
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and subject to the regularity conditions stated below, P' (x, y) will converge to 

a unique stationary distribution ir(.), also known as the invariant distribution, 

which does not depend on n or x. This means that the Markov chain will even-

tually 'forget' its starting position. 

The conditions for the distribution of X n  to converge to the unique station-

ary distribution ir(.) are that the Markov chain {X 0 , X1 , X 2 ,. . . } is irreducible, 

aperiodic and positive recurrent (Roberts, 1995). Irreducibility implies that all 

states of the Markov chain communicate with each other; aperiodicity ensures 

that the chain does not oscillate between some set of states in regular times; and 

positive recurrence ensures that there exists a stationary distribution ir(.), such 

that if the initial probabilities of the chain being in state 0, 1, 2,... are given by 

ir(.), then these probabilities remain unaltered at all subsequent times. Formally 

we have the following definitions. First we use to denote the time of the first 

return to state x, i.e. T xx  = min{n > 1 : X,-, = xIXo = x}. 

Definition 5.1. The chain X n  is called irreducible if for all states x, y E S, there 

exists n > 1 such that P(x, y) > 0. 

Definition 5.2. The chain X, is called aperiodic if for all states x E 8, the 

largest integer t, such that all the times at which the chain returns to x are 

multiples of t, is equal to 1. 

Definition 5.3. An irreducible chain Xn  is said to be recurrent if for all states 

x ES, P(T) <oo = 1. 

Definition 5.4. An irreducible recurrent Markov chain X n  is called positive re-

current if for all states x E S, E(T) < oc. Equivalently, as stated in Tierney 

(1995), X,, is positive recurrent if there exists a stationary probability distribu-

tion ir(.) for X, that is if there exists ir(.) such that 

	

>ir(x)P(x,y) = 7r (y), 	for ally E S. 	 (5.30) 

X 

Definition 5.5. A Markov chain {X 0 , X 1 , X2,.. 
. } is called time reversible if it 

is positive recurrent with invariant distribution ir(.) and 

	

ir(x)P(x, y) = 7r(y)P(y, x), 	for all x, y E S. 

From Definition 5.4 it follows that if X, is a positive recurrent Markov chain, 

its stationary distribution is the unique probability distribution ir(.) satisfying 

(5.30). Furthermore, if Xn  is also aperiodic, we say that Xn  is ergodic, and the 

following theorem holds (Tierney, 1994). 
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Theorem 5.1. For an irreducible ergodic Markov chain X, with transition prob-

abilities P(x, y), 

P(x,y)—+7r(y) asn—*oo,Vx,yES 

let h(x) be a real valued function and hN = h(X,) be the so-called 

ergodic average of h(x). Then, if E 1 {h(x)} < oo, where the expectation is 

taken with respect to the stationary distribution 7r(.) of the chain, 

hN -~ E,r {h(X)} as n -+ oo with probability 1. 

The second result of Theorem 5.1 is equivalent to the law of large numbers 

and allows us to estimate consistently various characteristics of the invariant 

distribution ir(.), using the dependent realisations of the Markov chain. 

5.3.2 Markov chain Monte Carlo 

We now discuss how we can implement the theoretical properties of Markov chains 

outlined in the preceding section, to simulate from a distribution of interest. 

Suppose that we wish to generate a random variable X, having a probability 

distribution ir(x). As already mentioned, if we can neither sample ir(x) directly, 

nor we can use a noniterative simulation scheme, we may attempt to create a 

Markov chain {X0 , X1 , X2,..
. } 

having ir(.) as its stationary distribution. We 

could then sample the later stages of the chain, after we have allowed it to run 

long enough to ensure that it has converged to its invariant distribution. 

The construction of such a Markov chain first requires that the conditions of 

irreducibility and aperiodicity of the chain are met, as formally shown by Smith 

and Roberts (1993) and Tierney (1994). The condition of positive recurrence in 

Theorem 5.1 follows from the fact that we already know that ir(.), the stationary 

distribution of the chain under cosideration exists, that being the distribution of 

the random variable X. Therefore, from Definition 5.4, the chain is positive 

recurrent, with its unique invariant distribution ir(.) satisfying (5.30). Then, we 

only need to define the chain transition probabilities P(x, y) involved in (5.30), 

and given that the chain is irreducible and aperiodic, from Theorem 5.1 we deduce 

that P' (x, y) - 7r (y) as n -* 00. That is, we only need to find the transition 

kernel P(x, y) of the Markov chain and allow a sufficient number of transition 

steps to ensure that P(x, y) has converged to ir(). The problem of defining a 

transition kernel P(x, y) to satisfy (5.30) is facilitated by using reversible chains. 

If we can obtain a probability P(x, y) such that the chain has the property of 

reversibility, i.e. 

ir(x)P(x, y) = ir(y)P(y, x), 	for all x, y E S, 	(5.31) 
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then P(x, y) gives the desired transition kernel. This follows from the fact that 

summing both sides of (5.31) over x will give (5.30). Hence, the remaining ques-

tion is how to construct a transition kernel P(x, y) that satisfies the reversibility 

condition (5.31). The following section deals with this problem. 

5.3.3 The Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm, as given by Hastings (1970), is a generalisa-

tion of the technique proposed by Metropolis et al. (1953). Chib and Greenberg 

(1995) provide a simple and intuitive description of the algorithm and a detailed 

presentation of the method and the underlying theory can be found in Tierney 

(1994). 
We now return to the problem of the construction of the transition probabil-

ity P(x, y) in such a way that the reversibility condition (5.31) holds. For the 

Metropolis-Hastings algorithm we update the irreducible and aperiodic Markov 

chain described in the preceding section as follows: when X, = x we generate a 

candidate variate y from a proposal distribution q(x, y) and accept the new value 

with probability c(x, y), which will be defined later. Then, the probability that 

the Markov chain moves from state x to state y, when x 0 y, is given by 

	

P (x, y) = q (x, y) a(x,y), 	ifx0y. 

However, there is also a non-zero probability that the chain remains in state 

x, which can be expressed as the probability of rejection of all other possible 

candidates y, that is 

P(x,x) = 1— 	q(x,y)a(x,y). 
yOx 

By merging the two above cases, the transition probabilities of the Markov chain 

are given by 

P(x,y) =q(x,y) a(x,y)+ 

I(y = x) 11 - 	q(x,z)a(x,z)}, 	Vx,y e 8, (5.32) 

z54x 

where I(.) denotes the indicator function, taking the value 1 when y = x and the 

value 0 otherwise. We want the reversibility property (5.31) to be valid when the 

transition probabilities are given by (5.32). Clearly, property (5.31) is satisfied 

when x = y. If x y, using the first term of (5.32) we notice that the reversibility 

condition can be written as 

	

,7r (x) q(x,y) a(x,y) = 7r (y) q(y,x) c(y,x), 	Vx,y E S with x 	y. 	(5.33) 
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Now, if we define the acceptance probabilities a(x, y) to be 

{ 

ir

7r(y)q(y,x)) 
' 

a(x,y)=min 1, 	
(x,y)j 	

(5.34) 
(x) q 

then (5.33) is satisfied, since if a(x, y) =
7r(y)  q(y,-)  , then c(y, x) = 1 and thus 

(5.33) holds. Also, if a(x, y) = 1, then a(y, x) = and again (5.33) 

follows. 
The described method is known as the Metropolis-Hastings algorithm, and 

we have demonstrated that it produces a Markov chain which has the target 

distribution ir(x) as its stationary distribution. The transition kernel of the chain 

is given in (5.32), where q(x, y) is a proposal distribution and a(x, y) in (5.34) 

is the acceptance probability for the candidate points which are simulated from 

q(x, y). Although we have presented the method using Markov chains with a 

discrete state space, the same results hold for general state chains, meaning that 

X may also be a continuous random variable. The proposal distribution q(x, y) 

may depend on the current point X and, in theory, it can be any probability 

distribution from which we can simulate. However, different forms of q(.,) may 

lead to faster convergence of the Markov chain to the desired target distribution. 

We can now give an outline of the Metropolis-Hastings algorithm. Suppose 

that we want to simulate a random variable X from a distribution of interest 

denoted by ir(.). We proceed as follows: 

ALGORITHM 5.1: THE METROPOLIS-HASTINGS METHOD. 

1. Initialise with a starting point x °  

. For t = 1, 2,3.... (until convergence): 

Sample a candidate point Y from a proposal distribution at time t, 
q (.X(t_1)) 

Calculate the ratio r = 	'(
Y) q()((t_ y)

,X(t. 1 )) q (YX(t_1)) 

(y 	with probability rnin(1, r) 
Set X(t) 

=  X(t-1) 
	otherwise 

The method requires the calculation of the ratios r and the ability to draw 

random variables from the proposal distribution q(•, .). Therefore, for efficiency 

reasons, the proposal distribution should be chosen to be easy to evaluate, yet 

to lead to rapid mixing, that is it to move rapidly around the support of ir(.). 

114 



In practice, it is often difficult to satisfy both of these requirements simultane-

ously, and therefore a trade-off between efficient evaluation and rapid mixing is 

preferred. 
We notice that when the proposal distribution is symmetric, that is when 

q(x, y) = q(y, x) for all x, y, e.g. when a normal distribution centred at the 'old' 

point is chosen, the acceptance probability simplifies to c(x, y) = min 1 1 
leading to the Metropolis algorithm, which is the method originally proposed by 

Metropolis et et al. (1953). 

5.3.4. The Gibbs sampler 

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm. It 

was first presented by Geman and Geman (1984), and since the work of Gelfand 

and Smith (1990), it has been widely used in a vast range of statistical problems. 

Together with the entire MCMC methodology, the Gibbs sampler in particular has 

greatly facilitated Bayesian computation. The papers from Gelfand et al. (1990) 

and Zeger and Karim (1991) have contributed towards this direction. Casella and 

George (1992) present a clear explanation of the method. 

Consider now that we want to simulate a vector X = (X1,... , Xm )T from 

an rn-dimensional distribution of interest, denoted by ir(.). The Metropolis-

Hastings algorithm, can still be applied as presented in Subsection 5.3.3, by up-

dating the whole vector X in a single block. However, we may also update the m 

components of X separately, one at a time, or in groups. Suppose that we update 

a single component X2  of X at a time, following the natural order i = 1, 2... , m. 

Then, each iteration of the Metropolis-Hastings algorithm comprises m updating 

steps. We let X_ 2  denote the vector X without its ith component, that is 

X-,:- (Xi ,... ,X_i , Xii) ... , Xm). 

At step i of iteration t we generate a candidate variate Y from a proposal distri-

bution 

qj (Yj jX (t) ,... X(t) X(t_ 1 ) X(t1) 	 = qj (Yi1X 2(t_1) , x"' ) ) i-i' i 	' 	i+1 	' 	M 

where x' represents the vector of all components of X, except X 2 , at their 

current values, i.e. 

	

X1 = (X(t) 	X(t) X(t-1) 	x1)) 
1 '• 	' 	i-i' 	j+1 

following from the fact that (i - 1) components have already been updated at 

step i. Then, the acceptance probability (5.34) for the ith component of X at 
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iteration t becomes 

(Yj jX1t_") qj (Xi(t-')I yi ,x1)) '1  min 

- 	'ir (X(t-i) lx(t-1)) qi (Yj jXj't-1),X1)) 5 
leading to the so-called single-component Metropolis-Hastings algorithm. If Y1  is 

accepted, then we set Xi  = Y, otherwise Xi = Xt_ 1 ) .  Notice that only the 

ith component of X is changed at step i of each iteration of the algorithm. 

The distribution ir(Xj IX_j) is known as the full conditional distribution of 

X2  given all the remaining components of X. The Gibbs sampler is a single-

component Metropolis-Hastings algorithm which updates the ith element of X 

at time t according to the full conditional distribution of X, that is it employs a 

proposal distribution of the form 

qj (YiIxt_1), X1)) = r (Yi IX('- l ) ). 	 (5.36) 

Therefore, substitution of (5.36) in (5.35), implies that the Gibbs sampler always 

accepts a candidate point generated from the full conditional distribution of the 

component of X that is currently being updated. This means that at iteration 

t, each element X2  is updated with a value generated from its conditional distri-

bution , given the latest value of the other components, which is the iteration t 

value for the already changed elements of X_1 and the iteration (t - 1) value for 

the remaining elements. The algorithm can be outlined as follows: 

ALGORITHM 5.2: THE GIBBS SAMPLING METHOD. 

Choose starting values x° = (x (°) 	x?) 1 	' 
	

. ' 

For t = 1, 2,3.... (until convergence): 

At iteration t, take as input the point X(t-1) 

Generate X( t)  from ir (XI IX t_ 1) ,... ,  XM 

	

Generate Xt) from it (x I x (t) 	X(t) X(t_ 1 ) 	X(t_ 1  
1 '" ' 	i-i' 	i+1 '• ' 	in 	

) 

Generate 	from it (Xi I XI(t ), 	x1) 

Set x(t) = (Xt),... , x ) ) 

The updating order for the m components of X does not need to be fixed. More- 
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over, not all the components have to be altered at each iteration. This strategy 

would lead to a blocking scheme. 
Clearly, the method requires that the full conditional distributions of all the 

elements of X can be fully specified and are available for sampling. Under mild 

conditions (Besag, 1974), the specification of all full conditional distributions 

uniquely determines the full joint distribution, and hence all marginal distribu-

tions. Then, as demonstrated for the more general Metropolis-Hastings method, 

under the conditions of irreducibility and aperiodicity, as t -+ 00, 
(X

(O 
1 1 ... , x) 

will converge in distribution to X ir(X). Hence, for i = 1,... , m, Xi  converges 

in distribution to X - 7r(X 1 ) as t - oo, and therefore a sample from all the 

marginal distributions ir(X) is available without any further effort. This can be 

used to obtain estimates of various characteristics of the distribution of X. We 

notice here that the dependence of the sample will not usually be a problem, 

since applicability of Theorem 5.1 implies that we can still use ergodic averages 

to estimate expectations of real valued functions with respect to ir(.). 

In the case that the estimation of the marginal probability density function 

7r(X2 ) 
is of interest, we may exploit the known form of the full conditional distri-

bution 7r(X2  X_) to obtain an efficient estimator. Since the probability density 

function of X2  can be expressed as ir(X) = f 7r(XlX_ 2 )ir(X_i) dX_, we can 

estimate it using 
N 

	

= 	ir (Xi JXO1) 	 (5.37) 
j=1 

where N is the size of the simulated sample. Gelfand and Smith (1990) suggest 

this estimator and they refer to it as the 'Rao-Blackwellised' estimator, since based 

on the Rao-Blackwell theorem, it offers some variance reduction when compared 

to the more usual kernel estimation method. Similarly, if the inference concerns 

the mean of the marginal distribution ir(Xj, we may use the estimator 

	

E (x) = 	(Xi ix). 	 (5.38) 

It is important to stress that both estimators (5.37) and (5.38) require knowledge 

of the normalised form of the full conditional distribution of the parameter of 

interest. When this is not available, a kernel estimator and an ergodic average 

can be employed respectively. 

5.3.5 Implementation issues 

The implementation of the Gibbs sampler raises various practical issues regarding 

the choice of the starting values of the algorithm, the simulation from the full 
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conditional distributions, the convergence of the Markov chain, the dependence 

of the generated sample, and the use of the output. 

As long as the chain is irreducible, the selection of the initial values is not 

important, provided that we can run the chain long enough so that it converges 

to the target distribution. However, when the aim is to obtain adequately good 

estimates after a relatively small number of iterations, as would the case be if a 

frequency properties study was to be conducted, it would be useful to start the 

chain at initial points which are not too far from good guesses of the parameters 

under consideration. On the other hand, Gelman and Rubin (1992) favour the 

use of multiple chains and therefore suggest that the starting points should be 

widely scattered through the support of the target distribution, so that all main 

parts of the distribution are represented in the simulations. In either case a crude 

method for obtaining some starting values of the distribution of interest should 

be available. 
The theoretical convergence of the constructed chain to the target distribu-

tion ir(.) does not guarantee that we will obtain a variate from ir(.) after a finite 

number of iterations. Detecting convergence to the stationary distribution of the 

Markov chain is one of the main problems with MCMC implementation and is 

still an active area of research. Some theoretical results are available (e.g. Smith 

and Roberts, 1993), but they are usually difficult to apply. In practice, the assess-

ment of the convergence of an MCMC algorithm relies on the statistical analysis of 

the output from the chain. Several convergence diagnostics have been proposed, 

including the following: Geweke (1992) suggests a method based on time series 

analysis to test convergence of ergodic averages; Gelman and Rubin (1992) use 

multiple chains to compare the variances between and within the chains; Zeliner 

and Mm (1995), for the case of the Gibbs sampler, propose a statistic which ex-

amines the agreement between two versions of the joint parameter distribution, 

which are based on the conditional distributions of a suitable partition of the 

parameter vector; Raftery and Lewis (1992) suggest the use of an approximately 

independent sample from a single long chain to estimate the variance of a com-

puted characteristic. It is also widely suggested to check the autocorrelations in 

the output to detect a possible strong dependence between successive simulations. 

There are advantages and disadvantages with all the convergence diagnostics 

that have appeared in the literature. Cowles and Carlin (1996) provide a thor-

ough comparison of several methods in their review paper. In most applications, 

the convergence of an MCMC algorithm may also be informally assessed by vi-

sual inspection of the chain output. In practice, the problem is how to determine 

the so called burn-in period, that is a number of, say k iterations, after which 
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the algorithm produces a variate that has approximately the distribution of in-

terest. Gelfand and Smith (1990) monitor the density estimates of components 

of the parameter vector, produced by k-batches of independent implementations 

of the method. They compare these estimates for increasing values of k, and 

they suggest stopping at that k value, for which the densities appear to be in-

distinguishable. The same idea can be employed by plotting ergodic averages of 

functions of parameters of interest and visually checking convergence. As Gelman 

and Rubin (1992) suggest, it is again useful to start a number of chains at overdis-

persed points and monitor their output simultaneously, in order to check whether 

and when all chains produce the same output. It is also important to assess the 

convergence of several, if not all, the distributions of the model parameters. 

Once the length k of the burn-in period has been specified, we can discard 

the first k simulated values to diminish the effect of the starting position of the 

chain, and sample from the target distribution. Then, a question that often 

arises is how to deal with the dependence of the sampled values. As mentioned 

before, this dependence will not affect most inferences, due to the exploitation of 

ergodic results. Therefore, if a sample of size N is required, we can use the last N 

simulations of a single long chain. This approach was strongly backed by Geyer 

(1992). Nevertheless, Gelman and Rubin (1992) propose the use of the last 

values produced by each of 1 independent chains. However, if an independent N-

sample is desired, one can either take the k +1 iteration of N independent chains, 

as suggested by Gelfand and Smith (1990), or utilise a long chain to sample every 

rth simulation draw after the burn-in period, for N times. If r is large enough, 

an approximately independent sample will be obtained. 

Finally, as far the Gibbs sampler is concerned, an additional implementation 

issue occurs when one or more of the full conditional distributions cannot be spec-

ified in closed form, and therefore simulation from them is not possible. If one 

does not choose an overall different MCMC algorithm, various approaches have 

been proposed to overcome this problem. One idea is to use rejection sampling to 

simulate from the conditional distributions of nonclosed form. Zeger and Karim 

(1991) and Carlin and Gelfand (1991) employ rejection sampling techniques with 

normal, t or split-t envelope functions. Wakefield et al. (1991) suggested a ratio-of-

uniforms version of the rejection algorithm, and Gilks and Wild (1992) developed 

a popular adaptive rejection algorithm, forming an envelope function by intersect-

ing the tangent or secant lines at pre-chosen points of the density of interest, as 

long as the latter is log-concave. An alternative approach is considered by Ritter 

and Tanner (1992), who recommended a generalised inversion method (e.g., De-

vroye, 1986), utilising a discrete approximation to the full conditional cumulative 
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density function, obtained from a grid-based evaluation of the full conditional 

probability density function. Another alternative of increasing popularity con-

sists of combining the Gibbs sampler with other MCMC techniques, an approach 

that leads to the so-called hybrid MCMC algorithms (Tierney 1994). 

5.4 Gibbs sampling for the Poisson/log-normal 
model 

We will now investigate how we can implement the MCMC methodology to the 

full Bayesian hierarchical analysis of the Poisson/log-normal model (4.1a), or 

(4.1b). We will first consider the Gibbs sampling algorithm. Zeger and Karim 

(1991) discuss the application of the Gibbs sampling approach to the analy-

sis of generalised linear models, while George, Makov and Smith (1994) and 

Gelfand and Smith (1990) illustrate the method in the case of the conjugate 

Poisson/gamma formulation. Carlin and Gelfand (1991) also include an analysis 

of a Poisson/log-t model, in addition to the conjugate case. All these authors 

employ the Gibbs sampler combined with various rejection sampling schemes, 

wherever this is necessary. Damien, Wakefield and Walker (1999) adopt an auxil-

iary variable technique to analyse a Poisson/log-normal model using Gibbs sam-

pling. Tierney (1994) considers the implementation of Metropolis-Hastings and 

Gibbs sampling methods, including hybrid MCMC techniques, in the case of 

Poisson/gamma and Poisson/log-normal models. 

5.4.1 Derivation of the full conditional distributions 

As stressed in Subsection 5.3.4, for the implementation of the Gibbs sampler we 

first need to determine the full conditional distributions of all the unknown model 

parameters. In the Bayesian context, the distribution under consideration is the 

posterior distribution of the parameters of interest and thus, for the Poisson/log-

normal models (4.1a) and (4.1b), the Gibbs sampler requires that we provide the 

full conditional posterior distributions of the Poisson means 9, 92,... 9, or the 

equivalent for 'yi, 'Y2,•.. , -y, and those of the hyperparameters p and a 2 , given 

all the other parameters. 

Full conditional distributions under model (4.1a) 

We first derive the full conditional posterior distributions of the parameters for 

model (4.1a), under the parametrisation -y i  = log(92 ), for i = 1,... , in. In Sub- 

section 5.2.1 we gave the joint posterior density of the parameters y, p and a 2  
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as 

p(-y, , a2Iy) 	(a2)_m exp [ 
	

{ 7iYi - e' - ' 0,_2(7 - 	 ( 5.39) 

M 	 m 

cx (a 2)_m exp t>Yi - 	
- lcr_2 	(yi 

exp —cr2m 
	 (5.40) 

Then, from (5.40) follows that 

p(7,a2 ,y) cc exp { la_2m (it - )2} 

implying that, given -y and cr2 , the full conditional posterior distribution of i  is 

normal with mean ' and variance or  m, i.e. 

ui 
	/ a2 \ 

	
(5.41) 

Also, from (5.39) we can see that the full conditional posterior distribution of a2  

can be written as 

	

 tj  p(0,2 1,,y) cx (2)_m exp 	
2

_a_2 	1(i 
- )2} 	(5.42) 

and therefore, the full conditional posterior distribution of is given by 

m 
- it)2 	

1 	1(j - it)2 E m 	 ex 	 } (5.43) 

a 	
cx 

2 	

(_it)2} 
2 	

{_ 	
a2 

{ 

and hence, given -y  and p the the full conditional posterior distribution of 

is chi-square with m - 2 degrees of freedom. We write 

- it) 2  
a2 	

,it,YX-2 (5.44) 

Clearly, (5.44) can be used to obtain variates from the full conditional posterior 

distribution of a2 , as will be described in a subsequent section. 

As far as the full conditional posterior distribution of the parameter vector 

y is concerned, (5.39) implies that given the hyperparameters p and a2 , the 

parameters 7i, 72,• 'y, are independent, and their full conditional posterior 

distribution is given by 

p(7i i,a2 ,y) cx exp { 7iYi - 	- a2(7j - 2 	= 	 m. (5.45) 
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Full conditional distributions under model (4.1b) 

In the case that a Inv- 2 (v, )) prior distribution is assumed for the variance 

parameter a 2 , independently from a uniformly distributed p, model (4.1b) implies 

that the joint posterior density of (y, p, a 2 ) is now given by 

( m 	m 
p(p,a2y)oc(a2)_( 2 

+1) 	 - 
1_2(_)2}

exp 
j=1 	j=1 	 j=1 

	

exp {_
a_2m ( 

- )2} exp 	 (5.46)  ~ 20r2 
It is easy to verify that the full conditional distributions of p and 'yj, i = 1,... , m, 

are the same as for model (4.1a), and therefore are given by (5.41) and (5.45) 

respectively. However, as far as a 2  is concerned, the full conditional distribution 

in (5.42) now becomes 

	

( 1 i'.\ + 	('Yi - /L) 2 ) 
p(a2I,p,y) 	 exp1_ 	a2  

and transforming for 	 we obtain  

P  (v\ + a2 - 	

IL, 

1 1 A + :1e - 

{ v.A + 	- i) 2 	 1/A

} 

2 	

exp  
a 	 a2 	

} 2  

It is therefore obvious that the full conditional posterior distribution of 

given above, is chi-square with ii + ,m degrees  of freedom. That is, 

v.A + E:1e - 

U2 
y, /L, Y '' Xp+m 	 (5.47) 

5.4.2 Sampling from the full conditional distributions 

The full conditional posterior distributions of p and a 2  are derived in standard 

form, and therefore simulation from them is straightforward. For both model 

specifications, the full conditional posterior distribution of the mean hyperpa-

rameter p is the normal distribution given in (5.41), and sampling from it re-

quires little effort. To generate a 2  variates according to the chi-square distribu-

tion (5.44) or (5.47), we can draw a random variable, say Y, from a X2 or 

X2,+. distribution,  and set a2 = or a2 vA+('Y-I)2 respectively. 

In the applications throughout this thesis, in order to simulate a x2  variate, we 

utilise the general result that the X 2  distribution is a special case of a Ga(, ) 

distribution. 
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However, as shown by (5.45), the full conditional posterior distribution of the 

Poisson means does not take a standard form, and therefore we cannot sample 

from it directly. Several suggestions of how to overcome this problem appear in 

the papers cited in the beginning of Section 5.4. We will present an alternative 

approach, which leads to approximate simulations from (5.45). Also, based on 

this approximate method, we will present a hybrid MCMC technique to obtain 

the desired simulations. 

5.4.3 A mixture approximation to p(6j, 2,  y) 

The full conditional posterior distribution of the components of the parameter 

vector -y is given in (5.45). Equivalently, from the definition of the model (4.1a), 

the full conditional posterior distribution of O i  = elti given /2 and a2 , takes the 

form 

p(9I /2,a2 ,y) oc 9i  e 0  exp {- 
	

-2 (logo, -  )2 - log  0i 1 	(5.48)% 

for i=1,... ,m. 
The form of the probability density function (5.48) suggests that we may 

attempt to approximate the full conditional posterior distribution of Oi with a 

mixture of a gamma and a log-normal distribution. The idea is to obtain an 

accurate approximation, by matching the three first moments of the original and 

the approximate distribution. In order to be able to do that, we first need to 

compute the moments of the nonclosed full conditional posterior distribution of 

Oi  in (5.48). The difficulty in doing so, occurs from the fact that the chosen method 

will have to be incorporated in the iterative scheme of the MCMC algorithm, and 

hence any computationally intensive technique should be avoided. We will discuss 

suitable methods in the next section. 
Once the moments of the original distribution have been obtained, we choose 

the parameters of a Ga(a, b) and a LN(5, r 2 ) distribution, in a way such that the 

mean and the variance of each of these two distributions, are equal to the mean 

and the variance of the original full conditional posterior distribution. This is 

easily achieved by separately solving the following two sets of equations: 

a 
E(OIii,o2,y) - 

- 

a 
var(9I/2,o2,y) - 

- 
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for a, b, and 

E(OjIp,a2,y) = e5TZ  

var(9i,a2,y) = (e T2 ) 2  (eT2 - i) 

for 5 and r2 . This will give 

E2 (OI, a2, 
a= 

var(Oj Ii.t, 0,2 , y) 
(5.49) 

b— 
E(9p,a2,y) 

- var(9 pt, o 2 ,y) 

for the parameters of the gamma distribution, and 

a = log{E(9i,a2,y)} 
- I 

(5.50) 

- log {i + var(Op, 
U2,  Y)} 

- 	E2(9j IL,  a2 ,y) 

for the log-normal part of the mixture distribution. Using the parameters in (5.49) 

and (5.50) we can also derive the higher order moments for the log-normal and 

gamma distribution. The third moment of the log-normal distribution is given 

by exp(36 + r2 ), and for the gamma distribution it is equal to a(a + 1) (a + 2)/b3 . 

We are then in the position to compute the skewness of the two components of 

the mixture approximation to p(O, a 2 , y), generally given for a random variable 

X by 
E(X3) - 3E(X 2 )E(X) + 2E3 (X) 

{var(X) 13/2 

We can therefore obtain the mixing proportion, so that the skewness of the mix-

ture approximation is equal to the skewness of the exact full conditional posterior 

distribution. If we let 0, 3 and 02 denote the skewness of the exact full condi-

tional, the log-normal and the gamma distribution respectively, and if p is the 

mixing weight for the log-normal component of the mixture approximation, we 

only need to solve the equation 3 = p/3 '  + (1 - p)/32 to obtain 

- /3-82 
p_f.) 

Mi - P2 
(5.51) 

We confine p to lie within the unit interval by adopting the convention that p = 0, 

or p = 1, whenever the weight produced by (5.51) is respectively negative or 

greater than 1. Then, to simulate from the resulting log-normal/gamma mixture 

approximation to the full conditional posterior distribution of 9, i = 1,... , m, 
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we sample from a LN(, r 2 ) distribution with probability p and from a Ga(a, b) 

with probability (1 - p), applying the following algorithm. 

Step 1. Generate u e-.'  U(O, 1) 

Step 2. If u < p, generate 0, 	LN(5, r2 ) 

else, generate 0 .-' Ga(a, b). 

We note that, following the above procedure, the use of the mixture approxi-

mation allows a compromise between a log-normal and a gamma full conditional 

posterior distribution for the parameters 0, i = 1,... , m, at each iteration of the 

Gibbs sampling algorithm. 
The remaining question is how to obtain the moments of the exact full con-

ditional posterior distribution of 0. As noticed before, the corresponding prob-

ability density function in (5.48) implies that we do not have a closed analytical 

form for these moments, and thus we must employ either an analytical approxi-

mation, or a numerical method to derive them. Some of the methods that could 

be possibly used are listed below: 

Numerical integration. In theory, this method would provide highly accu-

rate approximations to the exact moments of interest. However, we require 

two numerical integrations involving the density (5.48) and therefore, taking 

into cosideration the high computing time cost of the technique, it would 

be inefficient to combine it with an MCMC scheme. 

Monte Carlo integration. The problem of estimating the moments of (5.48) 

was successfully tackled in Chapter 3, employing an importance sampling 

technique. The method performed remarkably well, provided that the num-

ber of Monte Carlo simulations was sufficiently large. Hence, the computer 

time required for this method to provide accurate results, would again slow 

down the MCMC algorithm considerably. 

Normal approximations. Various analytical methods based on normal ap-

proximations may be used. We need to account for the non-normal shape 

of the full conditional posterior distribution, which is due to the form of the 

likelihood of 9. We suggest a discrete approximation to the normal prior 

distribution of yj = log(O2 ), which relies on matching the first 10 moments 

of the two distributions. 

Entropy based approximations. We investigate the use of a method based on 
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minimising the entropy distance between the exact and an approximating 

density. 

Here, the main concern is acquiring a high degree of accuracy for the resulting 

approximation, under a relatively small computing time cost. Thus, the computa-

tionally intensive nature of the first two methods suggests that they should not be 

used in this task. On the other hand, we expect methods (c) and (d) to perform 

well, without being computationally expensive. The accuracy of the proposed 

methods depends on the values of the observations y2  and the hyperparameters ji 

and 2 involved in (5.48). Due to the iterative nature of the MCMC algorithm, i 

and or 
  

may take rather extreme values in a Gibbs sampler cycle, causing substan-

tial inaccuracies in the outcome of either method (c) or (d). However, empirical 

experimentation suggested that, a combination of the two approaches seems to 

yield good results. Method (c) performs well when the dispersion of the full 

conditional posterior distribution of Oi is small. On the other hand, when the 

full conditional distribution is highly dispersed, this approach provides poor re-

sults, and thus the entropy-based approximation is preferred. The latter leads 

to accurate posterior moments when the variation of the full conditional distri-

bution under consideration is moderate to high, with the exception of the case 

when a zero count is observed in the data. In this situation, method (c) seems 

to perform slightly better, regardless the dispersion of (5.48). In the following 

sections we describe the two approximating methods. 

5.4.4 Discrete approximation to the moments of p(9j1i, 0.2,  y) 

The full conditional posterior distribution of O i  given p and a2  depends on the 

data only through the ith component of y, as shown in (5.48), and therefore can 

be written as 

p(°I A, cr2  y) oc L(9Iy) ir(0), 	i = 1,... , m, 	(5.52) 

with 

L(91 1y2 ) 	 or e 0 , 	i = 1,... ,m 	 (5.53) 

giving the Poisson likelihood for O, and 

	

exp {- a 2  (logO - )2 - iogei }, 	i = 1,... ,m 	(5.54) 

	

being its LN(p, a 2 ) prior distribution. Letting -yj 	log(9j, the prior distribu- 

tion of -yj  is N(ii,  a2 ). 
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We will derive a k-point discrete approximation to the normal prior distribu-

tion of 7j , 
which is easily translated to the corresponding prior of 9. We assume 

that -yj  takes k values 

i=1,... ,rn, j=1,... ,k, 	 (5.55) 

with suitably derived probabilities P3  j = 1,... , k. These probabilities and the 

points b3 , j = 1,... ,k, define a k-point discrete approximation to the standard-

ised normal distribution N(O, 1). Suppose for the moment that we have calculated 

the appropriate probabilities p,, j = 1,... , k, for a chosen grid of k -y ij  points, 

a problem to which we will return later in this subsection. Then, (5.55) means 

that, given ft and a 2 , each Oi  takes the following, denoted as d3 , values 

Oij  = e 	 = d3 , 	 (5.56) 

with approximate prior probabilities P3  j = 1,... , k. We therefore have a k-point 

discrete approximation to the prior distribution of the Poisson means O. 

If we now let qjj,  i = 1,... , in, j = 1,... , k denote the posterior probabilities 

that Oj, = d3 , then Bayes' theorem implies that these posterior probabilities will 

be approximately given by 

qjjc L(9jyj ) 7r*(Oi ), 	i=1,... ,in, j=1,... ,k, 

where L(9Iy 2 ) is the Poisson likelihood in (5.53) and ir*(Oi ) denotes the discrete 

approximation to the prior distribution of O.  Hence, given jt and a2 , we ap-

proximately have that each Poisson mean takes values 9j, = d3  with posterior 

probabilities given by 

- 	d?'e'ip 
qij - (5.57) 

for i = 1,... , m, j = 1,... , k. The above equation defines a k-point discrete 

approximation to the full conditional distribution p(9jp, a2 , y). Employing the 

points d3  from (5.56) and the probabilities qjj , j = 1,... , k from (5.57), we can 

now obtain approximations to the moments of the full conditional distribution of 

9. The rth order moment may be computed as 

k 

E(Ol,a2 ,y) 	>dqj. 	 (5.58) 

j=1  

Discretisation of standard normal distribution 

We can now return to the question of how to derive the k-point discrete approx- 

imation to the standardised normal distribution. This is done by matching the 
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Table 5.4: Moments of even order for the normal N(0, 1) distribution. 

1 	2 	3 	4 	5 

E(Z 2r) 	1 	3 	15 	105 	945 

first 10 moments of the exact and the approximating distribution. For the normal 

N(0, 1) distribution the moments of odd order are equal to zero, while those of 

even order are provided by the equations (e.g., Stuart and Ord, 1994) 

-  
E (Z2r) 

- (

2r)! 
r=1,... ,5, 	 (5.59)  

21  r! 

giving the moments presented in Table 5.4. 

For a symmetrical distribution of a discrete random variable X, evaluated at 

the points b1 , b2 ,... , bk with probabilities P1, P2, .. ,Pk, the corresponding mo-

ments of even order are given by 

E(X2r) 	 r= 1,... 1 5. 	 (5.60) 

We take the points bj  to be equally spaced on a suitably selected grid, with the 

distance between two successive points equal to a fixed value b. Then, due to 

the symmetry of the normal N(0, 1) distribution around the origin we notice 

that we only need to specify the probabilities Po, Pi, P2,• , p, which corre-

spond to the points lying on the non-negative part the x-axis, that is the points 

0, b, 2b,... , --1 b. Clearly, the same probabilities correspond to the the equivalent 

points on the negative axis. This implies that (5.60) can also be written as 

k-i 

E (x 2 ) = 2 

k-i 

E (X 10 ) = 2 

leading to the general form 

k-i 

E (X2r) = 2 	(jb) 2rp,  	5. 	 (5.61) 

Thus, using (5.59) and (5.61) we can match the first 10 moments of the normal 
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N(0, 1) and the approximating distribution by solving the equations 

2 (2r)! 
- 2 	(jb)2rp 

2rr!
, 	= 1,... , 5, 	 (5.62) 

- 

j=0  

to obtain the probabilities P1, P2, 	,p=i and  P0 = 1 - 2 >i p. Choosing to 

match the first 10 moments of the two distributions gives the five equations (5.61), 

each of which produces the probabilities of two points for the discrete distribution. 

These, together with the probability of the point at the origin, provide a discrete 

approximation evaluated at a maximum of k = 11 points. This choice, combined 

with fixing the distance between successive points to b = 0.8, seemed to yield a 

good approximation of this kind to the full conditional distribution of O. The 

distance b does not have to be fixed. In theory, we can calculate it as part of 

the set of equations (5.62), by including an extra equation for r = 6 and keeping 

the number of points to k = 11. However, for all practical purposes, we found it 

easier to assign a fixed value to b. 
As mentioned before, the method that we have presented performs outstand-

ingly when the variation of the full conditional distribution of O i  is relatively small. 

Nevertheless, it does not seem to exhibit the desired accuracy uniformly for all 

, 
3.2 and y values. Since these values may take a large number of extreme com-

binations, due to the iterative nature of the Gibbs algorithm, which may in turn 

lead to a highly dispersed full conditional distribution, we suggest this method 

to be used alternately with an entropy-based approach described in the following 

subsection. 

5.4.5 Entropy based approximation to the moments of 

p(9I a2 , y) 

As before, the aim is to derive approximations to the moments of the full condi-

tional distribution of O,  that is expectations of the form E(9flp, a 2 , y). Employing 

the reparametrisation yj  = log(Oj, these are given by 

	

E (9I,a2,y) 
= J 	

e' 71  p('I,,o,y) d71 
-00

00 

	

= / 	e 	p(yI'y) 7r('yjIp,o 2 ) d'y, 
J-00 	 P(yi) 

for i = 1,... , m, where p(y2I'y) is the sampling density, 7r('yj/, a2 ) is the prior 

distribution of -yj  and p(yt) denotes the marginal density of the observation y. 

Then according to the model specification, using the Poisson sampling density we 
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have that 

E(Ofl,a2,y) =  f
00 	

(I,a2 ) 
 exp 

Am) j! 

- (yj+T)! 
f p(y j +ri) (il,a2) d7 

- Am) yi! -00 

-  
- 

(yj+r)! p(yj+r) 	 (5.63) 
 yj! 	p(yi) 

The above demonstrates that we can obtain the approximate conditional poste-

rior moments E(9I,, a 2 , y), only by deriving an approximation to the marginal 

density of the data. 

An entropy approximation based on an iterative procedure 

We consider the problem of the approximation of the joint marginal density of 

the data in a multivariate setting, which is equivalent to that of model (4.1a). 

We let y = (yl,... , y) denote the data vector and 0 = (9',... , Gm)" the 

vector consisting of the m Poisson means. We also take y = ('y,,... , 'y,) "'  to 

be the rn-dimensional vector with ith element equal to 7i  log(03 ). Then, the 

random variables Yi ,... , Ym , conditional on 9,... , 0m, are distributed according 

to independent Poisson(9 2 ) distributions. In the prior assessment, we assume that 

the vector 'y has an rn-dimensional normal distribution with mean vector denoted 

by /L = (/.L,,... , prE)" 
and covariance matrix C, which is an in x m symmetrical 

matrix with its (i, i) element denoted by c. Both t and and C are assumed 

known, which will be the case in the context of the Gibbs sampling procedure. 

The model can be written as 

Yi I 'y '- Poisson (e'), 	i = 1,... ,m 	
(5.64) 

I 	CIVm(.t,C). 

For the remaining of this section we suppress the dependency on it and and C 

(or jt and a2 ) in the notation, wherever this does not affect our presentation. The 

joint density of y and 'y  is given by 

p(y, -y) =p(yI'y) 7r (-0' 
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where p(I-) is the Poisson conditional density and 7r(y) is the normal prior 

distribution of -y. Thus, from model (5.64), the above gives 

M 	
-1 

p(y,-y) = (27r) 	{n(Y!} IcI - 

m 

exp { yiyi 	

m 

- 	- (-y - )TC_l( - )}. (5.65) 

We consider approximations to (5.65) of the form 

P*(y,-y) =p*( y) p*(Iy), 	 (5.66) 

where p*(yIy) is an rn-dimensional normal Nm (a, G) density, that is 

	

p*(7 1 y) = ( 27r) 	IGI 	exp 1-2 (-1  - a)TG'( - a)} 	(5.67) 

and p (y) approximates the marginal density of the data. We will estimate the 

parameters of the Nm (k, G) distribution by minimising the entropy distance be-

tween p(y,y) and p*(y,_). 

Definition 5.6. We let X be a random variable with density f(x). Then the 

entropy associated with the density f(.), denoted by I,  is defined as 

	

If = 	log f(x)f(x)  dx = E{— log f(X)}, 

and the entropy distance between some other density function h(X) and f(X) is 

defined as 

DI=lh-If = f flog f(x) - log h(x)}f(x) dx 

f f(X) 
E1log 

h(X)' 	
(5.68) 

where the expectation is with respect to f(X). 

Applications of the entropy idea in subjects including information measures and 

construction of general probability models or prior probability settings, appear 

in Lindley (1956) and Rosenkrantz (1989). 
Let us now denote the entropy distance between the approximating density 

p* (y, -y) and the exact joint density of y and -y  by VI (a, G), to express it as a 

function of the parameters under estimation. Then, this can be written as 

VI(,G)__E{log 	 (5.69) I' 
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where the expectation is taken with respect to the approximate distribution of y 

given y, that is the rn-dimensional normal N,,, (a, G) distribution. From equations 

(5.65), (5.66) and (5.67), it follows that the logarithm of the ratio involved in 

(5.69) is given by 

log 	=log P* (Y) +1o{JT(Yi!)} + 1ogC - 1ogGI 

	

p(y,-y) 	 i=1 

- 	 + 	elyi- (_ y - a)TG_l(7 - a) + ( - )TC_1 (7 - ). (5.70) 

We notice that the last two terms of the above equation, can be written as 

- (y - a) G ('y - a) + (y - jt) C (y - 	= 

- tr {G1(7 - a) (y - a)T - Ci (77T -2  A_YT  + 

and therefore, taking the expectation of expression (5.70) with respect to the 

Nm (a, G) density for -y, we obtain 

M 	 m 

VI(a, G) = log p*(y )+log  { n( ! ) }+ logC— iogG _ aTy+ 	i+ 

- tr {G'G - C 1  (G + aaT)  + 2CLaT - 

which gives 

m 	 rn 

VI(a, G) = logp*(y)+log  { n( ! ) }+ logC— 1ogG _Ty±  eai 

- + tr {C'(G + aaT)} - aTC_ + ! TC_ 1 ,2 ,  (5.71) 

where ai  is the ith component of the mean vector a and g ii  the ith diagonal 

element of the covariance matrix G. We can now minimise (5.71) for a and G. 

We first differentiate the function DI(a, G) with respect to the vector a, using 

the results in Append -I:.: C, to obtain 

8V1(a,G) / 	1 " 
= —y + exp ça + g)  + C' (a - 

where g is the rn-dimensional vector consisting of the diagonal elements of the 

covariance matrix G. Setting the above expression equal to zero, we obtain the 

equation 

exp (a + g) = y - C'(a - p). 	 (5.72) 
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Then, differentiation with respect to matrix G (again using the results in Ap-

pendix C), gives 

ô'DI(a, G) = (—G' + F + C- '), 
aG 	2 

with F denoting the diagonal matrix with elements 	, i = 1,... , m, on its 

diagonal. Equating the above derivative to zero, will give 

G' = F + C'. 	 (5.73) 

Clearly, the solution to equations (5.72) and (5.73) for a and G requires an 

iterative procedure. However, for any given a and G, the approximating density 

p* (y, -y)  and the exact joint density p(y, 'y), are identical when (5.71) is equal to 

zero. Therefore, if a and G satisfy the equations (5.72) and (5.73), and their 

corresponding elements are denoted by a2  and , 
then the marginal density of 

y which sets the entropy distance (5.71) equal to zero, is given by 

( 

	

m 
+àT   y - 

	

= 	 ICI 	
f

m 
 e" 

} j=1 	) 

exp 	tr {C 1 	+ (a - p)(a - i)T}}] (5.74) 

If we now consider the same model in a component-wise form, that is model 

(4.1a), we notice that we seek approximations to the marginal density of the 

observation y2 , denoted by p(yj). Then, the multivariate version (5.74), implies 

that the density p*(y2) which minimises the entropy distance between the exact 

joint density p(y 2 , and an approximation of the form 

p* (yj7j ) = p*(YO ps(7ilYO
, 

 

where p*(yjyj) is the probability density function of a N(a2 , gjj) distribution, will 

be given by 

 di+!- ~ii 

	

p*(yj) 
= 	(a2) 	(yj!) 1  exp 

( 

+ &jj 

- 

 e 2 

) 

exp012 
{ 

+ (a - L)211 	(5.75) 

where di  and §ii  are the iterative solutions to the set of equations 

= - a 2  (a 
- Ii) 	

(5.76) 
= e°'" + 
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in complete accordance to (5.72) and (5.73). Substitution of the approximation 

(5.75) -for p(y 2 ), in (5.63) will yield the desired approximation to the conditional 

posterior moments E(9 2 1p, 0,2 ,y). However, we can avoid the iterative nature of 

the solutions for a, and jij  used in (5.75), by deriving an algebraically explicit 

approximation, which is presented in the next paragraph. Employing an ana-

lytical solution, rather than having to take iterative steps in order to reach an 

explicit form for p (yj, might prove substantially useful, since we intend to in-

corporate the procedure for obtaining the approximations within each iteration 

of the MCMC algorithm. Nevertheless, if the iterative solution is preferred, the 

explicit solution may be used as a good starting point for the computational 

procedure. 

An analytically explicit approximation 

In the preceding analysis we employed a normal approximation to the posterior 

distribution 'y,  and then obtained an iterative solution for ai  and g, the respec-

tive mean and variance of the normal density. We will now derive an algebraically 

explicit approximation to P('YY2), which may be used directly for the calculation 

of p*(yj)  in (5.75). We follow the same entropy-based procedure of the preceding 

section. 

The posterior distribution of -yj  can be expressed as 

- L('y2ly) ir('y) 

- 	p(yi) 	' 
(5.77) 

where 7r(7j) is the prior distribution of -y j  and L('y Iyi) is the likelihood given by 

L('yIy2) 
	exp ('yt - 

Then, for any positive real number t, the likelihood for -y j  can be rewritten as 

e_t7j I'(y + t) exp {'yj(yj + t) - e} 
L('y2Iy) = yj! 	 F(y+t) 

e_ti F(y+t) L('yy+t), 
	 (5.78) 

= F(y+i) 

where 

L(yjy + t) = 
exp {'y(yj  + t) - e'} 

F(y+t) 

gives the probability density function of the logarithm of a Ga(y + t, 1) random 

variable. Hence, we suggest that it would be reasonable to approximate L('yIy+t) 

with the probability density function of a normal v) distribution, denoted 

by L*(y1Iyj  + t). We will specify the mean 52  and the variance v2  of the normal 
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approximation, in such a manner that they minimise the entropy distance between 

the density of the N(52 , v2 ) distribution and the L(-yIy  + t) density. If we let 

DI(52 , v 2 ) denote this entropy distance, we have that 

L(ly1+t) }' 
DI(S,v) = E {log 

L*( i Iyi  + t) 

where the expectation corresponds to the N(52 , v 2 ) distribution for 'y. Thus, the 

above gives 

= E [log {(2yv{F(y + t)} 1 } - v( - 	
- j(y + t) + e7i] 

= log(27r) - log{F(y + t)} - logv - - 5(y + t) + (5.79) 

The entropy distance (5.79) is minimised for 6 and v2 satisfying the equations 
8DI(6j,v) = 0 and 8Df(5,v1) = 0 which will give 

06i 	 i9v 

_(y + t) + e5'  = 0 	and 	- 	+ 	= 0. 

From these two equations it follows that 

52 = log(y1  + t) - 1 (y + 01 	 (5.80) 

Vi = (y, + 

Now, from (5.78), we notice that the likelihood function for 'Y j  is proportional to 

e_t1 L('yy2  + t), and if we replace L('y 2 y2  + t) by its normal N(5, v 2 ) approxi-

mation with parameters given in (5.80), we obtain 

L('yIy) cc vexp 1-2 v'('y 

cc 
exp 1-2 

v { + 5 - 2 jS + 2tv }] 

ccexp[ 1 

	1 
-- V _. { - (

S - tv )1 2] .  
2 

Clearly, the above expression implies that the likelihood L('yIy) is proportional 

to the probability density function of a normal N(1 2 , v2 ) distribution, with mean 

= - tv j  = log(y + t) - G + t) (y + tri  

and variance vi given in (5.80). If we take t = , the mean and the variance of 

the normal N(1 2 , v 2 ) approximation to the -yj  likelihood L('yty2) become 

= log (Yi +
(+ )_ 1 	 (5.81) 

Vi=(Yi+) 
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This can now be combined with the normal N(p, a2 ) prior distribution for yj , 

to give an approximation to the posterior distribution of 'y j . As before, we let 

p*(jy) denote this approximation. The conjugacy of the normal N(l, v) likeli-

hood and the normal N(i,o 2 ) prior distribution implies that, p*(y j Iyj) will also 

be a normal density, located at 

= vl 1  + 0,2p 	 (5.82) 
V i

1  +a-2  

and with variance 

= (V i  1  + a_2)_ ' . 	 (5.83) 

We have therefore obtained analytically explicit expressions for d i  and jij  which 

can be used directly in (5.75) to yield an approximation to the marginal distribu-

tion p(yj, which in turn will provide an estimation of the conditional posterior 

moments E a2 , y) in (5.63). 

We illustrate the performance of the two approximating methods in Figures 

(5.2) and (5.3). We will refer to the method based on the discrete approxima-

tion to the posterior moments of O i  as the 'discretisation' method, and to the 

entropy-based technique for the computation of the posterior moments as the 

'entropy' method. The graphs compare the exact full conditional distribution of 

9, which was calculated using numerical integration, with the approximate dis-

tributions. In all graphs, the solid line shows the exact density, while the dotted 

and dashed lines represent the densities obtained with the discretisation and the 

entropy method respectively. Figure 5.2 exhibits the performance of the two 

methods, when a zero count is observed. We used 4 different combinations of 

the hyperparameters Mand a2 , leading to increasing values of the coefficient of 

variation for 9, ranging from 0.3 to 1.9. Figure 5.3 displays the case when y = 5, 

for the same values of the variation coefficient. Both figures demonstrate the 

outstanding performance of the discretisation method, when the variation of the 

distribution is relatively low. As shown in Figures 5.2(a) and 5.3(a), when the 

coefficient of variation is as low as 0.3, the approximate density based on the 

discretisation method is indistinguishable from the exact density, irrespectively 

from the value of y. Figure 5.2 suggests that when y = 0, this method seems to 

be slightly better than the entropy method, also for the remaining values of the 

variation coefficient. For a zero count, the entropy method seems to produce an 

approximation which is somewhat dislocated when compared to the exact distri-

bution. On the other hand, with larger observations, as Figure 5.3 illustrates for 

y = 5, the entropy method produces very accurate approximations, whenever the 

variation of the distribution is not considerably small. 
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Figure 5.2: Mixture approximation to p(OIL, cr2 , y), when the discretisation 

method (dotted line) or the entropy method (dashed line) is used for the compu-
tation of the posterior moments. The solid line corresponds to the exact density. 
The observation value is y = 0 and the coefficient of variation is equal to: (a) 

0.3; (b) 0.8; (c) 1.1; (d) 1.9. 
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These findings indicate that a suitable combination of the two methods would 

provide a better approximation to the full conditional posterior distribution of 

02 , than any of the described techniques alone. This is also empirically verified 

from the examples in the following section. The combination strategy that we 

adopt is that the discretisation method should be preferred when y = 0, or when 

the variation coefficient of Oi  is relatively small, say less than 0.5, whereas the 

entropy method should be applied in all remaining cases. The approximation 

produced when we follow this strategy is shown in Figure 5.4, where the exact 

and approximate densities are plotted for different data and variation coefficient 

values. 

5.4.6 Example: Audit data 

We now illustrate the Gibbs sampling method based on the approximations pre-

sented in Subsections 5.4.4 and 5.4.5, reanalysing the audit data set which was 

also considered in Section 3.6 and Subsection 5.2.3. The data consist of the num-

ber of errors in audit samples of 9 different accounts and are given in Table 3.1. 

The model specification is identical to that of Subsection 5.2.3, as again we con-

sider both the uniform U(0, oc) and the Inv- 2 (10, 0.45) hyperprior distributions 

for a2 , at the second stage of the prior setting. 

The Gibbs sampler will involve simulation from the full conditional posterior 

distributions of p, a2  and 02 , i = 1,... , m. Following our presentation in Sub-

section 5.4.2, we will draw the M values from a N
(' , 

 ) distribution, and the 

a2  variates will be generated such that has a X2 distribution, or 

____f
2 • follows a distribution, depending on which of the two secondv+m 

stage prior specifications is assumed. To simulate the Oi  values we will employ the 

log-normal/gamma mixture approximation to the full conditional posterior distri-

bution, described in Subsections 5.4.3 through 5.4.5. For comparison reasons, we 

consider two approaches for the construction of the mixture approximation, re-

garding the derivation of the posterior moments: the proposed combined strategy 

involving both the entropy-based and the discretisation based techniques; and the 

latter method on its own. We will refer to the first approach as the 'combined' 

method. 
For all the implementations of the Gibbs sampling algorithm in this appli-

cation, we ran 3 independent chains, each of them having length N = 2 x 104 , 

resulting into a total of 6 x 10 4  iterations for each implementation. The main 

reason for that was to enable us to compute the Gelman and Rubin (1992) statis-

tic, denoted by R, to assess convergence to the stationary distribution of the 

Markov chain. As mentioned earlier, the computation of the R statistic relies on 
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the use of multiple parallel sequences, started at points that are overdispersed 

with respect to the true posterior distribution. Then, the ratio of the estimated 

total variation of the posterior distribution of a parameter of interest, to the esti-

mated within-sequence variation, both based on the second half of the simulated 

sequences, is examined. The R statistic is based on the square root of this ratio, 

and the authors show that it approaches 1 in the limit N -+ 00. Thus, values of R 

close to 1 suggest convergence to the distribution of interest. Here, the R statistic 

was calculated using CODA (Convergence Diagnosis and Output Analysis), a soft-

ware package implementing S-PLUS functions for the analysis of MCMC output 

(e.g. Best, Cowles and Vines, 1995). CODA was also used to produce some of the 

diagnostic graphs appearing in this chapter. 

To compare the results, we also analysed the data set using the Gibbs sam-

pling method as implemented in BUGS (Spiegeihalter et al., 1996). To tackle the 

problem of sampling from the nonstandard form of the full conditional poste-

rior distribution of 9,  the BUGS algorithm uses the adaptive rejection sampling 

technique developed by Gilks and Wild (1992), which can be applied since the 

density of interest is log-concave. The method is considered by the authors to be 

very efficient, however BUGS does not provide any information on the associated 

rejection rate. We stress here that our approach does not involve any rejection of 

simulated values, and is therefore more efficient than any method employing rejec-

tion sampling, at the expense of simulating from an approximate full conditional 

distribution. The case when an informative Inv- 2  (v, A) prior distribution for cr2  

is assumed, can be exactly specified and addressed with BUGS. However, when 

U(0, cc), BUGS requires a proper prior to be determined. Therefore, we 

assumed a Pareto(1, 10- 6 ) prior distribution for cr 2 , which is equivalent to a 

uniform U(0, 10 6 ) prior specification on a2 . 

The posterior means and standard deviations of the parameters of interest 

were calculated as ergodic means of the MCMC output, whereas the 2.5% and 

97.5% percentiles were obtained with appropriate ordering. As the Gelman and 

Rubin R statistic was very close to 1 after 3000 iterations of the algorithm for all 

the implementations of the method, the first 1500 simulated values of each chain 

were discarded. Figure 5.5 displays the monitored value of the Gelman and Rubin 

R diagnostic for the parameters 91,  9, 96, 08 and 99 when the combined method 

was used for the full conditional approximation, and model (4.1a) is assumed. 

For all four implementations of the algorithm, convergence was also informally 

checked by visual inspection of the trace of the posterior mean of the parameters 

of interest, as the iterating process was developing. Figures 5.6 and 5.7 show 

the monitored posterior means for Gi,  9, 96, 98 and 99 under model (4.1a), and 
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sumed and the entropy-discrete combined method is used for the approximation of 

p(9Ii, 
0

,2 , y). 

142 



theta 1 

0 

C 
0  CD 
06 

a 

4000 	6000 	8000 	10000 

iteration 

theta 6 

o 	2000 	4000 	6000 	8030 	10000 

iteration 

theta 9  

theta 4 

01 

q 
01 

E 
q 
01 

iq 

2000 	4000 	6000 	6000 	10000 

iteration 

theta 8 

4000 	6000 	6003 	10030 

iteration 

01 

C 01  

0 
01 

CO 

0 
0, 

01 

001 
E 

it 

0 

to 

CO 

E 
IL 

q 

o 	2003 	4030 	6000 	8000 	10000 

iteration 

Figure 5.6: Posterior mean trace for the parameters 01, 04  06, 08 and 09 in the 
audit data example. Model (4.1a) is assumed and the entropy-discrete combined 
method is used for the approximation of p(O1 I ji, a2 , y). The different lines corre-

spond to the 3 independent Gibbs sampling chains. 

143 



theta 1 

0 

Co 
0 
0 
E a 

0. 

20c0 	4O 	6000 	8000 	10000 

Oeffltion 

theta 6 

('1 

CY 

C 
00 

0 

O 	2000 	4000 	6000 	8000 	10000 

iteration 

theta 9 
0 

0 
U) 

Co 

E 

0  

theta 4 

C 
0 
0 

0 
a 

o 	2000 	4000 	6000 	0000 	10000 

iteration 

theta 8 

01 

01 

C 01  

9 
2000 	4000 	6000 	8000 	10000 

iteration 

o 	2000 	4000 	6000 	8000 	10000 

iteration 

Figure 5.7: Posterior mean trace for the parameters 01, O, 06, 08 and 09  in the 
audit data example. Model (.1a) is assumed and the discrete method is used 
for the approximation of a2 , y). The different lines correspond to the 3 

independent Gibbs sampling chains. 

144 



Table 5.5: Approximate Gibbs estimates of the posterior mean, standard deviation 

and (2.5%, 97.5%) percentiles for all audit data example parameters. Model (4.1a) 
is assumed, and the entropy-discrete combined and discrete-only methods are used 
for approximating p(°I a2 , y)• 

par. yj mean 

Combined method 

Posterior estimates 

sd 	2.5% 	97.5% 

Discrete method 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

0-93  0 0.46 0.58 0.00 2.01 0.43 0.56 0.00 1.98 

94 ,95  1 1.09 0.93 0.06 3.48 1.04 0.96 0.02 3.46 

06,97 2 1.84 1.25 0.27 5.01 1.81 1.44 0.10 5.37 

08 3 2.65 1.54 0.58 6.47 2.65 1.96 0.20 7.49 

99  6 5.26 2.32 1.75 10.70 5.28 3.68 0.63 14.50 

A -0.37 1.06 -2.82 1.31 -0.52 1.15 -3.25 1.21 

a2  6.84 11.20 0.29 31.50 7.41 11.00 0.30 34.20 

for the combined and discretisation approximating methods respectively. The 

3 different lines in each graph correspond to the 3 independent Gibbs sampling 

chains, started at different initial points. 
The Gibbs sampling chains seem to converge to their approximate target dis-

tribution faster when the combined approximating method is preferred, especially 

when y is away from the origin, that is for 06, 08 and Og. However, similar plots 

showed that when a Inv-x' (v, A) was assumed for the variance hyperparameter a 2  

under model (4.1b), there was no substantial difference between the two methods, 

due to some improvement to the discrete approximating technique. 

Employing an approximation to enable simulation from the full conditional 

distribution of the Poisson means 9, raises the question of whether or not the 

Gibbs sampling chain converges to the correct target distribution. The results 

in Table 5.5 show that when model (4.1a) is assumed, the Gibbs sampler using 

the combined approximating technique produces estimates that are overall closer 

to the BUGS results in Table 5.6, than those obtained when the discretisation 

method is employed. In this case, the posterior mean estimates given from the 

latter method are relatively close to the BUGS estimates, although the estimation 

is rather poor as far as the standard deviation and the percentiles are concerned. 

On the other hand, when we use the combined approximation, all estimates, and 

especially those of the standard deviation and the percentiles are considerably 
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Table 5.6: Gibbs sampling estimates of the posterior mean, standard deviation 

and (2.5%, 97.5%) percentiles for all audit data example parameters using BUGS. 
Both model specifications (4.1a) and (4.1b) are considered. 

Model (4.1 a) 	 Model (4.1b) 

Posterior estimates 	Posterior estimates 

par. yj 	mean 	sd 	2.5% 97.5% 	mean sd 	2.5% 97.5% 

91 -03 0 	0.50 0.60 0.00 2.12 0.94 0.64 0.15 	2.56 

94 95  1 	1.09 0.90 0.07 3.41 1.30 0.80 0.28 	3.32 

96,07 2 	1.82 1.22 0.28 4.91 1.72 0.98 0.44 	4.17 

08 3 	2.59 1.52 0.59 6.37 2.20 1.17 0.63 	5.07 

99  6 	5.15 2.29 1.73 10.54 3.97 1.76 1.41 	8.20 

Y -0.35 1.30 -3.16 1.21 0.22 0.39 -0.60 	0.95 

a2  8.04 29.31 0.26 44.73 0.59 0.30 0.24 	1.36 

Table 5.7: Approximate Gibbs estimates of the posterior mean, standard deviation 

and (2.5%, 97.5%) percentiles for all audit 
is assumed, and the entropy-discrete combined 

data example parameters. Model (4.1 b) 
and discrete-only methods are used 

for approximating p(Oj p, a2 , y). 

Combined method Discrete method 

Posterior estimates Posterior estimates 

par. y2 	mean sd 2.5% 97.5% mean sd 2.5% 	97.5% 

01-93 0 	0.92 0.64 0.12 2.52 0.92 0.64 0.12 	2.53 

04 95  1 	1.27 0.79 0.24 3.23 1.29 0.80 0.24 	3.27 

96,07 2 	1.70 0.98 0.40 4.13 1.71 0.98 0.41 	4.14 

08 3 	2.18 1.18 0.58 5.11 2.21 1.19 0.60 	5.13 

09  6 	3.97 1.79 1.36 8.23 4.00 1.79 1.40 	8.29 

P 0.19 0.42 -0.71 0.94 0.20 0.41 -0.68 	0.95 

a2  0.62 0.40 0.24 1.60 0.62 0.37 0.24 	1.54 
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closer to these produced with BUGS. However, as Table 5.7 demonstrates, under the 

distributional assumptions given in model (4.1b), the two approximating methods 

perform equally well and they both produce estimates that are close to those 

given in Table 5.6. It is remarkable that both Gibbs sampling methods, and 

especially the one based on the discrete approximation, are considerably improved 

when more prior information on a 2  is introduced in the model. This can be 

justified by the fact that assuming a more informative prior distribution for a 2  

has the effect of increasing the number of the degrees of freedom for the X+m full 

conditional posterior distribution associated with a 2 , which in turn results in less 

extreme simulated values for this hyperparameter. Since our approximations to 

the full conditional posterior distribution of Oi  may be sensitive to extreme value 

combinations of p, cr2  and y, we expect these approximating techniques to benefit 

from avoiding fiat prior distributions. 

5.4.7 Example: Oilwell discoveries data 

In Subsections 5.4.4 and 5.4.5 it was emphasised that the approximations to the 

full conditional posterior distribution of O i  are not very accurate when a zero 

observation is involved. However, as demonstrated with the audit data example 

in the preceding subsection, the Gibbs sampler using the p(9t, 
0

,2 , y) approx-

imating techniques can still perform well when zero counts are present in the 

data, especially when more prior knowledge is available for the hyperparameter 

a2 . The performance of the method can be further improved when a large sample 

is available, as the increase in the sample size will again result in less variation in 

the a2  simulated values. We will use the oilwell discoveries data set, which was 

also considered in Section 3.7 and in Subsection 5.2.4, to illustrate this case. The 

data are reported in Table 3.3. As in Subsection 5.2.4, we assume that given the 

parameters 9, 62,... , 9, each of the observations Y1 , Y2 ,... , Y36 , independently 

follows a Poisson distribution with mean 9, 92,... , 636, respectively. At the first 

stage of the prior specification we assume that 'yj = log(9j, i = 1,... , m, are 

independently and identically distributed as normal N(, a 2  ) random variables, 

whereas for the second stage, once more we consider two different settings: first we 

assume that ji and a 2  are independently distributed according to vague uniform 

prior distributions over (—oo, oo) and (0, oo) respectively; and then we assume the 

case where a 2  has an Inv- 2 (1O, 0.46) distribution, independently from ,i which 

again is uniformly distributed. 
In this example we only report the results obtained employing the entropy-

discrete combined technique for the approximation of the full conditional distribu-

tion of O, which will be exclusively used hereafter. The simulation procedure was 
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Table 5.8: Approximate Gibbs estimates of the posterior mean, standard deviation 
and (2.5%, 97.5%) percentiles for the oilwell discoveries data example parameters. 
The entropy-discrete combined method is used for approximating p(0Ip, a2 ,y) and 
both models (4.1a) and (4.1b) are considered. 

par. y1  mean 

Model (4.1a) 

Posterior estimates 

sd 	2.5% 	97.5% 

Model 

Posterior 

mean 	sd 

(4.1b) 

estimates 

2.5% 	97.5% 

91-919 0 0.43 0.40 0.04 1.48 0.56 0.39 0.10 1.55 

020-929 1 0.79 0.64 0.06 2.49 0.81 0.54 0.14 2.14 

030-033 2 1.31 0.93 0.19 3.75 1.14 0.72 0.24 2.99 

934 ,035  3 1.92 1.21 0.39 4.98 1.55 0.92 0.38 3.84 

036 5 3.33 1.76 0.86 7.49 2.54 1.33 0.75 5.86 

-0.76 0.32 -1.40 -0.15 -0.52 0.27 -1.09 -0.05 

or 2 1.29 0.65 0.25 2.80 0.58 0.27 0.25 1.26 

the same as for the audit data example, except from the fact that the number of 

simulations for each of the implementations of the method was N = 3 x 104 , with 

3 independent chains of length 104  for each implementation. This was dictated 

by the large size of the data set and computer memory and storage reasons. 

The results are presented in Table 5.8 for both model specifications (4.1a) and 

(4.1b). As illustrated in Figure 5.8 for model (4.1a), the Gelman and Rubin R 

statistic was virtually equal to 1 after 1000 iterations for both implementations of 

the method. The convergence of the algorithm was also indicated by monitored 

ergodic means of the Gibbs sampling output. Figures 5.9 and 5.10 display the 

trace of the posterior means for five 0 parameters corresponding to distinct y val-

ues, namely 0, 920, 030, 034  and 036, under models (4.1a) and (4.1b) respectively. 

The monitored means from the 3 independent chains seem to be very close after 

about 3000 simulations for model (4.1a) and 1000 simulations for model (4.1b), 

suggesting that convergence seems to occur faster when the scaled inverse chi-

square prior distribution is used under model (4.1b). The burn-in period was 

specified accordingly for the two cases. 

For comparison reasons, we also report the estimates obtained with BUGS in 

Table 5.9. The results show that under model (4.1a), there is some disagreement 

between the estimates produced by the approximate Gibbs method and BUGS. 

However, given the high number of zero values in the data, we notice that the 
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Figure 5.8: Gelman and Rubin R statistic against iteration number for the pa-

rameters 91, 920, 930, 934 and 936  in the oilwell discoveries data example. Model 
(4.1a) is assumed and the entropy-discrete combined method is used for the ap-
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149 



0 
N 

0'- 
E 

p 

o 	w 	4V 	6003 	6003 	10000 

ieration 

theta 34 

C o  
0 
E CD a 

0 

0 

N 
0 

0 
teraion 

thth V 

it&ation 

theta 36 

p 
N 

LO 
ON 
E 

0 

o 	2000 	4003 	6000 	6003 	10000 

Oeration 

N 

p 
N 

C 
0 
0 
E 

oj 

thth I 
	

theta 20 

I0 

C 
0 
0 
E 

N 

N 

o 	2000 	4000 	6000 	8030 	1 

Figure 5.9: Posterior mean trace for the parameters 01, 920, 030, 934 and 936  in 

the oilwell discoveries data example. Model (4.1a) is assumed and the entropy-
discrete combined method is used for the approximation of y). The 
different lines correspond to the 3 independent Gibbs sampling chains. 

150 



theta 1 
	

theta 20 

(. 

0 

C 
	 C .t. 

q 

.-----.- 
d 

o 	M 	4000 	6000 
	

8000 	10000 	0 	2000 	4000 	6000 
	

6000 	10000 

Oeration 
	

ileration 

theta 30 
	

theta 34 

01 

C 
	 Co 

E 
('1 	 tO -- 
0 

 

q 

 

o 	2000 	4000 	6000 

d&ation 

theta 36 

8000 	10000 	0 	2000 	4000 	6000 	6000 	10000 

ileration 

I0 

 

C 
0 

E 

O 	2000 	4000 	6000 	8000 	10000  

Iteration 

Figure 5.10: Posterior mean trace for the parameters 91, 920, 030, 034  and 036 in 
the oilwell discoveries data example. Model (4.1b) is assumed and the entropy-
discrete combined method is used for the approximation of p(0jp, a 2 , y). The 
different lines correspond to the 3 independent Gibbs sampling chains. 

151 



Table 5.9: Gibbs sampling estimates of the posterior mean, standard deviation 

and (2.5%,97.5%) percentiles for the oilwell discoveries data example parameters 
using BUGS. Both models (i$.la) and (4.1b) are considered. 

par. 	y 

01-919 	0 

920-929 1 

030 - 933 2 

034 035  3 

936 	5 

Model (4.1 a) 

Posterior estimates 

mean sd 2.5% 97.5% 

0.46 0.41 0.03 1.54 

0.82 0.64 0.11 2.49 

1.29 0.90 0.24 3.64 

1.85 1.18 0.43 4.90 

3.16 1.74 0.83 7.45 

Model (.1b) 

Posterior estimates 

mean sd 2.5% 97.5% 

0.56 0.39 0.09 1.58 

0.82 0.54 0.17 2.18 

1.15 0.71 0.28 2.98 

1.54 0.90 0.42 3.82 

2.52 1.32 0.76 5.82 

/2 

01 
2 

-0.71 0.37 -1.55 -0.09 

1.25 0.96 	0.16 	3.71  

-0.51 0.26 -1.05 -0.04 

0.57 0.26 	0.24 	1.22 

approximate method performs reasonably well, and the accuracy of the estimates 

is comparable with that of the audit data estimates for the same model assump-

tions. This is due to the effect of the larger size of the oilwell data set. The effect 

is even more apparent under model (4.1b), in which case the estimates obtained 

with the approximate method are very close to the BUGS results, as shown in 

Tables 5.8 and 5.9. 

5.5 A hybrid MCMC method 

The analysis of the examples in the preceding section suggests that despite the 

fact that the approximations to the full conditional distribution usually perform 

well, they can also exhibit low accuracy in some cases, especially with data sets 

of small size, or containing a large number of zero observations. As a result, the 

Gibbs sampler chain may converge to a distribution other than the one under 

consideration, and therefore produce wrong estimates. 
Hence, we need to adopt an alternative method for the Bayesian analysis of our 

hierarchical model. The problem of sampling from full conditional distributions 

that are not given in standard analytical form, may be addressed in various ways, 

including those mentioned in Subsection 5.3.5. However, some of these methods 

can be considerably inefficient to implement in terms of either setting-up effort, 

or computing time when embedded within a Gibbs sampling algorithm. One al- 
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ternative strategy is combining the Gibbs sampler with other MCMC techniques, 

and thus adopting a so-called hybrid MCMC approach. 

5.5.1 The Metropolis-Hastings within Gibbs method 

The Metropolis-Hastings algorithm, described in Subsection 5.3.3, requires the 

knowledge of the target density only up to the constant of normalisation. It then 

proceeds with sampling a candidate point from a proposal distribution, which is 

accepted with a probability whose evaluation involves the non-normalised target 

and the proposal density, as shown in Algorithm 5.1 of Subsection 5.3.3. This 

suggests that when one or more of the full conditional distributions needed for 

the Gibbs sampler are only available in a non-normalised form, one may employ 

a Metropolis-Hastings subalgorithm within a Gibbs sampler step to obtain the 

necessary simulated value at the current iteration. The target density for the 

Metropolis-Hastings algorithm will be the nonclosed form of the full conditional 

posterior distribution and, in theory, any proposal distribution may be used to 

generate the candidate variates. The Metropolis-Hastings subalgorithm can itself 

comprise T steps. Despite the fact that neither of the two combined chains would 

correctly converge to the right distribution if individually applied, the convergence 

issue is not affected by the combination of the two MCMC techniques. The hybrid 

method will still converge to the target distribution, given that the combined chain 

is irreducible and aperiodic (Tierney, 1994). 

The remaining questions are how to choose the number T of the Metropolis-

Hastings substeps, and the proposal distribution for the Metropolis-Hastings al-

gorithm. The answer to the former is that one substep suffices, as convergence 

will occur for any value of T. Thus, the choice depends on the nature of the 

specific problem, although taking T = 1 has become common practice. Selecting 

the proposal distribution also depends on the problem under consideration, and 

usually the statistician will have to compromise between efficiency of evaluation 

and acceleration of mixing for the Metropolis-Hastings algorithm. 

The idea first appears in Muller (1991), and has since become widely known 

as the Metropolis-Hastings within Gibbs method. Some authors (e.g., Chib and 

Greenberg, 1995) disagree with this term, since the whole method can be viewed 

as a single-component Metropolis-Hastings algorithm, described in Section 5.3.4, 

using as its proposal distributions the full conditional distributions when the lat-

ter are fully available, and employing some other candidate density when the 

full conditional distribution is known up to a normalising constant. In that 

sense, the term 'Gibbs within Metropolis-Hastings', or simply 'single-component 

Metropolis-Hastings', used by some authors, would seem more appropriate. 

153 



5.5.2 The Metropolis-Hastings within Gibbs method for 
the Poisson/log-normal model 

For the Poisson/log-normal models (4. la) and (4. ib), the full conditional posterior 

distribution of 9, i = 1,... , m, is given in nonclosed analytical form, as shown in 

(5.48). Adopting the Metropolis-Hastings within Gibbs approach, and following 

the methodology described in the preceding section we can proceed as follows. 

At iteration t we employ two Gibbs steps to sample from the full conditional 

posterior distributions of IL and a2 , which involves straightforward simulation from 

a normal and a chi-square distribution respectively. Then, for each i = 1,... , m, 

we generate a candidate 9, from a chosen proposal distribution and we accept 

the new point with a probability given by (5.35). If we denote the proposal 

distribution by q(•) and the full conditional posterior distributions by p( I •) for 

which we will suppress dependence on y, we can now give an outline of the 

Metropolis-Hastings within Gibbs algorithm for the Poisson/log-normal model. 

ALGORITHM 5.3: METROPOLIS-HASTINGS WITHIN GIBBS. 

Choose starting values ((o) 2(0) , 9 	
... 

, 	, m 

For t = 11  2,3.... (until convergence): 

At iteration t, take as input the point 
2(t_1) 9(t-1) 	o(t_1)) 

, 	 ... 	 m 

Generate (t) from N 
(m1 0g 9(t_1) 2(t-1)\ 

	

M 	 m) 

E!n  log 
(c) Generate 

2(t) such th 	
_(t)2 

—2 at 	0.2(t) 	

} 	
X  

2 

or 	2(t) 

(d) For i = 1 to m: 

• Generate 9(t) from qj (. ,(t), a
2(t) o(t_i)) 

• Calculate the ratio r - 
	( t) 2(t)) qj (0,c t—  1)1 (t) ,2 (t) 0çt) g(t:  1)) 

- (0ct_ 1  p(t) ,r 2  (0) qj (9(t) (t) 2(t) 0(t 1) o(t_1)) 

{ 	withprobability min(l, r) 
• Set 9t) 

= 9(t1) 	otherwise 

Here, 01) represents the vector of all components of 0, excluding O, at their 
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current values, that is 

0( -1) - 
(

O(t) 
	

(t) 	9(t) 9(t-1) 
- 	1 ,O ,... ' i-i' i+1 '••• 	m 	) - 

We also notice that the full conditional posterior distribution of O i  does not depend 

on the remaining parameters of vector 0, and thus, ot.' does not appear in the 

notation for p( I 
We now need to choose the proposal distribution for the Metropolis-Hastings 

subalgorithm. Tierney (1994) suggests an independence type Metropolis-Hastings 

scheme, that is he discusses the use of independent proposal distributions. Here, 

by independence we mean that the proposal distribution of Oi  at iteration t does 

not depend on the iteration (t-1) value of 0, and vice versa. Then, the acceptance 

ratio in step 2(d) of Algorithm 5.3 becomes 

((t)) 	

(5.84) 
W  (9(t_1)) 

where w (et))  is the ratio of the full conditional posterior density of 
9t)  and the 

proposal density at 9t),  that is 

(O(t)) = 	(o? 	(t)) 

t) ,  a2( t) qj 
(e(t)I 

(5.85) 

Hence, we notice that the acceptance probability of the Metropolis-Hastings sub-

algorithm is given as a ratio of importance weights, where p(.) can be viewed as 

the target density and q(•) as the importance function. In that sense, following 

the principles of the importance sampling technique, it seems reasonable to choose 

a proposal density q() which is a good approximation to the full conditional den-

sity p(•). The more similar that the two densities are, the closer the ratio r is to 

1, and consequently the generated O i  values are more likely to be accepted. 

Following this line of thought, we consider two possible proposal distributions, 

that both approximate the full conditional posterior distribution of 9: a Ga(y 2  + 
1, 1) distribution, and the log-normal/gamma mixture distribution developed in 

Subsections 5.4.3 through 5.4.5. The former was employed as the importance 

density, approximating p(OjIP, a 2 , y), in the implementation of the importance 

sampling technique to the estimation of the conditional expectation E(9I, 2, y) 

in Chapter 3. The mixture log-normal/gamma distribution was shown to provide 

an even better approximation to the full conditional posterior distribution of the 

Poisson means. However, we notice here that using a good approximation to 

the full conditional distribution as our proposal distribution, will only affect the 
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efficiency and mixing speed of the Metropolis-Hastings within Gibbs algorithm, 

since any other choice would also eventually lead to the convergence of the hybrid 

chain to its stationary distribution. 

5.5.3 Example: Audit data 

In the present subsection we illustrate the performance of the Metropolis-Hastings 

within Gibbs method, reanalysing the audit data set also considered before. In 

Subsection 5.4.6 we estimated the Poisson means in the audit data example, 

employing a Gibbs sampling scheme which was based on approximate conditional 

posterior distributions for the parameters 92,  i = 1,... , m. Now, the Metropolis-

Hastings within Gibbs method, presented in Subsection 5.5.2, enables us to obtain 

the exact full hierarchical analysis of the data. Once more, we employ the same 

model specification as in Subsections 5.2.3 and 5.4.6. 

We follow Algorithm 5.3. As proposed in Subsection 5.5.2, two different pro-

posal distributions will be used in step 2(d) of the algorithm to provide a can-

didate point for the Metropolis-Hastings subalgorithm: the log-normal/gamma 

mixture distribution, featuring the enropy-discrete combined moment approxi-

mating method, presented in Subsections 5.4.3 through 5.4.5, and a gamma dis-

tribution with shape parameter equal to (y 2  + 1) and scale equal to 1. We will 

refer to the former as the mixture proposal and to the latter as the gamma pro-

posal. As with the approximate Gibbs method, 3 independent chains, each of 

size N = 2 x iO4 , will permit the evaluation of the Gelman and Rubin R statistic 

for the assessment of the convergence of the algorithm. However, this time the 

burn-in period will vary according to the selected prior setting and the proposal 

distribution. That reflects the effect that both the model specification and the 

choice of the proposal distribution have on the mixing speed of the method. We 

will consider the two specifications for the variance parameter a 2  under models 

(4.1a) and (4.1b) separately. 

Model (4.1a): Uniform hyperprior on a 2  

In Table 5.10 we report the estimates for the posterior mean, standard deviation 

and 2.5% and 97.5% percentiles of all the model parameters, for the case when 

model (4.1a) is assumed, and for both the mixture and gamma proposal distribu-

tion choices. When the mixture proposal was employed, the acceptance rate for 

the Metropolis-Hastings subalgorithm was between 75% and 99%, with the lowest 

rate being for the 9 parameters corresponding to the zero data values. This is 

an exceptionally high rate for a Metropolis-Hastings application, and apparently 

reflects the high accuracy of the mixture approximation to the full conditional 
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Table 5.10: Metropolis-Hastings within Gibbs estimates of the posterior mean, 
standard deviation and (2.5%, 97.5%) percentiles for all audit data example pa-
rameters. Model (4.1a) is assumed, and both mixture and gamma proposals are 
considered for the Metropolis-Hastings subalgorithm. 

	

par. 	y, 

01-03 0 

04 05  1 

06,07 2 

	

08 	3 

	

09 	6 

mean 

0.50 

1.09 

1.81 

2.59 

5.14 

Mixture proposal 

Posterior estimates 

sd 2.5% 97.5% 

0.60 0.00 2.13 

0.91 0.07 3.41 

1.22 0.29 4.91 

1.52 0.59 6.36 

2.29 1.71 10.50 

Gamma proposal 

Posterior estimates 

mean sd 2.5% 	97.5% 

0.49 0.58 0.00 	2.05 

1.09 0.90 0.08 	3.40 

1.80 1.23 0.29 	4.95 

2.58 1.53 0.57 	6.40 

5.15 2.30 1.55 	10.50 

/1 

a2  

-0.29 	1.01 -2.72 	1.19 

5.93 12.90 	0.24 	31.10  

-0.31 	1.00 -2.75 	1.20 

6.01 11.50 	0.24 	31.10 

posterior distribution of interest, especially when y is not close to the origin. The 

Gelman and Rubin R statistic after 8 x 10 3  iterations of the algorithm, was not 

higher than 1.05 for any of the model parameters. This suggested that the first 

4000 iterations should be discarded, although the choice of the burn-in period was 

complicated by the high variation exhibited in the a2  simulations. This is shown 

in Figure 5.11, which displays the trace of the simulated values of the model pa-

rameters for the first 8000 iterations of all 3 independent chains. We attribute 

this remarkably high variation to the uniform U(0, oo) prior distribution that we 

assumed for the variance hyperparameter a2 . As shown before, this prior setting 

results in a X2  full conditional distribution for 
_)2 

and thus, occasional 

draws that are very close to zero give very large values for a2 . 

We notice that the estimates for the Poisson means Oi  in the left half of Table 

5.10 are almost identical to those obtained with BUGS in Table 5.6. This suggests 

that the Metropolis-Hastings within Gibbs method gives the exact results, cor-

recting the inaccuracy occurred when an approximation to the full conditional 

posterior distribution of Oi  was used with the Gibbs sampling method. However, 

there is some discrepancy in the estimates of the hyperparameters p and a2 . We 

believe that this is partly due to the effect of the high variation in the a2  sam-

pling. Nevertheless, our experimentation with assuming different ranges for the 

uniform a2  distribution involved in the BUGS model specification, indicated that 
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Figure 5.11: Trace of sampled values from 3 parallel chains for the audit data 
example parameters. Model (4.1a) is assumed and a mixture proposal is used for 
the Metropolis-Hastings snbalgorithm. 
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Figure 5.12: Gelman and Rubin R statistic against iteration number for the audit 
data example parameters. Model (4.1a) is assumed and the gamma proposal is 
used for the Metropolis-Hastings subalgorithm. 
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this discrepancy could also be caused by the fact that the BUGS estimates were 

quite sensitive to the selection of the a 2  uniform prior distribution. 

We then employed a Ga(y2  + 1, 1) proposal density for the Metropolis-Hastings 

subalgorithm. The acceptance rate dropped to 49%-59%. This was expected, 

since the gamma proposal does not approximate the full conditional distribu-

tion of Oi  as accurately as the log-normal/gamma mixture distribution does. How-

ever, this acceptance rate can still be considered very satisfactory. Relying on the 

Gelman and Rubin R diagnostic, we ignored the first 3000 simulations of each 

chain, since the R statistic was practically equal to 1 after 6000 iterations of the 

algorithm. This is illustrated in Figure 5.12, where the value of the R statis-

tic is monitored during the first 6000 iterations. Also, due to the flat uniform 

prior used on a 2 , the simulated values for this hyperparameter again exhibit high 

variation. The estimates reported on the right hand side of Table 5.10 are very 

close to those obtained when the mixture proposal was used. However, in a few 

cases (e.g. for the percentile estimates), the estimates obtained using the mixture 

proposal seem to be slightly more consistent with the BUGS results, implying that 

maybe longer chains should be needed with the gamma proposal, to overcome the 

effect of a lower acceptance rate. 

Model (4. 1b): Inv-X2 (zi, A) hyperprior on a2  

We now assume that the variance parameter a 2  follows a Inv- 2 (v, A) distribu-

tion, according to the model specification (4.1b). We take the parameters of this 

distribution to be ji = 10 and A = 0.45, as we did in Subsection 5.4.6. When the 

mixture proposal is preferred, an outstandingly high acceptance rate of 98%-99% 

suggests that the mixture proposal density is now almost identical to the full 

conditional distribution under consideration. The Gelman and Rubin R statistic 

did not take more than 3000 iterations to settle down to 1, as again demonstrated 

in Figure 5.13. We therefore discarded the first 1500 iterations from the output 

of each chain. Furthermore, comparing Figure 5.14 to Figure 5.11, we notice that 

the variation of the a 2  simulated values has now dropped to normal levels, as a 

result of the introduced prior information for this parameter. The estimates of the 

model parameters using both proposal distributions, are presented in Table 5.11. 

The results reported on the left hand side of the table show that, in this case, our 

Metropolis-Hastings within Gibbs method and BUGS essentially produce the same 

estimates for all the model parameters, including the hyperparameters p and a 2 , 

for which there was some disagreement when a uniform prior was assumed for a 2 . 

Finally, we also ran the Metropolis-Hastings within Gibbs algorithm with 

the Ga(y2  + 1, 1) candidate distribution, for the case when an Inv- 2 (10, 0.45) 
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Figure 5.13: Gelman and Rubin R statistic against iteration number for the audit 
data example parameters. Model (.1b) is assumed and the mixture proposal is 
used for the Metropolis-Hastings subalgorithm. 
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Figure 5.14: Trace of sampled values from 3 parallel chains for the audit data 
example parameters. Model (4.1b) is assumed and the mixture proposal is used 
for the Metropolis-Hastings subalgorithm. 
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Table 5.11: Metropolis-Hastings within Gibbs estimates of the posterior mean, 
standard deviation and (2.5%,97.5%) percentiles for the audit data example pa-
rameters. Model (4.1b) is assumed and both mixture and gamma proposals are 
considered for the Metropolis-Hastings subalgorithm. 

par. y2  mean 

Mixture proposal 

Posterior estimates 

sd 	2.5% 	97.5% 

Gamma proposal 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

01-93 0 0.94 0.64 0.16 2.56 0.94 0.63 0.16 2.55 

04 95  1 1.29 0.80 0.28 3.32 1.29 0.79 0.27 3.28 

06,97 2 1.72 0.98 0.44 4.18 1.71 0.97 0.44 4.14 

08 3 2.20 1.17 0.63 5.10 2.18 1.17 0.63 5.08 

09  6 3.97 1.77 1.41 8.19 3.97 1.76 1.42 8.13 

0.22 0.40 -0.60 0.94 0.22 0.39 -0.61 0.94 

a2  0.58 0.30 0.23 1.34 0.58 0.30 0.24 1.34 

prior distribution is assumed for a 2 . The estimates, given in Table 5.11, are 

almost identical to those obtained with the mixture proposal, with only a few 

slight discrepancies in the second decimal place. Again, the Gelman and Rubin 

diagnostic was below 1.05 after 3000 iterations. However, as the acceptance rate 

decreases to 31%-60%, we expect that a larger number of simulations might be 

required to achieve a certain degree of accuracy. 

5.5.4 Example: Oilwell discoveries data 

We followed the same procedure to analyse the oilwell discoveries data using the 

Metropolis-Hastings within Gibbs algorithm. The data set is given in Table 3.3. 

We use the same model specification as in Subsection 5.4.7. 

Model (4.1a): Uniform hyperprior on 0.2 

In Subsection 5.4.7, it was demonstrated that when the mixture approximation 

to p(02 1p, 0,2 , y) is employed in its own right as the actual full conditional pos-

terior distribution of 9, the Gibbs sampler chain may converge to a stationary 

distribution which is not exactly the conditional distribution under consideration. 

However, when this approximation is embedded in the Metropolis-Hastings within 

Gibbs method, used as the proposal distribution for the Metropolis-Hastings sub- 
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Table 5.12: Metropolis-Hastings within Gibbs estimates of the posterior mean, 
standard deviation and (2.5%,97.5%) percentiles for all oilwell discoveries data 
example parameters. Model (4.1a) is assumed, and both mixture and gamma 
proposals are considered for the Metropolis-Hastings subalgorithm. 

par. y2  mean 

Mixture proposal 

Posterior estimates 

sd 	2.5% 	97.5% 

Gamma proposal 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

01-019 0 0.46 0.41 0.03 1.52 0.46 0.41 0.03 1.53 

020-029 1 0.81 0.64 0.11 2.49 0.81 0.63 0.10 2.46 

030-033  2 1.29 0.90 0.25 3.67 1.27 0.89 0.24 3.59 

0347 035  3 1.85 1.18 0.43 4.89 1.83 1.19 0.37 4.87 

036 5 3.15 1.72 0.85 7.39 3.13 1.75 0.81 7.42 

-0.70 0.36 -1.51 -0.09 -0.70 0.37 -1.54 	-0.08 

a2  1.21 0.87 0.17 3.45 1.21 0.92 0.17 3.56 

algorithm, it yields outstanding results. In this case, the large size of the data 

set (m = 36 as opposed to m = 9 for the audit data example) improves the 

sampling from the full conditional posterior distribution of a 2 , as it increases the 

number of the degrees of freedom of the chi-square distribution involved in this 

simulation. We therefore notice that increasing the sample size, has in essence 

the same effect as introducing some prior knowledge for a 2 , as far as simulation 

from the full conditional distribution of this parameter is concerned. This is il-

lustrated in Figure 5.15, where the a 2  simulated values vary in an approximate 

range of (0, 15), as opposed to a corresponding range of approximately (0, 700) 

for the audit data example, shown in Figure 5.11. In the latter case, this unusu-

ally high variation dropped when we assumed a more informative prior for a 2 . 

Moreover, our mixture approximation to the full conditional posterior distribu-

tion of the Poisson means 02 , i = 1,... , m, will improve as a result of the lower 

variation of the a 2  simulated values. This is reflected in the acceptance rate for 

the Metropolis-Hastings subalgorithm, which now is higher than for the uniform 

case in the audit data example, lying within the range 93%-99%. 

A burn-in period of 4000 simulations was used, as suggested by Figure 5.16, 

which shows that the value of the Gelman and Rubin R statistic was very close 

to 1 after the first 8000 iterations of the algorithm. The parameter estimates, 

reported in Table 5.12 are once again almost identical to the BUGS respective 
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Figure 5.15: Trace of sampled values from 3 parallel chains for the oilwell discov-
eries data example parameters. Model (4.1a) is assumed and the mixture proposal 
is used for the Metropolis-Hastings subalgorithm. 
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Figure 5.16: Gelman and Rubin R statistic against iteration number for the oilwell 
discoveries data example parameters. Model (4.1a) is assumed and the mixture 
proposal is used for the Metropolis-Hastings subalgorithm. 
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results in Table 5.9. 

When the Ga(y2  ±1, 1) proposal distribution is used to draw candidate points 

for the Metropolis-Hastings subalgorithm, we first notice that the acceptance 

rate declines to 32%-52%, with the lower rates corresponding to large data val-

ues. The general impression that we get from Table 5.12 is that some slight 

discrepancies with the estimates obtained using the gamma proposal distribution 

appear, mostly in the cases where low acceptance rates occurred, that is when 

y = 2,3 or 5. This again suggests that longer chains should be used with this 

candidate distribution, to account for the effect of higher rejection. 

Model (4.1b): Inv- 2 (v, .A) hyperprior on a 2  

The results when a Inv- 2 (10, 0.46) prior distribution is assumed for 0
.2  are dis-

played in Table 5.13. In this case the mixture approximation to p(Ot,t, 0,2 , y) is 

further improved, as it benefits from both the large sample size and the prior 

information that we introduce in the model. This is reflected in an outstandingly 

high acceptance rate of 97%-98%. Again, convergence is achieved faster under an 

informative prior distribution for the variance parameter a 2 . Figure 5.17 verifies 

that the Gelman and Rubin diagnostic is practically equal to 1 after 3000 iter-

ations of the algorithm, and the trace of the a 2  simulated values in Figure 5.18 

exhibits even lower variation than for the uniform a 2  prior case in Figure 5.15. 

Table 5.13: Metropolis-Hastings within Gibbs estimates of the posterior mean, 
standard deviation and (2.5%,97.5%) percentiles for the oilwell discoveries data 
example parameters. Model (4.1b) is assumed, and both mixture and gamma 
proposals are considered for the Metropolis-Hastings subalgorithm. 

par. y2  mean 

Mixture proposal 

Posterior estimates 

sd 	2.5% 	97.5% 

Gamma proposal 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

91-919 0 0.56 0.39 0.09 1.57 0.56 0.40 0.09 1.59 

920-929 1 0.82 0.54 0.17 2.20 0.81 0.53 0.18 2.14 

93-933 2 1.14 0.71 0.28 2.97 1.13 0.70 0.28 2.97 

934935 3 1.54 0.90 0.42 3.84 1.52 0.89 0.42 3.80 

936 5 2.53 1.33 0.77 5.84 2.48 1.36 0.65 5.83 

-0.51 0.26 -1.05 -0.05 -0.51 0.25 -1.04 	-0.04 

cr2  0.57 0.26 0.25 1.23 0.57 0.26 0.24 1.21 
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Figure 5.17: Gelman and Rubin R statistic against iteration number for the oilwell 
discoveries data example parameters. Model (4.1b) is assumed and the mixture 
proposal is used for the Metropolis-Hastings subalgorithm. 
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Figure 5.18: Trace of sampled values from 3 parallel chains for the oilwell data 
example parameters. Model (4.1b) is assumed and the mixture proposal is used 
for the Metropolis-Hastings subalgorithm. 
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All parameter estimates in Table 5.13 are practically identical to these ob-

tained with BUGS, in Table 5.9. This is also true in the case of cr2 , for which 

estimates appeared to be slightly inconsistent when the uniform prior distribu-

tion was assumed for this parameter. Finally, when we employ a Ga(y 1  + 1, 1) 

proposal distribution the acceptance rate drops to its lowest levels for all exam-

ined cases, that is it lies between 15% and 52%. The worst rates occur when y 

is away from the origin. It is also in this case that the convergence is delayed. 

The Gelman and Rubin R statistic for 936  was equal to 1.14 after 6000 iterations, 

whereas it was equal to 1.00 for the same parameter after 3000 iterations when the 

mixture proposal was chosen. The estimates, shown in Table 5.13, are inaccurate 

when the acceptance rate gets lower, that is for the parameters corresponding to 

relatively large observations. In fact, as illustrated in Figure 5.19, the estimate 

of the posterior mean for 036, where the acceptance rate is as low as 15%, does 

not appear to have converged to the correct value, implying again that a longer 

chain should be used in such cases. 

5.6 Shrinkage behaviour of the hierarchical Bayes 
estimator 

As discussed in the preceding chapters, the posterior mean of the Poisson pa-

rameters 0, i = 1,... , m, can be viewed as a shrinkage estimator. In the case 

of the first stage conjugate Poisson/Gamma structure, the posterior mean can 

be exactly expressed as a linear estimator, adjusting the unbiased estimates ', 

in, towards the prior mean of the parameters of interest. In Subsection 

3.3.2 and in Section 4.3 we assumed similar linear approximations to the posterior 

mean for the Poisson/log-normal model. In the EB context, the form of the lin-

ear approximation given in (3.24), implies that the estimator shrinks the observed 

values towards the sample mean of the data. However, both the nonlinear im-

portance sampling estimator, described in Subsection 3.4.1, and the approximate 

hierarchical Bayes analysis in Section 4.3, suggested that the posterior mean ad-

justs the unbiased estimators of the Poisson parameters 9, i = 1,... , m, towards 

a central point, which is not given by the sample mean for a finite sample size. 

We will now consider the two artificial data sets, which were analysed in Sec-

tion 3.8 under an EB framework, to investigate the shrinking behaviour of the 

Bayesian estimates of the Poisson means when a full hierarchical analysis is fol-

lowed. We consider the Poisson/log-normal structure described in (4.1a), that is 

assuming vague prior distributions for both hyperparameters p and a 2 . The exact 

full hierarchical analysis is conducted employing the Metropolis-Hastings within 
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Table 5.14: Hierarchical Bayes estimates of all the model parameters in the first 
simulated data example. The sample mean is equal to = 5.22 and the sample 

variance is s2  = 13.94. 

par. y 

Posterior estimates 

mean 	s.d. 

91 1 2.22 1.33 

02,93 2 2.83 1.47 

94 3 3.50 1.60 

05,96 5 4.91 1.97 

97 8 7.21 2.46 

98 9 8.04 2.64 

99 12 10.50 3.21 

1.42 0.40 

a2  1.11 1.36 

Gibbs method with the log-normal/gamma proposal mixture distribution. Ini-

tialising the algorithm at different starting values, three independent chains of 

length N = 2 x 104  each, were ran for the two examples. In both cases, the 

Gelman And Rubin R diagnostic was virtually equal to 1 after 3000 simulations 

in each chain, and therefore a burn-in period of 1500 iterations was utilised to 

allow convergence to the target posterior distribution. The posterior estimates 

are given in Tables 5.14 and 5.15. 
As with the nonlinear EB importance sampling estimator, it is shown from 

the posterior estimate of 95 or 06 for y = 5 in Table 5.14, and from the estimate 

of 09  for y = 9 in Table 5.15, that the hierarchical Bayes method does not shrink 

the MLE towards the sample mean, that being 9 = 5.22 and 9 = 9.27 for the 

first and second simulated data set respectively. Hence, the hierarchical Bayes 

posterior mean contradicts the shrinking behaviour of previously proposed EB or 

frequentist shrinkage estimators, suggesting that the shrinking direction should 

be determined from the entire information included in the model, rather than be 

chosen exclusively based on the data or as a fixed point. 
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Table 5.15: Hierarchical Bayes estimates of all the model parameters in the second 
simulated data example. The sample mean is equal to = 9.27 and the sample 

variance is s 2 = 24.64. 

par. y 

Posterior estimates 

mean 	s.d. 

91,82 4 5.98 1.98 

03  5 6.53 2.06 

04 ,05  6 7.12 2.14 

06,07 7 7.71 2.23 

98 8 8.31 2.33 

09  9 8.94 2.44 

010,0u 10 9.61 2.57 

012,013 12 10.90 2.81 

014 17 14.40 3.49 

015 22 18.20 4.20 

A 2.14 0.16 

a2  - 0.26 0.18 

5.7 Summary and conclusions 

In this chapter we have discussed stochastic simulation approaches to the full 

hierarchical Bayesian analysis of the the Poisson/log-normal model. 

We first attempted the use of importance sampling employing an importance 

density given by a slightly adjusted form of the -y likelihood function. The method 

seemed to provide reliable results only in limited cases, and after an unusually 

large number of Monte Carlo simulations. Unbounded weights and high standard 

errors of simulation suggested that the proposed importance density is not suitable 

in many situations, including the cases when little prior knowledge is assumed in 

the second level of the prior specification, or when many zero counts are observed. 

MCMC techniques can also be employed. The Gibbs sampler was initially 

considered. To overcome the problem of sampling from the nonclosed form of 

the full conditional posterior distribution of the Poisson means 0, we developed 

a log-normal/gamma mixture approximation to the density of interest, based on 

matching the first 3 moments of the exact and the approximate distributions. 
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The posterior moments were obtained with a combination of a technique based 

on a discretisation of the prior distribution and use of Bayes' theorem to obtain 

a discrete approximation to the posterior distribution, and an entropy distance 

minimisation method. The Gibbs sampler results were close to the correct es-

timates in all the cases that we examined, especially when a large sample, or 

strong second stage prior information was available. However, some occurred dis-

crepancies, due to possible inaccuracies in the approximation of the moments of 

p(91 1,i, a2 , 
y), suggest that one might choose to follow a different strategy, leading 

to the exact estimation. 
We therefore adopted a hybrid MCMC approach, namely the Metropolis-

Hastings within Gibbs technique. The developed log-normal/gamma mixture 

approximation to p(OiI,  a2 , 
y) was employed as the proposal distribution for the 

Metropolis-Hastings subalgorithm, offering an outstandingly high acceptance rate 

due to its resemblance to the exact conditional distribution. We also considered a 

Ga(y1  + 1, 1) proposal density. Both candidate distributions provided the correct 

estimates. The final choice between one of the two seems to involve a trade-off 

between evaluation effort and mixing speed, as the mixture proposal demanded 

more computing time to evaluate, but offered higher acceptance rate and faster 

mixing. 
We also investigated the shrinking behaviour of the hierarchical Bayes esti-

mator, in an attempt to compare it to previous suggestions regarding shrinkage 

towards the origin, the minimum observation, the sample mean, the median, 

some prior guess etc. Our experimentation with simulated data sets verified the 

conclusions of Chapter 3 for the EB estimation, and those of Chapter 4 for the 

approximate hierarchical Bayes solution, that the posterior mean shrinks the un-

biased MLE towards a point lying between the minimum observation in the data 

and the sample mean. 
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Chapter 6 

Hierarchical Bayes frequency 
Properties and applications 

6.1 Frequency properties of the hierarchical Bayes 
estimator 

In Chapter 5 a full hierarchical Bayes analysis was presented for the Poisson/log-

normal model. The estimation of the model parameters was achieved through 

MCMC procedures. We now want to assess the frequency properties of the hi-

erarchical Bayes estimator of 9j, i = 1,... , m, using the criterion of average 

risk. This was introduced in Definition 3.1, and was employed in Section 3.9 to 

examine the frequency properties of the empirical Bayes (EB) estimators devel-

oped in Chapter 3, that is the importance sampling estimator and the best linear 

predictor (BLP), and compare them to some of the methods suggested in the 

literature. 

6.1.1 Modelling issues and frequency properties 

Until now, in the full Bayesian analysis we have used two different hierarchi-

cal structures for the Poisson/log-normal model. The first, in (4.1a), assumes a 

U(O, oc) hyperprior distribution for the variance a 2  of -Yi  = log(02 ), i = 1,... ,rn, 

at the second sage of the prior setting, while in the second structure, in (4.1b), 

we replace the vague uniform distribution with the conjugate Inv-X 2  (v, )) distri-

bution. In both cases, a vague flat hyperprior distribution is assumed for the 

mean parameter ji. Our aim is to investigate the average risk properties of the 

hierarchical Bayes estimator under both prior structures, as these can represent 

two opposite situations regarding the available prior information. The uniform 

distribution is chosen either to show prior ignorance for a 2 , or in an effort to 

avoid any preference on particular values of the parameter. On the other hand, 

the scaled inverse chi-square distribution, while it may be tuned to provide rel- 
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atively vague prior knowledge, it is often used to indicate the presence of some 

degree of information in that level of the hierarchy. 

When a Inv- 2 (v, A) prior distribution for a 2  is used, we choose the parameters 

ii and A so that relatively strong prior knowledge is assumed. We do that in the 

same way as for the examples in Chapter 5. We set v = 10 and then we choose 

A in such a way that the expectation of the Inv- 2 (i', A) distribution matches a 

data-determined estimate of 0,2 . We notice that, as described in Section 3.5 the 

method of moments for a 2  gives 

&2= 	+ log {1 
(s2— 

2 

 )' 

and then, setting this value equal to the expected value of the Inv- 2 (v, A) distri-

bution we get 

E(a2)= 2  
v 

V  
—2 

from which we obtain 

v - 2 a2. 
V 

We also notice that the variance of the prior distribution can then be given by 

var(a2) = 	
2v2 
	 A2. 
(v_2) 2 (v_4) 

The above procedure gives a hyperprior distribution which is closely concentrated 

around the data-estimated value of the parameter a 2 . For instance, in the audit 

data example the chosen values ii = 10, A = 0.45, give a hyperprior distribu-

tion for a 2  which is concentrated at a data estimated mean equal to 0.56 with a 

variance of 0.05. We note that 62 = 0.56 is the a 2  value employed in the EB meth-

ods for the same example in Chapter 3. Thus, by using such an informative prior 

for a2 , we expect the posterior mean estimates produced with the hierarchical 

Bayes analysis to be similar to those of the EB methods. 

6.1.2 MCMC methods for the frequency simulations 

In Chapter 5 we obtained the hierarchical Bayes analysis of the Poisson/log-

normal model using the the Gibbs sampling method developed in Section 5.4 

and the hybrid MCMC strategy of Section 5.5. The former relies on a log-

normal/gamma mixture approximation to simulate from the nonclosed form of 

the full conditional posterior distribution of 9, i = 1,... , in, while the latter 

addresses the same problem employing a Metropolis-Hastings step, embedded 

within the Gibbs sampling cycles. 
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We assess the frequency properties of the hierarchical Bayes estimator under 

both approaches. The Gibbs sampling algorithm, was shown through the exam-

pies of the preceding chapter to provide a good approximation to the posterior 

distribution of the model parameters. The simulation study will demonstrate 

that it also produces an estimator with good average risk properties, especially 

in comparison to the usual unbiased estimator or other frequentist methods. The 

Metropolis-Hastings within Gibbs hybrid method will be used to demonstrate the 

frequency properties of the estimator resulting from an exact hierarchical Bayes 

analysis of the model under consideration. The log-normal/gamma mixture dis-

tribution was preferred to the Ga(y 2  + 1, 1) as the proposal distribution for the 

Metropolis step of the algorithm. This was due to the mixing efficiency advantage 

of the former, in anticipation of faster convergence, which was crucial given the 

restrictions dictated by the computationally intensive nature of the simulation 

study. 

6.1.3 MCMC implementation and starting values 

The estimation of the average risk of the hierarchical Bayes estimator through a 

simulation procedure requires the MCMC algorithm to be repeated for a large 

number of times, to allow the evaluation of (3.32). This imposes some restrictions 

regarding the length of the chain of the algorithm. The latter is related to one of 

the main concerns with the implementation of MCMC methods, namely the issue 

of the convergence of the Markov chain to the distribution of interest. The chain 

must be sampled for as long as it is necessary for the simulated values to be drawn 

from the correct distribution. The sufficient length of the MCMC chain can vary 

according to the problem under consideration, and therefore a case-to-case assess-

ment of convergence must be made to allow a decision regarding the length of the 

chain. When the Gibbs sampling methods of Chapter 5 were applied to specific 

examples, the convergence was examined by means of visual inspection of certain 

characteristics of the resulting distribution, and also using the Gelman and Rubin 

(1992) P statistic. However, these convergence diagnostic methods rely on run-

ning multiple simultaneous MCMC chains and involve an interactive procedure. 

It is therefore difficult to determine an all-purpose rule for the appropriate length 

of the Markov chain when a simulation study involving a large number of different 

samples is to be carried. The parallel implementation of multiple chains for the 

assessment of convergence and better mixing of the algorithm, was highly time 

consuming during the repeated iterations of the frequency properties study. 

To tackle this problem, we only ran a single chain for each MCMC evaluation 

of the hierarchical Bayes estimator. Then, one possible way to facilitate the con- 
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vergence of the algorithm was to choose good starting values, that is to initialise 

the Markov chain at values which would be close to the posterior estimates of the 

model parameters. Hence, we employed the EB estimates of the parameters of 

the Poisson/log-normal model, derived in Chapter 3. The BLP for the Poisson 

parameters O, i = 1,... , m, in (3.24), and the moment estimates (3.23) of the hy-

perparameters ji and cr2  provide approximations to the posterior estimates, while 

their computation is remarkably simple and fast. Then, a single chain of length 

N = 5000 was ran and the burn-in period was kept as low as possible for both the 

Gibbs sampling and the Metropolis-Hastings within Gibbs methods. Once again, 

we stress here that these values do not guarantee convergence of the algorithm, 

but were empirically chosen on a trial and error basis. As also demonstrated in 

the examples of Chapter 5, our experimentation suggested that the convergence 

issue can be considerably complicated when the Poisson means are close to zero 

and little or no prior knowledge is included in the model. 

6.1.4 Characteristics of the average risk simulation study 

As in Chapter 3, we are interested in investigating the average risk behaviour 

of the hierarchical Bayes estimates under different loss functions and choosing 

various parameter settings, representing a wide range of the parameter space of 0. 

Thus, we consider the squared error loss, the absolute error loss and the maximum 

component loss functions given in (3.25), (3.26) and (3.27) respectively, and the 

true mean and variance combinations displayed in Table 3.7. The average risk 

was estimated using (3.32), and the results are again given terms of the relative 

average risk improvement (RARI) in (3.33), that is as the relative savings in 

average risk when the considered method is compared t .  o the usual maximum 

likelihood estimator. 

Finally, a total number of N = 104  Monte Carlo simulations were employed 

for the estimation of the average risk, involving 100 simulated data samples, 

for the evaluation of the frequentist risk, nested within 100 simulations of the 

o = (01, 92,... , 9m ) T  vector, to allow averaging over the prior distribution.. The 

algorithm for the C computer program used for the simulation study is the same 

as the one in Figure 3.1, for the EB case. However, the iterative nature of the 

MCMC computations adds a considerably heavier computing time cost to the 

whole algorithm. 
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Table 6.1: Percentage of relative improvement in average risk (3.33) when the 
hierarchical Bayes estimator obtained with the Metropolis-Hastings within Gibbs 
algorithm is compared to the MLE. Model (.1a) is assumed, and the results from 

the 9 settings for the true 0,, i = 1,... , m, values and the 9 considered loss 

functions are reported. 

E(0) 1.0 5.0 10.0 

var(02 ) 0.5 	1.0 	2.0 2.5 	5.0 	10.0 5.0 	10.0 	20.0 

SEL0  41.7 32.9 25.1 52.3 40.7 23.4 51.7 40.1 26.8 

SEL 1  43.1 35.1 28.7 52.9 41.7 24.8 51.9 41.1 27.8 

SEL2  41.5 26.5 4.2 52.5 39.0 14.0 51.4 39.7 23.6 

AEL0  28.2 23.3 19.4 32.7 24.9 14.6 31.8 24.0 15.8 

AEL1 29.7 24.9 21.1 33.0 25.2 15.0 31.9 24.2 16.0 
2 

AEL1  30.8 24.6 17.8 33.1 25.0 13.7 31.9 24.2 15.6 

MAXSELO  39.3 29.5 21.0 51.3 38.6 19.5 51.0 38.8 24.0 

MAXSEL 1  39.4 32.4 26.7 51.9 39.6 21.5 51.3 40.4 26.3 

MAXSEL 2  34.0 19.2 -5.4 50.2 31.7 -3.3 49.8 36.0 15.0 

6.1.5 Average risk simulation results 

The relative improvement in average risk of the hierarchical Bayes estimator when 

compared to the usual unbiased estimator is given in Tables 6.1, 6.3, 6.4 and 6.5. 

Each of these tables exhibits the RARI for the 9 different specifications for the 

mean E(02 ) and the variance var(0 2 ) of the true values of the Poisson means 

0, i = 1,... , m, and the 9 considered loss functions given in (3.25), (3.26) 

and (3.27). Each table corresponds to one of the two MCMC methods that we 

have presented, that is the approximate Gibbs sampling approach and the hybrid 

Metropolis-Hastings within Gibbs algorithm, when either model (4.1a) or model 

(4.1b) is assumed. 

Model (4.1a): Uniform hyperprior on a 2  

We first look into the case where we assume that the variance parameter a 2  has 

a vague U(0, oo) hyperprior distribution under model (4.1a). The RARI results 

of the Metropolis-Hastings within Gibbs method in Table 6.1 demonstrate that 

the estimator resulting from the full hierarchical Bayes analysis, produces remark- 
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Table 6.2: Summary of the relative improvement in average risk (RARI) results 
of the hierarchical Bayes estimator obtained with the Metropolis-Hastings within 
Gibbs method under both models (4.1a) and (4.1b), when compared to the MLE. 
A total number of 81 cases were examined. 

%RARI 	<0 	0-20 20-40 40-60 >60 

Model (4.1a) 	2 	13 	46 	20 	0 

Model (4.1b) 	7 	10 	32 	22 	10 

able savings over the average risk of the MLE under almost all the considered loss 

functions and parameter settings for 9. As expected, the improvement declines as 

the true variance var(9 2 ) increases, since in this case the estimates obtained with 

the hierarchical Bayes method are less adjusted towards the prior assumption and 

closer to the unbiased estimates. The method results in worse frequency proper-

ties than the MLE only in two cases, when the weighted maximum component 

loss function MAXSEL2  = maxl<j<m { }   is considered, and the variance of 

92, i = 1,... , m, is large. 

Table 6.2 provides a summary of the relative average risk improvement of the 

hierarchical Bayes estimator, compared to the MLE. As mentioned earlier, when 

model (4.1a) is assumed, the hierarchical Bayes method fails only twice, out of 

81 cases examined, to improve the average risk of the unbiased estimator. We 

can compare the overall performance of the hierarchical Bayes method to that of 

the nonlinear EB importance sampling estimator, referring to Tables 6.2 and 3.8. 

Table 3.8 reveals that the EB method is worse than the MLE in terms of average 

risk in 6 cases, as compared to the 2 cases for the hierarchical Bayes estimator. 

On the other hand, the latter did not give an improvement greater than 60% 

in any of the examined cases, whereas the EB importance sampling estimator 

improved the MLE in such a high percentage 12 times. As Table 6.1 shows, these 

findings reflect the good performance of the hierarchical Bayes method, not only 

when the Poisson parameters 92,  i = 1,... , m, are close to their mean, but also 

in the presence of larger variability among them. While the EB method, due to 

ignoring the uncertainty in the hyperparameters, yields outstanding savings when 

var(92 ) 
is small, thus resulting in improvement more than 60% in theses cases, the 

hierarchical Bayes analysis provides good frequency properties also under more 

variation in the parameters, improving the average risk of the MLE in most of 

the cases where var(0 2 ) is large. 

We also assessed the average risk properties of the hierarchical Bayes estimator 
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Table 6.3: Percentage of relative improvement in average risk (3.83) when the 
hierarchical Bayes estimator obtained with the approximate Gibbs sampling algo-
rithm is compared to the MLE. Model (4.1a) is assumed, and the results from the 

9 settings for the true 9, i = 1,... , m, values and the 9 considered loss functions 

are reported. 

E(91 ) 

var (9 

SEL0  

SEL 1  

SEL2 

AEL0  

AEL1 
2 

AEL 1  

MAXSELQ  

MAXSEL 1  

MAXSEL2 

1.0 

0.5 	1.0 	2.0  

51.5 43.9 32.9 

53.3 45.7 31.1 

48.3 26.6 -68.4 

36.4 32.1 25.4 

38.2 33.2 22.5 

38.6 30.1 4.9 

48.1 40.1 26.3 

49.6 43.7 31.6 

39.5 16.4 -96.9 

5.0 

2.5 	5.0 10.0  

50.3 38.6 26.4 

51.1 40.4 28.6 

50.7 37.9 21.5 

31.2 23.6 16.5 

31.6 24.2 17.2 

31.8 24.1 16.6 

48.9 35.6 23.2 

49.9 38.2 25.5 

47.8 30.6 6.4 

10.0 

5.0 10.0 20.0 

52.1 39.8 26.4 

52.4 40.5 27.0 

52.2 39.0 21.7 

32.1 23.4 15.4 

32.2 23.6 15.5 

32.3 23.4 14.8 

51.7 38.6 23.8 

52.2 40.0 25.2 

51.2 35.3 12.1 

resulting from the method presented in Section 5.4, that is the Gibbs sampling 

method employing the log-normal/gamma mixture approximation for sampling 

from the full conditional distribution of 9,, i = 1....., m. As shown in Table 6.3, 

the Gibbs sampling estimator again outperforms the MLE in all but two of the 

81 considered cases. The relative improvement is as high as that of the exact 

Metropolis-Hastings within Gibbs estimator, and follows similar patterns. There 

is a reasonable agreement in the RARI results of the exact and the approximate 

method, in Tables 6.1 and 6.3 respectively, except in the case where E(9) = 1.0. 

We believe that these discrepancies can be due to the inaccuracies occurred with 

the approximate algorithm when the data include many zero values, as would the 

case be when the true mean of the Poisson parameters Oj, i = 1,... , rn, is close 

to the origin. 

Model (4.1b): Inv-X2 (v, )) hyperprior on a 2  

As mentioned before, the uniform hyperprior distribution on a 2 , that we assumed 

in the hierarchical Bayes setting for the preceding paragraph, implies relative prior 

1131 



Table 6.4: Percentage of relative improvement in average risk (3.33) when the 
hierarchical Bayes estimator obtained with the Metropolis-Hastings within Gibbs 
algorithm is compared to the MLE. Model (4.1 b) is assumed, and the results from 

the 9 settings for the true 9, i = 1,... , m, values and the 9 considered loss 

functions are reported. 

E(02 ) 
1.0 5.0 10.0 

var(02 ) 0.5 1.0 2.0 2.5 5.0 10.0 5.0 10.0 20.0 

SEL0 63.3 53.5 44.4 61.4 45.0 27.7 60.2 42.4 24.6 

SEL 1  60.4 44.5 21.3 61.5 45.0 24.0 60.2 43.0 24.5 

SEL2 40.8 -7.3 -155.3 59.2 36.8 0.5 58.7 39.2 14.0 

AEL0 	42.5 	34.6 	28.6 	39.1 27.7 	16.0 	38.0 25.3 14.3 

AEL1 	41.1 	30.0 	18.4 	39.1 27.4 	14.6 	38.0 25.4 14.1 
2 

AEL 1 	36.6 	18.2 	-11.3 	38.6 25.8 	10.4 	37.7 24.7 12.4 

MAXSELO 62.6 51.7 41.6 60.6 42.0 25.3 59.5 39.7 21.2 

MAXSEL1 63.1 50.0 22.0 61.4 43.4 21.9 59.7 42.1 23.2 

MAXSEL2 30.6 -21.1 -210.6 55.7 24.0 -27.6 55.8 32.2 -1.5 

ignorance at the lowest stage of the hierarchy. However, using a scaled inverse chi-

square hyperprior distribution on a 2 , we can include in the model certain prior 

information for the variance hyperparameter. We assume a Inv-X
2  (v, A) prior 

distribution, determining v and A as described in Subsection 6.1.1. In doing so, 

we assume that a-priori, a 2  is distributed around a data-determined mean with 

relatively small variation. Therefore, we expect the estimator obtained from this 

hierarchical Bayes analysis to exhibit smaller posterior variability than before, and 

hence to possess excellent frequency properties when the parameters of interest 

0,, i = 1,... , m, are close to each other, but not when they lie in a wide range. 

Table 6.4 contains the relative savings in average risk when the hierarchical 

Bayes estimator, obtained with the M etropolis-Hastings within Gibbs algorithm 

for model (4.1b), is compared to the MLE. The comparison of these RARI results 

to those given in Table 6.1, verifies that the assumption of strong hyperprior 

information provides estimators with superior frequency properties when var(9 2 ) 

is small. However, the average risk performance of the method derived under 

vague priors, is similar or better than that of the method assuming a strongly 
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Table 6.5: Percentage of relative improvement in average risk (3.33) when the 
hierarchical Bayes estimator obtained with the approximate Gibbs sampling algo-
rithm is compared to the MLE. Model (4. ib) is assumed, and the results from the 

9 settings for the true O, i = 1,... , m, values and the 9 considered loss functions 

are reported. 

E(92 ) 1.0 5.0 10.0 

var(92 ) 0.5 1.0 2.0 2.5 5.0 10.0 5.0 10.0 20.0 

SEL0  59.7 49.5 43.9 55.9 45.3 31.0 56.2 45.1 32.0 

SEL 1  61.2 48.2 32.4 56.3 45.6 30.6 56.4 45.8 31.3 

SEL2  52.7 15.4 -80.5 55.1 40.2 9.2 56.1 44.2 23.3 

AEL0  41.6 34.3 29.2 35.1 27.5 19.1 34.9 26.9 18.4 

AEL1 42.6 33.1 22.4 35.4 27.6 18.8 35.1 27.1 18.0 
2 

AEL 1  41.6 26.2 -0.7 35.3 26.8 15.9 35.1 26.9 16.6 

MAXSELO 56.6 46.0 39.6 54.8 44.0 26.4 56 43.6 30.2 

MAXSEL 1  61.2 50.2 38.2 55.1 44.3 26.2 56.2 44.9 29.5 

MAXSEL2  46.1 2.9 -95.7 51.5 30.4 -21.9 54.6 40.3 10.0 

informative Inv-X2 (v, A) prior, when the O, i = 1,... , m, are less concentrated 

around their mean. This is also demonstrated in Table 6.2, which shows that the 

hierarchical Bayes method, when an informative prior on or 2 is assumed, fails to 

improve the average risk of the MLE in 7 out of the 81 examined cases, while it 

yields outstanding relative savings of over 60% in 10 cases. Reference to Table 

6.4 confirms that the poor frequency performance corresponds to the cases where 

var(01 ) 
is large, whereas the highest savings are observed when O, i = 1,... , m, 

are very closely distributed around their mean. We note here that this average 

risk behaviour is very similar to that of the EB methods, which are discussed in 

Chapter 3 and summarised in Table 3.8. Similarly to the EB estimation, when 

informative priors are utilised in the model, the hierarchical Bayes analysis implies 

strong belief in the prior assumptions, and thus is expected to provide excellent 

frequency results in the parameter region where the prior distribution attaches 

high probability, at the expense of paying a heavier risk cost under any prior 

misspecification. 
As in the previous paragraph, we also examined the average risk properties of 



the estimator resulting from the approximate Gibbs algorithm, when model (4.1b) 

is assumed. The RARI results in Table 6.5 demonstrate that the method provides 

remarkable improvement to the MLE as far as the average risk is concerned, giving 

similar results to those obtained with the exact hierarchical Bayes analysis. 

6.2 Model extensions and applications 

In the preceding chapters we have considered the analysis of hierarchical Poisson 

models, where the parameters O, i = 1,... , m, represent the Poisson means 

over equal time or space intervals. Moreover, the Poisson means are given in 

an exchangeable form, in the sense that they do not depend on any explanatory 

variables in a regression structure. In the present section we will demonstrate 

that the methods that we proposed for the hierarchical Bayes analysis of this 

model, can be easily adjusted to apply to more complicated structures. 

6.2.1 Analysis of event rates 

When the observed events are counted over time intervals or space areas of un-

equal sizes, one can consider the rate of occurrence of the events per time or 

space unit. If the counts Yl, Y2, .. , Ym, are observed over the time, say, intervals 

E2 , i = 1,... , m, with assumed unobserved rates O,  i = 1,... , m, then we can 

consider that given the parameters 9, the random variables Yi  follow independent 

Poisson distributions with respective means OiEi  for i = 1,... , m. The quantities 

E2 , i = 1,... , m, are often called exposure times, indicating the time period for 

which the experimental units are exposed to a process, condition, treatment, etc. 

They may also be referred to as denominators, a term which is motivated by the 

Poisson approximation to the binomial distribution in applications where y2  out 

of E2  subjects respond to a given treatment. 

Assuming a log-normal prior distribution for the event rates, and vague hy-

perprior distributions for the log-normal parameters, the above situation can be 

expressed as an exchangeable hierarchical structure which is slightly different from 

model (4.1a). We can write 

Y zIOi 
m 

-' 
d Poisson(OE) 

= log(02 ) 
iid 	 2 ' N(p,a) 	 (6.1) 

oc 1 

oc 1 
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where i = 1,... , m. According to this model the joint posterior distribution of 

and a2  is given by 

p(, , a2 Iy) o (a2)_n2 exp 	{iYi - 	- 	_ 2( .  .-
2 

01 

=i 

which implies that while the full conditional distributions of /1 and a2  remain the 

same as for model (4.1a), the full conditional of i = 1,... , m, must be altered, 

and therefore our log-normal/gamma mixture approximation, as developed in 

Chapter 5, is no longer valid. However, model (6.1) may be equivalently written 

as 

md 
Yiloi r%.O Poisson(p2 ) 

'yj = log() 
ind 

7jIaj,a2 	N(a2,0,2) 	
(6.2) 

ai  = logE1  + ii. 

,7r (M) o 1 

ir(a2 ) o 1 

with tii  = 9E2 , for i = 1,... , m. The formulation in (6.2) is the same as that 

of model (4.1a), with the mean of the prior normal distribution replaced by a 2 . 

Hence, the full conditional distributions under model (4.1a) are slightly changed 

to account for the exposures E2 , and can be written as 

) a\ 

	

M 	m) 

E1('yi - a2 ) 2  
L7 2  

p(I/2,a2,y) 	exp {iYi - 	- a2( - ai ) 2 } 	1... 

where ai  = log E2  + ft . To sample from the full conditional distribution of 'y, 

we can now employ the log-normal/gamma mixture approximation developed in 

Chapter 5, substituting /2 by a2 . The simulation procedure will provide estimates 

for the Poisson means /22, = 1,... , m, and therefore one should divide these 

values by the exposures E1  to obtain the Poisson rates 9, i = 1,... , m. 
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Table 6.6: Pump failure data (Worledge et al., 198). The exposure times are 

given in thousands of hours. 

Pump 
i 

Failures 
Yi 

Times 
E, 

1 5 94.320 
2 1 15.720 
3 5 62.880 
4 14 125.760 
5 3 5.240 
6 19 31.440 
7 1 1.048 
8 1 1.048 
9 4 2.096 
10 22 10.480 

6.2.2 Example: Pump failure data 

We will illustrate the application of the methods presented in Chapter 5 to the 

analysis of model (6.2), using the pump failure data which can be found in 

Worledge et al. (1982). The data represent the number of failures of pumps 

at a nuclear power plant. The failures are assumed to follow independent Poisson 

distributions with individual rates O,  i = 1,... , 10, and each pump is observed 

for a different exposure period E2 , i = 1,... , 10. Table 6.6 contains the number 

of failures and exposure times for each system. An EB analysis for this data set 

is given by Gayer and O'Muircheartaigh (1987), who employ a log-normal prior 

distribution for the Poisson rates. The same prior structure is also considered by 

Carlin and Gelfand (1991), who analyse the data using the Gibbs sampler and 

rejection sampling to sample from the nonstandard conditional distribution of 

the Poisson means. Tierney (1994) provides an analysis based on various MCMC 

methods, while Gelfand and Smith (1990) and George, Makov and Smith (1993) 

use the Gibbs sampler assuming a conjugate gamma prior distribution. 

We used both the approximate Gibbs sampling and the Metropolis-Hastings 

within Gibbs methods, of Sections 5.4 and 5.5 to analyse the pump failure data. 

Estimates for the posterior mean and standard deviation of all model parameters 

are reported in Table 6.7, together with the 2.5% and 97.5% estimated percentiles 

of the corresponding posterior distributions. In all the examples of this chapter, 

three independent MCMC chains were combined to ensure convergence of the 

algorithms. 
To compare our results, we also give in Table 6.8 some estimates as pre- 
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Table 6.7: Hierarchical Bayes estimates for the pump failure example parameters, 
using the Metropolis-Hastings within Gibbs and the approximate Gibbs methods. 

obs. 

par. rate 

01 	0.05 

92 	0.06 

03 	0.08 

94 	0.11 

95 	0.57 

96 	0.60 

97 	0.95 

08 	0.95 

99 	1.91 

910 	2.10 

MH within Gibbs 

Posterior estimates 

mean sd 2.5% 97.5% 

0.06 0.02 0.02 0.12 

0.10 0.07 0.01 0.28 

0.09 0.04 0.03 0.17 

0.11 0.03 0.06 0.18 

0.54 0.30 0.13 1.29 

0.60 0.14 0.36 0.89 

0.77 0.74 0.05 2.78 

0.77 0.74 0.05 2.81 

1.63 0.86 0.42 3.71 

2.03 0.44 1.27 2.97 

Gibbs sampling 

Posterior estimates 

mean sd 2.5% 97.5% 

0.06 0.02 0.02 0.12 

0.10 0.07 0.01 0.28 

0.09 0.04 0.03 0.17 

0.12 0.03 0.06 0.18 

0.51 0.29 0.12 1.23 

0.59 0.14 0.36 0.89 

0.67 0.67 0.04 2.53 

0.68 0.68 0.04 2.52 

1.49 0.82 0.35 3.46 

2.06 0.44 1.30 3.02 

IL -1.20 0.64 -2.47 0.07 

3.63 3.05 0.96 11.20 

-1.45 0.60 -2.64 -0.21 

2.78 2.59 0.63 9.05 
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Table 6.8: Posterior means for the pump failure rates, as reported by: Gayer 
and O'Muircheartaigh (1987), (G&0); Tierney (1994); and George, Makov and 
Smith (1998), (G,M&S). 

par. GE5O Tierney G,M4S 

01  0.06 0.07 0.06 

02 - 
- 0.11 

03 - 0.09 

04  - - 0.12 

05  0.45 0.46 0.60 

06 0.57 - 0.61 

07  - - 0.88 

08 - 
- 0.89 

09  - 
- 1.56 

010 1.95 1.91 1.98 

sented in earlier analyses of the same data set in the literature. As mentioned 

earlier, the Gayer and O'Muircheartaigh (1987) estimates are derived using a 

log-normal prior distribution and following an EB procedure. The results from 

Tierney (1994) correspond to a log-t prior assumption with 5 degrees of freedom. 

The parameters of the log-t distribution were set to follow informative hyperprior 

distributions to match the EB analysis of Gayer and O'Muircheartaigh. Finally, 

George, Makov and Smith (1993), assume a conjugate Poisson/gamma structure, 

employing relatively vague priors for the hyperparameters of the gamma distribu-

tion. We notice that our estimates are somewhat different from those of previous 

analyses, reflecting the largely vague uniform distributions that we have assumed 

at the lower stage of the hierarchical model for the hyperparameters pand cr2 . 

6.2.3 Example: Air conditioning failure data 

We also consider a data set concerning the number of air conditioning equip-

ment failures in 13 Boeing 720 aircraft. The observed counts, together with the 

exposure periods of each aircraft, originally appear in Proschan (1963), and are 

displayed in Table 6.9. The order in the aircraft number is the same as in Proschan 

(1963) and corresponds to an ascending order for the observed failure rates. 
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Table 6.9: Air conditioning failure data (Proschan, 1963). The exposure times 
are given in thousands of hours. The order in the aircraft number corresponds to 
an ascending order for the observed failure rates. 

Aircraft Failures Times 
iYi 	E2  

11 2 0.623 
9 9 1.800 
5 14 1.832 
4 15 1.819 

12 12 1.297 
10 6 0.639 

2 23 2.201 
3 29 2.422 
1 6 0.493 

13 16 1.312 
7 27 2.074 
8 24 1.539 
6 30 1.788 

Using the modelling in (6.2) and considering both the Metropolis-Hastings 

within Gibbs and the approximate Gibbs approaches, we obtain the results re-

ported in Table 6.10. The approximate Gibbs method works well, providing 

estimates that are close to those derived with the hybrid technique. The esti-

mates of the posterior mean of the failure rates are smoothed towards a central 

value, and therefore lie in a narrower range than the observed rates, which rep-

resent the unbiased maximum likelihood estimates. We also notice that the 95% 

equal tailed intervals reveal a positive skewness for the posterior distribution of 

the failure rates. 
The data have also been analysed by Gayer and O'Muircheartaigh (1987). 

These authors, considering a log-normal prior on the Poisson rates for their EB 

approach as in the pump data example, report the posterior means for the rates 

Oii, 92 and 06  as 8.67, 10.38 and 13.60 respectively, and the maximum likelihood 

estimates for the hyperparameters IL and a2  as 2.34 and 0.053. These estimates 

demonstrate that the EB approach results in more radical shrinkages when com-

pared to the hierarchical Bayes analysis, due to the fact that the former method 

does not adequately account for the uncertainty in the hyperparameters. 
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Table 6.10: Hierarchical Bayes estimates for the air conditioning failure exam-
ple parameters, using the Metropolis-Hastings within Gibbs and the approximate 
Gibbs methods. 

MH within Gibbs 

Posterior estimates 

mean sd 2.5% 97.5% 

7.73 2.43 3.34 12.65 

7.14 1.81 3.95 10.94 

8.66 1.84 5.28 12.44 

9.05 1.82 5.77 12.93 

9.77 2.12 5.96 14.26 

10.03 2.63 5.51 15.94 

10.42 1.82 7.14 14.28 

11.50 1.91 8.18 15.59 

11.13 3.08 6.09 18.34 

11.44 2.36 7.44 16.69 

12.16 2.08 8.54 16.64 

13.75 2.67 9.32 19.65 

14.67 2.71 10.18 20.59 

Gibbs sampling 

Posterior estimates 

mean sd 2.5% 97.5% 

7.66 2.43 3.19 12.64 

7.10 1.81 3.83 10.83 

8.64 1.82 5.34 12.40 

9.02 1.84 5.66 12.88 

9.69 2.15 5.90 14.37 

10.03 2.68 5.36 16.0 

10.43 1.82 7.16 14.33 

11.51 1.90 8.17 15.56 

11.14 3.13 6.06 18.54 

11.44 2.38 7.34 16.72 

12.18 2.12 8.55 16.81 

13.68 2.63 9.34 19.52 

14.69 2.70 10.16 20.75 

obs 

	

par. 	rate 

	

Oil 	3.21 

	

99 	5.00 

	

05 	7.64 

	

04 	8.25 

	

012 	9.25 

	

010 	9.39 

	

02 	10.45 

	

03 	11.97 

	

01 	12.17 

	

013 	12.20 

	

07 	13.02 

	

08 	15.59 

	

06 	16.78 

1-I 

or 2 

2.31 0.13 2.03 2.56 

0.15 0.13 0.01 0.49 

2.31 0.13 2.02 2.55 

0.15 0.14 0.02 0.52 
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6.2.4 Random effects model 

We now consider the situation where the means of the Poisson distributions de-

pend on p explanatory variables. If no different exposure times are involved, we 

assume that the Poisson means are given as 

9, = exp(boxo  + b 1 x 12  + ... + b_ 1 x_ 1 , + e) 

= exp(xb + ), 	i = 1,... I M, 	 (6.3) 

where xT = (x0 2 , x1,... , x_i,), for i = 1,. .. , m, are known design vectors, 

b = (b0 , b 1 ,... , b_ 1 )T is a vector of regression coefficients and e, i = 1,... 

are random error terms with means zero and constant unknown variance cr2 . Then 

we can define a generalised linear model with random effects, expressed as 

m 

	

Yi 	
d

I9 	Poisson(9) 

-ti = log(92 ) = xTb + ej 
iid 

N(O,a2 ) 	 (6.4) Ei 

7r (b) O( 1 

ir (or 2 ) cx 1 

where i = 1, . .. , m. Here, we have assumed that the coefficients b0 , b1 ,.. . , 

and the variance a2  are independently distributed according to vague uniform 

prior distributions over their range. The full Bayesian analysis of such models 

has been mainly tackled with the use of the Gibbs sampler combined with various 

rejection sampling techniques, following the work of Zeger and Karim (1991). 

Nevertheless, we can rearrange the formulation in model (6.4), in such a way 

that we can exploit our approximation to the full conditional distribution of 

the logarithm of the Poisson means, derived in Chapter 5. The model may be 

presented as 
md Yil9i i-' Poisson(92) 

= log(9m ) 
ind 

'ymIAm,a2Nt7¼,a2) 	 (6.5) 
Ai  = xTb 

ir(b) cx 1 

ir(a2 ) cx 1 

for i = 1,... , m. Then, the above model gives the following joint posterior 

distribution for y,  b and a2  

rm 1  1 -2 

	

p(, b, a2 Iy) cx (2)_m  exp 	yj - e7  - a (7 - )
2}], 	(6.6)Ai 
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which is the same as the one for model (4.1a) with p replaced by A i  xb. This 

implies that the full conditional distributions for a 2  and 'yj, i = 1,... , m, are the 

of the same form as those given in (5.44) and (5.45) respectively, i.e. 

L1=i(.'Yz 	z) 	y,b,y 	x -2' (6.7) 

and 

p(b,a 2 ,y) oc exp {iYi - 	- 1 a(i  - )2}, 	j 	(6.8) 

where A=x"bfori= 1,... ,m. 

We will now derive the full conditional distribution for the regression coeffi-

cients bk, k 0,... , p - 1. We use the notation b_k to indicate the vector b with 

its kth component omitted, that is 

b_k = (b0 ,... ,bk_1)bk+1,... 
7 b_ 1 )T . 	 (6.9) 

We also denote the corresponding linear component by hk 2 , i.e. 

hki = b0 x 0  + . . . + bk_lxk_1,i + bk+lxk+1,i + ... + b_1 x_ 1 ,. 	(6.10) 

Then, the full conditional distribution of bk given -y, b_k, a2  and y is given from 

(6.6) as 

	

p(bk , b_k, a2 ,y) exp 	 - XTh)2} 

and using the decomposition xTb = hk + bkXki and ignoring terms that do not 

involve bk, we can write 

m 

p(bk I, b_k, 0'2 , y) oc exp - 	{(7i - h) - bkxk } 2] 

L 	j=1 

	

Tn 	 m 

= exp 	{i 	- 2bk 	('Yi -hki 

jb2k 
	 hki)xki 

exp - 2bk = 

Completing the square and ignoring again terms not involving bk,  we obtain 

M  

p(bkI,b_k,a 2 ,y)ocexp [_xi1bk_ 	
i=i(i_hki)xkz}]2. 	(6.11) 

	

i1 	 j=1 Xk j  
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Expression (6.11) indicates that conditionally on y, b_k, U 
2 and y, bk follows a 

normal distribution, and we can write 

bkIy, b_k, a2,  y N 	
- hk)xkj 	a2  

In 	2 	, 	m 	2)' 	(6.12) 
Ei=1 	>i=1 Xkj 

for k = 0,... ,p - 1, with hk2  given in (6.10). 

We notice here that if the whole vector b is considered as a block, working 

in matrix formulation in a manner similar to that leading to (6.11), we derive a 

multivariate normal conditional distribution of the form 

m 	 m 	 In 

by,0,2 ,yNp 	 T)
2x'y, a2 (>xix) ). 

Therefore, we can employ the above, or (6.12), together with the full condi-

tionals in (6.7) and (6.8) to proceed with the Gibbs sampling and Metropolis-

Hastings within Gibbs methods presented in Chapter 5. 

6.2.5 Random effects model for the analysis of event rates 

The generalised linear model of the preceding subsection can be extended by 

allowing the observations to involve exposure times, or denominators E2 , so 

that the Poisson means are given by pi = 9E2 , i = 1,... , m, as in Subsec-

tion 6.2.1. Then the log-linear form in (6.3) corresponds to the Poisson rates 

92, i = 1,... , m. Thus, when the conditional sampling distribution of Y given 9 

in model (6.5) is substituted by a Poisson(9E 2 ) distribution, the full conditional 

density p(y 2 b, 0,2 , y) in (6.8) must be adjusted, and the approximation methods 

cannot be applied. However, we may employ the equivalent model formulation 

md 
YiIei 	Poisson(p2) 

-'ii = log() 

'yI)¼:,a2 	' NX,a2) 	
(6.13) 

A* = log E +x"b 

ir(b) oc 1 

7r(a2 ) cx 1 

for i = 1,... , m, which allows for the denominators E, i = 1,... , m, avoiding 

any changes in the formulation of the model given in (6.5). It follows that we can 

proceed as for the usual random effects model presented in Subsection 6.2.4, em-

ploying the full conditional distributions in (6.12), (6.7) and (6.8) for the MCMC 

methods. To do so, we only need to replace hk 2  and A1  in these expressions by 

= log E + hk2 
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Table 6.11: Heart transplant data (Christiansen and Morris, 1997). 

Centre 
i 

No. of patients 
E2  

No. of deaths Severity 

1 18 4 0.251 

2 24 1 —0.021 

3 28 3 0.208 

4 37 1 0.019 

5 42 2 —0.169 

6 48 1 0.164 

7 56 2 0.296 

8 60 3 0.199 

9 68 6 0.209 

10 73 0 0.093 

11 75 8 0.002 

12 79 3 0.064 

13 91 3 0.105 

14 99 9 0.073 

15 104 7 0.209 

and ,\ from (6.13) respectively. The Poisson rates O can be obtained by dividing 

the derived Poisson means 1,Li by the denominators E, for i = 1,... , m. 

6.2.6 Example: Heart transplant data 

We consider a data set analysed in Christiansen and Morris (1997). It concerns 

the mortality rates in m = 15 U.S. heart transplant centres in a period between 

October 1989 and December 1989, taken as a sample from 131 centres considered 

in Christiansen and Morris (1996). The number of deaths y2 , within 30 days of 

heart transplant surgery out of E2 , i = 1,... , 15, treated patients at each centre 

were recorded. Also available is a covariate x 21 , i = 1,. . . , 15, which is referred to 

as the severity index, and is based on seven risk variables for each patient treated 

at centre i, thus reflecting the severity of all the cases treated at each centre. The 

data are presented in Table 6.11. 
We can obtain a hierarchical Bayes analysis for these data using model (6.13), 

where xT = (x02 , x 1j, with xoi  = 1 for i = 1,.. . , 15, and x 11  representing the 

severity index. The denominators E2 , i = 1,... , 15, can be viewed as exposures 

leading to observed Poisson rates fl, with the Poisson approximation to the 
Ei 

binomial distribution justified from the fact that the observed proportion of deaths 

was less than 0.08 in the original data set. 

The results from the hierarchical Bayes analysis are shown in Table 6.12, 
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Table 6.12: Hierarchical Bayes posterior estimates for the heart transplant mor-
tality example parameters. The results from both the Metropolis-Hastings within 
Gibbs and the approximate Gibbs methods are given. 

MH within Gibbs 
	 Gibbs sampling 

	

obs 
	Posterior estimates 

	 Posterior estimates 

	

var. rate 	mean 	sd 	2.5% 97.5% 
	

mean sd 	2.5% 97.5% 

01 	0.222 

02 	0.042 

03 	0.107 

94 	0.027 

05 	0.480 

96 	0.021 

97  0.036 

08 	0.050 

99 	0.088 

910 0.000 

01 , 	0.107 

012 0.038 

013 0.033 

014 0.091 

015 0.067 

0.145 0.082 0.042 0.355 

0.046 0.030 0.008 0.122 

0.087 0.045 0.026 0.199 

0.040 0.023 0.008 0.097 

0.044 0.026 0.010 0.110 

0.038 0.022 0.007 0.090 

0.049 0.026 0.012 0.109 

0.054 0.025 0.017 0.112 

0.080 0.030 0.034 0.151 

0.023 0.016 0.002 0.061 

0.089 0.032 0.040 0.164 

0.043 0.019 0.014 0.087 

0.040 0.018 0.013 0.081 

0.081 0.026 0.040 0.141 

0.066 0.023 0.030 0.118 

0.146 0.083 0.041 0.355 

0.046 0.030 0.007 0.125 

0.088 0.046 0.026 0.201 

0.040 0.024 0.007 0.098 

0.044 0.027 0.009 0.111 

0.038 0.022 0.006 0.092 

0.049 0.026 0.011 0.108 

0.054 0.025 0.016 0.115 

0.080 0.030 0.033 0.151 

0.023 0.016 0.002 0.060 

0.089 0.033 0.039 0.165 

0.043 0.019 0.013 0.087 

0.039 0.018 0.012 0.080 

0.081 0.027 0.039 0.142 

0.066 0.023 0.029 0.118 

b0  

bi  

a2  

-3.18 0.40 -4.04 -2.47 

1.36 2.32 -3.06 6.11 

0.86 1.07 0.07 3.30 

-3.18 0.40 -4.06 -2.47 

1.39 2.33 -3.07 6.13 

0.91 1.22 0.06 3.53 
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Table 6.13: Posterior estimates for the heart transplant mortality example param-
eters as given in Christiansen and Morris (1997). 

par. mean 	sd 	par. mean 	sd 

01  0.117 0.057 

92 0.049 0.028 
03  0.083 0.038 
94 0.043 0.023 
95 0.047 0.027 
06 0.042 0.022 
97 0.051 0.026 

98 0.057 0.024 

09  0.079 0.028 
010 0.024 0.016 
01 , 0.083 0.029 

912 0.045 0.019 
0 3  0.042 0.018 
014 0.079 0.024 

015 0.067 0.022 

where we report posterior estimates of the model parameters, derived with the 

Gibbs sampling and Metropolis-Hastings within Gibbs methods. For comparison 

reasons we also present the posterior mean and standard deviation estimates of 

the Poisson rates from the Christiansen and Morris (1997) analysis, in Table 6.13. 

These authors consider a conjugate Poisson/gamma hierarchical model, and they 

rely on various approximations to obtain a Bayesian analysis. At the second 

prior stage they assume vague flat distributions on the regression coefficients and 

a uniform U(0, 1) hyperprior distribution on the shrinkage coefficient, in a manner 

similar to the modelling structure given in (4.2). 

Our hierarchical Bayes estimates of the mortality rates are smoothed towards 

the centre of the observed rates, and the estimate of the regression coefficient 

b1  suggests that large values of a centre's severity index will increase the ex-

pected mortality rate at that centre. The comparison between the results from 

the Poisson/log-normal and the Poisson/gamma model reveals that both struc-

tures produced similar posterior estimates. However, the analysis of the former 

model resulted in slightly smaller shrinking and larger posterior variation for the 

mortality rates, reflecting again the largely vague hyperprior distributions in our 

analysis. 

6.2.7 Example: Lip cancer in Scotland data 

Clayton and Kaldor (1987) analyse a data set which involves lip cancer inci-

dents in in = 56 counties in Scotland during the years between 1975 and 1980. 

The observed and expected lip cancer cases are reported, denoted as y1  and E2 , 

i = 1,... , 56, respectively, with the expected numbers calculated by the authors 

based on the age distribution in each county, and treated as known constants in 
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the analysis. A measure of the area specific relative risk is given by the ratio 

the so-called standardised mortality ratio (SMR). Under the assumption that 
Ei 

the random variables Y follow conditionally independent Poisson distributions, 

given the unobserved rates 9, with respective means 92 E2 , for i = 1,... , 56, the 

observed SMR give the ML estimates for 9, i = 1,... , M. 

Clayton and Kaldor considered various assumptions for the prior distribu-

tion of the area specific relative risks, that is the Poisson rates O, i = 1,... , m, 

including a log-normal prior to accommodate the assumed spatial correlation, 

and adopted an EB approach for the estimation problem. Breslow and Clayton 

(1993) also consider the same data set, including a covariate representing the per-

centage of population employed in agriculture, fishing or forestry in each county, 

and followed a quasi-likelihood procedure. It is believed that the covariate can 

explain a large part of the spatial aggregation. The authors also consider a model 

structure permitting intrinsic spatial correlation, omitting the explanatory vari-

able in order to make their analysis comparable to that by Clayton and Kaldor. 

We will examine the model including the covariate, but assuming uncorrelated 

random effects. The observed and expected lip cancer cases, together with the 

covariate values x 12  for counties i = 1,... , 56, are given in Table 6.14. 

Breslow and Clayton assume a log-linear form for the Poisson means 1u, i = 

1,... ,56, given as 

log(p2) 	
i 

2 ) = log 	+ b0  + b1 	+ &j, 	i = 1,... ,56 7  
10 

where the random effects Ej are independently distributed according to a nor-

mal distribution with mean zero and variance a 2 . Hence, assuming vague prior 

distributions for the regression coefficients and a 2 , we can express our model as 

md ig 	Poisson() 

yj = log() 
 2 md 

'ymIAi*, a 	N7t,a2) 
X i  

.\' =logE+bo +bi 
10 

7r (b) cx 1 

ir (or 2 ) cx 1 

for i = 1,... , 56, which is model (6.13). Therefore, we can proceed as described 

in Subsection 6.2.5 to obtain hierarchical Bayes estimates for the relative risks 

=Lil, i = 1,... , 56. Table 6.15 contains posterior estimates for the model 
Ei 

parameters, derived with the two proposed MCMC methods. We note that the 

observed relative risks and all corresponding estimates are multiplied by a factor 

of 100, to conform with a convention traditionally adopted for the SMR measure. 
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Table 6.14: Lip cancer in Scotland data (Breslow and Clayton, 1993). 

County 
i 

Obs. 
y, 

Exp. 
Ej  

Coy. 
xi 

County 
i 

Obs. 
y, 

Exp. 
E, 

Coy. 
Xi  

1 9 1.4 16 29 16 14.4 10 

2 39 8.7 16 30 11 10.2 10 

3 11 3.0 10 31 5 4.8 7 

4 9 2.5 24 32 3 2.9 24 

5 15 4.3 10 33 7 7.0 10 

6 8 2.4 24 34 8 8.5 7 

7 26 8.1 10 35 11 12.3 7 

8 7 2.3 7 36 9 10.1 0 

9 6 2.0 7 37 11 12.7 10 

10 20 6.6 16 38 8 9.4 1 

11 13 4.4 7 39 6 7.2 16 

12 5 1.8 16 40 4 5.3 0 

13 3 1.1 10 41 10 18.8 1 

14 8 3.3 24 42 8 15.8 16 

15 17 7.8 7 43 2 4.3 16 

16 9 4.6 16 44 6 14.6 0 

17 2 1.1 10 45 19 50.7 1 

18 7 4.2 7 46 3 8.2 7 

19 9 5.5 7 47 2 5.6 1 

20 7 4.4 10 48 3 9.3 1 

21 16 10.5 7 49 28 88.7 0 

22 31 22.7 16 50 6 19.6 1 

23 11 8.8 10 51 1 3.4 1 

24 7 5.6 7 52 1 3.6 0 

25 19 15.5 1 53 1 5.7 1 

26 15 12.5 1 54 1 7.0 1 

27 7 6.0 7 55 0 4.2 16 

28 10 9.0 7 56 0 1.8 10 
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Table 6.15: Hierarchical Bayes posterior estimates for the lip cancer in Scotland 
example parameters. The results from both the Metropolis-Hastings within Gibbs 
and the approximate Gibbs methods are given. 

par. 

obs. 

rate mean 

MH within Gibbs 

Posterior estimates 

sd 	2.5% 	97.5% 

Gibbs sampling 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

01  652.2 484.9 166.6 224.2 873.2 482.2 165.5 227.1 869.1 

92 450.3 424.7 67.7 301.7 566.9 425.3 68.4 302.8 569.2 

93  361.8 298.6 90.5 150.3 504.0 298.7 89.9 151.5 500.0 

94  355.7 353.2 106.8 176.9 597.0 353.3 107.7 177.4 590.1 

95  352.1 300.2 78.2 172.0 474.5 298.8 78.6 169.2 469.9 

06 333.3 332.5 105.0 163.2 568.3 332.0 105.6 161.5 573.9 

97  320.6 294.1 58.0 191.9 418.6 295.1 57.6 194.3 421.3 

98 304.3 223.6 84.2 95.7 419.8 226.3 85.1 94.8 425.1 

99  303.0 214.5 85.2 87.7 417.9 215.9 86.5 87.1 412.8 

010  301.7 288.1 62.8 180.6 424.4 287.7 63.2 178.4 424.5 

01 , 295.5 247.4 69.2 133.5 404.2 246.0 68.0 133.4 402.2 

912 279.3 246.5 96.9 101.5 480.6 249.3 98.1 100.1 473.2 

913 277.8 194.8 94.4 63.9 421.5 195.4 96.2 62.0 427.1 

914 241.7 260.0 81.1 129.0 439.9 259.2 80.5 127.8 442.0 

015 216.8 197.9 47.1 116.7 300.7 197.1 47.2 116.9 299.0 

916 197.8 194.0 58.3 99.0 325.3 193.6 57.9 99.4 320.7 

917 186.9 154.5 80.8 47.5 359.0 154.2 79.1 44.4 351.1 

018 167.5 146.9 50.9 66.9 262.6 146.9 50.9 66.6 262.4 

019  162.7 148.7 46.2 73.7 253.3 147.3 46.4 74.6 253.8 

920 157.7 150.8 51.0 69.2 268.0 150.3 50.2 68.3 265.1 

921 153.0 144.3 34.7 84.9 220.8 144.6 34.4 84.0 220.0 

922 136.7 139.5 24.3 96.6 191.2 139.5 24.1 97.1 190.1 

023 125.4 124.8 34.1 67.6 201.0 124.6 34.1 67.3 201.5 

024 124.6 119.4 39.5 55.9 208.7 118.7 39.2 54.5 209.2 

925 122.8 114.0 25.6 69.7 170.3 114.1 25.5 70.4 169.4 

926 120.1 110.7 27.6 64.1 171.4 110.5 27.7 63.4 172.1 

927 115.9 112.5 37.2 52.7 198.4 112.5 37.6 52.7 199.8 

928 111.6 109.2 31.2 57.6 179.9 109.1 31.1 57.0 177.2 
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Table 6.15: (Continued) 

par. 

obs. 

rate 

MH within Gibbs 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

Gibbs sampling 

Posterior estimates 

mean 	sd 	2.5% 	97.5% 

929 111.3 112.8 26.3 67.6 170.7 112.5 26.3 66.5 168.1 

930 107.8 110.7 30.1 60.4 177.8 110.8 30.2 60.2 177.0 

931 105.3 104.1 38.7 44.2 193.5 104.0 39.1 43.7 191.9 

032 104.2 163.0 64.3 63.9 311.6 162.6 64.0 63.5 310.7 

033  99.6 106.2 34.4 50.9 183.5 106.2 34.2 51.8 182.4 

034  93.8 95.6 29.6 48.0 161.9 95.8 29.9 47.4 162.6 

035  89.3 91.4 25.0 49.3 146.8 91.5 25.1 50.2 146.7 

036 89.1 83.0 25.6 41.4 140.7 82.8 24.8 41.7 140.4 

037  86.8 92.6 24.9 50.9 148.1 92.2 24.8 50.5 146.2 

938 85.6 81.2 26.0 39.1 139.6 80.3 25.5 39.2 139.6 

039  83.3 103.6 33.6 49.5 179.7 103.6 33.6 48.7 178.6 

04o  75.9 71.5 29.0 28.3 140.3 71.8 29.3 27.3 141.2 

041 53.3 55.6 15.6 29.7 90.6 55.7 15.4 29.7 89.8 

042 50.7 66.4 18.8 34.9 107.4 66.5 19.1 34.9 109.2 

043  46.3 89.7 37.8 32.7 178.8 89.7 37.3 32.8 177.8 

044  41.0 46.2 15.4 21.4 80.9 46.4 15.6 21.1 80.7 

045  37.5 39.9 8.5 25.2 58.3 40.0 8.5 24.8 57.7 

046 36.6 55.2 21.5 21.8 104.8 55.4 21.3 21.9 105.6 

047  35.8 50.3 22.5 17.4 103.1 50.3 22.8 17.0 104 .0 

048 32.1 44.2 17.6 17.5 85.5 44.3 17.6 17.0 84.9 

049  31.6 33.2 5.9 22.8 45.8 33.2 5.9 22.7 45.8 

050  30.6 37.6 12.3 18.0 65.1 37.9 12.3 17.8 65.4 

051 29.1 52.1 26.5 15.6 118.0 52.5 26.3 14.8 119.1 

052 27.6 48.8 24.9 14.6 111.4 49.1 24.9 14.0 110.3 

053  17.4 41.0 19.5 12.9 87.7 41.0 19.4 12.6 87.1 

054  14.2 36.6 17.2 11.9 78.4 36.9 17.3 11.6 78.2 

055  0.0 64.2 31.1 19.0 138.3 63.7 30.7 18.2 137.9 

056 0.0 76.2 41.5 20.2 179.8 76.3 41.3 19.0 176.9 

00 -0.51 0.15 -0.80 -0.22 -0.50 0.15 -0.81 -0.22 

th 0.69 0.13 0.42 0.95 0.68 0.13 0.42 0.95 

a2  0.45 0.14 0.24 0.79 0.45 0.14 0.24 0.79 
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Table 6.15 shows that the hierarchical Bayes estimator draws the observed 

SMRs towards a central value, correcting the extreme relative risks of counties 

based on small observed counts. The estimates of the regression coefficients b0  

and b1  are similar to those given by Breslow and Clayton, that is —0.44 and 0.68 

respectively. Our estimate for a 2  suggests that their method underestimates the 

variance component, giving a value of 0.36. 

6.2.8 Further extensions 

The situations that we have modelled can be further extended in many various 

ways, to represent different and complicated aspects of real life problems. In 

the present subsection we will illustrate the potential of the modelling presented 

in this thesis, by briefly mentioning two more directions towards which similar 

models can be extended, leaving the analysis details as possible work for future 

research. 

Poisson model for genetic traits 

Tempelman and Gianola (1993) present a model for genetic reproductive traits in 

dairy science. The observed counts yl, Y2,... , y, which for example can represent 

litter size, are assumed to follow independent Poisson distributions, given their 

respective means Oi,  O,... , 0,. The latter are assumed to depend on fixed and 

random effects through a log-linear component of the form 

yj =log(0)=xb+uA, 	i=1,... I M, 

where xi  and u2  are specified p x 1 and q x 1 design vectors, b is a p x 1 vector of 

fixed effects, and A is a q x 1 vector of random effects. Furthermore, we assume 

that A follows a q-dimensional multivariate normal distribution with zero mean 

vector and covariance matrix cr 2 A. At the lower stage of the Bayesian hierarchical 

model, once again we assume vague uniform prior distributions for b0 , b1 ,... , 

and a2  over their range. Thus, the model can be given as 

md  Poisson(0j) 

A 	Nq(O,a2A) 	 (6.14) 

7r (b) oc 1 

7r(a2 ) CX 1 

for i = 1,... , M. We notice that A is an additive genetic relationship matrix 

which can be specified by the geneticists, and a2 , the so-called additive genetic 
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variance, is the parameter of primary interest. Tempelman and Gianola (1993) 

propose Laplacian approximations that lead to approximate inferences for the 

variance component cr2 . The analysis of model (6.14) in a similar manner to that 

of model (6.5) can be the subject of further investigation, together with other 

approaches combining analytical approximations and Monte Carlo integration 

techniques for the exact inference. 

Spatial correlation model 

In the random effect log-linear model (6.4) the random effects Ej, i = 1,... 

were as 	to be independent. However, in situations where, for instance, 

counts are observed in geographical regions, the existence of some spatial depen-

dence between neighbouring areas may be expected, thus leading to the assump-

tion of correlated random effects. The spatial correlation can be conveniently 

accommodated through an assumed multivariate first stage prior distribution, 

specifying a suitable form for the mean vector and covariance matrix with the 

conditional individual means and/or variances depending on the means and vari-

ances of geographically neighbouring components. 

In a general setting for a model where correlation arises from geographical 

proximity, we can assume that each of the random effects sj, i = 1,... , m, in 

model (6.4) conditionally follows a normal distribution depending on the remain-

ing E, j / i. If we use to denote the vector consisting of all Ej, j = 1,... , in, 

except E, and suppressing the dependence on any other model parameters, the 

mean of -i can be given as 

E(Ele_) = Ii(_), 	Z.  = 1, . . . ' in, 

where /1() denotes a function of the components of e_. Also the covariance 

between E i  and Ej can be written as 

cov(E,e3) ...2 h{d(i,j)}, 	i,j = 1,... ,m, 

where h(.) is a function of a distance measure d(i, j) between i and j. 

As mentioned in Subsection 6.2.7, Breslow and Clayton (1993) present a ran-

dom effect log-linear model for the lip cancer in Scotland data, considering spa-

tially correlated random effects. They assume that the underlying dependence 

among the area specific relative risks can be expressed through the neighbour-

ing relationship among individual areas, introducing an intrinsic normal prior for 

the random effects. The model can be expressed as a modification to the model 

202 



described in Subsection 6.2.7, that is 
md 

ll0i Poisson (pi) 
X i  

''f =lOg(/Lj) = log E+bo +bi +e 
10 

a2  
N(E m , —) ni  

7r (b) oc 1 

ir(a2) OC  1 

for i = 1,... ,m, where ni  is the number of the neighbours of i and j = - 

with j - i denoting adjacent counties. The analysis of the above model, or 

relevant models allowing for spatial correlation, in a framework similar to that of 

the present thesis, would also be an interesting subject of further research. 

6.3 Summary and conclusions 

In the present chapter we have considered the average risk of the hierarchical 

Bayes estimator. We have also investigated the possibility of applying the esti-

mating methods presented in Chapter 5, to extended models. 

The average risk of the hierarchical Bayes estimator was examined in a wide 

range of the parameter space and for different loss functions. Due to the com-

putationally intensive nature of the frequency simulation study, special attention 

should be given to the convergence issue of the MCMC methods, which was ac-

celerated employing the EB estimating methods presented in previous chapters 

to obtain suitable initial algorithm values. 

Both model specifications (4.1a) and (4.1b) were considered. With the former 

we assume vague uniform priors at the lower prior stage, and thus the hierarchical 

Bayes estimator provides very good frequency properties in almost all the exam-

ined parameter regions, including the cases when the variance of the parameters 

9, i = 1,... , m, is relatively large. Under the more informative hyperprior dis-

tribution for the variance parameter a2  in model (4.1b), the hierarchical Bayes 

analysis results in an estirator with average risk properties which are comparable 

to those of the EB estimators. It gives great improvement over the average risk 

of the unbiased estimator when the true parameters are closely concentrated to 

each other, but does not perform equally well in the presence of larger variation 

among them. Finally, the frequency properties of the hierarchical Bayes estimator 

obtained with the approximate Gibbs sampling method were also examined, with 

the results being similar as before. 

The applicability of our estimating methods to more complicated structures 

was also explored. The basic Poisson models considered in the preceding chapters 
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can be extended to represent various situations where extra-Poisson variation 

occurs. We present possible extensions where events can be considered to occur, 

for example, over unequal exposure periods, in which case the event rates over 

a unit interval, rather than the actual Poisson means, are of interest. We also 

discuss the case where explanatory variables are employed to account for the 

observed overdispersion. The model is altered to allow the logarithms of the 

Poisson means to depend on the covariates through a linear component in a 

regression structure assuming a normally distributed random error term. The 

resulting random effect generalised linear model may also be taken to include 

different exposures, as described above. 
In all cases, suitable modelling was employed to ensure that the approxima-

tions to the full conditional distribution of the Poisson parameters, as developed 

in Chapter 5, were still effective. Hence, the described hierarchical Bayes estimat-

ing methods could be applied, with only a few minor adjustments, as illustrated 

through various examples. Again, the approximate Gibbs method performed well, 

providing estimates which were very close to those from the exact method. Fi-

nally, scope for further research was given, with the presentation of two further 

extended cases. 
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Chapter 7 

Conclusions 

The aim of this thesis was to develop inference methods for models accounting for 

extra-Poisson variation, under an empirical and hierarchical Bayesian framework. 

Another issue addressed, was the assessment of the methods in terms of the av-

erage risk of the resulting estimators under various loss functions. Nonconjugate 

Poisson/log-normal models were mainly considered, and both vague and informa-

tive prior structures were assumed at the lower stage of the hierarchical model. 

Methods for the implementation of simulation-based techniques were suggested, 

and their extension to more complicated structures was discussed. 

The emergence of linear shrinkage rules in the problem of the simultaneous es-

timation of the means of several conditionally independent Poisson distributions, 

as motivated by the inadmissibility of the unbiased estimator, was reviewed in 

Chapter 2 under both the frequentist and the Bayesian philosophy. Various meth-

ods were presented, illustrating the issue of constructing estimators that shrink 

towards predetermined directions and perform well under a specific loss function. 

In Chapter 3 we introduced a Poisson/log-normal one stage Bayesian model. 

The log-normal prior assumption allows for more variation in the Poisson param-

eters, in relation to the conjugate gamma distribution, and it can also accom-

modate a correlation structure. Thus, it was preferred to the usual gamma prior 

specification, at the expense of more complicated computations. For the estima-

tion of the parameters of interest we focused on two methods approximating the 

posterior mean, conditional on the parameters of the prior distribution. We first 

described the construction of the best linear predictor, which is a Bayes linear 

rule that was developed in a such a way that it possesses the minimum average 

risk among all linear estimators of the same form. Then, an importance sam-

pling method was proposed, based on an appropriate gamma importance density, 

which resulted in a very accurate approximation to the posterior mean. Since 

both methods assumed knowledge of the model hyperparameters, an empirical 

Bayes solution was developed. It was shown by means of data examples that 
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the empirical Bayes posterior mean shrinks the usual estimates towards a central 

point, which lies between the sample mean and the minimum observation. 

We also examined the frequency properties of the suggested estimators using 

the criterion of average risk. A simulation study was conducted to assess the av -

erage risk under different loss functions, including weighted squared and absolute 

error loss, summed over the components of the parameter vector and also con-

sidering the maximum loss component. Different regions of the parameter space 

were explored, with the results demonstrating that the presented estimators pro-

vide considerable improvement when compared to the usual unbiased estimator 

and the methods reviewed in Chapter 2, in most of the examined cases. 

A full Bayesian hierarchical Poisson structure was presented in Chapter 4. 

Some analytical approximations for the estimation of the posterior mean for both 

the Poisson/gamma and the Poisson/log-normal models were given. In the lat-

ter formulation, we assumed the flat uniform prior distributions U(—oo, oo) and 

U(O, oo) for the hyperparameters j and a 2  respectively. We relied on a normal 

approximation to the marginal distribution of the data to facilitate the compu-

tations arising from densities of nonclosed form. Further approximations were 

employed, but fully analytical expressions were not available and the derivation 

of the final estimates still requires the use of numerical integration. However, the 

resulting expressions provide a general indication of the nature of the posterior 

mean, also suggesting that the hierarchical Bayes estimator shrinks towards a 

point different than the sample mean in samples of small or moderate size. 

The use of Monte Carlo integration methods for the hierarchical Bayes anal-

ysis was the subject of Chapter 5. We focused on Poisson/log-normal models. 

In addition to the vague hyperprior setting discussed in Chapter 4, we also con-

sidered a structure allowing for more prior information, with the assumption of 

a Inv- 2 (v, )) hyperprior distribution for the normal variance a 2 . The impor-

tance sampling technique proposed in Chapter 3 for the empirical Bayes analysis, 

was initially employed. The results demonstrated that the recommended gamma 

importance density is not suitable in the considered models, giving unbounded 

importance weights and large standard error of simulation. 

We then concentrated on MCMC techniques, employing the Gibbs sampler 

to obtain detailed posterior inferences under a full hierarchical Bayes analysis. 

As the method relies on simulation from the full conditional distributions of all 

model parameters, we had to overcome the problem of the nonstandard form 

of the full conditionals of the Poisson parameters 9, i = 1,... , m. Motivated 

by the the form of the corresponding probability density function p(O j t, a2 , y), 

we suggested an approximation based on a mixture distribution consisting of a 
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log-normal and a gamma component. The mixture approximation was specified 

to have the same first three moments as the exact full conditional distribution. 

This was achieved by first matching the mean and the variance of the exact and 

the component distributions. Then, the mixing coefficient was determined in a 

manner such that the skewness of the approximating distribution is equal to that 

of the distribution of interest. The method requires that the moments of the full 

conditional distribution are known. As the latter was given in nonclosed form, 

further approximations were needed. Although this problem was successfully ad-

dressed in Chapter 3 using the importance sampling technique, the incorporation 

of the method in each Gibbs sampling iteration necessitated the use of a less 

computationally intensive approach. We proposed a method which provides a 

discrete approximation to v(0Ii a2 , 
y), combining the Poisson likelihood with 

a discrete distribution having the same first 10 moments as the normal prior of 

log(0). Since the moments of interest can be obtained through the marginal 

density of the data, we also developed a method which relies on deriving the 

required marginal density by minimising the entropy distance between p(y, y) 

and a suitably expressed approximation. A combination of the discretisation and 

the entropy-based technique provided a good approximation to the moments of 

the full conditional distribution, with some discrepancies occurring mainly when 

yi  = 0 and the variation of the distribution is large. 

The performance of the resulting Gibbs sampling algorithm was illustrated 

through data examples, which demonstrated that in general the method per-

forms well. Nevertheless, some inaccuracies are likely to occur especially when 

little prior information is assumed and a large number of zero counts is observed, 

due to the poor approximation of the full conditional moments in this case. Thus, 

for the exact hierarchical Bayes analysis we then employed a hybrid MCMC tech-

nique, by including a Metropolis-Hastings step within the Gibbs sampling scheme 

for simulating from the nonstandard full conditional distributions. Using the log-

normal/gamma mixture as the proposal distribution, the Metropolis-Hastings re-

jection subalgorithm corrected the simulations, providing exact inferences. In 

most of the implementations of the method, the acceptance rate of the Metropolis-

Hastings subalgorithm was outstandingly high, reaching 99% in some cases. As 

far as the different prior assumptions were concerned, the analysis of the examples 

showed that assuming largely vague hyperprior distributions at the lower stage of 

the hierarchical model, can result in considerably larger posterior variation and 

therefore wider intervals. Also, further empirical experimentation demonstrated 

that the shrinking direction of the hierarchical Bayes posterior mean is similar 

to that of the empirical Bayes estimator mentioned before, suggesting that the 
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direction of shrinkage cannot be determined using a fixed or adaptive function of 

the data. Obtaining an analytical expression for the shrinking behaviour in the 

considered models could be the subject of further research work. 

The average risk of the hierarchical Bayes estimators was examined in Chap-

ter 6, demonstrating superior frequency properties than the usual maximum like-

lihood estimator in the vast majority of the different loss functions and true 

parameter settings that we considered. The worst frequency properties for the 

hierarchical Bayes methods were observed when relatively high variation in the 

Poisson parameters was combined with a heavily weighted loss function. Assum-

ing vague prior information in the analysis, provides estimators that possess very 

good frequency properties in a wider parameter range, in comparison to methods 

resulting under strongly informative modelling. The latter showed an average 

risk behaviour similar to that of the empirical Bayes estimators, reflecting the 

underlying smaller prior uncertainty. The approximate Gibbs sampling method 

also provided hierarchical Bayes estimators possessing low average risk, with fre-

quency properties similar to those of the exact method. 
Finally, we presented extensions to the discussed Poisson models, considering 

the possibility to include different exposure periods and explanatory variables in a 

regression structure. It was shown that through suitable modelling, the proposed 

methodology can be easily applied to the presented event rate and random effect 

generalised linear models, with the approximate Gibbs sampling approach pro-

viding good results. Future research was also suggested, which may be directed 

towards the implementation of similar methods in further extended situations, in-

cluding more general random effects generalised linear models, possibly allowing 

for spatial correlation. 
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Appendix A 
Probability distributions 

In this appendix we present the main probability distributions used throughout 

this thesis. For each distribution we provide the notation used in the text, the 

density function, the range of the random variable concerned, parameter restric-

tions and the mean and variance of the distribution. We denote the random 

variable involved by X and the density functions by f(x). 

. Gamma: X Ga(a, b) 

f 	= F(a) xa_le_b2, 	; >0, a,b> 0, 

E(X) = , var(X) = 

• Chi-square: X - XV  
V 

2 
f (x) = 	x 	e, 	x> 0, v> 0, 

F() 

E(X) = v, var(X) = 2v. 

. Inverse chi-square: X Inv-X, 

2  i 
 

1 

f(x) = F 
	

)e, 	x> 0, v > 0, 
() 

E(X) = 	(v > 2), var(X) - ( v 2)2(u4) (v > 4).
v1  2 

• Scaled inverse chi-square: X Inv- 2 (v, )) 

2 	 2x ______ 
f(x) - 	

( VA) 	
x > o, ii, > o, 

- F() 

E(X) =  -a-- ) (v > 2), var(X) = 	
2v2  

(v2)2(v_4) A, (v > 4). 
v-2 '\ 

PION 



Log-normal: X LN(j, a2 ) 

f(x)1 
	( 

- 	az 
exp 	1 	_(1ogx_)2}, 	_0O<x<00, 

2 car 
—00 <t1 <00, a > 0, 

E(X) = exp (p + a2 ), var(X) = E2(X) (ea2 - i) 

. Multivariate normal: X Nm(IL,  E) 

f(X) = ( 27r) 	IEI exp {_ (x - )TE_l(x - 	x E Rm, 

IL = (pi,... , /Lyyj)'1' E m E a positive definite m x m symmetric matrix, 

E(X) = p var(X) = E. 

. Poisson: X ". Poisson(9) 

Oxe_O 
f(x)= 

E(X) = var(X) = 9. 

. Negative binomial: X '-' Neg.Bin.(o,/3) 

x + a — 1 f\ //3 \'I 1 
f(x)= 	a—i )+ 1 ) 	+) 

E(X) = , var(X) = 	(/3+1). 

x=0,1,2,..., a,/3>0, 
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Appendix B 
Proof of Theorem 2.1 

We first make the following assumptions. 

Assumption 1. For an integer ) ~: 0, H2  (Y2 ) is an arbitrary nondecreasingfunc-

tion such that 

if 	1'>i, 
Yi 

H3 (j)=0, 	if 	j_<O, 

and 	H)t) = 0. 

Assumption 2. d 2 (Y2 ) is a nonnegative function such that d 2 (Y2 ) > 0 if Y > 0, 

and 

Y H 2 (Y— 1) Ld(Y) 0 min{d2(Y2 - 

for all Y2  0 X and some nonnegative constant /3. 

Assumption 3. There exists a finite constant K such that 

H(YZ )KD(Y) 

Proof of Theorem 2.1. We notice from (2.11) that D(Y) is expressed as the 

sum of two terms. Considering these two sums separately, we arrive at two 

inequalities which are then combined to prove the theorem. We first look at the 

sum Ei 1  Y Lg1 (Y). Dividing (2.14) by D(Y - e2 ), we can write 

C(Y—e)H(Y 2 -1) < 	 (Yj  
D(Y—e1) 	- D(Y—e2 ) 

and then subtracting C(Y) H(Y) from both sides of the above inequality we obtain 
D(Y) 

C(Y) H 2  (Y1) + C(Y - e) H(Y —1) <_ C(Y) Hi  (Yi) + C(Y) H(Y —1) 

- D(Y) 	 D(Y—e2) 	- 	 D(Y) 	D(Y—e2 ) 
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which using the form of g(Y) in (2.13) gives 

1 Hi (Y)) 
zg(Y) ~ —C(Y) 	1. D(Y) 	

(B.1) 

Now, if we add and subtract the term 	from the difference in the right 

hand side of the last inequality, this can be written as 

{ H2(Y') } = - 	 D(Y) 
—H(Y 2 ) ± Hi  (Y —1) 

D(Y) 

H(Y-1) H 2 (Y2 -1) 
- D(Y) 	D(Y—e2 ) 

—H 1  (Y) + H2  (Y —1) + —D(Y - e) H( —1) + D(Y) H2 (Y2  —1) 

- 	 D(Y) 	 D(Y) D(Y - e2 ) 

- —H(Y) + H(Y —1) AD(Y) 

- D(Y) 	D(Y) D(Y - e2 ) 

If we also notice that 

A2 D(Y) = D(Y) - D(Y - e2 ) 
M 

=dj()_>dj()_di(Yi -1) 

	

j=1 	 j=1 
j0i 

= d() - d( - 1) = 

it follows that, multiplying (B.1) by Y > 0, summing over i 	1,... , m, and 

using (13.2), we obtain 

M 	 C(Y) 
m {YH(}' - 1) id(Y)}+ 

} 
Yi Ag(Y) < 	

-

D(Y) 	
zH(Yj) + 
	D(Y - e) 

i=1 	 i=1 
(B.3) 

We now notice that Assumption 1 gives 

	

Yj  H) ~! 1 	Y 	> m > N(Y) 

= _>Y zH() < —N(Y). 	(B.4) 

Therefore, setting D'(Y) = 	min{d3(Y - 1), d(})}, (B.3) implies that 

m1{Y,H( - 1) Ad()} +  
L9(Y) 

	

<C(Y) [_N(Y) + i= 	

DI(Y) 	 ]. 

(B.5) 
 - D(Y) 

j=1 

The transition from (B.3) to (B.5) through (B.4) implies that the inequality (B.5) 

will be strict for the Y2  for which C(Y) 0 0, and H(1' - 1) Ad(Y) > 0 for at 
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least two i to ensure that the positive term does not coincide with the term giving 

D(Y - e) = D'(Y), that is for the Y, satisfying (2.17). Now, using Assumption 

2 we obtain 

M 	 m 

- 1) zd(Y) 	min{d( - 1),d3 (Y)} 

from which it follows that 

- 1) zd(Y)} <[3. 
DI (Y) 

Then, employing the last inequality, (B.5) becomes 

Yi 	
<C(Y) 1/3 

- N(Y)}. 	 (B.6) zg2(Y) 
- D(Y) 

j=1 

We now consider the second sum in (2.11). From Assumption 3, if we multiply 

both sides of the inequality bywe have that 

1 C2 (Y) H) K C2(Y) 

E=1
W(Y) 	D(Y) 

and using (2.13), the above implies that 

K C2 (y) 	 (B.7) 
2 9i 	 D(Y) 

i=1 

Adding together (B.6) and (B.7) and taking into account (2.11) we obtain 

C(Y) 
D(Y) 

~ D(Y) 
{N(Y) 

- /3 - K C(Y)}. 	 (B.8) 

However, from condition (2.15) we have that 

_C(Y){N(Y) — /3 — KC(Y)}O 

and therefore, (B.8) gives 

(Y) < 0. 
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Appendix C 
Vector and matrix differentiation 

In this appendix we provide some calculus results regarding vector and matrix 

differentiation (e.g. see Magnus and Neudecker, 1988). We let x and a be in x 1 

vectors, and X and A be m x m matrices. We also let f(.) denote a real function 

of x or X. 

19f (x) - (L 
Ox 	Oxi 

,8f (X) 

Of (X) 
- ( Oxi 

- 8f (X) 
OXm 1 

8Z2 	 OxmJ 

8f (X) 
• 	

ôXlm 

81(X) 
ôXmm 

O(aTx) - O(xTa) = 
a 

OXOX 

O(xTAx) = 2Ax 

Ox 

O{tr(X)} _ 
- m ax 

O {tr(XTX)} = 2X 

Ox 

O {tr(AXTX)} = 2AX 

Ox 

O {tr(XTAX)} = (A + AT) X 
Ox 

O(logX) = (XT) 
Ox 
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