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Abstract

Initial attempts at performing text-to-speech conversion based

on standard orthographic units are presented, forming part of

a larger scheme of training TTS systems on features that can

be trivially extracted from text. We evaluate the possibility

of using the technique of decision-tree-based context cluster-

ing conventionally used in HMM-based systems for parameter-

tying to handle letter-to-sound conversion. We present the ap-

plication of a method of compound-feature discovery to corpus-

based speech synthesis. Finally, an evaluation of intelligibility

of letter-based systems and more conventional phoneme-based

systems is presented.

Index Terms: Statistical parametric speech synthesis, HMM-

based speech synthesis, letter-to-sound conversion, graphemes.

1. Introduction

This paper presents initial attempts at performing text-to-speech

(TTS) conversion based on standard orthographic units. It

forms part of a larger scheme of training TTS systems on

“naive” features: features that can be trivially extracted from

text. We contrast this approach with the one conventionally fol-

lowed in TTS, where some intermediate representation is con-

structed to bridge the gap between text and speech; this repre-

sentation will here be called a “linguistic specification”. This

specification is given in terms of features based on linguistic

knowledge, such as phonemes, syllables, intonational phrases,

etc.. It can be derived from text by means of a lexicon and a

set of classifiers, which will here be collectively termed a “front

end”. Our motivation for seeking to avoid the need to use such

an intermediate representation is the expense associated with

constructing a front end. This is a far from trivial task, involv-

ing someone with knowledge of the language in question either

writing rules or annotating surface forms with the correspond-

ing feature to be used in the linguistic specification. For exam-

ple, words might be labelled with phonemes in the lexicon, or

with syntactic category in a corpus for training a part-of-speech

classifier, and syllables might be labelled with pitch accents in

a corpus for training an intonation module. This annotated data

will here be called “secondary data” to distinguish it from what

we will call “primary data”: recorded speech, aligned on the

utterance level with a transcription in standard orthography.

In HMM-based synthesis, there is not a one-to-one map-

ping between the unit types detailed in the linguistic specifi-

cation and the units whose acoustic parameters are estimated

during training. Speech is typically modelled at the phoneme

level, each phoneme being represented by a speech unit hav-

ing attributes specifying its phonetic and prosodic context (e.g.

neighbouring phonemes, place in syllable, whether the cur-

rent syllable bears stress or a pitch accent etc.). This context-

dependency results in a vast number of possible units: almost

all units in the training corpus will be of a unique type and at

synthesis time, most models that are required to be synthesised

will be of unseen types. Therefore a method is needed to map

from the vast set of possible logical models to a set that is small

enough that there are sufficient data to estimate model param-

eters during training, and general enough to represent unseen

units at synthesis time. The technique generally employed for

this purpose is decision-tree based clustering [1, 2]. Our in-

tention in this paper is to evaluate the possibility of using this

technique for handling letter-to-sound conversion in addition.

A similar experiment is reported in [3] in the context of

cluster-based unit selection synthesis. The target language in

that case was Spanish; the notoriously complex and irregular

letter-to-sound correspondences of English make using it as our

target language very ambitious. This is also shown by find-

ings such as those reported in [4], where the performance of

grapheme- and phoneme-based systems on speech recognition

tasks in German, English and Spanish are compared. Word

error rates for grapheme systems are slightly higher than for

phoneme systems in the case of German and Spanish, but sig-

nificantly higher in the case of English. However, the advantage

of starting with something like a worst case scenario among

languages with alphabetic writing systems is that we expect

any techniques we find to improve synthesis based on these

noisy orthographic units to give more marked improvements

in languages where the letter-to-sound correspondence is more

straightforward.

2. Systems Built

We assembled four systems to evaluate the possibility of per-

forming TTS in English using plain orthography features: two

letter-based systems (L-BAS and L-SER) and, for comparison,

two more conventional phoneme-based systems making use of

a pronouncing dictionary (P-FUL and P-LIM). The distinguish-

ing characteristics of these systems are summarised in Table 1

and explained in the following paragraphs.

2.1. Data

The data used for these experiments was the SLT part of the

ARCTIC database [5], of which only the audio and text tran-

scription were used. The transcription was checked before use

and manually preprocessed, all numerals and abbreviations be-

ing correctly expanded.

2.2. Initial alignment

Separate initial alignments of the audio and text-derived units

were prepared for the two pairs of systems (the L and P sys-

tems). The P alignment used phonemes obtained from the plain

orthographic transcription by look-up in the CMU pronouncing

dictionary [6] as its basic units (phoneme inventory of 54 units,

including 15 stressed variants of vowels), whereas the L align-

ment used a “naive lexicon”, mapping tokens to sequences com-
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Table 1: Summary of the systems built.

Identifier Description Modelling unit Run-time lexicon and Decision Tree Method

CART training data

L-BAS Letter-based baseline Letter n/a Standard 1-pass

L-SER Letter-based, serial tree-building Letter n/a Serial tree-building

P-FUL Phoneme-based with full lexicon Phoneme Full CMU lexicon Standard 1-pass

P-LIM Phoneme-based with limited lexicon Phoneme CMU lexicon entries for Standard 1-pass

training set items

posed of the 26 lowercase letters of English (see Table 2). In

the case of the P-alignment, all out-of-vocabulary words found

in the training data were added manually to the lexicon. In

all other respects the procedure used for deriving the P and L

alignments was identical. In both cases, the location of punc-

tuation marks was used to initialise a silence model, and later

the insertion of silence between words (orthographic spaces)

was allowed where supported by the audio; selection of alter-

native pronunciations from the lexicon was also allowed during

alignment, although in the case of the naive lexicon there were

obviously no variants to choose from. Other details of model

structure, parameterisation etc. used to obtain the alignment can

be found in [7]. Informal visual comparison of the two align-

ments shows that at the word level they are very similar, and

that reasonable assignments of letters to acoustic segments are

generally made in the case of the L-alignment.

2.3. Letter-to-sound rules

The L systems require no extra letter-to-sound (LTS) rules be-

yond the decision trees that are constructed during voice build-

ing. For the P systems, however, LTS modules are needed to

deal with out-of-vocabulary (o.o.v.) words at synthesis time.

We decided to build two different LTS modules, and it is the dif-

ference between these modules that distinguishes between sys-

tems P-FUL and P-LIM. In both cases, classification trees were

constructed using tools from the Edinburgh Speech Tools Li-

brary [8]. In the case of the P-FUL tree, the whole of the CMU

dictionary was used as training data; in the case of P-LIM, how-

ever, the tree was trained on only those lexical entries used to

label the training corpus during forced alignment. At synthe-

sis time, both systems attempt look-up in their lexicon: P-FUL

in the complete CMU lexicon and P-LIM in the much smaller

training lexicon (2333 entries), and fall back to their respec-

tive Classification and Regression Trees (CARTs) in the case of

o.o.v. words. The decision to handle o.o.v. words differently

in these two systems was motivated by the fact the L systems

are very limited in the amount of LTS training examples they

are exposed to, and we wanted a phoneme-based system that is

similarly limited for comparison. In this way, it is possible to

determine to what extent the expected superior performance of

phoneme-based systems is due their use of linguistically plau-

sible modelling units, and on the other hand to what extent it is

due to their reliance on the lexicon’s encoding of the pronunci-

ation of unseen words.

2.4. Contextual Features

From the transcriptions obtained during initial alignment,

context-dependent label files were constructed for both the P

and L voices. Other than the fact that the P labels use phones

and the L labels letters, the labels are of identical form and en-

code the same set of contexts: the identity of units in each posi-

tion of a 7-letter context window, the number of units since the

start of the word, and the number of units until the end of the

word. Neither system made use of features above the word level

(relating to e.g. position in phrase or utterance). The use of a

wider context window than the standard five units is inspired by

features typically used in building CART trees for LTS. Note

that unlike in LTS trees, the context units in the window may

also be taken from neighbouring words, as the features are ex-

pected to deal not only with LTS correspondences but also with

the type of co-articulatory effects for which decision-tree-based

context clustering is conventionally used.

The questions used to query units’ features in decision-tree

construction were a conventional set of phonetically-motivated

categories in the case of the P-voices. In the case of the L-

voices, however, the questions were the most naive possible,

assuming no knowledge of any natural classes into which let-

ters might fall (i.e. all questions refer to single letters). The au-

tomatic discovery of useful categories of units for tree-building

questions has been addressed by several researchers in speech

recognition [9, 10, 11], and although it forms a part of our on-

going research, such techniques are not evaluated here.

2.5. Voice Building Procedure and Serial Tree Building

The procedure followed for building voices L-BAS, P-FUL and

P-LIM was the same as that used to build the HMM Speech

Synthesis System (HTS) group’s entry in the 2005 Blizzard

Challenge [12]. The procedure used for L-SER was the same

except for the addition of a serial tree-building procedure at the

final iteration of context clustering of spectral envelope param-

eters; this procedure is motivated and described below.

2.5.1. Tree-building and data fragmentation

A possible weakness for tree-based methods which becomes ap-

parent when the input feature vectors have high-dimensionality

and the structure to be uncovered has a Boolean structure is

over-fragmentation of the data, which can disguise the data’s

structure [13, pp. 136ff]. Such Boolean structure is obviously

present in sets of rules which capture English LTS correspon-

dences, to a much greater extent, for example, than the sorts of

rules necessary to predict co-articulatory effects. Take for ex-

ample the set of words shown in node 0 of the tree in Figure 1A,

and the sort of rule necessary to encode the pronunciation of 〈a〉
in these words as either [a] or [ei] (represented in the diagram by

green and red respectively; note that this diagram could repre-

sent either a CART tree for LTS rules or an HTS state clustering

tree where letter-based features are used). The question ‘is the

letter 2 places to the right an e?’ is not sufficient to split the set

of words appropriately because of the exceptional pronuncia-

tion of the 〈a〉 in have; this exception means that only a Boolean

combination of features can split the set appropriately. In stan-

dard tree-building procedures, however, questions are asked one

at a time leading either to impure nodes if splitting stops in the

state depicted in Figure 1A, or over-fragmentation if splitting

continues till the nodes are pure (as in Figure 1B, where items

that should be together are split apart, both in nodes 2 and 5 and
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Table 2: Sample entries from dictionaries used in experiments.

Naive Lexicon CMU Lexicon

a a a ah

abandonment a b a n d o n m e n t a ey1

able a b l e abandonment ah b ae1 n d ah n m ah n t

abnormal a b n o r m a l able ey1 b ah l

about a b o u t abnormal ae b n ao1 r m ah l

abstractions a b s t r a c t i o n s about ah b aw1 t

... abstractions ae b s t r ae1 k sh ah n z

...

nodes 4 and 6).

Empirical investigation shows that heavy fragmentation is

not detrimental to the predictive performance of CART trees

built for LTS and that splitting till total node purity gives the

best results [14]. Such is not the case, however, in the con-

text of the rather different problem of decision tree building for

state-tying of acoustic models. As with CART building for LTS,

decision-tree-based clustering involves building a classifier for

unseen models in future. Unlike CART for LTS, however, it

also needs to solve the model-selection problem: the number

and extent of the classes to which input examples are to be as-

signed is not pre-determined. Therefore, an explosion in the

number of leaf nodes is an explosion in the number of classes

chosen to partition the training set (unlike in LTS tree building,

where many different leaves can share a single class). Over-

fragmentation of data in DT building will lead to models poorly

estimated due to shortage of training data. A phenomenon we

have observed in real trees is that such over-fragmentation is

often accompanied by under-fragmentation in other parts of

the same tree. This is understandable as we use a Minimum

Description Length criterion to determine at which point tree-

building should cease [2]. This criterion is designed to balance

the increasingly good fit of the model to the data and the con-

comitant increasing complexity of the model in an appropriate

way. However, Description Length is computed globally over

the tree as a whole. In effect, by creating many pure but frag-

mented clusters early in tree-building, we are getting bad value

in terms of increased likelihood for the extra model parameters

used. If free parameters are wasted through fragmentation in

one part of the tree, it is understandable that splitting could stop

in a locally premature way in another part of the tree.

We hypothesise that this under-fragmentation is one of the

causes of the general degradation in the quality of synthetic

speech we have observed from models built using orthographic

features. The problem of inappropriate averaging in HMM-

based synthesis is well-recognised generally (e.g. [15]), and we

consider the general degradation in speech quality to be an espe-

cially heightened case of such inappropriate averaging, height-

ened because of the poor clusters that the naive orthographic

features allow to form.

2.5.2. Serial Tree-Building

Various researchers have proposed methods to overcome these

problems with tree-building, e.g. [16]; the one we adopt here is

closely based on that explained in [17]. This approach can be

characterised as finding ‘compound questions’: questions that

query the values of more than one linguistic attribute simulta-

neously. Tree-building proceeds iteratively: a tree is built that

clusters the units, and the leaf nodes of this tree are added as

features to the names of the models that have passed through

them. The tree is then put to one side, but questions can now

be asked about the new features it has provided in subsequent

iterations. The tree produced in the final iteration is the tree that

is finally used in the normal way. In effect, this allows questions

to be asked (indirectly) about several linguistic attributes simul-

taneously: the new features represent Boolean combinations of

the original questions with the AND and NOT operators.

As a toy example, take the tree in Figure 1C. We start by

placing all model names in the root node (0), and extending

them with features indicating through which nodes they have

passed on a previous iteration of tree-building (i.e. the tree in

1B). For example, to the ‘cat’ model are appended the features 0

and 2, indicating that the model traversed those nodes of the pre-

vious tree (1B). Querying these features is equivalent to query-

ing multiple original features of the model simultaneously. At

node 1 of 1C this is done, and results in a less fragmented tree

than 1B. The procedure can be repeated, as in 1D: the models

are renamed with the compound features found by traversing

1C, and reference to them leads in 1D to a final, perfect split of

the data.

We use 5 iterations of this procedure for the final cluster-

ing of spectral parameters of system L-SER. In Table 3 it can

be seen that the number of parameters estimated for L voices

increases when serial tree building is introduced, approaching

and in some cases surpassing the number of parameters esti-

mated for the P voices. We suppose this to be a result of de-

creased under-fragmentation enabled by the discovery of com-

pound features.

3. Evaluation

A web-based evaluation of the intelligibility of the voices built

was conducted on Amazon’s Mechanical Turk.1 This is a web-

based platform that allows short tasks requiring human intelli-

gence to be posted and completed on the web for payment. Sev-

eral language experiments have been reported that use the ser-

vice (e.g. [18]). 40 listeners were obtained in this way to evalu-

ate Semantically Unpredictable Sentences (SUS: [19]) synthe-

sised by the systems. 40 such sentences were produced using

each system, 20 of which where the content words were not to

be found in the systems’ training vocabulary (the OOV portion

of the test-set), and the other 20 so that all the content words

had been ‘seen’ by systems during training (the INV portion).

Listeners were assigned to one of 4 groups (each with 10 lis-

teners); the groups were designed so that each group’s listeners

heard a different set of system–sentences, but so that the same

sentences were heard for each system over the whole test. SUS

sentences were interspersed with four short natural samples of

SLT’s speech in order that the reliability of listeners’ responses

could be gauged; the responses to these samples were not used

for evaluation of the systems. Stimuli were presented in ran-

dom order to the listeners, and the listeners were asked to type

1https://www.mturk.com/mturk/
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what they heard. Word error rates (WERs) were then computed

on the listeners’ responses, with reference to the text used to

generate the nonsense sentences in the first place.

4. Results

Results of the evaluation are summarised in Figure 2. WERs are

given over all test sentences (left), sentences with in-training-

vocabulary content words only (middle), and sentences with

out-of-training-vocabulary content words only (right). Differ-

ences between system WERs were compared in a pairwise fash-

ion using the bootstrap procedure outlined in [20]: bootstrap-t

confidence intervals were calculated over system differences.

Differences found to be non-significant in this analysis (with α

= 0.05 and Bonferroni correction) are indicated with arcs in the

figures.

On both the INV portion of the test set (centre plot of Figure

2) and on the OOV portion (right-hand plot of same figure), the

phoneme-based systems acheive lower WERs than the letter-

based ones, as expected. For the INV set, the two phoneme-

based systems receive the same WER as we would expect, as

they are essentially the same system when producing this ‘seen’

vocabulary. On the OOV set, the limited-lexicon phoneme-

based voice P-LIM has a higher WER than counterpart P-FUL,

although this difference between the P voices is not found to be

significant.

The serial tree-building method produces a significant im-

provement to the baseline letter-based system in both the over-

all evaluation (left-hand plot of Figure 2) and evaluation on the

INV portion of the test-set (middle plot in same figure). Also on

the OOV portion of the test-set (right-hand plot of Figure 2), L-

SER achieves a lower WER than L-BAS, although in this case

it is not found to be significant. In no case does performance

of the L systems approach that of the full phoneme-based sys-

tem, P-FUL. On the OOV test-set, though, the addition of serial

tree-building allows the letter-based system to close a part of the

gap in performance between the baseline system L-BAS and the

phoneme-based system with limited lexicon, P-LIM. Here, al-

though there remains a gap between L-SER and P-LIM, it is not

found to be significant (though as noted above, neither is the

gap in performance between L-BAS and L-SER in this case).

5. Conclusions

Our experiments have shown that, fairly obviously, it is benefi-

cial to use phonemic representations when they are available to

us. The improvement in WER obtained when serial tree build-

ing is introduced encourages us, however, in that it demon-

strates that ways exist to improve on the baseline letter-based

system without resorting to manually compiled resources such

as lexicons and letter-to-sound rules. As noted at the beginning

of this paper, English has an especially difficult orthography for

this type of work, and we suspect that techniques like the ones

presented here may, if developed, enable us to close the smaller

gap between a baseline letter-based system and phoneme-based

systems in languages with more regular letter-to-sound corre-

spondences. This is planned for future work.
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Figure 1: Serial tree building.
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Table 3: Systems built: model sizes

System identifier L-BAS L-SER P-{FUL,LIM}
No. leaf nodes (mcep) 479 577 619

No. leaf nodes (logF0) 2110 2431 2397

No. leaf nodes (bndap) 536 531 501

No. leaf nodes (duration) 940 1204 766

No. used questions (mcep) 102 366 204

No. used questions (logF0) 210 498 706

No. used questions (bndap) 118 265 195

No. used questions (duration) 176 379 377

Figure 2: WER for all test sentences (left), sentences with in-training-vocabulary content words only (middle), and sentences with

out-of-training-vocabulary content words only (right). Arcs show pairs of systems where bootstrap-t confidence intervals over system

differences show no significant difference (with α = 0.05 and Bonferroni correction).
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