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Abstract 

 A novel Type IV secretion system (T4SS) was identified in Legionella pneumophila isolates from 

the Edinburgh Legionnaires’ disease outbreak in 2012. A phylogenetic reconstruction of the isolates 

shows four distinct clades, two of which share a region thought to encode the novel T4SS. In a Galleria 

mellonella infection model, strains with this T4SS caused more rapid killing than those without it. 

Furthermore, patients infected with isolates containing the novel T4SS required more clinical care 

intervention. This project aims to dissect the role of the novel T4SS in intracellular survival. 

Bioinformatic analysis showed that the T4SS is closely related to the Legionella genomic island-

associated T4SS (LGI-T4SS) of L. longbeachae. Other bioinformatic tools were used to identify 

neighbouring genes predicted to encode T4SS-secreted effector proteins. The expression of these 

genes was then detected during broth culture and intracellular growth using RT-PCR. A range of 

techniques were employed in order to compare the intracellular survival, replication and virulence of 

representative isolates from each of the four clades. Macrophage-like cells were infected in a 

gentamicin protection assay to compare intracellular replication. DNA extracted from the infected 

cells at four time points was quantified by qPCR to measure replication of the bacteria over time. In 

addition, the level of host cell death and autophagy was compared in macrophage-like cells infected 

with representative isolates from each clade. The results indicate that the region encoding the novel 

T4SS originated in L. longbeachae and encodes at least one putative T4SS effector protein. Although 

no difference was observed in host cell death and autophagy during infection with representative 

isolates, the presence of the novel region correlates with a reduced rate of intracellular replication. 
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Lay summary 

 Type IV secretion systems (T4SSs) are protein structures used by bacterial cells to transfer 

genes and proteins into host cells. A novel T4SS was identified in Legionella pneumophila isolates from 

the Edinburgh Legionnaires’ disease outbreak in 2012. It was previously shown that isolates with this 

T4SS cause more rapid killing than those without it. Furthermore, patients infected with isolates 

containing the novel T4SS required more clinical care intervention. This project aims to dissect the 

role of the novel T4SS in the intracellular survival of L. pneumophila. Bioinformatic analysis showed 

that the T4SS is closely related to a T4SS found in another species, Legionella longbeachae. A range of 

techniques were employed to compare the survival of isolates with and without the novel T4SS. 

Although no difference was observed in host cell death during infection with the different isolates, 

the presence of the novel T4SS appears to reduce the rate of replication inside host cells. 
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Chapter 1: Introduction 

Legionnaires’ disease 

 The first known outbreak of Legionnaires’ disease occurred at an American Legion convention 

in Philadelphia in 1976 (Fraser et al., 1977). Of 182 recorded cases, 29 were fatal and 147 required 

hospital care. The causative agent, L. pneumophila was isolated the following year from samples taken 

from the patients’ lungs (McDade et al., 1977). Although more than 50 species of Legionella have now 

been identified, L. pneumophila is associated with more than 90% of Legionnaires’ disease cases 

worldwide (Jarraud et al., 2013). 

 Human infection by L. pneumophila occurs through the inhalation of contaminated aerosols 

from artificial aquatic environments such as air conditioning systems, cooling towers and hot tubs 

(Bartram, 2007). As water temperatures of 25 to 42°C are optimal for Legionella growth, these water 

systems can promote the rapid amplification of Legionella to high concentrations, thereby increasing 

the risk of infection (Kozak et al., 2013).  

 Once inside the human lung, L. pneumophila can cause acute alveolitis and bronchiolitis 

(Swanson and Hammer, 2000). However, human monocytes activated by the inflammatory cytokine 

interferon-γ can inhibit intracellular multiplication of the bacterium by overriding the ability of the 

bacteria to evade the lysosomal degradation pathway (Santic et al., 2005). Therefore the majority of 

people exposed to L. pneumophila either do not become ill or suffer only a mild self-limiting infection 

(Newton et al., 2010).  

 The clinical symptoms of Legionnaires’ disease include fever, non-productive cough, 

headache, breathing difficulties and diarrhoea (TSAI et al., 1979). As these symptoms are 

indistinguishable from those of other forms of pneumonia, diagnostic tests must be carried out in 

order to establish the causative agent (Bartram, 2007). Most cases are now identified by urinary 

antigen tests, although cultures of either sputum or bronchoalveolar lavage may also be used 

(European Centre for Disease Prevention and Control, 2015).  

 The majority of individuals who develop Legionnaires’ disease are elderly or 

immunocompromised (Berrington and Hawn, 2013). For example, 81% of European cases in 2013 

occurred in people over 50 years of age (European Centre for Disease Prevention and Control, 2015). 

Further risk factors for the disease include cigarette smoking, immunosuppressant treatment and 

chronic lung disease (Swanson and Hammer, 2000). In Europe, the overall case-fatality rate is 

approximately 12%, although this varies considerably according to the severity of disease, the quality 

and time of treatment and other risk factors (Bartram, 2007).  
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 Between 1994 and 2008, almost 54,000 cases were reported across 30 European countries 

(Joseph and Ricketts, 2010). The largest outbreak to date originated from the cooling towers of a city 

hospital in Murcia, Spain in 2001, where 449 cases were confirmed (García-Fulgueiras et al., 2003).  

 

Models of Legionnaires’ disease 

 Early evidence for the effective treatment of Legionnaires’ disease was provided using a 

guinea pig model of infection (Edelstein et al., 1984). Intratracheal inoculation resulted in lung 

histopathology and bacteriology that was almost identical to that caused by Legionnaires’ disease in 

humans. In this model, fatality rates were significantly reduced by treatment with either erythromycin, 

rifampicin, doxycycline or cotrimoxazole. More recently, the two antimicrobials fluoroquinolone and 

azithromycin were recommended for the treatment of human infections by the Infectious Diseases 

Society of America in 2007 (Mandell et al., 2007). 

 A guinea pig model of infection was also used to test the efficacy of immunisation with the 

major secretory protein (MSP) of L. pneumophila (Blander and Horwitz, 1991b). This protein is a Zn2+ 

metalloprotease encoded by the mspA gene (Szeto and Shuman, 1990). Although the MSP is the most 

abundant protein in culture supernatants of the bacteria, it is not required for intracellular growth or 

destruction of human macrophages. Nevertheless, immunisation with the MSP was shown to induce 

significant protective immunity against aerosolised L. pneumophila in the guinea pig model (Blander 

and Horwitz, 1991b). Additionally, immunisation by aerosolised L. pneumophila membranes was also 

shown to induce protective immunity in the guinea pig model (Blander and Horwitz, 1991a). The 

guinea pig infection model has also been used to study host immune defences and to measure the 

relative virulence of different Legionella strains (Edelstein, 2013).  

 More recently, a DNA vaccine has been shown to protect the A/J mouse against L. 

pneumophila infection (Xu et al., 2012). This vaccine encodes a 29 kDa outer membrane protein and 

the Type IV pili protein (PilE) of L. pneumophila. 

 

Legionella pneumophila 

Legionella pneumophila is an aerobic, Gram-negative coccobacillus which multiplies inside 

freshwater and soil amoebae (Newton et al., 2010, Chien et al., 2004). The bacterium evades 

lysosomal degradation inside these cells through the formation of a specialised phagosomal 

compartment, known as the Legionella-containing vacuole (LCV) (Allombert et al., 2013). This 
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mechanism also enables L. pneumophila to survive within alveolar macrophages, causing Legionnaires’ 

disease (Brüggemann et al., 2006). Outbreaks result from the inhalation of contaminated aerosols 

from various water sources, making L. pneumophila an opportunistic and accidental pathogen of 

humans (Bartram, 2007). 

L. pneumophila replicates intracellularly in over 13 species of amoebae, including several 

species of Acanthamoeba, Hartmannella and Naegleria (Fields, 1996). During its life cycle in both 

amoebae and macrophages, L. pneumophila alternates between several distinct phenotypic forms 

(Garduno et al., 2002). The replicative form (RF) is non-motile, thin walled and acid tolerant, whereas 

the mature intracellular form (MIF) is motile and resilient for survival in the extracellular environment 

(Dalebroux et al., 2010). Furthermore, MIFs can resist detergent-mediated lysis and high pH conditions 

(Garduno et al., 2002). The viable but non-culturable (VBNC) form is a dormant phenotype which 

enables the bacteria to survive in unfavourable environmental conditions (Al‐Bana et al., 2014). 

L. pneumophila is taken up into host cells by phagocytosis (Newton et al., 2010). Once inside 

the host cell phagosome, the bacterium initiates formation of the LCV (Figure 1) (Allombert et al., 

2013). This compartment resists fusion with lysosomes, protects the bacterium from immune 

detection and provides nutrients for intracellular replication (Xu and Luo, 2013, Horwitz, 1983b). 

Within the LCV, the bacteria differentiate into the RF (Swanson and Hammer, 2000). As the nutrients 

inside the LCV become depleted over time, the bacteria differentiate into the MIF, which is able to 

infect a new host cell.  

In order to form the LCV, L. pneumophila recruits host cell mitochondria and endoplasmic 

reticulum (ER) vesicles to the surface of the phagosome within 5 minutes of internalisation (Tilney et 

al., 2001). Next, the ER-derived membranes fuse with the LCV and the resulting LCV membrane 

gradually accumulates other materials from the host cell, including ribosomes, ubiquitinated proteins 

and vacuolar ATPases (Xu and Luo, 2013, Hubber and Roy, 2010). As a result of these modifications, 

the LCV membrane resembles that of the rough ER by approximately 4 hours post-infection (Horwitz, 

1983a).  

The outer surface of the LCV membrane is characterised by the accumulation of the 

membrane lipid phosphatidylinositol 4-phosphate (PI(4)P) and secreted bacterial proteins (Allombert 

et al., 2013). As PI(4)P is a marker of the Golgi membrane, this feature favours the fusion of additional 

ER vesicles with the LCV membrane. Furthermore, phosphatidyl phosphoinositides act as anchors for 

several effector proteins secreted by the Dot/Icm T4BSS, as discussed below. 
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Figure 1 LCV biogenesis by L. pneumophila (Allombert et al., 2013). Once inside the host cell, avirulent L. pneumophila are 
cleared via the endosomal pathway and fusion with lysosomes. In contrast, virulent L. pneumophila form the LCV by 
recruitment of mitochondria, ER-derived smooth vesicles and ribosomes. Inside the LCV, L. pneumophila escape lysosomal 
degradation and undergo replication. 
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Host cell response  

The autophagy pathway is activated as an immediate response to Legionella during infection 

of macrophages (Amer and Swanson, 2005). During autophagy, intracellular bacteria are packaged 

into double membrane-bound phagosomes, which undergo maturation before fusing with lysosomes 

(Xie and Klionsky, 2007). This fusion results in degradation of the bacteria by lysosomal hydrolases.  

During autophagy, a protein called Atg8 undergoes a modification at its C-terminus, and is 

then covalently attached to the lipid phosphatidylethanolamine on the phagosome membrane 

(Ichimura et al., 2000). This process has been shown to be essential to the autophagy pathway. 

However, some L. pneumophila strains secrete a cysteine protease called RavZ which inhibits the 

autophagy pathway by removing Atg8 from the membrane and removing the C-terminus modification 

necessary for lipid conjugation (Choy et al., 2012). 

Most inbred mouse strains are resistant to L. pneumophila infection (Hori and Zamboni, 2013). 

However, a murine model of Legionnaires’ disease has been developed with mice of the A/J strain, 

which do support the growth of L. pneumophila (Brieland et al., 1994). This variation in resistance is 

caused by different alleles encoding a Nucleotide-binding Oligomerisation Domain Leucine-Rich 

Repeat (NOD-LRR) protein called Neuronal Apoptosis Inhibitory Protein 5 (NAIP5) (also called Birc1e), 

a component of the NAIP5-NLRC4 inflammasome (Diez et al., 2003).  

In resistant macrophages, a 35-amino acid region of the L. pneumophila protein flagellin 

triggers activation of the inflammasome and the consequent proteolytic activation of caspase-1 

(Lightfield et al., 2008). Together with the NOD-like receptor (NLR) protein NLRC4 (also called Ipaf), 

NAIP5 is required for this flagellin-induced caspase-1 activation (Amer et al., 2006). NAIP5 and 

caspase-1 both contribute to the activation of caspase-7, which promotes fusion of the LCV with the 

lysosome (Akhter et al., 2009).  

Active caspase-1 also induces a pro-inflammatory form of cell death called pyroptosis 

(Bergsbaken et al., 2009). During pyroptosis, pores are formed in the plasma membrane, causing 

osmotic lysis and release of lactate dehydrogenase (Silveira and Zamboni, 2010). In addition, the pro-

inflammatory cytokines IL-1β and IL-18 are activated and released from the cell (Bergsbaken et al., 

2009).  

 In contrast, in human macrophage-like U937 cells, the transcriptional regulator NF-κB induces 

the up-regulation of anti-apoptotic genes in response to L. pneumophila infection (Losick and Isberg, 

2006). The resulting anti-apoptotic pathway promotes survival of the host cell. Furthermore, the 
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secreted effector protein SidF specifically interacts with and inhibits two apoptotic proteins, BNIP3 

and Bcl-rambo (Banga et al., 2007). 

 

Genetics 

 Approximately 66% of the L. pneumophila genome is differentially expressed during 

intracellular growth compared to growth in laboratory media (Faucher et al., 2011). The number of 

genes expressed gradually increases during the first 18 hours of infection. Genes induced 

intracellularly include those involved in amino acid biosynthesis, amino acid uptake, iron uptake and 

glycerol catabolism.  

 Although all of the sequenced L. pneumophila strains contain a single circular chromosome 

between 3.3Mb and 3.5Mb in length, the gene content specific to each of four strains (Paris, Corby, 

Philadelphia and Lens) was found to be as high as 11% (Gomez-Valero et al., 2009). This high level of 

plasticity between the genomes of different strains has been linked to frequent recombination events 

and horizontal gene transfer (Gomez-Valero et al., 2011). For example, the horizontal transfer of 

Legionella chromosomal virulence genes by conjugal DNA transfer has been demonstrated between 

two L. pneumophila strains (Miyamoto et al., 2003).  

 Another key feature of the L. pneumophila genomes is the presence of many genes encoding 

eukaryotic-like proteins and domains (Newton et al., 2010). This suggests that the functional mimicry 

of eukaryotic pathways is a major survival strategy of these bacteria (Lomma et al., 2009). Genes for 

these eukaryotic-like proteins are thought to have been acquired by horizontal transfer from their 

protozoan host cells (Cazalet et al., 2004). This theory is supported by the fact that L. pneumophila is 

naturally competent for DNA transformation (Stone and Kwaik, 1999). Further evidence of horizontal 

gene transfer is the presence of a G+C bias in Legionella genes with eukaryotic motifs compared to 

other L. pneumophila genes (de Felipe et al., 2005). This bias is indicative of genes that have been 

acquired from another species.  

 

Virulence factors 

 The first L. pneumophila gene that was shown to be necessary for optimal infection of human 

macrophage-like cells was named the macrophage infectivity potentiator (mip) (Cianciotto et al., 

1989). This gene encodes a 24 kDa surface protein with peptidyl-prolyl cis/trans isomerase (PPIase) 

activity which catalyses the cis/trans isomerisation of prolyl peptide bonds in oligopeptides (Fischer et 
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al., 1992). The Guinea pig infection model has shown that the Mip protein contributes to the 

dissemination of L. pneumophila within the lung and to the spleen (Wagner et al., 2007). Mip was also 

shown to bind specifically to collagen and enables the bacteria to cross a barrier of lung epithelial cells 

and extracellular matrix.  

 Another cause of tissue damage during Legionnaires’ disease is the release of the extracellular 

metalloprotease MSP,  which causes tissue necrosis and acute pulmonary damage in guinea pigs 

(Baskerville et al., 1986). In addition, this protease has been shown to inhibit neutrophil chemotaxis 

(Rechnitzer and Kharazmi, 1992). 

 A Type I secretion system (T1SS) was recently shown to be required for host cell entry by L. 

pneumophila (Fuche et al., 2015). Furthermore, this secretion system was found to export the repeats-

in-toxin (RTX) protein RtxA, which is involved in adherence, cytotoxicity and pore formation (Cirillo et 

al., 2001). A Type II secretion system (T2SS) is also required for growth in the lungs of A/J mice (McCoy-

Simandle et al., 2011). The L. pneumophila T2SS has been shown to export multiple effectors and to 

reduce the cytokine response of infected host cells (Tyson et al., 2013). Proteins secreted via the T2SS 

are required for the infection of macrophages and the amoeba Acanthamoeba castellanii. 

 

Type IV secretion systems 

Type IV secretion systems (T4SSs) are multi-subunit protein structures found in several species 

of pathogenic Gram-negative bacteria (Christie et al., 2005). They span both bacterial cell membranes 

and the cell wall, enabling them to facilitate horizontal gene transfer and the secretion of effector 

proteins into eukaryotic cells. They are ancestrally related to bacterial conjugation systems, which 

transfer DNA through the mating pair formation (Mpf) complex (Christie, 2001). However, the T4SSs 

are unique among bacterial secretion systems due to their ability to transfer both proteins and 

nucleoprotein complexes (Juhas et al., 2008). The translocation machinery comprises a set of 26 

proteins, encoded by 26 genes across two loci (Ensminger and Isberg, 2009, Gomez-Valero et al., 

2009). In addition, most T4SSs have three ATPases that power the secretion machinery (Fronzes et al., 

2009).  

The T4SS genes are named using either the prefix vir after those on the Agrobacterium 

tumefaciens Ti plasmid or tra after those on the Escherichia coli F plasmid (Juhas et al., 2008). For 

example, the virB4/traC gene encodes the VirB4/TraC protein, the only subunit found in all T4SSs to 

date (Alvarez-Martinez and Christie, 2009). 
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 Several species of pathogenic bacteria use T4SS-secreted effector proteins to subvert host cell 

physiology through a variety of distinct mechanisms (Christie, 2001). For example, the A. tumefaciens 

T4SS (Figure 2) mediates the transfer of a segment of bacterial oncogenic plasmid into recipient plant 

cells (Vergunst et al., 2000). In Helicobacter pylori, the protein CagA is translocated through a T4SS 

into the mammalian host cell, where it triggers cytoskeletal rearrangements (Segal et al., 1999a). The 

pertussis toxin is secreted through a T4SS in Bordetella pertussis called the pertussis toxin exporter 

(Ptl) (Locht et al., 2011). Inside the mammalian host cell, this five-subunit toxin catalyses ADP-

ribosylation of G proteins, thereby interfering with host cell signalling pathways and metabolism. 

 

Figure 2 Structure of the prototypical A. tumefaciens VirB/D4 T4ASS (Backert and Meyer, 2006). The subunits VirB2 and 
VirB5 form an extracellular pilus (Fronzes et al., 2009). The membrane proteins VirB6, VirB8 and VirB10 are thought to form 
the inner membrane channel. The ATPases VirB4, VirB11 and VirD4 power the translocation of substrates.  

 

 Each of the sequenced L. pneumophila strains contain multiple T4SSs from three main classes: 

Type IVA (T4ASS), Type IVB (T4BSS) and genomic island-associated (GI-T4SS) (Table 1) (Isberg et al., 

2009). T4ASSs are related to the archetypal A. tumefaciens VirB/D4 T4ASS (Vergunst et al., 2000). The 

F-type and P-type T4ASSs encode conjugative pili that facilitate mating (Gomez-Valero et al., 2014). 
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The F-type T4ASS encodes long, flexible pili, whereas the P-type T4ASS encodes short, rigid pili (Lawley 

et al., 2003). The remaining secretion systems are described below. 

 

Table 1 Type IV secretion systems present in 13 Legionella genomes (Gomez-Valero et al., 2014). 

 

Lvh Type IVA secretion system 

The L. pneumophila Lvh T4ASS is encoded by 11 lvh (Legionella vir homologue) genes and 5 lvr 

(Legionella vir region) genes (Figure 3) (Segal et al., 1999b). This secretion system has been identified 

in 147 of 217 L. pneumophila strains, including Philadelphia-1, Paris and Lens (Cazalet et al., 2008). 

 

Figure 3 Genetic organisation of the L. pneumophila Lvh T4ASS (Schroeder et al., 2010). The T4ASS subunits are encoded by 
lvr genes (lvrA, -B, -C, -D and –E) and lvh genes (lvhB2, -B3, -B4, -B5, -B7, -B6, -B8, -B9, -B10, -B11 and -D4). The gene prpA1 
encodes a putative phage repressor protein (Samrakandi et al., 2002). 

 

 Although the Lvh T4ASS is not essential for multiplication within macrophages, it has been 

found more frequently in strains associated with human disease (Hilbi et al., 2001, Samrakandi et al., 
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2002). This secretion system is also required for entry and intracellular multiplication in dot/icm 

mutants following conditions designed to mimic the spread of L. pneumophila from water and 

amoebae (Bandyopadhyay et al., 2007). 

In the Philadelphia-1 strain, the lvh region is found in a plasmid-like element of 45kb that is 

present either within the chromosome or in circular episomal form (Chien et al., 2004). Similarly, in 

the Paris strain, the lvh region is encoded in a 36kb region that is either integrated in the chromosome 

or excised as a multicopy plasmid (Cazalet et al., 2004). One study found that the chromosomal 

integration of the plasmid was growth-phase dependent, occurring during the exponential phase 

(Doléans-Jordheim et al., 2006). 

 

Dot/Icm Type IVB secretion system 

 The Dot/Icm T4BSS has been described as the essential virulence determinant of L. 

pneumophila (Harding et al., 2012). It is encoded by the dot/icm genes, which were characterised by 

two different groups between 1992 and 1993 (Figure 4) (reviewed in Rolando and Buchreiser, 2014). 

The dot (defective in organelle trafficking) locus was shown to be crucial for intracellular growth, 

organelle recruitment and inhibition of phagosome-lysosome fusion (Berger and Isberg, 1993). 

Similarly, the icm (intracellular multiplication) locus is necessary for intracellular replication in human 

macrophages (Marra et al., 1992). Since then, the L. pneumophila Dot/Icm T4BSS has also been shown 

to be required for LCV biogenesis and the secretion of many effector proteins into the host cell 

(Allombert et al., 2013). 

 

Figure 4 Genetic organisation of the L. pneumophila Dot/Icm T4BSS (Schroeder et al., 2010). The T4BSS subunits are 
encoded by icm genes (icmT, -S, -R, -Q, -P, -O, -N, -M, -L, -K, -E, -G, -C, -D, -J, -B, -F, -H, -V, -W and -X) and dot genes (dotV, -
D, -C, -B and -A). These are located at 5 loci across 2 distinct regions of the chromosome. The gene lvgA is thought to 
encode a virulence protein (Edelstein et al., 2003). 

 

The genes encoding the Dot/Icm T4BSS are constitutively expressed by L. pneumophila inside 

human macrophages and when cultured in AYE broth (Faucher et al., 2011). However, the genes 
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encoding several translocated effector proteins are strongly induced inside human cells, as 64% of the 

known Dot/Icm effector proteins are induced during intracellular growth. 

 

Dot/Icm T4BSS-secreted effector proteins 

At least 275 bacterial effector proteins are secreted via the L. pneumophila Dot/Icm T4BSS 

(reviewed in Prashar and Terebiznik, 2015). Some of these Dot/Icm effector proteins associate with 

the LCV and recruit host proteins involved in trafficking (Newton et al., 2010). For example, SidM (also 

called DrrA) is a Dot/Icm effector involved in the recruitment of ER-derived vesicles to the LCV 

membrane (Prashar and Terebiznik, 2015). After translocation into the host cell, SidM becomes 

anchored to PI(4)P on the cytoplasmic face of the LCV membrane (Brombacher et al., 2009). It then 

binds specifically to the host protein Rab1 and catalyses Rab1 activation (Ninio and Roy, 2007). As 

Rab1 regulates vesicle trafficking from the ER to the Golgi, this interaction mediates the fusion of the 

ER and LCV membranes (Prashar and Terebiznik, 2015). 

Ankyrin B (AnkB) is the only Dot/Icm effector that has been shown to be essential for L. 

pneumophila proliferation inside both macrophages and protozoan host cells (Price et al., 2009). AnkB 

anchors to the cytosolic face of the LCV membrane, where it interacts with the host SCF1 ubiquitin 

ligase complex to generate polyubiquitinated proteins (Price et al., 2010). The ubiquitin-proteasome 

system then recognises the ubiquitin chains and degrades the associated proteins, generating amino 

acids for intracellular bacterial proliferation (Price et al., 2011). 

After translocation into the host cell, the Dot/Icm effector SidK specifically interacts with the 

catalytic unit of the host vacuolar ATPase, the enzyme responsible for organelle acidification (Xu et 

al., 2010). This interaction inhibits ATP hydrolysis and proton translocation, thereby preventing 

acidification of the LCV.  

 RomA (also called LegAS4) is a Dot/Icm effector with methyltransferase activity that modifies 

the epigenetic state of host cell chromatin (Li et al., 2013). This effector contains an evolutionarily 

conserved eukaryotic motif called the SET domain, found in proteins that modulate gene activity 

(Jenuwein et al., 1998). Inside the host cell, RomA localises to the nucleus, where it methylates lysine 

14 (K14) of histone H3, thereby repressing gene expression (Rolando et al., 2013). Nearly 5,000 H3K14 

methylated promoter regions have been identified, including those involved in innate immunity. 

Furthermore, RomA deletion mutants show significantly reduced replication in host cells (Rolando et 

al., 2013).  
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 Other host cell targets of the effector proteins include GTPases, protein translation and 

ubiquitination pathways (Newton et al., 2010, Isberg et al., 2009). However, there is thought to be 

considerable functional redundancy among the effectors as inactivation of individual effector genes 

rarely causes a severe defect in intracellular replication (Newton et al., 2010). 

 

Genomic island-associated T4SS 

Genomic islands are large chromosomal regions that form mobile genetic elements and are 

thought to play an important role in the evolution and adaptation of bacteria as they enable new traits 

to be acquired rapidly (Dobrindt et al., 2004). It has been suggested that these elements may have 

evolved from bacteriophages or plasmids. Some are referred to as pathogenicity islands as they are 

found more frequently in pathogenic variants than non-pathogenic variants (Dobrindt et al., 2004). 

GI-T4SSs are located within genomic islands and encode the conjugation machinery required 

for transfer of the associated element (Wee et al., 2013). Therefore they enable genomic islands to 

mobilise and spread through a bacterial population, playing a key role in bacterial virulence, evolution 

and adaptation (Juhas et al., 2008). Despite strong conservation of the GI-T4SS, there are significant 

differences in the mobility and expression of the genomic islands harbouring these genes.  

The GI-T4SS was first identified on the genomic island ICEHin1056, a vector encoding antibiotic 

resistance in Haemophilus influenza (Juhas et al., 2007). This GI-T4SS forms a conjugative pilus that is 

responsible for the transfer of the genomic island. GI-T4SSs have since been found in several other 

species, including Pseudomonas aeruginosa, Salmonella enterica and Salmonella bongori (Juhas et al., 

2008).  

In P. aeruginosa, the genomic island pKLC102 contains a cluster of pil genes, which encode 

Type IV thin sex pili (Klockgether et al., 2004). The virulent P. aeruginosa strain PA14 also contains a 

pathogenicity island called PAPI-1 (Harrison et al., 2010). This encodes a Type IVB pilus that transfers 

PAPI-1 into recipient P. aeruginosa strains during co-culture (Carter et al., 2010).  

The S. enterica serovar Typhi has a pathogenicity island called SPI-7 which contains an operon 

encoding Type IV pili (Zhang et al., 2000). These pili are used for entry into human intestinal epithelial 

cells. A related genomic island called ICESb1 has been identified in S. bongori (Seth-Smith et al., 2012). 

ICESb1 also contains genes responsible for replication, Type IV pili, conjugation and integration. 
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Legionella GI-T4SS 

 Legionella GI-T4SSs (LGI-T4SSs) are substantially divergent from other GI-T4SSs and represent 

a novel clade of GI-T4SSs only found in this genus (Wee et al., 2013). Nevertheless, they are highly 

conserved across Legionella strains. LGI-T4SSs were found in eight of the nine Legionella genome 

sequences publicly available in 2013, including those of L. pneumophila, L. longbeachae and L. 

drancourtii. Furthermore, the genomes of L. pneumophila Paris, Corby and 130b were found to encode 

two distinct LGI-T4SSs, denoted LGI-1 and LGI-2. The LGI-T4SS gene cluster was found to be associated 

with several cargo genes, including those encoding antibiotic resistance and virulence factors.  

The LGI-T4SS cluster consists of 24 genes, designated lvrRABC and lgiA-T (Figure 5) (Wee et 

al., 2013). At the 5’ end of the LGI-T4SS cluster, the first four genes (lvrRABC) form a regulatory module 

unique to Legionella. This sequence of genes is also present upstream of the Lvh, P-type and F-type 

T4ASSs in Legionella, suggesting a role in coordinating the T4SS expression. 

 

Figure 5 Genetic organisation of the LGI-T4SS (Wee et al., 2013).  

 

The lvrR gene encodes domains that are homologous to those involved in the regulation of 

SOS-response genes in Escherichia coli (Wee et al., 2013). In addition, the protein encoded by lvrC is a 

homologue of CsrA, a protein that regulates the change between the expression of replicative and 

transmissive traits (Gomez-Valero et al., 2011, Molofsky and Swanson, 2003). This suggests that the 

associated genomic island may be excised during a specific growth phase or in response to certain 

conditions.  

A continuous stretch of 20 genes (lgiA-T) is well conserved across all 14 LGI-T4SS clusters (Wee 

et al., 2013). Thirteen of these lgi genes are homologous to genes found in other previously 

characterised GI-T4SSs such as ICEHin1056, and the gene order is largely conserved. Of these 

homologous genes, only nine shared some sequence similarity with genes encoding well characterised 

T4SS subunit proteins: PilL, TraG, TraW, TraB, TraC, TraU, PilT, TraG and TraD. These nine subunits play 

important roles in the formation and stabilisation of the conjugative pilus, as well as providing an 

energy source via ATPases for the assembly of the T4SS complex.  



20 
 

The LGI-T4SSs are all located on genomic islands, where they are flanked by variable genomic 

regions (Wee et al., 2013). This indicates multiple insertion, deletion and translocation events, typical 

of genomic islands and other mobile genetic elements. The LGIs are all found within hypervariable 

regions of the genome, adjacent to tRNA genes, which are typical recognition sites for site-specific 

recombinases such as integrases and transposases, suggesting that these regions are hotspots for the 

acquisition of horizontally acquired DNA. 

The conservation of the LGI-T4SS cluster as a predominantly intact stretch of at least 20 genes 

suggests that it plays an important role in the life cycle of Legionella (Wee et al., 2013). To show that 

these genes are being maintained by selection, rather than evolving neutrally, selection analyses have 

been performed on alignments of 15 conserved genes, estimating the ratio of the rate of non-

synonymous substitutions per non-synonymous site (dN) to the rate of synonymous substitutions per 

synonymous site (dS) for each gene (Wee et al., 2013). Genes that are evolving neutrally, suggesting 

that they are not beneficial, are expected to have a dN/dS ratio of one or close to one, whereas genes 

that are evolving under selection pressures, suggesting that they are beneficial, should have a dN/dS 

ratio of significantly less than one. It was found that all 15 genes in the LGI-T4SS clusters have a dN/dS 

that is significantly less than one (p<0.01). This provides further evidence that the LGI-T4SSs have been 

evolving under selection pressures, and may therefore be beneficial to the survival of Legionella. 

The LGI-T4SS of L. pneumophila strain Corby is located on a Legionella genomic island (LGI-2) 

that can undergo horizontal transfer by conjugation and is integrated into a specific site of the 

recipient genome (Lautner et al., 2013). These findings indicate that this LGI-T4SS encodes a functional 

conjugation system. 

 

Edinburgh 2012 Legionnaires’ disease outbreak 

From May to June 2012, there were 50 confirmed and 49 suspected cases during an outbreak 

of Legionnaires’ disease in Edinburgh (McCormick et al., 2012). Of these cases, 3 were fatal and 71 

required hospital care. Although the source of the outbreak has not been established, it is thought to 

have originated from nearby cooling towers. The 2012 Edinburgh outbreak was caused by several 

genetic subtypes of L. pneumophila Sg1, mAb subgroup Knoxville, sequence type (ST)191 (McAdam et 

al., 2014). Whole genome sequencing and phylogenetic reconstruction revealed four distinct subtypes 

(A to D) among the isolates from 15 patients (Figure 6). For patients 10, 11 and 15 the multiple isolates 

obtained from each were identical, suggesting that the short incubation periods did not support 

extensive within-host diversification. The short timescale between exposure to and isolation of the 
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pathogen during the outbreak and the lack of person-to-person transmission for L. pneumophila 

strongly suggest that the genetic subtypes of ST191 existed in the outbreak source prior to release.  

Therefore it is likely that the subtypes evolved from a recent progenitor within the water reservoir by 

a combination of gene mutation, recombination and horizontal gene transfer. 

 

Figure 6 Maximum likelihood un-rooted radial phylogeny of outbreak isolates, showing the distribution of T4SS variants 
across subtypes A to D (McAdam et al., 2014). Maximum likelihood bootstrap values are displayed for each node. Coloured 
triangles indicate multiple isolates from the same patient. 

 

Several regions of difference were identified among the isolates examined, including three 

genetic elements encoding T4SSs (McAdam et al., 2014). The authors found that all nine isolates in 

one clade contained an Lvh T4ASS which shared 100% nucleotide identity with a genetic element in 

the genome of the Philadelphia 1 strain, derived from the original Legionnaire’s disease outbreak in 

Philadelphia in 1976. However, isolates belonging to clades C and D had a novel T4SS-like region not 

present in the genomes of the other outbreak isolates (Figure 7). This region contains 46 predicted 

coding sequences, including homologues of lvrA, lvrB, lvrC and virB, suggesting a possible role as a 

novel T4SS. Additionally, all isolates contained a copy of the T4BSS encoding the Dot/Icm system, but 

a high density of polymorphic sites at the dotA/icmVWX locus differentiated the Dot/Icm T4BSS into 

two distinct variants. 
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Figure 7 Schematic diagram of the novel T4SS region present in isolates from clades C and D (McAdam et al., 2014). Arrows 
represent predicted coding sequences. 

 

Variation in the complement of T4SSs encoded by different genetic subtypes was shown to 

correlate with virulence in a Galleria mellonella model of infection (Figure 8) (McAdam et al., 2014). 

Considerable strain-dependent variation in G. mellonella host survival was observed after infection, 

and a significant difference in killing capacity was identified between groups of isolates with unique 

combinations of T4SSs. In particular, strains with the novel putative T4SS resulted in more rapid killing 

of G. mellonella larvae than strains without it. There was no significant difference between isolates 

containing different variants of the Dot/Icm T4SS  

The small number of patients infected with the subtype containing the novel T4SS was not 

sufficient for a robust statistical analysis and there was no statistically significant difference in clinical 

disease indicators between patients infected with strains containing the novel T4SS and those infected 

with strains lacking the novel T4SS (McAdam et al., 2014). However, patients with the novel T4SS 

required more clinical care intervention, including higher intensive care unit (ICU) admission, a higher 

proportion requiring mechanical ventilation, and fewer ICU-free days.  

The molecular mechanisms underlying the virulence of strains harbouring the novel T4SS are 

unknown. This project aims to address the hypothesis that this system provides L. pneumophila with 

an intracellular survival benefit compared to strains lacking this system. 
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Figure 8 Virulence of outbreak isolates in G. mellonella model of infection (McAdam et al., 2014). Survival curves represent 
the mean for isolates grouped according to the presence of each T4SS. Larvae infected with isolates encoding the novel 
T4SS had a lower survivability to those infected with other isolates (P = 0.04). 
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Aims and objectives 

Aim: To determine the role of a novel Type IV secretion system in the increased virulence of clade C 

and D L. pneumophila isolates. 

A novel Type IV Secretion System (T4SS) was identified in patient isolates from the Edinburgh 

Legionnaire’s disease outbreak in 2012 (McAdam et al., 2014). A phylogenetic reconstruction of the 

isolates shows four distinct subtypes, two of which share a region thought to encode a novel T4SS. In 

a Galleria mellonella infection model, the presence of this T4SS correlated with increased virulence. 

This project aims to dissect the role of the novel T4SS in intracellular survival using a macrophage 

model of infection.  

Objectives: 

 Perform a bioinformatics analysis of the novel genes to identify possible origins and functions. 

 Detect the expression of novel genes in broth culture and infected macrophage-like cells. 

 Compare intracellular replication rates of Legionella from each clade. 

 Compare rate of cell death in macrophage-like cells infected with Legionella from each clade. 
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Chapter 2: Materials and methods 

Bioinformatics 

Identification of genes unique to clades C and D 

 Orthologous genes between the representative isolates listed below were defined using the 

OrthoMCL algorithm (Li et al., 2003) with the following parameters: minimum 80% coverage in BLAST 

pairwise alignments, minimum 85% sequence identity in BLAST query/subject pairs, filtered by 50% 

length difference within clusters. Unique genes were mapped to the genome of clade D strain 12_4240 

using the DNAPlotter application (Carver et al., 2009). 

Clade Representative isolate Accession number 

A 12_5415 NZ_CCZU00000000 

B 12_5064 NZ_CCZP01000000 

C 12_4499 NZ_CDCY00000000 

D 12_4240 NZ_CCZI00000000 

 

Analysis of the novel T4SS 

 Pairwise nucleotide sequence identity analyses of the T4SS and 39-kb region were performed 

using the Basic Linear Alignment Search Tool (BLASTn) (http://www.ncbi.nlm.nih.gov/blast) (Altschul 

et al., 1990). Linear comparison figures were generated using EasyFig (Sullivan et al., 2011). The LGI-

T4SS phylogenetic tree was constructed using the BLAST tree view 

(http://www.ncbi.nlm.nih.gov/blast/treeview/treeView.cgi). The strains used are listed below. 

 

 

Species Strain Accession number LGI-T4SS LGI-T4SS locus tags 

L. pneumophila Paris CR628336.1 LGI-1 lpp1075 - lpp1055 

 12_4240 NZ_CCZI00000000 39-kb region PROKKA_00671 – 
PROKKA_00693 

L. longbeachae D-4968 NZ_ACZG01000001.1  LLB_1169 – LLB_1191  

Species Strain Accession number LGI-T4SS lgiN locus tag 

L. pneumophila Alcoy CP001828 LGI-1 lpa_01507 

Corby CP000675 LGI-1 LPC_2290 

LGI-2 LPC_1874 

Philadelphia 1 AE017354 LGI-1 lpg0989 

Paris CR628336.1 LGI-1 lpp1059 - lpp1060 

LGI-2 lpp2392 

12_4240 NZ_CCZI00000000 
 

39-kb region PROKKA_00687 

50-kb region PROKKA_01789 

L. longbeachae D-4968 NZ_ACZG01000001.1  LLB_1185  

http://www.ncbi.nlm.nih.gov/blast/treeview/treeView.cgi
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Prediction of T4SS-secreted effector proteins and eukaryotic-like motifs 

 The classifier T4EffPred was used to predict whether or not each of the 31 genes unique to 

clade C and D encode T4SS effector proteins (http://bioinfo.tmmu.edu.cn/T4EffPred/prediction.html) 

(Zou et al., 2013). The eukaryotic linear motif resource ELM was used to identify any eukaryotic motifs 

present in the seven predicted T4SS effector proteins (http://elm.eu.org) (Dinkel et al., 2013). 

 

Bacteriology 

Growth of representative L. pneumophila isolates 

 The L. pneumophila isolates were resuscitated from frozen glycerol stocks on BCYE agar plates 

(CYE agar plates with Legionella BCYE growth supplement (VWR Chemicals)) at 37°C for 48 hours, then 

cultured in broth (0.5% yeast extract, 1% bovine serum albumin and Legionella BCYE growth 

supplement) at 37°C with shaking.  

 

Triton X-100 assay 

 A broth culture of L. pneumophila Paris was diluted in broth to an OD600 of 0.5 (approximately 

109 bacteria/ml) using the Utrospec 2100 pro UV/visible spectrophotometer (Amersham Biosciences), 

then further diluted in broth to approximately 106 bacteria/ml. 1ml of the diluted culture was added 

to 3 microcentrifuge tubes, then centrifuged at 13,000 x g for 1 minute. The resulting pellets were 

resuspended in 1ml of either 0%, 0.05% or 0.1% Triton X-100 in PBS. After incubation for 5 minutes at 

room temperature, each suspension was serially diluted in PBS, then 10μl of each dilution was plated 

on BCYE agar. The plates were incubated at 37°C until colonies were visible. 

 

Growth curve in broth culture 

 L. pneumophila isolates from glycerol stocks were resuscitated on CYE agar plates with 

Legionella BCYE growth supplement (VWR Chemicals) at 37°C for 48 hours, then 3 colonies from each 

strain were cultured in broth at 37°C for 48 hours. OD600 was adjusted to 0.02 in broth or DMEM using 

the Utrospec 2100 pro UV/visible spectrophotometer (Amersham Biosciences). 200µl of each diluted 

sample was added to a 96-well tissue culture plate. Growth was quantified hourly for 4 days by OD600 

http://elm.eu.org/
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using the FLUOstar Omega microplate reader (BMG LabTech) set at 37°C and shaking. Data was 

analysed by the student’s 2-sample t-test using Minitab® 17 statistical software. 

 

Molecular methods 

CTAB extraction of L. pneumophila genomic DNA 

 Genomic DNA from a representative strain of each clade was extracted. For each strain, 1.5ml 

of overnight culture was centrifuged at 13,000 x g for 5 minutes. After removal of the supernatant, 

the cells were vortexed in 567µl Tris-EDTA buffer (10mM Tris-HCl (pH 8.0) and 1mM EDTA (pH 8.0)). 

The cells were then incubated with 30µl 10% SDS and 3µl 20mg/ml proteinase K at 37°C for 2 hours. 

The sample was mixed with 100µl 5M NaCl and 80µl CTAB/NaCl solution (0.7M NaCl and 274mM 

hexadecyltri-methyl ammonium bromide; filter sterilised), then incubated at 65°C for 10 minutes. The 

sample was mixed with 750µl phenol:chloroform:isoamyl alcohol then centrifuged at 13,000 x g for 

30 minutes. The aqueous supernatant was mixed with 750µl phenol:chloroform:isoamyl alcohol then 

centrifuged at 13,000 x g for 25 minutes. The aqueous supernatant was mixed with 750µl 

phenol:chloroform:isoamyl alcohol then centrifuged at 13,000 x g for 15 minutes. The aqueous 

supernatant was mixed with 450µl isopropanol then centrifuged at 13,000 x g for 10 minutes. After 

removal of the supernatant, the pellet was centrifuged with 400µl 70% ethanol at 13,000 x g for 10 

minutes. The supernatant was removed and the pellet air dried. The pellet was resuspended in 50µl 

sterile distilled water. RNase was added to a final concentration of 10µg/ml, then the sample was 

incubated at room temperature for 20 minutes. The quantity and quality of the resulting DNA samples 

was assessed using the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). 

 

PCR validation of primers using genomic DNA 

PCR reactions were performed in 20µl volumes using the G-Storm GS001 thermal cycler. The 

reaction mix contained Phusion HF buffer (Thermo Scientific), 0.2mM deoxynucleotides, 1µM forward 

primer, 1µM reverse primer, 0.4 units Phusion DNA polymerase (Thermo Scientific) and 0.5ng 

template DNA in nuclease-free water. After an initial denaturation step at 98°C for 2 minutes, thirty 

cycles of amplification were performed under the following conditions: denaturation at 98°C for 10 

seconds, annealing at 64°C for 20 seconds and extension at 72°C for 10 seconds. The final extension 

was performed at 72°C for 10 minutes. 
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Gene Forward primer Reverse primer 

icmQ GAAAGATCAACTCTCGGATGAACAAAAAG CGATTGGCAAGATGAGACTCTGCTTTTAAC 

lgiA GAAATTATTATTTGTTACTTCTCTTGGCTTC GAATATTTAAGCCACCATTCAAGAGCTTGG 

lgiD CTCTATTATTGCAGGCTTATTGATGATTAC GTTAGTTAGTTCGAGTTTTCGTCTTTCCAC 

lgiT GAGCCATTATCCCGTTGAAAACTTGCT GATAGCGTTTTATTTTAAATGCCTGAACTC 

00662 CAAAATCCAGAATCAGACCGGCAACTTC CGTCCTAGAGTATAAGTACGATAACCATC 

00663 GGATCTAACTATAGACCCTATTACAAAGCG CATCCTTATTATCAATACCGATTAGTTCTC 

00666 GAACAAGATTTGTAAAGTTTCATGGAAGG CACTTGATGTGGGTAAATAT 

00668 GGGATGTATAGCCGAATTTTTGGCATCAG GTTTTTGTACTGTCCAGATAGTCTTTACCAC 

00669 CAAAAATTCAGATTATTTAACGAGCACCCC GTCCACAGATATGTCTTCGATGTGAAGATTC 

00697 GATAGAGTTACTAAAAATTCTAATCTCTTCGG CTCTGCCGTATGTATGTTCAGGTAAATATC 

 

Extraction of RNA from L. pneumophila clade C and D isolates 

 RNA from isolates 12_4499 and 12_4240 grown in either broth or infected RAW 264.7 cells 

was isolated using the Reliaprep™ RNA Cell Miniprep System (Promega) according to the product 

technical manual. The quantity and quality of the resulting RNA samples was assessed using the 

NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). 8µl of each RNA sample was then 

incubated with 1µl RNase-free DNase (Promega) and 1µl RNase-free reaction buffer (Promega) at 

37°C for 30 minutes. The samples were then incubated with 1µl DNase Stop Solution (Promega) at 

65°C for 10 minutes. 

 

Reverse transcription-PCR 

 Reverse transcription-PCR (RT-PCR) reactions were performed in 50µl volumes using the 

Access RT-PCR System (Promega) and G-Storm GS001 thermal cycler. The reaction mix contained 

AMV/Tfl reaction buffer, 0.2mM deoxynucleotides, 1µM forward primer, 1µM reverse primer, 1mM 

MgSO4, 0.1u/µl AMV reverse transcriptase, 0.1u/µl Tfl DNA polymerase and 5ng template RNA in 

nuclease-free water. Reverse transcription was performed at 45°C for 45 minutes, followed by reverse 

transcriptase inactivation and nucleic acid denaturation at 94°C for 2 minutes. Thirty cycles of 

amplification were then performed for RNA samples from isolates grown in broth, and 50 cycles were 

performed for RNA samples from infected RAW 264.7 cells. Templates were denatured at 94°C for 30 

seconds, primers annealed at 60°C for 1 minute and extension performed at 68°C for 1 minute. The 

final extension was performed at 68°C for 7 minutes. 
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Agarose gel electrophoresis 

 PCR and RT-PCR products were resolved in a 1.8% agarose gel with 1% Syber safe DNA stain 

(Invitrogen) in TAE buffer (40mM Tris-acetate and 1Mm EDTA; pH 7.7). A 100bp DNA ladder (Promega) 

was loaded into one lane and DNA loading dye (Invitrogen) was added to all samples before loading. 

Electrophoresis was performed in a Bio-Rad Mini-Sub® Cell at a constant voltage of 100V. DNA was 

visualised using the FluorChem HD2 imaging system (Alpha Innotech). 

 

Extraction of DNA from infected RAW 264.7 cells for qPCR  

Each cell pellet was resuspended in 100µl 0.4mg/ml lysozyme in Tris-EDTA with 1.2% Triton X-

100 (Sigma-Aldrich), then incubated at 37°C for 30 minutes prior to DNA extraction using the QIAamp® 

DNA Mini Kit (Qiagen). The quantity and quality of the resulting DNA samples was assessed using the 

NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). 

 

Real-time qPCR optimisation 

 Preliminary amplification and dissociation plots were generated to test all possible pairings of 

primer concentrations for IcmQ and β-actin, listed below. For each primer pair, qPCR reactions were 

performed in 10µl volumes containing Brilliant III Ultra-Fast SYBR Green qPCR master mix (Agilent 

Technologies), 30nM reference dye (Agilent Technologies), 10ng DNA sample in nuclease-free water 

and both forward and reverse primers at either 0.1µM, 0.2µM or 0.3µM. Fifty cycles of amplification 

were performed using the Stratagene Mx3000P qPCR system (Agilent Technologies) under the 

following conditions: denaturation at 95°C for 10 seconds, then annealing, extension and read 

fluorescence at 60°C for 22 seconds. This was followed by a dissociation curve in which the PCR 

products were subjected to a stepwise increase in temperature from 60°C to 95°C to determine their 

melting temperature. Results were analysed using the MxPro qPCR software (Agilent Technologies). 

Gene Forward primer Reverse primer 

icmQ GAAAGATCAACTCTCGGATGAACAAAAAG CGATTGGCAAGATGAGACTCTGCTTTTAAC 

β-actin GTTGTAGCCTAGTCCTTTCTCCA TGCCACAGGATTCCATACCT 
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Real-time qPCR 

 qPCR reactions were performed in 10µl volumes containing Brilliant III Ultra-Fast SYBR Green 

qPCR master mix (Agilent Technologies), 0.2µM (β-actin) or 0.3µM (icmQ) forward and reverse 

primers, 30nM reference dye (Agilent Technologies) and 10ng DNA sample in nuclease-free water. 

Fifty cycles of amplification were performed using the Stratagene Mx3000P qPCR system (Agilent 

Technologies) under the following conditions: denaturation at 95°C for 10 seconds, then annealing, 

extension and read fluorescence at 60°C for 22 seconds. Results were analysed using the MxPro qPCR 

software (Agilent Technologies) and the student’s 2-sample t-test was performed using Minitab® 17 

statistical software. 

 

Cell assays 

Cell infection assay  

 At 24 hours prior to infection, 24-well tissue culture plates were seeded with 1x106 RAW 264.7 

cells in 10% DMEM (Dulbecco’s Modified Eagle’s Medium with 10% heat-inactivated fetal calf serum), 

then incubated at 37°C with 5% CO2. At 21 hours prior to infection, existing broth cultures of the 

required L. pneumophila strains at stationary phase were diluted in broth to an OD600 of 0.1 using the 

Utrospec 2100 pro UV/visible spectrophotometer (Amersham Biosciences) then incubated at 37°C 

with shaking. 

 Immediately prior to infection, each L. pneumophila broth culture was adjusted to an OD600 of 

0.5 (approximately 109 bacteria/ml) in broth, then diluted in 10% DMEM to provide the required 

multiplicity of infection (MOI). DMEM was removed from each well of the tissue culture plates and 

replaced with the diluted L. pneumophila cultures. A gas-permeable membrane was applied to each 

plate before centrifugation at 20 x g for 5 minutes, then incubation at 37°C with 5% CO2 for 1 hour. 

Media was removed from the plates and the wells were washed three times with phosphate-buffered 

saline (PBS). 100µg/ml gentamicin in 10% DMEM was added to each well before incubation at 37°C 

for 1 hour. Media was removed from the plates and the wells were washed three times with PBS. 10% 

DMEM was added to each well before further incubation at 37°C with 5% CO2 until the required time 

point was reached.   
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Gentamicin protection assay with representative L. pneumophila isolates for qPCR 

As described previously, tissue culture plates seeded with RAW 264.7 cells were inoculated 

with bacteria at an MOI of 1. A gas-permeable membrane was applied to each plate before 

centrifugation at 20 x g for 5 minutes, then incubation at 37°C for 30 minutes (0-hour timepoint) or 1 

hour (2-, 4- and 24-hour timepoints). After 30 minutes, the media was removed from one plate and 

2ml PBS was added to each well. Cells were scraped into suspension, transferred to microcentrifuge 

tubes and centrifuged at 900 x g for 5 minutes. The supernatant was removed and the pellet 

(representing the 0.5 hour timepoint) frozen for DNA purification.  

After 1 hour, media was removed from the remaining plates and replaced with 100µg/ml 

gentamicin in 10% DMEM before incubation at 37°C for 1 hour. Media was removed from the 

remaining plates and the wells were washed three times with PBS. 10% DMEM was added to each 

well before incubation at 37°C for a further 1, 3 or 23 hours (2-, 4- and 24-hour timepoints, 

respectively). Media was removed from the plates and 2ml PBS was added to each well. Cells were 

scraped into suspension, transferred to microcentrifuge tubes and centrifuged at 900 x g for 5 

minutes. The supernatant was removed and the pellet frozen for DNA purification.  

 

Cell cytotoxicity assay 

 As described previously, four 6-well tissue culture plates seeded with 5x106 RAW 264.7 cells 

per well were inoculated with either representative L. pneumophila isolates (MOI = 1) or 10% DMEM 

(uninfected control). The final incubation step was performed with 2ml 10% phenol red-free DMEM 

(phenol red-free DMEM with 10% heat-inactivated fetal calf serum) in each well. At 2, 4 and 24 hours 

post-infection, 200µl 10X Lysis Solution (Promega) was added to one well for 45 minutes (positive 

control), then 1ml supernatant from each well was transferred to microcentrifuge tubes. These were 

centrifuged at 300 x g for 4 minutes, then the resulting supernatant was used in the cell cytotoxicity 

assay. This assay was performed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega) 

according the manufacturer’s instructions. Absorbance at 490nm was measured using the FLUOstar 

Optima microplate reader (BMG LabTech). Data was analysed by the student’s 2-sample t-test using 

Minitab® 17 statistical software. 

 

 



32 
 

Protein detection methods 

Cell lysate samples 

 As described previously, four 6-well tissue culture plates seeded with 5x106 RAW 264.7 cells 

per well were inoculated with either representative L. pneumophila isolates (MOI = 1) or 10% DMEM 

(uninfected control). At 2, 4 and 24 hours post-infection, the media was removed and the wells were 

washed twice with PBS. 50µl BugBuster™ Protein Extraction Reagent (Novagen) was added to each 

well, then the plates were incubated at room temperature for 10 minutes. The resulting cell lysates 

were incubated with 10µl reducing sample treatment buffer (RSTB) at 90°C for 10 minutes, then 

centrifuged at 13,000 x g for 1 minute. 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

2µl Precision Plus Protein WesternC Protein Standards (Bio-Rad) and 15 µl of each cell lysate 

sample were loaded into a 12.5% 1.5 mm SDS-polyacrylamide gel. Gels were submerged in running 

buffer (25 mM Tris-HCL, 192 mM glycine, 0.1% SDS) and run at 150V with Bio-Rad Mini-PROTEAN Tetra 

Cell apparatus. 

 Resolving gel Stacking gel 

30% Acrylamide  4.17ml 850µl 

2% Bis-acrylamide 500µl 350µl 

1M Tris (pH 8.8) 3.75ml  

1M Tris (pH 6.8)  625µl 

10% SDS 100µl 50µl 

Distilled water 1.5ml 3.25ml 

Tetramethylethylenediamine (TEMED) 8.35µl 12.5µl 

10% Ammonium persulphate in water 33.35µl 25µl 

 

Western blotting 

 Protein was transferred from the SDS-polyacrylamide gel to a nitrocellulose membrane (GE 

Healthcare Life Science) using the Bio-Rad Trans-Blot Turbo transfer system at 25V for 30 minutes in 

transfer buffer (25mM Tris-HCl, 192mM glycine, 20% methanol). Following transfer, membranes were 

blocked in PBS with 5% non-fat dry milk for 30 minutes. After 3 washes in PBS with 0.1% Tween 20 

(PBS-T), membranes were incubated with primary antibody (0.2µg/ml rabbit anti-LC3 and 0.1µg/ml 

goat anti-actin (Santa Cruz Biotechnology)) at 4°C overnight. After 3 washes in PBS-T, membranes were 

incubated with secondary antibody (1µg/ml anti-rabbit680 (Cell Signalling Technology) and 1µg/ml anti-

goat800 (Li-Cor)) at room temperature for 1 hour. The membranes were washed 5 times in PBS-T, then 
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stored in PBS before imaging with the Li-Cor Odyssey infrared imager and quantification with Li-Cor 

Image Studio software. Data was analysed by the student’s 2-sample t-test using Minitab® 17 

statistical software. 

 

Confocal microscopy 

Co-staining RAW 264.7 cells infected with L. pneumophila  

 Coverslips from the infection were washed twice with PBS, then cells were permeabilised with 

0.5% Triton-X100 (Sigma-Aldrich) in PBS for 15 minutes at room temperature. The coverslips were 

washed twice with PBS. Next, non-specific binding sites were blocked with BSA/PBS (0.5% bovine 

serum albumin in PBS with 0.02% sodium azide; filtered through 0.2 µm filter) for 30 minutes at room 

temperature. Coverslips were transferred onto parafilm on wet tissue paper, then each coverslip was 

incubated with 50µl 2 µg/ml FITC-conjugated anti-Legionella antibody (abcam) for 1 hour at 37°C. Each 

coverslip was washed in PBS, then incubated with 50µl 2 U/ml Phalloidin 568 for 15 minutes at room 

temperature. Each coverslip was washed again in PBS, then stained with 9.53 µM DAPI (4’,6-

diamidino-2-phenylindole). The coverslips were then mounted on glass slides with 5 µl ProLong Gold 

(Molecular Probes). 

 

Confocal microscopy of RAW 264.7 cells infected with L. pneumophila  

Coverslips were imaged using a Zeiss LSM 710 confocal microscope and a 40X objective lens. 

Fluorophores were excited with lasers at 405 nm, 488 nm and 543 nm. Images were processed using 

Image J and Zen software. 

  



34 
 

Chapter 3: Analysis of novel Legionella pneumophila genes 

Introduction 

 In order to identify the mechanism underlying the increased virulence of the clade C and D L. 

pneumophila strains, the genes unique to these clades were identified and studied using a 

bioinformatics approach. Some of these unique genes encode the novel T4SS identified by McAdam 

et al. (2014), which was further analysed in order to identify its origin and possible function in the 

isolates. Predicted T4SS-secreted effectors containing eukaryotic-like linear motifs unique to clades C 

and D were also identified. The expression of novel T4SS and putative effector genes was determined 

in Legionella total RNA samples from both broth culture and infected macrophage-like cells using 

reverse transcription-PCR (RT-PCR) to detect mRNA transcripts.   

 

Bioinformatic analysis of novel genes unique to clades C and D 

 One representative L. pneumophila isolate from each of the four clades was chosen for 

bioinformatic analysis, as listed in Table 2. Using the OrthoMCL algorithm (Li et al., 2003), a total of 

149 genes present in Clades C and D were found to be absent from Clade B (Figure 9). Of these, 31 

genes are also absent from Clade A, and therefore unique to Clades C and D. Orthologous genes were 

defined with the following parameters: minimum 80% coverage in BLAST pairwise alignments, 

minimum 85% sequence identity in BLAST query/subject pairs, filtered by 50% length difference within 

clusters. 

Clade Representative isolate Accession number 

A 12_5415 NZ_CCZU00000000 

B 12_5064 NZ_CCZP01000000 

C 12_4499 NZ_CDCY00000000 

D 12_4240 NZ_CCZI00000000 
Table 2 Representative L. pneumophila isolates used in this study.  

 

 The 39-kb region shown in Figure 9 was investigated further as it is unique to clades C and D, 

and may therefore be linked to the increased virulence of these clades in a Galleria model (McAdam 

et al., 2014). This region and the surrounding genome encode several features that are commonly 

associated with pathogenicity islands, including integrases, transposases and tRNA (Figure 10) (Hacker 

et al., 1997). Furthermore, the G+C content of the region (37.45%) is slightly lower than that of the 

rest of the genome (38.94%). These features suggest that the 39-kb region may be a functional 

pathogenicity island that can undergo integration and excision from the genome. 
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Figure 9 Distribution of genes absent from Clade B (black) or absent from both Clades A and B (red). Mapped to genome of 
clade D strain 12_4240 (orange) using the DNAPlotter application (Carver et al., 2009). Label indicates the 39-kb region 
unique to clades C and D.  

  

 

Figure 10 Pathogenicity island features associated with the 39-kb region. Labelled genes encode a transposase (1), 
integrases (2-4), attR/tRNA-Arg (5) and tRNA-Lys (6-7). 
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Novel T4SS of clades C and D 

 The 39-kb region contains the T4SS originally identified by McAdam et al. (2014) as a novel 

Lvh T4ASS (Figure 11). However, pairwise nucleotide sequence identity (BLASTn) analysis revealed that 

this region encodes a LGI-T4SS (Figure 12). The strains and gene clusters used are listed in Table 3. 

Unexpectedly, this LGI-T4SS shares only 75% nucleotide identity and 82% amino acid identity with that 

of L. pneumophila strain Paris, but shares 90% nucleotide identity and 96% amino acid identity with 

the LGI-T4SS of L. longbeachae strain D-4968.  

 

Figure 11 Schematic diagram of the 39-kb region, including the novel T4SS identified by McAdam et al. (2014). Arrows 
represent predicted CDSs identified using the Prokka annotation pipeline (Seemann, 2014). 

 

 

Figure 12 Linear comparison of LGI-T4SS clusters. Arrows represent coding sequences. Shaded bars between each cluster 

represent nucleotide sequence identity (BLASTn). Generated using EasyFig (Sullivan et al., 2011). 

 

Table 3 Strains and LGI-T4SS gene clusters used in the BLASTn analysis. 

 

Species Strain Accession number LGI-T4SS LGI-T4SS locus tags 

L. pneumophila Paris CR628336.1 LGI-1 lpp1075 - lpp1055 

 12_4240 NZ_CCZI00000000 39-kb region PROKKA_00671 – 
PROKKA_00693 

L. longbeachae D-4968 NZ_ACZG01000001.1  LLB_1169 – LLB_1191  
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 A phylogenetic tree was constructed using BLAST pairwise alignments of the lgiN gene 

nucleotide sequence, which encodes a putative ATPase within the LGI-T4SS cluster (Figure 13) (Wee 

et al., 2013). The strains and genes used are listed in Table 4. The phylogenetic tree shows that the 

39-kb T4SS is closely related to the L. longbeachae D-4968 LGI-T4SS. Therefore, the novel T4SS appears 

to be an LGI-T4SS that has originated from L. longbeachae. 

 

Figure 13 Unrooted phylogenetic tree of LGI-T4SSs across L. pneumophila (Lp) and L. longbeachae (Ll) genomes listed in Table 
4. Tree of lgiN genes using BLASTn pairwise alignments, visualised using the BLAST tree view 
(http://www.ncbi.nlm.nih.gov/blast/treeview/treeView.cgi). 

 

Table 4 Strains and lgiN genes used to construct the phylogenetic tree. 

 

 Researchers from the Fitzgerald laboratory have access to the L. longbeachae genomes of 

patient and environmental isolates from a Legionnaires’ disease outbreak in Scotland in 2013 (Potts 

et al., 2013). BLASTn analysis showed that the entire 39-kb region shares 94% nucleotide identity with 

the homologous region in the L. longbeachae isolate 13_6619, isolated from a compost sample 

provided by a patient of the outbreak (Figure 14). Therefore, the full 39-kb region is likely to have 

originated from L. longbeachae and may have been transferred to L. pneumophila in the environment. 

Species Strain Accession number LGI-T4SS lgiN locus tag 

L. pneumophila Alcoy CP001828 LGI-1 lpa_01507 

Corby CP000675 LGI-1 LPC_2290 

LGI-2 LPC_1874 

Philadelphia 1 AE017354 LGI-1 lpg0989 

Paris CR628336.1 LGI-1 lpp1059 - lpp1060 

LGI-2 lpp2392 

12_4240 NZ_CCZI00000000 
 

39-kb region PROKKA_00687 

50-kb region PROKKA_01789 

L. longbeachae D-4968 NZ_ACZG01000001.1  LLB_1185  
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Figure 14 Linear comparison between the 39-kb region of L. pneumophila clade D isolate 12_4240 (PROKKA_00662 – 
PROKKA_00706) and the homologous region in the L. longbeachae isolate 13_6619. Shaded bars between each cluster 
represent nucleotide sequence identity (BLASTn). Generated using EasyFig (Sullivan et al., 2011). 

  

Prediction of novel T4SS-secreted effector proteins and eukaryotic-like motifs 

 The classifier T4EffPred was used to predict whether or not each of the 31 genes unique to 

clade C and D encode T4SS effector proteins (http://bioinfo.tmmu.edu.cn/T4EffPred/prediction.html) 

(Zou et al., 2013). T4EffPred identifies putative effectors by scoring proteins according to their amino 

acid composition, dipeptide composition and other distinctive features of T4SS effector proteins. A 

total of 7 genes were predicted to encode T4SS-secreted effectors, all of which are located adjacent 

to the L. longbeachae-like LGI-T4SS in the 39-kb region (Figure 15).  

 

Figure 15 Schematic diagram of the 39-kb region showing location of predicted T4SS secreted effectors. Arrows represent 
predicted CDSs identified using the Prokka annotation pipeline (McAdam et al., 2014). 

 

 Secreted effectors interact with host cell proteins via eukaryotic-like domains, which are 

common features of Legionella T4SS effectors (Lomma et al., 2009). These interactions may promote 

the survival of Legionella and could therefore provide a mechanism for the increased virulence of the 

clade C and D isolates. The eukaryotic linear motif resource ELM was used to identify any eukaryotic 

motifs present in the seven predicted T4SS effector proteins (http://elm.eu.org) (Dinkel et al., 2013). 

http://elm.eu.org/
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Some of the most commonly predicted motifs present in these putative effector proteins are listed in 

Table 5. 
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PDZ-binding motif: PDZ domains are involved in protein targeting 
and the assembly of protein complexes (Hung and Sheng, 2002). 
(Interaction domain PF00595) 

   ✓   ✓ 

Clathrin box motif: Binds clathrin heavy chain (Alberts et al., 2008a). 
Found on cargo adaptor proteins. (Interaction domain PF01394) 

✓ ✓ ✓   ✓  

eIF4E binding motif: Binds the dorsal surface of the eukaryotic 
Translation Initiation Factor 4E (eIF4E) (Marcotrigiano et al., 1999). 
Blocks assembly of the translation machinery. (Interaction domain 
PF01652) 

 ✓  ✓    

IAP binding motif: Binds Inhibitor of Apoptosis Proteins (IAPs) in 
apoptotic cells (Vucic and Fairbrother, 2007). (Interaction domain 
PF00653) 

✓  ✓     

SH2 domain motif: Binds phosphorylated tyrosine residues (Koch et 
al., 1991). Involved in signal transduction of receptor tyrosine kinase 
pathways. (Interaction domain PF00017) 

    ✓ ✓  

Table 5 Selected predicted eukaryotic linear motifs in putative T4SS effector proteins. (P < 0.1). 

 

Expression of predicted effectors  

 To determine whether or not the LGI-T4SS and predicted effector proteins are expressed by 

the isolates in either broth culture or during infection of cultured cells, reverse transcription PCR (RT-

PCR) was used to detect mRNA encoding several genes of interest. Bacterial RNA samples were 

extracted from the representative L. pneumophila clade C and D isolates at stationary phase in broth 

culture and infected RAW 264.7 macrophage-like cells using the ReliaPrepTM RNA Cell Miniprep System 

(Promega), according to the product technical manual. The quantity and quality of the resulting RNA 

samples was assessed using the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). 

 The RAW 264.7 cells were infected using a gentamicin protection assay (see Chapter 2) at an 

MOI of 1. At 18 hours post-infection, media was removed from each well and replaced with 1ml PBS. 

Cells were scraped into suspension then transferred to microcentrifuge tubes and pelleted for RNA 

extraction. 
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 Several aspects of the RT-PCR protocol were optimised using the gene icmQ, which encodes a 

component of the constitutively expressed Dot/Icm T4BSS (Faucher et al., 2011). For each clade, four 

wells of a 6-well tissue culture plate with a total of approximately 2x107 RAW 264.7 cells were infected 

in order to maximise the yield of RNA for Legionella gene expression to be detected. Infected RAW 

264.7 cells were incubated with 0.4mg/ml lysozyme in Tris-EDTA for 5 minutes prior to RNA extraction 

to increase the yield of RNA. This incubation step increased the yield by 44%, from 15.94μg to 22.94μg 

RNA. In addition, the number of RT-PCR cycles was increased from 30 to 50 for reactions with RNA 

samples from infected cells. This was necessary as these samples also contained RAW 264.7 cell RNA 

and therefore a smaller quantity of bacterial RNA. 

 A negative control reaction without reverse transcriptase (RT) was carried out alongside each 

RT-PCR reaction. This ensured that the PCR reaction only amplified DNA that was produced from the 

reverse transcription of mRNA. Therefore the assay specifically detected transcribed genes only. In 

addition, the RNA samples were treated with RNase-free DNase (Promega) in order to reduce the 

amount of DNA in the negative control reaction (Figure 16). 

 

Figure 16 Optimisation of RT-PCR protocol with DNase treatment. Products of RT-PCR with primers for icmQ and RNA 
extracted from the representative clade A isolate in broth culture. 

 

 Primers were designed for three LGI-T4SS genes (lgiA, lgiD and lgiT) and five genes encoding 

predicted effectors (00662, 00663, 00666, 00669 and 00697) (Figure 17). Each pair of primers was 

designed to produce a DNA product of 200bp in length.  The primers were validated by PCR on 

genomic DNA extracted from representative isolates of each clade to ensure specificity to the unique 

genes of clades C and D (Figure 18). 
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Figure 17 Location of genes within the 39-kb region that were detected using PCR and RT-PCR. 

 

 

Figure 18 PCR validation of primers for genes encoding putative effector proteins on genomic DNA from representative L. 
pneumophila isolates. icmQ is used as a positive control. Negative controls (-) contain no genomic DNA. 

 

 Whilst expression of icmQ could be detected, expression of the putative effector genes was 

not detected in bacteria from broth culture (Figure 19). However, the genes lgiA, lgiD, lgiT, 00662 and 

possibly 00666 appeared to be expressed during intracellular growth (Figure 20). This indicates that 

expression of the LGI-T4SS and the predicted effectors 00662 and 00666 may be induced during 

infection, and could therefore play a role in intracellular survival or interaction with the host cell.  
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Figure 19 RT-PCR on RNA extracted from representative Clade C and D isolates grown in broth culture. icmQ was used as a 
positive control. 

 

 

Figure 20 RT-PCR on RNA extracted from representative Clade C and D isolates from infected RAW 264.7 cells. icmQ was 
used as a positive control. 

 

 Expression of the positive control gene icmQ was not detected in the RNA samples from 

infected cells (Figure 20). It has been shown previously that the expression of icmQ decreases after 3 

hours of infection and is only expressed at a low level by 20 hours post-infection (Barysheva et al., 

2008). As the RNA samples were extracted at 18 hours post-infection, it is likely that icmQ was 

expressed at a low level that was insufficient for detection by RT-PCR. 

 

Summary 

 The genes unique to clades C and D were analysed using a bioinformatics approach. The 39-

kb region unique to these clades was found to resemble a pathogenicity island and unexpectedly, the 

novel T4SS identified by McAdam et al. (2014) was shown to be a LGI-T4SS originating from L. 

longbeachae. Five of the genes adjacent to the LGI-T4SS were predicted to encode T4SS-secreted 

effector proteins and were shown to contain several eukaryotic-like linear motifs. mRNA encoding the 

LGI-T4SS and predicted effectors 00662 (and possibly 00666) was detected in cells infected with 

representative clade C and D isolates. 
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Chapter 4: Comparing growth rates and host cell response 

Introduction 

 In order to assess any requirement of the novel T4SS in the survival of L. pneumophila, several 

techniques were used to determine the replication rate of isolates from each clade. The infection 

protocol was optimised using L. pneumophila Paris and RAW 264.7 macrophage-like cells, which were 

later infected with representative isolates of each clade. Replication rate in broth culture was 

compared using a microplate reader and intracellular replication was quantified using qPCR. In 

addition, two assays were used to compare cytotoxicity and autophagy in RAW 264.7 cells infected 

with representative isolates from each clade. 

 

Infection optimisation with L. pneumophila Paris 

 A gentamicin protection assay was used to study the intracellular replication of the L. 

pneumophila isolates and the response of infected host cells. The L. pneumophila strain Paris was used 

to optimise the infection protocol before using representative isolates from clades A, B, C and D. The 

mouse leukemic monocyte macrophage cell line RAW 264.7 was used as a model host cell for 

infection. At 1 hour post-infection, any remaining extracellular bacteria were killed by incubation with 

gentamicin. As this antibiotic cannot penetrate eukaryotic cells, this method ensures that only 

intracellular bacteria survive (Venkataraman et al., 1997). 

 The efficiency of L. pneumophila infection is highest at the transition between the exponential 

and stationary growth phases of the bacteria (Tiaden et al., 2013). Therefore, L. pneumophila broth 

cultures were diluted to an OD600 of 0.1 at 21 hours prior to infection to ensure that they reached the 

late exponential or early stationary growth phase at the time of infection, as described by Tiaden et 

al. (2003). Tissue culture plates were seeded with RAW 264.7 cells at 24 hours prior to infection, then 

adherent cells were infected with L. pneumophila cultures at the required MOI. The plates were then 

centrifuged for 5 minutes to bring the bacteria into contact with the cells and synchronise the infection 

(Harding et al., 2013). After incubation at 37°C for 1 hour, the infected cells were incubated with 

100μg/ml gentamicin for 1 hour in order to kill extracellular bacteria. The media was then removed 

from the plates, the wells were washed three times with PBS and incubated with antibiotic-free media 

at 37°C until the required time point was reached. This ensured that L. pneumophila could survive in 

the media and infect new host cells after release.  

 To ensure that the extracellular bacteria were sensitive to gentamicin, the minimum inhibitory 

concentration (MIC) was determined for L. pneumophila Paris and the representative L. pneumophila 
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isolates listed in Table 6. The results indicate that the MIC for all strains is 0.125μg/ml, as no bacterial 

growth was visible at this concentration and above (Figure 21). Therefore the gentamicin 

concentration of 100μg/ml used in the gentamicin protection assay far exceeded the MIC and was 

sufficient to kill any extracellular bacteria. 

Clade Representative isolate Accession number 

A 12_5415 NZ_CCZU00000000 

B 12_5064 NZ_CCZP01000000 

C 12_4499 NZ_CDCY00000000 

D 12_4240 NZ_CCZI00000000 
Table 6 Representative L. pneumophila isolates used in this study. 

 

 

Figure 21 Minimum inhibitory concentration of gentamicin on L. pneumophila Paris and representative isolates of clades A, 
B, C and D. Broth cultures of L. pneumophila were diluted to an OD600 of 0.02 in broth containing either 0, 0.0625, 0.125, 0.25, 
0.5 or 1μg/ml gentamicin. 200µl of each diluted sample was added to a 96-well tissue culture plate. The image was taken 
after incubation of the plate at 37°C for 1 week. 

  

 In order to achieve the required multiplicity of infection (MOI), the number of colony-forming 

units (CFUs) in the inoculum was determined by measuring the optical density at 600nm (OD600) of the 

bacteria in broth culture. A culture with an OD600 of 0.5 contains approximately 1x109 CFU/ml. This 

was confirmed by plating serial dilutions of the inoculum on CYE agar plates and counting the number 

of visible colonies after incubation at 37°C for up to 4 days.  

 RAW 264.7 cells were visualised using confocal microscopy after infection with L. pneumophila 

Paris at a range of MOIs, from 1 to 100 (Figure 22). Although a higher MOI resulted in the infection of 

a higher proportion of the cells, this also caused excessive host cell death, as determined by 

microscopy. Therefore, an MOI of 1 was used for further experiments.  



45 
 

 

Figure 22 Representative confocal microscopy images of RAW 264.7 cells infected with L. pneumophila Paris at 2 hours post-
infection with MOI of 1, 10 or 100 (labelled). Cells were fixed on 13mm poly-L-lysine glass coverslips with PFA (4% 
paraformaldehyde in PBS; pH 7.4) for 20 minutes at room temperature. Cells were then permeabilised with 0.5% Triton X100 
for 15 minutes at room temperature. Non-specific binding sites were blocked with BSA/PBS for 30 minutes at room 
temperature. Legionella were stained with FITC-conjugated anti-Legionella antibody (green), F-actin was visualised with 
Phalloidin 568 (red) and DNA was stained with DAPI (blue). 

 

 An appropriate timescale for the infection was also determined using confocal microscopy. 

RAW 264.7 cells were visualised after infection with L. pneumophila Paris at 24, 48 and 72 hours 

post-infection (Figure 23). As intracellular bacteria were still visible at 72 hours post-infection, this 

timescale was used for initial experiments.   
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Figure 23 Representative confocal microscopy images of RAW 264.7 cells infected with L. pneumophila Paris at an MOI of 1. 
Labels indicate hours post-infection. Cells were fixed on 13mm poly-L-lysine glass coverslips with PFA (4% paraformaldehyde 
in PBS; pH 7.4) for 20 minutes at room temperature. Cells were then permeabilised with 0.5% Triton X100 for 15 minutes at 
room temperature. Non-specific binding sites were blocked with BSA/PBS for 30 minutes at room temperature. Legionella 
were stained with FITC-conjugated anti-Legionella antibody (green), F-actin was visualised with Phalloidin 568 (red) and 
DNA was stained with DAPI (blue). 

 

 The first aim of the gentamicin protection assays was to measure the intracellular replication 

of the L. pneumophila isolates by quantifying colonies recovered from infected cells at several time 

points. At 24, 48 or 72 hours post-infection, the media was removed from the tissue culture plates 

and wells were washed twice with PBS to remove any extracellular bacteria. Next, 100µl 0.05% Triton 

X-100 (Sigma-Aldrich) in PBS was added to each well for 5 minutes in order to lyse the infected cells. 
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The resulting lysates were serially diluted in PBS, then 10µl of the tenfold dilutions were plated on 

BCYE agar plates before incubation at 37°C for 3 days or until colonies were visible. 

 Although viable colonies were recovered from infected cells at 24 hours post-infection (Figure 

24), none were recovered at later time points. This may have been due to the entry of the bacteria 

into a viable but non-culturable (VBNC) form in response to environmental stress (Oliver, 2010). In 

this form, the cells are viable but cannot be cultured on laboratory media. L. pneumophila may enter 

the VBNC state in response to starvation, hypochlorite treatment or high temperatures (reviewed in 

Al-Bana et al., 2014). Therefore, the number of colony-forming units recovered may not accurately 

reflect the number of intracellular bacteria due to the formation of VBNC cells.  

 

Figure 24 Colonies recovered on BCYE agar from lysis of RAW 264.7 cells infected with L. pneumophila Paris (MOI = 1) at 24 
hours post-infection. Plate shows 3 biological replicates. 10μl lysate (n) and tenfold serial dilutions in PBS (-1, -2, -3) from a 
total of 100μl lysate were plated from each well. 

 

 Several aspects of the protocol were modified in an attempt to recover viable colonies from 

later time points. For example, the infected cells were lysed with Triton X-100, so the effect of this 

detergent on cell viability was assessed. A broth culture of L. pneumophila Paris at approximately 106 

bacteria/ml was centrifuged in 1ml volumes at 13,000 x g for 1 minute. The resulting pellets were 

resuspended in 1ml of either 0%, 0.05% or 0.1% Triton X-100 in PBS. After incubation for 5 minutes at 

room temperature, each suspension was serially diluted in PBS, then 10μl of each tenfold dilution was 

plated on BCYE agar. The plates were incubated at 37°C until colonies were visible. 

 The results of this assay showed that 0.05% Triton X-100 does not inhibit the growth of 

colonies on BCYE agar (Figure 25). However, the bacteria used in this assay were taken from broth 

culture so may have been phenotypically different from intracellular bacteria. 
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Figure 25 L. pneumophila colonies recovered on BCYE agar after incubation in PBS with 0%, 0.05% or 0.1% Triton X-100 for 5 
minutes prior to plating. 10μl (n) and tenfold serial dilutions in PBS (-1, -2, -3) of each suspension were plated. 

 

 Due to the time and cost of these experiments, alternative approaches were used to compare 

the replication of representative L. pneumophila isolates of clades A, B C and D. 

 

Growth curve of representative isolates in broth culture 

 One feature of the L. pneumophila isolates that could underlie the increased virulence of clade 

C and D isolates is their rate of replication. In order to compare the replication rate of each clade, a 

microplate reader was used to measure the OD600 of broth cultures of representative isolates. Each 

broth culture was diluted to a starting OD600 of 0.02 in either broth or DMEM, then 200µl of each 

diluted sample was added to a 96-well tissue culture plate. Growth was quantified hourly over 4 days 

by measuring OD600 using a microplate reader. No significant difference in replication rate was 

observed between representative isolates in broth culture, as determined by a student’s 2-sample t-

test (Figure 26 and Figure 27). In contrast, no replication was observed in DMEM (Figure 27). 

Therefore, any bacterial replication measured during gentamicin protection assays can be assumed to 

take place inside infected RAW 264.7 cells. 
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Figure 26 Doubling time of representative L. pneumophila isolates in broth culture as measured by change in OD600 at 
exponential phase. Error bars indicate the standard error of the mean across three biological replicates. 

 

 

Figure 27 Growth curve of representative L. pneumophila isolates in broth culture (solid lines) or DMEM (dotted lines) as 
measured by OD600 at 1 hour intervals using a microplate reader set at 37°C and shaking. Lines represent mean result from 
three biological replicates. 

0

1

2

3

4

5

6

7

8

9

A B C D

M
ea

n
 d

o
u

b
lin

g 
ti

m
e 

(h
o

u
rs

)

Clade

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 6 12 18 24 30 36 42 48 54 60 67 73 79 85 91

O
p

ti
ca

l d
en

si
ty

 (
6

0
0

n
m

)

Time (hours)

A B C D A B C D



50 
 

Intracellular growth of representative L. pneumophila isolates 

 During infection, bacteria must replicate efficiently inside their host in order to spread to other 

cells (Finlay and Falkow, 1997). A higher rate of intracellular replication increases the number of 

bacterial cells available to infect new host cells, and may therefore increase the virulence of the 

bacteria. Therefore, representative isolates from each clade were compared to identify any 

differences in replication rate that could underlie the increased virulence of clade C and D isolates in 

the Galleria model. 

 Confocal microscopy was used to visualise any gross differences in the infection of RAW 264.7 

cells with representative L. pneumophila isolates of each clade, listed in Table 6. At 30 minutes post-

infection (MOI = 1), bacteria from each clade were visible inside RAW 264.7 cells, indicating no obvious 

difference in host cell invasion between the clades (Figure 28). 
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Figure 28  Confocal microscopy images of RAW 264.7 cells infected with representative L. pneumophila isolates of each clade 
(labelled) at 30 minutes post-infection. RAW 264.7 cells seeded on 13mm poly-L-lysine glass coverslips were inoculated at an 
MOI of 1. After centrifugation at 500rpm for 5 minutes, the infected cells were incubated in antibiotic-free media at 37°C for 
30 minutes. Media was then removed from the plate and each well was washed twice with PBS. Cells on the coverslips were 
fixed with PFA (4% paraformaldehyde in PBS; pH 7.4) for 20 minutes at room temperature. Cells were then permeabilised 
with 0.5% Triton X100 for 15 minutes at room temperature. Non-specific binding sites were blocked with BSA/PBS for 30 
minutes at room temperature. Legionella were stained with FITC-conjugated anti-Legionella antibody (green), F-actin was 
visualised with Phalloidin 568 (red) and DNA was stained with DAPI (blue). 

 

 Real-time quantitative PCR (qPCR) was used to quantify the number of Legionella inside 

infected RAW 264.7 cells over time. In this assay, multiple PCRs are monitored simultaneously in the 

thermal cycler, which detects the change in the fluorescent signal that is emitted by the dye SYBR 

Green I when it binds double-stranded DNA (Higuchi et al., 1993). The number of cycles at which the 

fluorescence level becomes statistically significantly higher than the background level is known as the 
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threshold cycle (Ct). As the Ct is inversely proportional to the log of the initial copy number, it can be 

used to compare the number of copies of a gene of interest in multiple DNA samples (Dieffenbach and 

Dveksler, 1995). 

 For each reaction, an amplification plot is generated with tenfold serial dilutions of the 

amplification product. The Ct of each dilution is then plotted against the initial DNA quantity of each 

dilution, and the resulting gradient is used to calculate PCR efficiency (E) of one cycle during the 

exponential phase according the equation: E = 10-1/gradient (Rasmussen, 2001). The relative expression 

ratio (R) of a target gene is calculated using the Ct of an unknown sample versus a control, according 

to the equation: R = E ΔCt(control – unknown) (Pfaffl, 2001). 

 DNA samples were prepared by infecting RAW 264.7 cells with representative isolates of each 

clade at an MOI of 1. The DNA samples were extracted at 30 minutes, 2 hours, 4 hours and 24 hours 

post-infection using the QIAamp® DNA Mini Kit (Qiagen). Primers were designed to probe the DNA 

samples for the Legionella gene icmQ and the RAW 264.7 cell gene β-actin. The primers were validated 

by PCR on genomic DNA extracted from RAW 264.7 cells infected with the representative Legionella 

isolate from clade A (Figure 29).  

 

Figure 29 PCR validation of primers for the genes icmQ and β-actin on genomic DNA extracted from RAW 264.7 cells infected 
with Legionella clade A isolate 12_5415 (MOI=1) at 2 hours post-infection. Negative controls (-) contain no DNA. 

 

 Appropriate primer concentrations for qPCR were determined by amplification plots of the 

two genes with a range of primer concentrations (Figure 30). These plots showed that primer 

concentrations of 300nM and 200nM were sufficient for reactions with the primers for icmQ and β-

actin, respectively. Dissociation curves were also generated for each pair of primers to determine the 

melting temperature of the amplification products (Figure 31). The single sharp peak present in each 

plot indicates the presence of a single amplification product and therefore high specificity of the 

primers and no primer dimer formation. Across three biological and technical replicates, the mean 

efficiency of the primers for icmQ and β-actin were 2.39 and 2.13, respectively (correlation coefficient 

R2 > 0.95).  
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Figure 30 Amplification plots with primers for icmQ and β-actin at 100nM, 200nM or 300nM. The genomic DNA sample 
used was extracted from RAW 264.7 cells infected with Legionella clade A isolate 12_5415 (MOI=1) at 2 hours post-
infection.  
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Figure 31 Dissociation curve with forward and reverse primers for icmQ and β-actin at 100nM, 200nM or 300nM. The 
genomic DNA sample used was extracted from RAW 264.7 cells infected with Legionella clade A isolate 12_5415 (MOI=1) at 
2 hours post-infection.  
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 This qPCR assay was used to compare the relative number of Legionella inside RAW 264.7 cells 

at 30 minutes after infection with representative isolates of each clade. In this assay, the relative 

quantity of icmQ and β-actin was compared between 10µg DNA samples from cells infected with each 

isolate. For each gene, the relative expression ratio was calculated relative to sample with the highest 

Ct (and therefore lowest initial copy number) of the four samples. The ratio of Legionella to RAW 264.7 

cells was then calculated by dividing the relative expression ratio of icmQ by that of β-actin (Figure 

32). 

 

Figure 32 Relative number of intracellular Legionella at 30 minutes post-infection as determined by real-time qPCR. Error bars 
show standard error across three biological and technical replicates. 

 

 The results show a significant difference in the number of intracellular Legionella in RAW 264.7 

cells infected with clade B and C isolates, as determined by a student’s 2-sample t-test (Figure 32). As 

the infections were all carried out at an MOI of 1, verified by plating serial dilutions of the inoculum, 

this variation could be due to a difference in the efficiency of host cell invasion between the isolates. 

Therefore, when quantifying the intracellular replication of each isolate by qPCR, the relative 

expression ratios were calculated relative to the Ct at 30 minutes post-infection. The ratio of 

Legionella to RAW 264.7 cells was then calculated by dividing the relative expression ratio of icmQ by 

that of β-actin (Figure 33).  

 The results of the real-time qPCR experiment indicate that isolates from clades A and B 

showed higher net replication than those from clades C and D (Figure 33). The fold change was 

significantly higher in the clade A isolate than the clade D isolate. These results suggest an inverse 
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correlation between net intracellular replication and virulence in the Galleria infection model 

described by McAdam et al. (2014). 

 

Figure 33 Fold change in the number of intracellular Legionella as determined by real-time qPCR. Bar labels indicate the 
clade of each representative isolate. Error bars show standard error across three biological and technical replicates. 

  

 Another example of this inverse correlation is found in the Salmonella enterica serovar 

Choleraesuis, which causes systemic disease with a high mortality rate in pigs (Paulin et al., 2007). In 

contrast, the serovar Typhimurium causes acute enteritis but is rarely fatal. Typhimurium shows 

greater net replication than Choleraesuis in the intestinal mucosa, where it causes a greater induction 

of proinflammatory cytokines. It is thought that the rapid pro-inflammatory response triggered by 

Typhimurium may confine the infection to the intestine, whereas the slower replication of 

Choleraesuis may facilitate evasion from the host immune response and the resulting systemic 

disease. Furthermore, it has been suggested that the slow growth rate of Mycobacterium tuberculosis 

may prevent rapid death of the host and thereby promote dissemination of the bacteria (Ernst et al., 

2007). 

 

Cell cytotoxicity assay 

 A cytotoxicity assay was used to compare the rate of host cell death during infection with 

representative isolates of each clade (Figure 34). The CytoTox 96® Non-Radioactive Cytotoxicity Assay 

(Promega) was used to measure the amount of lactate dehydrogenase (LDH) released by infected 
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RAW 264.7 cells into the supernatant at 2, 4 and 24 hours post-infection during a gentamicin 

protection assay (MOI =1). LDH release is used as a measure of cytotoxicity as this cytosolic enzyme is 

released from dead or damaged cells (Parhamifar et al., 2013). In this assay, LDH catalyses the 

conversion of NAD+ into NADH, which results in the conversion of a yellow tetrazolium salt into red 

formazan. This colour change is proportional to the amount of LDH and therefore the number of lysed 

cells, and can be measured by the absorbance of the supernatant at 490nm.  

 

Figure 34 Cell cytotoxicity assay. Bar labels indicate uninfected cells (-) or the clade of the representative isolate used for 
infection. Error bars show standard error across three biological replicates. 

 

 In this assay, the absorbance at 490nm was measured using the FLUOstar Optima microplate 

reader (BMG LabTech). The percentage of lysed cells was calibrated using phenol red-free DMEM as 

the negative control (0%) and uninfected cells incubated with Lysis Solution (Promega) for 45 minutes 

as the positive control (100%). The assay was optimised by using phenol red-free DMEM during the 

infections to ensure that the colour change of the assay was not affected by the presence of phenol 

red in the supernatant. In addition, the supernatant samples were centrifuged at 300 x g for 4 minutes 

to remove any detached cells that may have been present. This step ensured that the supernatant 

samples did not contain any additional LDH released from the detached cells when the samples were 

frozen for storage before the assay was performed. 

 The results of the cytotoxicity assay show no significant difference in the rate of cell death 

during infection with isolates of each clade, as determined by a student’s 2-sample t-test (Figure 34). 

Furthermore, no significant difference was observed between the rate of cell death in uninfected and 

infected cells. This evidence indicates that the isolates do not activate pyroptosis. This could be 

- - -A A AB B BC C CD D D
0

5

10

15

20

25

30

35

2 4 24

P
er

ce
n

ta
ge

 o
f 

m
ax

im
u

m
 L

D
H

 r
el

ea
se

d

Time post-infection (hours)



58 
 

verified by quantifying IL-1β and IL-18 released from the host cell as a measure of caspase-1 activation 

and pyroptosis (Case and Roy, 2013). 

 

LC3 conversion assay 

 In order to survive inside the host cell, L. pneumophila escapes the autophagy pathway and 

thereby evades lysosomal degradation of the LCV (reviewed in Xu and Luo, 2013). Autophagy clears 

intracellular pathogens by packaging them into phagosomes, which then fuse with lysosomes to 

degrade the enclosed pathogens (Xie and Klionsky, 2007). The autophagy pathway of infected cells is 

inhibited by the L. pneumophila effector protein RavZ (Choy et al., 2012). Although the gene encoding 

RavZ is present in all 4 of the clades, it is possible that one or more of the predicted novel effectors 

could also be involved in modulating host cell autophagy. 

 Therefore, the level of LC3 conversion was determined as a measure of autophagy in RAW 

264.7 cells during infection with representative isolates of each clade. In mammalian cells, the 

microtubule-associated protein 1 light chain 3 (LC3) is found in two distinct forms, LC3-I and LC3-II 

(Kabeya et al., 2000). LC3-I is present in the cytosol, whereas LC3-II is a lipidated form which specifically 

binds to autophagosome membranes (Tanida et al., 2004). The conversion of LC3-I to LC3-II correlates 

with autophagosome formation and is therefore used as a marker of autophagy. 

 RAW 264.7 cells were inoculated with either representative L. pneumophila isolates (MOI = 1) 

or DMEM (uninfected control), then lysed with BugBuster™ Protein Extraction Reagent (Novagen) at 

2, 4 or 24 hours post-infection. The resulting lysate samples were separated by SDS-PAGE, then 

visualised by western blotting with an antibody against LC3 (Figure 35). The intensities of LC3-I and 

LC3-II in each sample were quantified using the Li-Cor Odyssey infrared imager and Li-Cor Image Studio 

software. The ratio of LC3-II to total LC3 was then calculated as a measure of autophagy (Figure 36). 

  No significant difference was observed between cells infected with representative isolates, 

or between infected and uninfected cells, as determined by a student’s 2-sample t-test. However, 

significant inhibition by the clade D isolate at 24 hours post-infection may be seen with further 

replicates of the assay. 
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Figure 35 LC3 conversion assay by western blot. Data from 2 biological replicates is shown. Each lane contains a lysate sample 
from either uninfected cells (-) or cells infected with a representative isolate (A, B, C, D) at 2, 4 or 24 hours post-infection (hpi). 
Actin was used as a loading control. 

 

 

Figure 36 LC3 conversion assay. Bar labels indicate uninfected cells (-) or the clade of the representative isolate used for 
infection. Error bars show standard error across two biological replicates. 
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Summary 

 The replication rates of L. pneumophila isolates from each clade were compared in both broth 

culture and infected RAW 264.7 cells. No significant difference in replication was observed in broth 

culture. In contrast, the net intracellular replication of clades A and B was higher than that of clades C 

and D, suggesting an inverse correlation between intracellular replication rate and virulence. 

However, assays for cell cytotoxicity and autophagy showed no significant difference between cells 

infected with the representative isolates. 
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Chapter 5: General discussion 

Identification of a novel T4SS-encoding pathogenicity island 

 Bioinformatic analysis has shown that the unique 39-kb region identified in clades C and D 

closely resembles a pathogenicity island. These islands carry one or more virulence genes, and 

therefore contribute to rapid changes in the virulence of a species (Dobrindt et al., 2004). Virulence 

genes previously found on other pathogenicity islands encode proteins with a range of different 

functions including adherence, iron uptake, capsule formation, entry into host cells and secretion 

systems. It is therefore possible that the 39-kb region also carries virulence genes, which could 

underlie the increased virulence of clade C and D isolates. 

 A 65-kb pathogenicity island found in 41 L. pneumophila strains has also been identified in 

three strains of Legionella anisa, indicating that the islands may be transferred between different 

Legionella species (Cazalet et al., 2008). This finding supports the hypothesis that the 39-kb region 

was transferred to some of the Edinburgh outbreak L. pneumophila strains from L. longbeachae in the 

environment. 

 The Legionella genomic island (LGI-2) identified in L. pneumophila Corby can be transferred 

by conjugation (Lautner et al., 2013). LGI-2 is excised from the chromosome, generating a circular 

episomal form of the island, which can be transferred to another L. pneumophila strain. Lautner et al. 

(2013) used primers specific to either the circular or chromosomal form of the genomic island in order 

to determine the rate of excision by real-time qPCR. This technique could be used to determine 

whether or not the 39-kb region is excised and therefore a functional genomic island.  

  

Acquisition of the pathogenicity island from L. longbeachae 

 The 39-kb region was found to share 94% nucleotide identity with the homologous region in 

a L. longbeachae isolate from a compost sample provided by a Legionnaires’ disease patient. This 

patient was one of six people infected with L. longbeachae in Scotland between August and September 

2013 (Potts et al., 2013). All six of these patients required intensive care and notably, all were amateur 

gardeners who had been exposed to horticultural growing media during their incubation period. This 

finding has significance as commercial compost is thought to be the main source of human infection 

by this species (Health Protection Scotland, 2013). 

 L. longbeachae was detected in five samples of growing media linked to five of the patients. 

The same amplified fragment length polymorphism (AFLP) DNA profile was found in isolates from the 
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patients and isolates from the growing media that they had been working with (Health Protection 

Scotland, 2014). However, whole genome sequencing showed that there was no close relationship 

between isolates from the patients and the growing media linked to each case. 

 L. longbeachae causes around 50% of cases of Legionnaires’ disease in Australia (NNDSS 

Annual Report Writing Group, 2015). Unfortunately, L. longbeachae infections test negative using 

routine Legionella urinary antigen tests, as these only detect L. pneumophila (Health Protection 

Scotland, 2013). Therefore L. longbeachae can only be identified by elevated antibody titre, PCR and 

culture. 

 The interaction between L. longbeachae and its host cells is thought to be distinct from that 

of L. pneumophila, as the L. longbeachae genome encodes a unique set of putative Dot/Icm T4BSS 

effectors and eukaryotic-like proteins (Cazalet et al., 2010). Unlike L. pneumophila, L. longbeachae 

does not trigger caspase-1 activation in murine macrophages, and is therefore able to replicate inside 

the lungs of C57BL/6 and BALB/c mice (Asare et al., 2007). Therefore, the acquisition of L. longbeachae 

genes could provide L. pneumophila with novel virulence determinants or survival mechanisms. 

   

Predicted T4SS-secreted effector proteins 

 mRNA encoding the predicted effector protein 00662 was detected during the infection of 

RAW 264.7 cells with L. pneumophila isolates of clades C and D. However, expression of predicted 

effector mRNA was only studied at 18 hours post-infection, so it is possible that the other predicted 

effectors are expressed at either earlier or later stages of infection and were missed in this analysis. 

RNA samples could be taken at hourly time points to determine the time at which expression is 

induced.  

 Expression of the predicted effector protein 00662 could be validated by the construction of 

a fusion protein with a c-Myc tag, which could then be detected using an antibody against the c-Myc 

epitope. Secretion of this fusion protein by the newly identified LGI-T4SS could be verified by 

transfecting the plasmid encoding the fusion protein into isolates with and without the 39-kb region. 

Secretion of the protein during broth culture could then be determined by western blot analysis of 

the supernatant. Secretion and localisation of the protein during host cell infection could also be 

studied by immunohistochemistry. 

 Figure 37 shows the predicted eukaryotic-like linear motifs in the protein encoded by 00662. 

The predicted functions of these motifs (discussed below) could be verified by assays such as an in 
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vitro actin polymerisation assay for the WH2 actin-binding motif. In addition, deletion mutants could 

be constructed to determine the requirement of each domain in intracellular replication or virulence. 

To determine the requirement of the LGI-T4SS, 00662 or other predicted effectors in the virulence of 

Legionella, knockout mutants could be constructed and compared with wild-type strains in infection 

models. 

 

Figure 37 Location and probability of predicted eukaryotic linear motifs in protein 00662 as determined by the eukaryotic 
linear motif resource ELM (http://elm.eu.org) (Dinkel et al., 2013). 

 

Fbw7-binding motif 

 Fbw7 (F-box and WD repeat domain-containing protein 7) is an F-box protein that acts as a 

substrate receptor for a class of E3 ubiquitin ligases called SCF (Skp1 Cullin-1 F-box) ligases (Davis et 

al., 2014). E3 ubiquitin ligases facilitate the covalent attachment of ubiquitin to a specific protein 

(Schwartz and Ciechanover, 2009). This marks the protein for degradation by the 26S proteasome as 

part of the ubiquitin-proteasome system (UPS). The UPS is a major pathway for the degradation of 

regulatory proteins in the eukaryotic cell (Crusio et al., 2010). Therefore, the UPS has far-reaching 

effects including the regulation of cell division, apoptosis and inflammation (Finley, 2009).  

 In an SCF E3 ubiquitin ligase, Skp1 links the complex to an interchangeable F-box protein via 

its F-box domain, thereby conferring substrate specificity (Welcker and Clurman, 2008) (Figure 38). 

The SCF-Fbw7 complex (SCFFbw7) is thought to target over twenty cellular proteins with roles in 

proliferation, apoptosis and metabolism (Davis et al., 2014). The majority of Fbw7 substrates are 

transcriptional regulators involved in gene expression (Welcker and Clurman, 2008).  
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Figure 38 SCF ubiquitin ligase complex (Welcker and Clurman, 2008). Cullin-1 (CUL1) links the RING protein RBX1 to SKP1 
(Zheng et al., 2002). The RING subunit recruits an E2 ubiquitin-conjugating enzyme (UBC) and Skp1 binds an F-box protein, 
which binds the substrate (Petroski and Deshaies, 2005, Bai et al., 1996). The E1 ubiquitin-activating enzyme (UBA) transfers 
a ubiquitin molecule to the E2 ubiquitin-conjugating enzyme (UBC) (Alberts et al., 2008b). Next, the UBC forms a complex 
with the SCF E3 ubititin ligase, which binds the protein substrate. The UBC then assembles a polyubiquitin chain on the 
substrate protein. 

 

 For example, one of the Fbw7 substrates is a transcription factor and proto-oncogene called 

c-Myc (Yada et al., 2004). This protein is expressed transiently as cells enter the G1 phase of the cell 

cycle and promotes cell proliferation. Depletion of Fbw7 by RNA interference has been shown to 

increase the abundance and activity of c-Myc. SCFFbw7 also targets other proto-oncogenes such as 

cyclin E, Notch and Jun (Welcker and Clurman, 2008). Therefore, it can be considered to be a tumour 

suppressor. Notably, the Fbw7 gene is one of the most frequently mutated genes in human cancers 

(Davis et al., 2014). 

 The binding of Fbw7 by 00662 may inhibit its substrate receptor activity, thereby preventing 

the ubiquitination and degradation of host cell proteins by the UPS. The resulting accumulation of host 

cell proteins may increase proliferation or reduce apoptosis of the host cell, thereby protecting the 

replicative niche of L. pneumophila and facilitating intracellular replication. 
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WH2 motif  

 The WH2 domain (WASP homology domain 2) binds actin monomers and is present in many 

regulators of the actin cytoskeleton (Paunola et al., 2002). Several species of bacteria secrete effector 

proteins containing WH2 domains via a Type III Secretion System (Yu et al., 2011). For example, the 

Vibrio cholerae effector VopF disrupts the actin cytoskeleton of eukaryotic host cells via its WH2 

domain (Tam et al., 2007). 

 The actin cytoskeleton of the eukaryotic host cell is involved in many vital processes, including 

endocytosis, phagocytosis and cell division (Alto and Orth, 2012). Therefore, an actin-binding WH2 

domain in 00662 could promote intracellular L. pneumophila survival via several different 

mechanisms. For example, disruption of the actin cytoskeleton may inhibit vesicle trafficking and 

thereby protect the LCV from lysosomal degradation. Alternatively, reorganisation of the actin 

cytoskeleton could lead to a loss of cell membrane integrity and cause lysis of the host cell (Ham et 

al., 2011). 

  

IAP-binding motif 

 Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death (Salvesen and Duckett, 

2002). IAPs contain baculoviral IAP repeat (BIR) domains, which bind to and inhibit active caspases 

(Prunell and Troy, 2004) (Figure 39). IAP antagonists act by displacing bound caspases from the BIR 

domains of IAPs (Orme and Meier, 2009).  

 

Figure 39 The human IAP family contains BIR (baculoviral IAP repeat), NACHT (NAIP, C2TA, HET-E and TP1), UBC (ubiquitin 
conjugation) and LRR (leucine-rich repeat) domains (Eckelman et al., 2006). 

 

 The predicted IAP-binding motif on 00662 binds specifically to Type II BIR domains, which are 

found in two mammalian proteins, Survivin and Bruce/Apollon (Lens et al., 2006). Survivin plays an 

essential role in chromosome segregation and cytokinesis during cell division. In contrast, 

Bruce/Apollon is an IAP that prevents SMAC-induced apoptosis by facilitating the proteasomal 



66 
 

degradation of caspase-9 and the pro-apoptotic molecule SMAC via IAP-binding motifs (Hao et al., 

2004). 

 A type II BIR domain is present on the Naip5 protein, which is required for flagellin-induced 

caspase-1 activation in resistant macrophages (Eckelman et al., 2006, Amer et al., 2006). Therefore, 

inhibition of Naip5 by 00662 could prevent caspase-1 activation. This would inhibit fusion of the LCV 

with the lysosome, prevent host cell pyroptosis and promote survival of L. pneumophila inside the 

host cell. 

 

Clathrin box motif  

 Clathrin-coated vesicles transport material between the plasma membrane, endosomes and 

Golgi compartments (Alberts et al., 2008a). Clathrin protein subunits are comprised of three heavy 

and three light polypeptide chains, forming a triskelion structure. These assemble into a framework 

on the cytosolic surface of membranes. Adaptor proteins form a layer between the clathrin framework 

and the membrane, where they bind the clathrin to the membrane via lateral interactions.  

 The clathrin box motif on 00662 is found on adaptor proteins, and interacts with the clathrin 

heavy chain. This interaction may therefore inhibit the formation of clathrin-coated vesicles in the 

host cell and disrupt intracellular trafficking. 

 

Measuring intracellular replication of L. pneumophila 

 During intracellular growth, L. pneumophila can differentiate into several different phenotypic 

forms (Garduno et al., 2002). This introduces several limitations into the quantification of intracellular 

Legionella replication. For example,  quantifying L. pneumophila colonies plated on CYE agar plates is 

skewed in favour of bacteria that are present in a particular phenotypic form that supports growth on 

agar (Tiaden et al., 2013). The efficiency of DNA extraction is also affected by the presence of different 

phenotypic forms. For example, the mature intracellular form (MIF) is resistant to detergent-mediated 

lysis, thereby reducing the efficiency of DNA extraction (Garduno et al., 2002). Therefore, DNA 

extraction also skews qPCR quantification of L. pneumophila in favour of those present in a particular 

phenotypic form. 

 Nevertheless, relative numbers of intracellular bacteria were measured by real-time qPCR. 

However, the growth curves recorded in broth culture show that L. pneumophila replication can take 
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several days. Therefore, it would be useful to extend the qPCR experiment to compare replication 

rates at later time points. In addition, it would be useful to validate the results in human cell lines, 

such as U937 macrophages, THP-1 monocytes or HL-60 promyelocytic cells. 

 An alternative method for quantifying intracellular replication is flow cytometry (Tiaden et al., 

2013). Bacteria that constitutively express green fluorescent protein (GFP) can be quantified by GFP 

fluorescence intensity, thereby providing a method for real-time analysis of intracellular replication 

that is sensitive, fast and accurate.  

 

Measuring host cell responses and virulence 

 The LC3 conversion assay showed no significant difference in inhibition of autophagy between 

isolates of the four clades. However, this assay could be optimised by carrying out the infection of 

RAW 264.7 cells under starvation conditions using FCS-free media (Kabeya et al., 2000). This would 

induce autophagy in the host cells and therefore provide more conclusive evidence of any inhibition 

by the Legionella isolates. 

 To determine the mechanism underlying the difference in virulence between the clades, other 

aspects of the host cell response could be studied. For example, pore formation during host cell 

pyroptosis could be measured by incubation with propidium iodide (Case and Roy, 2013). This 

molecule can pass through pores in the cell membrane and bind to nucleic acid. The fluorescence of 

propidium iodide increases when bound to nucleic acid, and can therefore be used as a measure of 

pore formation in real time using a multi-well fluorescence plate reader. Alternatively, the level of IL-

1β and IL-18 released by the host cell can be quantified by ELISA as a measure of pyroptosis. 

 McAdam et al. (2014) used a Galleria mellonella infection model to compare the virulence of 

L. pneumophila isolates from each clade. Although this has been shown to be an effective model for 

human infection, an in vivo mammalian infection model could be used to validate these results 

(Harding et al., 2012). For example, two well-studied models are the guinea pig and the A/J mouse 

(Hori and Zamboni, 2013, Edelstein, 2013). 
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Summary 

 The results of this report indicate that the novel T4SS identified in the L. pneumophila 

outbreak isolates is an LGI-T4SS that originated in L. longbeachae. The novel region also encodes at 

least one putative T4SS-secreted effector protein, which contains several eukaryotic-like motifs. These 

motifs could facilitate host cell interactions and thereby underlie the increased virulence of isolates 

containing the novel region. In addition, an inverse correlation was shown between the presence of 

the novel region and net intracellular replication. Future work could build on these findings to 

determine the precise role of the novel T4SS in infection. 
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