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ABSTRACT

The thesis is concerned with two problems from the prediction
theory of continuous parameter stationary stochastic processes, and
the related questions COnéerning the measure u on the real line which
ié associated with the process via Bochner's theorem.

In Section 1 of Chapter 1, we describe briefly the background
required from the theory of Hardy spaces in the upéer half-plane, and
some facts about entire functions of exponential type are given. Then,
'in Section 2, we discuss sﬁationary processes-and describe the main
problems, motivating their study by a brief description of the
classical prediction problems of Wiener and Kolmégorov and the work of
Helson, Saréson and Szegh.

Chapter 2 is devoted.to the proof of two representation theorems
for weight functions satisfying the strong mixing condition Py 0
and the positive angle eriterion py < 1. The proof uses a reéult on
analytic continuation and a characterisation of the algebra H + BUC.
These results generalise the known results for discrete parameter
processes.

Chapter 3 consists of a discussion of the spaces BMO and VMO and
thelr relationship to the strong mixing condition; and the Helson—SéegB
condition of Chapter 2. We prove & result characterising those
positive functions f on R for which log f € VMO, and derive a
connection betwéen BMO, the condition‘-px < 1, and the boundedness of
the(égzigégﬁgnoperator on a subset of L2(u), depending on A. This 2jzgiﬁ'
'gene?alises the discrete version which is due to Helson and Szegd.

In Chapter L4, we consider the mixing conditions for a multi-
on

variate stationary process. The main result is an example ofAhermitian 4

2 x 2 matrix G, all of whose entries are real VMO functions, which



is such that exp G does not satisfy the strong mixing condition
Py 0. The proof depends on the construction of a VMO function which
goes off to infinity at the origin, and the fact that no VMO function ~

can have a jump discontinuity.
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PREFACE -

The material presented in this thesis is claimed as original
with the exception of those sections where specific mention is made

to the contrary.



CHAPTER 1
Introduction
Our aim in this thesis is to investigaté a problem in analysis
which has its roots in prediction theory. We shall describe the
problem and its probabilistic significance in Section 2 of this
chapter, but for now a brief outline seems desirable.
Prediction Theory really comes from time series analysis, and
is concerned with the relative independence of sets of random variables
{Xt:‘ t €T}, where T Iis to be thogght of as a set representing
time. Typically, you start with a collection of random variables
{Xi: t € B} which are stationary in the sense that the probabilistic

properties of a subset Ag = {Xt: t € S CR} are indistingfuishable <

from those of any other subset of the form AS+r = {X t € S}

t+r:
for fixed r € R, that is, translation in time has no effect on the

properties of the random variables X probabilistically speaking.

£
The basic problem is to try to obtain as much information as possible
about Xr for r > O, knowing something about the Xt for t < O.
In other words, we try to assess fhe dependence of Xr for r> 0

on the set {Xt: t < 0}. Of course, as you would expect, there are
many criteria for estimating the dependence, and each éives rise to
a different prediction problem. In Section 2, we describe four
different‘problems, But our attention will be devoted to only two of
these, one being studied firgt by Rosenblatt [21] in 1956, and the
other by Helson and Szego in 1960 [10]. It will turn out that they
can be reformulated as questions about a given finite measure on the

line and we shall look at this in Chapter 2.

In Chapter 3 we shall be concerned with the recently studied
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spaces BMO and VMO (See [17] and [24]) which crop up naturally in the
course of the work in Chapter 2. Finally, in Chapter 4, we shall
look briefly at multidimensional prediction theory, giving an example
with interesting properties.

This programme involves-us in the theory of Hardy spaces and
entire functions, and Section 1 of this chapter is devoted to the
necessary background material. A good reference for Chapter 1 is [u],
and for the theory of Hardy spaces we refer the reader to [11] and

[3]. For entire function theory, see [19], especially Chapter 5.

Section 1 Hardy Spaces in the Upper Half Plane, and Entire Functions

(A) Hardy Spaces

Let us fix some notation. nt will denote the open upper half-
plane, E:-‘the closed upper half plane. For f: g > C, let 7,
f* denote the Fourier transform, and inverse Fourier transform
rgspectively, i.e.

£ (x) = f e 2(t)at, £ (x) = E%f 1 e(t)at.

o

Note that throughout this thesis, J will denote the integral [,

—
.. . +
unless explicitly stated otherwise. For f: T > C, and y > O
. . +
define f&: R~>C by fy(x) = f(x+iy). Let e, II" > C denote

the function eA(z) = elAZ, (z € H+).
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Definition 1.1 (a) A function h, analytic in T , is in the Hardy

space Hp, 1l <p<e, if Il * = sup“hy" < o vhere ||-||p is the
. y>0 =
usual Lp norms;

. . + ..
(b) A function h, analytic in @', 1is in the Hardy

space H - 1if

Inl_* = suplngl | < =
y>0

where ||‘||m is thé usual eésential supremum norin,

It is easily checked that (Hp,"-||p+) is a Banach space, for
1 <p<®. In fact, one can define #® for O < p <1 in the same
vay, but "'"p"'_ is not a norm if p < 1. We shall only once need f,o
refer to H% and thes lack of norm will cause us no problem. We now
summarise Abfie'f]y the results we need from Hp-theory, and we begin

with H2. We shall briefly glance at H! and H .

Theorem 1.2 A function h € H2 iff 3f € L2(R) with f(t) = 0 for

t < 0 such that

o . +
n(z) = 5= [e "2£(t)a (*) (zenh)
2m
0]
Remark Notice that the integrand in (*) is integrable for z € II+,
since f" is bounded on R and |e1tzf“(t)| < e_ty]f"(t)l

(z=x+inH+).
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From’this theorem it is easy to deduce that lim"hy—f“2 =0 and
Inil,* = lel,. Thus h has a 1limit on"g in the sZige that the map
h + hy = 1ig hy is an isometry of H2 onto the class L2[0,o]* of
inverse thrier transforms of functions € LZ(B), vanishing on the
left half-line. Generally, we shall not distinguish between h and
he, and often we shall think of H2 as a subspacé of LZ(B). A
proof of Theorem 1.2 can be found‘in Dym and McKean [ 4, p.30-32].

There is a natural projection of L2 onto H2 given by

oo

_ 1 f(t) _a R itz
Pf(z) = Sri f - f £ (t)e” "at
c +
(fF€E1L2, z€MI)
and, on R,
Pf(x) = lim Pf(z) = == [ ¥ (t)at
2m
yi0 0

the limit being in the L%-sense. In particular, for h € H2 and

+ .
z €I, we have

o ho (t o ho (%)
h(z) = Py [ ra— dt and O = P f =3 dt.

Combining these gives the Poisson formila:

h(z) = % f (x—:)(ti =7, at = (Py*ho)(x),

where Py(x) = %i—-ll-—;z is the so-called Poisson kernel for II+,

and % denotes congolution, as usual. Of course, hp(x) = 1im h_ (x)
y¥0



pointwise a.e. on R.

Lemma 1.3 {a) If h € H2, then

_ Y | _Loglhe(t) - et
loglh(Z)IiPy*log|ho| HJ(x_t) SyFat for z=x+iy €.

loglho(t)

1+t dt > -,

(b) If h # 0, then

Remark (b) is a consequence of (a): for if y > 1, then

logln(iy)| < (P #loglno|)(0) = z [ Qflhdi%l at i_Tlr_J 1olg|1:01(:t)| at.

+y

Thus f L0E E°,§t) dt = —» =n(iy) =0 vy >1=h = 0, by analyticity.

Of course, the integral can only diverge to -«, since

(where, as usual, f+ denotes the function Gefined by

+
£ (t) = max(|£(t)[,0)).
The next concept of outer function, is central to our work.

Definition 1.4 A function h € H2 is outer if h # O eand

loglh(z)| = (Py*log|ho|)(x) for z =x + iy €. A function j €H

is inner if |j(z)] <1 (z €n’) and l[jo] =1 a.e. on R.

A proof of the next theorem can be found in Hoffman [ 11] or

Dym;McKean [u].



Theorem 1.5 The following are equivalent for h € H2, h # 0.
(i) h 1is outer
5 v -1 [ loglhg(t)]
(ii) 1og|n(i)]| = - f e at
h:

(iii) the set {e A > 0} 1is dense in HZ,

A

Remark It is the characterisation (iii) of outer function which is

most useful for our purposes.
The following result is well-known.

Proposition 1.6 Every g # O in H? can be written as a product

Jh

1]
il

vhere h 1is an outer function in H2Z &and j is inner. Moreover,
the factorisation is unique up to multiplication of the factors by a

constant of unit modulus. In fact, h is given by the formula

h(z) = exp[—¥ J E%;% lgg%f%ézll'dt].

i

Theorem 1.7 Suppose f > 0 a.e. on 8,' f'G L. Then we may write
f = |ho|2 for some h € H2

iff Il—%g_—,_—f%(—}L at > -e,

Proof (=) 1is immediate from 1.3 (b).



7.

t-z 1+t2

< _17( tz+l log f(t
expiRe 73 f*“‘t—z RS a

exp{Py*log £}

. +1 .
() Define h(z) = exp[;i [ tztl 1og £0t) 4if . Then n is clearly

.. + .
analytic in ', and |h(x+iy)|2

1]

50 J lhy(x)|2dx = J exp(Py*log f)dxri J (Py*f)(x)dx and so

j lhylzdxiff(t)dt <o, Thus h €H? and

lim|h_(x) |2 = 1im expl (P_xlog £)(x)] = £(x) a.e. on R.

yio Y yi0 y -
Having locked at H2, we turn our attention to H! and H ,

where most of the above results have obvious analogues.

The obvious analogues of all the H2 results hold for H!, the
idea of outer function in H! being defined just as the H2 case.
The Cauchy formula
1 hg (t) +y
= —— €
n(z) 2m1 f t -2 dt . (z )
holds for H! functions, as does the Poisson integral formula, hg

being defined as the limit of hy both in the L!. sense and pointwise

a.e.. Also we have the following result.

Proposition 1.8 Every g € H! can be written as a product of two

H2 functions a, B



. ' 1
with lall,™ = g™ = (lgh, )2,

Proof 3 j dinner, h outer in H! such that g = jh. Let

3 3 + +1 3
a = jh?®, B =h® Then a, B EH2 ana lal,” = lgl," = (lgl, ™)z,

Im

Again we have Obvious analogues of the Poisson formula and
inner-outer factorisation theorem. In addition we have the following

result analogous to 1.2.

Lemma 1.9 i is the annihilator of - H! in Lm; more precisely
' oo
%g—, where ¥

K]

H 2{f€L: [fh=0 W GHI},[—an'd'f (H)*
denotes the dual space, as usual, and

Ie+s™l | = inf{le+nl_: n € H”} = swpt| [ mm|: ne€nl, Inl,* <13,

This completes our survey‘of iig space theory, except for the
closely associated definition of conjugate function. We shall define
both the conjugate function for real-valued f satisfying
j 1fixi dx < », and the HilbeftlTransform for real f € Ll., 1In fact
for real f € L!, their difference is a constant fﬁnction.

If £ is real-valued and in L!, define h anal&tic in H+

by

h(z) = ;% [‘—iiil-dt (z €17)



9.
Then h(z) = (P %1) (x) +i(Qy*f)(x), where Py ¥ T 1s the Poisson

integral of f, and Qy x £ = T—”Ejy——‘—z f(t)at.
We have

Theorem 1.10 ho(x) = 1lim h_(x) exists almost everywhere on R.
y+0

Proof See Dym and McKean [L4, p.l49-50].

Definition 1.11 The function (Hf)(x) = lim (Qy*f)(x) is called the
; yi0
Hilbert Transform of f.

Notation Let L1c denote the set of functions f: + C such that

I 1fitzL <

L)

Proposition 1,12 Suppose f € L1c is real-valued. Then the function

h(z) = ;% f E%—i—l £(t) E—:Egz (*)

is analytic in 7', and the limit ho(x) = lim h(z) = £(x) + i F(x)
: : yi0
exists, almost everywhere on R.

~

f 1is called the conjugate function of f. A proof of 1.12 is

also in Dym and McKean [p.50-51].

"Remarks (i) If £ €Ll is real, then ¥ and Hf differ by the

constant function %-f ;fitt ‘dt .

(ii) The concept. of the conjugate function for a half-plane

is the exact analogue of the more familiar conjugate function on the
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circle; and one can investigate all the same classical problems
concerning LP-boundedness of the conjugation operator f + f. We -
touch briefly on this in Chapter 3, but for now we only need‘the

definition of T and the following result.
Lemma 1.13 Suppose s € L° is real valued. Then s € Llc.

Proof This follows immediately from the circle result which says

that if g € L”(T) 4is real valued, then g € LI(I'). The link is

g -
z + 1

provided by the linear fractional map z + £ = which maps the

upper half plane nt onto the open unit disc D. It is easy to
check that this map 'lifts' the conjugate function on I to the con-
Jugate function on R, 1in the sense that if s € L” and we define

gle’?) = s(x) where ele=§—;——}, then g € L7(r), so g € LI(r)

and this implies s € Llc, since under this map d6 corresponds to
%'i"%zgg . The result that g € L™(T) = g € LI(I') is obvious from

the M. Riesz Theorem [3, p.5L4].

z — 1
7 + 1

Remark The linear fractional map z + § = will be of use to
us again. In fact, we use it in the next result to derive a represent-—

. e . . +
ation for positive harmonic functions on 1 .

. el . . . +
Theorem 1.1h Suppose g 1s a positive harmonic function 1n I .

Then 3 a representation

ale) = + L [ 4FG (1)

X—z
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with k > O constant, and a non-decreasing function F satisfying

Proof Map H+ onto D = {£ = rele: r < 1} by the linear fractional
map z * & = f—if%'. Then g(z) = u(g) 1is positive and harmonic in

D, and by the Poisson formula,

on—-
w(RE) = —= l_;_léli u(&eie)de (R < 1)
27 |ele—£|2
o+ ’

Theé mass distribution dFR(e) = u(Rele)dﬁ is non-negative and of

total mass
an i6
f u(Re™7)dd = 2mu(0) = 2ngi) < =,
0]

so you can make R 1 1 through a sequence of values, so that

1 - 2
|e*0-g |2

uu)=anM)=if

ar; (e)
rM1 am

with a nbn—negative mass distribution dF; of the same total mass.

Now, isolate the jump of F; at O if any, so that
!

: an- '
"__;_1-52 . _ o 1 1 - 2 ‘ A
w(§ = 2 A 0o + 2 T;;;%i{; av, (o).
O+

Now map back from the circle to H+. The inverse image x of ele
runs through =~ to ® as 6 runs from O+ to 2m—, and

2aF; (8) is carried onto a non-negative mass distribution

(x2+41)71aF(x) of finite total mass. Moreover, the Poisson kernel

LY
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is transformed by

z2—-1

__l_l"' |§l2=__l 1 i z+i' - Y x2 + 1
27 | 186 2 27 (Xx-1 z-i|% ~ om Z2—X
le™ ¢l x+i  z+1

so that

6(a) = 5 (R (on)-m ()] + L [ 205

as required.

. . . . . +
Lemma 1.15 Suppose g 1s a positive harmonic function in I . Then

3c > 0 such that
g(iy) < cy (Wy > 1).

Proof By the representation theorem above, we have if y > 1
ol = y [ aFk) _ y [ _aFt [ arFk)
g(iy) kynfn-—i#z e b e s o3 [ <o

Remark Theorem 1.1h4 is well-known and the proof given sbove appears
in Dym and McKean [4, p13]. Our interest is twofold; firstly, the
" result of Lemma 1.15 is used in Chapter 2 to prove a result on con-

Jjugate functions which we need. Secondly, the linear fractional

7z - i

. + .
- + 1 6&iven above maps I onto D in such

transformation ‘z:+ 3 =
a way that the real line maps onto I \ {1}. It is very useful in
fransferring results on Hardy spaces from the dise to the upper half-
plane and vicé—vgrsa. Also, as we shall see in the next section, it
ballows us to compare the properties of discrete and continuous

parameter processes, Chapter 8 of Hoffman [11] gives an idea of its
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usefulness, We require the notion of subharmonic function in
- Chapter 2.

T u-ppuo&w, - crmhiud ue frmehon
.m“‘ ; =

Definition 1.16 Ax= g 1s subharmonic in a domain

UCCc ifgyVzo €U 38, > 0 such that D(zp,6 o) C U and

2m
g(zo) 5_5% f g(zo+6e )de, V8 < 8¢
0

where D(zp,80) denotes the disbzgentre zo , of radius &p. '
omd (1) Eacw ‘mu,om!l aboue 15 sm.wl'u chorr =— 00,
Lemma 1.17 If f is analytic in a domain UCC, and f # O, then

log|f| is subharmonic in U, as are log+|f| and |£|P (0 <p < =),

Proof That 1log|f| is subharmonic follows from the well-known
inequality

2n

log|f(0)| §,§% f loglf(rele)lde

0
To get that log+|f| and |f|® (0 < p < ») are subharmonic, just
apply the result that g real and subharmonic in U and ¢ increas-
ing and convex on R = ¢ o g 1is subharmonic, with ¢ defined

ept

respectively by ¢(t) = max(0,t) and ¢(t) = and g given by

g = log |f]

1
Remark We are only really interested in the result that Ifle is

subharmonic if f is analytic.
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(B) Entire Functions

Definition 1.18 An entire function F 1is of (finite)_exponential

type A 1if

1lim 1 sup logIF(Rele)l = ) < ®
Rte = O<g<2m '
. - 19 ‘ uR
i.e. |F(Re”")| < constant x e Yu > A, but for no u < A.
Functions of exponential type are amongst the most tractable of
entire functions and the theory is extensive. We shall encounter
functions of exponential type which are also of class A, which we now

define. Functions of class A are studied by Levin in [19, Chapter 5].

Definition 1.19 An entire function F 1is of class A if the zeros

{zk} satisfy the condition

| Xllﬁz—l < : (a)
k=1 k |

.

Remark (i) An entire function of exponential type with zeros '{zk}

[« -]

satisfies Lindelof's criterion, nemely that | 1 ;l | < . Thus,
ih particular, any entire function of ¢xponenti§£lty§e whose zeros
all lie in the upper half plane must automatically be of class A.

(ii) The condition (A) is satisfied if the entire function F
is sufficiently well-behaved on the real line; indeed we quote the

following result characterising some functions of class A, which can

be found in Levin [19, Chapter 5, Theorem 11].
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Theorem 1.20 If an entire function F of exponential type satisfies

one of the following conditions (a) f'l9§l§1§%L dx exists

(b) |F| 1is bounded on R

(e) FIR € LP(R) for some P
then F 1is of class A and we have the representation

F(z) = czmeiq'Z lim 1 (1-%) (1)
Rte |zk‘<R %

where {zk} are the zeros of F, and c, § ere constants.
It is not our intention to become embroiled in the complexities -
of entire function theory, so we do not prove Theorem 1.20. However,
entire functions of exponential tyée and of class A crop up naturally
in the course of our investigations of the strong mixing condition on
5; they take the place of the finite trigonometric polynomials on T,

the unit circle. We shall need the following result of Achieser; for

a proof see Levin [19, p.k38].

Theorem 1.21 An entire function F of exponential type A has a

representation
F(x) = |6(x )]|? A (x €R)

for some entire function G of exponential type %- with zeros only

in I', iff F is of class A and F(x) > 0 (x €R).

Remark Theorem 1.21 is a direct generalisation of the Fejér—Riesz

theorem which states that a non-negative trigonometric polynomial-
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n . :
™(x) = § ckelkx such that T(x) > 0 (vx € R) can be written in
-n . n .
the form T(x) = [S(x)]|2 (x €R) wvhere 8(x) = Y bkelkx, and S
- O _

can be chosen so that all its zeros are in H+. This was generalised .
by Krein to entire functions of exponential type which are bounded on
R, and then by Achieser to a general function of class A,

Our last result in this section is the well-known Paley-Wiener

Theoremn.

Theorem 1.22 Suppose A and C are positive constants and f 1is

an entire function such that |f(z)| < CeA|z|, for all z € C,
and
[ £(x)[%ax < =.
’ A itz
Then 3F € L2(-A,A) such that f(z) = [ F(t)e ~at.
| -A

Proof Dym and McKean [ 4, p.28].

This completes Section 1 and the preliminaries. In the next
section we shall introduce the idea of stationary stochastic process,
and prediction theory. We shall give the strong-mixing condition for

_such a process and set up the machinery for its study in Chapter 2.
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Section 2 Stationary Processes and Prediction Problems

(A) Stationary Processes

In this section we give a brief éeneral introduction to the
theory of stationary random processes before looking at predictiop
theory. We shall then be able to formulate the strong mixing con-
dition and the positive angle criterion of Helson and Szegd which is
the maiﬁ topic of this thesis. Then in Chapter 2 we shall reformulate
these problems in prediction theory as problems sbout weight functions
on the real line and the techniques we use thenceforth will be those
of analysis. First we need to set the scene. Let (Q,IZ,P) be a

probability space.

Definition 1.23 A random variable X on Q is a complex-valued

I-measurable function on 9. X is said to be square-summable if

E(|x]|2) = [ |X(w)|2aP(w) < =.

Notation Let LZ(Q,Z,P) denote the set of all square-summable random
variables on Q. If we identify functions which are equal a.e. (dP),
then LZ(P) becomes a Hilbert space with inner product

(X1,X ), = E(X1X,).

P

Definition 1.24 (a) A stochastic process (s.p.) is a collection

{xt: t € T} C 12(P), - wvhere T is either R or Z. If T = 1z,

then the process is called discrete; 1f T =R it is a continﬁous

~

SeDee
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(b) A discrete s.p. {Xn: n €2} is (weakly)

stationary if

is independent of m € Z,

-~

A continuous process '{Xt: t € R} 1is stationary if

is independenf of s€R, and R(t) 1is a continuous function of t.
Remarks (i) Square-summability is included in the definition of
&p.pudy:mrcmwmﬁamesmm.

(ii) There is a concept of strong stationarity which says
that not only is R(t) independent of t, but all the joint distribu-
tions of a finite number of the Xt are wnchanged by translations in
T,

(1iii) Notice that for a continuous parameter process we
. require R(t) to be continuous. This restriction is essential if any
meaning is to be given to'prediction broblems for a continuous
stationary s.p.. Indeed, it is automatically satisfiedby any s.p.
vhich is weakly continuous in the sense that lim E{|x X, |?} = o.

t-s>0

Lemma 1;25 If '{Xf: t €R} is a stationary s.p., then R(t) is

positive definite.
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Proof R(-t) = E(X_ X,) = E(XX_,) E(X X,), Dy stationarity

R(t) .

AlSo if H1, eees tn €R and Cls vons c, € C, then

y R(tj—tk)chk =7 E(Xt.itk)cjak = B() xtjcjitkEk)

E(| thcjlz) >0

Thus R(t) 1is positive definite on R.

-~

The following well-known theorem can be found in almost any text on
stochastic processes, or indeed harmonic: analysis; for example Doob

[2, p.519].

Theorem 1.26 (Bochner) A function r(t) is positive definite iff

3 a finite positive Borel measure u on R of total mass r(0)

such that

r(t) = f ey (ax).
Remark For a discrete process, R(n) is a positive definite sequence
~and a forerunnerof the above theorem, due to Herglotz, tells ﬁs that
3 a finite Borel measure n. on T, the unit circle, such that
R(ﬁ) = f eineu(de). A1l this is described in Doob [2].

Tﬁe above theorem tells us that to any stationary process we
may associate a +ve measure u (on either R or I') which we call

the spectral measure of the process. Of course, the converse is’ true:

given a measure u generating & positive definite function R(t)
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ve can find & stationary s.p. '{Xt} with R(t) = E(Xt)-(o). For, ve

may suppose, without loss of generality, that u is a probability

measure. Then we need only define X, on (R,B,u) by
Xt(x) = eltx. Then {Xt: t € R} is a stationary s.p. and
E(Xt+sis) = R(t). (Here B denotes the Borel o-algebra on B). In

fact it can be shown that given a positive definite function, we can
find a Caussian stationary s.p. {X,: t €R} such that

E(X

t+s)—(s) = R(t). For a proof, see for example, Doob [2, p.T2].

Let us now turn to the prediction. theory of a stetionary s.p.

{X.: t €R}.

(B) Prediction Theory

Notation (i) Iet M be the closed subspace of L2(P) generated by

: € R}.
{x,: tE€R}

(ii) Let 12(n) denote the set of all functions u: R+ C

-~ -~

“such that "u“]i2 = f Ju(x)|?u(dx) < =, again identifying functionms

equal a.e. (au).

Lerms 1.27 M is isometrically isomorphic to L?(u) wunder the corres-

pondence

X o eltx.

Proof (eltx,elsx ) elx(t_s)dp(gd = R(t-s) = E(Xtis)

!~

= (Xt,xs~>P



21.

The lemma is completed by observing that '{eltx:

L2(y). |

t € R} 1is dense in

A similar result is true for discrete processes.
Prediction problems are concerned with the following situation:

Let Pt = closed span {XS: s <t}, Ft = closed span {Xs= s > t}
M M

end let P = N Pt. P=1 is called the 'past' of the process,
o R
P its 'remote past'. The basic problem is to obtain information

about the process X, for t > to when we are given information

only about X

£ for t < to; One such problem might be: given Xt

for. t < O compute the distance in L2(P) of X3 to P9, or more
generally from Xto to PO where to > O. This is historically one
of the earliest prediction problems and we shall have more to say
about it in &.moment.

Firstly, however, notiée that the isometry of Lemma 1.27 tells
us that 3 subspaces of LZ(u) corresbonding to PY ana FP etc.,
and that any statement about Pt or - Ft involving only the structure
of L2(P) as a Hilbert space is mirrorred exactly in a similar state—
ment about the corrgsponding subspaces of Lz(u), which wé denote by
Pt’ Ft’ P__ etc.. It is natural to ask why we restrict attention to
the relationship between Pt and Ft- in the L2(P)-sense, and the
short answer is thet’for Gaussian procesées, the most important class of
processes, approximation in the norm of L2(P) is especially signif-
icant. The reason is that the best 1east—;quares approximation is
achieved by the best linear least squares approximation for a set of
Gaussian random variables. This, and the fact that, in a practical

éense, linear approximation is easiest to deal with, explains why

work in prediction theory is often restricted to Gaussian processes.
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Though we shall not make this assumption, the reader may assume that
all processes are Gaussian.

Now the same is true for the discrete case that we can define

PR, FR, P™” and the corresponding spaces Pn’ Fn etc. in. L2(y).
Not surprisingly the space Fl! (correspondingly F,) is called the
'future' of the éroceés. The first problem in prediction theory was
investigated by Kolmogorov and Wiener, and its solution is due to
Szegg, Kolmogorov, and Krein who each proved part of it, ahd to

Wiener independently. In the discrete case it is simply stated &s
"What is the distance from the 'past' to the 'future'?"

More precisely, compute o = inf l1-fl 2 . From now on we look
fEFl : L (11)
only at the concrete space L2(p). The solution of this problem is

containéd in the celebrated Szegg's Theorem. °

- Theorem 1.28 Let {Xn: n € 2} be a discrete process with spectral
measure u on I. Let u have Lebesgue decomposition
du = wde + dp_, where W >0 is in Ll(r), and dyg is the singular

part of u, d6 Dbeing normalised Lebesgue measure on I. Then

02 = exp[lf log w(6)as].
' r

For a proof see Hoffman [11, p.48-50].

Remarks (i) Notice that the singular part of u has no effect

on 0.
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(ii) If 1log w & LI(Ir), the result is interpreted as saying |
that the distance o is zero, i.e. 1 € F; and all the Pn are
equal to Py (n € g).
(iii) Szego (1920) proved this for an absolutely continuous
measure U, and the general case is due to Kolmoéorov (1941). The

proof in Hoffman is due to Helson and Lowdenslager [8].

Definition If o = 0, we say that the process is deterministic.

ir P = {0}, it is called purely non-deterministic.

The definition is motivated by the following well-known result.

Theorem 1.29 For a discrete stationary s.p. {Xn: n € 7} with
spectral measure u the following alternative holds:-—

Either (a) logw € LY(T) and L2(un) # Po # P__

or (b) log w & LI(r) and L2(u) =Po =P__.

——— -0

Proof See Doob [2, p.579].

We omit the proof of Theorem 1.29, because it is well-known and
because we shall prove the corresponding result for a continuous

s.p.. Notice that part of the theorem is that if o, is the distance

=0 Vk€Z, k>1 or o >0

between Py and Fk’ then either o K

k
Vk >1. If o =0, =0, then the past determines the future, i.e.
perfect prediction is possible. For the analogue of Theorem 1.29 for

the continuous case we need a preliminary lemma.
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. ixt
Lemma 1.30 Either e € PS for every t >s or forno t >s. In

the former situation Ps = L2(y) Vs €R.

_ eix(t—-s ) p
s

Proof By definition, P (vs, t €R). Suppose

t
'elx‘b° € Ps for some to > s. Then, for t € [s,te]

ixt ix(t—to ) ixte ix(t"to) : .
1 e = C . - .
e e e e Ps Ps+t—to CP_. Thus Pt0 Py

Suppose t > to > s. Then

P = eix(t-’to)P - eiX(t'to)p '= p
s

t to t+(s-to )"’

This holds for every t > tp. If t + (s-to) < to, then

p CP, =P If t + (s-to) > to, then repeat the

t = Pt+(S"‘bo) - to
above argument with t replaced by t + (s-to) to get

Pe = Pia(sto) = Peo(s—to)

exists n s.t. t + n(s-tp) < tp Wwe get eventually that Pt = Ps

Continuing in this way, since there
¥t > s. The second part is _.obvious.

Theorem 1.31 Suppose {X,: t € R} is a stationary s.p. with spectral

.

measure u defined as in Theorem 1.26, and suppose ~du = wdx + dug

is the Lebesgue decomposition. Then the following alternative holds:-—

' / .
Either (a) f 1;’ +Wg‘ dx >~ and P__ # Py # L?(n)
or (b) f%‘%‘%gxldx= —~ and P__ = Py = L2(u).

the

Proof (Dym and McKean [L4, p.84]) Let P denotegprojection onto
L~

T
P, (T €R). The proof is split into two parts.

T ,
(1) Po #12(u) = fl‘fg;‘dx%l dx > -, and P__ # Po.
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Proof of (1) If Py # L?2(u), then 3Is <t so that

a, = (l—PS)elXt # 0. is perpendicular to e for

Now o
st s

t

r < s, by definition, so f e %y (x)e *Tau(x) = 0 for r <0. °

st

By the F. and M. Riesz theorem (just the same as the circle version)

-ixs . .
e’ o vanishes on the singular set of yu, so that

-1xs i

e ast(x)du(x) =e xsast(x)w(x)dx

and e_lxsast(x)w(x) € H!,

log|astw(x)|

1T+ % dx > —-», and so we have

In particular, I

log wix
I ‘Eﬁz—igl dx

'I 1og{|ast(x)|w(x)]2 e [,1og[|ast(x)|2W(x)]

1 + x2 1+ x2 dx

v

, J log[|ust(x)|W(X)]

- L2 s -
1+ x? dx "ast >

(2) Po = Lz(u) = PO‘_, = P—-oo and f —]il)-g;-w—;%(l‘l%—co}

Proof of (2) If P, = L2(u), then LZ(u) = N e1XTPo = N PT = P_m.
T<0 T<O .

log w{x)
1+ x

3h € H2 with w = |h|? a.e. on R, and if we define %-= 1 on the

It remains to show that f dx = -», Suppose not. Then

singular set of u, it follows from P__ = L2(p) that if

f= c1é1Xt1 + ... F cnelth with t,; ey tn < 0, then
inf [ |£(x)h(x)-h(x)]2ax < inf f |f(x)—¥(x)|2du(x) =0 -
all such f all such f h

since %'E L2(u) = Po.
h

Thus h € H2 N H2 = {0} contradicting f ;§5:E§§l dx > —w,

This completes the proof.

°
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Remarks (i) The F. and M. Riesz theorem quoted in the above theorem
is given in Dym and McKean [L, p.45]. Its statement is as follows:-

A function F of totael variation [ |dF(x)| < » with

f e *¥Tar(x) = 0 vt < 0 must be of the form

. b'e ]
F(x) = constant + [ ho(y)dy for some h € Hl.

—00

(ii) The proof given above is modelled on that for the
discrete case which is given in Doob [2]. Notice that du,, the
singular part, plays no part in the prediction, and its significance

is shown in the following result.

log w(x

Lemma 1.32 If J 17 x

dx > —», then P__ = Lz(dus), du being
the singular part of u which has Lebesgue decomposition

duy = wdx + dus.

Proof (Dym and McKean [4]) Suppose J ;%5IE§%1 dx > —~. Then
P__#Po # L2(u). Suppose f € P__. Then ey € P_, VYr €R. Now,

if s < t, the function @, = (l—F;)elXt is perpendicular to

'PS.Q P__, and since astdu(x) = astw(x)dx (as in the proof of Theorem

1.31, part (1)), we have that

~

f eixrf(x)'a_sl'(_x‘)'du(x). - f eixrf(x)usti}{)W(X)dx ___' 0 (Vr € 13) .

—{

Thus fa_ W vanishes a.e. (dx). Therefore f vanishes a.e. (dx),

1og|ast(x)|w(x)
1+ x?

dx > —» stops oW from vanishing a.e.

since J
(d&x). This proves P_w c Lz(dus).
Converée;y, suppose f € Lz(dus). Then, as f = 0 a.e. (dx)

v

and astdu(x) = ast(x)w(x)dx, we must have
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J 1P )2G0le  Fau(x) = £l (1-P )™ T au(x)

f f(x)a;;(x)w(x)dx = 0, vt > s,

Thus (l-PS)f is perpendicular to both Ps and Fs and so must

vanish. Thus f = P_f € PS Vs ER, i.e. fEP_.

Corollarz,l.jj_'{xt: t € R} is purely non-deterministic iff p is

log wix

1+ x dx > —e.

absolutely continuous and J

Proot P, = 01> P #12() = [ 25 4> o ana P - 1%(ay,)
by Lemma 1.32 so dus = 0. Conversely,

f log w(x

1+ % 1s purely non-

dx > —= = P__ = L2(dus) = {0}, so X,

deterministic.

The proofs of Theorem 1.31 and Lemma 1.32 can be found in Dym
and McKean as we have indicated above. However, these results can be
derived more directly from the corresponding results for discrete

processes on I', the unit circle, by means of the linear functional

map of Theorem 1.1k, namely z + £ = i ; i (z € H+, g €D). As we
' remarked, then, this transformation is very useful for deriving
results about the HY spaces 1in 1t and indeed about conjugate
functions from the corresponding results on D, as in Hof fman [11,
Chapter 8] . Let us look at it briefly.

If we start with a continuous stationary s.p. ‘{Xt:' t € 5}
with spectral measure ﬁ, then there exists an associated discrete

process with spectral measure v on T and, more importantly, the

subspaces p,(,) and Pp,(y) correspoﬁd, as do P__(u) ana P__(v).
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- - . +
To see this consider the linear fractional map, A, from I to D,

the unit disc, defined, as above, by

- 1 +
z > ANz) = & =‘§—:—% (z€m)
with inverse
-1(z7) = =._§;i_l ’ €D
g+~ A1(E) z 1(E-1) ‘ (€ )
Define v on I by v(8) = u(tan 9-) Then 48 - ——Ei—jz SO Vv
2’ ax 1 + x°£ °

is the spectral measure of some discrete process, and thé integrals

(2] .
J lQ%;%u&%l dx and [ log wv(e)de are finite or infinite together,
r

—00

where of course 4y = wudx + dus and dv = wvde + dvs are the
respective Lebesgue decompositions of p ..and v. To see that Po (n)

and Po(v) correspond under this transformation, we have

. . o .
e 16 _ x + 1_91-0> f e 1txetdt
x -1
— .
-1i6 -in@
so that e s and hence e Vn > 1, corresponds to an element

0 .
of Po(u), since the integral [ e X ey may be approximated in

Lz(u) by a linear combination'o;?the functions e_itij.Po(u)
(t > 0), and so belongs to Po(u). Thus the image of Po(v) is in
Po (1). |

Conversely, the function eiZt = exp(t é;% ) is analytic in

lg] >1 and has modulus <1 if t < O, since

o - W 2
|exp(t %E% )| = exp(tRe Efl ) = exp(t 2= =)
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and this is less than 1 if t < O and lgl > 1, Thus eizt may be
expanded in a series of non-positive powers of &. On T, it is
exp(ixt), t < 0, the bounded pointwiselimit of exp(ixt) for t < O.
Thus eiXt, t < O can be approximsted boundedly and in L2(u) by
the image of an element of Po(v) and so the image of Po(v) is
Po (u).

This is enough to prove Theorem 1.31. The assertion that
P_(v) and P__(u) correspond is proved similarly. |

A second prediction probiem which is quite important is that of
interpolation. Suppose '{Xn: n € %} is a discrete stationary s.p.
with spectral measure u, and dp = wd® + dug. The problem is to
find the best approximation to the function 1 from the combined
past and future P_; UF;; more precisely, to compute

T = inf{"l—g“Lz(u): g €P_, UF;}.

. For this discrete case, the solution was given by Kolmogorov and says

ae \!
T.z (J-——-——w(e)> .
T

Notice once again that the singular part of u is unimportant for

that

computing t. The interpolation problem for a continuous parameter
process; i.e. if the behaviour of Xt for Itl_i A > 0 1is known,
vhat cen we say sbout X, for |[t] < A, in particular about Xp .7,

is much harder to solve and a complete solution has only recently
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been provided in the book of Dym and.McKeanf
Both p?oblems‘mentioned so far, the Kolmogorov-Wiener problem,
and the interpolation problem say roughly that if w is not too
'little' i.e. if o >.O or t > 0, then the functions {eitx: t > 0}
have a measure of independence in L2(u). The condition which we are
interested in is stronger than either of the conditions © > O and

itx,

T > 0, and says that the functions {e t € R} are "asymptot-

ically" independent in L2(u). We need some definitions.

Definition 1.3k4 (a) A subspace of a Hilbert space is a closed linear

manifold.
(b) Let M, N be subspaces of a Hilbert space H.
Then the quantity p(M,N) between M and N is given by
o(M,N) = sup{[(g,n)|: £€M, neEN, lel <1, Inl <13.
| It is obvious that p < 1. cos lp is sometimes called the
éngle between M and N.

(¢) We say that M, N are at positive angle if

p < 1.

Clearly M NN # {0} = p(M,N) = 1, and if dim H < @, +then
p(M,N) =1 iff M ON # {0}. This is not true if dim H = o,
Obviously p = O iff M | N.

Inbthe context of the prediction theory of a discrete process
{Xn: n € ?}, Helson and Szeg8 [10] in 1960 posed and answered the
question: When are Py and F; at positive angle, i.e. when is

p1 = p(Py,P) < 17 In fact, they proved the following result.

Theorem 1.35 Py and F, are at positive angle in L2(n) iff is

absolutely continuous and 3r, s real L -functions such that
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||s||m < and a.e. on T,

T
2
w = exp(r+s)

where § denotes the conjugate function of s.

It is of course natural to ask about P = p(Po,Fvﬁ for n>1
(pn depends only on n by stationarity, of course). This was solved
by Helson and Sarason [9] in 1967 as a corollary of their method of
solving the strong-mixing problem which we shall describe in a

moment. They proved

Theorem 1.35) Po and F, are at positive angle in L2(p) iff w dis

absolutely céntinuous and 3 a representation
w = |P|2exp(r+8)

Qhere r, s are real L”-functions with ||s|loo < %-, and P is a
polynoﬁial in eie of degree <n - 1 with all its roots on the
unit circle.

We shall obtain a complete analogue of Theorem 1.35 in the
continuous case, i.e. when is Py = D(Po,FA).< 1 for A > 017
However our main task is to study the strong-mixing condition, first
suggested by Roéenblatt, for a continuous stationary s.p.. The:

discrete case was solved by Helson and Sarason[9], and finally by

Sarason [23] in leé. Let us state the problem.

. "For what finite positive Borel measures u on R is it true

that - = P(Po,FA) >0 as A e 2

Pa
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Of course, is non-increasing, and C 0 ="pk <1l V> for

Pa
some Ao > O. It turns out that this condition is stronger than the

two previous ones we have considered. In the discrete case the follow-

ing result was proved by Helson and Sarason.

Theorem 1.37, P, = p(Po,Fn) +0 as n+® iff y 1is absolutely

continuqus Q§§i> log w € Ll(F), and 3 a representation
w = |P|2exp(utv)

vhere wu, v are real continuous functions on T, and P is a poly-

' . . i . .
nomial in e with all 1ts zeros on T.

We shall give a result like Theorem 1.36 in Chapter 2 for a
continuous stationary s.p., but it is not so complete. In fact, it
corresponds to the result given in the 1967 paper of Hélson and
Saréson fora discrete process,‘before it was improved in the 1972 paper.

At first sight it is not obvious that the strong-mixing condition
L 0 has much probabilistic signifiéance, and again the justifica—
tion comes when one assumes that fhe process '{Xn: n € %} is Gaussian

(for convenience we consider the discrete situation). For if '{Xn}

is Gaussian, it was proved by Kolqﬂogorov and Rozamov { 18] 'in 1960 that

o < oad C.
han <0, __51n(2nan) where o 1is given by

[+ <]

a = a(M M%) = a0 S;%"nw |P(EF)-P(E)P(F) | .

3

where Mst denotes the o-algebra of events generated by the set .

e
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{Xr: s <r<t}, and EF denotes the intersection E NF (recall
that the X ‘are defined on (9,I,P) a probability space). The
condition o >0 was first suggested by Roseﬁblatt [21] in 1956.
In the same paper of‘Kolmogorovand Rozanov [ 18], P, is related to the
maximal correlation coefficient between Py, and Fn' We shall not
pursue this further.

Another importent reason for looking at the condition Py 0
(or LIS O in the discrete case) is that processes which satisfy
this’condition)satisfy a central limit theorem; we refér the interested
reader to Ibragimov [16], or Rozanov [22, Chapter IV].

Our main task in Chapter 2 is to derive . analogues of Thebrems
1.36 and 1.37 for theé continuous case. The ideas in the proof of
Theorem 1.37 recurﬁiggé, so we shall not prove it, but refer the
reader instead to the papérs of Helson and Sarason [9], and Sarason
[23]. However, to finish Chapter 1, we give a proof of part of
Theorem 1.37 because it is elegant and involves techniques from the

theory of uniform algebras.

Lemma 1.38 If {Xn: 'n €272} 1is a stationary s.p. with spectral measure

u onl, and if P, > O as n >, then u 1is absolutely continuous.

Proof Without loss of generality, we may assume.£ha$ u(r) = 1.
Suppose ¥ 1s not absolutely continuous. Then there exists a set

E of Lebesgué measure zero such that u(E) > 0. By regularity of u,
we may assume that E is closed. Define g = z“IXE on I, where

XE denotes the characteristic function of E. Then g € C(E). By

‘the Rudin-Carleson theorem (see Gamelin [6, p.58]), 3 & function f
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in the disc 'algebra A(D) such that £ =g on E and ﬂf“w = 1.
Also since E is a peak set for A(D) we may assume that [f]| <1
off E. By choice, therefore fk + 0 off E, and we have

& - o

J 1 law~ [ au = u(E) <1. But also, |[ £z au| + u(E) as k + =,
r E k
Thus, by definition, p, > | / 2 du| # 0 as k + =, and this

contradiction shows that must be absolutely continuous.

Remarks (i) The regularity of u is obvious, since it comes from a
bositive definite sequence via Herglotzstheorem.

(ii) The Rudin-CarlesonTheoren [6, p;58] characterises closed
sets of Lebesgue measure zero in terms of the peak sets of the algebra
A(D). |

(iii) For our pufposes, the neatest proof of Lemma 1;38 is
obtained by showing that L Q =°’P_m = {0} and using. the result of
Theorem 1.31. This is done for a continuous process in Chapter 2.

As a concluding remark, we should point out that for a given

measure p on R 1t is usually difficult to calculate Py for
1

A > Oc Orle Which iS knoWn iS du = W(x)dx Where W(x) = -l——:?- .
In this case Py = e_k (A >0), so that w is a Helson-Sarason

function. Naturally the question arises of just how Py 0 in a

particular example, and work has been done on this by I.A. Ibragimov

[13], [14], [15].. We shall not pursue this guestion.
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CHAPTER 2

Mixing Conditions on the Line

In this chapter we shall study the strong mixing condition of
Helson and Sarason, and the condition of positive angle first intro-
ducéd by Hélson and Szegd, for a continuous parameter stationary
process. The machinery whiph we develop for the mixing condition,
oy 0 y will be useful in considering the Helson-Szegd problem.
Before tackling these individual ﬁroblems wé present a couple of

‘results useful inboth contexts. Recall the setting:we have a station-

ary continuous parameter process {X

4 t € R} and an associated

spectral measure du = wdx + dus, on g. Here W 1is non-negative
and integrable, and dx denotes Lebesgue measure on R. From now on
we concern ourselves only with the analytic properties of u, and
the underlying prbcess i3 not specified. By Theorem 1.31, if

log w & Llc, then P__ =Py = L2(du) and so Py = 1s VA > O.
Henceforth we assume that log w E‘Llc. In this situation recall that
by Lemma 1.32, P_. = Lz(dus). We now prove that a process satisfy-—

ing either the strong mixing condition, p, > O, or the Helson-Szegh
A ’

condition, < 1, must be purely non-deterministic.

P

Lemma 2.1 P__ # {0} =p, =1, WA >o0.

Proof Suppose g € P__ with "goﬂu = 1. Then, by definition,

N sup{[{f,g?|: f€ FA’ g € Py, "f"u'i 1, “gHU'i 1}

[}

Sup{l(f,g )|; fE FA+ , g€ Pv’ "f"u.ﬁ 1, "gHU'i 1}

AY
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so oy zswp{[(f,e ) ]|: £EF, I <1} (Vr €R).

But U F_=12(n), and g€ L2(u), so p, > Mgl 2 =1, i.e.
R r o A M :

pk=1.

The following 1s an immediate consequence of Lemma 2.1 and the

fact that P__ = LZ(an).

Corollary 2.2 ‘If log w € Llc and °) <1 for some A > 0O, then

u is absolutely continuous.

From now on we shall assume that p 1is absolutely continﬁous,

u = wdx where W is non-negative and integreble, and log w € Llc.

Notation ILet W = {w € L}, w > 0: logwELlc and p>‘+0 as
A » »}, For each X > 0, 1let W)\={WEL1,W_>_O: :Logw€L1c and

Py < 1}.

Obviously W C U WA’ and W}‘_C_Wp if u > A. Before we can
A>0 :

determine the nature of W and W, we need a more concrete descrip-

A
tion of I Suppose w € L1,  w > 0 and logw € Llc. Then, by
Theorem 1.7, there exists an outer function h € H2 such that

_ 2 . . i¢ .
w = |n| a.e. on R, and we may write H = |hle with ¢ real,
chosen so that .¢(i) = O. Of course, h is unique up to multiplica-
tion by a constant of modulus 1. Recall that for X €R, ey denotes

. . + |
the function defined on 1 by eA(z) = el)\z, so that e, €H for

x>0,

Lemma 2.3 For A > 0, p, = inf le 2 % Al i.e. p. is the
=R e 2T e - e A
distance in L~ from the function e'_21.¢ to the subset e_ H of

L. .
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Proof By definition, o, sup{| [ fgeklhlzdxlz f, g €B(F)}

sup{ | f (fh)(gh)ele—2i¢dx|: £, g € B(Fo)}
(1)
Since h is outer in H2, {fh: f € B(Fp)} 1is dense in the unit
ball of H2, and so by Theorem 1.5, {(fh)(gh): f, g€ B(Fo)} is
'dense in the wnit ball of H!. Thus (1) expresses p, @s the norm of
the linear functional RA which is defined on H by
Rk(a) = f aeAe_2i¢dx (0 € H!). Now, since (H!)'2 %; by Lemma 1.9,

as easy application of the Hahn-Banach theorem gives that
= inf le,e

e 2Hal = dnr DeF e Al

N -
= AcH

The following theorem is based on a result of Sarason [2L],
and characterises W. It is the continuous case analogue of TiHeorem

2 in [9].

Theorem 2.4 w €W 1iff e P10 e g™ 4 BUC, where BUC denotes the

set of bounded uniformly continuous functions on R.

-~

Proof By Lemma 2.3, p, » O iff 1im inf le™*%_¢ Al = 0. Let
A T . -\«
A0 AEH -
R denote the wniform closure of the set U {e_,H }. We prove that
A0

R=H + BUC. This is done in two parts.

Step I:- H + BUC CR. Obviously H CR. Let f €BUC. For A > O,

. F
define g, on I by gx(z) =2 [ K(A(t-2))f(t)dat where

K(t) = %— E&Eziig . Then it is easy to see that g, is analytic in
+

I'. We show that e

il -
28 €EH > VA >0 and that lim "f—gxﬂw =0

A
which will prove (I).
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o . Ay
(a) ©8 € H It suffices to prove that ]gA(z)| < Ke for
z =x + iy € n*t and some constant K. By translation we need onlj

look at z = iy. Now

i 2 - -2
o) sinIAEELAII o) ‘sinlAEEle
ar £(t)at <= Hf”w- ‘ at

lgk(ly)| — . .
At - 1y At - 1Ay
Now .
: ) sin? A%'cosh2 (- A%) + cos? A% sinh? (- Ag—)
. At—iX -
sin —EElJX : - A2(tZ%4y2)
= if t2+y2#0
At - 1Xy

L) if t=y=0

So, 1f we fix 6 > O, then \ sin h2(- A%)
1 %COS hz(— _%) + XZT ’ if Y # 0]
.n[kt—ilx - Y
t € (_636) = 2 _<.
At - idy ‘ :
feos n2(0), ifr y=o0
-3 2
sinIAtellxl -
Hence |— §-¢eky.
At - ixy
-1 2
sinllziléxl cos h?(- A%) + sin n2(- &)
If t & (-6,8), then - < . 2
At - iry A2t2

Thus
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(b) gy > f in L” Notice that

g,(x) = A [ K(a(t-x))£(t)at = [ K(t)f(x+t/2)at (x €R)
Let € >0 and x € R, Choose N > ;§%§!2 . Since f ig uniformly

cbntinuous, 3§ > 0 such that [s-t| < & = |f(s)-£(t)]| < % . With
this &, choose A > % . Then
£(x) - g, (x) = [ K(£){f(x)-f(x+t/2)}at so that

. N
|.f(x)-g)\(x)| < [ K[ £(x)-fx+t/2) |g¢ + WlEl_ [ K(t)at
’ ~N N

- N
Since [ K(t)dt = 1 and §-< 8, [ K(t)|£(x)-£(x+t/2)|at< % . Also
¥ glel.7 at _ e o .
Jk(t)at < = 55 <&, Thus lr-gl < e, proving (b).
N Sl | N t 2 %\w

Step II:- R C H® + BUC (Sarason [24, p.4OL])

(a) e_yh € H +BUC for A >0 and hE€H® let h €H and

A > 0. Choose a C_ function v of compact support with v =1 on
[ -2,0]. Let u be the inverse Fourier transform of v, so that

h, that £ = (uxf) + (f-usf). By

a = v. We have, defining f=e,

definition of wu, it is easy to see that u * £ C BUC. It remains
to prove that f - (uxf) € H., and it suffices to show that it
annihilates H!., Thus suppose g € H!, and let w (x) = u(-x)’

(x €ER). Then, by Fubini, [ (uxf)(x)g(x)ax = [ (u'*g)(x)f(x)dx so
[ Le(x)-(ust) (x)] g(x)ax = [ [g(X)-(ul¥g)(x)]e—ixxh(x)dx.

Now ©;(x) = ¥(-x) =1 on [0,A], so the Fourier transform of-
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g - w x g vanishes on [0,\]. But g €H! =y % g €EH!, so0 the
Fourier transform of g - u; % g vanishes on (-=,A]. Thus the
function. e_x[g-u1¥g] lieé-in H! and so annihilates H . Hence the

last integral above vanishes and (a) is proved.

(b) H® + BUC is closed in L° The proof of this is just like
that of the well-known result for the ?ircle that H + C is closed

in Lw, and is only included for the sake of completenesé.. Consider

(o)
BUC L7 . . o
™ N Bgc ~ ge eiven by £ + (HBUC) ~» £ + H

(f € BUC). The distence estimate,

the natural map n:

dist(£,H") = aist(£,H NBUC) (f € BuC) (2)

shows that n 1is an isometry and so has closed range. But = + BUC
is simply the inverse image in L” of this range under the quotient

«©

map ﬁm-+€%; , and so is closed. To check the distance estimate (2)

. . . . ’ . >°° . o

it is enough to prove the inequality dist(f,H MBUC) < dist(f,H )

(f €EBUC). Let h €H and, for y > O, 1let f,, b be the functions

fy(x) = f(x+iy), 'hy(x) = h(x+iy) obtained, as usual via the Poisson

extensions of £ and h to I'. Then, for y > O,
Ie-n Il < W~ + g -n Il

But f € BUC ==’"f—fy"°° >0 as ¥ + 0, and also "f&—hy"m-i Fe-nlt_.
Thus, since hy € H NBUC, we have dist(f,H MBUC) < le-nll_. Taking
the infimum over all h € H  yields the result (b) and completes the

proof of the theorem.
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Corollary 2.5 H + BUC is a closed subalgebra of L.

Remark The characterisation given in Theorem 2.4 is sometimes useful -
in identifying specific elements of W, as we shall see shortly.
However, its usefulness is limited and we are éeeking a mofe elaborate-
description of W along the lines of the Helson-Sarason result for the
discrete case given in Theorem 1.37. Accordingly outr first step is to
identify some elements of ¥ to be the "building blocks" out of which
we construct arbitfary elements of W. To this end we identify the
analogues of the factors |P|2 and exp(u+v) which appear in Theorem

1.36. This we now do.

Lemma 2.6 Suppose ¥ = exp(ut+v) is integrable, where u, v are real

functions in BUC. Then w € W.

Remark v denotes the conjugate function of v, as defined in

Chapter 1.

Proof By hypothesis w € L! and logw = u + v € L', by Lemma 1.13.

Thus w = |h|2 for some outer function h € H2, and, in fact, h is
given by

1 J zx + 1 ~

dx
w¥(2) = e 5 | Sy (w0 g7

X

But, by definition of conjugate function,

s 1 xz +1 . ax .
:iii'ioaif‘?:—zh*v)m”“u”'”
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Thus,
. +v L~
_21¢ W eu v _ l(V‘U.)
e STy T T oo T e D
h eu+1ufvf1v
. __~ +- — _‘~ R +' -— —.~ .
But e1(v u) _ eWFIVTUTIU g QWY e g U e 4 5o that

ey 4+ muc.

In identifying the class of functions on 'B which corresponds
to the factors |P|? 1in the discrete case, it is useful to notice
that if w = |P|2 on T where the degree of P is ng, then
pn(w) =0 Vn > no, end, conversely, if w € LI(T), w > 0 eand
P, = O Vn > no, then 3 a polynomial P of degree < np ~such that
w = |P|2, .This is an easy consequence of Lemma 2.3 and the definition
of HY(r) in terms of the vanishing of the negative Fourier goeffi-
cients. The argument is given below for the continuous case and
involves only elementary properties of'Fourier transforms.

3

'
Lemms 2.7 (a) Let w € L(R), w > O and suppose that

ixt
w(x) = f e Te(t)at (3)
for some ¢ € L! of compact support in [-XosAol]. Then pk(w) =0
VA > )\0-
(b) Conversely, if w € L, w>0 and pA(w) =0

VA > X, then W has a representation in the form (3).

Proof (a) By definition of Pys it is enough to prove that

) n
[ ae,wdx = 0 for every function of the form a = | a e

where
r=1 T )\r’
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A >0, r=1, .;., n. Thus it suffices to prove that
fevwd.x =0 W > \. But
f elvx$(—x)dx, since w(x) = 6(—x) by (3)

f e—ivxg(x)dx

—
(17
<
=
&
i 1}

$(-v).

The last step follows by the inversion theorem for Fourier transforms
which is applicable since ¢ and W are both integrable. Since ¢

vanishes off [=Xo,%0], = 0.

P2
() If w>0, wEL! satisfies py =0 VA > do, then the

function g = e\ € H! by Lemma 2.3. Since w = G, we have w = e,8

and so g = egxé a.e. on R. But g € H! = g vanishes on (-=,0],
A_ - A_ ~ ‘
and egxg(y) = g(2x-y), so e )8 vanishes on [2A,»). Thus g has
. ~ A . . T
support in (0,2\). Hence w = e_,& has support in (=A,1). This is

true for ‘every A > dp, and so W  vanishes off [-Xo,Ao). Since
w € L, w is continuouis, and hence in L. Thus, by the inversion
theorem, w(x) = [ e 5 (t) at a.e. and (3) holds.

By the Paley-Wiener theorem (Theorem 1.22), the equation
Ao itz ’
(A) o(z) = [ e "Zp(t)at (¢ € LY -2o,520])
defines an entire function, and obviously

(B) |e(z) ] j_KerlyI, z = x + iy

for some constant K independent of z (in fact K = l¢ll; ~in this
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case). Conversely, any entire function ¢(z) satisfying (B) and such
that ¢|R € L! has a representation of the form (A). So, from Lemma

~

2.7, ve oBtain

Theorem 2.8 If w € Ll, w > 0, then P, =0 VA> 1 iff there

exists an entire function ¢ satisfying (B) such that w = ¢lR.

-~

Pa

Corollary 2.9 (a) w€ L}, w> o0, =0 VX > X =W is bounded

and continuous on R.

~

(b) If w>0, w€L! is the restriction to R of an

entire function satisfying (B), then log w € Llcf
Proof Immediate from Theorem 2.8.

Wé have thus obtained the analogues of the factors |P|2 in
Theorer 1.37, for, by Theorem 1.21, entire functions satisfying (B)

with ¢| z >0, o] €L! have the property that 3¥ satisfying (B)
R — R

such that ©|, = |¥|.|2. If we combine the resulté of Theorem 2.8 and

R R

Lemma 2.6, we obtain & Subset of W, the properties of which are

fairly representative of ¥ as a whole.

" Theorem 2,10 Suppose W = f exp(u+v), where f 1is a real Ll-function

which is the restriction to R of an entire function & satisfying

AT - g
| Tmz | for some constantsAK > O, /and u and VvV are real

~ -

|<I>(z)| < Ke

functions in BUC such thst e’ € Ll. Then w € W. : S

Proof By Corollary 2.9 (b), log f € LIC» so that log w € Lle. Also
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f is bounded on R by hypothesis, and so w € L. Thus ¢ = Ihllz,

' : . o e +v
hy outer 1in H and_ H%T €H + BUC. Similarly, el V = |h2'2s h,
utv

outer in H? and EB“?'E H + BUC. Clearly w = |hih; |2, and it-is-
2

easy to see that hj;h, is outer, so that

-21 | w f eu+; o
e - 2 € H' + BUC, as required.

h12h22  hy 2

Remark Of course, the ﬁethod of proof of Theorem 2.10 actually shows
that if w, €W, w, € and w;W, € L!, then w,w, €W, |

For the moment, this is as far as we want to go in identifying
particular elements of W. The approach now is to break up an
arbitrary element of W' into its constituentparts of the above sort.
We need to put Lemma 2.3 into a more useful form, which we do in

Lemma 2.12. First we notice that multiplication by i_%_;f preserves

W. We have
. _ (i+x)2 . .
Lemma 2.11 (a) The function g(x) = 1T ¥ 2 isin BUC.

(b) WEW:I—Z'—;{TGW.

(¢) w€W, (1+x2)w € L1 = (14x2)w € W.

. Gex)] _ ) -
roof (a) T2 =L (x € B), and N
(i+x)2 _ (i+y)2|2_ (x+y)2+(xy-1)2
1 +Xx7 T 1+ y?‘ = bxy)? {(:)L(+x2)231+y2)2}
< b(x-y)2.

so g 1is in BUC.

(b) if w € W, then 1—¥~;§'E L! and since w = |h|2, n

h2
(i+x)?

in H?. By Theorem 2.k4, it suffices to show that

W —
1+ x2

outer in H?, we have that and is outer

i+ 2z
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W 1 2 © . . ©
gl (1;") € H + BUC. But this follows, since %z €H + BUC and,
. 2
1+Xx
by (&), §+))( € BUC.

. 2
. . . . + .
(c) is proved in a similar way using the fact that ]('—14?}){-2- B

is also in BUC.

Lemma 2.12 Suppose w € Ll, w >0, Then w €W iff We > O,
Ix = Ale) >0, A=A(e) €EH and & real L -function s = s(e) such
that a.e. on R

~

) = O(mod2w).

|s] < e, |1log|A]l| <e anda s + arg(Ahze_)‘

Remark The statement o = O(mod2m) means that for almost all x € R,

Ik(x) € Z such that a(x) = 2nk(x).

Proof () Suppose that w € W. By Lemma 2.3, given ¢ > 0 3A €EH
and A > O such that le —e_,Al < e. Then we have a.e.

A-e 2184200 4 ¢,

] = e N

Al = e
Similarly |A] > 1 - e, so we may assume, without loss of generality,
that |log|A|| < €. Consider the diagram beélow where P is such

that 0 < P < 2m, r
e, A

P) et'?
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We have, arg(Ahze_A) = arg(e_AA) + arg(h?) = arg(e_AA) + 2¢

)

= arg(e_AA) - arg(e—21¢). So that arg(AnZe_
?2i¢|

P(mod2n). Now
le"2l¢

A

|e_AA~e < ¢ ®cos P>0, for, othervwise, —e;xAI is too

large. By the cosine rule,

2 _ _2ig¢?
,e__)‘AI + 1 |e_)‘A e _.‘.)I 1+ (1‘8)2 _ €2 _ 1 - ¢

z 2(1+¢) 1+¢’

cos P =
2Ie_ A|

which is close to 1. Thus, modifying A and A if necessary, we
have |P| <e. Let s = -P. Then |s| < g, and

s + arg(Ahze_ ) = arg(Ahze_A),— P = O(mogomw).

A

(%) This is straightforward, since
—2. ‘
e v1¢_e_AA]2 =1+ |A]|2 - 2|A]cos s <1 + (1+e)? - 2(1-€)2 < 6e.

The next step is to formulate a result on anélytic continuation

. . + .
across R of a function defined on I , and for this we need a

-~

- definition.

Definition 2.13 Supposé o, B and R are real numbers, and U 1is
the interior of the rectangle S = {z €C: 0 < Imz <R, a < Rez < B}.
We say that f: U - C is in Hé(U) if f is analytic in U,

£, € L1(a,8) Wy € (O,R), and £ lfo(t)—fy(t)|dt +0 as y > 0 for
some fo € Li(ajB). This entails that fy + f, pointwise a.e. on

(a,B).

Proposition 2.14 Suppose f € H(U), and f, is real a.e. on . (a,B).

Then f can be extended analytically across (a,B).
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Proof The idea of the proof is to mimic the proof of the Schwarz

reflection principle where normally one assumes that f

uous. The condition
tion.
Choose and fix

R and containing &

-~

is contin-

f € H}(U) satisfactorily replaces this assump-.

£ € U. Consider a rectangle J

so that J C closure(U UU) as in Figure 1.°

(Here U = {z: z € U}.)

R

@+LR

A

Since f € H!(U), extending f to int J by f£(z) = f(z) We may

assume makes f continuous on the boundary of J. Define g on

int J by

N

g( %) =§i—1§

f(z)
zZ

-8

(z € int J)

Then it is obvious that g is analytic inside J. For each

1
n > Img °

Then it is elear that

1
271

f f(z)az
g -k
n -

f(g) =

construct the contour Jn of Figure 2.

symmetric ahout

v
R

N Tﬂ~
P4
c A * S \
¢ %
(1) Y 8 I,_% R
Y, S ¥ th l ‘

N
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since the integral round the upper contour is f(g) and that round

the (lgwdeinis - 0. (1) holds for every n > fi‘g » SO to see that
£(g) = g(g), it will suffice to prove that { ;£§§% dz + 0 as .
' J J -
n + «, By symmetry it suffices to prove that f f(zé dz - O as
- C
n + @, vhere Cn is shown in Figure 3. n
- ﬁh 3
. N ‘
i"‘ A § Y ‘
= —< > R
¥ & ~
Now o
S . : 1/n .
_f(z) = f(x+i/n) _ f5(x) . f(y+1y), f(6+1zl
é z - az = [ x+1/n-§ b I 1 dx + 1 é Y+iy-£ S+iy-¢& dy-.
n Y ‘
But
lfn f(Y+iy) _ f(6+1x)_dy fn lf(y+iy)l+[f(6fiyllﬁ¢y' (2)
o 1Ytiy-¢ S+iy-g - Tme __i_ :

-1 s | - ' 1 = 5 = i
= a(Imt-1/n) sup{[£(x+iy) [+ 0 <y e i or X = 8) .

But f is continuous on the boundary of J, hence bounded there and
so the supremum above is bounded for all large n. Thus the integral
in (2) tends'to 0O &as n + = ,

For thé integral along the horizontal sideé of Cn’ we need to

use the fact that fy + fo in L(a,B) and pointwise a.e. on (a,B8).

§ 8 8

J %ﬁ—}r%-% B :icif_xt)i_ dx = f f(XHQZJn?()Q % f (x-g)fifﬁi/n) ax
Y Y Y
s
6 .
l l[ﬁﬁi’%ﬁz‘g {Lf—’%]u‘ < T | j |f(x+1/n) ()] ax

nImg f IfO(X)IdX}

~
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1 (a,8) | "fb",(a’s)

= Img-1/n {"fl/n-fbul n Img *
B
(where "-“1(a’6) denotes [ |+|ax). Since f € H!(U),
a

"fl/n—fbﬂfa’8)+ O as n + », and so the last expression above also

tends to zero.

: . . .. +
Proposition 2.15 Suppose f 1is analytic in I ». >0 on R and

~

A
yticdlly ac.ross R.

-~

f = aB where . e,a € H! . and 731277 € H!. Then f continues anal-~

Proof e,a €l =3y, v €EH2 with |u| = |v| ana e,o = uv,
Similarly, 3u', v' € H2 with |[u'] = |v'| ana TI%;TT =u'v',

. . +
Define v,6 in I by

e,y = u{i+z)u' and 6 = v(i+z)v'.

f a.e. on R. Since f > O

Then |y| = |8] on R and vy6§ = oB

-~

on R, we must havé 6 =y a.e. on R. Let f; =y + §,

f, = i(y-8). It is straightforward to check (*) that f;, f, € H1(U)

' for any rectangle U of the above form, and so f;; f2 both continue

analytically dcross R. Hence y and 6 do also, and f does.

~

e T
A
¥)R T = = € gl = £ € gl
(*¥*)Remark To see that g (T+2 H f € H1(U) for any rectangle
of the given form proceed as foliowsu— with the notation of

Proposition 2.1k, since Ify(x)l = eAy[x2+(l+y)2]lgy(x)|s we have

g0 ax < =

g _ B8
[ 15,60 bax < {max( [al?,[8]2)] + (149)23e™ [ |g
a o
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so fy € L1(a,B). Moreover,

Ifo(X)-fy(X)l = |e x2+(l+y)2)gy(X)-e_i}‘x(xg'ﬂ)go(x)|

| A

(241) Mg (x)-e0 (x)| + ¥ |y242y] g, (x)]

A

(2+1) M g ()0 (x) [ +(e2V-1) | g (x) [1+e™ |2y 432 | | g, (x)
SO
lgo-15, I{@sB) - ? |£ -f |ax

[ y ° y

a . ’
[max(Ial%IBF)+1]{eAy"gy*so"1(“’B)+(e*y—1>ngbu,(“’3)}
('asB)

A

+ e*Y|y2+2y|ugyu,

and this last expression tends to zero as y + O since g € H!. Thus
f € HY(U). |

The full strength of Proposition 2.15 1s not needed immediately,
but it is useful whén we look at the Helson-Szeg8 problem. Before we
apply it to our investigation of W, we need the following result.
which is'basically the half-plane version of a well-known result of
Zygmumnd [ 26, p.254].
Lemma 2.16 Suppose s €1 is real and "s"°° < g-. Define g in nt

by

ole) = 3 [ 22 Lo p 2y (z € 1*)
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Proof Recall from Chapter 1, that Reg 1is simply the Poisson

. + . . .~ ..
extension of s to NI and 1lim g(a+ib) = s(a) + is(a), by defini-

_ bi0 4
tion. Thus ﬂs"w < %=> |Reg(z)]| < "s"no < g— . Hence if we define G -

by

G(z) = Ree8(2) - |eig(z)| x cos Reg(z)

't . . . . +
then G 1s a non—negative harmonic function on 1 , and

ig(z) G(z) ‘
[e | _im—;": . By Lemma 1.15, we know that

"G((2y+1)i) < c(2y+1) (V¥y > 0) for some constant C. But

X

cositsil_| o6 () Iy« (SR o T G((oy41)i)
(+1)2y1i e Z H Iy v+l

SO

) i : /
1 (vx+;|_)-2elg]yl|1 < mC gyL{—-i;i /31rC _ (vy > 0).

ig
e - . .
So Ti+z)2 € H', as required.

We afe now at last in a position to apply the result described
above to the problem of characterising W.

Suppose w € W, w = |h|2, h outer in H2. By Lemma 2.11,

. W : \ . h . .
(S = 2 = 2
———-2-1 - and ——71 X Ikl where k 1+ 2 1s outer 1n H<.

By Lerma 2,12, given € > O 3A € H and A > O and a real-valued
© . - - N > ) v
L -function s with lIsl_ < e such that |iog|A[| < ¢ and

s + arg’(Akze_A) = 0(mod2m). Define g as in Lemma 2.16, i.e.

o) =3 [ 22 L o) ;2
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elg
(i+z)¢ *

Then define f in 1° by f = Akle_

ig :
and the functions Ah? and Tz%;yg are both in H!. But we notice

e'8.  Now f = (An?)

A €A

that £ >0 on R a.e. because

~

arg £ = arg(Akze_A)+ arg(e'8) = arg(Akze_A) + s = O(mod 2m). Now, by
definition, Ty —7 = [k|2 = [a]71te® = £e™"°, wnere r = -log|al.

By Proposition 2.15, f extends analyticaily across R, and the
reflection principle then says that the extension, which we denote by
F,. is entire. In order to say a little more about F we need the

following simple lemma.

Lemma 2.17 Suppose g > O is subharmonic in C, and satisfies

~

[ glx+iy)ax iKeuIyI : (y €R) t
Then g is bounded on R, and g(z) < CeuIImz| (z € C).

Proof Suppose zo = xo + iyp. Then, if D(zp) is the unit disec

centre 2o, we have, by subharmonicity,
¢

Yo+l %0 +/1-(y-yo)?
/] el@axdy < f dy g(x+iy)dx

D(z0) LR =3k
Yotl : ‘

K J eH|yh3£ Ceu|y°1, as required.
Yo—1

ng(2b)

Ia

|A

We can now state one of our main results.
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Theorem 2.18 Suppose w € W. Then Ve > O, 3 a representation

w o

T—_'_—;z = f exp(r+s)

where (i) f = FIR is the restriction to R of an entire function

~

~

which satisfies

A]Imzl for some X > O

[F(z)] < ce )

N
~—r
.

f 1is bounded and non-negative on R, and f € LP(wp > In

‘general, F and A depend on ¢,
and (ii1) r and s are real Lm—fuhctions, depending on ¢ > O,

cwith el < g, sl < g, ‘ ~
=] oo

Proof Since e,f is the product of two Hl-functions, we have that

/ |f(x+iy)|%dx < Keky (vy > 0)

. 1 '
The reflection principle tells us that [ |F(x+iy)|Z%dx < Ke)\lyl

(Vv €ER). Now apply Lemma 2.17 to the subharmonic function

AIIsz

1
g = |F|?, to get that F(z) < Ce » 1in particular, f = F is

R

-~

|
bounded on R. Since f2 € L1 it is immediste that f € LP

Vp > 3. (ii) 1is obvious.

" Remark The construction of F which is described above entails that
ig .

. + . . -

in I, F= Ahze__A T%:;jf, so 1t 1s i1mmediate that e,Fe 18 ¢ HI,

This suggests how we might obtain a converse to Theorem 2.18. In

\
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fact we have the following theorem

Theorem 2.19 Suppose w € Ll, w>0 and logw € L;c' Suppose that

for each € > O we_have a8 representation I—Z——;z- = fsexp(r+§), where
(1) f€ = Fgllj for some entire function Fe satisfying
IFéz)I < Ce>‘|ImZI for some CA > O, depending on ¢

and £ >0 on R with fEELP vp > 3. o

(II) r, s are real Lw—f‘unctions, depending on €, such that

.

"r"m < e, "S"w < €. Then we can conclude that w € W,

Proof '.fhe“ argument falls into two parts; firstly we show that the
function Ge(z) = eAFEe_:Lg is in- H!, Ve > 0, and then we deduce
that i—f’—)—g € W, the result then following by Lemma 2.11 (c).

GEEH'I:— Clearly Ge is analytic. Also eFeeHm and

A
e_ig 1 g € 1 . - 1
TG+2)2 €H =’z—;+—z-)—2- €H'. So 3 inner j and outer k € H' such
g 2 _ sy _ —r W
that Ge = (i+z)“jk. But a.e. on R, IGEI = IFee | e Ty X2
Now let w' =e © l—‘i—xz . Then w' €L! ana
log w' = -r + log w - log(l+x2) € Llc, so 3 h' outer in H! such
that w' = |[n'|. But then we have a.e. on R
lkl = IGEI = e v = h!
1+ x* (1+x7)% |(i+x)? ,

h' . .
Now k and Tl—"'_x_)? are both outer in Hl, S0 by uniqueness modulo

]

a constant, 3y € C with |y| =1 such that k = Tili_l_i_)v" and so

G = (i+z)2jk = yjh' € HL,



56.

-r
W _ . v = e w
i:;ze W, We use Lemma 2712. Again let w T+ 20 and Ge be as

above, so that G_ = jh' for some outer h' € Hl by the first part,

end w' = |b'|. Now |j] =1 a.e. on R, and

arg jh'e_ Al = |arg fee_i(s+ls)[ = |-s| < €.

>\I = Iarg Gee_

Since e > 0 € Inv(L”) (the invertible elements of Lm),

3B € Inv(H”), B outer such that e’ = |B| a.e.. Of course,
Efg—zy ='W = |Bh'|, and Bh' 1is outer. Now put T = % €N,

Then, a.e. on R, we have
[10g|T|]| = I—longll = |—r| < g, and ]argF(Bh')e_Al = |arg jh'e_A|<e.

Thus, for each ¢ > 0, 3 ©H and A > O satisfying the condition
of Lemma 2.12 with respect to the function '1—11-‘;2', and so 1—:;7 ,

hence w, 1is in W.

Tﬂeorems 2.18 and 2.19 together give necessary and sufficient
conditions for W +to belong to W. They.are the main result of this
chapter together with a similar representation theorem for WA which
we present shortly (Theorem 2.24). The situation is similar to that
vhich obtained prior to the 1972 paper of Sarason for weight}functions
on the unit circle. Unfortunately for our purposes, the method of hi§
paper, which removes the dependence on e and ties in W with the set
of so-called functions of vanishing mean oscillation, VMO, is not
immediately applicablefl The difficulty is in deciding how much the

entire function Fs can vary as ¢ + 0. On the circle, the corres-
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ponding problem concerns only polynomials |P€|2 and Sarason, together

with Helson, was able to déduce that Pe = PQe where P has zeroé
only on T, and does not depend on e, and Q_ has. zeros only off
' Then we only need look at functions of the form er+§+t where
t = 210g|Qe| is a continuous function on T.

| We have not been able to carry.this through completely for the
line, the difficulty being in the propertiés of entire functions.
However, we do have the followiﬁg'which says that the entire functions
Fe and Fn occurring in two different representations must have the
same real zeros. |

|

Lemma 2.20 Suppose w € W and f;, f» are two functions with the

property (I) of Theorem 2.19 which occur in representations of

W .
T+ %2 1.e

and suppose that "slud < %-, "52"m <-% .

Then £, and f» must have the same real zeros.

m

Proof Notice that the assumption "s,"°° <=, Ils-‘,lla° < %- is no

=1

real restriction.

2 o _
Let W <3 —7. Then (E-) = TS e 11 | by Lemma 2.16,

£
2 .
and similarly ?&) € Ll . Thus

W c 1
f?’ii";zz—[J@ ilx;:f] U @) rg;f] (). From (1) ve

C’

deduce that every zero of f; 1is a zero of f,; for suppose

£ (x) =0 and f,(x) # 0. Since f, is continuous on ‘R, 3 =

1
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neighbourhood (x-8,x+8) on which f(y) > ¢ > 0. Since f; is
differentiable at x, the mean-value theorem gives that
f1(y) = ;' (£)(y-x) for some £ bétWeen x and Yy, and the

continuity of fy' says that |f;'(£)] <K for every & (x-6,x+§).

Thus
x+8 b x+8
£ ax , 1 Ly € = w
ff, T 2 2T E ([R]5)2 J Y 2 (=07 J y—<] =™
‘ x~6 : x-68
5 .
since f Qﬁ = o V8§ > 0. Thus (+) is contradicted and we have the
result.o

The class of entire functions F which can occur in the
representations.given above 1s obviously quite special. In fact they
are of exponential type and class A as is clear from Theorem 1.20 of
Chapter 1, and so they have a representation in the form

F(z) = cz% ¥ 1inm . (1- 2_). The fact that F(x) > 0, Vx €R
Riw |z |<R %k -

implies that m 1is eVen, all the real zeros of F are of even
multiplicity, and § = 0. Let us now summarise our representation

theorem in one convenient form:

Theorem 2.21 Suppose wE€ Ll, w >0 and logw €Ll.. Then wE W
2z &

iff Ve > 0 3 a representation

T2 = le_|2exm(r+5)

where (i) r, s are real L*-functions with "r"m <g,. lsl o <€

and  (ii) gsv is the restriction to R of an entire function of

~

exponential type of class A EF= otie-=="7 .. v =% such that
2l A= SN - - .
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g, € 1P Vp > 1. Also, for x €R,

g (x) = ex 1 (1-%) 1 (1-
€
n=1 n m=1

)

X
a,
.m

vhere 4{Yn} are the real rqoté of g, > and A{%n} are the non-real -

-

. T

rooté, both c&unted according to ﬁultiplicity. Of course we may
éssume Im %5 >0 -Vm.
Of course, the sgt {Yn} is not dependent on e, but we cannot
necessarily say the s;me fgr the set '{ané.
Before we look furtker at W, we need to know a little sbout
functions of boinded mean oscillation, BMO and this we do in Chapter
" 3. Firstly hHowever we derive a characterisation of W, for fixed
A >0 in a similar way. We shall obtain a complete analogue of the
Helson—SiegB result of 1960 as extended:by Helson and Sarason in

1967. In this case also there is & connection with BMO. The first

step is a lemma like 2.12.

Lemma 2.22 Suppose w €L!, w >0 and logw € Llcf Then w € WA

iff 3¢ > 0 and A € H°° such that a.e. on R

~

AI <-% - € (*)

|a]~>e and |arg AhZe_
Proof (=) This is similar to the first part of Lemms 2.12 and is
omitted.
(‘ﬂ. Suppose € > 0 and A € H satisfies (¥). Let ¢ > O
be a constant. We have, a.e. on R,

-21¢

|e ;e_XCA|2-= 1+ c|A|(c|Af—2 cos arg Ah2e_l) <1 + c|a|(c|a|-2sine)
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. . . 2
_ Sln € —21¢_ 2 _ E sin”E€
Put ¢ = —HI“: « Then |e e‘_AcAI <1-. A - < 1. Thus
Py = inf "e_2l¢—e_)\B"°° <1l and w€E WA'
BEH” :

A

Corollary 2.23 Suppose w € WA and k > 0 € Inv(Lw). Then kw € W..

Proof Suppose p}\(w) < 1. Then by Lemma 2.22, 3¢ > O and AEH

_ satisfying (¥). Since k > O and is invertible in Lm, 3 an outer

B
Then T'€H and if he? = Bh so that kw = |ho|2, he outer in .

H2, we have |I‘|=<l—%‘,-_>_“¥ﬁ—, and

~function B € Inv(H ) such that k = |B] a.e. on R. Let I'==2.,

= |arg Ah2e_ < I - €

l arg Thyp 2e_ A >

N

Thus kw € W)\.

Remark A careful look at the proof of Lemma 2.22 suggests that one
can obtain an inequality for pA(kw) in terms of p)‘(w); in fact, .

some crude estimation will give the result that

vEu2
oyo) <1 - I

1= e, o 1= p,(w)
vhere Y = ——p——, 6= "k“lﬂw(1+pk(w)), and =TSy
A

We are now in a position to characterise WA as we did W.

Notice that everything in W 1is eventually in W}\ for some A.

Theorem 2.24 Suppose w € L!, w > 0 and log w € Lle.. Then

v E W, iff 3 a representation



w = f exp(r+s)

where, (i) f=F is the restriction of an entire function F(z)

which satisfies
. + .
|F(2)| < C|i+z|2e T2 (zern*) (1)

f being non-negative a.e. on R,

~

and (ii) r, s are real L —-functions satisfying "s“w <% .

Proof (®) Suppose w € W,. By Lemma 2.22, 3e¢ > O and A€H  such

that a.e. on R

~

|A| > ¢ and |arg Ahze_kl < %- €.

As in the case of W, choose s real such that

s + arg An%e_, = O(mod 2r), so that lIsl_<Z -e. Define F in 1
- mnte i€ -l [xz+1 dx .
.by F = An"e_,e where g(z) - f — s(x) T+ 52+ Then F is
analytic in mt and, on R, argF =s + arg 'Ahze_A =z O(mod 27), so
that f = FIR is non—negative a.e.. Also F = A.hzce_>\elg and the

- ig
functions. Ah? and -(%_Z—)-z are in Hl, so, by Proposition 2.15, F

extends analytically across R, and the reflection principle says

that F is entire satisfying F(z) = F(z). We have
r+s

v = |n|2 = £.]a[" e8] = fe

where r = -log|A| € L”. It remains to prove that
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. I + .. . .
[F(2)] < C|1+z|2e>‘ ™2 (z€n’). This is not quite as straightforward
as the corresponding result for W, and we state it as a separate

result:-

Proposition 2.25 Suppose F 1is entire, real on R, and satisfies

eAF

W = QB for a, B € Hl ‘ (2)

Then F satisfies (1) for some constant € > O. T

Proof By (2),

f » |F(§_L{::i;f)|E ax < xe(A2)¥ (y = Imz > 0) (3)

,
; F , . : . . + F(Z) 2 . .
Now (i+z)? 1s analytic in 1T, so g(z) = L|1_+z‘l’ is subharmonic

-

4+ .
in II . 1Thus for yo > 1, we may apply Lemma 2.17 to get

F 2 A .
E‘L"ﬁu‘q’i Coe( /2)y0 and so IF(Zo)l < C]e)\yoll'i"Zo]2

1+zo | -
(zo = x0 + 1Yo, Yo > 1). Notice that the conclusion of Lemma 2.17 is
valid since when considering a unit disc round 2o We remain in nt
and (3) 1s valid there.

To get (1) for O < Imzo < 1 we must be more careful. Suppose

vo €[0,1). Then the unit disc centre 2z lies inside the strip

|Imz| < 2. sSince F(z) = F(z) we must have, corresponding to (3),

1
P(x+i c - .
f (;._{_: < Ke (A/2)y (y £ 0) so that, in general,
)
| F(xtiy) |2 A/2 .
I[x2+(l+|y|)2]% dx_<_Ke'( /2|y (4) (z €cC). Now,for [Imz| < 2,

z in the unit ball round 2z, we have



63. -

2+ (14l A% 3 4 [0

’
and so, since |F|§ is subharmonic in C, we have

. Yotl x+/1-(y-y0)? Yo+l
1|F(z0)|? < f dy J |F(x+iy)|®ax < [3+|xo|2]% K f A2yl gy
yo-1 x0~Y1-(y=yo)?  yo-1

< K'(3+|x°|2)%e(>\/2) lyo |

whence we get
' 2 2\}’0 (o )
|F(z0)| < C'(3+|x0]2%)e <Y <1

Thus Vz €17, |F(z0)] < C|i+z|2e)\Imz proving the proposition.

This proves the implication (=) of Theorem 2.2k.

(¥) Suppose there is a representation w = f exp(r+5) of the
stated form. We proceed as in the proof of Theorem 2.19. We show

= -ig 1 ¢ _ T
that G = e)‘Fe € H* and deduce that w' = e "w € W)\.
A o F
Now G 1is analytic, Ti—é)—z-e H® by hypothesis, and

_(‘ETzTZ &l (by Lemma 2.16 applied to -s), so that we have

(iT:)r*- € H!, Thus 3 inner Jj, outer k € Hl such that G = (i+z)%jk.
Again w' = |h'| for some h' outer in H! and, a.e. on R,
lkl _ lGl _ | w' = h'
T ? T (D)2 T | (i+2)®

] .
Now h' outer =>Ti—li-z—)-r; is outer, and so the uniqueness of outer
functions u15 to constants of modulus 1 allows us to conclude that

Yh' :
= T i = = (i4+2)%3k = yih' 1
k =Teg)s for y€C with |y| =1. Thus G = (i+z)*jk = yjn' €8
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To see that w' €W, Jjust put A = yj so that A €H, |A] =1 a.e.

on R and arg Ah'e_, = arg Ge_, = -s, and the result follows by

A A

Lemma 2.22.
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CHAPTER 3

The Spaces BMO and VMO

In this chapter we study the spaces of functions of bounded
mean oscillation, BMO and vanishing mean oscillation, VMO. These
can be defined on both T and R. On the cifcle they arise naturally
when considering the Helson-Sarason and Helson-Szegd conditions for a
discrete stationary précess, and our original motivation for studying
them was to try and impfove our representation theorem of W (Theorem
2.21) on R by removing the dependence on 'e. While we have not
been completely successful, we shall present in this chapter some
results on BMO and VMO, both on I and R, and we shall establish
a connection between W and these spaces. We also prove a result

connecting the Helson-SzegB condition < 1 and the boundedness of +the

Pa

. -

on iy akiow, . operator on & subspace .of L2(u) depending on A > O.

-
-

The main results are Theorems 3..9 and 3.16.

Notation For a measurable subset E of R, we let |E| denote its

~

Lebesgue measure. Llloc(R) will denote the set of locally integrable

functions f: R+ C, i.e. functions for which [ |[f|dx exists for
g -~ I
every finite interval I C R, dx, as usual denoting Lebesgue measure

on R.

~

Definition 3.1 Suppose f € Llloc(R) "and I is a finite interval.
‘ ) 1
Let f; denote the average of f over 4I, ie. fp = TET { f(x)ax.

Define, for a > O, Ma(f) by
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- 1 _
M_(f) = I;ﬁga.th [ |t £ |ax.

Define e, = swp M (£), Mo(£) = 1im M_(£). We say that £ is of
a>0 & a0 &

bounded mean oscillation, f € BMO, if "f"* <o, If f €BMO, and
M (f) = 0, we say that f is of vanishing mean oscillation, VMO.

Now if we identify functions which differ by a constant, then
BMO becomes a Banach space under the norm “'"*, and it 1s straight-
forward to prove that VMO is a closed subspace. We shall be inter-
ested in both VMO and BMO, and indeed in certain other subsets of BMO.
It is sometimes useful to think of VMO sitting inside BMO in the same
way as the continuous functions sit insige Llloc' BMO was first
introduced by John and Nirenberg [17], and later work has been done by
Fefferman and Stein [5], and Sarason [24], although the latter'focuses
attention more on VMO. The paper of Fefferman and Stein [5] is
concerned with deriving a real-variable theory of HP spaces, and
the space BMO crops up as the dual of their version of H!. We shall
need a result from this paper (Theorem 3.3 below).

We now state some results from these various papers which we

shall need. No proofs will be given.

Theorem 3.2 Suppose I C R is a finite interval, and f € BMO. Let

E, be defined for o >0 by E = {x € I: If—fI| > o}. Then 3 .

positive constants c¢;, c;, not depending on I, such that

: ~c,0 /£l
2] < cre 2/ huyg) Ve > 0

Proof John and Niremberg [17, p.b15].
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Theorem 3.3 (a) If H is the map taking an L®-function g to its
conjugate function then 3 a constant A such that lHgl, E.Aﬂgﬂw
i.e. H 1is a bounded map from L into BMO.

(b) For each f €BMO, 3 functions r, s €L” with

-~

f=r + s, and moreover, "~ 3 a constant BA such that “r“o° j_B"f"*

and lsl < Blfl,. B does not depend on £, r or s.
- =

Proof Fefferman and Stein [5].
Remarks (i) The set Eo of Theofem 3.2 will‘be met again when we
give necessary and sufficient conditions for a positive function f
to satisfy 1log f € VMO.

(ii) Notice that since functions differing by a constant are
identified in BMO, it is irrelevant whether we use the conjugate
function or Hilbert transform in Theorem 3.3 (a), except of course

that the latter is only defined for g € Ll.

Notation (i) For y > O, we let Ty denote the translation
operator (Tyf)(x) = f(x-y).

(ii) Ief UC denote the space of uniformly continuous
functions on R, and BUC, as before, the space of bounded functions

in UC.

The following result is proved in Sarason [24, Theorem 1].

Theorem 3.4 Suppose f € BMO. The following are equivalent:-
(i) f € wo

(ii) £ is in the BMO closure of UC N BMO
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(1i1) "Tyf—f"* +0 as y=+0
(iv) f=u+ Vv, where u, v are in BUC, and, as usual, V

denotes the conjugate function of v.

Remarks (i) The proof of Theorem 3.4 is based on Fourier transform
techniques and the result of Theorem 3.3 (b), and the fact that BMO is
a homogeneous Banach space.

(ii) It foilows from Lemma 2.6 that w >0, w€Ll,
logw € VMO = w € ¥, so we immediately hawve a connection between W
and VMO. We shall give necéssafy and sufficient conditions for f > O
to satisfy log f€VMOin Theorem 3.9.

(iii) Obviously we can define BMO, VMO etc. on the circle,
and Theorems 3.2 and 3.3 are unchanged, the place of Ll (R)'being taken
by LI(I'), of course. Theorem 3.4 is also unchanged except that UC
and BUC are both replaced by C; the space of continuous functions on
r. Also, the uypothesis that f € BMO is redundant as the following

_lemma shows, via a covering argument.

Lemma 3.5 Let Ip be a finite interval. Suppose f € L(I,) and

1 '
Mo(f) = O. Then Ilfll*=Ig_}I> Tﬂ-{ |f-1p[ax < .
_+0

Proof Since My(f) =0, 3§ > 0 such that |I| < 6= = [ £ ] < 1.
e _ B I
Partition I, into n disjoint equal intervals I;, ..., In with
n > -(:é~, Wwe g assume L Tol=|
Let M= max IfI ~f; |, and K = 3(3+iM). Suppose I CIo.
1 1<1,J<n i 073
Ir |1l <=, then -I—-I-j' |£-flax < 1. I [I] > ;, we can choose
' k
Tty eeey I (relabelllng if necessary) such that I C U Ij and

J=1

k
I

« Now we have
J=1
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J=1 ;
e N NPy Py SENTEAN
_ . . I
T J=1 J IJ 1 J=1 J IJ
LT 5)e, -5 ]
< 3+ I f_ -f
. I
1T 52, 13
1 . k
But fI_—fIli T fIfI--fIdxi T Z [ g -rlax
- J I J 1=1 I, J

<T7 Z (IIi|X(M+l)) < 3(M+1).
1=1

Thus T%T{ |£-f lax < 3 + 9(M+1) =K < =,

In particular, on the circle for an Ll-function f we have
f € VMO ® My(f) = O which shows that C C VMO(T'). In the case of
bhe line, since it is obvious from tﬁe definition that L C BMO, we
see that VMO contains all uniformly continuous functions in BMO, hence
also BUC as Theorem 3.4 said. Of course, for f € Llloc(lj) we can |
have Mo(f) =0 and lfl, ==, e.g. f(x) =x is iﬁ UC but not in
BMO. BMO does, however, contain unbounded functions as Theorem 3.3
indicates; for example the function f(x) = log|x| is in BMO. Notice

that if f € LI(R) then My(f) = 0= £ € VMO.
Lemma 3.6 For f € LI(R), My(f) = 0& £ € VMO,

Proof (=) Choose & so that |I] < GQT%T{ lf—flldx <1, If

|I| > 6, then since IfIl i-lll—Ii;l'lJ- , Wwe have
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1 allelly, ~ 2lzl,
III f If_flld-xi T = 8
I 4 .
sup T—T [ |£-£ !dx < max(1, 2 ) so lfl, <® . The other
1mp11cat10n is trivial.
As vwe indicated in the remark preceding Lemma 3.5, it will be
useful to have a criterion for judging when log £ € VMO for a given
positive function f € L1 (R) First we need a preliminary measure

theoretic result.

Proposition 3.7 Suppose f > 0 is integrable on the finite interval

I. Iet s >0 and define E = {x€I: |log f| > s},
= {x€I: |log f| >1 +s}. Suppose J CI is an interval such

that

B N e

Then inf a”lr-1]ax > &=t |
=5 T—r [] |
Proof Let A(a) = T%T-f [a~lf-1|dx. We consider five separate cases

(1) &€ (0,e (1*s)y

~s -s_ —(1+s)
e -a_e _-e

z o 1+s)

on J\E, &° <f= e®, so [a~1lf-1 >

Thus A(a) > (e-1) lT“Tl

(II) a € [e—(l+s),e—s)

Again, on J\ E, Ia_1f=l| 3_2—-?5;11 .
-(1+s)
- + - -
Ir ree (1) s |a™le-1] > =
‘ 1+s
+ -
If £ > el s’ then Ia'lf-ll > 2 &

a
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Now notice that

-(1+ + {1+ 1+s -(1+s
JIFs _ o a-e (1+s) ) s L (1+s) e ‘e (1+s) oo
a a a - oS
. -(1+ -
for a in the range [e (1 s),e ®). Thus, on JNF,
a - o (1%s)
la~lr-1| > 2—=——— | 5o we have
- - - -(1+
AMa) > e ® - a IJ\E] s 2-e€ (1+s) ]JPF1,> el S _ae+a-e (1+s)
&)z a 7] a [g] = e’a
1-g—éql » Since the last function above has a minimum when
-s

(III) a € [e-s,éﬂ

_=(1+s)
Again, £ <e (1*S) o la7lr-1] > 2=—F——— ang
1+s ' el+s - &
f>e = |a”lf-2| > . As in case (II),
1+s - & _ ~(1+s) 1+s -(1+s)
€ - _ 82" € > & te -2>0., So, on JNF,
a a - es
. —(1+s) -(1+s)
21 . a.- e ' a-—e | anr|
a” f-1| > =————, and Aa) > = 3]
e - 1
2
(IV) a é'(es)esfl]
, . _ s _ s
On I\ E, [|a7lr-1] > 5"~ Let F(a) = a—a—‘i— ,
a c (es’,es+l].
_ _ =(1+s)
£ (%) o |g1pg) 2z
145 a so, on J NF, we have
£> et = |glpg| > & 8 |
| ame (1tS) I¥s_
[a=lf-1] > G6(a) = min( = , ) . Thus
. F . :
Aa) > min . {—é%l + Ei%l} = lg min  {eF(a)+G(a)}.
aE(eS,e5"] ¢ €7 a€(eS,esH '

If we consider the graph of eF(a) + G(a) in the given range

+ ) . L
a € (es,es 1] as in Figure 1 below, it is easy to check that the

.. s
minimum occurrs when a = e so we have
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s -(1+s) -2s

Aa) > e -— e - e s &= 1
- - e3+s e ¥ = ¥
F?g i
ap
T
I\ +
0

(V) a€ (S
s _ -
on 3\ E, |a7lf-1] > 25> ¢ L, so A(a)ge—;gl

e
This completes the proof that inf A(a) 3_9—:ul

a>0
Before We use this result to get necessary and sufficient
4conditions we need to state the Calderon-Zygmund Lemma. This lemma
provides a decomposition of a finite interval I in terms of a given
.function f integrable on I in just the right form for our
purposes. It was used by John and Nirenberg in their original paper

on BMO for a similar purpose..

Lemma 3.8 Let wu be integrable over some finite interval I, and

let s Dbe given such that

1
131'{ |u|dx < s.
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Then, 3 a countable number of disjoint open intervals Jk CI such

that

a) lul.i s a.e. in I\ UJ

k
1
b) s j_T——T [ |ulax < 2s.
Jk Jk
For a proof see John and Nirenberg [17, p.418-419].

k

Theorem 3.9 Suppose f € LllOC(R), f >0 a.e.. Then

My(log £f) =0€ Ve >0 3§ >0 such that
. 1 -
|I| <6 ='BaI > O, depending on I, such that TTT { |§:1f-l|dx < g

Proof (=) Suppose M,(log f) = 0. Let g = 1log f. Since
M(g) = 0, given n >0 38 > 0 such that
[z] < & ='T%T I Ig—gIIdx < n. It follows from Theorem 3.2 that, if
I
E0 = {x €I Ig-gII > o}, then 3 constants c;, c;, depending
—c20/n
only on g and not on I, such that |E0|.§ c1e |I]. Let

a = exp gi- Then |a~lf-1]| j_exp(lg—gll)— 1, as is easily checked.

|A

so [ |a~lf-1fax < [ [eXP(Ig‘gII)‘l]dx
I I

E _|aF(s)
| T Iz,
vhere F(s) = e° -1 ‘is continuously differentiable and vanishes
at O. (see Johr and Nirenberg [17, p.L15].)

ey [T]f e 28/MeS g
0

| A

But }, |Es|aF(s)
0

e |1 }D e(l'(°2/”))sds
0

e I - _ epnl]I]

c2/n -1 ¢ - _
Now, if we choose n so small that Efl%_; < g, then we get

that
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|I] < 6 =°-I—Ji—r:j[' la-lf-1]ax < e, as required.

() Suppose n > 0. Let n; = min(n , —‘2—3'- ). Fix s € (0, % )

and suppose € < min( %‘— (1-e ®), e_—]h; ). Then, by hypothesis, 3§ > O

such that |I] < 6 = 3&1

I with ]I| < 8§, Wlthout loss of generality we may assume that

> 0 such that T—rj laflr-1]dx < e. Choose

a. =1 (otherwise replace f by a

I =1f). Then we have

I

T%l—{ |t-1]ax < e | (1)

From (1), € > -I—l-f [£-1]ax > T—I-f If—lldx > ——,—I—— |E| s0

|E| <———— | 1] <—1- 1], where ={x €I: [log f| > s}. Let

1 -
En={xEI: | 10g f|>n+s}, so that E = Eg. Clearly

|E_| > |E We vant to show thet |E | > (e2-1)|E (n > 0) (2)

n+l I ' n+l I

Fix n> 0. Let u= Xg _» the characteristic function of E

1 n+l

Then

[ uax = lEn+ll < lEnI <-§—‘ |T] < % , by choice of n;.

N

We apply the Calderon-Zygmund Lemma - (Lemma 3.8) to u. Thus, 3 a

countable number of disjoint open subintervals Jk C I satisfying

(i) |u| < %‘g’ in I\ }lij
.. 1 1
(ii) 3 |J | < g udx <z IJkI

Since u is a charactefistic function, (i) ®*u=0 on I\ UJ

i.e. | (I\LU )I 0. Let S = 1L{JJk Then |En+er'| = 0. So
IEn+l| = IE fBI %2- |s| from (ii). To prove (2) we need only

show that
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2 _
5,06] > <52 || (3

for then |[E_| > |E M8|> —7—62 > |s| > (e2-1)|E__. |
n'! = !'"n "l'— e - n+l'’
Suppose (3) is false. Then 3 at least one Jk’ J say, such
that

J J
AE | > I ana fore, | > 42 (1)

This follows from (ii). Now just apply Proposition 3.7 with s

replaced by n + s and E, F replaced by En and E respectively.

n+l
We deduce that

. 1 e - 1
1nf-|~—rf Ia_lf-.-l|dx > > €.
a>0 J J € ‘
But this contradicts our hypothesis, and so (3) must hold. Now to
finish the proof we use an argument similar to that used in the
implication (=) above.
Let F(t) = |[{x € I: |log £| > t}|. Then
s

[ F(t)at + [ F(t)at
0 s

slzl + 1 Izl
k=0 Ek

[ |1og flax = [ F(t)at
I 0]

sF(0) + E F(k+s)
k=0

IA
A

|

s|T| + ¥ (e2-1)7F|g,|
k=0

2
= (s +%L'§'2‘:21‘ YT] < nlz].

This proves that Mp(log f) = O, and completes the proof.
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Rerarks (i) This criterion for‘ log £ to be in VMO was suggested to
me by A.M. Davie.
(ii) The theorem has two simple corollaries which we now-

state.

Corollary 3.10 (a) Suppose 1log f € LI(R), f > O a.e. and the

condition of Theorem 3.9 is satisfied. Then 1log f € VMO,
(b) If £>0 and log f € BMO, then 1log f € VMO

iff the condition of 3.9 holds.
Proof (a) follows from Lemma 3.6 and “(b) is immediate.

Remark Notice that in the circle case, Lemma 3.5 tells us immediately
that the condition of Theorem 3.9 is equivalent to saying that
log £ € VMO, so we have proved the following result for the discrete

case.

Lemma 3.11 For a discrete stationary s.p. with spectral measure
du = w(6)d® we have p, >0 as n>e iff w = |P|2f where P is
a polynomial in ele with all its roots on I, and f > 0O a.e.

satisfies the condition of Theorem 3.9.

Recall from Chapter 2 that for w € ¥ we have a representation

for each € > O, i—¥—§7 = F exp(r+s), where F has a representation
on R.
2k o ©
F(x) =e2x™ 1 [1-%2 1 |1-%)2 (x €R)
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wvhere the Yr; are real and Im%m> 0. Vm,. Of course, F depends
on €. Recall, however, that from Lémma 2.20, the set {yn} is
independent of ¢ > O. Thus we may write

W .
T+ %2 ° IGolzexp(r€+s€+T€) (%%)

©
cxk I (1 -2) .is not dependent on € &and
n=1 n

vhere Gg

T =1log T |1 -2%-|2 where {a_} depends on e.
€ m=1 8m m
Suppose we knew that Te € UC N BMO for a sequence of € + O,

Then we would Have that the BMO distance from the function

log -l—’l-z- to the set UC N BMO was zero, since

W Wi
dist(log > , UCTBMO) = inf liog - < llr +s I, <Me + 0
BMO [Go TECMBMO [Go]

. w
Here W, denotes the function T+ %2 °
Unfortunately, we do not know if Te € UC N BMO for a sequence
of € > 0. Ideally, we require necessary and sufficient conditions

o the roots {am} of Te' which ensure that Te € VMO. We do know
_ k
that if Te has.only a finite number {am} of roots of Fe
. ] m=1
associated with it, then Te € UC N BMO, as follows from the following'

1

lemma.
Lemma 3.12 Suppose a€H+. Then the function u defined on R by

u(x) = log|x-a ) ‘ ‘ (x € R)

n
iég:he space UC N BMO, and so is a VMO function.

\
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Proof It is easy to see that u is uniformly continuous, since it
is differentiable on R and its derivative is bounded by

max(1, ?Eiajz')- To see that u € BMO we proceed'as follows. Suppose

I is an interval in R, and denote its length by |I|. Choose

A, w €I so that |r-a| = max|x-al,|u-a| = min|x-a| and define

. T _
ap = log|A—a|. Then [u-aII = |1og]x—a]—1og1k—a|| = log +§:§+. Let
E ={x€I Iu—aI| >0} ={x€I:+ |x-a| < ll—ale_o} (vo > 0). 1If

Eo #'¢; then it must contain p so that

~

|x-afe™ > Juma| > [A-a| = [A-u| > [r-o] - |1|

vhence ll—al_ﬁ-——LlL:g . It follows that E0 is contained in the

l1~-e
interval |x-a| < ltle — _ 1Tl | gy E_| 5—;2—!3- But, of

1-e e -1 e —1°
course, IEOI < |I] Vo > 0 and so we obtain the inequality

2
eo—l

1B, < |T|min( » 1) < ke 91| (Vo > 0)
Now proceed exsctly as in tﬁei&gst proof\bf Theorem 3.9 to get that
{ |u-a | ax ='é |E lds < 4|1

and so [ Iu*uildxli f Iu—nIIdx + f IuI—aIIdx.§ 8|I], so wu € BMO.
I I I

Corollary 3i{13 (a) The function log(1+x2) € VMO.

(b) In the representation (**) preceding Lemmsa 3.12,

hamely

~
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W= ]Go|2exp(r+§+1og(1+x2)+T€)

if we know that” 3 a sequence‘of € >+ 0 for which each Te _has only .
finitely many {anJ occurring in its definition, then W = |Go|2exp f

for some real VMO function f.

Proof (a) follows from Lemma 3.12 with a = i,

(b) is immediate from (a) and 3.12.

[

We now leave consideration of the connection between W and VMO
for continuous stationary s.p.'s by stating the main problem still to

be solved, and making a conjecture.
Problem Given a function G of the form

G(x) = log I 1-%—
m=1 m

where Im a > 0 Vm, find conditions on the set {gm} such that

G € VMO.

Conjecture For a weight function w'> 0, w € L! such that

log w € Llc, a necessary and\sufficient condition for ﬁ_e W 1is that
w have a repreésentation in the form

_W=lGPm@f

where f 1is a real VMO function and G is an entire function which
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satisfies
6(2)| < ke ™zl - (z € ¢)

for some positive constants )\ and K.

Now we turn our attention to the rel&tionship between BMO and
W}‘ for fixed X > O. By Theorem 2.24, w € W}\ iff 3 an entire

function F satisfying |F(z)]| §_C|i+zl2eumz,

+ .
for. z €1 and which
is positive a.e. on R, and real L -functions r and 's with

ﬂS"m < g- such that on R
w = F exp(r+s)

et S={r+% rer’, lsl_ <£ }. Then, by Theorem 3.3, S C BMO;
To see jast exac'tly how S sits inside BMQ seemé fairly‘difficult/.
For instance S contains some ball round the origin in BMO, for, by
Theorem 3.3 again, 3 constant B such that V£ € BMO 3r, s € L

with £f=r+s and lrl_<sBlel,, Isl_ <Bifl,. Hence if

Fell, < 2—;}, then "s"m < % and f € S. Notice from the last remark
that f real, Ifl, 4<—2%:ef € Llc; for we may write f =r + §

with lsl < Blsl, <2 so, by Lemme 2.16, ® €Ll  and so

f s . . .
e” = er.es € Llc. This can be proved more directly, namely that if
I fll* is sufficiently small we have ef € Llc, using a method similar

to that used by Fefferman and Stein [5, p.141-142] to prove that
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BMO C Llc. Notice, in passing, that thié latter result BMO C LlC
includes the result of Lemmd 1.13 that s € L1¥= s € Llc,

In their 1960 paper, Helson and‘Szegg established a connection
between the condition p; (W) <1 and boundedness of the conjugation
operator on L2(w), where Ww 1is some weight function on T. Is there
some analogue of this result for weight functions on R? In 197k,

~

Coiffman and Fefferman [ 1] proved the following result

Theorem 3.1k Suppose g 1is a locally integrable function which is

-~

. positive a.e. on R. Then the following are rextuinQQnif{‘
(2) log g €S- ' |

(b) ;Eg T%Ty-({ gax) ( { g‘ldx)_< ® where the supremum is
over all the intervals I CR.

(¢) The conjugation operator is bounded on L2(g).
Remérk (i) The equivglence of (a) ana (c) for the circle’casé
was known to Helson and Szeg5 (wvhere g € Llloc(g) is replaced by
g € LI(Tr), of course).

(ii) ()& (). is due to Hunt, Muckenhoupt and Wheeden
[12]. |

From our representation. theorem 2.24 we know that a given weight

function w € Ll(g)‘ is inm WA iff %’E exp(S) for some entire
function F satisfying certéin growth conditions. The role played

by F is essentially to "force" w into L!, because elements of

exp(S) are never integrable as we see from

Lemma 3.15 f € S = exp(f) ¢ LI(R). .
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Proof f € S = exp(f) € Llc, and exp(-f) € Llc. If exp(f) € 11,

then
—~;;—7-= exp(f) EEEL:gl € L% i.e. Cl+x2)_% € L1,
1+ x 1+ x ’

But this is not true, and so exp f & L1,

Remarks (i) This behaviour is in contrast to the circle case where
e;p(S) - Ll(f).

(i) It is a corsequence of Lemma 3.15 that the conjugation
éperator is never bounded on L2(w) if w€ LYR) and log w € Llc.
Again this is different from the circle éase where f € S ® ¢onjugation

is a bounded operator on L2(ef).
<oy (ef) <1

However, there is a ponnection between boundedness of the conjugation

operator and the positivity of the angle Py for fixed X > 0. We
have the following result

v W0 ‘
Theorem 3.16 Suppose w € Ll,‘ log w € Llc. The following are woo)

¢

equivaient for A > 0
(a) The conjﬁgation operator H 1is a bounded operator, in the

norm of L2(w), on the set of real functions in P,V FA

- (v) < 1

Pox

(¢) 3 a representation w =F exp f where f €S is real, and

F is an entire function which is positive on R and satisfies

-~
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F(2)| < c|i+z|2e2* oz (z €1

Proof (b) ® (c¢) is the statement of Theorem 2.24. To prove (a) < (b)
ve show that (a) ¢ (A) ©® (b), where (A) 1is the statement that the

operator T defined by

T ) a ettn¥) = ] a et Hn* (a. €C, u_ €R)
n n .t m 2 n .
p >0 .
m—
is bounded on P—A U FA .
(a) © (A) Let us suppose that T is bounded. Then, for each

polynomial £, in F>\ we have ||"f}\|| _<_Kl|Ref)\||. But

“ImfA" < "f)‘", so wé have “Im1‘>\" < KIIRefAII. ~If g = Ref,, this

A’
just says that lHgl < kllgl proving (&). Conversely, if (a) holds,

~

we have "ImfA" _<_K”"R:ef>“|| V polynomials f., € F\: thus

A
||f>\||2 = ||Ref>‘||2 + IlIm'f)\ll2 < (K2+l)||Re'fA||2 and T is bownded on the
real parts of polynomials on F)\.' But if f = g + ig, where g and

g are real pO'iYn_Qmiéls in P_ UF)\, then

A

Irel = IT(gy+ig )l < UTgyl + ITggll < B(lg l+lg, 1) < BY2lg +ig,|

ie. lrel £ B/2lgl and (A)  holas.

(4) # (¥) -Suppose (A) holds. Then 3a > O such that

Cp2 2 : . EP
It +p.,12 2 alg | (ve, &F,, p_, €P_)

Suppose "f)\“ = "p_>\" = 1. Then "f)\+p_)\"2 >0 > 0. But
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- 2T, = ins{lr +p_12: gl

21 \ "p_xﬂ =1} >a > 0, so Py < 1.

;
~

Conversély, suppose p,, < 1. Then p(P—A’FA) < 1. Now wé have

2 5 Ig 112 2 _ o Ip .1
Ie.+p 12 > I5,02 + Ip_ 12 - 25 Nz Ilp_

£ 12 4 2 _ e 2
so we must shov that "fA“ + "p_A“ 2p2x"fA“"P-A“ > allf, for

some a > O, if /"fA" # 0. But

2 2 _- ‘ [
"f)\“A + ||p_)‘|l 2p2)\||f>\"||p_>\|| “p_)‘" (“p_)\ )

. _
Iz I > o 1+ RN 20,5

e 12
e

-— 2>O
21-0,,

o

and so T is bounded. Thes completes the proof.

The folléwing is an immediate corollary of Theorem 3.1k &nd

3.16.

wyo . ’ ' .
Corollary 3.17 Suppose w € Ll,;,log W GFLIC. Then the conJjugation

A

sy s . . s . +
positive on R, which satisfies |[F(z)] < C|1+z|2e2AImZ (z€n),

operator is bournided on P_. U FA iff 3 an entire function F,

end is such that %- satisfies the (A;) condition, i.e.,

1 v F < w
;E§ Tij'( { F dX)(({ - dx) .

This completes Chapter 3.



857
CHAPTER L
Multidimensional Prediction: An Example

Since the fundamental papers of Masami and Wiener [25] and Helson
and Lowdenslager [ 8] on multivariate prediction theory were published,
a lot of attention has been devoted to thevéubject; Most recently,
attempts have been made to study vector-valued processés {Xn: n ? %}
where the random variables teke values in separable Hilbert space, H.
It turns out that, even in this generality, one can fofmulate the
Helson-Sarason conditions, and some progréss has been made. Moore
‘and Page [20] in 1970 gave an analogge.of the result Lemma 2.3 for a
discrete process {Xn: n € %}, taking values in a separab;e Hilvert
space H. Their result expresses Py in terms'df an Ll-norm of
operator valued functions on T and uses ideas from the theory of
Hankei operators as well as the Sz-Nagy-Foias Lifting Theorem. In the
finite dimensional case, H = CP, p > 2, the conditioﬁ p, > O has
been investigated by I.A. Ibragimov [14], who, as in the scalar case,
has given‘seve?al sufficient conditions for strong-mixing.

Throughout this chapter we shall deal with discrete processes
{Xh: n € %}, whose spectral measures are defined on I'y the unit
circle, and which take values in C¥ for some fi#ed P > 2. We shall
not consider the case of infinite dimensional H because we believe
that the most important probleﬁs already exist in the finite dimensiénal
case. |

Recall that fér a scalar discreté stationary proéess with
spectral measure 4 defined on r, Heison and Sarason ([9], [23])

proved that pp > O iff u is absolutely continuous and we may
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represent W 1in the form
w = |P|2exp gy

where du = wd6, P is a polynomial in eie with all its roots’on ..
I, and g is a real VMO function (g € VMO by Theorem 3.4 for the
circle case).

The major problem for the multidimensional case seems to be to
find the right‘anélogue of the set exp(VMO). Our contribution is to
give an example of a hermitian 2 x 2 matrix G, whose entries afe
all feal VMO functions, such that w = exp G 1is of full rank and
purely non-deterministic, but for which Py + 0. Throughout this
section, we shall~deal only with discrete processes, whose spectral
measures are therefore defined on T. A readable‘account of multi-
dimensional prediction theory can be found in either of Rozanov [22]
or Hannan [7].

We start with some definitions and notation.

Definition k.1 (4) Iet (9,IZ,P) be a measure space. Denote by L,

the set of comﬁlex p-véctor valued functions X with components

X(J) € 12(P) (j =Y, oo, P). Then L, 1is a Hilbert space under the
X . A P . .

inner product (x,Y) = [ } X(J)(W)Y(J)(W)GP(W). For X, YE€EL, <

, . o 2 j=1
we defirie the Gramian matrix of X and Y by

(), 5= [xX Ve (521, 0 9)

(b) A subspace of L, is a non-empty subset M such
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X, YEM=AX + BY EM V p x p~matrices A, B
and such that . M is closed in the norm of L,.
Compare the following with Definition 1.1.

Définition #.2 A p-variate stationary (discrete) process is a

J . e . .
Sequence {Xh}nEZ of random variables X L, Satl?leng

-~

- [ . (r—sj]

((X,,X)) =T ___ = Y5
is dependent only on the difference r-s and not on r and s

separately.

Notation Let P" = span{X, : k<n}, F'= span{X : k > n} and let

[

P = NP2, By span we mean in the sense of Definition k.1 (b)

: o 1%
above. Let P, = p(P2,F. ), as before, and the stationarity hypothesis
. & AN -

says .that oL is dependent only on n. - , 13

Défifiition 4.3 The process'{Xn} is purely non-deterministic if
P~ = {0}. 1Ir Pp_l(Xo) denotes the projection of X, onto the

subspace P~!, then the Gramian

G = ((xo~—PP_1(xo),Xo-P~P_1(Xo)))

is called the prediction error matrix, The process A{Xn} is determin-

istic if G =0, i.e. if X,€ P!, The rank of the process is the

P
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rank of G, and '{Xn} is said to be of full rank if rank G = p.

We now can quote two theorems which are at the heart of the
miltivariate theory. They are the analogues of Theorems 1.26 and
1.28 in Chapter 1. A proof may be found in Masani and Wiener [25] or

Hannen [T} .

Theorem 4.4 To every stationary discrete p-variate process
{Xn: n € 2}, there corresponds a bounded pxp-matrix valued function

M on T such that

I = ((X_,%)) = ?ﬂ 1n8 | Mt6)
n- n,Xb = . e Yalllt

J
and M has the following properties.

(a) M 1is right continuous and non-decreasing in the sense
that for almost all 6 € I', M(g8) is hermitian non-negative definite,
and M(8;) - M(8;) ‘is non-negative definite a.e. (d8).

(b) M has a derivative ¥ a.e. (ae), and w(6) is non-
negative definiteva.e. with Vi3 eLi(r), i, J =1, ...y P.

M is called the spectral measure of the process and, of course,

we have a Lebesgue decomposition aM(8) = w(6)as + dMs(e) a.€..

Theorem 4.5 Suppose {Xn: n € 72} is a stationary discrete p-variate
process with spectral measure dM = wdd + dMs' Then

(a) '{xn} is of full rank iff log det w € LI(I) and, in this
aw

case, we have the equality det G = exp| [ 1og det wae)
0]

(v) '{Xn} is of full rank and purely non-deterministic iff M
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is absolutely continuous (i.e. aM, = 0), and 1log det w € LI(r).

Remark This last result is the main result of the fundamental papers
of Wiener and Masani [25] and Helson and Lowdenslager [8]. We give no

proof.
Hencéforth we shall consider only discrete p-variate processes
{Xn: n € Z} whose spectral measure dM = wd® is absolutely contin-

uous and satisfies log det w € LI(T),

Définition ¥.6 An analytic trigonometric polynomial is a function of

n .
the form Zv‘akelke, where (> 0) and o is a complex p-vector,
e :

IS
(.

k = @, Fees N

Féllowing Moore and Page [20, p.1012] , as in the scalar case, we

may express pn in the form ({- >P denotesthe usual inner product on

N

cP)

B ey, 0 -ig ing

Py = sup{ [ (w(e " )fle "),gle ).)Pe ae (1)
0]

where the supremum ranges over all analytic trigonometric polynomials

f and g which satisfy

2m . . .
[ e e(e®), 2™ ®) 2 a0 <2
o ! | :

(2)
am  _ie. , iéy., i® :
[ Gale )gle"d8(e™7) Yas < 1

0 P ‘
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of course,'it is clear that (1) is unchanged if in (2) we assume
equalities insﬁead of <.

Now suppose w(0) 1is diagonal, say with diagonal elements
wi(0), ooy wp(e) a.e. (Ad6). Then the problem of deciding when
pn(w) + 0 is solved simply using the scalar case, as the folloﬁing

result shows

Ed

Lemma 4.7 Suppose w(6) = diag (w.(0)) a.e.. Then
1<j<p
p (W) = max o (w.).
1<3=<p

Proof For any w, it is easy to see that p (w) 2 max p (w.)
1<j<p ’
straight from the definition of Py To obtain the converse, we use

the diagonality of w to link pn(w) with the. pn(wj)' Suppose
f, g are analytic trigonometric polynomials with components f(J),

g(J), j=1, ..., py respectively. Then we have

2 . . . . 2m . . . . . .
fﬂ(w;(ele)f(ele)’g(e-le)) 1n6de - E f (Wj(ele)f(J)(ele)’g(J)(éle))elnG

e
o - P j=1 0

(3) _(3) . . . X ~
But f s & are scalar analytic trigonometric polynomials, sO Wwe

have, by definition,

27 . . . . . . ' . .
If (w.(ele)f(g)(ele),g(J)(e‘le))elnedel <p (W.)“f(J)" "g(J)“
o J . TR Y3 Y3

where we use the notation, for a scalar function k(ele),

2m
lell, 2= [ w.|x|24s.
Wj 0 J

ae
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Thus we have
27 . . s . _ . .

I f (w(ele)f(ele)’g(e 16) )elnedel < f 0 (w.)||f('3)" "ES(J)"
) . Tim Y3 "5

Thus

. .- . . o) .
p_(w) < sup{.E pn(wj)“f(J)"w."g(J)“w‘: § 130 2 -} 1091 2 = 1)

J=1 J j =1 J J=1 . J
We may suppose, without loss of generality, that pn(wj) f_pn(wk) for

J =1, ¢evesy Po Then

p_(w) < o_(w)supl Foue@p aglh o el 22 w22y
n n j=1 Wj WJ. J=l Wj Wj

j_pn(Wk) by the Cauchy-Schwarz inequality.

This proves‘the lemma.,

Corollary 4.8 Suppose w(6) is diagonal a.e. (d6). Then

B2 o g 0
. _ R
Dn >0 1iff W . Q.IP '2 exp o c.g
b ‘ P
where Pj is a polynomial in e16 with all its roots'on T, and rreiel

each g is a real VMO function.

Proof Immediate from Lemms 4.7 and the scalar discrete Helson-

Sarason theorem.

When you move away from the diagonal case, it is not obvious

what to try and replace the factor eip[%

010;.0] by-, to achieve
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Py > 0. We shall now give an example which shows that the most obvious
candidate, namely exp G where G is hermitian and all its entries
are in VMO, ig not the right one! More precisely, we shall construct
-a weight function w on T with the following properties. w 1is a
2 x 2 matrix and |
(e) w(e) = exp G(6), where G 1is hermitian with all its

entries real and in VMO,

(b) 1log det w € LY(T), and all the entries of w are in LI(TI).

(e) _wi1 has a jump discontinuity at 6 = O.
Such a weight function cannoﬁ have p_ 0, for the following reason.
If pn(w) + 0, then pn(wl{y + 0, so we may write Vlf: |P|2exp k, P
is a polynomial and k is real and in VMO. If w;; has a jump at

& = 0, then k must have a jump. But it is straightforward from the
definition of a VMO function to deduce that no VMO function can have

a jump discontinuity. For if k had a jump at 6 = O, then its
"éscillation" over small intervals round 6 = O would not be small.
Thus we deduce that pn(wlf) + 0 and so ph(w) # O.

Before we actually construct w we shall need a couple of
prelimina;y results of a technical nature. First we need a positive
VMO fﬁnction’f;é: T which is symmetric about 6=0 in the sense that
f(e_ie) = f(eie) (6 €[=w,m}]), which is monotone decreasing on
(6,n] and vhich tends to +» as 8 -+ O. The following result
provides such a function. It will be more convenient to work on the
interval [-m,m] instead of T.

b

Proposition 4.9 Define f on [-w,n] by f(%) = (log T%? )2. Then

f € VMO.

=

e
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Proof To prove this we must consider the oscillation of f over
intervals I C [-m,n]. We consider three séparate cases depending on

the type of interval I.

Case 1 I =[0,0], where O < a < m,

Let &I = (1og &T' )2 Then we have
2T 21
a o log — - log—
1 1 am, 3 om, 3 1 ) o
-]—IT f If—-allde =5 f [(103 —e)é—(log —a)E]dﬁe =5 f 5] o %dG
I 0 , 0 (108“6‘)3(108—0‘)
1 1 ¢ - 2m 2T 1
<—_2TT° gf (log—e—log—a-)de TN
2(10g =1 0 2(10g =72
1
Thus if I =[0,a], and a; = (log = 2“ ¢, then

-I%[-f Ifa|d6<——lé——r, if |I|<6.
I -

2(log ——6-)2

Case 2 I =[-B,a], where 0 <B < a < m.

;
Let a; = (1og %)5. Then we have

'[%T{ lf‘allde’ a+s { f [f-a lae + é [£-a ] a6}

1 1
2n)3_(lozany k) 4

0‘+B(l 21r)§r » &as 1n Case 1.
o

Thus, if |I| =« + 8 < 8, then -I—}—I—f |£-a_|a0 <
I (log )

+ 0 as
3

6 -> O.

Case 3 I =[B,a], where 0 < B < a < T.

. 1
Let ar = (log -21)"‘_ Then
: a
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9’40
2m 2m ‘
1]] | 1 log—e-logcl . - L
f-a_|d0 = T —~ db&, as in Case
- 2
Ty 7T a8 | (gog2n) R, (doe2m)
B
a
< 1 — j [ 1082~ - 10g2Y a6
— 2T, 3 6 a
- (o-B)(10g™)
o B
a 2n 2n B
But [ (log=g - log=)d6 = a = B + Blog , so that
B
T%Tf lf_alldei_l_g_,r{1+ Blggﬁ_:ﬁsg}
: Ty 3 o B
I (1og—a)
now l+Bl‘.<lg_8__lo.&a—<—l-g=a— , SO -I-%l-flf—alldei__a"-—es_‘r('r)
, °- 8 °© e I 7 a(10g=h)?
a € (0,62) = (+) is bounded by ol while o > 6° and
(IOg—'r)E
52
‘ 1
52 )
a -~ B <& =(t+) is bounded by ] so
(log2)
-8 <8=12 [ |f-a| < max L (6]% and this tends to
- — -,
HE S (1062 o2
52 _ .

zero as 6 = O,

Since {every subinterval I of. [-m,n] is of type 1, 2 or 3
or is the reflection of such in the origin, we have proved that

M(f) =0, so f € VM.
We need one last technical result.

Lemma 4.10 Suppose ¢(x,y) is a power series in two variables with
non-negative coefficients which converges for all x, y €R. Sﬁppose
Y(0,y) =1, Wy >0 and ¥(x,y) > 521 s Vx.y > O, Define 1, for
y >0, by ¢(t(y),y) = 2. Then t is continuous and t(y) - 0 as

Yy > o,
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x> 12
Proof Since $(x,y) 3'~gx , we have (1(y))?2 5_—; +0 as y + =,
Suppose T 1is not continuous at yp > O. Then .3 8§ > O and a
sequence ¥ * Yo with If(yn)~r(yb)| > 8. By taking a subsequence,
if necessary, we may assume that either (1) Y, is monotone increas-
ing or (2) Y, is monotone decreasing to Yo .

" Since Y 1is differentiable, by the mean-value theorem
A \ .
|¢(T(Yo),yn)—w(T(ym),yn)l = | v w(x,yn)H‘r(Yo)—T(yn)l
for some x between 1(yp) and T(yn). Thus we have

|¢(T(yo),yn)—2| 3:6§n min(t(yo),t(y_)), since p(x,¥) Zﬁzgg (*)

Since Y, > Yo, We may assume that ¥ z_%n-, vn. In case (1),

T(yn) > 1(yp) for all n, so (¥) gives us that
IHI(T_(YO),yn)"QI‘ z_g%"-r(yo), Vn (3)

In case (2), T(yn) < 1t(yo) and, by monotonicity, r(yn) > 1w(y1),

so (*) gives
[W((yo) oy )-2| > & t(y), o (1)

Since 1(yo) > O and 1t(yr) > O (otherwise
P(t(¥o),y0) = ¥(t(y1),y1) = 1), (3) and (4) say that the set
{w(r(yo),yn)} is bounded away from 2, which since ¥, * Yo would

mean that ¢ 1s not continuous, a contradiction. Thus 1t 1is contin-
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wous in Y.

We now proceed to construect w. Define the 2 x 2 matrix G
by G = [Z ?,], where f is given in Propoﬂsition k.9, and g 1is a
continuous function on [-m,m] still to be determined. Let
g(e) =0 (e €[0,n1]), and define W = exp G. Then it is easy to
check that wi;(8) =1 (6 €[0,1]). Define y by
(x,y) = (exp [g ;‘])l {.Then ¢ satisfies the hypotheses of Lemma .10
and so T 1is defined and continuous. Define g on —% ,0) by
g(8) = 1(£(8)). Then g is continuous on [- g',n] since
g(0). Now just extend g to be-con‘-cinuous

lim g(6) = 1im 1(y) = O
8+0 Yo

<0

on [-m,m] with g(-m)

g(m) = 0. This completes the definition of
Ww. Notice that w ; has a jump at 6 = O by construction, since for

8 € (- = ,0) we have w;;(6) = y(r(£(e)),f(8)) = 2 and

I
2
w;1(0) = 1. It remains only to check that the entries of V¥ are
integrable and that 1log detw € L (T'). But this is straightforward
since log det w= £ € VMO C L', and, with £he notation of Lemma 4,10,
it is easily checked that each éntry of exp[i ;] is bounded by
ex+y (since each entry of [2 ;]n is bounded b.y (x+y)n by
induction') and this suffices to prove the integrability of each entry
of w‘.

It is by no means obvious how to decide upon the 'right' class
to take the place of éxp VMO. ﬁe shall suggest two possibilities.
In his paper on VMO, Sarason characterised real VMO functions among

all real BMO functions as those satisfying No(exp f) = 1, where for

a positive function w > 0, Np(w) = lim Na(w) and
a>0
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N,(0) = sup 77z (f w(6)ae)(/ w(e)as)
I|<a I I
We suggest that, for the multivariate case, the following
class might bear investigation. For hermitian G, consider those
which satisfy No(W) = 1 where W = exp G, and No(W) = lim Na(w),

a0
with

1
N (W) = sup HI_ - (Jw(e)as) (f wl(e)as)l (1)
& Il<a P 117 *1 1
where IP is the p x p identity matrix and I+l is the usual matrix
norm.
Another possibility is to generalise our criterion for
log £ € VMO from the scalar to the vector case, i.e. consider

hermitian G for which exp G = W satisfies the following condition:

Ve >0 38 >0 s.t. |I|] <8 =13 a positive definite matrix A such that
2)
1 B
TiT [ Ia 2wa 2-1llae < ¢
1 I

Remark It is not obvious that (1) and (2) are the right generalisations

of their scalar counterparts; for example, 1is Na(W) the same as

sup ||1]p 'T%T’ ({ W‘l(e)de)(]I‘ w(e)ae)l?

|I]|<a

or should (2) be replaced by

1 _ g -
T—I_l{ IA"lW-Ilae < ¢ or T%—I{ Iwa~i-Ilae < e?

This completes Chapter 4.
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