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Abstract 
DNA microarrays facilitate the simultaneous monitoring of expression levels of thou-

sands of genes in cell samples. Preprocessing is an important first step in the analysis 
of microarray data, to correct for effects arising from imperfections in the technology 
rather than real biological differences. This thesis deals with developing statistical 
methods to resolve problems in the data preprocessing step of microarray analysis. 

Following a brief overview of the microarray technology and statistical issues in the 
design, image processing and analysis of microarray experiments, a novel method is 
developed for combining multiple laser scans of microarrays to correct for "signal sat-
uration" and "signal deterioration" effects in the gene expression measurement. After 
initial exploratory analysis, a multivariate nonlinear functional regression model with 
censored Cauchy distributed errors having additive plus multiplicative scale is proposed 
as a model for combining multiple scan data. The nonlinear relationship in the func-
tional model is realistically defined as the expected value of a pixel accounting for the 
possibility of being censored at 216 - 1 = 65535, which is the upper threshold for 16-
bit image converting software available in most microarray scanners. The model has 
been found to flexibly describe the nonlinear relationship in multiple scan data. The 
censored Cauchy distribution with additive plus multiplicative scale provides a basis 
for objective and robust estimation of gene expression from multiple scan data adjust-
ing for censoring and deterioration bias in the observed intensity. Through combining 
multiple scans, the model reduces sampling variability in the gene expression estimates. 

A unified approach for nonparametric location and scale normalisation of log-ratio 
data is considered. A Generalised Additive Model for Location, Scale and Shape 
(GAMLSS, Rigby and Stasinopoulos, 2005, Applied Statistics 54, 507-554) is proposed 
for nonparametric location and scale normalisation of log-ratio data. The nonparamet-
nc location and scale normalisation based on GAMLSS is attractive mainly for two 
reasons. First, unlike usual practice where location and scale normalisation are treated 
as separate problems, GAMLSS incorporates both of them in a single framework. Sec-
ond, GAMLSS uses a nonparametric approach for modelling both location and scale of 
log-ratio data, in contrast to the general tendency of using a parametric transformation, 
such as arcsinh, for variance stabilisation. We compare the performance of GAMLSS 
with that of Huber et al.'s (2002, Bioinforrnatics 18, S96—S104) arcsinh variance sta-
bilising transformation in detecting differential expression. Simulation studies demon-
strate GAMLSS to be more powerful than the parametric method when a GAMLSS 
location and scale model, fitted to real data, is assumed correct. GAMLSS has been 
found to be as powerful as the parametric approach even when the parametric model is 
appropriate. Another advantage of the GAMLSS method is that, within slide GAMLSS 
normalised data automatically achieves between slides comparability. 

Finally, we investigate the optimality of different estimation methods for analysing 
functional regression models. Parameters of functional models are often not identifiable 
by direct application of maximum likelihood estimation, and sometimes lead to incon-
sistent estimators when they are estimable. Alternative estimators are available in the 
literature to deal with the problems of identifiability and consistency. However, ques-
tions still remain concerning the efficiency of such estimators. We investigated these 
estimators in terms of unbiasedness and efficiency for a specific case involving multiple 
laser scans of microarrays, and found that, in addition to being consistent, methods 
of Morton (1981, Biometrika 68, 735-737) and Chan and Mak (1983, Biometrika 70, 
263-267) are highly efficient and unbiased. 



Acknowledgements 

I would like to thank my supervisors, Professor Chris A. Glasbey and Dr. 

Bruce J. Worton, for all their valuable guidance, advice and encouragement over 

the course of this work. I owe them lots of gratitude for giving me the ideas, 

guiding me throughout to implement them, and most of all, showing me the way 

of doing research. I am thankful to Bruce Worton for taking the tedious effort 

in reading and providing me with valuable comments on earlier versions of this 

thesis. I would like to thank my mentor Glenn Marion who kept an eye on the 

progress of my work. 

I am grateful to Biomathematics & Statistics Scotland (BioSS) and Scottish 

Executive Environment and Rural Affairs Department (SEERAD) for funding my 

Ph.D. studentship. I would like to thank Scottish Centre for Genomic Technology 

& Informatics (GTI), Harry McArdle and Lorraine Gambling of Rowett Research 

Institute for kindly providing the data used in this research. I also gratefully 

acknowledge the helpful comments by Claus-Dieter of BioSS and Thorsten Forster 

of GTI on certain parts of this thesis. 

I feel very fortunate for being able to work at BioSS, and thanks to all staffs 

and students for being extremely helpful and providing a very friendly atmo-

sphere. 

I am grateful to my wife Farhana, for her support and patience during the 

final year of my Ph.D. Finally, I feel a deep sense of gratitude for my mother and 

extended family who always encouraged and supported me in my endeavour of 

achieving the best. 



Declaration 

I declare that this thesis was composed by myself and that the work contained 

therein is my own, except where explicitly stated otherwise in the text. 

(Ma. MizanurKahman J.ttionaoker) 



Table of Contents 

Chapter 1 Introduction to microarrays 	 5 

1.1 Introduction ..............................5 

1.2 Quantification of gene expression ..................5 

1.3 DNA microarrays ...........................7 

1.4 Comparative cDNA hybridisation experiment ...........9 

1.5 Summary ...............................13 

Chapter 2 	Statistical design and analysis 14 

2.1 Introduction 	.............................. 14 

2.2 Experimental design 	......................... 14 

2.2.1 	Replication 	.......................... 15 

2.2.2 	Optimal design 	......................... 16 

2.3 Image processing 	........................... 17 

2.3.1 	Addressing or gridding 	.................... 17 

2.3.2 	Segmentation and intensity extraction 	........... 18 

2.3.3 	Correction for saturated pixels ................ 19 

2.4 Combining multiple scans 	...................... 20 

2.5 Functional regression for combining multiple laser scans ...... 24 

2.6 Normalisation 	............................. 25 

2.6.1 	Location normalisation 	.................... 26 

2.6.2 	Variance stabilisation 	..................... 28 

2.7 Analysis of gene expression data ................... 31 

2.7.1 	Identification of differential expression 	........... 31 

2.7.2 	Pattern discovery and class prediction 	........... 34 

2.8 Scope of thesis 	............................ 35 

Chapter 3 Combining multiple laser scans: exploratory analysis 37 

	

3.1 	Introduction ..............................37 

	

3.2 	Motivation ...............................38 

3.3 Murine macrophage data .......................39 

1 



3.4 Linear functional regression with Gaussian mixture distribution . 43 

3.4.1 Pairwise regression models 	.................. 44 

3.4.2 Multivariate functional regression model 	.......... 45 

3.4.3 Maximum likelihood estimation 	............... 46 

3.4.4 Alternative estimation 	.................... 50 

3.4.5 Simulation study 	....................... 51 

3.5 	Hyperbolic functional regression model 	............... 52 

3.5.1 The model 	........................... 54 

3.5.2 Maximum likelihood estimation 	............... 55 

3.5.3 Application 	.......................... 57 

3.6 	Censored mean functional regression model ............. 58 

3.6.1 The model 	........................... 58 

3.6.2 M-estimation 	......................... 60 

3.6.3 Application 	.......................... 61 

3.6.4 Simulation study 	....................... 65 

3.6.5 Censored mean functional model based on t-distribution 67 

3.6.6 The model and estimation 	.................. 67 

3.6.7 Application 	.......................... 68 

3.6.8 Simulation study 	....................... 69 

3.7 	Summary 	............................... 71 

Chapter 4 	Combining multiple laser scans: refined model 72 

4.1 Introduction 	.............................. 72 

4.2 Cauchy distribution and its properties 	............... 74 

4.3 The Cauchy model and estimation .................. 75 

4.4 Applications 	.............................. 78 

4.4.1 	Murine macrophage data ................... 78 

4.4.2 	Iron-deficiency data ...................... 83 

4.5 Simulation study 	........................... 85 

4.6 Investigating the bias in the Cauchy scale .............. 87 

4.7 The censored Cauchy model 	..................... 89 

4.7.1 	The model 	........................... 89 

4.7.2 	Application 	.......................... 90 

4.7.3 	Simulation study 	....................... 92 

4.7.4 	Investigating impact of higher level of censoring 	...... 93 

4.8 Discussion and conclusions 	...................... 96 

2 



Chapter 5 	Nonparametric location and scale normalisation 98 

5.1 Introduction 	.............................. 98 

5.2 Generalised additive models for location, scale and shape ..... 100 

5.3 Nonparametric location and scale normalisation using GAMLSS 102 

5.4 Huber et al.'s (2002) parametric normalisation method 	...... 103 

5.5 Applications 	.............................. 104 

5.5.1 	Lymphoma data 	....................... 104 

5.5.2 	Iron-deficiency data ...................... 110 

5.6 Simulation study I 	.......................... 115 

5.6.1 	Data generation 	........................ 115 

5.6.2 	Results 	............................. 117 

5.7 Simulation study II 	.......................... 125 

5.7.1 	Data generation 	........................ 125 

5.7.2 	Results 	............................. 126 

5.8 Discussion 	............................... 126 

Chapter 6 	Functional regression modelling 129 

6.1 Introduction 	.............................. 129 

6.2 The 	model 	............................... 131 

6.3 Estimation methods 	......................... 131 

6.3.1 	Method of second moments 	................. 132 

6.3.2 	Morton's (1981) estimating equations ............ 132 

6.3.3 	Modified likelihood equations (Chan and Mak, 1983) 	. 134 

6.3.4 	Relation between Morton's and Chan and Mak's methods 136 

6.3.5 	Maximum likelihood estimators of structural relationship 138 

6.3.6 	EM algorithm for estimating structural relationship . . 139 

6.4 Application 	.............................. 140 

6.5 Simulation study 	........................... 147 

6.6 Discussion 	............................... 149 

Chapter 7 Discussion and future work 152 

7.1 	Review 	................................. 152 

7.1.1 Combining multiple scan data 	................ 152 

7.1.2 Nonparametric location and scale normalisation 	...... 155 

7.1.3 Efficiency of functional regression estimators 	........ 156 

7.2 	Future 	work 	.............................. 157 

7.2.1 Combining multiple scan data 	................ 158 

7.2.2 Nonparametric location and scale normalisation 	...... 160 

7.2.3 Efficiency of functional regression estimators ........ 160 

3 



References 	 162 



Chapter 1 

Introduction to microarrays 

1.1 Introduction 

The mystery of life is widely believed to be the result of complicated and organised 

functionality of thousands of genes and their products, i.e., RNA and proteins, in 

a living organism. Understanding the function of each gene and the pathways and 

networks it influences is an enormous challenge, and high throughput technologies 

such as microarrays have emerged as tools for providing insights into which genes 

are important in different conditions. Traditional methods in molecular biology 

generally work on a "one gene in one experiment" basis with which it is difficult 

to monitor the whole picture of gene function. DNA microarrays can track tens 

of thousands of molecular reactions in parallel and provide a basis for comparing 

gene activities of thousands of genes simultaneously in different biological samples. 

A detail review of the technical aspects of current microarray technologies can 

be found in Schena (2000). A brief overview can be found in Southern (2001) or 

Hardiman (2002). 

1.2 Quantification of gene expression 

In order to understand the role and function of the genes one needs the complete 

information about their messenger RNA (mRNA) transcripts and proteins. Un-

fortunately, exploring the protein functions is very difficult due to their unique 

3-dimensional structure and a shortage of efficient technologies. To overcome this 

difficulty one may quantify the amount of mRNA transcripts produced by the 

genes of interest to measure gene expression. This idea was a motivation for the 

development of microarray technique as a method allowing for studying the in-

teraction between thousands of genes based on their mRNA transcript level. In 

eukaryotes, the vast majority of genes are encoded in the double stranded DNA 

found in the nucleus of most cells. According to the central dogma of molecu- 
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lar biology (Figure 1.1), first enunciated by Crick (1958) and re-stated in Crick 

(1970), genes are transcribed into single stranded mRNA before exiting the nu-

cleus where they are used as a template for protein synthesis. The process of 

a selected target sample binding to matching gene probes on the array is called 

hvbridisation. 

The Central Dogma of Molecular Biology 

/1ç 	
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Figure 1.1: Central Dogiiia of Molecular Biology: IX\A is transcribed into RNA 
which is translated into protein outside the nucleus. linage reproduced from 
http: //users . ugent . be/'-avierstr/principles/centraldogma . html 
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Microarray technology is an effort to measure gene expression by quantifying 

the amount of mRNA produced during transcription by exploiting the comple-

mentary base-pairing rule of DNA (A pairs with T and G pairs with C, or in the 

case of RNA, A pairs with U, uracil). 

1.3 DNA microarrays 

A DNA inicroarray, variously known as DNA chip, gene chip, gene array or 

biochip, is a densely packed array of identified DNA sequences attached to a 

solid surface, such as glass, plastic or silicon chip. Microarray technology evolved 

from Southern Blotting, where fragmented DNA is attached to a substrate and 

then probed with a known gene or fragment. 

DNA sequences representing tens of 

thousands of genes are spotted or in 

situ synthesised on a very small slide 

like the one in Figure 1.2. The mi-

croarray in the picture is comprised of 

more than 54,000 probe sets capable 

of analysing expression level of over 

47,000 transcripts and variants, in-

cluding 38,500 well-characterised hu-

man genes. In terms of the property 

of the arrayed sequence, there are two 

major variants of the DNA microarray 

technology: 

Oligonucleotide arrays and 

Complementary DNA (cDNA) 

arrays. 

Oligonucleotide expression array tech-

nology (Lockhart et al., 1996) has re-

cently been adopted in many areas of 

biomedical research. 

II 
"Chin 

± 
Figure 1.2: 	GeneChip® Human 
Genome U133 Plus 2.0 Array. Image 
reproduced from www. servicexs . corn 

On oligonucleotide arrays produced by Affyrnetrix, as reviewed in Lipshutz ci 

al. (1999), each gene is represented by a set of 11 to 20 short sequences of DNA, 

termed oligonucleot ides (Figure 1.3). These oligonucleot ides are referred to as the 
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perfect match (PM) and each of them is paired with a corresponding mismatch 

(MM), which is identical to the PM-probe except for one nucleotide in the centre 

of the sequence. These types of chips are produced by GeneChip® technology of 

Affynietrix Jut. 

Human Genome 
U133A GeneChip® 
Array 

(1) Probe Array 

(4) Probe Cell 
Each Probe Cell contains 

4 Ilal U  copies of a specific 
probe 
com pl ementary to genetic 
information of interest 
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':honucleotide (25 mers) 

* * 
*. 

/rn 

(3) Probe Pair 
Each Perfect Match 
(PM) and MisMatch 
(MM) Probe Cells are 
associated by pairs 

I9~0 

robe Set 

robe Set contains 
be Pairs (PM MM) 
trent probes 

he Human Genorne U133 A 
eneChip€ array represents 
ore than 22.000 full-length 

genes and EST clusters. 

Figure 1.3: Oligonucleotide expression array (IIGU133A). Image reproduced from 
http://www.weizmann.ac.il/home/ligivol/pictures/system.jpg  

In cDNA technology (Schena et al., 1995; DeRisi et at., 1997), the other widely 

used type of microarrays, probes of purified DNA are spotted onto a glass slide 

by specialised robotics. These are usually much longer sequences than in the case 

of oligonucleotide arrays, often consisting of tens or hundreds of bases. On cDNA 

arrays typically two samples are analysed in a comparative fashion. 

In general, two major differences exist between the eDNA microarray plat-

form and oligonucleotide platforms. First, on cDNA microarray the length of the 

DNA fragment is generally 500 1500 mer versus 25 60 mer on the oligonucleotide 

array. Second, in cDNA microarray experiments two RNA samples, control and 

experimental, are labeled with different. fluoropliores (Cy5 and Cy3) and com-

petitively hybridised to the same microarray slide. This distinguishes the cDNA 

microarray platform from most oligonucleotide based platforms where one sample 

is hybridised to one slide. 



There are two major application forms for the DNA microarray technology: 

identification of sequence (gene/gene mutation) and 

determination of activity (expression) level of genes. 

DNA microarrays are proving immensely valuable to cell biologists, to scientists 

who study the roots of cancer and other complex diseases and to drug researchers. 

Microarrays may also be useful as quick diagnostic and prognostic tools. The 

research and diagnostic information provided by DNA chips may eventually help 

physicians provide highly individualised therapies. 

1.4 Comparative cDNA hybridisation experiment 

There are numerous paper-based and electronic references on good descriptions of 

cDNA hybridisation experiments. An animated description of a comparative hy -

bridisation can be found at http: //www. cs . wusti . edu/'-jbuh1er/research/array/ . 

The following descriptions are adapted from the above website, Amaratunga and 

Cabrera (2004) and the Microarray Facility link of the website of Brunel Univer- 

sity (http: //www. brunel . ac. uk/) . The goal of a comparative cDNA hybridisa-

tion is to compare gene expression in two or more different samples. The major 

steps of a comparative cDNA hybridisation experiment are: 

selection of cell populations, 

mRNA extraction and reverse transcriptions, 

fluorescent labelling of cDNAs, 

hybridisation to a DNA microarray, and 

scanning the hybridised array. 

Selection of cell population 

Selection of cell populations depends on the biological question under investiga-

tion. For example, genetic diseases are result of mutations in a gene or set of 

genes. Consequence of thus altered mutant genes can be a disease as these genes 

express inappropriately or do not express at all. Genetic disease, cancer for ex-

ample, could occur when certain regulatory genes such as p53 tumor suppressor 

gene, are deleted, inactivated or become constitutively active, i.e., become always 

transcribed regardless of any regulatory factors. Microarray experiment can be 

RI 
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used to identify which genes are differentially expressed in cancerous cells versus 

normal cells. The choice of cell populations in this case is clear: the healthy 

cells become a de facto reference population and the cancerous cells will be the 

experimental population. Amaratunga and Cabrera (2004, Chapter 3) described 

seven common types of microarray experiments used respectively in tissue-specific 

gene expression studies, developmental genetics, genetic disease studies, complex 

disease studies, study of pharmacological agents, plant breeding studies and en-

vironmental monitoring. Wit and McClure (2004, pp.  3-12) described several 

microarray experiments of very different nature to illustrate the scope of the 

technology and to demonstrate different statistical concepts to analyse such ex-

periments. 

mRNA extraction and reverse transcriptions 

After selection of cell populations, sample messenger RNA's (mRNA's), the mo-

bile copies of genes and the templates for protein synthesis in cells, are extracted 

from both experimental and reference cell populations. As the extracted mRNA's 

are prone to being destroyed, they are reverse-transcribed back into more sta-

ble DNA form. The products of this reaction are called complementary DNA's 

(cDNA's) because their sequences are the complements of the original mRNA 

sequences. Impurities in RNA preparations can have an adverse effect on both 

the labelling and the stability of the fluorescent dyes used to label the RNA and 

impurities such as cellular protein, lipids and carbohydrates can cause signifi-

cant non-specific binding to a cDNA spot on the array, resulting in false positive 

expression values, therefore purified RNA samples are crucial in a microarray 

experiment. 

Fluorescent labelling of cDNAs 

In order to detect cDNA's bound to the microarray, they are labelled with a 

reporter molecule that identifies their presence. The reporters most commonly 

used in comparative hybridisation to microarrays are fluorescent dyes (fluors). A 

differently coloured fluor, usually rhodamine or Cy3 (green) for one sample and 

fluorescein or Cy5 (red) for the other sample, is used for each sample. 

Hybridisation to a DNA microarray 

The samples are then pooled and applied to the microarray to allow hybridisation 

to the eDNA on the array via complementary interaction. Hybridisation is carried 

out in a hybridisation chamber containing the microarray slide. The chamber is 

placed in a 42 degree Celcius water bath and incubated for 16-20 hours. The 
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array holds tens/hundreds of thousands of spots, each of which contains a different 

DNA sequence. If the sample contains a cDNA whose sequence is complementary 

to the DNA on a given spot, that cDNA will hybridise to the spot, where it 

will be detectable by its fluorescence. In this way, every spot on an array is 

an independent assay for the presence of a different cDNA. There is generally 

enough DNA on each spot so that both probes can hybridise to it at once without 

interference. 

Scanning the hybridised array 

Once the pooled sample has been hybridised to the array and any loose cDNA 

sequence has been washed off, the array must be scanned, at the wavelength of 

each fluor, to determine the amount of labelled sample bound to each spot. The 

reporter molecules emit detectable light when stimulated by a laser. The emit-

ted light is captured by a detector, either charged-coupled device (CCD) camera 

or a confocal microscope, which records its intensity. Spots with more bound 

sample will have more reporters and will therefore fluoresce more intensely. Al-

though it is supposed to pick up light emitted by the target cDNAs bound to 

their complementary spots, the scanner will inevitably also pick up light from 

various other sources, including the labelled sample hybridising non-specifically 

to the slide, residual (unwashed) labelled sample adhering to the slide, various 

chemicals used in processing the slide, and even the slide itself. This extra light 

is called background. Scanner settings can affect both the precision of the in-

tensity measurements as well as the lower and upper threshold intensity levels 

that can be measured. Intensities outside this range, called the dynamic range, 

can not be properly quantified and are often set to the corresponding threshold 

level. When intensities exceed the upper threshold, saturation is said to have 

occurred. There is a trade-off between the precision and the dynamic range, and 

a reasonable balance is important. Arrays are often scanned more than once but 

common practice is to use data from a single scan, based on some arbitrary ex-

ploratory checks, in the subsequent analysis. Use of combined data from multiple 

scans of hybridised microarray may be useful to get improved gene expression 

measurements. One part of this thesis concerns combining data from multiple 

scans at different scanner settings to adjust for the saturation problem in the 

image analysis process. 
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1.5 Summary 

Microarray technology has been rapidly advancing since its introduction in 1995. 

New and advanced platforms are being developed to overcome the imperfections 

in the technology. In this chapter, we described the basic technology and the 

underlying biology behind it. Emphasis was given to the cDNA platforms, be-

cause all the data used in this thesis concern cDNA experiments. In the next 

chapter, we provide a brief overview of the statistical issues in different steps of 

the analysis process, such as, the design, image processing, data preprocessing 

and statistical inference of microarray experiments. 
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Chapter 2 

Statistical design and analysis 

2.1 Introduction 

Microarrays are powerful for studying gene expressions but are based on tech-

nologies that still require improvements. The sources of technological variability 

arising throughout the measurement process can obscure the biological signals of 

interest. Properly designed statistical experiments, reliable image processing and 

appropriately chosen, possibly modified or newly developed, statistical techniques 

are required to maximise the gain from microarray experiments by detecting and 

removing the numerous sources of variability. In this chapter, we review the avail-

able resources in the design, image processing, data preprocessing and analysis of 

microarray experiments. 

2.2 Experimental design 

As in any other area of statistics, proper statistical design of microarray experi-

ments is essential to ensure that the effects of interest are accurately and precisely 

measured. Although this may not be always feasible in the microarray context, 

Amaratunga and Cabrera (2004, p.  146) advised to adhere, as much as possible, 

to the fundamental principles of the theory of design of experiments: randomiza-

tion, replication and balance, while designing a microarray experiments. Apart 

from the basic principles of design of experiments, there are additional issues to 

be considered for designing microarray experiments. In an experiment, 'crossing' 

means considering all possible factor combinations as the potential set of condi-

tions. In addition to blocking and randomisation, Wit and McClure (2004, pp. 

37-38) described 'crossing' as a basic microarray design criterion to compare the 

effects of two or more sets of conditions in the same experiment. As discussed 

by Speed (2003, pp.  35-37), any microarray experiment involves two main design 

aspects: 
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design of the array itself, and 

allocation of mRNA samples to the microarrays. 

The design of the array itself involves deciding which DNA probes are to be 

printed on the solid substrate, be it a membrane, glass slide or silicon chip, and 

where they are to be printed. Allocation of mRNA samples to the microarrays 

involves deciding how mRNA samples should be prepared for the hybridisations, 

how they should be labelled, and the nature and number of the replicates to be 

done. A review of design issues for cDNA microarray experiments can be found 

in Yang and Speed (2002). 

2.2.1 Replication 

Replication is a key aspect of any comparative experimentation to increase pre-

cision and more importantly to provide a basis for formal statistical inference. It 

is now becoming widely accepted that microarray experiments need to be repli-

cated (Parmigiani et al., 2003, p.  7). The presence of internal control is helpful 

but not sufficient to eliminate the numerous sources of experimental error. In 

microarray context, replication can have a number of different forms: duplicate 

spots, technical replicates and biological replicates. It is important to realise that 

any type of replication offers information only regrading the particular source of 

variability associated with that type of replication and no other (Amaratunga 

and Cabrera, 2004, pp.  82-83). Depending on the experimental setting, it may 

therefore be important to consider one, two or all these types of replicates. The 

type of replication to be used in a given experiment depends on the precision and 

generalisability of the experimental results sought by the experimenter (Speed, 

2003, p.  42). In general, biological replicates are used to support generalisations 

of conclusions and technical replicates to reduce the variability of the measure-

ments themselves. Given that several possible forms of technical and biological 

replication exist, judgment will need to be exercised on the question of how much 

replication of a given kind is desirable, subject to experimental and cost con-

straints. 

Duplicate spots 

As discussed by Speed (2003, p. 41), duplicate spots provide valuable quality 

information, as the degree of concordance between duplicate spot intensities is 

an excellent quality indicator. However, data from the pairs can not be regarded 

as independent because replicate on the same slide, particularly adjacent spots, 
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will share most of their experimental conditions. Nevertheless, averaging log-

ratios from duplicate spots is appropriate. Their close association means that 

the information is less than that from pairs of truly independent duplicate spot 

measurements. 

Technical replicates 

Technical replicates refer to multiple-array hybridisation where the target mRNA 

is collected from the same pool, i.e., from the same biological extraction. Techni-

cal replication is useful for controlling technical variation, which arises from the 

handling steps, such as mRNA extraction, amplification, labelling, hybridisation, 

and scanning. This variation introduces uncertainty to the intensity measure-

ments associated with a gene. Using technical replicates and averaging across 

them allows gene expression levels to be estimated with greater precision. The 

higher the number of replicates, the greater is the precision. 

Biological replicates 

Biological replicates refer to analysis of mRNA of the same type from different 

subjects, for example muscle tissue treated with the same drug in different mice 

in the same species or inbred strain. This type of replication was termed as 

Biological replicates—type II by Speed (2003, p.  42). Biological replicates—type I 

was used to refer to hybridisations involving mRNA from different extractions, 

for example, different sample of cells from a particular cell line or from the same 

tissue. 
Biological replicates are used to deal with biological variation, which is the 

natural variability among subjects due to genetic diversity, environmental effects 

and other causes. This variation also contributes uncertainty to the intensity 

measurement associated with a gene. Averaging across biological replicates allows 

gene expression levels to be estimated with greater biological precision. 

2.2.2 Optimal design 

Use of indirect designs, also known as common reference designs was common 

in early microarray studies (DeRisi et al., 1996; Spellman et al., 1998; Perou 

et al., 1999). Common references are frequently used to provide easy means 

of comparing many samples against one another. Designs that provide direct 

estimates of log-ratios were considered by several studies, e.g., Jin et al. (2001); 

Kerr et at. (2001). Fixed or random effect linear models and analysis of variance 

can be used to combine data from such designs. Until recently, the main work 
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on design of two-channel microarray experiments is due to Kerr and Churchill 

(2001), and Glonek and Solomon (2004), who have applied ideas from optimal 

experimental design to suggest efficient designs for some of the common cDNA 

microarray experiments. Kerr and Churchill (2001) based their comparisons of 

different designs on the A-optimality criterion. In addition, they introduced a 

novel class of design, called loop designs, and found that under A-optimality, 

loop designs were more efficient than common reference designs. However, loop 

designs are efficient for comparing small to moderate number of conditions. Kerr 

and Churchill (2001) noticed, through an exhaustive search of all possible designs 

of limited number of slides and conditions, that the optimalilty of loop designs 

does not hold when there are more than eight conditions. More efficient way of 

searching for optimal designs, termed simulated annealing, was proposed by Wit 

et al. (2004). Glonek and Solomon (2004) studied optimal design for time course 

and factorial experiments. Determination of optimal sample size for multiple 

testing in the case of gene expression microarray data has been discussed by 

Muller et al. (2004). 

2.3 Image processing 

Once the target cDNAs have been hybridised to the microarray and any loose 

sequence has been washed off, the array must be scanned to determine how much 

of each target is bound to each spot. The result is a series of images, one per 

channel. Oligonucleotide array (one-channel array) gives one image per array, 

whereas a two-channel microarray yields two images, one for each channel, per 

array. Scanner reads a microarray by dividing it up into a large number of pixels 

and recording the intensity level of the fluorescence at each pixel. The resulting 

rectangular array of pixels and their associated intensities constitute the raw 

image of the microarray. Image analysis methods are then applied to extract 

spot intensity from these raw image. 

Yang et al. (2002) and Glasbey and Ghazal (2003) reviewed a number of exist-

ing methods and proposed their own methods of image analysis for microarrays. 

Processing of the raw image generally involves three major steps: addressing or 

gridding, segmentation and intensity extraction. 

2.3.1 Addressing or gridding 

Addressing or gridding is the process of assigning coordinates to the center of 

each spot. As explained by Yang et al. (2002), a number of parameters need to 

be estimated to address the spot on the image, i.e., to match an idealised model 
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of the array with the scanned image data. In practice, the arraying process is not 

perfect, so that the grid that is actually arrayed tends to be slightly deformed 

version of the target regular rectangular grid. As a result the overlaid grid needs 

some fine-tuning, which can be done by manipulating the rows and columns of 

the overlaid grid until it is satisfactorily aligned. Reliability of the addressing 

stage can be increased by allowing user intervention. However this can make the 

process potentially slow. Most software systems now provide both manual and 

automatic gridding procedures. Ideally, one seeks reliability while attempting to 

minimise user intervention to maximise efficiency. 

2.3.2 Segmentation and intensity extraction 

Segmentation of an image generally refers to the process of partitioning the image 

into different regions, each having certain properties. Once the locations of the 

centers of the spots have been determined, the next step is to separate the spot, 

i.e., the region of the slide on which cDNA was actually arrayed. In a microarray 

experiment, pixels belonging to a spot of interest is called foreground and all 

other pixels surrounding the arrayed spot constitute background. Segmentation 

in microarray experiment therefore refers to the process of classification of pixels 

as foreground or background, so that fluorescence intensities can be calculated for 

each cDNA sequence as measures of gene expression. Depending on the geometry 

of the spots produced, Yang et al. (2002) categorised the existing microarray 

image segmentation methods into four groups as listed below. In general, most 

software packages implement a number of segmentation methods. Examples are 

shown within parentheses. 

Fixed circle segmentation (ScanAlyze, Eisen, 1999; GenePix, Axon Instru-

ments Inc., 1999; QuantArray, CSI Luminomics, 1999), 

Adaptive circle segmentation (GenePix), 

Adaptive shape segmentation (Spot, Buckley, 2000), and 

Histogram segmentation (QuantArray). 

Fixed circle segmentation fits a circle with a constant diameter to all the spots 

in the image. This method is easy to implement and works nicely when all the 

spots are circular and of the same size. However, this method is not satisfactory 

as the spots tend to vary in size and shape due to a number of reasons. 

Adaptive circle segmentation estimates the circle's diameter for each spot. 

This method may also give poor fit as the spots are rarely circular and can exhibit 
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oval or donut shapes. Segmentation algorithm that do not place restrictions on 

the shape of the spots are therefore desirable. 

Adaptive shape segmentation methods are beginning to be applied in microar-

ray analysis although not yet available in the most widely used software packages. 

Two commonly used methods for adaptive segmentation in image analysis are the 

watershed (Beucher and Meyer, 1993) and seeded region growing (SRG), (Adams 

and Bischof, 1994). Both watershed and SRG segmentation require the specifica-

tion of starting points, or seeds. The weak point of segmentation procedures using 

these methods can be the selection of the number and location of the seed points. 

In microarray image analysis the number of features (spots) is known exactly a 

priori and the approximate locations of the spot centres are determined at the 

addressing stage. Microarray images are therefore well-suited to such methods. 

Histogram segmentation places a mask, circular or square, over each spot. 

This mask should be larger than the spot. The histogram of pixel values within 

the mask is examined to determine a threshold value. Each pixel within the mask 

is then classified as foreground or background depending on whether its intensity 

is above or below this threshold. The histogram method that is implemented in 

QuantA rray uses a square target mask and defines foreground and background 

as the mean intensities between some predefined percentile values. By default, 

these are the 5th and 20th percentiles for the background and the 80th and 95th 

percentiles for the foreground. 

Intensity extraction refers to computation of average foreground and back-

ground intensities for each spot and possibly computation of some quality mea-

sures. Most microarray analysis packages define the foreground intensity as the 

mean pixel values within the segmented spot mask. However, because the dis-

tribution of pixel intensities might be irregular, other measures of location, such 

as the median or trimmed mean, biweight, and mode, are also sometimes used. 

Mean or median are also commonly used for estimating spot background. More 

variations however exist for estimating spot background. Background is generally 

removed from the foreground intensities prior to formal analysis. 

2.3.3 Correction for saturated pixels 

One of the sources of systematic bias in the gene expression measurements is 

signal/pixel censoring. The scanned gray scale images of microarrays are usually 

stored in 16-bit tagged image file format (TIFF). Image processing software con-

verts the image into intensity measurements. For 16-bit image converters these 

measurements range between 0 and 216 - 1. Therefore, any pixel having fluores-

cence intensity greater than 216 - 1 is censored at this upper limit. 
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Recent image analysis methods (e.g., Ekstrom et al., 2004; Glasbey et al., 2006) 

also deal with the saturation problem which occurs because image converting 

software can not record intensities beyond a certain threshold. Spatial statistical 

model was considered by Ekstrom et al. (2004) to predict signal intensities of 

the censored pixels. Censored pixel values can be estimated optimally for models 

using transformed data having approximately Gaussian distribution with a mean 

value function determined by gene intensities and spot shapes and a correspond-

ing covariance function. The authors investigate several types of transformations 

on the pixel level such as the logarithmic transformation, the Box-Cox family 

(Box and Cox, 1964) and the inverse hyperbolic sine (arcsinh) transformation 

(Huber et al., 2002; Durbin et al., 2002), also called the generalised logarithm 

(Rocke and Durbin, 2003). The paper compares these transformations in combi-

nation with four spot shape models: (i) a cylindric plateau spot distribution, (ii) 

an isotropic two-dimensional Gaussian distribution, (iii) a crater spot distribution 

consisting of a difference between two scaled isotropic two-dimensional Gaussian 

distribution and (iv) polynomial-hyperbolic spot shape model. The first three 

models were suggested by Wierling et al. (2002), and according to the paper, do 

not seem to provide satisfactory description for the data set considered. The pro-

posed polynomial-hyperbolic spot shape model with a second degree polynomial 

gives considerable improvement in performance. 

Glasbey et al. (2006) proposed a linear model to impute censored pixels based 

on the principal components of the uncensored spots on the same array. Arrays 

with censored spots generally also has many uncensored spots. The idea, as 

being used in other domain of image analysis, is to use the principal components 

or eigenvectors computed from these uncensored spots as a basis for a model. 

The method is sufficiently flexible for modelling non-circular spot shapes and 

profiles that do not conform to parametric models and has been shown to be 

more effective than the polynomial-hyperbolic model of Ekstrom et al. (2004) in 

correcting for the censoring bias. 

2.4 Combining multiple scans 

Analysis of microarray experiments is commonly based on data from a single 

scan of hybridised microarrays, although it is standard practice to scan a single 

microarray several times. Use of multiple scan can be useful as illustrated by 

Romualdi et al. (2003) who used multiple scan data to improve detection of 

differentially expressed genes through image integration. 

One way of minimising pixel censoring is to reduce the amplification setting 
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(gain) in the scanner. This is not a good solution as it causes another problem, 

signal deterioration, for weakly expressed genes. In single scan analysis a com-

promise scanner setting is chosen, generally based on some informal exploratory 

checks, to make a balance between the amount of censoring and deterioration. 

It is therefore not usual for gene expressions from a single scan to be approxi-

mately proportional to the underlying expression levels over the entire range of 

gene expressions. Since the problems at the two ends, signal censoring and signal 

deterioration, are in conflict, no single scan is optimal. Noting that low expres-

sion levels are better measured at high setting, while high expression levels are 

better measured at low setting, combining multiple scans may be a good idea for 

getting improved gene expression measures across the whole range of data. 

Motivated by the fact that spot intensity reported by a scanner is linear only 

within a certain range of intensities, being dominated by noise below and subject 

to signal saturation above that range, Dudley et al. (2002) suggested a linear re-

gression algorithm to combine the linear ranges of multiple scans taken at different 

scanner sensitivity settings on to an extended linear range. 

Bell (2003) developed an algorithm, implemented in an image analysis soft-

ware called MAVI Pro, for dealing with signal saturation and deterioration. The 

algorithm reads in image analysis data from arrays scanned with a range of differ-

ent amplification settings, eliminates the saturated and deteriorated values, and 

then computes the intensity for a specific amplification using linear regression of 

intensity on amplification. In Figure 2.1, the intensity of the spot derived from 

the image analysis software is plotted against the photomultiplier amplification 

gain for one channel. Every gray line in the plot connects the intensity values 

belonging to one spot. MAVI first calculates an amplification value for which it 

is going to give out the result. It chooses the amplification, which is closest to 

40% of the amplification span. In Figure 2.1 this value is 45. Then a straight line 

is fitted to intensities of all spots that very probably do not have saturation or 

signal deterioration. The assessment about the presence of saturation or deterio-

ration is made informally from the range of the data. Spots are chosen for this if 

their highest value is below 40,000 and their lowest value is higher than 100. This 

might need to be adapted if MAVI should be used for a different scanner. From 

these fits an average slope is calculated. Then MAVI goes through the intensities 

of all spots separately. To check for saturation the slope between the intensities 

of the two highest amplification settings is compared with the average slope. If 

the discrepancy is larger than 30% the intensity to the higher of the two amplifi-

cations is removed and the slope of the next two lower amplifications is checked 

the same way. This is done consecutively until one slope fulfills the criterion of 
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Figure 2.1: Intensities against amplification. Reproduced from Bell (2003). 

less than 30% similarity to the average slope. The same is done consecutively 

from lower amplifications upwards to eliminate intensity with signal deteriora-

tion. MAVI then takes the surviving intensity values and again does a linear 

regression on them (blue lines in Figure 2.1). From the fitted line, the middle 

one in Figure 2.1, it then calculates the intensity at the previously determined 

amplification for calculation (blue circles in Figure 2.1). 

Garcia de la Nava et al. (2004) suggested a simple method for saturation re-

duction based on two scans at different sensitivities, one at a low sensitivity level 

(L) and the other at a high sensitivity level (H). Two simple mathematical mod-

els, based on linear and "gamma" correction curves, which are power functions 

used to code and decode luminance values in a video or still image system, are 

presented for relating the two measurements to each other and producing a co-

herent and extended range of values. Suppose that Ii  is the light flux intensity 

of spot i, L 1  stands for the low sensitivity electrical current at photodetector and 

Hi  for the high sensitivity one. Saturation is assumed to be negligible in the low 
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sensitivity scan, so the value of L 2  is given in linear terms 

Li  = kIt , 

where k is some constant. On the other hand, Hi  is described by either a clipped 

linear curve or a power function. The clipped linear curve is described by 

Hi 	p1j , if 1i  <T/p 

- T, otherwise, 

where p is the proportionality constant between read value and spot intensity. 

The previous equation can be reduced to 

Hi f mL 2 , if 1i  <T/rn - 
T, 	otherwise, 

where T is the saturation (clipping) level and m = p/k, the proportionality 

constant between the low sensitivity and high sensitivity scans. 

The correction curve based on power function is defined by 

Hi  = cI, 

where c is a constant. The relation between Hi  and Li  can therefore be specified 

by 

H, = bL7, 

where b = c/ky. Least Trimmed Squares (LTS, Rousseeuw and Leroy, 1987) is 

a robust version of least squares regression obtained by minimising the sum of 

squares of certain proportion of smallest residuals. Garcia de la: Nava et al. (2004) 

used LTS for estimating the parameters of the proposed models. 

Wit (2004, personal communication) has considered a generative model for 

combining multiple scans to improve gene expression estimates. If 

represents the underlying expression levels of G genes under a particular condition 

in a particular fixed RNA sample, then the average observed intensities measured 

with some ideal scanner having linear infinite dynamic range under a particular 

set of scanning settings s would be 

C3 i= (C3 1i 1 ,• 

where C3  is some array-wide constant associated with the particular settings S. In 

this ideal case the author assumed that the observed intensities (i = 1, . , C) 

follow a log-normal distribution such that 

E() = C. 
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In particular, the individual spot intensities are assumed to be distributed as 

LN(m,a 2 ), 

such that 

cstti = emj 2 h/2  

However, due to saturation, the actual average is distorted and capped at some 

maximum intensity level T. To model this distortion, Wit (2004, personal com-

munication) suggested a distortion function 

f) = 
T 

The observed intensity 1i  for gene i on a particular array is therefore taken to be 

ii = 

where e is the log-normally distributed signal for the ideal microarray with mean 

Considering S separate scannings of the same microarray with correspond-

ing distortion functions f, , f, the author suggested maximum likelihood 

method for estimating the expression level . 

2.5 Functional regression for combining multi-
pie laser scans 

Standard regression methods are commonly used for modelling a set of responses 

as functions of a set of predictor variables, where only response variables are 

allowed to have measurement errors. Application of standard regression, where 

both response and predictor variables are subject to measurement errors, may 

often be misleading. For example, agricultural variables such as rainfall, soil 

nitrogen content, degree of pest infestation etc., which are commonly used for 

predicting yield, can not be measured precisely. In management sciences, social 

sciences, and nearly every other field many other variables can only be measured 

with error. Although it is very unlikely to have a situation in practice where the 

predictor variables can be measured accurately, analysts commonly prefer to use 

standard regression method because of its familiarity and ease of application. The 

method has found applications in dealing with multiple laser scans as well, e.g., 

Dudley et al. (2002) used linear regreesion to relate intensity data obtained from 

multiple laser scannings of microarrays. The authors used intensity data from one 

of the scans as response, and the data from other scans as predictors. However, 

because microarray data are generally very noisy, and each individual laser scan 

24 



is subject to similar level of measurement errors, standard regression methods are 

not appropriate for calibrating such data. Functional regression models, a type 

of measurement error models (Cheng and Van Ness, 1999, Chapter 1), where 

both response and predictor variables are allowed to have measurement errors, 

are more realistic. 

The basic functional model postulates a linear relationship 

between two unobservable nonstochastic variables q and M. The variables i and 

i can only be observed with additive errors, i.e., instead of observing and ji 

directly, one observes the variables 

x=+c1 and y=i+c2 , 

where (Cl, 62) is normally distributed with zero mean vector and covariance matrix 

van 
(E1\(7 0 

1 
0 i) 

Functional regression models have both advantages and disadvantages over the 

standard regression models. One major limitation is that the model generally 

has more parameters than the number of observations, and the parameters are 

not estimable by direct application of maximum likelihood method. Although 

likelihood solution exists when restrictions are imposed on certain parameters, 

maximum likelihood method often leads to inconsistent estimators. 

Alternative estimators have been suggested in the literature, e.g., Sprent 

(1976), Morton (1981), Chan and Mak (1983), to deal with the problems of 

estimability and consistency. Questions still remain about how good these esti-

mators are with respect to efficiency. We have investigated the efficiency of such 

estimators through simulation studies (see Chapter 6). 

However, these alternatives are based on linear functional relationship with 

Gaussian distributed errors, and do not directly apply to our study on combin-

ing multiple laser scans, in Chapter 3 and 4, which mainly concerns nonlinear 

functional models with non-Gaussian errors. 

2.6 Normalisation 

Two important topics in the analysis of microarray data are the calibration of 

data from different samples and the problem of variance inhomogeneity, in the 

sense that the variance of the measured intensity depends on their mean. Due 
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to variations in sample treatment, labelling, dye efficiency and detection, the 

fluorescence intensities can in general not be compared directly, but only after 

appropriate calibration, called "normalisation". Many commonly used statistical 

methodologies, such as regression or the analysis of variance, are based on the 

assumption that the data are normally or, at least symmetrically distributed with 

constant variance, not depending on the mean of the data. If these assumptions 

are violated, the statistician may choose either to develop some new statistical 

technique which accounts for the specific ways in which the data fail to comply 

with the assumptions, or to transform the data. Where possible, data trans-

formation is generally the easier of the two options. A considerable number of 

techniques have been suggested to date to address the issues of calibration and 

variance-stabilising transformation of gene-expression microarray data. A brief 

review of some common methods for location and scale normalisation is given in 

the next two sections. 

2.6.1 Location normalisation 

Loess normalisation 

The purpose of normalisation is to identify and remove sources of systematic vari-

ation in the measured fluorescence intensities and bring the data from different 

microarrays onto a common scale. The systematic bias arises due to different 

labelling efficiencies and scanning properties of the Cy3 and Cy5 dyes, different 

scanning parameters such as PMT settings, print-tip, spatial or plate effects etc. 

The simplest approach to within-slide normalisation is to subtract a constant 

from all intensity log-ratios, typically their mean or median. The affine-linear 

calibration technique of Huber et al. (2002, 2003) is also global in nature which 

normalise the data for the differential behaviour of samples and arrays. Such 

global normalisation methods can not normalise the intensity data for some lo-

cally active artefacts, e.g., print-tip effects, spatial or intensity dependent dye 

biases. Dudoit et al. (2002) proposed more flexible normalisation methods which 

allow the normalisation function to depend on a number of predictor variables, 

such as average spot intensity (x), location and plate origin. They used loess, a 

robust locally weighted regression (Cleveland, 1979; Cleveland and Devlin, 1988; 

Cleveland et al., 1993) of the log-ratio (y) on the predictor variables. Suppose 

that R and G represent the intensity values corresponding to red (Cy5) and green 

(Cy3) dyes. Within print-tip group intensity dependent normalisation can be per-

formed using the mappings: 1092(R/G) - 1092(R/G) —l(x,j), where l(x,j) is the 

loess fit to the scatter plot of y vs. x for the spots printed using the jth print-tip, 
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i.e., data from the jth grid only. 

Bayesian and semiparametric approaches 

Reilly et al. (2003) proposed a Bayesian approach for normalising microarray data. 

The basic idea is to use genes that are not differentially expressed to conduct the 

normalisation. The problem is a nontrivial one as one can not determine which 

genes are differentially expressed until the normalisation is done. However, in this 

paper, a general framework and computational method using the Gibbs sampler 

is devised to allow for such a normalisation. 

Semiparametric approaches have also been suggested for correcting for trends 

in log-ratio data which are claimed to relax some of the underlying assumptions 

in loess normalisation. Fan et al. (2005) suggested a semilinear high-dimensional 

model for within-slide normalisation of microarray data having replicated spots. If 

there is no within slide replication, within slide replications are artificially created 

by constructing a super array from the replicate arrays. This way, the model can 

be used for across-array normalisation as well. Unlike the non-parametric (loess) 

normalisation, the model is not restricted to the assumption that up-regulated 

and down-regulated genes at each intensity level are about the same in each 

print-tip block. 

Huang et al. (2005) proposed a two-way semilinear model for normalisation 

and analysis of cDNA microarray data. The semiparametric approach uses poly-

nomial splines to estimate the normalisation curves and the normalised expression 

values. The method also naturally incorporates uncertainty due to normalisation 

into significance analysis of microarrays. This method also does not make the 

usual assumptions underlying some of the existing methods. For example, it does 

not assume that the percentage of differentially expressed genes is small or that 

there is symmetry in the expression levels of up-regulated and down-regulated 

genes as required by the loess normalisation. 

Ma et al. (2006) proposed a robust semiparametric location and scale model 

for normalisation and significance analysis purposes. Weighted least absolute de-

viation regression was used as a robust estimation method. The proposed method 

naturally combines normalisation and significance analysis, and incorporates the 

variations due to normalisation into the significance analysis properly. 
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2.6.2 Variance stabilisation 

Generalised logarithm (glog) or inverse hyperbolic sine (arcsinh) trans-
formation 

Huber et al. (2002, 2003) proposed a statistical model which can address the prob-

lem of calibration and variance-stabilising transformation together. In particular, 

they derived a transformation h for intensity measurements and a difference statis-

tic d (as alternative to log-ratio) whose variance is constant along the whole inten-

sity range. For the transformation h, the parametric form h(x) = arcsinh(a + bx), 

a and b being the calibration parameters, was derived from a model of the 

variance-versus-mean dependence for measuring intensity data using the method 

of variance stabilising transformations. For large intensities, h coincides with the 

logarithmic transformation and d with the log-ratio. The difference statistic d as a 

measure of differential expression having constant variance throughout the entire 

range of the intensity data seems to be an improvement over log-ratio, variability 

of which depends on intensity. Another advantage of the proposed technique is 

that it takes into account the problem of calibration—differential behaviour of 

dyes, arrays and samples—to bring the measurements on a common scale be-

fore the difference statistic is computed. The variance stabilising transformation 

introduced by Huber et al. (2002) was independently derived by Durbin et al. 

(2002) and Munson (2001) and sometimes referred to as generalised logarithm or 

glog transformation. 

Started logarithm and log-linear hybrid transformation 

Rocke and Durbin (2003) suggested two alternative variance stabilising trans-

formations (started logarithm and log-linear hybrid transformation) that may 

be easier to use in some applications. In Durbin et al. (2002), Huber et al. 

(2002) and Munson (2001), it was shown that for a random variable z satisfying 

var(Z) = a 2  + b2 1t2  with E(Y) = where Z = Y - a, there is a transformation 

(glog transformation) that stabilises the variance to the first order, meaning that 

the variance is almost constant no matter what the mean might be. One of several 

equivalent ways of writing this transformation is, 

/ z + Vz 2 _+ C2  \ 
fc(z)=lo(\ 	

2 	
)' 

where c = . This transformation converges to log(z) for large z, and is approx- 

imately linear at 0 (Durbin et al., 2002). This is exactly log(z) when c = 0 and 

for that reason it was termed as generalised logarithm or glog by Munson (2001). 



While proposing the started logarithm as a variance stabilising transforma-

tion Rocke and Durbin (2003) pointed out some limitations of the logarithmic 

transformation. For a random variable z satisfying E(Z) = 1ti and 

var(Z) = a2  + b22 , 

the logarithmic transformation has approximate variance 

var [log(Z)] 	b 2  + a2 / 2 , 

which goes to infinity as jt -p 0. Furthermore, when a = 0, z will be frequently 

non-positive for which the transformation is not defined. A common modification 

of logarithmic transformation to avoid negative arguments is to add a constant 

to all of the values before taking logarithm, called the started logarithm, given 

by 

gc (z) = log(z + c) (c> 0), 

with approximate variance 

a + b2ii2  var [log (Z)] 	 (2.1) 

This transformation does not completely stabilises the variance when the variance 

of z is additive and multiplicative. It is however possible to find the value of c 

which minimises the maximum deviance from constancy. It follows from equation 

(2.1) that it takes the value a2 /c2  at p = 0 and has an asymptote at b2  as 

oo. Rocke and Durbin (2003) focused on the deviation of the variance from 

the limiting value b2 . 

The derivative of (2.1) with respect to t is 

2b2p(i + c) 2  - 2(a2  + b22)(1i + c) 
(2.2) 

(i+c) 4  

The denominator of (3.2) is never zero for j ~: 0, so any change in the sign of the 

derivative will occur where 

2b2 i( + c) 2  - 2(a2  + b22)([L + c) = 0, 

or, 
a2  

It may be noted that the derivative of the variance function at ji = 0 is 

—2a 2 /c3  <0, 
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indicating that the variance decreases initially, before increasing again at p = 

a2 /(b2 c). It is clear that the value of c that minimises the maximum deviation 

of (2.1) from b2  is where the variance at zero, a2 /c2 , is as much above b2  as the 

variance at the minimum is below b2 . Since the minimum is at i = a2 /(b2 c), the 

variance at the minimum is 

a2  + b2 a4 /(b4 c2) - a 2  b  2 

(a2 /b2 c + c) 2  - a2  + b 2 c2  

The condition to minimise the maximum deviation from constant variance is 

a 2 
 b2  b2 	

a 2  v 2 

c2 	- 	a2 +b2 c2 ' 

or, 

c= a/(2b). 

The achieved minimum deviation is b2 	- b 2  and the ratio of the standard 

deviation at 0 to the asymptotic standard deviation b is about 1.2. 

Rocke and Durbin (2003) considered another variant of logarithmic transfor-

mation that may be appropriate for microarray data, called the log-linear hybrid 

transformation, originally suggested by Holder et al. (2001). In this approach, 

the transformation is taken to be log(Z) for Z greater than some cutoff k and a 

linear function cZ + d below that cutoff. This eliminates the singularity at zero. 

The constants c and d are chosen such that the transformation is continuous with 

continuous derivative at k. This requires 

ck + d = log(k), 

and 

C = 1/k, 

which gives 

d = log(k) - 1. 

The transformation family therefore is 

fk(z) - { 
z/k - log(k) - 1, z <  k 

- 	log(z), 	z> k. 

The asymptotic delta-method variance function is given by 

f (a2  + b 2 p 2)/k 2 , Z < k 
var(fk (Z)) = b 2  +a2  /2

A , 	Z> k. 

The value of k that leads to the minimum deviation form the constant variance 

is the one for which the variance at = 0 (a2/k 2 ) is as much below b2  as the 

variance at the splice point (i' = k) is above b2 . Thus, 

b2  - a2 /k 2  = (b2  + a2 /k 2 ) - b2 , 
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which gives k = ,/a/b. The motivation behind this transformation is the additive 

multiplicative variance model of Rocke and Durbin (2001) 

y = a + /ie" + 6, 

which has approximately constant variance for p close to zero and approximately 

constant coefficient of variation for ,a large. 

Mixture model for variance modelling of gene expression 

A mixture model approach for the variance of gene expression data was considered 

by Delmar et al. (2005). Their approach can be considered as intermediate be-

tween the too stringent homoscedastic models and the over parameterised models 

assuming specific variance for each gene. The proposed method assumes groups 

of genes with equal variance and uses a mixture model based on the gene variance 

distribution. 

Let observation y9, representing expression level of gene g (g = 1,.. , G) in 

condition c (c = 1, 2) and replicate r (r = 1, . . ,n1  + n2 ), is modelled according 

to a simple linear model 

Y gcr = Igc + Egcr, 	 (2.3) 

where €,. is normally distributed with mean zero. Instead of fitting a separate 

variance (o, 2 )  for each gene, the paper proposed fitting fewer, say K, where K < G, 

variance parameters assuming that there are groups of genes with equal variance. 

The authors suggested a mixture model to the distribution of sum of squares of 

errors to fit these variances. 

2.7 Analysis of gene expression data 

After the image processing and subsequent normalisation steps, data should re-

flect only the biological signal of interest plus random noise. Appropriate statis-

tical tools are then applied to answer the biological question under investigation. 

Statistical analysis of microarray data can be categorised into two broad classes: 

Identification of differential expression, and 

Pattern discovery and class prediction. 

2.7.1 Identification of differential expression 

Many microarray experiments are comparative in nature. Their objective there- 

fore is to compare the expression levels of a set of genes across two or more con- 

ditions. This comparison usually involves identifying genes that are significantly 
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differentially expressed across these conditions. The simplest way to analyse 

comparative experiments is to consider each gene separately and compare its ex-

pression levels across the groups. More complex analysis may involve comparing 

clusters of genes across conditions. Both formal and informal ways of identifying 

differential expression are found in the literature. Use of fold change is one of 

the common informal method of identifying differential expression. Statistical 

hypothesis testing and regression and analysis of variance types models are also 

being used for comparing gene expressions across conditions. 

Fold changes have been used in early microarray studies (e.g., Schena et al., 

1995) to compare differential expressions. A gene is declared differentially ex-

pressed if its fold increase or fold decrease exceeds a specified cutoff. For example, 

in their seminal paper, Schena et al. (1995) declared a gene differentially expressed 

if its expression level showed a fivefold difference between the two mRNA sam-

ples. The decision rule that declares, on a logarithmic scale, that changes of h-fold 

or greater are significant means that a gene should be declared differentially ex-

pressed if 112 - I > log(h), where li  and 12  represent the replicate means of 

the gene expressions of a particular gene in the two samples. Reliance on fold 

change alone to designate significance has however been criticised as the means 

estimating true gene expressions are subject to variability. The variability of the 

estimates can be assessed and should be used to adjust the threshold. This is 

the idea behind using formal hypothesis testing procedures, e.g., t-test and its 

modified versions. 

Statistical tests are commonly used for inferring differential expressions in 

comparative microarray studies. The most basic statistical test for comparing 

two groups is the two-sample t-test. With small samples, t-test statistic tends to 

be highly correlated with the standard error term that appears in its denominator. 

As a result the test has a propensity for picking up significant findings at a higher 

rate from among those genes with low sample variance. Since the sample sizes in 

the microarray experiments are typically very small, some adjustments of t-test 

have been suggested. One adjustment was suggested by Tusher et al. (2001) by 

adding a carefully chosen constant, a so-called fudge factor, to the denominator of 

the t-statistic. This statistic is often called SAM t-statistic where SAM stands for 

"significance analysis of microarrays". The Mann-Whitney-Wilcoxon rank sum 

test can be used as an alternative of t-test when the underlying distribution is far 

from normal (Chambers et al., 1999). 

Combining information across genes in the statistical analysis of microarray 

data is desirable because of the relatively small number of replications for each 

gene. Cui et al. (2005) proposed improved statistical tests for differential gene 
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expression by shrinking variance components estimates. They suggested an esti-

mator of the error variance that can borrow information across genes using the 

James-Stein shrinkage concept. The test statistic is constructed using this esti-

mator, and the statistic showed best or nearly best power compared with other 

statistics, such as, gene-specific F-test, the pooled-variance F-test, a hybrid F-

test, the generalised t-statistic, the posterior odds statistic B, and the SAM t-test. 

Wei (2006) proposed incorporating existing biological knowledge, such as gene 

functional annotations, in detecting differential gene expression using stratified 

mixture models allowing genes with different annotations to have different distri-

butions, such as prior probabilities. Rather than treating parameters in stratified 

mixture models independently, the author proposed a hierarchical model to take 

advantage of the hierarchical structure of most gene annotation systems, such as 

gene ontology. An application to a mouse microarray data set and a simulation 

study demonstrate the improvement of the new approaches over the standard 

mixture model. 

Bayesian methods for detecting differential expressions have been suggested in 

some recent papers. Lewin et al. (2006) proposed a Bayesian hierarchical model 

for detecting differentially expressed genes. The method includes simultaneous es-

timation of array effects, and the authors show how to use the output for choosing 

list of genes for further investigation. By modelling the array effects (normali-

sation) simultaneously with differential expression the method reduces the false 

positive rates. 
Another robust Bayesian hierarchical model for testing for differential expres-

sion was proposed by Gottardo et al. (2006). The model takes account of outliers 

by explicitly using a t-distribution for the errors, and includes an exchangeable 

prior for the variances. The model can be used for testing for differentially ex-

pressed genes among multiple samples, and it can distinguish between the dif-

ferent possible patterns of differential expression when there are three or more 

samples. Parameter estimation is carried out using a novel version of Markov 

chain Monte Carlo. The method performed better than the commonly used tech-

niques, namely, the t-test, the Bonferroni-adjusted t-test, significance analysis of 

microarrays (SAM) and Efron's empirical Bayes method in an experiment with 

HIV data. 

Hong and Li (2006) proposed a Bayesian approach for detecting differential 

expression in time-course experiment. A functional hierarchical model was sug-

gested for detecting temporally differentially expressed genes between two exper-

imental conditions for cross-sectional designs, treating gene expression profiles 

as functional data by basis function expansions. A Monte Carlo EM algorithm 
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was developed for estimating both the gene-specific and hyperparameters in the 

second level of modelling. Simulation results suggested that the procedure per-

forms better than the two-way ANOVA in identifying temporally differentially 

expressed genes. 

Adjustment for multiplicity in microarray hypothesis testing is important. 

Hypothesis testing in microarrays involves performing a large number of tests, 

one for each gene, and one problem of doing so many tests is that the more 

the number of tests performed, the higher the overall false positive rate and the 

higher the expected number of false positives. Several adjustments of p-values, for 

example, false discovery rate (FDR) (Benjamini and Hochberg, 1995; Yuketieli 

and Benjamini, 1999) have been suggested to combat the problem. FDR is defined 

as the expected proportion of false positives among the positive findings. Storey 

and Tibshirani (2001) proposed a modified version of FDR, called positive false 

discovery rate (pFDR). The pFDR emphasises the fact that an adjustment is only 

necessary when there are positive findings. 

2.7.2 Pattern discovery and class prediction 

In microarray experiments, interest sometimes concerns finding group of genes 

performing similar functions or genes operating along a genetic pathway. One 

of the limitations of comparing differential expression on a gene-by-gene basis 

is that this analysis does not expose or exploit the correlated patterns of gene 

expression. Performing only gene-by-gene analysis is therefore not sufficient to 

make use of what should ideally be the full potential of multi-gene experiments. 

Multivariate methods can be used both for finding multivariate patterns in data, 

called pattern discovery or unsupervised classification or cluster analysis, and for 

predicting classes, called class prediction or supervised classification or discrim-

inant analysis. An overview of different types of supervised and unsupervised 

classification techniques in microarray applications can be found in several recent 

books on microarray analysis, e.g., Speed (2003), Wit and McClure (2004), Ama-

ratunga and Cabrera (2004), Gentleman et al. (2005). Parmigiani et al. (2002) 

proposed a statistical modelling framework for expression-based molecular classi-

fication in cancer. The modelling framework can be used to inform and organise 

the development of exploratory tools for classification. The framework uses la-

tent categories to provide both a statistical definition of differential expression 

and a precise experiment-independent, definition of a molecular profile. It also 

generates natural similarity measures for traditional clustering and gives proba-

bilistic statements about the assignment of tumors to molecular profiles. Dudoit 

et al. (2002) compared the performance of different discrimination methods for 
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the classification of tumors based on gene expression data. The methods include 

nearest-neighbour classifiers, linear discriminant analysis, and classification trees. 

Machine learning approaches, such as bagging and boosting, are also considered. 

Bayesian classification of tumors by using gene expression data was considered by 

Mallick et at. (2005). The paper considers several Bayesian classification methods 

based on reproducing kernel Hilbert spaces for the analysis of microarray data. A 

Bayesian mixture model for partitioning gene expression data collected over time 

was proposed by Zhou and Wakefield (2006). The method assumes a nonpara-

metric random walk model, and partition on the basis of the parameters of the 

model. The model is flexible and can be tuned to the specific context, respects 

the order of observations within each curve, acknowledges measurement error, 

and allows prior knowledge on parameters to be incorporated. The number of 

partitions may also be treated as unknown, and inferred from the data. Qin and 

Self (2006) proposed a regression model-based clustering method, which groups 

genes that share a similar relationship to the covariate(s). The method provides 

a unified approach for a family of clustering procedures and can be applied for 

data collected with various experimental designs. 

Dynamic modelling of microarray time course data are also suggested (Garcia 

and Wolkenhauer, 2001) to identify genes with similar dynamic response profiles. 

Dynamic Bayesian networks (DBNs) are being considered (Kim et at., 2003) as a 

promising model for inferring gene networks from time series microarray data. 

2.8 Scope of thesis 

This thesis is concerned with developing statistical methods for the data pre-

processing step of microarray analysis. Chapter 1 has described the microarray 

technology and the underlying biology behind the technology. Chapter 2 gives a 

brief overview of the statistical issues in the design, image processing, data prepro-

cessing and analysis of microarray experiments. Chapters 3 and 4 are concerned 

with our proposed statistical models for estimating gene expression using multi-

ple laser scans of hybridised microarrays. In Chapter 3, experimental results on 

finite mixture modelling and hyperbolic and censored mean functional regression 

approaches of combining multiple laser scans of microarray data are described. 

While in Chapter 4, we present a refined statistical model for this problem based 

on a censored Cauchy model to account for the outlying observations and also 

for the fact that spot averages cannot exceed the censoring threshold T. The 

model is capable of estimating gene expression adjusting for signal censoring and 

random outliers in the intensity measurements. 
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In Chapter 5, we suggest a new nonparametric normalisation method of mi-

croarray data. The method incorporates location and scale normalisation si-

multaneously using Generalised Additive Models for Location, Scale and Shape 

(GAMLSS, Rigby and Stasinopoulos, 2005) as alternative to the parametric ap-

proaches of variance stabilisation. 

In Chapter 6, we compare the efficiency of different estimation methods for 

functional regression models through simulation studies. The motivation behind 

this investigation is the fact that the parameters of functional regression models, 

as seen in Chapters 3 and 4, are often not estimable by direct application of 

maximum likelihood estimation, and sometimes lead to inconsistent estimators 

when they are estimable. Alternative methods of estimation are suggested in the 

literature to address the estimability and consistency problems, but questions still 

remain about how good these estimators are in terms of efficiency. 

Finally, Chapter 7 concludes the thesis, providing an overall discussion and 

indication for possible further research on the work presented in this thesis. 
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Chapter 3 

Combining multiple laser scans: 
exploratory analysis 

3.1 Introduction 

Although microarrays are often scanned more than once, common practice is to 

use data from a single scan, based on some arbitrary exploratory checks, in the 

subsequent analysis. Use of combined data from multiple scans of hybridised 

microarray may be useful to get improved gene expression measurements. 

In this thesis, one of our aims is to use data from multiple scans at different 

scanner settings to handle pixel censoring, also known as signal saturation, in the 

gene expression measurements. 

Only handful of methods are available (see Section 2.4) for combining multiple 

scans, and none of them are fully adequate to address the problem. For example, 

algorithmic approaches of Dudley et al. (2002) and Bell (2003) are not based on 

full information of multiple scan data. The methods discard information outside 

the linear range, and there is arbitrariness and subjectivity involved in choosing 

such a range. Furthermore, the methods consider standard linear regressions to 

combine multiple laser scans, which may be misleading because each individual 

scan of data are subject to measurement errors. 

Method of Garcia de la Nava et al. (2004) is limited to only two scans at 

different sensitivities. Also, the use of either linear function or power function to 

relate the measurements of two scans does not seem very realistic. 

Our aim is to use functional regression models, which are more appropriate 

for multi-scan microarray data as they allow measurement errors in both response 

and explanatory variables. We also plan to use the full information in multi-scan 

data to suggest a more elegant and objective way of combining multiple laser 

scans. 

In this chapter we explore the patterns of multiple scan data, and investigate 
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and evaluate three different approaches: 

Functional regression model with Gaussian mixture distribution (Section 3.4) 

Hyperbolic functional regression model based on Cauchy likelihood (Sec-

tion 3.5), and 

Censored mean functional regression model based on M-estimation and t-

likelihood (Section 3.6) 

for estimating gene expression from multiple laser scans of microarrays. Based 

on our exploratory analysis in this chapter, we then propose our final model, in 

Chapter 4, for estimating gene expression using multiple laser scans of microar-

rays. 

3.2 Motivation 

The sensitivity level of microarray scanners is adjustable and plays a crucial 

role in getting reliable measurement of the fluorescence intensity. In an ideal 

situation, when there is no censoring or deterioration, a change in scanner setting 

should transform the intensity measurements by a multiplicative constant. That 

is, the average relation between the data from any two scans should be a straight 

line through the origin. A scanner's sensitivity has to be raised to a certain 

level to ensure that the intensity levels of weakly expressed genes exceed the 

intrinsic noise level of the scanner and so become measurable. This may, however, 

cause another problem: signal censoring for highly expressed genes. Scanners 

cannot record pixel intensities above some software dependent threshold, which 

is 216 - 1 = 65535, for a 16-bit computer storage system. So highly expressed 

genes can have pixel values which are right censored at the largest possible value 

that the scanner software allows, and the linear relation is distorted. As the 

problem at the two ends are in conflict, no unique scanner setting is optimal. 

Moreover, there is no objective guideline to date for choosing optimum scanner 

setting to address these issues. It therefore seems reasonable to consider multiple 

scanning, some at relatively lower settings ensuring that there is no censoring 

at the upper end, and the others at higher settings ensuring the visibility of the 

weakly expressed genes over the scanner's intrinsic noise level, and combine the 

information together to get final gene expression measures. Combining the data 

through simple or weighted average over the scans is likely to give biased result 

as the data are not generally proportional to the true expression levels over the 

entire range. 
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Our attempt therefore is to suggest a statistical model based on multiple scan 

data to improve gene expression estimates over the entire range of intensity level, 

adjusting for signal censoring at the upper end. 

3.3 Murine macrophage data 

Before introducing the models it seems relevant to explain some patterns of 

multiple-scan microarray data. For this explanation and investigation of the 

prospective models, we use a data set kindly provided by the Scottish Centre for 

Genomic Technology and Informatics (GTI), which is a post-genomic research 

centre located within the University of Edinburgh Medical School. The experi-

ment was designed to examine the effects of ingestion of apoptotic cells on murine 

macrophage gene expressions 24 hours after administration and compare this ex-

pression profile against control untreated cells. We shall call this data as 'murine 

macrophage data' throughout this thesis. There are two arrays of data, one of 

which is a dye-swap of the other. Each array represents 4624 genes, each of which 

has been replicated twice within the same array. Total number of spots on each 

of the arrays is therefore 9248. The arrays were scanned with an Affymetrix 428 

scanner at four different sensitivity levels for each of the C y3 and Cy5 dyes. We 

have used the data of channel 1 from both arrays (arrays 1 and 2) where the 

control and treated samples were labeled with (Cy3 and Cy5) and (Cy5 and Cy3) 

respectively. For both arrays, the observed spot intensities for the ith spot at the 

jth setting are denoted by Yij. 

In the absence of any pixel censoring one scan of data, on the average, should 

just be a multiple of the other. That is, the average relation should be a straight 

line through the origin. The scatterplots of scans 2, 3 and 4 against scan 1 

intensity data in Figure 3.1 show how pixel censoring affects this relationship. 

The relationships appear linear within the lower range of the intensity data. The 

limit of the range within which data are linear varies with the sensitivity level of 

the scanner. The higher the difference between the scanner sensitivity of scan j 

(j = 2, 3,4) and scan 1, the narrower is the range of linear relationship of scan j 

vs. scan 1 data. For example, relationship of scan 2 vs. scan 1 data are linear 

within a broader range than that of scan 3 vs. scan 1 or scan 4 vs. scan 1. As 

the data of scan 1 are least likely to be affected by pixel saturation, and hence 

should be approximately proportional to the true expression levels over the entire 

range, the same conclusion holds about the relationship of any observed intensity 

data and the true gene expression levels. It can be seen from Figure 3.1 that 

departure from linearity starts well before the threshold value of 65535. This is 
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because of the fact that the observed intensity measurement for a particular spot 

is obtained by taking the average of a set of pixels belonging to that spot, and 

spots representing highly expressed genes generally contain both censored and 

uncensored pixels. 

Suppose that y.j represents the vector of intensity data across all genes from 

scan j for j = 1, 2, , m. The Least Trimmed Squares (ITS, Rousseeuw and 

Leroy, 1987) residuals from the simple regression 

YA = 1y.i + e, 

of scan 4 (y.) on scan 1 (y.i)  data for array 1 are plotted against scan 1 data in 

Figure 3.2. It is noted that the majority of the data points belong to the lower 

range of the intensity and the downward tendency of the residuals roughly after 

= 10000 is clearly due to the bias effect of the pixel censoring. To have a closer 

look at the residual mean and variability for the main body of the data, a portion, 

indicated by the rectangle, of the top panel of Figure 3.2 has been magnified in 

the bottom panel. It is observed that residuals have non-zero variability near the 

origin (y. = 0) around the horizontal reference (zero) line. Residual variability 

then increases with the level of intensity (y) giving rise to a funnel-like shape 

to the plot. It is therefore reasonable to model error variance as having both 

additive and multiplicative components. This additive-multiplicative nature of 

error variability for microarray data has been noted previously by Ideker et al. 

(2000), Rocke and Durbin (2001), Huber et al. (2002, 2003) and Rocke and Durbin 

(2003). 
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Figure 3.1: Scatterplots of scans-2, 3 and 4 vs. scan-i intensity data. 
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Normal Q-Q plot of the standardised LTS residuals for the main body of the 

array 1 data from the simple model YA = /3y. + e is shown in Figure 3.3. This 

plot suggests a distribution for errors with heavier tails than that of Gaussian. 

The patterns of multiple scan data as described above suggest 

a nonlinear relationship of the observed intensity with the true expression 

levels, 

additive plus multiplicative variance model for the errors, and 

heavy-tailed distributions for the errors. 
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Figure 3.3: Normal Q-Q plot of standardised LTS residuals from the regression 
model YA = /Y.i + e for array 1 data. 

3.4 Linear functional regression with Gaussian 
mixture distribution 

Although the relationship of the observed spot intensity with the expression levels 

appears nonlinear, we start with a linear functional regression model, detailed in 
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Cheng and Van Ness (1999, Chapter 1), assuming Gaussian mixture distribution 

for the errors. We considered same linear location but different variance models 

for the two components of Gaussian mixture. The additive plus multiplicative 

variance model, in the first component of the mixture, is intended to represent 

the main body of the data showing approximately a linear relationship with the 

gene expression levels. The variance of the second component of the mixture is 

assumed to be a constant, probably very large, to model the nonlinearity in the 

contaminated region as noise. The idea therefore is to fit a linear model, which 

appears reasonable for the main body of the data, capturing the nonlinearity 

at the upper end by a high dispersion parameter of the second component of 

Gaussian mixture. 

First we explore the pairwise ordinary regressions with Gaussian mixture dis-

tribution of errors as described above to investigate the suitability of the func-

tional model. 

3.4.1 Pairwise regression models 

We describe the pairwise Gaussian mixture regression relationships in terms of 

five parameters: slope parameter (i3), additive and multiplicative scales (a1  and 

U2) of the first component of the mixture, scale parameter (r) of the second 

component of the mixture and the mixing proportion parameter (ir). 

Suppose that the same microarray has been scanned several (say, m) times 

at different scanner sensitivity levels. Let (yj, yih); j, h = 1, 2, 3, 4 (j > h), i = 

1,.. . , n be the n pairs of observations corresponding to any two scans where n 

is the total number of spots on the array. The linear regression relation of Yj on 

Yh can be described as 

Yij = I3Yih + E, 
	 (3.1) 

where € is distributed according to 

- 	

( 	Yij/3Yih 	

) 

	Yij - OYih 	
(3.2) 

 + a(/3yjh)2 	+ a(/3yjh)2 	T 	T 	/ 

with (.) being the density function of a standard normal variable. Assuming in-

dependence of the €j'5 the log-likelihood function for estimation of the parameters 

of model (3.1) can be expressed as 

L(/3,a i ,a2 ,r,ir) = 

1 	(1 - ir) 	I 	Yij - I3Yih 	) + 
7r (Yii - /3Yih) 

log 
+ a (/3y )2 	+a  (/3yj 	 T 	J 
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Table 3.1: Maximum likelihood estimates of the parameters of model (3.1) applied 
to murine macrophage data. 

Estimates (standard errors) of the parameters 
Pair (Y 3 ,Y.h) 0 or l  U2 r 
(Y2, Y1) 1.56 (0.0007) 43 (0.57) 0.024 (0.0005) 751 

( 	
53) 0.017 (0.0019) 

(Y3, Y1) 2.75 (0.0015) 82 (1.05) 0.029 (0.0005) 12100 
( 

814) 0.012 (0.0012) 
W4, Y0 4.26 (0.0034) 111 (2.38) 0.059 (0.0008) 32100 (1950) 0.016 (0.0014) 

Y2) 1.76 (0.0051) 68 (0.74) 0.013 (0.0003) 9990 
( 

574) 0.017 (0.0015) 
Y2) 2.74 (0.0023) 71(2.85) 0.071 (0.0007) 11300 

( 
835) 0.015 (0.0014) 

(Y4, Y3) 1.56 (0.0010) 105 (1.84) 0.046 (0.0062) 16300 
( 

852) 0.022 (0.0017) 

Maximum-likelihood estimates of the parameters was obtained through numerical 

maximisation of the log-likelihood function (3.3). The optimisation algorithm of 

Nelder and Mead (1965) has been implemented using FORTRAN 90 and IMSL 

routine DUMPOL for this purpose. The algorithm minimises a function g(0) over 

p parameters using a direct search polytope algorithm. The polytope method is 

based on function comparison. It starts with p + 1 points , At each 

iteration, a new point is generated to replace the worst point O, which has the 

largest function value among the p + 1 points. We have chosen this algorithm be-

cause it does not require the expressions for the score and information functions, 

which are quite tedious to derive for the mixture distribution we considered. Stan-

dard errors of the parameter estimates can be approximated from the diagonal 

elements of the inverse of observed information matrix. We have evaluated the 

information matrix through numerical differentiation. Results of applying this 

technique to murine macrophage data are summarised in Table 3.1. The data 

set has four columns labeled Y1, Y 2 , Y 3  and Y4 , in ascending order of scanner 

sensitivity, corresponding to four scans. We have considered six regression models 

corresponding to the pairs (Y 3 , Yh); j, h = 1, 2, 3, 4 (j > h). Sufficiently small, 

relative to the estimates, standard errors indicate clear evidence of statistical sig-

nificance of the parameters. It may be noted that there is a systematic pattern 

(Table 3.2) in the regression and scale estimates with respect to the label of the 

variables, i.e., order of scanner sensitivity. For a particular Yh,  slope and all scale 

parameters increase with the increase in the scanner sensitivity associated with 

the Ya  variable. 

3.4.2 Multivariate functional regression model 

The results of pairwise linear regression model (3. 1), provide convincing evidence 

of suitability of the assumed functional model. Replacing x by the the gene 

expression parameters () and generalising the model to incorporate information 
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Table 3.2: Systematic pattern in estimates. 

0 	 al 	 C2 	 T 

 Yh  

Y 	Yi 	Y2 	Y3 	Y1 Y2 Y3 	Y1 	Y2 	Y.3 	Y1 	Y2 	Y.3 
Y2 	1.56 	 43 	 0.024 	 751 
Y3 	2.75 	1.76 	 82 	68 	 0.029 0.013 	 12100 	9990 
Y4 	4.26 	2.74 	1.56 	111 	71 	105 	0.059 0.071 	0.046 	32100 	11300 	16300 

from all m scans, the linear functional model can be defined as 

Yij = PA + Cii, 	 (3.4) 

where Yij  is the intensity measure of the ith gene at the jth scan, p i  is the true 

gene expression parameter of the ith gene, /3 (0 1  = 1 being the identifiability 

constraint) is the jth scanner's effect and e jj  is the random error term distributed 

according to 

	

f(Cii)- 
	(1- 	( y, - 	

) + 	

(j 	
(3.5) 

	

- 	+ 	 a j  + 	T 	T 	) 13  

The parameters a ij  and 0 23  are the additive and multiplicative scales respectively 

for the first component of the mixture distribution, r 3  is the scale parameter of 

the second component of the mixture and -7rj  is the mixing proportion. 

A model of the form (3.4)-(3.5) can be regarded as a mixture version of the 

class of multivariate measurement error (ME) models. Depending on the assump-

tion about ,i, ME model has three different subclasses (Cheng and Van Ness, 1999, 

Chapter 1). If the 's are unknown constants, the model is known as a functional 

model; whereas, if the p i 's are i.i.d. random variables and independent of the er-

rors, the model is known as a structural model. A third type of model, known as 

ultrastructural model, assumes that 's are independent random variables, as in 

the structural model, but not identically distributed. 

With pi  as a latent Gaussian variables, model (3.4)-(3.5) is a mixture version 

of one dimensional factor analysis model (Mardia, Kent and Bibby, 1979, Exercise 

9.2.7, p.  277). We are considering p i  as unknown constant. Model (3.4)-(3.5) is 

then a mixture version of multivariate functional model. 

3.4.3 Maximum likelihood estimation 

The main challenge of working with this model is the estimation of large (n + 

5m - 1) number of parameters which increases with the number of spots (n) and 
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the number of scans (m). We consider an alternating algorithm for estimating 

the parameters of the model (3.4)—(3.5) through maximum likelihood method as 

described below. 

The log-likelihood function (log(LF)) under independence assumption can be 

expressed as 
n m 

L(u,13,ai,a2,T,p) = 	 (3.6) 
i=1 j=1 

where the function 1(.) has the same form as f(.) in equation (3.5). The log-

likelihood function (3.6) can be maximised numerically with respect to the pa-

rameters using the following algorithm: 

Choose initial values of all the parameters, ((0), /3(0) , 	0)  (o)L72 , 

where M (0)  is a vector of dimension ri, 3(0)  is a (m - 1)-vector and 

o° 	O) 	7r°are aiim-vectors. 

Update all p i , (i = 1, 2,. . . , n) individually by maximising 
0) 	(0) 	(0) 	(0) 	(0) 

j=1 l(ji, /3 , a , a23  , -r , ir ). Denote the updated 's by 
(1) 	(1) 	(1)\ 

= ( 	'2 ' 	An ) 

Update (I3, aid, a23 , r, 7r)  for every j separately by maximising 
En 1(0) o, a23 , r, ir3, p(l)).  Denote the updated estimates as 

(

(1) 	(1) 	(1) 	(1) 	(1) 
i3 ,a  ,a2 ,Y ,7T ). 

Repeat steps (2) and (3) replacing previous estimates by the updated ones until 

convergence. We have tried to estimate the parameters of the model (3.4)—(3.5) 

using the above algorithm for the murine macrophage data . The effort has, 

however, not been successful. As the iteration proceeds the log-likelihood function 

continues to increase and the scale parameters for one of the scans is driven down 

to zero. Some iterations of the algorithm applied to murine macrophage data 

is displayed in Table 3.3. The simplex method of Nelder and Mead (1965) has 

been used as the optimisation tool. It is seen that by iteration 13 estimates of 

a1  and 0'2  for the second scan are approximately zero. We have encountered the 

same kind of problem for the simulated data as well. Cheng and Van Ness (1999, 

Chapter 1) argued that the likelihood function is actually unbounded, which was 

first shown by Anderson and Rubin (1956). To show the unboundedness of the 

likelihood function Cheng and Van Ness (1999, Chapter 1) considered a simpler 

version of the model (3.4)—(3.5), namely Yii '-.-' N(p/3 , a). The log-likelihood 

function is 
m 

71 	(log
a2 	

8\%1 
L(1, 	,P,/32, 	 ... ,a) C< 	 + 	, 	(3.7) 

i=1 	
a31 
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Table 3.3: Some iterations of maximum likelihood algorithm for estimating the 
parameters of model (3.4)-(3.5) applied to the murine macrophage data. 

Parameter (other than 	
) 

estimates 
Iteration j I3 a jj  0'23  r3  7r3 (%) log(LF) 

1 1.00 40.0 .010 1000 1.00 
Initial 2 1.56 50.0 .020 2000 1.00 -182295 

3 2.75 60.0 .030 3000 1.00 
4 4.24 70.0 .040 4000 1.00 
1 1.00 25.1 .010 2580 1.57 

1 2 1.56 27.7 .012 4570 1.26 -172526 
3 2.74 41.9 .016 6890 0.80 
4 4.28 27.3 .041 20000 2.11 
1 1.00 23.7 .012 2360 1.37 

2 2 1.56 23.9 .008 4360 1.19 -170648 
3 2.75 39.9 .013 7000 0.84 
4 4.29 24.2 .044 19800 2.23 

1 1.00 28.3 .023 2850 1.18 
9 2 1.56 0.9 .000 4280 1.51 -159911 

3 2.75 65.0 .013 6550 0.87 
4 4.30 96.4 .048 21700 1.92 
1 1.00 28.8 .023 2840 1.18 

10 2 1.56 0.03 .000 4290 1.51 -147073 
3 2.75 65.0 .013 6550 0.87 
4 4.30 96.4 .048 21700 1.92 

1 1.00 28.8 .023 2840 1.18 
13 2 1.56 0.0 .000 4290 1.51 -59589 

3 2.75 65.0 .013 6550 0.87 
4 4.30 96.4 .048 21700 1.92 



where S3  = 	- /t,3 ) 2 /n. Defining h(a,b) = log  + b/a, (3.7) can be 

written as 

- 
2 
 L oc h(a, S) + 	+ h(a, Sm). 	 (3.8) 

Now h(a,O) = log a, so that h(a,O) - - oo as a - 0. Thus (3.8), the sum of 

m such functions, will tend to minus infinity if any of the functions on the right 

hand side does so. Now consider the values y j  = Yjl, i = 1,• , ii; a -* 0. This 

makes S = 0 and 2L/n -+ oo, and L itself tend to infinity irrespective of the 

values of other parameters. 

Copas (1972) however showed that the likelihood function is bounded when 

account is taken of the rounding-off errors in the observations. The author showed 

that a solution to the appropriate likelihood can be found which is approximately 

the maximum likelihood estimate. Copas' (1972) argument is based on the fact 

that the likelihood functions such as (3.7) are only approximations to the like-

lihood functions based on observed data. The approximation is good enough 

provided that the grouping error is small compared with the underlying variabil-

ity, but is invalid in the neighbourhood of parameter points which give zero values 

to some or all of the standard deviations in the model. To take account of the 

rounding-off errors, Copas (1972) assumed that the observations have infact been 

recorded to within an accuracy of h/2, i.e., a grouping interval of length h. The 

likelihood function can be represented as 

n m 

L= fl[JP23 (y), 
i=1 i=1 

where 

P3  (y) = P(y - h/2 < yij <y + h/2). 

When o j  > 0, P3 (y) can be written as 

P23  (y) = 	
- /AiI3i + h/2) - (Y - /Li13i - 

) 
o.i 	 Ori  

where 'I denotes the standard normal distribution function. When a 3  = 0, P3 (y) 

takes the value 1 if y - h/2 < pi,6j  < y + h/2 and 0 otherwise. The likelihood 

is therefore bounded and uniquely defined at all points in the parameter space. 

However, the solutions to the appropriate likelihood defined above are not the 

exact maximum likelihood estimates, and are not consistent estimators. These 

illustrates the problems with application of maximum likelihood estimation in 

this context. 
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3.4.4 Alternative estimation 

As it does not appear to be possible to estimate the parameters of the proposed 

model directly through maximum likelihood, we tried an alternative algorithm 

using a combination of likelihood and quasi-likelihood. According to the model 

(3.4)-(3.5), for any j 0 h (j, h = 1,2,••• , m) the random variable 

d 3 h = (Yii - 	 Yih) 	 (3.9) 

is distributed according to a mixture of four normal distributions with common 

mean zero and different variance parameters. The p.d.f g(.) of d 3 h can be formu-

lated as 

g(dh) 
= 	 (1 - 7r3)(1 - 7th) 

+ (/uih) 2ah + (a j  + (/3/I3h) 2 aL) 

+ (/h)20 h + it(a + ( j 1 h) 2 0 h)) + 
( 	 Yij - (I/3h)yih 

(1 - 1r)1rh 	 ( 	Yij - (/3 /0h)Yih 

VU 
ij + (//h)2 T + 4a 	\/a + (/3h) 21i + 

- 7th) 	 (_Yij - (/h)Yih 	
+ 

V7_3~ 	
V_T 
	 3)2)2 	 j)2 ) + i+ ( 3 / 3h 	h + 	j/hh + (1//h a h 	 fi/hL  

7tj7th 	(_Yij - (f3/I3h)Yih 	
(3-10 )  

+ ( 9 /h) 2l \/ + (/3j //3h) 2r) 

The log-quasi-likelihood function (log(Q-LF)) for the parameters of the model 

(3.4)-(3.5) can be defined, under independence assumption, as 

n in m 

QL(p)3,a i ,a2 ,r,7r) = 	log {g(d 3 ,)} 	(3.11) 
i=1 j=1 hj=1 

The alternative algorithm using the combination of log-likelihood function (3.6) 

and the log-quasi-likelihood function (3.11) is described below: 

(0) 	(0) 	(0) 
Give starting values, (/1(0),  j3 	o 	, 	

7t(0)) 

Update all j (i 
M 	 (0) 	(0) 

l(1L,/3 	,a1  
j=1 

(1) 	(1) 
/2' =([L1 ,/12 

= 1, 2,• . . , ii) individually by maximising 

	

(0) 	(0) 	(0) 

	

a23 
, 	, 

ir ). Denote the updated 	s by 

(1) 
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3. Update the (5m-1) parameters in (0, a, 0'2,  'r, ir) by maximising 

QL(('), 13, 01 17  a2 , T, 71-). 

Continue repeating steps (2) and (3) replacing the previous estimates by the 

updated ones until convergence, i.e., the gain in the L and QL is negligible, is 

achieved. When applied to murine macrophage data, the algorithm terminates 

successfully but with unrealistic estimates for some of the parameters. The esti-

mates also appear to depend on the initial choice of the parameters, particularly 

the values of mixing proportions, ir.  Results for two different sets of initial 

parameters are tabulated in Table 3.4. 

Table 3.4: Results of alternative algorithm applied to murine macrophage data 
for two sets of initial values. 

Set of 
initial 

1 

2 

Parameter (other than ji)estimates log(LF) 
Estimates j Oj O'jj  U2j Tj  ir(%) log(Q-LF) 

1 1.00 40.0 .020 500 1.00 
Initial 2 1.56 50.0 .030 1000 1.00 -183703 
values 3 2.75 60.0 .080 2000 1.00 -597423 

4 4.26 70.0 .250 3000 1.00 
1 1.00 22.4 .024 394 1.42 

Final estimates 2 1.55 6.4 .000 100 12.15 -160765 
(8th iteration) 3 2.74 52.2 .034 14000 0.71 -573488 

4 4.28 65.7 .203 32900 1.17 
1 1.00 40.0 .020 500 1.00 

Initial 2 1.56 50.0 .030 1000 2.00 -183980 
values 3 2.75 60.0 .080 2000 3.00 -599359 

4 4.26 70.0 .250 3000 4.00 
1 1.00 23.4 .024 7390 0.68 

Final estimates 2 1.55 26.2 .016 10700 0.78 -169762 
(10th iteration) 3 2.74 41.2 .034 615 2.35 -575109 

4 4.31 91.9 .316 29 40.81 

The only difference between the two sets of initial values is in terms of ir's. 

For the first set all ir's have been initialised at 1 percent; whereas 7, ir, 11-3 

and 71-4 in the second set of initial values are chosen to be 1, 2, 3 and 4 percent 

respectively. This produces dramatic changes in the final estimates of r's. 

3.4.5 Simulation study 

As the alternative algorithm does not give satisfactory results when applied to 

real data, we consider doing some simulation studies to investigate the problem 

in more detail. We generate four data sets according to model (3.4)-(3.5) for 
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different combinations of the parameters as given in Table 3.5. Each of the data 

set corresponds to different starting seed of the random number generator. The 

purpose of this simulation is to check if the problem is with 

the estimation algorithm, 

the program code, or 

the model itself. 

The results of this simulation are summarised in Table 3.5. It is seen that for 

all four sets of simulated data, the estimated parameters (/I i  not shown here) by 

the alternative algorithm are very close to the true values. Reproducibility of the 

model parameters from the the simulated data generally suggests the validity of 

the program code and estimation algorithm. We therefore suspect that either the 

model is not adequate to address the problem or the algorithm is not robust to 

the lack of fit of the model. 

3.5 Hyperbolic functional regression model 

The linear functional regression model with Gaussian mixture distribution has 

been found to be inadequate (previous section) for combining multiple laser scans, 

and we focus our search to nonlinear functional models. Plots of data in Figure 3.1 

motivated us to consider a hyperbolic function to describe the location of the 

data. We derive a hyperbolic function as a function of the scanning effect and 

gene expression parameters as described in the following subsection. 
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Table 3.5: Results of alternative algorithm applied to simulated data. 

Parameter (other than 12) estimates 
Estimates j I3 Ujj  a23  T 3  7r3 (%) log(Q-LF) 

1 1.00 40.0 .020 500 1.00 
True 2 1.56 50.0 .030 1000 1.00 -178203 

values 3 2.75 60.0 .040 2000 1.00 -585197 
4 4.26 70.0 .050 4000 1.00 
1 1.00 30.3 .020 493 0.95 

Final estimates 2 1.56 40.6 .029 1010 0.79 -173694 
(5th iteration) 3 2.75 49.2 .041 2080 1.00 -585179 

4 4.26 60.3 .051 2850 1.07 
1 1.00 60.0 .050 500 1.00 

True 2 1.56 50.0 .040 1000 1.00 -172840 
values 3 2.75 40.0 .030 2000 1.00 -598713 

2 4 4.26 30.0 .020 3000 1.00 
1 1.00 59.9 .049 555 0.94 

Final estimates 2 1.56 49.8 .040 939 0.91 -168814 
(10th iteration) 3 2.74 39.7 .028 1710 1.14 -598672 

4 4.25 29.9 .026 3340 1.12 
1 1.00 60.0 .050 3000 1.00 

True 2 1.56 50.0 .040 2000 1.00 -172698 
values 3 2.75 40.0 .030 1000 1.00 -597695 

3 4 4.26 30.0 .020 500 1.00 
1 1.00 60.1 .049 3200 0.99 

Final estimates 2 1.56 49.9 .039 1940 0.91 -167862 
(8th iteration) 3 2.74 40.2 .031 1220 0.81 -597590 

4 2.74 40.2 .031 1220 0.81 
1 1.00 60.0 .050 3000 5.00 

True 2 1.56 50.0 .040 2000 6.00 -172840 
values 3 2.75 40.0 .030 1000 7.00 -646643 

4 4 4.26 30.0 .020 500 8.00 
1 1.00 59.8 .051 3110 5.04 

Final estimates 2 1.56 50.1 .039 2170 5.73 -177327 
(7th iteration) 3 2.74 43.1 .030 999 6.63 -646576 

4 4.24 22.0 .016 508 8.20 

Data 
Set 

1 
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3.5.1 The model 

Suppose that the same microarray has been scanned m times at different sensi-

tivity levels of the scanner. Let Yij  denote the observed intensity of the ith of n 

spots in the jth scan. In the absence of censoring, we assume that the expec-

tation of Yij  would be j,3, where Mi  is the expression level of gene i and 3 is 

the multiplicative scaling effect due to scanner setting j. The observed intensity 

is the average of pixel values. For example, the data plotted in Figure 3.1 were 

produced by Quantarray, using the average of pixels between the 80th and 95th 

percentiles of the pixel distribution contained in a 25 by 25 square centred on each 

spot. If some of these pixels are censored at T then the expectation of Yij  will 

be less than i0.  Figure 3.1 suggests that hyperbolic function (see Figure 3.4) 

may be appropriate to model the behaviour of the data. We explored the pos-

sibility of using a hyperbolic function with the asymptotes E(y 23 ) = yjOj  and 

E(y) = T = 216 - 1 = 65535 as the location of the model. The expression of 

---  =7

Hyperbolic function 
E(y)=65535 

0 
0 
0 
0 

0 

0 	 10000 	 20000 	 30000 	 40000 	 50000 

mu 

Figure 3.4: Typical curve (/3 = 4.5, a = 4000) of the hyperbolic function defined 
in equation (3.12). 
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the function can be obtained as a solution of the quadratic equation 

IE(y 23 ) _ i }{E( yii )_T}__ a2 , 

giving 

E(y)- T+ 
	- 	 (3.12) 

- 	2 

A typical curve of the hyperbolic function (3.12) has been depicted in Figure 3.4. 

The hyperbolic functional regression model relating Yij  to the true gene expression 

() can be expressed as 

Yi j  
T+j  

2 

j3 

- 	2 	
) + a2J3 + e23 , 	 (3.13) 

where 0 1  = 1 (the identifiability condition), I3, (j = 2, ... , m) is the scanning 

effect of the jth setting and T(= 65535) is the maximum detectable intensity by 

the scanning software. 

The random error terms eij  are assumed to follow independent Cauchy dis-

tributions with location zero and dispersion parameters a = 	+ 

The Cauchy distribution is chosen to take account of the outlying observations as 

evident from Figures 3.1 and 3.3. We investigated the use of other robust meth-

ods, e.g., M-estimation using a Gaussian likelihood like objective function and 

maximum likelihood method based on t-distribution. The Cauchy model have 

been found to perform better than the other robust methods we have investi-

gated. Performance of M-estimation and maximum likelihood method based on 

t-distribution using censored mean functional model is described in Section 3.6. 

The scale parameters have been scaled by the corresponding scanning effects (3) 

to allow for increasing variance, as evident from the data (Figure 3.1), across the 

scans of increasing sensitivity. For functional regression models it is not possible 

to estimate separate variance terms for individual scan of data using maximum 

likelihood estimation, because the likelihood is unbounded unless taken account 

of rounding-off errors (Copas, 1972). Even when appropriately defined by taking 

account of grouping errors, the maximum likelihood method lead to inconsistent 

estimates. 

3.5.2 Maximum likelihood estimation 

We have seen that the use of maximum likelihood method in estimating functional 

models has some limitations. The likelihood function is unbounded unless account 
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is taken of the rounding-off errors in the observations (Copas, 1972). Even when 

appropriately defined, assuming that observations belong to certain intervals, the 

solution is only an approximation to the maximum likelihood estimate, and does 

not lead to consistent estimator. Alternative methods, e.g., Morton (1981), Chan 

and Mak (1983), exist to deal with the problems of unboundedness and inconsis-

tency, but these apply to models with Gaussian distributed errors, and are not 

straight forward to modify to accommodate Cauchy errors. However, parame-

ters of the hyperbolic model (3.13) are estimable through maximum likelihood, 

because we are not using separate scale parameters for each scan. 

The probability density function of liii  assuming a Cauchy distribution can be 

written as 

f(y) = [7r O'ij  {i + (yij  - (T - 0)/2 + ((T - )3)/2) 2  + a2
0

j)/a j }] (3.14) 

Under independence assumption of the errors, the log-likelihood function of the 

parameters of model (3.14) is equivalent to 

n m 
L( 1u, )3, o,  0`2,  a) = E E l&-, 01 a 1 , a21  a), 	 (3.15) 

i=1 j=1 

where 

l(i,/3,0`1,0`2,a) = — 0.5 log  (4)— 
2 

log { 1+ 

 

(y
ij  - (T—iP)/2+ V((T_Ihi13j)/2)2+a213j) 

}. (3.16) 
ij 

The main challenge of working with this model is the estimation of the large num-

ber (n + m +2) of parameters which increases with the number of spots (n) on the 

array and number of scans (m). According to the literature on measurement error 

(ME) models (Cheng and Van Ness, 1999, Chapter 1) the maximum likelihood 

estimate of the functional model with Gaussian errors does not exist when the 

variance parameters are left free to vary. We therefore scale the scale parameters 

by the corresponding scanning effects (i3) to allow for increasing variance across 

the scans of increasing sensitivity. Leaving a as a free parameter makes the opti-

misation algorithm extremely slow. We propose an algorithm for the maximum 

likelihood estimates of the parameters keeping a as fixed. Optimum value of a 

can be determined by investigating its profile likelihood. 
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The alternating maximum-likelihood algorithm for simultaneous estimation of 

the parameters of the proposed model for fixed a = a* consists of the following 

steps: 

Give starting values of all parameters ((0), /3(0) , 	O)  a') where 	is  01  

a vector of dimension n, 0 (0)  is a (m - 1) vector and o40 , a °  are scalars. 

Update all p, (i = 	.. , n) individually by maximizing 
Tn 	 (0) 	(0) 	(0) 	* 

tti, 3 a 	a2  , a ) with respect to p i  alone. Denote the updated 

vector by (1) = ( i4' 

Update the (in + 1) parameters in (3, a1 , a2 ) by maximising 

L(0, ai, 2,  a, 

Continue repeating steps (2) and (3) replacing the previous estimates by the up-

dated ones until convergence, i.e., gain in the log-likelihood function is negligible, 

is achieved. The simplex method of Nelder and Mead (1965) using FORTRAN 

90 and IMSL routine DUMPOL can be used as optimisation tool. Because of the 

multimodal nature of the Cauchy Likelihood, choice of the initial values, particu-

larly of the parameters in i, is crucial. With reasonable given values of the other 

parameters (3, 9 1 , 0r2 ) we choose the value of p40)  from m possible candidates 

E7 	(0) (0) (0) * 
Yij 	(.j = 1,.. . , m) as the one for which 	j=1 l(ii, 3 , a1  , a2  , a * ) is maxi- 

mum. Further discussion of Cauchy model properties and estimation techniques 

of the parameters are given in Chapter 4. 

3.5.3 Application 

We provide an application of the proposed method to the murine macrophage 

data described in Section 3.3. As mentioned before, leaving a as a free parameter 

in model (3.13) seriously reduces the efficiency of the computing algorithm with 

respect to the convergence time. This is possibly because the relative change in 

the likelihood function with respect to change in a is very small. Investigating the 

profile likelihood of a it is seen that, for both arrays of data, the optimum values 

of a2  lie between 106.2  and 106.4  and the approximate relation between loga 2  and 

the profile log-likelihood function within the range is quadratic. Using quadratic 

interpolations the optimum values of a 2  have been found to be 10631  and 106.27  for 

the data of arrays 1 and 2 respectively. We therefore run the estimation algorithm 

fixing a2  at these levels. The maximum likelihood estimates of the parameters, 

other than ti, for both sets of data are tabulated in Table 3.6. 

Observed intensity divided by the corresponding scanning effects (3) for both 

sets of data are plotted against the corresponding estimated gene expressions 
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Table 3.6: Maximum likelihood estimates of the scanning effects, scale parameters 
of the hyperbolic functional model applied to murine macrophage data. 

Scanning effects Scale 
Data set 132 	183 	34 

 
01 1 	a2  1og 10 (c 2 ) 

Array-1 1.56 	2.75 	4.33 5.35 	0.0065 6.31 
Array-2 1.71 	2.71 	4.53 5.38 	0.0051 6.27 

in Figure 3.5. It is seen that for the highly expressed genes the estimated gene 

expressions are, as desired, consistent with the data of scan-1, which are not likely 

to be affected by pixel censoring. However, the hyperbolic function has only one 

degree of freedom, and because of insufficient degrees of freedom, the model fails 

to comply with the trend of the data properly, for example, the model is not 

fitting the data well between 10,000 and 15,000 of scan-4 of array i data. 

3.6 Censored mean functional regression model 

As the hyperbolic function, because of not being flexible enough due to lack of 

degrees of freedom, does not fit the data well, we consider an alternative nonlinear 

function to describe the relationship of the multiple scan data. We call it censored 

mean function, which is derived as the expectation of the minimum of an indi-

vidual pixel value and T, the censoring threshold. This function overcomes the 

'symmetry' problem of the hyperbolic function and the derivation of the function 

is consistent with the data generation mechanism of the scanner. 

3.6.1 The model 

With the notations defined in Section 3.4, we derive the censored mean function 

assuming that the pixel values associated with a spot have mean p/3 and variance 

where v is a variance scaling term, and is distributed as Gaussian. That 

is 

Yijk 	N(ii/3, 
2/3212) 

where Yijk  represents the kth pixel value in the jth scanning of the ith spot. It 

can be shown that the censored mean function, the expectation of the minimum 

Of Yijk and T can be expressed as 

E(yij  VT) = T + ( 18 - T) (T - (T_fii) 

\. Ii/3ii  ) 
= g(i/3,v), say, 	 (3.17) 
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Figure 3.5: Rescaled intensities (y//3)  plotted against estimated gene expres-
sions (/) for the hyperbolic functional model applied to arrays 1 and 2 of murine 
macrophage data. The solid lines indicate the corresponding fitted model. 
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where 0(.)  and c1(.)  are the density and distribution functions of the standard 

Gaussian random variable respectively, and Yij  V T indicates min(y 3 , T). This is 

derived from expressions for truncated normal distributions (Johnson et al., 1994, 

p. 156). Typical curves of the function are shown in Figure 3.6. 

We now assume that the observed spot intensity Yij  is distributed with mean 

g(i0, v). Further, we assume that, apart from a few outliers, as are evident in 

Figure 3. 1, the distribution is Gaussian with variance = a/3 + Some 

heavy-tailed distribution truncated below 0 and above T with the same location 

and scale parameters can used to account for the outliers. We therefore assume 

{

N (g(/3, v), u) 	with probability 	(1 - 	(3.18) H(0 ,T) (g(i3, v), a) with probability 	it 

where 	1 for identifiability and the proportion it is very small. The notation 
H(o,T) represents some heavy-tailed distribution with support [0, T]. Model (3.18) 

belongs to the class of functional regression model, a form of measurement error 

model (Madansky, 1959). 

3.6.2 M-estimation 

To overcome the influence of outliers, we propose a robust method, a form of 

M-estimation, where the objective function to be minimised is: 

n 

7n  L(,/,ai,a2,v) 	
[(m_ 1) logJ2 	_(/1i)3jv))] 

(3.19) 
[ \ m cr 

j=1 j=1 

n m 

= 	1(p,3,o i ,o 2 ,v), (say), 	 (3.20) 
j=1 j=1 

with 

p(e) - { e, 
if Ie < 3 

(3.21) 
- 	9, otherwise. 

The factor (rn - 1)/rn in (3.19) is used as an adjustment for degrees of freedom 

for variance estimation. The main challenge of working with this model is the 

estimation of the large number (ri + m + 2) of parameters. We propose an al-

ternating algorithm for simultaneous estimation of all the parameters of model 

(3.18) as follows: 

1. Set p = y.i (intensity data of scan-1) as the starting values and minimise L 

(but with p(e) = e2 ) with respect to all other parameters (/3, 01 1)  0'21 

where i  is a vector of dimension n, 0 is a (rn - 1) vector and a1, a2 



and ii are scalars. Denote the updated values of other parameters by 
(0 1 ) 0' (1) ,  (1 ) , V ( 1 )) .  1  

2. Update each p i , (i = 	. . , n) individually according to the following sub- 

steps: 

For each j, set pi  = g(yjj, v(1))113). 

1) 	(1) 	(1) Minimise Li 	1(i, 3( 	, ,( 1)) with respect to 	alone. 

Repeat (a)—(b) for j = 1, . , m. 

From among m updated values of p i , choose the one with minimum 

Li  value. Denote the updated vector by (1)  

3. Update the (m + 2) parameters in (B, a 1 , 0'2, ii) by minimising 

L0j3, a 1 , a 2 , ii, (')) for given values of the gene expression parameters in 

Continue repeating steps (2) and (3), replacing the previous estimates by the up-

dated ones, until gain in the objective function is negligible. The sub-steps under 

step (2), that update each p i  starting from m different initial values, are essen-

tial. Otherwise, the algorithm may be trapped in a local optimum. The simplex 

method of Nelder and Mead (1965) using FORTRAN 90 and IMSL Library was 

used as an optimisation tool. The IMSL routine DUMPOL implements the simplex 

method of function minimisation. 

3.6.3 Application 

We apply the method to data from a single channel of two microarrays, plotted in 

Figure 3.1. CPU time, with a single processor Ultra-i Sun machine, for executing 

the program codes to apply the method of Section 3.6.2 to each microarray took 

11 minutes. Estimates of the parameters, other than ji, for both sets of data are 

tabulated in Table 3.7. 

Table 3.7: M-estimates of the scanning effects, scale parameters and ii applied to 
murine macrophage data. 

Scanning effects 	Scale 
Data set 12 03 J34 01 1  0'2 ii 

Array-i 1.6 2.7 4.3 15.5 0.019 0.43 
Array-2 1.7 2.7 4.5 15.5 0.015 0.25 
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Observed intensity data divided by the corresponding scanning effects () for both 

sets of data are plotted against the corresponding estimated gene expressions (it) 

in Figure 3.6. Although the fit of the model to the data appears better than the 

hyperbolic model, a considerable number of points at the upper end of scan 1 

data are not consistent with the fitted model. 

Figure 3.7, a plot of the standardised residuals against the rank of the esti-

mated gene expressions from one microarray, does not indicate any obvious model 

violations. 

On each array each gene has been replicated twice in such a way that spot 

i and i + n/2 represent the same gene where i = 1,. , n/2. To compare the 

between replicate variations in the data and fit, we compute 

BSS(it) 
= n/2 (Ai - 

	

Li= 	

(3.22) 
((Ai + Ai+./2)/ 2) 21  

and 

BSS(y.3) = 
n/2 	

(y/i3  - 	
n/2 

- 	
(Yji - Yi+n/2,j) (3.23) 

j=1 ((y/I + Yi+n/2,j//3 )/2 ) 2  - i=1 	+ Yi+n/2,j)/ 2 ) 2  

for 

The results are summarised in Table 3.8. It is seen that except for one instance 

(array-2, scan-1 data), between replicate variation in the estimated gene expres-

sions is less than that in any individual scan of data. This suggests that it is 

possible to reduce the between replicate variation of the gene expression mea-

surements by combining the data according to the proposed model from several 

scans. 

Table 3.8: Comparison of between replicate variation in data and fit (M-
estimation). 

Between replicate variation 
Data set BSS(A) BSS(y. i ) BSS(y. 2 ) BSS(y. 3 ) BSS(y 4 ) 

Array-1 	794.42 	816.59 	825.07 	806.72 	817.38 
Array-2 	839.73 	835.80 	851.82 	878.24 	867.67 
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Figure 3.6: Rescaled intensities (yij//j)  plotted against estimated gene expres-
sions (ITt,) for arrays 1 and 2. The solid lines indicate the corresponding fitted 
model by M-estimation. 
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3.6.4 Simulation study 

We performed some simulation experiments to check the validity of the estima-

tion algorithm and the properties of the estimates obtained. We simulated 100 

datasets from the model (3.18) for different level of contamination (7r = 0.0, 

0.01 and 0.05), using the parameter values as estimated for array-2 data (Table 

3.7). For the gene expression parameters we used the same set of values for both 

replicates, obtained as the average of the estimated gene expressions of the two 

replicates for array-2 data. We used truncated Cauchy distribution with the same 

location and scale parameters for H(o,T).  Empirical biases and standard errors of 

the parameter estimates, other than j, are summarised in Table 3.9. It is seen 

that the parameters are estimated with high precision and negligible bias. For 

the gene expression parameters (n), we plot empirical biases, as percentage of 

true values, against the rank of true values (for ir = 0.01) in Figure 3.8. The bias 

in estimating gene expression parameters is seen to be in an acceptable range, in 

most cases less than 0.5%. 

Table 3.9: Estimated biases and standard errors for the method of M-estimation. 
The results are based on 100 simulated data sets. 

% Conta- Parameters 
mination True 02 03 04 01 1 v 

(lOOir) values 1.7 2.7 4.5 15.5 0.015 0.25 

0 Bias 0.00035 0.00066 0.0012 -0.43 -0.00036 0.0062 
SE 0.00060 0.0010 0.0017 0.14 0.00018 0.0057 

1 Bias 0.00062 0.0010 0.0018 -0.39 -0.00036 0.0080 
SE 0.00074 0.0013 0.0020 0.12 0.00019 0.0049 

5 	Bias 0.00090 0.0015 
	

0.0026 -0.33 -0.00024 0.0093 

	

SE 0.00078 0.0012 
	

0.0019 	0.13 	0.00020 	0.0049 

Between replicate variations computed according to the formulae (3.22) and 

(3.23) are summarised in Table 3.10. These results suggest obvious gain in re-

ducing between replicate variations by combining data of multiple scans. These 

values are considerably less than those in Table 3.8, because the experimental 

data has other sources of variability in addition to that due to sampling. 
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Figure 3.8: Percentage of bias against the ranks of true gene expression values. 

Table 3.10: Comparison of between replicate variation for simulated data. Results 
are averages over 100 data sets. 

Between replicate variation 
1007r BSS(j) BSS(y. i ) BSS(y. 2 ) BSS(y. 3 ) BSS(y. 4 ) 

0 2.85 10.71 10.73 10.79 10.77 
1 2.91 14.14 14.13 14.27 14.18 
5 3.17 27.81 27.67 27.56 26.66 

Me 



3.6.5 Censored mean functional model based on t-distribution 

One problem with the M-estimation is the subjectivity about the proportion of 

data to be considered as outliers. In our case we considered observations with 

standardised residuals > 3 as outliers. There is however no rigorous justification 

for this cut-off point and this may depend on the particular data set being used. 

One alternative for modeling outliers is to consider a maximum likelihood esti-

mation with distribution having heavier tails than Gaussian but not as heavy as 

that of a Cauchy distribution. Gaussian and Cauchy distributions are two extreme 

special cases of t-distribution with sufficiently large and unit degrees of freedom 

respectively. It is therefore a good idea to model the data with a t-distribution 

with appropriate degrees of freedom. We considered maximum-likelihood esti-

mation based on t-distribution treating degrees of freedom as a parameter to be 

estimated from the data 

3.6.6 The model and estimation 

With the notations used in previous sections, we assume that the spot intensity 

data Yij  is distributed as at-distribution with location function g( 	ii), additive 

plus multiplicative variance 	= + 4i3 and degrees of freedom i. The Z3 	10i 	Z 3 
log-likelihood function can be expressed as 

n 
L(ji,/3,a i ,a2 ,v,i) = 	Lj(ii,)3,0'1,a2,v,77), 	 (3.24) 

i= 1 

where 

L(,/3,a i ,o 2 ,v,?7) 	 [-0. 5 log 	- logF(i/2) + log F( + 1/2) + 

(i/2) log 
- ( 

+ 1)/2 log {n +  ( Yij  -gGlifli'v) 
 )2 ~ ] 

Otj 

(3.25) 

The model has (n + m + 3) parameters. We propose an alternating algorithm for 

simultaneous estimation of all the parameters of the model as follows: 

Set i = Y.i (intensity data of scan-1) as the starting values and maximise L 

with respect to all other parameters (0, o, 62, V , 
ij), where 1a is a vector of 

dimension n, /3 is a (m - 1) vector and o, 0 2 , ii and 77 are scalars. Denote 

the updated values of other parameters by (3(1) 	l) 	l) A') ( 1 )) 

Update each j, (i = 1,.. . ,n) individually according to the following sub-

steps: 

(a) For each j, set 	= g'(yjj, v(1))1/3 
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Maximise Li  with respect to pi  alone. 

Repeat (a)—(b) for j = 1,. , m. 

From among the m updated values of p i , choose the one with maximum 

Li  value. Denote the updated vector by p ('). 

3. Update the (m + 3) parameters in (13,  a, o 2
, 

V )  ,q) by maximising 

L(3, a, 0'2, v, i, (1))  for given values of the gene expression parameters in 

Continue repeating steps (2) and (3), replacing the previous estimates by the 

updated ones, until gain in the log-likelihood function is negligible. The sub-

steps under step (2), that update each yj starting from m different initial values, 

are essential. Otherwise, the algorithm may be trapped in a local optimum. 

We use the polytope search algorithm of Nelder and Mead (1965) for locating 

the optimum solution. The IMSL routine DUMPOL implements the Nelder-Mead 

algorithm; we use the FORTRAN 90 routine. 

3.6.7 Application 

We apply the method to the data from a single channel of two microarrays, plotted 

in Figure 3.1. Estimates of the parameters, other than u, for both sets of data 

are tabulated in Table 3.11. 

Table 3.11: Estimates of the scanning effects, scale parameters and degrees of 
freedom. 

effects 	Scales 	df 
Data set 12 03  04 Ol 0'2 ii 77 
Array-1 1.6 2.7 4.3 6.15 0.0076 0.42 1.12 
Array-2 1.7 2.7 4.5 7.05 0.071 0.26 1.33 

Observed intensity data divided by the corresponding scanning effects (0) for both 

sets of data are plotted against the corresponding estimated gene expressions (p) 

in Figure 3.9. If compared with Figure 3.6, corresponding figure for M-estimation, 

it is seen that scan 1 data are now more consistent, particularly for array-2 data, 

with the estimated gene expressions. However, in terms of between replicate 

variation, comparing Table 3.8 with Table 3.12, M-estimation performs better 

than that of maximum likelihood estimation based on t-distribution. 



Table 3.12: Comparison of between replicate variation in data and fit (maximum 
likelihood estimation based on t-distribution). 

Between replicate variation 
Data set BSS(A) BSS(y. i ) BSS(y. 2 ) BSS(y. 3 ) BSS(y. 4 ) 

Array-1 812.09 816.59 825.07 806.72 817.38 
Array-2 857.37 835.80 851.82 878.24 867.67 

3.6.8 Simulation study 

We have performed a small scale simulation, based on only 5 data sets, to in-

vestigate bias in the parameter estimates. Data are generated according to the 

proposed model. True parameter values and the simulation results are tabulated 

in Table 3.13. It is seen that the scale parameters, a1 and cr2, and degrees of 

Table 3.13: Simulation results for maximum likelihood estimation based on t-
distribution 

Parameters 
Data /32 03 34 a 0'2 ii 

set 	True 1.7 2.7 4.5 15.5 0.015 0.25 4.0 
1 1.7004 2.7011 4.4991 10.9144 0.0104 0.2581 2.3184 
2 1.6982 2.6963 4.4974 11.5165 0.0108 0.2520 2.5952 
3 	Estimates 1.6993 2.7008 4.5021 11.1061 0.0109 0.2588 2.4683 
4 1.6993 2.6989 4.4999 11.4129 0.0106 0.2654 2.4784 
5 1.6992 2.6981 4.4952 10.6150 0.0105 0.2592 2.2584 

freedom (i') are under estimated. Cheng and Van Ness (1999, pp.  50-51) showed 

that the maximum likelihood estimates of the variance parameters of a functional 

relationship are not consistent. There are negligible biases in the estimates of the 

other parameters. It therefore seems that estimation of appropriate degrees of 

freedom may not be possible in a straight forward way. This is the main drawback 

of using t-distribution for modeling these data. 
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Figure 3.9: Rescaled intensities (y23/,) plotted against estimated gene expressions 
(ft) for arrays 1 and 2. The solid lines indicate the corresponding fitted model. 
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3.7 Summary 

The exploratory analysis presented in this chapter gives substantial knowledge 

about the patterns of multiple scan data. The relationship of intensity data, 

observed at higher settings of the scanner, with the true gene expression levels 

appears nonlinear at the upper level of gene expression. The variance of the ob-

served intensity seems to depend on the level of the intensity, and an additive 

plus multiplicative model may be a reasonable choice. In the linear functional 

model with Gaussian mixture, nonlinearity at the upper level may not be ad-

equately modelled by the variance parameter of the second component of the 

mixture distribution. An appropriate nonlinear location function is therefore 

needed to explain the curvature in the relationship. The hyperbolic function has 

also been found not to be fully adequate to describe the trend of the data. The 

censored mean function, having an intuitive similarity with the scanner's data 

generation mechanism, has been found to best describe the nonlinearity in the 

data. However, choice of an appropriate error distribution still remains a prob-

lem. M-estimation with a Gaussian-likelihood type objective function was not 

fully successful to provide adequate fit to the data. In terms of describing the 

tail behaviour of the distribution of error, a t-distribution might be a reasonable 

choice. However, because of the bias problem in the maximum likelihood esti-

mate of the degrees of freedom, we need to find other alternatives. In Chapter 

4, we propose our refined model, based on a censored Cauchy distribution, for 

combining multiple laser scans of microarrays. 
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Chapter 4 

Combining multiple laser scans: 
refined model 

4.1 Introduction 

Our investigations in Chapter 3 suggest that the linear or the hyperbolic func-

tional model may not be completely adequate for combining multiple scan data. 

The idea behind considering a linear model was to model the nonlinearity through 

the variance parameter in the second component of the Gaussian mixture. How-

ever, it was not possible to estimate the parameters of the mixture model through 

maximum likelihood method, and the alternative algorithm, though terminates 

successfully, did not give realistic estimates of the parameters, particularly the 

mixing proportion parameters. It therefore seems that the mixture model we in-

vestigated is not adequate to distinguish the contaminated portion from the main 

body of the data. 

The hyperbolic functional model (Section 3.5) using a Cauchy distribution 

provided considerable improvement in fitting the relationship for combining mul-

tiple scan data. However, detail investigation of the model suggests that the 

function is not flexible enough to model the slightly varying, from array to ar-

ray, nonlinear patterns found in multiple scan data. The censored mean function 

in equation (3.17), depicted in Figure 4.1, appears appropriate to describe the 

trends in multiple scan data. The function has a natural correspondence with 

the data generation mechanism of the microarray laser scanners. The parameter 

ii controls the amount of curvature of the function depending on the amount of 

censoring present in the data. The function is therefore flexible enough to capture 

the varying degree of nonlinearity trends found in multiple scan data. 

However censored mean functional model based on M-estimation, assuming 

that distributions of errors are Gaussian for majority of the genes, does not pro-

vide adequate fit to the data (see Figure 3.6, array 2 data). Although improves 
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Figure 4.1: A typical curve of the censored mean function (3.17) plotted on scan 
4 vs. scan 1 (array 1) data. 

the fit compared to M-estimation, use of a t-distribution for describing the er-

ror of the censored mean functional regression also appears problematic. The 

maximum likelihood method underestimates the degrees of freedom as well as 

the additive and multiplicative components of the scale. The downward bias in 

the estimated degrees of freedom makes it difficult to use the t-distribution be-

cause the fitted model will riot match the tail behaviour of the distribution of the 

data, which was the main point of choosing a t-distribution. However underes-

timation in the scale parameters does riot seem to affect the estimation of gene 

expression parameters. We therefore investigate a Cauchy model and a censored 

Cauchy model to describe the distribution of error of the censored mean func-

tional model. A description of the method based on a Cauchy distribution can 

be found in Khondoker et al. (2006a). This chapter studies in detail the method 

of combining multiple scan data based on a robust likelihood method using a 

Cauchy distribution and a censored Cauchy distribution. 
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4.2 Cauchy distribution and its properties 

The Cauchy density has been studied in the mathematical world for over three 

centuries (Johnson et al., 1994, p. 298). An excellent historical account of the 

distribution has been prepared by Stigler (1974). 

A random variable X is said to be distributed as Cauchy with location pa-

rameter t and scale parameter a > 0 if its probability density function is given 

by 

f(x; A ,  a) = a)' [i + 
 {

X 
	

}2] 1, 	

<x < oo, —oo < < 00. (4.1) 

The cumulative distribution function is 

	

+ —' tan-'{X 
	

}• 	
(4.2) 

The distribution is symmetrical about x =it . The median is 1L , the upper and 

lower quartiles are j L ± a. The 95% probability limits are p + 12.71a, as compared 

with the p ± 1.96a of a Gaussian distribution. The distribution does not possess 

finite moments of order greater than or equal to 1, and so does not possess a 

finite expected value or standard deviation. However, 11 and a are location and 

scale parameters respectively and can be regarded as being analogous to mean 

and standard deviation. 

Despite having some peculiar properties, Cauchy distribution may be useful 

in modelling distribution of data having heavier tails than normal. Maximum 

likelihood method based on a Cauchy model provides a basis for robust estimation. 

In situations where values of X greater than a fixed value (x 0) cannot be 

observed, X can be regarded as having a censored Cauchy distribution, 

g(x, 	= 
	+ {2 	—00 < X < Xo 

,a) 	
a 	

1' 

' 	 (4.3) 

1 —{ 1 	x ~ xo. a I' 

It may be noted that the distribution has a point mass at x 0  equal to 

P(X > x0) = 1 - P(X <xo ) = - ' tan' { 
x0  — 11

}  

	

2 	 01 

because the only information obtained about X when X is censored at x o  is that 

X>x0 . 

Estimation of the Cauchy parameters is however somewhat problematic as the 

likelihood for location parameter for given scale is multimodal and, in general, no 

explicit solution of the likelihood equation exists. Nevertheless, Ferguson (1978) 
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derived closed-form expressions for maximum likelihood estimates for small sam-

ples. Barnett (1966) has noted that likelihood equation for the location parameter 

of the Cauchy model often has multiple roots and suggested to examine the likeli-

hood function over an extensive but fine grid for the location. Barnett (1966) has 

also investigated the distribution of number of local maxima for different sample 

size through simulation study. Reeds (1985) showed that the number of local 

maxima of the Cauchy location likelihood function which are not global maxima 

is asymptotically Poisson distributed with mean parameter 1/7r. This agrees with 

simulation experiment results obtained by Barnett (1966). 

However, Copas (1975) showed that under regularity conditions the joint like-

lihood for both location and scale parameters for independent, identical Cauchy 

variables has exactly one maximum point, and at most one stationary point. 

This was studied subsequently by several authors, e.g., Mäkeläinen et al. (1981), 

Gabrielsen (1982), Clarke (1983). 

Estimation methods of the parameters of this model have been discussed ex-

tensively in the literature. For samples of sizes 3 and 4, Ferguson (1978) obtained 

the closed-form expressions for the maximum likelihood estimates of the loca-

tion and scale parameters of the Cauchy model. Haas et al. (1970) studied the 

performance of Newton-Raphson method in finding maximum likelihood estima-

tors through simulation experiments. Koutrouvelis (1980, 1982) discussed the 

estimation of parameters of a Cauchy model utilising the empirical characteris-

tic function. Brooks and Morgan (1995) studied the estimation of the Cauchy 

parameters using simulated annealing. lonides (2005) discussed the use of maxi-

mum smoothed likelihood estimation (MSLE) method for multimodal likelihood. 

These estimators are shown to be asymptotically efficient for models possessing 

local asymptotic normality. 

Bai and Fu (1987) proved that even in the case where the likelihood equation 

has multiple roots, the maximum likelihood estimator (global maximum) remains 

as an asymptotically optimal estimator in Bahadur sense. 

4.3 The Cauchy model and estimation 

In the Cauchy model considered in this chapter, we assume that the observed 

spot intensity Yij  is distributed as a Cauchy distribution with location g(z/3, v), 

given by equation (3.17) in Section 3.6.1, and with additive plus multiplicative 

scale model a = /(a + a ifl3. The proposed model therefore is 

a 1 ), 	 (4.4) 
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where 	1 for identifiability. The notation C(a, b2 ) represents a Cauchy dis- 

tribution (Johnson et al., 1994) with location and scale parameters a and b re-

spectively. 

The log-likelihood function for estimating the parameters of model (4.4) can 

be expressed as: 

n 

L(j,)3, a l)  a2 ,u) = 	L(t,/3,a i ,a2 ,v), 	 (4.5) 
j=1 

where 

[ 

L(,,ai ,a2 ,v) = - m [ log aii  +log {i + 
(Yii 

- g(jj))2}] 	

(4.6) 
 aij  E

j=1 

We propose an alternating algorithm for simultaneous estimation of all the pa-

rameters of model (4.4) as follows: 

1. Set i = Y.i (intensity data of scan-1) as the starting values and maximise 

L with respect to all other parameters (0, o, a2 , ii), where 1u is a vector of 

dimension ii, j3 is a (m - 1) vector and a, o 2  and v are scalars. Denote the 

updated values of other parameters by (3( 1 ) ,  ,(1)) .  

2. Update each A j , (i = 	.., n) individually according to the following sub- 

steps: 

For each j, set pi  = g'(yjj, 
,())//3(1) 

Maximise L 1  with respect to p i  alone. 

Repeat (a)—(b) for j = 1,. . , m. 

From among the m updated values of p, choose the one with maximum 

Li  value. Denote the updated vector by ('). 

3. Update the (m + 2) parameters in (0, a, a2 , ii) by maximising 

L0i3, o, 172,  v, (1))  for given values of the gene expression parameters in 

Continue repeating steps (2) and (3), replacing the previous estimates by the up-

dated ones, until gain in the log-likelihood function is negligible. The sub-steps 

under step (2), that update each p i  starting from m different initial values, are 

essential. Otherwise, the algorithm may be trapped in a local optimum. Because 

for the gene expression parameters (ii) the likelihood naturally decomposes into 

n components, and jt can be estimated my maximising the ith component (L 2 ), 
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which generally has m peaks, one near to the intensity value for each scan. Mul-

tiple starts for each ,u therefore improves the chance of finding the highest peak. 

Typical nature of the profile likelihood of ,i., particularly for genes affected by 

pixel censoring, is shown in Figure 42. 
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Figure 4.2: Negative profile log-likelihood of it for the gene 6822 (array 2) at the 
fiuial estimates of the other parameters. 

The figure shows the negative profile log-likelihood of the gene corresponding 

to the spot 6822. Observed intensity of that spot was affected by pixel censoring 

in scans 2-4. The figure illustrates that use of multiple start facilitate choosing the 

right estimate of the gene expression. The algorithm seems to have rightly chosen 

the final gene expression estimate of that spot near to the observed intensity of 

scan 1, which has not been affected by pixel censoring. 

We have used the numerical optimization routine of Nelder and Mead (1965), 

which has been implemented in the IMSL routine DUNPOL, for implementing the 

above algorithm. 

We have found that L increases at each iteration of our proposed algorithm. 

Therefore, because L is bounded above with probability 1, the alternating algo-

rithm is guaranteed to terminate at a local stationary point. We did not encounter 

any convergence problem for the real and simulated data used in this study. How- 

E 
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ever, as is usually the case with optimization algorithms, there is no guarantee 

that the global maximum will be found. 

4.4 Applications 

We apply the method to two different data sets: 

Murine macrophage data, and 

Iron-deficiency data. 

Murine macrophage data have been described in Section 3.3. A brief description 

of the iron-deficiency data is given in Section 4.4.2, where we apply the method to 

the data. We have described and used the iron-deficiency data more extensively 

in Chapter 5 to illustrate our nonparametric location and scale normalisation 

method. 

4.4.1 Murine macrophage data 

To apply the method to murine macrophage data we consider data from a single 

channel of two microarrays, plotted in Figure 3.1. The best way to choose the 

initial value of 0, (j = 2,.• , m) is to consider the slope of simple no-intercept 

LTS regression (Rousseeuw and Leroy, 1987) of data of scan j on scan 1. For our 

chosen initials, the algorithm took 14 and 7 complete iterations for data of arrays 

1 and 2 respectively. Results of the iterations are given in Table 4.1. CPU time, 

with a single processor Ultra-1 Sun machine, for executing the program to apply 

the method of Section 4.3 to arrays 1 and 2 took ii and 8 minutes respectively. 

Number of iterations and CPU time required however depends on the choice of 

the initial parameters. Final estimates of the parameters (other than ) for both 

arrays of data are tabulated in Table 4.2. The estimated scanning effects and scale 

parameters appears reasonably similar for the two arrays of data. The estimate 

of v, the parameter that controls the degree of curvature of the relationship, is 

however smaller for array 2 data indicating greater degree of curvature in the 

relationship and hence more censoring. This is also evident from the plots of 

data in Figure 3.1. 

Observed intensity data divided by the corresponding scanning effects (/3) for 

both sets of data are plotted against the corresponding estimated gene expres-

sions (ji) in Figure 4.3. It appears that the model provide satisfactory fit to 

the data. The outlying points at the upper end of scan 1 data (as seen in Fig-

ure 3.6, array 2 data) have now been disappeared (Figure 4.3). Figure 4.4 shows 



Table 4.1: Iterations of the algorithm applied to arrays 1 and 2 of murine 
macrophage data.  

Parameter (other than ji) estimates. 
Data set 	Iterations 02 03 04  01 Or 2 ii -log(LF) 

0 (initial) 1.5000 2.7400 4.3200 6.5000 0.0070 0.4500 181340.96 
1 1.5589 2.7474 4.2981 6.4086 0.0077 0.4677 160239.53 
2 1.5585 2.7471 4.3025 5.6385 0.0068 0.4481 159813.35 
3 1.5581 2.7469 4.3072 5.6111 0.0069 0.4482 159754.63 
4 1.5580 2.7466 4.3091 5.5379 0.0069 0.4492 159729.86 
5 1.5579 2.7465 4.3123 5.4891 0.0070 0.4510 159721.92 
6 1.5578 2.7464 4.3135 5.4188 0.0070 0.4525 159710.86 
7 1.5579 2.7460 4.3152 5.4732 0.0070 0.4503 159708.95 
8 1.5582 2.7460 4.3166 5.3304 0.0067 0.4445 159698.94 
9 1.5583 2.7464 4.3175 5.3676 0.0067 0.4411 159691.63 
10 1.5583 2.7466 4.3187 5.3868 0.0067 0.4381 159688.87 
11 1.5584 2.7469 4.3195 5.4242 0.0067 0.4347 159686.87 
12 1.5584 2.7468 4.3195 5.3636 0.0068 0.4193 159681.29 
13 1.5584 2.7468 4.3195 5.3636 0.0068 0.4193 159678.42 

14 (final) 1.5584 2.7468 4.3195 5.3636 0.0068 0.4193 159678.42 
0 (initial) 1.7000 2.7000 4.5000 10.0000 0.0500 0.2500 182181.61 

1 1.7102 2.7114 4.5278 6.5479 0.0058 0.2638 156273.30 
2 1.7100 2.7113 4.5276 5.6884 0.0054 0.2796 155731.11 

2 	3 1.7102 2.7112 4.5272 5.3722 0.0053 0.2761 155683.22 
4 1.7099 2.7111 4.5276 5.4202 0.0052 0.2751 155679.16 
5 1.7098 2.7109 4.5277 5.3566 0.0051 0.2662 155671.26 
6 1.7098 2.7109 4.5277 5.3566 0.0051 0.2662 155667.32 

7(final) 1.7098 2.7109 4.5277 5.3566 0.0051 0.2662 155667.32 

Table 4.2: Estimates of the scanning effects, scale parameters and v for murine 
macrophage data. 

Scanning effects Scale 
Data set 12 	03 	34  01 1 	 ii 

Array-1 1.56 	2.75 	4.32 5.36 	0.0068 	0.42 
Array-2 1.71 	2.71 	4.53 5.36 	0.0051 	0.27 

a plot of standardised residuals against the rank of estimated gene expressions 

from one microarray and does not indicate any obvious model violations. Assess-

ment of model fit is also possible via likelihood-based criteria such as AIC and 

CAIC. However, more pertinent is whether the use of multiple scans can improve 

the signal-to-noise ratio in the estimates of gene expression. Between replicate 

variations in the data and fit are computed according to the formula 

n/2 	
(iLi - (4.7) S()  

i=1 ((Ai+ 

where A is replaced by It to assess the multi-scan estimate, and by y. j lfij  to 

assess the use of scan j alone. Because variability increases approximately as 
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the square of the expression level, we give equal weight in S to genes at low and 

high levels by dividing by the square of the estimated expression level for each 

gene. However, rather than computing this using fi, which is downward biased 

for censored spots, we use ft in all cases. Results are summarised in Table 4.3. 

It is seen that between replicate variation in the estimated gene expressions is 

Table 4.3: Comparison of between replicate variation in data and fit. 

Between replicate variation 

Data set S(ft) S(y. 1 1, 1 ) S(y2/732) S(y.3/133) S(y.4/734) 
Array-1 812 	958 	913 	823 	927 
Array-2 858 	1683 	1768 	882 	863 

less than that in any individual scan of data. This suggests that it is possible to 

reduce the between replicate variation of the gene expression measurements by 

combining the data according to the proposed model from several scans. Results 

of Table 4.3 indicate that by combining scans we improve the signal-to-noise ratio 

in the data, particularly relative to scan 1, which would be the scientists' preferred 

single scan, as the other ones are affected by censoring bias. 

EMI 
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Figure 4.3: Rescaled intensities (yjj/3)  plotted against estimated gene expres-
sions (/). The solid lines indicate the corresponding fitted model. 
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4.4.2 Iron-deficiency data 

The iron-deficiency experiment, conducted at Rowett Research Institute, Scot-

land, deals with the impact of iron deficiency on maternal rats and their offspring. 

The current data set deals with liver (slides 1-8) and kidney (slides 9-16) taken 

from 4 iron deficient and 4 control mothers. There are intensity measurements for 

9984 spots on each of the 16 arrays. The data set gives the observed intensity for 

both Cy3 and Cy5 channels at 3 different scanner settings as well as the combined 

intensity measurements using the MVI Pro 2.6.0 (Bell, 2003) software. A descrip-

tion of the algorithm for combining multiple scan data in MVI Pro 2.6.0 is given 

in Section 2.4. In this section we use the data from both channels of array 3 to 

illustrate our method of combining multiple scan data. Estimates of the param- 

Table 4.4: Estimates of the scanning effects, scale parameters and ii applied to 
iron-deficiency data. 

Scanning effects Scale 
Data set 02 	03 Orl 	Or2 	 ii 

Array-3 (Cy3) 4.97 	16.43 0.78 	0.0430 	0.30 
Array-3 (Cy5) 4.36 	16.51 2.90 	0.0128 	0.17 

eters other than the gene expression parameters applied to this data are given in 

Table 4.12. Smaller values, compared to the murine macrophage data, of the scale 

estimates indicate that the data are less noisy in this case. The multiplicative 

scanning effects (/3 1  and 02 ) appear similar for both C y3 and Cy5 data. Large 

differences between the scanning effect parameters reflect the substantial differ-

ences between the settings of consecutive scanning. Although the scanner settings 

are the same for both Cy3 and Cy5 data, the smaller value of the estimate of ii 

indicates higher amount of censoring in Cy5 data. The reason for such difference 

is probably the differential dye behaviour in response to laser scanning. Plots 

of the data as well as the corresponding fitted models are shown in Figure 4.5. 

Plots suggest less noise in the data as compared with the murine macrophage 

data which was also reflected in the scale estimates. Another difference between 

the two data sets is the degree of the curvature in the relationship. Curvature 

in the iron deficiency data, particularly Cy5 data, appears more extreme, almost 

like linear splines, as compared with the murine macrophage data. This reflects 

that almost all pixels belonging to a spot representing highly expressed gene are 

censored at higher settings. It can be seen from the fitted model on the data in 

Figure 4.5 that the censored mean functional model is flexible enough to represent 

even this extreme nature of censoring effect. 
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Figure 4.5: Observed spot intensities (y) plotted against estimated gene expres-
sions (i). The solid lines indicate the corresponding fitted models. 



4.5 Simulation study 

We performed some simulation experiments to check the validity of the estimation 

algorithm and the properties of the estimators. The IMSL routine RNCHY has 

been used for data generation. We simulated 100 datasets from model (4.4) 

using the parameter values as estimated for array-2 of murine macrophage data 

(Table 4.2). For the gene expression parameters we used the same set of values 

for both replicates, obtained as the average of the estimated gene expressions 

of the two replicates for array-2 data. Empirical biases and standard errors of 

the parameter estimates, other than ,a, are summarised in Table 4.5. It is seen 

Table 4.5: Estimated biases and standard errors of the parameters of the Cauchy 
model for combining multiple scans. The results are based on 100 simulated data 
sets. 

Parameters 

02 03 
 04 	 01 1  a2  ii 

True 	1.71 2.71 4.53 	5.36 0.0051 0.27 
Bias 	—0.00005 —0.00007 —0.00015 	—2.036 —0.00187 0.00077 
SE 	0.00038 0.00069 0.00111 	0.053 0.00008 0.00235 

that the parameters, except for o and a2 , are estimated with high precision and 

negligible bias. There is substantial downward bias in the maximum likelihood 

estimates of o and 62 . The maximum likelihood estimation bias in the scale 

parameters is studied in more detail in Section 4.6. This bias, however, does not 

affect the estimation of the other parameters and in particular the gene expression 

parameters (i). We think that there is little concern as this bias does not affect 

the estimation of gene expression parameters. Simulation results do not suggest 

any notable systematic bias in the gene expression estimates. We plot empirical 

biases, as percentage of the true values, against the rank of the true values in 

Figure 4.6. The bias in estimating gene expression parameters is seen to be in an 

acceptable range, in most cases less than 0.5%. 
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4.6 Investigating the bias in the Cauchy scale 

Maximum likelihood estimation (MLE) is an elegant and probably the most 

widely used estimation method because of its many desirable properties. How-

ever, maximum likelihood estimators may often be biased. For example, the 

maximum likelihood estimator of the variance a2  of the Gaussian distribution 

N(a, 0,2 ) with unknown i is biased by the factor (rn - 1)/rn, where rn is the 

sample size. This bias can be adjusted easily as the factor (m - 1)/rn, for fixed 

given sample, is known. Quantification and subsequent adjustment for bias are 

however difficult for the maximum likelihood estimator of Cauchy scale as it does 

not have any analytic closed form expression. Mardia et al. (1999) proposed a 

method for estimating first-order bias in the maximum-likelihood estimators us-

ing the expressions for score and information of the parameter, and showed that 

bias in the Cauchy scale a is linear in a and the sample size. The expression for 

first-order expected bias in the maximum likelihood estimate 0 of the parameter 

0 was derived to be 

1 
E(0 - 0) = 2m1(8)2 [2E{U(0)U'(0)} + E{U"(0)}] + o(m 1 ) 	 (4.8) 

where U(0) is the score for 0, U'(0) and U"(0) denote the first and second deriva-

tives of score with respect to 8 and 1(8) is the information for 8. 

Mardia et al. (1999) gave the bias expression for the Cauchy scale (a) with 

= 0 according to the formula (4.8), which was derived as follows. The Cauchy 

density (4.1) with i = 0 has the score function 

U(o) = 
1 - 2a 	

(4.9) 
or a2 +x2  

Therefore 

E{U(a)U'(a)} = 	
1 	

(4.10) 

	

E{U"(a 	
3 

)} 	
, 	

(4.11) 
= 

and 
1 = 

	

 I( (a) 2 	 4.12) 

Substitution of these equations into (4.8) gives, 

	

E(& - a) a/rn. 	 (4.13) 

Thus the bias is linear in a. Therefore bias in the maximum likelihood estimator 

of Cauchy scale may be negligible for large samples. 

Although we are using a Cauchy distribution to define our model (4.4), esti-

mation of the model parameters is not the same as that of the Cauchy density 



(4. 1). We are estimating each of the gene expression parameters Pi from a sample 

of size m = 4, the number of scans. On the other hand, the scale parameters 

01 and are being estimated by combining a large number, n = 9248, of small 

samples of size m. We have conducted some additional investigation of the bias 

in the scale parameter estimation of the Cauchy model through simulation study. 

We have noted that the bias in the scale estimates of our proposed model is 

different from that shown by Mardia et al. (1999) in the Cauchy scale of a simple 

model. We consider two simple models as in equation (4.14) and (4.15) given by 

Yij '•- 	 (4.14) 

and 

	

Yij ••- C(p,a2 ). 	 (4.15) 

The second model is of a similar nature of our multiple scan model (4.4) where the 

scale a is estimated by combining a large number of small samples of size m = 4. 

Whereas in the first model each tz i  and ai  are estimated from a sample of size m. 

We have investigated the bias in the scale estimates of models (4.14) and (4.15) 

through simulation experiments. For model (4.14), we simulate 10000 samples 

of size m = 4 from C( i, a = 1) and estimated the location and scale for 

each of the samples. Results are summarised in Table 4.6. We see from Table 4.6 

Table 4.6: Mean, estimated SE and bias of the scale estimates of the Cauchy 
model: Yij  C(pi  = i, o = 1). Results are averages over 10000 simulated data 
sets. 

E(ô) SE( ô) 	Bias E(ô)/o 
0.9993 	1.6481 -0.0007 	0.9987 

that the average of the scale estimates over the samples is E(a) 	1.0, which 

indicates a very negligible bias, much smaller than the bias according to Mardia 

et al. 's (1999) formula (4.13), in the scale estimates when they are estimated 

from individual samples. 

For model (4.15), we generate ri, (n = 5, 10, 100, 500, 1000 and 10000), samples 

of size m = 4 from C(i = i, a2  = 1) and then estimate the parameters in 

model (4.15). Results of simulations are summarised in Table 4.7. Results for 

each n are averages over 100 replicated data sets. Results in Table 4.7 show that 

there is substantial downward bias in the scale estimate, and this bias has similar 

pattern to that in the case of our proposed multi-scan model. The amount of 

bias depends on the value of n (number of spots) but the changes are negligible 

when n exceeds some large (say, 100) value. From the simulation results we 



Table 4.7: Mean, estimated SE and bias of the scale estimates of simple Cauchy 
model: Yij - C(pi  = i, a2  = 1). Results for each ii are averages over 100 simulated 
data sets. 

n E(&) SE( ô) Bias E(&)/a 
5 0.7132 0.2998 -0.2868 0.5086 

10 0.6776 0.1978 -0.3224 0.4591 
100 0.6226 0.0540 -0.3774 0.3877 
500 0.6231 0.0281 -0.3769 0.3882 

1000 0.6260 0.0207 -0.3740 0.3918 
10000 0.6271 0.0058 -0.3729 0.3933 

found that E(a2 ) 0.46r for n > 100, m = 4 but each pi  has been found to be 

approximately unbiased. 

4.7 The censored Cauchy model 

In this section, we investigate how the Cauchy model for combining multiple laser 

scans discussed in Section 4.3 can be improved. Although the censored mean 

function, g(i/3, ii), nicely describes the distortion from linearity of observed 

spot summary data caused by pixel censoring, one major drawback of the Cauchy 

model is that it defines a density having probability above the censoring threshold 

T. That is, it ignores the fact that, like the individual pixel values, the spot 

summary data (yb) cannot exceed the threshold T. We therefore investigate an 

alternative model, the censored Cauchy model, to address this issue. 

4.7.1 The model 

Following equation (4.3), the probability distribution of Yij  under a censored 

Cauchy model with location g(jtG, xi) and additive plus multiplicative scale crjj = 

V (01 
2 + aiB for combining multiple laser scans can be expressed as 

f(y), if Yij  <T 	
(4.16) 

I S(T), if y ij  

where 2 -1 

= (a)' [i + { 
Yij - 	xi) 12 

	
, 	(4.17) 

(' -ii 

is the density function, and 

S(T) = 	7r -1  tan-' 
fTg(/tiI3jv) 

ojj 	J' 	(4.18) 
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is the survival function (1 - cumulative distribution function) at T of a C (g(/3, v), o) 

variate. By defining a censoring indicator 

1, ify 2 <T 
cii  = 	 (4.19) 

( 0, ify 3 =T, 

the likelihood function for estimating the parameters of the censored Cauchy 

model (4.16) can be expressed as 

n m 

1111 f(yji) Ciis(T) lCii 	 (4.20) 
j=1 

The corresponding log-likelihood function is 

n 

	

L(j, ) 3, 0, 11  0'2 ii) = 	L(ji, /3, Oi, 02) ii), 	 (4.21) 
i=1 

where 

Lj(,/3,ai,a2,v) = 	[cij 	+ (1— c) log S(T)]. 	(4.22) 

Maximum likelihood estimates of the parameters can be obtained by applying the 

alternating algorithm described in Section 4.3 for the Cauchy model by replacing 

L and L 2  by L and L j  respectively. 

4.7.2 Application 

We apply the censored Cauchy model (4.16) to both murine macrophase and 

iron-deficiency data described in Section 4.4. In practice, even in presence of 

heavy pixel censoring, very few of the spot averages (yi j ) are likely to be exactly 

equal to T, because the spot summary data are averages of pixel values within 

the segmented spots, which generally contain both censored and uncensored pix-

els. Table 4.8 shows the number of spot averages in murine macrophase and 

iron-deficiency data that are exactly equal to T. We see that array 1 of murine 

macrophage data and array 3 (Cy3) of iron-deficiency data do not have any ob-

servation equal to the censoring threshold T. Application of censored Cauchy 

model (4.16) to this data set would give the same result as that of the Cauchy 

model (4.4). We therefore apply the model to the other two arrays, array 2 of 

murine macrophage and array 3 (Cy5) of iron-deficiency data, having 3 and 19 

observations equal to T respectively. Similar to the Cauchy model (4.4), we have 

used the simplex method of Nelder and Mead (1965), implemented in the IMSL 

routine DUMPOL, for estimating the censored Cauchy model (4.16). The results 

all 



Table 4.8: Numbers of spot averages equal to T in different laser scans of murine 
macrophase and iron-deficiency data. 

Data set 	 Array 	Scan Number censored Total 

Murine macrophage 	Array-1 1 0 9248 
2 0 9248 
3 0 9248 
4 0 9248 

Array-2 1 0 9248 
2 0 9248 
3 0 9248 
4 3 9248 

Iron-deficiency 	Array-3 (Cy3) 1 0 9984 
2 0 9984 
3 0 9984 

Array-3 (Cy3) 1 0 9984 
2 4 9984 
3 15 9984 

of application are summarised in Table 4.9. Comparing these results with those 

of the Cauchy model (4.4) summarised in Tables 4.2 and 4.12, we see that the 

censored Cauchy model produces very similar results to the Cauchy model for 

these particular data sets. The fitted models are superimposed on the scatter-

plots of data against the estimated gene expressions in Figure 4.7. Observed spot 

averages and the fitted models for murine macrophage (array 2) data are rescaled 

by the corresponding scanning effects (/3) before plotting for ease of comparison 

with Figure 4.3. Comparison of these plots with their Cauchy model counter-

parts in Figures 4.3 and 4.5 does not indicate any notable differences between 

the fits of the Cauchy and censored Cauchy models. Similar conclusion holds for 

Table 4.9: Estimates of the scanning effects, scale parameters and v of the cen-
sored Cauchy model applied to array 2 and array 3 (Cy5) of murine macrophage 
and iron-deficiency data respectively. 

	

Scanning effects 	Scale 
Data set 	 02 	13 	34 	o 	2 

Murine macrophage [Array-2] 	1.71 	2.71 	4.53 	5.29 0.0053 	0.26 
Iron-deficiency [Array-3 (Cy5)] 4.36 16.49 	- 	2.93 0.0126 	0.17 
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the between replicate variations as calculated according to formula (4.7). Re- 

sults for array 2 of murine macrophage data obtained from Cauchy and censored 

Cauchy models can be compared from Tables 4.3 and 4.10 respectively. We see 

Table 4.10: Comparison of between replicate variation in the data and fit for the 
censored Cauchy model applied to array 2 of murine macrophage data. 

Between replicate variation 

Data set S(f) S(y. i 1, 1 ) S(y. 2 //32 ) S(y3/733) S(y4/734) 
Arrav-2 858 	1684 	1769 	882 	864 

that the results are almost identical for the two models, and the between replicate 

variation in the estimated gene expressions is smaller than that in the per-scan 

observed spot averages. 

4.7.3 Simulation study 

In this section, we investigated the properties of the maximum likelihood esti-

mators of the censored Cauchy model for combining multiple laser scans through 

simulation study. For convenience of comparison, we used the same set of true 

parameter values as used for the simulation study of the Cauchy model in Sec-

tion 4.5 for generating data from the censored Cauchy model. Also we used the 

same starting seed for the two simulation studies. We simulated 100 data sets 

from the Cauchy model (4.4), and considered any observations greater than or 

equal to T(= 65535) as censored at T. On an average, we found 0.05% censored 

observations in 100 replicated data sets. Table 4.11 summarises the true param-

eter values as well as the estimated biases and standard errors of the estimates 

of the structural parameters. Again, we see that except for the scale parame-

ters, a 1  and 0r2 , all the structural parameters are estimated with high precision 

Table 4.11: Estimated biases and standard errors of the maximum-likelihood 
estimates of the censored Cauchy model for combining multiple laser scans. The 
results are based on 100 simulated data sets. 

Parameters 

02 03 04 	cr 1  62 V 

True 	1.71 2.71 4.53 	5.36 0.0051 0.27 
Bias 	—0.00004 —0.00007 —0.00011 	—2.020 —0.00184 0.00068 
SE 	0.00037 0.00072 0.00115 	0.054 0.00009 0.00218 



and negligible bias. Comparison of the simulation results for the Cauchy model 

(Table 4.5) and the censored Cauchy model (Table 4.11) does not show any no-

table differences between the properties of the maximum likelihood estimators 

of the two models. Figure 4.8 shows the estimated % biases and % standard 

errors in the gene expression estimates. Except for the two points at the upper 

end, estimated biases in the gene expression estimates obtained for the censored 

Cauchy model are consistent with the corresponding biases for the Cauchy model 

(see Figure 4.6). Biases for the censored Cauchy models have also been found to 

be in an acceptable range, less than 0.5% in most cases, and are symmetrically 

distributed about the zero reference line. The two gene expression values at the 

upper end showing relatively high positive biases in the censored Cauchy model 

estimates also have higher standard errors (see Figure 4.8, bottom). 

4.7.4 Investigating impact of higher level of censoring 

In the data sets used in the thesis, it was noted that a large number of spot aver-

ages are not exactly equal to T even if they are clearly affected by pixel censoring. 

Therefore, we investigated a broader definition of censoring to see the impact on 

the results of censored Cauchy model. In the analysis, in particular, values above 

65000 were considered as censored. The parameter estimates applied to array 3 

(Cy5) of iron-deficiency data, which have 220 values as censored according to the 

above definition, are presented in the following table. 

Table 4.12: Estimates of the scanning effects, scale parameters and i' applied to 
array 3 (Cy5) of iron-deficiency data treating values above 65000 as censored. 

Scanning effects 	Scale 
Data set 	 02 	03 	01 1 	0'2 	ii 

Iron-deficiency [Array 3 (Cy5)] data 4.36 	16.47 	2.87 0.0135 	0.17 

Fortunately, these are very similar to the previous estimates. But because of 

subjectivity involved in this approach we would not advocate it as a final mod-

elling approach. Alternative possible approach, using median, is briefly discussed 

in Section 4.8. 
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4.8 Discussion and conclusions 

Microarray gene expression data obtained as the output of typical image analysis 

steps are contaminated, in addition to other factors, by the scanner's intrinsic 

noise level at the lower end, and by the pixel censoring at the upper end. As the 

problems at the two ends are in conflict, no unique scanner setting is optimal. 

Moreover, there is no objective guideline to date for choosing optimum scanner 

setting to address these issues. It therefore seems reasonable to consider multiple 

scanning, some at relatively lower sensitivity levels, ensuring that there is no 

censoring at the upper end, and the others at higher sensitivity levels, ensuring 

the visibility of the weakly expressed genes over the scanner's intrinsic noise level, 

and combine the information together to get final gene expression measures. The 

simplest approach of combining the data through simple or weighted average over 

the scans will give biased result as some individual scans of data are likely to be 

affected by pixel censoring. 

The proposed method can successfully combine the data of multiple scanning 

to get improved gene expression measures throughout the entire range of intensity 

data. Although application of the Cauchy and censored Cauchy models to the 

data sets used in this thesis produces very similar results, the censored Cauchy 

model is a more realistic choice because it takes account of the fact that spot 

averages cannot exceed the censoring threshold T, and in case of moderate or 

heavy censoring, censored Cauchy model can be expected to give better results 

than the Cauchy model. 

The simulation results suggest that the model is capable of estimating gene 

expressions adjusting for outliers and pixel censoring with reasonable precision 

and negligible bias. One strength of the model is that the location function 

specified in Section 3.6.1 explicitly captures the trend of the possibly censored spot 

summary data. Also, the derivation of the function has a natural correspondence 

with the data generation mechanism of microarray scanners. 

The choice of the censored Cauchy distribution for handling outliers proved 

to be better than the robust methods with which we have experimented. The 

censored Cauchy distribution is also a reasonable choice on the grounds of sim-

plicity and objectiveness. Among the few available methods of its kind in the 

literature, Dudley et al. 's (2002) method also considers multiple scan data but 

loses information discarding data outside the linear range. The method of Wit 

and McClure (2003) considers single scan data and does not suggest a general 

pixel distribution. The authors note that their method may produce unstable 

estimates as it estimates two parameters using only three summary statistics, 



mean, median and variance. 

We considered how the model may be extended. A natural extension would 

be to replace the censored Cauchy distribution by a censored t-distribution. This 

would introduce an additional degrees of freedom parameter which would ideally 

be estimated from the data, and depend on the tail behaviour. We have conducted 

some simulation experiments with such a model in the uncensored case. The bias 

in the estimation of the scale parameter noted in Section 4.5 for the Cauchy model 

is also present in the estimation of the scale parameter for the t-distribution model 

but additionally there is a corresponding bias in the estimation of the degrees of 

freedom parameter (see Table 3.13). However, we found that we get very similar 

maximum likelihood estimates of the y j  as with the Cauchy model and therefore 

there was little advantage in using the slightly more complex model. 

For the current data only mean values are available which are censored only 

if all the pixels belonging to a spot are censored. Alternative approach would be 

to model the median and this might have the advantage that a spot would be 

clearly identified as being censored if 50% or more of all the pixels are censored. 
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Chapter 5 

Nonparametric location and scale 
normalisation 

5.1 Introduction 

Two of the most discussed issues in microarray literature are normalisation and 

variance stabilisation of intensity measurements. Due to variations in sample 

treatment, labelling, dye efficiency and detection, the fluorescence intensities can 

in general not be compared directly, but only after appropriate calibration, which 

is termed "normalisation". The purpose of normalisation is to identify and remove 

sources of systematic variation, e.g., different labelling efficiencies and scanning 

properties of the C y3 and Cy5 dyes; different scanning parameters, such as PMT 

settings; print-tip, spatial or plate effects, in the measured fluorescence intensi-

ties. The simplest approach to within-slide normalisation is to subtract a constant 

from all intensity log-ratios, typically their mean or median, to force the distri-

bution of the intensity log ratios to have a location of zero for each slide. Such 

global normalisation methods cannot normalise the intensity data for some locally 

active artefacts, e.g., print-tip effects, spatial or intensity dependent dye biases. 

Dudoit et al. (2002) proposed more flexible normalisation methods which allow 

the normalisation function to depend on a number of predictor variables, such 

as the average spot intensity (x), location and plate origin. They used loess, a 

robust locally weighted regression (Cleveland, 1979; Cleveland and Devlin, 1988), 

of the log-ratio (y) on the predictor variables. Semiparametric approaches have 

also been suggested for correcting for trends in log-ratio data (Fan et al., 2005; 

Huang et al., 2005; Ma et al., 2006). 

The other common problem is the variance inhomogeneity in the sense that the 

variance of the measured intensity of a spot depends on that spot's average inten-

sity, which poses complexity in the analysis of microarray data. Many commonly 

used statistical methodologies, such as regression or the analysis of variance, are 



based on the assumption that the data are normally or at least symmetrically 

distributed with constant variance. If these assumptions are violated, the statis-

tician may choose either to develop some new statistical technique to account for 

the specific ways in which the data fail to comply with the assumptions, or to 

transform the data. Where possible, data transformation is generally the easier of 

the two options. Unlike for the location normalisation, parametric models such as 

additive plus multiplicative variance model have been preferred for scale normal-

isation and several transformation methods, e.g., log, started logarithm, arcsinh 

or glog, log-linear hybrid etc. have emerged as a result. Log transformation is 

commonly used for variance stabilisation based on the assumption of multiplica-

tive variance model, which is not generally the case. The supposed simplicity 

of interpretation of log ratios provided a major justification for the use of log 

transformation on microarray data. There are however two major drawbacks of 

log transformation in microarray applications. First, background corrected inten-

sity data frequently have non-positive values for which the log-transformation is 

not defined. This however is not the problem of the log-transformation, but of 

the crude and in-appropriate nature of background correction methods commonly 

used by the microarray community. Secondly, log-transformations tend to inflate 

the variance at the lower gene expression levels, because the multiplicative model 

is not generally adequate to describe the variance of microarray data. 

The "started logarithm" (Rocke and Durbin, 2003) is a modification of loga-

rithmic transformation to avoid negative arguments. The idea is to add a constant 

to all of the values before taking logarithm. This transformation does not com-

pletely stabilise the variance when the variance is additive plus multiplicative. 

The authors have given the conditions, details described in Section 2.6.2, which 

minimise the maximum deviation from constancy. 

Rocke and Durbin (2003) considered another variant of logarithmic transfor- 

mation that may be appropriate for microarray data. It is the log-linear hybrid 

transformation, originally suggested by Holder et al. (2001). In this approach, 

the transformation is taken to be log(Z) for Z greater than some cutoff k and 

a linear function cZ + d, where c and d are constants, below that cutoff. This 

eliminates the singularity at zero. The constants c and d are chosen such that 

the transformation is continuous with continuous derivative at k (Section 2.6.2). 

Additive plus multiplicative model has been suggested as a more realistic 

variance model for microarray data (e.g., Rocke and Durbin, 2001, Huber et al., 

2002). Inverse hyperbolic sine (arcsinh), variously known as generalised logarithm 

(glog), transformation stabilises the variance of additive plus multiplicative struc- 

ture. This transformation, introduced independently by several research groups 



(Munson, 2001; Huber et al., 2002; Durbin et al., 2002), also overcomes the lim-

itations of log transformation and stabilises variance of additive multiplicative 

structure to the first order, meaning that the variance is almost constant no mat-

ter what the mean might be. This transformation converges to log(Z) for large 

Z, and is approximately linear at 0 (Durbin, 2002). 

However, as can be seen from experimental data, variance of microarray data 

may be of a more complex nature than can be generally accommodated by any 

particular parametric model. In this chapter we propose and evaluate a new 

nonparametric approach that incorporates location and scale normalization si-

multaneously using Generalised Additive Models for Location, Scale and Shape 

(GAMLSS, Rigby and Stasinopoulos, 2005). The methods presented in this chap-

ter has been described briefly in Khondoker et al. (2006b). GAMLSS is the ex-

tended and more flexible version of their Mean and Dispersion Additive Models 

(MADAM) (Rigby and Stasinopoulos, 1996; Stasinopoulos et al., 2000) and the 

model for fitting smooth centile curves to skew and kurtotic data (Rigby and 

Stasinopoulos, 2004). 

5.2 Generalised additive models for location, scale 
and shape 

Generalised additive models for location scale and shape (GAMLSS) are a flex-

ible class of statistical models for univariate regressions. GAMLSS generalises a 

wide variety of statistical models that are considered as separate classes in the 

statistical literature, e.g., Generalised Linear Mixed Models (GLMM) and Gen-

eralised Additive Mixed Models (GAMM), which in turn are more general than 

the Generalised Linear Models (GLM) and Generalised Additive Models (GAM) 

respectively. 

GAMLSS allows a very general family of distributions for the response. In 

addition to the location parameter, other parameters of the conditional distri-

bution of the response, such as the scale and shape parameters can be modelled 

as parametric and/or additive nonparametric smooth functions of explanatory 

variables and/or as random-effect terms. 

Suppose that f(yIO)  be the probability density/mass function of the response 

variable y for given p-dimensional parameter vector 0T = (9,• , 9,). Let yT = 

(Yi, 	, y) be the vector of the n observations of the response variable y. The 

model assumes that, for i = 1, . . , n, observations y2  are independent conditional 

on O, with probability density/mass function f(y0i),  where 0jT 	(9j ,. . . , 

is a vector of p parameters related to explanatory variables and random effects. 
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For k = 1, 	,p, let gj(.) be a known monotonic link function relating 0k  to 

explanatory variables and random effects through an additive model given by 

Jk 

gk(Ok) = Tik = X,j3k + 	 (5.1) 
j=1 

where 0 k and77 are vectors of length n, e.g.,0' = (01k,..•0flk),/' = (1k,",I3Jk) 

is a parameter vector of length J, Xj  is a known design matrix of order n x Jj, 

Z3 k is a fixed known ri X qjk design matrix and 'Yjk  is a q3 -dimensional random 

variable. The class of models (5.1) is called GAMLSS. 

If, for k = 1,. , p, J, = 0 then (5.1) reduces to a fully parametric class given 

by 

gk(Ok) = Tlk = Xkf3k. 	 (5.2) 

If Zij = I, where In  is an n x n identity matrix, and Yjk = S3k = sk(x 3 k) for 

all combinations of j and k in (5. 1), this gives 

Jk 

gk(Ok) = 77k = XkI3k + 	Sik 	 (5.3) 
j=1  

where xi k for j = 1,•••, Jk  and k = 1,.. . ,p are vectors of length n. The function 

Sjk is an unknown function of the explanatory variable Xi,. and Sik = 53k(X3k) is 

the vector which evaluates the function 53k  at X3k.  The explanatory vectors Xjk are 

assumed to be known. The models in equation (5.3) are called the semiparametric 

GAMLSS. The class of models (5.3) is an important special case of (5.1). If Z3 ,. = 
I, and -y,. = Sjk = s3k(xk) for specific combinations of j and k in (5.1), then 

the resulting models contain parametric, nonparametric and random-effect terms. 

The first two population parameters 01 and 02 in (5.1) are usually characterized 

as location and scale parameters, denoted here by p and a, whereas the remaining 

parameter(s), if any, are characterized as shape parameters, although the models 

may be applied more generally to the parameters of any population distribution. 

Maximum penalised likelihood estimation is used to fit the nonparametric 

models. Additive terms in the models are fitted by a backfitting algorithm. The 

estimation algorithm has been described in Appendix B of Rigby and Stasinopou-

los (2005). 

It is possible to use different smoothing methods, e.g., 

smoothing splines, 

• penalised splines or p-splines (Eilers and Marx, 1996), 

• loess (Cleveland, 1979; Cleveland and Devlin, 1988) etc. 
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to fit the nonparametric models in (5.3). The R package gamlss is publicly avail-

able at http : //www. londonmet . ac. uk/ganhlss/  for implementing the estimation 

algorithm. Instructions on how to use the package can be found in Stasinopoulos 

et al. (2004). 

5.3 Nonparametric location and scale normali-
sation using GAMLSS 

Let y = log(12 /I1 ) and x = log('/L7) be the log ratio and overall log spot inten-

sity respectively for a usual cDNA experiment where 11 and 12 represent intensity 

data corresponding to control and experimental samples respectively. We assume 

that the conditional distribution of y, for the combined differentially and non-

differentially expressed genes, given x can be approximated by a t-distribution 

with intensity dependent location (x) and scale o(x) parameters respectively 

and a constant shape parameter ii, the degrees of freedom of the distribution. 

That is 

ylx ".' t,((x), a(x)). 	 (5.4) 

This is a special case of a GAMLSS model (Rigby and Stasinopoulos, 2005). 

The functions ,u(x) and a(x) are not gene specific and are supposed to capture 

the intensity-dependent trends in the location and variability of the data, which 

are induced by the differential behaviour of Cy3 and Cy5 dyes, termed dye bias. 

Maximum penalised likelihood may be used to obtain estimates of the functions 

(x) and o(x). In loess smoothing the user-defined parameter f, called span, is 

the fraction of the data used for smoothing at each point. From among several 

smoothing options available, we choose p-splines with effective degrees of free-

dom equivalent to that of loess span of 40%, which gives reasonable amount of 

smoothing for both location and scale models. We prefer p-splines because it is 

less computationally expensive than smoothing splines and p-splines smoothing 

has some desirable properties over loess, e.g., it is free from boundary effects 

and conserves the moments of the data. The normalised data, from the fitted 

model (5.4), can be defined as the standardised residuals given by 

ZG = (
y—(x)) 

o(x) 

GAMLSS normalisation model (5.4) is not necessarily restricted to log-ratio 

(y) vs. average log intensity (x) data. The model can be applied, for example, 

to the arsinh transformed data (see Section 5.6). This approach may be useful 

when log transformation can not be applied to all data points because of non-

positive values in the background corrected intensity data. We investigated such 
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normalisation through simulation study in Section 5.6, where we apply GAMLSS 

to arcsinh transformed experimental vs. control samples. 

Although GAMLSS, in its current form, can only be used for within-slide 

normalisation, GAMLSS normalised data are comparable across arrays as they 

are expected to have unit scale for all individual arrays. 

5.4 Huber et al.'s (2002) parametric normalisa-
tion method 

We compare the performance of the proposed method with Huber et al.'s (2002) 

arcsinh variance stabilising transformation (AVST) method through application 

of the methods to two different data sets and through simulation studies. We call 

the method AVST to distinguish it from vsn which is the name of the software 

package in R that implements the method. The Huber et al.'s (2002) parametric 

normalisation method (AVST) is derived from a model of the variance-versus-

mean dependence of the linearly calibrated intensity data using a variance stabil-

ising transformation h(.), called arcsinh. The variance of the calibrated intensity 

data is assumed to be a quadratic function of the mean. The transformation h(.) 

is derived such that the variance of the transformed data is approximately inde-

pendent of the mean. For a two-sample comparative experiment, the difference 

of the transformed data, called difference statistic (z4, is given by 

ZA = h2 (12 ) - h 1 (11 ) = arcsinh(a2  + b2 12 ) - arcsinh(a i  + b 1 11 ), 	(5.5) 

where a3  and b, j = 1, 2 are transformation parameters to be estimated from the 

data. The difference statistic represents the changes in expression levels of the 

genes between samples 1 and 2. For large intensities, the arcsinh transformation 

becomes equivalent to the logarithmic transformation and therefore ZA becomes 

equivalent to log-ratio (y). For non-differentially expressed genes, ZA is assumed 

to be distributed as normal with zero mean and constant variance. That is 

(zA)N(0,6 2), iK, 	 (5.6) 

where K is the set of non-differentially expressed genes. The set K is deter-

mined iteratively by Least Trimmed Squares (LTS) regression (Rousseuw and 

Leroy, 1987). We have used LTS quantile of 90% in our applications. For fixed 

K, the parameters a 3  and b, (j = 1, 2) are estimated numerically by maximiz-

ing the profile likelihood. The estimated difference statistic is used for infer-

ence on differential expression. The software is available as an R package at 

http://www.bioconductor.org/.  
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5.5 Applications 

We provide applications of the proposed GAMLSS normalisation method to two 

different data sets: 

lymphoma data, and 

iron-deficiency data. 

We also compare the results of applying our method to these data sets with that 

of the parametric AVST method. 

5.5.1 Lymphoma data 

The lymphoma data is obtained from the Huber et al.'s (2002) R package vsn, 

which is available at http : //www . bioconduct or. org/. The data set is based on 

a series of 8 cDNA arrays on which different lymphoma samples were hybridised 

together with a reference cDNA (Alizadeh et al., 2000). We use the data on one 

array, named 1c7b047, containing 9216 spots for illustration of the method. Data 

on treatment and reference samples are background corrected and have some 

negative values. We replace all negative and zero values by 10 before computing 

the log ratios. Plots of the log ratio y = log(12/I1 ) against the overall log-intensity 

x = log ( /iL) and rank of x are shown in Figure 5.1. Systematic patterns in 

the lower expression region are the effect of artificial replacement of negative and 

zero values. There is some indication of non-linear trend in the location of the 

log ratios. Also there is indication of variance inhomogeneity in the data. 

Rigby and Stasinopoulos (2005) suggested different criteria such as Akaike 

Information Criterion (AIC), Generalised Akaike Information Criterion (GAIC) 

and Schwarz Bayesian Information Criterion (SBC), (Schwarz, 1978), for optimis-

ing the amount of smoothing in the fit of the GAMLSS models. For the data set 

at hand optimal fit using p-splines of the models (5.4) according to GAIC with 

penalty 2.5 and SBC leads to effective degrees of freedom of about 30 and 21 

respectively. Fitted optimal models, as shown in Figure 5.2, according to these 

criteria appear to give too localised fit. 

The span of loess for location smoothing of microarray data are typically 

suggested to be between 20% and 40% (Dudoit et al., 2002; Yang et al., 2002). 

The GAMLSS (5.4) fitted to the data at hand with loess (f = 40%) as the 

smoothing option for nonparametric models results in effective degrees of freedom 

equal to 13. 
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(a): Optimal P-splines fit by GAIC: Effective df=30 
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Figure 5.2: Optimal p-splines fit (a) by Generalised Akaike Information Criterion 
(GAIC) with penalty 2.5; (b) Schwarz Bayesian Information Criterion (SBC). 
The solid line is fitted location j(x) and dashed lines are the limits f(x) + 2ô(x). 
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We therefore fit (5.4) using p-splines with effective degrees of freedom equiva-

lent to that of loess, which gives reasonable amount of smoothing for both location 

and scale models. Fitted models and corresponding normalised data (standard-

ised residuals) for both smoothing options are shown in Figure 5.3. Except at 

the boundaries where there are a few observations, both smoothing options give 

similar fit. We compare the results of CAMLSS analysis applied to the lym-

phoma data to that of AVST analysis. The AVST method is implemented using 

the R package vsn to the same data described in Section 5.5.1. For identifying 

differential expressions we consider cut-off points of 2 and 3 times the standard 

deviation of the difference statistic (ZA) of AVST method. AVST method does 

not give direct estimate of standard deviation of the difference statistic but sug-

gests to estimate robustly from the empirical distribution. We estimate standard 

deviation robustly using Median Absolute Deviation (MAD) given by 

Median(1z1 - ml) 
T= 	

-1(0.75)' 
	 (5.7) 

where m denotes the median of either ZA or ZG.  The estimate is adjusted by the 

factor I_1(0.75),  the value of the inverse standard normal distribution function 

at the point 0.75, for asymptotically normal consistency (Huber, 1981). For the 

lymphoma data, we estimate A  = 0.79. Normalised data using GAMLSS should 

approximately follow a standard t-distribution with degrees of freedom ii which, 

using p-splines with effective df 13, is estimated to be 5.42. For GAMLSS nor-

malised data we use cut-off points of 2 and 3 for detecting, differential expressions. 

A summary of the comparison on the inference of differential expression by the 

two methods are given in Table 5.1 and Figure 5.4. We see that GAMLSS detects 

slightly more genes as differentially expressed for both 2 and 3 standard deviation 

cut-offs (Table 5.1). For GAMLSS normalised data there are 966 genes outside 2 

standard deviation cut-off whereas the value is 873, 807 of which are common in 

both methods, for AVST method. Corresponding values for 3 standard deviation 

cut-off are 250 and 225, 209 of which are common. 

Table 5.1: Comparison of differential expression on lymphoma data. 

2SD cut-off 
GAMLSS 

Not 
Significant significant Total 

	

Significant 	807 	66 	873 
AVST 	Not Significant 	159 	8184 	8343 

	

Total 	966 	8250 	9216  

3SD cut-off 
GAMLSS 

Not 
Significant significant Total 

209 16 225 
41 8950 8991 

250 8966 9216 
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Disagreements between the methods are highlighted in Figure 5.4. Of 966 

genes detected as differentially expressed by GAMLSS (2SD cut-off), 159 are 

not expressed according to AVST method. On the other hand, of 873 genes 

detected as differentially expressed by AVST method (2SD cut-off), 66 genes are 

not expressed according to CAMLSS. The corresponding disagreement values are 

41 and 16 respectively for 3SD cut-off. 

5.5.2 Iron-deficiency data 

In this section we apply the method to iron-deficiency data briefly described in 

Section 4.4.2. After deleting the blank spots and the missing (non-detected) val-

ues across slides, there are intensity measurements for 9968 spots on each of the 

arrays. The correspondence between array, organ, dye and sample is given in 

Table 5.2. The image analysis has been carried out using MWG MVI PRO 2.6.0 

Table 5.2: Correspondence between array, organ, dye and sample. 

Array Organ Dye Sample 
1 Liver Cy3 Control 

Cy5 Treatment 
2 Liver Cy3 Treatment 

Cy5 Control 
3 Liver Cy3 Control 

Cy5 Treatment 
4 Liver Cy3 Treatment 

Cy5 Control 
5 Liver Cy3 Treatment 

Cy5 Control 
6 Liver Cy3 Control 

Cy5 Treatment 
7 Liver Cy3 Treatment 

Cy5 Control 
8 Liver Cy3 Control 

Cy5 Treatment 

Array Organ Dye Sample 
9 Kidney Cy3 Treatment 

Cy5 Control 
10 Kidney Cy3 Treatment 

Cy5 Control 
11 Kidney Cy3 Treatment 

Cy5 Control 
12 Kidney Cy3 Treatment 

Cy5 Control 
13 Kidney Cy3 Control 

Cy5 Treatment 
14 Kidney Cy3 Control 

Cy5 Treatment 
15 Kidney Cy3 Control 

Cy5 Treatment 
16 Kidney Cy3 Control 

Cy5 Treatment 

(Bell, 2003). We have compared the results of GAMLSS analyses with that of 

AVST analyses applied to this data set. We fit model (5.4) individually to all 16 

arrays of the data using p-splines as the smoothing option with effective degrees 

of freedom equivalent to that of loess span of 40%. Fitted models to all liver 

and kidney samples are shown in Figures 5.5 and 5.6 respectively. The model 

appears able to capture the trends in location and variability in the data. To see 

how GAMLSS compares with AVST in normalising gene expression data, we plot 

GAMLSS normalised log-ratios and AVST difference statistics side by side against 

the overall log-intensity (x) data for one microarray (array 2) in Figure 5.7. In 
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terms of both location and variability, GAMLSS normalised data appears much 

more homogeneous than that of AVST normalised data. We consider cut-off 

points of 2 and 3 times the estimated standard deviations of the corresponding 

normalised data to label genes as differentially expressed. We use MAD as the 

estimate of the standard deviation. For array 2 data, we estimate standard de-

viations of GAMLSS normalised log-ratio and AVST difference statistic as 1.05 

and 1.02 respectively. A cross classification of the summary of the genes identi-

fied as differentially expressed by the two methods are given in Table 5.3. The 

disagreements between the methods are highlighted in Figure 5.7. It is observed 

Table 5.3: Comparison of differential expression on array 2 of iron-deficiency data. 

	

2SD cut-off 	 3SD cut-off 

	

GAMLSS 	 GAMLSS 

	

Not 	 Not 
Significant significant Total Significant significant Total 

	

Significant 	279 	49 	328 	15 	1 	16 

	

"ST Not Significant 	222 	9418 	9640 	56 	9896 	9952 

	

Total 	501 	9467 	9968 	71 	9897 	9968 

that GAMLSS identifies comparatively more genes as differentially expressed. It 

is also seen that most of the genes labelled as differentially expressed by AVST 

method are also identified as differentially expressed by GAMLSS. Figure 5.7 

shows that, for 2SD cutoff, genes identified as differentially expressed after AVST 

normalisation, but not after GAMLSS normalisation, are the positive ones in the 

middle of the x-range and negative ones at the two ends of the range, and are 

likely to be artefacts due to the failure of AVST to fully correct for location and 

scale trends. 

The experiment has both biological and technical replicates: each of the liver 

and kidney groups has 4 dye-swapped biological replicates. We analysed the 

normalised liver and kidney data separately, using simple t-tests to identify dif-

ferentially expressed genes. The number of detected genes by either or both 

methods, using 5% and 1% thresholds, are shown in Table 5.4. We see that 

GAMLSS normalisation identifies slightly more genes than AVST for kidney data 

whereas AVST normalisation picks comparatively more genes for liver data. How-

ever, mindful of the observation from Figure 5.7 that differential expression may 

be falsely identified if normalisation fails to fully correct for location and scale 

trends, the number of detected genes may not be a good measure of success of a 

method. 
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Also, we note that the number of detected genes is no more than we would 

expect by chance in the absence of differential expression. Therefore, simulation, 

where it is known which genes are differentially expressed, is a more effective way 

to compare the methods. 

Table 5.4: Numbers of genes identified as differentially expressed in iron deficiency 
experiment, after GAMLSS or AVST normalisation, using t-tests with 5% and 
1% thresholds. 

5% level 	 1% level 
GAMLSS 	 GAMLSS 

Not 	 Not 
Significant significant Total Significant significant Total 

Liver data 

	

Significant 	193 	304 497 	28 	80 	108 

	

AVST Not Significant 	186 	9285 9471 	51 	9809 9860 

	

Total 	379 	9589 9968 	79 	9889 9968 

Kidney data 

	

Significant 	309 	130 439 	40 	32 	72 

	

AVST Not Significant 	154 	9375 9529 	49 	9847 9896 

	

Total 	463 	9505 9968 	89 	9879 9968 

5.6 Simulation study I 

We have performed some simulation experiments to compare the performance 

of the proposed method to that of AVST method in making inference on dif-

ferential expression. For the simulation in this section, we fitted GAMLSS to 

arcsinh transformed experimental vs. control samples. In simulation study II 

(Section 5.7) we consider fitting GAMLSS to the log-transformed data, e.g., to 

log-ratio(y) vs. overall log-intensity (x). 

5.6.1 Data generation 

We simulate data according to several parametric and nonparametric location 

and scale models for the data in arcsinh scale. Suppose that 

= arcsinh(a i  + b 1 11 ), 

and 

h2  = arcsinh(a 2  + b2 12 ) 
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represent the arcsinh-transformed intensity data corresponding to the reference 

and treatment samples respectively. First we fit the proposed GAMLSS model 

to one array of lymphoma data transformed in arcsinh scale. We assume that 

the conditional distribution of h2  given h1  can be modelled using a t-distribution 

with degrees of freedom ii and intensity dependent location and scale functions 

i(.) and cr(.) respectively. That is, 

h2Ihi — t(it(h i ),a(hi )). 	 (5.8) 

We then simulate treatment sample (h2 ) in arcsinh scale for several combinations 

of location (p) and scale (a) according to 

= /L + Zjaj , 	 (5.9) 

where i indexes gene, z ' S-'  N(0, .2)  and is the estimated standard deviation 

of the standardised residuals from the model (5.8). We made 10% of the genes 

differentially expressed by modifying zi  in (5.9) by z N(0, 2) ± U(0, 4). 

The '+' and c—'  are used to generate up- and down-regulated gene expressions 

respectively. We consider similar number of up- and down-regulations by choosing 

probability of up-regulation as 50%. Simulated data are then transformed back 

to the original scale by 

iii 
= sinh(hi ) — a 	

= 1, 2, 	 (5.10) 

where the notation 'I' is used to denote simulated intensity data. First we 

simulate according to fitted GAMLSS location and scale models to one array 

(named 1c7b047) of lymphoma data described in Section 5.5.1, i.e., considering 

yj  = i(h) and o i  = &(h 1 ) in the scatterplot (h2  vs. h 1 ) shown in Figure 5.8. 

Because the variance of the data is already stabilised to some extent by the 

AVST transformation, the scale model fitted by GAMLSS appears almost con-

stant. To create non-constant scale functions, we add the difference (a - a) and 

some multiple of the difference to the GAMLSS scale a. This gives a family of 

scale functions with increasing distortions: a, pa - (p - 1)a; p = 2,3 ... and so 

on. We have also considered the reflected versions of these distorted scale func-

tions: pa - (p - 1)a; p = 2, 3... and so on. Negative values in the distorted or 

reflected distorted scale functions are set to zero before using them in simulating 

data. Furthermore, we have experimented with some parametric scale family, e.g, 

a+bp, a+bi25  and bfL etc. Similarly, we create alternative location functions 

by adding the difference of the linear fit from the GAMLSS location () giving 

a family of alternative locations: ji, pi - (p - 1)(linear fit); p = 2, 3 ... and so 
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on. Some of the alternative location functions, distorted and reflected distorted 

scale functions are displayed in Figures 5.8 (bottom), 5.9 (top) and 5.9 (bottom) 

respectively. 

5.6.2 Results 

We have compared the performance of AVST method to that of the proposed 

GAMLSS model in making inference on differential expressions. Standardised 

residuals (ZG) and difference statistic (ZA) are used as normalised data for GAMLSS 

and AVST respectively for identifying differential expressions. We use 2 and 3 

times the estimated standard deviations of the respective normalised data as cut-

off points for deciding differential expressions. We use median absolute deviation 

(MAD) for estimating the standard deviations. It is known which genes are dif-

ferentially expressed in the simulated data and we therefore compute the average 

false positive rates and power (1 - false negative rates) for both methods for 10 

simulated data sets. The results are summarised in Table 5.5. It is seen that 

Table 5.5: Estimated false positive rates and power for 10 simulated data sets. 

2 x SD cutoff 3 x SD cutoff 
False Positive Rate Power False Positive Rate Power 

(Location, Scale) GAMLSS AVST GAMLSS AVST GAMLSS AVST GAMLSS AVST 
6i, a) 0.037 0.032 0.41 	0.40 0.003 0.002 0.16 	0.15 

(hz, 2a - a 
) 

0.042 0.036 0.39 	0.37 0.005 0.005 0.14 	0.15 

(ii, 3ci - 2a) 0.049 0.046 0.38 	0.35 0.011 0.011 0.13 	0.11 

(z, 4a - 3 	
) 

0.059 0.064 0.38 	0.35 0.020 0.021 0.15 	0.15 

both methods lose power as the deviation of the scale model from constancy in-

creases. False positive rate also increases for both methods as the scale function 

deviates from constancy. However in terms of power difference GAMLSS appears 

to perform comparatively better as the fluctuation in scale increases. 

Since there generally is a trade-off between false positive rate and false negative 

rate in any statistical decision procedure, an alternative way is to compare one by 

keeping the other fixed. We therefore compare the power of the methods holding 

false positive rates fixed at 5% and 1% levels. Standard errors of the power 

difference at each level are also computed to have an idea about the variability 

of the estimates in repeated sampling. The results for 10 simulated data sets 

are tabulated in Table 5.6. A more informative analysis, the Receiver Operating 

Characteristic (ROC) analysis, which is a graphical plot of the sensitivity vs. 1—

specificity for a binary classifier system as its discrimination threshold is varied, 

has also been performed. In the terminology of statistical hypothesis testing, 
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ROC is obtained by plotting the power against the level of a test. Power and 

level are also known as proportions of true positives (TP) and false positives 

(FP) respectively. The best possible prediction method is the one that has 100% 

sensitivity (detects all true positives) and 100% specificity (no false positives). 

ROC curves comparing the performance of GAMLSS and AVST normalisations 

for each of the 19 different location and scale combinations presented in Table 5.6 

are shown in Figures 5.10, 5.11 and 5.12. 

The results in Table 5.6, and the ROC analysis in Figures 5.10, 5.11 and 5.12 

indicate that, in general, performance of GAMLSS following AVST analysis in 

detecting differential expressions is better than that of the AVST only analysis. 

The difference in power increases with the increase in the deviation of the scale 

model from constancy. For this lymphoma data set, performance of proposed 

method is considerably better in cases of parametric scales and reflected distorted 

scale functions. Standard errors of the power difference over repeated sampling 

appears sufficiently small, and on an average are smaller for 5% level than those 

for 1% level. 
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Table 5.6: Estimated power (at fixed levels) for 10 simulated data sets. 

Estimated Power 
Level fixed at 5% 	 Level fixed at 1% 

SE of 	 SE of 
(Location, Scale) 	GAMLSS AVST difference 	GAMLSS AVST difference 

Distorted scales 

(it, 0') 0.44 0.44 0.009 0.26 0.27 0.009 
(ii, 2a - a) 0.41 0.41 0.005 0.19 0.19 0.011 

(p 3u - 2ã) 0.40 0.36 0.005 0.10 0.10 0.012 
(it, 4a - 3a) 0.33 0.30 0.006 0.01 0.01 0.005 

(21L-linear fit, a) 0.43 0.44 0.008 0.25 0.26 0.008 
(2k-linear fit, 2a - a) 0.41 0.41 0.008 0.18 0.18 0.011 
(2i-linear fit, 3a - 2ã) 0.37 0.35 0.008 0.09 0.08 0.015 
(2ji-linear fit, 4a - 3ã) 0.33 0.28 0.008 0.01 0.01 0.016 

Reflected distorted scales 

(ii, 2ã - a) 0.47 0.46 0.011 0.33 0.30 0.009 
(ii, W - 2cy) 0.48 0.46 0.004 0.36 0.30 0.019 

(, 4 	- 3a) 0.49 0.44 0.016 0.35 0.25 0.019 
(ji, 5 	- 4a) 0.50 0.42 0.015 0.36 0.22 0.016 

(2i-linear fit, 2a - a) 0.47 0.46 0.009 0.33 0.30 0.013 
(2-linear fit, 3o - 2a) 0.48 0.45 0.009 0.34 0.28 0.015 
(2z-linear fit, 4 	- 3a) 0.49 0.44 0.016 0.35 0.24 0.018 
(2/i-linear fit, 5 	- 4a) 0.50 0.42 0.014 0.36 0.21 0.015 

Parametric scales 

(, J0.1 -+1.5p) 0.44 0.41 0.010 0.27 0.23 0.009 

(iz, 	0.5 + 0.0525) 0.40 0.31 0.014 0.20 0.11 0.011 

(ii, /0.25 -+0.05p4 ) 0.50 0.35 0.015 0.35 0.15 0.013 
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Figure 5.10: ROC curves comparing the performance of GAMLSS and AVST for 
the simulated data with distorted scales presented in Tables 5.5 and 5.6. The 
solid red lines and dashed green lines represent the ROC curves for GAMLSS and 
AVST normalisations respectively. 
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Figure 5.11: ROC curves comparing the performance of GAMLSS and AVST for 
the simulated data with relected distorted scales presented in Tables 5.5 and 5.6. 
The solid red lines and dashed green lines represent the ROC curves for GAMLSS 
and AVST riormalisat ions respectively. 
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Figure 5.12: ROC curves comparing the performance of GAMLSS and AVST for 
the simulated data with parametric scales presented in Tables 5.5 and 5.6. The 
solid red lines and dashed green lines represent the ROC curves for GAMLSS and 
AVST nornialisation respectively. 
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5.7 Simulation study II 

Simulations in this section correspond to the data of iron-deficiency experiments, 

and we consider fitting GAMLSS to log-ratio (y) vs. average log intensity (x) data. 

We simulated data from the GAMLSS model, with 10% of genes differentially 

expressed, then normalised them by both methods and compared detection rates. 

Similarly, we simulated data from the AVST model and compared normalisations. 

5.7.1 Data generation 

For the GAMLSS model, we based simulations on observed log-intensities (x) 

and estimated location and scale functions (f(x), o(x)) from the iron-deficiency 

experiment, as shown in Figures 5.5 and 5.6. We simulate log-ratio values (y) 

corresponding to each array of data according to 

Y = AW + z&(x) 	 (5.11) 

where z N(0, r). Every 10th gene is made differentially expressed by modify-

ing z in (5.11) by z N(0,i - )±U(O,4rG), of which 50% are made up-regulated; 

i.e., correspond to N(0, r) + U(0, 4rc).  We choose 10% as the proportion of 

differential expressions to be consistent with the chosen LTS quantile of 90% in 

fitting AVST model, and because this was one of the cases considered by Huber 

et al. (2003). The choice U(0, 4rc) as the amplitude of differential expression 

was made simply to achieve reasonable detection rates. The simulated log-ratio 

data are then transformed back to the original scale by Ii = exp(x - y/2) and 

12 = exp(x + y/2), using 'I' to denote simulated values. We generate 10 data sets 

corresponding to each of 16 arrays and compare the performance of GAMLSS 

with AVST in making inference on differential expression. For each generated 

data set we fit GAMLSS directly to y vs. x data and AVST to simulated intensity 

data on the original scale (I i , 12). 
To simulate data from the AVST model, we generate the z's as above, with 

TG replaced by TA,  then transform to intensities using estimated values for the 

a's and b's: - - 
I = (sinh(x' - z/2) - âi)/bi 1 	(5 12 
12 = (sinh(x' + z/2) - a2 )/ 2 , 5 

where 
1  

= [arcsinh(à 1  + b 1 11 ) + arcsinh(6 2  + 62 12 )]. 

If either ii  or 12 is negative, then the corresponding data points are regenerated. 

Again, we generate 10 sets of data corresponding to each of the 16 arrays of 

iron-deficiency data set and apply either GAMLSS or AVST normalisation. 
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5.7.2 Results 

Standardised residuals and difference statistics are used as normalised data for 

GAMLSS and AVST methods respectively for identifying differential expression. 

In simulated data, identities of the differentially expressed genes are known. We 

can therefore compute power of detection and proportion of type I errors for both 

methods. Tests for differential expression are carried out at 5% and 1% levels 

using t-tests as with the experimental data. Standard errors of the difference 

of powers and the difference of type I errors at each cutoff point/level are also 

computed to indicate the stability of the estimates in repeated sampling. The 

results summarised in Table 5.7 show that GAMLSS outperforms AVST when 

Table 5.7: Estimated power, proportion of type I errors and SE of difference based 
on t-test for assessing differential expression. Results are based on 10 simulated 
data sets from either GAMLSS or AVST model. 

5% level 1% level 

GAMLSS AVST SE(difference) GAMLSS AVST SE(difference) 

Organ 	Power Error Power Error Power 	Error Power Error Power Error Power 	Error 

Data generated according to GAMLSS 

Liver 	0.80 	0.049 0.77 	0.048 0.0075 0.00240 0.70 0.0100 0.65 0.0098 0.0040 0.00130 

Kidney 	0.80 	0.049 0.77 	0.038 0.0075 0.00180 0.69 0.0096 0.66 0.0070 0.0079 0.00080 

Data generated according to AVST 

Liver 	0.79 	0.051 0.79 	0.051 0.0029 0.00120 0.68 0.0100 0.68 0.0100 0.0033 0.00039 

Kidney 	0.80 	0.050 0.80 	0.050 0.0019 0.00075 0.69 0.0098 0.69 0.0098 0.0020 0.00032 

data are generated from a GAMLSS model. Whereas GAMLSS is as powerful 

as AVST method when the situation is ideal for AVST model. Furthermore, 

GAMLSS has been found to have good control over the type I errors. Observed 

levels have consistently been found to be very close the corresponding nominal 

levels of 5% and 1%. 

5.8 Discussion 

Normalisation is an important first step in the analysis of cDNA microarray data 

and will undoubtedly see further development in future. Until recently, separate 

methods have been suggested for location and scale normalisation with nonpara-

metric methods such as loess preferred for the former and parametric models for 

the batter. However, as can be seen from experimental data such as the plots 

in Figures 5.5 and 5.6, the variability in microarray data can be of a more chal-

lenging nature than can be handled by any particular parametric transformation. 
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The approach developed in this chapter is novel in two ways; first, we consider 

nonparametric models for both location and scale normalisation, and second, we 

incorporate both location and scale normalisation simultaneously using a flexi-

ble model, GAMLSS. As is the case with other flexible models, there is always 

a risk of overfitting and caution is needed in choosing optimality of the fit of 

GAMLSS. Rigby and Stasinopoulos (2005) suggested several criteria (Akaike in-

formation criterion (AIC), Generalised Akaike information Criterion (GAIC) and 

Schwarz Bayesian information Criterion (SBC), Schwarz (1978)) for optimising 

the amount of smoothing in the fit of the GAMLSS model. However for microar-

ray data, optimal fit according to these criteria gives very localised fit. In loess 

smoothing the user-defined parameter f, called span, is the fraction of the data 

used for smoothing at each point. The span of loess for location smoothing of 

microarray data is typically suggested to be between 20% and 40% (Dudoit et 

al., 2002; Yang et al., 2002). Model (5.4) fitted to the iron-deficiency microarray 

data with loess (f = 40%) as the smoothing option for nonparametric models 

results in effective degrees of freedom equal to 13. We therefore fit model (5.4) 

using p-splines with effective degrees of freedom equivalent to that of loess, which 

gives a reasonable amount of smoothing for both location and scale models. We 

prefer p-splines because they are less computationally expensive than smoothing 

splines, and p-splines smoothing has some desirable properties over loess, e.g., it 

is free from boundary effects and conserves the moments of the data. Application 

of the proposed method suggests that it is capable of capturing the trends of 

whatever shape in both location and scale of the data and therefore may be a 

suitable normalisation method in microarray applications. Simulations demon-

strate GAMLSS to be more powerful than Huber's parametric model in detecting 

differential expression in a wide variety of realistic situations. GAMLSS has been 

found to be as powerful as AVST even when the situation is ideal for the para-

metric AVST model. 

GAMLSS normalisation presented in this chapter is applicable for within-

slide normalisation. One advantage of GAMLSS normalisation over the other 

within-array normalisation methods is that it automatically achieves between 

array standardisation as well. Within-slide GAMLSS normalised log-ratios are 

comparable across arrays as they are expected to have unit scale for all individual 

arrays. 

Although the GAMLSS method presented in this thesis models only the 

intensity-based trends in the location and scale of the log-ratio data, the method 

is flexible enough to accommodate the spatial and print-tip effects in both lo-

cation and scale models. Therefore spatial and print-tip normalisations can be 
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incorporated in the same model by including row, column and print-tip factors. 

Print-tip bias can also be corrected by applying the model to each of the print-tip 

groups separately. Print-tip group loess normalisation is routinely used to adjust 

for intensity and print-tip biases in the location. A similar approach is possible 

with GAMLSS, to adjust for intensity dependent and print-tip trends in both 

location and scale of log-ratio data. 

Fold-change interpretation of gene expression, generally preferred by biolo-

gists, does not directly apply to GAMLSS normalised log-ratios. Statements like 

"this gene is two-fold up-/down-regulated" is therefore not valid for GAMLSS 

standardised data (y - )t(x))/&(x). This type of statement may however be made 

for GAMLSS residuals (y - (x)), which does not adjust the data for scale. 

Although the within-slide GAMLSS normalised data are comparable across 

slides, it may be be desirable to generalise the method to multiple-slide normalisa-

tion. One possible way of doing this would be to consider multivariate GAMLSS. 

This will however require extending the existing univariate GAMLSS theory to 

the multivariate case, which may not be very straight forward. Another possi-

ble extension of GAMLSS normalisation would be to consider the scale model 

as a combination of the smooth component a(x) and a parametric, fixed or ran-

dom, gene specific component. This kind of formulation, termed semiparametric 

GAMLSS, is allowed within the GAMLSS framework but would require within-

slide replication. 
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Chapter 6 

Functional regression modelling 

6.1 Introduction 

Our study on the use the functional regression model for combining multiple scan 

data in Chapter 4 motivated us to investigate some aspects of this type of model 

in more detail. For example, the functional model presented in Chapter 4 would 

have been more realistic if we could consider a separate variance term for each in-

dividual scan of data. However in this case the model is intractable by maximum 

likelihood estimation because the parameters are not estimable without further 

restrictions on the variance parameters. Although maximum likelihood estima-

tion fails, all parameters are estimable by alternative methods. A considerable 

amount of literature is available on functional, structural and ultrastructural rela-

tionship, commonly known as measurement error models, focusing on alternative 

estimation methods to overcome the limitations of maximum likelihood estima-

tion. These include estimation approaches based on functions of observations 

rather than the observations themselves (Sprent, 1976; Morton, 1981). Neyman 

and Scott (1951) defined two types of parameters, 'structural' or 'incidental', in 

a functional model depending on whether they occur with every observation or 

with a single observation of the joint distribution. Sprent (1976) suggested using 

likelihood of certain functions of observations to avoid dependency of the struc-

tural parameters on the incidental parameters, which is essentially the cause of 

the inconsistency in the maximum likelihood estimates of the structural param-

eters. Morton (1981) approached the problem in a similar way to Sprent (1976) 

and based the estimation on 'pivots', certain functions of observations whose dis-

tributions do not depend on the incidental parameters. Use of pivots therefore 

eliminate the dependence on the incidental parameters. Estimating equations 

were derived by taking the expectations of the score functions conditional on the 

pivots and the sufficient statistics of the parameters. The estimating equations 

proposed by Chan and Mak (1983) are based on likelihood of the observations, but 
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modified to give consistent estimates of the parameters. In fact, all the approaches 

described above for estimating functional relationship are mainly concerned with 

estimability and consistency of the estimators. A question still remains about how 

good the estimators are with respect to other criteria. One of the key properties of 

an optimal estimator is the efficiency, which has not received much consideration 

in the literature of functional models. 

In this chapter our main aim is to investigate alternative approaches of es-

timating functional models and compare them in terms of unbiasedness and ef-

ficiency of the estimators. We confine our investigation to linear relationships 

and restrict attention to a particular 'cleaned' subset of the murine macrophage 

data described in Section 3.3. A plot of subset of the data on which we base our 
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Figure 6.1: Scatterplot of scans 1-4 vs. scan 1 intensity data. 

analysis is given in Figure 6.1. The subset contains 7543 observations which were 

selected by fitting simple no intercept Least Trimmed Squares (LTS, Rousseeuw 

and Leroy, 1987) regressions (y .i  = /3y.i +e for j = 2, 3, 4) of scans 2, 3 and 4 data 

on scan 1 data and choosing observations corresponding to absolute standardised 

residuals less than or equal to 3. A few observations near zero at the bottom end 

have also been deleted. The subset of the data is free from outliers and consists of 

cases where the linearity of the relationship is not affected by censoring of signal 

at the upper limit of 65535. This nonlinear pattern of the full data set has been 

130 



explained and addressed in Chapters 3 and 4. 

6.2 The model 

Suppose that Yij  represents the measure of response of gene i in scan j for i = 

1, 	, n; j = 1, - , m. For this investigation we consider the multivariate linear 

functional model with y.i  as the predictor variable and (Y.2, 	,y m ) T  as the vector 

of response variables, and assume 

Yi j 	N(pi3, a), 	 (6.1) 

where I.Li  = E(y 1 ) denotes the true expression level for gene i, Oj  the gain setting 

in laser scan j, and the variance of the measured response in scan j. In matrix 

notation, the model can be represented as 

Nm  (pi 13,  V), 	 (6.2) 

where Y = (yii, 	, Y,",), = (',• 	I3mP' and V is a m x m diagonal covari- 

ance matrix. We constrain 3 	1 for identifiability. The objective is to estimate 

the /i's, ) 3's and a 2 's without making distributional assumptions about the u's. 

6.3 Estimation methods 

In this section, we describe some estimation methods that can be used to estimate 

the parameters of model (6.1) avoiding the limitations the of method of maxi-

mum likelihood in functional regression estimation. For example, the model can 

be estimated by minimising the sum of squares of the difference between the ob-

served and expected second moments, which we term method of second moments 

estimation. Sprent (1976) noted that anomalies of the likelihood approach can 

be avoided by considering likelihood of certain functions of observations, rather 

than the likelihood of the observations themselves, and making inference on the 

modified likelihood. Morton (1981) gave estimating equations for the functional 

model (6.1), and more generally for a multivariate ultrastructural model, derived 

from functions of pivot-like quantities, which eliminate the dependence on the 

incidental parameters, and provide basis for consistent estimation. Modified like-

lihood equations for estimation of the multivariate functional relationship was 

also suggested by Chan and Mak (1983). Aitkin and Rocci (2002) suggested an 

EM algorithm for maximum likelihood estimation in generalised linear models 

with continuous measurement error in the explanatory variables. A brief review 

of some of these alternative estimating methods are given below. 
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6.3.1 Method of second moments 

The idea is analogous to the method used for solving factor analysis model (Mar-

dia et al., 1979, p. 259) where the coefficient matrix and the variance of specific 

factors are estimated by equating the sample covariance matrix and population 

covariance matrix under the factor model. Let S denotes the m x m matrix of 

the observed second moments, i. e., 

	

for j,k=1,..,m. 	 (6.3) 

We denote its expectation by V, given by 

Vk = T I3jI3k + OSjk 	for j, k= 	 , m, 

where 5 is the Kronecker delta, and 

T 2 = _ .  

The parameters 3's and o, 2's together with T 2  can be estimated by numerically 

minimising the sum of squares: 

M Tn 

i >(S3,. - jk). 
	 (6.4) 

j=1 k=1 

There are m(m+1) distinct terms in S, which equal or exceed the 2m parameters 

in V provided that m > 3. The maximum likelihood estimates of u's, conditional 

on the estimates /3's and a 21s, can be obtained as 

M 

	

for i=1,.,ri. 	 (6.5) 

6.3.2 Morton's (1981) estimating equations 

The estimating equations in Morton (1981) were derived for a ultrastructural 

relationship with replicated observations, which also applies to the functional 

model (6.2) as a special case. The idea in Morton's (1981) method is to start 

with pivot-like quantities, which eliminate the dependence on the incidental pa-

rameters, and derive functions of these which give estimating equations leading to 

consistent estimators. These equations involve the incidental parameters which 

are then replaced by estimators. The method overcomes some of the difficul-

ties encountered in likelihood and least squares estimation when there are many 

incidental parameters. 
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Morton (1981) gave estimating equations for a more general ultrastructural re-

lationship with replicated observations, which for an rn-vector Yiq  = (yiiq, , yimq) 

of observations at replicate q is given by 

	

Yiq  = a + (Ai + 6iq)/3 + Eiq 	for i = ..... , n; q= 1, 	, i, 	(6.6) 

where a, are rn-vectors of parameters with first components a 1  = 0, 0 = 1, the 

are incidental univariate parameters, 6's are independent N(0, r2 ) errors and 

the €'5 are independent rn-vectors with multivariate normal distributions of zero 

mean and covariance matrix U specified by G = (o, , 

The sufficient statistics for the parameters are the vector means Y. = (thi., 	, 

and the sum of squares and product matrix 

Sj (Y q )(11q .)T . 

To state the estimating equations of Morton (1981), suppose 

= 	V = U + r2 33 

= Yi. - a - 

and define the matrix 

	

11 	12 	lfl  

M= 	
Th2 	

. 	 (6.7) 

m m 01 

Then the augmented matrix S is defined to be 

n 

	

S = S2  + r 	M'gg(M)T , 	 (6.8) 
i=1 

which has expectation 

E(S) = n(r - 1)V + nM'PMVM TP(M')T , 	 (6.9) 

where P is the rn x m identity matrix except for the first term which is replaced 

by zero. 

Denote the elements of V by {VC}  and the vectors of partial derivatives 

with respect to U by av !th/aO, where U =(r,... cr2)T. 

Morton (1981) showed that, the parameters of model (6.6) can be estimated 

by solving the system of equations 

j. = 0 1 	(6.10) 
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PV -1  	(6.11)[ 	 ]  

	

- E(S k )}aV'/ae = 0, 	(6.12) 

	

I3TU_lSr - (r - 1)VU 1 /3 = 0, 	(6.13) 

where Aj = lTy/lT/3 and that the estimates obtained by solving the above system 

of equations are consistent. That is, the method overcomes the inconsistency 

properties of the likelihood equations in presence of incidental parameters in the 

functional model. 

The functional model (6.2) is a special case of the ultrastructural model for 

replicated data (6.6) with r = 1, a = 0 and r2  = 0. The system of the estimating 

equations for this functional model reduces to 

	

PV-1 1 iM1gi - {S - E(S +)}V_ 1 ] = 0, 	(6.14) 

	

 EfSh,k- E(Sk)}aV ' /ao = 0. 	(6.15) 

As for the general case, solutions of the above system give consistent estimators 

of the parameters of model (6.2). 

6.3.3 Modified likelihood equations (Chan and Mak, 1983) 

Chan and Mak (1983) used the log-likelihood function, which under the notations 

of model (6.2) is given by 

L = —(m/2) log I VI - ( 1/2) 	(Y - 	V' (Y - j) + constant, (6.16) 

to derive the usual likelihood equations and then modified them to obtain con-

sistency. For arbitrary given /3 and 9 = (o,... , u2  )T ,  the conditional maximumrn  
likelihood estimators of ji is given by 

( T V 1 /3) 1 /3TV. 	 (6.17) 

Substitution of ,d into the above log-likelihood yields 

L = —(n/2) log IVI - (rt/2)tr(V'S) + (n/2)tr(C 1 /3T W/3) + constant, (6.18) 
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where 
S =EyiyT , C = ,3T Vl/3 and W = V'SV 1 . 	 (6.19) 

Thus the maximum likelihood estimators of 8 and 0 are obtained by maximis-

ing 2n- 'L with respect to /3 and 0. Chan and Mak (1983) gave the following 

convenient representation of the likelihood equations 

tr{(I - V_10C_1/3T)C_1(8/3T19/3)} = 0 (j =2,---, m), 	(6.20) 

tr{('I' - V-1 - V_10C_1I3TW)(aV1a0k)} = 0 (k =1,---, m). 	(6.21) 

Under the assumption that 	j/n tends to a finite limit as n - 00, and if we 

know V or A of V = aA, so that 8 = cr, the maximum likelihood estimator of 

/3 can be obtained by solving (6.20) and the resulting estimator is consistent. It 

can be verified directly that the left-hand side of the equations in (6.20) converges 

in probability to zero, but that 'I' - V' - V_l/3C_h/3TI, in (6.21) converges in 

probability to _V_ 1 /3C_/3TV_l .  Since consistency of the maximum likelihood 

estimators of 6 and 0 implies that left-hand sides of the equations in (6.20) and 

(6.21) converges in probability to zero when the true values V and 0 are inserted, 

it follows that a necessary condition for consistency of the maximum likelihood 

estimator of 0, and also of 6 if A is unknown, is 

V_13C_1/3TV_1(aV/a0k) = 0, for all k, 	 (6.22) 

which is rarely satisfied since V_h/3C_1J3TV_1  is nonnegative definite. Chan and 

Mak (1983) therefore modified the likelihood equations in (6.21) by adding an 

extra term V_1/9C_1!3TV_1  to the expression W - V' - V_1/3C_1/3TW, so that 

the left-hand side now converges in probability to zero when the true values of 3 

and V are inserted. Thus an alternative procedure for estimating /3 and 8 is to 

solve the equations 

tr{(I - V_ 1 )3C_ 1 I3T)c//3C_ 1 (5)3T13I3)} = 0 (j = 2, . , m), 	(6.23) 

tr{(I - V_h/3C_h/3T(W - V')(ÔV/88k)} = 0 (k = 1,. . . , m). 	(6.24) 

This estimation procedure in general yields consistent estimators of 3 and 0, 

unless 3 and 0 are not estimable. 

For the special case when m = 2, Chan and Mak (1983) gave the simplified ex-

pressions for the modified estimating equations for estimating /3 and cr, assuming 
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that A = a/a is known, and the estimating equations are 

	

+ 32 (AS 11  - S22) - AS 12  = 0, 	 (6.25) 

	

(A + /3)a - (/9S11 - 2/92 S12  + S22) = 0, 	 (6.26) 

where S is given by (6.3). 

6.3.4 Relation between Morton's and Chan and Mak's 
methods 

Let us consider the special case of m = 2, and simplify the estimating equations 

for Morton's (1981) method. Estimating equation for 0 can be written as 

(6.27) 

where 

= /9TV'Y2/(13TVV3) = (ayji  + U1 /32 Yj2)/(0 2  + i3 o), 	(6.28) 

and 9i  = (0, Yi2 
- 

Therefore, the estimating equation for 3 simplifies to 

- /92yj1)(Uyji + u)32 yi2 ) = 0, 

or, aS12+02   aS22 - /92crS11  - /3aS12  = 0, 

	

or, '32 
S12 -F- 02 (AS 11  - S22) - AS 12  = 	0, 	 (6.29) 

which is identical to that of Chan and Mak (1983). 

Now, to simplify the estimating equation for 9, which has a single parameter 

as A is assumed known, we have 

1/,72  1  1 
- 

(6.30) 

and 

M—[1' 

/32/*1 
-/92 	

] 
- 	1 

(6.31) 

Let IMI = D, and therefore 

1 	/32 1  M 1  = ( 11D) 
[ — I32/° 1/a] 

(6.32) 
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To evaluate S, first we need to expand M'gg"(M') T  which is 

13(yi2 - ,82Yii) 	(I32/
0

)(Yi2 - I 32Yi1) 

gigi = (1/D2) 

(/32 /o)(yi2 - /32Yj1)2 (1/0)2(y2 - /2yii) 2  
(6.33) 

Summing (6.33) over i from 1 to n, we get the expression for S' given by 

n 	 1 	32
2 	

(/2/°) 1 
S = 	M' 	T  gg(M') = (1/D2 ) 	(Yi2 - 2Yi1) L (/a) (1/a)2 

j 	
] 

=1 j=1 	

(6.34) 

Similarly, matrix multiplications lead to expression for E(S) as 

E(S) = nM 1 PMVM TP(M 1 ) T  

= 	n(1/D) 1 -121 

 

/ 
2 

1/a] 
00 

L 0 	1 ] 
MVMTP(M')T 

= 	n(1/D) 
1   0 !2  

L 0 i/a] 
11 

L 

	

1/ Of 
	

02/2 

	

2/ 	1 	] 
VMTP(M')T 

= n(1/D) 
I 	-) 
L 	211 

/2 
1/al 

1 VM TP(M')T  
j 

= 	n(1/D) 
I 	—/3 2  

1/a I V(11D)  

	

[ 
Th2 	— /32/ui 1 

	

02 	1/a 

[since MTP(M_l)T = (M_ 1 PM)T] 

	

/-'2 	/32/°1 1 - 	 /2 	/2 11 i/o 	0 11 	,2 

n(1/D2) 
[ 	

2 

- 	 —/32/ui '/° j L 0 	'/1 i L 02 	'/° 	] 
2 1 

= (11D2)no 	
/3 	/ (132a1

\ 
 I (i3 + A) 	

(/32/o) (1/)2 1 ] . 	(6.35) 

	

Noting that t9v1'1/50 = 5(1/0,)/5a = _(1/0)2 	0, estimating equation for 

0 = a according to equation (6.15) will be 

n 

I (Yi2 - i32y1)2 - ma(/3 +A) = 0, 
i= 1 
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or, a( + A) - ( 1/n) 	(Yi2 - 	= 0,)32Yil )2 

or, (A +  02 )0,2 - ( 3S11  - 202 S12  + S22) = 0, 	(6.36) 

which is identical to the corresponding estimating equation for 0 of Chan and 

Mak's (1983) method. Therefore, the methods are equivalent for unreplicated 

functional model (6.1) with m = 2. We have not investigated the equivalence of 

the methods theoretically for m > 2, because the algebraic expressions for the 

estimating equations become messier in higher dimensions, and seems analytically 

intractable. We have however seen numerically that the methods give identical 

results (see Table 6.1) for the model (6.2) with m = 4 when applied to the data 

set plotted in Figure 6.1. It therefore can be expected that the two methods are 

equivalent for the special case model (6.2). 

6.3.5 Maximum likelihood estimators of structural rela-
tionship 

Although Morton (1981) and Chan and Mak (1983) have shown their respective 

approaches produce consistent estimators, the question still remains concerning 

the existence of efficient estimators, or generally optimal estimators with respect 

to a given criterion. 

Structural version of model (6.1), assuming that p's are random variables 

and follow certain probability distribution, can be estimated by maximum like-

lihood method. We can obtain efficient estimators, against which to calibrate 

alternatives, in the situation where the p's are independent realisation from a 

probability distribution with density function p(p). Then the probability density 

Of 

	

p(Y) 
= f j 	

( Yij — 	
(p)dp, 	 (6.37) 

15j 
	cr 	) 

where 0 denotes the standard Gaussian probability density function. If p is 

known then we can, at least in principle, obtain efficient estimators by numerically 

maximising likelihood (6.37). Computations can be simplified if, in particular, 

N((, -T'), 	 (6.38) 

because then 

	

N. ((0, V), 	 (6.39) 

and the likelihood for Y's is 
n 

III { Iv1/2 	I- 
138
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For simulation purpose we can estimate the /3's and a 2 's, with ( and r2  set to 

their true values, by maximising the likelihood function (LF) (6.40), to obtain 

efficient estimators, and then use (6.5) to estimate the M's. Alternatively, we can 

simultaneously estimate ( and r 2  when maximising (6.40), which is equivalent 

to Factor Analysis with one factor. If assumption (6.38) is valid, either with 

or without ( 0, then one or both of these estimators should lead to efficient 

estimates of the ifs. But it remains to investigate how efficient the estimators 

are if assumption (6.38) is not valid. 

A more flexible approach is to model the distribution of the fs by a mixture 

of Gaussian distributions, i.e., 

N((, T), 	with probability in 	for i = 1,•• , L, 	(6.41) 

then the likelihood for the Y's is 

n (L 

	

i=1 1 j=1 
IV1/2exP 	- (/3)TV1(Y - c1/3)] }. 

	
(6.42) 

We use the likelihood (6.41) as a baseline for comparing efficiency of the estimators 

by alternative methods through simulation. We can estimate the /3's and 0'27s by 

numerically maximising this likelihood, either assuming the ('s, r 2  and in's are 

known, or estimating them at the same time. 

6.3.6 EM algorithm for estimating structural relationship 

Aitkin and Rocci (2002) proposed an EM algorithm for maximum likelihood esti-

mation of generalised linear structural models. For this method, the measurement 

error distribution can be of any specified form, although the implementation has 

been described using normal measurement error. The method does not necessar-

ily require the distribution of the true-score (ji) of the variables with measurement 

error to be known. 

For the description of the method for a simple structural regression, let Yij  and 

Yih be the ith observations on the response and explanatory variables, and P i  be 

the unobserved true-score corresponding to the observed Yih  In addition to Yih, 

observation zj  on an error-free covariate was assumed to be given to describe the 

estimation method. By allowing the true-score (ii) to depend on the error-free 

covariate z, the structural model was defined as 

YijlYih, j, z 	-' N(c + /3jt + y 1 zj , 

	

YihIILi,Zi 	N(u,a), 

	

iLIzi 	N((+72 z,7-2 ). 	 (6.43) 

139 



For the subsequent analyses the model (6.43) was transformed so that the trans-

formed true-score 'K = - y2 z has a homogeneous N((, 'r2 ) distribution. Now 

the original true-score can be expressed as i = f + -y 2 z. Defining = 'Yi + ) 3Y2, 

dropping the stars and suppressing notationally the conditioning on z, the model 

(6.43) can be expressed as 

Yij I Yih, ,a 	N (a + /3ji + i z, 

2 
YihIpi, '--i  

N((,T 2 ). 	 (6.44) 

To construct the likelihood, Aitkin and Rocci (2002) treated the true-scores 

() as missing data. The complete data log-likelihood function for model (6.44) 

was defined as 

L = 	{_ log(2ir) - log a3 - _(yjj - a - /3j - y 1 z) 2  

1 	 1 
-- log(21r) - log ah - 	- - 'yz i ) 

2 
1  

-- log(2) - log -r - 1 	
- )2}. 	 (6.45) 

2 

The authors proposed EM algorithm for estimating the parameters using the 

log-likelihood function (6.45) considering a as fixed. The missing data appear 

in the complete data log-likelihood as y j  and which are replaced in the E 

step by their conditional expectations. A modified mixture maximum likelihood 

approach of the above method was suggested for the full maximum likelihood 

estimation of generalised linear structural model with unknown 0,2  which does 

not require making any assumption about the distribution of p2  other than that 

it is non-normal. 

6.4 Application 

We apply the methods to the subset of murine macrophage data plotted in Fig-

ure 6.1 which shows plot of all four scans of data (....... , y.4) against the data 

of the first scan (y.i).  The subset represents the linear range of the full data set 

described in Chapter 3 and is free from extreme outliers as seen in the full data. 

The way we select the subset has been described in Section 6.1. To implement 

the methods of Morton (1981) and Chan and Mak (1983) we use the IMSL rou-

tine NEQNF. The routine solves a system of nonlinear equations using a modified 

Powell hybrid algorithm and a finite-difference approximation to the Jacobian. 

The algorithm is a variation of Newton's method, which uses a finite-difference 
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approximation to the Jacobian and takes precautions to avoid large step sizes or 

increasing residuals. Further details of the algorithm can be found in More et 

al. (1980). For applying the method of second moments, Gaussian LF (6.40) and 

Gaussian mixture (6.42) methods, we use the simplex method of Nelder and Mead 

(1965) as the optimisation tool. The method is implemented using the IMSL rou-

tine UMPOL. Results of applying the methods of Section 6.3 are summarised in 

Table 6.1. 

To obtain the estimates based on Gaussian mixture likelihood (6.42), the pa-

rameters of (6.41) were regarded as fixed at their maximum likelihood estimates 

with L = 5, which are tabulated in Table 6.2. These estimates give the best fit of 

the model (6.41) to the distribution of 's obtained from Morton's (1981) method. 

We have used 500 randomly chosen multiple starts from the plausible parameter 

space, and the estimates tabulated in Table 6.2 correspond to the solution with 

the highest value of the likelihood function. We see that only a small proportion 

( 3%) of the density belong to the fifth component distribution with large mean 

and standard deviation (( 5  = 3382, 7_5 = 1634). A histogram of the distribution 

ofA along with the fitted model (6.41) to the distribution is shown in Figure 6.2. 

To have a clear idea about the fit at the right tail, we compare the estimated 

kernel density and the fitted mixture model by plotting them against log-scale of 

the horizontal axis (Figure 6.3). The plots suggest a good fit of the 5-component 

Gaussian mixture to the distribution of A. A Q-Q type plot of the fit shown in 

Figure 6.2 is displayed in Figure 6.4. To obtain the approximate theoretical quan-

tiles in the plot, we compute n1  quantiles from the 1-th component distribution 

N(( 1 , 'i-i) for 1 = 1,... , 5, where n1  is the nearest integer to n7r1 satisfying the 

condition >I n1  = n. The combined sets of quantiles are used as the theoreti-

cal quantiles of the corresponding Gaussian mixture distribution. Titterington et 

al. (1985, pp.  58-65) discussed similar approach to compute quantiles of mixture 

distributions. We see from Figure 6.4 that a few points ( 0.3%) at the lower end 

(< 150) and a few more ( 1.4%) at the upper end (~! 3300) deviate from the 

mixture model. Apart from that the mixture model (6.41) fits the distribution of 

A reasonably well. A better impression of the fit can be seen from the log-scale 

version, omitting the points corresponding to 8 nonpositive theoretical quantiles, 

of the plot in Figure 6.5. 

The results in Table 6.1 show that estimates obtained by the methods are 

very close to each other. Estimates of the regression coefficients are very similar 

for all methods. In terms of the scale estimates, the method of second moments 

produces slightly different estimates compared to the other methods. 
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Table 6.1: Estimated parameters of the model (6.1) applied to the data in Fig-
ure 6.1. 

Estimation method /2 13 134 &1 &2 03 &4 
Method of 2nd moments 1.559 2.747 4.294 26.438 28.80 49.64 149.4 
Morton (1981) 1.559 2.747 4.294 25.647 27.52 54.99 151.1 
Chan and Mak (1983) 1.559 2.747 4.294 25.647 27.52 54.99 151.1 
Gaussian LF (6.40) 1.559 2.747 4.294 25.588 27.56 55.08 151.0 
Gaussian mixture (6.42) 1.559 2.747 4.294 25.642 27.68 54.84 150.8 

Table 6.2: Maximum likelihood estimates of ,u 	7rjN((1, r?). A's are ob- 
tained from Morton's (1981) method. 

Component (1) 
Parameter estimates 1 2 	3 	4 5 

320.60 453.54 	809.34 	1531.55 3382.06 
it 47.66 90.06 	241.18 	536.93 1634.38 
it 0.25 0.27 	0.28 	0.17 0.03 

142 



0 

 

0 
0 
0 

 

3 
C 

0 
0 
0 

a) 
0 
0 
0 

CO 
0 
0 
0 

-u 

in 
0 
•1 
0 

0 

CD 
0. 

-I 

a.  
C 

0 

0 

C 

Density 

0.0000 	0.0005 	0.0010 	0.0015 	0.0020 	0.0025 	0.0030 

0 
0 
0 
0 
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Kernel density and the fitted mixture distribution 
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The methods of Morton (1981) and Chan and Mak (1983) lead to the same 

estimates for all parameters. From this numerical finding and the theoretical 

equivalence of the methods for m = 2 shown in Section 6.3, it can be expected 

that the two methods lead to identical estimating equations for the special case 

model (6.2). 

6.5 Simulation study 

We conducted a simulation study to compare estimators from the methods de-

scribed in Section 6.3 in the context of the special case model (6.2). We used 

estimates of 3's and a 2 's from Morton's (1981) method (Table 6.1), and the fit-

ted parameters of the 5-component Gaussian mixture to the 's (Table 6.2) as 

the true values, and then generated 1000 data sets according to the Gaussian 

mixture model (6.42). We then estimated the parameters by each of the methods 

of Section 6.3 and compared the estimators in terms of bias and efficiency. We 

computed % root-mean-squares to compare the efficieny of the individual param-

eter estimates, and also a generalised variance type summary measure JAI, which 

is the determinant of the (2m - 1) x (2m - 1) approximate covariance matrix i, 

given by 

= 	- A)(Ar - ) T 	 (6.46) 

where N is the number of simulated data sets and 

2 	2'T 
= (/3, 	' /3m, ° i' 	' °m) 

is the (2m - 1)-vector of parameters. 

Table 6.3 summarises the estimated % bias, % root-mean-squares, % standard 

errors (ESE) and the summary efficiency measure JAI of the parameter estimates 

according to each of the methods based on 1000 simulated data sets. The final 

column gives the relative efficiency (RE) as % of the efficiency (1/ILI) of the 

Gaussian mixture method. The generalised variance measures I A I's are estimated 

to be very small. We present them in Table 6.3 after multiplying by the factor 

101  for ease of comparison. 

We see by comparing the simulation results for the individual regression pa-

rameters /3's that all the methods are almost unbiased and equally efficient in 

estimating the regression coefficients. Performance of the methods mainly varies 

in terms of the variance estimators. However, except for the method of second 

moments, all the methods also perform similarly in terms of bias and efficiency 

of the variance estimators. 
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Table 6.3: Estimated % bias, % root-mean-squares, % standard errors (ESE) and 
the summary efficiency measure JAI of the parameter estimates according to each 
of the methods. The final column gives the relative efficiency (RE) as % of the 
efficiency of the Gaussian mixture method. Results are based on 1000 simulated 
data sets. 

Estimation method 	[2 	/33 	44  &21 â 22  &32  &42  JAI x 105  RE(%) 

Method of 2nd moments-Section 6.3.1, equation (6.4) 
% root-MSE 0.0343 0.0355 0.0482 2.7063 3.7576 3.1440 1.8715 12.9018 	29.3 

% ESE 0.0343 0.0355 0.0482 2.7060 3.7554 3.1427 1.8713 
% Bias 0.0007 0.0014 0.0014 -0.0414 -0.1292 0.0926 0.0215 

Morton (1981)-Section 6.3.2, equations (6.14)-(6.15) 
% root-MSE 0.0343 0.0354 0.0482 2.0758 2.8616 2.4430 1.8489 3.8472 	98.2 

% ESE 0.0343 0.0354 0.0482 2.0739 2.8616 2.4405 1.8488 
% Bias 0.0007 0.0014 0.0014 0.0890 -0.0030 0.1102 0.0164 

Chan and Mak (1983)-Section 6.3.3, equations (6.23)-(6.24) 
% root-MSE 0.0343 0.0354 0.0482 2.0746 2.8559 2.4409 1.8493 3.8251 	98.8 

% ESE 0.0343 0.0354 0.0482 2.0726 2.8559 2.4384 1.8492 
% Bias 0.0007 0.0014 0.0014 0.0909 0.0011 0.1097 0.0163 

Gaussian LF-Section 6.3.5, equation (6.40) 
% root-MSE 0.0343 0.0354 0.0482 2.0794 2.8660 2.4449 1.8497 3.8819 	97.3 

% ESE 0.0343 0.0354 0.0482 2.0775 2.8660 2.4424 1.8496 
% Bias 0.0007 0.0014 0.0014 0.0888 -0.0054 0.1124 0.0163 

Gaussian mixture-Section 6.3.5, equation (6.42) 
% root-MSE 0.0343 0.0354 0.0482 2.0763 2.8513 2.4314 1.8470 3.7784 	100.0 

% ESE 0.0343 0.0354 0.0482 2.0763 2.8513 2.4314 1.8470 
% Bias 0.0007 0.0014 0.0014 0.0894 0.0048 0.1071 0.0127 
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The Gaussian mixture method (6.42) is efficient and can be used as a base-

line for comparing the performance of the methods. Simulation shows that the 

method achieves the highest efficiency, i.e., the smallest generalised variance 

(3.7784 x 10- ) among the alternatives compared. In terms of the overall per-

formance, method of second moments is the least efficient (RE= 29.3%). The 

method is also more biased than the other methods with respect to the esti-

mators of variance parameters. Methods of Morton (1981) and Chan and Mak 

(1983), that are expected to be equivalent for the functional model (6.1), show 

similar performance in terms of overall efficiency with estimated generalised vari-

ances 3.8472 x 10 and 3.8251 x 10, and relative efficiencies 98.2% and 98.8% 

respectively. Furthermore, the methods are almost as efficient as the Gaussian 

mixture method. The method of single component Gaussian LF (6.40) is also 

highly efficient (IA. 3.8819 x iO, and RE= 97.3%), but is slightly outper-

formed by the methods of Morton (1981) and Chan and Mak (1983). 

6.6 Discussion 

Measurement error models, in particular functional relationship models, are a 

generalisation of standard regression models. Such models can be applied more 

appropriately than the standard regression technique in many data analysis prob-

lems, but the analysts commonly prefer to use the more familiar and easy to 

use standard regression models. These models have both advantages and dis-

advantages compared to standard regression models. One major limitation is 

that the conventional maximum likelihood estimation leads to some anomalies. 

For example, parameters are often not estimable by direct application of maxi-

mum likelihood estimation, and sometimes lead to inconsistent estimators when 

they are estimable. An extensive literature is available suggesting alternative ap-

proaches mainly focusing on the problem of estimability and consistency, which 

result from the presence of incidental parameters whose numbers increases with 

the sample size. The alternative estimators suggested in the literature have not 

been compared with respect to other important properties of estimators, such as 

unbiasedness and efficiency. 

Although application of the methods to real data produces similar estimates, 

our simulation study shows that the methods vary in their performance with re-

spect to efficiency. It is known that, when IL's can be assumed to be distributed as 

Gaussian, the parameters of model (6.1) can be estimated efficiently by maximum 

likelihood method. In our study, we have used efficiency of such a method as a 

baseline to compare the performance of the alternative methods. Because the 
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distribution p is positively skewed and a Gaussian assumption may not be valid 

in most applications, we consider a Gaussian mixture to approximate the prob-

ability distribution of p in model (6.1). We see from the simulation results that 

the performance of the methods studied mainly vary with respect to the efficiency 

of the estimators of variance parameters. Estimated % bias and % root-mean-

squared errors of the estimators of the regression parameters have been found to 

be similar for all methods. Comparing the estimated generalised variances of the 

alternative estimators it can be concluded that the methods of Morton (1981) 

and Chan and Mak (1983) give the most efficient estimators of the functional 

regression model (6.1). Because the methods also produce consistent estimators, 

they are likely to be the best options for estimating functional models. We have 

shown that the two methods lead to the same estimating equations for the model 

in bivariate case. They also gave the same numerical results when applied to the 

data plotted in Figure 6.1. From these findings, together with the observation 

that they produce very similar estimate of generalised variance, we can expect 

that the methods are equivalent for the functional model (6.1). Therefore, the 

methods can be considered equally good for the analysis of functional relation-

ships. However, in microarray applications main interest is in the estimation of 

the gene expression parameters (ii), and in contrast to the general applications of 

functional models, 3 and 0 , u') are really nuisance parameters in ourrn 

case. It therefore remains to investigate if the methods provide consistent and 

efficient estimators of the M's, and if not, how the estimating equations for j can 

be modified for consistency and efficiency. 

It is however surprising to note that, despite having elegant properties, the 

methods have not found much application in the literature. Application of stan-

dard regressions, when observations of both response and explanatory variables 

are subject to measurement errors, may be misleading. There is a general prefer-

ence of using standard regression approach because of its familiarity and ease of 

application even when functional regression would be more appropriate. One such 

example is Dudley et al. (2002) who used standard linear regression approach to 

calibrate multiple scans of microarray data. Because all scans of microarray data 

are subject to measurement errors, the functional model (6.1), with estimation 

method of Morton (1981) or Chan and Mak (1983) would be a more appropriate 

choice for doing such analysis. 

It may however be mentioned that this investigation is limited to a special case, 

unreplicated functional models without intercepts. Methods of Morton (1981) and 

Chan and Mak (1983) were proposed in a more general context, and for models 

with intercepts. It would be worth investigating if the omission of intercept 
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term has any effect on the consistency property of the estimating equations. 

We modified the data, i.e., used uncorrected first and second moments in the 

estimating equations, for exclusion of the intercept, but further investigation is 

needed to see if deletion of intercept has any impact on the consistency property 

of the estimating equations. 
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Chapter 7 

Discussion and future work 

The main aim of the research reported in this thesis was to develop statistical 

methods to provide better alternatives for resolving some of the existing problems 

in the data preprocessing step of microarray analysis. This chapter provides an 

overall discussion of the work presented in this thesis. Indications for possible 

further research on the problems studied are also given at the end of this chapter. 

7.1 Review 

Two of the major objectives of this thesis were to 

• develop statistical model for combining multiple scan data to correct for 

"signal saturation" and "signal deterioration" effects in the gene expression 

measurement, and 

• suggest unified approach for nonparametric location and scale normalisation 

of microarray data. 

We have also investigated the efficiency of different estimation methods for func-

tional regression models through simulation studies. Discussions are organised in 

the following three subsections corresponding to these objectives. 

7.1.1 Combining multiple scan data 

The motivation behind combining multiple scan data was to deal with the sys-

tematic bias in the gene expression measurements, induced due to the limitation 

of acquisition device (scanner), during the scanning process of the hybridised mi-

croarrays. The two conflicting problems at this stage affecting highly expressed 

and weakly expressed genes respectively are termed as 'signal saturation' and 

'signal deterioration'. Signal saturation occurs when the pixel intensity exceeds 
216 - 1, the threshold for a 16-bit (double precision) image converting software, 
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and the recorded pixel intensity is censored at this threshold value. As a result, 

estimators of gene expression are biased, with the amount of bias increasing as a 

function of the proportion of pixels saturated. Signal deterioration refers to the 

problem at the other extreme where the noise dominates the very weak signal 

intensity. There is a trade-off between the problems and are related to the pho-

tomultiplier tube (PMT) voltage settings of the scanner. Because low-intensity 

spots are better measured at high PMT settings and highly expressed genes are 

better measured at low settings, no single setting can be optimal for both ends. 

We therefore consider combining multiple scan data obtained at a series of in-

creasing PMT settings to get improved gene expression estimates. 

The exploratory analysis presented in Chapter 3 provided useful information 

regarding the basic patterns of multiple scan data and helped us decide the refined 

model, presented in Chapter 4, for combining such data. The major patterns we 

discovered through exploratory analysis are that spot intensity measurements, 

particularly corresponding to higher PMT settings, are not linearly related to 

the gene expression levels across the entire range of the data and the variability 

of the data depends quadratically on the expression levels. Our initial attempt 

of modelling the nonlinearity with a hyperbolic function was not fully successful 

as the function is not flexible enough to comply with the varying nature of the 

nonlinearity found in different applications. One limitation of the hyperbolic 

function is the lack of flexibility to model the case of extreme censoring when the 

nonlinearity resemble almost a piecewise linear relation as found in iron-deficiency 

data (Section 4.4.2). The censored mean function, which is the location function 

of our refined model in Chapter 4, has been found to overcome these limitations 

of the hyperbolic function. The function has a natural analogy with the data 

generation mechanism of the scanner and has been found to provide satisfactory 

fit to the data sets considered in this study. 

Among the several robust options we have experimented with in this study, 

use of maximum likelihood method based on a heavy tailed Cauchy model and a 

censored Cauchy model seems to be the most reasonable choice. Although appli-

cation of the Cauchy and censored Cauchy models to the data sets used in this 

thesis produces very similar results, the censored Cauchy model is a more realis-

tic choice because it takes account of the fact that spot averages cannot exceed 

the censoring threshold T, and in case of moderate or heavy censoring, censored 

Cauchy model can be expected to give better results than the Cauchy model. M-

estimation using a Gaussian likelihood type objective function, downweighting 

the observations outside 3 standard deviations, with the censored mean func-

tional model did not fit the data well. We have however found that the amount 
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of noise and outlying observations in multiple scan data vary in different appli-

cations. For example, in our applications, murine macrophage data are noisier 

and have more outliers than the iron-deficiency data. It seems that Gaussian dis-

tributed error with the censored mean functional model would also be adequate 

for the iron-deficiency data. Although the Cauchy distribution might be found to 

have heavier tail than the data require in some applications, providing some extra 

robustness in the estimation procedure does not do any harm. We have noted 

some downward bias in the maximum likelihood estimates of the additive and 

multiplicative scales u l  and 2  of the refined model for combining multiple scan 

data based on Cauchy and censored Cauchy distributions. This bias seems to 

arise due to combining a large number n of small samples of size m for estimating 

common scale parameters. Pattern of bias in this case is different from that of 

maximum likelihood estimate of Cauchy scale based on single sample and there 

seems to be no standard way of correction for this bias. This bias however does 

not affect the estimation of the gene expression parameters which is the main 

focus of the model. 

Noting that, in terms of tail behaviour, t-distribution lies between Cauchy 

and Gaussian, and the tail weight of a t-distribution depends on the degrees of 

freedom of the distribution, we investigated the possibility of using a t-distribution 

as an alternative to the Cauchy model. This introduces an extra parameter, the 

degrees of freedom, which ideally need to be estimated from the data. However, 

in addition to the bias in the scale estimates, maximum likelihood has been found 

to substantially underestimate the degrees of freedom. 

The murine macrophage data and iron-deficiency data described in Chapter 4 

show considerable dissimilarities in terms of the patterns of multiple scan data. 

The censored mean functional model based on Cauchy and censored Cauchy dis-

tributions have been found to be flexible enough to provide satisfactory fit to 

both data sets. Comparison of between replicate variations computed from the 

raw data and from the estimated gene expression suggests that combing multiple 

scans according to the proposed model can reduce the signal-to-noise ratio in the 

intensity measurements. 

The major strengths of the proposed model over the few existing methods of 

its kind in the literature are that, it is 

. simple, robust and objective, 

. based on full information of multiple scan data, and 

. defined realistically to be consistent with the natural behaviour of the data. 
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The method is based on the simple and familiar censored Cauchy model, which 

provides a basis for robust and objective method of estimation taking account of 

the fact that spot averages, like the indididual pixel values, cannot exceed the 

censoring threshold T. The method is objective in the sense that, unlike other 

robust methods, it does not require choosing any weight function or any tuning 

constant to control the amount of robustness needed in a particular application. 

The proposed method utilises the complete information from multiple scan 

data, which is not the case for most of the existing methods for handling the 

problem. Dudley et al. (2002), for example, loses information by discarding ob-

servations in the nonlinear range. Bell's (2003) algorithm also considers data 

within a certain range that are not likely to be affected by signal censoring and 

deterioration. In addition to losing information, these methods involve certain 

degree of subjectivity in choosing the 'linear range' or the portion of data not 

affected by censoring or deterioration. 

The model is realistically built to represent the behaviour of the data. The 

nonlinear relationship, the censored mean function, has a natural analogy with 

the data generation mechanism of the scanner and represents the trend of the 

data nicely. This we think is more realistic than the linear and gamma curve 

representations of Garcia de la Nava et al. (2004) for modelling the relationship 

of multiple scan data. 

Some weaknesses of the method are also worth mentioning. The model would 

have been more realistic if we could consider separate variance terms for individual 

scan of data. This is however not easy in the framework of functional model 

because of the identifiability problem of the parameters. Another drawback is 

that, in terms of tail behaviour, Cauchy or censored Cauchy distribution may 

not always be the appropriate match of the data. Choice of Cauchy model has 

further disadvantage of having a multimodal likelihood which poses complexity 

in the estimation procedure and reduce computational efficiency. Although the 

main interest is in the gene expression parameters, adjustment of the bias in the 

scale estimates is also desirable. 

Nevertheless, the proposed method is a considerable improvement over the 

existing methods and provides a reliable and elegant way of combining multiple 

scan data to get improved gene expression estimates. 

7.1.2 Nonparametric location and scale normalisation 

Normalisation is a much discussed issue in the microarray literature. Generally 

location normalisation and scale normalisation (variance stabilisation) are treated 

separately. For example, loess smoothing is routinely used for normalising the lo- 

155 



cation of log-ratio data to remove intensity dependent and spatial effects. On 

the other hand, parametric models, e.g., additive plus multiplicative model, are 

widely used for variance stabilisation. Noting the limitations of parametric models 

to be fully adequate for modelling the complex nature of the variability of microar-

ray data, we studied the use of nonparametric methods for both location and scale 

normalisation under a common framework. The proposed model using GAMLSS 

(Chapter 5) applied to lymphoma and iron-deficiency data suggests that it can 

model the various trends in both location and scale of the data and therefore may 

be a suitable normalisation method in microarray applications. One advantage 

of the method is that, GAMLSS normalised data are comparable across arrays, 

although the method is applied individually to each array for in-slide normalisa-

tion. Comparison of the method with the parametric AVST method applied to 

the data sets considered in this study suggests that GAMLSS identifies relatively 

more genes as differentially expressed than the AVST method for certain arrays 

investigated. While comparing the power of GAMLSS normalisation with that 

of AVST method in inferring differential expression using simulated data, it has 

been found that GAMLSS is as good as the AVST method when data are gener-

ated considering the parametric model as true. Whereas, CAMLSS method has 

been found to be considerably more powerful than the parametric AVST method 

when GAMLSS location and scale models fitted to real data are considered as 

true. The simulations in Section 5.6 demonstrate that GAMLSS normalisation 

improves the inference on differential expression even when applied to the AVST 

normalised data. 

As with loess normalisation, the method is however based on the assumption 

that, either the proportion of differentially expressed genes are small, or there 

is symmetry in the expression values between up-regulated and down-regulated 

genes. If at least one of these two assumptions is not satisfied, the method may 

incorrectly normalise the differential expression. Dependence on these assump-

tions may be alleviated by applying the method to a set of invariant genes that 

are likely to be constantly expressed. 

7.1.3 Efficiency of functional regression estimators 

We experienced some interesting problems while investigating the use of func-

tional regression models, in Chapters 3 and 4, for combining multiple laser scans 

through maximum likelihood estimation. One of the problems was concerned 

with the estimability of the parameters. Parameters are not estimable by direct 

application of maximum likelihood estimation without prior information about 

the variance parameters. This problem has been discussed extensively in the lit- 
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erature, and we have also noticed in Section 3.4.2 that the likelihood function 

becomes infinite as any of the variance parameters approaches zero because of 

the rounding errors in the data (Copas, 1972). Although estimability can be 

restored by imposing certain restrictions on the parameter space, Sprent (1976) 

showed that the maximum likelihood may lead to inconsistent estimators in such 

cases. Furthermore, these restrictions, e.g., the assumption that the variance 

ratios or a subset of the variance parameters are known, are not often feasible 

in most applications. Alternative estimation methods that are available in the 

literature, such as, Morton (1981) and Chan and Mak (1983), mainly address 

the problems of identifiability and consistency. It is therefore reasonable to in-

vestigate how good these estimators are in terms of efficiency. We limited our 

investigation to the no intercept linear functional model, and used the efficiency 

of the maximum likelihood estimators in the corresponding structural model, as-

suming a Gaussian mixture distribution for I.L, as a baseline for calibrating the 

efficiency of the alternatives. These estimators are theoretically known to be ef-

ficient, and also achieved the highest efficiency among the alternatives compared 

in our investigation. Simulation shows that the methods of Morton (1981) and 

Chan and Mak (1983), based on the likelihood of pivots rather than the likelihood 

of the observations themselves and the likelihood equations modified for consis-

tency respectively, are almost as efficient as the estimators of Gaussian mixture 

structural model. Another interesting result we found is that the two methods 

lead to identical estimating equations for our no intercept linear functional model 

in the bivariate case. Although we could not prove the equivalence in general 

because the problem seems analytically intractable in higher dimensions, we have 

seen numerically that the methods give identical results in four dimensions when 

applied to our example data set. It may therefore be the case that the two meth-

ods are actually equivalent for the no intercept linear functional models. Further 

investigation is however needed to establish this point. 

7.2 Future work 

There is scope for further research on the problem for combining multiple scan 

data, on the nonparametric method of location and scale normalisation and on the 

efficiency investigation of the functional regression estimators. This is described 

in the following three sections. 
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7.2.1 Combining multiple scan data 

This is again divided in to two heads, one describing possible further analysis 

of the proposed censored mean functional model and the other indicating the 

alternative models or statistical methodology that may be worth investigating for 

studying the problem. 

Further analysis of censored mean model 

One possible way of further investigating the utility of the censored mean func-

tional model for combining multiple scans would be to apply the model in some 

actual scientific analysis. For example, results of formal analysis on some data 

set could be compared with and without applying the model of multiple scan 

to see how the method improves detection of differentially expressed genes, or 

the inference on the scientific question of interest for that particular analysis. 

It would also be interesting to investigate the performance of normalisation and 

variance stabilisation methods on the estimated gene expressions obtained from 

the multiple scan model. 

This thesis illustrates the method using iron-deficiency and murine macrophage 

data consisting observations from 3 and 4 scans respectively. It would be useful 

to investigate the effect of number of scans considered on the performance of the 

method. This could be done by applying the method to other data sets with dif-

ferent multiplicity m of scan and through simulation study with a broader range 

of m values. This might eventually give guidelines about the ideal number of 

scans to be considered in such studies. Simulation studies with different m values 

would also be useful for a more detail study of the bias in the scale estimates of 

the censored mean model, which has been investigated for varying ri but fixed 

m (= 4). Since both n and in could vary in different applications, it would also 

be useful to see if m has any effect on this bias. 

Alternative methods 

Alternative measurement error (ME) models, e.g., ultrastructural relationship 

(Dolby, 1976) models could be investigated as alternative to the functional rela-

tionship model. Although the functional and ultrastructural models are similar 

in appearance, they vary with respect to the underlying model assumptions and 

properties of the estimated model parameters. Functional models treat ft's as ii 

unknown constants, whereas ultrastructural models consider ii's as independent 

random variables with different means and common variance. A comparison of 

these models in combining multiple scan data may therefore be interesting. 
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Other estimation methods, as alternative to maximum likelihood methods, 

could be investigated. We have seen in Chapter 6 that there are alternative 

methods, e.g., Morton (1981) and Chan and Mak (1983) based on likelihood of 

certain functions of observations rather than the observations themselves and 

likelihood equations modified for consistency respectively, that provide consistent 

and highly efficient estimators for the functional regression models with Gaussian 

distributed errors. It would be interesting to apply these methods to our problem 

after modifying them for Cauchy distributed errors. 

Ordinary least squares method does not work for ME models. Generalised 

least-squares has been shown in the literature (Sprent, 1966) to work with func-

tional models. It seems reasonable to investigate such estimation method, because 

least squares gives such simple and elegant results for ordinary regression. 

Another direction of extensive research on the problem would be to consider a 

Bayesian approach. One criticism often cited in the literature of ME models is the 

inconsistency of the maximum likelihood estimation for the functional and ultra-

structural relationships. This is due to the incidental parameters whose number 

increases with the sample size. Bayesian approach to this problem, introduced 

by Lindley and El-Sayyad (1968), is suggested as an alternative to handle this 

problem. Although the Bayesian theory of estimation of functional relationship 

is well established (Lindley and E1-Sayyad, 1968; Zellner, 1971; Florens et al., 

1974; Reilly and Patino-Leal, 1981), the way the method treats the incidental 

parameters, p i  in our case, is not practical for the current problem. In the lan-

guage of Neyman and Scott (1951) the parameters 3, o, 02 and ii of the censored 

mean functional model are called "structural" because they occur in the joint 

distribution of every observation. Whereas j's are "incidental" parameters as p i  

is incidental to the ith observation alone. The Bayesian treatment of incidental 

parameters is to integrate them out from the likelihood with respect to a prior dis-

tribution conditioned on all remaining known or unknown parameters. Main focus 

of Bayesian studies of functional relationship therefore concerns the estimation of 

the common structural parameters only. This is the main thrust of frequentist ap-

proaches as well where the incidental parameters are mostly treated as nuisance. 

This however is not the case with our censored mean functional model. Main 

interest here is to estimate the gene expression parameters (). So the existing 

Bayesian approaches of handling functional relationships need to be modified for 

studying the censored mean functional model for combining multiple scan data. 
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7.2.2 Nonparametric location and scale normalisation 

The GAMLSS normalisation method reported in this thesis can also be extended 

in many ways. P-splines was used for fitting the model in all the applications 

and simulations presented considering its desirable properties and computational 

advantage over the other smoothing methods. It would be interesting to see how 

the other smoothing methods, e.g., loess and smoothing splines, compare with p-

splines in fitting the model. Simulation studies could also be extended to compare 

the performance of the smoothing methods in inferring differential expression. 

Although the GAMLSS method presented in this thesis models only the 

intensity-based trends in the location and scale of the log-ratio data, the method 

is flexible enough to accommodate the spatial and print-tip effects in both lo-

cation and scale models. It therefore could be used to correct for spatial and 

print-tip bias as well by incorporating the row, column and print-tip factors. 

In its presented form, GAMLSS method can only be applied for within-slide 

normalisation. Although the within-slide GAMLSS normalised data are compa-

rable across slides, it would be worth investigating if the model could be gener-

alised to multiple-slide normalisation, and if the multiple-slide normalisation has 

any advantage over the within-slide normalisation. One possible way of doing this 

would be to consider multivariate GAMLSS. This will however require extending 

the existing univariate GAMLSS theory to the multivariate case, which may not 

be very straight forward. 

Another, possibly more realistic, extension of GAMLSS normalisation would 

be to consider the scale model as a combination of the smooth component a(x) 

and a parametric, fixed or random, gene specific component. This kind of formula-

tion, termed semiparametric GAMLSS, is allowed within the GAMLSS framework 

but would require within-slide replication. 

7.2.3 Efficiency of functional regression estimators 

Our investigation on the efficiency of different estimators of functional regression 

was limited to only a special case, no intercept linear functional models for un-

replicated data with Gaussian distributed errors. The problem could be further 

investigated in several directions. For example, the methods of Morton (1981) 

and Chan and Mak (1983) were proposed in a more general context, and for 

models with intercepts. One obvious question that needs further investigation is 

whether the methods require any modification for the omission of the intercept 

term for the estimators to be still consistent. 

It is also important to compare the performance of the methods for more 
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general models, e.g., linear models with intercept term and nonlinear functional 

models, and models with replicated observations. 

Another, more extensive, direction of research would be to extend and compare 

efficiency of these estimation methods for non-Gaussian, such as Cauchy or t-

distributed, errors. 
As was discussed in Section 6.6, in microarray applications, the structural 

parameters 0 = (o,... , o) are really nuisance parameters, and main interest is 

in the estimation of the gene expression parameters. Consistency and efficiency of 

the it's are more important than those of ,6 and 0. An interesting problem of future 

research would therefore be to investigate if the estimation methods discussed in 

this thesis give consistent and efficient estimates of i-t's. If they are found to be 

not consistent, it would be reasonable to investigate if the modifications as in 

(6.23) and (6.24) can be applied to the estimating equations of IL's to estimate 

them consistently. 
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