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ABSTRACT 

Flavocytochrome c, a multihaem cytochrome from Shewanella 

putrefaciens induced under anaerobic conditions, was studied to investigate the 

physiological function of this protein. These studies comprised two facets: the 

cloning and sequence analysis of the structural gene for flavocytochrome c and a 

biochemical study of the fumarate reductase activity associated with 

flavocytochrome c. 

A S. putrefaciens genomic library was constructed from 0.5-4 kb Sau3A 

fragments in the expression vector pEX3. The ligated recombinant/vector 

library was transformed into E. coli MM294 to give a representative library of 

approximately 22,000 recombinants. This library was screened by colony 

hydridization of induced recombinants with antibody raised to purified 

flavocytochrome c protein. 

One clone giving a strong signal to antibody was identified from this 

library. Restriction digests of the pEX3 recombinant vector purified from this 

clone showed the insert DNA to be approximately 1.5 kb. Southern blot analysis 

of the clone gave hydridization of flavocytochrome c antibody to a protein of 

approximately 45 kDa which was encoded by the recombinant pEX3 vector. 

This cloned fragment was proposed to encode part of the flavocytochrome c gene 

and investigated in more detail. 

The 1.5 kb cloned fragment was partially sequenced and mapped. 

Sequencing yielded two non-overlapping contigs of 438 bp and 966 bp 

respectively. The DNA fragment joining the two contigs remained unsequenced. 

Database analysis of the predicted amino acid sequence of both contigs showed 

that the second contig contained 4 conserved c-type haem binding site motifs 

CXYCH within the first 90 residues. A second region in this contig from bases 

123-151 was found to be 	 with a highly conserved FAD- 

binding fingerprint common to many flavoproteins. Non-covalent binding of 
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flavin was evident by lack of an essential histidine residue directly following the 

conserved region. This molecular analysis strongly suggested that the cloned 

DNA fragment encoded at least 322 residues of the N-terminal region of the 

flavocytochrome c protein. This was further confirmed by the finding that the 

first 8 residues of the second contig were completely homologous with residues 

6-13 of the N-terminal sequence of flavocytochrome c. 

Cloning the entire flavocytochrome c gene was attempted also by 

functional complementation of an E. coli fumarate reductase mutation. A 

second chromosomal library of 4-10 kb Sau3A size fractionated DNA fragments 

was constructed in the direct selection vector pUN121. This library was 

transformed into and screened in JRG780, an E. coli mutant unable to utilise 

fumarate as a terminal electron acceptor under anaerobic conditions. However, 

complementation of fumarate reductase activity was unsuccessful. 

Flavocytochrome c protein was purified to homogeneity by column 

electrophoresis from microaerobically grown culture on DEAE Sepharose, 

Hydroxyapatite, Phenyl Sepharose, and Sephacryl S-300. This purification 

yielded 4 mg of purified flavocytochrome c per 10 litres of culture, but was not 

ciiob-tc 	 being rather lengthy and giving an unacceptable level of protein 

proteolysis. A second purification was developed which resolved these problems. 

It utilised precipitation of periplasm by ammonium sulphate followed by 

chromatography on DEAE Sepharose and Hydroxyapatite, giving a higher yield 

of purified flavocytochrome c (5.96 mg/10 litres of culture) over fewer stages and 

reducing proteolysis to a minimum. 

Sheep antibody was raised to purified flavocytochrome c protein. This 

antibody had a relatively high affinity for flavocytochrome c, being able to detect 

as little as 1 ng of purified protein. This antibody was used to study fumarate 

reductase activity in S. putrefaciens: on incubation with antibody, fumarate 

reductase activity was almost completely precipitated from both purified 

flavocytochrome c and periplasm, suggesting flavocytochrome c is a single 
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periplasmic fumarate reductase. This was confirmed by zymogram staining of 

periplasm which gave a single zone of fumarate reductase activity corresponding 

to flavocytochrome c. 

Purified flavocytochrome c had Km and Vmax  values for fumarate of 

12.6 JLM and 278 imol/min/mg protein respectively. The enzyme had a much 

lower affinity for succinate, with Km  being 356 JLM and Vmax  0.08 mol/niin/mg 

protein. This bi-directional capacity, and high specificity for fumarate is very 

similar to fumarate reductases in other Gram-negative bacteria and suggests a 

role for flavocytochrome c as a terminal fumarate reductase. 
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CHAPTER 1 

INTRODUCTION 



THE HISTORY AND MICROBIOLOGY OF Shewanella 

The microbial flora of marine fish caught in temperate water consists 
primarily of Gram-negative bacteria. During refrigeration the flora alters and 
bacteria belonging to the genera Pseudomonas, Psychrobacter, Vibrio, 
Flavobacterium and particularly Shewanella predominate. 	The species 
Shewanella is particularly important as it has been shown to cause the 
characteristics of fish spoilage in model systems (Herbert et al, 1970). By 
synthesis of TMAO reductase and its related components on oxygen depletion, 
growth is sustained via anaerobic respiration at the expense of TMAO which is 
available in marine tissues. Thus Shewanella may have a competitive advantage 
over other non-TMAO reducing bacteria during fish spoilage and assert its 
dominance in the spoilage flora. Although the psychrophilic Shewanella has 
been isolated from a variety of proteinaceous foods (Parker and Levin, 1983) it is 
primarily associated with the marine environment. 

The taxonomic position of Shewanella putrefaciens (formerly 
Alteromonas putrefaciens) has been uncertain for a number of years. The genus 
Alteromonas comprising heterotrophic non-fermentative bacteria was once 
classified with the pseudomonads (Lee et a!, 1977). However, although 
biochemically similar to pseudomonads, alteromonads had to be placed in a 
separate genus because the base composition of their DNA (mol % GC 43-54) 
differs markedly from pseudomonads (mol % GC 58-72) (Baumann et al, 1972). 
Furthermore, strains of A. putrefaciens isolated by Gillespie (1981) showed less 
diversity than Pseudomonas spp and were characterised by their production of 
sulphydryl type odours, inability to produce H2S during growth in peptone iron 
agar, and their ability to reduce trimethylamine oxide. Most of the alteromonads 
were able to utilise maltose and sucrose but not lactose or mannitol. 

Van Landschoot and DeLey (1983) classified Alteromonas species into 
four RNA groups: (1) Alteromonas macleodii, (2) Alteromonas haloplanktis, (3) 
Alteromonas putrefaciens, (4) Marinomonas (A. communis and A. vaga). 
MacDonell and Coiwel (1985) sequenced the 5s rRNA from A. putrefaciens 
ATCC 8071 (NCIB 10471) and found, that as with A. macleodii and A. 
haloplanktis, A. putrefaciens belonged in the first rRNA superfamily as defined by 
DeLey (1978), but recommended that it should be placed in a separate genus - 
Shewanella. A. vaga and A. communis were distinctly different from the other 
alteromonads, being part of the second rRNA and placed in a separate genus 
Marinomonas. 

This consequently placed the genus Shewanella as more closely related 
to the Vibrionacea than the Enterobacteriaceae but in the same major group, 
rRNA superfamily 1. This agrees with Woese et al (1985) who placed A. 
putrefaciens DSM 20456 between the Vibrionaceae and the Enterobacteriaceae 
in the gamma subdivision of the purple bacteria (approximately equivalent to the 
rRNA superfamily 1 of Van Landschoot and DeLey). 
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Bacteria are noted for the diversity of their habitats. The ability to 

survive in such a range of habitats is due to their adaptive ability on exposure to 

adverse external conditions, and their metabolic diversity. Part of this diversity is 

the ability to generate energy by a variety of mechanisms: aerobic and anaerobic 

respiration, fermentation and photosynthesis. The following review will focus on 

the diversity and control of anaerobic respiration in Gram negative bacteria, 

after a brief discussion of aerobic respiration and fermentation. Energy 

production by means other than anaerobic respiration has been extensively 

reviewed in the following literature: Drews, 1985; Scolnik and Marrs, 1987; 

Rnr 	and Gennis, 1987; Spencer and Guest, 1987. 

1.1 	Chemiosmotic theory 

Energy generation via aerobic, anaerobic and photosynthetic pathways 

have certain common features, described in the chemiosmotic theory proposed 

by Mitchell (1979). In simple terms this involves an H-ATPase proton-

pumping system, associated with an intact membrane. The transportation of 

protons from cytoplasm to periplasm (by a series of oxidation/reduction 

reactions mediated through the membrane-located electron transporting 

components: flavoproteins, quinones, iron-sulphur proteins and cytochromes) 

creates a proton-motive force (iSp) with gradients of both electrical potential (&p) 

and pH (SpH) generated across the membrane. The net result of this is the 

driving of protons back into the cell through a membrane bound ATPase 

complex, generating ATP. This process is summarised in simple diagrammatic 

terms in Figure 1.1. 

A proton gradient can equally be created either by direct translocation 

or via proton consuming and proton generating reactions on the cytoplasmic and 

periplasmic face of the cytoplasmic membrane respectively. Recent work 

indicates that this theory can be extended to the generation of non-protonic ion 

gradients, by sodium ions (Dimroth, 1987; Krulworth and Guffanti, 1989). 



Figure 1.1 Diagrammatic representation of the chemiosmotic theory 

Periplasm 	Cytoplasmic membrane 	Cytoplasm 

2H 

 

ADP ± P1 

 

H 2 

ATP + 2H 

On substrate reduction., 2H+  are released into the periplasm, and 2e passed to a 
hydrogen acceptor via hydrogen and electron carriers spanning the membrane. This 
generates gradients of electrical potential (q) and pH (pH) across the membrane, 
establishing a proton motive force (p) which drives the generation of ATP. This 
diagram is simplistic: a complete electron transport chain will usually involve more 
than one proton translocating component (see Figure 1.5). 

AH2: substrate; AH2DH: substrate dehydrogenase; B: hydrogen acceptor 
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1.2 	Aerobic respiratory chain of E. coli 

During aerobic respiration substrates are totally oxidised to CO2 via 

the TCA cycle, with ATP generated by proton and electron transfer (by 

oxidation of reduced coenzymes) through an aerobic respiratory chain, the 

terminal electron acceptor being molecular oxygen. 	Respiratory chains of 

enteric bacteria can be very diverse, allowing electron transfer from one of 

several substrates to support respiratory chain activity. This diversity is well 

illustrated in the example from E. coil (Figure 1.2), where several substrates are 

able to donate electrons via membrane bound dehydrogenases to a common 

quinone pool. In turn, electrons are donated from the quinone pool to either of 

two terminal oxidase enzymes. Cytochrome o appears to be utilised preferably 

in conditions of high oxygen tension (Ingledew and Poole, 1984; Kita et al, 

1984), whereas cytochrome d predominates in oxygen limited cells (Kranz and 

Gennis, 1984). The cytochrome composition of aerobic respiratory chains in S. 

typhimurium and P. mirabilis are similar to that of E. coli (Laszlow et a!, 1984; 

van Wielink et a!, 1983). 

1.3 	Effect of anaerobiosis on TCA cycle enzymes 

As a consequence of oxygen limitation, the activities of the TCA cycle 

enzymes citrate synthase, aconitase, isocitrate dehydrogenase and a-

ketoglutarate dehydrogenase are drastically reduced (Smith and Neidhardt, 

1983; Spencer and Guest, 1985) preventing generation of a-ketoglutarate and 

succinate (for biosynthesis), although succinate may be synthesised by reduction 

of fumarate via the reductive branch of the TCA cycle which becomes active 

anaerobically (Ingledew and Poole, 1984) (Figure 1.3). 

In the absence of oxygen, bacteria can generate energy by two 

alternative strategies: (a) fermentation; or (b) anaerobic respiration. 



Figure 1.2 Diversity of enteric aerobic respiratory chain 
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Figure 1.3 TCA cycle 
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1.4 	Fermentation 

As a consequence of supporting NAD + regeneration, fermentation 

(substrate level phosphorylation) permits ATP synthesis by glycolysis (Figure 

1.4). In E. coli NAD + may be regenerated by either reduction of pyruvate to 

lactate (Wood, 1961) or by pyruvate-formate lyase activity. The latter converts 

pyruvate to formate and acetyl-CoA which is then further metabolised, in two 

separate pathways, to acetate (generating ATP) and ethanol (regenerating 

NAD) (Brown et al, 1977; Pascal et al, 1982). This mixed acid fermentation is 

characteristic of most enteric bacteria with acetate formation the most 

favourable pathway producing 1 mol ATP/mol acetate. Additional fermentation 

pathways such as that producing 2-3 butane-diol are utilised by K pneumoniae in 

the presence of glucose (Taxeira de Mattos et al, 1984). These additional 

pathways are considered to allow for modulation of ATP synthase relative to 

glucose uptake, enabling rapid catabolism of glucose without affecting the 

anabolic capacity of the cell. However, fermentation is relatively inefficient in 

terms of ATP generation as it results in the accumulation of oxidised/reduced 

substrates. 	Furthermore, the oxidation/reduction balance can only be 

maintained if the overall oxidation level of the products are identical to the 

substrate, a restriction which limits substrate choice. 

1.5 	Anaerobic respiration 

Anaerobic respiration generates energy by the coupling of substrate 

oxidation to the reduction of electron acceptors such as nitrate, fumarate, 

TMAO, sulphur, nitrogen and carbon oxides. The availability of compounds such 

as nitrate, fumarate and TMAO suppresses fermentative pathways, with evidence 

suggesting that nitrate regulates fermentative enzymes at the transcriptional level 

(Clark and Cronan, 1980). Other modes of anaerobic respiration involving 

oxides of sulphur, nitrogen., carbon and various metals are performed by 

specialist groups of bacteria: denitrifiers, methanogens, sulphate reducers and 
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iron oxidisers. As these respirations are not directly relevant to this thesis, I will 

only briefly mention them here. For reviews, refer to the following literature 

(Moodie and Ingledew, 1990; Cole and Ferguson, 1988; Odom and Peck, 1984). 

Respiratory chains involving nitrate, fumarate and TMAO reductases are more 

widespread among Gram negative bacteria and are discussed in detail in the 

following sections. 

1.6 	Nitrate reductase 

Distinct nitrate reductases have been identified in Ps. aeruginosa, K 

pneumoniae and S. typhimurium (Jeter et al, 1984; Stewart, 1988; Barrett and 

Riggs, 1982), which fall into two categories. The first, known as assimilatory 

nitrate reductase allows aerobic incorporation of nitrogen for biosynthetic 

purposes. The second, supports anaerobic nitrate respiration and is common to 

many other bacteria, including E. coli. 

Respiratory nitrate reductase of E. coli is a molybdoerizyme which 

accepts electrons from substrate oxidation to reduce nitrate (NO3) to nitrite 

(NO2) with energy conserved as a proton motive force for ATP generation. The 

proton motive force is generated through the release of two protons in the 

periplasm, by oxidation of formate coupled to the reduction of quinol, and the 

consumption of two protons in the cytoplasm by the reduction of nitrate (Figure 

1.5). Nitrite (in the Enterobacteriaceae) can be reduced to ammonia thus 

regenerating oxidised nicotinamide cofactor by a six electron transfer or can 

form a proton motive force (Boonstra et al, 1975; Konings and Kaback, 1973). 

1.6.1 	Components of nitrate respiratory chain 

Nitrate reduction in E. coli can be coupled to the oxidation of either 

formate, glycerol-3-phosphate, hydrogen, D-lactate, malate, NADH or 

succinate. 



Figure 1.5 Nitrate reduction in E. coli 
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Intermediate components have been identified in the nitrate reductase 

respiratory pathway. Quinones are essential for electron transfer from substrate 

to terminal reductase. Using isogenic ubiA (defective in ubiquinone production) 

and menA (defective in production of menaquinone) mutants of E. coli, Wallace 

and Young (1977a,b) showed that anaerobic growth was severely depressed in 

the ubiA strain but not in the menA strain and that high levels of menaquinone 

were induced during anaerobic growth with nitrate. This implicated the 

preferential use of ubiquinone in aerobic respiration and menaquinone in 

anaerobic respiration. In a double menA ubiA mutant, the fact that NADH 

oxidation coupled to nitrate reduction was restored by addition of ubiquinone 

and glycerol-3-phosphate, and formate-nitrate reduction was restored by either 

ubiquinone or menaquinone, indicated that both NADH and formate could be 

used simultaneously and independently as electron donors for nitrate reduction. 

This utilisation of two distinct quinones was considered to be due to various 

factors: relative redox potentials enabling certain respiratory chains to work 

more efficiently with a particular quinone, or regulation of in vivo activity of 

various respiratory chains where more than one electron acceptor of differing 

potential are present or different dehydrogenases may recognise different 

structural features in quinones. 

Cytochrome b was implicated in nitrate respiration by Ruiz-Herrera and 

DeMoss (1969), who isolated E. coli mutants defective in nitrate respiration and 

found that many had lowered levels of cytochrome b. Furthermore, cytochrome 

b spectra were similar for both wild-type and mutant cells cultured anaerobically 

indicating aerobic and anaerobic cytochrome b species to be genetically distinct 

(Ruiz-Herrera, et a!, 1969). A single a-band absorption at 556nm was 

determined, but kinetics showed two distinct b cytochromes in the formate-

nitrate respiratory chain, and one, presumably the formate dehydrogenase 

specific cytochrome, inferred to be very electronegative (Sanchez-Crispin et al, 

1979). 
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1.6.2 	Structure of nitrate reductase 

Nitrate reductase was purified from E. coil envelope fractions and shown 

to consist of two subunits, one of 150 kDa (a) and one of 60 kDa ($) present in a 

1:1 ratio. A third subunit of approximately 20 kDa (7)  was found to be 

associated with the enzyme (Enoch and Lester, 1974, 1975). This subunit was 

analysed by physical and spectral studies and found to be the nitrate reductase-

specific cytochrome b556 (Chaudhry and MacGregor, 1983). The nitrate 

reductase from the denitrifying bacterium Paracocus denitrzflcans is strikingly 

similar to that of E. coli with molecular weights 127 kDa, 61 kDa, and 21 kDa 

for the a, fi and  7  subunits respectively. As in E. coii, the subunits are found in 

the ratio 2:2:4 (Craske and Ferguson, 1986). There may be a second b-type 

cytochrome in the 'y subunit, suggested following the observation implicating two 

acceptor groups for the two-electron oxidation of quinol (Ballard and Ferguson, 

1987). The nitrate reductase from other denitrifiers such as Pseudomonas 

aeruginosa has been shown to possess a and $ subunits (Carlson et a!, 1982))  but 

a y subunit was not detected, possibly because it readily dissociates from the 

enzyme during purification. The nitrate reductase a, $, and structural subunits 

were originally thought to be encoded from a single operon termed nar: narC 

encoding the a subunit, narH the $ subunit and narI the 7  subunit. Recent work 

has shown the narI locus to contain two genes encoding proteins of 26.5 kDa and 

25.5 kDa (Sodergren and DeMoss, 1988), which were subsequently designated 

NarJ and Nan. The -y subunit of nitrate reductase was suggested to be encoded 

by nan (the gene product of which was hydrophobic and thus compatible with 

the proposed subunit function as membrane anchor for nitrate reductase). 

The function of the narJ gene product was not fully resolved, but considered to 

be involved either with mediating transfer of haem into the nitrate reductase 

complex or facilitating binding of the a$ complex to the subunit. Additional 

genes in the nar locus include narX narL and narX. As yet, no function has been 
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assigned to narK althougth it has been implicated in nitrate transport (Stewart 

and Parales, 1988). The narL and narX gene products are involved in regulatory 

control of anaerobic respiratory enzymes and are discussed more fully in Section 

1.9.2. 

Nitrate reductase purified from K pneumoniae S45 (van't Riet and 

Planta, 1975) and Proteus mirabilis DG (Oltmann et a!, 1976) was found to be 

composed of three subunits with none of the subunits a cytochrome specifically 

associated with the enzyme, in contrast to the E. coli nitrate reductase. However, 

the a and $ subunits of E. coli K12 and K pneumoniae were considered to have 

some homologous regions, being immunologically cross reactive (Abraham et al, 

1981). 

The E. coli a subunit was considered to be the active site for nitrate 

reduction as enzyme activity was lost during conditions which remove molybdate 

from the a subunit and reconstituted by its replacement. Molybdate is present in 

nitrate reductase as Mo cofactor (Amy and Rajagopalan, 1979) present at 

approximately one complete molecule per a$ monomer (Adams and Mortensen, 

1983) and bound to molybdopterin, in which form it is protected from 

inactivation by heat and oxygen. As with E. coli, the a-subunit of P. denitri)'lcans 

contains molybdate. The proteins in E. coli thought to be involved with Mo 

cofactor synthesis were the products of gene loci designated chi with nitrate 

reductase mutants selected as being resistant to chlorate, chlorate being a 

substrate for nitrate reductase. Further early work suggested that chi gene 

products were involved in Mo cofactor synthesis: (1) high concentrations of Mo 

phenotypically suppressed chiD mutants (Glaser and DeMoss, 1971; Sperl and 

DeMoss, 1975), (2) certain E. coli mutants could not provide a source of Mo 

cofactor for reconstitution of nitrate reductase activity (MacGregor and 

Schnaitman, 1973), and (3) the Mo labelling studies showing that chi mutants 

could not incorporate Mo into nitrate reductase (Dubourdieu et a!, 1976; Grassi 

et a!, 1979). It had previously been discovered (Azoulay et a!, 1967) that nitrate 
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reductase activity was restored on mixing cell free extracts from chiA and duB 

mutants. Furthermore, purified chL4 and chiB gene products reconstituted the in 

vitro activities of the molybdoenzymes formate dehydrogenase and TMAO 

reductase (Grillet and Giordono, 1983; Riviere et al, 1975). The chiA locus was 

suggested to be involved in Mo cofactor synthesis and the chiB gene product to 

mediate the incorporation of Mo cofactor into apo-respiratory nitrate reductase 

(MacGregor and Schnaitman, 1973). Other c/il loci have since been identified. 

The gene products from chiA (chiA and chiM) and chiE (chiE and chiN) are 

involved in biosynthesis of the demolybdo cofactor (Johnson and Rajagopalan, 

1987) with the chiD gene product catalysing either the transport or processing of 

molybdate into an intermediate MoX (Ugalde et al, 1985). The next step, the 

formation of Mo-cofactor from MoX and the demolybdo cofactor is believed to 

be catalysed by the chlG gene product (Miller and Amy, 1983), with the final 

incorporation of Mo-cofactor into molybdo proteins catalysed by the chiB gene 

product (MacGregor, 1975). This biosynthetic pathway is shown in Figure 1.6. 

Mutations in the chi gene loci can impose a more complete block of nitrate 

reduction than mutations only affecting the nar operon due to a secondary 

respiratory nitrate reductase also dependent on the Mo-cofactor (Lin and 

Kuritzkes, 1987). 

Each a$ monomer of nitrate reductase contains 3-4 [4Fe 4S]2 l+ 

clusters (Johnson et al, 1985) although active enzyme may also contain a He 

cluster similar to that found in bacterial ferredoxins, resulting from degradation 

of a 4Fe-4S cluster during enzyme isolation. The $ subunit is possibly involved in 

membrane association and may also have a role in mediating subunit 

interactions (Stewart, 1988). The y subunit is essential for enzyme incorporation 

into the cytoplasmic membrane as illustrated by Stewart and MacGregor, 1982, 

who showed that a mutant lacking the -y subunit accumulated nitrate reductase of 

and $ subunits in the cytoplasmic fraction (Stewart and MacGregor, 1982). 

Current evidence suggests that the structure of native nitrate reductase is 2i2$4'y 
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(Chaudry and MacGregor, 1983) and the enzyme has a transmembrane 

orientation enabling it to generate a proton motive force (as previously 

described) with the a and P subunits exposed on the cytoplasmic face and the 'y 

subunits on the periplasmic aspect of the cytoplasmic membrane (Graham and 

Boxer, 1980; Boxer and Clegg, 1975; MacGregor and Christopher, 1978). 

1.7 	Fumarate reductase 

Confirmation of a fumarate reductase in E. coli that was distinct from 

succinate dehydrogenase was first discovered by Hirsch 	who found that 

anaerobic fumarate reduction was unimpaired in a mutant lacking succinate 

dehydrogenase activity. Although fumarate reductase is able to oxidise 

succinate, and succinate dehydrogenase can reduce fumarate, they do so with 

different rates and substrate affinities (Hirsch et al, 1963; Dickie and Weiner, 

1979), with fumarate reductase having a greater affinity for fumarate than 

succinate and vice versa. 

1.7.1 	Structure of fumarate reductase 

In E. coli, the fumarate reductase and succinate dehydrogenase are 

structurally very similar, both being flavoproteins with FAD as the prosthetic 

group, an iron sulphur protein, and are bound to the inner aspect of the 

cytoplasmic membrane by two anchor proteins, (Ingledew and Poole, 1984). 

This structural similarity coupled to their ability to catalyse the same reactions 

suggests that they may have evolved from gene duplication, with the succinate 

dehydrogenase being active aerobically (Hirsch et a!, 1963), and fumarate 

reductase repressed in the presence of oxygen and nitrate but induced 

anaerobically in the presence of fumarate (Spencer and Guest, 1973). 

Fumarate reductase mutants were first isolated by Lambden and Guest 

(1976) following mutation with nitrosoguanidine and selection for the inability of 

colonies to grow anaerobically with fumarate as sole electron acceptor. 



Complementation of the mutants with an E. coli plasmid gene bank (Clarke and 

Carbon, 1976) identified two hybrid plasmids capable of reversing the mutant 

phenotype (Loheimer et a!, 1981). Purification of the plasmid encoded gene 

product yielded a 95 kDa enzyme composed of two subunits of 69 kDa and 27 

kDa from the same operon, which was subsequently designated frd. The frdA 

gene product (the 69 kDa subunit) contained a catalytically essential sulphydiyl 

group (Robinson and Weiner, 1982) and a covalently bound 8a(N3-histidyl) 

FAD cofactor (Weiner and Dickie, 1979). The 27 kD $ subunit (frdB) contained 

three Fe-S centres (Cammack et a!, 1986; Cole et al, 1982, 1985) identified by 

EPR as a two-iron (2Fe-2S) ferredoxin centre with Em7  of -50 mV (Ingledew, 

1983); a four-iron (4Fe-4S) ferredoxin centre with an E7 of -285 mV 

(Cammack et al, 1986), and a three iron (He-4S) centre with an Em7  of -50mV 

(Morningstar et al, 1985; Simpkin and Ingledew, 1985). The frdA and frdB 

subunits were present in a 1:1 molar ratio, comprising a catalytically active 

enzyme extending into the cytoplasm and bound to the inner aspect of the 

cytoplasmic membrane (Dickie and Weiner, 1979). Two additional genes were 

discovered directly downstream of frdB in the frd operon. These genes encoded 

polypeptides of 15 kDa (frdC) and 13 kDa daltons (frdD). These subunits were 

hydrophobic i 	and involved in membrane attachment of the two larger 

polypeptides (Lemire et a!, 1982; Gundstrom and Jaurin, 1982), in addition to 

which 	important in maintaining enzyme structure and allowing enzyme 

interaction with quinones (Lemire et a!, 1982; Ceccini et a!, 1986). 

1.7.2 	Components of fumarate respiratory chain 

Formate, NADH and glycerol-3-phosphate dehydrogenase all support 

the reduction of fumarate (Ingledew and Poole, 1984). The ability of haem 

deficient mutants to grow anaerobically on glycerol or glycerol-3-phosphate with 

fumarate, indicated that cytochromes were not involved in electron transport to 

fumarate (Singh and Bragg, 1975) although fumarate-dependent active transport 



17 

processes could not be demonstrated in the cytochrome-deficient cells suggesting 

that cytochrome b was responsible for coupling electron to proton translocation, 

with menaquinone linking the dehydrogenases to the cytochromes. 

The reduction of fumarate is common among facultative and obligate 

anaerobes such as V. succinogenes. A DNA probe of the highly conserved E. coli 

frdA FAD-binding region hydridised strongly to chromosomal digests from 

various members of the Enterobacteriaceae (Unden and Cole, 1983). No 

hydridisation was detected to DNA from V. succinogenes which was surprising 

considering the strong structural resemblance of the E. coli and V succinogens 

fumarate reductases. The V. succinogenes enzyme is composed of two catalytic 

subunits (Unden et a!, 1980) linked to cytochrome b in the ratio 1:1:2, with the 

cytochrome b anchoring the enzyme to the cytoplasmic membrane. Similarly to 

the E. coli fumarate reductase FAD was covalently bound to the large (79 kDa) 

subunit, and the enzyme was partially reversible catalysing a low level of 

succinate oxidation. The lack of homology with the E. coli enzyme, despite 

similarities of structure and amino acid composition of the catalytic subunits, 

implied that the two genes were a product of convergent evolution. 

Fumarate reductases have been isolated from other organisms such as 

the sulphate-reducing bacterium 	rn (He et a!, 1986) and baker's 

yeast (Moratsubaki and Katsume, 1982). These enzymes differed from those of 

E. coli and V. succinogenes in catalysing unidirectional fumarate reduction, with 

non-covalently bound FAD as prosthetic group. The enzyme from D. 

multispfrans was structurally similar to those of E. coli and V succinogenes, 

comprising four subunits of 45 kDa, 32 kDa, 30 kDa and 27 kDa bound to the 

inner aspect of the cytoplasmic membrane. That of baker's yeast was cytosolic 

and structurally quite different being a single polypeptide of 58.8 kDa and 

containing no non-haem iron. 



1.8 	TMAO reductase 

The involvement of bacteria in the reduction of TMAO was first 

demonstrated in 1937 by Beatty and Gibbons where they showed that the 

appearance of TMA, and increased bacterial counts during the storage of fish 

correlated with a decrease of TMAO, implying that TMAO reduction supported 

the reduction of bacterial respiration. TMAO reduction during oxygen limitation 

and anaerobiosis has been reported in a variety of different bacteria. They 

include Shewanella, (or Alteromonas), Rhodopseudomonas capsulata, Proteus 

vulgaris, Vibrio parahaemolyticus, Achromobacter spp., Photobacterium, various 

members of the Enterobacteriaceae and possibly enteric Campylobacter (reviewed 

in Kwan and Barrett, 1985). 

1.8.1 	Structure of TMAO reductase 

TMAO reductases have been isolated and purified from both E. coli and 

S. typhimurium. E. coli has one constitutive TMAO reductase of 100 kDa and 3 

inducible enzymes (encoded from the tor and dms loci, see Section 1.8.2), the 

most active of which is a membrane-bound molybdoenzyme of 220 kDa daltons 

and composed of two 80 kDa and 60 kDa subunits (Shimokawa and Ishimoto, 

1979). Similarly to E. coli, S. typhimurium produced a constitutive TMAO 

reductase of 375 kDa, a major inducible enzyme with a native molecular weight 

of 332 kDa being a tetramer of an 84 kDa subunit, and a further one or possibly 

two minor enzymes (Kwan and Barrett, 1983). TMAO reductase synthesis in 

both E. coli and S. lyphimurium required molybdenum in the growth medium 

(Takagai et al, 1981). The absence of enzyme activity in chiD mutants (Cox and 

Knight, 1981) which was restored by addition of molybdenum to the growth 

medium strongly suggested that the TMAO reductases were molybdoenzymes. 

TMAO reductases are found either as integral membrane proteins or 

loosely bound and easily released into the periplasmic cell fraction. The 

enzymes in the former category include those from S. lyphimurium (Kwan and 
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Barrett, 1983), those from V. parahaemolyticus (Unemoto et a!, 1965) and the 

major inducible 200 kDa and constitutive 70 kDa enzymes from E. coli. Those 

in the latter category include the inducible 100 kDa and second 70 kDa enzyme 

from E. coli. 

1.8.2 	Components of TMAO respiratory pathway 

TMAO was shown to support anaerobic respiration during 

translocation, active transport and oxidative phosphorylation studies using 

membrane vesicles derived from E. coli (Takagi and Ishimoto, 1983). Formate, 

NADH and lactate were all shown to support TMAO reduction in E. coli 

(Sakaguchi and Kawai, 1977; Yamamoto and Ishimoto, 1977; Strom and Larsen, 

1979; Strom et al, 1979; Nishimura et a!, 1983). Lactate was implicated as the 

natural donor for TMAO reduction during fish spoilage as its high concentration 

in fish muscle decreases during TMAO reduction (Strom and Larsen, 1979; 

Strom et al, 1979). 

The existence of cytochromes as intermediary electron carriers in the 

reduction of TMAO by E. coli was confirmed by Cox and Knight (1981) who 

found that mutants defective in cytochrome biosynthesis were incapable of 

respiration with TMAO. It was suggested that various b and c type cytochromes 

were involved in the reduction of TMAO in E. coli (Sakaguchi and Kawaii, 

1977), the b type cytochromes being constitutive and the c type cytochromes 

induced by the presence of TMAO under anaerobic conditions (Sakaguchi et al, 

1979), although these studies were confused by the presence of other 

cytochromes involved in separate respiratory pathways. Bragg and Hackett 

(1983) discovered three groups of cytochromes in cells of E. coli grown 

anaerobically with TMAO. Fifty percent were involved in aerobic respiration, 

25% were not involved in either aerobic or anaerobic respiration: the remainder, 

two b and two c type cytochromes, were considered to be involved in the 

reduction of TMAO as they were rapidly reoxidised by TMAO in contrast to 
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those of aerobic respiratory pathways. These cytochromes were also reoxidised 

by the membrane impermeable oxidant ammonium persuiphate indicating that 

cytochromes from the TMAO reductase pathway were sited at the periplasmic 

aspect of the cytoplasmic membrane (Bragg and Hackett, 1983). Copper 

sulphate inhibited the reduction of TMAO by formate, preventing reduction of 

the c-type cytochromes c-548 and c-552, but having no corresponding effect on 

the b-554 and b-557 cytochromes implying that the c type cytochromes were 

situated prior to the b-type cytochromes in the respiratory chain (Figure 1.7). 

Determination of the electropotential of the respective cytochromes to 

corroborate the proposed sequence was attempted but proved inconclusive. In 

Proteus spp. b-type but not c-type cytochromes are involved in TMAO respiration 

(Takagi et al, 1981). 

A possible role for quinone as the immediate electron donor for the c-

type cytochromes in E. coli was suggested (Bragg and Hackett, 1983). 

Menaquinone was proposed as the immediate e\cccc\ cor for the cyto chrome of the 

E. coli TMAO pathway, since a mutant lacking menaquinone had lost NADH-

TMAO reductase activity (Cox and Knight, 1981). Menaquinone is also essential 

for TMAO reductase activity in S. lyphimurium, in contrast to E. coli, where 

ubiquinone can substitute for menaquinone. 

A membrane bound terminal reductase was cloned from E. coli which 

could reduce TMAO, DMSO and methionine suiphoxide (Bilous and Weiner, 

1988). This enzyme was genetically distinct from the genetic loci identified for 

TMAO reductase (tor), as three polypeptides were identified from the cloned 

gene which agreed with the subunits associated with purified DMSO reductase 

(Weiner et al, 1988) encoded by the tor operon. TMAO and DMSO are 

reduced by the same enzyme in Rhodobacter capsulatus (McEwan et al, 1987) 

and Proteus vulgaris (Strudd and Strom, 1984). This interaction of several 

different compounds with the same enzyme is not unusual and may be further 

evidence supporting metabolic diversity of bacteria. 



Figure 1.7 E. coli TMAO reductase pathway 
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1.9 	Regulation of terminal reductase expression 

Anaerobic generation of ATP discussed so far has shown that energy can 

be obtained via oxidative phosporylation by the reduction of a variety of terminal 

electron acceptors. During normal bacterial growth, preference is given to the 

terminal electron acceptor with the highest redox potential allowing maximum 

ATP generation. Therefore in E. coli oxygen (E'0  = 0.82 V) is used in 

preference to nitrate, TMAO and fumarate, the reductases of which are 

repressed aerobically and nitrate E'0  (0.42) used preferentially to fumarate (E'0  

= 0.031 V) and TMAO (E'0  = 0.13 V). The regulation of anaerobic respiratory 

systems is discussed below. 

1.9.1 	Regulation by arcA, arcB and fnr 

Factors involving the co-ordination of gene expression in response to 

changes in oxygen tension have been extensively studied. In E. coli, two global 

transcriptional regulators have been identified. One, the two component sensor-

regulator (Arc B-A), represses a wide variety of aerobic enzymes under 

anaerobic conditions (luchi and Lin, 1988, 1989; and reviewed by Spiro and 

Guest, 1991). The other, Fnr, is essential for activating the expression of 

anaerobic respiratory processes (reviewed by Spiro and Guest, 1990). 

The gene-derived primary structures of ArcA and ArcB (luchi et al, 

1990a) show that they belong to the family of two-component signal-transducing 

systems which mediate a wide range of adaptive responses in bacteria (Stock et 

al, 1989). This suggests ArcA is a cytoplasmic regulator with a putative DNA-

binding domain, and ArcB a membrane-bound sensor (luchi et a!, 1990b). It 

would appear that anoxia-induced changes in the ratio of oxidised to reduced 

forms of an electron carrier, either located in or directly coupled to the electron 

transport chain, is detected by ArcB (luchi et a!, 1990). ArcB thus becomes 

autophosphorylated in response to oxygen limitation, transmitting the signal to 
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ArcA by converting it into an active phosphorylated form where it represses 

aerobic enzymes such as TCA cycle enzymes, pyruvate, L-lactate, D-amino acid 

and 3-Hydroxyl-CoA dehydrogenase and the low affinity cytochrome o oxidase 

whilst inducing the high affinity cytochrome d oxidase. 

Several research groups independently reported a single mutation in E. 

coli termed fnr (Lambden and Guest, 1976), nirA (Cole and Ward, 1973; 

Newman and Cole, 1978), and nirR (Chippaux et al, 1978), the effects of which 

were pleiotropic causing deficiencies of many anaerobically induced enzymes 

including nitrate and fumarate reductases, glycerol-3-phosphate dehydrogenase 

and formate dehydrogenase (Jamieson et al, 1986; Kuritzkes et al, 1984). It was 

later proposed that fir, nirA, and nirR corresponded to the same gene and that 

the fnr gene product was a positively-acting regulatory factor. The fnr gene was 

cloned, sequenced and the protein product identified (Shaw and Guest, 1981, 

1982a, b) as a protein of slightly less than 28 kDa whose primary structure 

contained a region homologous with several transcriptional regulator proteins. 

The fnr gene product was expressed both aerobically and anaerobically (Spiro 

and Guest, 1987) with expression suppressed approximately 2.7 fold during 

aerobic conditions. This expression was dependent on the presence of Fnr 

protein, implying that during anaerobiosis fnr was able to adopt an active 

configuration where it could both self regulate and activate fir-dependent genes. 

A DNA sequence previously identified in promoter or transcription initiation 

sites of several genes under fnr control was found to be similar to that of 

hyphenated dyad symmetry identified in the 5' non-coding region of the fir gene. 

This sequence was located downstream of the fnr promoter and as such 

consistent with the observed autoregulation of Fnr, strongly suggesting this 

conserved DNA sequence to be the Fnr binding site. Comparison of nucleotide 

sequences from the promoter region of many genes under Fnr control has 

identified a putative consensus sequence for the Fnr-binding site (Eiglmeier et 

a!, 1989; Spiro and Guest, 1987; Jayaraman et a!, 1989). To date, in E. coli 
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more than 20 genes with this consensus sequence, thus regulated by Fnr, have 

been identified (see Spiro and Guest, 1990). 

Amino acid sequence homology between Fnr and the cyclic AMP 

receptor protein Crp, a DNA binding protein which mediates catabolite 

repression at transcriptional level (De Combrugghe et at, 1984; Busby, 1986) 

strongly indicated that Fnr functioned as a transcriptional regulator (Shaw et a!, 

1983). Homology between the amino acid sequences of the two proteins was 

particularly striking in the DNA-binding domain (Shaw et a!, 1983). Crp and 

Fnr recognise similar binding sites, each a 22 base pair sequence containing 

partial two-fold rotational symmetry (Spiro and Guest, 1987; Jayaraman et a!, 

1989, Eiglmeier et al, 1989). 

Other proteins showing a high degree of sequence similarity, indicating 

the presence of analogous DNA and nucleotide-binding sites with Fnr have 

recently been identified: the Fix K protein from Rhizobium meliloti which 

functions both positively and negatively in the regulatory cascade controlling 

nitrogen fixation (Batut et al, 1989), Hy1X from Actinobacillus 

pleuropneumoniae, a haemolysin which may also regulate haemolysin synthesis 

(Maclnnes et a!, 1990) and FnrN from Rhizobium leguminosarum which 

regulates microaerobic nitrogen fixation (Colonna et a!, 1990). 

The presence of a cysteine cluster in Fnr (but not in Crp) which was 

essential for complete functional activity (Spiro and Guest, 1988) suggested that 

a nucleotide co-effector was involved in signalling anaerobiosis. This co-effector 

was not cAMP (Unden and Duchene, 1987 which was previously suggested as an 

Fnr co-effector). Circumstantial evidence summarized by Spiro and Guest 

(1990), suggested that the regulatory function may be directly related to the 

anaerobic incorporation of a metal ion which reduces the accessibility of the 

cysteines and activates Fnr. This dependence of activity on a metal ion links Fnr 

to other oxygen-sensing proteins such as the Kiebsiella pneumoniae NifL protein, 

which regulates NifA, the transcriptional activator for nif genes (Henderson et 
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al, 1989), and the metal-activated ferric uptake protein (Fur) of E. coli (Bagg 

and Nielands, 1987). These proteins have a cysteine cluster similar to that of 

Fnr, for which a metal ion is essential for activity. The identification of many 

Fnr homologues in diverse microoroganisms points to the importance of this 

family of regulatory proteins. 

The role of Fnr in the regulation of nitrate, fumarate and TMAO 

reductases is discussed in the following sections. 

1.9.2 	Regulation of nitrate reductase expression 

- 	Other factors in addition to Fnr and anaerobiosis seem to be required 

for full induction of nitrate reductase; these factors also repress transcription of 

the fumarate reductase operon, and presumably also other terminal reductases. 

It was shown by luchi and Lin (1987), that complete induction of nitrate 

reductase and complete repression of fumarate reductase uere- effected by the 

narL gene product, thought to be molybdate. Furthermore, mutants deficient in 

the transport of molybdate did not induce nitrate reductase or repress fumarate 

reductase unless molybdate was added to the growth medium. Thus, when 

nitrate reductase can be produced in a catalytically active form, transcription of 

other terminal reductases is prevented. The narL locus (also identified as frdR 

(Kalman and Gunsalus, 1988) has recently been discovered to encode two gene 

products which were termed narL and narX (Kalman and Gunsalus, 1989). 

Mutants of either narL or narX were pleiotropic depressing frd and TMAO 

expression and causing defective induction of nitrate reductase in cells grown in 

the presence of nitrate. This indicated that narL, narX and fnr gene products 

were required for normal control of anaerobic electron transport operons. 

Expression of narL was found not to be dependent on the fnr gene 

product (Stewart and Parales, 1988) whereas narX expression required both 

NarL and Fnr. The observations that NarX is not absolutely required for NarL 

to function as a transcriptional activator whereas mutations of narX almost 



eliminate nitrate repression of frcL4BCD have led to the following suppositions: 

the narL gene product encodes a DNA-binding regulatory protein of 28 kDa, and 

narX either a nitrate sensor protein (of 66 kDa), or a product involved in 

converting narL to a repressor conformation (Stewart et al, 1989) where it can 

bind to DNA and modulate expression of anaerobic enzymes. In the absence of 

nitrate, NarX may also convert NarL to an inactive form which is unable to 

repress or activate gene expression. A secondary nitrate reductase has been 

characterised in E. coli (luchi et a!, 1987). Enzyme activity is constitutive and 

independent of regulation by oxygen, nitrate or Fnr. This enzyme couples 

formate oxidation to nitrate reduction and requires molybdate for activity (See 

Section 1.6.2). 

1.9.3 	Regulation of fumarate reductase 

The presence of oxygen, nitrate and fumarate affect the level of 

fumarate reductase in the cell. Fumarate alone induces a high level of fumarate 

reductase, with induction being mediated through fir: fumarate induction of frd 

was lost in an fnr mutant and restored on addition of fnr in trans (Jones and 

Gunsalus, 1985). 

Oxygen and nitrate reduced fumarate reductase expression (Jones and 

Gunsalus, 1985) regardless of fumarate concentration. The mechanism of nitrate 

repression appears to be independent of nitrate respiration and oxygen control 

imparted by fir, as nitrate repressed fumarate reductase activity aerobically and 

anaerobically (Jones and Gunsalu.s, 1987). Anaerobic expression in an fnr 

mutant, however, was not as low as that observed in cells cultured aerobically. 

This was attributed either to residual fnr activity or to the presence of additional 

as yet unidentified regulatory proteins (Jones and Gunsalus, 1987). In S. 

typhimurium the anaerobic induction of pepT genes involves the loci oxrA and 

oxrB (Strauch et al, 1985). The fir gene from E. coli can complement an oxrAl 

mutation in S. typhimurium (Jamieson and Higgins, 1984). This, in addition to 
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the fact that oxrA maps in a similar region to the fnr in E. coli, indicates a 

between oxrA and fnr. A parallel to oxrB in E. coli has not yet been 

discovered. The protein encoded by the oxrC gene locus, mutations of which 

are highly pleiotropic although do not appear to affect the expression of oxrA 

dependent genes, affects stress-regulated gene exchanges via changes in the 

degree of DNA supercoiling (Ni Briain et a!, 1989). It is likely that repression of 

the fumarate reductase operon in the presence of nitrate, avoids unnecessary 

synthesis of fumarate reductase during nitrate respiration. 

1.9.4 	Regulation of TMAO reductase expression 

The same study showed that TMAO did not exert significant regulatory 

control over fumarate reductase gene expression (Jones and Gunsalus, 1985). 

This was rather surprising as the redox potential of TMAO (E 0  = 0.13 V) is 

more positive than that of fumarate (E'0  = 0.031 V). Regulatory elements for 

the preferential use of this terminal reductase apparently have not evolved in E. 

coli. Repression of TMAO reduction by nitrate was studied by Sakaguchi and 

Kawai (1975) who reported that nitrate repressed but did not inhibit TMAO 

reductase activity suggesting that control was exerted at the level of transcription. 

In contrast, TMAO reduction appears to be significantly more important 

in the Gram negative bacterium S. putrefaciens. 

1.10 	TMAO reduction in S. putrefaciens 

Two strains of S. putrefaciens: 	NCMB400 (Easter, 1982) and 

NCMB1735 (Ringo, 1984; Stenberg et a!, 1984) were found to be capable of 

TMAO reduction when grown anaerobically using TMAO as a terminal electron 

acceptor. NCMB1735 was able to grow with formate as electron donor: formate 

and TMAO-dependent anaerobic uptake of serine was sensitive to ionophores in 

NCMB1735 (Stenberg et al, 1984) indicating anaerobic respiration involving an 



ANAEROBIC RESPIRATION IN Shewanella putrefaciens 

Shewanella putrefaciens (formerly Alteromonas putrefaciens) has a 
competitive advantage over many bacterial flora which colonise its native 
habitat, marine fish. This is due to it being able to respire when oxygen is 
limiting through its ability to utilise TMAO (a component of fish flesh and 
tissues) as a terminal electron acceptor. Anaerobic respiration is therefore of 
great importance to this organism and has been investigated by Dr Ward's 
research group since 1980. 

It was found by Easter (1982), that anaerobic respiration in S. 
putrefaciens was supported by TMAO, nitrate and fumarate, with maximal 
induction of the components in each respiratory pathway being a combination of 
oxygen limitation and appropriate exogenous electron acceptor. Sub-cellular 
fractionation of oxygen-limited cultures indicated that TMAO, nitrate and 
fumarate reductases were found in the periplasmic cell fractions. Easter adapted 
the osmotic shock-lysis sphaeroplasting procedure of Birdsell and Cota-Robles 
(1967) to facilitate isolation of periplasm in S. putrefaciens. This method is 
currently used by Dr Ward's group as a reliable first stage in purification of 
periplasmic enzymes. 

The TMAO reductase enzymes in S. putrefaciens were studied in detail 
by Clarke (1984). He isolated two TMAO reductases: one of 90 kDa, induced 
under microaerobic culture conditions by TMAO and DMSO, and one of 47 kDa 
synthesised constitutively under microaerobic conditions. Both enzymes were 
considered to be loosely associated with the outer surface of the cytoplasmic 
membrane being released into the periplasm upon sphaeroplasting. The 
enzymes were distinct from each other, as on purification to homogeneity, the 90 
kDa enzyme was found to be a single polypeptide which did not dissociate into 
the second 47 kDa enzyme. Furthermore, polyclonal antibody raised to the 
purified 90 kDa enzyme showed that it was immunologically unrelated to the 47 
kDa enzyme in S. putrefaciens, or to the TMAO reductase enzyme in Escherichia 
coli and Salmonella typhimurium. The presence of suiphydryl groups in the 90 
kDa enzyme was suggested because it showed activity inhibition by thiol 
modifying agents. Clarke (1984) found that molybdenum was present in the 90 
kDa enzyme, but not haem or non-haem iron, and although the absorption 
spectrum of purified enzyme suggested the presence of flavin, activity was not 
stimulated by the addition of exogenous flavin. 

Regulation of anaerobic respiratory enzymes in S. putrefaciens was 
investigated by Nasser (1983). Confirming earlier work, the nitrate, fumarate 
and TMAO reductases were found to be predominantly periplasmic. Formate 
dehydrogenase was membrane bound. Neither nitrate nor formate in the growth 
media repressed the formate-TMAO respiratory pathway: cells grown on a 
combination of TMAO with either nitrate or formate had slightly enhanced 
TMAO reductase activity. Nitrate repressed formate reductase and vice-versa 
suggesting that they were controlled by the same regulatory system. Molybdate 
enhanced activities of the nitrate and TMAO reductases. The molybdenum 
cofactor from S. putrefaciens was similar to molybdenum cofactors from other 
sources in being inactivated upon exposure to oxygen. Molybdenum cofactor 
synthesis was induced by partial anaerobiosis when a considerable portion of free 
molybdenum cofactor was found in the periplasm. 

Both Nasser (1983) and Lamont (1980) used ultraviolet or 
nitrosoguanidine mutagenesis to generate electron transport mutants of S. 
putrefaciens. In both cases a high percentage of the mutants were pleiotropic, all 
having lost TMAO reductase, nitrate reductase and formate dehydrogenase 
activities, but not formate reductase activity. This was considered to be due to 



intact membrane. Other strains of S. putrefaciens also reduce TMAO, but have 

not been studied in detail. 

	

1.10.1 	Structure of TMAO reductase 

Two distinct enzymes were identified from S. putrefaciens NCMB 400 by 

SIDS PAGE and PAGE fol1owe&\3,zymogram staining for TMAO reductase 

activity (Clarke, 1984). One enzyme of 46 kDa was constitutive. The second 

enzyme (90 kDa) was induced to varying degrees by different culture conditions. 

High levels were induced anaerobically in the presence of TMAO. Much lower 

levels of the enzyme were detected in anaerobic cells with formate as terminal 

electron acceptor. The structure of TMAO reductase is discussed more fully in 

Section 1.10.3. 

	

1.10.2 	Regulation of TMAO reductase by nitrate, DMSO and pyridine N- 

oxide 

Nitrate in the growth medium as sole terminal electron acceptor 

inhibited synthesis of the inducible TMAO reductase; however in the presence 

of both TMAO and nitrate there was no repression of TMAO reductase 

synthesis. This contrasts to the situation of E. coli (Section 1.8.4) where nitrate 

totally inhibits TMAO reductase synthesis regardless of the presence of TMAO. 

Therefore it suggests a different regulatory system in S. putrefaciens, with TMAO 

being preferred as an electron acceptor despite the lower redox potential of the 

TMAO/TMA couple (+0.13V) compared with the nitrate/nitrite couple 

(+0.42V). DMSO and pyridine N-oxide were effective inducers of TMAO 

reductase, inducing activity to 100% and 85% respectively of that induced by 

TMAO, but were gratuitous inducers only as they were found to be poor 

substrates for TMAO reductase (Clarke, 1984). 
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1.10.3 	Characterisation of TMAO reductase 

As with the TMAO reductase of S. typhimurium, FAD, FMN, 

cytochrome c, NAD(P)H and ascorbate were ineffective as electron donors 

(Clarke and Ward, 1987; Kwan and Barrett, 1983). This contrasts with E. coli 

where FAD, FMN, (Shimokawa and Ishimoto, 1979) and cytochrome c (Sagai 

and Ishimoto, 1973) were utilised as electron donors. 	The S. putrefaciens 

TMAO reductase was found to require molybdenum for activity. In contrast to 

all other investigated molybdoenzymes, which contain at least one other redox 

centre in addition to molybdenum (Spence, 1980), no flavin, haem or non-haem 

iron was found to be associated with the TMAO reductase of S. putrefaciens. In 

this respect the TMAO reductase of S. putrefaciens is unusual in that no other 

redox centres were detected. 

The majority of TMAO reductase activity was found in the periplasm 

following sphaeroplasting using the lysozyme/osmotic shock procedure (Birdsell 

and Cota-Robles, 1967) unless EDTA was used in the preparation, disrupting the 

membrane releasing any remaining TMAO reductase (Easter et a!, 1983). The 

TMAO reductase enzymes therefore were considered to be loosely attached to 

the outer aspect of the plasma membrane and easily released into the periplasm 

similarly to the TMAO reductases of both E. coli and S. typhimurium. The 

nitrate and fumarate reductase enzymes of S. putrefaciens are also periplasmic 

(Nasser, 1984) which directly contrasts with those of E. coli and V succinogenes. 

1.10.4 	Analysis of cytochromes involved in TMAO reduction 

Periplasmic and membrane associated cytochromes involved in the 

reduction of TMAO in S. putrefaciens were studied (Morris, 1987; Morris, 

Gibson and Ward, 1990). Four low-potential c-type cytochromes were identified 

by ion exchange chromatography, the most abundant of which, a 

flavocytochrome, was further purified and analysed. The molecular weight of 

this cytochrome was estimated as 84 kDa by SDS PAGE and 89 kDa by amino 
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acid analysis. It was confirmed as a single polypeptide being a single subunit 

when denatured with reducing agents and electrophoresed by SDS PAGE. 

1.10.5 	Characterisation of flavocytochrome c 

Flavin was identified as FAD and its release from the protein under 

mild denaturing conditions indicated a non-covalent linkage. The presence of a 

flavin group in a c-type cytochrome is relatively unusual. Examples of c-type 

flavocytochromes with FAD as flavin prosthetic group have been found in 

various phototrophic bacteria. Flavocytochrome c from the purple sulphur 

bacterium Chromatium vinosum has a molecular weight of 72 kDa, consisting of 

a 46 kDa flavin subunit and either a 21 kDa di-haem subunit or two 10-15 kDa 

mono-h aem subunits (Fukumori and Yamanaka, 1979; Yamanaka et a!, 1979). 

In contrast flavocytochrome c from the green sulphur bacterium Chiorobium 

rhiosulfatophilum has a 47 kDa flavin-subunit and a single mono-haem 10 kDa 

subunit (Yamanaka et a!, 1979; Yamanaka, 1976). The flavocytochrome-c in 

these phototrophic bacteria is a sulphide:cytochrome c oxidoreductase which 

catalyses the oxidation of sulphide to elemental sulphur (Yamanaka and Kusai, 

1976; Gray and Knaff, 1982). 

Several species of Pseudomonas also contain a flavocytochrome c. Its 

2fl2 struckure. s &k&rmt to t\ié cC the flavocytochrome c in phototrophic bacteria, 

consisting of two identical flavin and two identical haem-containing subunits, of 

48.6 kDa and 9.036 kDa respectively (McIntire et a!, 1986). 	This 

flavocytochrome c is a p-cresol methyihydroxylase which catalyses the 

dehydrogenation and hydration ofp-cresol, 4-ethyl and 4-n-propyl phenols to the 

corresponding alcohols (Reeve et a!, 1988). 

In contrast to flavocytochrome c from S. putrefaciens, the FAD flavin 

linkage with flavocytochrome c in both phototrophic bacteria and Desulfovibrio 

was covalent (Kenney et a!, 1977; McIntire et al, 1981; Walker et al, 1974). 

Additionally, the midpoint redox potentials of flavocytochrome c from S. 



31 

putrefaciens at -204; -320 mV w€r substantially lower than that of the other 

flavocytochromes, being approximately -250 mV for Pseudomonas spp (Hopper, 

1983), 98 mV in Chiorobium (Meyer et al, 1968) and 33 mV in Chromatium 

(Meyer eta!, 1985). 

The pyridine haemochrome system of flavocytochrome c from S. 

putrefaciens was typical for c-type cytochromes with two thioether bonds between 

the haem vinyls and the polypeptide chain. There was no evidence to suggest 

any non-standard linkage of haem, or the presence of other haem types. Redox 

titrations indicated that at least two potentially non-equivalent haems were 

contributing to the spectra. The flavocytochrome c spectrum was typical of class 

III cytochromes found in photosynthetic and sulphate reducing bacteria. Further 

haem analysis showed that flavocytochrome c was a hexahaem, with all the 

haems being of low redox potential, 50% of which bound CO. The 

flavocytochrome c protein was hydrophilic having a hydrophobicity of 0.89 

kcal/mol protein-1  and a polarity index of 0.54 (the polarity indexes of 

hydrophilic proteins fall between 0.47 and 0.56). Due to the low redox potential 

of flavocytochrome c, it was proposed to occur early in the TMAO reductase 

pathway. 

1.10.6 	Location of flavocytochrome c 

Although SDS PAGE haem staining showed that flavocytochrome c was 

present during aerobic growth, in comparison to other aerobic cytochromes the 

level was minimal. In contrast, during anaerobic growth flavocytochrome c was 

one of the most abundant cytochromes in extracts of S. putrefaciens cultured both 

in the presence and absence of exogenous nitrate, fumarate and TMAO. 

Flavocytochrome was found principally in the periplasmic fraction (in agreement 

with previous evidence showing that it was hydrophilic) with a small proportion 

associated with the membrane fraction. This was confirmed by EDTA treatment 

of membranes which significantly decreased the amount of bound cytochrome 
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suggesting that it was loosely attached to the outer aspect of the cytoplasmic 

membrane (Morris, 1987). 

1.10.7 	Proposed function of flavocytochrome c 

Amino acid analysis showed that the composition of flavocytochrome c 

was similar to that of the hexahaem c552 nitrite reductase of E. coli (/nro.u. et  

al, 	No nitrite reductase activity was associated with flavocytochrome c or 

the enzyme activities associated with flavocytochromes from other organisms, 

nor did it react with the terminal reductases TMAO, DMSO or nitrate. 

A role suggested for the flavocytochrome regarding its low redox 

potential and cellular location (associated with the periplasmic face of the 

cytoplasmic memebrane) was as a substitute for b-type cytochromes which are 

usually found associated with formate dehydrogenase complexes and accept 

electrons directly from formate. 

In a separate project which was attempting to purify the fumarate 

reductase from S. putrefaciens it was discovered that fumarate reductase activity 

was associated with the flavocytochrome at all stages of the purification (Ward, 

unpublished observations). 	This would suggest a dual role for the 

flavocytochrome, where it is implicated both in the reduction of TMAO where it 

acts as an electron acceptor directly from formate, and as the terminal electron 

acceptor fumarate reductase (Figure 1.8). 

It was decided to clone flavocytochrome c to allow further 

characterisation of the protein by DNA and amino acid sequence analysis. 

1.11 	Gene cloning 

The basic principles for cloning a gene are similar for most organisms. 

They demand a source of DNA encoding the required gene (usually the 

genome), a method for generating random DNA fragments, a suitable vector, the 

transfer of recombinant vector into a host cell for library amplification and 



Figure 1.8 Role of flavocytochrome c in TMAO reduction by S. put refaciens 

formate 

Formate dehydrogenase 

CO2  + H 
2 
 0 

) flavocytochrome c 

r  - 
fumarate 	 succinate 

other 	TMAO 
cytochromes 	reductase 

TMAO 

TMA 



34 

screening, and a method by which to identify the recombinant clone containing 

the required gene. These general procedures have been extensively reviewed 

and well illustrated in the publications by Maniatis (1989); Boulnois (1987) and 

Old and Primrose (1985). 

The purpose of the work in this thesis was to clone the flavocytochrome 

c gene from S. putrefaciens (a genetically uncharacterised ram-negative 

bacterium). The following section discusses particular cloning strategies by 

which this could be achieved. It concentrates on host and vector choice for 

construction and maintenance of a gene library, and techniques for recombinant 

identification. 

1.12 	Vectors 

Cloning vectors are derived from replicons that are stably inherited in 

bacterial cells in an extra chromosomal state. They are based either on plasmids 

(Bolivar et a!, 1977), bacteriophage (Murray, 1983), cosmid (Collins and Holm, 

1979) or phagemids (Brenner et a!, 1982). All have several common features: 

the ability to be expressed in at least one host, one or more unique restriction 

sites into which foreign DNA can be ligated, and a phenotypic selection marker. 

An extensive selection of vectors are available for both prokaryotic and 

eukaryotic cloning (see Pouwels et a! (1985). 

1.12.1 Plasmid 

Plasmids are covalently closed circular molecules of DNA capable of 

replication independently of the host chromosome. Occuring naturally in 

bacteria, they range from 1 kb to 200 kb in size and encode traits such as 

antibiotic resistance, colicin production, and heavy metal resistance which confer 

a selective advantage to the host. Small plasmids (< 10 kb) are usually 

multicopy (Sherrat, 1982), whereas larger plasmids will be present in fewer 
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numbers: perhaps only one or two per cell and are conjugative (Clarke and 

Warren, 1979). 

The first plasmid vectors employed were the naturally occurring E. coli 

plasmids Co1E1 and pSC101, but these were soon superseded by in vitro 

constructed derivatives such as pBR322 (Bolivar, 1978) which subsequently 

became the progenitor of many plasmid and plasmid-derived cloning vectors. 

Most plasmid vectors used for cloning are less than 10 kb, for ease of 

manipulation and for more efficient transformation. They are multicopy and 

often amplifiable. Both of these factors lead to an increased level of plasmid 

encoded protein in the cell which facilitates identification of the desired 

recombinant (see Sections 1.13 and 1.14). Conjugative vectors are also available, 

enabling cloning in non-transformable bacteria. Plasmid vectors suitable for 

cloning flavocytochrome c are discussed in later sections. 

1.12.2 	Bacteriophage 

Bacteriophage lambda (A), a linear duplex molecule of 48.5kb which 

infects E. coli has been extensively developed for use as a vector (Murray, 1983; 

Blattner, 1977). The discovery that wild-type lambda contained non-essential 

regions of DNA resulted in the construction of improved vectors with a greater 

cloning capacity. In the wild-type state only 5% additional DNA can be inserted 

into A due to packaging constraints, making it relatively unsuitable as a cloning 

vector. The A based vectors are categorised into two general types: replacement 

vectors and insertion vectors. 

1.12.2.1 	Replacement vectors 

Replacement vectors such as AWES B' (Thomas et a!, 1974; Leder et a!, 

1977) have been constructed so that removal of non-essential regions without 

insertion of foreign DNA results in a phage particle which is too small to be 

packaged. Only recombinant phage will yield viable phage particles, thus 
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selecting against non-recombinants. Relatively large DNA fragments of up to 25 

kb can be cloned in these vectors. 

1.12.2.2 	Insertion vectors 

These contain a single restriction site into which foreign DNA can be 

inserted thus increasing vector size. Either (as with replacement vectors) the 

bacteriophage is too small to be packaged without insertion of foreign DNA, or 

the cloning site is located in a gene encoding a selectable phenotype which 

positively selects for recombinants. Bacteriophage such as these include 

Charon16A (Blattner et a!, 1977), AgtlO (Nathans and Hogness, 1983; Young and 

Davies, 1983) and ANM1149 (Murray, 1983). 

1.12.3 Cosmid vectors 

A cosmid is a plasmid-bacteriophage hybrid, carrying the plasmid origin 

of replication and the bacteriophage cos site which enables in-vitro packaging. 

An example of this vector type is the general purpose cosmid pC655EMBL 

(Ehrich et a!, 1987). DNA is cloned into the cosmid vector in its plasmid state, 

packaged into phage and the host strain transfected with the cosmid library. 

Cosmid vectors have two main advantages (1) the large amount of foreign DNA 

which they can accommodate, approximately 39 kb to 45 kb and as such are 

particularly useful in situations where an operon consisting of several genes is to 

be cloned. (2) Non recombinants are selected against, as without insertion of 

foreign DNA, the recircularised non-recombinant cosmid particles are too small 

to be packaged efficiently into phage heads. 

1.12.4 Phagemid vectors 

Bacteriophage phagemids are another type of bacteriophage-plasmid 

hybrid. They are basically a plasmid with a Aatt site which allows vector 

propagation either as a plasmid or a bacteriophage, in which form single 

stranded DNA can be generated for sequencing. Vectors in this category include 



pEMBL8 (Dente et al, 1983) which has an fl origin and as such can be rapidly 

switched between plasmid and phage modes of replication, and the pair of 

vectors pss24, pss25 (Kowalski et a!, 1985) which allows copies of both DNA 

strands to be generated. 

1.12.5 Overview 

As transfection is generally more efficient than transformation, phage 

derived vectors (bacteriophage, cosmid and phagemid) yield a higher number of 

recombinants (1010-1011/jg DNA) than plasmids (107-108/ag DNA) (Old and 

Primrose, 1985). Plaques can be screened at higher densities than colonies 

which permits the rapid screening of large gene libraries. This is particularly 

useful in the case of eukaiyotic libraries which may contain a large number of 

recombinants (Young and Davis, 1983). However, as prokaryotic libraries tend 

to be smaller than eukaryotic libraries (Boulnois, 1987) the advantage of high 

density screening is not marked. Large DNA fragments (up to 35 kb) can be 

cloned in cosmid or phagemid vectors which reduces primary screening of the 

library for identification of a positive recombinant. However, this initial 

advantage is minimized if extensive subcloning of the recombinant is necessary 

to identify and isolate the required gene within the cloned fragment. Although, 

in comparison, only relatively small DNA fragments can be cloned in plasmid 

vectors (maximum approximately 10 kb), as bacterial genomes are not large, 

libraries contain a level of recombinants which can be screened relatively easily. 

Therefore for bacterial genomic library construction, no single vector type 

(plasmid, cosmid or bacteriophage) appears to have a distinct advantage over 

any other. 

The stages following library construction: maintenance, amplification 

and screening can be accomplished in (1) the same host strain from which the 

DNA originated, (2) a different host, or (3) a combination of the two. 



1.13 	Library maintenance and amplification in the host 

Following library construction, maintenance and screening in the same 

host from which the DNA originated is advantageous for the following reasons: 

cloned fragments will be maintained in the cell, transcription/translation will be 

permitted and protein expressed from recombinant vectors will be stable (see 

Section 1.14). 

The capability for transfer exists in S. putrefaciens based on the findings 

that it is possible to transfer plasmids into S. putrefaciens by conjugation 

(Gibson, 1981) and the presence of a small (< 10 kb) indigenous plasmid 

(Campbell, 1986). However, as yet, no cloning vectors have been constructed 

specifically for use in S. putrefaciens. The options available therefore were to 

use a vector derived from another species or to construct a vector from the 

naturally occurring S. putrefaciens plasmid. 

A great variety of E. coli plasmid vectors are derived from 

transformable vectors such as pBR322. This plasmid has a relatively narrow host 

range (Sherratt, 1982) and cannot be maintained in bacteria too diverse from E. 

coli. However, the ability of S. putrefaciens to maintain these vectors would be 

advantageous, potentially increasing the selection of available cloning vectors. 

Broad host range vectors like the transformable vector pGV1106 

(Leemans et al, 1982) derived from RP4and conjugative vector pRK290 (Ditta 

et al, 1980) derived from the incompatibility IncD plasmid group (Barth and 

Grinter, 1974) can be stably maintained in Gram negative bacteria such as Vibrio 

and Pseudomona.s where E. coli vectors are unstable, allowing complementation 

studies, DNA transfer between strains, TnS 	mutagenesis and site-specific 

mutation of selectable markers. 

Alternatively, it may be possible to construct a vector specifically for S. 

putrefaciens derived from the small indigenous plasmid. This would require 

extensive manipulation to insert a selective characteristic and unique restriction 
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sites for cloning, and to ensure the plasmid origin was maintained for stable 

plasmid maintenance. 

1.14 	Library maintenance and amplification in bacteria other than the host 

There are occasions when it is advantageous to maintain a library in a 

host other than the one from which the cloned DNA originates. For example, 

eukaryotic libraries tend to be maintained and screened in E. coli, as this host 

has been extensively characterised and appropriate screening techniques are well 

developed (see Section 1.15). This technique can be extended to bacterial 

libraries when, as with S. putrefaciens, limited genetic characterisation of the host 

strain is available. 

Maintenance and amplification of a library of DNA foreign to the host 

introduces potential problems, including host restriction of cloned DNA, 

instability and proteolysis of foreign protein, or non-promoter recognition by the 

host, inhibiting transcription/translation. These problems can be minimised by 

careful selection of host and vector. There are available E. coli strains which do 

not restrict foreign DNA (Young and Davis, 1984) and methylate it on 

subsequent replication cycles allowing stable maintenance (and amplification) 

of the library. Stability of expressed foreign protein can be increased in a host E. 

coli strain carrying a ion mutation (Mount, 1980). This is particularly important 

if screening requires substantial quantities of foreign protein (see Section 1.15.2). 

Often, cloned DNA cannot be expressed in a foreign host. This can be due to a 

number of factors including the failure of transcription/translation where the 

host RNA polymerase does not recognise a promoter sequence in the foreign 

DNA (Shine and Dalgarno, 1975). This problem can be circumvented by 

probing the library with an homologous nudeic acid probe (see Section 1.15.1). 

Alternatively, expression vectors may be used where expression of the cloned 

DNA is controlled by a functional host promoter located in the vector. 
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1.14.1 Expression vectors 

Directed expression of foreign DNA is achieved by ligation of the DNA 

fragment into a unique restriction site located in a vector encoded gene, which 

often confers a phenotypic selection on the host, and is controlled by its own or 

another promoter capable of being recognised by the host RNA polymerase. 

One of the first group of plasmid expression vectors described were the 

pUC plasmid vectors (Viera and Messing, 1982; Messing, 1983; Norrander et a!, 

1983) which contain a multiple cloning site in the a region of the E. coli lacZ 

gene (Langley et a!, 1975). The lac promoter/operator region is controlled by 

the 1qtss  repressor product (Muller-Hill et a!, 1968) where normally the qtss 

mutation results in overproduction of repressor, inhibiting expression of lacZ. 

The pUC plasmids feature an elevated copy number which titrates out the qtss 

repressor, giving constitutive expression of the !acZ gene. As a consequence, 

unregulated expression of foreign DNA occurs and in some cases can be 

detrimental to the host resulting in cell death. This led to the construction of a 

number of expression vectors where tight regulation of expression combined with 

a strong promoter resulted in maximal expression of gene product with mimimal 

inconvenience to the host. Examples of these vectors discussed here are Agtl 1 

(Young and Davis, 1983) (Figure 1.9) and the pHG group of vectors (Stewart et 

al, 1986a,b) (Figure 1.10). An extensive list of expression vectors can be found in 

PLs et al, 1985. 

1.14.2 Regulated expression of cloned DNA 

1.14.2.1 	Agtll 

The bacteriophage fusion vector Agtll was constructed by Young and 

Davies (1983), and has been used in the construction of cDNA eukaryotic 

libraries (Young and Davies, 1983; Kemp et al, 1983; Nishikimi et al, 1987; Kahn 

et al, 1987). Agtll contains a unique EcoRl cloning site in the lacZ gene 



41 

Figure 1.9 Bacteriophage Agtll 
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Some features of the bacteriophage expression vector Agtll. Note the unique 
EcoRl cloning site located in the lacZ. Expression of the lacZ gene is controlled 
by the APR promoter which in turn is regulated by the temperature sensitive 
c1857 promoter. Transcriptional orientation of lacZ is given by the arrow (k—). 
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Figure 1. 10 Plasmid pHG276 
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The main features to note are (1) the powerful APR promoter directing 
expression from the lac a gene, (2) the thermolabile c1857 repressor controlling 
expression of DNA from the APR promoter and (3) the rop gene to control plasmid copy number. 
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allowing insertion of DNA fragments up to 8.2 kb. Expression of the lacZ gene 

is controlled by the thermolabile repressor c1857 active at 300C but not at 420C. 

Recombinants are selected at 420C, by their lac phenotype on agar containing 

IPTG, an artificial inducer of the lac operon, and X-gal, a colour indicator which 

gives white colonies or plaques when the lac operon is non-functional. 

1.14.2.2 	pHG vectors 

The pHG group of plasmid vectors were derived from the elevated copy 

number vector pUC8 (Stewart et al, 1986a,b). During their construction, the 

pUC multiple cloning site in the a portion of lacZ was retained, and copy 

number control regained by the insertion of the rom gene (Twigg and Sherratt, 

1980). To combine tight regulation of recombinant protein with strong 

expression in pHG276 the lac promoter was replaced by the APR promoter 

(Figure 1.10). Expression from this promoter is regulated by the thermolabile 

lambda repressor gene product c1857 (Grossin et a!, 1983) active at 300C but 

inactive at 420C when expression of cloned DNA is permitted. Levels of foreign 

protein synthesis from such systems can exceed 25% of total cell protein (Zabeau 

and Stanley, 1982). 

Although the lac operon has been extensively employed in expression 

vector systems, expression vectors have been constructed with cloning sites in 

operons such as trp where gene expression is regulated by the availability of 

tryptophan in the growth medium (Yanofsky et a!, 1981). The operon is 

activated by transferring the plasmids to a host lacking the trp aporepressor gene 

trpR or by inducing starvation conditions. This type of expression vector would 

be unsuitable if the fusion protein had a high tryptophan content although mild 

starvation conditions induced by the addition of a tryptophan analogue such as 

indolyl 3 acrylic acid are sufficient to activate the trp operon without significantly 

affecting the fusion protein. 
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1.14.2.3. Advanced plasmid expression vectors 

These recently discussed expression vectors, although able to regulate 

expression of cloned DNA, can express it in only one reading frame. Families of 

expression vectors such as pEX1-3 (Stanley and Luzio, 1984) and pUR (Ruther 

and Muller-Hill, 1983) have been developed which direct expression of cloned 

DNA in each of all three translational reading frames. The main advantage of 

this is that it maximises the chance of an expression product where the protein 

can adopt the correct conformation (particularly important if the library is 

screened by a technique depending on structural fidelity of the expressed product 

to native protein (Section 1.15.2). 

1.14.2.4 	Broad host range vectors 

Broad host range expression vectors are available, based on RP4 

plasmids, which allow the high expression of protein in Gram negative bacteria 

such as Psu.domona.s and Vibrio. Plasmids with broad host range replication 

origins such as pP1GN1 (Leemans, 1987) allow the regulatable expression of 

cloned genes in a variety of Gram negative bacteria, being conjugally mobilised 

into a wide range of Gram negative hosts by IncPl plasmids like pRK2073 

(Leong et a!, 1982). The advantage of this technique is that cloned DNA can be 

expressed at high levels in the original host bacterium. 

1.15 	Library screening 

Commonly used methods to screen a population of recombinants for a 

desired gene are nucleic acid hybri&sation, immunochemical detection and 

genetic complementation. 

1.15.1 Nucleic acid hybridisation 

Recombinant identification by nucleic acid hybridisation involves the 

use of radioactively labelled DNA (Lawn et al, 1978) or niRNA (Grunstein and 
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Hogness, 1975; Hanahan and Meselson, 1980) which is complementary to a 

sequence of DNA in the desired gene. This procedure is particularly useful if the 

cloned DNA cannot be expressed by the host. DNA or RNA probes are derived 

from a short amino acid sequence of the protein encoded by the gene which is to 

be cloned. The main disadvantage of this method stems from the redundancy of 

the genetic code where more than one codon can transcribe a single amino acid. 

To a certain extent this can be overcome by using an amino acid sequence with 

residues (ie tryptophan) which are transcribed by a unique codon. Additional 

complexity stems from bias in codon usage from gene to gene (Gouy and 

Gautier, 1982; Grosjean and Fiers, 1982). Furthermore, some organisms may 

use genetic codes different from the universal code (Fox, 1987). The present 

status of the genetic code has been substantiated by the data obtained from 

comparing DNA and protein sequence increasing the possibility of predicting the 

amino acid sequence for a given DNA sequence. 

1.15.2 Immunochemical screening 

Immunochemical methods for the detection of protein have been 

developed by Ehrlich et al (1978), and Broome and Gilbert (1979), involving 

incubation of recombinant colonies with antibody raised to a specific protein 

following which bound antibody is detected by labelled anti-IgG or protein A. 

The label may be enzymic, such as horse-radish peroxidase (de Wet et al, 1984) 

or alkaline phosphatase (Mierendorl et a!, 1987) or may be radioactive 1125  

(Helfman et a!, 1983). 

This particular screening method is dependent on (a) the ability of the 

host cell/vector to express protein, (b) the stability of the protein within the cell, 

and (c) the affinity of specific antibody to the protein. Under ideal conditions, 

desired recombinants can be selected easily, eg a cDNA clone for human 

cytochrome c1  was isolated with specific antibody from a near confluent plaque 

library of Agtll (Nishikimi eta!, 1987). 
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The increased use of specific antibody in immunological procedures has 

corresponded with detailed study on the interaction of protein antigen with the 

host immune response. Recent studies on myoglobin and lysozyme showed that 

the immunogenicity of a protein was restricted mainly to discontinuous 

sequences of amino acids located in surface regions (Todd et a!, 1982; Barlow et 

al, 1986) with sequential determinants also appearing to play a part in antibody 

generation. 

The host immune response to a protein antigen can be enhanced by the 

use of adjuvants on which the protein is concentrated prior to injection, leading 

to a high level of specific antibody in the host. The use of an adjuvant results in 

the localisation of the antigen, which, in conjunction with slow release of antigen 

from the adjuvant results in an increased immune response by reducing 

degradation by host proteolysis and increasing the persistence of the protein. 

The slow release of small amounts of the antigen is important as large doses of 

the protein may be toxic to the animal, or result in immunotolerance. 

Commonly used adjuvants are Freund's complete and Freund's incomplete 

adjuvants. They consist of an emulsion of mineral oil and water. Freund's 

complete adjuvant contains heat killed Mycobacterium tuberculosis which causes 

a heightened inflammatory response thought to be directed against the 

peptidoglycolipid in the cell wall. 

1.15.3 Genetic complementation 

This involves the restoration of a particular cell function attributable to 

a protein encoded by a recombinant vector clone. Ideally to clone a specific 

gene by this strategy, a stable host mutation in the gene is required which results 

in complete loss of protein activity. 

Mutants can be generated by a variety of methods. Spontaneous 

auxotrophic mutants such as tryptophan can be readily selected on minimal agar 

due to mismatching of a base pair during DNA replication (Mandelstam, 1982). 
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Chemical mutagens are not particularly suitable for generating single mutations, 

giving multiple mutations randomly situated on the genome. However, 

nitrosoguanidine mutagenesis giving multiple closely linked mutations in 

replicating cells, with mutations occurring preferentially at the replication fork, 

has been used to assist gene cloning, including the E. coli fumarate reductase 

which was cloned by genetic complementation following nitrosoguanidine 

mutagenesis (Lambden and Guest, 1976). 

Mutagenesis of the bacterial chromosome can also be achieved by 

transposable elements (Boulnois et a!, 1985). However, natural transposons have 

some drawbacks, notably the mediation of additional transposition events 

causing genetic rearrangements such as inversion or deletions (Kleckner, 1981). 

Transcription may also initiate within the transposon and extend into the 

adjacent DNA, complicating analysis of the mutant phenotype. As a 

consequence of these drawbacks, engineered transposons were constructed to 

increase stability. This was achieved by (1) placing the tranposase outside the 

transposon or (2) by internal deletions thereby abolishing transposon-induced 

rearrangements of adjacent DNA (Way et a!, 1984). Such an engineered 

transposon Omegon Km (based on IS 1), has been designed specificially to allow 

generation of single, stable mutations in a broad range of Gram negative 

bacteria (Fellay, 1989). A high frequency of transposition with this transposon 

has been observed in Pseudomona.s putida and lower (although still reasonable) 

transpositional frequencies observed with other Gram negative soil and water 

bacteria such as Rhizobium leguminosarum and Paracoccus denitri:ficans. 

1.16 	Summary and final perspective 

Preliminary biochemical analysis of flavocytochrome c indicated that it 

is unique, showing no particular structural or functional similarity to other c-type 

flavocytochromes nor any structural similarity to the flavoprotein fumarate 

reductases of E. coli or V. succinogenes, although itself appeared to have a similar 
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function. Cloning flavocytochrome c from S. putrefaciens would facilitate 

analysis at the molecular level. The overview on the strategies available to clone 

flavocytochrome c showed that despite the limited knowledge of the genetics of 

S. putrefaciens advances in molecular genetics in other Gram negative bacteria 

provide many alternative strategies for cloning and screening flavocytochrome c. 



CHAPTER 2 

MATERIALS AND METHODS 



49 

2.1. Strains and plasmids. 

The bacterial strains used in this study are listed in Table 2.1. Plasmids used 

in this study are listed in Table 2.2 and illustrated in Figures 2.1 to 2.4. 

Recombinant plasmids generated during this study are described in the relevant 

section. 

2.2. Growth and maintenance of strains. 

2.2.1. Growth of bacteria. 

Cultures of S. putrefaciens were grown at 200C and those of E. coli at 280C, 

300C or 370C as stated in the text. 

2.2.2. Maintenance of Strains. 

A working culture of each organism was maintained on selective agar at 40C 

and subcultured every two months to check viability and purity. Permanent 

stock cultures were stored at -800C in 20% glycerol. 

2.3. Media. 

All media west sterilised by autoclaving at 15psi for 15 mm. 

2.3.1. Media for S. putrefaciens. 

Nana 

Oxoid nutrient agar containing 1% NaCl. 
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TABLE 2.1 Bacterial Strains. 

S. putrefaciens 

Shewanella putrefaciens NCMB400 

E. coli: 

NM547 araB-7 6 (lac-pro) rpsL dam-

MM294 supE44 hsdR endA 1 pro thi 

JRG653 (WGAS or P12024) Gal trpA strep' 

JRG780 (WGAS or P12024) Gal trpA streprfrdAll 

TG1 	supE hsd 5 thi (lac-proAB) F1 traD36proAB + lacJ' lacZ M15 

All strains were obtained from within the Department of Microbiology with the 

exception of JRG653 and JRG780 which were gifts from Professor John Guest, 

University of Sheffield. 
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TABLE 2.2 Plasmids. 

pCI857 
	

Remaut et al, (1983). 

pEX1,2,3 
	

Stanley and Luzio, (1984). 

ptZ18R/ptZl9R 
	

Rokeach et al, (1988). 

pUN121 
	

Nilson et al, (1983). 

The plasmids listed above are presented in Figures 2.1.-2.4. 



Figure 2.1. pc1857 

52 

Sm a!— 

kan - 

cits 

Pat! 

on 

The plasmid c1857 encodes the temperature sensitive A PR  repressor. At 300C 

this repressor is active and will prevent expression of any gene controlled by the 

R promoter. A temperature shift to 420C inactivates the repressor thus 

permitting expression from the PR  promoter. 



Figure 2.2. pEX vectors pEX3 
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pEX1, 2, and 3 are bacterial expression vectors derived from the cro-lacZ from 

pCL19, terminator fragments from phage fd and a STOP oligonucleotide with 

stop codons in all three translational reading frames from pLK91, and the 

polylinker from pUC8. pEX1 and pEX3 were created from EcoRI digested 

pEX2 by Si nuclease and Kienow treatment respectively, followed by screening 

for plasmid lacking the EcoRi site. Cloned DNA is expressed at 420C from the 

A R  promoter (controlled by the c1857 repressor), as a cro-lacZ fusion 

protein. 
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Figure 2.3. ptZl8R/ptZl9R 
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These phagemid vectors can be used for both cloning and sequencing reactions. 

They contain both pBR322 and fl origins of replication allowing the generation 

of both ds and ss DNA respectively :production of ss DNA additionally requires 

the helper phage M13K07. The pUC18/pUC19 polylinker located within the 

lacZ gene of ptZ18R and ptZ19R respectively, allows cloning and identification 

of recombinants on X-gal plates. 



Figure 2.4. pUN121 
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This direct selection vector was constructed with the ci gene from pTR262, and 

the ampicillin and tetracycline genes from pBR322 and pBR328. Inactivation of 

the tetracycline repressor (ci) by cloning into any of the restriction sites within 

this gene, confers tetracycline resistance to the host. This directly selects 

against non-recombinants which are tetracycline sensitive. 
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Wood and Baird 

per litre 

NaC1 20g 

K2HPO4  1 g 

Peptone 5 g 

Yeast extract 2 g 

MgSO4.7H20 1 	g 

2.3.2. Media for E. coli. 

Luria Broth 

per litre 

Yeast extract 	 5 g 

NaC1 	 5g 

Tryptone 	 log 

Glycerol Mm imal Medium 

per litre 

K2HPO4  10.49 g 

1<I21°4 5.44 g 

(NH4)2SO4  2.0 	g 

MgSO4.71420 0.05 g 

MnSO4.4H20 5 0 	mg 

FeSO4.7H20 0.125 mg 

CaC12  0.5 	mg 

Casamino acids (Difco vitamin-free) 0.5 	mg 
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Glycerol (pH 7.2) was added to 0.04 M. L-tryptophan was added to cooled 

media according to Table 2.3. 

Glycerol-Fumarate Minimal Media 

This was essentially the same as glycerol minimal media with sodium 

fumarate (pH 7.2) added to 0.04 M. 

Glycerol Minimal Media lacking tryptophan 

This was glycerol minimal media prepared without casamino acids, and each 

amino acid added separately according to Table 2.3. with the exception of 

tryptophan. 

Plates of the above media were made by the addition of 1.8% agar (Oxoid 

No. 3) prior to autoclaving. 

2.3.3. Antibiotics. 

Antibiotics were added to cooled media following autoclaving as in Table 2.4. 

2.4. Chemicals and reagents. 

2.4.1. Chemicals. 

All chemicals used were obtained from BDH or Sigma. 

2.4.2. Enzymes. 

All restriction enzymes, T4 ligase, Calf intestinal alkaline phosphatase, and 

appropriate incubation buffers were obtained from Gibco BRL. Pancreatic 



TABLE 2.3 AMINO ACIDS. 

Stock solution Plate concentration 

(%) (MM) 

Alanine 0.84 0.47 

Arginine 2.53 0.6 

Asparagine5  0.84 0.32 

Aspartic acid* 1.0 0.3 

Cysteine5  0.73 0.3 

Glutamic acids 18.7 5.0 

Glutamine 14.6 5.0 

Glycine 0.2 0.13 

Histidine 0.31 0.1 

Isoleucine 0.79 0.3 

Leucine 0.79 0.3 

Lysine 1.1 0.3 

Methionine 0.9 0.3 

Phenylalanine 0.99 0.3 

Proline 4.6 2.0 

Serine 8.4 4.0 

Threonine 0.71 0.3 

Tryptophan5  0.41 0.1 

Tyrosine 0.36 0.1 

Valine 0.7 0.7 

All amino acids were added to the media before autoclaving with the exception 

of those marked * which were filter sterilised and added to the cooled media 

after autoclaving. The addition of 5 ml stock solution per litre of media resulted 

in the appropriate plate concentration (Davis et al., 1980). 
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TABLE 2.4. Antibiotic concentrations for E. coli. 

Antibiotic 	concentration 

Ampicillin 	 100 

Kanamycin 	 50 

Tetracycline 	14 

Values are expressed as final concentration (jig m1 1). Ampicillin and 

kanamycin stock solutions were 25 mg ml-1  in aqueous solution and sterilised by 

filtration. Tetracycline stock solution was 12.5 mg m1 in ethanol:water (50% 

v/v). All were stored at -200C. 
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ribonuclease A was obtained from Sigma. Removal of DNase activity was 

achieved by dissolving the RNase A at 100 tig ml-1  in 10 mM Tris-HC1 (pH 7.5) 

15 mM NaCl and heating to 1000C for 15 mm. 

2.4.3. Antibody. 

Sheep/Goat anti-IgG Horse radish peroxidase was obtained from the 

Scottish Antibody Production Unit (SAPU). 

2.5. Preparation of periplasm from S. putrefaciens. 

Periplasm from S. putrefaciens was prepared by a modification (Easter 1982) 

of the osmotic shock/lysis procedure of Birdsell and Cota Robles (1967). S. 

putrefaciens NCMB400 was grown microaerobically in broth (pH 7.2) containing 

10 mM fumarate and 20 mM lactate to reach an A660  of 0.2-0.3. The cells were 

harvested by centrifugation at 40C for 15 min at 10 000g, then washed in buffer 

(100 mM K2HPO4  pH 7.2; 100 mM NaCl; 1 mM MgSO4.7H20). The pellet was 

resuspended in 100 mM Tris/HC1 (pH 8.0) containing sucrose (0.5 M) and 

incubated statically at room temperature for 10 mm. Lysozyme (1 mg ml-1) was 

added to a final concentration of 30 j.ig ml-1  and incubation continued for a 

further 10 mill. The cells were shocked on addition of an equal volume of 10 

mM Tris/HC1 (pH 8.0) with continuous stirring , followed 10 min later by 

EDTA to a final concentration of 1 mM. Sphaeroplast formation was 

monitored by phase contrast microscopy throughout these procedures, usually 

yielding 90-100% sphaeroplasts within 15 min of EDTA addition. The 

periplasm was collected by centrifugation of the shocked cells at 17 000g for 15 

mm. 
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2.6. Column chromatography. 

Protein concentrations, loading and elution rates appropriate for each matrix 

type were optimised according to the manufacturers' guidelines. 

2.6.1. Ion exchange. 

Ion exchange chromatography was carried out using the cation exchanger 

DEAE sepharose CL-613 in a column of bed dimensions 2.6 x 14.5 cm. The 

column was equilibrated with 10 mM Tris-HC1 pH 8.4 (T-buffer) before loading 

of samples then washed with 3 column volumes of T-buffer to remove unbound 

material. The column was developed with an increasing linear gradient of NaCl 

(0-0.5 M, 800 ml) in T-buffer at 8 ml h4. 

2.6.2. Hydroxyapatite. 

The matrix (bed dimensions 2.6 x 12.5 cm) was equilibrated in T-buffer and 

the protein sample loaded and washed as for ion exchange chromatography 

before developing with an increasing linear gradient of K2HPO4  pH 8.4 (0-0.5 

M, 500 ml) in T-buffer at 8 ml h 1. 

2.6.3. Phenyl sepharose. 

Phenyl sepharose (bed dimensions 2.6 x 11.5 cm) was equilibrated in T-buffer 

containing 2 M NaCl prior to loading of the sample which was prepared in the 

same buffer. The column was washed with 3 column volumes of equilibration 

buffer before development with a decreasing linear gradient of NaCl (2-0 M, 

500 ml) in T-buffer at 12 ml h1. 
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2.6.4. Gel Filtration. 

A Sepharose 4B column of bed dimensions 1 x 88 cm was equilibrated with 

T-buffer before loading of the sample which was eluted with 0.2 M NaCl in T-

buffer at 12 ml h 1. 

2.6.5. Sample collection and preparation. 

Fractions (4 ml) were collected in acid washed tubes and the A280  and A410  

of each fraction measured to determine respective protein and haem content. 

Elution profiles for protein and haem were then obtained by plotting A280  and 

A410  values against fraction number. Flavocytochrome containing peaks were 

pooled, concentrated by dialysis against solid polyethylene glycol at 40C, then 

equilibrated by dialysis against 1000 volumes of T-buffer at 40C. 

2.7. Ammonium sulphate precipitation of periplasm. 

Ammonium sulphate precipitation of periplasm (section 2.5.) was achieved 

by slow addition of solid ammonium sulphate (specially low in heavy metals for 

enzyme work). Periplasmic protein was precipitated on incubation at 40C for 2 

h with the appropriate amount of ammonium sulphate related to the volume of 

periplasm and the present and required degree of ammonium sulphate 

saturation (Green and Hughs, 1955). Precipitated protein was removed by 

centrifugation at 30 000g for 30 min at 40C. 

2.8. Protein determination. 

Protein concentrations were determined using the consolidated method of 

Peterson (1977) based on the Folin-Ciocalteau phenol reagent method as given 

by Lowry et a! (1951). This method allows the rapid quantitative recovery of 

soluble and membrane proteins from interfering substances by prior 
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precipitation of the protein followed by estimation with the Folin-Ciocalteau 

phenol reagent. 

To a sample of protein (10-100 g) in a volume of 1 ml was added 100 al 

sodium deoxycholate (0.15% (w/v)). The solutions were mixed and allowed to 

stand at room temperature (200C) for 10 min before the addition of 100 i1 

Trichioroacetic acid (72% (w/v)). Precipitated protein was pelleted by 

centrifugation at 12 300 g for 15 min in an Eppendorf centrifuge (Microspin 12, 

Sorvall Instruments, Dupont). The supernatant was discarded leaving the pellet 

of precipitated protein for assay. To the precipitated protein was added sterile 

distilled water (1 ml) and Reagent A (1 ml) which consisted of equal 

proportions of copper tartrate carbonate (copper sulphate (pentahydrate), 

0.1%(w/v); sodium potassium tartrate, 0.02%(w/v); sodium carbonate, 

10%(w/v)), sodium hydroxide (0.8 M), sodium dodecyl sulphate (10%(w/v)) 

and sterile distilled water. The solutions were mixed and incubated at room 

temperature for 10 min to allow the protein to solubilise. Reagent B (Folin-

Ciocalteau phenol reagent, 16.7% aqueous solution) (0.5 ml) was added and 

mixed immediately. The colour was allowed to develop for 30 min before 

reading the absorbance at 750 nm against a reagent blank. The protein 

concentration of the unknown samples was determined by reference to a 

standard curve of 10-100 g protein (BSA) which was produced for each assay. 

2.9. Raising antibody to purified flavocytochrome c. 

2.9.1. Treatment of sheep. 

Purified flavocytochrome (2 ml of a 0.5 mg m1 1  solution in phosphate 

buffered saline (Oxoid)) was filter sterilised and added to 2 ml Freund's 

complete adjuvant then emulsified by stirring at (20 000 rpm) for 1 min in an 
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Ultra-Tumix homogeniser. The protein-adjuvant emulsion was injected into 

sheep 762N at 4 sites intramuscularly. The sheep was boosted 2 weeks later 

with 0.5 mg flavocytochrome in Freund's incomplete adjuvant prepared as 

before. A sample of preimmune serum was taken prior to the first injection, 

with bleeding carried out after 2 weeks and then at weekly intervals (removing 

50-100 ml of blood each time) until a good antibody response to the 

flavocytochrome was obtained. 

2.9.2. Preparation of antiserum from sheep blood. 

Sachets for the collection of human blood were obtained from the Scottish 

National Blood Transfusion Service. The contents (anhydrous citric acid, 0.3 g, 

sodium citrate-dihydrate, 2.63 g, sodium phosphate, 0.22 g, glucose 

monohydrate, 3.83 g, pH 5.7 at 200C) were dissolved in 63 ml sterile water then 

added to 450 ml sheep blood. The suspension was centrifuged (4000 g for 30 

min at 200C to remove red blood cells then the plasma was clarified by 

centrifugation (10 000 g for 15 min at 200C ). Clotting of the plasma was 

achieved within 1 h at 370C following addition of CaC12  (400 mM) in the ratio 

1:20 (1 vol. CaC12  to 20 vol. plasma). The plasma clot was removed leaving the 

sheep antiserum. 

2.9.3. Precipitation of IgG from antiserum. 

Immunoglobulin G was prepared from sheep antiserum by the caprylic acid 

fractionation method of Steinbuch and Audran, (1969). Antiserum was placed 

in a glass beaker with 2 vol. of 0.06 M sodium acetate pH 4.0 and stirred, 

avoiding frothing, using a magnetic stirrer. N-octanoic acid (7.5 ml per 100 ml 

of original serum volume) was added dropwise to the antiserum/buffer solution 

using a syringe with a 19 gauge needle. The solution was stirred vigorously 
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throughout addition of the octanoic acid and stirring continued for a further 30 

min after complete addition before collecting the precipitate by centrifugation 

at 2000 g for 30 min at 200C. The supernatant was filtered through Whatman 

grade 4 filter paper to remove fines prior to removal of octanoic acid by dialysis 

against 0.154 M NaCl. The IgG solution was stored in small aliquots at -200C. 

2.10. Polyacrylamide gel electrophoresis. 

Polyacrylamide gel electrophoresis (PAGE) was carried out according to 

Laernmli (1970) in the presence or absence of sodium dodecyl sulphate (SDS). 

Resolving linear gradient gels of 7.5% - 15% were used to gain effective 

separation of samples containing a variety of proteins with the purified 

flavocytochrome electrophoresed on 10% resolving gels. Stock acrylamide 

solution was prepared from acrylamide 29.2% (w/v), NN'-

Methylenebisacrylamide, 0.8% (w/v) (Electran grade) in aqueous solution and 

stored at 40C in the dark. Resolving gels and stacking gels (4.5%) were 

prepared with the solutions given in Table 2.5. Immediately after pouring, the 

resolving gel was overlaid with water saturated isobutanol to ensure a level top 

during polymerisation (30-40 mm). The stacking gel solution was added to the 

polymerised resolving gel. Samples for electrophoresis (10-50 Al) were prepared 

1:1 in sample buffer (10 mM Tris-HC1 pH 6.8 containing glycerol, 10% (v/v); 

SDS, 2% (w/v); mercaptoethanol; and bromophenol blue, 0.005% (w/v) for 

SDS gels or glycerol, 10% bromophenol blue, 0.005% (w/v) for native gels. 

Protein samples for silver staining were adjusted to give an equivalent protein 

loading of 10 jig in each sample ; cytochrome samples for haem staining were 

adjusted to an A410  of 0.25 in 30 jl. Samples were electrophoresed in electrode 

buffer (25 mM Tris, 200 mM glycine, + /- 0.1% SDS) at 15 mA constant current 



TABLE 2.5 Solutions for PAGE. 

15% 

1.5 M Tris p118.8 3.75 

(+ /- 0.2% SDS) 

0.5 M Tris pH6.8 - 

(+ I- 0.2% SDS) 

Acrylamide stock 7.5 

d.H20 2.1 

Glycerol 1.5 

% Acrylamide 

10% 	7.5% 	4.5% 

3.75 	3.75 

- 	- 	 3.75 

5 	3.75 	2.25 

6.25 	7.5 	 9 

All volumes are expressed in ml. 

The polymerising agents ammonium persulphate (10% fresh solution) and 

Temed were added to a final concentration of 0.02% (v/v) immediately before 

pouring the gels. 
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for 1.5 h followed by 25 mA constant current until the tracking dye had reached 

the base of the gel. 

2.11. Staining of acrylamide gels. 

2.11.1. Silver stain. 

The Bio-rad silver stain was used for the detection of low (<10 jig) amounts 

of protein. 	Oxidising, silver and developing solutions were prepared 

immediately before use in distilled deionised water (ddH20). Gels were 

immersed in Fixative A (40% methanol, 10% glacial acetic acid (v/v)) for at 

least 30 min then washed for 15 min x 2 in Fixative B (10% ethanol, 5% glacial 

acetic acid (v/v)). The gels were immersed in oxidiser for 5 mm (0.2 g 

K2Cr2O7  in 200 ml ddH20 containing 40 til concentrated HNO3) then washed 

for 5 min x 2 in ddH20. After staining for 20 min in the silver reagent (0.4 g 

AgNO3  in 200 ml ddH20) the gels were washed for 1 min in ddH20 then 

rinsed for 30 s x 2 in developer (Na2CO3, 18 g in 600 ml ddH20 containing 0.3 

ml formaldehyde). Gels were then placed in developer and the appearance of 

bands monitored visually. Development of bands was arrested by placing the 

gels in 0.5% glacial acetic acid. 

2.11.2. Kenacid blue. 

The kenacid blue stain was used to check successful protein transfer 

following Western blotting. Gels were stained overnight with gentle agitation in 

kenacid blue (0.1%) in water:methanol:glacial acetic acid (5:5:2 by volume) 

then destained in frequent changes of destain solution (30% methanol (v/v) and 

10% glacial acetic acid (v/v) in aqueous solution) and stored in 0.5% glacial 

acetic acid (aqueous solution). 



68 

2.11.3. Haem stain. 

Gels were stained for cytochrome by a modification of the peroxidase 

method of Thomas et al. (1976). 3,3',5,5'-Tetramethylbenzidine (TMBZ) (40 

mg) was dissolved in 39 ml methanol immediately before use then added to 70 

ml 0.25 M sodium acetate pH 5.0. Gels were equilibrated in methanol/sodium 

acetate pH 5.0 (3:7) for 5 min then placed in the TMBZ solution. Staining was 

carried out in the dark for 15 min with gentle agitation every 5 mm. On 

addition of H202  (1 ml of a 30% v/v solution) the formation of blue 

cytochrome bands was observed in subdued light. Once full intensity was 

reached (30 mm) the gels were fixed in isopropanol/0.25 M sodium acetate pH 

5.0 (3:7) and stored in 5% acetic acid. 

2.11.4. Zymogram. 

Fumarate reductase activity of protein bands following PAGE under non-

denaturing conditions was detected by the zymogram stain. Zymogram buffer 

(100 mM Tris pH 7.8; 100 mM K2HPO4; 7.5 mM KHCO3; 2 mM methyl 

viologen) was rendered oxygen free by continuous sparging with argon 

throughout all stages of the staining procedure. Reduction of methyl viologen 

was observed by the immediate colour change of the buffer to deep blue on 

addition of sodium dithionite to 5 mM. The gel was immersed in the reduced 

buffer and allowed to absorb the dye (10-15 mm). On addition of sodium 

fumarate (10 mM final concentration) enzyme activity was apparent as clear 

zones on a blue background. The gel was photographed immediately following 

staining as methyl viologen is oxidised rapidly in the presence of oxygen. 



2.12. Western blotting. 

2.12.1. Protein transfer to membrane. 

The electrophoretic transfer of proteins from acrylamide gels to Nylon 

membranes was essentially that described by Gershoni and Palade (1983). 

Proteins were separated on SDS-PAGE as described previously. Nylon 

membrane (Amersham Hybond N) was cut to the same size as the gel. Gel, 

membrane, two sponges and two sheets of Whatman 3MM filter paper were 

soaked in transfer buffer (25 mM Tris HC1 pH 8.3; 1.5 M glycine) for 5 min then 

fitted together as a sandwich in the plastic holders with gel and membrane next 

to each other enclosed on either side by a piece of filter paper and a sponge. 

The sandwich was placed in the transfer tank with the gel oriented towards the 

negative terminal and proteins were transferred for 2.5 h at 1.0 Amp in transfer 

buffer. The gel and membrane were removed from the sandwich the gel 

stained in kenacid blue to check efficiency of transfer, and the membrane 

blocked overnight in 20% milk powder in TBS (10 mM Tris-HC1 pH 7.5, 150 

mM NaCl) prior to developing with protein specific antibody. 

2.12.2. Antibody Detection. 

The blocked membrane was placed in 5% milk solution (40 ml) in TBS 

containing antisera (30 Jhl) and shaken gently at room temperature for 5 h. The 

membrane was washed 4 x 5 min in TBS before placing in a solution of 5% milk 

(40 ml) in TBS containing HRP-conjugated antisheep IgG (20 l) and incubated 

as before for 2 h. Washings were repeated. The membrane was removed from 

the TBS and placed in developing solution (1 mM dianisidine, 10 mM imidazole 

pH 7.4, 0.1 ml 30% v/v H202) (to 10 nil in d.H20). The reaction was stopped 
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by transferring the membrane to distilled water. The membrane was dried and 

photographed then stored in the dark. 

2.12.3. Dot Blotting. 

Dilutions of purified flavocytochrome were spotted on to strips of dry nylon 

membrane and allowed to dry. The strips were blocked and developed 

according to section 2.12.1. 

2.13 Enzyme assays. 

2.13.1 Fumarate reductase. 

Fumarate reductase activity was assayed by the anaerobic fumarate 

dependent reoxidation of reduced methyl viologen at 600 run. The reaction 

mixture contained enzyme source (10 - 100 JL1), sodium fumarate pH 6.5 

(initially 10 mM then x 10 Km value) and buffer (100 mM K2HPO4, 100 mM 

NaCl, 1 mM MgSO4.7H20; pH 7.2 containing 0.3 mM methyl viologen) to a 

total volume of 4 ml and was assayed in a Heilma 21N stoppered cuvette. 

Enzyme source (100 i1) and buffer sparged with oxygen-free nitrogen were 

used to fill the cuvette and a few antibumping granules added. The teflon 

stopper (drilled to take a 10 - 100 jil syringe needle) was carefully inserted to 

exclude all air and sodium dithionite (a fresh solution of 25 mM in 10 mM 

NaOH) added by syringe to give an A600  reading of 1.0 after mixing by 

inversion. The endogenous enzyme activity was measured for 2 min before the 

reaction started by addition of fumarate (100 al). The enzyme activity was 

determined from the rate of decolourisation at 600 nm assuming an extinction 

coefficient of 13 jimol cm-1  m1 1  for methyl viologen. (Thorneley, 1974). 
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2.13.2. Succinate Dehydrogenase. 

Succinate dehydrogenase activity was measured by the reduction of DCPIP at 

600 nm (Ells, 1959). The reaction was assayed in a 1 ml Heilma cuvette 

containing (final concentration) 79 mM Tns-HCl pH 7.4, 10 mM sodium 

cyanide (a fresh solution) pH 7.0, 0.1 mM DCPIP, 1.0 mM PMS, sodium 

succinate pH 7.0 (0.1-1.5 mM in 100Al) and enzyme source (100 JL1) in a total 

volume of 1 ml. Endogenous enzyme activity was measured for 2 min before the 

reaction was started by addition of succinate. The enzyme activity was 

measured at 600nm assuming an extinction coefficient of 21 jmo1 cm 1- m1 1  for 

DCPIP (Lester and DeMoss, 1971). 

2.14. Antibody precipitation of flavocytochrome c. 

The ability of antibody raised against the flavocytochrome to precipitate 

fumarate reductase activity was tested by preincubation of purified 

flavocytochrome and fumarate grown periplasm with specific IgG before 

assaying for fumarate reductase activity (section 2.13.1). Samples were 

incubated on ice for 10 min prior to assay. 

2.15. Isolation of plasmid DNA. 

Plasmid DNA was isolated using the alkaline lysis method essentially as 

described by Birnboim and Doily (1979). 

2.15.1. Small scale preparation. 

This method was used to yield approximately 5 ig plasmid DNA for 

restriction analysis. A single colony was grown overnight in 5 ml selective broth. 

Cells were harvested at room temperature for 10 min at 3000 g and the pellet 
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resuspended in TEG (25 mM Tris-HC1 pH 8.0; 10 mM EDTA; 50 mM glucose) 

(200 1L1) containing fresh lysozyme (10 mg ml-1) then transferred to a 1.5 ml 

Eppendorf tube. After incubation on ice for 5 min lysis solution (0.2 M NaOH, 

1% SDS) (400 JLl) was added and incubation continued for a further 5 mm 

before 3 M sodium acetate pH 5.0 (300 Al) was added to precipitate cell protein. 

The sample was incubated on ice for 10 min before centrifugation at 0°C for 15 

min at 13 000g. Supernatant (750 Al) was removed to a clean tube to which 

isopropanol (450 iLl)  was added. The tube contents were well mixed and 

incubated at room temperature for 10 mm. DNA was peJ1e.ke& by centrifugation 

at room temperature for 5 min at 13 000g. The supernatant was discarded and 

the pellet washed x 5 in chilled (-200C) ethanol (70%), dried under vacuum and 

resuspended in TT- (100 jil). 

2.15.2. Medium Scale preparation. 

This preparation was used to yield approximately 40 tig of reasonably pure 

DNA for restriction analysis, cloning and transformations. A single colony was 

grown overnight in 40 ml selective broth. Cells were harvested at 150C for 5 

min at 10 000g then resuspended in TEG (2 ml) containing freshly added 

lysozyme (2 mg nThl). The cells were incubated on ice for 30 mm. Lysis solution 

(4 ml) was added, the tube vortexed briefly, then left on ice for 5 min before the 

addition of 3 M sodium acetate pH 5.0 (3 ml). Incubation on ice was continued 

for a further 30-60 min then cell debris removed by centrifugation at 40C for 30 

min at 9000g. The supernatant was transferred to a clean tube to which cold 

ethanol (16 ml) was added then incubated at 0°C for 15 min before 

centrifugation at 0°C for 10 min at 9000g. The pellet was dissolved in 40 mM 

Tris pH 8.0, 1 mM EDTA, 100 mM sodium acetate, 0.1% SDS, (2 ml). Phenol: 

chloroform: isoamylalcohol (50:50:1) (2 ml) was added and mixed by vortexing 
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before centrifugation at 150C for 15 min at 5000g. The aqueous phase was 

removed to a clean tube and the phenol and interphase re-extracted with buffer 

(2 ml). The aqueous phases were combined and extracted with chloroform (4 

ml). Nucleic acid was precipitated on addition of cold ethanol (8 ml) followed 

by incubation at -200C for 15 mm, and collected on centrifugation at 0°C for 15 

min at 9000g. The pellet was dissolved in 400 ul TE and transferred to a 1.5 ml 

microfuge tube to which 4 M NaCl (20u1) and cold ethanol (1 ml) were added. 

The tube was incubated at -200C for 10 min then centrifuged at 0°C for 5 min at 

13 000g. RNA was removed from the sample by addition of DNase-free RNase 

(20 W of a 1 mg nTh1  solution) to the resuspended pellet (TE; 200 l) followed 

by incubation at 370C for 1 h. RNase was inactivated and removed by phenol: 

chloroform: isoamylalcohol (50:50:1) (400 zl) extraction in the presence of 4 M 

NaCl (20 jil) and sterile distilled water (200 Al). DNA was precipitated from the 

aqueous phase on addition of cold ethanol (800 Al) followed by incubation at - 

200C for 10 min then collected on centrifugation at 0°C for 5 min at 13 000g. 

The pellet was dissolved in TE (200 jd). 

2.15.3. Single stranded DNA preparation. 

Single stranded DNA was obtained from plasmids with the fl origin of 

replication (phagemids) propagated in E. coli. The culture was grown to reach 

an A600  of 0.5-0.8 then 2 ml was infected with M13K07 helper phage at a 

multiplicity of infection of 10. Following incubation with vigorous shaking (240 

rpm) for 1 h, 400 jl of the infected cells were transferred to fresh broth 

containing ampicillin and kanamycin (70 jig m1 1) and grown overnight. The 

supernatant of 1.5 ml overnight culture was mixed with 0.3 ml 2.5 M NaCl, 20% 

PEG 6000 then spun for 5 min after incubation at room temperature for 15 mm 

to harvest the phage. The supernatant was completely removed and the pellet 
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resuspended in 'FE (100 p1). Phage DNA was released by extraction with Tris 

buffered phenol followed by extraction with chloroform. Phage DNA was 

precipitated by sodium cLce.kcte pH 5.0 (0.1 vol) and ethanol (2 vol) at -200C 

for 1 h then collected by centrifugation for 5 min at 00C. The pellet was dried 

and resuspended in TE (50 iil). 

2.16. DNA Manipulation Techniques. 

2.16.1. Restriction endonuclease digestion. 

DNA was digested in a total volume of 10 jil. Enzyme (1 unit) and x 10 

enzyme buffer (1 Al) were added to DNA (approximately 1 jig) and incubated 

for 4 h. For restriction of increased concentrations of DNA the digestion 

mixture was scaled up accordingly. Restriction enzymes used in this study are 

listed together with their appropriate buffers in Table 2.6. 

2.16.2. Ligation of DNA. 

Ligation of DNA was performed in a total volume of 10 JL1. Subcloning of 

isolated DNA fragments into another vector generally required a vector 

fragment ratio of 1:3 although for blunt ended ligations an increased 

concentration of both DNA species was used. The relative concentrations of 

fragment and vector used in construction of the gene libraries were optimised to 

yield a large number of recombinants. The final ligation mix contained DNA 

(200 ng) in ligase buffer (50 mM Tris-HC1 pH 7.6, 10 mM MgCl2, 1 mM ATP, 1 

mM DIT, 5% PEG 8000) containing T4 ligase (1 unit). Ligation was carried 

out for 4 h at 200C or overnight at 150C. 
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TABLE 2.6 Restriction enzymes and digestion buffers 

Buffer 1 

50 mM Tris-HC1 pH 8.0 

100 mM MgC12  

100 mM NaCl 

Buffer 2 

50 mMTris-HC1 pH 8.0 

10 mM MgC12  

Buffer 3 

50 mM Tris-HC1 pH 8.0 

10 mM MgC12  

100 mM NaCl 

Buffer 4 

20 mM Tris-HC1 pH 7.4 

5 mM MgC12  

50 mM KC1 

Buffer 6 

50 mM Tris-HC1 pH 7.4 

6 mM MgC12  

50 mM KC1 

50 mM NaCl 

Buffer 7 

50 mM Tris-HC1 pH 8.0 

10 mM MgC12  

50 mM KC1 

1 

DraI 

ClaI 

2 

HindIII 

PstI 

Bc/I 

Bg/I 

StuI 

3 	4 	 6 

EcoRI 	Sau3A 	PvuII 

BamHI 	Smal 	ScaT 

7 

NruI 

The optimum incubation temperature for the above restriction enzymes was 

370C with the exception of Smal (300C) and Bc/I (500C). 



2.16.3. Alkaline Phosphatase Treatment of DNA. 

Vector ends were treated with alkaline phosphatase to prevent self ligation 

therefore increasing the chance of recombinant formation. Calf intestinal 

alkaline phosphatase was added to digested plasmid DNA (1 unit per tig DNA) 

and incubated at 370C for 1 h. EGTA was added to 20 mM (stock 100 mM pH 

8.0) and incubation continued at room temperature for 20 min. Alkaline 

phosphatase was removed by extraction of the DNA solution twice with Tris 

buffered phenol and once with chloroform and the phosphatased DNA collected 

by ethanol precipitation. 

2.17. Electrophoresis of DNA. 

2.17.1. Agarose gel electrophoresis. 

Agarose gels were used for the electrophoretic separation of DNA fragments 

and unless otherwise stated were used at a concentration of 0.8%. Agarose was 

dissolved by heating in Tris acetate buffer (TAE, 40 mM Tris, 1 mM EDTA, 20 

mM sodium acetate; pH adjusted to 8.2 with acetic acid) and cooled to 400C 

before addition of ethidium bromide to a final concentration of 1 1Lg ml. The 

agarose was poured into a gel cast and allowed to set then immersed in TAE 

before DNA samples containing tracking dye (Ficoll bromophenol blue, 1% in 

distilled water) were loaded. The samples were electrophoresed at lOOmA until 

the bands of DNA had fully resolved. This was monitored by examination of the 

gel at 280nm using ultraviolet light. 

2.17.2. Isolation of DNA fragments. 

Fragments of DNA were recovered from agarose by the Geneclean II Kit 

(BlO 101 Inc.) which also supplied the appropriate solutions. DNA was 
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electrophoresed on agarose (section 2.17.1) and the required DNA fragment cut 

out of the gel using a sharp blade. To the fragment was added sodium iodide 

solution (x 3 vol. the weight of the fragment). Agarose was dissolved by heating 

at 500C for 5 min followed immediately by chilling on ice. Glassmilk (5 JLI) was 

added to the solution and incubation on ice continued for 5 min with regular 

mixing to ensure suspension of the particles. The glassmilk matrix was pelleted 

following centrifugation (5 s) then the Nal supernatant was decanted and the 

pellet washed x 3 with New Wash. DNA was eluted from the glassmilk by 

resuspension of the pellet in TB (5 jl) followed by heating at 500C for 3 mm 

then centrifugation (30 s). The supernatant containing the eluted DNA was 

transferred to a clean tube and elution of the glassmilk repeated. 

2.17.3. Sequencing gels. 

Urea acrylamide gels were used for the separation of nucleotides. Gels were 

cast as slabs of dimensions 33 x 39.5 x 0.05 cm with the combs (BRL 

sharkstooth) inverted 0.3 mm below the level of the smaller gel plate. Following 

polymerisation the combs were removed and reinserted between the gel plates 

to form wells with the comb teeth piercing the acrylamide. The gel was placed 

in electrophoresis apparatus (BRL) and prerun for 60 min in TBE at 65 volts 

prior to loading of samples. 

2.18. DNA sequencing. 

Single stranded DNA was sequenced by the dideoxy method as performed by 

Sanger et al (1977). 



2.18.1. Labelling of single stranded DNA. 

DNA was labelled according to the Sequenase kit who supplied all 

sequencing reagents (with the exception of 35S d-ATP) 

2.18.2. Sequencing of labelled DNA. 

Labelled DNA (3Al) was electrophoresed (section 2.17.3. ) for 1.5 h, 3 h and 

6 h at constant 65 volts to gain maximum sequence information. Following 

electrophoresis the gel was immersed in for 10 min then dried for 1 h on 

Whatman 3MM paper before exposing overnight at room temperature. 

2.18.3. Sequence analysis 

All programs used for analysis of DNA and amino acid seqence were present 

in the University of Wisconsin Genetics Group (UWGG) program package. 

Nucleotide sequence was analysed by the program FASTA then translated by 

the program MAP. Amino acid sequence was analysed by the Swissprot and 

OWL databases. 

2.19. Southern blotting. 

2.19.1. Transfer of DNA to membrane. 

2.19.1.1. Transfer of DNA from agarose 

The capillary blotting method used for transfer was essentially that described 

by Southern (1975). Chromosomal DNA (1 jig) from S. putrefaciens was suitably 

digested with appropriate restriction enzymes and electrophoresed on agarose 

(section 2.17.1.). DNA was denatured by placing the gel in 100 ml denaturing 

solution (1.5 M NaCl, 0.5 M NaOH) for 2 x 20 min followed by neutralising in 
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100 ml 3 M NaCl, 0.5 M Tris-HC1 pH 7.5 for 2 x 20 mm. The gel was inverted 

on to 3MM Whatman filter paper presoaked in 20 x SSC (3 M NaCl. 0.3 M 

sodium citrate), the ends of which were resting in a reservoir of 20 x SSC. 

Hybond-N cut to the exact dimensions of the gel was placed on to the surface of 

the gel followed by 3 sheets of 3MM Whatman filter paper presoaked in 2 x 

SSC. Paper towels were stacked on top to a height of 10 cm ensuring that they 

did not contact the reservoir of 20 x SSC. A heavy weight was placed on top and 

transfer carried out overnight. The filter was allowed to air dry then wrapped in 

Saran wrap before fixing DNA to the filter by UV light for 4 mm. 

2.19.1.2. Transfer of DNA from colonies 

Colonies were grown up overnight to the required size. Filters (Hybond N, 

Amersham) were p.ce& on the surface of the colonies and orientation marks 

pricked through the filter on to the agar. The filters were placed colony side up 

on to a pad of filter paper soaked in denaturing solution (7 mm) then removed 

to neutralising solution (2 x 3 mm). Filters were washed briefly in x 2 SSC,, 

air dried before wrapping in Saran wrap and fixing the DNA by placing colony 

side down on a UV transilluminator for 5 mm. 

2.19.2. Synthesis of DNA probes 

DNA to be labelled (50 ng) was denatured in a volume of 32.5 j.il by boiling 

for 5 mm. The DNA was rapidly cooled on ice before addition of 10 til OLB 

(see below) and 2 til BSA (10 mg nThl) then annealed for 10 min at 370C. The 

DNA was labelled on addition of (32P)- dCTP (5 jil) to the DNA solution with 2 

units of Kienow fragment of DNA polymerase followed by incubation at room 

temperature. Labelling was complete after incubation at room temperature for 

2.5-5 h. 
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Solutions for probe synthesis 

Solution 0 	1.25 M Tris-HC1 p118.0, 125 mM MgC12  

Solution A 	1 ml solution 0, 18 jil 2-mercaptoethanol, 5 al each of 

dATP, dGTP, dTTP 

Solution B 	2 M Hepes pH 6.6 

Solution C 	Hexadeoxyribonucleotides in TE at 90 OD units ml-1. 

Nucleotide Stocks dATP, dGTP, dTTP were at a concentration of 0.1 M in 

3mM Tris-HC1 pH 7.0, 0.2 mM Na2EDTA. 

OLB 	 Solutions A:B:C: in a ratio of 10:25:15 

2.19.3. Detection of homologous DNA. 

Prehybridisation / Hybridisation Solution 

6 x SSC 

1%SDS 

5 x Denhardts (0.1% BSA,, 0.1% Ficoll, 0.1% polyvinylpyrollidine) 

Filters prepared as in section 2.19.1.2. were placed in a sealed bag with the 

appropriate amount of prehybridisation solution (25 ml per 100 cm2  filter) 

containing 0.1% denatured calf thymus DNA (DNA was denatured by boiling 

for 5 min prior to use). The membrane was incubated at 650C for 4 h then the 

prehybridisation solution replaced with hybridisation solution containing 

denatured labelled probe (section 2.19.2.). Hybridisation was at 650C for 12 h. 

The filter was washed x 2 for 15 min at 650C in x 2 SSC then for 30 min at 650C 

in x 2 SSC containing 1% SDS. The filters were air dried then wrapped in Saran 

wrap and exposed for 2 - 5 days at -700C. 
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2.20. Transformation of plasmid DNA into E. coiL 

E. coli was transformed with plasmid DNA essentially as described by 

Mandel and Higa (1970). 

2.20.1. Competent cells. 

A culture was grown aerobically from a single colony to reach an A600  of 0.3. 

Cells were harvested by centrifugation at 3000 g for 10 min at 40C and the pellet 

resuspended in 0.5 x the original culture volume of sterile cold CaCl2  (100 mM). 

The cells were incubated on ice for 20 min before recentrifugation and 

resuspension in 0.1 x the original culture volume of 100 mM CaCl2  containing 

20% glycerol. The competent cells were aliquoted into sterile eppendorf tubes 

and stored at -800C. 

2.20.2. Standard transformation. 

To the DNA solution on ice was added 100 jil TMC (10 mM Tris-HC1 pH 7.5, 

10 mM CaCl2, 10 mM MgC12) and 200 Al competent cells. Incubation on ice 

was continued for 30 min before heat shocking the cells by incubation at 420C 

for 2 mm. 1 ml of LB was added to each transformation and non-selective 

expression of the transformed DNA was achieved in incubation at 370C for 1 h 

before harvesting the cells and plating on selective media. 

2.203. Low temperature transformation. 

The procedure was identical to the standard transformation except that heat 

shock was at 300C for 5 min before non-selective expression at 300C. 



2.21. Isolation of chromosomal DNA from S. putrefaciens. 

The procedure used was a modification of that described in Maniatis et al. 

(1989). To minimise shearing of the chromosome during this procedure all 

pipetting was done using a wide bore pipette and mixing was by gentle inversion. 

S. putrefaciens was incubated aerobically overnight to stationary phase in 100 nil 

Wood and Baird broth. Cells were harvested by centrifugation at 40C for 15 

min at 10 000g then washed in 50 mM Tris-HCl (pH 8.0); 100 mM NaCl; 1 mM 

MgCl2. The pellet was resuspended in 50 mM Tris-HCl (pH 8.0); 5 mM EDTA; 

(10 ml) before addition of lysozyme (10 mg ml-1) in 250 mM Tris-HC1 pH 8.0 

(0.5 ml) and incubated at 300C for 30 min prior to addition of proteinase K (2 

mg m14) in STEP solution (0.5% SDS; 50 mM Tris-HCl pH7.5; 400 mM 

EDTA) (0.5 ml). Incubation was continued at 500C for a further 30 min before 

removal of cell protein by phenol extraction which was repeated until a clear 

aqueous phase was obtained (centrifugation at 150C for 15 min at 1000g). 

Nucleic acid was precipitated from the aqueous phase on addition of 3 M 

sodium acetate pH 5.0 (0.1 vol.) followed by ethanol (2 vol.). The precipitate of 

DNA and RNA was transferred with a sterile pasteur pipette into 5 ml 50 mM 

Tris-HCl (pH 7.5); 1 mM EDTA; containing 200 jig m1 1  DNase-free RNase 

then dissolved by gently rocking overnight at 40C. RNase was removed by 

extraction with an equal volume of chloroform. Following centrifugation (15 

min at 1000 g) DNA was precipitated from the aqueous phase on addition of 3 

M sodium acetate (0.1 vol.) and ethanol (2 vol.). The precipitate was spooled 

out as before into 50 mM Tris-HCl (pH 7.5); 1 mM EDTA (2 ml) and dissolved 

at 4°C. 



2.21.1. Estimation of DNA concentration and purity. 

DNA concentration was estimated on the assumption that an A260  of 1.0 

approximates to a DNA concentration of 50 jig m14. 

DNA purity was estimated by calculation of the A260:A280  ratio. A value 

obtained of greater than 1.80 indicated DNA purity. 

2.22. Generation of suitable fragments for cloning. 

2.22.1. Pilot partial digest. 

The pilot partial digest was used to determine the optimum digest time which 

yielded the maximum DNA fragments of the desired size. 

The reaction mix containing chromosomal DNA (6 jig), bovine serum albumin 

(200 ug m14) and appropriate enzyme buffer was preincubated to the required 

digestion temperature prior to addition of enzyme (0.5 units per jig DNA) to 

start the reaction. At measured time intervals after starting the reaction, a 

volume corresponding to 1 jg of DNA was removed from the reaction mix to 

eppendorf tubes on ice containing EDTA (final concentration of 20 mM). 

Samples were electrophoresed on agarose (0.5%) (section 2.17.1) to determine 

the optimum digest time. 

2.22.2. Large scale partial digest. 

This was essentially that of the pilot reaction scaled up for an increased DNA 

concentration (2 mg). The reaction was stopped by extraction with an equal 

volume of Tris buffered phenol followed by extraction with an equal volume of 

chloroform (both centrifugations at 150C for 15 min at 1000 g). DNA was 

precipitated on addition of precooled ethanol (-200C ; 2 vol.) and 3 M sodium 

acetate pH 5.0 (0.1 vol) followed by incubation at -200C for 60 mm, and 
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collected by centrifugation at 0°C for 10 min at 9000 g. The DNA pellet was 

washed in 70% chilled ethanol, vacuum dried then resuspended in TE. 

2.223. Size fractionation of partial digest. 

Continuous gradients of 10%-40% (w/v) sucrose (in 1 M NaCl; 20 mM Tris-

HC1 pH 8.0; 5 mM EDTA) were made in 15 ml polyallomer centrifuge tubes. 

Partially digested DNA (200 jig) (section 2.20.1.) was layered carefully on top of 

the gradient. The DNA was separated by centrifugation in a swing out rotor at 

150C for 24 h at 80 000 g and spun down with the brake off. The bottom of the 

tubes were pierced with a 19 gauge needle and aliquots (0.5 ml) collected in 

sterile eppendorf tubes. Efficient separation of the DNA was checked by 

electrophoresis of an aliquot of each alternate sample (20 jil) in agarose (0.5%). 

The A-Hindu! digested standard was diluted 1:1 with 40% sucrose before 

loading to compensate for the high sucrose content of the samples. Samples 

containing DNA of the desired size were pooled and sucrose removed by the 

addition of sterile distilled water (2 vol.) and precooled ethanol (0.1 the new 

vol.). DNA was precipitated at -200C for 2 h, pelleted by centrifugation at 40C 

for 30 min at 10 000 g, washed in ethanol (70%), vacuum dried, then 

resuspended in TE to a final concentration of approximately 100 jig ml-l. 

2.23. Construction and screening of a S. putrefaciens chromosomal gene 

library in pUN121. 

2.23.1. Library construction. 

Plasmid pUN121 was digested to completion with Bcll and ligated with 4-10 

kb Sau3A chromosomal fragments from S. putrefaciens in the insert:vector ratio 

of 2:1 (section 2.16.). Aliquots of the ligation mix were transformed into E. coli 
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MM294. Transformant colonies containing inserts were selected on plates 

containing tetracycline and ampicillin (section 2.18.2.). 	Rapid plasmid 

preparations (section 2.15.1.) of 10 independant recombinants from each 

ligation mix were used to assess insert size. The library was pooled and used as 

a source of recombinant plasmid DNA (section 2.15.2.) which was then 

transformed into JRG780 (section 2.18.2.). 

2.23.2. Complementation of the JRG780 trpA mutation. 

JRG780 containing the pUN121 S. putrefaciens library was plated on to 

glycerol minimal medium lacking tryptophan at a density of 2x103  colonies per 

plate. Putative positive colonies were selected by incubation at 280C for 48-72 

h. Plasmid DNA was isolated from possible complementing colonies, 

retransformed into a clean host background and reselected as before. 

2.23.3. Complementation of the JRG780 frdA mutation. 

JRG780 containing the pUN121 library was plated on to glyerol fumarate 

minimal medium plates as above. Putative clones were selected by incubation 

in an anaerobic jar at 280C for 48-72 h prior to retransformation and 

reselection. 

Putative positive clones were further analysed as detailed below. A single 

colony was grown to mid-exponential phase (A600  of 0.4) in 60 ml LB 

containing tetracycline. A sample (1 ml) was removed for electrophoresis and 

Western blotting (section 2.12). The remainder was added to fresh broth (200 

ml) containing 0.4 % glucose (final concentration) and 0.04 M fumarate pH 7, in 

a 250 ml capacity flask and incubated statically at 280C for 16 h. Cultures were 

harvested and washed twice in buffer (10 mM Tris-HC1 pH 8.0) before 

resuspension to 0.25 g ml-1  (wet weight) in buffer and broken by sonication (2 x 



1 min with a break of 1 mm). The lysate was assayed for fumarate reductase 

activity (section 2.13.1). A sample was retained for electrophoresis (section 

2.10) and Western blotting (section 2.12). 

2.24. Construction and screening of a S. putrefaciens 

chromosomal gene library in the pEX vectors. 

2.24.1. Library construction. 

Plasmid DNA was digested to completion with BamHl, phosphatased, and 

ligated to 0.5-4 kb chromosomal fragments from S. putrefaciens (section 2.16.). 

The vector: insert ratio was optimised to yield a recombinant frequency of 80%-

90%. The ligation mix was transformed into competent E.coli MM294 

containing plasmid pCI857 (Figure 2.1.) and transformants selected at 300C on 

plates containing ampicillin and kanamycin. The recombinant frequency of 

each ligation was assessed by selecting 10 independent transformants from 

which plasmid DNA was isolated, digested with PstI and sized by comparison 

with a non recombinant control. The library initially contained 20 000 

independent recombinants which were pooled and stored at 800C. 

2.24.2. Primary screen. 

The library was plated on L-agar containing ampicillin and kanamycin at a 

density of 2x103  colonies per plate and incubated at 300C for 20 h. Colonies 

were replica plated on to dry nylon filters (Amersham Hybond N) and 

identification marks pricked through the filter on to the agar surface. Filters 

were placed with the colony side up on to 2 layers of Whatman 3MM filter 

paper presoaked in Luria broth containing ampicillin and kanamycin, and 

incubated at 420C for 2 h. Filters were removed, colony side uppermost, to 



petri dishes containing 2 layers of Whatman 3MM filter paper soaked in 5% 

SDS. Plates were stacked in a 950C oven (with a heavy weight on top to prevent 

warping) and incubated for 25 mm. The SDS was removed from the filters by 

electroblotting in transfer buffer (50 V for 1 h) with the colonies orientated 

towards the negative electrode. The filters were washed individually for 5 mm 

in TBS followed by 10 min in TBS containing DNase (10 mg ml-1). Excess 

moisture was removed from the filters by blotting on Whatman 3MM filter 

paper before blocking overnight in 20% milk powder made in TBS. 

Filters were developed individually in petri dishes as for Western blots. 

Colonies developing more strongly than the background were isolated then 

subjected to a further primary screen as before. 

2.24.3. Secondary screen of putative positive clones. 

The secondary screen was a more detailed analysis of putative positive 

recombinants to determine the size of hybrid protein and whether it would react 

with flavocytochrome specific antibody by Western blotting. Single colonies 

were incubated aerobically in Luria broth containing ampicillin and kanamycin 

(20 ml) at 300C to reach an A600  of 0.4. A sample was removed (10 ml) of 

which 5 ml was used as a source of plasmid DNA (section 2.15.1.) and 5 ml 

concentrated to 200 jl in sample buffer (section 2.12.), and stored at -200C. 

The remaining 10 nil was incubated in a shaking water bath at 420C for 90 mm 

then treated as the uninduced culture. Equal loadings of each sample 

(uninduced and induced) were electrophoresed (section 2.10.) prior to staining 

(section 2. 11.) and Western Blotting (section 2.12.). 



CHAPTER 3 

PROTEIN PURIFICATION 

AND 

FLAVOCYTOCHROME C ENZYME ACTIVITY 



3.1. Purification of flavocytochrome c. 

Periplasm was isolated from S. putrefaciens cultured microaerophilically 

in the presence of fumarate to induce synthesis of cytochromes involved in 

electron transfer during oxygen limitation. Flavocytochrome c was previously 

shown to be induced to the greatest degree with fumarate as terminal electron 

acceptor (Morris, 1987) and was subsequently purified from the periplasm 

according to the following protocol. 

The first stage of purification involved chromatography on DEAE 

Sepharose as this chromatographic medium effectively separated periplasmic 

proteins, in particular the periplasmic cytochromes (Morris, 1987). The profile 

obtained following elution (Figure 3.1.) showed at least three major peaks of 

cytochrome with various smaller peaks of protein. To isolate the peak 

corresponding to flavocytochrome c, fractions contributing to the three 

cytochrome peaks were pooled separately and the proteins in the samples 

resolved by SDS-PAGE. Subsequent haem and silver staining of the gels 

showed flavocytochrome c to be located in the first major cytochrome peak 

(Plates 3.1. and 3.2.), confirming earlier elution profiles of periplasm from 

DEAE Sepharose (Morris, 1987) from which flavocytochrome c was the first 

major cytochrome eluted at an NaCl molarity of 0.16 M. Purification was 

continued by sequential application of the flavocytochrome c-containing fraction 

to hydroxyapatite, phenyl sepharose and gel filtration matrices. A single peak of 

cytochrome and major peak of protein was observed on development of each 

column (Figures 3.2.-3.4.). Purity of the cytochrome peak was monitored at 

each stage of the purification by SDS-PAGE followed by silver staining (Plate 

3.1.). 	The cytochrome contributing to this peak was confirmed as 

flavocytochrome c by SDS-PAGE followed by haem staining (Plate 3.2.) and 

was the only cytochrome remaining in the sample following chromatography on 



Figure 3.1. Elution profile of periplasm from fumarate grown S. putrefaciens on DEAE Sepharose. 

Periplasm was obtained from S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5) and bound to DEAE 

Sepharose equilibrated with 10mM Tris-HC1 pH 8.4 (T-buffer). The column was washed with approximately one column volume of 

this buffer to remove unbound material, then developed by application of an increasing linear gradient of 0-0.5 M NaC1 in T-buffer. 

Loading of material, washing, and elution of the sample were carried out at a constant flow rate of 8 ml h4  with fractions of 4 ml 

collected. The A280 and A410 of each fraction were measured to determine peaks of protein and cytochrome. 
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Plates 3.1. and 3.2. Silver and haem stain of flavocytochrome c purification : method I. 

Periplasm was obtained from S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5) and 

flavocytochrome c purified by the sequential application of the periplasm to DEAE Sepharose, hydroxyapatite, phenyl 

sepharose and Sephacryl S-300. The purity of the flavocytochrome-containing fraction following each stage was assessed by 

SDS-PAGE (7.5-15% resolving gel). Approximately 10 jtg of each sample was electrophoresed prior to silver staining (Plate 

3.1.), and 30 j1 of a sample corresponding to an A410  of 0.25 for haem staining (Plate 3.2.). 

Lane Plate 3.1. Lane Plate 3.2. 

1 Protein standards 1 Sephacryl S-300 fraction 

2 Fumarate periplasm 2 phenyl sepharose fraction 

3 DEAE Sepharose fraction 3 hydroxyapatite fraction 

4 hydroxyapatite fraction 4 DEAE Sepharose fraction 

5 phenyl sepharose fraction 5 Fumarate periplasm 

6 Sephacryl S-300 fraction 6 Horse heart cytochrome-c 
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Figure 3.2. Elution profile of DEAE Sepharose flavocytochrome c fraction on hydroxyapatite. 

The flavocytochrome c-containing fraction collected following chromatography on DEAE Sepharose was bound to 

hydroxyapatite equilibrated in T-buffer. The column was washed with T-buffer (one column volume) then developed by 

application of an increasing linear gradient of 0-0.5 M K2HPO4 in T-buffer. Loading of material, washing, and elution of the 

sample were carried out at a constant flow rate of 8 ml h 1  with fractions of 4 ml collected. The A280 and A410 of each fraction 

were measured to determine peaks of protein and cytochrome. 
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Figure 3.3. Elution profile of hydroxyapatite flavocytochrome c fraction on phenyl sepharose. 

The flavocytochrome c-containing fraction collected following chromatography on hydroxyapatite was bound to phenyl 

sepharose equilibrated in T-buffer containing 2 M NaCl. The column was washed with T-buffer (plus 5 mM EDTA) containing 

2 M NaCl (one column volume) then developed by application of a decreasing linear gradient of 2 M-O M NaCl in T-buffer 

containing EDTA (5 mM). Loading of material, washing, and elution of the sample were carried out at a constant flow rate of 

12 ml h 1  with 4 ml fractions collected. The A280 and Aj of each fraction were measured to determine peaks of protein and 

cytochrome. 
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Figure 3.4. Elution profile of phenyl sepharose flavocytochrome c fraction on Sephacryl S-300. 

The flavocytochrome c-containing fraction collected following chromatography on phenyl sepharose was concentrated to a 

volume of 4 ml by dialysis against solid PEG 6000 at 40C then applied to Sephacryl S-300 superfine equilibrated in T-buffer 

(plus 5mM EDTA) containing 0.2 M NaCl. Development was achieved by passing equilibration buffer through the column at a 

constant flow rate of 12 ml h 1  with 4 ml fractions collected. The A280 and Aj of each fraction were measured to determine 

peaks of protein and cytochrome. 
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DEAE Sepharose. The other proteins co-eluting with flavocytochrome c were 

removed during this purification procedure. Following gel filtration the protein 

was judged to be pure to homogeneity as determined by both silver and haem 

stains (Plates 3.3. and 3.4.). Due to the inability of the silver stain to detect all 

protein types (Biorad bulletin 1089), a sample of the purified flavocytochrome 

was stained with Kenacid Blue. No protein other than flavocytochrome c was 

detected by this stain (results not presented). 

One problem encountered during the latter stages of purification, 

following chromatography on hydroxyapatite, was slight degradation of 

flavocytochrome c (Lane 3, Plate 3.2.). Further proteolysis seemed to be 

prevented by the presence of EDTA in the T-buffer at all remaining stages of 

purification, and the proteolytic fragments were removed by chromatography on 

Sephacryl S-300. Throughout the purification, protein concentrations were 

measured by the Folin Ciocalteau assay (section 2.8.) following each purification 

stage and the A410:A280  ratio was used as a crude estimate of purity. The 

overall scheme of purification is presented in Table 3.1. and discussed fully in 

section 3.3. 

3.2. Development of a new flavocytochrome c purification method 

It was decided to develop a new procedure for purification of the 

flavocytochrome as the existing procedure, although effective in yielding a 

substantial quantity of pure protein, was relatively lengthy involving 

chromatography of the flavocytochrome-containing material through four 

different column matrices, and also gave slight protein degradation. A 

purification method was sought therefore which 1) reduced processing time of 

the flavocytochrome fraction and 2) minimised protein degradation. 



Plates 3.3. and 3.4. Silver and haem stain of purified flavocytochrome c. 

Purified flavocytochrome c was electrophoresed on SDS-PAGE (7.5-15% resolving gel). Approximately 10 jig of protein was loaded 

for silver staining (Plate 3.3.) and a cytochrome concentration corresponding to an A410 of 0.25 in 30 Al for haem staining (Plate 

3.4.). 

Lane 	 Plate 3.3. 	 Lane 	 Plate 3.4. 

1 	 Protein standards 	 1 	 Horse heart cytochrome-c 

2 	 Fumarate periplasm 	 2 	 Fumarate periplasm 

3 	 Purified flavocytochrome c 	 3 	 Purified flavocytochrome c 
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Table 3.1. Purification of flavocytochrome C: method I. 

(cytochrome determination) 

Flavocytochrome c was purified from periplasm prepared from S. putrefaciens grown microaerobically in the presence of 

fumarate according to the procedure in Table 3.1. The protein concentration following each purification stage was determined 

by the Folin-Ciocalteau protein assay (section 2.8.), and haem content was estimated from the absorbance at 410 nm assuming 

an extinction coefficient of 730 mM 1  cm-1  for flavocytochrome haem (Morris, 1987). 



Purification of flavocytochrome c : method I. 

(cytochrome determination) 

Source A41ou Total Protein (mg) nmol haem nmol haem/mg protein Purification 

(% Yield) (% Yield) (% Yield) (fold) 

Periplasm 832.5 99.9 1140 11.4 1 
(100) (100) (100) 

Ion Exchange 320 33.94 601 17.7 1.55 
(DEAE Sepharose) (38) (34) (53) 

Hydroxyapatite 134.4 9.6 197 20.5 1.8 
(16.1) (9.7) (17) 

Phenyl Sepharose 99.3 3.9 136 34.8 3.05 
(11.9) (3.89) (11.9) 

Gel Filtration 62.4 4 85.5 21.4 1.87 
(Sephacryl S-300) (7.5) (3.9) (7.5) 
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3.2.1. Precipitation of periplasm by ammonium sulphate. 

The possibility of using selective ammonium sulphate fractionation as the 

first purification step following extraction of periplasm was investigated. 

Periplasm was obtained from microaerobically grown S. putrefaciens with 

fumarate as terminal electron acceptor, and fractionated by the sequential 

addition of solid ammonium sulphate. Fractions of 0-30%, 30-40%, 40-50%, 50-

60%, 60-80% and 80-100% saturation were collected. On the basis of earlier 

work, EDTA was added to all buffers to minimise the occurrence of any 

proteolysis. 

The total protein content of the supernatant and pellet obtained from 

each fraction was measured and the data are presented in Figure 3.5. The chart 

shows that the majority of protein (60%) was precipitated in the 60-80% 

fraction, with approximately 30% of the periplasmic protein precipitated in 

fractions from 0-60% and residual protein (about 10%) precipitated at 80-100%. 

Very little protein remained unprecipitated. 

The location of the flavocytochrome in the ammonium sulphate fractions 

was confirmed by SDS-PAGE of the precipitates and supernatants from each 

fraction followed by silver and haem staining (Plates 3.5.-3.8.). Haem staining 

showed the flavocytochrome to be precipitated mostly at 60-80% and 80-100% 

saturation (Plate 3.6.), although some minor precipitation did occur at lower 

concentrations. All other periplasmic cytochromes were precipitated at 

fractions from 0-60% with the exception of a cytochrome migrating at the gel 

dyefront which co-precipitated with flavocytochrome c at 60-80% saturation. 

Silver staining showed a variety of proteins co-precipitating with the 

flavocytochrome in the 60-80% and 80-100% fractions although 

flavocytochrome 	c 	was 	the 	major 	protein 	present. 



Figure 3.5. Precipitation of periplasmic protein from fumarate-grown S. putrefaciens by ammonium sulphate. 

Periplasm obtained from cells of S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5) was sequentially 

fractionated by the addition of solid ammonium sulphate (section 2.7). The distribution of periplasmic protein following 

fractionation was determined by measuring the protein content (by the Folin-Ciocalteau protein assay) of supernatant and 

precipitate fractions. 
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Plates 3.5. and 3.6. Silver and haem stain of precipitate fractions following ammonium sulphate precipitation of periplasm. 

Periplasm obtained from cells of S. purrefaciens grown microaerobically in the presence of furnarate (section 2.5.) was sequentially 

fractionated by the addition of solid ammonium sulphate (section 2.7.). Precipitated protein from each fraction was dialysed against 

10 mM Tris-HC1 pH 8.4, 5 mM EDTA to remove ammonium sulphate prior to electrophoresis on SDS-PAGE (7.5-15%) resolving 

gel. Approximately 10 jLg of protein from each fraction was electrophoresed prior to silver staining (Plate 3.5.), and 30 jl of an 

of 0.25 from each fraction electrophoresed before haem staining (Plate 3.6.). 

Lane Plate 3.5. Lane Plate 3.6. 

1 Protein standards 1 Horse heart cytochrome-c 

2 0-30% 2 0-30% 

3 30-40% 3 30-40% 

4 40-50% 4 40-50% 

5 50-60% 5 50-60% 

6 60-80% 6 60-80% 

7 80-100% 7 80-100% 

8 Fumarate peiiplasm 8 Fumarate periplasm 

9 Purified flavocytochrome c 9 Purified flavocytochrome c 
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Plates 3.7. and 3.8. Silver and haem stain of supernatant fractions following ammonium sulphate precipitation of periplasm. 

Periplasm from cells of S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5.) was sequentially 

fractionated by the addition of solid ammonium sulphate (section 2.7.). The supernatant from each fraction was dialysed against 10 

mM Tris-HC1 pH 8.4, 5 mM EDTA to remove ammonium sulphate prior to electrophoresis on SDS-PAGE (7.5-15%) resolving gel. 

Approximately 10 i.ig of protein from each fraction was electrophoresed prior to silver staining (Plate 3.7.), and 30 il of an A4110 of 

0.25 from each fraction electrophoresed before haem staining (Plate 3.8.). 

Lane Plate 3.7. Lane Plate 3.8. 

1 Protein standards 1 Horse heart cytochrome-c 

2 0-30% 2 0-30% 

3 30-40% 3 30-40% 

4 40-50% 4 40-50% 

5 50-60% 5 50-60% 

6 60-80% 6 60-80% 

7 80-100% 7 80-100% 

8 Fumarate periplasm 8 Fumarate periplasm 

9 Purified flavocytochrome c 9 Purified flavocytochrome c 
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Total and specific fumarate reductase activities were determined for each 

precipitate and supernatant fraction (Figures. 3.6. and 3.7.). Total activity 

determination showed that most enzyme activity (70%) was located in the 60-

80% fraction with very little activity present in precipitates from 0-60% (10% in 

total). All remaining activity was precipitated in the 80-100% fraction and no 

detectable activity remained unprecipitated. The highest specific activity was 

detected in the 60-80% precipitate giving a value which was 5-fold higher than 

in the 0-60% precipitate and 2.5-fold higher than the 80-100% precipitate. This 

confirmed earlier observations that flavocytochrome c was precipitated at 60-

80% saturation. The decrease in specific activity of supernatant fractions 

parallelled clearly the increase in specific activity of precipitate fractions. There 

is evidence that flavocytochrome c has the physiological ability to act as a 

fumarate reductase (investigated in more detail in section 3.5.), which is 

indicated in this initial purification stage, where the level of fumarate reductase 

activity correlates closely with the amount of flavocytochrome c present in the 

fraction. 

In this purification, the 60%-80% and 80%-100% fractions were pooled 

to be used for subsequent stages. 

3.2.2. Ion exchange chromatography of the pooled (NH4)2SO4  precipitate. 

The pooled 60-100% precipitate was applied to a DEAE Sepharose 

column as described in section 2.6.1., following resuspension in buffer (10 mM 

Tris-HC1 pH 8.4, 5 mM EDTA) and dialysis against the same to remove 

ammonium sulphate. The elution profile (Figure 3.8.) showed two peaks of 

cytochrome : the major peak of cytochrome and protein eluted at approximately 

0.16 M NaCl with the smaller peak of cytochrome being eluted towards the end 

of the run. Comparison of this profile with the ion exchange profile from the 



Figure 3.6. Precipitation of periplasmic fumarate reductase activity from S. putrefaciens by ammonium sulphate. 

Periplasm obtained from cells of S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5) was sequentially 

fractionated by the addition of solid ammonium sulphate (section 2.7). The fumarate reductase activity of each precipitate and 

supernatant fraction was measured. 

* Total activity = a mol MV+  oxidised min-1  x mg total protein in sample. 
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Figure 3.7. Fumarate reductase specific activity following ammonium sulphate precipitation of periplasm from fumarate-grown 

S. putrefaciens. 

Periplasm obtained from cells of S. putrefaciens grown microaerobically in the presence of fumarate (section 2.5) was sequentially 

fractionated by the addition of solid ammonium sulphate (section 2.7). The fumarate reductase specific activity was determined for 

each precipitate and supernatant fraction. 

* Specific activity = a mol MV + oxidised min-1  mg protein-1. 
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Figure 3.8. Elution profile of 60-100% ammonium sulphate precipitate on DEAE Sepharose. 

The pooled, dialysed 60-100% ammonium sulphate precipitate fractionated from cells of S. putrefaciens grown microaerobically 

in the presence of fumarate (section 2.5) was bound to DEAE Sepharose equilibrated with 10mM Tris-HC1 pH 8.4 (T-buffer) 

containing EDTA (5 mM). The column was washed with approximately one column volume of this buffer to remove unbound 

material, then developed by application of an increasing linear gradient of 0-0.5 M NaC1 in T-buffer. Loading of material, 

washing, and elution of the sample were carried out at a constant flow rate of 8 ml h4  with 4 ml fractions collected. The A280 

and A410 of each fraction were measured to determine peaks of protein and cytochrome. 
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previous purification showed the removal of an additional cytochrome by 

ammonium sulphate precipitation. The proposed reasons for this are discussed 

later in section 3.3. Fractions contributing to the major peak of cytochrome 

were pooled. SDS-PAGE followed by silver staining showed flavocytochrome c 

to be the major protein in the sample although at least 6 additional minor 

proteins were detected. (Plate 3.9.). Haem staining (Plate 3.10.) showed a single 

cytochrome corresponding to flavocytochrome c. 

3.2.3. Hydroxyapatite chromatography of DEAE Sepharose fraction. 

The flavocytochrome-containing fraction from ion exchange 

chromatography was applied to hydroxyapatite. Following development of the 

column, the elution profile (Figure 3.9.) showed a single cytochrome and major 

protein peak eluting at approximately 0.34 M phosphate. A smaller protein 

peak was observed immediately on application of the phosphate gradient to the 

column and a low level of background protein was present throughout elution. 

Fractions containing the cytochrome peak were pooled and electrophoresed. 

Following this, silver and haem stains showed a single protein and haem-staining 

band corresponding to flavocytochrome c (Plates 3.9. and 3.10.). Although 2 

bands corresponding to flavocytochrome c were observed in lanes 2, 3 and 4 of 

Plate 3.10. these were thought to be due to slight degradation of these samples 

on storage at 40C, as purified flavocytochrome c (Lane 5, Plate 3.10.) was a 

single band. Additionally, previous haem stains of these samples immediately 

following column elution showed flavocytochrome c as a single band. 

3.3. Discussion. 

The method of flavocytochrome c purification according to Morris (1987) 

yielded 4.0 mg of pure protein from the periplasm prepared from 10 litres of 



Plates 3.9. and 3.10. Silver and haem stains of flavocytochrome c purification: method II. 

Periplasm was harvested from S. putrefaciens grown microaerobically in the presence of fumarate. Flavocytochrome c was 

purified from this periplasm by precipitation with 60-100% ammonium sulphate which was followed by the sequential 

application of the resuspended precipitate to DEAE Sepharose and hydroxyapatite. Purity of flavocytochrome c containing 

fractions was assessed following each purification stage by SDS-PAGE on a 7.5-15% resolving gel followed by silver staining 

and haem staining. Approximately 10 jig of protein from each fraction was electrophoresed prior to silver staining (Plate 3.9.), 

and 30 i1 of an A410  of 0.25 from each fraction electrophoresed before haem staining (Plate 3.10.). 

Lane Plate 3.9. Lane Plate 3.10. 

1 Fumarate periplasm 1 Horse heart cytochrome-c 

2 60-100% ammonium sulphate precipitate 2 Fumarate periplasm 

3 DEAE Sepharose fraction 3 60-100% ammonium sulphate precipitate 

4 hydroxyapatite fraction 4 DEAE Sepharose fraction 

5 Protein standards 5 hydroxyapatite fraction 
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Figure 3.9. Elution profile of the ion exchange flavocytochrome c fraction on hydroxyapatite. 

The flavocytochrome c-containing fraction collected following chromatography on DEAE Sepharose was bound to 

hydroxyapatite equilibrated in T-buffer containing EDTA (5mM). The column was washed with T-buffer (one column volume) 

then developed by application of an increasing linear gradient of 0-0.5 M K2HPO4 in T-buffer. Loading of material, washing, 

and elution of the sample were carried out at a constant flow rate of 12 ml h 1  with 4 ml fractions collected. The A280 and A410 

of each fraction were measured to determine peaks of protein and cytochrome. 
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fumarate-grown S. putrefaciens (Table 3.1.). 	Following ion exchange 

chromatography on DEAE sepharose, the % yield values from A41  (total 

haem in the fraction, calculated by multiplication of the A410  value by the 

fraction volume) and nmol haem (calculated from the extinction coefficient 

determined by Morris (1987) for flavocytochrome specific haem) were very 

similar indicating that all haem in the sample was flavocytochrome specific. 

This was further confirmed by haem staining of fractions during purification 

which showed the only cytochrome present following ion exchange 

chromatography to be flavocytochrome c. Throughout the purification, the ratio 

of flavocytochrome c specific haem to protein increased as did the purification 

factor which rose steadily to give a value of 3.08 following chromatography on 

phenyl sepharose. Following gel filtration, which was the last purification stage 

and essential for the removal of several minor contaminating proteins, an 

apparent decrease in purification from 3.08 to 1.87 fold was observed (Table 

3.1.). This was surprising as flavocytochrome c was judged to be pure following 

this stage. 	It would indicate from these values that gel filtration 

chromatography was in some way affecting the structure of the protein causing 

substantial loss of bound haem. However, no haem was detected in fractions 

other than those contributing to the peak of flavocytochrome which indicated 

that all haem was associated with flavocytochrome c. Furthermore as the haem 

groups of c-type cytochromes are covalently bound to the the protein and only 

released by strong denaturing conditions, it seemed very unlikely that 

chromatography of flavocytochrome c on Sephacryl S-300 under the described 

conditions (section 2.6.4.) would result in the release of haem. 

The A410:A280  ratio was a relatively accurate indicator of 

flavocytochrome purity following chromatography on DEAE Sepharose which 

removed all cytochrome with the exception of flavocytochrome c (Table 3.2.). 



Table 3.2. Purification of flavocytochrome c: method I. 

(A4 10:A280  purity determination) 

Flavocytochrome c was purified according to Table 3.2. from the periplasm of S. putrefaciens grown microaerobically in the 

presence of fumarate. Following each purification stage, the absorbances at 280 nm and 410 nm were measured to estimate protein 

and cytochrome concentration. The absorbance was converted into absorbance units (A41ou and  A280U)  on multiplication with 

the sample volume. The ratio of cytochrome : protein was used to monitor purity of the sample at each stage. 



Purification of flavocytochrome c: method I. 

(A410:A280  purity determination) 

A280 	A410 	A280U 	A410u 
	A410:A280  

4.3 4.5 795 832.5 1.05 

2.69 6.8 126.8 320 2.52 

volume 
(ml) 

185 

47 
D 

Source 

Periplasm 

Ion Exchange 
(DEAE Sepharose) 

Hydroxyapatite 

Phenyl Sepharose 

Gel Filtration 
(Sephacryl S-300) 

48 0.8 3 38.4 134.4 

136 0.115 0.73 26 99.3 

40 0.4 1.56 16 62.4 

3.5 

3.82 

3.9 
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There was no apparent decrease in purity at any stage by this criterion, with the 

final A410:A280  ratio of 3.9 similar to that obtained by Morris (1987) for 

purified flavocytochrome c. Flavocytochrome c was observed as a single band 

on silver and haem staining following gel filtration and by these criterion was 

considered pure. Thus the apparent decrease in purity following the final 

purification stage of gel filtration was thought to be due to some technical 

factor, possibly chemical interference in the sample which affected the protein 

assay giving an inaccurately high value for protein content. 

The second purification procedure involved 3 stages following 

preparation of periplasm: ammonium sulphate fractionation of periplasm, 

chromatography of the 60-100% precipitate on DEAE sepharose, then finally 

chromatography of the pooled flavocytochrome c fraction from ion exchange on 

hydroxyapatite. Flavocytochrome c was pure to homogeneity on haem, silver 

and Kenacid blue staining of SDS gels following these stages (Plates 3.10 and 

3.11). 

The yield of protein from the second purification (3.3%) was slightly 

lower than the first (3.9%). The % yield values obtained for total haem and 

flavocytochrome specific haem showed that (NH4)2SO4  precipitation was 

effective in removal of most periplasmic cytochromes other than 

flavocytochrome c and that the haem content in fractions following 

chromatography on DEAE Sepharose and hydroxyapatite was due only to the 

flavocytochrome c. There was a decrease in the purification factor following 

(NH4)2SO4  precipitation as estimated by haem content, from 1 to 0.34 further 

confirming the removal of cytochromes other than flavocytochrome c. In the 

early purification stages, estimating purity of flavocytochrome c by measuring 

fumarate reductase activity was considered to be more accurate than haem 

determination where other cytochromes are present. There is no evidence to 
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suggest the presence of more than one periplasmic fumarate reductase in S. 

putrefaciens. 

The protein content, specific and total fumarate reductase activities of 

the flavocytochrome-containing fraction were determined at each stage of the 

second purification (Table 3.3.). A purification of 6.04 fold was obtained 

yielding 5.96 mg of purified flavocytochrome c and 20% of the total periplasmic 

fumarate reductase activity. An approximately twofold increase in the specific 

activity of the enzyme occurred at each stage. The A410:A280  ratio increased 

from 0.85 to 3.89 following the final purification stage (Table 3.4.) which was a 

purity ratio comparable to that obtained for the previous purification. Purity of 

flavocytochrome c throughout this purification was also determined from the 

haem:protein ratio (Table 3.5.). This purification procedure gave a final 

purification fold of 3.5. 

The overall percentage of flavocytochrome c protein in periplasm 

isolated from microaerophilic cultures, with fumarate as terminal electron 

acceptor, was calculated as 33% in the first purification and 26% in the second. 

The differences in the amount of flavocytochrome c purified from the periplasm 

may not be due only to the different purification procedures, but will also be 

affected by the stringency of the culture conditions which induce 

flavocytochrome c, and the effectiveness of the osmotic shock in releasing the 

flavocytochrome into the periplasm. 

Ammonium sulphate was chosen as the first stage of the second 

purification following preparation of periplasm as it is suitable for protein 

precipitation, being highly soluble, non-toxic and effective in enzyme 

stabilisation, in addition to which the high salt concentration during ammonium 

sulphate fractionation prevents proteolysis and bacterial action (Scopes, 1982). 

This was advantageous for the initial purification stage as, although no 



Table 3.3. Purification of flavocytochrome c: method II. 

(fumarate reductase activity determination) 

Flavocytochrome c was purified from periplasm prepared from S. putrefaciens grown microaerobically in the presence of fumarate 

according to the procedure in Table 3.2. The protein concentration following each purification stage was determined by the Folin-

Ciocalteau protein assay (section 2.8.). The specific1  and total2  fumarate reductase activities were measured following each 

purification stage to evaluate overall yield and purification fold. 



Purification of flavocytochrome c : method II. 

(Fumarate reductase activity determination) 

Source 	volume 	Protein Specific Activity1 	Purification 	Total Protein 	Total Activity2 	Yield 

(ml) 	(mg m1 1) 	 (fold) 	 (mg) 	 (%) 

Periplasm 	810 	0.216 	37.1 	 1 	 175 	 6491 	 100 

60-100% 	34 	2.51 	58.9 	 1.59 	 85.36 	 5026 	 77.4 
(NH4)2SO4  

Ion Exchange 	39 	0.437 	138 	 3.72 	 17.05 	 2351 	 36.2 
(DEAE Sepharose) 

Hydroxyapatite 30 0.199 	224 	 6.04 	 5.96 	 1337 	 20.6 



Table 3.4. Purification of flavocytochrome c : method II. 

(A110:A280 purity determination) 

Flavocytochrome c was purified according to Table 3.4. from the periplasm of S. putrefaciens grown microaerobically in the 

presence of fumarate. Following each purification stage, the absorbances at 280 nm and 410 nm were measured to estimate protein 

and cytochrome concentration. The absorbance was converted into absorbance units (A41ou and  A280U)  on multiplication with 

the sample volume. The ratio of cytochrome protein was used to monitor purity of the sample at each stage. 



Purification of flavocytochrome c : method II. 

(A410:A280  purity determination) 

Source volume A280  A410  A280u A40  A410:A280  
(ml) 

Periplasm 810 0.806 0.689 653 558 0.85 

60-100% 34 3.2 3.5 109 120 1.1 
(NH4)2SO4  

Ion Exchange 39 0.774 2.43 30.19 94.6 3.13 
(DEAE Sepharose) 

Hydroxyapatite 30 0.586 2.19 17.6 65.98 3.89 



Table 3.5. Purification of flavocytochrome c : method II. 

(cytochrome determination) 

Flavocytochrome c was purified from periplasm prepared from S. putrefaciens grown microaerobically in the presence of 

fumarate according to the procedure in Table 3.5. The protein concentration following each purification stage was determined 

by the Folin-Ciocalteau protein assay (section 2.8.), and haem content was estimated from the absorbance at 410 nm assuming 

an extinction coefficient of 730 mM 1  cm-1  for flavocytochrome haem (Morris, 1987). 



Purification of flavocytochrome C: method II. 

(cytochrome determination) 

Source A410 Total Protein nmol haem 	nmol haem/mg protein Purification 

(% Yield) (%Yield) (%Yield) (Fold) 

Periplasm 558 175 764 	 4.31 1 
(100) (100) (100) 

60-100% 120 85.6 164 	 1.9 0.44 
(NH4)2SO4  (21) (48) (21.5) 

Ion Exchange 94.6 17.05 129 	 7.58 1.76 
(DEAE Sepharose) (17) (9.6) (16.8) 

Hydroxyapatite 65.98 5.96 90 	 15 3.5 
(11.7) (3.3) (11.8) 
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periplasmic proteases have been detected in S. putrefaciens NCMB400 (Clark, 

1984), some leakage of cytoplasmic contents during the osmotic shock may have 

released intracellular proteases. Two peptidases have been discovered in the 

periplasm of Alteromonas B-207 each sensitive to EDTA (Lee & Merkel, 1981., 

Merkel et a!, 1980) so the presence of EDTA throughout purification may be 

effective against endogenous protease activity. 

Ammonium sulphate precipitation of protein is dependent on relative 

hydrophobicity. In an aqueous solution, water molecules aggregate at the 

hydrophobic regions of the protein. Raising the salt concentration by addition 

of ammonium sulphate results in free water molecules becoming scarce, which is 

followed by removal of aggregated water molecules from the protein 

hydrophobic regions. Thus, the exposed hydrophobic regions of the protein 

aggregate together and the protein precipitates out of solution (Scopes, 1982). 

Generally hydrophobic proteins precipitate at low salt concentrations and 

hydrophilic proteins at higher concentrations, although additional factors such 

as protein concentration and composition of the sample affect precipitation. 

Precipitation of flavocytochrome c in high salt concentration (60-100%) was 

in agreement with earlier work by Morris (1987) who proposed that it was 

hydrophilic. As mentioned previously ammonium sulphate precipitation 

resulted in the loss of the second eluting cytochrome when ion exchange profiles 

from the two purifications were compared. This cytochrome was previously 

characterised as being rather hydrophobic (Morris, 1987) which would indicate 

that it was precipitated at a lower ammonium sulphate concentration. 

Ammonium sulphate fractionation had other additional advantages as a 

first purification stage, the first being concentration of the periplasmic fraction 

containing flavocytochrome c resulting in easier processing for the next stage, 

and the second was loss of periplasmic proteins precipitating at saturations of 
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less than 60% therefore increasing purity of the sample. 83.3% of the total 

periplasmic fumarate reductase activity was recovered by ammonium sulphate 

precipitation, 77.6 % of which was located in the 60-100% fraction (Table 3.6) 

indicating minimal inhibition of enzyme activity by ammonium sulphate. 

Subsequent flavocytochrome purifications using ammonium sulphate 

fractionation of periplasm as an initial stage will require only two fractionation 

steps: a first of 0-60% to remove unwanted cytochromes and proteins and a 

second of 60-100% to concentrate the flavocytochrome c-containing fraction. 

Ion exchange chromatography on DEAE sepharose was chosen as the 

next purification stage due to its effective separation of periplasmic proteins 

(Morris, 1987). The principle of ion exchange chromatography involves the 

binding of proteins by electrostatic forces to the charged groups on the matrix 

thereby displacing the counter ions (Cl). Proteins are displaced from the 

matrix on encountering gradually increasing concentrations of counter ion 

during development of the column which compete for sites on the matrix with 

bound protein. Proteins with a high affinity to the matrix bind tightly and 

require a higher cation concentration to facilitate release than protein with a 

lower affinity. Ion exchange chromatography effectively removed all protein 

from the fraction containing flavocytochrome c with the exception of several 

minor co-eluting proteins. 

The next purification stage was chosen to complement the preceding 

stages. The basic mechanism of hydroxyapatite chromatography is different 

from (NH4)2SO4  fractionation and ion exchange chromatography in that the 

absorption of acidic proteins is believed to be due to the interaction of acidic 

groups on the protein with calcium sites at the surface of the hydroxyapatite 

crystals. Elution of the protein is achieved with competing ions for the calcium 

sites, particularly those with a high affinity for Ca2+ such as phosphate, rather 



Table 3.6. Ammonium Sulphate Precipitation of Periplasm. 

Specific Activity1  Purification Total Activity2  Yield 
(fold) (%) 

Periplasm 	 37.1 1 6491 100 

0-60% 	precipitate 	11.6 0.316 370 5.6 

60-100% precipitate 	58.9 1.59 5026 77.6 

80-100% supernatant 	2.8 	 0.075 	 98 	 0.7 

The effect of ammonium sulphate on the recovery of periplasmic fumarate reductase activity was determined as above. 

1 = amol MV + oxidised min-1  mg protein-1. 

2 = imol MV+ + oxidised mind  x mg protein in sample. 



118 

than Cl- (Gorbunoff, 1984; Gorbunoff & Timasheff, 1984). Following this stage, 

flavocytochrome c was pure to homogeneity. 

There were two main advantages of this new purification procedure. The 

first was the reduction in the number of stages involved in the purification, 

therefore decreasing the time taken to purify the protein. Secondly, the reduced 

processing of the protein may also have been a contributing factor to the 

apparent lack of degradation throughout purification, although the presence of 

EDTA in the elution buffer at all stages of purification also helped prevent 

proteolysis. EDTA acts as a metal chelator and as even trace levels of heavy 

metals can substantially affect enzyme activity (Scopes, 1982), the ability of 

EDTA to bind these will maintain enzyme activity of proteins sensitive to heavy 

metals. 

3.4. Specificity of antibody to flavocytochrome c. 

Antibody was raised to purified flavocytochrome c and the sheep blood 

processed to yield purified IgG (section 2.9.). The specificity of antibody raised 

to flavocytochrome c was determined by Western blotting against purified 

flavocytochrome, and also against total cell lysates of aerobically and 

microaerobically grown S. putrefaciens and E. coli MM294 (Plate 3.11). This 

blot showed that antibody bound specifically to flavocytochrome c in both 

purified form and in microaerobic cell extracts from S. putrefaciens (cultured 

separately with fumarate and TMAO as terminal electron acceptors and also 

with no exogenous electron acceptor). 

Other bands of lower molecular weight than flavocytochrome c also bound 

antibody. These could have been due to minor undetected contaminating 

proteins present in the original purified flavocytochrome c sample against which 

antibody was raised. Alternatively, antibody could have been binding to 
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Plate 3.11. Specificity of antibody raised to purified fiavocytochrome c. 

1 234 	5 ó 7 8 

Specificity of antibody raised to purified flavocytochrorne c was determined by 

Western blotting with total cell lysates (30 jig) of S. putrefaciens and E. coli 

MM294 cultured by various growth conditions. 

Lane 

1 	Mid-exponential S. putrefaciens. 

2 	Microaerobic S. putrefaciens with fumarate as terminal electron acceptor. 

3 	Microaerobic S. putrefaciens with TMAO as terminal electron acceptor. 

4 	Purified flavocytochrome c (2 jig). 

5 	Purified fiavocytochrome c (2 jig). 

6 	Microaerobic S. putrefaciens. 

7 	Mid-exponential E. coli MM294. 

8 	Microaerobic E. coli MM294. 
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proteolytic products of flavocytochrome c. The smaller molecular weight bands 

developed more slowly than flavocytochrome c indicating that they were either 

less specific for the antibody, or represented a substantially smaller proportion 

of the original protein sample. In either case, there was no apparent binding of 

the antibody to any other protein from aerobically cultured S. putrefaciens or to 

E. coli cultured either aerobically or under oxygen limited conditions. This 

indicated that this antibody preparation was specific for and had the ability to 

detect flavocytochrome c against a background of other proteins. 

The ability of IgG raised against flavocytochrome c to precipitate 

fumarate reductase activity from periplasmic extracts of S. putrefaciens and 

purified flavocytochrome c was investigated. 	A protein concentration 

corresponding to a fumarate reductase activity of 40 - 45 mol MV + + oxidised 

was used in each sample as at this activity even very slight enzyme 

inhibition was easily measured. The inhibition curves obtained by measuring 

fumarate reductase activity of the sample following preincubation with IgG are 

presented in Figures 3.10 and 3.11. A two-step inhibition was observed for both 

periplasm and purified protein: the first stage showed a rapid reduction of 

fumarate reductase activity on preincubation with a relatively small volume (1-

20 JL1) of flavocytochrome specific IgG, followed by a much slower secondary 

loss of remaining activity on preincubation with larger volumes (up to 400 d) of 

IgG. The inhibition was less rapid with purified flavocytochrome c than 

periplasm. This was thought to be due to the slightly higher fumarate reductase 

activity of purified flavocytochrome c in the assay compared to periplasmic 

activity, thus requiring a proportionally greater concentration of antibody to 

inhibit enzyme activity to the same extent. The antibody was thought not to be 

binding to a region involved directly in fumarate reduction, such as the enzyme-

substrate binding site, or the flavin prosthetic group which is required for 



Figure 3.10. Titration of periplasmic fumarate reductase activity with flavocytochrome c specific IgG. 

A sample of periplasm which gave a fumarate reductase activity of 40 IL mol MV+ + oxidised min-1  was preincubated with IgG 

raised to purified flavocytochrome c for 10 min at room temperature prior to assay for fumarate reductase activity. 
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Figure 3.11. Titration of fumarate reductase activity from purified flavocytochrome c with flavocytochrome c specific IgG. 

A flavocytochrome c concentration corresponding to a fumarate reductase activity of 45 li mol MV+ + oxidised min-1  was 

preincubated with IgG raised to purified flavocytochrome c for 10 min at room temperature prior to assay for fumarate reductase 

activity. 
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fumarate reductase activity in other prokaryotes, as this would be expected to 

result in rapid and complete inhibition of enzyme activity. Instead, the two-step 

inhibition suggested a less direct type of inhibition perhaps involving 

conformational flexibility of the protein. At least two species of antibody 

seemed to be involved in this, one which was specific and reduced enzyme 

activity to 40% on preincubation with relatively small volumes of IgG, and a 

second less specific species which resulted in total loss of activity with larger 

volumes of IgG. 

The factors determining immunogenicity of native proteins have been 

studied with respect to protein structure. Initially it was thought (Sela et al, 

1967), that the immunogenicity of a protein was contributed to by both 

continuous regions (stretches of sequential residues) and discontinuous regions 

(residues from different parts of the sequence brought together by folding of the 

protein). It was subsequently proposed that the protein determinants most 

likely to elicit an immune response were discontinuous (Benjamin et a!, 1984). 

Thus antibody will recognise both sequence and conformation of the protein 

with the most immunogenic regions on the protein surface. Antiserum raised to 

a pure native protein will therefore contain a mixture of low and high affinity 

antibody to various regions on the protein surface. The exposure of protein to 

denaturing conditions such as SDS PAGE prior to Western blotting will result in 

the destruction of the secondary protein structure; however binding of antibody 

raised to native protein will still occur to the stretches of amino acids which 

contributed to the discontinuous epitopes (Barlow et al, 1986). 

3.5. Fumarate reductase activity of flavocytochrome c. 

Preliminary experiments to determine the cellular location of the 

fumarate reductase of S. putrefaciens showed that fumarate reductase activity 
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co-purified at all stages with flavocytochrome c (Ward et al, 1987 unpublished 

results). Furthermore sub-fractionation studies had shown that fumarate 

reductase activity was periplasmic. 

Zymogram staining of purified flavocytochrome c showed a single band of 

fumarate reductase activity, following native gel electrophoresis (Plate 3.12.). 

An additional band of greater molecular weight than flavocytochrome c was 

observed following zymogram staining of periplasmic extracts (from S. 

putrefaciens cultured microaerophilically with fumarate as terminal electron 

acceptor). This suggested either the presence of two periplasmic fumarate 

reductases, or a second form of flavocytochrome c. In an attempt to resolve this, 

periplasm was Western blotted, then developed with IgG raised to purified 

flavocytochrome c (Plate 3.13). A positive signal to both bands was observed, 

indicating that both contained epitopes of flavocytochrome c. Thus it was 

considered that the larger band was flavocytochrome c not fully denatured by 

electrophoresis under these conditions. As non-covalently bound FAD 

necessary for enzyme activity is removed by denaturing conditions (Muratsubaki 

and Katsume, 1982), it was very surprising that flavocytochrome c still retained 

fumarate reductase activity following SDS-PAGE, although activity was very 

much reduced with only a very faint band observed (and for this reason, the 

results are not presented). This indicated some partially active native structure 

remaining after treatment with SDS and mercaptoethanol, or partial 

renaturation of the protein in zymogram buffer prior to assay for fumarate 

reductase activity. This observation will have to be investigated in detail by 

enzyme assay for fumarate reductase activity following denaturation of purified 

flavocytochrome c. 

The possibility that flavocytochrome c acted physiologically as a fumarate 

reductase was then investigated in more detail. 
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Plate 3.12. Zymogram of periplasm and purified flavocytochrome c. 

kDa 

WE 

1 	2 

Periplasm (approximately 10 g) from S. putrefaciens grown microaerohically in 

the presence of fumarate, and purified flavocytochrome c (2 jig) were 

electrophoresed on a 10% native gel. Zymogram buffer (100 mM K2HPO4, 100 

mM NaCl, 1 mM MgSO4  0.1 mM methyl viologen; pH 7.4) was degassed by 

continual sparging with oxygen-free argon, then methyl viologen reduced by 

addition of sodium dithionite (2% in 10 mM NaOH). The gel was immersed in 

this solution for approximately 20 min before addition of fumarate (pH 7) to 1 

mM. 

Lane 

1 	 Periplasm 

2 	 Purified flavocytochrome c 
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Plate 3.13. Western blot of periplasm from fumarate-grown S. putrefaciens. 

kDa 

12 

Approximately 30 jg of periplasm isolated from S. putrefaciens grown 

microaerobically in the presence of fumarate, and 2 g purified flavocytochrome 

c were transferred to nylon membrane following native PAGE (7.5-15% 

resolving gel) then developed with IgG raised to purified flavocytochrome c. 

Lane 

1 	periplasm 

2 	purified flavocytochrome c 

'I 
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3.6. Kinetic analysis of flavocytochrome c 

To determine the specificity of flavocytochrome c for fumarate and 

succinate, the fumarate reductase and succinate dehydrogenase activities of 

flavocytochrome c were measured with varying substrate concentration. 

Enzyme activity was measured at 200C in buffer at the optimum pH. No 

inhibition of enzyme activity was detected at saturating substrate concentrations. 

The rates of enzyme activity at each substrate concentration were plotted on to 

Lineweaver-Burk plots (Figs. 3.12 and 3.13). The half maximal substrate 

concentration (KM)  and the maximum rate of enzyme reaction (Vmax)  were 

determined from the intercept on the ordinate and abscissa respectively, from 

the line plotted by linear regression analysis of the values obtained for each 

substrate concentration. Correlation coefficients of 0.99 and 0.96 were 

calculated for fumarate and succinate repectively. The KM, Vmax and kcat (a 

measure of turnover, defined as the no. of molecules of substrate converted to 

product per second and calculated from the rate of activity at the lowest 

saturating enzyme concentration) values for fumarate and succinate are 

presented in Table 3.7. 

The KM, Vmax and kcat values for fumarate compared to those for 

succinate indicated that flavocytochrome c had a greater specificity for fumarate 

than succinate due to the following observations: 

The KM  for fumarate was 20-fold less than that for succinate indicating a 

greater specificity of flavocytochrome c for fumarate than succinate. 

The kcat for fumarate reduction was approximately 3000 fold greater than 

that for succinate oxidation showing a faster rate of conversion from fumarate to 

succinate than vice versa. 

However, the Lineweaver-Burk plot preferentially weights values derived 

from low substrate concentrations. This was of particular concern in the plot 



Figure 3.12. Lineweaver-Burk plot of flavocytochrome c with fumarate as substrate. 

The reciprocal molar substrate concentration 1/S was plotted against the reciprocal enzyme rate 

1/V (imol MV + oxidised min-1  mg protein-1). 
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Figure 3.13. Lineweaver-Burk plot of flavocytochrome c with succinate as substrate. 

The reciprocal molar substrate concentration 1/S was plotted against enzyme rate 

1/V (umol  DCPIP reduced min-1  mg protein). 



—60 	—40 	—20 	0 	20 	40 	60 	80 	100 	120 

1/v 
60 

50 

40 

30 

20 

10 

i/s (M) x 0.01 



130 

Table 3.7. Kinetic Properties of flavocytochrome c. 

Fumarate 	 Succinate 

KM 	(AM) 	 12.6 	 356 

Vmax 	(jzmol/min/ 	278 	 0.08 
mg protein) 

kcat (s-i) 287 0.086 

Rcrn 	tc Tur\c 	pio\. 
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with succinate as substrate which showed substantial scattering of points. The 

rates of activity at different substrate levels were subsequently analysed by the 

non-linear regression analysis method of Gamp et al (1980), which gives an 

equal weighting to each value. These results are presented in Table 3.8., Figure 

3.14. and Figure 3.15.. The KM  fumarate calculated by this method was almost 

identical to that derived from the Lineweaver-Burk plot of 12.6 AM, and the 

Kobs. values closely correlated to those of Kcalc (Figure 3.14.). This indicated 

that the original experimental data wm relatively accurate. The KM  succinate 

of 630 AM obtained from non-linear regression analysis was much higher than 

that derived from the Lineweaver-Burk plot (356 GM), and the Kobs. values 

were scattered on the Kcalc. curve, further indicating that tnm data itre_ not as 

accurate as that for fumarate reduction. These results confirmed that 

flavocytochrome c was highly specific for fumarate, and much less for succinate. 

The fumarate reductase enzyme has been characterised in other bacteria, 

in particular E. coli and V. succinogenes where the Km of the purified enzyme 

for the substrates fumarate and succinate has been determined. The fumarate 

reductase from E. coil had Km values of 17 AM and 1000 jiM for fumarate and 

succinate respectively (Hirsch et a!, 1963; Dickie & Weiner, 1979), being similar 

to flavocytochrome c in it's high specificity for fumarate. The V. succinogenes 

fumarate reductase was less specific for both fumarate and succinate with KM 

values of 350 AM and 2000 AM repectively (Unden et a!, 1980). 

The enzymes from E. coli and V. succinogenes differ from 

flavocytochrome c in both their cellular location and subunit structure. As 

previously discussed in the Chapter 1, flavocytochrome c seems to be composed 

of a single subunit, in contrast to the fumarate reductases of E. coli and V. 

succinogenes which are composed of four subunits in E. coli (Dickie & Weiner, 

1979; Lemire et a!, 1982) and three subunits in V. succinogenes, and bound to the 
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Table 3.8. Flavocytochrome c KM  evaluation by non-linear regression analysis. 

[Fumarate] M x 105 	Kobs. x 105 	Kcalc. x 105  

1.75 0.136 0.133 
1.5 0.121 0.123 
1.25 0.109 0.112 
1.0 0.103 0.099 
0.75 0.082 0.083 
0.65 0.073 0.074 
0.5 0.062 0.063 
0.375 0.052 0.05 

KM fumarate = 14 AM +1- 1.4 

[S] M = 2.35 x 10 5  

[Succinate] M x 103 	Kobs. x 103 	Kcalc. x 103  

1.5 7.5 7.65 
1.0 7.5 6.66 
0.75 5.4 5.9 
0.5 4.3 4.81 
0.25 2.8 3.08 
0.15 2.76 2.09 
0.1 1.80 1.49 

KM succinate = 630 /.LM + /- 160 

[S] M = 1 x 10-3  

The KM  values presented in this table were derived from the non-linear 

regression analysis computer programme of Gamp et al, (1980), which measures 

enzyme activity (Kcalc.) at a particular substrate concentration. These rates of 

activity are derived from the lowest saturating substrate concentration giving the 

maximum rate of enzyme activity (S) and the predicted KM  for that particular 

substrate (see Table 3.7.). Experimental data Kobs. (used for the Lineweaver-

Burk plots in Figures 3.12. and 3.13.) is listed above with the computer derived 

values at identical substrate concentrations. Kcalc. and Kobs. are expressed as 

jimol MV + oxidised min-1  for fumarate and jimol DCPIP reduced min 1  for 

succinate. The Kobs. and Kcalc. data for fumarate and succinate are compared 

graphically in Figures 3.14 and 3.15. 



Figure 3.14. Predicted curve of flavocytochrome c fumarate reductase activity. 

Values of V calculated were obtained by the non-linear regression analysis computer programme of Gamp et al (1980) 

from experimental flavocytochrome c fumarate reductase activity (V observed) 

where V = iLmol MV + oxidised nun-1 
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Figure 3.15. Predicted curve of flavocytochrome c succinate dehydrogenase activity. 

Values of V calculated were predicted by the non-linear regression analysis computer programme of Gamp et a! (1980) 

from experimental flavocytochrome c succinate dehydrogenase activity data (V observed) 

where V = tmoI DCPIP reduced min1 
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inner aspect of the cytoplasmic membrane by hydrophobic anchor proteins. 

Furthermore, the flavin moiety of flavocytochrome c is non-covalently bound 

FAD; that of both fumarate reductases from E. coli (Dickie & Weiner, 1979) 

and V succinogenes (Kroger & Innerhoffer, 1976) is covalently bound FAD. It 

was considered, therefore, that the only similarity between flavocytochrome c and 

the other enzymes was the associated fumarate reductase and succinate 

dehydrogenase activities. 

Anaerobically induced soluble fumarate reductases with non-covalently 

bound FAD have been isolated from other organisms such as baker's yeast 

(Muratsubaki and Katsume, 1982) and D. multispirans (He et a!, 1986). Both 

have a KM  for fumarate of approximately 0.2 M so are very much less specific 

for fumarate than flavocytochrome c. Both are cytoplasmic with the enzyme 

from baker's yeast being a single subunit of 58.8 kDa and that of D. multispirans 

composed of 4 subunits of native molecular weight 132 kDa and attached to the 

inner aspect of the cytoplasmic membrane by anchor proteins. In contrast to 

flavocytochrome c neither have succinate oxidising capacity. The lack of this 

activity, at least in baker's yeast, is thought to provide an accumulation of 

succinate during oxygen limiting conditions. 



CHAPTER 4 

CLONING AND SEQUENCING FLAVOCYTOCHROME C 
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4.1. Introduction 

Initial attempts to clone the flavocytochrome c gene were based on 

complementation of an frdA mutation in E. coli (Chapter 5). An alternative 

strategy to clone the flavocytochrome c gene was by using an expression vector 

system. Expression libraries have been extensively used for cloning eukaryotic 

genes (see Chapter 1) and should work similarly for the cloning of bacterial 

genes. It was decided to construct a library in the pEX series of expression 

vectors, which direct expression of cloned DNA as lacZ fusions as the expression 

of cloned inserts in all three reading frames maximises the chances of 

identifying a particular product. Furthermore, the presence of the polylinker 

cloning site at the 3' end of the truncated lacZ gene directs the synthesis of more 

stable hybrid proteins (Stanley, 1984). 

4.2. Preparation of chromosome for cloning 

4.2.1. Isolation of chromosomal DNA from S. putrefaciens 

Chromosomal DNA was prepared from S. putrefaciens by the modified 

protocol according to Maniatis et al (1989) (section 2.21.), which was originally 

developed for E. coli. At the stage following addition of lysozyme it was found 

that incubation of the suspension at 300C achieved more complete lysis than at 

room temperature. Subsequently, on addition of proteinase K at 500C, the 

combination of a more dilute suspension and good cell lysis facilitated efficient 

proteolysis which was indicated by a colour change of the suspension from a 

deep red to pale straw yellow colour. Approximately 500 ag of chromosomal 

DNA was routinely isolated by this method from a 100 ml overnight culture of S. 

putrefaciens. This was estimated from the A260:A280  ratio (section 2.21.) to 

have a value of 2.0, indicating purity of the sample (uncontaminated with 
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cellular protein). To ensure that no nuclease activity or extensive chromosomal 

shearing had occtAcceA during isolation, a sample was electrophoresed in 0.5% 

agarose. The DNA was observed to migrate as a single band of approximately 

20 kb in accordance with pure chromosomal DNA. 

4.2.2. Partial digestion of S. putrefaciens chromosomal DNA. 

Chromosomal DNA from S. putrefaciens, prepared according to section 

4.2.1., was partially digested with Sau3A to yield suitable fragments for library 

construction. Preliminary partial digests were performed as described in section 

2.22.1. to estimate the digest time which yielded the maximum quantity of DNA 

fragments of 1-10 kb. From this preliminary experiment (Plate 4.1.) it was 

proposed that the digest time yielding the majority of fragments of this size was 

between 5 and 10 minutes following addition of enzyme. Continuing incubation 

for more than 10 minutes yielded an abundance of fragments which were 

smaller than 4 kb. 

To yield a sufficient quantity of partially digested chromosome, 200 gg of 

DNA was digested with Sau3A for 8 minutes in an appropriately scaled up 

reaction (section 2.22.2.). The success of this partial digest was determined by 

electrophoresis of an aliquot on agarose (Plate 4.2.), from which it was observed 

that suitable partial digestion was obtained yielding a range of fragments from 

less than 0.5 kb to approximately 20 kb, with the greatest abundance of DNA 

occurring in the range of 2-10 kb. 

4.2.3. Size fractionation of partially digested DNA. 

To isolate and concentrate fragments of 1-10 kb from the scaled up 

partial digest, DNA was size fractionated on 10-40% sucrose gradients. The 

distribution of DNA and fragment size in the gradient fractions were 
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Plate 4.1. Preliminary partial digest of S. putrefaciens genomic DNA. 

1 	2 	3 	4 	5 	6 

Sau3A (3 units) was mixed with genomic DNA (6 itg)  preheated in a 370C water 

bath. Aliquots containing approximately I iig DNA were removed at 0, 5, 10, 

13, 16, and 20 intervals following addition of enzyme and the reaction stopped 

immediately by EDTA, pH 8.0 (final concentration 20 mM). The extent of 

digestion in each sample was determined by electrophoresis on 0.5% agarose. 

Lane 	Digest time (mm) following addition of Sau 3A. 

1 	 0 

2 	 5 

3 	 10 

4 	 13 

5 	 16 

6 	 20 
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Plate 4.2. Large scale partial digest of S. putrefaciens genomic DNA. 
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Chromosome (200 pg) was digested with Sau3A (100 units) for 8 min in a 370C 

water bath before inactivation of the enzyme by extraction with 

phenol /chloroform (1:1). Following ethanol precipitation, the digest was 

assessed by electrophoresis of approximately 5 g DNA on 0.5% agarose. 

Lane 

1 	Sau3A partial digest (5 ig). 

2 	Undigested chromosomal DNA (1 pg). 
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determined by electrophoresis (Plate 4.3.) from which it was observed that the 

majority of DNA was collected in fractions 12-20. Fractions 1-12 and 22-30 

were discarded as containing DNA fragments of more than 10 kb or less than 1 

kb respectively. Fractions 13-16 and 17-20 inclusive were pooled separately to 

yield two samples of size fractionated DNA with fragment sizes ranging from 4-

10 kb and 0.5-4 kb, rcu3• 

4.3. Library construction and screening 

4.3.1. Genomic library construction in pEX3. 

The library was constructed in E. coli MM294 containing the plasmid 

pc1857 (Figure 2.1.) as described in section 2.24. by the ligation of 0.5-4kb 

Sau3A genomic fragments of S. putrefaciens into the BamHl site of pEX3 

(Figure 4.1.). A library of 25 000 colonies was obtained, 90% of which were 

recombinants (assessed by isolating and sizing plasmid from ten independent 

transformants in comparison to the parent vector). 

4.3.2. Library screening. 

Although antibody raised to purified flavocytochrome was previously 

shown to detect flavocytochrome from cell extracts of S. putrefaciens, screening 

of an expression library would require the antibody to have a relatively high 

affinity for the flavocytochrome. 	Affinity of the antibody to purified 

flavocytochrome was assessed (section 2.12.3.) and is described below. 

Ten-fold dilutions of the flavocytochrome from 100 ILg to 0.1 ng were 

spotted on to nylon filters which were then treated as for Western blots, except 

that each of the filters was incubated with a different volume of flavocytochrome 

specific IgG from 10-500 ,al in a volume of 15 ml. Following development of the 
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Plate 4.3. Size fractionation of partial digest. 

kb 

9.4 
— 6.6 

—44 

., 2.3 

/ 0.5 

A1 	2 3.4 5678910 H 12137 

 

Partially digested chromosome was size fractionated by centrifugation on 10-

40% sucrose gradients. Aliquots (0.5 ml) were collected and 20 Al of each 

alternate fraction electrophoresed on 0.5% agarose. The markers were diluted 

1:1 with 40% sucrose to compensate for the sucrose content of the DNA 

fractions. 

Lane Fraction Lane Fraction 

1 3 8 16 

2 4 9 18 

3 6 10 20 

4 8 11 22 

5 10 12 24 

6 12 13 26 

7 14 
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Figure 4.1. Summary of S. putrefaciens genomic library construction in 

pEX3. 

Undigested chromosomal DNA 

Partial digest with SauSA 

Size fractionate DNA fragments on 

sucrose gradients. 

amp 
Ligate 0.5-4 kb DNA fragments into 

the BamHl site of pEX3 to create cro-IacZ E 	a recombinant library. Transform the 
r ecombinant 

	 library into MM294 then screen for a BamHi 

 Barn HI recombinant containing the desired 

cloned 	 insert. 

fragment 
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filters it was found that incubation with 100 ILI IgG could detect 10 ng and 

possibly as little as 1 ng of flavocytochrome c (Plate 4.4.). Smaller volumes of 

IgG were able to detect no less than 100 ng of flavocytochrome, and increasing 

the volume of IgG to greater than 100 Al did not result in an increased ability to 

detect flavocytochrome c. No binding of IgG occurred to the control protein 

BSA. This indicated that flavocytochrome specific IgG was specific enough to 

use for library screening subject to these predetermined conditions. 

The library was screened as described in section 2.24.2. at a density of 

approximately 2000 colony forming units per plate. Development of the filters 

was controlled as described below. The control filter of MM294 containing non-

recombinant pEX3 was developed first to determine the background 

development time (due to non-specific binding of the antibody). The 

experimental filters with recombinant colonies were then developed individually 

with any spot developing more quickly than the background recorded as 

corresponding to a putative positive clone (Plate 4.5.). Ten spots fitting this 

criterion were picked and found to correspond to colonies on alignment of 

filters with the original plates. This was a rather high number of putative 

positive clones as in a library of approximately 22 000 independent 

recombinants it would be expected to identify only one or perhaps two putative 

positive colonies. 

The colonies giving positive hybridisation were isolated and rescreened 

according to section 2.24.2. On rescreening, only one of the original ten positive 

clones gave a strong hybridisation signal, which was more in agreement with the 

previous estimate of one or two positive clones. 

This colony was further analysed as described in section 2.24.3. to 

investigate hybridisation of flavocytochrome c-specific IgG to any cellular 

protein. Western blotting showed several flavocytochrome c related protein 
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Plate 4.4. Specificity of flavocytochrome specific IgG. 

1 	2 	3 	4 	5 	6 

Dilutions of purified flavocytochrome c were spotted on to nylon membrane. 

The membrane was air dried then developed according to section 2.12. with 100 

Al IgG raised to purified flavocytochrome c. 

Spot 	amount of purified flavocytochrome (ng). 

1 BSA(10Og) 

2 0.01 

3 0.1 

4 1 

5 10 

6 100 
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Plate 4.5. Colony screen of S. putrefaciens pEX3 expression library. 

The pEX3 expression library in MM294 was plated at approximately 2000 colonies 

per 7.5 cm diameter plate. After incubation at 300C for 16 h followed by induction 

at 420C for 2 h, the colonies were replica plated onto hybond N and lysed by 

incubating at 950C for 30 min on a pad of filter paper presoaked in 5% SDS. Cell 

debris and SDS were removed by electroblotting (1 h at 50V) followed by washing in 

TBS containing lysozyme (10 mg ml) 

flavocytochrome specific IgG. 

The filters were then developed with 
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bands expressed from the putative positive clone, the largest of which was 

approximately 45 kDa. (Plate 4.6.). Antibody did not recognise protein from 

other recombinants or non-recombinants cultured either at 300C or 420C, 

therefore excluding the possibility that antibody was recognising a heat shock 

protein induced during elevated incubation temperatures. 

Recombinant plasmid was purified and the cloned fragment judged to 

be approximately 1.3-1.5 kb (Plate 4.9.), which should encode a protein of 

approximately 50-60 kDa. This size is similar to that of the largest protein band 

detected following development of the Western blot (Plate 4.6.). From the 

information on the size of the cloned fragment however, it could be presumed 

not to encode the full length flavocytochrome, as from the flavocytochrome 

molecular weight of 84 kDa, a DNA coding sequence of slightly over 2 kb would 

be required. 

It was rather surprising that the antibody did not detect the induced 

recombinant protein as an hybrid protein (Stanley and Luzio, 1984). To 

determine whether this occurred only with this particular clone or if it was 

common to other clones in the library, a Western blot as in Plate 4.6. was 

performed, only this time was developed with anti -galactosidase antibody. In 

all cases, hybridisation was observed to a 90 kDa protein which corresponded to 

truncated -galactosidase from non-recombinant pEX3. No hybridisation was 

observed to a protein of more than 90 kDa and none to the proteins of 45 kDa 

and less, which bound flavocytochrome specific antibody. Furthermore Kenacid 

blue stained gels showed no protein bands corresponding to those produced by 

the recombinant plasmid which hybridised to flavocytochrome specific IgG. 

The literature (Stanley and Luzio, 1984) suggested that induced hybrid 

protein should have been readily observed as up to 25% of total cell protein 

following incubation at 420C for 2 h. In this case, the low level of induced 



Plate 4.6. Western blot of pEX3 recombinants. 

Cultures were grown aerobically at 300C in LB containing ampicillin and 

kanamycin to reach an 0D600  of 0.4 then incubated at 420C for 90 min to 

induce expression of hybrid protein. Total lysates (approximately 30 jig) of 

induced and uninduced cultures were separated by SDS-PAGE (10%), then 

transferred by Western blotting (section 2.12.) to nylon membrane which was 

developed with antibody raised to purified flavocytochrome c. 

Lane Description of sample. 

1 	purified flavocytochrome c (2 jig). 

2 	induced pEX3 non-recombinant. 

3 	uninduced pEX3 non-recombinant. 

4 	induced pEX3 recombinant, positive in both primary colony screens. 

5 	uninduced pEX3 recombinant, positive in both primary colony screens. 

6 	induced pEX3 recombinant, positive on the initial primary colony 

screen but negative on the second. 

7 	uninduced pEX3 recombinant, positive on the initial primary colony 

screen but negative on the second. 
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Plate 4.6. Western blot of pEX3 recombinants. 
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hybrid protein and its presence as several bands strongly suggested that it was 

subject to some slight proteolysis. This was further confirmed by the report that 

rapidly shifting a mid-exponential culture from 300C to 420C resulted in 

generalised heat shock, with some of the proteins induced being proteases 

(Baker et a!, 1984). The failure of flavocytochrome c antibody to bind to protein 

corresponding to the truncated fl-galactosidase indicated that the pEX3 hybrid 

was cleaved at the fusion junction following temperature induction, releasing 

two proteins, one corresponding to the cro-lacZ from pEX3 and the other 

protein originating from the cloned DNA fragment. 

The induced cell lysate was haem stained to identify whether haem was 

incorporated into protein expressed from this cloned DNA, and stained by 

zymogram for fumarate reductase activity. No fumarate reductase activity was 

detected, and no haem staining bands corresponding to protein expressed from 

the cloned fragment were observed. 

4.4. Characterisation of the cloned fragment 

The flavocytochrome c gene fragment cloned in pEX3 was characterised 

by DNA sequence analysis in the expectation that comparison of the predicted 

amino acid sequence with other known sequences, particularly from 

flavoproteins and cytochromes)might allow identification of particular functional 

regions of the flavocytochrome c polypeptide. This information would be of 

great importance to subsequent biochemical and biophysical analysis of the 

structure and function of flavocytochrome c. 

4.4.1. Genomic southerns of S. putrefaciens and E. coli. 

To confirm that the fragment cloned in pEX3 originated from the 

genome of S. putrefaciens, hybridisation of the fragment to chromosomal DNA 
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was investigated. Genomic DNA from S. putrefaciens and E. coli MM294 was 

digested independently to completion with several restriction enzymes, the 

fragments separated on agarose, then probed following Southern blotting. The 

fragment hybridised to a large (> 20 kb) Barn HI fragment, a 5 kb PstI fragment, 

a 1.8 kb HindIII fragment and a 1.6 kb EcoRI fragment from S. putrefaciens 

(Plate 4.7.). No hybridisation was observed to any chromosomal fragment from 

E. coli. This indicated that the fragment was of S. putrefaciens genomic origin, 

and in addition provided preliminary mapping information of the fragment with 

respect to the flanking genomic regions. 

4.4.2. Formation of sequencing constructs 

To enable sequencing of the cloned flavocytochrome c gene fragment, 

the insert was then transferred from the recombinant pEX3 vector (pACB1) 

into phagemid vectors specifically designed for DNA sequencing. The vectors 

chosen for this were pTZ18R and pTZ19R (Rokeach et a!, 1988) (Figure 2.3.) 

which are identical except that the polylinker is inserted in the inverse 

orientation in each vector, permitting sequencing of both DNA strands. The 

presence of both pBR322 and fl origins of replication, permits the production of 

both double-stranded and single-stranded DNA (in the presence of helper 

phage M13K07). 

To isolate the pEX3 fragment as a single band which could be cloned 

directly into the polylinker of pTZ18R and pTZ19R, pACB1 was digested with 

SrnaI and PstI which flanked the fragment in the polylinker and also cut 

uniquely in the polylinker of both sequencing vectors. These enzymes were 

considered not to have any sites centrally located in the fragment, as SmaI/PstI 

double digests of pACB1 yielded only two visible bands, one of 5.75 kb which 

was identical in size to the parent vector, and one of approximately 1.3-1.5 kb 
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Plate 4.7. Genomic Southern of S. putrefaciens. 
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Chromosomal DNA (1 g) from S. putrefaciens was digested to completion with 

restriction enzymes as listed below. Plasmid pTZ19R (500 ng) and pTZ19R 

containing the cloned fragment (500 ng) were digested with PstI. The fragments 

were separated on agarose then probed with the cloned DNA fragment 

according to section 2.19.. 

Lane DNA source Enzyme 

1 chromosome Barn HI 

2 chromosome EcoRI 

3 chromosome HindIII 

4 chromosome PstI 

5 pTZ19R PstI 

6 pTZ19R + cloned fragment PstI 
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which corresponded to the cloned fragment (Plate 4.8.). Furthermore, the 

reduction in pACB1 size (of approximately 1.5 kb) when doubly digested with 

PstI and Smal corresponded to the predicted insert size. Although the cloned 

fragment appears very faint in Plate 4.8., it can be observed more clearly in lane 

7 of Plate 4.9. where it is more accurately sized by comparison to a BglI digest of 

pTZ19R which yields fragments of 1279 bp and 1571 bp. (The other bands of 

2.1 kb and 2.8 kb are due to the plasmid pc1857 encoding the temperature 

sensitive repressor which controls expression of cloned DNA in pEX3). 

The complete fragment was isolated by a SmaI/PstI double digest of 

pACB1 then subcloned separately into the polylinkers of pTZ18R (Figure 4.2.) 

and pTZ19R (Figure 4.3.) to yield recombinants pACB2 and pACB3 

respectively. Sequencing of the fragment in these vectors gave approximately 

800 bp of sequence comprising of about 400 bp from either end with the centre 

stretch unsequenced. In an attempt to complete the sequence, the fragment was 

partially mapped in pACB3 with several enzymes to identify potentially useful 

internal restriction sites which would facilitate appropriate manipulation of the 

cloning constructs (see Figure 2.3. for sites of these enzymes within the parent 

vector). ClaI, DraI, PvuII and EcoRI were all found to cut within the fragment 

(Plate 4.9.). Of those, the only useful site seemed to be EcoRI which cut at a 

site approximately SOObp from the Smal site. Gal, PvuII and Dral were not as 

potentially useful, with Cial having two restriction sites in the fragment, one at 

the Smal end and one centrally located, and the Dral and PvuII sites being 

located 100 bp and 200 bp respectively again from the Smal end of the 

fragment. An EcoRI deletion construct (pACB21) was made in pACB2 by 

removal of an internal 500 bp EcoRI fragment. The vector was then religated, 

thus transferring the internal EcoRI site to a position in the polylinker, which 

enabled sequencing from the internal EcoRI site (Figure 4.4.). Overlapping 
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Plate 4.8. Isolation of the cloned fragment from pEX3. 

Plasmid DNA (500ng) isolated from MM294 hosting either pEX3, or pEX3 

recombinant containing the cloned fragment was digested as described below. 

Lane 	DNA source 	 Enzyme(s) 

1 	 pEX3 recombinant 	 Smal 

2 	pEX3 recombinant 	 PstI 

3 	pEX3 recombinant 	 SrnaI/PstI 

4 	 pEX3 	 Smal/PstI 
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Figure 4.2. Construction of pACB2. 
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The small SmaI/PstI fragment from pACB1 (the pEX3 recombinant expressing 

protein which hybridised to IgG raised against purified flavocytochrome c) was 

ligated into pTZ18R digested with SmaI/PstI to create pACB2. 
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Figure 4.3. Construction of pACB3. 
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The small SmaI/PstI fragment from pACB 1 (the pEX3 recombinant expressing 

protein which hybridised to IgG raised against purified flavocytochrome c) was 

ligated into ptZl9R digested with SmaI/PstI to create pACB3. 
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Plate 4.9. Mapping and sizing cloned fragment in pACB2. 

Plasmid DNA (500 ng) was digested with the enzymes listed below prior to 

electrophoresis. 

Lane DNA source Enzyme 

1 pTZ19R PstI 

2 pACB3 ClaI 

3 pACB3 DraI 

4 pACB3 EcoRI 

5 pACB3 PvuII 

6 pTZ19R PstI/SmaI 

7 pACB3 PstI/SmaI 

8 pTZ19R BglI 
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Figure 4.4. Construction of pACB21. 
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The 0.5 kb EcoRI fragment (approximate size) from pACB2 was deleted and the 

vector religated to generate pACB21. 
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sequence was obtained from the constructs pACB3 and pACB21, but the 

sequence from pACB2 was not of sufficient length to give a complete overlap 

with that of pACB3. The sequencing strategy and partial restriction map is 

presented in Figure 4.5., with the nucleotide sequence of the two DNA 

fragments presented in Figure 4.6. 

To identify the most likely translational reading frame, the sequences 

were translated in both directions and all reading frames using the computer 

program MAP of the UWGCG package of sequence analysis programs (section 

2.18.3.). Frequent stop codons were obtained on translation of both parts of the 

sequence in five reading frames. The sixth reading frame (the same in both 

sequences) was tentatively suggested as the true reading frame as in addition to 

the lack of stop codons it corresponded in both orientation and frame to that 

from which the fragment was originally cloned in pEX3. The predicted amino 

acid sequence of the two fragments is presented in Figure 4.7. 

4.4.3. Position of flavocytochrome c coding region within the cloned fragment. 

At this stage it was not known to which region of the flavocytochrome 

gene the fragment corresponded nor how much upstream or downstream 

sequence was present in addition to the coding region. In order to position the 

flavocytochrome coding region within the fragment, it was decided to compare 

the amino acid sequence from purified protein with the translated DNA 

sequence. Correspondence of the N-terminal amino acid sequence with a 

region of the fragment would establish the location of the start of the 

flavocytochrome coding region. In the absence of any identity with the N-

terminal sequence, identification of the coding domain could be achieved by 

comparison of internal protein sequence (by sequencing of peptide fragments 
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Figure 4.5. Partial Restriction map and Sequencing Strategy of Cloned 
Fragment. 
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3 = Sequence from ACB21. 	 N = NruI H = Hindill 
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Figure 4.6. Nucleotide sequence of the cloned fragment. 

 

1 	atgcgcac acaagttccg cttaatcgat tgaaaaaaca tctttttttt aaagatgtgt tcgatgctgt gtacctgtgc 

81 	tcacagaggt ctactttttc gcgaaaacgt agatctctac cgcccaacga aaagcatgaa agcgatcacg aatcccattg 

161 ggtcgtcatg ttctgccgat cgcatcttcc tatcctcgct ccaggcctgc cgcataacca atcaggcttc ctacttacag 

241 aattgagaaa agaggatgtg gaaatgctca gtcaaattca accgctttgg ctgcgcgatg ttcacgccag gtctgctgtt 

321 tcccttcgcc gggattgtgg tgggtcttgc catcttgctg caaaacccga tgtttgtcgg gaatcactga ccgatccgaa 

401 cagtttattc gcgcaaatcg tacacattat tgaagaggrSt 

HI 

1 	gaattccatg tacaaaacca agaatgtgat agctgccata caccagatgg tgaactgtca aacgacagct taacctatga 

81 	aaatacccaa tgcgtatctt gccatggcac acttgctgaa gtagctgaaa ccacaaaaca tgaacattat aatgctcatg 

161 cttctcattt ccctggcgaa gtagcttgta cctcatgcca cagcgcacac gaaaaatcga tggtgtattg tgactcttgc 

241 cacagcttcg atttcaacat gccttatgct aaaaaatggc tacgtgacga gccgactatt gctgaattgg ccaaagacaa 

321 atcagaacgt caggctgctc ttgctagcgc acctcacgat actgttgacg tagtggttgt cggttctggc ggcgcaggtt 

401 tctcagcggc aatatcagca acagacagtg gtgctaaagt cattcttatt gaaaaagagc ctgttattgg tggtaatgct 

481 aagttagctg cgggtggcat gaacgctgct tggactgatc aacaaaagcc aaaaaaaatt actgacagcc cagagttaat 

561 gttcgaagac accatgaaag gtggccaaaa cataaatgac cctgcattag ttaaagtatt aagctcacac tctaaagact 

641 ctgttgattg gatgaccgct atgggtgccg atttaactga tgttggcatg atgggtggcg catctgttaa tcgtgcgcat 

721 cgtccaaccg gtggtgcggg tgttggtgct catgttgttc aagtacttta tgataatgca gtgaaacgca atatcgactt 

801 acgcatgaac actcgcggca ttgaagtgct taaagatgat aaaggcactg ttaaaggtat tctggttaag gggatgtaca 

881 aaggttacta ctgggtgaaa gccgatgcgg taatcttagc aacgggtggt ttccgctaaa aataacgagc gtgtgoc 

961 agcttgat 

(1) 	Upstream sequence from the 5' end of the fragment in pTZ19R. 

Overlapping coding sequence obtained from the 5' EcoRl internal site in 

pTZ19R and the 3'end in ptZ18R. 
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Figure 4.7. Predicted amino acid sequence of the cloned fragment 

and N-terminal sequence of purified flavocytochrome c. 

U 

1 	 MRTQVPLNRL KKHLFFKDVF DAVYLCSQRS TFSRKRRSLP PNEKHESDHE 

51 	SHWVVMFCRS HLPILAPGLP HNQSGFLLTL LRKEDVEMLS QJQPLWLRDV 

101 	HARSAVSLRR DCGGSCHLAA KPDVCRESLT DPNSLFAQIV HIIEEA. 

1 EFHVQNQECD_SCHTPDGELS NDSLTYENTQ CVSCHGTLAE VAETTKHEHY 

51 NAHASHFPGE VACTSCHSAH EKSMVYCDSC_I-1SFDFNMPYA KKWLRDEPTI 

101 AELAKDKSER QAALASAPHD TVDVVVVGSG GAGFSAAISA TDSGAKVILI 

151 EKEPVIGGNA KLAAGGMNAA WTDQQKPKKI TDSPELMFEO TMKGGQNIND 

201 PALVKVLSSH SKDSVDWMTA MGADLTDVGM MGGASVNRAH RPTGGAGVGA 

251 	HVVQVLYDNA VKRNIDLRMN TRGIEVLKDD KGTVKGILVK GMYKGYYWVK 

301 	ADAVILATGG FAKNNERVAK LD. 

1 	AQNLAEFHVQNQE--D 

(1) 	Predicted amino acid sequence upstream of the flavocytochrome c coding 

region. 

Predicted amino acid sequence of flavocytochrome c coding region 

downstream of the EcoRI site. The four predicted heme attachment 

sites are underlined and the consensus sequence for FAD binding 

sites is double underlined. 

Amino acid sequence obtained on N-terminal sequencing of 

flavocytochrome c. The underlined region corresponds to the sequence 

predicted from the DNA sequence from the internal EcoRI site as in (ii) 

above. 
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generated by specific proteolytic cleavage of purified flavocytochrome) with the 

translated DNA sequence. 

N-terminal sequencing of flavocytochrome c yielded thirteen residues 

(Figure 4.7.(iii)) which on comparison with the translated fragment sequence 

gave complete identity from residues 6-13 of the protein sequence to a region 

starting at and continuing downstream from the EcoRI site (Figure 4.7.). This 

suggested the start of the flavocytochrome coding region to be located within 

the cloned fragment. Therefore approximately two thirds of the fragment, from 

a region just preceding the EcoRI site downstream to the fragment end 

comprised of flavocytochrome coding region with the remainder constituting 

upstream sequence. 

4.5. Molecular analysis of the cloned fragment. 

The flavocytochrome c amino acid sequence was compared to all other protein 

sequences in the Swissprot and OWL Databases. Flavocytochrome c showed 

so 	4c both c-type cytochromes and flavoproteins)indicating the presence 

of two distinct domains. 

4.5.1. Haem domain 

On the basis of a low redox potential and multiple haems, the 

flavocytochrome was previously suggested by Morris, (1987) to be a Classlil 

type cytochrome-c (Pettigrew and Moore, 1987). 

In this study, the predicted amino acid sequence identified four haem 

attachment sites within 90 residues of the N-terminus, all of the motif C-X-Y-C-

H which is a well conserved sequence among c-type cytochromes. This region 

was identified as the flavocytochrome c haem domain. All the Y residues were 

conserved as serine with X residues less conserved, being aspartate in two cases, 
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valine and t'nreonine. in the others. Identity of the flavocytochrome c haem 

binding domain was observed with other c-type cytochromes but was limited to 

the haem attachment sites. 

The flavocytochrome c haem domain was compared with sequences 

from other Classlil type cytochromes such as the mutihaem cytochromes c3  

from D. desulfuricans, D. gigas and D. vulgaris (Ambler et al, 1971) and the 

cytochrome from C/iL ethylica (Ambler, 1971). 

The c3  cytochromes were each of similar size (12 kDa) and contained 

four haem attachment sites within 100 residues, two with the characteristic motif 

C-X-Y-C-H, and two of the arrangement C-X-Y-X-Y-C-H. Alignment of the c3  

amino acid sequences showed that the haem binding sites occrr4 at almost 

identical regions of the sequence in each cytochrome with sequence homology 

highly conserved in the early part of the sequence. Cytochrome c7  contained 

three haem binding sites within a 68 amino acid peptide sequence which showed 

some similarity to that of Desulfovibrio, especially to that of D. desulfuricans, in 

regions between the haem binding sites. In agreement with the c3  and c7  

cytochromes, the flavocytochrome haem binding domains occurred within the 

first 100 residues near the protein N-terminus. There were no regions of 

identity between these cytochromes and the flavocytochrome apart from the 

characteristic haem binding site motif, and no alignment similarity of the haem 

domains. 

4.5.2. Flavin domain 

There was a high region of sequence conservation from residue 123-151 

of flavocytochrome c with the N-terminal region of other flavoproteins (Figures 

4.7ii, 4.8. and 4.9.). This region encompassing approximately 32 residues was 

previously described as the contact site for the bottom of the adenine portion of 
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the FAD in FAD-binding folds (Williams et a!, 1978). An amino acid 

fingerprint which allowed folding of a general flavoprotein, in a flap fold, in such 

a way to enable it to bind adenine was later reported by Wierenga et al (1986). 

It has been suggested that the Pap stucture, which always occurs near the N-

terminus of the dinucleotide binding domains, may function in the tertiary 

structure of the protein as a nucleation centre for the folding of the complete 

domain (Schulz and Schirmer, 1979). 

The predicted general structure (Figure 4.8.) was a flafi unit of 29-31 

residues with 11 conserved residues, each occurring at a specific position, 

allowing the peptide to form a Pap configuration (the variable length of the 

peptide accounted for by a loop between the a helix and the second P strand 

which could vary in residue number from 2-4). The conserved residues were 

arranged as a characteristic stretch of 4 hydrophobic residues followed by a 

glycine residue (A)'  a stretch of short side chain residues (aA)  and another 

region of hydrophobic residues (B)•  The important residues were thought to be 

the 3 glycines, essential for folding of the protein into a helices. 

The predicted general sequence was compared to the proposed 

flavocytochrome c FAD binding site in Figure 4.9. 	Similarity of 

flavocytochrome c to the fingerprint was obtained for all eleven conserved 

residues. 	This strongly confirmed at the molecular level that the 

flavocytochrome c flavin prosthetic group was FAD. 

As flavocytochrome c was shown to have both fumarate reductase and 

succinate dehydrogenase activities (Chapter 3), the flavocytochrome c sequence 

was compared in detail with the amino acid sequences of the flavoproteins 

fumarate reductase (Cole, 1982) and succinate dehydrogenase from E. coli 

(Wood et al, 1984) and the succinate dehydrogenase from B. subtilis (Phillips et 

al, 1987) all of which showed approximately 30% identity to flavocytochrome c 
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Figure 4.8. General ADP-binding $a$-fold. 

The spiny dogfish M-lactate dehydrogenase (Taylor, 1977; Eventoff et al., 1977) was 

used to describe the general structure of the ADP-binding flc$-fold  (Wierenga et al., 

1986). 

The highly conserved fingerprint residues are framed by two lines (A,, basic or 

hydrophilic, 0, small and hydrophobic, 0, glycine). 
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Figure 4.9. Comparison of flavocytochrome c FAD adenine binding region 
with other flavoproteins. 

1 2 3 4 5 	6 	7 	8 	 9 	10 11 
* * * * * 	* 	* 	* 	 * * * 
D VV VV G S G GAG F SA A IS AIDS GA K VI L 	E 

Similarity of the predicted flavocytochrome c adenine binding region with 

an amino acid fingerprint for FAD and NAD binding sites. 

Highly conserved residues are marked with an asterisk with corresponding 

residues of flavocytochrome c underlined. 

Key to conserved positions. 

Residue 	type of base 

1 	 basic or hydrophilic 

2,3,7, 
8,9,10 	small and hydrophobic 

4,5,6 	glycine 

11 	 acid 



Figure 4.10 	Alignment of flavocytochrome c flavin domain with flavin subunits 
from E. coli fumarate reductase and succinate dehydrogenase, and B. 
subtilis succinate dehydrogenase 

x 	x xxx* * x 	xxx x 	x 	xxx 	x x xx 	46 

Flavocvtochrome c ""ASAPHD TVDVVVVGSG GAGFSAAISA TDSGAKVI LIEKEPVIGG 

E. coli 	FrdA QTF QADLAIVGAG GAGLRAAIAA AQANPNAKIA LISKVYPMRS 

E. coli 	SDH MKLPVR EFDAVVIGAG GAGIARALQI SQSGQ..TCA LLSKVFPTRS 

B. subtilis 	SDH S QSSIIVVGGG LAGLMATIKA AESG"MAVK LFSIVPVKRS 

	

* ** x x 	x 	xxx x 	** xx x 	x 	xx 
NAKLAAGGMN AAWTDQQKPK KITDSPELMF EDTMKGGQNI NJDPALVKVLS 

HTVAAEGGS AAVAQ••DH • • .DSFEYHF HDTVAGGDWL CEQDVVDYFV 

HT\JSAQGGIT VALGN••TH •.EDNWENHM YDTVKGSDYI GDQDAIEMYC 

HSVCAQGGIN GAVNTKGE ••GDSPWEHF DDTVYGGDFL ANQPPLKAMC 

x 	 x 	 xx 'x x 	x 146 
SHSKDSVDWM E• •••• ........TAMQAD LTDVGMMGGA S• ••••VNRA 

HHCPTEMTQL ELWGCPWSRR PDGS ...... .VNVRRFGGM .......K1E 

KTGPEAILEL EHMGLPFSRL DDGR ...... .IYQRPFGGA SKNFGGEQAA 

EAAPSIIHLL DRMAVMFNRT PEG.......LLDFRRFGGT .......QHI-1 

xx * 	x 	 x 	 x 	 xxxx x 196 
HRPTGGAGVG AHVVQVLYDN AVK.......RNIDLRMNTR GIEVLKDDKG 

RTWFAADKIG FHMLHTLFQT SLQF ... PQI QRFDEHF VLDILV•DDG 

RTAAAADRTG HALLHTLYQQ NLK•••NHT TIFSEWY•• ALDLVKNQDG 

RTAYAGATGG QQLLYALDEQ VRRYEVAGLV TKYEGWE FLGAVLDDDR 

xx x x x 	xx 
	

237 
TVKGILVKGM YKGYYW•VKA DAVILATGGF AKNNERVAKL 0 

HVRGLVAMNM MEGTLVQIRA NAVVMATGGA GR........ 

AVVGCTALCI ETGEVVYFKA RATVLATGGA GR......... 

TCRGIVAQNL TNMQIESFRS DAVIMATGGP GI ........ . 

*: Conservation of residue in all four proteins 

x: Conservation of residue in flavocytochrome c and one or two of the other 
fl avoprotei ns 
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over ai. more extensive region of approximately 200 amino acid residues directly 

downstream of the FAD binding region. Covalent binding of FAD depends on 

the presence of a highly conserved histidine residue occurring 42 residues 

downstream of the N-terminus. 	This residue was not conserved in 

flavocytochrome c further confirming earlier experimental observations (Morris, 

1987) that the flavin was non-covalently bound. 

The active site cysteine at residue 87 in the flavoproteins was not 

conserved in flavocytochrome c. 	Close examination of the available 

flavocytochrome sequence failed to identify any potential active site cysteine 

residues in the proposed flavin domain, which was considered rather unusual as 

previous studies of flavoprotein subunits have indicated that thiol groups are 

essential for activity, substrate binding, or both (Kenney et al, 1976; Robinson 

and Weiner, 1982; Unden and Kroger, 1980). 

Identification of other active site cysteines and histidines, in particular a 

His-Pro-Thr sequence which may be conserved in the active site of other 

flavoproteins (Rice et a!, 1984), could not be done as the flavocytochrome c 

sequence had not been extended this far. Very few histidines were observed in 

the available sequence from flavocytochrome c, none of which corresponded to 

conserved residues in the other flavoproteins. The importance of histidine has 

not yet been fully identified although they are considered to perform proton 

donor-acceptor functions in succinate dehydrogenase (Hederstedt and Hatefi, 

1986, Vik and Hatefi, 1981). There were no other readily identifiable regions of 

active site similarity between flavocytochrome c and these other enzymes, so the 

observed identity of 30% over 200 residues was thought to be structural and 

involved in protein folding to allow substrate binding. 

Although the complete flavocytochrome c coding sequence is not yet 

available, by examining the conserved regions of other flavoproteins it was 
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considered possible to predict some function for the remaining unsequenced 

region. It was indicated from the molecular weight of other flavoproteins (the 

flavoprotein subunit of E. coli fumarate reductase is 68 kDa; that of the B. 

subtilis succinate dehydrogenase is 65 kDa) that the remainder of 

flavocytochrome c (of approximately 74 kDa; 10 kDa being the haem domain) 

would be probably be the flavin domain. In particular, the unsequenced region 

downstream of the flavin domain would be expected to contain sequence 

involved in binding the top part of the FAD adenine. A region corresponding to 

this and located in residues 355-374 of B. subtilis succinate dehydrogenase is 

conserved in the flavoprotein subunits of both E. coli fumarate reductase (Cole 

et al, 1985) and succinate dehydrogenase (Wood et al, 1984), glutathione 

reductase and lipoamide dehydrogenase (Rice et al, 1984). This region is 

thought to bring the adjacent segment residues close to the flavin and active site. 

4.5.3. Upstream region. 

The nucleotide sequence (i) of Figure 4.6., which seemed to be open 

reading frame, was examined in an attempt to identify a promoter sequence. No 

consensus -35 (TTGACA) or -10 (TATAAT) regions were identified, nor were 

other less common promoter sequences (Lewin, 1990). It would seem likely 

therefore that the promoter was present in the 200 bp unsequenced region 

(Figure 4.5.) upstream of the predicted protein N-terminus, haem and flavin 

domains. 

4.6. Screening for a clone encoding the entire flavocytochrome c gene 

In parallel with sequencing, the cloned fragment was used as a 

homologous DNA probe to simultaneously screen the pUN 121 (Chapter 5) and 



pEX3 libraries in an attempt to isolate at least one further clone which encoded 

the full length flavocytochrome. 

This was unsuccessful as although three thousand independent 

recombinants from each library were screened (according to section 2.19.1.2. 

and 2.19.3.) no colony was isolated encoding the full length flavocytochrome c. 



CHAPTER 5 

AYFEMPTS TO CLONE FLAVOCYTOCHROME C 

BY 

GENETIC COMPLEMENTATION 
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5.1. Preliminary Studies. 

Preliminary studies were executed to establish which systems of genetic 

transfer could be easily developed to allow the introduction of DNA fragments 

into S. putrefaciens. The availability of such a system would enable the direct 

cloning of flavocytochrome c by functional complementation of a fumarate 

reductase mutation, the major advantage of this being isolation of a complete 

gene. Earlier work by Gibson (1981) showed conjugative transfer of the broad 

host range plasmid RP4 from E. coli to S. putrefaciens to occur at a frequency of 

2 x 10-2  per recipient. Later studies (Campbell, 1986) involved the isolation and 

partial mapping of a 6.75 kb cryptic plasmid fom S. putrefaciens. This work 

showed that genetic transfer between E. coli and S. putrefaciens was possible and 

that genetic transfer also occurred within S. putrefaciens itself. 

The early sections of this chapter investigate the possibility of cloning 

flavocytochrome c in S. putrefaciens itself by identification of a suitable cloning 

vector and method of gene transfer, in parallel with generation of a 

flavocytochrome c mutant and development of a screen for functional 

complementation of fumarate reductase activity. Later studies describe the 

attempt to clone the entire flavocytochrome c gene in E. coli by functional 

complementation of a characerised fumarate reductase mutant. 

5.1.1. Transformation of S.putrefaciens 

At the time of this study, no vectors designed specifically for use in S. 

putrefaciens were available to investigate transformation. In contrast, many 

cloning vectors have been constructed for E. coli, so it was decided to study the 

ability of S. putrefaciens to be transformed by and maintain the E. coli plasmid 

vector pAT153 (Twigg and Sherratt, 1980). pAT153 is a pBR322 derived 3.7 kb 

plasmid, which confers ampicillin and tetracycline resistance on the host. 
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Prior to attempting transformation, the inherent resistance of S. 

putrefaciens to various antibiotics was investigated to determine a suitable 

antibiotic for selection of transformants (Table 5.1.). S. putrefaciens NCMB400 

was found to be sensitive to low levels of all antibiotics tested including 

ampicillin and tetracycline>  which are encoded by pAT153.Therefore either 

ampicillin or tetracycline would be suitable for plasmid selection following 

transformation. 

Transformation of S. putrefaciens was performed as follows. Mid 

exponential cultures were made putatively competent by a slight modification of 

the method described in section 2.18., which involved heat shock of the cells at 

300C and 250C to account for the lower growth temperature of S. putrefaciens. 

Consultation of various articles showed heat shock of Gram-negative bacteria 

was generally carried out on mid to late exponential cultures at temperatures 

approximately 50C above the optimal growth temperature (Spizizen, et at, 1966; 

Cohen et al, 1972). Plasmid pAT153 was then mixed with putatively competent 

cells and transformants selected from the cells shocked at each temperature, 

following non-selective expression at 2-hour intervals from 1 hour to 24 hours at 

200C, on nutrient agar plus 1% NaCl containing twice the S. putrefaciens growth 

inhibiting concentration of either tetracyline or ampicillin. Non-selective 

expression was allowed for this length of time as it was considered that due to 

the slower growth rate of S. putrefaciens an extended incubation might be 

required for expression of plasmid DNA, and resistance to the selective 

antibiotics was assessed separately in case one plasmid encoded resistance was 

not expressed as efficiently as the other preventing growth of transformants. 

Transformation of E. coli HB101 by pAT153 was performed in parallel 

with that of S. putrefaciens using the standard procedure (section 2.18.) and 

transformants selected in duplicate on L-agar incorporating either ampicillin or 
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Table 5.1. Indigenous antibiotic resistance of S. putrefaciens. 

Antibiotic 	MIC (tg MI-1) 

tetracycline 	 5 

ampicillin 	 5 

kanamycin 	 10 

Antibiotics (tetracycline, ampicillin, or kanamycin) were incorporated into 

nutrient agar, containing 1% NaCl, at concentrations ranging from 1 jug to 50 sag. 

The plates were incubated for 3 days at 200C following which the MIC 

(minimum inhibitory concentration) was defined as the concentration of 

antibiotic above which growth of all colonies was inhibited. 
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tetracycline at concentrations according to Table 2.3. Viable counts of both 

organisms were evaluated on non-selective media following transformation; in 

addition, the viability of S. putrefaciens was studied following treatment with 

calcium chloride and heat shock to determine any significantly damaging effect 

on the cells by this procedure. The cells remained viable throughout and the 

results of the transformation are presented in Table 5.2. No transformants were 

obtained from S. putrefaciens by selection on ampicillin or tetracycline following 

heat shock at either temperature. The possible reasons for unsuccessful 

transformation are discussed below (Section 5.1.4.). 

5.1.2. Indigenous plasmid analysis in S. putrefaciens 

Two plasmids of approximately 6.75 kb and 60 kb were previously 

isolated from S. putrefaciens D44, so plasmid profiles of S. putrefaciens 

NCMB400 were obtained to investigate the presence of indigenous plasmid 

which could prospectively be used as a cloning vector. No small indigenous 

plasmid was isolated from NCMB400 although there seemed to be a large (>20 

kb) plasmid, of similar size to that observed in D44. 

5.1.3. Generation of mutants in S. putrefaciens 

Until recently the only methods available for mutagenesis in S. 

putrefaciens involved the use of chemical mutagens such as nitrosoguanidine 

which was used by Nasser (1983) to isolate electron transport mutants of S. 

putrefaciens. Although nitrosoguanidine is a potent mutagen, it preferentially 

mutates DNA which is replicating (Mandelstam et al, 1982) and often results in 

a series of closely linked mutations rather than a single mutation. Conventional 

techniques of transposon mutagenesis were restricted either due to the difficulty 

of introducing the transposon into S. putrefaciens or stability of mutations. The 
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Table 5.2. Transformation of S. putrefaciens NCMB400 and E. coli 1113101 with 

pAT153. 

transformants 

Selection 	HB101 	NCMB400 

ampicillin 	3 x 105 	0 

tetracycline 	2.9 x 105 	0 

pAT153 (30 ng) was mixed with putatively competent cells of S. putrefaciens 

(section 2.20.1.). Following heat shock (in duplicate at 250C and 300C) non-

selective expression of DNA was allowed for up to 24 h at 200C. Transformants 

were detected by selection for plasmid encoded antibiotic resistance on nutrient 

agar plates, containing 1% NaCl, plus either ampicillin or tetracycline at twice 

the MIC concentration (10 ,g rn!4). E. coli HB101 was transformed in parallel 

with 30 ng pAT153 by the standard transformation procedure (section 2.20.2.). 
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recent availability of the transposable element Tn5 on conjugative plasmids such 

as Omegon Km (Felley et a!, 1989), has facilitated the stable mutation of single, 

random sites on the genome and as such are very useful for generating mutants 

in bacteria like S. purrefaciens which have no simple transformation system. 

Approximately 2000 mutants of S. putrefacien.s generated by Omegon Kin 

transposon mutagenesis have been screened for inactivation of the 

flavocytochrome c gene by the inability to utilise fumarate as terminal electron 

acceptor (Perry, 1989; Green, 1990). This was assessed by the development of 

an agar plate overlay assay where mutants were grown anaerobically then 

transferred to an anaerobic jar to simulate oxygen limited growth conditions. 

Following incubation for several hours, the plates were overlaid with agar 

containing fumarate and artificially reduced benzyl viologen. Colonies which 

could not utilise fumarate as a terminal electron acceptor would be unable to 

oxidise the reduced benzyl viologen thus remaining coloured. No fumarate 

reductase mutants have yet been isolated. A flavocytochrome c mutant would 

be expected to be defective in both TMAO and fumarate reduction, and to lack 

the 84 kDa flavocytochrome c protein following SDS PAGE. Complementation 

of such a mutation would result in functional restoration of both fumarate and 

TMAO reductase activity. 

5.1.4. Conclusions 

Transformation of S. putrefaciens was unsuccessful with the vector 

pAT153 (section 5.1.1.). This failure seemed not to be due to the damaging 

effect of some experimental stage to the cells, as viablity was maintained 

throughout the transformation procedure, but to either impermeability of the 

cells to the plasmid or instability of the plasmid within the cell resulting in its 

failure to replicate and eventual loss. The pAT153 origin of replication has a 
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narrow host range which prevents it from being maintained in a range of 

bacteria, although it was considered that as S. putrefaciens belongs to the same 

5S ribosomal RNA family as E. coli and is therefore not too distantly related, 

pAT153 might be maintained in S. putrefaciens. Expression of the selective 

antibiotics ampicillin and tetracycline was not considered to be a problem as S. 

putrefaciens is able to express plasmid encoded antibiotic resistance (Gibson, 

1981).Tt wQs reported that on conjugative transfer of RP4 from E. coil to S. 

putrefaciens, plasmid encoded resistance to tetracycline and ampicillin was 

expressed to a level well above the selective concentration in this experiment. 

Although it seemed likely that the lack of transformants was due to the 

inability of pAT153 to be maintained in S. putrefaciens, it cannot be disregarded 

that calcium chloride treatment may have been ineffective at inducing 

competence in S. putrefaciens. Techniques used to facilitate the uptake of 

plasmid DNA by bacterial cells resistant to calcium chloride treatment have 

been described. They include sphaeroplasting and electroporation and are 

described below in more detail. 

The transfer of DNA into sphaeroplasts generated by cell wall digestion 

by lysozyme was limited due to the difficulty of cell regeneratation. However a 

method involving the isolation of temperature sensitive peptidoglycan mutants 

by nitrosoguanidine was developed (Suzuki and Szalay, 1980). This involved the 

introduction of plasmid DNA into sphaeroplasts at the restrictive temperature 

of 420C (when no peptidoglycan synthesis was possible) followed by 

regeneration of cell walls at the permissive temperature of 300C. Although 

developed initially in E. coli, this procedure could be adapted for any bacterial 

species whose cell wall contained peptidoglycan. 

Electroporation, involving the rapid polarisation of the cell membrane by 

a high voltage, results in a physical breakdown of the membrane (Zimmerman, 
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1982), which is associated with a reversible increase in membrane conductivity 

and permeability. It has been used to introduce DNA into a range of bacteria 

including Lactobacilli (Chassy and Flickinger, 1987), Campylobacter jejuni 

(Miller et a!, 1988), and Streptococci, (Harlander, 1987; Powell et a!, 1988), 

yielding up to 1010 transformants per ug DNA. 

The ability of S. putrefaciens to take up plasmid DNA by these methods 

could be assessed with a broad host range vector such as the Inc W plasmid 

pGV1 106 (Leemans et a!, 1982) which was designed for cloning DNA fragments 

into transformable Gram-negative bacteria and confers resistance to kanamycin 

and streptomycin. 

The construction of a cloning vector using an indigenous plasmid from S. 

putrefaciens was considered. Although no plasmid of suitable size was isolated 

from S. putrefaciens NCMB400, a plasmid was previously isolated from S. 

putrefaciens D44 of approximately 6.75 kb (section 5.1.2.). To allow the use of 

this plasmid as a vector, extensive characterisation by mapping and genetic 

manipulation would be required to insert a selective characteristic such as 

antibiotic resistance, to introduce single restriction sites suitable for use in 

cloning, and to ensure that throughout the manipulation the plasmid origin of 

replication was retained. 

Plasmids such as pRK290, a derivative of RP4, (Ditta et a!, 1980) hQv 

been constructed specifically to assist gene cloning in non-transformable 

bacteria. This plasmid can be mobilised from host to recipient by a helper 

plasmid such as pRK2013, also present in the host, which contains the RP4 

transfer origin in a ColE 1 replicon (and would therefore not be maintained in 

the recipient cell). The pRK290 recombinant would be contained as a single 

copy in the recipient cell, having no transfer origin or helper plasmid which 

would facilitate transfer to neighbouring cells. 



177 

It would have been possible to use a broad host range RP4 derived vector 

for library construction in S. putrefaciens, however a single stable mutation in 

the flavocytochrome c gene would have been relatively difficult to generate. 

Thus due to the availability of alternative strategies (Chapter 4 and further 

sections in this chapter) it was decided not to clone flavocytochrome c in S. 

putrefacien.s. The remainder of this chapter describes the attempt to clone the 

complete flavocytochrome c gene by functional complementation of a 

characterised fumarate reductase mutation in E. coli. 

5.2. Genomic library construction in pIJN121. 

MM294 was chosen as the host E. coli strain for construction and 

amplification of the library as in addition to its high transformation frequency, it 

will not restrict unmodified DNA and will methylate foreign DNA in subsequent 

replications. This was important in these circumstances, as the library, although 

constructed in a permissive host, was to be screened in a less permissive strain 

of E. coli which would restrict foreign, unmodified DNA. A consideration prior 

to library construction was the minimum genomic fragment size required for 

cloning into the vector to encode the full length flavocytochrome. From the 

flavocytochrome molecular weight of 84 kDa, it was estimated that a DNA 

sequence slightly larger than 2 kb would fully encode the flavocytochrome. 

Therefore for cloning by complementation, where expression of a functional 

flavocytochrome would demand a full gene and upstream promoter sequence, 

genomic fragments of 4-10 kb were selected for library construction. 

Chromosome was prepared and size fractionated as described in sections 4.1.-

4.3.. Plasmid pUN121 (Figure 2.4.) was propagated in and isolated from the 

dam E. coli strain NM547 to ensure that the BclI cloning site in the vector was 

unmethylated. Following ligation of 4-10 kb Sau3A chromosomal fragments to 
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the Bcll digested plasmid and transformation into MM294, colonies harbouring 

recombinant plasmids were positively selected on agar containing both 

tetracycline and ampicillin and non-recombinant plasmids selected against being 

resistant only to ampicillin. 

The number of independent transformants (N) required for complete 

representation of the S. putrefaciens chromosome was determined from the 

following equation according to Clarke and Carbon (1976). 

N = 	ln(1-P)/ln{1-[(L-X)/M]} 

P = the probability of finding the required clone in a library of N recombinants. 

M = the genome size (in this case it was based on the E. coli genome size of 4.2 

x 106  base pairs as the S. putrefaciens genome size has not been determined). 

L = the average fragment size. 

X = the size of fragment (gene) screened for. 

The probability P was set at 99%, with the average size of a single cloned 

fragment of 7 kb previously estimated from the isolation of plasmid from ten 

randomly chosen independent pUN121 recombinants. 

The number of independent transformants required with these parameters to 

give a 99% probability of including a sequence of DNA encoding the 

flavocytochrome was 3866. Approximately 4200 independent tetracycline 

resistant transformants were pooled to represent the library. (When N = 4200 

in the above equation, P approaches 100%, indicating that the genome should 

be completely represented). 
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5.3. Library screening. 

The library constructed and amplified in MM294 was transformed into 

JRG780 for screening. It was decided to screen for functional complementation 

of both tryptophan auxotrophy and fumarate reductase. The trpA gene is part of 

the tryptophan operon which is required for the synthesis of endogenous 

tryptophan. A mutation in this gene (as in E. coli JRG653 and JRG780) renders 

the host unable to synthesise tryptophan and thus incapable of growth on media 

which contained no tryptophan. The fumarate reductase mutation in JRG780 

was isolated following nitrosoguanidine mutagenesis of the parental strain 

JRG653 (Lambden and Guest, 1976) as being unable to grow anaerobically with 

fumarate as a terminal electron acceptor. The mutation was in the A subunit of 

fumarate reductase, which encodes the catalytically active flavin-binding region. 

Complementation of this would restore the ability of JRG780 to grow 

anaerobically with fumarate as terminal electron acceptor. 

To effectively screen the library, it was necessary to account for the lower 

growth temperature of S. putrefaciens relative to E. coli and a compromise 

sought which would give a reasonable growth rate of E. coli but would not be 

high enough to inhibit protein expression, or folding of mature protein from S. 

putrefaciens. A temperature for screening the library which was optimal for the 

growth of putative complementing clones was determined by plating JRG780 

onto glycerol minimal medium at a density of 500 colony forming units (cfu) per 

plate (identical conditions for which the library was to be screened) which were 

then incubated at 370C, 300C, 280C, 240C, and 200C until the colonies were 

fully grown (Table 5.3.). Colonies were estimated to be fully grown on this 

medium following 24 and 36 hours incubation at 370C and 300C respectively. 

The other temperatures, as expected, gave a much slower rate of growth, being 

4-5 days before colonies were fully formed at 200C and 240C and 48 hours at 
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Table 5.3. Effect of temperature on growth rate of E. coli JRG 780 on glycerol 
minimal medium. 

Incubation temperature 	Incubation time (h) to 
obtain full colony size 

37°C 	 24 

30°C 	 36 

28°C 	 48 

24°C 	 96 

20°C 	 120 

JRG780 was plated on to glycerol minimal medium at a density of 

approximately 500 cfu per 7.5 cm diameter plate. Plates were incubated 

individually at 370C, 300C, 280C, 240C or 200C until colonies were judged to be 

fully grown. 
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280C. Incubation temperatures of 300C and above were disregarded as being 

too high for the expression of functional protein from S. putrefaciens (under 

normal conditions this elevated temperature inhibits growth) and temperatures 

of less than 240C regarded to be too low for efficient growth of E. coli. The 

optimum screening temperature was thus set at 280C. Once the optimum 

incubation temperature was chosen, the effect of this temperature on 

tryptophan synthesis and fumarate reductase was investigated. 

5.3.1. Effect of temperature on expression of tryptophan synthase. 

This was difficult to assess, as both JRG653 and JRG780 hosted a mutant 

trpA subunit. Another strain of E. coli, MM294 was streaked out to obtain 

single colonies on tryptophan-containing glycerol minimal medium and glycerol 

minimal medium alone. Extent of growth on the two media of MM294 with 

respect to colony size size was compared by eye following 24 and 48 hours of 

incubation (Table 5.4.). There seemed to be no difference in the rate of growth 

and colony size in either the presence or absence of tryptophan in the media. 

JRG780 grew at the same rate on tryptophan-containing glycerol minimal 

medium as MM294 but as expected, growth was not supported on glycerol 

minimal medium alone. 

5.3.2. Determination of the tryptophan spontaneous reversion frequency 

The spontaneous reversion frequency was evaluated by plating 10,000 

colonies of JRG780 at a density of 500 cfu/plate on to glycerol minimal medium 

lacking tryptophan (Table 5.5.). Following incubation, two spontaneous 

revertants were observed. 
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Table 5.4. Effect of temperature on expression of tryptophan synthase. 

tryptophan 	 tryptophan + 

MM294 	 +++ 	 +++ 

JRG780  

MM294 (which is able to produce endogenous tryptophan) and JRG780 (trpA) 

were streaked out to achieve single colonies on glycerol minimal medium with 

and without tryptophan. Plates were incubated at 280C for 48 h following which 

the colony size and extent of growth were compared. 
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Table 5.5. Complementation of JRG 780 trpA by S. putrefaciens genomic library 

in pUN121. 

no. trp + colonies per 104  screened. 

JRG780 	 2 

JRG780 (pUN121 library) 	 3 

JRG780 (trpA) and JRG780 (trpA) transformed with the S. putrefaciens genomic 

library constructed in pUN121, were screened for colonies with the ability to 

produce endogenous tryptophan at 280C for 48 h on glycerol minimal medium 

minus tryptophan at a density of 500 cfu per 7.5 cm plate. 
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5.3.3. Screen for trp + Recombinants. 

Approximately 10,000 colonies from the pUN121 library in JRG780 were 

plated on to glycerol minimal medium minus tryptophan at a predetermined 

density of 500 cfu/ml. Following incubation, three colonies able to produce 

endogenous tryptophan grew (Table 5.5.). Although this was only one more 

colony than observed for spontaneous reversion, it was decided to investigate 

the ability of plasmid from any of these three colonies to complement the trpA 

mutation. The colonies were streaked separately on to L-agar containing 

tetracycline and ampicillin to confirm the presence of recombinant plasmid. 

Plasmid was then isolated from each colony, retransformed into a clean 

background of JRG780 and transformants selected on L-agar containing 

ampicillin and tetracycline. Individual retransformed colonies (20) hosting 

plasmid were streaked out to obtain a single line of growth on glycerol minimal 

medium minus tryptophan. This method was chosen for identification of 

putative complementing colonies, as streaking out for single colonies may have 

been confused with spontaneous revertants. None of the transformants 

harbouring the plasmid grew (a confluent line of growth corresponding to a 

plasmid complementing the trpA mutation) indicating that the putative 

complementing colonies on the initial screen resulted from spontaneous 

reversion and the S. putrefaciens DNA cloned on the plasmid was not 

responsible for complementation of the mutation. 

5.3.4. Effect of temperature on expression of fumarate reductase 

JRG653 and JRG780 were streaked out to give single colonies on 

glycerol fumarate minimal medium. Colonies of JRG653 were fully formed 

following 48 hours anaerobic incubation at 280C, therefore the incubation 

temperature seemed to have no adverse effects on the expression of fumarate 
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reductase (Table 5.6.). Very small colonies of JRG780 were observed, probably 

due to trace levels of oxygen in the agar diffusing slowly to the surface. 

5.3.5. Determination of the fumarate reductase spontaneous reversion 

frequency 

The spontaneous reversion frequency of fumarate reductase in JRG780 

was determined in a similar way to that of trpA. Approximately 10,000 colonies 

of JRG780 were plated out at a density of 500 cfu/plate. No spontaneous 

revertants were observed after incubation at 280C for 48 hours (Table 5.7.). 

Colonies of JRG653 plated out and incubated in parallel with JRG780 were 

fully grown, confirming that glycerol fumarate minimal medium was able to 

support anaerobic growth of colonies with a fully active fumarate reductase. 

5.3.6. Screen for frd + Recombinants. 

Approximately 10,000 pUN121 recombinants hosted in JRG780 were 

plated on to glycerol-fumarate minimal medium at a predetermined density of 

500 cfu per plate. One putative positive colony was observed following 

incubation (Table 5.7.). This colony was plated on to L-agar containing 

ampicillin and tetracycline to confirm the presence of recombinant vector which 

was then isolated and retransformed into a clean background of JRG780. 

Transformants were selected on L-agar containing ampicillin and tetracycline 

and 10 single retransformed colonies were streaked out individually to single 

colonies on glycerol fumarate minimal medium. Streaking out to single colonies 

to determine whether growth resulted from functional complementation was 

chosen as a selective method as previously (5.4.5.) JR0780 had shown slight 

growth anaerobically on glycerol fumarate minimal medium. Following 

incubation, the plates of JRG653, JRG780 and JRG780 putative frd colonies 
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Table 5.6. Effect of temperature on expression of fumarate reductase. 

fumarate 	 fumarate + 

JRG653 	 +++ 	 +++ 

JRG78O 	 +++ 

JRG653 (contains a fully functional fumarate reductase) and JRG780 (frdA) 

were streaked out to single colonies on glycerol fumarate minimal medium in 

the presence and absence of fumarate. Following incubation at 280C for 48 h, 

the colony size and extent of growth were compared. 
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Table 5.7. Complementation of JRG780frdA by S. putrefaciens genomic library 
in pUN121. 

No. frd + colonies per 104  screened. 

JRG78O 	 0 

JRG780 (pUN121 library) 	 1 

JRG780, and JRG780 transformed with the S. purrefaciens genomic library 

constructed in pUN121, were plated on to glycerol minimal medium containing 

fumarate, at a colony density of 500 cfu per 7.5 cm plate. The plates were then 

incubated anaerobically for 48 h at 280C then examined for colonies able to 

utilise fumarate as a terminal electron acceptor. 



were examined and comparisons of colony size made by eye. The putative Frd + 

colonies of JRG780 were smaller than those of the wild type JRG653 but did 

not seem to be quite as small as those of the mutant JRG780. As these results 

were rather inconclusive, to clarify the presence of any fumarate reductase 

activity, JRG653, JRG780, JRG780 hosting non-recombinant pUN121 and two 

of the ten original putative positive single colonies chosen randomly were 

cultured as in section 2.23.3 and the fumarate reductase activity measured and 

presented in Table 5.8. JRG653 as expected had the highest activity, 

approximately 40-fold greater than the others. JRG hosting non-recombinant 

pUN121 had an activity similar to that of JRG780 hosting recombinant plasmid. 

This indicated that the cloned fragment from S. putrefaciens had no 

complementing fumarate reductase activity. JRG780 alone had a slightly lower 

activity than JRG780 hosting either recombinant or non-recombinant plasmid, 

indicating that the plasmid had some slight enhancing effect on the anaerobic 

growth of JRG780. 

In parallel with the enzyme assays, it was attempted to detect plasmid 

encoded protein corresponding to flavocytochrome c. No band development 

was observed. It was concluded that the original single colony able to utilise 

fumarate as a terminal electron acceptor was a spontaneous revertant. 

Although the original mutation was generated by nitrosoguanidine which results 

in a variety of mutations, a low spontaneous reversion frequency is possible 

depending on the type of mutation generated (Mandeistam, 1982). 

5.4. Summary 

No complementation of either tryptophan,or fumarate reductase activity 
5q,e+c5 

was achieved on transforming the pUN121 S. putrefaciens genomic library into 

JRG780 and selective screening. It was considered that the library was fully 



Table 5.8. Determination of plasmid-encoded fumarate reductase activity. 

Strain 	 Specific Activity* 

JRG653 	 88 x 10 

JRG780 	 1.37 x 10 3  

JRG780 + pUN121 	 2.2 x 10 

JRG780 + pUN121 recombinant 1 	2.2 x 10 

JRG780 + pUN121 recombinant 2 	2.04 x 10 3  

* specific activity expressed as /1 mol methyl viologen 

oxidised min-1  mg protein-1  

Cultures were incubated aerobically in 60 ml L-broth to an A600  of 0.4. 

Glucose was added to 0.4% and fumarate to 0.04 M (final concentrations) and 

the flasks filled with sterile L-broth to create oxygen-limited growth conditions. 

Incubation was continued statically for 16 h, following which the fumarate 

reductase activity of each sample was measured. 
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representive of the entire genome (section 5.2.) and the screening conditions 

appropriate, as the temperature for screening the library although lower than 

the normal E. coli growth temperature, seemed not to inhibit the expression of 

either tryptophan synthase or fumarate reductase. 

Tryptophan synthase is composed of two peptides which are gene 

products of trpA and trpB and catalyse the conversion of indoleglycerol-P to 

tryptophan. 	Prior to screening the library, it was considered that 

complementation of the trpA mutation had a reasonable chance of success as 

extensive studies and characterisation of the tryptophan synthase A subunit in 

various bacterial species had shown some interspecies homology. 

Early comparative studies of the purified tryptophan synthase A subunit 

of several Enterobacteriaceae (E. coli K 12, E. coli B, Shigella dysenteriae, S. 

typhimurium, and Aerobacter aerogenes) indicated that they were of similar size, 

approximately 29 kDa (Creighton et a!, 1966). The peptide patterns (following 

digestion with trypsin and chymotrypsin) of the two E. coli strains in this study 

were identical, with those from S. typhimurium and A. aerogenes less similar 

differing both from each other and from E. coli. However at least half of the 

peptides were common between any of the species studied which indicated some 

homologous regions on the protein. More detailed molecular analysis showed 

that the trpA of E. coli and S. typhimurium were 86% identical in amino acid 

sequence and 76% identical in nucleotide sequence (Nichols et al, 1979) with 

the ability of functional substitution to occur between both species indicating 

that the differences were in unimportant unconserved regions. Bacterial species 

which are not closely related to E. coli, such as the thermophile T. thennophilus 

(Kayama and Furokawa, 1990), was still able to functionally complement an E. 

coli trpA mutation despite the T. thennophilus trpA amino acid sequence having 

only 28.7% identity with E. coli and S. typhimurium and 42.6% identity with that 
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of Bacillus stearotherinophilus. This indicated that even at low sequence 

similarities, conservation of functionally active sites on the protein allows 

complementation . The overall G + C ratio in S. putrefaciens at 44% differs 

markedly from those of theTrpA of both E. coli and S. typhimurium of 54% and 

57.3% respectively (Nichols and Yanofsky, 1979) although that of T. 

themiophilus is much higher (70%) (Kayama and Furokawa, 1990) and codon 

usage not surprisingly quite different to that in E. coli. The IrpA subunit 

exhibits maximal enzyme activity only when complexed with the TrpB subunit, so 

functionally significant regions of the A subunit include not only the active site, 

but also the region involved in combining with the B subunit. If the trpA subunit 

from S. putrefaciens was unable to combine effectively with the E. coli trpB 

subunit then insufficient endogenous tryptophan would be produced to sustain 

growth on media lacking tryptophan. 

Cloning flavocytochrome c by complementation of the frdA mutation in 

E. coli was not successful. The frdA encodes the flavin binding subunit of 

fumarate reductase in E. coli (Dickie and Weiner, 1979) which is the 

catalytically active site and bound to the cytoplasmic membrane via hydrophobic 

anchor proteins encoded by frdC and frdD (Lemire et a!, 1982; Gundstrom and 

Jaurin, 1982), so as previously discussed, the E. coli fumarate reductase is 

different in structure and cellular location to flavocytochrome c. For the 

flavocytochrome to be catalytically active, then the haem and flavin prosthetic 

groups would have to be inserted into the apoprotein to allow the mature 

protein to assume correct conformation. Flavin incorporation usually occurs 

spontaneously eg. with flavocytochrome b2  but attachment of c-type haems is 

enzymatic (Warren and Scott, 1990), and E. coli may not have enzymes that 

recognise flavocytochrome c. 



CHAPTER 6 

FINAL DISCUSSION 
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A clone encoding a chromosomal fragment of approximately 1.5 kb was 

isolated from a S. putrefaciens genomic pEX3 expression library, giving a strong 

positive signal when developed by colony hybridization with antibody raised to 

purified flavocytochrome c. The protein expressed from this cloned fragment 

was not apparent as a single hybrid protein, but observed as several bands of 45 

kDa and less (Plate 4.6). Furthermore these bands could only be detected by 

Western blots hybridising to flavocytochrome c antibody, and not by either 

silver or Kenacid blue staining following SDS PAGE. This suggested either (i) 

poor expression of protein from the cloned fragment, or (ii) instability of 

expressed protein within the host. The former explanation was considered 

unlikely as pEX3 is multicopy and has been reported to express protein from 

cloned DNA to a level constituting approximately 25% of total cell protein 

(Stanley, 1984). It was more likely that, as the library was screened in a host not 

disabled in native protease, such as ion (Mount, 1980), host protease activity 

contributed to the partial breakdown of expressed protein. Although the 

protein was difficult to size, being present as several bands, the largest band size 

of 45 kDa was not inconsistent with a protein encoded by a 1.5 kb DNA 

fragment. To size the fragment more accurately, the recombinant vector could 

have been transformed into a ion mutant of E. coil to minimise proteolysis. 

However it was considered that the most accurate method of sizing the 

fragment was to sequence it. 

On sequencing the 1.5 kb cloned fragment, two non-overlapping 

segments (contigs) of 438 and 966 bp were identified. An in-frame continuous 

sequence with no stop codons was obtained on translation of each fragment 

(Figures 4.6 and 4.7) with the 438 bp contig preceding the 966 bp contig. A 

region of approximately 200 bp spanning the contigs remained unsequenced. 

Comparison of the predicted amino acid sequence of the contigs with the N- 



Figure 6.1 	Proposed flavocytochrome c leader sequence 

MKKMNLAVCI 	ATLMGTAGLM 	GTAVAADNLA 
lh 

EFHVQNQEC 

signal peptidase cleavage site 

M: computer-predicted N-terminal methionine 
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terminal sequence from purified flavocytochrome c protein identified a 8- 

residue sequence of 	 , at the 5' terminus of the second, 322 

residue (966 bp) contig. Homology of the first 8 N-terminal residues of the 

contig with N-terminal sequence of purified flavocytochrome c strongly 

indicated that this contig encoded the region of the flavocytochrome c protein 

which contained the N-terminus. No region of identity with other proteins was 

found for the other 146 residue (438 bp) contig within any of the databases. 

Recent attempts to sequence the unsequenced fragment between the two 

contigs (Reid and Manson, 1990, unpublished results) identified a sequence 

typical of a signal sequence, responsible for targeting the protein to the 

periplasm (Pugsley and Schwartz, 1985). The signal sequence typically featured 

a positively charged residue (lysine), followed by a stretch of hydrophobic and 

neutral residues before reaching the signal peptidase cleavage site. 	This 

strongly agreed with earlier biochemical studies relating to flavocytochrome c 

(Ward, unpublished results) which showed that it was located in the periplasm. 

Further analysis of the 322 residues from the contigproposed to encode 

part of the flavocytochrome c structural geneshowed regions for both haem and 

flavin attachment. 	Four haem binding sites of the typical CXYCH motif 

were identified within the first 81 residues (Section 4.6). This region was 

subsequently designated the haem domain. No similarity was detected on 

comparison of this domain with other multihaem c-type cytochromes outwith 

the conserved CXYCH haem binding motif; neither was there any alignment 

similarity of the haem binding sites of flavocytochrome c and these other 

cytochromes. The second domain was designated as the flavin domain (Section 

4.7) due to homology of a region from residues 123-151 of the flavocytochrome 

c sequence with an N-terminal FAD binding region common to many other 

flavoproteins (Figure 4.9). Similarity with other flavoproteins was confined to 
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this region with the exception of the succinate dehydrogenase of E. coli and B. 

subtiis with which there was approximately 30% sequence similarity over a 

region of 200 residues directly downstream of the FAD region. 

Thus, it was proposed, supported by these findings, that this cloned 

fragment encoded part of the flavocytochrome c structural gene. 

In parallel with cloning and sequencing the fragment in pEX3, it was 

attempted to isolate a recombinant encoding the complete flavocytochrome c 

structural gene, from pEX3 and pUN121 libraries, using the 1.5 kb cloned 

fragment, but no hybridising clones were identified. Attempts to clone the 

flavocytochrome c gene by genetic complementation of a fumarate reductase 

mutant of E. coli following transformation with a second S. putrefaciens gene 

library constructed in the positive selection vector pUN121 were also 

unsuccessful. At the time, it was thought that absence of complementation in E. 

coli (of both tryptophan synthase and fumarate reductase) probably indicated 

that E. coli and S. putrefaciens were genetically too diverse to allow functional 

complementation. However, the unsuccessful attempts to isolate a recombinant 

encoding the entire flavocytochrome c gene, from both pEX3 and pUN121 

libraries using the 1.5 kb cloned fragment as an homologous probe suggested 

that neither library was fully representative of the entire S. putrefaciens genome. 

For further studies it will be of paramount importance to have a 

complete sequence of flavocytochrome c. This will facilitate identification of 

active sites, such as the previously mentioned active site histidines (Section 

4.5.2), important in the B. subtilis and E. coli fumarate reductases, and allow 

sequence comparison with other periplasmic cytochromes, and flavoproteins. 

Overall, it will promote a greater understanding of the function of 

flavocytochrome c. 
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Cloning the entire flavocytochrome c gene could be achieved by two 

relatively straightforward strategies based on information detailed in this thesis. 

The first would be to construct a S. putrefaciens genomic library of 1.5-2.5 kb 

EcoRI fragments (as Southern blotting of genome following complete digestion 

with restriction enzyme showed that almost the entire flavocytochrome c 

structural gene could be located on an EcoRI fragment of approximately 1.8 

kb), which would then be screened with an EcoRI/HindIII probe constructed 

from the 1.5 kb cloned fragment. A second strategy to clone the full 

flavocytochrome c structural gene would be by polymerase chain reaction 

(PCR) amplification of the EcoRI fragment using primers for specific regions 

within this DNA sequence. As these primers would hybridise specifically to 

short sequences of the flavocytochrome c gene only this DNA would be 

amplified to any degree. 

Alternatively, cloning flavocytochrome c could be attempted utilising 

the Omegon Km intersposon which has already been used in attempts to 

generate a single stable mutation in the flavocytochrome c gene (Perry, 1989; 

Green, 1990). In parallel with this, a genomic library could be constructed first 

restricting the S. putrefaciens chromosome with an enzyme such as BamHI 

which has no site in the flavocytochrome c gene in a vector which was then 

conjugated into a flavocytochrome c fumarate reductase mutant of S. 

putrefaciens. The library would be screened for functional complementation of 

fumarate reductase. Suitable vectors for this library construction have been 

suggested in Sections 5.1.4, 1.13 and 1.14. 

Obvious work relating to the function of flavocytochrome c would 

involve elucidation of the flavin and haem interactions within the holoprotein. 

This could be achieved by separate mutation of each haem and flavin binding 

sites, preventing prosthetic group attachment. The effect of each mutation on 
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enzyme activity would be assessed by measuring both fumarate and TMAO 

reductase activities. This will help us to understand how flavocytochrome c 

functions in vitro, both as a fumarate reductase and a TMAO reductase, by 

confirming which prosthetic groups are essential for either or both enzymic 

activities. 

The mechanism of electron transfer between redox centres, eg haem 

and flavin, is at present under intensive research, particularly with respect to 

determining whether electron transfer occurs "through space" or "through 

bonds". Using artificial electron donors/acceptors to cytochrome c, Conrad et al 

(1991) concluded that "through bond" pathways were more important than 

"through space" distances. By contrast, Moser et al (1991) studying electron 

transfer in both photosynthetic reaction centres and in synthetic systems, 

concluded that intraprotein electron transfer is controlled by very few factors, 

with a direct relationship between electron transfer rate and distance between 

redox centres. Site directed mutagenesis has proved a powerful tool for testing 

such hypotheses. This approach has been used to show that intracomplex 

electron transfer between cytochrome c peroxidase and cytochrome c involves 

conformational changes (McLendon et al, 1991). Chapman and Reid (1991) 

have studied electron transfer in the pathway pyruvate --> flavin --> haem --> 

cytochrome c in yeast flavocytochrome b2. Comparison of electron transfer 

rates between wild-type and mutants with altered residues close to the two 

redox centres enabled indentification of amino acids involved in catalytic 

electron transfer, and led to the proposal that a link region between the haem 

and flavin domains was important in bringing the redox centres close to each 

other. Such approaches would also be applicable to flavocytochrome c from S. 

putrefaciens. 
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Studies on the properties of c-type flavocytochromes such as those 

found in the phototrophic green and purple bacteria (Barsch, 1978; Sienmetz 

and Fischer, 1981; Fischer, 1988) and Pseudomonas spp (Hopper and Taylor, 

1977) have shown that they are capable of oriented electron transfer in which 

electrons are moved from electron donor to acceptor via a defined path. 

Furthermore, these studies have offered the chance to understand in molecular 

terms the mechanisms and structure required for efficient intracomplex electron 

transfer. 

If flavin is easily dissociated from the holoprotein by isoelectric 

focusing as in Pseudomonas putida (McIntire and Singer, 1982; Koerber et al, 

1985), titration of the flavin with haem to yield a fully active reconstituted 

enzyme would allow evaluation of the dissociation constant in flavocytochrome 

c. Additionally, from flavin and haem titrations with oxidised subunits, reduced 

subunits and oxidised subunits in the presence of substrates or competitive 

inhibitors, the effect of the cytochrome subunit modulating the reactivity of the 

flavin subunit could be assessed. A clearer insight of the molecular interactions 

which result in these reactions would be resolved by a high resolution 3-D 

structure of the protein. 	As flavocytochrome c is soluble, like the 

flavocytochromes c of Pseudomonas putida and Chromatium it may be 

relatively easily crystallised. 

Flavin interaction with individual haems might be studied following 

adduct formation. Phototrophic bacterial flavocytochrome c forms adducts 

between compounds such as sulphite, thiosulphate, cyanide or mercaptans and 

the flavin (Meyer and Bartsch, 1976), with flavin absorbance at 280 nm, 360 nm, 

450 nm and 480 nm becoming bleached. The perturbance of a haem spin state, 

at a low pH, by flavin-adduct formation may indicate an interaction between 

flavin and haem. As flavocytochrome c from S. putefaciens has at least 2 haem 



spin states it would be useful to use this technique to identify which interact 

with the flavin. 

Flavin may also modulate the midpoint potential of haem in the 

holoprotein as observed in various Pseudomonas spp (Hopper, 1983) where the 

redox potential of the isolated haem subunit decreased to a level consistent with 

interaction between the flavin and haem subunits playing an important role in 

controlling the haem midpoint potential in the holoprotein. The mechanism of 

this modulation as yet is unknown, but may be investigated in more detail by 

comparison of the structure of the isolated haem subunit and the holoenzyme. 

In the flavocytochromes c of Chiorobium and Chromatium the important role 

of the protein-flavin and haem-flavin interactions in modulating the flavin 

environment was indicated by the finding that the flavin moiety redox potentials 

were much more positive than those of free flavins or typical flavoproteins 

(Cusanovich et al, 1985). 

The study of electron transfer in flavocytochromes c have followed the 

principal approach of laser flash photolysis (Tollin et al, 1986; Cusanovich et 

a!, 1988). This approach generates a free flavin semiquinone as a strong 

reductant, thus enabling the study of subsequent electron transfer between 

haem and flavin subunits of flavocytochrome c. 

The flavin semiquinone dRFH rapidly reduced both haem and flavin 

moities of the Pseudomonas putida flavocytochrome c indicating that both 

redox centres were exposed at the enzyme surface (Bhattacharyya et a!, 1985). 

Partial reduction of the haem and flavin subunits showed intra complex electron 

transfer with the neutral psc.ocnonci 	flavin semiquinone reducing the 

remaining oxidised haem. This result is in line with the assumption that 

substrate oxidation taking place on the flavin subunit would result in the 

formation of a neutral flavin semiquinone, with electrons subsequently 
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transferred to the haem subunit. Reduction kinetics of isolated haem and flavin 

subunits are the same in holoenzyme indicating that assembly of the subunits 

into the native complex does not appear to cause any steric hindrance to haem 

and flavin interaction domains (Bhattacharyya et a!, 1985). 

In contrast flavocytochromes c from Chromatium and Chiorobium are 

less reactive with dRFH suggesting steric hindrance to haem and flavin domains 

(Cusanovich et al, 1985). Adduct formation of endogenous flavin blocked 

haem reduction by both endogenous flavin seminquinones as well as fully 

reduced flavins indicating that as with Pseudomonas putida, flavocytochrome c 

sequential electron transfer proceeds from electron donor to the flavin subunit, 

followed by intra complex electron transfer to the haem subunit, and then 

reduction of the physiological electron acceptor. The techniques used to 

characterise these flavocytochrome c's could usefully be applied to 

flavocytochrome c. 

The improved purification of flavocytochrome c (Chapter 3) will allow 

rapid isolation of sufficient protein for crystallisation studies. Flavocytochrome 

c protein was purified from periplasm isolated from cells of S. putrefaciens 

cultured microaerobically with fumarate as sole terminal electron acceptor, as 

flavocytochrome c was induced maximally during these conditions. The first 

purification yielded 4 mg purified flavocytochrome c from 10 litres of culture. 

Some proteolysis resulted following chromatography on hydroxyapatite, 

although this was prevented at following stages by addition of EDTA. 

Furthermore, gel filtration chromatography appeared to result in the loss of 

bound haem, although no haem was detected in fractions other than that 

corresponding to the single flavocytochrome c peak. The second purification 

had several advantages over the first (Section 3.4). It was more efficient 

requiring only three stages to purify the protein to homogeneity; there 
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appeared to be no loss of bound haem at any stage; and importantly very little 

proteolysis of flavocytochrome c protein was detected. In this thesis, purified 

flavocytochrome c was used for the production of antibody (primarily for library 

screening), and for analysis of flavocytochrome c fumarate reductase activity. 

KM values of 12.6 ILM for fumarate and 357 jLM for succinate combined 

with a correspondingly higher kcat  for fumarate reduction than succinate 

oxidation indicated that flavocytochrome c was very specific for fumarate and in 

addition was able to catalyse the oxidation of succinate although at a much 

slower rate (Section 3.6). Unusually and in contrast to the fumarate reductases 

of other Gram-negative bacteria, which are bound to the inner aspect of the 

cytoplasmic membrane (Lemire et a!, 1982; Unden et al, 1980; Kroger et a!, 

1980), S. putrefaciens fumarate reductase activity was periplasmic. This 

appears to be a feature of the terminal reductases of S. putrefaciens as both 

nitrate and TMAO reductases were previously identified as also being 

periplasmic (Nasser, 1983, Clarke, 1984). 

Periplasmic c-type cytochromes have an important role in electron 

transfer to and from periplasmic enzymes that oxidise substrates for growth or 

reduce electron acceptors (Ferguson, 1988). In periplasmic reductase reactions 

electrons must either originate from the periplasm or be moved from sites of 

substrate oxidation on the cytoplasmic side of the membrane (Ferguson and 

Page, 1990). Furthermore, electron flow to a water soluble periplasmic 

reductase (such as flavocytochrome c) can only be linked to a proton 

electrochemical gradient if electron flow between the two enzymes is catalysed 

by proton-translocating integral membrane proteins. 	In the case of 

flavocytochrome c (which acts as an intermediate electron donor in periplasmic 

TMAO reductase activity as well as a fumarate reductase) electrons are 

donated from cytoplasmic dehydrogenases such as formate and NADH. This 
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suggests that electron transfer to the periplasm, generating a proton-

electrochemical gradient must be linked via an integral membrane protein. 

Consumption of electrons coupled to a reduction reaction via an 

integral membrane protein results in the net movement of two protons from 

cytoplasm to periplasm. An example of this is electron transport from succinate 

to nitrous oxide in P. denitrificans (Ferguson, 1986), where the transfer of two 

electrons is associated with the net movement of two positive charges out of the 

cell and is 	to involve operation of a ubiquinone cycle. 

Further work in this area would obviously include identification of 

integral membrane components which link electron flow from cytoplasmic 

dehydrogenases to flavocytochrome c. Additionally, it would be of interest to 

estimate the net yield of ATP from both TMAO and fumarate reduction. 

Antibody raised to purified flavocytochrome c precipitated out 

fumarate reductase activity from both periplasm and purified flavocytochrome c 

in parallel (Figures 3.10 and 3.11). However, zymogram staining for fumarate 

reductase activity showed two zones of activity in the periplasmic sample (Plate 

3.12). One corresponded to that of flavocytochrome c. The second was 

considered to be a partially denatured form of enzyme rather than another 

separate periplasmic fumarate reductase, as Western blotting of a periplasmic 

sample from cells grown on fumarate followed by development with 

flavocytochrome c specific IgG showed two protein bands which corresponded 

to those zones of zymogramic fumarate reductase activity (Plate 3.13). Only 

one protein band was observed on Western blotting of a periplasmic sample 

following SDS PAGE, which indicated complete protein denaturation by these 

conditions. Fumarate reductase activity was also observed on zyinogram 

staining of flavocytochrome c following SDS PAGE, although the zone of 

activity was very faint. This was unexpected, as denaturing conditions would be 
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expected to remove the non-covalently bound FAD required for activity. The 

observed activity was considered to result from incomplete denaturation of the 

enzyme on native gel electrophoresis, followed by partial renaturation in the 

buffer preceding staining. To confirm this, in-vitro fumarate reductase assays of 

purified flavocytochrome c following denaturation with SDS and 

mercaptoethanol (both individually and combined) could be performed. 

No evidence has been obtained to suggest the presence of more than 

one fumarate reductase in S. putrefaciens (Crowe, 1991, Ward unpublished 

results). Therefore flavocytochrome c would appear to be responsible for 

anaerobic fumarate reductase activity. An obvious next step in this research 

would be identification and characterisation of the succinate dehydrogenase in 

S. putrefacien.s, aiming to show that it was a different enzyme from 

flavocytochrome c. 

The discovery of a putative signal peptidase cleavage site proposed to 

be associated with flavocytochrome c is in line with current evidence from c-

type cytochromes in K capsulatus(Daldal et a4 1986), K sphaeroides (Donohue 

et a4 1986) and Desulfovibrio vulgaris (Voordcuii and Brenner, 1986), which 

established that the cytochrome-c polypeptide was synthesised with an N-

terminal signal sequence. The sequence was typical of signal sequences that 

direct certain bacterial proteins to the periplasm, and indicated that bacterial c-

type cytochromes (including flavocytochrome c) are exported to the periplasm 

through the cytoplasmic membrane. Haem incorporation, at least with 

mitochondrial cytochrome c, is associated with ordering of the polypeptide 

(Steliwagen et al, 1972), thus as translocation of the polypeptide requires it to be 

in an unfolded state, ordering and haem incorporation of c-type cytochromes 

would occur in the periplasm. Evidence supporting this has been obtained from 

a mutant of P. denirrifican.s, pleiotrophically deficient in periplasmic c-type 
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cytochromes, where the apo forms of the cytochromes are found in the 

periplasm (Page and Ferguson, 1989; 1990). Therefore, there must be a step 

involved in export of haem to the periplasm. This has been supported by 

studies on the expression of the K sphaeroides cytochrome c2  in E. coli 

(McEwan et al 1989). This study showed that at least one of the components 

involved in haem export was anaerobically induced, and of low specificity, 

allowing catalysis of haem into a cytochrome not closely related to any found in 

E. coil. 

In the case of flavocytochrome c, a flavin export system must be present 

in addition to haem export, assuming that flavin incorporation will occur in the 

periplasm with ordering of the protein. Testing of this hypothesis could be done 

in the first instance as by Page and Ferguson (1989; 1990) by generating 

mutants pleiotropically deficient in periplasmic fumarate or TMAO reductase 

activities. Periplasmic proteins could then be analysed for the apo-form of 

flavocytochrome c deficient in either flavin, haem or both. 

The kinetic analysis and molecular sequence presented in this thesis 

supports the hypothesis that flavocytochrome c is a periplasrnc fumarate 

reductase. This unusual protein therefore appears to play a dual role, as a 

terminal reductase during anaerobic and oxygen limited conditions, and as an 

electron carrier in the reduction of TMAO where it is reduced directly by 

formate. Further investigation of the flavocytochrome c sequence and structure 

will give a greater in-depth knowledge of the roles which this unusual and 

unique protein plays. 
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