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ABSTRACT 

The Páramo ecosystem is the most diverse high-altitude ecosystem on Earth with 

more than 4000 species of vascular plants. A naturally fragmented ecosystem, it also 

houses one of the youngest and fastest evolving biota. In this thesis, molecular data 

from the South American species of Oreobolus (Cyperaceae) and Páramo 

representatives within the Melastomeae tribe (Melastomataceae) were used to 

investigate the impact of Andean orogeny and recent climatic fluctuations on 

diversification processes. 

Chapter Two highlights the role of Andean uplift in the diversification of Páramo 

species of Oreobolus as shown by their faster diversification rates compared to other 

southern hemisphere species. It is suggested that Oreobolus may have reached South 

America from Australia during the Pliocene through two independent long-distance 

dispersal events to the northern and southern Andes. This strong north-south 

geographic structure is evident in the species phylogeny. Chapter Three is a 

phylogeographic study of the South American species of Oreobolus that reveals 

complex relationships between and within species. Levels of haplotype sharing, 

measures of genetic distinctiveness and recent divergence times point to incomplete 

lineage sorting confounding species boundaries. Additionally, the role in species 

diversification of the contraction and expansion of Páramo islands during the 

climatic fluctuations of the Quaternary is supported by genetic data. Chapter Four 

showed that colonisation of Páramo within the largely Neotropical Melastomeae 
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tribe occurred repeatedly during the Pliocene. Species-poor Páramo lineages such as 

Castratella may highlight a possible role for extinction in some taxa. In Chapter Four 

I also suggested that frost adapted temperate lineages may have had an adaptative 

advantage that may have contributed towards a greater number of species at higher 

elevations. 
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LAY SUMMARY 

The Páramo ecosystem in northwest South America is the most diverse high-altitude 

ecosystem on Earth housing more than 4000 species of vascular plants, of which 

60% cannot be found anywhere else. A young ecosystem, the Páramo appeared 

following the final uplift of the Andes mountain range c. five million years (Ma) 

before the present. Given its young geological age but massive diversity, it has been 

hypothesised that both mountain uplift and recent climatic fluctuations (ice cycles of 

the Quaternary) had a positive impact on the formation of Páramo species. The aim 

of this thesis is to determine the effects of these abiotic events on Páramo 

representatives of Oreobolus R.Br., a genus in the sedge family (Cyperaceae), and 

the largely tropical Melastomaeae tribe in the family Melastomaceae. I used DNA to 

reconstruct genetic relationships amongst Páramo and southern temperate species of 

Oreobolus and other closely related genera. Additionally, I used the age of fossil 

relatives to provide a time-scale for evolutionary events and thus infer the impact of 

geological events. To provide further insight into the genetic relationships between 

and within the Páramo species of Oreobolus, I used a population genetics approach 

that allowed for comparison of multiple individuals per species across their entire 

distribution range. The study of populations assessed the impact of recent climatic 

events (from 2 Ma) as these would have influenced their current distribution. I also 

reconstructed the genetic relationships of Páramo representatives within the 

Melastomeae tribe and assigned a time-scale to these. Finally, I tested statistically if 
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frost-resistant plant lineages were more diverse at higher altitudes than non-resistant 

ones. For both the Páramo species of Oreobolus and Páramo representatives of 

Melastomeae, species formation is associated with Andean uplift. Oreobolus Páramo 

species showed higher rates of diversification than their southern temperate 

counterparts, while in the Melastomeae species-poor Páramo lineages highlight the 

importance of extinction in the diversification process. Similarly, current distribution 

of Oreobolus populations and complex genetic relationships between and within 

species are largely associated with recent climatic events. Frost-resistant and non-

resistant lineages were found to be equally diverse at higher altitudes. 
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CHAPTER ONE. REVIEW 

1.1 SPECIES DIVERSIFICATION 

Species concepts are still widely debated. At least 25 different concepts exist of 

which Mayr’s (1995) Biological Species Concept (BSC) is the most accepted. This 

author defined species as “groups of interbreeding natural populations that are 

reproductively isolated from other such groups”. This definition was subsequently 

amended by Coyne and Orr (2004) who defined distinct species as “characterised by 

substantial but not necessarily complete reproductive isolation”. Such reproductive 

isolation is fundamentally based on isolating barriers – i.e. biological characteristics 

of organisms that restrain the exchange of genetic material with individuals from 

other populations (Coyne & Orr, 2004). These include premating isolating barriers 

(i.e. behavioural isolation, ecological isolation or mechanical isolation), postmating 

prezygotic isolating barriers (i.e. gametic isolation) and postmating postzygotic 

isolating barriers (i.e. extrinsic or intrinsic inviability). While the BSC is the most 

widely accepted species concept, it shows limitations when applied to hybridisation 

and uniparental organisms (i.e. apomictic plant species) (Coyne & Orr, 2004). 

Various processes may lead to the formation of a new species. The most 

controversial one is sympatric speciation, the process by which co-occurring 

populations become isolated by cause of intrinsic biological features promoting the 

appearance of a reproductive barrier that may lead to the formation of new species 



	 2 

through mutation, reinforcement and/or genetic drift (Coyne & Orr, 2004). A 

commonly cited example of sympatric speciation in plants arises from the palm 

family (Arecaceae). Savolainen et al. (2006) suggested that two co-occurring species 

of Howea from an oceanic island evolved in sympatry as a result of substrate 

specialisation and differences in flowering times. An important mechanism in 

sympatric speciation is allopolyploidization as polyploid organisms are usually 

unable to interbreed with their ancestors because of differences in ploidy numbers 

(Coyne & Orr, 2004; Abbott et al., 2013). A second mode of speciation, parapatric 

speciation, is commonly related to adaptation to local habitats. This process refers to 

the formation of species as a consequence of partial reproductive isolation between 

populations with no apparent geographic barrier (Coyne & Orr, 2004). In allopatric 

speciation the appearance of geographical barriers such as rivers or mountains 

divides a once continuous population into two or more smaller populations. These 

will be geographically isolated which will eventually lead to their genetic 

differentiation through mutation, genetic drift and/or natural selection (Coyne & Orr, 

2004). 

1.2 GEOLOGICAL HISTORY 

1.2.1 The isolation of the South American continent 

The super-continent of Gondwana occupied the southern hemisphere from the 

Palaeozoic to the mid-Mesozoic encompassing the modern landmasses of South 

America, Africa, Madagascar, the Arabian Peninsula, India, Australia, New Zealand 

and Antarctica (McLoughlin, 2001). Gondwana and the northern hemisphere super-
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continent of Laurasia (North America and Eurasia) formed a unique landmass, 

Pangaea until their separation during the mid-Jurassic c. 180 - 165 Ma (Dietz & 

Holden, 1970). Since the Jurassic, between 180 and 35 Ma, the major stages of 

Gondwanan break-up occurred (Fig. 1.1; McLoughlin, 2001). An initial fracture into 

West (South America and Africa) and East Gondwana along the southern and eastern 

coasts of the contemporary African continent occurred during the Middle to Upper 

Jurassic, c. 165 – 162 Ma (Fig. 1.1; McLoughlin, 2001). With the expansion of the 

South Atlantic Ocean c. 135 – 130 Ma, continental breakup followed gradually, 

although the equatorial section of the two continents was connected until 119 – 105 

Ma (Fig. 1.1; McLoughlin, 2001). Subsequently, South America separated from west 

Antarctica during the late Eocene c. 35 – 30.5 Ma (Fig. 1.1; McLoughlin, 2001). 

However, a deep marine passage was not established until the Oligocene, c. 32 – 28 

Ma hence the Antarctic peninsula may have played an important role as a corridor 

for terrestrial vascular plants between Australia and South America until early 

Oligocene times (Raven & Axelrod, 1974; McLoughlin, 2001; Hoorn et al., 2010). 

 



	 4 

 
Figure 1.1. Summary of Gondwana breakup episodes and their estimated age (from McLoughlin, 2001). 
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1.2.2 The Andes orogeny 

The Andean orogeny was crucial for diversification processes in Neotropical regions, 

affecting dispersal and promoting allopatric speciation, ecological displacement and 

habitat heterogeneity (e.g. Antonelli et al., 2009; Hoorn et al., 2010). 

The Andean uplift started from the late Cretaceous with the collision between a 

volcanic arc and the western margin of the South American continent (Gregory-

Wodzicki, 2000; Mora et al., 2010). Since then and mostly during the late Cenozoic 

(c. 30 Ma), there was a gradual uplift resulting from the subduction of the Nazca 

plate beneath the South American plate (Fig. 1.2) (Gregory-Wodzicki, 2000; 

Graham, 2009; Mora et al., 2010). 

The southern Andes section (55ºS – 47ºS) is the lowest in elevation (average 

elevation of 1km) as well as the oldest. Its origin goes back to the early Mesozoic, 

partially as a consequence of the opening of the Atlantic Ocean and principally as the 

result of the subduction of the Antarctic Plate beneath the South American Plate (Fig. 

1.2; Graham, 2009). By the mid-Miocene c. 17 – 14 Ma, this section had reached its 

current elevation (Graham, 2009). The uplift of the central Andes section (47ºS – 

2ºN) started during the Cenozoic as a result of the subduction of the Nazca Plate 

beneath the South American Plate (Fig. 1.2) (Graham, 2009; Mora et al., 2010). The 

uplift of this section was a west to east process and by the mid-Miocene c. 15 Ma, 

half of its current altitude (1500 – 2000 km) had been reached (Fig. 1.3) (Graham, 

2009; Mora et al., 2010). Since then, the western slope of the central Andes has had 

an arid climate partially as a consequence of the development of a rain shadow 

(Gregory-Wodzicki, 2000; Garzione et al., 2008). A final period of intense uplift 
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followed during the late Miocene – early Pliocene, c. 10 – 6 Ma (Gregory-Wodzicki, 

2000; Garzione et al., 2008). 

 

 
Figure 1.2. Tectonic plates acting on southern Central America and South America (from 
Graham, 2009). 

 

The northern Andes section (2ºS – 12ºN) is the youngest and it branches into three 

Cordilleras – Eastern, Central and Western – above the Equator (Fig. 1.3) (Graham, 

2009). The uplift of the three cordilleras was not contemporaneous, while uplift of 

the Central and Western Cordilleras began in the Paleocene, uplift of the Eastern 

Cordillera occurred mostly during the Pliocene (Gregory-Wodzicki, 2000; 

Hooghiemstra et al., 2006). By the mid-Miocene c. 14 Ma, the latter had reached no 
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more than 40% of its current altitude and was located in the tropical vegetation belt 

(van der Hammen, 1974; Gregory-Wodzicki, 2000; Hooghiemstra et al., 2006; 

Graham, 2009; Mora et al., 2010). Following a final episode of intense and rapid 

mountain building during the Pliocene c. 5 – 2 Ma, the Eastern Cordillera reached its 

modern altitude (Fig. 1.3) (Gregory-Wodzicki, 2000; Hooghiemstra & van der 

Hammen, 2004; Hoorn et al., 2010). 

All sections of the Andes had reached their current altitude when the climatic 

fluctuations of the Quaternary started. In the Tropics, changes in the distribution of 

biota have been associated with these climatic events (e.g. Haffer, 1969; Hewitt, 

2004). However, contrary to the latitudinal movements of vegetation belts observed 

in temperate regions, in the tropics migration was rather altitudinal (van der 

Hammen, 1974; Simpson, 1975; Gregory-Wodzicki, 2000; Hooghiemstra & van der 

Hammen, 2004; Garzione et al., 2008; Graham, 2009; Mora et al., 2010). 
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Figure 1.3. Palaeogeographic reconstruction of the stages of Andean uplift (from Hoorn et 
al., 2010). 
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advantage of DNA sequence data is not only the huge number of characters that can 

be generated but also the fact that many of those characters will be under minimal 

selection pressure. These molecular data are available in a number of different 

compartments within the plant cell some of which are inherited in different ways. 

While nuclear genes are biparentally inherited, chloroplast genes are generally 

maternally inherited in Angiosperms but paternally inherited in Gymnosperms 

(Ennos, 1994). The use of molecular data from chloroplast genes will allow the 

assessment of dispersal patterns whereas the nuclear genes allow for better 

circumscription of taxa as they are generally more variable (e.g. Naciri & Linder, 

2015). 

Phylogenies may be reconstructed following the principle of parsimony that state 

that the best fitted phylogenetic hypothesis will be the one with the least number of 

changes (Camin & Sokal, 1965). Following criticism that evolution may not be 

parsimonious, methods based on probabilistic models appeared. First, the maximum 

likelihood algorithm (ML) proposed a set of evolutionary models within which 

nucleotide and amino acid evolution could be framed and based on those the most 

likely phylogenetic hypothesis given the data can be reconstructed (Felsenstein, 

1981). More recently, Bayesian statistics were applied to construct phylogenetic 

hypotheses. Making use of the same set of evolutionary models of ML, BI infers the 

posterior distribution of the phylogenetic tree and the model given the likelihood of 

the data (Huelsenbeck et al., 2001). Partly as a result of being more computationally 

efficient, BI is widely used in molecular phylogenetics. 

Molecular phylogenies are widely used in the study of biogeography through the 

estimation of divergence times of lineages. Molecular dating relies on a modified 
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version of the molecular clock theory postulated by Zuckerkandl and Pauling (1962), 

that is the idea that all molecules evolved at the same rate in a clock-like fashion. 

The relaxed molecular clock theory integrated the caveat that many molecules did 

not evolve in a clock like fashion by permitting differential rates amongst lineages 

for the same molecule (Huelsenbeck et al., 2000). Sanderson (1997) incorporated this 

idea into the phylogenetic framework with the Non-Parametric Rate Smoothing 

(NPRS) and Penalized Likelihood (PL) algorithms. Sanderson (1997) postulated that, 

assuming there are differential rates across the branches of a phylogenetic tree, if one 

or various calibration points are set, a divergence time can be estimated for that 

particular set of taxa. Bayesian approaches are now implemented using Markov 

chain Monte Carlo (MCMC) for the same purpose (Drummond & Rambaut, 2007). 

Importantly, the Bayesian approach allowed for the incorporation of uncertainty 

through the establishment of parametric distributions on calibrated nodes (Ho & 

Phillips, 2009). 

Four types of calibration can be used for molecular dating including the use of 

substitution rates, fossils, geological events (i.e. such as the splitting of continents or 

the emergence of oceanic islands) and secondary calibrations (Sauquet, 2013). Of 

these, fossil calibrations are the most widely used. These are placed at specific nodes 

in the phylogeny that contain all extant species sharing similar morphological 

characters with the fossil, providing an estimate age for that clade. However, it is 

important to consider this technique’s limitations. Fossils only provide minimum age 

estimates as the taxon of the fossil may have evolved much earlier than the time at 

which the fossil was preserved. Molecular dating from fossil calibrations may give 

equivocal results if they are incorrectly placed in the phylogeny or not correctly 
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dated (Gandolfo et al., 2008). These limitations can be overcome with the inclusion 

of multiple fossil calibrations as well as expert knowledge of the group under study 

(Renner, 2005; Gandolfo et al., 2008). Furthermore, it is critical to include the 

uncertainty of evolutionary rates and calibration times through selection of models 

that adequately fit the data (Drummond et al., 2006). 

The molecular dating approach as a way to estimate divergence times has had a 

massive impact on the study of biogeography, allowing for the comparison of the 

timing of divergence of lineages with the timing of geological events. In this manner 

hypotheses related to the impact of deep-time geological events on the diversification 

and distribution of taxa can be tested. An excellent example is the effect of the 

Andean orogeny on the contemporary distribution of plant diversity in South 

America. Through the comparison of Andean geological history with the estimated 

divergence times of numerous plant groups, researchers have demonstrated that the 

uplift of the Andes has acted both as a vicariant barrier and as a north-south dispersal 

corridor besides providing new high-altitude habitats (reviewed in Luebert & 

Weigend, 2014). 

In addition to the estimation of divergence times, the directionality of migration can 

also be estimated from molecular phylogenies, addressing another fundamental 

question in biogeographic research related to the ancestral origin and pattern of 

migration of taxa. Methods to reconstruct ancestral areas have developed with 

molecular phylogenetics, and range from parsimony-based methods such as 

Dispersal-Vicariance Analysis (DIVA; Ronquist, 1997), to likelihood-based methods 

such as the Dispersal-Extinction Cladogenesis (DEC) model implemented in 

LAGRANGE (Ree et al., 2005; Ree & Smith, 2008) and finally to Bayesian-based 
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methods like those implemented in BayArea (Landis et al., 2013) or in RASP 

(Bayesian Binary Model; Yu et al., 2015). 

Another use of molecular phylogenies is to estimate changes in diversification rates 

which could be either associated with extrinsic (e.g. geological, ecological) or 

intrinsic (e.g. floral adaptations, changes photosynthetic pathway) events. Changes 

can be identified across the phylogeny showing faster or slower evolutionary rates 

explaining differences in species diversity (Magallón & Sanderson, 2001; Rabosky 

& Lovette, 2008; Donoghue & Sanderson, 2015). 

1.3.2 Phylogeography 

Phylogeography reconciles the disciplines of phylogenetics and population genetics 

bringing together micro- and macro-evolutionary processes (Avise, 2009). Avise 

(2000) defined it as the study of “the principles and processes governing the 

geographic distributions of genealogical lineages, especially those within and among 

closely related species”. This approach is particularly relevant when testing the 

impact of recent ecological and/or climatic events (e.g. climatic fluctuations of the 

Quaternary) on the genetic structure and distribution of taxa, allowing exploration of 

relationships amongst biogeographic areas and assessment of the recent history of 

species and/or populations (Avise et al., 1987; Bermingham & Moritz, 1998; Avise, 

2000; Petit et al., 2003; Beheregaray, 2008; Avise, 2009). Numerous studies have 

used a phylogeographic approach to try to infer the relationships and history of 

populations but most of this work has focused on temperate regions (e.g. Dumolin-

Lapègue et al., 1997; Hewitt, 2004). Studies on South America taxa are relatively 

few (e.g. Honorio Coronado et al., 2014; reviewed in Turchetto-Zolet et al., 2013) 
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and there have been no studies for high altitude plant taxa in northern South 

America. 

1.4 THE PÁRAMO ECOSYSTEM 

1.4.1 Geographic distribution and ecology 

Páramo is a high-altitude ecosystem that is discontinuously distributed between 11ºN 

and 8ºS, and between 83ºW and 70ºW; it is mostly concentrated in Colombia, 

Venezuela and Ecuador, although some outliers are found in Costa Rica, Panamá and 

northern Peru (Fig. 1.4) (Smith & Cleef, 1988; Luteyn, 1999). This ecosystem is 

naturally fragmented, occupying the mountaintops of the northern segment of the 

Andes Mountain Range and the Talamanca Cordillera in southern Central America, 

between (2800-) 3000 and 5000 m.a.s.l. (Luteyn, 1999). It extends from the upper 

limit of the continuous forest up to the permanent snowline, covering an approximate 

area of 37,500 km2 (Buytaert et al., 2010). 

Páramo has been traditionally divided into three altitudinal vegetation zones, namely 

Subpáramo (2800 – 3500 m), Páramo (3500 – 4400 m) and Superpáramo (4000 – 

5000 m) and there is a general trend to lower growing vegetation as altitude increases 

(Cuatrecasas, 1958; van der Hammen, 1974; Hooghiemstra & van der Hammen, 

2004; Buytaert et al., 2010). The Subpáramo zone is characterised by a shrub forest 

mostly dominated by species in the Ericaceae, Melastomataceae and Asteraceae 

(Luteyn, 1999). The Páramo zone is dominated by tussock grasses of Calamagrostis 

species (Poaceae) on the dry slopes and species of Chusquea (Poaceae) on the wet 

slopes (Luteyn, 1999). In the Superpáramo, the vegetation is scarce and sparse 
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possibly due to the adverse conditions of frequent frosts and unstable soil caused by 

frost heaving (van der Hammen, 1974; van der Hammen & Cleef, 1986; 

Hooghiemstra et al., 2006; Madriñán et al., 2013). 

 

 
Figure 1.4. Geographic delimitation of the Páramo ecosystem (light red) in northwest South 
America and southern Central America (from Madriñán et al., 2013). 

 

Páramos are in general cold and wet, but local microclimates are the norm 

(Sarmiento, 1986). For instance, precipitation ranges from 500 mm in the driest parts 

of Ecuadorian and Peruvian páramos to 3000 mm in Colombia, these patterns are 
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mainly due to the irregular topography and elevation as well as the influence of 

different air masses (Sarmiento, 1986; Luteyn, 1999; Buytaert et al., 2010). An 

outstanding characteristic of páramos is what has been described as “summer every 

day and winter every night” (Hedberg, 1964) with daily temperature variation 

ranging from below freezing to as much as 30ºC (Sarmiento, 1986). Furthermore, 

with a difference of 9ºC in average daily temperature between Subpáramo and 

Superpáramo, it is temperature that largely determines the zonation of the vegetation 

belts (Sarmiento, 1986; Hooghiemstra & van der Hammen, 2004; Hooghiemstra et 

al., 2006). This temperature variation imposes a huge constraint on Páramo plants 

(Luteyn, 1999). Plants require adaptations to cold, including frost tolerance, and 

assimilation of nutrients is slow as a consequence of insufficient light and low 

temperatures (Sarmiento, 1986; Beck, 1994). Despite these difficult conditions, the 

Páramo flora is the most diverse high-altitude flora in the world with as much as 

60% of its c. 4000 plant species, endemic (van der Hammen & Cleef, 1986; Smith & 

Cleef, 1988; Sklenář et al., 2014). 

1.4.2 The palaeopalynological record 

The historical assembly and origin of the Páramo flora has been a fundamental 

question in Neotropical biogeography. Chorological and palaeopalynological studies 

have suggested a composite origin, with locally recruited plants (Neotropical) that 

adapted to the new available habitat and diversified, and temperate immigrants that 

colonised through long-distance dispersal and profited from a new habitat with 

similar conditions to those they were pre-adapted to (van der Hammen & Cleef, 

1986; Smith & Cleef, 1988; Simpson & Todzia, 1990; Donoghue, 2008). 
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Interestingly, studies have suggested a trend towards a higher percentage of 

temperate elements and lower endemic elements in the higher Superpáramo regions 

while in the lower Subpáramo region the dominant elements were of Neotropical 

origin (van der Hammen & Cleef, 1986; Hooghiemstra & van der Hammen, 2004; 

Hooghiemstra et al., 2006). 

Records from the late Miocene to the late Pliocene showed a change in the plant 

composition of Páramo areas from tropical lowland taxa to pre-montane and 

montane taxa (Gregory-Wodzicki, 2000; Hooghiemstra & van der Hammen, 2004; 

Hooghiemstra et al., 2006). For instance, the occurrence of pollen from Poaceae, 

Asteraceae and Hypericum are indicative of vegetation developed above the tree line 

(Hooghiemstra et al., 2006). From the Plio-Pleistocene transition, c. 2 – 4 Ma, some 

of the oldest records of pollen from Páramo vegetation are found, including 

representatives of Poaceae, Cyperaceae, Ranunculaceae, Asteraceae, Ericaceae as 

well as genera such as Valeriana, Hypericum, Miconia, Plantago and Aragoa, 

amongst others (van der Hammen, 1974; van der Hammen & Cleef, 1986; 

Hooghiemstra & van der Hammen, 2004; Hooghiemstra et al., 2006). It is worth 

noting that by this time, records show taxa of both temperate (e.g. Ranunculaceae) 

and tropical (e.g. Miconia) origin, indicating the likely expansion of upper forest 

populations into montane areas as well as the existence of dispersal corridors from 

temperate regions (i.e. Panama Isthmus and the Andes) (van der Hammen & Cleef, 

1986; Hooghiemstra et al., 2006; Graham, 2009). 

During the Pleistocene a repeated alternation of forest and Páramo elements is 

evident at specific altitudes in the palaeopalynological record, registering the 

climatic fluctuations of the Quaternary (van der Hammen, 1974; van der Hammen & 
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Cleef, 1986). Cycles of shifting vegetation belts were repeated throughout the 

Pleistocene with Páramo areas being reduced to isolated islands during interglacial 

periods and expanding during glacial ones (van der Hammen, 1974; van der 

Hammen & Cleef, 1986). Pollen data from the Last Glacial Maximum has showed a 

downward migration of the lower Páramo limit by 1300 – 1500 m expanding to a 

much larger area and likely merging previously isolated Páramo islands (Fig. 1.5) 

(Hooghiemstra & van der Hammen, 2004; Hooghiemstra et al., 2006; Flantua et al., 

2014). 

It has been suggested that the altitudinal migration of vegetation belts during the 

climatic fluctuations of the Quaternary has been a predominant force in shaping 

present-day Páramo plant diversity and high levels of endemism (van der Hammen, 

1974; Simpson, 1975; Madriñán et al., 2013; Luebert & Weigend, 2014). On the one 

hand, the possibilities for dispersal from higher latitudes were greater during glacial 

periods as were the possibilities for migration between Páramo islands, while during 

interglacial periods Páramo islands were isolated possibly promoting allopatric 

speciation (van der Hammen, 1974; Simpson, 1975; van der Hammen & Cleef, 

1986). 
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Figure 1.5. Distribution of vegetation belts and permanent snow since the Last Glacial 
Maximum in the area of Lake La Cocha, Southern Colombia (from Flantua et al., 2014). 

 

1.4.3 Current knowledge from molecular phylogenetics 

Chorological studies have been the starting point for a significant amount of 

molecular based studies of Páramo plant taxa. These have aimed to propose possible 

biogeographic and evolutionary scenarios for the origin and assembly of this flora 

(e.g. Rauscher, 2002; Kadereit & Hagen, 2003; Bell & Donoghue, 2005; Chacón et 

al., 2006; Hughes & Eastwood, 2006; reviewed in Sklenář et al., 2011 and Luebert & 

Weigend, 2014). Many of these studies were included in a meta-analysis of dated 

phylogenies of Páramo taxa that compared rates of speciation within this biome with 

those of other fast evolving biomes from other parts of the world, including Hawai’i, 
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the Cape Floras of South Africa, the Mediterranean region and Southwest Australia 

(Madriñán et al., 2013). These authors demonstrated that the Páramo flora has 

diversified more rapidly than any other on Earth. In addition, they indicated that a 

high percentage of species diversified during the Pleistocene. It was suggested that 

the climatic fluctuations during that epoch resulted in changing distributions of 

Páramo vegetation, which effectively acted as a species pump as populations 

repeatedly contracted and expanded (Madriñán et al., 2013). 

1.5 STUDY TAXA 

Based on the availability of phylogenetic information, appropriate distributions, their 

different ancestral ecologies and opposing breeding systems, Oreobolus R.Br. and 

Páramo representatives within Melastomeae (Melastomataceae) were selected as 

study taxa. 

1.5.1 Oreobolus  

Oreobolus (Cyperaceae) has 17 species with a southern Gondwanan, amphi-Pacific 

distribution, occupying mesic grasslands in southern temperate regions and high-

altitude tropical areas (Mora-Osejo, 1987; Seberg, 1988). Twelve Pacific species 

extend across Australia, New Zealand, Malaysia and Hawai’i, while the five South 

American species are restricted to the southern and northern sections of the Andes 

Mountain Range (Fig. 1.6) (Seberg, 1988; Chacón et al., 2006). These sedges are low 

cushion perennial plants, growing in bogs and mesic habitats and, like most of the 
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family they are wind-pollinated and their seeds are dispersed by wind (Fig. 1.7) 

(Seberg, 1988). 

Molecular phylogenetic analyses at the family and tribe level indicated that the genus 

is monophyletic (Muasya et al., 2009; Viljoen et al., 2013). Additionally, Chacón et 

al. (2006) suggested that the South American representatives form a monophyletic 

group. Furthermore, according to these authors’ dated phylogeny, the South 

American clade diverged during the Pliocene c. 6 – 5.5 Ma. It was then suggested 

that Oreobolus may have reached the southern portion of South America from 

Australasia via long distance dispersal, and subsequently used the Andes as a 

corridor for northward migration (Chacón et al., 2006). However, this hypothesis 

was not supported in an ancestral area reconstruction for the tribe (Viljoen et al., 

2013). 
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Figure 1.6. General distribution map of the South American species of Oreobolus. NA, 
northern Andes; SA, southern Andes. 
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Figure 1.7. (a, b) Oreobolus goeppingeri and (c) O. cleefii. Photo credit: Flora Ilustrada del 
Páramo de Chingaza (http://chingaza.uniandes.edu.co) 
 

1.5.2 Melastomeae 

The largely Neotropical Melastomeae (Melastomataceae) has more than 870 species 

in 47 genera (Michelangeli et al., 2013). The vast majority of species are distributed 

in South America (c. 570 species in 30 genera) with the rest distributed in the 

Palaeotropics (Renner, 1993; Michelangeli et al., 2013). Interestingly, Neotropical 

representatives occupy numerous habitats ranging from lowland forest to the high-

altitude Páramo ecosystem, although the greatest number of species is found in the 

lowlands (Michelangeli et al., 2013). Páramo species are found within six genera 

including the endemic Castratella Naudin, the near-endemic Bucquetia DC., as well 

(a) (c)

(b)
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as Brachyotum Triana, Chaetolepis Miq., Monochaetum Naudin and Tibouchina 

Aubl. (Luteyn, 1999; Michelangeli et al., 2013). 

Castratella is of particular interest (Fig. 1.8). This genus has two species, C. 

piloselloides and C. rosea, endemic to the páramos of Colombia and Venezuela. 

They are rhizomatous perennial herbs with a rosulate habit (Fritsch et al., 2004; 

Sklenář et al., 2005; Michelangeli et al., 2013). Their flower colour and morphology, 

yellow to pink petals with very exposed stamens, suggests pollination by insects, and 

although this has yet to be confirmed, this is common in the family (Michelangeli et 

al., 2013). Though traditionally placed in Microlicieae, based on molecular and 

morphological characters, Fritsch et al. (2004) proposed a new placement within 

Melastomeae. Subsequently, one species within the genus, C. piloselloides was 

included in a phylogenetic study of this tribe (Michelangeli et al., 2013). 

Furthermore there is no molecular evidence of C. piloselloides and C. rosea being 

sister taxa as no molecular data has been gathered for the latter. The aforementioned 

might be due to the difficulty of finding C. rosea, which until the 1970s was known 

only from the holotype, and even now collections are very limited. 
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Figure 1.8. (a) Castratella rosea and (b, c) C. piloselloides. Photo credits: (a) A. M. Cleef and 
(b, c) Flora Ilustrada del Páramo de Chingaza (http://chingaza.uniandes.edu.co) 
 

 

(c)

(b)

(a)
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1.6 THESIS AIM AND OBJECTIVES 

1.6.1 Aim 

This thesis investigates the patterns and processes underlying the diversification of 

plants in the Páramo ecosystem, through studies of representative species of 

Oreobolus (Cyperaceae) and Melastomeae (Melastomataceae). 

1.6.2 Objectives 

Objective 1: to investigate the impact of the Andes orogeny on the timing, 

directionality and diversification rates of the South American species of Oreobolus 

(Chapter Two). 

a. Re-evaluate the monophyly of the South American clade of Oreobolus, and 

of each of the five South American species within the genus 

b. Estimate dates of species divergence 

c. Assess the likely direction of migration 

d. Compare diversification rates of the South American species with Pacific 

ones and with the other genera within the Oreobolus clade. 

Objective 2: to examine the genetic structure between and within the South 

American species of Oreobolus in order to understand the influences of more recent 

geological, climatic and ecological factors (Chapter Three). 

a. Estimate the species tree of the South American species of Oreobolus 
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b. Assess the population and genetic structure at the inter- and intra-specific 

level 

c. Investigate the impact of Quaternary glacial-interglacial cycles in shaping 

populations of Oreobolus. 

Objective 3: to investigate the impact of the Andes orogeny on the diversification 

history of the Páramo species of the largely Neotropical Melastomeae tribe (Chapter 

Four). 

a. Re-assess the phylogeny of the tribe under a Bayesian framework in order to 

re-evaluate the phylogenetic position of Páramo species 

b. Estimate dates of divergence in Páramo species of Melastomeae 

c. Infer the phylogenetic and phylogeographic relationships of Castratella 

piloselloides 

Objective 4: to determine whether there were differences in species numbers of 

Páramo lineages of different geographic origin (Chapter Four). 

a. Explore species richness patterns for the complete Páramo flora to assess if 

there is a relationship between species richness of Páramo clades and their 

geographic origin (temperate versus tropical) 

b. Explore species richness patterns for the complete Páramo flora to assess if 

there is a relationship between geographic origin and altitudinal distribution 
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CHAPTER TWO. PHYLOGENY AND 
BIOGEOGRAPHY OF THE SOUTH AMERICAN 
SPECIES OF OREOBOLUS R. Br. 
(CYPERACEAE) 

2.1 ABSTRACT 

This study investigates the impact of Andean orogeny on the timing, directionality 

and diversification of the five South American species of Oreobolus, within the 

context of the tribe Schoeneae. Oreobolus is a genus of 17 species with a southern 

Gondwanan amphi-Pacific distribution, restricted to mesic grasslands in southern 

temperate regions and high-altitude tropical areas. Fifteen out of 17 species in the 

genus were sampled including an exhaustive sampling of 235 individuals from the 

five South American species covering for their entire distribution range. 

Phylogenetic analyses under maximum parsimony, maximum likelihood and 

Bayesian inference were undertaken for a combined matrix of chloroplast and 

nuclear ribosomal sequence data (trnL-F and ITS). Bayesian divergence time 

estimation and ancestral area reconstruction analyses were performed. 

Diversification rates were calculated for Oreobolus and allied genera. New results 

reported here include that Oreobolus is not monophyletic. Its South American 

species were recovered as a monophyletic group and show strong geographic 

structure the northern Andean species (NAC) from the southern Andean ones (SAC) 
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each forming separate clades. However, relationships amongst northern Andean 

species could not be resolved, possibly reflecting ongoing gene flow and/or 

incomplete lineage sorting. Ancestors of the South American species may have 

reached the continent through two independent long-distance dispersal events to the 

northern and southern Andes during the Pliocene. The arid central Andes have been a 

major ecological barrier to dispersal. Subsequent ice cycles of the Quaternary may 

have been key in the diversification of the northern Andean Oreobolus. Finally, 

habitat heterogeneity rather than the latitudinal gradient has a more important role in 

driving diversification rates, possibly by promoting niche partitioning and greater 

biotic interactions. 

2.2 INTRODUCTION 

Understanding and explaining patterns of global plant diversity across the planet has 

been a central question in biodiversity research. Plant diversity is concentrated in the 

tropical regions of the world and various explanations have been put forward to 

account for this. It may simply be a matter of regions with a tropical climate 

occupying a greater area for a longer period of time (Rosenzweig, 1995), as higher 

temperatures may previously have allowed tropical elements to occupy higher 

latitudes (Zachos et al., 2001). However, as temperatures fell, these elements may 

have been restricted to smaller tropical regions (Zachos et al., 2001). Alternatively, 

tropical regions may be more diverse because of greater energy input to support 

populations (Wright, 1983; Hurlbert & Stegen, 2014). Additionally, evolutionary 

rates in the tropics may be faster because of the greater temperature (Rohde, 1992; 
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Allen & Gillooly, 2006). Moreover, diversity may promote diversity with the 

increased importance of biotic interactions (Schemske, 2009). On the other hand, 

diversity outside the tropics may have been constrained by the younger ages of 

biomes, leading to both a smaller number of successful colonisation events, and 

limited time for diversification (Wiens et al., 2010; Romdal et al., 2012). The 

colonisation impediment may be the result of niche conservatism with limited 

capacity for tropical groups to overcome extreme physiological barriers, such as 

frost, in order to colonise temperate regions (Donoghue, 2008). It has also been 

suggested that tropical regions have not been subjected to major disturbances such as 

repeated glaciations, which have led to higher extinction rates in temperate to polar 

latitudes (Lomolino et al., 2006; Weir & Schluter, 2007). 

There is also significant variation in biodiversity within the tropics, with the 

Neotropics being considerably more species-rich than Asian or African regions 

(Gentry, 1982; Antonelli & Sanmartín, 2011). Explanations have included increased 

extinction rates in Africa (Richards, 1973; White, 1981) and higher speciation rates 

in the Neotropics (Gentry, 1982). Overall, the explanation must lie in increased net 

diversification rates in the Neotropics, defined as the rate at which extant lineages 

arose (Coyne & Orr, 2004) from “the interplay of speciation and extinction” 

(Magallón & Castillo, 2009). Gentry (1982) famously attributed the greater diversity 

of the Neotropics to being an “Accident of the Andean orogeny”, with the idea that 

the orogeny of the Andes Mountain Range has created opportunities for elevated 

rates of speciation. 

Deep time geological events have been suggested as playing an important role in the 

evolution of ecosystems and their biodiversity (e.g. Hoorn et al., 2010; Antonelli & 
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Sanmartín, 2011). Mountain building and uplift could have had an impact on plant 

diversification generating niche heterogeneity across altitudinal gradients 

(Donoghue, 2008). This would have been the case with the Andes Mountain Range: 

following the final uplift of the northern Andes during the Pliocene, c. 5 Ma, new 

habitats became available, such as the Andean Páramo ecosystem (Donoghue, 2008). 

Similarly, vicariance events such as plate tectonics and the breakup of super-

continents like Gondwana may explain past and present plant distributions (e.g. 

Sanmartín & Ronquist, 2004). However, the importance of long-distance dispersal in 

shaping plant distributions has been equally established (e.g. Pennington & Dick, 

2004; Christenhusz & Chase, 2013). Dated molecular phylogenies can be used to 

reconstruct diversification histories of taxa to understand the relative influences of 

earth history and dispersal, and to determine the origin of lineages, as well as the 

timing and direction of particular migration events (e.g. Pennington & Dick, 2004; 

Särkinen et al., 2011). In addition, differences in diversification rates may also be 

identified and related to critical geological, climatic or ecological events (e.g. Hoorn 

et al., 2010). 

The Páramo is distributed in a series of “sky islands” above 3000 m.a.s.l. along the 

mountain tops of the northern section of the Andes Mountain Range, occupying an 

approximate area of 37,500 km2 (Buytaert et al., 2010). It is the most species-rich 

high-altitude ecosystem in the world (Smith & Cleef, 1988; Sklenář et al., 2014), 

with up to 4000 species of vascular plants, of which c. 60% are endemic (Luteyn, 

1999). The huge diversity and comparatively young age of this ecosystem suggested 

that the rates of speciation there might have been exceptionally high. This idea was 

tested by Madriñán et al. (2013) who indicated that the Páramo ecosystem had a rate 
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of speciation that was higher than any other biodiversity hotspot on earth. Part of the 

diversity of the Páramo may also be due to recent immigration of lineages from 

temperate latitudes, which found an available niche with similar conditions to those 

they were already adapted to, and diversified within (Donoghue, 2008; Rull, 2011). 

According to the palaeopalynological record and previous floristic studies, 14% of 

the Páramo flora has a presumed Austral origin (van der Hammen, 1974; van der 

Hammen & Cleef, 1986), because migration from the south might have been 

facilitated by the almost continuous corridor of temperate-like habitats along the 

Andes Mountain Range (Sklenář et al., 2011). 

The schoenoid sedge Oreobolus R. Br. (Cyperaceae: Schoeneae) is an ideal model 

system to study questions related to Páramo biogeography, both in terms of 

migration of lineages from other regions, and of in-situ diversification. Oreobolus 

contains 17 species and has a southern Gondwanan, amphi-Pacific distribution, 

occupying mesic grasslands in southern temperate regions and high-altitude tropical 

areas (Mora-Osejo, 1987; Seberg, 1988). The 12 Pacific species extend across 

Australia, New Zealand, Malaysia and Hawai’i, whilst the five South American 

species are restricted to the southern and northern sections of the Andes Mountain 

Range (Seberg, 1988; Chacón et al., 2006), providing an optimal distribution pattern 

to assess the impact of the Andes orogeny on its diversification. Additionally, 

Oreobolus is nested within the ‘Oreobolus clade’ of the Schoeneae tribe (Viljoen et 

al., 2013), a lineage of closely related taxa with a southern hemisphere distribution.  

This clade is ideal for the comparison of diversification rates across a varied 

geographic range comprising different continents that were formerly connected as 

Gondwanaland. 
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The Schoeneae tribe has an almost entirely southern hemisphere distribution, being 

particularly diverse in Australia and South Africa, whereas just three out of 22 

genera reach South America (Verboom, 2006; Viljoen et al., 2013). According to 

Viljoen et al. (2013), the tribe originated in the early Eocene in Australia where it 

diverged into its six main lineages c. 50 Ma (Caustis clade, Lepidosperma clade, 

Tricostularia clade, Oreobolus clade, Gahnia clade and Schoenus clade). The 

Oreobolus clade is unique among these in that its extant species diversified less than 

c. 10 Ma, during the late Miocene (Viljoen et al., 2013). Moreover, even though the 

clade is distributed across all main southern Gondwana landmasses, the individual 

species are regional endemics (Viljoen et al., 2013). 

The current study focuses on the five South American species of Oreobolus. These 

species are found only in the high-altitude Páramo ecosystem, restricted to 

temperate-like environments in the northern section of the Tropical Andes and in 

southern Central America (Fig. 1.6 page 21) (Seberg, 1988; Chacón et al., 2006). 

Only the South American species, O. obtusangulus, has a disjunct distribution within 

the continent, occupying also the subantarctic region in the southern Andes (Seberg, 

1988; Chacón et al., 2006). Furthermore, these southern Andes populations have 

been separated as subspecies O. obtusangulus subsp. unispicus (Seberg, 1988). 

A previous study estimated a dated molecular phylogeny for Oreobolus based on ITS 

sequences of 14 out of the 17 species within the genus, including one sample of each 

of the five South American species (Chacón et al., 2006). The authors suggested that 

Oreobolus may have arrived from the south during the final uplift of the northern 

Andes in the Pliocene c. 5 Ma, reaching the newly available Páramo ecosystem and 

diversifying within it. However, the use of a geological event as calibration point, the 
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emergence of one of the islands of the Hawaiian Archipelago, is a weak method of 

calibration. First, the use of point calibrations ignores the error associated with the 

estimated date of the geological event (Ho & Phillips, 2009). The Hawaiian 

archipelago is a series of islands that might have been successively emerging and 

submerging since before any of the extant islands emerged; thus the use of the age of 

dispersal of a species to one of those islands may be erroneous as dispersal may have 

occurred earlier onto an island that is now submerged. Additionally, biogeographic 

calibrations bias towards younger divergence times and make strong assumptions 

about the role of vicariance and dispersal on the diversification pattern of the group 

under study (Ho & Phillips, 2009). Similarly, even though 14 out the 17 species were 

sampled in the analysis, only one outgroup was used (Costularia laxa) and therefore 

the monophyly of the genus was not tested. 

Viljoen et al. (2013) proposed a dated phylogeny for the Schoeneae tribe based on 

two nuclear ribosomal markers (ITS and ETS) and three chloroplast markers (rbcL, 

rps16 and trnL), sampling each genus within the tribe proportionally to their size (i.e. 

number of species) and biogeographic distribution. In addition, at least one taxon of 

each major Cyperaceae lineage outside the tribe was sampled as outgroups (Viljoen 

et al., 2013). However, only five of the 17 species of Oreobolus were sampled in this 

study, of which one sample of O. obtusangulus from the southern Andes was 

included as a South American representative. By not including Oreobolus samples 

from the northern Andes, the authors may have been excluding an important 

biogeographic region from their analyses, considering that just three out of 22 

species within Schoeneae reach South America (Verboom, 2006; Viljoen et al., 

2013). Possibly as a result, Viljoen et al. (2013) were unable to resolve Oreobolus as 
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a monophyletic genus and they obtained an ambiguous reconstruction of the 

ancestral area for the ‘Oreobolus clade’. 

The reconstruction of a dated molecular phylogeny, including a comprehensive set of 

species from the Schoeneae and an exhaustive sampling of the South American 

species of Oreobolus, including several samples per species, would allow a better 

appraisal of the monophyly of the genus, as well as an estimation of the timing of 

divergence and direction of migration within the ‘Oreobolus clade’. Furthermore, 

this will allow comparison of diversification rates within the clade, making possible 

the assessment of the impact of geological events on diversification patterns. 

Hypotheses on diversity gradients can, to an extent, be tested individually by looking 

at a variety of groups with varied distributions. For example, would a temperate 

group that has recently moved into tropical regions, and that may be pre-adapted to 

temperate conditions, have a faster rate of diversification than its temperate sister 

clades? This may begin to address questions related to the effects of, for example, 

greater energy input in the tropics being the principal cause of faster diversification 

rates (Wright, 1983; Hurlbert & Stegen, 2014). 

This chapter investigates the impact of the Andes orogeny on the timing, 

directionality and diversification rates of the South American species of Oreobolus 

within the context of its tribe. The specific aims are 1) to re-evaluate the monophyly 

of the South American clade of Oreobolus, and of each of the five South American 

species within the genus by including multiple samples per species; 2) to estimate 

dates of species divergence; 3) to assess the likely direction of migration; and 4) to 
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compare diversification rates of Andean species with Pacific ones and with the other 

genera within the Oreobolus clade. 

2.3 METHODS 

2.3.1 Species sampling 

This study focuses on the Andean species of Oreobolus (O. cleefii, O. ecuadorensis, 

O. goeppingeri, O. obtusangulus and O. venezuelensis) within the phylogenetic 

context of the Schoeneae tribe (Cyperaceae). For that reason, a dataset was produced 

comprising multiple samples per species and sampling extensively across their entire 

distribution range, using both field-collected and herbarium samples (U, L, AAU, 

RNG). In order to incorporate my sampling into the existing phylogeny of the 

Schoeneae tribe (Viljoen et al., 2013) and include previously published data for the 

remaining species of Oreobolus (Chacón et al., 2006), sequence data for the nuclear 

ribosomal DNA Internal Transcribed Spacers (ITS) and the plastid region trnL-F 

were produced. As in Viljoen et al. (2013), a comprehensive set of species from the 

main non-Schoeneae lineages within the Cyperoideae subfamily and samples from 

the Mapanioideae subfamily were included as outgroups, allowing the use of 

calibration points using fossils. Table S2.1 presents the complete list of samples used 

in this study (Supplementary information, pages 199 – 213). 

2.3.2 DNA extraction, amplification and sequencing 

Both silica-dried fresh leaf samples and herbarium material were pulverised using a 

Mixer Mill (Retsch, Haan, Germany). Total genomic DNA from herbarium material 
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was isolated following the CTAB method (Doyle & Doyle, 1990) and from silica-

dried samples with the DNeasy® Plant Mini Kit (QIAGEN, Manchester, UK) 

following the manufacturer’s protocol. The chloroplast region trnL-F was amplified 

and sequenced using primers trnLc and trnLf for silica-dried material, and in 

combination with internal primers trnLd and trnLe for herbarium material (Taberlet 

et al., 1991). For silica-dried material, the ITS region was amplified and sequenced 

only with external primers ITS5P and ITS8P (Möller & Cronk, 1997). For herbarium 

material, owing to the increased likelihood of the DNA being degraded, 

amplification and sequencing were performed using internal primers ITS5P and 

ITS8P in combination with internal primers ITS2P and ITS3P (Möller & Cronk, 

1997), in order to amplify the shorter ITS1 and ITS2 regions in separate reactions. 

For both reactions, 20 µl PCR reactions used the following proportions: 1 µl of 

unquantified DNA, 1x Buffer (Bioline, London, UK), 1mM dNTPs, 1.5 mM MgCl2 

(Bioline, London, UK), 0.75 µM of each forward and reverse primer, 4µl of 

combinatorial enhancer solution (CES) and 0.05 U of Taq polymerase (Bioline, 

London, UK). The amplification cycle for trnL-F consisted of 2 min at 94 ºC, 

followed by 30 cycles of 1 min at 94 ºC, 1 min at 52 ºC and 1 min at 72 ºC, finalising 

with 7 min at 72 ºC. For ITS, the amplification cycle consisted of 3 min at 94 ºC, 

followed by 30 cycles of 1 min at 94 ºC, 1 min at 55 ºC and 90 sec at 72 ºC, 

finalising with 5 min at 72 ºC. PCR products were purified with 2 µl of ExoSAP-IT® 

(USB Corporation, High Wycombe, UK) for 5 µl of product. Sequencing reactions 

for each primer used the BigDye® Terminator v3.1 chemistry (Applied 

Biosystems™, Paisley, UK) and the manufacturer’s protocol. Sequencing was 

performed at the Edinburgh Genomics facility of the University of Edinburgh. 
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2.3.3 Matrix assembly and sequence alignment 

Contigs of forward and reverse sequences were assembled in Sequencher version 5.2 

(Gene Codes Corporation, Ann Arbor, Michigan, USA). 231 ITS sequences and 169 

trnL-F sequences were generated for this study (Table S2.1). The sequences were 

manually aligned using Mesquite v2.75 (Maddison & Maddison, 2014) with 

previously published sequences downloaded from GenBank (Table S2.1). 

Ambiguously aligned positions were discarded from the trnL-F alignment. 

2.3.4 Phylogeny reconstruction 

Phylogenies for each region were reconstructed using Maximum Parsimony (MP), 

Maximum Likelihood (ML) and Bayesian Inference (BI). 

MP analyses were performed using the Willi Hennig Society edition of TNT version 

1.1 (Goloboff et al., 2008). Characters were unordered and equally weighted, gaps 

were considered as missing data. Heuristic searches were conducted with 1000 

Parsimony Ratchet replicates (Nixon, 1999) with 200 iterations per ratchet saving up 

to 20 trees per replicate, followed by tree bisection-reconnection (TBR) branch 

swapping. Clade support was assessed with a 1000 replicates, non-parametric 

bootstrap analysis (MP-BS). A strict consensus tree was calculated and one of the 

most parsimonious trees was annotated with bootstrap values and nodes that collapse 

in the strict consensus tree. 

Evolutionary model testing was performed for each region using JModelTest 2.1.6 

(Guindon & Gascuel, 2003; Darriba et al., 2012) with default settings. Based on the 

Bayesian Information Criterion (BIC; Schwarz, 1978), the best-fitting models were 
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GTR+I+Γ for ITS and TPM1uf+Γ for trnL-F. Maximum Likelihood (ML) 

reconstruction was performed using RAxML version 8 (Stamatakis, 2014). One 

hundred independent ML searches were carried out under a GTR + Gamma model, 

followed by a 1000 replicate non-parametric bootstrap search (ML-BS). Bootstrap 

values were summarised on the tree with the best likelihood score. 

Bayesian Inference was performed using MrBayes v. 3.2.2 (Ronquist et al., 2012) 

run on the CIPRES Science Gateway v.3.3 (Miller et al., 2010). Four independent 

runs of 30,000,000 generations were performed, with three hot chains and one cold 

chain at a temperature of 0.1, sampling 104 parameter estimates in each run. 

Appropriate mixing, parameter and topological convergence were assessed with 

Tracer v1.6.0 (Rambaut et al., 2013). 75% of the samples from each run were 

discarded as burn-in and a maximum clade credibility (MCC) tree from the 

combined 10,000 trees was annotated with posterior probability support values (PP), 

median heights and 95% Highest Posterior Density (HPD) values using 

TreeAnnotator v2.1.2 (Rambaut & Drummond, 2015). Annotated trees were 

visualised and exported as graphics using FigTree v1.4.2 (Rambaut, 2014). 

Non-parametric bootstrap values (MP-BS and ML-BS) of above 80% are considered 

to be high, 50% to 80% to be good and below 50% to be poor. With respect to 

posterior probability (PP), support values of above 90% are considered to be high, 

60% to 90% to be good and below 60% to be poor. The difference in the set intervals 

derives from the general tendency of PP support values to be higher than their 

corresponding bootstrap values (e.g. Douady et al., 2003; Erixon et al., 2003). 
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Statistical assessment of topological congruence between phylogenetic trees (i.e. 

incongruence length difference test – ILD) has been rejected as an unbiased measure 

of phylogenetic congruence and combinability (e.g. Darlu & Lecointre, 2002; Barker 

& Lutzoni, 2002; Ramírez, 2006). Consequently, congruence between the 

chloroplast and nuclear tree topologies was visually assessed, which revealed no 

strongly supported conflict. The two matrices were therefore concatenated and 

partitioned by gene for the ML and BI analyses, resulting in a matrix of 333 taxa and 

2610 bp. MP, ML and BI analyses were performed as described in the previous 

paragraphs. 

2.3.5 Divergence Time estimation 

To estimate divergence times, BEAST v2.1.3 (Bouckaert et al., 2014) was used. 

Missing data and duplicated sequences significantly increase computing time and 

have been shown to cause error in dating analyses (Drummond & Bouckaert, 2015). 

Consequently, only Andean Oreobolus samples with both regions successfully 

sequenced were included in the analysis. Similarly, to avoid duplicated sequences, 

where multiple individuals within a species had identical sequences, only one of 

them was included in the analysis. The data were partitioned as for the Bayesian 

analyses, and each partition was analysed under a GTR model with a gamma 

distribution with four rate categories, which is the minimum number to get a good 

approximation of the continuous function (Yang, 1994). The model of lineage-

specific substitution rate variation was set as an uncorrelated lognormal relaxed 

clock model with estimated clock rates, and a exponential prior distribution with 

mean equals to 10. The diversification model was set to a birth death model 
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(Gernhard, 2008), which is an appropriate model to infer divergence times between 

species (Drummond & Bouckaert, 2015). Mapanioideae and Cyperoideae were 

constrained to each be monophyletic, because they constitute the two subfamilies 

within Cyperaceae recognised as sister monophyletic groups by Muasya et al. 

(2009). The crown node of the Cyperaceae was calibrated as a prior with a normal 

distribution defined by µ=75.1 Ma and σ=7.7 Ma, using the age and error range 

estimated for this node from a dated phylogeny of the Poales, calibrated with six 

fossils, by Besnard et al. (2009). Hypolytrum nemorum (Vahl) Spreng. and Mapania 

cuspidata (Miq.) Uittien were constrained to be a monophyletic group representing 

the Hypolytreae tribe (subfamily Mapanioideae). The mid Eocene fossil Volkeria 

messelensis S. Y. Smith et al. (Smith et al., 2009) was used to set a lognormal 

distribution with µ=6 Ma, and a minimum bound for the highest posterior density 

distribution of 38 Ma on the crown age of Hypolytreae because it has fruits, pollen 

and infructescence structure that attribute it to this clade. The standard deviation was 

set to 0.93, yielding a 95% HPD between 38 and 56 Ma, corresponding to the upper 

age limit of the mid-Eocene, and the lower age limit of the Eocene respectively 

(Cohen et al., 2013 updated). A normal distribution was used on the root because it is 

the most appropriate for secondary calibrations (Ho & Phillips, 2009). This type of 

distribution locates most of the probability density around the mean and allows for 

symmetrical decrease towards the tails accounting for the age error (Ho & Phillips, 

2009). In contrast, a lognormal distribution is the most appropriate for a fossil 

calibration (Ho & Phillips, 2009). In this case, the fossil sets a hard minimum bound 

to the distribution with its highest probability density older than the fossil (Ho & 

Phillips, 2009). This calibration strategy biases in favour of an older age estimate, 
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which is recommended because fossils represent minimum age estimates, because 

they were likely to have formed after the evolution of the clade that they represent. 

The remaining priors were left at their default settings. 

Four independent MCMC runs of 108 generations each, sampling every 104 were 

performed. Adequate mixing and convergence were assessed using Tracer v1.6.0 

(Rambaut et al., 2013). 75% of the samples from each run were discarded as burn-in, 

and a MCC tree from the combined tree sets was annotated with median heights and 

95% HPD node ages on TreeAnnotator v2.1.2 (Rambaut & Drummond, 2015). 

2.3.6 Ancestral area reconstruction 

To reconstruct the likely ancestral areas of the Schoeneae tribe, the Bayesian Binary 

Model (BBM; Ronquist & Huelsenbeck, 2003) was implemented in RASP v3.2 (Yu 

et al., 2015). BBM permits the assignment of multiple areas to the tree terminals and 

reconstructs, for each node, possible ancestral areas and their probability (Yu et al., 

2015). The MCC chronogram estimated with BEAST v.2.1.3 (Bouckaert et al., 2014) 

was used as an input, and the analysis was run under the following parameters: 

5,000,000 cycles, 10 chains, sampling every 100 cycles, with a temperature of 0.1 

and a maximum of four areas for all nodes. All the remaining parameters were left at 

their default settings. 

A total of 11 biogeographic regions were delimited according to the modern 

distribution of the Schoeneae taxa and the geological history of those regions (Fig. 

2.4). Seven of these regions were defined following Sanmartín & Ronquist (2004): 

Africa, Madagascar, Australia (including Tasmania and New Guinea), New Zealand, 
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New Caledonia, South East Asia and Pacific Islands (Hawai’i). These areas 

correspond to either 1) Gondwanan landmasses that have been historically persistent, 

2) composite areas (i.e. New Zealand) that split from Gondwana as a unit, or 3) 

oceanic archipelagos or small landmasses with a similar biota or recent land 

connections during the Pleistocene (Sanmartín & Ronquist, 2004). Four additional 

regions were defined for Central and South America: southern Central America, 

northern Andes (12ºN – 5ºS at the Amotape Cross), central Andes (5ºS at the 

Amotape Cross – 47ºS at the Gulf of Penas) and southern Andes (47ºS at the Gulf of 

Penas – 55ºS). The three Andean regions reflect differential temporal tectonic 

histories along the mountain range with more northern mountains rising later while 

southern Central America corresponds to the Caribbean Plate (Graham, 2009). 

Widespread taxa that occupy multiple areas introduce ambiguity in the data set and 

therefore may bias ancestral area reconstruction analysis (Sanmartín & Ronquist, 

2004; Yu et al., 2015). In my dataset only Schoenus nigricans had such a wide 

distribution including Africa, Eurasia, North America, the Arabian Peninsula and 

India. The latter four regions were not defined in the analysis presented here. Areas 

were assigned to taxa following Brummitt et al. (2001). 

2.3.7 Diversification rates estimation 

To estimate diversification rates (r), the simple estimator of Kendall (1949) and 

Moran (1951) was used, where r = [ln(N) − ln(N0)]/T (where N = standing diversity, 

N0 = initial diversity, here taken as = 1, and T = inferred clade age). This estimates a 

pure-birth model of diversification, with a constant rate and no extinction. Extinction 

is anticipated to have had a minimal effect on the diversification of the Oreobolus 
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clade, because a young age for its crown node (mid-Miocene) is expected, as 

calculated by Viljoen et al. (2013). Diversification rates were calculated for the well-

supported clades within the Oreobolus clade. 

2.4 RESULTS 

This study presents the most complete taxon sampling of Oreobolus species to date, 

including 15 out of 17 species in the genus compared to 13 sampled by Chacón et al. 

(2006), and five sampled by Viljoen et al. (2013). An exhaustive sampling of 235 

accessions of the five South American species of Oreobolus resulted in the addition 

of 169 trnL-F sequences and 231 ITS sequences to the data of Chacón et al. (2006) 

and Viljoen et al. (2013). My taxon sampling is the first to account for the entire 

distribution range of the South American species, as well as for possible within-

species genetic variation. Additionally, two new Pacific Oreobolus sequences were 

added, one generated in this study (O. ambiguus) and one downloaded from 

GenBank (O. kuekenthalii). 

2.4.1 Phylogenetic reconstruction 

Figures 2.1 to 2.3 show the trees for the combined matrix in the following order: one 

of the most parsimonious trees annotated with bootstrap values (MP-BS, Fig. 2.1), 

the tree with the best likelihood score annotated with bootstrap values (ML-BS, Fig. 

2.2) and the MCC tree from the Bayesian analysis annotated with posterior 

probability values (PP, Fig. 2.3). Trees for individual DNA regions are presented in 

Figures S2.4 to S2.7 (Supplementary information, page 214). 
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The Schoeneae (sensu Viljoen et al., 2013) was recovered as monophyletic with low 

support in MP and ML analyses (Fig. 2.1, MP-BS<50%; Fig. 2.2, ML-BS<50%) but 

well supported in BI (Fig. 2.3, PP=81%). In the MP analysis, the Carpha clade was 

recovered within the Schoeneae, poorly supported as sister to the Schoenus clade 

(MP-BS<50%). However, in ML it appeared poorly supported as sister clade to the 

entire Schoeneae (ML-BS<50%) while in BI it appeared forming a grade with the 

other Cyperoideae (PP=85%). Within Schoeneae, relationships at deeper nodes were 

poorly resolved, and the only strongly supported sister relationship was between the 

Lepidosperma and Gahnia clades in BI (PP=0.79), although this was poorly 

supported in ML (ML-BS<50%). Otherwise, no well supported relationships 

between the six main clades (sensu Viljoen et al., 2013) could be inferred. The six 

main clades consistently included the same species and were fully recovered as 

monophyletic groups (Figs. 2.1 – 2.3): Schoenus clade (MP-BS=99%, ML-

BS=100%, PP=100%), Tricostularia clade (MP-BS=100%, ML-BS=100%, 

PP=100%), Lepidosperma clade (MP-BS=100%, ML-BS=100%, PP=100%), Caustis 

clade (MP-BS=64%, ML-BS=73%, PP=100%), Gahnia clade (MP-BS=87%, ML-

BS=96%, PP=100%) and Oreobolus clade (MP-BS=98%, ML-BS=100%, 

PP=100%). 
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Figure 2.1. (a – d) One of the most parsimonious trees obtained from the combined matrix of 
ITS and trnL-F. Numbers above the branches represent bootstrap values (MP-BS < 0.50, not 
shown). Dashed lines indicate nodes that collapsed in the strict consensus tree. 
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Figure 2.2. (a – d) Tree with the best likelihood score obtained from the combined matrix of 
ITS and trnL-F. Numbers above the branches represent bootstrap values (ML-BS < 0.50, not 
shown).
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Figure 2.3. (a – d) Maximum clade credibility tree obtained from the Bayesian analysis based on the 
combined matrix of ITS and trnL-F. Numbers above the branches represent posterior probability 
values (PP < 0.50, not shown).
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Within the Oreobolus clade, no well-supported relationships at between-genus level 

or above were recovered. Nevertheless, four sub-clades were consistently recovered 

in MP and ML (Figs. 2.1 and 2.2), while BI recovered five (Fig. 2.3). A Costularia 

clade was recovered with moderate support including all sampled African and 

Madagascan species of Costularia but neither of the New Caledonian ones (C. 

nervosa and C. arundinacea). However, Tetraria natalensis was also nested within 

this clade (MP-BS<50%, ML-BS<50%, PP=68%). C. arundinacea was recovered 

within the Tricostularia clade. The Costularia clade appeared as sister to the rest of 

the species within the Oreobolus clade, a relationship with low support in ML (ML-

BS<50%), good support in BI (PP=68%) but not recovered in MP. The South 

African species (Capeobolus brevicaulis, Cyathocoma bachmannii and Cyathocoma 

hexandra) formed a well-supported clade (MP-BS=71%, ML-BS=84%, PP=100%) 

with Costularia nervosa consistently appearing as its sister taxon, poorly supported 

in MP and ML (MP-BS<50%, ML-BS=61%) but highly supported in BI (PP=96%). 

Oreobolus was not recovered as a monophyletic genus (Figs. 2.1 – 2.3); however the 

South American species of Oreobolus were recovered as a highly supported 

monophyletic group (MP-BS=86%, ML-BS=98%, PP=100%). Nine of the ten 

Pacific Oreobolus species sampled in this study (O. ambiguus, O. acutifolius, O. 

kuekenthalii, O. distichus, O. oxycarpus, O. furcatus, O. oligocephalus, O. pectinatus 

and O. strictus) formed a monophyletic group poorly supported in MP and ML (MP-

BS<50%, ML-BS<50%) but not present in BI. In BI two well-supported clades with 

all ten Pacific species were formed: a first one including O. pectinatus, O. strictus 

and O. pumilio (PP=73%), and a second one including the rest of the species 

(PP=92%). The position of Oreobolus pumilio was inconsistent across analyses: 
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appearing as sister taxon to the rest of the Oreobolus clade in MP (MP-BS<50%), 

while in ML it was recovered as forming a polytomy with the South African clade, 

C. nervosa and the South American clade (ML-BS<50%).  

None of the five South American species of Oreobolus were resolved as 

monophyletic (Figs. 2.1 – 2-3). However, the same backbone was consistently 

recovered across analyses. There was a distinct geographic pattern within the group, 

and two highly supported clades split at the crown node: a southern Andean clade 

(MP-BS=89%, ML-BS=96%, PP=100%) and a northern Andean clade (MP-

BS=72%, ML-BS=96%, PP=100%). The southern Andean clade (SAC) was solely 

composed of samples of O. obtusangulus, the only species to be present in that 

region. Within the SAC, three well-supported subclades appeared with a strong 

geographic structure (clades C – E). The northern Andean clade (NAC) had two 

major well-supported sub-clades (A and B): clade B is formed by 46 samples of O. 

goeppingeri from Ecuador and the southern region of Colombia, plus one sample of 

O. obtusangulus from the same region (MP-BS=54%, ML-BS=73%, PP=100%). 

Clade B was sister to clade A, which was formed by the rest of the northern Andean 

samples (MP-BS=54%, ML-BS=72%, PP=99%). The support and resolution for 

smaller groupings diminishes towards the tips. 

2.4.2 Divergence Time estimation 

The BEAST analysis recovered the same well-supported clades as the phylogenetic 

reconstruction analyses (Fig. 2.4). The Schoeneae tribe diverged c. 50 Ma during the 

early Eocene (95% HPD [33.85 – 65.64] Ma). Of the six clades comprising 

Schoeneae, all but Oreobolus clade began to diversify during the late Eocene – early 
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Miocene: Schoenus clade c. 35 Ma (95% HPD [20.68 – 50.16] Ma), Tricostularia 

clade c. 20 Ma (95% HPD [9.65 – 32.31] Ma), Lepidosperma clade c. 21 Ma (95% 

HPD [10.9 – 31.16] Ma), Caustis clade c. 23 Ma (95% HPD [5.44 – 44.99] Ma) and 

Gahnia clade c. 27 Ma (95% HPD [15.07 – 40.63] Ma). The Oreobolus clade 

diverged during the late Miocene, c. 9 Ma (95% HPD [5.04 – 13.43] Ma). The four 

sub-clades within the Oreobolus clade were estimated to originate during the early 

Pliocene: South African + C. nervosa clade c. 4 Ma (95% HPD [1.34 – 7.55] Ma) 

with the South African species originating at c. 2 Ma (95% HPD [0.58 – 4.53] Ma), 

Costularia clade c. 4 Ma (95% HPD [1.49 – 7.41] Ma), Pacific Oreobolus clade 

(minus O. pumilio) c. 5 Ma (95% HPD [2.95 – 8.03] Ma) and the South American 

Oreobolus clade c. 5 Ma (95% HPD [2.79 – 7.47] Ma). The SAC and NAC 

originated within the same timeframe c. 3 Ma (95% HPD [1.37 – 4.71] Ma) and 

(95% HPD [1.80 – 4.79] Ma) respectively, during the late Pliocene. In the NAC, 

rapid diversification occurred within the last two million years during the 

Pleistocene. Table 2.1 presents nodes ages and 95% HPD for key nodes. 

 

 

 

 

Figure 2.4. (a – c) Chronogram from the BEAST time divergence analysis for the combined 
matrix of ITS and trnL-F annotated with the ancestral areas reconstructed on RASP. Nodes 
1 – 14 are referred to in Table 2.1. Node bars indicate 95% HPD age ranges. Lineages are 
coloured according to their reconstructed distribution. Coloured circles accompanying taxa 
indicate their current distribution. Pie charts represent the percentage PP of the ancestral 
reconstructed area at the selected node. Map inset indicates the 11 geographical regions 
defined. S. Afr. Cl., South African clade; Pac. Oreob. cl., Pacific Oreobolus clade.
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2.4.3 Ancestral area reconstruction 

Figure 2.4 shows the dated phylogeny with the reconstructed areas. Table 2.1 

presents the reconstructed areas with support for key nodes. The results presented 

here support those of Viljoen et al. (2013), with the Schoeneae tribe originating in 

Australia during the early Eocene. Similarly, all six clades within the tribe (nodes 3 

to 8) were reconstructed as diverging within Australia and dispersing from there 

since the early Miocene. In the five clades (nodes 3 to 7) other than the Oreobolus 

clade, four dispersal events to Africa were evident (nodes 15 and 16, Neesenbeckia 

punctoria and Schoenus nigricans), two to South East Asia (node 17 and Machaerina 

rubiginosa), three to the Pacific Islands (node 19, Morelotia gahniiformis and 

Machaerina mariscoides), three to New Zealand (nodes 20 and 21, and Schoenus 

nitens), three to New Caledonia (node 18, Costularia arundinacea and Gahnia 

aspera) and one to Madagascar (Machaerina iridifolia). 

Within the Oreobolus clade, dispersal from Australia was reconstructed as 

commencing during the late Miocene. A single dispersal event to Africa was 

supported for the South African clade (node 9). Similarly, one dispersal event to 

Madagascar was recovered for the Costularia clade (node 10), with a subsequent 

colonisation of Africa by the Tetraria natalensis lineage. Within the Pacific 

Oreobolus clade, a single dispersal event was reconstructed to each of the following 

areas: South East Asia (node 22), New Zealand (node 23) and the Pacific Islands 

(Oreobolus furcatus). The South American Oreobolus clade was reconstructed as 

originating in Australia, although with low support values (PP=0.37, node 12), and 

having colonised South America twice during the early Pliocene (nodes 13 and 14). 
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Alternative reconstructions suggested dispersal from Australia during the late 

Miocene (node 8) followed by either an early Pliocene origin in the southern Andes 

region with a subsequent dispersal to the northern Andes (PP=0.27), or an early 

Pliocene origin in the northern Andes with a subsequent dispersal to the southern 

Andes (PP=0.25). From the northern Andes, colonisation of the northernmost part of 

the central Andes region occurred at least twice during the Pleistocene (node 24 and 

Oreobolus goeppingeri (Renvoize4924)). Similarly, colonisation of southern Central 

America occurred at least once (Oreobolus sp. (Chaverri1093)).
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Table 2.1. Node ages and reconstructed areas for key nodes. Node numbers correspond to those on Fig. 2.4. PP: posterior probability, HPD: highest 
posterior density, S. Am.: South American 

Node PP Clade Mean divergence 
age (95% HPD) Ma Ancestral area (PP) Epoch (HPD) 

1 0.62 Schoeneae 49.95 (33.85 - 65.64) Australia (0.97) Eocene (Paleocene - Eocene) 

2 1.00 Carpha 9.91 (3.15 - 20.36) Africa (0.88) Miocene (Miocene - Pliocene) 

3 1.00 Schoenus 34.85 (20.68 - 50.16) Australia (0.97) Eocene (Eocene - Miocene) 

4 1.00 Caustis 22.45 (5.44 - 44.99) Australia (1.00) Miocene (Eocene - Miocene) 

5 1.00 Lepidosperma 20.87 (10.9 -31.16) Australia (0.66) Miocene (Oligocene - Miocene) 

6 1.00 Gahnia 26.93 (15.07 - 40.63) Australia (0.99) Oligocene (Eocene - Miocene) 

7 1.00 Tricostularia 20.38 (9.65 - 32.31) Australia (0.99) Miocene (Oligocene - Miocene) 

8 1.00 Oreobolus 8.75 (5.04 - 13.43) Australia (0.97) Miocene (Miocene - Pliocene) 

9 1.00 South African 2.10 (0.58 - 4.53) Africa (0.99) Pleistocene (Pliocene - Pleistocene) 

10 0.76 Costularia 3.77 (1.49 - 7.41) Madagascar (0.97) Pliocene (Miocene - Pleistocene) 

11 0.80 Pacific Oreobolus 5.14 (2.95 - 8.03) Australia (0.85) Pliocene (Miocene - Pliocene) 

12 1.00 S. Am. Oreobolus 4.76 (2.79 - 7.47) Australia (0.37), Southern Andes (0.27), 
Northern Andes (0.25) Pliocene (Miocene - Pliocene) 

13 1.00 SAC 2.80 (1.37 - 4.71) Southern Andes (0.99) Pliocene (Pliocene - Pleistocene) 

14 1.00 NAC 3.07 (1.80 - 4.79) Northern Andes (0.99) Pliocene (Pliocene - Pleistocene) 
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2.4.4 Diversification rates estimation 

Table 2.2 summarises the results for net diversification rates within the Oreobolus 

clade. Net diversification rate was highest in the Costularia clade (0.718 speciation 

events per million years, Myr-1), followed by the South African clade (0.660 Myr-1), 

then the Northern Andean clade (NAC) (0.524 Myr-1), and finally the Pacific 

Oreobolus clade (0.467 Myr-1). The net diversification rate for the South American 

Oreobolus clade is the lowest of all (0.338 Myr-1), likely caused by the zero net 

diversification rate of SAC explained by this clade containing a single species. 

Table 2.2. Net diversification rates (r) of lineages within the Oreobolus clade. Min and Max 
represent the lower and upper limits of the 95% HPD. 

   Crown node age (Ma) Net diversification Rate (r) 
 Clade N Max Mean Min Max Mean Min 

South American Oreobolus 5 7.47 4.76 2.79 0.577 0.338 0.215 

 Northern Andean 
(NAC) 5 4.79 3.07 1.80 0.894 0.524 0.336 

 Southern Andean 
(SAC) 1 4.71 2.80 1.37 0.000 0.000 0.000 

Pacific Oreobolus 11 8.03 5.14 2.95 0.813 0.467 0.299 

South African (Capeobolus 
+ Cyathocoma)  4 4.53 2.10 0.58 2.390 0.660 0.306 

Costularia 15 7.41 3.77 1.49 1.817 0.718 0.365 

2.5 DISCUSSION  

This study examines the phylogenetics and biogeography of the South American 

species of Oreobolus within the context of its tribe. The taxon sampling in the study 

presented here allows, for the first time, a robust assessment of the monophyly of 

Oreobolus and of its South American species. Furthermore, it allows proper 
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investigation of the impact of the Andean orogeny on the timing of the 

diversification events and directionality of migration events, and is the first study to 

compare speciation rates amongst diversely distributed lineages in the Oreobolus 

clade. 

2.5.1 Phylogenetics of Schoeneae 

The systematics of the Schoeneae have proven difficult, because in addition to the 

variable support for the tribe in phylogenetic studies, there is a lack of unambiguous 

morphological synapomorphies to characterise it (Verboom, 2006). Furthermore, 

relationships between schoenoid clades have been invariably poorly recovered, and 

hence the need for further phylogenetic studies with representative sampling within 

each has been established (Verboom, 2006; Muasya et al., 2009; Viljoen et al., 

2013). Here, the Schoeneae sensu Viljoen et al. (2013) was recovered as 

monophyletic across all three analyses with varied support (MP-BS and ML-

BS<50%, PP=81%). This result supports previous studies (Verboom, 2006; Jung & 

Choi, 2013 see Schoeneae part 1; Viljoen et al., 2013). Genera in the Carpha clade 

(Carpha and Trianoptiles) have been traditionally included in the Schoeneae (Bruhl, 

1995; Goetghebeur, 1998). However, subsequent studies have suggested their re-

classification as a separate Carpheae tribe, sister to Schoeneae, based on their 

molecular systematics and distinct embryo types (Viljoen et al., 2013). The 

uncertainty in the position of the Carpha clade in the current study neither supports 

nor rejects its placement, either as sister to the tribe or as part of it. Moreover, the six 

main clades within the tribe (Schoenus clade, Caustis clade, Gahnia clade, 

Lepidosperma clade, Tricostularia clade and Oreobolus clade) were each recovered 
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as monophyletic but relationships amongst them could not be inferred confidently. 

Verboom (2006) suggested that the lack of resolution might reflect early rapid 

cladogenesis in the tribe, a hypothesis further supported by the results obtained by 

Viljoen et al. (2013) and those presented here. Importantly, given the greatly 

increased taxon sampling for the South American Oreobolus clade in the current 

study, support for monophyly is especially robust for the Oreobolus clade. 

There is an evident need for a re-assessment of generic limits within the Schoeneae 

incorporating both established morphological classification as well as new 

phylogenetic evidence. To accomplish this, a better sampling of under-represented 

clades, both in terms of geographical distribution and taxonomy, is urgently needed. 

The present study adds significant new evidence to the phylogenetics of the under-

represented South American Oreobolus clade of the Oreobolus making an important 

contribution to the systematics of schoenoid sedges. 

The Oreobolus clade was fully recovered as a monophyletic group and four (or five) 

sub-clades were consistently recovered (Figs. 2.1 – 2.3), but relationships amongst 

them were poorly resolved. First, a Costularia clade including four out of six of the 

sampled Costularia species appeared as sister to the rest of the Oreobolus clade 

(Figs. 2.2 and 2.3). Importantly, the Costularia clade contains all sampled 

Madagascan species, in addition to the African Tetraria natalensis. These results 

support previous studies that have demonstrated the polyphyly of both Costularia 

and Tetraria (Zhang et al., 2004; Verboom, 2006; Muasya et al., 2009; Viljoen et al., 

2013). Furthermore, based on similarity in floral characters, Koyama (1961) 

suggested Costularia should be treated as a subgenus of Tetraria. Additionally, all 

Costularia species recovered within the Oreobolus clade (Costularia clade and C. 
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nervosa) are classified under subgenus Costularia except C. arundinacea that 

belongs to subgenus Lophoschoenus and was recovered within the Tricostularia 

clade (Figs. 2.1 – 2.3). Despite C. nervosa consistently appearing as sister taxon to a 

well-supported clade formed by the South African species Cyathocoma and 

Capeobolus, the differential clustering of Costularia subgenera is in accordance with 

the hypothesis put forward by Seberg (1988) that species within subgenus Costularia 

might be closely related to Oreobolus. 

Oreobolus was not recovered as monophyletic, contrary to results previously 

reported by Chacón et al. (2006). This resolved the inconsistency in the results of 

Viljoen et al. (2013), whose different analytical methods (Maximum Likelihood and 

Bayesian Inference) showed both a poorly supported monophyletic group and a 

paraphyletic one, respectively. The contrast between the results presented here and 

these previous studies reflects the difference in the number of outgroups included in 

each. Chacón et al (2006) used only one species of Costularia (C. laxa) as an 

outgroup to Oreobolus therefore did not test the monophyly of the genus. However, 

the current study included multiple outgroups from a representative sample of the 

tribe. The Pacific Oreobolus species appeared forming one (MP, Figs. 2.1; ML, 2.2) 

or two (BI, Fig. 2.3) clades but not a grade as postulated by Chacón et al. (2006). The 

strong geographic structure observed in the phylogeny of Chacón et al. (2006) was 

also evident in the current study, with co-distributed species appearing as sister taxa 

(e.g. New Zealand: O. pectinatus and O. strictus; Malaysia: O. kuekenthalii and O. 

ambiguus). Furthermore, the inclusion of the two aforementioned Malaysian species 

may have caused differences between my topology and that of Chacón et al. (2006), 

with O. furcatus and O. acutifolius not recovered as sister taxa and not forming a 
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clade with O. pumilio and the South American species. Instead, O. furcatus and O. 

acutifolius appeared nested with the rest of the Pacific Oreobolus species. 

Nonetheless, the results presented here support the prediction of Chacón et al. (2006) 

that the Malaysian species would group with the rest of the Pacific species. In the 

case of O. pumilio, even though its position is uncertain (Figs. 2.1 – 2.3), none of the 

current study’s analyses recovered it as sister taxon to the South American species of 

Oreobolus (contra Chacón et al., 2006). Further exploration of these differences will 

require sequencing more accessions per species, because as for the rest of the Pacific 

Oreobolus species, the ITS and trnL-F sequences of O. pumilio used in the current 

study were taken from Chacón et al. (2006), and therefore possible sources of 

sequencing error for single accessions are impossible to assess. 

2.5.1.1 Phylogenetics of the South American Oreobolus 

The five South American species of Oreobolus formed a highly supported clade 

consistently recovered across analyses (MP-BS=86%, ML-BS=98%, PP=100%). 

Additionally, strong geographic structure within the South American clade was 

evident and two highly supported sub-clades diverged at the crown node: a southern 

Andean clade (SAC) solely composed of samples of O. obtusangulus (the only 

species in the region), and a northern Andean clade (NAC) containing samples from 

all five species. Because O. obtusangulus, uniquely, was present in both regions and 

both clades, it was recovered as polyphyletic (Figs. 2.1 – 2.3). Seberg (1988) 

recognised two subspecies within O. obtusangulus, namely subsp. obtusangulus 

restricted to the southern Andean region and subsp. unispicus restricted to the 

northern Andean region. Apart from minimal differences in floral and fruit 
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characters, these two subspecies were mainly differentiated on the basis of their 

disjunct distribution (Seberg, 1988). Chacón et al. (2006) examined only a single 

sample of O. obtusangulus from the southern Andean region and hence could not test 

the monophyly of the species. They recovered their sample as sister taxon to the rest 

of the South American species, a result that is in line with the position of the SAC in 

the current study. Given the phylogenetic separation and limited morphological 

differentiation of O. obtusangulus subsp. obtusangulus and O. obtusangulus subsp. 

unispicus, it may be suggested that these two subspecies are in fact morphologically 

cryptic species. Examples of cryptic species have been demonstrated within the 

Schoeneae (Britton et al., 2014) as well as in other sedge taxa (Derieg et al., 2013). It 

may be that the observed genetic differences are the result of local adaptation or 

genetic drift due to the allopatric distribution of the two subspecies, but their degree 

of reproductive isolation if in sympatry would be difficult to assess (Bickford et al., 

2007). 

The other South American species within the NAC (O. cleefii, O. ecuadorensis, O. 

goeppingeri and O. venezuelensis) were not monophyletic. Furthermore, 

relationships between them were unclear and few sub-clades were well supported 

(Figs. 2.1 – 2.3). Plausible explanations for the observed pattern include ongoing 

gene flow among species and/or incomplete lineage sorting. Whilst there are no 

studies of wind pollination in Páramo, wind-pollinated plants (such as Oreobolus) 

have higher between-species gene flow rates than those pollinated by animal vectors 

(Ellstrand, 2014). Furthermore, continuing interspecific gene flow has already been 

suggested to occur in the sedge family, e.g. between closely related species in the 

genus Carex (e.g. Escudero et al., 2014). Given the archipelagic nature of the Páramo 
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ecosystem, and the anemochorous pollination and dispersal systems of Oreobolus, 

the possibility of successful pollen and seed dispersal to nearby Páramo islands and 

even over longer distances seems reasonable.  

An alternative (but not exclusive) explanation may be incomplete lineage sorting. 

Indeed, retention and stochastic sorting of ancestral polymorphisms may conceal 

relationships between species, in which case gene genealogies or gene trees do not 

necessarily reflect the species tree (Maddison, 1997; Maddison & Knowles, 2006; 

Knowles & Carstens, 2007). Furthermore, the probability of retaining ancestral 

polymorphisms increases with shorter divergence times (Jakob & Blattner, 2006; 

Degnan & Rosenberg, 2009). The confounding role of incomplete lineage sorting, in 

the reconstruction of phylogenetic relationships among closely related species, has 

been demonstrated in groups such as Gentiana section Criminalis (Christe et al., 

2014), Solidago subsect. Humiles (Peirson et al., 2013) and the Arundinarieae tribe 

(Zhang et al., 2012). 

Both gene flow and incomplete lineage sorting may be affecting the reconstruction of 

phylogenetic relationships within the NAC (Figs. 2.1 – 2.3). However, distinguishing 

between them can prove difficult as both processes produce incongruence between 

the phylogeny and the current taxonomy (Naciri & Linder, 2015). In order to 

understand the phylogenetic relationships amongst the five South American species 

of Oreobolus, while accounting for non-hierarchical tree building as well as possible 

persistent polymorphism and/or gene flow, analyses under a coalescent-based 

approach should be pursued (Knowles & Carstens, 2007; Marko & Hart, 2011; 

Naciri et al., 2012; Naciri & Linder, 2015). 
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2.5.2 Out-of-Australia and the colonisation of South America 

The Schoeneae tribe originated in Australia and diverged during the early Eocene, c. 

50 Ma. Its six main clades (Schoenus clade, Caustis clade, Lepidosperma clade, 

Gahnia clade, Tricostularia clade and Oreobolus clade) diverged from one another 

within Australia during the late Eocene – late Miocene period, and dispersed multiple 

times from there from the early Miocene onwards. At the time, continents were 

approaching their current geographic positions (McLoughlin, 2001) and 

consequently, present-day Schoenoid distributions are unlikely to be the result of 

vicariance events (i.e. plate tectonics). Therefore my results further support the 

hypothesis first postulated by Verboom (2006) and later corroborated by Viljoen et 

al. (2013) that colonisation of other southern hemisphere landmasses by the 

Schoeneae was likely accomplished through multiple long-distance dispersal events. 

Furthermore, the geographic distances covered varied from a few several thousand 

kilometres (e.g. Australia to New Caledonia, New Zealand and South East Asia) to 

transcontinental distances (e.g. Australia to South Africa, Madagascar and South 

America). This dispersal process was probably facilitated by the anemochorous 

dispersal system of the Schoenoid sedges. Indeed, long distance dispersal has been 

established as an important process in plant distribution patterns (e.g. Pennington & 

Dick, 2004; Christenhusz & Chase, 2013) as well as in southern hemisphere plant 

biogeography (e.g. Sanmartín & Ronquist, 2004; Crisp et al., 2009; Winkworth et al., 

2015). Examples of long-distance dispersal between southern hemisphere landmasses 

have been shown in numerous plant groups e.g. Nothofagus (Knapp et al., 2005), the 

Monttea/Ourisia clade of the Angelonieae tribe (Martins et al., 2014), the 
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Hennecartia-Mollinedia clade in Monimiaceae (Renner et al., 2010), 

Schistochilaceae (Sun et al., 2014) and Proteaceae (Barker et al., 2007). 

The South American Oreobolus clade diverged during the early Pliocene (c. 5 Ma), 

and the most likely reconstruction of colonisation of South America is two 

independent arrivals to the northern and southern Andes during the same epoch (PP = 

0.37, Table 2.1). Alternative but less probable reconstructions suggested dispersal 

from Australia during the late Miocene followed by either an early Pliocene origin in 

the southern Andes region with a subsequent dispersal to the northern Andes 

(PP=0.27, Table 2.1) or and early Pliocene origin in the northern Andes with a 

subsequent dispersal to the southern Andes (PP=0.25, Table 2.1). In all cases, wind 

and ocean currents may have facilitated eastward dispersal to South America. 

Following the mid-Miocene climatic optimum (c. 15 Ma) a period of gradual cooling 

was set by the expansion of the eastern Antarctic ice sheet (Zachos et al., 2001). By 

the late Miocene, the complete glaciation of Antarctica strengthened and finalised the 

establishment of the circumpolar circulation systems (i.e. Antarctic Circumpolar 

Current and West Wind Drift) which may have facilitated eastward dispersal (Pagani 

et al., 2000; Shevenell et al., 2004). Sanmartín et al. (2007) used a set of 23 plant 

phylogenies with a southern hemisphere distribution to test hypotheses about plant 

dispersal mechanisms. According to their results, eastward dispersal was inferred 

more frequently between Australia and South America supporting the circumpolar 

circulation systems as an important dispersal mechanism. A second mechanism may 

have been stepping-stone dispersal along the Antarctic coast. Notwithstanding 

limited dispersal through Antarctica because of significant ice-sheet expansion by the 

late Miocene (Markgraf et al., 1995; Zachos et al., 2001; Siegert, 2008) various 
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authors have suggested that forest on the coastline may have existed as late as the 

Pliocene (Swenson & Bremer, 1997; Renner et al., 2000; Sanmartín et al., 2007). 

Therefore colonisation of South America through Antarctica may have been possible. 

A colonisation scenario with two independent arrivals to the northern and southern 

Andes during the early Pliocene is the favoured reconstruction not only because it 

has the highest support (PP=0.37) but also because of the strong ecological barrier to 

dispersal imposed by the central Andes and leeward side (east) of the southern 

Andes. Indeed, since the mid Miocene (c. 15 Ma) these regions have had an arid to 

hyper-arid climate (Hartley, 2003; Blisniuk et al., 2005). Oreobolus is consistently 

distributed in mesic open-vegetation biomes with a temperate climate (Seberg, 

1988). Furthermore, Viljoen et al. (2013) established a perennially wet and open-

vegetation type as ancestral for the genus. Consequently, successful dispersal 

through the central Andes and leeward side (east) of the southern Andes may have 

been unlikely. 

Independent arrivals to the northern and southern Andean regions are consistent with 

the likely role of niche conservatism in the diversification of Schoenoid sedges 

(Verboom, 2006; Viljoen et al., 2013). Successful establishment following long-

distance dispersal events has been often associated with niche conservatism – the 

concept that species should more easily establish in a biome to which they are 

already pre-adapted (e.g. Donoghue, 2008; Crisp et al., 2009). By the Pliocene, both 

the southern and northern Andes provided a mesic temperate environment suitable 

for the ecological requirements of an ancestral Oreobolus. The southern Andes had 

reached their current elevation in the mid Miocene imposing a strong rain shadow 

effect that caused aridity on the east side of the range while the west was 
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characterised by a wet, temperate climate (Markgraf et al., 1995; Blisniuk et al., 

2005; Graham, 2009). It is on the west (windward) side of the range that O. 

obtusangulus is presently distributed, and to where it probably dispersed in the 

Pliocene. The northern Andes were half their current elevation by the mid Miocene, 

and the final uplift of the northernmost Eastern Cordillera occurred during the 

Pliocene (Gregory-Wodzicki, 2000; Graham, 2009). It is in this epoch that the first 

palynological records of Páramo-like vegetation appeared: as the northern Andes 

rose, a newly available open vegetation type with temperate-like climate extended 

above the forest line (van der Hammen & Cleef, 1986; Hooghiemstra et al., 2006). 

The strong phylogenetic differentiation consistently recovered between the northern 

and southern O. obtusangulus, in addition to the contemporaneous divergence of the 

SAC and NAC could reflect two independent colonisation events and therefore 

independent origin of morphologically similar populations, currently recognised as 

subspecies. However, the second and third scenarios of dispersal of O. obtusangulus 

from the SAC to the NAC or vice versa, suggest that the morphological similarity of 

the subspecies is due to common ancestry. Under the second scenario, given the 

recent divergence of all species of the NAC (c. 3 Ma), if the northern subspecies of 

O. obtusangulus is the ancestor of the other species in the clade one might expect it 

to share ancestral polymorphisms with the other species as shown in the phylogeny 

(Figs. 2.1 – 2.3). However it needs to be established if the retention of ancestral 

polymorphisms is the likely process behind the observed phylogenetic pattern. On 

the other hand, under the third scenario, if the northern subspecies of O. 

obtusangulus is the ancestor of the southern one, shared ancestral polymorphisms 

might also be expected but this is not recovered in any of the phylogenies presented 
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here (Figs. 2.1 – 2.3). However, these shared ancestral polymorphisms may have 

been lost as a consequence of bottlenecks and low effective population sizes in the 

southern O. obtusangulus. 

In summary, though I favour a scenario of two independent dispersal events based 

upon its higher probability and the difficulty of dispersal along the Andes, the data 

are consistent with all scenarios. An option to assess better the relationships within 

the NAC and thus have an ancestral area reconstruction with higher support for the 

South American ancestor, would be to use a mixed diversification model on BEAST 

v2.1.3 (Bouckaert et al., 2014). A mixed model allows setting different 

diversification models along a phylogeny consequently a coalescent model could be 

defined for the South American Oreobolus clade and a birth death model for the rest 

of the phylogeny. 

Under all scenarios, rapid diversification within the NAC occurred since the 

Pleistocene. Moreover, recent colonisation of the northernmost part of the central 

Andes and southern Central America from the northern Andes region also occurred 

(Fig. 2.4). The Quaternary ice cycles played a major role in the current distribution of 

Páramo plants (van der Hammen, 1974; van der Hammen & Cleef, 1986; 

Hooghiemstra & van der Hammen, 2004; Hooghiemstra et al., 2006). While in the 

northern hemisphere these climatic fluctuations promoted latitudinal migration of 

vegetation belts, in the tropical regions migration was altitudinal (van der Hammen, 

1974; Hooghiemstra & van der Hammen, 2004; Mora et al., 2010). Consequently 

vegetation belts underwent repeated episodes of vertical contraction and expansion 

that provided an opportunity for high-altitude Páramo populations to expand and 

contract (van der Hammen & Cleef, 1986; Hooghiemstra & van der Hammen, 2004). 
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Flantua et al. (2014) reconstructed the change in biome distribution from a pollen 

record of a 7559 km2 area in the Eastern Cordillera of Colombia. These authors 

estimated a loss of 96% of the Páramo biome area since the Last Glacial Maximum 

(c. 20 Ka) as well as reduced connectivity between Páramo patches as the upper 

forest line reached elevations higher than 3100 m.a.s.l. Therefore, during periods of 

contraction, Páramo populations may have been isolated, promoting allopatric 

speciation and/or genetic differentiation within species. In contrast, during periods of 

expansion, populations may have come into contact allowing for species dispersal 

and possible genetic exchange. Such Quaternary dynamics may explain the observed 

phylogenetic pattern recovered for the northern Andean Oreobolus (NAC) in the last 

two million years (Fig. 2.4). In the SAC, genetic differentiation within O. 

obtusangulus was also indicated to have occurred since the Pleistocene (Fig. 2.4). In 

the southern Andes, the Quaternary ice cycles produced complete glaciation across 

extensive areas generating massive fragmentation and restriction in the distribution 

of plants (Markgraf et al., 1995). Southern populations of O. obtusangulus may have 

been isolated during this period promoting genetic differentiation within the species. 

2.5.3 Diversification rates 

Net diversification rates were highest in the Costularia clade (0.718 speciation 

events per million years, Myr-1), the South African clade (0.660 Myr-1) and the NAC 

(0.524 Myr-1) (Table 2.2). When compared with the background diversification rate 

for the Cyperaceae family (Escudero & Hipp, 2013), the results presented here 

indicate values an order of magnitude higher. Similarly, the results obtained here 

show a net diversification rate three times that found for the Schoenoid sedge 
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Tetraria (Slingsby et al., 2014). Macroevolutionary theory anticipates a positive 

correlation between clade age and species richness as older clades would have had 

more time to diversify than younger ones (Rabosky et al., 2012). This hypothesis is 

corroborated by the Cyperaceae family, where among-clade variance in species 

richness is mostly explained by clade age (Escudero & Hipp, 2013). However, 

diversification in the four sub-clades of the Oreobolus clade occurred within the 

same timeframe (late Pliocene – early Pleistocene) and therefore clade age does not 

explain differences in species diversity. For example, both the SAC and NAC 

diverged during the late Pliocene (c. 3 Ma) but the NAC diversified into five species, 

while the SAC only has one. 

If greater energy input was the reason for greater speciation rates in tropical regions 

we would expect tropical clades to have higher diversification rates than temperate 

ones. In the case of Schoeneae the results are not conclusive. Madagascan Costularia 

(tropical) has the fastest diversification rate, but the South African clade has a faster 

rate than the tropical NAC. However the tropical NAC does have a faster 

diversification rate than the temperate SAC. 

The Costularia clade, South African clade and NAC are distributed in biodiversity 

hotspots: Madagascar, the Cape Floristic Region and the Andean Páramo, 

respectively (Myers et al., 2000). These areas have high numbers of species and 

endemism associated with complex biogeographical histories (van der Hammen & 

Cleef, 1986; Wilmé et al., 2006; Verboom et al., 2014). An understanding of the 

ecosystem heterogeneity and climatic history may explain the observed 

diversification rates. Firstly, in Madagascar, volcanic activity during the Pliocene and 

Pleistocene may have increased habitat heterogeneity (Piqué, 1999) opening newly 
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available niches. Furthermore, during the Quaternary ice cycles, glacial periods 

imposed cooler and drier regimes, resulting in habitat fragmentation and the repeated 

contraction and expansion of species distribution ranges, which may have 

contributed to allopatric speciation (Wilmé et al., 2006). Similarly, in the Cape 

Floristic Region, the climatic fluctuations of the Quaternary promoted the altitudinal 

and geographical migration of vegetation belts with repeated cycles of contraction 

and expansion that may have provided an opportunity for allopatric speciation 

(Midgley et al., 2005; Verboom et al., 2014). However, climatic fluctuations in the 

Cape Floristic Region were mild (Dynesius & Jansson, 2000; Midgley et al., 2005), 

so such speciation might have been accompanied by population persistance and low 

extinction rates (Dynesius & Jansson, 2000; Verboom et al., 2014). Lastly, the final 

uplift of the northern Andes during the Pliocene caused the Páramo, a naturally 

fragmented ecosystem, to extend across the mountaintops above the treeline (van der 

Hammen & Cleef, 1986). Subsequently, the climatic fluctuations of the Quaternary 

caused repeated cycles of altitudinal contraction and expansion of the vegetation 

belts that may have isolated species in the Páramo islands, promoting allopatric 

speciation (van der Hammen, 1974; van der Hammen & Cleef, 1986; Hooghiemstra 

& van der Hammen, 2004; Hooghiemstra et al., 2006). Population dynamics as a 

response to climatic fluctuations, coupled with habitat heterogeneity could be 

concluded to have had a positive impact on the diversification of lineages. 

The results presented here for the SAC and NAC support the hypothesis that a group 

that has recently moved into tropical regions with a temperate-like environment, to 

which they may be pre-adapted, has faster rates of diversification than its temperate 

sister clades. However, when also considering the Costularia and South African 
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clades, the results are not definite. Indeed, in this particular case, greater energy 

inputs may not be the principal cause of faster diversification rates as proposed by 

Wright (1983) and Hurlbert & Stegen (2014). However, it is important to note that 

faster diversification rates were found in biodiversity hotspots which could result 

from the increased importance of biotic interactions (Schemske, 2009). Moreover, 

the latter could in turn be the result of increased niche partitioning as a consequence 

of habitat heterogeneity, further supporting the conclusion of its positive impact on 

the diversification of lineages. 

2.6 CONCLUSION 

The purpose of the current study was to determine the impact of the Andes orogeny 

on the timing, directionality and diversification rates of the South American species 

of Oreobolus within the context of its tribe. Novel results reported here include: (i) 

the non-monophyly of the genus Oreobolus; (ii) the monophyly of the South 

American Oreobolus species as a group; (iii) the rapid diversification of this clade, 

and the species within it, as evidenced by their unresolved phylogenetic 

relationships; (iv) the colonisation of South America from Australia from two long-

distance dispersal events to (or in one case, perhaps within) the Andes during the 

Pliocene and (v) the likely role of habitat heterogeneity on the diversification of 

lineages in the Oreobolus clade. In relation to biogeography in the Andes, the arid 

central Andes may be a major ecological barrier to dispersal, questioning the south to 

north dispersal hypothesis often invoked to explain Austral immigrants to the Páramo 

flora (e.g. Sklenář et al., 2011). Finally, the climatic fluctuations of the Quaternary 
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and the increasingly important role of habitat heterogeneity, rather than latitude, may 

have been significant drivers for the diversification of Oreobolus and allies. 

Further work needs to be done under a coalescent-based approach in order to 

establish the phylogenetic relationships between the five South American species of 

Oreobolus and whether these are obscured by ongoing gene flow and/or persistent 

polymorphisms. Moreover, this will allow for greater exploration of the 

phylogeography of these five species. The current study provides the framework to 

undertake this investigation in Chapter Three. 
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CHAPTER THREE. PHYLOGEOGRAPHY OF 
THE SOUTH AMERICAN SPECIES OF 
OREOBOLUS R. Br. (CYPERACEAE) 

3.1. ABSTRACT 

This study examines genetic relationships between and within the South American 

species of	Oreobolus	and assesses the impact of recent climatic and ecological events 

on their diversification. A total of 197 individuals were scored for ITS haplotypes 

while 118 individuals were scored for cpDNA (trnL-F,	trnH-psbA and	rpl32-trnL) 

haplotypes, covering the distribution range of most of these species. Haplotype 

networks and measures of genetic diversity for both regions were calculated at the 

species and population levels. Additional tests for possible phylogeographic structure 

were undertaken. Furthermore, species relationships were recovered under a 

coalescent-based approach. Results indicate complex relationships between the five 

South American species of	Oreobolus, likely confounded by incomplete lineage 

sorting. Nonetheless, hybridisation cannot be completely discarded, particularly 

between the northern populations of	O. obtusangulus	and	O. cleefii. I report a case of 

cryptic speciation in	O. obtusangulus	where northern and southern populations of 

morphologically similar species are in fact genetically distinct in all analyses and this 

likely causes the strong phylogeographic structure at the continental scale that was 

recovered. At the population level, I present the first genetic evidence to support the 
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role in diversification of the contraction and expansion of the Páramo islands during 

the climatic fluctuations of the Quaternary, highlighting their fundamental role in 

shaping modern diversity. 

3.2. INTRODUCTION 

Phylogeography studies the spatial distribution of gene genealogies, allowing for the 

assessment of diversification patterns as well as the evaluation of the possible impact 

of recent climatic or ecological events that might have shaped those distributions 

(Avise, 2000). Furthermore, it simultaneously examines the role of possible ongoing 

genetic exchange between taxa (Schaal et al., 1998). Such studies are particularly 

relevant in the context of geologically young but megadiverse plant ecosystems 

where recent climatic and/or geological events may have shaped the extant 

populations but, at the same time, ongoing gene flow may still exist between recently 

diverged taxa. 

This is the case of the Páramo, a putatively young ecosystem that appeared following 

the final uplift of the northern section of the Andes Mountain Range during the 

Pliocene, c. 5 Ma (van der Hammen, 1974; van der Hammen & Cleef, 1986; 

Hooghiemstra et al., 2006; Graham, 2009). The Páramo occupies an area of 37500 

km2 and is distributed in a series of sky islands with c. 4000 species of which 60% 

are endemic (Luteyn, 1999; Buytaert et al., 2010). It has been proposed that the 

glacial-interglacial cycles of the Quaternary may have played an important role in 

shaping Páramo plant populations (van der Hammen, 1974; Simpson, 1975). The 

continuous contraction and expansion of altitudinal vegetation belts may have 
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promoted the contact of Páramo islands during glacial periods, enabling the 

migration and exchange of otherwise isolated taxa (van der Hammen & Cleef, 1986). 

Conversely, during interglacial periods, Páramo islands may have been isolated, 

promoting speciation (van der Hammen & Cleef, 1986). Furthermore, previous 

studies have demonstrated that Páramo lineages have significantly higher speciation 

rates than any other biodiversity hotspot on Earth (Madriñán et al., 2013). Recent 

divergence times among Páramo plant lineages might have enormous implications, 

both at the phenotypic and genotypic level, because morphological diversity and 

differentiation may not reflect complete genetic divergence between and within 

closely related taxa (Schaal et al., 1998). 

The five South American species of the schoenoid sedge Oreobolus R. Br. (O. 

cleefii, O. ecuadorensis, O. goeppingeri, O. obtusangulus and O. venezuelensis) are 

an ideal model system for a phylogeographic study. These species, with the 

exception of O. obtusangulus subspecies obtusangulus, are restricted to wet, 

temperate-like environments in the northern section of the Tropical Andes and in the 

Talamanca Cordillera in southern Central America, found only in the high-altitude 

Páramo ecosystem (Seberg, 1988; Chacón et al., 2006). Oreobolus cleefii is restricted 

to the Eastern Cordillera and the southern Andean region of Colombia; O. 

ecuadorensis is found in southern Colombia, Ecuador and northern Peru; O. 

goeppingeri is distributed in the Talamanca Cordillera in southern Central America, 

Colombia and Ecuador; O. obtusangulus has two subspecies with a disjunct 

distribution: subspecies unispicus is distributed in Colombia, Ecuador and northern 

Peru while subspecies obtusangulus occupies the subantarctic region of Chile, 

Argentina and the Falkland Islands; finally, O. venezuelensis occupies all Páramo 
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regions (Talamanca Cordillera, Venezuela, Colombia, Ecuador and northern Peru). 

The distributions of all Oreobolus Páramo species overlap with those of at least one 

other congeneric species. Figure 1.6 on page 21 presents a distribution map of the 

five South American species. All Páramo species are found between 3000 and 4300 

m.a.s.l. while in the subantarctic regions, the altitude at which O. obtusangulus is 

found decreases with increasing latitude, from 2400 m.a.s.l. to sea level (Seberg, 

1988). 

The five South American species are clearly differentiated in terms of morphology, 

and in common with most Cyperaceae, Oreobolus is both wind pollinated and 

dispersed (Seberg, 1988). Little is known about ploidy levels and chromosome 

numbers in Oreobolus and only Moore (1967) has studied chromosome numbers in 

O. obtusangulus ssp. obtusangulus (2n = 48). 

Previous studies have supported the monophyly of the South American clade of 

Oreobolus and dated its divergence to c. 5 Ma, coinciding with the appearance of the 

Páramo ecosystem (Chacón et al., 2006). Results from the second chapter of this 

thesis supported both findings but indicated that none of the five species was 

monophyletic for the markers examined (ITS and trnL-F). A phylogeographic 

approach may allow us to estimate the likely effect of recent climatic events (i.e. 

glacial cycles of the Quaternary) on the population structure of the South American 

species of Oreobolus by examining the genetic structure of populations across all 

species. 

A handful of phylogeographic studies for similar high-altitude tropical ecosystems in 

Africa have been published in recent years (Kebede et al., 2007; Assefa et al., 2007; 
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Gizaw et al., 2013; Kadu et al., 2013; Wondimu et al., 2013). However, to my 

knowledge, none has been presented for the Páramo flora. The aims of this study are 

to 1) estimate the species phylogeny of the South American species of Oreobolus; 2) 

assess the population and genetic structure at the inter- and intra-specific level, 3) 

investigate the impact of Quaternary glacial-interglacial cycles in shaping 

populations of Oreobolus. 

3.3. METHODS 

3.3.1. Study species and sampling 

The five South American species of Oreobolus (O. cleefii, O. ecuadorensis, O. 

goeppingeri, O. obtusangulus and O. venezuelensis) were extensively sampled across 

their entire distribution range (Fig. 1.6, page 21). A total of 269 samples from 32 

populations were obtained from both field collections (10 populations) and 

herbarium material (22 populations) (Table 3.1 and Fig. 3.1). From each of the ten 

field populations, all within Colombia, two to ten fresh leaf samples per species were 

collected, and their location was recorded using a handheld GPS (Fig. 3.1, 

populations 2 – 11). For populations in Costa Rica, Ecuador, Peru, Chile and 

Argentina (Fig. 3.1, populations 1 and 12 – 32), herbarium material was acquired 

from the Utrecht (U) and Leiden University (L) branches of the National Herbarium 

of the Netherlands, Aarhus University Herbarium (AAU) and the University of 

Reading Herbarium (RNG). For herbarium material, between one and ten individuals 

per species were sampled from each population. Coordinates were recorded from the 

herbarium specimens and checked for accuracy using the NGA GEOnet Names 
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Server (GNS) (http://geonames.nga.mil). Populations are numbered 1 to 32 in a north 

to south direction. Populations 1 to 23 will be referred to as northern Andes (Costa 

Rica, Colombia, Ecuador and Peru) and 24 to 32 populations as southern Andes 

(Chile and Argentina). Previously published sequence data for O. cleefii, O. 

goeppingeri and O. venezuelensis (Chacón et al., 2006) were also incorporated and 

assigned to their corresponding population. Table S3.1 presents the complete list of 

samples used in this study (Supplementary Information, pages 215 – 224). 
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Table 3.1. Geographic coordinates and corresponding cluster of the populations sampled. 

Nº POPULATION NAME CLUSTER LATITUDE LONGITUDE 

1 CHIRRIPO A 9.48411000 -83.48861000 

2 COCUY B 6.41211667 -72.33128333 

3 LA RUSIA C 5.93951667 -73.07583333 

4 IGUAQUE C 5.68610000 -73.44773333 

5 TOTA-BIJAGUAL B 5.48143333 -72.85540000 

6 RABANAL C 5.40818333 -73.54915000 

7 GUERRERO C 5.22618333 -74.01788333 

8 CHINGAZA D 4.52848333 -73.75866667 

9 SUMAPAZ D 4.28958333 -74.20781667 

10 PURACE E 2.36088333 -76.35038333 

11 AZUFRAL F 1.09543333 -77.68711667 

12 VOLCAN CHILES F 0.80000000 -77.93333333 

13 MIRADOR F 0.56666667 -77.65000000 

14 COTOCACHI F 0.36666667 -78.33333333 

15 COTOPAXI G -0.66666667 -78.36666667 

16 LLANGANATI G -1.15000000 -78.30000000 

17 ALAO-HUAMBOYA G -1.80000000 -78.43333333 

18 PARAMO DE LAS CAJAS H -2.81666667 -79.26666667 

19 CUENCA-LIMON H -3.00000000 -78.66666667 

20 CUENCA-LOJA H -3.16666667 -79.03333333 

21 PODOCARPUS I -4.40000000 -79.10000000 

22 CAJAMARCA J -7.05000000 -78.58333333 

23 HUASCARAN J -9.45000000 -77.26666000 

24 VALDIVIA K -40.18333333 -73.51666666 

25 FIORDO PEEL L -50.50000000 -73.73333333 

26 MALVINAS N -51.64297000 -59.89473000 

27 PNN NAHUEL HUAPI L -51.73333333 -71.50000000 

28 MAGALLANES L -53.45000000 -71.76666700 

29 TIERRA DEL FUEGO M -54.76666666 -67.40000000 

30 ISLA DE LOS ESTADOS M -54.80000000 -64.31666666 

31 ISLA NAVARINO M -55.07553100 -67.65539600 

32 CABO DE HORNOS M -55.94407800 -67.28092500 
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Figure 3.1. Map of populations sampled (1 – 32) and their corresponding cluster (A – N). 
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3.3.2. DNA extraction, amplification and sequencing 

Both silica-dried fresh leaf samples and herbarium material were pulverised using a 

Mixer Mill (Retsch, Haan, Germany). Total genomic DNA from herbarium material 

was isolated following the CTAB method of Doyle and Doyle (1990) and from 

silica-dried samples with the DNeasy® Plant Mini Kit (QIAGEN, Manchester, UK) 

following the manufacturer’s protocol. The nuclear ribosomal DNA internal 

transcribed spacers (ITS) and the chloroplast trnL regions were amplified and 

sequenced as detailed in Chapter Two (page 36). The chloroplast regions trnH-psbA 

and rpl32-trnL were amplified and sequenced using primer pairs trnHGUG (Tate & 

Simpson, 2003)/psbA (Sang et al., 1997) and trnL(UAG)/rpl32-F (Shaw et al., 2007), 

respectively. All PCR reactions were performed as described in Chapter Two (page 

36). The amplification cycle for both chloroplast regions (trnH-psbA and rpl32-trnL) 

consisted of 2 min at 94°C, followed by 30 cycles of 1 min at 94°C, 1 min at 52°C 

and 1 min at 72°C, and a final extension step of 7 min at 72°C. PCR products were 

purified and sequenced as reported in Chapter Two (page 36). No double peaks were 

observed in the chromatograms of the ITS region and therefore it was not necessary 

to clone. 

3.3.3. Matrix assembly and sequence alignment 

Contigs of forward and reverse sequences were assembled in Sequencher version 5.2 

(Gene Codes Corporation, Ann Arbor, Michigan, USA). 230 ITS sequences, 169 

trnL-F sequences, 128 trnH-psbA sequences and 190 rpl32-trnL sequences were 

generated for this study (Table S3.1). The sequences were manually aligned using 
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Mesquite v2.75 (Maddison & Maddison, 2014). Table 3.2 describes number of 

individuals successfully sequenced per species per cluster/population. 
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Table 3.2. Number of individuals successfully sequenced per species per cluster/population for ITS and cpDNA (trnL-L-F, trnH-psbA and rpl32-trnL). 
Areas where species are not distributed are noted as n.d. 

CLUSTER/Population 
O. cleefii O. ecuadorensis O. goeppingeri O. obtusangulus O. venezuelensis 

ITS cpDNA ITS cpDNA ITS cpDNA ITS cpDNA ITS cpDNA 

CLUSTER A n.d. n.d. n.d. n.d. 2 - n.d. n.d. - - 
 (1) Chirripo     2      

CLUSTER B 7 5 n.d. n.d. 5 5 - - - - 
 (2) Cocuy 5 4   3 4     
 (5) Tota-Bijagual 2 1   2 1     

CLUSTER C 3 2 n.d. n.d. 5 2 - - 2 1 
 (4) Iguaque     1 1     

 (3) La Rusia 2 2   1    2 1 
 (6) Rabanal     2 1     
 (7) Guerrero 1    1      

CLUSTER D 1 - n.d. n.d. 6 3 1 - 6 3 
 (8) Chingaza 1    3 1   2 1 
 (9) Sumapaz     3 2 1  4 2 

CLUSTER E n.d. n.d. n.d. n.d. 3 3 - - - - 
 (10) Purace     3 3     

CLUSTER F 4 2 2 3 11 5 6 6 1 1 
 (11) Azufral 4 2   1 1     
 (12) Volcan Chiles   1 1 5  5 4   
 (13) Mirador     2 2 1 2 1 1 
 (14) Cotocachi n.d. n.d. 1 2 3 2     

CLUSTER G n.d. n.d. 12 16 7 - 4 3 - 1 
 (15) Cotopaxi   9 13 2  2 2  1 
 (16) Llanganati    1 2  2 1   
 (17) Alao-Huamboya   3 2 3      

CLUSTER H n.d. n.d. 7 8 15 5 10 9 2 3 
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 (18) Paramo De Las Cajas   3 4 2 2 4 3   
 (19) Cuenca-Limon     2  3 3   
 (20) Cuenca-Loja   4 4 11 3 3 3 2 3 

CLUSTER I n.d. n.d. - - 18 4 1 1 15 4 
 (21) Podocarpus     18 4 1 1 15 4 

CLUSTER J n.d. n.d. 3 2 3 - 1 1 - - 
 (22) Cajamarca   1 1 3  1 1   
 (23) Huascaran   2 1       

CLUSTER K n.d. n.d. n.d. n.d. n.d. n.d. 1 1 n.d. n.d. 
 (24) Valdivia       1 1   

CLUSTER L n.d. n.d. n.d. n.d. n.d. n.d. 15 8 n.d. n.d. 
 (25) Fiordo Peel       2    
 (27) PNN Nahuel Huapi       2 1   
 (28) Magallanes       11 7   

CLUSTER M n.d. n.d. n.d. n.d. n.d. n.d. 16 9 n.d. n.d. 
 (29) Tierra Del Fuego       10 5   
 (30) Isla De Los Estados       2 1   
 (31) Isla Navarino       1    
 (32) Cabo De Hornos       3 3   

CLUSTER N n.d. n.d. n.d. n.d. n.d. n.d. 1 1 n.d. n.d. 
 (26) Malvinas       1 1   

TOTAL 15 9 24 29 75 27 56 39 27 14 
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3.3.4. Haplotype definition and networks 

Haplotypes were identified independently for the nuclear ribosomal region (ITS) and 

the concatenated plastid regions (trnL-F, trnH-psbA and rpl32-trnL) in Microsoft 

Excel (Microsoft Corporation, Washington DC, USA) using the Chloroplast PCR-

RFLP Excel macro (French, 2003). For ITS, only samples successfully sequenced for 

the whole region were included (Table S3.1). Likewise, for the concatenated plastid 

regions, only samples successfully sequenced for all three regions were considered 

(Table S3.1). Informative insertion/deletion events were included in the analysis and 

coded as absent (0) or present (1). Poly-T and poly-A length polymorphisms, bi-

nucleotide repeats and ambiguously aligned regions were excluded from subsequent 

analyses for all regions. Haplotype connection lengths were calculated using 

Arlequin ver3.5 (Excoffier & Lischer, 2010) and a minimum-spanning tree was 

produced in Hapstar v0.5 (Teacher & Griffiths, 2011). 

3.3.5. Statistical analyses 

Populations were combined into clusters to increase the likelihood of detecting a 

phylogeographic signal (Table 3.1 and 3.2; Fig. 3.1). Clusters were defined 

regardless of species classification; this approach is justified by the results presented 

in Chapter Two that showed poor phylogenetic resolution amongst the South 

American species of Oreobolus. Fourteen clusters (A – N) were defined according to 

geographic distance and ensuring the absence of any significant geographic barrier 

between populations within each cluster, i.e. deep inter-Andean valleys. 
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Haplotype (h) and nucleotide (π) diversities were calculated independently for each 

cluster and each species in Arlequin ver3.5 (Excoffier & Lischer, 2010). 

Additionally, haplotype richness (hr) was estimated for each species using HIERFSTAT 

(Goudet, 2005) in R version 3.2.3 (R Core Team, 2015). This package uses a 

rarefaction procedure set to 100 runs to correct for bias due to unequal sample sizes. 

ITS sample size was standardised to 15 individuals while cpDNA sample size was 

standardised to nine. Additionally, FST values between cluster pairs and species pairs 

were calculated independently for ITS and the concatenated plastid regions using 

Arlequin ver3.5 (Excoffier & Lischer, 2010). For the cluster pairs, clusters A, K and 

N were excluded from the analysis due to their low sample numbers (N < 2). In the 

case of the species pairs, calculations were first undertaken considering O. 

obtusangulus as one species and then with the northern and southern populations 

considered as two different species. 

To analyse the geographical structure of genetic variation, a spatial analysis of 

molecular variance (SAMOVA) was performed for the nuclear and concatenated 

plastid datasets, independently (Dupanloup et al., 2002). SAMOVA identifies groups 

of populations/clusters that are geographically homogeneous as well as maximising 

genetic differentiation amongst them (Dupanloup et al., 2002). One hundred 

annealing simulations for each number of groups (ITS, K = 2 – 13; cpDNA, K = 2 – 

12) were undertaken. The minimum number of groups (K) maximising the genetic 

differentiation amongst them (FCT) was chosen. Similarly, to test if the 

phylogeographic structure had a phylogenetic component, two measures of genetic 

differentiation amongst clusters were estimated using PERMUTCPSSR 2.0 (Pons & 

Petit, 1996; Burban et al., 1999). A distance matrix was calculated based on the 
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number of mutational steps between haplotypes (NST) and on haplotype frequencies 

(GST). Ten thousand permutations were performed to assess if NST was significantly 

higher than GST. 

Additionally, variation in the genetic structure was further examined for 1) all 

species, 2) all clusters, 3) all northern Andes clusters, 4) clusters grouped by region 

(northern Andes, southern Andes) and 5) SAMOVA groups using an analysis of 

molecular variance (AMOVA) in Arlequin ver3.5 (Excoffier & Lischer, 2010). 

3.3.6. Species tree and phylogenetic networks 

Results from the Chapter Two were consistent with either incomplete lineage sorting 

or ongoing gene flow affecting the reconstruction of phylogenetic relationships 

amongst the five South American species of Oreobolus. Therefore the multispecies 

coalescent model implemented in *BEAST (Heled & Drummond, 2010) was used to 

examine the relationships between these five species. Additionally, this approach 

effectively combines plastid and nuclear sequence data. *BEAST estimates 

phylogenetic relationships between species as well as their divergence time and 

estimated population size, assuming incomplete lineage sorting as the main source of 

incongruence between gene trees and species trees (Heled & Drummond, 2010). 

Under this model, all gene trees are contained within the species tree and comply 

with the species tree constraint, which is that the common ancestor of a gene cannot 

be younger than the speciation event (Heled & Drummond, 2010; Drummond & 

Bouckaert, 2015). The model assumes there is no significant gene flow between 

species hence if the data do not fit this model incomplete lineage sorting rather than 
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reticulate evolution is the favoured explanation for the lack of clear genetic 

differentiation amongst species. 

All sequences generated for this study, both complete and incomplete, were used for 

the species tree estimation (ITS, trnL-F, trnH-psbA and rpl32-trnL; Table S3.1). 

Evolutionary model testing was performed for each region using jModelTest 2.1.6 

(Guindon & Gascuel, 2003; Darriba et al., 2012) with default settings. Based on the 

Bayesian Information Criterion (BIC; Schwarz, 1978), the best-fitting models were 

TN93 for ITS, JC69+Γ for trnL-F and rpl32-trnL, and JC69 for trnH-psbA. 

Phylogenetic reconstruction and divergence time estimations were performed using 

BEAST v2.1.3 (Bouckaert et al., 2014). Each dataset was analysed using the above 

substitution models. Additionally, for trnL-F and rpl32-trnL a gamma distribution 

with four rate categories was defined, which is the minimum number required to get 

a good approximation of the continuous function (Yang, 1994). The tree model was 

linked for the three plastid regions, as cpDNA does not undergo recombination. The 

model of lineage-specific substitution rate variation was set as an uncorrelated 

lognormal relaxed clock model for each dataset. A *BEAST analysis requires each 

taxon to be associated with a species or taxonomic unit (Taxon Sets). These were 

defined following current taxonomy but with O. obtusangulus divided into northern 

and southern taxa based on the separation of these taxa in the phylogenetic analyses 

presented in Chapter Two (Figs. 2.1 – 2.3, pages 45 – 50). The diversification model 

for the species tree was set to a birth death model (Gernhard, 2008), an appropriate 

model to infer divergence times between species (Drummond & Bouckaert, 2015). 

Similarly, the population size model for the species tree was set as piece-wise linear 

with constant root, which allows linear change in population sizes within each branch 
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of the species tree but keeps a constant population size for the ancestral population at 

the root (Drummond & Bouckaert, 2015). For calibration purposes, sequence data for 

ITS and trnL-F of Capeobolus brevicaulis (Viljoen et al., 2013) were included as 

outgroups. The crown node of the ‘Oreobolus’ clade was calibrated in the ITS and 

trnL-F gene trees using a prior with a normal distribution defined by a mean (µ) of 

8.75 Ma and a standard deviation (σ) of 2.8 Ma. The age and error range correspond 

to those estimated for the crown node of the ‘Oreobolus’ clade from the dated 

phylogeny of the Schoeneae tribe presented in Chapter Two. A normal distribution 

was used on the root because it is the most suitable for secondary calibrations (Ho & 

Phillips, 2009). This type of distribution allocates most of the probability density 

around the mean and allows for symmetrical decrease towards the tails accounting 

for age error (Ho & Phillips, 2009). All other priors were left at their default settings. 

Twenty independent MCMC runs of 50 million generations each, sampling every 

5000 generations were performed. Ten percent of the samples from each run were 

discarded as burn-in and a combined log file was produced. Adequate mixing and 

convergence were assessed using Tracer v1.6.0 (Rambaut et al., 2013). A maximum 

clade credibility tree (MCC) from the combined tree sets was annotated with median 

heights, 95% HPD node ages and posterior probability values (PP) on TreeAnnotator 

v2.1.2 (Rambaut & Drummond, 2015). 

Phylogenetic trees typically assume bifurcating relationships between taxa, which 

may not be appropriate for this study group, as demonstrated in Chapter Two. 

Therefore, a NeighborNet network (NN; Bryant & Moulton, 2004) was constructed 

for both nuclear and concatenated plastid haplotypes using Splitstree 4 (Huson & 

Bryant, 2006). This method allows representation of conflicting signals in the data, 
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which might be a due to incomplete lineage sorting or reticulate evolution (Bryant & 

Moulton, 2004; Huson & Bryant, 2006). In the resulting network, conflicts are 

represented by parallel edges connecting taxa. The NN networks used uncorrected-p 

distances, which calculate the number of changes between each pair of haplotypes. 

Similarly, a NN network for both nuclear and concatenated plastid regions was 

constructed from the FST values previously calculated between species pairs. 

3.4. RESULTS 

3.4.1. Haplotype definition and networks 

3.4.1.1. Nuclear ribosomal DNA 

A total of 197 individuals from 14 clusters (A – N) were scored for ITS haplotypes, 

including individuals for all five species across their entire distribution range (Table 

3.2). After exclusion of poly-T and poly-A length polymorphisms, bi-nucleotide 

repeats and ambiguously aligned regions, 523 bp of aligned sequences remained. 

Thirty-nine polymorphic sites comprising 38 nucleotide substitutions and one indel 

defined thirty haplotypes. Of these, 22 (73.3%) were species-specific while eight 

(26.7%) were shared among species (Table 3.3). The haplotypes were distributed as 

follows: O. cleefii (Hn1), O. ecuadorensis (Hn6, Hn7), O. goeppingeri (Hn11, Hn12, 

Hn13, Hn14, Hn15, Hn17, Hn18, Hn19), O. obtusangulus (Hn20, Hn21, Hn22, 

Hn23, Hn24, Hn25), O. venezuelensis (Hn26, Hn27, Hn28, Hn29, Hn30) and shared 

(Hn2, Hn3, Hn4, Hn5, Hn8, Hn9, Hn10, Hn16). The minimum-spanning tree (MST) 

showed no clear clustering according to taxonomy (Fig. 3.2). The NeighborNet 

network (NN) corroborated this result (Fig. 3.3). 
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At a continental scale, haplotypes were geographically restricted with no shared 

haplotypes between the northern Andes (NA) region and the southern Andes (SA) 

(Table 3.3). This geographic structure was evident in both the minimum-spanning 

tree (Fig. 3.2) and the NN network (Fig. 3.3). Within the northern Andean 

populations, patterns were a little more complicated. There are eight shared 

haplotypes evident in the MST (Figure 3.2) and many edges in the NN Network 

(Figure 3.3). Of the eight shared haplotypes, seven occur in O. goeppingeri. 

Furthermore Hn9, a haplotype shared between O. goeppingeri and O. obtusangulus, 

is located in the middle of the MST connecting the SA haplotypes to the NA ones 

(Fig. 3.2). The haplotypes Hn12 and Hn14 found in O. goeppingeri are closer to 

those found in other species than they are to other haplotypes of the same species as 

are Hn28 and Hn30 in O. venezuelensis.
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Table 3.3. ITS haplotype (Hn) occurrence across clusters and species. Clusters (A – N) as 
described in Figure 3.1 and Table 3.1. cle: O. cleefii, ecu: O. ecuadorensis, goe: O. 
goeppingeri, obt: O. obtusangulus and ven: O. venezuelensis. 

    NORTHERN ANDES SOUTHERN 
ANDES 

  A B C D E F G H I J K L M N 

Hn1 

cle . . . 1 . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn2 

cle . 7 1 . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . 1 . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn3 

cle . . 2 . . . . . . . . . . . 
ecu . . . . . 2 11 8 . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . 1 . . . . . 
ven . . . . . . . . . . . . . . 

Hn4 

cle . . . . . 3 . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . 2 3 . 1 . . . . . 
obt . . . . . 1 . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn5 

cle . . . . . 1 . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . 2 1 . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn6 

cle . . . . . . . . . . . . . . 
ecu . . . . . . 1 . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn7 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . 2 . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn8 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . 1 . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . 1 . . . . 
ven . . . . . . . . . . . . . . 

Hn9 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . 2 6 3 5 13 . . . . . 
obt . . . . . . . 1 . . . . . . 
ven . . . . . . . . . . . . . . 

Hn10 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . 1 1 3 1 . . . . . . . . . 
obt . . . . . . 1 . . . . . . . 
ven . 1 1 2 . 1 . . . . . . . . 

Hn11 cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
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goe . 2 4 3 . 3 . 3 . 1 . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn12 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . 7 2 . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn13 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . 1 . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn14 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . 1 . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn15 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . 1 . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn16 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . 2 . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . 2 . . . . . . . . . . 

Hn17 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . 1 . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn18 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . 1 . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn19 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe 2 . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . . 

Hn20 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . 10 . 1 
ven . . . . . . . . . . . . . . 

Hn21 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . 1 1 . 
ven . . . . . . . . . . . . . . 

Hn22 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . 2 15 . 
ven . . . . . . . . . . . . . . 

Hn23 cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 



	 97 

goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . 1 . . . 
ven . . . . . . . . . . . . . . 

Hn24 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . 3 2 8 . . . . . . 
ven . . . . . . . . . . . . . . 

Hn25 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . 2 . . 
ven . . . . . . . . . . . . . . 

Hn26 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . 1 . . . . . . . . . . . 

Hn27 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . 1 . . . . . . . . . . 

Hn28 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . 1 15 . . . . . 

Hn29 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . 1 . . . . . . . . . . 

Hn30 

cle . . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . . 
ven . . . . . . . 1 . . . . . . 

 



	 98 

 
Figure 3.2. MST and distribution of ITS haplotypes. Numbers refer to haplotypes listed in 
Table 3.3. Haplotypes are coloured according to species. Shared haplotypes are shown in 
white. Detail of species sharing haplotypes is given in Fig. 3.3. Hypothetical haplotypes are 
represented by filled black circles, numbers within indicate their number when more than 
one. Letters on the map refer to clusters as described in Table 3.1 and Figure 3.1. Pie charts 
are proportional to sample size for each cluster (N = 1 – 34). Numbers next to each segment 
refer to haplotype number. NA: northern Andes, SA: southern Andes. 
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Figure 3.3. NeighborNet network for the ITS haplotypes based on the uncorrected-p 
distances. Haplotypes are coloured according to species. Shared haplotypes are shown in 
white. Pie charts are labelled with haplotype number and indicate frequency per species. NA: 
northern Andes, SA: southern Andes. 
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3.4.1.2. Plastid DNA 

A total of 118 individuals from 13 clusters (B – N) were successfully sequenced for 

all three plastid markers (trnL-F, trnH-psbA and rpl32-trnL), including individuals 

from all five species across most of their distribution range (Table 3.2). A 

concatenated matrix of 2465 bp of aligned sequences (trnL-F, 1040 bp; trnH-psbA, 

676 bp; rpl32-trnL, 749 bp) resulted after the exclusion of poly-T and poly-A length 

polymorphisms, bi-nucleotide repeats and ambiguously aligned regions. Forty 

haplotypes were identified based on 141 polymorphic sites (trnL-F, 53; trnH-psbA, 

14; rpl32-trnL, 74) including 112 nucleotide substitutions and 28 indels. Thirty-four 

haplotypes (85%) were species-specific while six (15%) were shared among species 

(Table 3.4), these were distributed as follows: O. cleefii (Hc1, Hc3), O. ecuadorensis 

(Hc5, Hc7, Hc8, Hc9), O. goeppingeri (Hc10, Hc11, Hc12, Hc15, Hc16, Hc17, 

Hc18, Hc19), O. obtusangulus (Hc20, Hc21, Hc22, Hc23, Hc25, Hc26, Hc27, Hc28, 

Hc29, Hc30, Hc31, Hc32, Hc33, Hc34, Hc35), O. venezuelensis (Hc36, Hc37, Hc38, 

Hc39, Hc40) and shared (Hc2, Hc4, Hc6, Hc13, Hc14, Hc24). Both the MST and NN 

network showed some degree of clustering according to taxonomy for three of the 

species, namely O. ecuadorensis, O. goeppingeri and O. venezuelensis (Fig. 3.4 – 

3.5). 

Similar to the results obtained for ITS, there were no shared haplotypes between the 

northern Andes (NA) region and the southern Andes (SA) (Table 3.4). This 

geographic structure was evident in both the MST and the NN network (Fig. 3.4 – 

3.5). There was low support for groupings in the cpDNA network in the relationships 

amongst northern Andean groups compounded by the large number of possible 
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unsampled haplotypes compared with ITS. The results of the cpDNA analysis were 

similar to those of ITS in showing a large number of edges and of shared haplotypes. 
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Table 3.4. cpDNA (trnL-F, trnH-psbA and rpl32-trnL) haplotype (Hc) occurrence across 
clusters and species. Clusters (B – N) as described in Figure 3.1 and Table 3.1. cle: O. 
cleefii, ecu: O. ecuadorensis, goe: O. goeppingeri, obt: O. obtusangulus and ven: O. 
venezuelensis. 
 

    NORTHERN ANDES SOUTHERN 
ANDES 

  B C D E F G H I J K L M N 

Hc1 

cle . 2 . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc2 

cle 4 . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . 3 . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc3 

cle 1 . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc4 

cle . . . . 2 . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . 1 . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc5 

cle . . . . . . . . . . . . . 
ecu . . . . 3 9 . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc6 

cle . . . . . . . . . . . . . 
ecu . . . . . 2 5 . 1 . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 1 1 1 . . . . 
ven . . . . . . . . . . . . . 

Hc7 

cle . . . . . . . . . . . . . 
ecu . . . . . 4 3 . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc8 

cle . . . . . . . . . . . . . 
ecu . . . . . 1 . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc9 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . 1 . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc10 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . 1 . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 
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Hc11 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . 2 . 2 . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc12 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe 2 1 2 . 2 . 3 . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc13 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe 1 . 1 1 . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . 1 2 . . . . . . . . . . 

Hc14 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe 2 . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . 1 . . . . . . . . . . 

Hc15 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . 1 . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc16 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . 1 . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc17 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . 1 . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc18 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . 1 . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc19 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . 2 . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc20 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . 5 . 1 
ven . . . . . . . . . . . . . 

Hc21 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . 1 4 . 
ven . . . . . . . . . . . . . 

Hc22 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . 1 . . . 
ven . . . . . . . . . . . . . 
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Hc23 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . 1 . 
ven . . . . . . . . . . . . . 

Hc24 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . 1 . . . . . . . 
ven . . . . 1 . . . . . . . . 

Hc25 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 1 . . . . . . 
ven . . . . . . . . . . . . . 

Hc26 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . 1 . . 
ven . . . . . . . . . . . . . 

Hc27 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . 1 2 2 . . . . . . 
ven . . . . . . . . . . . . . 

Hc28 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 1 . . . . . . 
ven . . . . . . . . . . . . . 

Hc29 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 1 . . . . . . 
ven . . . . . . . . . . . . . 

Hc30 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 1 . . . . . . 
ven . . . . . . . . . . . . . 

Hc31 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . 2 . . . . . . 
ven . . . . . . . . . . . . . 

Hc32 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . 2 . . . . . . . . 
ven . . . . . . . . . . . . . 

Hc33 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . 3 . 
ven . . . . . . . . . . . . . 

Hc34 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . 1 . . 
ven . . . . . . . . . . . . . 
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Hc35 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . 1 . 
ven . . . . . . . . . . . . . 

Hc36 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . 1 . . . . . . . 

Hc37 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . 1 1 . . . . . 

Hc38 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . 2 . . . . . . 

Hc39 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . 3 . . . . . 

Hc40 

cle . . . . . . . . . . . . . 
ecu . . . . . . . . . . . . . 
goe . . . . . . . . . . . . . 
obt . . . . . . . . . . . . . 
ven . . . . . . . 1 . . . . . 
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Figure 3.4. MST and distribution of cpDNA (trnL-F, trnH-psbA and rpl32-trnL) haplotypes. 
Numbers refer to haplotypes listed in Table 3.4. Haplotypes are coloured according to 
species. Shared haplotypes are shown in white. Detail of species sharing haplotypes is given 
in Fig. 3.5. Hypothetical haplotypes are represented by filled black circles. Letters on the 
map refer to clusters as described in Table 3.1 and Figure 3.1. Pie charts are proportional to 
sample size for each cluster (N = 1 – 25). Numbers next to each segment refer to haplotype 
number. NA: northern Andes, SA: southern Andes. 
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Figure 3.5. NeighborNet network for the cpDNA (trnL-F, trnH-psbA and rpl32-trnL) 
haplotypes based on the uncorrected-p distances. Haplotypes are coloured according to 
species. Shared haplotypes are shown in white. Pie charts are labelled with haplotype 
number and indicate frequency per species. NA: northern Andes, SA: southern Andes. 
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3.4.2. Statistical analyses 

3.4.2.1. Cluster genetic structure 

Table 3.5 presents the results for the molecular diversity indices calculated for ITS 

and cpDNA. In ITS, haplotype diversity was lowest in cluster M (h = 0.13 ± 0.11) 

and highest in cluster J (h = 0.91 ± 0.10), while in cpDNA it was lowest in cluster L 

(h = 0.64 ± 0.18) and highest in cluster E (h = 1.00 ± 0.27). Nucleotide diversity in 

ITS was lowest in cluster J (π x 100 = 0.56 ± 0.39) and highest in cluster C (π x 100 

= 2.95 ± 1.63) while in cpDNA it was lowest in cluster M (π x 100 = 0.06 ± 0.05) 

and highest in cluster C (π x 100 = 3.95 ± 2.41). In the AMOVA analyses, genetic 

differentiation amongst all clusters was high (ITS, FST = 0.43, p < 0.001; cpDNA, 

FST = 0.37, p < 0.001) although 57% (ITS) and 63% (cpDNA) of the variation was 

contained within clusters (Table 3.8). When only including northern Andean (NA) 

clusters, genetic differentiation was moderate (ITS, FST = 0.15, p < 0.01; cpDNA, FST 

= 0.21, p < 0.001), and 86% (ITS) and 79% (cpDNA) of the variation was within 

clusters (Table 3.8). For ITS, 53% of the pairwise FST values calculated amongst 

clusters showed significant differentiation (p < 0.05). Clusters E and C were the least 

differentiated (FST = -0.073) and clusters M and G the most (FST = 0.718) (Table 3.6). 

For cpDNA, 50% of the FST values showed significant differentiation (p < 0.05) with 

clusters G and J being the least differentiated (FST = -0.080) and clusters J and M the 

most (FST = 0.989) (Table 3.6). Typically, sites with low levels of differentiation 

were geographically proximate, while those with high levels of differentiation were 

separated by large distances. There were however, some exceptions, such as between 

clusters B and D (FST = 0.112) or between clusters G and I (FST = 0.452), in both 

cases for the plastid regions.  
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Table 3.5. Molecular diversity indices for ITS and cpDNA (trnL-L-F, trnH-psbA and rpl32-
trnL) for each cluster. Clusters (A – N) as described in Figure 3.1 and Table 3.1. Metrics 
were not applicable (n.a.) for clusters with less than three individuals. N, number of 
individuals; h, haplotype diversity (± SD); π, nucleotide diversity (± SD). 

 ITS     cpDNA    

 SAMOVA 
group N h π x100  SAMOVA 

group N h π x 100 

A I 2 n.a. n.a.  - - - - 

B I 13 0.69 ± 0.12 0.76 ± 0.46  I 10 0.82 ± 0.10 2.34 ± 1.25 

C I 10 0.82 ± 0.10 2.95 ± 1.63  I 5 0.90 ± 0.16 3.95 ± 2.41 

D I 14 0.85 ± 0.07 0.63 ± 0.39  I 6 0.73 ± 0.16 2.78 ± 1.62 

E I 3 0.67 ± 0.31 0.72 ± 0.63  I 3 1.00 ± 0.27 2.15 ± 1.62 

F I 24 0.86 ± 0.04 0.67 ± 0.40  I 17 0.93 ± 0.04 2.68 ± 1.36 

G I 23 0.76 ± 0.08 0.66 ± 0.40  I 20 0.77 ± 0.08 1.69 ± 0.86 

H I 34 0.83 ± 0.03 0.84 ± 0.48  I 25 0.92 ± 0.03 3.10 ± 1.55 

I I 34 0.67 ± 0.05 1.88 ± 0.98  I 10 0.91 ± 0.08 2.20 ± 1.18 

J I 7 0.91 ± 0.10 0.56 ± 0.39  I 3 0.67 ± 0.31 0.09 ± 0.08 

K II 1 n.a. n.a.  I 1 n.a. n.a. 

L II 15 0.55 ± 0.14 2.36 ± 1.27  II 8 0.64 ± 0.18 2.13 ± 1.18 

M III 16 0.13 ± 0.11 1.46 ± 0.80  III 9 0.75 ± 0.11 0.06 ± 0.05 

N II 1 n.a. n.a.  II 1 n.a. n.a. 
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Table 3.6. Pairwise FST values amongst clusters calculated from ITS and cpDNA (trnL-L-F, trnH-psbA and rpl32-trnL). Results for ITS are shown below 
the diagonal and cpDNA above. Bold numbers indicate significance at the 5% level. 

 A B C D E F G H I J K L M N  

A  - - - - - - - - - - - - - A 

B -  0.134 0.112 0.136 0.001 0.504 0.101 0.211 0.586 - 0.462 0.713 - B 

C - 0.092  0.028 0.050 0.038 0.206 -0.003 0.157 0.200 - 0.417 0.690 - C 

D - 0.141 0.050  0.023 0.166 0.530 0.220 0.264 0.597 - 0.470 0.740 - D 

E - 0.290 -0.073 0.200  0.048 0.511 0.113 0.076 0.712 - 0.414 0.874 - E 

F - 0.147 0.106 0.201 0.101  0.342 0.000 0.109 0.402 - 0.408 0.621 - F 

G - 0.267 0.061 0.249 0.206 0.089  0.188 0.452 -0.080 - 0.646 0.794 - G 

H - 0.258 0.120 0.258 0.028 0.051 0.052  0.095 0.207 - 0.406 0.581 - H 

I - 0.232 0.055 0.202 -0.046 0.141 0.127 0.087  0.532 - 0.444 0.724 - I 

J - 0.498 0.065 0.484 0.485 0.406 0.232 0.276 0.122  - 0.698 0.989 - J 

K - - - - - - - - - -  - - - K 

L - 0.629 0.474 0.635 0.482 0.659 0.660 0.661 0.537 0.595 -  0.657 - L 

M - 0.702 0.531 0.708 0.601 0.715 0.718 0.704 0.563 0.688 - 0.296  - M 

N - - - - - - - - - - - - -  N 

 A B C D E F G H I J K L M N  
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Table 3.7 shows the results for the SAMOVA analysis. There is an overall pattern of 

increasing FCT values as the number of groups (K) approaches the number of clusters 

sampled (K = 9). For both ITS and cpDNA, three groups (I – III; Table 3.5) were 

selected (ITS, FCT = 0.622, p < 0.001; cpDNA, FCT = 0.426, p < 0.001) as this was 

the number of K that maximised genetic differentiation amongst groups while 

minimising the number of single-cluster groups. For ITS, group I included all 

northern Andean clusters (A – J) while groups II (K, L, N) and III (M) included the 

southern Andean ones (Table 3.5). For cpDNA, group I included all northern Andean 

clusters plus the northernmost southern Andean cluster (K), while groups II (L, N) 

and III (M) included the rest (Table 3.5). SAMOVA groups explained slightly more 

of the genetic structure (ITS, FCT = 0.62, p < 0.001; cpDNA, FCT = 0.43, p < 0.001) 

than the pre-defined geographic regions (ITS, FCT = 0.60, p < 0.001; cpDNA, FCT = 

0.36, p < 0.001) (Table 3.8). Significant phylogeographic structure was indicated by 

the significantly higher values of NST (ITS, NST = 0.605; cpDNA, NST = 0.406) 

compared to GST (ITS, GST = 0.262; cpDNA, GST = 0.156; p < 0.01). However most 

of the unexplained diversity is contained within clusters, which may be an artefact of 

combining species into clusters regardless of their classification. 

 

Table 3.7. Spatial analysis of molecular variance (SAMOVA) results for ITS and cpDNA 
(trnL-L-F, trnH-psbA and rpl32-trnL) showing the variance amongst groups (FCT values) for 
pre-defined K number of groups. 

 K            

 2 3 4 5 6 7 8 9 10 11 12 13 

FCT ITS 0.595 0.622 0.608 0.608 0.603 0.581 0.505 0.507 0.468 0.481 0.504 0.639 

FCT cpDNA 0.417 0.426 0.417 0.414 0.412 0.406 0.405 0.410 0.441 0.502 0.675 - 
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Table 3.8. Analysis of molecular variance (AMOVA) results for ITS and cpDNA (trnL-L-F, trnH-psbA and rpl32-trnL). 

Group level Source of variation 
Degrees of freedom Sum of Squares Variance 

components 
Percentage of 

variation Fixation indices 

ITS cpDNA ITS cpDNA ITS cpDNA ITS cpDNA ITS cpDNA 

Species Among species 4 4 260 2033 1.69 21.67 30.46 47.65 FST = 0.31*** FST = 0.48*** 
 Within species 192 113 741 2689 3.86 23.80 69.54 52.35   
            
Clusters (all 
clusters) 

Among clusters 13 12 442 1925 2.30 15.54 42.95 36.84 FST = 0.43*** FST = 0.37*** 

 Within clusters 183 105 560 2798 3.06 26.65 57.05 63.16   
            
Clusters (northern 
Andes - NA) 

Among clusters 9 8 88 885 0.46 7.88 14.50 21.34 FST = 0.15** FST = 0.21*** 

 Within clusters 154 90 416 2612 2.70 29.03 85.50 78.66   
            
Regions Among regions 1 1 309 746 5.38 19.89 59.49 35.54 FCT = 0.60*** FCT = 0.36*** 
 Among clusters within 

regions 
12 11 133 1179 0.61 9.41 6.72 16.82 FSC = 0.17** FSC = 0.26*** 

 Within clusters 183 105 560 2798 3.06 26.65 33.79 47.64 FST = 0.66*** FST = 0.52*** 
            
SAMOVA groups Among groups 2 2 348 999 5.71 25.47 62.19 42.59 FCT = 0.62*** FCT = 0.43*** 
 Among clusters within 

groups 
11 10 93 926 0.41 7.68 4.51 12.84 FSC = 0.12* FSC = 0.22*** 

 Within clusters 183 105 560 2798 3.06 26.65 33.30 44.56 FST = 0.67*** FST = 0.55*** 
* significant at the 5% level; ** significant at the 1% level; *** significant at the 0.1% level 
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3.4.2.2. Species genetic structure 

Table 3.9 presents the results of the molecular diversity indices calculated for ITS 

and cpDNA for the five Oreobolus species. For both ITS and cpDNA, haplotype 

diversity was lowest in O. ecuadorensis (ITS, h = 0.31 ± 0.12; cpDNA, h = 0.72 ± 

0.05) and highest in O. obtusangulus (ITS, h = 0.82 ± 0.03; cpDNA, h = 0.94 ± 

0.02). Likewise, nucleotide diversity was lowest in O. ecuadorensis (ITS, π x 100 = 

0.01 ± 0.10; cpDNA, π x 100 = 0.11 ± 0.07) and highest in O. obtusangulus (ITS, π x 

100 = 2.76 ± 1.39; cpDNA, π x 100 = 3.05 ± 1.49). Similarly, haplotypic richness 

was lowest in O. ecuadorensis (ITS, hr = 3.12; cpDNA = 3.54) and highest in O. 

obtusangulus (ITS, hr = 6.59; cpDNA = 7.12). 

 

Table 3.9. Molecular diversity indices for ITS and cpDNA (trnL-L-F, trnH-psbA and rpl32-
trnL) for each species. N, number of individuals; H, number of haplotypes; hr, haplotype 
richness (ITS, rarefied to a minimum sample of 15; cpDNA, rarefied to a minimum sample of 
9); h, haplotype diversity (± SD); π, nucleotide diversity (± SD). 

Species Ν H hr h π x 100  

 ITS     
O. cleefii 15 5 5.00 0.70 ± 0.11 0.45 ± 0.30 
O. ecuadorensis 24 4 3.12 0.31 ± 0.12 0.01 ± 0.10 
O. goeppingeri 75 12 6.09 0.79 ± 0.03 1.15 ± 0.61 
O. obtusangulus 56 13 6.59 0.82 ± 0.03 2.76 ± 1.39 
O. venezuelensis 27 7 5.02 0.63 ± 0.10 1.49 ± 0.80 
 cpDNA     
O. cleefii 9 4 4.00 0.78 ± 0.11 1.96 ±1.07 
O. ecuadorensis 29 5 3.54 0.72 ± 0.05 0.11 ± 0.07 
O. goeppingeri 27 11 5.67 0.84 ± 0.06 2.36 ± 1.17 
O. obtusangulus 39 18 7.12 0.94 ± 0.02 3.05 ± 1.49 
O. venezuelensis 14 8 6.30 0.91 ± 0.05 2.23 ± 1.15 
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Genetic differentiation amongst species was high (ITS, FST = 0.31, p < 0.001; 

cpDNA, FST = 0.48, p < 0.001) although 69% (ITS) and 52% (cpDNA) of it was 

contained within species variation (Table 3.8). In ITS, FST values between all species 

pairs were significant (p < 0.001) with O. goeppingeri and O. venezuelensis being the 

least differentiated (FST = 0.175) and O. cleefii and O. ecuadorensis the most (FST = 

0.770) (Table 3.10a). In cpDNA, FST values were also significant between all species 

pairs (p < 0.05) with O. cleefii and O. obtusangulus being the least differentiated (FST 

= 0.098) and O. ecuadorensis and O. venezuelensis the most (FST = 0.801) (Table 

3.10a). When considering O. obtusangulus as two species, pairwise FST values for 

ITS were significant for all species pairs (p < 0.01) with O. cleefii and O. 

obtusangulus (NA) being the closest (FST = 0.157) and O. cleefii and O. ecuadorensis 

the furthest (FST = 0.770) (Table 3.10b). For cpDNA, O. cleefii and O. obtusangulus 

(NA) were the closest and non-significantly differentiated (FST = -0.020). All the 

other species pairs were significantly differentiated (p < 0.01) with the most different 

being O. ecuadorensis and O. obtusangulus (SA) (FST = 0.819) (Table 3.10b). 
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Table 3.10. Pairwise FST values amongst species calculated from ITS and cpDNA (trnL-L-F, 
trnH-psbA and rpl32-trnL) considering O. obtusangulus as (a) one species and (b) as two 
species. Values for ITS are below the diagonal and cpDNA above. Bold numbers denote 
significance at the 5% level. cle: O. cleefii, ecu: O. ecuadorensis, goe: O. goeppingeri, obt: 
O. obtusangulus and ven: O. venezuelensis. 
 
(a) 

 cle ecu goe obt ven  

cle  0.797 0.283 0.098 0.317 cle 

ecu 0.770  0.732 0.600 0.801 ecu 

goe 0.284 0.307  0.229 0.288 goe 

obt 0.269 0.360 0.289  0.256 obt 

ven 0.314 0.328 0.175 0.291  ven 

 cle ecu goe obt ven  

 
(b) 

 cle ecu goe obt (NA) obt (SA) ven  

cle  0.797 0.283 -0.020 0.487 0.317 cle 

ecu 0.770  0.732 0.780 0.819 0.801 ecu 

goe 0.284 0.307  0.363 0.430 0.288 goe 

obt 
(NA) 0.157 0.710 0.294  0.547 0.399 obt 

(NA) 
obt 

(SA) 0.595 0.649 0.578 0.620  0.478 obt 
(SA) 

ven 0.314 0.328 0.175 0.339 0.551  ven 

 cle ecu goe obt (NA) obt (SA) ven  
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3.4.3. Species tree and phylogenetic networks 

The *BEAST (Heled & Drummond, 2010) analysis using both ITS and cpDNA 

(trnL-F, trnH-psbA and rpl32-trnL) datasets did not reach convergence or adequate 

mixing after 100 x 107 generations. Similarly, the effective sample size (ESS) for 

most of the variables was lower than 100. Consequently, the divergence time 

estimation was not completed. This result was likely caused by the absence of 

sequenced data for the outgroup (Capeobolus brevicaulis) for two of the plastid 

regions (trnH-psbA and rpl32-trnL). A possible solution would be clock rooting the 

species tree in order to calibrate it. 

As an approximation to the species tree, Fig. 3.6 shows the MCC tree for the 

combined tree sets (likelihood with ESS>100, posterior and species coalescent with 

ESS<100). O. cleefii, O. ecuadorensis, O. goeppingeri and O. venezuelensis are 

recovered as genetically distinct. The results support the genetic differentiation 

between O. obtusangulus from the northern Andes region (NA; Fig. 3.6) and O. 

obtusangulus from the southern Andes region (SA; Fig. 3.6), the latter being 

identified as a genetically isolated entity. O. obtusangulus (SA) appears as sister 

taxon to the rest of the species. In the northern Andean clade (NAC; PP=99%), O. 

ecuadorensis, O. cleefii and O. obtusangulus (NA) form a poorly supported clade 

(PP=44%) sister to another poorly supported clade composed of O. goeppingeri and 

O. venezuelensis (PP=39%). O. cleefii and O. obtusangulus (NA) are recovered as 

sister taxa with good support (PP=80%). 
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Figure 3.6. Maximum clade credibility tree from the *BEAST analysis based on ITS and 
cpDNA (trnL-F, trnH-psbA and rpl32-trnL). Numbers above the branches represent posterior 
probability values. NAC, northern Andean clade as described in Chapter Two; NA, northern 
Andes; SA, southern Andes. 

 

Figures 3.7 and 3.8 show the resulting NN networks based on ITS and the 

concatenated plastid regions, respectively. Oreobolus ecuadorensis is consistently 

distinguished from the other species in both ITS and cpDNA. When considering O. 

obtusangulus as one species, it is reconstructed in the middle of the network and its 

placement is not well resolved in either ITS or cpDNA NN networks (Figs. 3.7a and 

3.8a). On the contrary, when considering northern and southern groups separately, O. 

obtusangulus (SA) is clearly different from other Oreobolus species, whereas O. 

obtusangulus (NA) has affinities with O. cleefii. The conflicting signal between the 

latter two species (i.e. multiple parallel edges) is evident in both cpDNA and ITS NN 

networks (Figs. 3.7b and 3.8b). Oreobolus goeppingeri and O. venezuelensis are well 

differentiated in cpDNA but not in ITS where they appeared in the centre of the 

networks with multiple connections to the other species (Figs. 3.7 and 3.8). The latter 
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is consistent with the poor PP obtained in the MCC tree for the clade formed by these 

two species (Fig. 3.6).
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Figure 3.7. NeighborNet network showing genetic relatedness amongst the South American 
species of Oreobolus based on ITS FST pairwise values considering (a) O. obtusangulus as 
one species (b) O. obtusangulus as two species. 
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Figure 3.8. NeighborNet network showing genetic relatedness amongst the South American 
species of Oreobolus based on cpDNA (trnL-L-F, trnH-psbA and rpl32-trnL) FST pairwise 
values considering (a) O. obtusangulus as one species (b) O. obtusangulus as two species. 
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3.5. DISCUSSION 

This is the first study to investigate the processes that might have shaped 

diversification both within and amongst species of Páramo plants. Furthermore, it 

provides insights into the phylogenetic and phylogeographic complexity of this 

system resulting from the interplay between contemporary topography, the Andean 

uplift and the glacial cycles of the Quaternary. The five South American species of 

Oreobolus presented complex relationships, with evidence of haplotype sharing. 

Moreover, there was evidence of phylogeographic patterns at a range of scales from 

continental to within northern and southern Andean clades, with significant FST 

values and SAMOVA results indicating these pattern were geographically defined. 

Several species also exhibited high levels of genetic diversity. 

3.5.1. Species delimitation and relationships 

The results obtained in this study reveal a complex evolutionary history for the five 

South American species of Oreobolus. Indeed, species relationships were difficult to 

estimate indicating either interspecific gene flow and/or shared ancestral 

polymorphisms (Naciri & Linder, 2015). Haplotype and nucleotide diversity were 

high for both ITS and cpDNA for all species except O. ecuadorensis (Table 3.9). 

Additionally, shared haplotypes were observed in both ITS (27%) and cpDNA 

(15%). This intricate history is also evident in the MST and NN networks for both 

ITS and cpDNA (Figs. 3.2 – 3.5 and 3.7 – 3.8) as well as in the low PP values 

recovered in the species tree (Fig. 3.6). 
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The high degree of complexity observed amongst these species, with shared 

haplotypes and poorly resolved phylogenetic relationships, contrasts with the 

morphological characters that distinguish them. Two possible but not mutually 

exclusive explanations could be put forward. Firstly, given the recent Pliocene 

diversification of both the northern and southern Andean clades of Oreobolus (Fig. 

2.4 pages 54 – 55), lineage sorting may not have been fully completed. Alternatively, 

the species relationships may be obscured by ongoing gene flow. 

The Páramo ecosystem is relatively young having appeared during the Pliocene c. 5 

Ma (van der Hammen, 1974; van der Hammen & Cleef, 1986; Hooghiemstra et al., 

2006; Graham, 2009). My results from Chapter Two indicated that the South 

American species of Oreobolus diverged within the same timeframe (Fig. 2.4 pages 

54 – 55). Previous studies have indicated the importance of incomplete lineage 

sorting (ILS) in recently diverged groups particularly when effective population sizes 

are large (Maddison & Knowles, 2006; Jakob & Blattner, 2006; Degnan & 

Rosenberg, 2009; Cutter, 2013). Large populations are expected for Oreobolus given 

its rhizomatous herbaceous habit and wind-dispersed seeds that facilitate long-

distance dispersal. Statistical genetic analyses provided additional evidence 

supporting ILS. Firstly, for both ITS and cpDNA a high percentage of haplotypes 

(73.3% and 85%, respectively) were species-specific. In particular, cpDNA better 

differentiated currently recognised taxonomic species than ITS for O. ecuadorensis, 

O. goeppingeri and O. venezuelensis (Figs. 3.2 – 3.5). Being haploid, plastid genes 

have a lower effective population size than nuclear genes and thus are expected to 

coalesce faster (Schaal & Olsen, 2000; Naciri & Linder, 2015). Additionally, four of 

the five species were recovered as monophyletic groups, with gene trees contained 
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within the species tree (Fig. 3.6). Likewise, genetic differentiation among species 

was high (Table 3.8) and FST values between all species pairs were significant for 

both ITS and cpDNA (Table 3.10a).  

Ongoing gene flow impacting on the species relationships would be expected to 

result in heterozygosity in ITS and this was not observed. Furthermore, shared 

haplotypes were recovered in multiple pairs of individuals from all species 

suggestive of a stochastic process likely related to lineage sorting. Therefore, based 

on the recovered evidence, although gene flow cannot be ruled out, I suggest 

incomplete lineage sorting in a recently diversified group as the most likely 

explanation for the complex patterns observed in the South American species of 

Oreobolus. To the best of my knowledge there are no other phylogeographic studies 

of Páramo plants, making it impossible to compare the patterns observed in this 

study with previously published ones. Nevertheless, there are comparable studies in 

other parts of the world. For instance, a recent phylogeographic study of the 

Australian alpine Poa (Poaceae) describes a similar pattern of problematic recovery 

of species relationships associated with a putatively young ecosystem and a 

Pleistocene radiation following long-distance dispersal to Australia (Griffin & 

Hoffmann, 2014). This study also favoured ILS rather than ongoing gene flow as the 

likely process behind the observed pattern based on the widespread genetic 

similarity, recent divergence times and large effective population size. 

Additional research would be required to more thoroughly distinguish between ILS 

and ongoing gene flow. Looking at additional markers may provide better resolution 

regarding species relationships. However, Griffin & Hoffmann (2014) showed that 

the addition of more informative markers added little extra information to the 
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resolution of the similarly complex phylogenies of Australian Poa. The potential for 

hybridisation could also be assessed using crossing experiments between Oreobolus 

species. 

3.5.2. Genetic structure within species 

High levels of genetic variation were found within species. For both nuclear and 

chloroplast regions, high levels of genetic diversity were better explained by intra-

specific rather than inter-specific variation (ITS 69% and cpDNA 52%; Table 3.7). I 

discuss below results for each species. 

3.5.2.1. Oreobolus obtusangulus 

The data presented here indicate that the two subspecies of O. obtusangulus 

represent morphologically cryptic species. This further corroborates results from 

Chapter Two. Under the current taxonomy, this species showed the highest 

molecular diversity indices (Table 3.9), which is what you would expect for a 

polyphyletic species (Figs. 2.1 – 2.3, pages 45 – 50). Furthermore, its placement in 

the NN networks was not well resolved with conflicting signals for both ITS and 

cpDNA (Figs. 3.7a and 3.8a). However, when considered separately, both O. 

obtusangulus (SA) and O. obtusangulus (NA) were fully recovered as monophyletic 

in the species tree with PP=100% and PP=80%, respectively (Fig. 3.6). Moreover, O. 

obtusangulus (NA) was reconstructed as a derived taxon within the phylogeny, in 

contrast to O. obtusangulus (SA) which was recovered as sister to the northern 

Andean Clade. Additionally, O. obtusangulus (SA) was no more similar to its 

northern counterpart than to any other northern Andean species. This is evident in the 
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absence of shared haplotypes (Figs. 3.2 – 3.5) and the significant pairwise FST values 

obtained between O. obtusangulus (SA) and the rest of the species, including O. 

obtusangulus (NA) (Table 3.10b; Figs. 3.7b – 3.8b). Britton et al. (2014) have 

described another example of cryptic speciation within the Schoeneae in the South 

African species Tetraria triangularis. These authors found at least three lineages 

within the species that qualified as cryptic species based on their genetic 

distinctiveness and subtle morphological differentiation. 

3.5.2.2. Oreobolus cleefii 

Oreobolus cleefii and O. obtusangulus (NA) display a complicated relationship 

likely involving both hybridisation and ILS. Pairwise FST values between these 

species were significantly different for ITS but not for cpDNA (Table 3.10b). In this 

sense, one plastid haplotype (Hc2; Table 3.4) and two nuclear ones (Hn2 and Hn5; 

Table 3.3) are exclusively shared between these two species. Moreover, all 

individuals with shared haplotype Hc2 consistently have shared haplotypes Hn2 or 

Hn5. The position of Hc2 in the NN and MST networks is of particular interest, 

being grouped with private haplotypes of both O. cleefii and O. obtusangulus (Figs. 

3.4 – 3.5). The aforementioned could be indicative of a pattern of hybridisation, 

probably due to chloroplast capture, and simultaneous nuclear introgression. 

Hybridisation is more likely to happen in closely related taxa (Abbott et al., 2013) 

and in this case both species were well recovered in the species tree as sister species 

(PP=80%; Fig. 3.6). The latter also supports the relevance of ILS in the divergence 

of these two species. Furthermore, they occur in sympatry (Fig. 1.6 page 21) and 

show an overlap in morphological characters (Seberg, 1988). Indeed, Seberg (1988) 
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suggested that O. cleefii should be reduced to synonymy under O. obtusangulus 

unispicus, the northern Andean subspecies of O. obtusangulus, based on the 

extensive overlap of specimens. Hybridisation is a frequent phenomenon in plants 

(Arnold, 1997) and in Cyperaceae it has been shown to be an important mechanism 

in shaping the population genetic structure of Carex (e.g. Escudero et al., 2014). 

Specifically, a study involving two co-occurring sister species of Carex, C. 

monostachya and C. runssoroensis, from a similar tropical alpine ecosystem in East 

Africa showed strong signals of hybridisation for these taxa (Gizaw et al., 2016). The 

authors suggested that following divergence, secondary contact zones likely formed 

from long-distance dispersal events. Subsequently, at least one of these zones could 

have led to interspecific hybridisation (Gizaw et al., 2016). The results presented 

here are consistent with a similar scenario. Populations of O. cleefii and O. 

obtusangulus (NA) may have come into secondary contact following isolation during 

interglacial periods in the Quaternary (van der Hammen, 1974). Afterwards, some of 

these sympatric populations may have hybridised. 

3.5.2.3. Oreobolus ecuadorensis 

Oreobolus ecuadorensis is one of the most geographically restricted species, 

distributed only in Ecuador and northern Peru (Fig. 1.6 page 21). This species 

showed the lowest haplotype and nucleotide diversities for both ITS and cpDNA 

indicating the presence of a few haplotypes with low divergence amongst them 

(Table 3.9). This pattern is evident in the MST for both ITS and cpDNA (Figs 3.2 

and 3.4) where the species’ geographically widespread and common haplotypes 

occupy a central position (ITS, Hn3; cpDNA, Hc6) with connections to localised and 
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less abundant haplotypes (ITS, Hn6, Hn7, Hn8; cpDNA, Hc5, Hc7, Hc8, Hc9). 

These findings are consistent with a scenario of a severe bottleneck followed by a 

population expansion likely imposed by the glacial cycles of the Quaternary 

(Templeton, 1998; Hewitt, 2004). Ecuador and Peru have the highest percentage of 

permanent snow and therefore interglacial periods may have greatly reduced the size 

of the populations of O. ecuadorensis, reducing the species’ genetic diversity. 

Following the Last Glacial Maximum (LGM), population expansion may have 

occurred with new mutations likely accumulating as the species occupied new areas. 

New haplotypes were thereby produced, diverging from the founder population by 

only a few nucleotides. At the same time, the strong impact of interglacial periods is 

evident in the clear differentiation of O. ecuadorensis from the rest of the species 

(Table 3.10, Figs. 3.7 and 3.8). Indeed, during interglacial periods, isolation likely 

promoted allopatric speciation. 

3.5.2.4. Oreobolus goeppingeri and O. venezuelensis 

The two most widespread species in the Páramo, O. goeppingeri and O. 

venezuelensis (Fig. 1.6 page 21), also present the most complicated genetic patterns. 

Both species show high levels of molecular diversity, as would be expected from 

widespread taxa (Table 3.9) but their placement in the species tree is poorly resolved 

(PP=39%, Fig. 3.6). Additionally, they both share haplotypes with other northern 

Andean species (Figs. 3.3 and 3.5) and their placement in the species NN networks 

shows a conflicting signal (Figs. 3.7 – 3.8). This pattern may suggest that both 

species have retained ancestral haplotypes. Similar patterns have been observed in 

the New World species of the grass genus Hordeum (Jakob & Blattner, 2006). This 
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group of recently divergent species (c. 4 Ma) showed multiple plastid haplotypes 

shared between species as well as high genetic diversity indices. The authors suggest 

that a likely explanation could be large effective population sizes that would allow 

for the persistence of all haplotypes. This may also be an explanation for the 

observed pattern in O. goeppingeri and O. venezuelensis. Further evidence could be 

given by the estimation of divergence dates between haplotypes. This will allow for a 

better assessment of haplotype relationships and the possible ancestry of some of the 

haplotypes recovered in O. goeppingeri and O. venezuelensis. An alternative 

explanation is that the widespread nature of these species provided greater 

opportunities for mixing with each other, and other species, compared with those 

with more restricted ranges, which exhibit a similar pattern of haplotype sharing, 

albeit on a smaller scale (Figs. 3.3 and 3.5). 

Likewise, it should be noted that these species also show some evidence of 

phylogeographic structure. For instance, O. venezuelensis exhibits two distinct 

haplotype groups, with no plastid haplotypes shared between the southern grouping 

of H+I, and all other clusters of this species (but see Biogeography section for further 

discussion) (Fig. 3.4). These patterns of divergent haplotype groups combined with 

haplotype sharing likely impacted on the low resolution in the species tree (Fig. 3.6). 

3.5.3. Biogeography 

Overall there is evidence of phylogeographic patterns in Oreobolus species. At the 

continental scale, haplotypes are geographically clustered, as evidenced by the MST 

and NN networks for both ITS and cpDNA (Figs. 3.2 – 3.5). Significant 

phylogeographic structure was also suggested by a higher value of NST compared to 
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GST (p < 0.01), indicating that haplotypes in the same cluster are on average more 

closely related than distinct haplotypes from different clusters. This genetic structure 

could be separated into three spatially defined groups (FCT = 0.60, Table 3.7). For 

ITS, these groups separated clusters A to J (group I), K, L and N (group II), and M 

(group III) while for cpDNA groups were separated as follows, A to K (group I), L 

and N (group II), and M (group III) (Figs. 3.2 and 3.4). FST values also indicate 

geographical structure, with southern Andean clusters L and M significantly different 

from all northern Andean clusters (Table 3.6). In general, there appears to be a 

pattern of geographic congruence with FST values differing as geographic distance 

increases. This may be the result of isolation by distance or the presence of barriers 

to gene flow between NAC and SAC. As discussed in Chapter Two, the arid central 

Andes likely impose a strong barrier to dispersal and thus to gene flow. The results 

presented here further support this (but see below for discussion on possible long 

distance dispersal between NAC and SAC). 

The clearest phylogeographic break apparent in Oreobolus is between the northern 

Andes (NA) haplotypes and southern Andes (SA) haplotypes. This pattern is evident 

in both chloroplast and nuclear regions, although the pattern is much stronger in 

cpDNA compared with ITS (Figs. 3.2 – 3.5). However, the exact position of this 

break is unclear. SAMOVA groups clearly identify the NA/SA disjunction in ITS but 

not in the plastid region where cluster K is grouped with the northern Andean 

clusters (Table 3.5; Figs. 3.2 and 3.4). The latter is also evident in the cpDNA NN 

where the distance between haplotypes is shorter than in the NN for ITS (Figs. 3.3 

and 3.5). The incongruence between ITS and plastid regions could suggest this 

population is the result of mixing between the SAC and NAC resulting from long 
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distance dispersal events. Cluster K is separated from both NA clusters and other SA 

clusters by a substantial distance and possesses unique haplotypes at both ITS and 

plastid regions (Table 3.3 – 3.4). Nonetheless, further work investigating additional 

markers (e.g. microsatellite markers) would be required to assess the origin of this 

population and potential hybridisation. 

3.5.3.1. Northern Andes 

Additional structure is evident at regional scales within the NAC. This appears to be 

associated with putative geographic barriers to gene flow. Clusters B and J were 

significantly differentiated from all other sites, regardless of the geographic 

distances. Both clusters show FST values indicating a significant difference from 

other NA clusters for ITS while in cpDNA, FST values indicate a significant 

difference from most NA clusters (Table 3.6). These two clusters are separated from 

all other NA clusters by inter-Andean valleys of seasonally dry tropical forest. 

Cluster B is isolated from the rest by the dry Chicamocha Canyon while cluster J is 

separated from the other NA clusters by the Marañón Valley. Särkinen et al. (2012) 

suggested that biome heterogeneity across the Andes represented a strong barrier to 

dispersal within island-like ecosystems. This is particularly relevant when deep 

valleys section the mountain ranges as in this case. In addition, clusters H and I 

present ITS haplotypes distinct from the rest within their species, namely O. 

venezuelensis (Hn28 and Hn30) and O. goeppingeri (Hn12 and Hn14) (Figs. 3.2 – 

3.3). These haplotypes are distributed in the southernmost part of these species’ 

distribution and their differentiation from species-specific haplotypes distributed in 
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the northernmost areas further supports the observed phylogeographic structure and 

possible pattern of isolation by distance. 

The dated phylogeny presented in Chapter Two (Fig. 2.4, pages 54 – 55), proposed 

that the most recent common ancestor of the South American Oreobolus may have 

diverged 4.76 Ma (95% HPD [2.79 – 7.47] Ma) during the late Miocene – early 

Pliocene. Subsequently, the southern Andean clade (SAC) and northern Andean 

clade (NAC) appear to have diverged during the late Pliocene, at 2.80 Ma (95% HPD 

[1.37 – 4.71] Ma) and 3.07 Ma (95% HPD [1.80 – 4.79] Ma) respectively. The NAC 

has diversified within the last two million years, during the Pleistocene. This 

suggests the expansion and contraction of Páramo islands during the glacial cycles of 

the Quaternary may have played a role in diversification (van der Hammen, 1974; 

Simpson, 1975; van der Hammen & Cleef, 1986; Hooghiemstra & van der Hammen, 

2004). High levels of molecular diversity for both nuclear and plastid regions as well 

as the high number of unsampled cpDNA haplotypes apparent in my dataset are 

concordant with this scenario (Table 3.5, Fig. 3.4). Furthermore, variation amongst 

NA clusters was moderate and mostly explained by within cluster variation (ITS, 

86%; cpDNA, 79%; Table 3.8). Vicariance events would allow for differentiation of 

populations and diversification, through selection and drift. If reproductive isolation 

is incomplete, subsequent expansion events may result in secondary contact and gene 

flow amongst nearby populations. Repeated vicariance and secondary contact, which 

would be expected from Quaternary glacial cycles, would generate complex 

phylogeographic patterns, with species sharing haplotypes. Such patterns are evident 

in Oreobolus, with a few widespread haplotypes amongst species apparently giving 

rise to geographically restricted haplotypes (Fig 3.2 and 3.4). Similar patterns have 
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been reported for the afro-alpine populations of Arabis alpina (Assefa et al., 2007). 

These authors suggest that several cycles of range contraction and expansion caused 

by the glacial cycles of the Quaternary may have shaped the distribution of genetic 

diversity observed in that species. 

3.5.3.2. Southern Andes 

SAMOVA analyses for both ITS and cpDNA, assigned cluster M as a divergent 

genetic group (Figs. 3.2 and 3.4). Molecular diversity indices for this cluster showed 

low haplotype diversity and high nucleotide diversity in ITS, and high haplotype 

diversity and low nucleotide diversity in cpDNA (Table 3.5). A possible explanation 

for this pattern might be that these populations underwent a bottleneck during 

isolation resulting in a low number of divergent haplotypes. During the glacial cycles 

of the Quaternary ice sheets covered extensive areas and generated massive 

fragmentation and restriction in the distribution of southern Andean plants producing 

pockets of refugial populations (e.g. Markgraf et al., 1995). Although a scenario of 

Pleistocene refugia has already been proposed for other southern Andean plants (e.g. 

Hypochaeris incana, Tremetsberger et al., 2009) further work would be required to 

assess the potential for refugial populations in O. obtusangulus (SA). 

It is also worth noting that the absence of shared haplotypes between O. 

obtusangulus (SA) and the other four species (including its northern counterpart), the 

recent divergence of both the northern and southern Andean clades of Oreobolus as 

well as the fact that O. obtusangulus (NA) is not recovered as sister to the rest of the 

Páramo species strongly suggest that the likelihood of a south to north colonisation 

of Oreobolus is minimal. 
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The high levels of variation contained within clusters could be the result of not 

discriminating by species. This may mask some phylogeographic patterns within the 

species, and additional sampling would be required to assess the detailed 

phylogeographic patterns within each species. That said, the simultaneous 

assessment of all Oreobolus species, as I have employed here is critical to the 

identification (and accurate interpretation) of the numerous shared haplotypes found 

in the South American species of Oreobolus. The latter suggests potential 

hybridisation and recent speciation, which would confound patterns if each species 

was considered independently. 

3.6. CONCLUSION 

The present study is a contribution to the understanding of the historical assembly of 

the Páramo flora. It is the first to explore genetic relationships below the species 

level in a group of closely related and recently divergent species. I aimed to assess 

the genetic relationships between and within the South American species of 

Oreobolus as well as investigate the impact of the Quaternary ice cycles on the 

shaping of these populations. Based on the high percentage of private haplotypes, 

significantly different pairwise FST values between species, lack of heterozygosity in 

ITS and recent divergence times, I believe incomplete lineage sorting has played a 

major role in the diversification of the South American species of Oreobolus. 

However hybridisation cannot be discounted, as many of these species are sympatric. 

In particular, O. cleefii and O. obtusangulus (NA) are excellent candidates to further 

explore this. In relation to the Quaternary biogeography of these species, the role in 
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diversification of the contraction and expansion of Páramo islands during glacial 

cycles is for the first time supported by genetic data. Additional work incorporating 

more extensive sampling of individuals and assessing additional genetic data will be 

required to estimate patterns of historical demography, which could bring further 

insight into the population dynamics of Páramo plants. 
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CHAPTER FOUR. SPECIES POOR LINEAGES IN 
THE PÁRAMO ECOSYSTEM, A BIODIVERSITY 
HOTSPOT 

4.1 ABSTRACT 

A dated phylogeny using DNA sequence data was used to investigate the 

phylogenetic position and biogeography of Páramo species of Melastomeae. Páramo 

was colonised multiple times by different lineages of Melastomeae. Colonisation 

also occurred in different time frames with species poor lineages colonising from the 

mid-Miocene. Low levels of variability in chosen sequences meant that relationships 

amongst populations within Castratella, a genus with only one or two species, were 

poorly resolved. The low number of species in Castratella may have resulted from 

lower diversification or higher extinction rates. Castratella diverged from its nearest 

ancestor in the mid-Miocene but only appears to have diversified in the Páramo in 

the Pleistocene. Castratella may have persisted at lower altitudes until it dispersed to 

the Páramo more recently, and subsequently went extinct at lower altitudes. I also 

argue that effective seed dispersal may have maintained enough gene flow to prevent 

the reproductive isolation that would have resulted in speciation in the Páramo. 

Lineages of temperate or tropical origin contributed equal numbers of species to the 

Páramo flora. Although the frost-resistance mechanism of temperate lineages might 

have played a role in their successful diversification at higher altitudes, the results 
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presented here cannot confirm this mechanism gave them a competitive advantage 

over tropical elements. 

4.2 INTRODUCTION 

The question of why some lineages are species rich and others are species poor has 

been a long-standing one in biodiversity research. Possible causes of species rich 

lineages might be related to changes in diversification rates across the tree of life 

associated with key geological events (e.g. Inga, Richardson et al., 2001), ecological 

shifts (e.g. Lupinus, Hughes & Eastwood, 2006; Drummond et al., 2012) or key 

morphological innovations (e.g. Aquilegia, Hodges & Arnold, 1994). Another 

possible explanation is the age of the clades, with older ones having had more time to 

accumulate more species (McPeek & Brown, 2007; Rabosky et al., 2012). 

Conversely, species poor lineages may result from higher extinction rates, a 

hypothesis particularly difficult to test due to the incompleteness of the fossil record 

(Magallón & Sanderson, 2001; Rabosky & Lovette, 2008; Donoghue & Sanderson, 

2015). Alternatively, it could be the result of taxonomic delimitation with more (or 

fewer) species described than there actually exist (Scotland & Sanderson, 2004). 

Such a debate is particularly relevant when species poor lineages occupy 

geologically young ecosystems (i.e. ecosystems formed from recent mountain 

orogeny) that were readily available for colonisation from geographically local 

lineages but were widely colonised by immigrants arriving from greater distances. 

This is the case of the Páramo, a young ecosystem that appeared following the final 

uplift of the northern section of the Andes Mountain Range during the Pliocene, from 
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c. 5 Ma and to which many lineages have arrived from distant, temperate biomes 

(van der Hammen, 1974; van der Hammen & Cleef, 1986; Hooghiemstra et al., 

2006; Graham, 2009; Sklenář et al., 2011). 

The Páramo occupies an area of 35000 km2 and is distributed in a series of sky 

islands with c. 4000 plant species of which 60% are endemic (Luteyn, 1999; 

Buytaert et al., 2010). Because of its recent origin and massive diversity, it has been 

proposed that net speciation rates might have been exceptionally high, a hypothesis 

tested by Madriñán et al. (2013). These authors indicated that Páramo lineages had a 

speciation rate higher than any other biodiversity hotspot on earth. 

However, the Páramo ecosystem imposes huge constraints on its biota. Because of its 

altitudinal range (above 3000 m.a.s.l.), frost is common and temperature fluctuates 

daily from freezing up to 25ºC (Sarmiento, 1986). This temperate-like environment 

may have contributed to some level of ecological filtering on lowland Neotropical 

taxa colonising and diversifying in the highlands (Donoghue, 2008). These taxa may 

have had to overcome intense physiological boundaries, in particular frost, in order 

to colonise upland areas successfully. Conversely, immigrants from temperate 

regions may have found similar conditions to those they were already adapted to, 

giving them a competitive advantage and enhancing the possibility of their 

diversification (van der Hammen & Cleef, 1986; Simpson & Todzia, 1990; 

Donoghue, 2008). The palaeopalynological record and previous floristic studies have 

estimated that approximately 50% of Páramo species have a likely temperate origin 

while the other 50% are of likely tropical origin (van der Hammen & Cleef, 1986; 

Sklenář et al., 2011). The high proportion of temperate elements in the Páramo flora 

may have arrived via suitable dispersal corridors (i.e. Isthmus of Panama) or may 
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have had to colonise following long-distance dispersal events (e.g. Oreobolus) 

(Simpson & Todzia, 1990; Donoghue, 2008; Sklenář et al., 2011). 

The relative contributions of tropical and temperate lineages to species numbers in 

the Páramo will also depend on speciation rates within the ecosystem, and in 

particular, whether tropical lineages entering the Páramo have undergone less 

subsequent diversification (or higher extinction) than did temperate ones. If 

temperate taxa diversified more, a higher number of species would be expected 

compared to tropical ones. Furthermore, given that tropical taxa had to adapt to new 

conditions as the altitude increased while temperate taxa likely migrated through or 

from similar temperate-like environments, a relationship between species richness, 

geographic origin and altitude might also be expected. In this case, temperate taxa 

would be more species-rich at higher altitudes than tropical ones. The latter might be 

influenced by the frost-resistance mechanism adopted by Páramo plants. Sklenář et 

al. (2012) tested the hypothesis that Páramo plants will adopt different mechanisms 

according to their geographic origin. These authors found that plants with a north 

temperate origin mostly tolerated freezing by formation of extracellular ice while 

plants with tropical and south temperate origin avoided freezing by supercooling, i.e. 

preventing the formation of ice at temperatures below freezing point. However, the 

latter provides a solution for a short period of moderate frost but would be an 

inadequate mechanism against severe or permanent subfreezing temperatures (Beck, 

1994). In that sense, freezing tolerance would provide a better solution to extreme 

cold and therefore might promote colonisation of higher altitudes by plants with a 

north temperate origin. 
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The Melastomeae tribe of the largely tropical family Melastomataceae is an ideal 

model group to approach some of these questions. With >870 species in 47 genera, 

the vast majority of species are in South America (c. 570 species in 30 genera) with 

the rest distributed in the Palaeotropics (Renner, 1993; Michelangeli et al., 2013). 

Furthermore, the Neotropical species occupy a wide variety of habitats from lowland 

forest to the high-altitude Páramo ecosystem, with the greatest number of species in 

the lowlands (Michelangeli et al., 2013). Additionally, there is a huge disparity in 

terms of species richness within the 30 Neotropical genera. On one hand the mostly 

lowland genus Tibouchina Aubl. has 241 species while endemic or near-endemic 

Páramo genera such as Castratella Naudin and Bucquetia DC. have two and three 

species, respectively (Luteyn, 1999; Michelangeli et al., 2013). 

Castratella is of particular interest. One of the few endemic Páramo genera, it is 

confined to the páramos in the Eastern Cordillera of Colombia and Venezuela. 

Furthermore, Castratella has a herbaceous habit contrary to the bushy habit of the 

rest of the Páramo species within the tribe and the family (Sklenář et al., 2005). 

Although it has two species, C. piloselloides and C. rosea, the latter is only known 

from the type specimen plus some few additional collections and its validity as a 

species has been questioned (F. Michelangeli, pers. comm.). Little is known about 

the ploidy level and chromosome numbers in Castratella, however previous studies 

have shown that haploid numbers of n = 9, 10, 11 and 12 are common in the tribe as 

are dysploid or polyploid derivatives of these numbers (Solt & Wurdack, 1980; 

Almeda & Chuang, 1992). The question of why Castratella has so few species in 

comparison to most Páramo genera is of great interest. Information on the timing of 
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the evolution of this genus could provide insights into explaining why it has so few 

species. 

In order to reconstruct diversification histories, dated molecular phylogenies can be 

used to estimate the timing of particular events. The current study investigates the 

impact of the Andes orogeny on the diversification history of the Páramo species of 

the largely Neotropical Melastomeae tribe. Specifically the aims of this study are 1) 

to re-assess the phylogeny of the tribe under a Bayesian framework in order to re-

evaluate the phylogenetic position of the endemic Páramo genera Castratella and 

Bucquetia, as well as of the Páramo species within Brachyotum, Chaetolepis, 

Monochaetum and Tibouchina; 2) to estimate dates of divergence in Páramo species 

of Melastomeae; 3) to infer the phylogenetic and genealogical relationships within 

Castratella piloselloides; 4) to explore species richness patterns for the complete 

Páramo flora to assess if there is a relationship between species richness of Páramo 

clades and their geographic origin (temperate versus tropical), and if there is a 

relationship between geographic origin and altitudinal distribution (tropical elements 

may tend to occupy lower altitudes). 

4.3 METHODS 

4.3.1 Species sampling 

To determine the phylogenetic framework of the Páramo taxa within Melastomeae, 

the dataset from Michelangeli et al. (2013) was re-analysed under Bayesian 

Inference. Their dataset includes 239 taxa sequenced for the nuclear ribosomal DNA 

internal transcribed spacers (ITS) and the plastid regions accD-psaI and psbK-psbL. 
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This extensive sampling of the Melastomeae tribe (217 species) includes samples 

from Páramo species within Castratella, Bucquetia, Brachyotum, Chaetolepis, 

Monochaetum and Tibouchina. It also includes a comprehensive set of species from 

the tribes Microlicieae, Rhexieae, Miconieae and Merianieae that were incorporated 

as outgroups, allowing the use of calibration points using fossils. 

To estimate the phylogenetic and genealogical relationships within the endemic 

Páramo species Castratella piloselloides, extensive sampling was undertaken across 

its entire distribution range). A total of 120 samples from eight populations were 

obtained from field collections (Table 4.1 and Fig. 4.1). From each population, two 

to ten fresh leaf samples were collected, and their location was recorded using a 

handheld GPS. Additionally, one sample of Castratella rosea was obtained from the 

Utrecht Herbarium (U) of the National Herbarium of the Netherlands. Populations 

were numbered 1 to 8 in a north to south direction. Additionally, samples of 

Bucquetia glutinosa also collected in Colombia and herbarium samples of 

Chaetolepis cufodontisii, C. lindeniana and C. microphylla obtained from the New 

York Botanical Garden (NY) were included as outgroups. Table S4.1 presents the 

complete list of samples used in this study (Supplementary Information, pages 225 – 

238). 



	 143 

Table 4.1. Geographic coordinates of the populations sampled. 

Nº POPULATION NAME LATITUDE LONGITUDE 

1 COCUY 6.41211667 -72.33128333 

2 LA RUSIA 5.93951667 -73.07583333 

3 IGUAQUE 5.68610000 -73.44773333 

4 TOTA-BIJAGUAL 5.48143333 -72.85540000 

5 RABANAL 5.40818333 -73.54915000 

6 GUERRERO 5.22618333 -74.01788333 

7 CHINGAZA 4.52848333 -73.75866667 

8 SUMAPAZ 4.28958333 -74.20781667 
 

 
Figure 4.1. Map of the populations of Castratella piloselloides sampled. 
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4.3.2 DNA extraction, amplification and sequencing 

Both silica-dried fresh leaf samples and herbarium material were pulverised using a 

Mixer Mill (Retsch, Haan, Germany). Total DNA from all samples was isolated 

following a modified protocol of the DNeasy® Plant Mini Kit (QIAGEN, 

Manchester, UK), which involved adding 30 µl of Proteinase K (InvitrogenTM, Fisher 

Scientific, Loughborough, UK) plus 30 µl of ß-mercaptoethanol per extraction along 

with the lysis buffer (AP1), allowing for an incubation of 24 hours at 42ºC, with 

gentle rocking. This modified protocol has been shown to increase DNA quality and 

yield in Melastomataceae (Michelangeli et al., 2008; 2013). In order to include my 

C. piloselloides samples into the dataset of Michelangeli et al. (2013), the ITS and 

plastid regions accD-psaI and psbK-psbL were amplified and sequenced as detailed 

in Chapter Two (page 36) using primers ITS5P/ITS8P (Möller & Cronk, 1997), 

accD/psaI-75R (Shaw et al., 2007) and psbK/psbL (Reginato et al., 2010), 

respectively. Additionally, to estimate genealogical relationships within C. 

piloselloides, the plastid regions rpl32-trnL and trnG were amplified and sequenced 

using primer pairs trnL(UAG)/rpl32-F and trnG(UUC)/trnG2G, respectively (Shaw et al., 

2005; 2007). Similarly, the nuclear ribosomal external transcribed spacer (ETS) was 

amplified and sequenced with forward primer ETS-Mel specific to Melastomataceae 

(F. Michelangeli, unp.) and reverse primer 18S (Starr et al., 2003). All PCR reactions 

were performed as described in Chapter Two (page 36). The amplification cycle for 

all chloroplast regions consisted of 2 min at 94°C, followed by 30 cycles of 1 min at 

94°C, 1 min at 52°C and 1 min at 72°C, finalising with 7 min at 72°C. For ITS and 

ETS, the amplification cycle consisted of 3 min at 94°C, followed by 30 cycles of 1 
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min at 94°C, 1 min at 55°C and 90 sec at 72°C, finalising with 5 min at 72°C. PCR 

products were purified and sequenced as reported in Chapter Two (page 36). 

4.3.3 Matrix assembly and sequence alignment 

Contigs of forward and reverse sequences were assembled in Sequencher version 5.2 

(Gene Codes Corporation, Ann Arbor, Michigan, USA). Sequences from ITS, accD-

psaI and psbK-psbL were aligned with the dataset of Michelangeli et al. (2013) on 

Muscle v3.7 (Edgar, 2004) and then visually checked using Mesquite v2.75 

(Maddison & Maddison, 2014). Sequences from ETS, trnG and rpl32-trnL were 

manually aligned using Mesquite v2.75 (Maddison & Maddison, 2014). 

4.3.4 Phylogeny reconstruction 

Evolutionary model testing was performed for each gene region using jModelTest 

2.1.6 (Guindon & Gascuel, 2003; Darriba et al., 2012) with default settings. Based 

on the Bayesian Information Criterion (BIC, Schwarz, 1978), the best-fitting models 

were: GTR+I+Γ (ITS), TVM+Γ (accD-psaI and psbK-psbL), TPM2uf+Γ (ETS) and 

TPM1uf (trnG and rpl32-trnL). 

Phylogenies for each region were reconstructed using Bayesian Inference (BI) with 

MrBayes v. 3.2.2 (Ronquist et al., 2012) run on the CIPRES Science Gateway v.3.3 

(Miller et al., 2010). For the Melastomeae datasets (ITS, accD-psaI and psbK-psbL), 

four independent runs of 30,000,000 generations were performed, with three hot 

chains and one cold chain at a temperature of 0.1, sampling 104 parameter estimates 

in each run. For the C. piloselloides datasets (ETS, trnG and rpl32-trnL), four 

independent runs of 10,000,000 generations were performed with three hot chains 
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and one cold chain at a temperature of 0.1, sampling 104 parameter estimates in each 

run. Appropriate mixing, parameter and topological convergence were assessed with 

Tracer v1.6.0 (Rambaut et al., 2013). For each dataset, 75% of the samples from each 

run were discarded as burn-in and a maximum clade credibility (MCC) tree from the 

combined 10,000 trees was annotated with posterior probability support values (PP), 

median heights and 95% highest posterior density (HPD) values using TreeAnnotator 

v2.1.2 (Rambaut & Drummond, 2015). Annotated trees were visualised and exported 

as graphics using FigTree v1.4.2 (Rambaut, 2014). Posterior probability (PP) support 

values of above 90% are considered to be high, 60% to 90% to be good and below 

60% to be poor. 

Statistical assessment of topological congruence between phylogenetic trees (i.e. 

incongruence length difference test – ILD) has been rejected as an unbiased measure 

of phylogenetic congruence and combinability (e.g. Darlu & Lecointre, 2002; Barker 

& Lutzoni, 2002; Ramírez, 2006). Consequently, congruence between the 

chloroplast and nuclear tree topologies was visually assessed for each dataset, which 

revealed no strongly supported conflict in both cases. Two concatenated matrices 

were then produced and partitioned by gene. BI analyses were performed as 

described in the previous paragraphs. 

4.3.5 Divergence time estimation 

To estimate dates of divergence in Páramo species of Melastomeae, BEAST v2.1.3 

(Bouckaert et al., 2014) was used on the combined Melastomeae dataset (ITS, accD-

psaI and psbK-psbL). The data were partitioned as for the Bayesian analyses and 

each partition was analysed under a GTR model with a gamma distribution with four 
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rate categories which is the minimum number to get a good approximation of the 

continuous function (Yang, 1994). The model of lineage-specific substitution rate 

variation was set as an uncorrelated lognormal relaxed clock model with estimated 

clock rates and a mean with an exponential prior distribution where the mean equals 

10. The diversification model was set to a birth death model (Gernhard, 2008), an 

appropriate model to infer divergence times between species (Drummond & 

Bouckaert, 2015). Miconieae + Merianieae were constrained to be monophyletic as 

was recovered in the phylogeny presented in this study as well as by Michelangeli et 

al. (2013). Their crown node was calibrated with the oldest Melastomataceae fossil 

leaves from the Early Eocene of North Dakota (Hickey, 1977), which have been 

described as resembling the extant species of Miconieae and Merianieae (Hickey, 

1977; Renner & Meyer, 2001). A prior with a lognormal distribution was set with a 

mean (µ) of 7 Ma, a standard deviation (σ) of 0.54 and a minimum bound for the 

highest posterior density distribution of 41.3 Ma. The standard deviation was set to 

0.54 yielding a 95% highest posterior density (HPD) between 41.3 and 56 Ma that 

corresponds to the upper age limit of the Eocene and the lower age limit of the Early 

Eocene (Cohen et al., 2013 updated). The tribe Microlicieae was constrained to be 

monophyletic and a prior with a normal distribution was set at its crown node 

defined by µ=16 Ma, σ=0.6 Ma and a minimum bound for the highest posterior 

density distribution of 9.0 Ma. The age and 95% HPD correspond to that estimated 

by Renner (2004) for the crown node of the Microlicieae from a dated phylogeny of 

the Melastomataceae, calibrated with four fossils. Similarly, Rhexieae was 

constrained to be monophyletic and fossil seeds from the Early Miocene (23 to 26 

Ma) across Europe (Dorofeev, 1960; 1963; 1988; Collinson & Pingen, 1992; Dyjor 
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et al., 1992; Fairon-Demaret, 1996; Mai, 2000) were used to set a lognormal 

distribution on its crown node with µ= 4 Ma, σ=0.81 Ma and a minimum bound for 

the highest posterior density distribution of 23 Ma. These fossil seeds have been 

identified to have a type of testa ornamentation synapomorphic for Rhexieae with a 

cochleate shape and multicellular tubercles (Renner & Meyer, 2001; Renner et al., 

2001; Michelangeli et al., 2013). A normal distribution was used for Microlicieae 

because it is the most appropriate for secondary calibrations (Ho & Phillips, 2009). 

This type of distribution locates most of the probability density around the mean and 

allows for symmetrical decrease towards the tails accounting for the age error (Ho & 

Phillips, 2009). In contrast, a lognormal distribution is the most appropriate for a 

fossil calibration (Ho & Phillips, 2009). In this case, the fossil sets a hard minimum 

bound to the distribution with its highest probability density older than the fossil (Ho 

& Phillips, 2009). This calibration strategy biases in favour of an older age estimate 

that is recommended as fossils represent minimum age estimates as they were likely 

to have formed after the evolution of the clade that they represent. The remaining 

priors were left at their default settings. 

Twelve independent MCMC runs of 25 x 106 generations each, sampling every 2500 

were performed. Adequate mixing and convergence were assessed using Tracer 

v1.6.0 (Rambaut et al., 2013). Ten percent of the samples from each run were 

discarded as burn-in, and a MCC tree from the combined tree sets was annotated 

with median heights and 95% HPD node ages on TreeAnnotator v2.1.2 (Rambaut & 

Drummond, 2015). 



	 149 

4.3.6 Haplotype definition and network 

Haplotypes were identified independently for the nuclear ribosomal region (ETS) 

and the concatenated plastid regions (trnG and rpl32-trnL) in Microsoft Excel 

(Microsoft Corporation, Washington DC, USA) using the Chloroplast PCR-RFLP 

Excel macro (French, 2003). For the concatenated plastid regions, only samples 

successfully sequenced for both regions were considered (Table S4.1). Haplotype 

connection lengths were calculated using Arlequin ver3.5 (Excoffier & Lischer, 

2010) and a minimum-spanning tree was produced in Hapstar v0.5 (Teacher & 

Griffiths, 2011). 

4.3.7 Species richness, geographic origin and altitudinal distribution 

To assess if there is a relationship between species richness of Páramo clades and 

their geographic origin, as well as between geographic origin and altitudinal 

distribution for the complete Páramo flora, generic composition of the Páramo flora 

and their geographic origin was compiled from Sklenář et al. (2011). This included 

380 genera within six geographic categories: (1) tropical: Páramo endemic, 

Neotropical, Pantropical and (2) temperate: Austral-Antarctic, Holarctic, 

Pantemperate. Information about number of species per genus in the Páramo and 

maximum altitudinal distribution in the Páramo was obtained from Luteyn (1999). 

The altitudinal categories were Subpáramo (2800 – 3500 m.a.s.l.), Páramo (3500 – 

4400 m.a.s.l) and Superpáramo (4400 – 5000 m.a.s.l.). Table S4.2 (Supplementary 

Information, page 239) summarises the tabulated data. Boxplots of species richness 

versus geographic origin and species richness versus maximum altitudinal 

distribution were generated in R version 3.2.3 (R Core Team, 2015). In addition, 



	 150 

Kruskal-Wallis and Conover-Inman (Conover, 1999) tests were used to assess 

statistical differences between the different groups. 

4.4 RESULTS 

4.4.1 Matrix details 

A total of 18 ITS, 22 ETS, 14 accD-psaI, 16 psbK-psbL, 21 rpl32-trnL and 22 trnG 

sequences were generated for this study (Table S4.1). The concatenated matrix for 

the Melastomeae dataset totalled 250 taxa and 3219 bp of aligned sequences (ITS, 

1119 bp; accD-psaI, 1465 bp; psbK-psbL, 635 bp) with 73% (2340 bp) informative 

characters (ITS, 849 bp; accD-psaI, 1038 bp; psbK-psbL, 453 bp). The Castratella 

dataset produced a concatenated matrix of 20 taxa and 1798 bp of aligned sequences 

(ETS, 608 bp; trnG, 754 bp; rpl32-trnL, 436 bp). Of these, 10% (184 bp) were 

informative (ETS, 118 bp; trnG, 37 bp; rpl32-trnL, 34 bp). 

4.4.2 Phylogenetic relationships of the Melastomeae Páramo species 

Figure 4.2 shows the MCC tree annotated with posterior probability values (PP) 

resulting from the Bayesian analysis for the combined matrix of Melastomeae (ITS, 

accD-psaI and psbK-psbL). 

The phylogeny presented in this study recovers the same major clades and 

relationships obtained by Michelangeli et al. (2013) from Maximum Parsimony and 

Maximum likelihood phylogenetic analyses, further confirming the results presented 

by these authors. All sampled Páramo species were reconstructed within a clade 
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sister to the ‘Tibouchina (Pleroma) + Microlepis, Svitramia, Tibouchinopsis’ clade 

(PP = 80%; Fig. 4.2a), specifically within clades ‘Brachyotum and allies’ (PP = 78%; 

Fig. 4.2b) and ‘Monochaetum and allies’ (PP = 100%; Fig. 4.2b). In the former, three 

highly supported Páramo clades and one species were recovered: Brachyotum 

ledifolium + B. lindenii (PP = 100%); B. confertum + B. fraternum + B. harlingii + B. 

fictum (PP = 100%); B. rostratum (PP = 100%); and Tibouchina grossa + T. mollis 

(PP = 100%). Within the ‘Monochaetum and allies’ clade, two Páramo clades and 

one species appeared. First, a highly supported Páramo clade formed by Bucquetia 

glutinosa + Castratella piloselloides + Chaetolepis cufodontisii + C. microphylla (PP 

= 100%) was recovered. In this Páramo clade, two species of the paraphyletic 

Chaetolepis, C. cufodontisii and C. microphylla, formed a highly supported clade 

sister to the rest (PP = 100%). Additionally, B. glutinosa appears as sister taxon to C. 

piloselloides with poor support (PP < 50%). Also, the monophyly of C. piloselloides 

is further confirmed (PP = 100%). Second, a Páramo clade formed by Chaetolepis 

lindeniana + Monochaetum discolor was reconstructed with high support (PP = 

100%). Finally, the Páramo species Monochaetum bonplandii also appeared highly 

supported (PP = 97%). 
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Figure 4.2. (a – b) Maximum clade credibility tree of Melastomeae obtained from the 
Bayesian analysis based on the combined matrix of nuclear (ITS) and plastid regions (accD-
psaI and psbK-psbL). Clade names follow Michelangeli et al. (2013). Numbers above the 
branches represent posterior probability values (PP < 0.50, not shown). Páramo species are 
indicated in italics and bold. 
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was recovered as monophyletic (PP = 100%). Sister to the Castratella clade 

appeared a highly supported Chaetolepis clade (PP = 100%) including all three 

species sampled in this study. Additionally, Bucquetia glutinosa was recovered as 

sister taxon to the Castratella + Chaetolepis clade (PP = 100%). Within Castratella, 

resolution is poor but basally branching individuals tend to be distributed on the east 

of the Eastern Cordillera while more derived ones are distributed on the west. Of 

these, only two clades were highly supported: the first grouping samples MG345, 

LFT035, MG239, MG282 and MG352 (PP = 100%) and a second grouping the five 

previously listed samples in addition to MG247 and MG328 (PP = 93%). 

 

 
Figure 4.3. Maximum clade credibility tree of Castratella piloselloides obtained from the 
Bayesian analysis based on the combined matrix of nuclear (ETS) and plastid regions (trnG 
and rpl32-trnL). Circled numbers indicate population number as described in Figure 4.1 and 
Table 4.1. Numbers above the branches represent posterior probability values (PP < 0.50, 
not shown). 
 

Bucquetia glutinosa (MG246)
Bucquetia glutinosa (MG281)

100

100

100
100

100

100

0.0070

93

Chaetolepis cufodontisii
Chaetolepis microphylla

Chaetolepis lindeniana
Castratella piloselloides (MG167)
Castratella piloselloides (MG188)
Castratella piloselloides (MG308)

Castratella piloselloides (MG150)
Castratella piloselloides (MG317)
Castratella piloselloides (MG270)
Castratella rosea
Castratella piloselloides (MG141)
Castratella piloselloides (MG247)

Castratella piloselloides (MG328)
Castratella piloselloides (MG345)
Castratella piloselloides (LFT035)
Castratella piloselloides (MG239)
Castratella piloselloides (MG282)
Castratella piloselloides (MG352)

1
1
4

4
4
6

1
2
3

5

8

7

5

6
8



	 155 

4.4.3 Divergence time estimation 

The BEAST analysis recovered the same well-supported clades for Melastomeae as 

the Bayesian analysis (Fig. 4.4). The ‘Brachyotum and allies’ and ‘Heterocentron 

and allies’ clades (sensu Michelangeli et al, 2013) diverged during the early Miocene 

c. 23.61 Ma (95% HPD [16.75 – 32.51] Ma) and started diversifying from c. 19.18 

Ma (95% HPD [10.81 – 28.11] Ma; node F) and c. 22.27 Ma (95% HPD [14.76 – 

30.84] Ma; node G), respectively. Within the former, a well-supported clade formed 

by eleven species of Tibouchina diverged during the mid-Miocene c. 12.4 Ma (95% 

HPD [7.44 – 18.58] Ma; node E). Within the genus Brachyotum, Páramo lineages 

diverged from the Pliocene: B. ledifolium + B. lindenii c. 0.33 Ma (95% HPD [0 – 

1.15] Ma; node A), B. confertum + B. fictum + B. fraternum + B. harlingii c. 2.07 

(95% HPD [0.94 – 3.6] Ma; node B) and B. rostratum c. 4.71 (95% HPD [2.54 – 

7.33] Ma; node C). Similarly, the clade formed by Tibouchina Páramo species T. 

grossa and T. mollis (node D) also diverged during the Pliocene c. 3.35 Ma (95% 

HPD [1.29 – 6.25] Ma). 

The ‘Monochaetum and allies’ clade (sensu Michelangeli et al., 2013) diverged 

during the late Oligocene c. 24.51 Ma (95% HPD [17.9 – 33.71] Ma) and started 

diversifying during the Miocene c. 17.96 Ma (95% HPD [12.34 – 24.89] Ma). The 

Páramo clade formed by Bucquetia glutinosa, Castratella piloselloides, Chaetolepis 

cufodontisii and Chaetolepis microphylla (node J) diverged during the Miocene c. 

14.03 Ma (95% HPD [9.28 – 20.32] Ma). Subsequently, B. glutinosa and C. 

piloselloides diverged c. 11.66 Ma (95% HPD [6.03 – 17.69] Ma; node H) with the 

latter diversifying since c. 1.06 Ma (95% HPD [0.36 – 2.2] Ma; node I). Likewise, C. 

cufodontisii and C. microphylla diverged during the Pliocene c. 4.78 Ma (95% HPD 
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[1.87 – 9.16] Ma; node K). The Monochaetum clade (node N) diverged c. 17.96 Ma 

(95% HPD [12.34 – 24.89] Ma) and diversified from the mid-Miocene c. 13.47 Ma 

(95% HPD [8.91 – 19.32] Ma). Within the latter, a Páramo clade formed by 

Chaetolepis lindeniana and Monochaetum discolor (node L) diverged during the 

Pliocene c. 3.48 Ma (95% HPD [0.97 – 7.05] Ma), as did Páramo species 

Monochaetum bonplandii c. 4.69 Ma (95% HPD [2.22 – 8.01] Ma; node M). 
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Figure 4.4. Chronogram from the BEAST analysis for the combined matrix of ITS and plastid 
regions (accD-psaI and psbK-psbL). Stars indicate calibrated nodes. Node bars indicate 
95% HPD age ranges. Nodes A – N are described and discussed in the text. Numbers 
above the branches represent posterior probability values (PP < 0.50, not shown). Páramo 
species are indicated in bold and italics 

 

4.4.4 Haplotype definition and network 

Figure 4.5 presents the haplotype network and haplotype distribution map for both 

ETS and cpDNA. A total of 18 individuals from eight populations were scored for 
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ETS haplotypes, including individuals for both C. piloselloides and C. rosea (Table 

4.2). Aligned sequences totalled 523 bp. One nucleotide substitution defined two 

haplotypes neither of which were species-specific. There was no evident geographic 

clustering with Hn1 (n = 16) common and widely distributed and Hn2 (n = 2) 

restricted to two populations. For the cpDNA, a total of 15 individuals from both 

species were successfully sequenced for both plastid markers (trnG and rpl32-trnL). 

The resulting concatenated matrix totalled 1172 bp of aligned sequences (trnG, 744 

bp; rpl32-trnL, 428 bp). Five haplotypes were identified based on five polymorphic 

sites (trnG, 2; rpl32-trnL, 3). Of these, Hc5 is specific to C. rosea. Similarly to ETS, 

there was no evident geographic clustering. Hc3 (n = 6) and Hc1 (n = 5) were the 

most common haplotypes with the former located at the centre of the network. Hc2 

and Hc4 were restricted to one and two populations, respectively. 

Table 4.2. Number of individuals of Castratella spp. successfully sequenced per population 
for ETS and cpDNA (trnG and rpl32-trnL). 

POPULATION 
C. piloselloides C. rosea 

ETS cpDNA ETS cpDNA 

(1) COCUY 2 2 1 1 

(2) LA RUSIA 1 1 - - 

(3) IGUAQUE 1 1 - - 

(4) TOTA-BIJAGUAL 3 3 - - 

(5) RABANAL 2 2 - - 

(6) GUERRERO 2 2 - - 

(7) CHINGAZA 3 1 - - 

(8) SUMAPAZ 3 2 - - 

TOTAL 17 14 1 1 
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Figure 4.5. Haplotype network and distribution of (a) ETS and (b) cpDNA (trnG and rpl32-
trnL) sequences for 18 Castratella piloselloides and one C. rosea accessions. Numbers in 
the map refer to populations described in Table 4.1 and Figure 4.1. Circle size is proportional 
to sample size for each population and for each haplotype. Hypothetical haplotypes are 
represented by filled black circles. 
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4.4.5 Species richness, geographic origin and altitudinal distribution 

Figure 4.6 summarises the various comparisons between species richness, 

geographic origin and altitudinal distribution for the complete Páramo flora. No 

significant differences in species richness were found between tropical and temperate 

elements (p > 0.05; Fig. 4.6a). Similarly, when discriminating by geographic 

category within each element no significant differences were found amongst them (p 

> 0.05; Fig. 4.6b). When comparing species richness between tropical and temperate 

elements within each altitudinal category (Subpáramo, Páramo, Superpáramo), no 

significant differences were found within any of them (p > 0.05; Fig. 4.6c). Likewise, 

no significant differences were found amongst the six geographic categories when 

discriminating by altitudinal category (p > 0.05; Fig. 4.6d). 

However, when comparing each element across altitudinal categories, species 

richness was significantly different for both temperate and tropical elements (p < 

0.05; Fig. 4.6c). For temperate elements, differences were explained by higher 

species richness in the Superpáramo compared to both Subpáramo and Páramo. In 

the case of tropical elements, differences accounted for greater species richness in 

the Páramo compared to both Subpáramo and Superpáramo, as well as a more 

species-rich Superpáramo compared to Subpáramo. After discriminating by 

geographic category, results showed that differences in species richness were 

explained by elements of Neotropical, Pantropical, Holarctic and Pantemperate 

origin (p < 0.05; Fig. 4.6d). Differences were explained as follows. For Neotropical 

elements: (i) species richness was higher in the Páramo compared to both Subpáramo 

and Superpáramo, as well as higher in Superpáramo compared to Subpáramo; (ii) for 

Pantropical elements, Páramo was richer than Subpáramo; and (iii) for Holarctic and 
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Pantemperate elements, Superpáramo had a greater richness than Páramo. Table S4.3 

presents test statistics and p-values for all comparisons undertaken (Supplementary 

Information, page 240 – 241).
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Figure 4.6. Boxplots for (a - b) species richness versus geographic origin and (c - d) species 
richness versus geographic origin discriminated by elevation. 
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4.5 DISCUSSION 

4.5.1 Phylogeny and biogeography of the Melastomeae Páramo species 

Páramo species of Melastomeae were phylogenetically restricted to one clade of the 

reconstructed phylogeny (Fig. 4.2). However, within this clade colonisation of 

Páramo occurred repeatedly in both the ‘Brachyotum and allies’ and ‘Monochaetum 

and allies’ clades. Within the former, four different lineages diversified into the 

Páramo from the Pliocene (Fig. 4.4). By then, the final uplift of the Andes had 

already taken place and the mountain range was at its current elevation (Gregory-

Wodzicki, 2000; Graham, 2009; Mora et al., 2010). Species of Brachyotum and 

Tibouchina likely colonised the newly available Páramo ecosystem at this time, 

extending their distribution above the treeline. Páramo species of Tibouchina, T. 

grossa and T. mollis, and Brachyotum ledifolium and B. lindenii have a wider 

distribution across the páramos of Colombia and Ecuador (Luteyn, 1999; 

Michelangeli et al., 2013). This suggests effective dispersal after colonisation of 

Páramo. On the contrary, the clade formed by Brachyotum confertum, B. fraternum, 

B. harlingii and B. fictum is restricted to the páramos of Ecuador whereas B. 

rostratum extends from Ecuador to Peru. The limited distribution of the four 

Ecuadorian species might reflect more limited dispersal increasing the impact of the 

Quaternary ice cycles on their diversification history. Repeated episodes of 

expansion and contraction may have promoted allopatric speciation during periods of 

isolation. 

Within ‘Monochaetum and allies’, a Páramo clade formed by Bucquetia glutinosa, 

Castratella piloselloides, Chaetolepis cufodontisii and Chaetolepis microphylla 
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diverged from its most recent common ancestor (MRCA) in the mid Miocene c. 

14.03 Ma (Fig. 4.4). At this time the Andes mountain range had reached half its 

current height, an altitude insufficient to support Páramo (van der Hammen & Cleef, 

1986; Hooghiemstra & van der Hammen, 2004). Bucquetia glutinosa and C. 

piloselloides, two species restricted to the Eastern Cordillera of Colombia and 

Venezuela, the youngest section of the Andes, diverged shortly after c. 11.66 Ma 

(Gregory-Wodzicki, 2000; Graham, 2009; Mora et al., 2010). The estimated 

divergence time of these two species could suggest a progressive colonisation of the 

hilltops from the lowlands, a hypothesis also put forward for Valeriana (Bell & 

Donoghue, 2005). Subsequent divergence of C. cufodontisii and C. microphylla 

during the Pliocene c. 4.78 Ma is consistent with the formation of the Páramo 

ecosystem. Moreover, C. cufodontisii is endemic to the páramos of Costa Rica 

suggesting possible dispersal to Central America from the south. Further 

colonisations of the Páramo also occurred during the Pliocene by Chaetolepis 

lindeniana, Monochaetum discolor and M. bonplandii. 

4.5.2 Phylogeography of Castratella piloselloides 

Castratella was recovered as monophyletic in both the Melastomeae dataset and the 

Castratella dataset (PP = 100%; Figs. 4.2 – 4.3). However, reconstruction of the 

sister clade varied between datasets. In the Melastomeae phylogeny (Fig. 4.2), 

Bucquetia glutinosa appeared poorly supported as sister to Castratella (PP < 50%) 

whereas in the Castratella dataset (Fig. 4.3), a clade formed by the three sampled 

species of Chaetolepis was highly supported as its sister clade (PP = 100%). 

Furthermore, whereas Chaetolepis appeared as paraphyletic in the Melastomeae 
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phylogeny, it was highly supported as monophyletic in the Castratella phylogeny 

(PP = 100%). These differences highlight the importance of sample size and marker 

choice in phylogenetic reconstruction. A better reconstruction of the relationships 

between Bucquetia, Castratella, Chaetolepis and Monochaetum will require the 

thorough sampling of all species within these genera and the use of more variable 

markers. In the present study, only Castratella was sampled for both species, C. 

piloselloides and C. rosea, whereas only one out of three, three out of eleven and two 

out of forty species have been sampled for Bucquetia, Chaetolepis and 

Monochaetum, respectively. 

Castratella rosea was nested within C. piloselloides (Fig. 4.3). Nevertheless, given 

the poor level of resolution within the clade, C. rosea cannot be confirmed or denied 

as a distinct species, and as mentioned in the introduction there are doubts about its 

morphological distinctiveness. Furthermore, because sequencing of regions used in 

the Melastomeae dataset (ITS, accD-psaI and psbK-psbL) were unsuccessful for C. 

rosea, this species could not be incorporated into the broader tribal level phylogeny 

and therefore results about its phylogenetic status are inconclusive. Additional 

structure is evident within Castratella, even though only two clades are highly 

supported (Fig. 4.3). Southeastern individuals (populations 2, 3, 5 – 8) are nested 

within northwestern ones (populations 1 and 4) of the Eastern Cordillera that is 

consistent with the species originating in the more northwestern parts. 

Genealogical relationships within Castratella indicated a pattern of one or two 

common haplotypes and one or two rare ones for both ETS and the plastid regions 

(Fig. 4.5). This is particularly evident in the ETS network where 89% of the samples 

presented Hn1 while only 11% had Hn2. In the case of the plastid network, two 
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haplotypes (Hc3 and Hc1) grouped 73% of the samples while Hc2 and Hc4 

represented 20%. Furthermore, the resulting cpDNA network showed some degree of 

geographical structure, which might reflect the likely impact of the Quaternary ice 

cycles on the diversification history of Castratella. This genus diverged from its 

MRCA during the mid-Miocene c. 11.66 Ma, but diversification within extant 

populations of C. piloselloides only occurred from the Pleistocene c. 1.06 Ma (Fig. 

4.4). By then, the likely contraction of Páramo islands during glacial periods (van der 

Hammen & Cleef, 1986; Hooghiemstra & van der Hammen, 2004; Flantua et al., 

2014) might have promoted the isolation of refugial populations. Subsequently, 

during inter-glacial periods these Páramo islands might have come into contact, 

which, coupled with effective seed dispersal (wind), might have facilitated range 

expansion. The results obtained for ETS could be indicative of a lack of variation for 

this nuclear region. Furthermore, the difference in the number of base pairs 

sequenced for ETS (523 bp) compared to the concatenated plastid regions (1172 bp) 

could explain the higher polymorphism recovered in the cpDNA network. However, 

given the low samples sizes, these results are inconclusive and might also reflect a 

sampling artefact. Castratella rosea has a species-specific plastid haplotype (Hc5) 

although equally differentiated by a single mutational step. 

4.5.3 Species richness, geographic origin and altitudinal distribution 

General patterns of species richness in relation to geographic origin (tropical versus 

temperate) and maximum altitudinal distribution were assessed for the complete 

Páramo flora (Fig. 4.6). The results presented here support the palaeopalynological 

record and previous floristic studies in that temperate and tropical elements 
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contribute an equal proportion of species to this flora (van der Hammen & Cleef, 

1986; Sklenář et al., 2011). Both elements may have diversified to the same extent in 

the recently formed Páramo ecosystem, profiting from this new and empty niche 

resulting from the final uplift of the northern Andes section during the Pliocene c. 5 

Ma (van der Hammen, 1974; van der Hammen & Cleef, 1986; Hooghiemstra et al., 

2006; Graham, 2009). Indeed, radiations in lineages of tropical origin (e.g. Espeletia 

complex, Madriñán et al., 2013) and temperate (e.g. Lupinus, Hughes & Eastwood, 

2006) occurred during the Pliocene and Pleistocene broadly as a consequence of 

ecological opportunity (Sklenář et al., 2011; Madriñán et al., 2013; Luebert & 

Weigend, 2014; Hughes & Atchison, 2015). The proposed hypothesis that the frost-

resistance mechanism possessed by plants with a north temperate origin (formation 

of extracellular ice) might provide a pre-adaptation that could promote more 

successful colonisation and diversification at higher altitudes when compared to 

tropical elements lacking such pre-adaptation could not be supported. Indeed, species 

richness showed a tendency to increase with increasing altitude for both tropical and 

temperate elements (Fig. 4.6c). However, the likely role that this frost-resistance 

mechanism might have played in the successful diversification of temperate taxa at 

higher altitudes cannot be discarded. 

Nonetheless, the general pattern described in the previous paragraph should only be 

used as an approximation and more definite conclusions should be drawn from 

analyses of individual cases. I was able to compare relative diversification rates of 

Páramo lineages derived from within a predominantly cloud forest tropical one in a 

lineage of Melastomeae (Fig. 4.4). As described earlier, most Páramo lineages 

diverged during the Pliocene – Pleistocene with Brachyotum being the most diverse 
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(25/55 species). This greater number of species could be related to its different 

pollination syndrome. Tibouchina, Chaetolepis, Bucquetia, Castratella and 

Monochaetum are pollinated by insects but all species within Brachyotum are 

pollinated by bats and hummingbirds (Wurdack, 1953). 

Castratella is of particular interest, having diverged from its MRCA during the mid-

Miocene c. 11.66 Ma. Castratella, with just two species, is one of the few endemic 

Páramo genera (Luteyn, 1999; Sklenář et al., 2005) and the only Melastomeae 

Páramo representative to present a herbaceous perennial habit, the rest being bushes 

(Sklenář et al., 2005; Michelangeli et al., 2013). The clade comprising Tibouchina 

cerastifolia with a similar divergence time of c. 12.4 Ma diverged into eleven species 

within the same timeframe (node E; Fig 4.4). These species occupy the high-

elevation areas of the Mata Atlantica in Eastern Brazil (Michelangeli et al., 2013) a 

region that had already reached its current altitude (c. 2000 – 3000 m.a.s.l.) by the 

mid Miocene (DeForest Safford, 2007). The reasons for the different evolutionary 

history of this clade and other more species rich lineages and Castratella are 

intriguing. They reflect different diversification or extinction rates. Castratella could 

have had a lower diversification rate or a greater extinction rate. A possible 

explanation for the obtained results might be that Castratella is a recent arrival to the 

Páramo ecosystem. Evidence for a definite date of arrival into the Páramo is 

provided only by the age of the crown node of the genus, which began diversifying 

during the Pleistocene c. 1.06 Ma (Fig. 4.4). Even though an ancient Castratella may 

have diverged from its MRCA during the mid-Miocene c. 11.66 Ma, it might have 

persisted as a small refugial population at a lowland location. Subsequent dispersal to 

the Páramo ecosystem may have occurred more recently and the refugial population 
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could then have gone extinct. This scenario is consistent with patterns in the 

haplotype networks presented above. Though scarcity of pollinators at higher 

altitudes might have limited effective pollen dispersal, effective seed dispersal 

(wind) might have compensated for this and allowed an increase in population sizes 

with high gene flow that would have reduced opportunities for reproductive 

isolation. Moreover, the development of a herbaceous rhizomatous rosette habit may 

have had a positive impact on effective population sizes. 

Donoghue & Edwards (2014) hypothesised that the probability of a lineage shifting 

into a new biome could depend on the adjacency of the two biomes, the amount of 

time these two biomes have been connected and that greatest colonisation might 

occur when it is relatively empty. Furthermore, these authors suggested that 

evolutionary biome shifts would be phylogenetically clustered. All the 

aforementioned seem to be confirmed for the Páramo lineages of Melastomeae; 

phylogenetically clustered within one lineage, all Páramo lineages diverged from 

mostly mountainous clades occupying the forest below the treeline. Further analyses 

of diversification rates, climatic data and functional traits will greatly contribute to 

the understanding of the diversification within Melastomeae and to a better 

understanding of the diversification of the Páramo ecosystem. 

4.6 CONCLUSION 

Classification into tropical and temperate elements of the Páramo flora originally 

postulated by van der Hammen & Cleef (1986) provides a valuable basis from where 

to describe general patterns and formulate hypothesis related to the general assembly 
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of the Páramo flora. However, their method lacked the evolutionary evidence 

provided by molecular phylogenetics. Detailed studies of the molecular 

phylogenetics and biogeography of individual cases is therefore critical for a better 

understanding of the origin of the Páramo flora. Although much work has been done 

(reviewed in: Sklenář et al., 2011; Luebert & Weigend, 2014), a significant 

proportion is missing. Melastomeae is an excellent candidate to study evolutionary 

biome shifts and the impact of these on diversification histories as it has a significant 

amount of published phylogenetic information. I showed that colonisation of Páramo 

occurred repeatedly from the Pliocene in Brachyotum, Tibouchina, Monochaetum 

and Chaetolepis. Interestingly, the near-endemic and endemic, respectively, and least 

diverse genera, Bucquetia and Castratella diverged during the mid-Miocene. For the 

latter, I suggest that a refugial population may have persisted at a lowland location, 

then gone extinct but only after dispersing and diversifying in the Páramo ecosystem 

more recently. 

Because of the potential scarcity of genetic divergence within the species of endemic 

Páramo genera, very few studies have been undertaken below the species level. I 

attempted to reconstruct the phylogeographic history of Castratella piloselloides, but 

sequence divergence was less than 0.4% for all regions. This history could 

potentially be reconstructed with the use of more informative data such as 

microsatellites or a greater quantity of DNA sequence data (Fig. 4.5) that will permit 

a better understanding of evolutionary processes within the species. 
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CHAPTER FIVE. CONCLUSIONS 

5.1 RESEARCH SYNTHESIS 

The Páramo ecosystem is one of the youngest and fastest evolving on Earth 

(Madriñán et al., 2013). As such it is a model for studying recent evolutionary 

diversification processes. With the evolution of the large numbers of species with a 

high percentage of endemism to the biome, this ecosystem is interesting on a number 

of levels. It has similarities to island ecosystems with its distinct climate 

differentiating it from surrounding lowland ecosystems in a series of sky islands. Its 

climate requires adaptation to extreme conditions with high diurnal temperature 

changes including in some cases night frosts and high UV radiation. Determining the 

origin of Páramo lineages, whether they be from temperate regions with similar 

climates or from warmer tropical regions, will indicate how important pre-adaptation 

is in successful colonisation and diversification. Successful colonisation could 

depend on phylogenetic niche conservatism (PNC), which is the tendency of species 

to retain their ancestral traits, resulting in closely related species being more 

ecologically similar than would be expected based on their phylogenetic relations 

(Wiens & Graham, 2005). This hypothesis has been supported at various spatial 

scales (Silvertown et al., 2006; Losos, 2008; Crisp et al., 2009).. In the case of the 

Páramo, based on PNC, we might expect more lineages to have had an origin in 
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temperate regions and also that those lineages would have diversified more 

successfully, in terms of the number of species per lineage. 

This thesis examines the patterns and processes underlying the diversification of 

plants in the Páramo ecosystem, through studies of representative species of 

Oreobolus (Cyperaceae) and Melastomeae (Melastomataceae). The former has an 

origin in southern temperate regions and the latter originated in lowland tropical 

regions. The two groups were chosen for their different ancestral ecologies and also 

because they have different breeding systems. The main objectives were 1) to 

investigate the impact of the Andes orogeny on the timing, directionality and 

diversification rates of the South American species of Oreobolus (chapter two); 2) to 

examine the genetic structure between and within the South American species of 

Oreobolus in order to understand the influences of more recent geological, climatic 

and ecological factors (chapter three); 3) to investigate the impact of the Andes 

orogeny on the diversification history of the Páramo species of the largely 

Neotropical Melastomeae tribe (chapter four); and 4) to determine whether there 

were differences in species numbers of Páramo lineages of different geographic 

origin (chapter four). 

Key research findings, implications and future directions are discussed below. 
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5.2 KEY RESEARCH FINDINGS 

5.2.1 Timing, directionality and diversification rates of the South American species 
of a southern temperate lineage, Oreobolus (Cyperaceae). 

Results from Chapter Two highlight the importance of long-distance dispersal events 

and habitat heterogeneity in the diversification of the South American species of 

Oreobolus. The most recent common ancestor (MRCA) of these species diverged 

during the early Pliocene in Australia. Subsequent long-distance dispersal events to 

South America occurred in the same epoch, colonising both the northern and 

southern Andes. Importantly, the arid central Andes appear to have a strong impact 

on the distribution of these species imposing a barrier to dispersal between north and 

south. Comparison of diversification rates between northern and southern Andean 

clades provided further support for the positive impact of the Andes orogeny on 

diversification, through habitat heterogeneity. 

It is worth noting that phylogenetic analyses recovered unresolved relationships 

within the ‘Oreobolus clade’ of the Schoeneae tribe, with uncertain taxonomic 

boundaries at the generic level. This may have had a small effect on biogeographic 

reconstructions influencing statistical supports recovered for the ancestral area 

reconstructions. 

Notwithstanding these limitations, my study allowed for comparison of 

diversification patterns between sister clades with contrasting numbers of species but 

similar divergence times and origin. These results further support the role of Andean 

uplift in the promotion of diversity in the tropical Andes. Interestingly, it is apparent 
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that, given the right confluence of events, temperate taxa have the genotypic 

plasticity to quickly diversify. 

5.2.2 Genetic structure between and within the South American species of 
Oreobolus (Cyperaceae) 

My data indicated an example of cryptic speciation with the two morphologically 

similar southern and northern Andean subspecies of O. obtusangulus being 

genetically distinct in all analyses. Amongst the rest of the northern Andean Páramo 

Oreobolus species, a pattern of incomplete lineage sorting was evident. Incomplete 

lineage sorting is more likely to have confounded species boundaries than the 

alternative explanation of hybridisation based on the high percentage of private 

haplotypes, significantly different pairwise FST values between species, lack of 

heterozygosity in ITS and the recent divergence times of these species. However, 

hybridisation cannot be completely discarded because many of these species are 

sympatric providing opportunity for inter-specific gene flow. I suggest possible 

hybridisation between O. cleefii and the northern subspecies of O. obtusangulus. 

My results were also consistent with the glacial cycles of the Quaternary playing a 

role in the diversification process of Oreobolus, not only promoting speciation, but 

also maintaining high levels of genetic diversity within species and populations. 

These results add genetic evidence that is consistent with hypotheses based on the 

palaeopalynological record that suggest cycles of contraction and expansion of 

Páramo islands promoted allopatric speciation but also gene flow amongst species 

via secondary contact (van der Hammen, 1974; Simpson, 1975). 
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5.2.3 Diversification history of the Páramo species of the largely Neotropical 
Melastomeae tribe 

Results from Chapter four indicate multiple colonisations of the Páramo ecosystem 

within one clade of the Neotropical Melastomeae tribe. These diversification events 

occurred since the mid-Miocene for species-poor lineages such as Castratella and 

Bucquetia, but mostly during the Pliocene for species within Brachyotum, 

Chaetolepis, Monochaetum and Tibouchina. 

I discussed the likely role of extinction in the lack of diversification of Castratella. 

Castratella did not undergo an explosive radiation as has been the case for most 

Páramo plant clades. Donoghue & Sanderson (2015) coined the term depauperon to 

refer to “significantly depauperate lineages”, that show slower speciation or higher 

extinction rates compared to more species-rich lineages within the same group. I 

suggested a possible explanation for the pattern I observed of an old and species poor 

lineage that has only begun to diversify genetically since the Pleistocene. Castratella 

diverged from its MRCA c. 11 Ma during the mid-Miocene. It could then have 

remained at lower altitudes until the Andes reached a height sufficient to support the 

Páramo ecosystem. Castratella could then have dispersed into the Páramo, gone 

extinct at lower latitudes, and begun diversifying genetically but not sufficiently for 

new species to form. This could have been because its breeding system permitted 

gene flow amongst populations preventing divergence into morphologically distinct 

and reproductively isolated units. 

I showed how the identification and study of Páramo depauperons could greatly 

contribute to a more comprehensive understanding of the historical assembly of the 
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Páramo flora as these studies will allow the incorporation of diversity patterns other 

than species-rich radiations. 

5.2.4 Differences in species numbers of Páramo lineages of different geographic 
origin 

Chapter four indicated that Páramo elements of tropical and temperate origin 

contribute equally to this flora. However, I also showed that elements with a north 

temperate origin contributed greater numbers to the higher altitude Superpáramo 

flora. This could be attributed to differences in frost resistance mechanisms, could 

give north temperate elements a competitive advantage. North temperate origin 

elements may be more likely to tolerate frost, whereas those of a tropical origin less 

so. It is worth noting that the general patterns described in this chapter only provide a 

first glance into the general assembly of the Páramo flora. In that sense, studies 

should focus on specific groups identified as good models to tackle biogeographic 

questions. Importantly, such investigations need to incorporate the use of molecular 

phylogenetics in order to estimate geographical origin and possible dispersal routes. 

Such phylogenetic studies can then be coupled with ecophysiological data. 

5.3 RESEARCH IMPLICATIONS 

5.3.1 Phylogenetic niche conservatism versus niche evolution 

The comparison between patterns and processes in the biogeographic history of 

Oreobolus and Melastomeae are interesting. While phylogenetic niche conservatism 

can be invoked for Oreobolus as they appear to have only colonised within their 
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ancestral climatic niche, Melastomeae presents a history of limited niche evolution 

with multiple colonisations of temperate climates, though only a few times and 

within the same clade. Under a scenario of ecological opportunity, these results 

highlight important aspects of the natural history of each of these groups and bring 

attention to the impacts that these two strategies might have on plant diversification. 

If dispersal to a similar ecosystem is effective (PNC), taxa with a temperate origin 

are likely to quickly diversify, probably enabled by their pre-adaptations, as shown in 

Oreobolus. On the contrary, taxa with a tropical origin could face some degree of 

ecological filtering in that they need to adapt to new conditions, which might hinder 

their diversification, as may be the case in Castratella. Nonetheless, if these 

limitations are overcome, explosive radiations may occur as has been shown for the 

Espeletia complex (Rauscher, 2002).  

5.3.2 Phylogeography of Páramo plant taxa 

Phylogeographic studies of South American plant taxa are scarce and mostly focus 

on lowland species (Beheregaray, 2008; Turchetto-Zolet et al., 2013). Unfortunately, 

genetic diversity below the species level may be low in Páramo taxa, hindering such 

investigations. However, in order to understand speciation processes in the Páramo 

ecosystem, phylogeographic studies are necessary for closely related and recently 

divergent species, such as those in Oreobolus. In Chapter three I employ a 

phylogeographic approach providing novel evidence that reveals complex genetic 

relationships between and within the South American species of Oreobolus. 

Nonetheless, single-species phylogeographic studies may still prove difficult, as 

shown in Chapter four with the pilot study presented for Castratella. 
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Integrating phylogeography into studies of diversification within the Páramo 

ecosystem would greatly contribute to our understanding of the evolution of this 

flora. Current challenges imposed by the lack of molecular variability could be 

overcome by the incorporation of data from more variable markers such as 

chloroplast and nuclear microsatellites. Furthermore, the generation of large amounts 

of sequence data through Next Generation approaches could provide researchers with 

new opportunities to explore phylogeographic patterns. These data will permit us to 

better understand how Páramo taxa have responded to historical changes such as 

climatic cycles that may allow us to predict how they might react to future changes. 

5.3.3 Conservation 

Páramos are regional water towers, a role that is mostly facilitated by the plants 

within the ecosystem. However, mining activities, the expansion of the agricultural 

frontier and climate change are imposing great threats. Knowledge and 

understanding of the genetic diversity in Páramo plant species are critical to the 

conservation of this biodiversity hotspot. My results for the northern Andean species 

of Oreobolus showed that the Quaternary glacial cycles may have promoted 

speciation while maintaining high levels of genetic diversity. Coupling this genetic 

data with species distribution models that hindcast and forecast their distributions 

could provide further insight into their population dynamics. In this manner genetic 

diversity information could be incorporated into conservation management plans. 
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5.4 FUTURE RESEARCH DIRECTIONS 

Further work needs to be done to resolve the molecular systematics of all species 

within the ‘Oreobolus clade’ of the Schoeneae tribe. A thorough sampling of all 

species within the clade, including multiple samples per species would permit a 

better assessment of the phylogenetic relationships within it. Moreover, the inclusion 

of more sequence data from additional DNA regions could provide additional 

phylogenetic resolution. Phylogenetic evidence should also be combined with 

morphological data, as cryptic species are evident (i.e. Oreobolus obtusangulus, this 

study; Tetraria triangularis, Britton et al., 2014). Although work is being done in 

this area (Slingsby et al., 2014; Britton et al., 2014), it has primarily focused on 

South African representatives of the tribe. 

Additionally, further work could focus on investigating possible hybridisation 

between O. cleefii and the northern subspecies of O. obtusangulus. To pursue this 

investigation, a larger sampling of individuals from sympatric populations where 

hybridisation might be underway would be required. Moreover, incorporation of both 

nuclear and chloroplast microsatellite data would allow further exploration of 

population genetic dynamics between these two species. Additionally, breeding 

experiments should be undertaken to assess if hybridisation might be ongoing or if 

the observed patterns are the result of gene flow during species divergence. The 

possibility of speciation by allopolyploidization should also be investigated. This 

would require cytogenetic studies of these species, and ideally of all species within 

the genus. 
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Additional research could also concentrate on the investigation of evolutionary 

biome shifts within the Melastomeae tribe. Particular focus should be paid to the 

cloud forest lineages crossing into the Páramo ecosystem. Given the significant 

amount of available phylogenetic information, estimation of diversification rates and 

ancestral area reconstructions could be undertaken. Additional studies on trait 

evolution and phenotypic plasticity along altitudinal gradients could provide further 

information that would allow us to better understand diversification processes. 

Identification of rate heterogeneity could lead to the formulation of hypotheses 

exploring which confluence (sensu Donoghue & Sanderson, 2015) of traits and/or 

combination of ecological, climatic or geological events might be responsible for key 

evolutionary events that have permitted lineages to enter the Páramo ecosystem. 
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APPENDIX A. SUPPLEMENTARY INFORMATION OF CHAPTER TWO 

Table S2.1. List of samples with voucher information or Genbank accession numbers. Total numbers of samples per analysis are given at the end. PR, 
phylogenetic reconstruction; DTE, divergence time estimation. 
 

Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

Arthrostylis aphylla AY506757/AY506700 
 

+ + + + 

Becquerelia cymosa -/KF553496 
  

+ + + 

Calyptrocarya sp. KF553442/- 
 

+ 
 

+ + 

Capeobolus brevicaulis KF553443 /DQ058303  
 

+ + + + 

Carex magellanica AY278292/AY757521 
 

+ + + + 

Carpha alpina DQ385557/AY230010 
 

+ + + + 

Carpha glomerata KF553444/AY230024 
 

+ + + + 

Carpha capitellata var. bracteosa -/KF553497 
  

+ + + 

Caustis dioica -/KF553498 
  

+ + + 

Chrysitrixcapensis -/AY344171 
  

+ + + 

Cladium mariscus -/AY344172 
  

+ + + 

Costularia arundinacea -/AY230036 
  

+ + + 

Costularia laxa DQ450465/DQ456955  
 

+ + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

Costularia leucocarpa -/KF553499 
  

+ + + 

Costularia nervosa -/AY230032  
  

+ + + 

Costularia pantopoda -/KF553500 
  

+ + + 

Costularia pantopoda var. 
baronii -/KF553501 

  
+ + + 

Costularia sp1 -/KF553502 
  

+ + + 

Costularia sp2 -/KF553503 
  

+ + + 

Costularia sp3 -/KF553504 
  

+ + + 

Cyathochaeta avenacea -/KF553505 
  

+ + + 

Cyathochaeta diandra -/AY230042 
  

+ + + 

Cyathocoma bachmannii -/EF178604  
  

+ + + 

Cyathocoma hexandra -/DQ058304  
  

+ + + 

Cyperus rigidifolius -/AY040600 
  

+ + + 

Epischoenus cernuus -/KF553506 
  

+ + + 

Epischoenus quadrangularis -/DQ058311 
  

+ + + 

Epischoenus villosus -/KF553507 
  

+ + + 

Diplacrum caricinum AB261688/- 
 

+ 
 

+ + 

Eriophorum vaginatum AY242008/AY757692 
 

+ + + + 

Evandra aristata KF553446/KF553508 
 

+ + + + 

Ficinia paradoxa KF553447/DQ058317 
 

+ + + + 

Gahnia  aspera AB261676/- 
 

+ 
 

+ + 

Gahnia aspera subsp. globosa -/AF285073 
  

+ + + 

Gahnia baniensis -/DQ058302 
  

+ + + 

Gahnia trifida -/KF553509 
  

+ + + 

Gahnia tristis AB261677 (ITS2)/KF553510 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

Hypolytrum nemorum AY242046/AJ577325 
 

+ + + + 

Lagenocarpus alboniger KF553448/KF553511 
 

+ + + + 

Lepidosperma aff. filiforme KF553449/AF285074 
 

+ + + + 

Lepidosperma laterale DQ385587/KF553512 
 

+ + + + 

Lepidosperma longitudinale KF553450/KF553513 
 

+ + + + 

Lepidosperma tortuosum KF553451/KF553514 
 

+ + + + 

Machaerina iridifolia -/KF553515 
  

+ + + 

Machaerina juncea -/KF553516 
  

+ + + 

Machaerina mariscoides -/DQ058300 
  

+ + + 

Machaerina rubiginosa AB261679/KF553517 
 

+ + + + 

Mapaniacuspidata -/DQ058297 
  

+ + + 

Mesomelaena pseudostygia -/DQ058301 
  

+ + + 

Mesomelaena tetragona -/KF553518 
  

+ + + 

Morelotia gahniiformis KF553452/KF553519 
 

+ + + + 

Neesenbeckia punctoria KF553453/DQ058306 
 

+ + + + 

Oreobolus acutifolius DQ450466/DQ456956  
 

+ + + + 

O. ambiguus 
 

Vink16142A + 
 

+ + 

O. cleefii DQ450467/DQ456957  
 

+ + + + 

O. cleefii 
 

MG143 + + + + 

O. cleefii 
 

MG144 + + + + 

O. cleefii 
 

MG157 + + + + 

O. cleefii 
 

MG158 + + + + 

O. cleefii 
 

MG197 + + + + 

O. cleefii 
 

MG198 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. cleefii 
 

MG199 + + + + 

O. cleefii 
 

MG200 + + + + 

O. cleefii 
 

MG202 + + + + 

O. cleefii 
 

MG231 + + + + 

O. cleefii 
 

MG233 + + + + 

O. cleefii 
 

MG234 + + + + 

O. cleefii 
 

MG235 + + + + 

O. cleefii 
 

Cleef6276 + + + + 

O. distichus DQ450468/DQ456958  
 

+ + + + 

O. distichus -/AY230030  
  

+ 
  

O. ecuadorensis DQ450469/DQ456959  
 

+ + + + 

O. ecuadorensis 
 

Balslev1062 + + + + 

O. ecuadorensis 
 

Balslev69137 + + + + 

O. ecuadorensis  HolmNielsen20905  + +  

O. ecuadorensis 
 

HolmNielsen24360 + + + + 

O. ecuadorensis 
 

Laegaard101157 + + + + 

O. ecuadorensis 
 

Laegaard101594 + + + + 

O. ecuadorensis 
 

Laegaard101764 + + + + 

O. ecuadorensis 
 

Laegaard101865 + + + + 

O. ecuadorensis 
 

Laegaard102080 + + + + 

O. ecuadorensis 
 

Laegaard19396 + + + + 

O. ecuadorensis 
 

Laegaard20566 + + + + 

O. ecuadorensis 
 

Laegaard20596 + + + + 

O. ecuadorensis 
 

Laegaard20968 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. ecuadorensis 
 

Laegaard21508 + + + + 

O. ecuadorensis 
 

Laegaard53490 + + + + 

O. ecuadorensis 
 

Laegaard53588 + 
 

+ 
 

O. ecuadorensis 
 

Laegaard53802A + + + + 

O. ecuadorensis 
 

Laegaard54455 + + + + 

O. ecuadorensis 
 

Laegaard54571 + + + + 

O. ecuadorensis 
 

Laegaard54734 + + + + 

O. ecuadorensis 
 

Laegaard54853 + + + + 

O. ecuadorensis 
 

Laegaard54873 + + + + 

O. ecuadorensis 
 

Laegaard55305 + + + + 

O. ecuadorensis 
 

Laegaard55534 + + + + 

O. ecuadorensis 
 

Laegaard55549 + + + + 

O. ecuadorensis 
 

Laegaard55550 + + + + 

O. ecuadorensis 
 

Laegaard55764 + + + + 

O. ecuadorensis 
 

Laegaard70067 + 
 

+ 
 

O. ecuadorensis 
 

Laegaard70294a + 
 

+ 
 

O. ecuadorensis 
 

Laegaard71008 + + + + 

O. ecuadorensis 
 

Laegaard71077 + + + + 

O. ecuadorensis 
 

Ollgaard38114 + 
 

+ 
 

O. ecuadorensis 
 

Ollgaard8665 + + + + 

O. ecuadorensis 
 

Ollgaard8845 + + + + 

O. ecuadorensis 
 

Renvoize4966 + + + + 

O. ecuadorensis 
 

Renvoize5072 + + + + 

O. ecuadorensis 
 

Smith12554 + 
 

+ 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. furcatus DQ450470/DQ456960  
 

+ + + + 

O. goeppingeri 
 

Balslev23930 + 
 

+ 
 

O. goeppingeri DQ450471/DQ456961  
 

+ + + + 

O. goeppingeri 
 

Holm571 + 
 

+ 
 

O. goeppingeri 
 

Keating147 + 
 

+ 
 

O. goeppingeri 
 

Kuhbier0276 + 
 

+ 
 

O. goeppingeri 
 

Laegaard101185 + + + + 

O. goeppingeri 
 

Laegaard101765 + + + + 

O. goeppingeri 
 

Laegaard102047 + + + + 

O. goeppingeri 
 

Laegaard102396 + + + + 

O. goeppingeri 
 

Laegaard102477 + + + + 

O. goeppingeri 
 

Laegaard103089 + + + + 

O. goeppingeri 
 

Laegaard18599 + 
 

+ 
 

O. goeppingeri 
 

Laegaard18697 + 
 

+ 
 

O. goeppingeri 
 

Laegaard19216 + 
 

+ 
 

O. goeppingeri 
 

Laegaard19291 + 
 

+ 
 

O. goeppingeri 
 

Laegaard19438 + 
 

+ 
 

O. goeppingeri 
 

Laegaard19472 + 
 

+ 
 

O. goeppingeri 
 

Laegaard19960 + + + + 

O. goeppingeri 
 

Laegaard20269 + + + + 

O. goeppingeri 
 

Laegaard20521A + + + + 

O. goeppingeri 
 

Laegaard20672 + + + + 

O. goeppingeri 
 

Laegaard20804 + 
 

+ 
 

O. goeppingeri 
 

Laegaard20917 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. goeppingeri 
 

Laegaard20967 + + + + 

O. goeppingeri 
 

Laegaard21015 + + + + 

O. goeppingeri 
 

Laegaard21558 + + + + 

O. goeppingeri 
 

Laegaard21573 + + + + 

O. goeppingeri 
 

Laegaard22247 + + + + 

O. goeppingeri 
 

Laegaard53479 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53622 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53632 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53655 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53670 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53750 + 
 

+ 
 

O. goeppingeri 
 

Laegaard53777 + 
 

+ 
 

O. goeppingeri 
 

Laegaard54145 + 
 

+ 
 

O. goeppingeri 
 

Laegaard54412 + + + + 

O. goeppingeri 
 

Laegaard54421 + + + + 

O. goeppingeri 
 

Laegaard54495 + + + + 

O. goeppingeri 
 

Laegaard54986 + + + + 

O. goeppingeri 
 

Laegaard55048 + 
 

+ 
 

O. goeppingeri 
 

Laegaard55105 + 
 

+ 
 

O. goeppingeri 
 

Laegaard55132 + 
 

+ 
 

O. goeppingeri 
 

Laegaard55239 + + + + 

O. goeppingeri 
 

Laegaard55420 + 
 

+ 
 

O. goeppingeri 
 

Laegaard55440 + + + + 

O. goeppingeri 
 

Laegaard55763 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. goeppingeri 
 

Laegaard70120 + 
 

+ 
 

O. goeppingeri 
 

Laegaard70381 + + + + 

O. goeppingeri 
 

Laegaard70382 + + + + 

O. goeppingeri 
 

Laegaard71079 + + + + 

O. goeppingeri 
 

Laegaard71446 + + + + 

O. goeppingeri 
 

Laegaard71570 + 
 

+ 
 

O. goeppingeri 
 

Lewis3792 + + + + 

O. goeppingeri 
 

LFT039 
 

+ + 
 

O. goeppingeri 
 

LFT047 + + + + 

O. goeppingeri 
 

MG121 + + + + 

O. goeppingeri 
 

MG140 + + + + 

O. goeppingeri 
 

MG154 + + + + 

O. goeppingeri 
 

MG169 + + + + 

O. goeppingeri 
 

MG182 + + + + 

O. goeppingeri 
 

MG183 + + + + 

O. goeppingeri 
 

MG201 + + + + 

O. goeppingeri 
 

MG203 + + + + 

O. goeppingeri 
 

MG215 + + + + 

O. goeppingeri 
 

MG217 
 

+ + 
 

O. goeppingeri 
 

MG220 
 

+ + 
 

O. goeppingeri 
 

MG221 + + + + 

O. goeppingeri 
 

MG222 + + + + 

O. goeppingeri 
 

MG248 + + + 
 

O. goeppingeri 
 

MG268 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. goeppingeri 
 

MG278 + + + + 

O. goeppingeri 
 

MG297 + + + + 

O. goeppingeri 
 

MG316 + + + 
 

O. goeppingeri 
 

MG327 + 
 

+ 
 

O. goeppingeri 
 

MG344 + + + + 

O. goeppingeri 
 

MG353 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard100642 + + + + 

O. goeppingeri 
 

Ollgaard38270 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard57764 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard58074 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard74262 + + + + 

O. goeppingeri 
 

Ollgaard8353 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard90622 + 
 

+ 
 

O. goeppingeri 
 

Ollgaard90629 + + + + 

O. goeppingeri 
 

Ollgaard90987 + + + + 

O. goeppingeri 
 

Ollgaard98603 + + + + 

O. goeppingeri 
 

Renvoize4924 + + + + 

O. goeppingeri 
 

Renvoize5018 + 
 

+ 
 

O. goeppingeri 
 

Sklenar1888 + + + + 

O. goeppingeri 
 

Weber1764 + 
 

+ 
 

O. kuekenthalii AY242047/EF178536  
 

+ + + + 

O. obtusangulus 
 

DollenzTBPA1073 + + + + 

O. obtusangulus 
 

DollenzTBPA1157 + + + + 

O. obtusangulus 
 

DollenzTBPA1273 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. obtusangulus 
 

Dudley1184A + + + + 

O. obtusangulus 
 

Dudley241 + + + + 

O. obtusangulus 
 

Gardner4167 + + + + 

O. obtusangulus 
 

Goodall1788 + + + + 

O. obtusangulus 
 

Goodall2237 + + + + 

O. obtusangulus 
 

Goodall3365 + + + + 

O. obtusangulus 
 

Goodall3697 + + + + 

O. obtusangulus 
 

Goodall4813 + + + + 

O. obtusangulus 
 

Goodall691 + 
 

+ 
 

O. obtusangulus 
 

Jaramillo7701 + + + + 

O. obtusangulus 
 

Kubitzki429 + 
 

+ 
 

O. obtusangulus 
 

Laegaard102656 + + + + 

O. obtusangulus 
 

Laegaard12537 + + + + 

O. obtusangulus 
 

Laegaard12774 + + + + 

O. obtusangulus 
 

Laegaard13509 + + + + 

O. obtusangulus 
 

Laegaard19102 + + + + 

O. obtusangulus 
 

Laegaard19300 + + + + 

O. obtusangulus 
 

Laegaard19432 + + + + 

O. obtusangulus 
 

Laegaard20559 + + + + 

O. obtusangulus 
 

Laegaard20697 + + + + 

O. obtusangulus 
 

Laegaard20814 + + + + 

O. obtusangulus 
 

Laegaard20969 + + + + 

O. obtusangulus 
 

Laegaard21502 + + + + 

O. obtusangulus 
 

Laegaard21534 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. obtusangulus 
 

Laegaard21581 + + + + 

O. obtusangulus 
 

Laegaard53130 + + + + 

O. obtusangulus 
 

Laegaard53802B + 
 

+ 
 

O. obtusangulus 
 

Laegaard54144 + + + + 

O. obtusangulus 
 

Laegaard54411 + + + + 

O. obtusangulus 
 

Laegaard54420 + + + + 

O. obtusangulus 
 

Laegaard54915 + + + + 

O. obtusangulus 
 

Laegaard54963 + + + + 

O. obtusangulus 
 

Laegaard54973D + 
 

+ 
 

O. obtusangulus 
 

Laegaard55003 + 
 

+ 
 

O. obtusangulus 
 

Laegaard70102 + 
 

+ 
 

O. obtusangulus 
 

Larsen17 + + + + 

O. obtusangulus 
 

Moore1931 + + + + 

O. obtusangulus 
 

Moore2817 + + + + 

O. obtusangulus 
 

Moore749 + + + + 

O. obtusangulus 
 

MooreTBPA1545 + + + + 

O. obtusangulus 
 

MooreTBPA1617 + + + + 

O. obtusangulus 
 

MooreTBPA1813 + + + + 

O. obtusangulus 
 

Nicora7279 + + + + 

O. obtusangulus 
 

Ollgaard38530 + 
 

+ 
 

O. obtusangulus 
 

Ollgaard8547 + 
 

+ 
 

O. obtusangulus 
 

Pisano3461 + 
 

+ 
 

O. obtusangulus 
 

Pisano3773 + 
 

+ 
 

O. obtusangulus 
 

Pisano3971 + 
 

+ 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. obtusangulus 
 

Pisano5124 + + + + 

O. obtusangulus 
 

Pisano5286 + + + + 

O. obtusangulus 
 

Pisano5383 + + + + 

O. obtusangulus 
 

Pisano5451 + + + + 

O. obtusangulus 
 

Pisano5940 + 
 

+ 
 

O. obtusangulus 
 

Pisano6091 + 
 

+ 
 

O. obtusangulus 
 

PisanoTBPA2040 + + + + 

O. obtusangulus 
 

PisanoTBPA2836 + + + + 

O. obtusangulus 
 

Renvoize5007 + + + + 

O. obtusangulus 
 

Roivainen690 + + + + 

O. oligocephalus DQ450473/DQ456963  
 

+ + + + 

O. oligocephalus -/AY230031  
  

+ 
  

O. oxycarpus DQ450474/DQ456964  
 

+ + + + 

O. pectinatus DQ450475/DQ456965  
 

+ + + + 

O. pectinatus DQ385589/- 
 

+ 
   

O. pumilio DQ450476/DQ456966  
 

+ + + + 

O. pumilio -/AY230029  
  

+ 
  

O. sp. 
 

Chaverri1093 + + + + 

O. strictus DQ450478/DQ456968  
 

+ + + + 

O. strictus DQ385590/- 
 

+ 
   

O. venezuelensis DQ450479/DQ456969  
 

+ + + + 

O. venezuelensis 
 

Cleef6746A + 
 

+ 
 

O. venezuelensis 
 

Cleef6787 + 
 

+ 
 

O. venezuelensis 
 

Cleef6838 + + + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. venezuelensis 
 

Cleef8438 + 
 

+ 
 

O. venezuelensis 
 

Cleef9174 + + + + 

O. venezuelensis 
 

Jorgensen61989 + + + + 

O. venezuelensis 
 

Kubitzki430 + 
 

+ 
 

O. venezuelensis 
 

Laegaard102476 + + + + 

O. venezuelensis 
 

Laegaard103087 + + + + 

O. venezuelensis 
 

Laegaard17466 + + + + 

O. venezuelensis 
 

Laegaard17538 + + + + 

O. venezuelensis 
 

Laegaard17552 + + + + 

O. venezuelensis 
 

Laegaard18508 + 
 

+ 
 

O. venezuelensis 
 

Laegaard19962 + + + + 

O. venezuelensis 
 

Laegaard20520B + 
 

+ 
 

O. venezuelensis 
 

Laegaard20682 + + + + 

O. venezuelensis 
 

Laegaard20918 + + + 
 

O. venezuelensis 
 

Laegaard53613 + 
 

+ 
 

O. venezuelensis 
 

Laegaard53621 + 
 

+ 
 

O. venezuelensis 
 

Laegaard53758 + 
 

+ 
 

O. venezuelensis 
 

Laegaard53770 + 
 

+ 
 

O. venezuelensis 
 

Laegaard53779 + 
 

+ 
 

O. venezuelensis 
 

Laegaard54405 + + + + 

O. venezuelensis 
 

Laegaard55200 + 
 

+ 
 

O. venezuelensis 
 

Laegaard70380 + + + + 

O. venezuelensis 
 

Laegaard71157 + + + + 

O. venezuelensis 
 

Ollgaard58308 + 
 

+ 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

O. venezuelensis 
 

Ollgaard74264 + + + + 

O. venezuelensis 
 

Ollgaard90623 + + + + 

O. venezuelensis 
 

Ollgaard90628 + + + + 

O. venezuelensis 
 

Sklenar7012 + + + + 

Pseudoschoenus inanis -/KF553520 
  

+ + + 

Ptilothrix deusta KF553454/AY230041 
 

+ + + + 

Rhynchospora rugosa subsp. 
brownii KF553455/AY230043 

 
+ + + + 

Schoenus bifidus KF553456/KF553521 
 

+ + + + 

Schoenus caespititius -/KF553522 
  

+ + + 

Schoenus curvifolius KF553457/KF553523 
 

+ + + + 

Schoenus efoliatus KF553458/KF553524 
 

+ + + + 

Schoenus grandiflorus KF553459/KF553525 
 

+ + + + 

Schoenus nigricans KF553460/DQ058310 
 

+ + + + 

Schoenus nitens KF553461/KF553526 
 

+ + + + 

Schoenus pennisetis -/KF553527 
  

+ + + 

Schoenus rigens GU386455/KF553528 
 

+ + + + 

Scleria distans KF553462/DQ058299 
 

+ + + + 

Tetraria bolusii -/DQ058315 
  

+ + + 

Tetraria capillaris DQ385604/KF553529 
 

+ + + + 

Tetraria compacta -/DQ058313 
  

+ + + 

Tetraria compar -/DQ058312 
  

+ + + 

Tetraria crassa -/DQ058314 
  

+ + + 

Tetraria cuspidata -/DQ419865 
  

+ + + 

Tetraria exilis -/DQ419866 
  

+ + + 
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Taxon Genbank accession numbers 
(ITS/trnL-F) Voucher PR – ITS PR – trnL-F PR - combined DTE 

Tetraria flexuosa -/DQ419859 
  

+ + + 

Tetraria involucrata -/DQ419852 
  

+ + + 

Tetraria microstachys -/DQ058307 
  

+ + + 

Tetraria natalensis KF553542 /DQ058305  
 

+ + + + 

Tetraria nigrovaginata -/DQ419857 
  

+ + + 

Tetraria octandra -/KF553531 
  

+ + + 

Tetraria picta -/DQ419867 
  

+ + + 

Tetraria sylvatica -/DQ419864 
  

+ + + 

Tetraria triangularis -/DQ419853 
  

+ + + 

Tetraria ustulata -/DQ419861 
  

+ + + 

Tetraria variabilis -/KF553530 
  

+ + + 

Trianoptiles capensis KF553463/KF553532 
 

+ + + + 

Tricostularia pauciflora -/AY23003 
  

+ + + 

TOTAL 
  

281 267 333 261 
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Figure S2.4. Tree with the best likelihood score obtained from trnL-F. Refer to the digital 
folder of Supplementary Information. 

Figure S2.5. Tree with the best likelihood score obtained from ITS. Refer to the digital folder 
of Supplementary Information. 

Figure S2.6. Maximum clade credibility tree obtained from the Bayesian analysis based on 
trnL-F. Refer to the digital folder of Supplementary Information. 

Figure S2.7. Maximum clade credibility tree obtained from the Bayesian analysis based on 
ITS. Refer to the digital folder of Supplementary Information. 
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APPENDIX B. SUPPLEMENTARY INFORMATION OF CHAPTER THREE 

Table S3.1. List of samples including voucher and population. Total numbers of samples per analysis are given at the end. Hap-ITS, haplotype 
networks for ITS; hap-cpDNA, haplotype networks for the concatenated plastid region (trnL-F, trnH-psbA and rpl32-trnL); * Genbank accession 
numbers. 

	

Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

Oreobolus cleefii MG197 COCUY 2 +  + 

O. cleefii MG198 COCUY 2 + + + 

O. cleefii MG199 COCUY 2 + + + 

O. cleefii MG200 COCUY 2 + + + 

O. cleefii MG202 COCUY 2 + + + 

O. cleefii MG143 LA RUSIA 3 + + + 

O. cleefii MG144 LA RUSIA 3 + + + 

O. cleefii MG157 TOTA-BIJAGUAL 5 + + + 

O. cleefii MG158 TOTA-BIJAGUAL 5 +  + 

O. cleefii Cleef6276 GUERRERO 7 +  + 

O. cleefii DQ450467(ITS)/DQ456957(trnL-F)* CHINGAZA 8 +  + 

O. cleefii MG231 AZUFRAL 11 + + + 

O. cleefii MG233 AZUFRAL 11 +  + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. cleefii MG234 AZUFRAL 11 +  + 

O. cleefii MG235 AZUFRAL 11 + + + 

O. ecuadorensis Laegaard55764 VOLCAN CHILES 12 + + + 

O. ecuadorensis Laegaard101157 COTOCACHI 14  + + 

O. ecuadorensis Ollgaard8665 COTOCACHI 14 + + + 

O. ecuadorensis Balslev1062 COTOPAXI 15 +  + 

O. ecuadorensis Balslev69137 COTOPAXI 15  + + 

O. ecuadorensis HolmNielsen24360 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard101594 COTOPAXI 15  + + 

O. ecuadorensis Laegaard101764 COTOPAXI 15 +  + 

O. ecuadorensis Laegaard102080 COTOPAXI 15  + + 

O. ecuadorensis Laegaard53490 COTOPAXI 15  + + 

O. ecuadorensis Laegaard54455 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard54571 COTOPAXI 15  + + 

O. ecuadorensis Laegaard54734 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard54853 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard54873 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard55534 COTOPAXI 15  + + 

O. ecuadorensis Laegaard55549 COTOPAXI 15 +  + 

O. ecuadorensis Laegaard55550 COTOPAXI 15  + + 

O. ecuadorensis Ollgaard8845 COTOPAXI 15 + + + 

O. ecuadorensis Laegaard19396 LLANGANATI 16  + + 

O. ecuadorensis Laegaard55305 ALAO-HUAMBOYA 17 + + + 

O. ecuadorensis Laegaard71008 ALAO-HUAMBOYA 17 + + + 

O. ecuadorensis Ollgaard38114 ALAO-HUAMBOYA 17 +  + 

O. ecuadorensis HolmNielsen20905 PARAMO DE LAS CAJAS 18  + + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. ecuadorensis Laegaard20968 PARAMO DE LAS CAJAS 18 + + + 

O. ecuadorensis Laegaard21508 PARAMO DE LAS CAJAS 18 + + + 

O. ecuadorensis Laegaard53802A PARAMO DE LAS CAJAS 18  + + 

O. ecuadorensis Laegaard70067 PARAMO DE LAS CAJAS 18 +  + 

O. ecuadorensis Laegaard101865 CUENCA-LOJA 20  + + 

O. ecuadorensis Laegaard20566 CUENCA-LOJA 20 + + + 

O. ecuadorensis Laegaard20596 CUENCA-LOJA 20 + + + 

O. ecuadorensis Laegaard53588 CUENCA-LOJA 20   + 

O. ecuadorensis Laegaard70294a CUENCA-LOJA 20 +  + 

O. ecuadorensis Laegaard71077 CUENCA-LOJA 20 + + + 

O. ecuadorensis Renvoize4966 CAJAMARCA 22 + + + 

O. ecuadorensis Renvoize5072 HUASCARAN 23 + + + 

O. ecuadorensis Smith12554 HUASCARAN 23 +  + 

O. goeppingeri Holm571 CHIRRIPO 1   + 

O. goeppingeri Kuhbier0276 CHIRRIPO 1   + 

O. goeppingeri Weber1764 CHIRRIPO 1 +  + 

O. goeppingeri Chaverri1093 CHIRRIPO 1 +  + 

O. goeppingeri MG169 COCUY 2 + + + 

O. goeppingeri MG182 COCUY 2  + + 

O. goeppingeri MG183 COCUY 2 + + + 

O. goeppingeri MG201 COCUY 2 + + + 

O. goeppingeri MG140 LA RUSIA 3 +  + 

O. goeppingeri MG248 IGUAQUE 4 + + + 

O. goeppingeri MG154 TOTA-BIJAGUAL 5 +  + 

O. goeppingeri MG316 TOTA-BIJAGUAL 5 + + + 

O. goeppingeri MG327 RABANAL 6 +  + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. goeppingeri MG344 RABANAL 6 + + + 

O. goeppingeri MG268 GUERRERO 7 +  + 

O. goeppingeri DQ450471/DQ456961* CHINGAZA 8 +  + 

O. goeppingeri MG121 CHINGAZA 8 + + + 

O. goeppingeri MG353 CHINGAZA 8 +  + 

O. goeppingeri LFT039 SUMAPAZ 9   + 

O. goeppingeri LFT047 SUMAPAZ 9 + + + 

O. goeppingeri MG278 SUMAPAZ 9 + + + 

O. goeppingeri MG297 SUMAPAZ 9 +  + 

O. goeppingeri MG203 PURACE 10 + + + 

O. goeppingeri MG215 PURACE 10 + + + 

O. goeppingeri MG217 PURACE 10   + 

O. goeppingeri MG220 PURACE 10   + 

O. goeppingeri MG221 PURACE 10 + + + 

O. goeppingeri MG222 AZUFRAL 11 + + + 

O. goeppingeri Balslev23930 VOLCAN CHILES 12 +  + 

O. goeppingeri Laegaard54986 VOLCAN CHILES 12   + 

O. goeppingeri Laegaard55763 VOLCAN CHILES 12 +  + 

O. goeppingeri Laegaard71446 VOLCAN CHILES 12 +  + 

O. goeppingeri Ollgaard8353 VOLCAN CHILES 12 +  + 

O. goeppingeri Sklenar1888 VOLCAN CHILES 12 +  + 

O. goeppingeri Laegaard54412 MIRADOR 13 + + + 

O. goeppingeri Laegaard54421 MIRADOR 13 + + + 

O. goeppingeri Laegaard101185 COTOCACHI 14 +  + 

O. goeppingeri Laegaard53479 COTOCACHI 14   + 

O. goeppingeri Laegaard54495 COTOCACHI 14 + + + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. goeppingeri Ollgaard100642 COTOCACHI 14 + + + 

O. goeppingeri Laegaard101765 COTOPAXI 15 +  + 

O. goeppingeri Laegaard54145 COTOPAXI 15 +  + 

O. goeppingeri Laegaard19438 LLANGANATI 16 +  + 

O. goeppingeri Laegaard19472 LLANGANATI 16 +  + 

O. goeppingeri Laegaard55420 ALAO-HUAMBOYA 17 +  + 

O. goeppingeri Laegaard55440 ALAO-HUAMBOYA 17 +  + 

O. goeppingeri Ollgaard38270 ALAO-HUAMBOYA 17 +  + 

O. goeppingeri Laegaard20967 PARAMO DE LAS CAJAS 18 + + + 

O. goeppingeri Laegaard21015 PARAMO DE LAS CAJAS 18 + + + 

O. goeppingeri Laegaard55048 PARAMO DE LAS CAJAS 18   + 

O. goeppingeri Laegaard55105 PARAMO DE LAS CAJAS 18   + 

O. goeppingeri Laegaard70120 PARAMO DE LAS CAJAS 18   + 

O. goeppingeri Laegaard19291 CUENCA-LIMON 19 +  + 

O. goeppingeri Laegaard20804 CUENCA-LIMON 19 +  + 

O. goeppingeri Laegaard102047 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard102396 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard18697 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard20672 CUENCA-LOJA 20 + + + 

O. goeppingeri Laegaard55132 CUENCA-LOJA 20   + 

O. goeppingeri Laegaard55239 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard70381 CUENCA-LOJA 20 + + + 

O. goeppingeri Laegaard70382 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard71079 CUENCA-LOJA 20 +  + 

O. goeppingeri Laegaard71570 CUENCA-LOJA 20 +  + 

O. goeppingeri Ollgaard57764 CUENCA-LOJA 20   + 



	 - 220 -  

Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. goeppingeri Ollgaard90987 CUENCA-LOJA 20 + + + 

O. goeppingeri Ollgaard98603 CUENCA-LOJA 20 +  + 

O. goeppingeri Keating147 PODOCARPUS 21   + 

O. goeppingeri Laegaard102477 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard103089 PODOCARPUS 21 + + + 

O. goeppingeri Laegaard18599 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard19216 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard19960 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard20269 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard20521A PODOCARPUS 21 +  + 

O. goeppingeri Laegaard20917 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard21558 PODOCARPUS 21 + + + 

O. goeppingeri Laegaard21573 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard53622 PODOCARPUS 21   + 

O. goeppingeri Laegaard53632 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard53655 PODOCARPUS 21 +  + 

O. goeppingeri Laegaard53670 PODOCARPUS 21   + 

O. goeppingeri Laegaard53750 PODOCARPUS 21   + 

O. goeppingeri Laegaard53777 PODOCARPUS 21 +  + 

O. goeppingeri Lewis3792 PODOCARPUS 21 +  + 

O. goeppingeri Ollgaard58074 PODOCARPUS 21 +  + 

O. goeppingeri Ollgaard74262 PODOCARPUS 21 + + + 

O. goeppingeri Ollgaard90622 PODOCARPUS 21 +  + 

O. goeppingeri Ollgaard90629 PODOCARPUS 21 + + + 

O. goeppingeri Laegaard22247 CAJAMARCA 22 +  + 

O. goeppingeri Renvoize4924 CAJAMARCA 22 +  + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. goeppingeri Renvoize5018 CAJAMARCA 22 +  + 

O. obtusangulus Kubitzki429 SUMAPAZ 9 +  + 

O. obtusangulus Laegaard21534 VOLCAN CHILES 12 + + + 

O. obtusangulus Laegaard53130 VOLCAN CHILES 12  + + 

O. obtusangulus Laegaard54915 VOLCAN CHILES 12 + + + 

O. obtusangulus Laegaard54963 VOLCAN CHILES 12 + + + 

O. obtusangulus Laegaard54973D VOLCAN CHILES 12 +  + 

O. obtusangulus Ollgaard8547 VOLCAN CHILES 12 +  + 

O. obtusangulus Laegaard54411 MIRADOR 13  + + 

O. obtusangulus Laegaard54420 MIRADOR 13 + + + 

O. obtusangulus Jaramillo7701 COTOPAXI 15 + + + 

O. obtusangulus Laegaard54144 COTOPAXI 15 + + + 

O. obtusangulus Laegaard19432 LLANGANATI 16 + + + 

O. obtusangulus Ollgaard38530 LLANGANATI 16 +  + 

O. obtusangulus Laegaard55003 CHIMBORAZO 17   + 

O. obtusangulus Laegaard102656 PARAMO DE LAS CAJAS 18 + + + 

O. obtusangulus Laegaard20969 PARAMO DE LAS CAJAS 18 + + + 

O. obtusangulus Laegaard21502 PARAMO DE LAS CAJAS 18 + + + 

O. obtusangulus Laegaard53802B PARAMO DE LAS CAJAS 18 +  + 

O. obtusangulus Laegaard70102 PARAMO DE LAS CAJAS 18   + 

O. obtusangulus Laegaard19300 CUENCA-LIMON 19 + + + 

O. obtusangulus Laegaard20814 CUENCA-LIMON 19 + + + 

O. obtusangulus Larsen17 CUENCA-LIMON 19 + + + 

O. obtusangulus Laegaard19102 CUENCA-LOJA 20 + + + 

O. obtusangulus Laegaard20559 CUENCA-LOJA 20 + + + 

O. obtusangulus Laegaard20697 CUENCA-LOJA 20 + + + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. obtusangulus Laegaard21581 PODOCARPUS 21 + + + 

O. obtusangulus Renvoize5007 CAJAMARCA 22 + + + 

O. obtusangulus Gardner4167 VALDIVIA 24 + + + 

O. obtusangulus Pisano5940 FIORDO PEEL 25 + + + 

O. obtusangulus Pisano6091 FIORDO PEEL 25 +  + 

O. obtusangulus Moore749 MALVINAS 26 + + + 

O. obtusangulus Laegaard12537 PNN NAHUEL HUAPI 27   + 

O. obtusangulus Laegaard12774 PNN NAHUEL HUAPI 27 +  + 

O. obtusangulus Laegaard13509 PNN NAHUEL HUAPI 27 + + + 

O. obtusangulus DollenzTBPA1073 MAGALLANES 28 + + + 

O. obtusangulus DollenzTBPA1157 MAGALLANES 28 + + + 

O. obtusangulus DollenzTBPA1273 MAGALLANES 28 +  + 

O. obtusangulus MooreTBPA1545 MAGALLANES 28 + + + 

O. obtusangulus MooreTBPA1617 MAGALLANES 28 + + + 

O. obtusangulus MooreTBPA1813 MAGALLANES 28 +  + 

O. obtusangulus Pisano3773 MAGALLANES 28 +  + 

O. obtusangulus Pisano3971 MAGALLANES 28 +  + 

O. obtusangulus Pisano5451 MAGALLANES 28 + + + 

O. obtusangulus PisanoTBPA2040 MAGALLANES 28 +  + 

O. obtusangulus PisanoTBPA2836 MAGALLANES 28 + + + 

O. obtusangulus Dudley241 TIERRA DEL FUEGO 29 +  + 

O. obtusangulus Goodall1788 TIERRA DEL FUEGO 29 + + + 

O. obtusangulus Goodall2237 TIERRA DEL FUEGO 29 + + + 

O. obtusangulus Goodall3365 TIERRA DEL FUEGO 29 +  + 

O. obtusangulus Goodall3697 TIERRA DEL FUEGO 29 +  + 

O. obtusangulus Goodall4813 TIERRA DEL FUEGO 29 + + + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. obtusangulus Goodall691 TIERRA DEL FUEGO 29 +  + 

O. obtusangulus Moore1931 TIERRA DEL FUEGO 29 + + + 

O. obtusangulus Moore2817 TIERRA DEL FUEGO 29 + + + 

O. obtusangulus Roivainen690 TIERRA DEL FUEGO 29 +  + 

O. obtusangulus Dudley1184A ISLA DE LOS ESTADOS 30 +  + 

O. obtusangulus Nicora7279 ISLA DE LOS ESTADOS 30 + + + 

O. obtusangulus Pisano3461 ISLA NAVARINO 31 +  + 

O. obtusangulus Pisano5124 CABO DE HORNOS 32 + + + 

O. obtusangulus Pisano5286 CABO DE HORNOS 32 + + + 

O. obtusangulus Pisano5383 CABO DE HORNOS 32 + + + 

O. venezuelensis Cleef9174 COCUY 2 +  + 

O. venezuelensis Cleef6746A LA RUSIA 3 +  + 

O. venezuelensis Cleef6787 LA RUSIA 3   + 

O. venezuelensis Cleef6838 LA RUSIA 3 + + + 

O. venezuelensis DQ450479/DQ456969* CHINGAZA 8 +  + 

O. venezuelensis Laegaard17466 CHINGAZA 8 + + + 

O. venezuelensis Cleef8438 SUMAPAZ 9 +  + 

O. venezuelensis Kubitzki430 SUMAPAZ 9 +  + 

O. venezuelensis Laegaard17538 SUMAPAZ 9 + + + 

O. venezuelensis Laegaard17552 SUMAPAZ 9 + + + 

O. venezuelensis Laegaard54405 MIRADOR 13 + + + 

O. venezuelensis Jorgensen61989 COTOPAXI 15  + + 

O. venezuelensis Laegaard20682 CUENCA-LOJA 20 + + + 

O. venezuelensis Laegaard70380 CUENCA-LOJA 20 + + + 

O. venezuelensis Laegaard71157 CUENCA-LOJA 20  + + 

O. venezuelensis Laegaard102476 PODOCARPUS 21 +  + 
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Taxon Voucher Population Pop Nº Hap-ITS Hap-cpDNA Species tree 
(*BEAST) 

O. venezuelensis Laegaard103087 PODOCARPUS 21 + + + 

O. venezuelensis Laegaard18508 PODOCARPUS 21   + 

O. venezuelensis Laegaard19962 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard20520B PODOCARPUS 21   + 

O. venezuelensis Laegaard20918 PODOCARPUS 21 + + + 

O. venezuelensis Laegaard53613 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard53621 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard53758 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard53770 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard53779 PODOCARPUS 21 +  + 

O. venezuelensis Laegaard55200 PODOCARPUS 21 +  + 

O. venezuelensis Ollgaard58308 PODOCARPUS 21 +  + 

O. venezuelensis Ollgaard74264 PODOCARPUS 21 + + + 

O. venezuelensis Ollgaard90623 PODOCARPUS 21 + + + 

O. venezuelensis Ollgaard90628 PODOCARPUS 21 + + + 

O. venezuelensis Sklenar7012 PODOCARPUS 21 +  + 

TOTAL    197 118 237 
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APPENDIX C. SUPPLEMENTARY INFORMATION OF CHAPTER FOUR 

Table S4.1. List of samples with voucher information/Genbank accessions numbers and population number. Total numbers of samples per analysis are 
given at the end. Hap-ETS, haplotype network for ETS; hap-cpDNA, haplotype networks for the concatenated plastid region (trnG/rpl32-trnL); PR, 
phylogenetic reconstruction. 

	

Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Castratella piloselloides COCUY 1  MG167 + + +  
C. piloselloides COCUY 1  MG188 + + + + 
C. piloselloides LA RUSIA 2  MG141 + + +  
C. piloselloides IGUAQUE 3  MG247 + + + + 

C. piloselloides 
TOTA-
BIJAGUA
L 

4  MG150 + + + + 

C. piloselloides 
TOTA-
BIJAGUA
L 

4  MG308 + + + + 

C. piloselloides 
TOTA-
BIJAGUA
L 

4  MG317 + + + + 

C. piloselloides RABANAL 5  MG328 + + + + 
C. piloselloides RABANAL 5  MG345 + + + + 

C. piloselloides GUERRE
RO 6  MG239 + + + + 



	 - 226 -  

Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

C. piloselloides GUERRE
RO 6  MG270 + + + + 

C. piloselloides CHINGAZ
A 7  MG108 +    

C. piloselloides CHINGAZ
A 7  MG122 +    

C. piloselloides CHINGAZ
A 7  MG352 + + +  

C. piloselloides SUMAPA
Z 8  LFT035 + + + + 

C. piloselloides SUMAPA
Z 8  MG282 + + + + 

C. piloselloides SUMAPA
Z 8  MG301 +    

C. rosea COCUY 1  Cleef4735 + + +  
Bucquetia glutinosa    MCG-246   +  
B. glutinosa    MCG-281   +  
Chaetolepis cufodontisii    

Michelang
eli1160   + + 

C. lindeniana    
Michelang
eli1268   + + 

C. microphylla    
Michelang
eli1224   + + 

Acanthella sprucei   JQ730036/JQ730247 
/JQ730456     + 

Aciotis acuminifolia   
JQ730037/JQ730248/JQ730
457     + 

Aciotis circaeifolia   
JQ730038/JQ730249/JQ730
458     + 

Aciotis indecora   
JQ730039/JQ730250/JQ730
459     + 

Aciotis paludosa   
JQ730040/JQ730251/JQ730
460     + 

Aciotis purpurascens   
JQ730041/JQ730252/JQ730
461     + 

Aciotis rubricaulis   
JQ730042/JQ730253/JQ730
462     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Acisanthera alsinaefolia   
JQ730043/JQ730254/JQ730
463     + 

Acisanthera hedyotidea   
JQ730044/JQ730255/JQ730
464     + 

Acisanthera quadrata   
JQ730045/JQ730256/JQ730
465     + 

Amphorocalyx 
multiflorus   

JQ730046/JQ730257/JQ730
466     + 

Amphorocalyx rupestris   
JQ730047/JQ730258/JQ730
467     + 

Antherotoma naudinii   JQ730048/JQ730259/-     + 

Appendicularia thymifolia   
JQ730049/JQ730260/JQ730
468     + 

Arthrostemma ciliatum 1   DQ985619/-/-     + 
Arthrostemma ciliatum 2   AY460429/-/-     + 
Arthrostemma 
primaevum   

JQ730050/JQ730261/JQ730
469     + 

Brachyotum 
benthamianum   

JQ730051/JQ730262/JQ730
470     + 

Brachyotum confertum   
JQ730052/JQ730263/JQ730
471     + 

Brachyotum fictum   
JQ730053/JQ730264/JQ730
472     + 

Brachyotum fraternum   
JQ730054/JQ730265/JQ730
473     + 

Brachyotum harlingii   
JQ730055/JQ730266/JQ730
474     + 

Brachyotum incrassatum   
JQ730056/JQ730267/JQ730
475     + 

Brachyotum ledifolium   
JQ730057/JQ730268/JQ730
476     + 

Brachyotum lindenii   
JQ730058/JQ730269/JQ730
477     + 

Brachyotum microdon   
JQ730059/JQ730270/JQ730
478     + 

Brachyotum rostratum   
JQ730060/JQ730271/JQ730
479     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Bucquetia glutinosa   
JQ730061/JQ730272/JQ730
480     + 

Cambessedesia espora   
JQ730062/JQ730273/JQ730
481     + 

Cambessedesia 
hilariana   

JQ730063/JQ730274/JQ730
482     + 

Castratella piloselloides   
JQ730064/JQ730275/JQ730
483     + 

Centradenia grandifolia   JQ730065/JQ730276/-     + 
Centradenia 
inaequilateralis   

JQ730066/JQ730277/JQ730
484     + 

Chaetolepis cufodontisii   
JQ730067/JQ730278/JQ730
485     + 

Chaetolepis microphylla   
JQ730068/JQ730279/JQ730
486     + 

Chaetostoma armatum   
JQ730069/JQ730280/JQ730
487     + 

Comolia microphylla   
JQ730070/JQ730281/JQ730
488     + 

Comolia sertularia   
JQ730071/JQ730282/JQ730
489     + 

Comolia vernicosa   
JQ730072/JQ730283/JQ730
490     + 

Desmocelis villosa   
JQ730073/JQ730284/JQ730
491     + 

Dichaetanthera africana   
JQ730074/JQ730285/JQ730
492     + 

Dichaetanthera 
oblongifolia   

JQ730075/JQ730286/JQ730
493     + 

Dionycha bojeri   
JQ730076/JQ730287/JQ730
494     + 

Dissotis cf. phaeotricha   
JQ730078/JQ730288/JQ730
495     + 

Dissotis multiflora   
JQ730077/JQ730289/JQ730
496     + 

Eriocnema fulva   
EF418811 
/JQ730290/JQ730497     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Ernestia confertiflora   
JQ730079/JQ730291/JQ730
498     + 

Ernestia glandulosa   
JQ730080/JQ730292/JQ730
499     + 

Ernestia pullei   
JQ730081/JQ730293/JQ730
500     + 

Ernestia tenella   
JQ730082/JQ730294/JQ730
501     + 

Fritzchia erecta   
JQ730083/JQ730295/JQ730
502     + 

Graffenrieda latifolia   
AY460450 
/JQ730296/JQ730503     + 

Graffenrieda moritziana   
AY460451/JQ730297/JQ730
504     + 

Guyonia ciliata   JQ730084/-/-     + 

Heterocentron elegans   
JQ730085/JQ730298/JQ730
505     + 

Heterocentron 
muricatum   

JQ730086/JQ730299/JQ730
506     + 

Heterocentrum 
subtriplinervium   

JQ730087/JQ730300/JQ730
507     + 

Heterotis decumbens   
JQ730088/JQ730301/JQ730
508     + 

Heterotis rotundifolia   JQ730089/JQ730302/-     + 

Itatiaia cleistopetala   
JQ730090/JQ730303/JQ730
509     + 

Lavoisiera imbricata   
JQ730091/JQ730304/JQ730
510     + 

Lavoisiera mucorifera   
JQ730092/JQ730305/JQ730
511     + 

Lavoisiera pulchella   
JQ730093/JQ730306/JQ730
512     + 

Macairea pachyphylla   JQ730094/-/-     + 

Macairea radula   
JQ730095/JQ730307/JQ730
513     + 

Macairea thyrsiflora   
JQ730096/JQ730308/JQ730
514     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Marcetia acerosa   JQ730097/-/JQ730515     + 

Marcetia eimeariana   
JQ730098/JQ730309/JQ730
516     + 

Marcetia ericoides   
JQ730099/JQ730310/JQ730
517     + 

Marcetia harleyi   JQ730100/-/JQ730518     + 
Marcetia latifolia   JQ730101/-/JQ730519     + 

Marcetia taxifolia   
JQ730102/JQ730311/JQ730
520     + 

Melastoma affine   GQ265878 /-/-     + 

Melastoma candidum   
JQ730103/JQ730312/JQ730
521     + 

Melastoma denticulatum   
JQ730104/JQ730313/JQ730
522     + 

Melastoma 
dodecandrum   GQ265883/-/-     + 

Melastoma intermedium   GQ265883/-/-     + 
Melastoma 
malabathricum   

JQ730105/JQ730314/JQ730
523     + 

Melastoma sanguineum   
JQ730106/JQ730315/JQ730
524     + 

Meriania longifolia   
AY460454/JQ730316/JQ730
525     + 

Miconia dodecandra   
AY460506/JQ730317/JQ730
526     + 

Miconia tomentosa   
EF418905 
/JQ730318/JQ730527     + 

Microlepis oleaefolia   
JQ730107/JQ730319/JQ730
528     + 

Monochaetum 
bonplandii   

JQ730108/JQ730320/JQ730
529     + 

Monochaetum discolor   
JQ730109/JQ730321/JQ730
530     + 

Monochaetum 
humboldtianum   

JQ730110/JQ730322/JQ730
531     + 

Monochaetum 
meridense   

JQ730111/JQ730323/JQ730
532     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 
Monochaetum 
polyneuron   

JQ730112/JQ730324/JQ730
533     + 

Monochaetum tenellum   AY460432 /-/-     + 

Monochaetum uribei   
JQ730113/JQ730325/JQ730
534     + 

Monochaetum 
volcanicum   

JQ730114/JQ730326/JQ730
535     + 

Nepsera aquatica   
JQ730115/JQ730327/JQ730
536     + 

Osbeckia australiana   
JQ730116/JQ730328/JQ730
537     + 

Osbeckia courtallensis   JQ730117/-/-     + 

Osbeckia nepalensis   
JQ730118/JQ730329/JQ730
538     + 

Osbeckia stellata   
JQ730119/JQ730330/JQ730
539     + 

Pachyloma huberioides   
JQ730120/JQ730331/JQ730
540     + 

Physeterostemon 
tomasii   

JQ730121/JQ730332/JQ730
541     + 

Pilocosta campanensis   
JQ730122/JQ730333/JQ730
542     + 

Pilocosta nana   
JQ730123/JQ730334/JQ730
543     + 

Pilocosta nubicola   
JQ730124/JQ730335/JQ730
544     + 

Pilocosta oerstedii   
JQ730125/JQ730336/JQ730
545     + 

Pterogastra divaricata   
JQ730126/JQ730337/JQ730
546     + 

Pterogastra minor   
JQ730127/JQ730338/JQ730
547     + 

Pterolepis alpestris   
JQ730128/JQ730339/JQ730
548     + 

Pterolepis glomerata   
JQ730129/JQ730340/JQ730
549     + 

Pterolepis parnasiifolia   
JQ730130/JQ730341/JQ730
550     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Pterolepis repanda   
JQ730131/JQ730342/JQ730
551     + 

Pterolepis rotundifolia   
JQ730132/JQ730343/JQ730
552     + 

Pterolepis sp   
JQ730133/JQ730344/JQ730
553     + 

Rhexia alifanus   DQ985623 /-/-     + 

Rhexia aristosa   
JQ730134/JQ730345/JQ730
554     + 

Rhexia cubensis   DQ985627/-/-     + 
Rhexia lutea   DQ985628 /-/-     + 
Rhexia mariana   JQ730135/-/JQ730555     + 
Rhexia nuttallii   DQ985634/-/-     + 
Rhexia parviflora   DQ985636/-/-     + 
Rhexia petiolata   DQ985637/-/-     + 
Rhexia salicifolia   DQ985639/-/-     + 

Rhexia virginica   
JQ730136/JQ730346/JQ730
556     + 

Rhynchanthera 
bracteata   

JQ730137/JQ730347/JQ730
557     + 

Rhynchanthera 
grandiflora   

JQ730138/JQ730348/JQ730
558     + 

Rhynchanthera serrulata   
AY460435 
/JQ730349/JQ730559     + 

Rousseauxia 
andringitrensis   

JQ730139/JQ730350/JQ730
560     + 

Rousseauxia minimifolia   
JQ730140/JQ730351/JQ730
561     + 

Sandemania hoehnei   
JQ730141/JQ730352/JQ730
562     + 

Siphanthera hostmanii   
JQ730142/JQ730353/JQ730
563     + 

Svitramia hatschbachii   
JQ730143/JQ730354/JQ730
564     + 

Svitramia minor   
JQ730144/JQ730355/JQ730
565     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Svitramia pulchra   
JQ730145/JQ730356/JQ730
566     + 

Svitramia sp   
JQ730146/JQ730357/JQ730
567     + 

Svitramia sp   
JQ730147/JQ730358/JQ730
568     + 

Svitramia wurdackiana   
JQ730148/JQ730359/JQ730
569     + 

Tibouchina aemula   
JQ730149/JQ730360/JQ730
570     + 

Tibouchina alpestris   
JQ730150/JQ730361/JQ730
571     + 

Tibouchina angustifolia   
JQ730151/JQ730362/JQ730
572     + 

Tibouchina arborea   
JQ730152/JQ730363/JQ730
573     + 

Tibouchina arenaria   
JQ730153/JQ730364/JQ730
574     + 

Tibouchina aspera   
JQ730154/JQ730365/JQ730
575     + 

Tibouchina aspera var. 
asperrima   

JQ730155/JQ730366/JQ730
576     + 

Tibouchina axillaris   
JQ730156/JQ730367/JQ730
577     + 

Tibouchina barnebyana   JQ730157/JQ730368/-     + 

Tibouchina benthamiana   
JQ730158/JQ730369/JQ730
578     + 

Tibouchina bicolor   
JQ730159/JQ730370/JQ730
579     + 

Tibouchina bipenicillata   
JQ730160/JQ730371/JQ730
580     + 

Tibouchina blanchetiana   JQ730161/JQ730372/-     + 

Tibouchina boudetii   
JQ730162/JQ730373/JQ730
581     + 

Tibouchina breedlovei   
JQ730163/JQ730374/JQ730
582     + 

Tibouchina candolleana   
JQ730164/JQ730375/JQ730
583     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Tibouchina cardinalis   
JQ730165/JQ730376/JQ730
584     + 

Tibouchina castellenis   
JQ730166/JQ730377/JQ730
585     + 

Tibouchina cerastifolia   JQ730167/-/JQ730586     + 
Tibouchina 
chamaecistus   

JQ730168/JQ730378/JQ730
587     + 

Tibouchina ciliaris   JQ730169/-/JQ730588     + 

Tibouchina cinerea   
JQ730170/JQ730379/JQ730
589     + 

Tibouchina citrina   
JQ730171/JQ730380/JQ730
590     + 

Tibouchina clavata   
JQ730172/JQ730381/JQ730
591     + 

Tibouchina clidemiodes   JQ730173/JQ730382/-     + 

Tibouchina clinopodifolia   
JQ730174/JQ730383/JQ730
592     + 

Tibouchina confertiflora   
JQ730175/JQ730384/JQ730
593     + 

Tibouchina corymbosa   
JQ730176/JQ730385/JQ730
594     + 

Tibouchina cristata   
JQ730177/JQ730386/JQ730
595     + 

Tibouchina cryptadena   
JQ730178/JQ730387/JQ730
596     + 

Tibouchina dubia   
JQ730179/JQ730388/JQ730
597     + 

Tibouchina estrellensis   
JQ730180/JQ730389/JQ730
598     + 

Tibouchina fissinervia   
JQ730181/JQ730390/JQ730
599     + 

Tibouchina fothergillae   
JQ730182/JQ730391/JQ730
600     + 

Tibouchina foveolata   
JQ730183/JQ730392/JQ730
601     + 

Tibouchina fraterna   
JQ730184/JQ730393/JQ730
602     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Tibouchina frigidula   
JQ730185/JQ730394/JQ730
603     + 

Tibouchina gardneriana   
JQ730186/JQ730395/JQ730
604     + 

Tibouchina gayana   
JQ730187/JQ730396/JQ730
605     + 

Tibouchina geitneriana   
JQ730188/JQ730397/JQ730
606     + 

Tibouchina gleasoniana   JQ730189/-/JQ730607     + 

Tibouchina gracilis   
JQ730190/JQ730398/JQ730
608     + 

Tibouchina granulosa   
JQ730191/JQ730399/JQ730
609     + 

Tibouchina grossa   
JQ730192/JQ730400/JQ730
610     + 

Tibouchina heteromalla   
JQ730193/JQ730401/JQ730
611     + 

Tibouchina hieracioides   
JQ730194/JQ730402/JQ730
612     + 

Tibouchina hospita   
JQ730195/JQ730403/JQ730
613     + 

Tibouchina inopinata   
JQ730196/JQ730404/JQ730
614     + 

Tibouchina itatiaiae   
JQ730197/JQ730405/JQ730
615     + 

Tibouchina kleinii   
JQ730198/JQ730406/JQ730
616     + 

Tibouchina laevicaulis   
JQ730199/JQ730407/JQ730
617     + 

Tibouchina laxa   
JQ730200/JQ730408/JQ730
618     + 

Tibouchina lepidota   
JQ730201/JQ730409/JQ730
619     + 

Tibouchina lindeniana   
JQ730202/JQ730410/JQ730
620     + 

Tibouchina llanorum   
JQ730203/JQ730411/JQ730
621     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Tibouchina longifolia   
JQ730204/JQ730412/JQ730
622     + 

Tibouchina macrochiton   
JQ730205/JQ730413/JQ730
623     + 

Tibouchina manicata   
JQ730206/JQ730414/JQ730
624     + 

Tibouchina martialis   
JQ730207/JQ730415/JQ730
625     + 

Tibouchina martiusiana   
JQ730208/JQ730416/JQ730
626     + 

Tibouchina melanocalyx   
JQ730209/JQ730417/JQ730
627     + 

Tibouchina microphylla   
JQ730210/JQ730418/JQ730
628     + 

Tibouchina minor   
JQ730211/JQ730419/JQ730
629     + 

Tibouchina mollis   
JQ730212/JQ730420/JQ730
630     + 

Tibouchina mutabilis   
JQ730213/JQ730421/JQ730
631     + 

Tibouchina naudiniana   
JQ730214/JQ730422/JQ730
632     + 

Tibouchina nodosa   
JQ730215/JQ730423/JQ730
633     + 

Tibouchina octopetala   
JQ730216/JQ730424/JQ730
634     + 

Tibouchina oreophilla   
JQ730217/JQ730425/JQ730
635     + 

Tibouchina ornata   
JQ730218/JQ730426/JQ730
636     + 

Tibouchina papyrus   
JQ730219/JQ730427/JQ730
637     + 

Tibouchina pendula   
JQ730220/JQ730428/JQ730
638     + 

Tibouchina pereirae   
JQ730221/JQ730429/JQ730
639     + 

Tibouchina pulchra   
JQ730222/JQ730430/JQ730
640     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Tibouchina radula   
JQ730223/JQ730431/JQ730
641     + 

Tibouchina ramboi   
JQ730224/JQ730432/JQ730
642     + 

Tibouchina salviaefolia   
JQ730225/JQ730433/JQ730
643     + 

Tibouchina 
sebastianopolitana   

JQ730226/JQ730434/JQ730
644     + 

Tibouchina sellowiana   
JQ730227/JQ730435/JQ730
645     + 

Tibouchina 
semidecandra   

JQ730228/JQ730436/JQ730
646     + 

Tibouchina sp   
JQ730229/JQ730437/JQ730
647     + 

Tibouchina sp ined1   
JQ730230/JQ730438/JQ730
648     + 

Tibouchina sp ined2   
JQ730231/JQ730439/JQ730
649     + 

Tibouchina sp ined3   
JQ730232/JQ730440/JQ730
650     + 

Tibouchina stenocarpa   
JQ730233/JQ730441/JQ730
651     + 

Tibouchina striphnocalyx   
JQ730234/JQ730442/JQ730
652     + 

Tibouchina trichopoda   
JQ730235/JQ730443/JQ730
653     + 

Tibouchina urceolaris   
JQ730236/JQ730444/JQ730
654     + 

Tibouchina ursina   
JQ730237/JQ730445/JQ730
655     + 

Tibouchina valtherii   
JQ730238/JQ730446/JQ730
656     + 

Tibouchina velutina   
JQ730239/JQ730447/JQ730
657     + 

Tibouchina wurdackii   
JQ730240/JQ730448/JQ730
658     + 

Tibouchina aegopogon    
JQ730241/JQ730449/JQ730
659     + 
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Taxon Population Pop Nº 
Genbank accession 
numbers (ITS/accD-
psaI/psbK-psbL) 

Voucher Hap-ETS Hap-cpDNA PR Castratella 
(ETS/trnG/rpl32-trnL) 

PR Melastomeae  
(ITS/accD-psaI/psbK-

psbL) 

Tibouchina trinervia    
JQ730242/JQ730450/JQ730
660     + 

Tibouchinopsis mirabilis   
JQ730243/JQ730451/JQ730
661     + 

Trembleya laniflora   AY553744 /-/-     + 

Trembleya parviflora   
JQ730244/JQ730452/JQ730
662     + 

Trembleya pentagona   AY553745 /-/-     + 

Tristemma coronatum   
JQ730245/JQ730453/JQ730
663     + 

Tristemma hirtum   
JQ730246/JQ730454/JQ730
664     + 

Tristemma littorale   
JQ730247/JQ730455/JQ730
665     + 

Tristemma mauritianum   
JQ730248/JQ730456/JQ730
666     + 

TOTAL     18 15 20 249 
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Table S4.2. Sample numbers discriminated by geographic origin and altitudinal distribution. 

 

 Tropical Temperate 
TOTAL 

 
Páramo 
endemic Neotropical Pantropical Total Austral-

Antarctic Holarctic Pantemperate Total 

Subpáramo - 23 5 28 1 1 1 3 31 
Páramo 10 139 30 179 21 27 34 82 261 
Superpáramo 6 33 3 42 9 10 27 46 88 
TOTAL 16 195 38 249 31 38 61 131 380 
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Table S4.3. Test statistics and p-values calculated for differences in species richness in relation to geographic origin and altitudinal distribution for the 
complete Páramo flora. p-values in bold are significant at the 5% level; n/a, not applicable. 
 

COMPARISON Kruskal-Wallis test Conover-Inman test (post-hoc multiple 
comparison test) 

Species richness between elements of tropical and temperate origin p = 0.293 n/a 
Species richness amongst the six geographic categories within elements of tropical and temperate origin (Páramo 
endemic, Neotropical, Pantropical, Austral-Antarctic, Holarctic and Pantemperate) p = 0.536 n/a 

Species richness between elements of tropical and temperate origin within Subpáramo p = 0.935 n/a 
Species richness between elements of tropical and temperate origin within Páramo p = 0.073 n/a 
Species richness between elements of tropical and temperate origin within Superpáramo p = 0.386 n/a 
Species richness amongst the six geographic categories within elements of tropical and temperate origin within 
Subpáramo p = 0.578 n/a 

Species richness amongst the six geographic categories within elements of tropical and temperate origin within 
Páramo p = 0.187 n/a 

Species richness amongst the six geographic categories within elements of tropical and temperate origin within 
Superpáramo p = 0.095 n/a 

Species richness amongst altitudinal categories (Subpáramo, Páramo, Superpáramo) within elements of tropical 
origin p < 0.001 

Páramo > Subpáramo (p < 0.001) 
Superpáramo > Páramo (p < 0.001) 
Superpáramo > Subpáramo (p < 0.001) 

Species richness amongst altitudinal categories (Subpáramo, Páramo, Superpáramo) within elements of temperate 
origin p < 0.001 

Páramo – Subpáramo (p = 0.225) 
Superpáramo > Páramo (p < 0.001) 
Superpáramo > Subpáramo (p = 0.003) 

Species richness amongst altitudinal categories within Páramo endemic elements p = 0.956 n/a 

Species richness amongst altitudinal categories within Neotropical elements p < 0.001 
Páramo > Subpáramo (p < 0.001) 
Superpáramo > Páramo (p < 0.001) 
Superpáramo > Subpáramo (p < 0.001) 

Species richness amongst altitudinal categories within Pantropical elements p < 0.001 
Páramo > Subpáramo (p = 0.009) 
Páramo – Superpáramo (p = 0.510) 
Superpáramo > Subpáramo (p = 0.024) 

Species richness amongst altitudinal categories within Austral-Antarctic elements p = 0.453 n/a 

Species richness amongst altitudinal categories within Holarctic elements p = 0.002 
Páramo – Subpáramo (p = 0.896) 
Superpáramo > Páramo (p < 0.001) 
Subpáramo – Superpáramo (p = 0.189) 
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Species richness amongst altitudinal categories within Pantemperate elements p < 0.001 
Páramo – Subpáramo (p = 0.357) 
Superpáramo > Páramo (p < 0.001) 
Superpáramo > Subpáramo (p = 0.020) 

 


