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Abstract 

GABAA receptors (GABAARs) are the principal inhibitory neurotransmitter receptors in the adult 

mammalian central nervous system. GABAARs mediate two forms of inhibition: fast, phasic 

conductance; and slow, tonic conductance. Tonic conductance arises due to the persistent 

activation of GABAARs. This persistent activation can occur by GABA-dependent or GABA-

independent mechanisms. Low concentrations of ambient GABA activate high affinity GABAARs 

located outside the synapse – at peri-/extra-synaptic sites – to generate GABA-dependent tonic 

conductance. In contrast, GABA-independent tonic conductance is generated by GABAARs that 

activate spontaneously, in the absence of GABA, due to constitutive receptor gating. Because 

spontaneously active GABAARs (s-GABAARs) do not require GABA to activate, they are 

resistant competitive antagonists, e.g. SR-95531, but can be inhibited by the channel-blockers, 

e.g. picrotoxin. 

s-GABAARs have been shown to produce GABA-independent tonic conductances in the 

hippocampus and the amygdala. However, despite the good evidence for the presence of s-

GABAARs, their function and pharmacology remain largely unknown.  

Here we show, for the first time, using both current- and voltage-clamp recording techniques, 

that the s-GABAAR-mediated tonic conductance exerts a powerful inhibitory effect in rat dentate 

gyrus granule cells. We find that at resting membrane potential, s-GABAARs generate a 

shunting conductance that decreases both the membrane resistance and the membrane time 

constant of the neuron. When the membrane potential is depolarised, s-GABAARs conduct 

hyperpolarising currents that exhibit outward-rectification; this means that their net inhibitory 

effect is greater when the neuron is close to firing threshold than when it is at rest. Consistent 

with this, we find that block of s-GABAARs shifts the neuron into a more excitable state, as 

evidenced by the increase in the gain of the input-output relationship and the decrease in the 

rheobase current and the hyperpolarisation of the action potential threshold. At the network 

level, s-GABAARs regulate the precision of signal transmission in the dentate gyrus: blocking s-

GABAARs widens the temporal window over which multiple excitatory inputs can be successfully 

summated to generate an action potential. Finally, we report that s-GABAAR tonic currents are 

resistant to pharmacological compounds that target extrasynaptic GABAARs (L-655,708 and 

DS2), but are augmented by the clinically used benzodiazepine site modulators, zolpidem and 

midazolam, and partially inhibited by the inverse agonist, DMCM. The sensitivity of s-GABAARs 

to these compounds suggests the involvement of the γ2-subunit. 
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Lay Summary 

Neurons communicate with each other using a group of proteins called receptors. Receptors are 

found on the surface of neurons and when they are activated (switched ON) they cause either 

excitation or inhibition. The appropriate balance between excitation and inhibition is critical for 

proper brain function. When this balance is upset, brain dysfunction quickly follows; as happens 

in a variety of diseases such as epilepsy. The main inhibitory receptor in the brain – and the 

topic of my PhD – is called the GABAA receptor. 

GABAA receptors can be thought of as switches. A simple view states that GABAA receptors are 

normally switched OFF, and are only switched ON in the presence of their neurotransmitter, 

which is called GABA (-aminobutyric acid). According to this view, all GABAA receptor effects 

therefore require GABA. However, is this an oversimplification? Are we seeing these receptors 

and, in turn, the brain, for what it really is? 

Prior to my PhD it was shown that, contrary to the simplistic view expressed above, GABAA 

receptors can actually switch ON in the absence of GABA. However, at this point in time, 

nobody knew if these GABA-independent GABAA receptors did anything important in the brain. 

During my PhD I recorded the electrical activity from thin slices of rat brains in order to examine 

the role of GABA-independent GABAA receptors. I was able to show, for the first time, that these 

receptors play an important role in maintaining the proper balance between excitation and 

inhibition in the brain. When I blocked these receptors from turning ON, neurons and their 

networks became hyper-excitable and were no longer able to filter incoming signals as 

effectively. This meant neurons that had previously been silent were now active. The hyper-

excitability that I observed in the brain was similar to what has been found in some cases of 

epilepsy. This led me to test if anti-convulsants could modulate GABA-independent GABAA 

receptors. I was able to show that midazolam, a clinically used anti-convulsant, makes these 

receptors turn ON more. And, as a result, increases the inhibitory signal that they provide. 

In a narrow sense, my PhD shows that GABA-independent GABAA receptors play an important 

role in maintaining proper brain function. It also shows that these receptors can be modulated 

by anti-epileptic drugs, and thus can potentially be considered as new drug targets. But more 

broadly, it forces us to wonder: How many other receptors, in other brain regions, mediate some 

of their effects in the absence of their neurotransmitter? And what might this tell us about the 

brain? 
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Chapter 1  
 
Introduction 

Background 

The mammalian brain is extraordinarily complex. Even the brain of one of the smallest 

mammals, the Etruscan shrew, has over two million neurons (1); the adult rat has around 100 

times more (2,3); whereas an estimated 86 billion neurons are found in the adult human brain 

(4). But the number of neurons alone does not do justice to brain complexity. Neurons are 

connected by synapses and arranged into intricate, highly organised, interconnected circuits (5–

8). Within these circuits, neurons integrate and process synaptic inputs and transform them into 

specific action potential firing patterns (9–11). The circuit architecture of the brain is a product of 

evolution and, as such, is patterned by the genome, whilst also being shaped by the process of 

development, which introduces a degree of stochasticity (12–16). The innate brain circuitry 

allows mammals to perceive and interact with their environment and bestows upon them a 

repertoire of inherited instinctive behaviours (14,15,17–19). However, neuronal circuits are not 

static – they exhibit a degree of plasticity – and are routinely modified and updated throughout 

life as the animal learns, adapts, and forms new memories (20–24).  

The remarkable complexity of the structure and activity patterns in the mammalian brain, and 

the cognitive functions that it performs, is mirrored and – in all likelihood – underpinned by the 

high diversity of its constituent neurons. Indeed, the total neuronal repertoire of the mammalian 

brain can be divided and subdivided into many hundreds of distinct classes and sub-classes 

(25–29). 

And yet, amidst the aforementioned complexity, two distinct neuronal families are absolutely 

dominant, underpinning many aspects of brain function: 1) the excitatory principal neurons 

that release glutamate as their primary neurotransmitter and 2) the inhibitory interneurons 

that release γ-aminobutyric acid (GABA). It is primarily by way of these two neuron families, 

using their respective neurotransmitter, that the phenomena of excitation and inhibition are 

delivered and regulated in the brain. An appropriate ‘excitatory-inhibitory’ (E-I) balance between 
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glutamatergic-excitation and GABAergic-inhibition is crucial for proper brain function (30). 

However, the role of GABA-ergic inhibition in the brain cannot be reduced simply to homeostatic 

regulation of circuit excitability – wherein inhibition acts solely to restrain rampant excitatory cell 

firing (akin to turning a thermostat to maintain an optimum temperature). Instead, excitation and 

inhibition are of equal importance for proper brain function, with the GABAergic inhibitory 

system taking an active – often central – role in the integration, processing and output of 

information in neural circuits. It is a system that is both ubiquitous and highly heterogeneous; 

20-30% of neurons release GABA as their primary neurotransmitter (interneurons) (34), but 

virtually all neurons can (and do) respond to GABA. Understanding the GABA-ergic inhibitory 

system is, henceforth, a major goal of neuroscience; and a prerequisite for discerning how 

computations take place in the brain – at virtually every level of circuit complexity. In the present 

thesis, we will characterise one component of the GABAergic neurotransmitter system: the tonic 

conductance that is generated by spontaneously active GABAA receptors.   
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1.1 GABA 

GABA is the principal inhibitory neurotransmitter in the adult mammalian central nervous system 

(CNS). GABA was shown to be present in the brain in 1950 (31–33), and the first report of its 

inhibitory effect on neurons was in 1956-57 by Bazemore, Elliott, and Florey (34,35). They 

identified GABA to be the extracted brain substance – known as ‘Factor I’ – that inhibited the 

rhythmic action potential (AP) firing of the crayfish stretch receptor (34–36). At the time they 

posited that GABA “is possibly a transmitter substance of inhibitory impulse” (35). This early 

idea turned out to be prescient.  

In a series of experiments during the 1960s, GABA was shown to be released from inhibitory 

terminals in response to stimulation (37), and when GABA was applied by iontophoresis to 

cortical neurons in cats, it was shown to mimic native inhibitory postsynaptic potentials (IPSPs) 

in these neurons (38,39). Specifically, GABA caused membrane hyperpolarisation and 

decreased the membrane resistance, with inhibitory synaptic and GABA responses reversing 

similar potentials (38,39). In 1970, Curtis et al showed that the convulsant, bicuculline, could 

antagonise GABA-evoked responses and synaptic inhibition in cortical and cerebellar neurons 

(40,41). It was in this study that GABA was considered to be “the actual transmitter at inhibitory 

synapses” (40). The detection of the GABA receptors being widespread in the brain (42–44) and 

the subsequent purification, cloning and functional expression of these receptors ultimately 

confirmed the view of GABA as the most important inhibitory neurotransmitter in the CNS (45–

47). 

1.2 GABA synthesis, metabolism, sequestration, release and 
uptake 

GABA is synthesised by the pyridoxal 5′-phosphate-dependent enzyme glutamate 

decarboxylase (GAD). There are two GAD isoforms in mammals and they are denoted 

according to their respective molecular weights in kDa (GAD65 + GAD67). Both of these 

isoforms catalyse the decarboxylation of glutamate to produce GABA and carbon dioxide – but 

do so under different conditions and for different purposes (48,49). GAD67 is distributed evenly 

throughout the cytoplasm of neurons (50); despite making up only ~20% of total GAD 

expression, it is constitutively active and mediates basal GABA synthesis, producing > 90% of 
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total GABA (51,52). In contrast, GAD65 is membrane-associated, with expression restricted to 

GABA-ergic presynaptic terminals (50); here, GAD65 oscillates – in an activity-dependent 

manner – between active and inactive states (53). This reflects the importance of GAD65-

mediated GABA synthesis during periods of elevated synaptic transmission when basal – 

GAD67 mediated – GABA synthesis does not meet demand (54–56). 

GABA is metabolised by GABA-transaminase, which is expressed in neurons, astrocytes, and in 

the periphery (57,58). GABA-transaminase converts GABA to succinic semialdehyde, which is, 

in turn, oxidised to succinate by succinic semialdehyde dehydrogenase. Succinate is an 

intermediate of the tricarboxylic acid (TCA) cycle and is converted to α-ketoglutarate, a 

precursor of glutamate, which is itself a precursor for GABA. This metabolic route is termed 

“GABA shunt” (59).  

Once synthesised, cytosolic GABA is loaded into synaptic vesicles by vesicular GABA 

transporters (vGAT), which utilise the proton electrochemical gradient that is generated by 

vacuolar-type H
+
 ATPase (60). Each loaded synaptic vesicle contains several thousand 

molecules of GABA (61). Vesicle exocytosis is triggered by a rise in presynaptic Ca
2+

 

concentration (but can also occur spontaneously) and results in the release of a quanta of 

GABA into the synaptic cleft (61). The concentration of GABA in the cleft rapidly increases to 

approximately 1-3 mM (62,63), which causes the concerted – but incomplete in terms of 

occupancy – activation of GABA receptors on the postsynaptic terminal (61,64). However, 

GABA does not remain in the synaptic cleft for long: the rate of diffusion is fast, meaning that 

GABA clears from the synapse in ~100 μs. Diffusion of GABA away from the synapse can 

cause short-term, ‘spill-over’, and long-term, ‘tonic’, activation of GABA receptors situated on 

the presynaptic (65) and peri- and extrasynaptic membranes (66–72). GABA diffusion and the 

kinetics of GABA receptors primarily determine the profile of inhibitory synaptic responses (61). 

The level of extrasynaptic or ‘ambient’ GABA is tightly regulated but does vary across different 

brain regions (Reviewed in (59)). In the hippocampus, for instance, [extracellular GABA] is lower 

than in the substantia nigra pars compacta and the hypothalamus (73). In vivo microdialysis 

experiments show that hippocampal [extracellular GABA] is kept very low (sub-μM), reported to 

be between 3 nM - 0.3 µM (74–78). This level of ambient GABA is influenced by the amount of 
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synaptic GABA transmission (70,79,80) but is also regulated by GABA transporters (GATs) 

(71,81–83) and is affected by non-vesicular mechanisms of GABA release (59,70,81,84,85).  

Four GATs isoforms have been described in rat brain so far: GAT-1,2,3 and the Betain/GABA 

transporter type 1 (BGT-1) (82). Transport of GABA through GATs is dependent on the gradient 

of Na
+
 and Cl

- across the membrane (GATs are Na
+
/Cl

−
 coupled transporters) (82). For each 

molecule of GABA that is removed from the extracellular space and transported across the 

membrane into the cytoplasm, two Na
+ 

and one Cl
-
 ion also enters the cytoplasm (82). Although 

GATs are not coupled directly to ATP hydrolysis, the transport of GABA is an active process 

because the Na
+
/K

+
 ATPase is required to create and maintain the necessary Na

+
 gradient. 

GATs differ in their regional, cellular, and subcellular localisation and this is thought to reflect 

their function (82,86). In the hippocampus, the two main GATs are GAT-1+3. GAT-1 is the 

principal neuronal GAT and is primarily expressed on the axon terminals of symmetrical 

synapses, although it is also present on glial cells. GAT-3, by contrast, is localised on astrocytic 

processes, close to GABA-ergic synapses on the dendrites and cell body (82,86). Both GAT-1 

and GAT-3 affect extracellular levels of GABA (81–83). GAT-1 curtails the movement of GABA 

from the synaptic cleft to the extracellular space to limit ‘spill-over’, whereas GAT-3 controls the 

actual levels of extracellular GABA (70,71,81–83,87). In the dentate gyrus GAT-1 and GAT-3 

work synergistically, but GAT-1 appears to have a greater role (88,89).  

GABA can also be released into the extracellular space by non-vesicular mechanisms 

(59,81,84). One such mechanism is the reversal of GATs (85) that can occur due to changes in 

the electrochemical gradients of Na
+
, Cl

−
 and GABA (e.g Na

+
 influx and intracellular Cl

−
 

accumulation during depolarisation) (85,90). The role GAT-1 reversal in neurons is 

controversial, with a recent study showing that synaptic GABA release prevents sustained efflux 

of GABA through GAT-1 (90). In line with this, GAT reversal does not appear to be a feature in 

the dentate gyrus in basal normotopic conditions (59,71,83). Glia have been shown release 

GABA (91) due to GAT-3 reversal (92,93) and through Bestrophin 1 anion channel (94). 
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1.3 GABA receptors  

GABA mediates its effects via two types of GABA receptors (GABA_Rs): 1) ionotropic 

GABAARs and 2) metabotropic GABABRs receptors, both of which – via direct and indirect 

mechanisms, respectively – use ionic fluxes to affect the activity of mature neurons. GABAARs 

are the principal mediator of GABAergic neurotransmission in the CNS and are the topic of the 

present PhD – the structure and function of these receptors will be discussed extensively 

throughout this section. Briefly on GABABRs: they are G-protein coupled receptors (GPCRs) 

that are expressed both on the pre- and postsynaptic membrane; they are formed by the 

heterodimerisation of GABAB1 and GABAB2 subunits and are the site of action of baclofen, a 

GABABR agonist, which is used clinically as a muscle relaxant (95). Activation of GABABRs 

causes inhibition via activation of inwardly rectifying K
+
 channels and inhibition of voltage-gated 

Ca
2+

 channels and adenylyl cyclase (95). GABABRs have an important role in modulating 

neuron firing and regulating neural plasticity (96); however, they are overshadowed by 

GABAARs, which absolutely dominate the landscape of inhibitory neurotransmission. 

1.4 GABAARs 

GABAARs are pentameric ligand-gated ion channels (pLGICs) that are permeable to the anions 

chloride (Cl
-
) and, to a lesser degree, bicarbonate (HCO3

-
) (97–99). GABAARs belong to the 

“Cys-loop” receptor superfamily; other members include nicotinic acetylcholine receptors 

(nAChR), zinc activated ion channel (ZAC), serotonin 3 receptor (5-HT3R), and strychnine 

sensitive glycine receptors (GlyR) (100). Cys-loop receptors function as allosteric signal 

transducers: they have been refined by evolution to rapidly and efficiently convert a chemical 

signal into an ion flux across a plasma membrane (101,102).   

 GABAAR subunits 1.4.1

GABAARs – as with all Cys-loop receptors – are formed by the assembly of five receptor 

subunits around a central ion-permeable pore (98,103,104). There are 20 vertebrate GABAAR 

subunit encoding genes (Gabr_), grouped into eight subclasses according to sequence 

homology (α1-6, β1-4, γ1-3, δ, ε, θ, π, ρ1-3) (104–107). The number of subunits is often given 

as 19, omitting the β4 subunit, but this subunit should be included as expression has been 

confirmed in both chickens (108) and humans (109), but not in rats or mice. The repertoire of 
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GABAAR subunits is expanded further due to alternative splicing of certain subunit mRNAs, e.g. 

α6, β2, β3 and γ2 (110). 

Different subunits are incorporated into different GABAAR isoforms (104,106,107), and these 

isoforms have different functional properties and show heterologous expression across the brain 

(111–113). Although the theoretical maxima for the possible number of GABAAR isoforms is 

vast (>150,000), the actual number of isoforms that are expressed is in the brain is far less, 

probably ~50 (107). The number of GABAAR isoforms is constrained, first, by regional 

differences in subunit mRNA expression, with specific neuron types only expressing a subset of 

GABAAR genes (111,114–116). And, second, by various rules of GABAAR assembly that cause 

the preferential assembly of certain subunits (117). Not all of these rules are currently known, 

but various residues in α- (118–120), β-(121), and γ2 (119,122) subunits have been shown to 

be involved (for review see (117)). The majority of GABAAR isoforms are heteromeric 

assemblies (consisting of more than one subunit subclass). The few homomeric isoforms that 

been shown to exist typically exhibit unusual properties. For example, the β3 homomer is 

largely insensitive to GABA (123–125) and bicuculline (125), but can by activated by histamine 

(124) and pentobarbital (125). Another example is the ρ1 homomer (formerly GABACR); these 

receptors are expressed in retina and are insensitive to bicuculline, benzodiazepines and 

barbiturates (126). In heteromeric GABAAR isoforms, two α and two β subunits are necessary to 

confer GABA sensitivity; di-heteromeric isoforms composed of just α and β subunits do exist 

(127), but most receptors are tri-heteromers, wherein the two identical α and two β subunit pairs 

combine with and an axillary subunit (e.g. γ2, δ, ε) (98,128–130). Some GABAAR isoforms have 

also been shown to incorporate two non-identical α and β subunit pairs e.g. α1+α6 (131,132) 

The number of GABAAR isoforms that have been denoted as “existing with a certain probability” 

in the brain was posited to be 26 by Olsen and Sieghart in 2008, with only 11 of these isoforms 

conclusively identified (105). Although there have been no substantial revisions this list of 

GABAAR isoforms, Smart and Stephenson recently outlined a slightly amended version, which 

is presented in Table.1.1 (107).   
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The identified subunit composition of native GABAAR isoforms 

Tentatively identified Probable Possible 

α1β2γ2 α1β3γ2 αβγ1 

α2βγ2 α1βδ αβγ3 

α3βγ2 α5β3γ2 αβθ 

α4βγ2 αβ1γ αβε 

α4β2δ αβ1δ αβπ 

α4β3δ αβ α_β_γ2 

α5β2γ2 α1α6βγ  

α6β2γ2 α1α6βδ  

α6β2δ   

α6β3δ   

ρ1-3   

 

 

Table adapted from: Smart and Stephenson, 2019 (107). The most abundant GABAAR isoform 

is the brain is the α1β2γ2 heteromer (2:2:1 stoichiometry), which makes up 40-60% of all 

GABAARs in the brain, followed by the α2β3γ2 and α3β3γ2 (126). These isoforms have a 

clockwise arrangement of α−β−γ−α−β subunits when viewed from the extracellular space 

(98,128,129). Expression of α1, β1-3, and γ2 subunits is virtually ubiquitous throughout the 

brain (111–113,116); α1β2γ2, α2β3γ2 and α3β3γ2 isoforms are the principal synaptic GABAARs 

and mediate phasic (synaptic) inhibition. However, owing to their significant motility in the 

membrane (133–135) and the large extrasynaptic surface area, these isoforms are also found 

outside of the synapse, at peri- and extrasynaptic sites (136) and are able to produce tonic 

conductance (137). Indeed, Kasugai et al demonstrated using freeze-fracture replica 

immunolabelling that 60% of α1, α2, and β3 subunits are in extrasynaptic receptors (136). 

The prototypical ‘extrasynaptic’ GABAAR isoforms that are primarily responsible for tonic 

inhibition are α4βδ, α6βδ, α5βγ2 and α1βδ (138); isoforms containing αβ (127,139) αβε (140) 

appear to contribute, and possibly α4βγ2 (141,142), α6βγ2 (143). Although these receptor 

isoforms are far less abundant than α1β2γ2, α2β3γ2 and α3β3γ2 receptors, they, nevertheless, 
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play an important function in the brain by generating GABA-dependent tonic conductance. 

Interestingly, the assembly of α4β2δ receptor isoforms appears to be less strict than αβγ2 

receptors (144). The subunit composition of GABAAR isoforms thus has a major impact on their 

localisation within the cell; it also influences many of the functional and kinetic properties of the 

receptor, including GABA potency, maximal response, desensitisation, pharmacology, and 

constitutive activity. Whilst different GABAAR subtypes have different properties, they share a 

pentagonal shape that is common to all Cys-loop receptors. The gross topology of Cys-loop 

receptors has been known for some time thanks to the pioneering work of Nigel Unwin and 

colleagues.  

 GABAAR structure  1.4.2

Unwin’s approach, which began in the mid-1980s (145–149), was to use cryoelectron 

microscopy to image the nAChR from the Torpedo marmorata electroplax. The technique was 

gradually refined to over the next 20 years (150–155), increasing the resolution from 25 Å down 

to 4Å, and culminated in a high-resolution atomic structure of the nAChR (156) – a truly seminal 

achievement. In the 1990s, relatively low resolution (~70 Å) electron microscopy images of 

native porcine GABAARs confirmed that they adopt a matching pentagonal shape (157); 

however, for a considerable amount of time, there were no GABAAR structures on a par with 

Unwin’s nAChR. This meant that the high-resolution structure of the GABAAR (and other Cys-

loop receptors) had to be extrapolated from Unwin’s prototypical nAChR, and other analogous 

proteins (158–160). These structural analogies include the molluscan acetylcholine-binding 

proteins, which are soluble homopentamers that exhibit a high similarity to the extracellular 

domain of the nACHR (161). As well as the glutamate-gated chloride channel, which is a Cys-

loop receptor expressed in Caenorhabditis elegans (162); and the prokaryote receptor 

homologs: Erwinia ligand-gated ion channel (ELIC) and Gloebacter ligand-gated ion channel 

(GLIC), which both have an analogous structure to Cys-loop receptors (they are pLGICs), but 

lack the eponymous Cys-loop motif (163).   

It was not until 2014 that the first high-resolution (3 Å), three-dimensional structure of a GABAAR 

– the β3 homopentamer – was obtained by Aricescu and colleagues (99). Several other 

GABAAR structures have since been resolved (164–168), with a notable high point occurring in 
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2019, again by Aricscu and colleagues, with the publication of the long sought after full-length, 

high-resolution (3.2 Å) structure of the α1β3γ2L tri-heteromer (103) bound to a variety of ligands 

(98). This receptor isoform is one of the most prevalent in the brain. And resolving its structure 

gives a much clearer view of the topology of GABAAR subunits and their assembly into a 

receptor. This study also made important steps forward in understanding how the architecture of 

the receptor changes in the conducting vs. non-conducting states. 

 GABAAR subunit topology 1.4.3

Each GABAAR subunit is comprised of three topographically distinct domains (see Fig.1.1A). The 

N-terminal extracellular domain, which consists mainly of β-sheets and contains the eponymous 

disulphide-linked Cys-loop (a pair of disulphide-linked cysteine residues that are separated 13 

highly conserved amino acids); the transmembrane domain, which consists of four hydrophobic 

membrane-spanning alpha helices; and the intracellular domain, which is formed by the linker 

between the third and fourth transmembrane helices. The C-terminus is short and protrudes 

extracellularly. In a functional receptor, five GABAAR subunits are arranged quasi-symmetrically 

around a central channel that is selectively permeable to the anions Cl
-
 and, to a lesser degree, 

HCO3
-
 (97). Proper assembly gives rise to a large (molecular mass of ∼300 kD), bullet-shaped 

receptor that has three domains – corresponding to the respective subunit domains (Fig.1.1B).  

 GABAAR quaternary structure 1.4.4

The extracellular domain of the GABAAR is the largest of the three domains and exhibits a 

round, donut-like, shape when viewed from the extracellular space (perpendicular to the plasma 

membrane) (98,103). It contains the two agonist binding sites for orthosteric ligands (e.g. 

GABA) that are located on the domain’s outer surface, at the interfaces between adjacent β and 

α
 
subunits (98,103). Each of the orthosteric binding sites is a pocket-like structure formed from 

the principal (+) side of the β subunit, which contributes loops A-C, and complementary (-) side 

of the α subunit, which contribute loops D–F. GABA binds underneath loop-C, inside an 

“aromatic-box”, where extensive hydrophilic interactions stabilise it; GABA is orientated so that 

its amino group is closer to the β subunit and its carboxyl group faces the α subunit (98,103). In 

αβγ2 receptor isoforms there is an analogous binding site, between adjacent α+ and γ2- 

subunits, for benzodiazepine(BDZ)-site ligands, such as diazepam, and BDZ-like compounds, 
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such as zolpidem (98,103). The inner surface of the extracellular domain is a water-filled 

vestibule that marks the entrance of the channel; its surface is enriched with a ring of positively 

charged residues that act as an anion selectivity filter (169,170). Another anion selectivity filter 

is present at the cytoplasmic end of the transmembrane domain (171–173). 

The membrane-spanning ion channel is situated at the centre transmembrane receptor domain, 

which is formed by the assembly of five lots (one for each subunit) of four membrane-spanning 

alpha-helices (M1-4). In each subunit, the helices are ordered in such a manner that M1, M3, 

and M4 form an outer ring to shield M2 from the lipid environment (98,103). Residues protruding 

from the five M2 helical domains line the hydrophobic channel and dictate the maximal size of 

permeant ions (98,103). The diameter of the channel is not uniform along its length: there are 

multiple constrictions that act to preclude the flow of ions when the receptor occupies a non-

conducting state (98,103). One constriction, at the centre of the channel (residue leucine 9’), is 

purported to be the activation gate; and another, the tightest constriction, is located at the 

cytoplasmic end (residue Proline/Alanine -2’) and acts as the desensitisation gate (99,174).  

The intracellular domain of the GABAAR sits directly beneath the cytoplasmic end of the ion 

channel. It has proven to be the most challenging domain to resolve, likely due to the absence 

of interacting postsynaptic proteins in structural analyses. However, it is thought to adopt a 

hanging-basket like structure, formed by five large loops – one from each subunit – that 

protrude into the cytoplasm to link M3 and M4 transmembrane helices. Located within the 

intracellular loops is the membrane-associated (MA) helix. The intracellular domain is the least 

well studied of the three receptor domains but has been shown to affect ion permeation (175), 

receptor trafficking and targeting (176,177), and is a site of receptor phosphorylation (178). 
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1.5 GABAAR signalling 

The orthosteric sites of the GABAAR can bind a variety of ligands. Ligands are typically 

characterised by their affinity: the strength of binding to the receptor. And their efficacy: the 

effectiveness with which a ligand can affect gating (i.e. activate or inhibit receptor opening). 

Reflecting both the affinity of a ligand and its gating efficacy is the potency: the concentration of 

the ligand needed to produce an effect of given intensity (e.g. half maximal effective 

concentration; EC50). Potency is a measure of the sensitivity of GABAARs to a ligand. The 

potency of GABA (and other ligands) is influenced by the subunit composition of GABAAR 

isoforms (179), and differences in GABA potency underpins important aspects of GABAAR 

signalling (e.g. tonic inhibition) (61), as will be discussed later. 

From the perspective of affinity and efficacy, full agonists have affinity and efficacy: they bind to 

the orthosteric sites and once bound cause maximal opening (gating activation) at saturating 

concentrations (e.g. an efficacy of 1). Partial agonists have affinity but lower efficacy: they also 

bind to the orthosteric sites and activate the receptor, but their effect on channel opening at 

saturating concentrations is submaximal in relation to full agonists (e.g. efficacy of <1, but >0). 

Partial agonists can thus antagonise the effect of a full agonist. Antagonists have affinity but no 

efficacy: they bind to the orthosteric sites but do not affect the opening of the receptor; they 

cause neither activation nor inhibition but prevent the binding of other orthosteric ligands (e.g. 

affinity for the receptor but efficacy of 0). Unliganded receptors – including GABAARs – can 

spontaneously open due to constitutive receptor activity. Inverse agonists have affinity and 

negative efficacy: they bind to the orthosteric sites and decrease (fully or partially) spontaneous 

receptor openings (e.g efficacy <1). Another family of ligands that are able to inhibit 

spontaneous receptor activity and agonist activated openings are non-competitive antagonists. 

These compounds inhibit the receptor at allosteric (non-orthosteric) sites (e.g. channel blockers) 

(Fig.1.2). 
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The scheme on the previous page is based on that in Weir, 2010 (180). Although still common 

in the lexicon, it is important to note that affinity and efficacy are not easily separated (181,182). 

Fundamentally, the problem is that binding and gating are reciprocal: binding affects gating, and 

so gating will affect binding (181,182). Thus, experimental measures of the binding of an 

agonist (e.g. in a radioligand binding assay), reflects not only binding but also its ability to open 

the channel once it is bound (gating efficacy). Despite this important caveat, affinity and efficacy 

are still useful when discussing drug action at GABAARs and other pLGICs (181). 

There are various kinetic models that have examined – and have been proposed to explain – 

how the GABAAR activates. Such models propose that the receptor can exist in a number of 

discrete states that are connected by reversible chemical reaction steps, and that the rate 

constants of these reactions determine the frequency of state changes (e.g. from open to 

closed). Any model of the GABAAR has to be able to explain various fundamental properties of 

GABAAR gating, including: 1) The difference in gating efficacy of full and partial agonists, 2) that 

unliganded GABAARs can open spontaneously, and 3) that there are agonist-bound GABAAR 

desensitised state(s) (183). Desensitisation occurs in the sustained presence of an agonist, 

which causes receptors to transition from agonist-bound open states to agonist bound shut 

(desensitised) states. Desensitised states are refractory to any further activation, requiring 

agonist dissociation to return to an agonist sensitive, resting state (184).  

Linear Receptor Models 

A very early and important model was proposed by Castillo–Katz mechanism in an attempt to 

explain the partial agonism of choline vs. the full agonism of ACh at frog endplate nAChRs 

(185), 

 

Reaction scheme from: Colquhoun and Lape, 2012 (186). The model proposes that an agonist 

(A) binds to a resting (shut) receptor (R) to form an intermediate shut agonist-receptor complex 

(AR) that can transition into an open receptor (AR*). This two-step model has separate 

AR*ARA + R ⇌ ⇌
Shut Shut Open
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equilibrium constants that govern binding affinity (A + R  AR) and gating efficacy (AR  AR*). 

And can explain the difference between full agonists and partial agonists and antagonists. Each 

of these compounds have affinity for the receptor (A + R  AR) but differ in their ability to shift 

the gating equilibrium constant (ARAR*). Agonists act to shift the gating equilibrium in favour 

of AR* to a greater extent than partial agonists. Conversely, antagonists do bind but do not 

affect this equilibrium. Crucially, in this model, agonists are inducing conformational changes in 

the receptor to affect gating. However, the model is too simple to describe the activation of the 

GABAAR and other LGICs. It does not account for spontaneous openings or additional agonist 

bound desensitised states. 

The simple linear model can be modified, as in the below example from Mortensen et al (187), 

to incorporate a desensitised state (A2D) and separate states for mono and di-liganded 

GABAAR activation. This is important because although GABAARs require the binding of two 

molecules of GABA to fully activate, they can also activate (submaximally) when bound to a 

single molecule of GABA (188,189).  

 

Reaction scheme from: Mortensen et al, 2004 (187). This relatively simple kinetic model can 

account for many aspects of GABAAR activation (187) and can – along with other models like it 

– be used to distinguish between different synaptic and extrasynaptic GABAAR isoforms 

(190,191). However, as indicated by Chang and Weiss, it struggles to account for spontaneous 

openings of the GABAAR (192). Specifically, when the authors incorporated an unbound closed 

state (R) to an unbound open state (R*) transition (RR*) into a linear model, it required that 

agonist binding affinity was also increased (192). However, in the spontaneously opening 

mutant receptor that they studied, the mutation in the TMD is not thought to affect binding but 

instead destabilise the closed state (192). Cyclic models of receptor activation can circumvent 

this problem. 

A2R*A2RA + R ⇌ ⇌A + AR ⇌

A2DAR*

⇌⇌

Shut Shut OpenShut

Open Shut
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Cyclic MWC Receptor Model 

The Monod Wyman Changeux (MWC), or “two-state”, model was originally proposed for the 

binding to oxygen to haemoglobin (193,194) and has since been applied widely to GABAARs 

(e.g. (102,195–199)), other LGICs and other proteins (102,194,200). The MWC model has two 

simple rules: 1) that receptors can adopt two global conformational states, closed (_R) and open 

(_R*), and 2) that these two conformations have a different affinity for a ligand.  

 

Reaction scheme from: Colquhoun and Lape, 2012 (186). An attractive aspect of the MWC 

model is how simply it accounts for spontaneous openings: in the absence of an agonist, open 

and closed states spontaneously establish an intrinsic equilibrium (R⇌R*), which mean that 

spontaneous openings occur with a certain probability. The probability that a receptor occupies 

the open state is determined by the equilibrium constant (energy barrier) between the two 

states. In this model, the action of an agonist is explained by 1) them having a higher affinity for 

the open (R*) state and 2) when they bind to this state (AR* or A2R*) they stabilise (select) the 

open conformation so that the equilibrium between two states shifts in favour of the open state 

(ARAR*). Antagonists bind with similar affinity to the open and closed state (i.e. they do not 

select one state over another) and so do not affect the equilibrium between AR⇌AR*. 

Conversely, inverse agonists preferentially bind and stabilise the receptor closed state, thereby 

shifting the equilibrium in favour of AR (selecting the closed state) to reduce spontaneous 

activity ARAR*. Thus, unlike the linear models, the MWC mechanism is not one of 

conformational induction. Instead, it is based on conformational selection: agonists are not 

inducing conformational changes that open the channel, they are preferentially stabilising the 

open conformation that already exists in thermal equilibrium at rest.   

  

A2RR ⇌ AR ⇌

A2R*AR*

⇌⇌
R* ⇌

⇌

⇌ Open

Shut
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Flip Receptor Model 

However, one problem with the two-state MWC model is that it is apparent from single-channel 

recordings of GABAARs, and other LGICs, that channel gating results from transitions among 

more than two discrete states (201,202). Both native and recombinant GABAARs exhibit 

complex bursting patterns, which indicates that in the absence of an agonist they have more 

than one shut state from which they can open, and more than one open state in the presence of 

saturating concentrations of an agonist (203–209). An early model incorporating additional 

states was proposed by Jones and Westbrook to explain GABAAR deactivation and 

desensitisation (188). In this model, there are two agonist bound shut states, from which the 

receptor can either enter an open or desensitised state (e.g AD ⇌ AR ⇌ AR*) i.e. the open state 

and desensitised (shut) state lie either side of the resting agonist bound state (also shut). More 

recently, an alternative, partially cyclic, model has been applied to GABAARs (203,210,211) and 

other LGICs (212,213): the, so-called, ‘flip’ model. This model incorporates ‘flip’ (F) states, 

which are between resting (R) and open states (F*). The flip state is preactivated: it is non-

conducting but immediately precedes channel opening (i.e. it might correspond to the 

conformational change in the receptor that occurs before opening).  

 

Reaction scheme from: Colquhoun and Lape, 2012 (186). The flip model was originally 

developed to explain the behaviour of heteromeric GlyRs (213) and was later extended to 

explain partial agonism at nACHRs (212). Analogous to the MWC model, the flip model 

proposes that the receptor is in equilibrium between states, and agonists bind with different 

affinities to particular states to preferentially stabilise them. However, in the flip model, this 

equilibrium is between resting and flipped states – not resting and open – and agonists have a 

A2RR ⇌ AR ⇌

⇌⇌⇌

Open

Shut

A2FF ⇌ AF ⇌

A2F*AF*

⇌⇌

F* ⇌

⇌

⇌

Shut
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higher affinity for the flipped state compared to the resting state. The action of partial agonists is 

explained by them being less able to ‘flip’ the receptor (ARAF) than full agonists, but both 

partial and full agonists are just as effective at opening the receptor once flipped (AFAF*). The 

flip model has since been applied to spontaneous activation of GABAARs (210,211) and to 

explain the action of BDZ-site ligands at GABAARs (203). 

At the structural level, agonist-mediated activation of the GABAAR is associated with the closing, 

or ‘capping’, of extracellular domain loop-C, which constricts the orthosteric site around the 

agonist (98,100,214,215). Conversely, antagonists cause expansion of this site. The constriction 

of the orthosteric site results in a concerted rotation of the five subunit extracellular domains 

(98,100,214). As the entire extracellular domain of the receptor rotates, it triggers 

conformational changes in the transmembrane domain to cause tilting of the M2 helices away 

from the channel pore to cause gating (98,100,214). 

1.6 The GABAAR signal 

Although some of the kinetics and structural underpinnings of GABAAR signalling are yet to be 

fully resolved, what is clear is that receptor activation – by an agonist or due to constitutive 

activity – causes the channel to open. The GABAAR channel is permeable to Cl
- 
and, to a lesser 

degree HCO3
-
, and so the effect of channel opening on a neuron is two-fold. First, activation of 

GABAARs causes an increase in membrane conductance. Second, if there is a net driving force 

on the permeant anions, there will be a net flow of charge (a current) across the membrane and, 

in turn, a change in the membrane potential.  

The ionic driving force is determined by the position of the reversal potential for GABAAR 

responses (EGABA) relative to the resting membrane potential (RMP) of the neuron (216,217). 

When EGABA<RMP, activation of GABAARs results in the net influx of Cl
- 

and membrane 

hyperpolarisation. Conversely, when EGABA>RMP, activation of GABAARs results in the net 

efflux of Cl
-
 and membrane depolarisation. Or, to put it another way, activation of GABAARs 

shifts membrane potential (Vm) toward EGABA. EGABA itself depends on the relative concentration 

of ions Cl
-
 and HCO3

-
 across the membrane (i.e. the Nernst equation) (216,217). Because Cl

- 
is 

the major
 
permeant ion, it means that EGABA is predominantly determined by ECl

-
, which in most 

mature adult neurons, is -85 mV to −70 mV (216,217). However, the EHCO3
- 
is more depolarised, 
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typically −40 mV to −20 mV, which means that EGABA is often more depolarised than ECl
- 

(216,217). Thus, in most mature neurons, EGABA is only slightly more hyperpolarised than the 

RMP (-75 to -65 mV), and so GABAAR signalling is usually only weakly hyperpolarising (and 

sometimes non-polarising/depolarising) (216,217). It is important to note, however, that 

GABAARs can affect a neuron even in the absence of significant membrane polarisation by 

increasing membrane conductance (decreasing input resistance), which is termed “shunting”.  

The ECl
-
 is hyperpolarised in most mature adult neurons because intracellular [Cl

-
] is kept low, 

typically in the range of 5-15 mM (218–221), relative to extracellular [Cl
-
] (~120 mM). Adult 

neurons primarily use the neuron-specific chloride-extruding potassium–chloride co-transporter 

(KCC2) to maintain this low [Cl
-
] (216,217). KCC2 is localised to inhibitory and excitatory 

synapses, as well as the dendrites and cell body (222). It is a secondary active transporter, in 

that it uses the electrochemical gradient of K
+
 to efflux Cl

-
 against its gradient (although changes 

to the K
+
 gradient can result in Cl

-
 import). In contrast to the adult brain, during development 

KCC2 expression is low, whereas the Cl
-
 accumulator NKCC1 is high. Intracellular [Cl

-
] is thus 

elevated during development and GABAAR-mediated responses are depolarising (216,217,223).  
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1.7 Modes of GABAAR inhibition 

There are two principal modes of GABAARs-mediated signalling: phasic and tonic inhibition. 

There is also a third signalling mode, which overlaps phasic and tonic, termed ‘spillover’ 

inhibition. Spillover inhibition is caused by GABA released during phasic inhibition activating the 

GABAARs that typically produce tonic inhibition (66–72). Note that, for the sake of readability in 

the following section, we will use the term ‘inhibition’ when describing the modes of GABAAR 

signalling. This is in line with much of the literature on GABAAR physiology (61,224). 

Nevertheless, it is important to note that GABAAR activation can also produce excitation. One of 

the main factors in determining if activation of GABAARs causes excitation or inhibition is their 

effect on membrane potential (depolarisation or hyperpolarisation). But it is an oversimplification 

to think that depolarisation = excitation: because GABAAR activation causes a concomitant 

increase in membrane conductance, even with depolarisation the net effect can be inhibitory 

(225,226). Nor is it the case that hyperpolarisation = inhibition: it can trigger hyperpolarisation-

activated excitatory currents that drive a neuron to rebound fire (227). 

 Phasic inhibition 1.7.1

Phasic inhibition is a fast, point-to-point form of neurotransmission that is mediated by α1β2γ2, 

α2β3γ2 and α3β3γ2 receptor isoforms that are clustered on the post-synaptic membrane. These 

post-synaptic GABAARs are transiently activated by high concentrations of GABA released from 

the presynaptic terminal (1-3 mM; 100 μs duration) (62,63). The inhibitory postsynaptic currents 

(IPSCs) that are generated are fast activating (<1 ms) and rapidly decaying (tens to hundreds of 

milliseconds) (188,191,208). IPSC properties vary across brain regions and can be both action-

potential independent, due to spontaneous vesicle fusion (minis, mIPSCs), and action-potential 

dependent (spontaneous, sIPSCs or experimentally evoked). Because synaptic GABAARs have 

to respond to a high concentration of GABA, they have a relatively low potency for GABA 

(EC50): α1β2γ2 (6.6 μM) α2β3γ2 (13.4 μM) and α3β3γ2 (12.5 μM) compared to receptors that 

are excluded from the synapse (179). The clustering of these isoforms at the synapse is 

primarily driven by the scaffolding protein, Gephyrin, which anchors GABAAR subunits to the 

cytoskeletal proteins (228,229).  
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 Tonic inhibition 1.7.2

Tonic inhibition, or more specifically, the tonic conductance that is generated by persistently 

active GABAARs, is a slow form of neurotransmission and is expressed widely across many 

different neuron types (61,224,230–232). The persistent activation of GABAARs can occur via 

two mechanisms: GABA-dependent and GABA-independent (74,224,233,234).  

To briefly summarise: 

GABA-dependent tonic inhibition is mediated by peri-/extra-synaptic GABAARs that have a high-

potency for GABA (61,224,230–232). Because of their high potency, extrasynaptic receptors 

can be persistently activated by low concentrations of ambient GABA (179,235). GABA-

dependent tonic currents can be blocked by saturating concentrations of competitive 

antagonists, inverse agonists, and channel-blockers. 

GABA-independent tonic inhibition is mediated by GABAARs that activate spontaneously, in the 

absence of GABA, because they exhibit constitutive receptor gating (74,233,234,236,237). 

Because spontaneously activating GABAARs do not require GABA to activate, they are resistant 

to competitive antagonists but can be inhibited by inverse agonists and channel-blockers 

(sometimes termed non-competitive antagonists) (74,233,234,236,237). 
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 Measuring tonic inhibition 1.7.3

Tonic inhibition is revealed and, in turn, can be measured by applying saturating concentrations 

of GABAAR antagonists. The most commonly used are SR-95531 (gabazine), bicuculline, and 

picrotoxin (230). GABAAR responses are often recorded with a symmetrical concentration of Cl
-
 

on either side of the membrane (ECl
-
 ~ 0 mV). In this recording configuration, when the holding 

potential is -70 mV, GABA-ergic currents are inward. This means that phasic currents, IPSCs, 

are seen as transient negative-going defections, whereas the block of the tonic conductance 

causes an outward current (230).  

SR-95531: (SR) is a specific, competitive, and potent antagonist of GABAARs (74,238–242). 

The apparent inhibitory constant (Ki) value for the displacement of GABA binding by SR is 140 - 

150 nM (239,243), and for the displacement of muscimol is 74 nM (244). SR has a <1 µM 

relative IC50 for antagonising GABAAR responses evoked by concentrations of GABA at, or 

close to, EC50 in recombinant expression systems (245–255) and in cultured neurons (256). It 

also has a <1 µM relative IC50 against GABAAR responses evoked by 20 µM isoguvacine, 

another GABAAR agonist (244). SR has a very limited negative intrinsic efficacy against 

constitutively active receptors and receptors activated by allosteric ligands; for this reason, it is 

generally used as a neutral competitive antagonist (192,199,246,257–260). This means that it is 

only effective against GABA-dependent tonic inhibition and phasic inhibition; it is ineffective 

against the GABA-independent form of tonic inhibition (because competitive antagonists do not 

affect constitutive receptor activity). From the perspective of the MWC model, SR binds with 

similar affinity to the closed state (R) and the active receptor state (R*), and thus does not affect 

the equilibrium that dictates the level of spontaneous activity (R⇌R*). SR is considered 

saturating when used at 10 - 100 µM (261–268). For the study of GABA-dependent tonic 

inhibition, <1 μM SR can be insufficient to fully displace GABA from the receptor and block the 

GABA-activated conductance (269). However, when the concentration of SR is increased to 

~10 μM it is able to fully displace GABA from the receptor and block GABA-activated tonic 

conductance (267,269).  
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Bicuculline: is a GABAAR inverse agonist: it blocks GABA binding to the orthosteric site and 

partially inhibits receptor gating arising from allosteric activation or constitutive activity 

(74,192,233,246,256,260,270–274). The apparent Ki for bicuculline is 5.2 μM (239,243) and its 

recorded IC50 for antagonising GABAAR responses evoked by EC50 GABA is 7.2 μM at 

recombinant receptors (247), and is 2.7 μM at native receptors (275). From the perspective of 

the MWC model, bicuculline preferentially binds and stabilises the R conformation vs. R*, 

shifting the equilibrium in favour of R to partially decrease spontaneous activity (RR*). 

Because of its negative efficacy, bicuculline can inhibit GABA-dependent tonic conductance and 

partially inhibit GABA-independent tonic conductance (74,233).  

Picrotoxin: (PTX) is a channel-blocker that binds within the open-channel pore and acts 

allosterically, not via simple hindrance of ion flow, to stabilise the GABAAR in a closed/resting, 

non-conductive state (98). Similar to bicuculline, PTX shifts the open/shut equilibrium in favour 

of R to reduce spontaneous activity (RR*); however, because PTX is more efficacious than 

bicuculline, it can virtually eliminate spontaneous activity. Henceforth, PTX is able to fully block 

both GABA-dependent and GABA-independent conductance (74,233). Furthermore, because 

PTX binds within the channel, it can inhibit GABAARs even when the orthosteric site is occupied 

by a neutral antagonist (SR). This allows for the specific block of GABA-independent 

conductance, without a confounding effect of GABA-mediated receptor activation. The recorded 

IC50 of PTX inhibiting GABAAR responses evoked by EC50 GABA is 1.1 μM at recombinant 

receptors (276), and 5.1 μM at native receptors (275). 
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1.8 GABA-dependent tonic inhibition 

High-potency, peri-/extra-synaptic GABAARs are activated by low concentrations of ambient 

GABA to generate a persistent GABA-dependent, tonic conductance (61,224,230–232). A tonic 

conductance that is exclusively GABA-dependent should be completely blocked by saturating 

concentrations of SR, bicuculline, or PTX. The concentration of GABA in the extracellular space 

varies across brain regions (between 1 nM to 2.5 μM) (70,73), but in the hippocampus is very 

low: 3 nM - 0.3 µM (74–78). The level of extracellular GABA depends on the release and 

reuptake mechanisms outlined in 1.2; it is also influenced by temperature (72,277), redox 

reagents (278), and can be altered substantially by a variety of pharmacological compounds 

that affect GABA metabolism, vesicle loading and reuptake (61).  

The idea that extrasynaptic GABAARs respond to extracellular ‘ambient’ GABA has its roots in 

studies of the peripheral nervous system by Bowery and Brown in the 1970s (279,280). 

However, it was not until 1991 that tonic GABAAR conductance was first observed in the CNS. 

Specifically, Otis et al demonstrated that the application of bicuculline to hippocampal granule 

cells blocked spontaneous (TTX-resistant) IPSCs and caused a block of tonic conductance (as 

indicated an outward current) (281). Similar bicuculline-mediated outward currents were 

recorded from embryonic hippocampal neurons by Valeyev et al (282) and in early postnatal 

hippocampal neurons by Ben-Ari et al in 1994 (283). In 1996, the presence of tonic 

conductance outside of the hippocampus was reported by Salin and Prince in somatosensory 

cortex neurons (284). The authors posited that the tonic conductance “results from ongoing 

activation of synaptic or extrasynaptic GABA receptors located so remotely on dendrites” (284). 

Cerebellar granule cells were also shown to exhibit a tonic GABAAR conductance that could be 

blocked by SR and bicuculline (79,285,286), and it was in these cells that the first 

comprehensive analysis of tonic GABAAR conductance was performed by Brickley et al in 1996 

(80). They made several important findings that would shape much of the subsequent work on 

tonic GABAAR conductance. First, they showed that development (P7 to P21) is associated with 

a substantial increase in the tonic GABAAR conductance to the degree that, in mature neurons, 

tonically active GABAARs net contribute 99% of the total inhibitory charge (80). Second, they 

showed that blocking tonic GABAAR conductance increases the excitability of cerebellar granule 

cells, as indicated by the decrease in the minimum current required for fire an action potential 



 

27 
 

(rheobase) and the additive (leftward) offset in the input-output (AP frequency-current, F-I) 

relationship (80). This study, in particular, demonstrated that tonic GABAAR conductance is not 

just present but is sufficient to affect neuron function and paved the way for many further 

investigations.  

Over the last two and a half decades, it has been realised that GABA-dependent tonic GABAAR 

conductance is widely expressed in the brain, across a litany of neuron types, and is a critical 

regulator for proper brain function (224,230). The ubiquity of this signal is well summarised by 

Lee and Maguire in 2014 (224), which details over 60 neuron types that express a tonic 

GABAAR conductance. At the level of the single neuron, GABA-dependent tonic conductance 

has been shown to regulate cell excitability (80,287,288), input-output gain (289–295), firing 

characteristics (225,296), signal integration (297,298), and synaptic plasticity (299,300). At the 

network level, GABA-dependent tonic inhibition affects network oscillations (301–303), 

synchronisation (225), and the propagation of seizure activity (304–306). These effects of tonic 

inhibition manifest at the behavioural level, with tonic inhibition involved in learning and memory 

(307,308), anxiety (306,309), and sleep (310,311), to name but a few. Furthermore, disruptions 

to tonic inhibition are associated with various pathological conditions, including temporal lobe 

epilepsy (312,313), fragile-X syndrome (314), Alzheimer’s disease (299), and stroke (315). 

 The GABA-dependent tonic signal 1.8.1

The aforementioned functional consequences of GABA-dependent tonic inhibition are governed 

by 1) the nature of the tonic signal inputted to the neuron, and 2) how this signal is integrated 

and interpreted by the neuron. The tonic signal that is inputted to a neuron by GABA-dependent 

tonic conductance has two components: 1) a persistent increase in membrane conductance 

(shunting), and 2) if there is a driving force on the permeant anions, a persistent membrane 

polarisation (depolarisation or hyperpolarisation).  

An increase in membrane conductance always accompanies the activation of GABAARs and 

many of the functional effects of GABA-dependent tonic inhibition are a consequence of this 

membrane shunt. As a result, a great deal of energy has been directed at trying to dissect how 

membrane shunting affects neuronal function.  
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The functional consequences of tonic membrane shunting differs when the neuron is above vs. 

below AP threshold. Below threshold, shunting inhibition reduces excitability by exerting a 

divisive effect on sub-threshold voltages in accordance with Ohm's law (V=I/G): the amplitude of 

a voltage transient (V) elicited by a given excitatory current (I) is reduced proportionately to the 

increase in membrane conductance (G). This means that more current is required for the 

neuron to cross the AP threshold voltage and initiate an action potential (the rheobase current). 

Furthermore, shunting also decreases the membrane time constant, meaning that voltage 

transients are not just smaller, but decay faster (316–318). This means that to cross threshold, 

excitatory inputs need to coincide within a narrower temporal window, thereby enhancing the 

precision of neural signalling (297,298,319). 

The divisive effect of shunting was originally thought to persist above AP threshold and lead to a 

decrease in the gain of the firing rate-to-injected current (F-I) relationship (316,318,320,321). 

This was based on the assumption that AP firing rate was essentially a function of – and could, 

therefore, be calculated from – the membrane potential that the neuron would reach were 

spiking to be disabled (this is sometimes referred to as the generator potential) (320,322–324). 

Because shunting conductance would have a divisive effect on the generator potential, it was 

inferred that AP firing rate would follow suit: that the slope of the F-I curve would be divisively 

scaled by shunting inhibition (322–325).  

However, when theoretical and experimental studies tested this hypothesis with constant, step-

wise current injections, they provided evidence to the contrary: F-I curves were offset in a 

subtractive, not divisive, manner by shunting inhibition – the slope was unchanged, but the 

entire curve was shifted to the right (80,322). The reason for shunting-induced subtraction, not 

division, was explained in a seminal study by Koch and Holt, entitled “Shunting Inhibition Does 

Not Have a Divisive Effect on Firing Rates” (322). What the original “divisive hypothesis” failed 

to take into account was the extent to which the spiking mechanism affects the biophysical 

membrane properties (322,325). Indeed, during sustained excitation, the APs do not simply ride 

atop the generator potential once the threshold is crossed. Instead, the spiking mechanism, 

specifically the large K
+
 conductance responsible for repolarisation and the after-

hyperpolarisation (AHP) (326), clamps the steady-state potential at (or close to) threshold – and 
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keep it there for the duration of the input current step, irrespective of the input amplitude and the 

number of spikes it elicits (322,325). This means that above AP threshold, the inhibitory effect of 

a shunting conductance does not scale proportionately with the excitatory input (322,325). It is 

the uncoupling of excitation and inhibition that prevents a shunting conductance from acting 

divisively (322,325). Instead, by clamping the steady-state potential approximately at AP 

threshold, an inward driving force on Cl
−
 is established (EGABA<Vm); and so the conductance 

that was shunting at RMP is now converted into a source for a hyperpolarising ‘leak’ current 

(322,325). The amplitude of this current is uniform across different input strengths (so long as 

they are suprathreshold), which is why it causes a subtractive offset to the F-I curve. 

The aforementioned schema holds up well, across numerous neuron types, as an accurate 

description of the effect tonic shunting inhibition has on F-I curves that are generated with 

square-wave depolarising current injections. However, there are (at least) three major factors 

when the ‘subtractive hypothesis’ breaks down. These are 1) stochastic noise (292,293), 2) 

active dendritic conductances (295), and 3) spike-frequency adaptation (294,317). A detailed 

description of each of these mechanisms can be found in the appendix. In short, each of these 

mechanisms allow a tonic shunting conductance to control neuronal gain (the slope of the F-I 

curve). Thus, a GABA-dependent tonic shunt can act in an additive/subtractive or 

multiplicative/divisive manner, depending on various intrinsic and extrinsic neuron properties. 

If there is a driving force on the permeant anions, the tonic conductance will also be 

accompanied by a persistent membrane polarisation. When EGABA<RMP, GABA-dependent 

tonic inhibition results in a persistent membrane hyperpolarisation. Although there are 

exceptions, in general, by shifting the RMP further from the AP threshold, hyperpolarisation 

works synergistically with the membrane shunt to decrease excitability. Neurons not only require 

larger depolarising currents to overcome the increased conductance, but also to traverse the 

larger voltage difference between RMP and threshold. This is the case, for instance, with 

GABA-dependent tonic conductance in thalamic relay neurons, where GABA-dependent tonic 

conductance promotes burst firing (327). When EGABA>RMP, GABA-dependent tonic inhibition 

results in a persistent membrane depolarisation. The relationship between shunting and 

depolarisation is more complex than with hyperpolarisation. If EGABA is more depolarised than 
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AP threshold, then tonic activation of GABAARs can depolarise the neuron to fire an action 

potential. And even if EGABA is less depolarised than AP threshold, tonic conductance can still 

trigger an action potential by activating voltage-dependent channels (226). That said, 

membrane shunting and depolarisation generally work antagonistically, which can lead to a 

complex interplay between the two signalling mechanisms. A good example of this can be found 

in Song et al in 2011 (226). The authors reported that hippocampal interneurons respond in a 

biphasic manner to GABA-dependent tonic inhibition. Underlying this biphasic response is that, 

in these neurons, EGABA>RMP and tonic inhibition is depolarising. As a result, low levels of tonic 

conductance generate a membrane depolarisation that activates voltage-gated Na
+
 channels to 

increase action potential firing rate (excitatory). However, at higher levels of tonic conductance, 

the membrane shunt overwhelms the depolarisation leading to a decrease in firing rate 

(inhibition) (226). 

 Receptor isoforms responsible for GABA-dependent 1.8.2
tonic conductance 

The prototypical extrasynaptic GABAARs that mediate GABA-dependent tonic conductance are: 

α4βδ, α6βδ, α5βγ2 and α1βδ receptors (138,224,328). They exhibit a higher potency for GABA 

than synaptic receptors (see below). The potency of GABAARs for GABA is influenced by the α-

subunit: high potency α6; intermediate potency α1, α4, and α5; low potency α2 and α3 (179).  

Potency is also influenced by the β-subunit: β3 > β2 > β1(179). As well as the auxiliary subunits: 

δ > γ (248). 

Potency of GABA at synaptic and extrasynaptic GABAARs 

Synaptic Extrasynaptic Neuron type 

α1β2γ2 (6.6 μM) α4β2δ (0.91 μM) dentate gyrus granule cells, thalamic relay cells 

α2β3γ2 (13.4 μM)  α4β3δ (1.7 μM) thalamic relay cells 

α3β3γ2 (12.5 μM) α6β3δ (0.17 μM) cerebellar granule cells 

 α5β3γ2 (1.4 μM) hippocampal pyramidal + granule cells  

 α1β2δ (3.7 μM) hippocampal interneurons 
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1.9 GABA-independent tonic inhibition 

GABA-independent tonic conductance is mediated by GABAARs that activate spontaneously, in 

the absence of GABA, because they exhibit constitutive receptor gating (74,233,234,236,237). 

Because spontaneously activating GABAARs do not require GABA to activate, they are resistant 

to competitive antagonists (SR) but can be inhibited by inverse agonists (bicuculline) and 

channel-blockers (PTX) (74,233,234,236,237). 

Note: ‘s-GABAARs’ will be used from hereon in to denote ‘spontaneously activating GABAARs’ 

One of the first indications that tonic conductance could arise from constitutively active s-

GABAARs was the study Bai et al, in 2001 (270). The authors recorded from hippocampal 

pyramidal neurons and showed that phasic and tonic inhibition were differentially sensitive to 

the competitive antagonist, SR (270). Whereas SR could effectively block phasic inhibition, no 

block of tonic inhibition was observed, even with saturating concentrations of SR (20 μM). This 

did not simply reflect tonic inhibition being absent in these neurons, because tonic inhibition was 

blocked by bicuculline and PTX (270). On its own, there are multiple explanations for these 

observations (270).  

One possibility is that SR simply has a low affinity for the GABAARs that are producing tonic 

inhibition in these neurons, and so is unable to displace GABA from its binding sites. To test 

this, Bai et al applied SR, and then, in its continued presence, bicuculline (270). They found 

that, in the presence of SR, bicuculline was no longer able to block tonic inhibition. This 

demonstrated that SR competes with, and effectively blocks, bicuculline from binding at the 

orthosteric site. Thus, both antagonists are binding to the same receptor population, at the same 

site. And, therefore, the lack of effect of SR on tonic inhibition does not simply reflect a lack of 

binding to the GABAARs that are responsible for this conductance. This raised the possibility 

that 1) s-GABAARs are generating a GABA-independent tonic conductance. And 2) that the 

different effects of SR vs. bicuculline could be explained by differences in the amount of 

negative efficacy. Specifically, it suggests that SR lacks significant negative efficacy and 

functions as a neutral competitive antagonist, whereas bicuculline has a significant degree of 

negative efficacy and functions as an inverse agonist, thereby inhibiting some of the 

spontaneous openings.  
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At the time of Bai et al’s publication, the proposed negative efficacy of bicuculline (i.e. inverse 

agonist) and lack of efficacy of SR (i.e. neutral competitive antagonist) was supported by four 

key studies by Uchida et al (256), Ueno et al (246), Thompson et al (260), and Chang and 

Weiss (192). 

Uchida et al (256) and Ueno et al (246) showed that GABAAR currents induced by pentobarbital, 

etomidate or alphaxalone were differentially affected by bicuculline and SR. Pentobarbital, 

etomidate and alphaxalone act via allosteric sites, but at high concentrations can activate native 

(256) and recombinant GABAARs (246). Both studies demonstrated that bicuculline was far 

more efficacious than SR at inhibiting allosterically activated GABAARs (246,256). At the time, 

bicuculline’s allosteric inhibitory action had been well documented (271–274); what was novel 

was that SR was far less effective at inhibiting allosteric receptor activation. This contrasts with 

GABA-activated currents, which could be blocked by both bicuculline and SR (and SR was the 

more potent) (246,256).  

The above findings are mirrored by the studies of Thompson et al (260) and Chang and Weiss 

(192). They showed that mutant α1β2ΔL259Sγ2 receptor isoforms spontaneously open in the 

absence of GABA to produce leak currents that are fully blocked by PTX (192,260). Thompson 

et al showed that, relative to PTX, SR caused only a marginal (13%) inhibition of ‘spontaneous’ 

current, which is far less than that caused by bicuculline (85%) (260). Chang and Weiss 

reported similar effects: bicuculline was ~four times more effective at blocking spontaneous 

currents than SR (192). Interestingly, Thompson et al also showed that BDZ-site ligands could 

bi-directionally modulate spontaneous current (260). Thus, bicuculline is far more effective than 

SR at inhibiting allosteric or spontaneously activated GABAARs; this infers that bicuculline has 

significant negative efficacy, whereas SR does not (246,256).  

The proposition that GABAARs can spontaneously open to produce GABA-independent currents 

was supported by early electrophysiological studies. Spontaneous-channel openings from 

native (329–334) and recombinant (335,336) GABAARs were detected not long after the 

creation (337–339) and refinement of the giga-seal recording technique (340–343). 

Spontaneous GABAAR openings are typically brief, unitary, and infrequent (sometimes 

described as having a ‘spikey’ appearance); however, they have the same conductance 
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amplitude as GABA-activated openings from the same patches (329–336). Spontaneous activity 

can also be detected in the whole-cell recording mode as GABA-independent leak currents that 

can be blocked by PTX. Prior to Bai et al’s study, it was shown that recombinant α4β1 (344), 

α1β1(345), β1 (345–347), β3 (123), α6β2γ2 (348) and α1β3ε (336) receptor isoforms all 

produced GABA-independent PTX-sensitive leak currents. In the case of the β1 and β3 

homomers, these currents can be potentiated by pentobarbital and propofol, blocked by Zn
2+ 

(and PTX) but not by bicuculline (123,345–347)  

The earliest recordings of native spontaneous GABAAR openings were obtained from cultured 

chick cerebral neurons (330), and cultured mouse cerebellar (329) and spinal neurons (331–

334). As such, it was not clear if native, intact rodent hippocampal neurons – in which Bai et al 

reported the SR-resistant tonic currents – had s-GABAARs. Two important studies by Bryndis 

Birnir and colleagues addressed this ambiguity (236,349). They demonstrated that  

s-GABAAR activity could be recorded in the absence of GABA from rat CA1 pyramidal neurons 

in slices (236,349) and in culture (236), and that spontaneous openings could be modulated by 

a variety of different ligands (236,349). Spontaneous openings were present in both cell-

attached and inside-out recording configurations and exhibited outward rectification at 

depolarised voltages (increased conductance and open probability) (236,349). Importantly, 

these s-GABAAR openings could be blocked by bicuculline, which again indicates that it can 

decrease channel open probability (236,349). Furthermore, the conductance of s-GABAAR 

openings could be increased by diazepam, which suggests that the GABAARs that are 

spontaneously opening contain the γ2 subunit (236,349). Spontaneous openings were also 

potentiated by pentobarbital (236). The authors posited that “spontaneously opening receptors 

may have a role in providing a nonsynaptic background tonic inhibition of neurons” (349). This 

proved to be prescient.  
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 Neurons that express s-GABAAR-mediated tonic 1.9.1
conductance 

GABA-independent tonic s-GABAAR conductance in hippocampal pyramidal neurons 

The first formal investigation into s-GABAAR-mediated tonic conductance was by McCartney et 

al in 2007 (233). They used cultured hippocampal pyramidal neurons – the same neuron types 

that Birnir et al had recorded s-GABAAR single-channel openings – and set out to better 

understand the nature of the SR-resistance of tonic conductance that had been previously 

reported by Bai et al (270). In doing so, they resolved the apparent paradox: how is it that the 

GABAARs mediating tonic conductance in these neurons are SR-resistant but all GABA-evoked 

responses are inhibited by SR? They confirmed that the spontaneous activity of s-GABAARs is 

sufficient to generate a GABA-independent tonic conductance (tonic inhibition) in hippocampal 

pyramidal neurons (233). 

McCartney et al demonstrated that phasic conductance could be effectively blocked by PTX, 

bicuculline or SR; whereas only PTX could fully block tonic conductance. Tonic conductance 

was partially blocked by bicuculline and but was completely resistant to SR (no outward currents 

were observed) (233). This did not reflect an inability of SR to bind to the receptor, as it was 

able to block GABA-dependent tonic conductance elicited by 5 μM GABA, and was also able to 

block bicuculline-mediated inhibition (233). The GABA-independent s-GABAAR tonic 

conductance was partially inhibited by Zn
2+ 

and was resistant to strychnine, indicating that it was 

not mediated by GlyRs. Propofol could potentiate s-GABAAR tonic conductance in a manner 

that was resistant to SR but sensitive to bicuculline, which further supports the difference in 

efficacy of these two compounds. Furthermore, s-GABAAR single-channel openings could be 

detected in the absence of GABA using the outside-out recording configuration. These 

spontaneous openings were resistant to SR but blocked by PTX (233).   

Next, McCartney et al set out to better understand the pharmacology of GABA-independent 

tonic conductance in order to infer what subunits might make up s-GABAARs. They showed that 

the tonic conductance was resistant to furosemide, indicating that they do not arise from 

isoforms containing the ε subunit, which had been previously shown to spontaneously open 

(336,350). But, interestingly, tonic conductance could be potentiated by flunitrazepam (a BDZ-
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site agonist) and loreclezole. These potentiating effects suggest the involvement of γ2 and β2/3 

subunits, respectively. They pursued this line of inquiry further and demonstrated that 

recombinant α1β1γ2 and α1β3γ2 receptor isoforms expressed in human embryonic kidney 

(HEK) cells show spontaneous GABA-independent leak currents and a virtually identical 

pharmacological profile to the native pyramidal cell tonic conductance.  

McCartney et al’s study thus demonstrated that in cultured hippocampal pyramidal neurons, 

GABA-independent s-GABAARs deliver a tonic conductance. It also confirmed the different 

efficacy of GABAAR antagonists against s-GABAARs: PTX can block fully, bicuculline can block 

partially, whereas they are resistant to SR. 

GABA-independent tonic s-GABAAR conductance in Dentate Gyrus Granule cells 

The obvious question that flows from McCartney et al’s study is whether the GABA-independent 

s-GABAAR tonic conductance is also present in adult, ex vivo neurons, not just cultured 

neurons. The first study to formally address this was Wlodarczyk et al in 2013. They 

demonstrated that in mature dentate gyrus granules (DGGCs), under baseline conditions, or 

when the perfusate contained the same concentration of GABA that is found in vivo, the major 

contributors to the tonic conductance were s-GABAARs.  

Wlodarczyk et al recorded the tonic conductance from DGGCs and found that it was resistant to 

SR (0.5–125 μM), partially blocked by bicuculline, and fully blocked by PTX. As with previous 

studies, they showed that the lack of effect of SR was not due to a lack of binding: SR could 

displace bicuculline and reverse its inhibitory effect on tonic conductance. Thus, under baseline 

conditions, only negligible ambient GABA can be detected by DGGCs – i.e. virtually all of the 

tonic conductance is GABA-independent. In further support of this, they found that depleting 

vesicular GABA by using concanamycin did not affect the PTX-sensitive tonic conductance. 

Furthermore, it was shown using ‘sniffer patches’ and zero-net-flux microdialysis that the 

concentration of extracellular GABA ex vivo and in vivo, respectively, was ~100 nM. This is in 

line with the values obtained from other microdiaylsis studies (74–78) and the predicted 

equilibrium of the GAT-1 transporter (85). This makes it abundantly clear that supplementing the 

perfusate with 1-to-5 μM GABA, as is common across the field, is wildly un-physiological. 
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Wlodarczyk et al observed that when the perfusate was supplemented with 200 nM GABA 

(double that recorded in vivo) the tonic conductance is still almost exclusively mediated by s-

GABAARs (SR-resistant and GABA-independent). Thus, in conditions comparable to those in 

vivo, s-GABAARs are still the principal mediators of tonic conductance. 

Wlodarczyk et al also confirmed the presence of s-GABAARs in DGGCs by recording GABA-

independent single-channel openings in nucleated patches. Spontaneous openings persisted in 

the presence of SR, and their conductance was virtually identical to GABA-dependent openings; 

however, their open time and frequency was lower.  

One of the significant advances made by Wlodarczyk et al was to develop an approach to 

specifically isolate, block, and then measure the s-GABAAR conductance. First, SR is added to 

block GABA-dependent signalling, thereby isolating s-GABAARs. And then, second, in the 

continued presence of SR, PTX is added to block the GABA-independent signalling of s-

GABAARs. The difference in conductance in SR vs in SR+PTX corresponds to that which is 

mediated by s-GABAARs. This s-GABAAR conductance could be blocked by pentylenetetrazole, 

another noncompetitive antagonist, but was not affected by strychnine and so it is not mediated 

by GlyRs. It was also not affected by TPMPA, an antagonist at homomeric ρ-subunit GABAARs.  

 

Finally, Wlodarczyk et al investigated which subunits are required for s-GABAAR tonic 

conductance. In DGGCs, δ-subunits (351) primarily assemble with α4-subunits (254) and β2-

subunits (352) to form α4β2δ receptors. These receptors are the principal extrasynaptic 

GABAAR in DGGCs and produce ~70% of a GABA-dependent tonic current that can be evoked 

by adding GABA into the perfusate or blocking its reuptake (351). Wlodarczyk et al examined if 

δ-subunit-containing GABAARs can also generate GABA-independent tonic currents under 

conditions of no-to-low GABA. They used δ-subunit knockout mice (Gabrd−/−) and showed that 

in the absence of the δ-subunit the SR-resistant, PTX sensitive s-GABAAR tonic current was 

Control SR SR+PTX

GABA-dependent
GABAAR signal

GABA-independent
s-GABAAR signal

 
Isolate s-GABAARs Block s-GABAARs
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reduced by ~60% compared to wild-type mice. This indicated that a portion of the s-GABAARs in 

DGGCs contain the δ-subunit (74). 

GABA-independent tonic s-GABAAR conductance in the central amygdala 

s-GABAAR-mediated tonic conductance is not restricted to hippocampal neurons; in 2015, Botta 

et al reported their presence in central amygdala neurons that express PKCδ (234). They 

showed that tonic conductance was blocked by PTX but largely insensitive to SR, and that SR 

partially antagonized the inverse agonist effect of bicuculline. They reported that α5-subunit 

containing receptor isoforms likely contribute to the s-GABAAR tonic current: the amplitude of 

the PTX sensitive tonic conductance was reduced using two different inverse agonists of α5-

GABAARs, L-655,708 and PWZ-029, or by knocking out the α5-subunit gene (Gabra5−/−). In 

contrast, zolpidem and tetrahydrodeoxycorticosterone (THDOC) had no impact on the 

conductance amplitude. 

Botta et al’s study was the first, and is currently the only, study to have investigated the 

functional impact of GABA-independent s-GABAAR signalling. To selectively block s-GABAARs, 

they exposed the neuron to SR and then, in its continued presence, to PTX. Block of s-

GABAARs increased the input resistance, caused a small depolarising shift in the RMP, and 

increased the excitability of the neurons as indicated by the input-output function and the 

spontaneous firing rate.  
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 How prevalent is s-GABAAR-mediated tonic conductance 1.9.2
in the brain?  

Although s-GABAAR-mediated tonic conductance has received notably less attention than its 

GABA-dependent counterpart and has only been conclusively identified in three neuron types, 

there is good evidence that its prevalence in the CNS has been underestimated. The strongest 

evidence supporting this notion is the relatively large group of studies that – although often not 

acknowledged as such – have recorded tonic conductances with a pharmacological profile 

indicative of s-GABAARs. Namely, a conductance that is sensitive to PTX/bicuculline, but is fully 

or partially resistant to SR (353–363). In some of these studies, SR was not applied at 

saturating concentrations, and so it is possible that SR was simply unable to out-compete GABA 

at the orthosteric site. This could easily explain the tonic conductance in hippocampal 

interneurons that is resistant to 0.5 μM SR, but sensitive to PTX (353). Indeed, other studies 

have reported a tonic conductance that was resistant to SR applied at 0.5 μM, only for it to be 

fully blocked when SR concentration was increased to 10 μM (269). There are, however, a 

number of studies in which SR was applied at saturating concentrations (10-100 μM) and tonic 

conductance was still not blocked (but was by bicuculline or PTX). This is the case for tonic 

conductances in: hypothalamic supraoptic nuclei neurons (357), hypothalamic paraventricular 

nucleus to rostral ventrolateral medulla neurons (358), solitary tract nucleus neurons (359), 

sympathetic preganglionic neurons (360), dorsal motor nucleus of the vagus neurons (361), 

midbrain periaqueductal grey neurons (363), cardiac vagal neurons in the nucleus ambiguus 

(355), gonadotropin-releasing hormone neurons (364) and central amygdala neurons (365). The 

presence of GABA-independent s-GABAAR openings can explain these findings. However, in 

many cases, it is not possible to make this definitive post-hoc pronouncement because some of 

the necessary control experiments have not been performed. For example, SR-insensitive, 

PTX-sensitive tonic currents that are recorded in the absence of strychnine may be mediated by 

GlyRs, not s-GABAARs. Nevertheless, it strongly suggests that some of these neurons express 

a GABA-independent, s-GABAAR-mediated tonic conductance. Interestingly, a recent study by 

Yelhekar et al reported that in neurons of the medial preoptic nucleus, SR-resistant, PTX-

sensitive GABAAR conductance facilitates the recovery of intracellular [Cl
-
] following Cl

-
-loading. 

This was not mediated by GlyRs because it was resistant to strychnine. The authors suggested 

that GABA-independent s-GABAAR openings contribute to recovery from Cl
- 
loading (366) 
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It is also worth noting that a large proportion of the studies that purport to investigate GABA-

dependent tonic inhibition do so using only one antagonist. In studies using either SR or PTX, it 

is impossible to determine if s-GABAARs make a contribution to the overall tonic conductance. 

In Lee and Maguire’s review of the literature on tonic inhibition (2014), 20% of the neuron-type 

tonic conductances were obtained using only PTX (224). In these studies, it is possible that 

because PTX blocks GABA-dependent and -independent currents indiscriminately, some, or 

indeed all, of the tonic current could be mediated by s-GABAARs. The reverse is true for studies 

that use only SR to measure tonic currents. In these studies, which represent 25% of the 

neurons tabled in Lee and Maguire, 2014 (224), if there is a partial contribution by s-GABAARs 

to tonic currents it will not be detected by SR. The measured tonic current (GABA-dependent 

GABAARs) will be smaller than the actual tonic current (GABA-dependent GABAARs and s-

GABAARs). Complicating matters further, many measurements of tonic conductance are 

obtained in the presence of a supraphysiological concentration of ambient GABA. This is 

achieved by supplementing the perfusate with 1-5 μM GABA (at least an order of magnitude 

greater than the in vivo concentration) or blocking GABA reuptake (224). In these studies, the 

non-physiological GABA-dependent tonic conductance may be masking an underlying smaller 

s-GABAAR conductance (74).  

Finally, it is worth considering that many of the GABAAR isoforms expressed in the brain have 

been shown to spontaneously open in recombinant systems. This includes the principal synaptic 

receptor isoforms: α1β1γ2 (233,367), α1β2γ2 (198,205,259,368), α1β3γ2 (233,369). And the 

principal extrasynaptic receptor isoforms: α6β2δ (259,370), a4β1δ (371,372), a4β2δ (259,372–

375), a4β3δ (371,372,376,377), α1β2δ (259). As well as other isoforms: α1β1ε (336,350), 

α1β3ε (257,336). α1β1 (345,367), α4β1 (344), α6β2γ2 (259,348), α4β3γ2 (376), β1 (345–347), 

β3 (123). Thus, virtually all neurons will express GABAARs that have been shown to exhibit 

constitutive activity, albeit in recombinant systems and inconsistently across different studies. 

Furthermore, the three studies investigating s-GABAARs in neurons have concluded that a 

different receptor isoform was responsible for producing the GABA-independent tonic 

conductance: α1β1γ2 and α1β3γ2 (233), δ-GABAARs (74), and α5-GABAARs (234). These 

receptor isoforms are expressed in many neuron types, and so s-GABAAR-mediated tonic 
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conductance could be a widespread signal in the brain. This possibility alone justifies further 

investigation into s-GABAARs.  

 A significant unknown: What is the function of s-1.9.3
GABAAR-mediated tonic conductance in the brain?  

To summarise, although there is evidence that s-GABAAR-mediated tonic conductance could be 

widespread in the brain, it has, so far, only been formally identified and investigated in three 

neuron types: hippocampal pyramidal neurons (233), dentate gyrus granule neurons (74), and a 

subpopulation of central amygdala neurons that express PKCδ (234). However, it is not just the 

presence of s-GABAARs in the nervous system that needs to be considered, but also whether 

the conductance they provide is sufficient to affect neuronal function (e.g. excitability). So far, 

the function of the tonic s-GABAAR conductance has only been investigated in one neuron type: 

the PKCδ positive neurons of the central amygdala – it is not currently known if the same is true 

in other neuron types (234). Thus, s-GABAAR-mediated tonic conductance is a relatively 

understudied signalling mechanism, with many significant unknowns.  

It is not currently known whether s-GABAAR mediated tonic conductance is of any functional 

importance to hippocampal neurons (unknown 1). Moreover, none of the aforementioned 

studies have assessed if s-GABAARs affect more complex signalling dynamics, such as 

temporal summation and synaptic plasticity (unknown 2). Various ligands have been shown to 

inhibit s-GABAARs (PTX, bicuculline, pentylenetetrazole, Zn
2+

, L-655,708 and PWZ-029); 

however, fewer compounds have been shown to potentiate s-GABAARs (propofol, flunitrazepam 

and loreclezole). It is not known how consistent the pharmacological profile of s-GABAARs is 

across different neuron types, or what other compounds can modulate s-GABAARs (unknown 

3). This reflects a more fundamental ambiguity surrounding s-GABAARs: which GABAAR 

isoforms responsible for the GABA-independent conductance? (unknown 4).  

The lack of information on the functional role of constitutively active GABAARs reflects that of 

the pLGIC family more broadly. Constitutive activity in pLGICs has been important for 

developing kinetic models that describe channel gating (e.g. MWC) (102,195–199). However, 

the physiological and pathological role of spontaneously opening pLGICs has received relatively 

little attention. That said, there are some examples within the literature. For instance, mutations 
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in the nAChR that are associated with elevated constitutive activity have been identified as 

causing congenital myasthenia and frontal lobe epilepsy (378). Furthermore, knock-in mice with 

a mutation in the 5-HT3AR, which enhances constitutive activity, leads to severe obstructive 

uropathy (379).  

In comparison to pLGICs, much more attention has been directed at agonist-independent 

constitutive signalling by GPCRs (380). GPCRs are seven-pass-transmembrane domain 

receptors that signal via tri-heteromeric G-proteins to downstream effectors. Constitutive activity 

of GPCRs was first observed in the 1980s, at recombinant β2-adrenergic receptors (381). Soon 

after, the ability of inverse agonists to inhibit constitutive activity was observed at δ opioid 

receptors in membranes of NG108-15 neuroblastoma cells (382). Since then, it has become 

clear that agonist-independent constitutive activity of certain GPCRs is an important signalling 

mechanism (381). And that there are a variety of disease-causing mutations that disrupt proper 

GPCR signalling by affecting constitutive activity (381). For instance, the melanocortin-4 

receptor (MC-4R), a regulator of energy homeostasis and metabolism, exhibits strong basal 

constitutive activity in the absence of its endogenous ligands. MC-4Rs are expressed in the 

paraventricular nucleus of the hypothalamus and activation of the receptor, via constitutive 

activity or by its endogenous peptide agonist, α-melanocyte stimulating hormone, decreases 

food intake and increases metabolic rate (383,384). Conversely, MC-4R constitutive activity is 

inhibited by the endogenous inverse agonists, agouti and agouti-related peptide (385). 

Mutations in MC-4R are the most common genetic cause of obesity and some of these 

mutations are associated with decreased levels of constitutive activity (386). From this, it has 

been posited that constitutive MC-4R activity is required for the prevention of obesity (386). 

Cleary then, constitutive signalling by receptors can be of functional importance. However, it is 

currently not known if this is also applicable to s-GABAARs.  

Probably the strongest evidence supporting the functional importance of s-GABAAR-mediated 

tonic conductance is the well characterised role of GABA-dependent tonic conductance. As 

outlined 1.8, the signal that is inputted by GABA-dependent tonic conductance (membrane 

shunting and membrane polarisation) impacts many aspects of neuronal function. s-GABAARs 

have the ability to deliver an analogous signal, but whether this signal is large enough to 
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produce a meaningful effect in neurons outside of the central amygdala is unknown. Moreover, 

there are variations in the properties of GABA-dependent tonic conductance that affect its 

function across the brain. A key example of one such property is outward rectification. GABA-

dependent tonic conductances are frequently outwardly rectifying (225,288,353,387,388), 

meaning that a greater inhibitory effect can be delivered close to or above threshold voltage 

than at RMP. This can affect whether tonic inhibition causes a subtractive or divisive effect on 

the neuronal input-output relationship (387). Single-channel s-GABAAR openings in 

hippocampal pyramidal cells are not outwardly rectifying (233), but it is not known whether this 

is the case in any other neuron types. Thus various aspects of the s-GABAAR tonic signal are 

unresolved. 

1.10 Statement of purpose  

The purpose of this PhD is to characterise the hitherto unknown function of s-GABAAR-

mediated, GABA-independent tonic conductance in DGGCs. Because s-GABAARs do not 

require GABA to activate, they are resistant to the competitive antagonist, SR, but can be 

inhibited by the channel-blocker, PTX. The s-GABAAR ‘signal’ can be isolated and then 

measured by sequentially exposing a neuron to SR and then, in its continued presence, to PTX 

(CTRLSRSR+PTX). Whole-cell voltage-clamp and current-clamp recordings were used to 

characterise the nature of the s-GABAAR signal and assess whether it is sufficient to affect 

DGGC function. As explored in Chapter 3, the dentate gyrus is a key brain region and is thought 

to act as both a gate to aberrant excitation and as a pattern separator. Both of these functions 

are thought to rely heavily on the sparse activity across the DGGC population. The tonic 

conductance that is generated by s-GABAARs might be one mechanism through which DGGC 

activity is restrained. This study is thus of importance to understanding dentate gyrus function. 

Another purpose of this PhD is to characterise how s-GABAAR-mediated tonic conductance can 

be modulated. Henceforth, this study is also important for understanding which GABAAR 

subunits are involved in generating GABA-independent tonic conductance. This may also be of 

clinical significance, facilitating a better understanding of existing drugs and, potentially, the 

development of novel compounds that modulate s-GABAARs activity. 
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1.11 Overall thesis aims 

Aim 1: It has been previously shown that constitutively active s-GABAARs generate a GABA-

independent tonic conductance in DGGCs (74). However, the functional impact of this 

conductance upon cellular excitability is currently unknown. The experiments performed for this 

thesis aimed to characterise the function of s-GABAAR signalling in DGGCs. Specifically, we 

aimed to characterise both 1) the nature of the s-GABAAR signal delivered to DGGCs and 2) 

how it is interpreted by these neurons.  

To achieve this aim, we measured the effect of s-GABAAR-mediated conductance on passive 

membrane properties (input resistance, membrane time constant, RMP), active membrane 

properties (excitability, rheobase, AP threshold voltage) and the input-output (I-O) function of 

DGGCs (as expressed in F-I curves). We also explored the impact of s-GABAARs on the 

temporal precision of signal integration (coincidence detection) and on neural plasticity (LTP), 

both of which are important for proper DGGC function in the brain. The findings of these 

experiments are presented in Chapter 3 (Results 1). 

Aim 2: It has been previously shown that the s-GABAAR-mediated tonic conductance in DGGCs 

is resistant to SR, partially blocked by bicuculline, and fully blocked by PTX (74). Beyond this, 

the pharmacological profile of s-GABAARs in DGGCs is not well characterised. The experiments 

performed for this thesis aimed to characterise the effect of a variety of ligands on the amplitude 

of the s-GABAAR-mediated tonic conductance.  

To achieve this aim, we first assessed the impact of compounds that target δ-GABAARs. This is 

informed by the reduction in the s-GABAAR tonic conductance in mice lacking the δ-subunit. 

Second, we assessed if inhibiting α5-GABAARs decreased the s-GABAAR-mediated 

conductance amplitude. This is informed by previous findings in the central amygdala, showing 

that α5-subunit GABAARs can spontaneously open. Third, we assessed if, as with hippocampal 

pyramidal cells, BDZ-site ligandss could affect the s-GABAAR tonic conductance. Finally, we 

assessed if inhibitors and activators of PKA/PKC could modulate the s-GABAAR tonic 

conductance. Modulating serine/threonine kinases has been previously shown to affect GABA-

dependent tonic conductance and spontaneous openings of recombinant GABAARs. The 

findings of these experiments are presented in Chapter 4 (Results 2). 
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Chapter 2  
 
Materials and Methods 

2.1 Animals and Procedures  

All procedures were performed in accordance with the amended (2013) UK Home Office 

legislation, The Animals (Scientific Procedures) Act 1986 and under the authority of The 

University of Edinburgh internal ethics committee (Project license number:70/7870). Three-to-

six week old, wild-type female Sprague Dawley rats were used for all experiments in this PhD 

thesis. Rats were bred in Charles River Laboratories (UK) and delivered in litters of between 

three and seven rats to Little France Biomedical Research Resources Unit 2 where they were 

then housed under standard institution protocols (12:12 hour light/dark cycle; received food and 

water ad libitum). Rats were culled by cervical dislocation (a Schedule 1 Method). In order to 

minimise animal and experimenter stress, rats were handled on a weekly basis in their housing 

unit and for a further ten minutes prior to being culled. Such handling meant that rats were calm 

and did not resist being restrained.  

2.2 Preparation of acute brain slices 

Brain slice electrophysiology is a routine, virtually ubiquitous procedure in neuroscience 

laboratories (389–400). The following procedure yielded excellent quality sagittal brain slices 

that permitted stable and long (>40 minutes) patch-clamp recordings from DGGCs.  

Rats were decapitated immediately after culling. The head was placed on a flat surface and held 

between the thumb and forefinger of one hand. The skin and underlying musculature were 

removed using large surgical scissors to expose, but not cut through, the skull. Small, sharp-

tipped dissecting scissors were inserted in the foramen occipitale magnum and used to cut 

along the length of the sagittal suture, past bregma, and into the frontal bone; following which, 

coarse tweezers were used to uncover both sides of the skull plate and carefully remove the 

underlying dura matter. The open skull, together with the exposed brain, was then immersed 

into a ‘slush’ of semi-frozen sucrose-artificial cerebrospinal fluid (ACSF) (see recipe below) for 

~5 seconds to chill the brain in situ. This cooling ‘firmed up’ the tissue and prevented excessive 
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twisting when liberating the brain from the skull. The brain was removed in one smooth motion: 

a small spatula was inserted underneath the brain at the level of the olfactory bulbs and moved 

caudally to sever the cranial nerves. The spatula was then used to gently scoop out the brain 

into the beaker of semi-frozen sucrose-ACSF that had been pre-bubbled with carbogen gas 

(95% O2/5% CO2). In order to produce brain slices of optimum health, the aforementioned 

procedure had to be completed in less than 40 seconds. 

The brain was allowed to uniformly cool in the beaker of semi frozen, carbogenated sucrose-

ACSF for 2-3 minutes and then placed on filter paper (Whattman) in a plastic petri-dish, 

surrounded by the ‘slush’ of sucrose-ACSF that was undergoing constant carbogenation. The 

brain was blocked using a single edge razor blade: the cerebellum and the rostal third of the 

frontal cortices were removed, and then the hemispheres were separated by cutting along the 

longitudinal fissure (Fig.2.1A). One hemisphere was chosen and placed on the flat of the razor 

blade, dried using filter paper and mounted medial-side down on a vibratome stage (Leica 

VT1200S, Leica Microsystems) that was coated with a shallow strip (~4 cm x 2 cm) of 

cyanoacrylate glue (Fig.2.1B+C). Proper brain-glue adherence was achieved by lightly shaking 

the stage and by squirting ~5 ml of sucrose-ACSF on top of the hemisphere. This both 

accelerated the curing of the glue and, crucially, prevented the glue from creeping up the side of 

the brain. The stage was then placed into the slicing chamber, submerged in semi-frozen 

sucrose-ACSF and oriented so that the dorsal extent of the brain faces the vibratome blade 

(Fig.2.1D).  

Parasagittal brain slices containing the hippocampus and surrounding structures were cut using 

the vibratome at an angle of ~18° relative to horizontal, using high-quality, double-edged 

stainless-steel razor blades (Personna Super or Feather blades; cleaned with ethanol and d.H20 

before use). For whole-cell patch-clamp recordings, a slice thickness of 350 µm was chosen; 

however, for field recordings, thickness was increased to 400 µm. The blade was advanced 

through the hippocampus at a horizontal oscillation amplitude of 1.75 mm and slow forward 

velocity of 0.05 mm.s
−1

 (the forward velocity was increased to 0.14 mm.s
−1

 when cutting through 

other brain regions to decrease overall slicing time). Cut slices were transferred individually 

using a wide mouth Pasteur pipette into a submerged brain slice holding chamber containing 
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Fig.2.1. Preparation of acute hippocampal slices.  
A) A freshly excised rat brain surrounded by sucrose-ACSF slush bubbled with carbogen; blocking 
cuts (1-3) shown in red. B) A single hemisphere is selected, dried on filter paper and mounted on 
the vibratome stage with a thin strip of fresh cyanoacrylate glue C). A small amount of sucrose-
ACSF is applied to set the glue and prevent creepage. D) Cutting of 350 μm para-sagittal brain 
slice using a Leica VT1200S in the sucrose-ACSF slush; the hemisphere is positioned so that the 
cortex is cut first. E) Freshly cut slices are transferred to the slice holder which contains sucrose-
ACSF undergoing constant carbogenation; the chamber should was maintained at 35.5 °C for 9 
mins and then allowed to sit for 30 mins at room temperature. F) Individual slices were 
transferred to the recording chamber and held in place with the ‘harp’. Chamber contains 
recording ACSF, bubbled with carbogen at 33°C. 

sucrose-ACSF that had previously been sterile filtered (0.22 μm), warmed to 35.5 °C and 

continuously bubbled with carbogen (Fig.2.1E; and see Fig.2.2 for details of how to construct the 

slice chamber). Slice orientation was the same in the holding chamber as it was during slicing 

(e.g. the blade-facing side of the slice rested on the nylon-mesh platform of the holding 

chamber). One of the primary factors in determining good slice health was accurate timing of 

the recovery period: after transferring the fourth slice into the holding chamber, the temperature 

was maintained at 35.5 °C for 9 minutes. After this recovery period the chamber was removed 

from the water bath and allowed to equilibrate at room temperature for a minimum of 30 minutes 

prior to starting electrophysiology experiments. From a 3-6-week-old rat, approximately 6 slices 

can be cut from one brain hemisphere.  
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2.3 Solutions 

All reagents for the preparation of dissection and electrophysiological recording solutions were 

purchased from Sigma-Aldrich (St Louis, MO, US) or Tocris (Bristol, UK) apart from QX-314.Br, 

which was purchased from Alomone Labs (Jerusalem, Israel) and DPP-4-PIOL, which was very 

kindly provided by Professor Bente Frølund (University of Copenhagen). 

 Extracellular solutions 2.3.1
 

 Sucrose-ACSF (mM) Recording ACSF (mM) 

NaCl 85 125 

KCl 2.5 2.5 

NaH2PO4 1.25 1.25 

NaHCO3 20 20 

HEPES 10 10 

Glucose 25 25 

Sucrose 75 0 

CaCl2 0.5 2 

MgCl2 4 1 

   

Osmolarity 340-350 mOsM 315 - 320 mOsM 

pH (adj. NaOH) 7.32-34 at RT 7.35-37 at 33℃ 

 
N.B. Because both slicing and recording solutions contained HEPES, it was imperative that 
the pH was only measured and adjusted after the solution had first been saturated with 
carbogen (95% O2/5% CO2). ACSF solutions were carbogenated using air diffuser stones for 
at least 40 minutes at the indicated temperature, and only then was the pH adjusted. 
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 Cesium chloride-based intracellular solution  2.3.2
(High [Cl-] = 128.4 mM; ECl

- at 33℃ = -1.03 mV) 

 Concentration (mM) 

CsCl 120 

HEPES 10 

CsOH-EGTA 2 

NaCl 8 

MgCl2 0.2 

Mg-ATP 2 

Na3-GTP 0.3 

QX-314.Br 5 

Osmolarity (adj. sucrose) 290 - 295 mOsM 

pH (adj. CsOH) 7.25 - 7.30 

  

 

 Potassium gluconate-based intracellular solution 2.3.3
(Physiological [Cl-] = 8 mM; ECl

- at 33℃ = -74.3 mV) 

 Concentration (mM) 

K-Gluconate 140 

HEPES 10 

KOH-EGTA 0.2 

NaCl 8 

Mg-ATP 2 

Na3-GTP 0.3 

Osmolarity (adj. sucrose) 290 - 295 mOsM 

pH (adj. KOH) 7.25 - 7.30 

 

 

 Cesium methanesulfonate-based intracellular solution 2.3.4
(Physiological [Cl-] = 8 mM; ECl

- at 33℃ = -74.3 mV) 

 Concentration (mM) 

CsMeSO4 135 

HEPES 10 

CsOH-EGTA 0.2 

NaCl 8 

Mg-ATP 2 

Na3-GTP 0.3 

QX-314.Br 5 

Osmolarity (adj. sucrose) 290 - 295 mOsM 

pH (adj. CsOH) 7.25 - 7.30 
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2.4 Whole-cell patch-clamp recordings  

Visualized whole-cell patch-clamp recordings from mature dentate granule cells (DGGCs) were 

made using patch-pipettes with an open tip resistance of 3-5 MΩ. Pipettes were fabricated from 

thick-walled, filamented boroscillate glass capillaries (1.5 mm outer diameter, 0.86 mm inner 

diameter; Harvard apparatus, UK) using a P-87 Flaming Brown Micropipette Puller (Sutter 

Instruments, US) and back-filled with 0.22 µm filtered ‘intracellular’ pipette solution. For voltage-

clamp experiments we used cesium-based intracellular solutions, containing either high (CsCl; 

128.4 mM), or physiological (Cs-methanesulfonate; 8 mM) concentrations of Cl
-
. For current-

clamp experiments we used a K-gluconate-based internal solution that had a physiological 

concentration of Cl
- 
(8 mM). Note here that ‘physiological’ corresponds to the concentration of 

Cl
−
 found in adult, mature neurons (which is usually in the range of 5-15 mM) (218–221). This 

concentration of Cl
−
 gives rise to an EGABA at 33℃ of -74.3 mV, which, again, matches that 

typically found in adult mature DGGCs (typically -70 mV to -80 mV) (307,401–403). A pipette 

containing the required intracellular solution was secured into a G23 micropipette holder, on a 

CV-7B head-stage that was mounted on a PatchStar micromanipulator (Scientifica). Whole-cell 

patch-clamp recordings were obtained in the standard manner. Briefly, the tip of the patch-

pipette was submerged in the recording chamber and junction potential was corrected for in 

voltage-clamp mode; the pipette was then lowered onto the cell body of a selected neuron. 

Contact between the pipette and the cell membrane was signified by a bright ‘dimple’ on the 

membrane surface and a slight increase in tip resistance – measured with a +3 mV, 30 ms, 33.3 

Hz square-wave seal-test. Sealing of the pipette to the membrane was triggered by releasing 

positive pressure and applying a -20 mV holding voltage. A high resistance seal (>2 GΩ: 

gigaseal) was formed by applying a light suction to the pipette and decreasing the holding 

voltage to -70 mV; fast and slow pipette capacitance transients were neutralised. The patch of 

membrane encircled by the pipette was ruptured by several sharp pulses of suction: successful 

breakthrough into ‘whole-cell’ mode was evidenced by the emergence of large, relatively slowly 

decaying capacitive transients.   

Patch-clamp signals were amplified and filtered at 8 kHz (–3 dB cutoff; 4-pole Bessel filter) 

using a Multiclamp 700B, and digitized at 10 kHz (Digidata 1550, Molecular Devices). 50/60 Hz 

line noise was largely eliminated using a Humbug. Data were recorded using Clampex (pClamp 
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10.7, Molecular Devices) program installed on a Lenovo PC running Windows 7; offline analysis 

was performed using Clampfit (pClamp 10.7, Molecular Devices), Microsoft Excel and 

Graphpad Prism software package (GraphPad, CA, USA). For the purposes of illustration only, 

representative traces were filtered offline at 0.8 kHz; this reduces the signal-to-noise ratio of the 

trace and renders changes in tonic inhibition more easily visible.  

Whole-cell capacitance was compensated using the Multiclamp 700B with the amplifier-default 

(8 x tau) duration. Only cells that had a stable series resistance of ≤ 25 MΩ (monitored 

throughout/after recordings) were included for analysis. In voltage-clamp experiments, unless 

otherwise stated, granule cells were clamped at -70 mV; this approximates the RMP of DGGCs 

recorded both ex vivo (404–412) and in vivo (413,414) (typically between -68 mV and -80 mV). 

When clamped at -70 mV, using the CsCl intracellular solution, DGGCs required a holding 

current of between -40 and -70 pA; any neuron that that needed a holding current more 

negative than -120 pA was rejected. Similarly, current-clamp experiments were only performed 

on DGGCs that had a RMP < -65 mV when measured immediately after break-in. Another 

important pre-requisite before commencing experiments was to ensure that the cell had a stable 

holding current: recordings were monitored for a minimum of 7 minutes after break-in to permit 

complete dialysis of the intracellular milieu with the solution in the pipette. No experiments were 

performed on neurons that exhibited sudden changes in holding current or erratic levels of noise 

– these are almost always indicative of seal degradation, which renders the measurement of 

changes to holding current and basic membrane properties impossible. 

2.5 Quantification of the spontaneously active GABAAR signal 

In the present thesis we used a previously published pharmacological approach to isolate and 

then block (and in so doing quantify) the signal that is provided by spontaneously opening 

GABAARs (s-GABAARs) (74,233,234,415–417). The full workflow in pictorial form can be found 

in Fig.2.3. The first step in this methodology, the isolation of s-GABAARS, required the 

antagonism of two distinct pools of neurotransmitter receptors: 1) the non-GABAAR 

neurotransmitter receptors and 2) the GABA-activated GABAARs.  
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 Antagonising non-GABAAR neurotransmission 2.5.1

The vast majority of whole-cell patch-clamp recordings in this thesis were performed in the 

presence of six antagonists that together block non-GABAAR-mediated neurotransmission. 

This block-cocktail provides a ‘baseline’ state for assaying total GABAAR activity because, 

crucially, both GABA-activated and spontaneously opening GABAARs remain active. The only 

exceptions to this are experiments that utilised evoked synaptic excitatory synaptic activity. 

This collection of antagonists, from hereon in referred to as the ‘block -cocktail’, contains: 

2.5.1.1 Block-cocktail Composition: 

 Final Conc Solvent Pharmacology 

DL-AP5 50 µM 1 eq.NaOH NMDAR antagonist 

NBQX 10 µM dH20 AMPAR antagonist 

MCPG  

NPS 2390 

250 µM 

10 µM 

1 eq.NaOH 

DMSO 

mGluR(group I) antagonist 

mGluR(group I) antagonist 

CPPG 5 µM 1 eq.NaOH mGluR(group II+III) antagonist 

Strychnine 1 µM dH20 GlyR antagonist 

CGP55845 1 µM 

 

DMSO GABABR antagonist 

N.B.1 Chemical Names: 
DL-AP5: DL-2-Amino-5-phosphonopentanoic acid 
NBQX: 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 
MCPG: (S)-α-methyl-4-carboxyphenylglycine 
NPS 2390: N-tricyclo-[3.3.1.13,7]-dec-1-yl-2-quinoxalinecarboxamide 
CPPG: (RS)-α-Cyclopropyl-4-phosphonophenylglycine 
Strychnine: Strychnidin-10-one hydrochloride 
CGP55845: (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2 hydroxypropyl] 
(phenylmethyl) phosphinic acid 

N.B.2 The vast majority of experiments used NPS 2390 to block group 1 mGluRs. 
However, in a few of the early experiments reported in Chapter 3 MCPG was used 
instead. 
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 Antagonising GABA-activated GABAARs 2.5.2

GABA-activated GABAAR responses were blocked – thereby completing the isolation of s-

GABAARs – using the potent, selective competitive GABAAR antagonist, SR-95531 (SR; 

gabazine)(74,238–242). Two features of SR make it a powerful pharmacological tool to isolate 

s-GABAARs: 1) its ability to potently block the binding of GABA to GABAARs to prevent agonist-

dependent receptor activation, and 2) its very limited negative intrinsic efficacy, with previous 

studies showing that SR can only inhibit a small fraction of spontaneous receptor activity 

(192,199,246,257–260). SR has a <1 µM relative IC50 for antagonising GABAAR responses 

evoked by concentrations of GABA at, or close to, EC50 in recombinant expression systems 

(245,246,248–255) and cultured neurons (256). It also has a <1 µM relative IC50 against 

GABAAR responses evoked by 20 µM isoguvacine, another GABAAR agonist (244). The 

potency of SR, as with other GABAAR antagonists (418), but unlike agonists (179,235), is 

largely independent of the subunit composition of the receptor (104,248,252,254,419,420). And 

when used at 10 - 100 µM SR is considered saturating (261–268). Both McCartney and 

Wlodarczyk et al demonstrated that SR – at 20 and 25 µM, respectively – completely blocked 

both synaptic GABAAR currents and, crucially, tonic GABAAR currents activated by 5 µM of’ 

‘ambient’ GABA (74,233). This concentration of ambient GABA is an order of magnitude greater 

than hippocampal [GABA] recorded in vivo and, henceforth, under basal conditions 

([extracellular GABA] = 0.03-0.3 µM (74–77)), 25 µM SR will block all GABA-dependent 

GABAAR openings, whilst preserving virtually all of the s-GABAAR constitutive activity. 

Importantly, both McCartney et al and Wlodarczyk et al have shown using a ‘bicuculine control’ 

that the preservation of s-GABAAR signalling is not simply due to a failure of SR to bind to these 

receptors. Bicuculline is a competitive GABAAR inverse agonist: it blocks GABA binding to the 

orthosteric site and it also partially inhibits constitutive (s-GABAAR) receptor activity (because its 

negative efficacy is much higher than SR) (74,233,246,270). In the two aforementioned studies, 

application of SR completely reversed bicuculline-mediated inhibition. This competing 

interaction of SR and bicuculline – the ability of an antagonist to reverse the effects of an 

inverse agonist – confirms that both bicuculline and SR bind to s-GABAARs. And, furthermore, 

that the preservation of s-GABAAR activity in the presence of SR is due to a lack of significant 

negative efficacy – not a lack of binding. As a result, application of 25 µM SR produces an 
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experimental setting were any detectable GABAAR conductance can be attributed to 

constitutively active s-GABAARs. 

 The pharmacological block of s-GABAARs 2.5.3

The final step in this experimental paradigm is to quantify s-GABAAR conductance by 

completely blocking their activity using picrotoxin (PTX), a potent mixed GABAAR blocker. PTX 

inhibits the GABAAR via unconventional channel block, initially binding within the open-channel 

pore but then acting allosterically, not via simple hindrance of ion flow, to stabilise the GABAAR 

in a closed/resting, non-conductive state (98). Crucially, whilst PTX block is use-dependent 

because it requires an open-channel to access its binding site, it blocks both GABA-activated 

and spontaneously opening s-GABAARs. The great utility of PTX is its ability to completely 

inhibit s-GABAARs even when the orthosteric site is occupied by the neutral antagonist, SR, 

and, therefore, allows for precise quantification without confounding effects of GABA.  

In summary, in the present PhD both forms of tonic GABAAR activation – GABA-dependent and 

independent – can be independently quantified by exploiting the different the mechanism of 

action of SR and PTX (Summarised in Fig.2.3). In brief, SR is a competitive neutral antagonist 

that competes with GABA and, at saturating concentrations, eliminates GABA-dependent 

GABAAR activity; conversely, PTX binds to the inside the channel pore to block all active 

GABAARs, irrespective of if they were activated by GABA or open spontaneously. In a paired 

experimental paradigm, the input of GABA-dependent GABAARs was measured as the change 

in response (e.g. input resistance, firing rate, holding current, etc.) obtained under control 

conditions vs. after application of SR; whereas s-GABAAR activity was measured as the change 

in the response obtained in the presence of SR vs. after subsequent application of SR + PTX. In 

an unpaired experimental approach (e.g. for LTP), the measured response will be binary: s-

GABAARs will either be intact in the presence of SR, or blocked entirely with SR+PTX. 
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2.6 Measuring GABA-dependent and GABA-independent 
inhibition 

Whole-cell voltage-clamp recordings were made using the high [Cl
−
] (CsCl) ‘intracellular’ in 

order to quantify record GABAAR-mediated currents tonic and phasic currents at -70 mV.  

 Tonic inhibition 2.6.1

Tonic GABAAR-mediated currents were measured in a similar manner to that outlined in 

“Methods for recording and measuring tonic GABAA receptor-mediated inhibition” Bright and 

Smart, 2013 (230) (Fig.2.4). GABA-dependent tonic inhibition was measured as the difference 

between the mean holding current measured in the control blocking cocktail (DL-AP5, NBQX, 

CPPG, NPS2390, CGP55845 and strychnine) vs in the presence of SR. GABA-independent 

tonic inhibition was quantified as the holding current change of SR vs. SR+PTX. Mean holding 

current was recorded within a region where the drug(s) response had reached a stable maxima, 

and was calculated by averaging over 5 ms epochs that are free of IPSCs, taken every 250 ms, 

during a 30 second period (120-point average) (Fig.2.4). All drugs were bath applied. Typically, 

the maximal SR effect was observed 2 minutes after the drug entered the recording chamber; 

PTX took longer, typically 8 minutes, to exert maximal block due to its activity-dependent 

mechanism of action.  
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Bath-applied compounds were added either 1) prior to SR, when GABA-dependent GABAAR 

signalling was still intact – and so any change in holding current may be due to modulation of 

GABA-dependent GABAARs and/or s-GABAARs; or 2) after SR, when GABA-dependent 

GABAAR signalling was blocked – and so any change in holding current will not be due to 

modulation GABA-dependent GABAA signalling. The impact of any bath-applied compound was 

assessed first, by measuring the change in holding current before and after the drug, and, 

second – and most importantly – by measuring the amplitude of the outward current caused by 

PTX in the presence of the drug and SR and comparing it to with SR. (e.g. SRSR+PTX vs. 

DRUG+SRDRUG+SR+PTX). 

The compounds tested in this thesis are as follows: 

 Final Conc  Solvent Pharmacology 

Zinc 100 µM dH20 Non-competitive 

GABAAR antagonist 

L-655,708 20 µM DMSO α5-subunit  

GABAAR inverse agonist 

DS2 3 + 10 µM DMSO δ-subunit  

GABAAR PAM 

DPP-4-PIOL 1,3,10 +30 nM DMSO δ-subunit 

antagonist 

Diazepam 1 µM dH20 BDZ-site  

agonist 

Zolpidem 500 nM dH20 BDZ-site  

agonist 

Flumazenil 10 µM dH20 BDZ-site 

antagonist 

DMCM 1 + 2 µM DMSO BDZ-site  

inverse agonist 

Midazolam 40 + 120 nM DMSO BDZ-site  

agonist 

Pertussis Toxin 1µg.ml
-1

 dH20 Gαi blocker 

 

Bisindolylmale-

imide ii 

50 nM DMSO PKC inhibitor 

PKI 10 µM dH20 PKA inhibitor 

 

Br-cAMP 

 

1 mM dH20 PKA activator 
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2.8 I–V relationship of s-GABAARs and GABAAR reversal 
potential 

The I–V relationship of s-GABAAR-mediated currents was recorded using a Cs-

methanesulfonate-based intracellular solution conferring adult, mature physiological levels of Cl
-
 

(8 mM); the extracellular ACSF contained the standard ‘block-cocktail’ supplemented with 1 µM 

TTX and 1 µM Nifedipine in order to block voltage-gated sodium and calcium channels, 

respectively. Cadmium, the broad-spectrum voltage-gated calcium channel blocker, was not 

used because it has been reported to block GABAAR currents (421,422).  

The I-V profile of the recorded neuron was obtained by stepping the membrane from a resting 

potential of -90 mV to holding potentials between -105 and +15 mV, using +15 mV, 5s steps. 

The current delivered by s-GABAARs at a given holding potential was calculated by deducting 

the steady-state current (last 50ms of the voltage step) obtained in the presence of SR+PTX 

from that obtained with just SR.  

The reversal potential and rectification properties of s-GABAAR-mediated tonic currents were 

compared to evoked GABAAR IPSCs using a similar voltage step paradigm. IPSCs were evoked 

from the MPP and peak IPSC was recorded at holding potentials between -120 and +30 mV 

(+30 mv, 2.5 second steps; resting potential = -90 mV). The same Cs-methanesulfonate 

intracellular solution was used as in s-GABAAR I-V experiments; however, TTX and Nifedipine 

were omitted from the ACSF-blocking cocktail solution in order to permit neurotransmitter 

release. The I-V relationships were fit with Boltzmann functions, as in Pavlov et al, 2009 (387), 

and rectification was assessed by comparing the slope of the curve at -70 mV to that at 0 mV. 

The slope was obtained from the first-order derivative of the Boltzmann function (dI/dV). Below 

is the Boltzmann functions, where V50 is the potential at which current is halfway between 

Top and Bottom; and the slope describes the steepness of the curve. 

 𝑦 = 𝐵𝑜𝑡𝑡𝑜𝑚 +
𝑇𝑜𝑝−𝐵𝑜𝑡𝑡𝑜𝑚

1+exp(
𝑉50−𝑥

𝑠𝑙𝑜𝑝𝑒
)
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2.9 Recording of passive and active membrane properties 

The effect of s-GABAAR conductance on passive and active membrane properties was 

assessed using K-gluconate intracellular solution containing physiological (8 mM) Cl
-
; all 

recordings were made in current-clamp mode were performed from RMP (Ihold = 0). In each of 

these experiments, apart from firing frequency vs. current (f–I) relationship, the input of s-

GABAARs was measured using the paired recording protocol: in the majority of experiments the 

same measurement was made in ACSF containing (1) the blocking cocktail only (GABA-

activated and s-GABAARs intact); (2) then with SR added (only s-GABAARs active); and (3) 

finally, SR+ PTX (s-GABAARs blocked). In the minority of these “paired” experiments, 

measurements were only taken in condition (2) and (3), with condition (1) was omitted. For F-I 

curves, experiments were performed on separate neurons in condition (1) or (2) or (3). This 

unpaired approach was conducted in order to prevent near-maximal levels of neuron firing 

modifying subsequent membrane excitability, thereby complicating analysis.  

 Input resistance 2.9.1

DGGC input resistance was measured by recording the anti-peak voltage in response to 9 

hyperpolarising, -50 pA 500 ms, square-wave current injections from -50 to −450 pA. Input 

resistance was calculated according to Ohm’s Law, as the gradient of the straight line fitted 

to the voltage change against the injected current.  

 Membrane time constant 2.9.2

Membrane time constant (τm) was obtained by applying 30x -5 pA, 500 ms hyperpolarising 

current steps (from Ihold = 0); τm was calculated by the fitting the fall of the average membrane 

voltage with a mono-exponential decay. 

 Resting membrane potential 2.9.3

The input of s-GABAARs into RMP was assessed in a similar manner to changes in holding 

current: mean RMP values over 30 second recording periods, and the contribution of s-

GABAARs to RMP was determined as the difference in average RMP in the presence of SR, 

compared with SR + PTX.  
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 Rheobase 2.9.4

Rheobase was determined by incrementally depolarising the neuron using +5 pA, 0.7 s 

current injections and recording the minimum current necessary to trigger an action potential. 

The action potential evoked at rheobase was analysed for AP threshold voltage, with 

threshold defined as when ΔdV/Δt exceeds 20 mV/ms.  

 F-I relationship 2.9.5

The F–I relationship of a neuron was obtained by recording the number of action potentials 

elicited in response to a series of 25 pA, 0.5 s depolarising current injections between 0 and 

250 pA. The gain of the F-I relationship, measured as the slope of the linear region of the 

curve (50 pA to 175 pA) and the area under the F-I curve. 

2.10  Evoking postsynaptic responses by electrical stimulation 

Orthodromic synaptic stimulation was delivered through a bipolar tungsten stimulating 

electrodes: the medial perforant pathway (MPP) was stimulated by placing electrodes in the 

middle one-third of the molecular layer; for the lateral perforant pathway (LPP) electrodes were 

placed in the outer third. Stimulation intensity was controlled using DS2A constant voltage 

isolator (duration = 100 μs unless otherwise stated; intensity = 0.5 – 10 V). 
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2.11  Measuring the temporal window for successful 
coincidence detection 

The summation capacity of a neuron is under strong GABA-ergic control and, henceforth, may 

be influenced by s-GABAARs. The temporal window within which two excitatory inputs, activated 

asynchronously, can be successfully summated to trigger an action potential was used as a 

measure of coincidence detection precision. 

Coincidence detection experiments were performed in current-clamp mode (Ihold = 0 pA) using 

the K-gluconate intracellular solution in an ACSF, which – in order to be able to evoke EPSPs – 

did not contain any of the blockers of excitatory transmission and, instead, only contained 

CGP55845 and strychnine. Strychnine was included to prevent the results being confounded by 

PTX-mediated block of GlyRs; CGP55845 was included to prevent activation of GABABRs by 

spill-over GABA, the amount of which could have been increased by SR. Two distinct EPSPs 

were evoked using two separate stimulation electrodes: one placed in the LPP, the other in 

the MPP. The stimulation intensity was then adjusted so that when the two pathways were 

activated simultaneously (t= 0 ms), the patched neuron generated an action potential 50 – 60 

% of the time.  

The temporal summation protocol had 4 steps. (1) A selected pathway (e.g. MPP) was 

stimulated so that it precedes stimulation of the other by an inter-stimulus interval (ISI) of 40 

ms; (2) the ISI was then decreased, in 10 ms increments at a rate of 0.1 Hz, until the two 

stimulations were delivered simultaneously (ISI = 0ms). (3) This stimulation protocol was 

then reversed so that the pathway stimulated second was now stimulated first (4). In order to 

produce a firing probability, the entire protocol was repeated 3 times, meaning that for each 

ISI (from +40 ms to – 40 ms, in 10 ms increments) there was an accompanying firing 

probability of either: 0%, 33.3%, 66.6% or 100%. 

In the absence of any GABAAR antagonists, evoked potentials are a composite of excitatory 

and inhibitory signalling. GABA-dependent receptors were blocked using SR, and the 

experiment was repeated. In all experiments, SR caused a saturation of the response: a high 

percentage firing probability was observed at all ISIs. Henceforth, in order to  be able to 

detect if the subsequent addition of PTX (blocking s-GABAARs) had an additional effect 
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2.12  LTP in the medial perforant pathway 

The effect of s-GABAAR signalling on LTP amplitude was assessed in the extracellular field 

recording configuration. Two other modifications were made to the basic recording set-up. 

Firstly, the flow-rate of ACSF was reduced to ~4 ml.min
-1

; this increased the stability of the field 

response in these long, often in excess of 90 minutes, recordings. Secondly, the low-pass filter 

was changed from 8 kHz to 1.4 kHz. The recording protocol used in these experiments was 

unpaired: meaning that there was no sequential addition of GABA antagonists; instead, the 

entire recording was performed in the presence of SR or SR+PTX – the only other drug 

included in the recording ACSF was strychnine, which was present in all recordings.  

Field potentials were evoked in the MPP using bipolar stimulating electrodes placed in the 

middle one-third of the molecular layer, 50 to 100 µm below the slice surface, near the apex of 

the dentate gyrus. Extracellular field postsynaptic potentials (fEPSPs) were recorded in current-

clamp mode (Ihold = 0 pA) using low resistance recording pipettes filled with ACSF (1-2 MΩ); 

pipettes were placed in the middle-third of the molecular layer, ~200 µm away from the 

stimulating electrode. 

fEPSPs were evoked at 30 second intervals using a square wave, 50 µs in duration, voltage 

pulses, and quantified according to the slope of their linear rising phase. Stimulation intensity 

was set to give an fEPSP slope ~40% of maximum, as determined by the input/output 

relationship (1 – 8 V; 1 V increments). fEPSPs evoked at this intensity were typically stable and 

exhibited a visible population spike; any slices that yielded unstable responses or exhibited 

small population spikes were discarded. A baseline fEPSP slope was calculated from the 

average of the 20 responses over the 10 min prior to LTP conditioning. 

LTP was induced by theta-burst stimulation (TBS), repeated 4 times at 30 second intervals. 

Each TBS episode was comprised of 10 bursts of five pulses at 100 Hz, with each burst 

separated by 200 ms. During LTP induction the pulse duration was increased from 50 to 200 µs. 

The LTP protocol described was chosen because it robustly induced sustained potentiation in 

the DG in all pilot experiments; this meant that it was a suitable protocol to address the 

hypothesis ‘do s-GABAARs modify LTP amplitude?’ Henceforth, the analysis of LTP was not 
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Chapter 3  
 
The Functional Impact of s-GABAARs in Dentate 
Gyrus Granule Cells 

3.1 Overview 

It has been previously shown that spontaneously opening GABAA receptors (s-GABAARs) 

generate a GABA-independent tonic conductance in granule cells of the dentate gyrus (DGGCs) 

(74). However, at the time of commencing the present thesis, the functional impact of this 

conductance upon cellular excitability was unknown. The experiments performed for this 

chapter sought to address this ambiguity by characterising the function of s-GABAAR signalling 

in DGGCs. Specifically, we aimed to characterise both 1) the nature of the s-GABAAR signal 

delivered to DGGCs and 2) how it is interpreted by these neurons. To achieve this aim, we 

measured the effect of s-GABAAR-mediated conductance on passive membrane properties 

(input resistance, membrane time constant, RMP), active membrane properties (excitability, 

rheobase, AP threshold voltage) and the input-output (I-O) function of DGGCs (as expressed in 

F-I curves). We also explored the impact of s-GABAARs on the temporal precision of signal 

integration (coincidence detection) and on neural plasticity (LTP), both of which are important 

for proper DGGC function in the brain. Some of the findings presented in this chapter have been 

published (415,417). 

Experimental: 

O’Neill N, Sylantyev S. Spontaneously opening GABAA receptors play a significant role in 

neuronal signal filtering and integration. Cell Death Dis. 2018;9(8).  

Mini-Review: 

O’Neill N, Sylantyev S. The Functional Role of Spontaneously Opening GABAA 

Receptors in Neural Transmission. 2019;12:1–7 
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3.2 Introduction 

Tonic inhibition, or more specifically, the tonic conductance that is generated by persistently 

active GABAARs, is a slow form of neurotransmission that is expressed widely across many 

different neuron types (61,224,230). The persistent activation of GABAARs can occur via GABA-

dependent and GABA-independent mechanisms (74,224,233,234). Low concentrations of 

GABA activate high-affinity GABAARs located outside the synapse – at peri-/extra-synaptic sites 

– to generate GABA-dependent tonic conductances (224). In contrast, GABA-independent tonic 

conductances are generated by GABAARs that activate spontaneously, in the absence of 

GABA, because they exhibit constitutive receptor gating (74,233,234,236,237). Because 

spontaneously activating GABAARs (s-GABAARs) do not require GABA to activate, they are 

resistant to competitive antagonists (e.g. SR) but can be inhibited by inverse agonists (e.g. 

bicuculline) and channel-blockers (sometimes termed non-competitive antagonists e.g., PTX) 

(74,233,234,236,237).  

The literature on GABA-dependent tonic currents is vast and sprawling: persistent currents 

activated by ambient GABA have been detected in most brain regions, across a litany of neuron 

types (224,230). The ubiquity of this signal is well summarised by Lee and Maguire in 2014, 

which details over 60 neuron types that express tonic GABAAR currents (224).  

By contrast, there is a relative paucity of studies that have formally and knowingly detected the 

presence of GABA-independent tonic currents. To date, s-GABAAR-mediated tonic currents 

have been confirmed in only three neuron types: hippocampal pyramidal neurons (233) and 

granule neurons (74), and a subpopulation of central amygdala neurons that express PKCδ 

(234). As discussed in the introduction, this does necessarily reflect a dearth of s-GABAAR-

mediated tonic conductances in the CNS. There is evidence that s-GABAAR signalling is more 

widespread phenomenon than has been previously anticipated; this reaffirms the importance of 

gaining a proper understanding of their function. 

So far, however, the function of the tonic s-GABAAR conductance has only been investigated in 

one neuron type: the PKCδ positive neurons of the central amygdala (234). In this study, Botta 

et al showed that selectively blocking s-GABAAR currents caused a slight depolarizing shift in 
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RMP, an increase in input resistance, a higher spontaneous firing rate, and an increase in 

excitability (234).  

At present, there are no corresponding functional data on s-GABAAR mediated tonic currents 

from any other brain region/neuron type. The two studies that recorded s-GABAAR tonic 

currents in the hippocampus – McCartney, 2007 et al from pyramidal cells (233) and 

Wlodarczyk et al from granule cells (74) – performed all their experiments using high-[Cl
-
], Cs-

based intracellular solution. This intracellular solution enables GABAAR currents to be recorded 

at RMP (EGABA ~ 0 mV); it also has excellent space-clamp properties due to block of membrane 

K
+ 

current (423), but as a result cannot be used to measure the passive and active properties of 

a membrane in a physiological state (e.g. with K
+
 channel conductance intact). To assess the 

physiological function of GABAAR currents, K
+
 must be used as the major intracellular solution 

cation, not Cs
+
. 

Thus, the function of s-GABAAR-mediated tonic conductances remains largely unexplored, and 

in the hippocampus is unknown – this is despite the fact that s-GABAARs provide virtually of the 

tonic conductance in DGGCs (74). In this chapter, we sought to characterise 1) the nature of the 

s-GABAAR signal delivered to DGGCs and 2) how it is interpreted by these neurons. We opted 

to study DGGCs because, first, s-GABAAR tonic conductances have been confirmed in these 

neurons and, second, because the DG, located as it is at the interface between the cortex and 

the hippocampus (424), has an important role in the brain. The DG has been postulated to 

perform a variety of important functions that are necessary for proper cognitive, emotional and 

mnemonic processing in the brain. Notable among the proposed functions of the DG are 1) 

pattern separation and 2) gating (thereby curtailing) the flow of aberrant excitation into the 

hippocampus proper. In the following section, we will explore how the circuit organisation of the 

DG and particularly the intrinsic properties of DGGCs facilitate its role as both a pattern 

separator and a gate. At the conclusion of this section, we will hypothesise how s-GABAARs 

may affect these properties, thereby setting the scene for the results section, in which we 

explore the function of s-GABAAR-mediated tonic conductances in DGGCs. 
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 The Dentate Gyrus: Gateway into the hippocampus 3.2.1

The dentate gyrus (DG) is one of the major hippocampal sub-regions and marks the entry of the 

canonical tri-synaptic loop (Entorhinal cortex (EC) Layer II → DG → CA3 → CA1) (424,425) 

(see diagram on the following page). The tri-synaptic loop is the main route of information flow 

through the hippocampus (424,425) and has been used extensively as an anatomical substrate 

for the study of learning and memory (426–428). The DG is a V-shaped structure that consists 

of three layers: the outermost, molecular layer; the middle, granule cell layer; and the innermost, 

hilus (polymorphic layer) (425). The granule layer surrounds the hilus on three sides and 

contains the principal excitatory cells of the DG: the DGGCs. There are ~1,000,000 of these 

small, round, bipolar cells per hemisphere in rats (and ~10 million in humans) (425,429). 

DGGCs send their apical, cone-shaped dendritic trees into the molecular layer and receive their 

main excitatory input from EC layer II stellate cells (~120,000 per hemisphere in rat) via the 

perforant pathway, so termed because it ‘perforates’ the hippocampal subiculum (425).  

The perforant pathway has two divisions, named after the EC subdivision from which they 

emanate: the lateral perforant path (LPP), which terminates on DGGC dendrites in the outer 

third of the molecular layer and conveys novel object information (430,431); and the medial 

perforant path (MPP), which terminates on DGGC dendrites in the middle third of the molecular 

layer and transmits spatial information (430,431). DGGCs integrate and interpret this signal, and 

when they fire an action potential, they send excitatory signals via their axons, termed mossy 

fibres. These fibres project through the hilus and make sparse but strong excitatory connections 

with CA3 pyramidal cells; there are ~300,000 of these neurons per hemisphere in rat, and each 

of them receives only ~50 mossy fiber inputs (390,425,432). Pyramidal cells in area CA3 then 

send axons via the Schaffer collateral pathway to CA1 pyramidal neurons, which, in turn, project 

to the subiculum and back to the EC, thereby closing the loop (425).  
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DGGCs also receive inhibitory inputs (both feed-forward and feed-back) from at least four 

families of GABAergic interneurons (433,434): 1) parvalbumin-positive (PV) basket cells 

(targeting the somata of DGGCs as well as other PV cells), and parvalbumin-positive fast 

spiking axo-axonic cells (targeting the axon initial segment (AIS) of DGGCs); 2) cholecystokinin-

positive (CCK) hilar associational/commissural path-associated cells (targeting DGGC dendrites 

in the inner molecular layer and the somata as well as other CCK and PV cells), and 

cholecystokinin-positive total molecular layer cells (targeting DGGC dendrites across the entire 

molecular layer as well as hilar interneurons); 3) somatostatin-positive (SOM) hilar associated 

cells (targeting GABA-ergic interneurons in the hilus as well as the medial septum), and SOM-

positive hilar perforant path cells (targeting DGGC dendrites in the outer molecular layer as well 

as PV and other SOM cells); 4) Molecular layer perforant path cells (targeting DGGC dendrites 

in the outer 2/3rds of the molecular layer and interneurons) (433,434). A neurogliaform 

interneuron subtype is also present in the DG.  

In addition to DGGCs and GABA-ergic interneurons, the other major cell type in the DG is the 

mossy cell. These glutamatergic neurons are loosely distributed throughout the hilus (the 

polymorphic region between the granule cell layer and CA3); they receive inputs from and send 

excitatory commissural/associative connections to DGGCs, other mossy cells and GABA-ergic 

interneurons (425). Because of their connections with GABA-ergic interneurons, in normal 

conditions, the net effect of mossy cell excitation on DGGCs is actually inhibitory (435). 

 The Dentate Gyrus functions as a gate and pattern 3.2.2
separator   

The DG is optimised at both the network and cellular level to act as a ‘gate’, or filter, that 

controls both the amount and the character of the excitatory signals that flow from the cortex 

into the hippocampus proper (436). In the normotopic brain, the DG, by acting as a gatekeeper, 

helps to prevent the propagation of pathological epileptiform discharges into the downstream 

hippocampal circuits (436–439). However, the DG is not just a barrier aberrant excitation: it is 

also a critical locus for a set of computations that support proper cognitive processing in the 

brain. Chief among these computations is neural pattern separation: the orthogonalization of a 

set of similar input patterns into a dissimilar set of output patterns (432,440,441). At the level of 
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the hippocampal circuit, pattern separation describes the transformation of highly overlapping 

EC input signals into dispersed (orthogonalized) representations in the DG, which are then 

projected to area CA3 as lowly overlapping patterns of DGGC firing (432,440).   

The idea that certain neural circuits can perform pattern separation – and that pattern 

separation at the level of cell ensembles aids proper cognitive processing – was originally 

proposed by David Marr, in three ground breaking computational studies on the cerebellum 

(442), neocortex (443) and the hippocampus (444). Marr noted that the DG might increase the 

“sparseness of representations” in CA3, but it was in subsequent computational studies that the 

DG was proposed explicitly as the pattern separator in the hippocampus (432,445–453). This 

was initially motivated the anatomy of the DG circuitry, specifically, the over three-fold higher 

cell number in the DG relative to their EC inputs and because DGGCs making few but relatively 

powerful contacts with CA3 pyramidal cells (390,425). It is thought that the expansion in network 

size from EC to DG causes similar input signals to be dispersed (pattern separated), thereby 

reducing the chance of the same population of DGGCs becoming active (432,445–453).  

It has been posited at the behavioural level that neural pattern separation – by producing 

anticorrelated firing patterns for similar contexts – better enables animals to 1) discriminate 

similar environments and experiences (discrimination learning) and 2) encode memory traces 

with minimal the interference, or blending, making them more precise and less susceptible to 

recall errors (454,455). Multiple studies support the DG acting as a pattern separator (reviewed 

in (455)): animals with impaired DG function, either through selective lesion (456,457), knockout 

of the GluN1 subunit of the NMDAR (458), or optogenetic silencing (459–461), show deficits in 

tasks thought to rely on neural pattern separation e.g. spatial separation (456), context-specific 

fear conditioning (458,460,461), location or object discrimination (457,459,460). In addition, 

fMRI recordings from human subjects performing show increases in blood-oxygen-level-

dependent (BOLD) signal in the DG during pattern separation tasks (462,463). Finally, in vivo 

electrophysiological recordings from the DG provide perhaps the best empirical evidence that 

the DG is a locus for pattern separation (464–466), notable among these is Neunuebel and 

Knierim, 2013+2014 (431,466). Collectively, the in vivo recordings show that correlated patterns 

of activity in the DG are highly sensitive to small alterations to the environment, with changes 
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(decorrelations) in DG activity observed for even very subtle modifications to the shape of the 

animal’s environment (464–466). 

Although it was the DG network anatomy that initially marked it out as a pattern separator, 

subsequent studies have shown that the intrinsic properties of DGGCs and their circuit 

connectivity also facilitate pattern separation (432,441,445–453). These same properties 

likewise enable the DG to perform the more straightforward role of gatekeeping aberrant 

excitation (436,439). Many of the intrinsic properties of DGGCs could be affected by the s-

GABAAR-mediated tonic conductance. 

 DGGCs are sparsely active  3.2.3

Perhaps the most important property of DGGCs in relation to pattern separation and gating is 

their sparse activity (441): recordings from awake behaving rats or mice have demonstrated that 

only a small portion (2-5%) of the DGGC population are active during a given cognitive task 

(467,468), and that the DGGCs that are active have a low overall firing rate (413,468–470); 

typically < 1 Hz; but can vary a range of 0.04 Hz to 2.9 Hz for individual DGGCs (469).  

When DGGCs do fire, however, they typically do so in bursts of 2-6 APs over a time frame in 

the tens of milliseconds (413,468). AP bursts are typically separated by periods of quiescence 

ranging between 4 and 7 seconds (413), and the timing of the APs within a burst is phase-

locked to theta (4-10 Hz)-gamma (30-90 Hz) cycles in the local field potential (LFP) (413,470). 

There is strong evidence that the theta LFP is largely dependent on excitatory synaptic 

transmission coming from the EC, whereas the gamma LFP relies on local GABA-ergic 

transmission (413). In terms of pattern separation, because only a tiny proportion of the DGGC 

population are active at a given time, it means that similar inputs can be readily encoded in the 

DG as non-overlapping (orthogonalized) representations (432,441,445–453). 

The sparsification of neuronal activity across the DGGC population is dependent on the 

active/passive membrane properties of DGGCs and the circuit organisation of the DG. At the 

circuit level, there are two key factors at play: the first is the dearth of excitatory (recurrent) 

connections between DGGCs (425,471); the second is that DGGCs are subject to strong 

inhibition from GABA-ergic interneurons (436).   
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 Circuit organisation facilitates pattern separation and 3.2.4
gating  

The lack of recurrent excitation allows for the specific activation of a small subpopulation of 

DGGCs without causing collateral excitation of other DGGCs throughout the network. In animal 

models and patients with temporal lobe epilepsy, wherein the DG gate is often compromised, 

there is an increase in the number of recurrent excitatory connections between DGGCs due to 

so-called mossy fiber ‘sprouting’, which describes the retrograde projection of DGGC axons 

(mossy fibers) into the inner molecular layer (425,471,472). These aberrant excitatory 

connections cause otherwise silent DGGCs to spike (472), and this has been shown to cause a 

breakdown in DG gate-keeping: in ex vivo slices, epileptiform discharges are able to propagate 

from the EC, through the DG and into CA3 (438). Computational models indicate that aberrant 

recurrent excitation also prevents the DG from acting as an effective pattern separator (473). 

The GABA-ergic system of interneurons also facilitates the sparse firing of DGGCs; they do so 

by affecting the membrane properties of DGGCs and by precipitating temporal oscillations 

across the DG network (433,434,474,475). Of the interneuron sub-types mentioned previously 

the two most widely studied are 1) the PV basket cells (BCs), which target the soma of DGGCs 

as well as other PV interneurons; and 2) the SOM hilar perforant path (HIPP) cells, which target 

DGGC dendrites in the molecular layer (434). 

PV BCs have been shown to facilitate sparse DGGC firing and pattern separation through a 

‘winner-takes-all’ strategy, in which the most excited DGGCs recruit PV BCs to inhibit the less-

excited DGGCs – or, to put it another way, PV BCs allow the most excited DGGCs to compete 

with the less excited ones (476,477). The key to this mechanism is that in the DG there is 

uniquely high proportion of lateral inhibition (unidirectional: DGGCPV BCother DGGCs) 

relative to recurrent inhibition (bi-directional: DGGC⇄ PV BC); also important is the fast-

signalling characteristics of PV BCs, specifically their high firing rate, rapid dendritic processing, 

short AP duration and somatic targeting (434,476,477). The high level of lateral inhibition allows 

highly excited ‘winner DGGCs’ to efficiently inhibit a large population of less excited ‘non-winner 

DGGCs’ without inhibiting themselves (476,477).  
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DGGCs can also laterally inhibit other DGGCs by activating SOM HIPPs (476,478,479); 

however, because SOM HIPPs innervate the dendrites they do not affect AP firing directly (as is 

the case for PV BCs), but instead constrain DGGC excitability by shunting the synaptic input to 

DGGCs (478,479). GABA-ergic inhibition thus provides a competitive mechanism for enhancing 

pattern separation. A recent fMRI study in humans further supports this notion: Koolschijn et al 

showed that reducing the concentration of GABA using transcranial direct current stimulation 

acts to increase the amount of memory interference in proportion to the reduction in GABA 

(463). 

 Intrinsic properties of DGGCs facilitates pattern 3.2.5
separation and gating 

The intrinsic (active and passive) membrane properties of DGGCs also facilitate their sparse 

activation pattern. And it is primarily by augmenting these properties, that extrinsic inhibitory 

factors, such as GABA-ergic inputs – and thus perhaps s-GABAARs – can decrease excitability. 

In vivo (413,414) and ex vivo recordings (404–412) demonstrate that DGGCs have a relatively 

hyperpolarised membrane potential, typically between -68 mV and -80 mV (404–411,413,414), 

which is >15 mV more hyperpolarised than CA1 and CA3 pyramidal neurons (414). This 

hyperpolarised resting membrane potential is coupled with a relatively depolarised AP threshold 

of ~ -41 mV ( ~10 mV more depolarised than CA1 pyramidal neurons) (414), which leads to 

DGGCs requiring a large amount of depolarising current to fire an action potential: in vivo, the 

AP threshold current, or rheobase, in DGGCs is six times greater than that of CA1 and CA3 

pyramidal cells (414). It is chiefly because DGGCs require a high amount of depolarising current 

to spike that they are, as a population, extremely reluctant to activate and, thus, largely 

quiescent. When DGGCs do fire, however, they preferentially do so in bursts (413,468); this is 

owing to their high gain (over four times greater than CA1 and CA3 pyramidal cells) (414) and 

substantial spike-frequency adaptation/accommodation (the decrease in firing rate during 

prolong suprathreshold depolarisation); the latter of which is caused by depolarisation-

dependent voltage-gated Na
+
 channel inactivation (480). The burst firing of DGGCs is crucial 

because it – along with the high strength of mossy fiber synapses – allows the DGGCs that are 

active to reliably excite their target neurons in CA3 (481,482). 
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The active and passive properties of dendrites affect how synaptic inputs are integrated and 

processed, and in DGGCs they are optimised to facilitate sparse firing (483,484). DGGCs are 

relatively small cells, but their dendritic trees show profuse branching, which leads to lots of 

small calibre, sub-micron in diameter, branches (483). Dual somatodendritic recordings have 

demonstrated that DGGC dendrites are linear integrators of synaptic inputs and exhibit a strong 

distance-dependent attenuation for synaptic potentials and back-propagating APs (483,485). 

Attenuation is caused by DGGC dendrites having a relatively low density of voltage-gated Na
+
 

channel, but a high enrichment (relative to the soma) of A-type K
+ 

channels (483,485). As a 

result, DGGCs require a large number of synchronised synaptic inputs – posited to be 

approximately 400 concurrently active afferent fibers (486) – to discharge: they can thus act as 

highly effective coincidence detectors (483,485,487).  

Another consequence of highly attenuating dendrites is that DGGCs do not support a classical 

mode of LTP that relies on the pairing of synaptic excitation with axosomatic APs that back-

propagate into the dendritic tree (485). Instead, voltage-gated Na
+
 channels in DGGC dendrites, 

despite their relatively low density, generate local dendritic spikes (485). It is these spikes that 

provide the associative postsynaptic depolarisation required for Ca
2+

 entry through NMDARs 

and, in turn, the induction and expression of LTP at perforant path-DGGC synapses (485,488–

490). The role of LTP – and its opposite, LTD (long-term depression) – in pattern separation are 

not fully understood. Evidence supporting the role of an increase in synaptic efficacy in pattern 

separation comes from mice lacking the GluN1 subunit of the NMDAR in their DGGCs (458). In 

these mice, contextual fear discrimination learning, a behavioural level pattern separation task, 

is significantly impaired. In contrast, other behaviours that are not thought to require pattern 

separation, such as contextual fear conditioning and water maze spatial learning, are unaffected 

(458). This disruption to behavioural pattern separation in GluN1 KO mice is not associated with 

changes to standard excitatory transmission but is connected to an impairment in LTP, 

indicating that pattern separation involves/requires the strengthening of synaptic connections 

(458). Conversely, network simulations of the DG and computational studies have shown that 

enhancing the level of LTP actually attenuates circuit pattern separation, whereas LTD, because 

it can remove redundant DGGC representations, enhances pattern separation (452,491). 
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Another brain function that has been posited to involve both the DG and LTP is long-term 

memory. Indeed, it was in the DG of rabbits that LTP was originally observed following high 

frequency (tetanic) stimulation of the rabbit’s perforant path, first by Terje Lømo in 1966 (492) 

and later in 1973 by Bliss and Lomo (493), who reported “input specificity” of LTP, and by Bliss 

and Gardner-Medwin, who reported that LTP could persist for days in unanaesthetized rabbits 

(494). LTP is defined as a long-lasting enhancement in synaptic efficacy following the delivery of 

a brief, high-frequency stimulation. In the first full report of LTP by Bliss and Lømo, it was 

posited that LTP might be "potentially useful for information storage” (493). This notion – that 

memories are stored in the brain via modifications to synaptic efficacy – has its origins in the 

work of Cajal, who posited that learning leads to a change in the ‘resistance’ or strength of 

synapse (495,496); and Konorski, who was the first to apply the term 'plasticity' (497), and 

Hebb, whose famous postulate stated “when an axon of cell A is near enough to excite a cell B 

and repeatedly or persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased” 

(498).  

Over the past half-century following LTP’s initial discovery, a heroic amount of research has 

been undertaken in order to try and answer the so-called “million dollar question”: does memory 

= LTP/LTD? (499). What is clear from this body of research is: 

1) LTP and LTD exhibit many of the characteristics that are necessary for cellular mechanism 

that underlies learning and memory: LTP is persistent, in that under the right conditions LTP in 

vivo can be expressed for months (500); LTP is input specific, in that LTP only occurs at active 

synapses (inputs) (493); LTP is co-operative, in that it requires the concerted activation of a 

considerable number of active inputs (501); LTP is associative, in that weakly active inputs, 

which would otherwise be unable to induce LTP, can be potentiated when they occur with a 

concurrently active strong inputs (502). In addition, 2) LTP is detectable in animals that are 

learning and forming memories (503–509). And 3) Blocking LTP prior to its induction or 

reversing it once it is expressed attenuates memory (503–508).  

However, what has proved particularly difficult, is the transition from showing that LTP is 

associated (or correlated) with memory to confirming that LTP is responsible for memory. 
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Recent technological advances, notably engram cell labelling (24,509–511) and engineering 

LTP/LTD with optogenetics (512) have allowed researchers to test if artificially inducing LTP can 

generate an apparent memory; this mimicry goes some way to showing causality and gives 

further credence to the view, shared by many, that LTP is a physiological process that underlies 

many forms of memory and learning in the brain. Nevertheless, it is important to note that the 

LTP model of learning and memory is still highly controversial, with no apparent consensus – 

see (499,510,513–515) for thoughtful discussions. 
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 Studying the impact of tonically active s-GABAARs on 3.2.6
DGGC function  

As outlined in the previous section, the DG is proposed to function as both a pattern separator 

and a gate to aberrant excitation. Both of these functions are thought to rely heavily on the 

sparse activity across the DGGC population. The circuit organisation of the DG is optimised for 

sparse DGGC firing through the low level of recurrent excitatory connections between DGGCs 

and the high level of interconnections between DGGCs and GABA-ergic interneurons. The 

intrinsic properties of DGGCs are also optimised sparse firing: a relatively hyperpolarised RMP, 

a depolarised AP threshold voltage and a high rheobase, as well as pronounced spike-

frequency adaptation and strongly attenuating dendrites, all work in concert to make DGGCs a 

neuron type that is very resistant to firing. In order for DGGCs to fire an AP, they require a 

relatively large amount of concerted excitation over a narrow temporal window and are, 

therefore, considered effective coincidence detectors.  

GABA-dependent tonic GABAAR conductances have been shown – across multiple brain 

regions and neuron types – to modulate many of the above mentioned intrinsic cell properties 

that are critical for sparse firing and proper function of DGGCs (see the overview in Chapter 1). 

What is not currently known is whether GABA-independent, s-GABAAR-mediated tonic 

conductances can impact neural function to a similar degree or in the same manner as their 

GABA-dependent counterpart – although, as a starting point, it does seem appropriate to 

assume that there is reasonable parity between the two signals. Given this, and in light of s-

GABAARs provide virtually all the tonic conductance in DGGCs, we propose – and in the results 

section aim to test the idea – that s-GABAARs act as a significant brake on excitability and thus 

can be considered to be of direct functional importance for the sparse firing of DGGCs and, in 

turn, the function of the DG network as a whole. 

From the extensive literature on the function of GABA-dependent tonic conductances, it is clear 

that their functional impact varies substantially between different neuron types (Reviewed in Lee 

and Maguire 2014; (224)). Most of this variation in the functional impact tonic GABAAR 

signalling (i.e. whether the neuron more or less likely to fire) is accounted for by neuron-specific 
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differences in 1) the nature of the tonic input signal and 2) how it is integrated and interpreted by 

the neuron.  

The input signal of tonically active GABAARs is a composite of increased membrane 

conductance (shunting) and – if there is a Cl
- 
driving force – membrane polarization, which can 

be hyperpolarising (when EGABA<RMP) or depolarizing (when EGABA>RMP). These two facets of 

the input signal can be synergistic with one another (e.g. when an increase in membrane 

conductance is coupled with hyperpolarisation) or act antagonistically (e.g. when an increase in 

membrane conductance occurs alongside depolarisation) – and so modulating either one of 

them can change (on occasion even invert) the nature of the signal that is inputted to the 

neuron (226).  

The integration and interpretation of the tonic GABAAR signal by the neuron is what ultimately 

determines its function. There are a host of intrinsic neural properties that control how a neuron 

processes the tonic GABAAR signal, such as the RMP (291), the level of stochastic noise 

(292,293), active dendritic conductances (289–291,295) and spike-frequency adaptation 

(294,406,516,517). And because different neuron families exhibit strong deviations in these 

properties, it means that identical tonic GABAAR input signals can elicit very different output 

responses across different neuronal populations (291).  

These two factors will be critical to understanding s-GABAAR function; however, neither the 

nature of the input signal that s-GABAARs provide, nor how it is integrated and interpreted by 

DGGCs is currently known. 

In regard to the s-GABAAR input signal: in DGGCs, because EGABA is typically close to RMP, 

and well below AP threshold voltage, GABAARs typically deliver shunting inhibition: an increase 

in membrane conductance without a substantial change in RMP. That said, it is important to 

note that activation GABAARs has, on occasion, been reported to weakly depolarising in 

DGGCs (518), whereas others have shown they are weakly hyperpolarising (414). Typically, the 

EGABA in mature, adult DGGCs is between -70 mV and -80 mV (307,401–403); and the RMP is 

between -68 mV and -80 mV (404–414). For the experiments pertaining to the functional impact 

s-GABAARs, we will employ an ACSF and intracellular pipette solution that accurately mimics 
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the physiological EGABA and RMP of DGGCs; under these conditions it is expected that s-

GABAARs will produce shunting inhibition. This means that s-GABAAR currents should be close 

to zero at RMP, and thus, blocking s-GABAARs should not significantly impact RMP. 

Shunting inhibition, as explained in the introduction, typically exerts different functional effects 

when the neuron is below AP threshold voltage vs. when it is above threshold. Below threshold, 

shunting inhibition reduces excitability by exerting a divisive effect on sub-threshold voltages in 

accordance with Ohm’s law (V=I/G): the increase in conductance caused by shunting means 

that a depolarising voltage change that is initiated by a given excitatory current is lower, and 

decays faster due to a decrease of the membrane time constant (316–318). This means that 

more excitatory current is required to cross the AP threshold voltage and initiate an action 

potential (the rheobase current). Thus, through its actions on subthreshold voltages, an s-

GABAAR-mediated shunt might be one of several shunting conductances that are present in 

DGGCs that facilitate sparse firing by raising the rheobase current. If this is the case, then 

blocking s-GABAARs should reduce the rheobase. 

Although shunting has a divisive effect at sub-threshold voltages, above threshold, it generally 

exerts a purely subtractive effect on the I-O function of the neuron, with no divisive/multiplicative 

effect on the I-O gain (322,325). In the AP firing number-current (F-I) curves, which is a 

common method for assessing the I-O function of a neuron, subtraction is indicated by a 

rightward shift (offset) of the F-I curve along the x-axis, with no effect on the slope (gain) of the 

curve (322,325). In accordance with this, if 1) s-GABAARs produce a shunting conductance and 

2) this conductance is large enough to affect DGGC excitability, then this change in excitability 

should be underpinned by a subtractive effect on the I-O function. If this is indeed the case, then 

blocking s-GABAAR activity will cause a leftward (additive) offset in the F-I curve of DGGCs, 

with no effect on the slope (gain) of the curve.  

That said, certain intrinsic neural properties can cause shunting inhibition to act divisively to 

affect the gain of the I-O function – see (289–295,517) and the appendix for more on this topic. 

The idea that the intrinsic properties of a neuron can affect how it processes incoming signals is 

linked to the second unknown we will be exploring in this results chapter: namely, how do 

DGGCs interpret the s-GABAAR input signal? One notable intrinsic property that facilitates gain 
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control of I-O by shunting inhibition is spike-frequency adaptation. Specifically, shunting 

enhances spike-frequency adaptation to decrease steady state firing rate and, in turn, decrease 

gain (294,517). DGGCs show pronounced spike-frequency adaptation (480,516), and this 

might, therefore, provide a route through which s-GABAARs can affect the F-I gain. If this is the 

case, then blocking s-GABAAR activity should increase the slope of the F-I curve but not offset 

it. Another factor, this time related to the input signal, that can facilitate gain control through 

shunting inhibition, is whether or not the shunting conductance exhibits outward rectification 

(387). Henceforth, it will be important to characterise the I-V profile of s-GABAARs, which is 

currently unknown, in order to understand their function in DGGCs properly. 

In vivo, neurons face a constant barrage of excitatory and inhibitory synaptic inputs that induce 

high-amounts of stochastic fluctuations in the membrane potential (519). One of the principal 

actions of DGGCs is to essentially ‘filter’ perforant-path inputs and only deliver an output (e.g 

fire one or a burst of APs) to CA3 when there is a relatively large amount of convergent 

excitation. Underscoring the filtering function of DGGCs is the narrow temporal window over 

which they can summate synaptic inputs to fire an action potential i.e. DGGCs are effective 

coincidence detectors. In principle, and in line with findings for GABA-dependent tonic currents 

(297,298), s-GABAAR shunt might be one mechanism by which DGGCs maintain a narrow 

temporal window for coincidence detection and increase precision for temporal integration. If s-

GABAARs do support a narrow temporal window for coincidence detection, then blocking their 

activity should increase the time interval over which two subthreshold inputs can be summated 

to fire an action potential with high probability.  

Finally, if indeed it is the case that s-GABAARs can modulate both excitability and the temporal 

precision of input signal integration, this would strongly suggest that s-GABAARs will also be 

able to interact with, and perhaps modulate, the mechanisms that underlie neural plasticity. 

Notably, LTP, probably the most widely studied form of neural plasticity, is strongly influenced 

by both the excitability state of a neuron and its ability to summate synaptic potentials to fire an 

action potential. Reflecting this, enhancing GABAAR activity typically attenuates LTP (520), 

whereas blocking their activity enhances LTP (521). If s-GABAARs exert a similar attenuating 

effect on LTP then blocking their activity should enhance LTP amplitude. 
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In summary, DGGCs provide a useful model for assessing the functional role of s-GABAARs in 

the brain circuits. The sparse activity across the DGGC population is one of the defining 

properties of the DG network, and determining what causes DGGCs to activate sparsely is 

critical for understanding how the DG performs its role as both a gate and pattern separator. 

The low intrinsic excitability of DGGCs is one of the most important factors for sparse firing. 

DGGCs employ numerous cellular mechanisms to retain this low level of intrinsic excitability, 

some of which are not yet known. We posit that s-GABAARs might one of these mechanisms.  
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3.3 Aims 

The overall aim of the present chapter (Chapter 3; Results 1) was to characterize the functional 

role of s-GABAARs in DGGCs. We opted for an iterative approach: first assessing the impact of 

s-GABAARs on basic membrane properties of DGGCs and then studying how this affects some 

of the more complex neural dynamics that are thought to support the role of the DG as a pattern 

separator and gatekeeper. Four experimental steps were pursued to achieve the aims of this 

chapter:  

Step 1) Replicate the key observation made by Wlodarczyk et al: that SR-insensitive, PTX-

sensitive s-GABAARs produce virtually all of the tonic current in DGGCs (74). And as an 

extension to this, assess the contribution of s-GABAARs to the total inhibitory tone that DGGCs 

receive (net inhibitory charge transfer).  

Step 2) Characterise the nature of the signal that s-GABAARs provide (i.e. its I-V profile and 

impact on RMP) and determine its impact on the passive membrane properties of DGGCs (input 

resistance and membrane time constant). 

Step 3) Characterise the manner in which DGGCs integrate and interpret to s-GABAAR signal 

by assessing its impact on active membrane properties (rheobase, AP threshold, F-I curve gain 

and spike-frequency adaptation) 

Step 4) Assess if the changes to passive, active, and integrative properties of DGGCs affect 1) 

the temporal window over which DGGCs can respond to physiologically relevant synaptic inputs 

(coincidence detection) and 2) the plasticity of the DG network (LTP). 
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3.4 Hypothesis 

The previous work on GABA-dependent tonic currents has demonstrated that small but, 

crucially, persistent changes to membrane conductance can transfer a relatively large amount of 

inhibitory charge, and that this leads to a significant decrease in excitability. For this reason, it is 

hypothesised that the persistent s-GABAAR openings will produce a significant amount of 

inhibitory charge — likely even larger than that delivered by phasic IPSCs. Because EGABA is 

close to the RMP in mature DGGCs, we also hypothesise that s-GABAARs will provide a 

shunting conductance, meaning that their I-V relationship should reverse (be equal to zero) at 

RMP. If this is the case, it is hypothesised that blocking s-GABAARs will lead to an increase in 

input resistance and a slowing of the membrane time constant, without a significant change in 

RMP. Shunting inhibition has been shown to decrease excitability by offsetting in the F-I curve 

to the right (a subtractive, not divisive effect). Therefore, we hypothesised that the slope/gain of 

the F-I curve will be unchanged by blocking s-GABAARs, but the relative position of the entire 

curve will be shifted to the left, reflecting an increase in excitability. If this is indeed the case, it 

will show that s-GABAARs play an important role in maintaining the characteristic sparse firing of 

DGGCs, which is required for the DG to be able to function as a pattern separator and 

gatekeeper. Additional requirements for pattern separation in the DG are that DGGCs are 

coincidence detectors and that their synapses show plastic changes in strength. Thus it is finally 

hypothesised that blocking s-GABAARs will widen the temporal window for coincidence 

detection and will potentiate LTP at perforant path synapses.   
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3.5 Results 

 SR-resistant, PTX sensitive spontaneously opening 3.5.1
GABAARs produce tonic inhibitory currents in DGGCs 

For the first experimental step, validating findings reported by Wlodarczyk et al (74), membrane 

currents from DGGCs were recorded in whole-cell voltage-clamp mode using CsCl intracellular 

solution (ECl = ~0 mV); neurons required a mean baseline current (Ihold) of -64 ± 5 pA to maintain 

the voltage of the cell at -70 mV (N=26 cells). In this recording configuration, GABA-ergic 

currents are inward (negative), meaning that that phasic currents, IPSCs, are seen as transient 

negative-going defections, whereas the block of tonic currents is seen as an outward (positive) 

shift in the baseline Ihold (because a less negative current is required to clamp the membrane 

voltage at -70 mV). To test if Wlodarczyk et al’s key finding – that s-GABAARs deliver tonic 

inhibitory currents (74) – could be replicated, neurons were exposed to either SR (25 µM) or 

PTX (50 µM). 

Just as Wlodarczyk et al, 2013 previously reported (74), tonic and phasic currents in DGGCs 

differ in their sensitivity to competitive (SR) and non-competitive (PTX) antagonism 

(Phasic:Fig.3.1; Tonic:Fig.3.2). Fig.3.1 demonstrates that IPSCs were effectively blocked by either 

SR or PTX. We wanted to compare the rate of IPSC block between antagonists and then use 

this to relate the degree of IPSC block with the changes in holding current (or lack thereof in the 

case of SR). The effect of SR on IPSCs was rapid: it took an average 43 secs (95% confidence 

interval (CI) = 38-47 sec) for IPSC frequency to decrease by half (TIPSC:50%) and an average of 

81 ± 15.6 seconds for complete block (TIPSC:0%) (Fig.3.1A,C,D); no IPSCs were detected, in any of 

the neurons (N=12), 150 secs after SR was added. The effect of PTX on IPSCs was 

significantly slower when measured at TIPSC 50% = 99 secs (95%CI =82-118 sec) – note the non-

overlapping 95%CI with SR – and at TIPSC:0% = 246 ± 36 sec (SR vs PTX, Unpaired Student’s t-

test, t(11,4)= t=5.0, P = 0.0002) (Fig.3.1B,C,D), but produced the same end result: IPSCs were 

undetectable, in all of the neurons tested (N=5), 400 secs after PTX was added.  
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Whilst phasic currents could be effectively blocked by either SR or PTX, tonic currents, as 

expected, were only sensitive to PTX and were completely resistant to SR (Fig.3.2) As can be 

observed in the representative raw Fig.3.2Ai trace and the 30 second running average trace from 

12 cells in Fig.3.2.Aiii, the addition of SR produced no significant outward currents. Measuring 

the baseline ΔIhold change at time points corresponding to significant reductions in phasic 

currents emphasises the lack of SR efficacy on tonic currents: at T IPSC:50% mean baseline ΔIhold 

was 0.9 ± 1.0 pA (Before vs after SR at TIPSC:50%, Paired Student’s t-test, t(11)= t=0.82, P= 0.429); 

at TIPSC:0% baseline ΔIhold = -0.5 ± 1.2 pA (Before vs after SR at TIPSC 0%, Paired Student’s t-test, 

t(11)= 0.36, P= 0.729) (Fig.3.1D); at the 3-4 minute time point, which is over double the time taken 

for complete IPSC block (TIPSC:0%), there was, once again, no outward current: baseline ΔIhold = -

2.4 ± 0.8 pA (Before vs after SR, Paired Student’s t-test, t(11)= 3.03, P= 0.011). The small inward 

current reported is likely exaggerated because it is superimposed on a baseline that has a 

tendency to decrease, albeit slowly, over time due to increasing leak. Small inward SR-currents 

have been previously reported (74,140,270,522,523), and their potential origin is explored in the 

discussion. 

The insensitivity of tonic currents to SR-mediated competitive antagonism contrasts markedly 

with its sensitivity to PTX, which reliably induced outward current in DGGCs. This is clear in 

both the raw (Fig.3.2Bi+Bii) and the 30 second running average traces (Fig.3.2Biii), and acts as 

an important to control, in that it demonstrates that tonic inhibitory currents are not simply 

absent from DGGCs – they are present, just not blocked by SR. The PTX-induced block of tonic 

currents is observed alongside IPSC block, with outward currents detectable at T IPSC:50%, when 

mean baseline ΔIhold was 3.6 ± 1.3 pA (Before vs after PTX at TIPSC:50%, Paired Student’s t-test, 

t(4)= 2.31, P= 0.082); at TIPSC:0%, when baseline ΔIhold = 7.5 ± 0.9 pA (Before vs after SR at 

T PSC:0%, Paired Student’s t-test, t(4)= 6.441, P= 0.003) (Fig.1D); and finally, at the 9-10 minutes 

time point, which corresponds to approximately double TIPSC:0%, when outward current has 

plateaued to reveal a mean tonic current of 12.4 ± 1.1 pA (Before vs after PTX, Paired Student’s 

t-test, t(4)= 10.11, P< 0.0001). The difference between SR and PTX on holding current is highly 

significant (SR vs PTX, Unpaired Student’s t-test, t(11,4)= 10.28 P < 0.001). 
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Fig.3.3 illustrates the final step in validating the SR-resistance and PTX-sensitivity of tonic 

currents that was previously demonstrated by Wlodarczyk et al (74): the sequential exposure of 

a neuron to SR and then, in the continued presence of SR, to PTX. The trace in Fig.3.3A+B 

demonstrates, as with Fig.3.2, that tonic currents were left intact in the presence of SR (despite 

the complete block of IPSCs), but were blocked after being exposed to PTX, which caused a 

clear outward current that plateaued after ~8 minutes (Fig.3.3B). This outward current was 

observed in every neuron that was assessed (n=10) and exhibited a high degree of consistency 

in terms of amplitude and onset, as can be seen in the small error bars in (Fig.3.3C). The 

average ΔIhold induced by PTX in the continued presence of SR was 12.45 ± 0.79 pA (Fig.3.3C); 

this represented a highly significant change relative to both the SR-baseline taken 30 seconds 

prior to PTX addition (SR(before) vs SR+PTX(after), Paired Student’s t-test, t(9)= 15.7, P < 

0.0001), and the change in holding current induced by SR (Unpaired Student’s t-test, t(11,9)= 

13.7, P < 0.0001); however, there was no significant difference in the amplitude of PTX induced 

outward current in neurons that had been exposed to SR (SRSR+PTX = 12.5 ± 0.8 pA), vs 

those that had not (CTRLPTX = 12.4 ± 1.1 pA) (PTX vs SR+PTX, Unpaired Student’s t-test, 

t(9,4)= 0.02, P = 0.988) Fig.3.3Ci.   

This experiment confirms two key fundamentals: 1) SR is not blocking tonic currents in a 

manner that is undetectable in voltage-clamp mode (e.g. SR is not activating a non-GABAAR 

leak current of roughly equal amplitude to tonic currents, thus masking the tonic current 

blockade); and 2) the small inward current induced by SR has a negligible effect on tonic current 

amplitude, meaning that the tonic current that is blocked by PTX is not dependent on, or 

augmented by, prior exposure to SR. As explained in Methods, the pharmacological approach 

presented in Fig.3.3 (CTRLSRSR+PTX) is used repeatedly throughout this thesis to record 

the various aspects of s-GABAAR biology – including function, pharmacology, and intracellular 

modulation. 
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 GABA-independent tonic currents deliver the majority of 3.5.2
inhibitory charge in DGGCs 

Since IPSCs typically have an amplitude between -30 and -40 pA, and can reach amplitudes in 

excess of -100 pA, does this mean that s-GABAAR-mediated tonic currents, which have 

comparably smaller amplitudes (~12 pA), make a minimal net transfer of charge compared to 

the phasic form? Whilst this can certainly be the case transiently, over the 10-100ms when an 

IPSC occurs, the persistent nature of tonic currents means that, over larger time scales 

(seconds to minutes), a relatively low amplitude tonic current can give rise to a large quantity of 

inhibitory tone (80,524).  

The relative contribution of GABA-independent tonic currents to inhibitory tone was assessed by 

comparing the inhibitory charge delivered (area under the curve), over a one minute period, by 

IPSCs to that which is delivered by tonic currents over the same time period (see Fig.3.4A for 

schematic and area under the curve equations). We found that, as has been previously reported 

for GABA-dependent tonic currents (80,524), GABA-independent tonic currents deliver the 

(vast) majority of overall inhibitory charge (Fig.3.4B): on average GABA-independent tonic 

currents deliver 787 ± 27 pC.min
-1

, which is significantly more than IPSCs (Tonic vs IPSC 

charge transfer, Paired Student’s t-test, t(9)= 24.7, P < 0.0001), which provide 45.7 ± 11 pC.min
-1

 

(Fig.3.4Bi). Comparing within the same neuron, this means that – with notable caveats that this 

is an ex vivo slice preparation, when excitatory transmission blocked and equimolar Cl
−
 solution 

is used – s-GABAARs deliver 95 ± 1% of overall inhibitory charge (Fig.3.4Bii).  

The addition of GABA into the ACSF generates a GABA-dependent tonic current that is 

sensitive to competitive antagonism. We performed a simple experiment to estimate the 

concentration of GABA necessary to produce tonic currents equivalent in amplitude to those 

generated by s-GABAARs. Neurons were exposed to either 1 μM or 5 μM GABA (bath applied), 

which, based on previous reports, should produce tonic currents that bracket the ~ 12 pA s-

GABAAR current (74). And indeed, 1 μM GABA generated an average inward current of -10.4 ± 

1.9 pA (n=4), and 5 μM GABA generated an average inward current of -44.4 ± 8.5 pA (n=4) 

(Fig.3.4C+D). Thus, the amplitude (albeit with opposite polarity) of s-GABAAR susceptible to block 

by PTX is close to that generated by 1 µM ambient GABA: indeed, they do not differ significantly 
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 Blocking s-GABAARs increases input resistance and 3.5.3
slows the membrane time constant 

Given that s-GABAARs make a sizeable net contribution to the overall inhibitory tone, we next 

tested if blocking their conductance affected the passive and active properties of the membrane. 

All previous measurements of s-GABAARs in the hippocampus, both in this thesis and in 

previous reports (74,233), have been performed using ~symmetrical [Cl
-
], which gives rise to an 

ECl
-
 of ~ 0 mV (33˚C = -1.03 mV). However, for the following experiments, we used intracellular 

solutions conferring a low concentration (8 mM) of Cl
-
, which approximates levels found in adult, 

mature neurons (218–221). This solution enabled us to record s-GABAARs under more 

physiological conditions and, importantly, rule out spontaneous openings being an artefact of 

high levels of intracellular Cl
-
. This is a necessary control because Cl

- 
ions have been previously 

shown to directly modulate GABAAR function – for instance, high intracellular [Cl
-
] 

concentrations slow the decay of GABA evoked currents (525).
 
 

The effect of s-GABAARs on input resistance was measured in current-clamp mode from the 

linear fit of the I-V trace that was obtained using 9x -50 pA, 500 ms hyperpolarising current 

steps applied from RMP (Ihold = 0 pA), from -50 to −450 pA (Fig.3.5A). The intracellular solution 

used was K-gluconate based; TTX (1 μM) was included in the ACSF to prevent rebound action 

potentials. Input resistance was significantly affected by blocking GABAAR activity as indicated 

by comparing resistance values obtained in CTRL (161 ± 6 MΩ), SR (167 ± 7 MΩ), and 

SR+PTX (179 ± 9 MΩ) using an ANOVA (One-way, matched ANOVA, F(2,7) = 20.0; P= 0.002) 

(Fig.3.5A-B). Paired Student’s t-test with Bonferroni correction demonstrated that SR induced a 

small (3.9%) but significant increase relative to CTRL (CTRL vs SR, Paired Student’s t-test t(7)= 

4.716 P = 0.0065); subsequent addition of PTX to block s-GABAARs induced an additional, 

larger (7.1%) increase in resistance compared to SR alone (SR vs SR+PTX, Paired Student’s t-

test t(7)= 3.189 P = 0.0459), which corresponds to an 11% increase in resistance compared to 

CTRL (CTRL vs SR+PTX, Paired Student’s t-test t(7)= 5.927 P = 0.0017) (Fig.3.5B). The effect of 

s-GABAARs onto membrane time constant could not be accurately determined by averaging the 

step responses used to obtain input resistance, so a new experiment was performed by 

applying 30x -5 pA, 500 ms hyperpolarising current steps (again from Ihold = 0) to neurons first 

exposed to SR and then to SR+PTX (Fig.3.5C). τm was calculated by fitting the falling phase of 
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There are two mechanisms by which GABAARs inhibit the neuron to reduce excitability: 1) 

membrane shunting and 2) membrane hyperpolarisation. Membrane shunting (shunting 

inhibition) is caused by an increase in membrane conductance, which – in accordance with 

Ohm's law – decreases the voltage change caused by depolarising currents (316–318). 

Shunting inhibition arises whenever GABAARs are active: it is not dependent on the Cl
-
 driving 

force. In the DGGC s-GABAARs evidently produce a membrane shunt because blocking their 

activity with PTX causes a significant increase in membrane resistance and slows the τm 

(Fig.3.5A-D). Hyperpolarising inhibition, by contrast, is caused by the net influx of anions through 

GABAARs – it, therefore, requires open GABAARs and an electrochemical gradient that favours 

the net inward movement of Cl
−
 and HCO3

-
: EGABA< Vm. Because EGABA and Vm (i.e. RMP) vary 

quite substantially between different neuron subtypes (and even temporally, within the same 

neuron subtypes), it means that the degree to which GABA is hyperpolarising differs across the 

brain (218–221). Indeed, in some instances – e.g. in hippocampal interneurons, as reported by 

Song et al in 2011 – tonic GABAA currents cause depolarisation (because EGABA > RMP) (226). 

At the outset of the present thesis, it was unclear what the function effects of s-GABAAR tonic 

currents are in DGGCs: are they inhibitory, as hypothesised? Or excitatory, like GABA-

dependent tonic currents in hippocampal interneurons (226)? Or are they functionally of no 

consequence? 

 Blocking s-GABAARs does not alter RMP  3.5.4

The effect of s-GABAARs on RMP was assessed using a K-gluconate-based (8 mM Cl
-
) 

intracellular solution (Ihold =0). In the presence of SR, with s-GABAAR conductance intact, the 

mean RMP was -72.8 ± 1.3 mV; adding PTX to block s-GABAARs had no significant effect on 

the RMP (SR(before) vs SR+PTX(after), Paired Student’s t-test t(30)= 1.297 P = 0.204) (Fig.3.5E): 

mean change in Vm was +0.4 ± 0.2 mV; in only nine of the recordings was Vm depolarised by 

>1 mV, and in only five recordings was Vm hyperpolarised by <-1 mV(Fig.3.5F). This is in line 

with the predicted ECl -74.3 mV being very close to the RMP. It is also in keeping with the result 

of performing the same experiment – again with K-gluconate-based intracellular solution (8 mM 

Cl
-
) – but in voltage-clamp mode; when neurons are clamped at -70 mV there was no significant 

change in holding current following block of s-GABAARs: mean ΔIhold = 0.59 ± 2.0 pA (Paired 

Student’s t-test t(3)= 0.251 P = 0.818).  
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 s-GABAAR conductance displays outward rectification 3.5.5

Responses elicited by GABAARs – particularly tonic currents (225,288,353,387,388), but also 

IPSCs (527) and single-channel currents (236,287,528) – frequently exhibit non-Ohmic, 

outwardly rectifying, I/V plots. This rectification means that even controlling for changes in Cl
-
 

driving force, GABAARs can deliver more inhibition at membrane potentials close to/above 

action potential threshold than they can at RMP. If the s-GABAAR tonic conductance is 

outwardly rectifying, this would mean that their impact on cell excitability will likely be greater 

than predicted from the ~7% membrane shunt they deliver at RMP (Fig.3.6A-D). 

We characterised the I/V relationship of GABA-gated (evoked IPSCs) and spontaneously 

opening GABAAR in voltage-clamp mode using a Cs.methansulfonate-based intracellular 

solution with physiological [Cl
-
] (8 mM); inclusion of Cs

+
 and QX-314 allowed us to depolarise 

the neuron without inducing huge voltage-gated K
+
 and Na

+
 currents, respectively. Nifedipine 

was not included for IPSC experiments but was for s-GABAAR experiments. It is important to 

note that, as with all other experiments, junction potential was measured and corrected in the 

bath before patching the neuron and performing the experiment. This worked well for K-

gluconate and CsCl-based intracellular solutions – junction potentials were close to predicted 

values and once corrected the Ihold remained stable for minutes in the bath of ACSF. But 

unfortunately, this was not the case for junction potential associated with the Cs-

methanesulfonate-based intracellular solution: the liquid junction potential associated with this 

solution was extremely difficult to correct for, with the holding current continuing to drift even 

after 10 minutes in the bath. This resulted in an over-compensation, of +20 mV, to the liquid 

junction (+34 mV) compared to the calculated value (+14 mV) obtained using the Clampex 

inbuilt junction potential calculator (Henderson Equation, see (529)). And, so, the holding 

potential was clamped 20 mV lower than the desired value. Failure to account for this voltage 

error does not prohibit answering the key question – do s-GABAAR currents rectify? – but, 

obviously, would affect the recorded EGABA. We did correct the error, post-hoc, for the 

subsequent analysis and meaning that cells were actually held at -90 mV, not the indicated -70 

mV.  
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To assess IPSC rectification of s-GABAARs, neurons were clamped at -90 mV and holding 

potential was stepped, once every 10 seconds, between -120 to +30 mV using 5 second, 30 mV 

voltage step. IPSCs (~50% of max) were evoked 4 seconds into the 5 second voltage step, 

using a bipolar electrode positioned in the medial performant pathway (Fig.3.6E; N =8).  

The s-GABAAR I/V was measured by recording the whole-cell current response to 15 mV, 5 

second voltage steps (again applied once every 10 seconds) from a holding potential of -90 mV, 

over a range of -105 to +15 mV. Voltage steps were performed in the presence of SR, and then 

they were repeated in the presence of SR+PTX. Subtracting the two current responses revealed 

the s-GABAAR I/V (Fig.3.6B).  

The currents delivered by s-GABAARs exhibited an outward rectification (Fig.3.6B) that closely 

matched that of evoked GABA-ergic IPSCs (Fig.3.6A). The I/V relationships for IPSC and s-

GABAAR currents were well described by Boltzmann functions, as was previously reported by 

Pavlov et al, 2009 (387). Both currents exhibited non-Ohmic, outward rectification at potentials 

more depolarised than -40 mV. The slope conductance of the s-GABAAR I/V curve was 3.2 

times greater at 0 mV than at 70 mV. Slope values were obtained from the first-order derivative 

of the Boltzmann function (dI/dV). The reversal potential for GABA evoked IPSCs this was -74 

mV, and recorded s-GABAAR currents reversed close to this voltage (-75 mV = -2 ± 2 pA; -60 

mV = 3 ± 2 pA). 

To briefly summarise: it is clear that s-GABAARs affect the passive properties of the DGGCs. At 

RMP, they ‘shunt’ the membrane without significantly impacting the Vm. Although relatively 

small (~7%), this increase in membrane conductance affects both the voltage response to a 

depolarising current and the membrane time constant. Furthermore, the inhibitory effects of s-

GABAARs are not limited to membrane shunt alone. As the I/V curves demonstrate, membrane 

depolarisation increases the inhibitory effects of s-GABAARs in two ways: 1) depolarisation 

establishes a driving force for the anions HCO3
-
 and Cl

-
 (because Vm>EGABA), which leads to 

inward hyperpolarising currents; 2) depolarisation also increases the conductance of s-

GABAARs because they outwardly rectify. We next examined how these factors coalesce to 

affect the active properties (excitability) of DGGCs. 
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 Blocking s-GABAARs increases excitability and F-I curve 3.5.6
gain and decreases rheobase  

We studied the impact of s-GABAARs on neuronal excitability by seeing if we could detect a 

change in the input-output relationship of the neuron (I-O), as expressed in the firing rate-

current (F-I) curve. Changes to a neuron’s excitability can affect the F-I curve in two ways (317). 

The first way is to offset the F-I curve, meaning that the shape of the F-I curve remains the 

same, but its relative position is offset to the left (more excitable; additive) or right (less 

excitable; subtractive) (317). The second way is to scale the F-I curve; this means that the 

shape of the curve, or more specifically its slope, or gain, is increased (multiplicative gain 

increase) or decreased (divisive gain decrease). To assess how blocking s-GABAAR 

conductance affects the F-I curve, we used an unpaired experimental design in order to prevent 

repeat F-I measures being confounded by homeostatic changes to intrinsic excitability that can 

be triggered by depolarisation/high firing rates e.g. (530,531). This means that experiments 

were performed in CTRL ACSF, or ACSF containing SR, or ACSF containing SR+PTX. 

Neurons were recorded in current-clamp mode, using K-gluconate-based intracellular solution 

and action potentials were evoked from RMP (Ihold = 0 pA), using a family of depolarising current 

commands (25 pA, 0.5s; 0 to 250 pA) (Fig.3.7A+B). Firing number in 0.5 s was not converted to 

frequency (Hz) because DGGCs exhibit pronounced spike-frequency adaptation when exposed 

to persistent supra-threshold depolarisation (406,516). 

In CTRL conditions (GABA-dependent signalling and –independent signalling intact), 

depolarisation caused a progressive increase in action potential firing rate; this increase was 

linear between 50 and 175 pA and plateaued between 200 and 250 pA (n=8) (Fig.3.7A+B). Block 

of GABA-dependent (with SR) and GABA-independent signalling (with SR+PTX) exerted a 

significant pro-excitatory effect on the F-I curve (Two-way ANOVA: CTRL vs SR vs SR+PTX; 

F(2,22) = 7.123; P= 0.0041) (Fig.3.7A+B). There was an explicit pro-excitatory effect of specifically 

blocking s-GABAARs: in the presence SR+PTX, the firing rate was increased at each current 

step between 50-250 pA, by an average of 41 ± 2%, relative to SR alone. And the area under 

the F-I curve (0-250 pA) increased by 42%: from 2475 ± 188, to 3518 ± 400 AP.pA (Fig.3.7C). 

And, most importantly and unexpectedly, the slope of the linear part of the curve, measured 

from 50 pA to 175 pA, which denotes the gain, was significantly increased by approximately 
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The increase in F-I gain following the addition of PTX means that s-GABAAR tonic 

conductances usually exert a divisive effect on F-I curves in DGGCs. As further evidence for 

this, we found that when we plotted the average normalised AP firing number against current for 

CTRL, SR and SR+PTX, the shape of the curves was virtually identical in all three conditions 

(Fig.3.7D). This means that F-I curves are changed by a common scaling factor (blocking s-

GABAARs = multiplication); if F-I curves were offset, the shape of the normalised F-I would 

change. The mechanism by which s-GABAARs affect F-I gain is explored later. 

The 25 pA depolarising step interval used to generate F-I curves was too large to reliably 

assess if s-GABAARs alter the minimum current required to elicit a single action potential (the 

rheobase current), with the majority of neurons (19 out of 25) transitioning from a silent state to 

firing ≥2 APs. The rheobase current is one of the most important, physiologically relevant 

measures for assessing the functional impact of s-GABAARs in DGGCs. DGGCs have been 

shown to have an unusably high rheobase (> 5 times greater than CA3 and CA1 pyramidal cells 

in vivo (414)); this, coupled with a depolarised voltage threshold, makes DGGCs resistant to 

excitation and causes them persist in a largely silent state, firing only sparsely (413,467–470). It 

is the sparse firing across the DGGC population that allows the DG to act as a gatekeeper to 

aberrant excitation and as a pattern separator. (438,445,451,473). The persistent conductance 

that s-GABAARs produce may be one way that DGGCs’ rheobase is kept high and firing is 

made sparse. To examine this possibility, a new set of experiments was performed using a 

paired experimental paradigm (serially exposing the neuron to CTRL ACSF, SR and then 

SR+PTX) and depolarising the neuron with smaller (+5 pA) and longer (0.7s) current steps 

(Fig.3.8A).  

In CTRL ACSF neurons required an average of 74.3 ± 10.0 pA to elicit an individual action 

potential; the mean threshold (ΔdV/Δt = 20 mV/ms) of the action potentials was -36.8 ± 1.3 mV 

(Fig.3.8B+C). Exposing the neuron to SR/SR+PTX significantly affected both the rheobase (One-

way, matched ANOVA, F(2,6) = 17.84; P=0.0013) and threshold (One-way, matched ANOVA, F(2,6) 

= 13.21; P= 0.0064) (Fig.3.8B+C). Post-hoc paired student t-tests with Bonferoni correction 

revealed that mean rheobase was not significantly altered in the presence of SR (77.9 ± 10.9 

pA; Paired Student’s t-test t(6)= 0.737; P = 0.999), but was significantly reduced by the 
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After 5 minutes firing rate was on average increased by more than 1 AP (mean = 1.13 APs; 

percentage increase = 46 %); by 10 minutes firing rate was increased by nearly 2 APs (mean = 

1.75 APs; percentage increase = 71 %); after 15 minutes firing rate close to doubled (mean = 

2.25 APs; percentage increase = 93%) (Fig.3.9C). The change in AP firing rate was significantly 

(with Bonferroni correction) increased in SR+PTX relative to SR-adjusted at all three of these 

time points: 5 minutes (Paired Student’s t-test t(7)= 4.965; P = 0.0049), 10 minutes (Paired 

Student’s t-test t(7)= 5.584; P = 0.0025) and 15 minutes (Paired Student’s t-test t(7)= 6.148; P = 

0.0014) (Fig.3.9C). 

 Exploring the mechanism of neuronal gain control by s-3.5.8
GABAARs  

For the next part of this section, we wanted to revisit and better understand the increase in gain 

(F-I slope) that occurs when s-GABAARs are blocked (Data in section 3.6.6; Fig.3.7). F-I slope 

gain is important to DGGCs: they have an over four times higher gain than CA1 and CA3 

pyramidal neurons (414), and this high gain allows them to transition effectively from a silent 

state to firing bursts of APs (413,468). Burst firing allows DGGCs to send sparse but powerful 

excitatory signals, via their mossy fibers, to CA3 pyramidal cells, which is thought to be 

important for pattern separation (432,445–453). The increase in gain that we reported following 

the block of s-GABAARs was both interesting and unexpected. Although shunting conductance 

has a divisive effect on sub-threshold voltage transients (Ohm’s law: V= I/G) (316–318), most 

studies have shown that, because of the spiking mechanism, tonic shunting inhibition causes a 

subtractive effect to the F-I curves, i.e. offsetting them to the right with no effect on the 

slope/shape (see introduction for a more detailed explanation) (317). That said, there are three 

scenarios that have so far been identified to allow a shunting conductance, similar to that 

provided by s-GABAARs, to act divisively on the F-I curves and reduce the F-I gain. These are 

1) stochastic noise, 2) active dendritic conductances and 3) spike-frequency adaptation (317). 

We considered it unlikely that there was sufficient stochastic noise to explain the gain change 

caused by s-GABAARs. In support of this, the majority of in vitro studies have had to use 

dynamic clamp to artificially increase stochastic noise to levels observed in vivo in order to 

detect a shunt-induced decrease in gain (292,293). We therefore focussed on the latter two 

scenarios, and attempted to see if there were any commonalities between those previously 
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reported findings and our data (Fig.3.10). The detailed mechanisms for gain control via 

stochastic noise, active dendrites and spike-frequency adaptation are presented in the 

appendix.   

Briefly, gain control via active dendrites relies on the shunting conductance acting to decrease 

the amplitude of the depolarizing afterpotentials that are caused by active dendritic spike 

backpropagation (295). Depolarising afterpotentials usually act to decrease the AHP amplitude, 

which, in turn, shortens the interspike interval and increases gain/excitability. By decreasing the 

amplitude of these depolarising afterpotentials, shunting conductances are able to enhance the 

AHP amplitude and thereby decrease gain/excitability (295). If s-GABAARs are able to modulate 

gain through this mechanism, the AHP amplitude should be suppressed by blockings-

GABAARs. However, when we measured the AHP in the presence of SR (-14.3 ± 0.7 mV) vs 

SR+PTX (-13.523 ± 1.2 mV), we were able to find no significant difference in amplitude (SR vs 

SR+PTX, Paired Student’s t-test t(7)= 1.40; P = 0.2039) (Fig.3.10E). This likely reflects the 

relatively low density of voltage-gated Na
+
 channels in DGGC dendrites (483); these channels 

are necessary for the generation of afterpotentials following AP backpropagation (295). 

Next, we assessed if s-GABAARs were able to modulate gain by altering the spike-frequency 

adaptation characteristics of the neuron. Spike-frequency adaptation describes the reduction in 

firing rate that occurs during sustained injections of supra-threshold step currents 

(294,517,536,537). The indicator for spike-frequency adaptation is that the steady state firing 

rate (measured towards the end of an excitatory current step) is lower than the initial firing rate 

(measured at the start of the excitatory step). Previous studies have shown that DGGCs show 

reasonably pronounced spike-frequency adaptation (480), and we have corroborated this 

finding in Fig.3.7 (observe the decrease in firing rate at the end of the current step vs. the start). 

Spike-frequency adaptation is physiologically important to DGGCs as it allows them to fire in 

bursts, without runaway, continuous firing (413,468). In 2010, Fernandez et al reported that 

shunting inhibition was able to enhance spike-frequency adaptation in CA1 pyramidal neurons 

and that the resultant decrease in steady-state firing rate was sufficient to significantly reduce 

the overall F-I gain (294). The key indicator for this effect was that shunting inhibition had 

disparate impact on the initial vs. steady-state F-I relationship. Namely, shunting induced a 



 

109 
 

subtractive offset the initial firing rate, with only a minimal change in gain, but exerted a powerful 

divisive effect on the gain of the steady-state firing rate (294). We found that blocking s-

GABAARs exerted similar effects on initial and steady-state curves to what would be predicted 

from Fernandez et al, 2010 (294) (Fig.3.10A-D).  

Blocking s-GABAARs differentially affects the initial vs steady-state F-I curves, and this likely 

allows s-GABAARs to modulate the gain of the overall F-I relationship (Fig.3.10A-C). As in 

Fernandez et al, we found that the initial F-I relationship was best fit with a linear function (294) 

(Fig.3.10Bi). The authors showed that a shunting conductance causes a subtractive offset the F-I 

relationship of the initial firing rate (shifting the line to the right), but has a minimal effect on its 

gain (294). As would be expected from this, we found that blocking the shunting conductance 

generated by s-GABAARs resulted in an additive leftward shift/offset to the initial firing rate F-I 

relationship. But did not significantly affect its gain (SR vs SR+PTX gain, linear fit 75 to 175 pA: 

Unpaired Student’s t-test, t(6,9)=1.367 P = 0.193) (Fig.3.10Bii).  

Next, we looked at the steady-state firing rate. Just like Fernandez et al, we found that the 

steady-state F-I relationship was non-linear (294) and our data were best fit with a second-order 

polynomial (294) (Fig.3.10Ci). In the presence of SR the steady state firing rate reached an 

approximate plateau of 25.1 ± 5.1 Hz between 175 and 250 pA, which reflects a saturation of 

the F-I response (Fig.3.10Ci). Fernandez et al, showed that shunting conductance enhances the 

degree of saturation and that this leads to a lower maximum sustainable firing rate (294). We 

found that, as would be expected from Fernandez et al’s findings, blocking the s-GABAAR shunt 

caused a decreases of the degree to which steady-state firing rate is saturated, as indicated by 

the significant increase in the maximum sustainable firing rate (plateau frequency) from 25.1 ± 

5.1 Hz in SR, to 46.7 ± 6.7 Hz in PTX (taken from 175-to-250 pA: SR vs SR+PTX plateau: 

Unpaired Student’s t-test, t(6,9)=2.432 P = 0.029) (Fig.3.10Cii). As a final step, we compared the 

gain over the linear portion (75-175 pA) of the steady state-F-I relationship, which Fernandez et 

al showed was decreased by shunting conductance (294). In line with this, we found that when 

s-GABAARs were blocked the gain of the linear portion of the steady state-F-I relationship was 

significantly increased by ~60% from 0.14 ± 0.02 in SR, to 0.23 ± 0.03 in SR+PTX (taken from 

75-to-175 pA: SR vs SR+PTX gain: Unpaired Student’s t-test, t(6,9)=2.21 P = 0.044) (Fig.3.10Ciii). 
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Thus our findings very closely match that of Fernandez et al, 2010 (294); this indicates that s-

GABAARs act to increase the amount of spike-frequency adaptation that takes place in DGGCs, 

and that this, in turn, causes a decrease in F-I gain. But what is the mechanism? In Fernandez 

et al’s study, they showed in CA1 neurons that shunting exacerbates the main driver of spike 

adaptation in these cells: depolarisation-dependent Na
+ 

channel inactivation (294). Shunting is 

able to increase Na
+ 

channel inactivation by attenuating Na
+
 currents, which causes both the 

voltage threshold and the mean firing voltage to be depolarised (because neurons have to 

depolarise further to generate the sufficient amount of Na
+ 

current to initiate spiking) (294). This 

persistent increase in depolarisation over the course of AP firing results in a greater amount of 

Na
+
 channel inactivation and, therefore, a more substantial decrease to the steady-state firing 

rate for a given excitatory current (294). In DGGCs, spike-frequency adaptation is also driven by 

Na
+
 channel inactivation (480); therefore, it seems plausible that s-GABAARs in DGGCs, like 

shunting in CA1 neurons, is enhancing the amount of Na
+
 inactivation to exacerbate spike 

adaptation (294). This view is supported by two pieces of evidence. The first is the effect of s-

GABAARs on AP threshold that we reported earlier (from the rheobase experiments in Fig.3.8): 

blocking s-GABAARs with PTX leads to a significant hyperpolarisation, of -1.4 mV, of the firing 

threshold, supporting the potential involvement of Na
+
 channels (Fig.3.8C). The second is that 

when we compared the mean firing voltage in the presence of SR vs. SR+PTX, we find that with 

PTX the mean firing voltage is hyperpolarised at every current step by an average of -1.96 ± 

0.05 mV (Fig.3.10D). This suggests the following mechanism: that when s-GABAARs are 

blocked, the neuron does not have to depolarise as far to generate the Na
+
 currents necessary 

to initiate and sustain firing (because Na
+
 currents are no longer being shunted), and that this 

means there is less depolarisation-dependent Na
+ 

channel inactivation, less spike-frequency 

adaptation, and, as a result, a higher excitability/gain. 
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So far in this chapter we have demonstrated that s-GABAARs provide an outwardly rectifying 

tonic shunting conductance. And that blocking s-GABAARs conductance with PTX affects many 

of the key factors that are critical for the proper signal integration and, in turn, function of 

DGGCs: namely, input resistance, membrane time constant, AP threshold, F-I gain and 

rheobase. However, in all of the experiments performed so far, we have utilised only square 

wave depolarising and hyperpolarising current/voltage steps to examine the functional output of 

DGGCs. Thus, in the final part of this chapter, we used evoked synaptic potentials to study the 

impact of s-GABAARs on DGGCs in response to more physiologically relevant inputs. 

Specifically, we assessed the role of s-GABAARs in coincidence detection and LTP. 

 Blocking s-GABAARs widens the temporal window for 3.5.9
coincidence detection 

One of the key properties of DGGCs is the narrow temporal window over which they can 

summate synaptic inputs; they require a relatively large number of concurrently active excitatory 

inputs to fire an AP and can, therefore, act as effective coincidence detectors (483–485,487). 

Underlying this property is 1) the low excitability of DGGCs and 2) the strongly attenuating 

dendrites (483,485). Concerning to the former, we have demonstrated throughout this chapter 

that blocking s-GABAARs significantly increases the excitability of DGGCs, and thus could affect 

coincidence detection/temporal precision, as has been reported for GABAARs that are activated 

by GABA (297,298,319). s-GABAARs may also be able to affect the strength of dendritic 

attenuation, in a manner akin to A-type K
+ 

channel, which are the channels primarily responsible 

for attenuation in DGGCs (483,485). These voltage-activated channels attenuate EPSPs by 

providing a shunting conductance; it is likely that s-GABAARs are also, to a significant degree, 

present in dendrites and thus the shunting conductance they provide may also contribute to 

dendritic attenuation and, in turn, the precision of coincidence detection. In line with this, GABA-

activated GABAARs have been previously shown to augment dendritic attenuation (295,298). 

We hypothesised that s-GABAARs act to increase the precision of signalling in DGGCs and, 

therefore, blocking their activity with PTX should widen the temporal window for successful 

coincidence detection. 
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We measured the temporal window for coincidence detection by stimulating the two divisions of 

the perforant path (medial, MPP; lateral, LPP) at varying time intervals, so that MPP was 

stimulated relative to the LPP from -40 ms to +40 ms, in 10 ms increments (see protocol in 

Fig.3.11A). DGGCs were recorded using whole-cell current-clamp mode in the presence of 

strychnine and CGP55845, but without excitatory blockers. Stimulation intensity for each path 

was set so that when they were delivered synchronously, DGGCs fired with a probability of 

~50%. Next, the time interval between MPP and LPP stimulations was then varied according to 

the timing protocol in Fig.3.11A; the entire protocol was then repeated a total of three times, 

which means that for each neuron, at each stimulus interval, there is an accompanying firing 

probability of either: 0%, 33.3%, 66.6% or 100% Fig.3.11B. In control conditions, the average 

firing probability decreased when time-period between MPP and LPP stimulations was 

increased, as can be observed from firing probability vs stimulation interval curve in Fig.3.11C. 

Next we repeated the entire stimulation protocol, recording from the same cell with the same 

stimulus intensity, but in the presence of SR. SR caused a saturation of the coincidence 

detection response curve (Fig.3.11C), which reflects that in the absence of any GABAAR 

antagonists evoked potentials are a composite of excitatory and inhibitory signalling. 

Henceforth, to assess the specific impact of s-GABAARs on coincidence detection, we had to 

first adjust (decrease) the stimulus intensities in the presence of SR to desaturate the 

response (compare average firing rates with SR: Fig.3.11C with SR.adj: Fig.3.11D). 

The impact of s-GABAARs on coincidence detection was assessed by exposing the same 

neuron to PTX (SRSR+PTX) and repeating the stimulation protocol using the ‘SR-adjusted’ 

stimulus (Fig.3.11B+D). Block of s-GABAARs led to a significant widening of the temporal 

window for coincidence detection, indicating that s-GABAARs usually act to increase the 

precision of signal transmission in DGGCs. This is evidenced from the widening of the 

average firing probability vs. stimulation interval curve caused by going from SR to SR+PTX 

(Fig.3.11D); comparing the two conditions with a two way ANOVA revealed that the difference 

was significant curve (Two-way ANOVA: SR vs SR+PTX;F(1,12) = 14.31; P= 0.0026). And 

comparing the average firing rate at different stimulus intervals (Bonferroni corrected) showed 

that cells in the presence of SR+PTX (s-GABAARs blocked) had a higher probability of firing 
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 Blocking s-GABAARs does not affect the amplitude of 3.5.10
LTP at DGGC synapses 

For the final experiment in this chapter, we wanted to see if blocking s-GABAARs increases the 

amplitude of LTP that is induced at perforant path-DGGC synapses following theta-burst 

stimulation (TBS). LTP is a form of synaptic plasticity and has been proposed to be the cellular 

mechanism for learning and memory in the brain (24,503–511).   

In DGGCs, because of their strongly attenuating dendrites, LTP depends on depolarising local 

dendritic spikes, not back-propagating APs (485). Similar to the proposal made for coincidence 

detection, it is likely that s-GABAARs are present in DGGC dendrites and, thus, they might shunt 

the dendritic spikes that are necessary for LTP. Henceforth, we hypothesised that by blocking s-

GABAARs we could increase the amplitude of LTP. This is analogous to the potentiation of 

dendritic spikes and, in turn, LTP that has been reported observed following block of dendritic A-

type K
+
 channels, the conductance that is primarily responsible for shunting dendritic spikes 

(485). Another mechanism by which blocking s-GABAARs could possibly increase LTP 

amplitude owes to the fact that in DGGCs dendritic attenuation is substantial, but not 

insurmountable: the amplitude of somatic EPSPs decrease to ~30% of their original value by 

the time they reach distal dendrites (485). The elevation of excitability caused by blocking s-

GABAARs could increase the amount of depolarisation that back-propagates into the dendrites 

to the degree that it can facilitate LTP. Indeed, tonic inhibition has previously been shown to 

attenuate backpropagating APs in hippocampal pyramidal neurons and modulate spike-timing 

dependent plasticity (538). The proposal that blocking s-GABAARs will increase LTP is also 

supported by previous studies that have shown the detrimental impact increasing GABA-

activated tonic currents has on LTP in the DG (299). And that, in general, enhancing GABAAR 

activity depresses LTP (520), whereas blocking their activity enhances LTP (521).  

DGGC population synaptic responses were measured using field EPSP (fEPSP) recordings, 

and LTP was induced using a theta-burst stimulation protocol (Fig.3.12). The impact of s-

GABAARs on the amplitude of LTP was assessed in an unpaired manner: slices were exposed 

to either SR (N=8) or SR+PTX (N=8) throughout the entire experiment; the only other drug 

included was strychnine, which was present in all recordings in order to prevent a confounding 

effect of GlyRs.  
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Recording and bipolar stimulating electrodes were placed in the middle third of the molecular 

layer and the MPP, respectively. Baseline fPSPs were measured at 30 second intervals using 

50 µs in duration voltage pulses, with an intensity set to produce a response (fEPSP slope) that 

is ~40% of maximum. After a 10 minute stable baseline response was obtained, LTP was 

induced using a TBS protocol that was repeated a total of 4 times – once every 30 seconds; 

each TBS consisted of 10 bursts of five pulses at 100 Hz, with each burst separated by 200 ms. 

We expressly wanted to study the impact of s-GABAARs on the amplitude of LTP, not the 

threshold; and so we used this stimulation protocol because it had been previously shown to 

induce strong LTP at DGGC-MPP synapses (539). However, we did modify the stimulation 

protocol to increase its efficacy, first, by repeating four times and, second, by increasing the 

stimulus duration from 50 µs to 200 µs. Following the 4 episodes of TBS-LTP conditioning, the 

stimulation duration was returned to 50 µs and fEPSPs were recorded, once every 30 seconds, 

for 60 minutes (Fig.3.12). LTP amplitude was quantified by comparing the average baseline 

fEPSP slope (10 minutes prior to LTP) to the average fEPSP slope recorded after LTP at three 

time points: the 5- to 15 minute average, the 25- to 35 minute average and the 50- to 60 minute 

average.  

In the presence of SR alone, with GABA-dependent inhibition blocked but s-GABAARs intact, 

TBS induced an increase in fEPSP slope response that persisted over the 60 minute period, 

e.g. LTP (Fig.3.12Ai+B): the average slope of the fEPSP was increased to 204.0 ± 16.8% of 

baseline at 5-15 minutes, 185.6 ± 20.77% at 25-35 minutes, and 148.0 ± 20.6% at 50-60 

minutes (Fig.3.12B+C). To test the impact of s-GABAARs, the experiment was repeated in 

conditions wherein their activity was blocked (SR+PTX) (Fig.3.12Aii+B). Although DGGC-MPP 

synapses were still able to exhibit LTP in the presence of SR+PTX, the amplitude of this 

potentiation was virtually identical to that observed with SR alone (Fig.3.12B+C). The average 

slope of the fEPSP relative to baseline was not significantly different, even without correcting for 

multiple comparison, in SR vs SR+PTX at the 5-15 minute time point (205.5 ± 8.9% with PTX; 

Unpaired Student’s t-test, t(7,7)=0.08; P = 0.938), or the 25-35 minute time point (179.0 ± 10.0% 

with PTX; Unpaired Student’s t-test, t(7,7)=0.288; P = 0.778), or the 50-60 minute time point 

(133.0 ± 7.6% with PTX; Unpaired Student’s t-test, t(7,7)=0.684; P = 0.505) (Fig.3.12B+C). 
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Chapter 4  
 

Modulation of s-GABAAR-mediated Tonic 
Currents 

4.1 Overview 

In the previous chapter, we demonstrated that the outwardly rectifying tonic conductance that is 

delivered by s-GABAARs significantly affects DGGC physiological function. However, so far, we 

have not gained any additional understanding of the pharmacological characteristics of s-

GABAARs, beyond that previously reported. In this chapter, we explored the mechanisms by 

which s-GABAAR tonic currents can be modulated. Specifically, we assessed if s-GABAAR tonic 

currents are modulated by:  

1) Ligands acting at extrasynaptic GABAAR isoforms that contain the δ-subunit or α5-

subunit (i.e. the receptors that are responsible for generating GABA-dependent tonic 

currents in DGGCs). 

2) Benzodiazepine-site agonists/inverse agonists. 

3) Inhibitors and activators of serine/threonine kinases. 

Some of the findings presented in this chapter have been published (415,416). 

Experimental: 

O’Neill N, Sylantyev S. Selective modulation of tonically active GABAA receptor functional 

subgroups by G-proteins and protein kinase C. Experimental Biology and Medicine. 2018; 

243(13), 1046–1055.  

Mini-Review: 

O’Neill N, and Sylantyev S. The Functional Role of Spontaneously Opening GABAA 

Receptors in Neural Transmission. Front. Mol. Neurosci. 2019; 12:72.  
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4.2 Introduction 

We have demonstrated that s-GABAAR-mediated conductance affects DGGC physiology; the 

question that logically flows from this is whether s-GABAAR activity can be modulated. Previous 

studies investigating GABA-dependent tonic currents have shown that the nature and 

magnitude of this signal can be regulated through a variety of mechanisms, some of which are 

also relevant for s-GABAARs. In this chapter, we tested if s-GABAAR tonic currents can be 

modulated 1) directly, by a range of compounds that bind to different GABAAR isoforms to affect 

their activity and 2) indirectly, by compounds that modulate serine/threonine kinases. At present, 

our understanding of the pharmacological properties of s-GABAARs is limited to the findings 

reported by McCartney et al (in hippocampal pyramidal neurons) (233), Wlodarczyk et al (in 

DGGCs) (74), and Botta et al (central amygdala PKCδ positive neurons) (234); Table 5.1 

summarises the pharmacological agents that have been tested at s-GABAAR tonic currents.  

Pharmacological effect:  

↓= full block, ↓(-)= partial block, ↑=potentiation, o= no effect, n/a=not tested 

 Hippocampal pyramidal DGGC PKCδ +ve 

central amygdala 

SR-95531 
(0.5-125 μM) 

o o o 

Picrotoxin 
(100 μM) 

↓ ↓ ↓ 

Bicuculline 
(20,10,20 μM) 

↓(-) ↓(-) ↓(-) 

Zinc  
(100 μM) 

↓(-) n/a n/a 

Furosemide  
(600 μM) 

o n/a n/a 

Flunitrazepam 
(1 μM) 

↑ n/a n/a 

Propofol  
(3-10 μM) 

↑ n/a n/a 

Loreclezole 
(10 μM) 

↑ n/a n/a 

Pentylenetetrazol 
(1.5 mM) 

n/a ↓ n/a 

TPMPA 
(50 μM) 

n/a o n/a 

L-655,708  
(50 nM–50 µM) 

n/a n/a ↓(-) 
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PWZ-029 
(100 nM–1 µM) 

n/a n/a ↓(-) 

3α,5α- THDOC 
(10–100 nM) 

n/a n/a o 

Zolpidem 
(20–300 nM) 

n/a n/a o 

 
Table 5.1. Pharmacology of s-GABAAR tonic currents.  
Zinc an allosteric antagonist of GABAARs  
Furosemide (5-(Aminosulfonyl)-4-chloro-2-([2-furanylmethyl]amino)benzoicacid): a non-
competitive GABAAR antagonist.  
Flunitrazepam (5-(2-Fluorophenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one): 
BDZ-site agonist 
Propofol (6-Bis(1-methylethyl)phenol,2,6-Bis(isopropyl)phenol,2,6-Diisopropylphenol): general 
anaesthetic, potentiation of GABA-mediated responses and directly activates the GABAAR. 
Loreclezole ((Z)-1-[2-Chloro-2-(2,4-dichlorophenyl)ethenyl]-1H-1,2,4-triazole) sedative and an 
anticonvulsant; positive allosteric modulator of β2 or β3-subunit containing GABAARs 
Pentylenetetrazol (6,7,8,9-Tetrahydro-5H-tetrazolo[1,5-a]azepine): non-competitive GABAAR  
antagonist 
TPMPA (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid): GABAA-ρ (GABACR) antagonist 
L-655,708 (11,12,13,13a-Tetrahydro-7-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-
c][1,4]benzodiazepine-1-carboxylic acid, ethyl ester): α5-subunit selective BDZ-site inverse 
agonist 
PWZ-029 (methyl-(8-chloro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-α][1,4]benzodiazepin-
3-yl)methylether): α5-subunit selective BDZ-site inverse agonist  
3α,5α-THDOC: (3α,5α)-3,21-Dihydroxypregnan-20-one): neurosteroid GABAAR PAM. 
Zolpidem (N,N,6-Trimethyl-2-(4-methylphenyl)imidazo[1,2-a]pyridine-3-acetamide): BDZ-site 

agonist 

 

Table 5.1 shows that s-GABAAR tonic currents in DGGCs are resistant to SR (a competitive 

antagonist) and TPMPA (an antagonist at ρ-GABAARs [formerly GABACR]), partially inhibited by 

bicuculline (an inverse agonist), and completely blocked by PTX and pentylenetetrazol (non-

competitive antagonists) (74). Another important takeaway from Table 5.1 is that most 

compounds have only been tried in one neuron type and so we do not know how consistent the 

pharmacological profile of s-GABAAR currents is across different neurons. Because the 

pharmacological profile of any GABAAR is determined by its constituent subunits, this taps into 

an even more fundamental question, namely: are the same GABAAR isoforms responsible for 

generating GABA-independent tonic currents across different neurons? Or are there many 

possible GABAARs isoforms that spontaneously open, with each neuron type expressing a 

different ‘subset’ of possible s-GABAARs to produce their respective GABA-independent tonic 

currents? Evidence from McCartney et al (233), Wlodarczyk et al (74), and Botta et al (234) 

favours the latter proposition: each study posited that a different GABAAR isoform was 
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responsible for generating the GABA-independent tonic currents in the neuron under 

investigation.  

 GABAAR isoforms proposed to contribute to GABA-4.2.1
independent tonic currents  

s-GABAAR tonic currents in DGGCs= δ-subunit containing GABAARs. Wlodarczyk et al, 

demonstrated that knockout mice lacking the δ-subunit (Gabrd−/−) have a s-GABAAR tonic 

current that is reduced by ~60% compared to wild-type mice (74).  

s-GABAAR tonic currents in PKCδ positive neurons of the central amygdala = α5-subunit 

containing GABAARs. Botta et al, demonstrated that knockout mice lacking α5-subunit 

(Gabra5−/−) have a reduced s-GABAAR tonic current. In line with this, α5-subunit selective 

inverse agonists (L-655,708 and PWZ-029) also decrease s-GABAAR tonic currents (234). 

s-GABAAR tonic currents in Hippocampal Pyramidal Neurons = α1β1γ2 or α1β3γ2 

receptors. McCartney et al, demonstrated that the pharmacology of s-GABAAR tonic currents in 

hippocampal pyramidal cells most closely matches that of recombinant α1β1γ2 and α1β3γ2 

receptor isoforms. Key to this conclusion was the potentiation of s-GABAAR tonic currents by 

the benzodiazepine-site agonist, flunitrazepam (233).  

In principle, all of the receptor isoforms identified above (and possibly others) could be 

delivering a portion of the s-GABAAR tonic current that is found in DGGCs. And, therefore, 

compounds that are known to modulate the activity of these receptors might also be able to 

affect s-GABAAR tonic currents in DGGCs.  

The idea that the s-GABAAR current in DGGCs is the collective endeavour that involves multiple 

GABAAR isoforms is supported by the fact that in Gabrd−/− mice, which lack the δ-subunit, a 

significant portion of the s-GABAAR tonic current, >40%, remains intact (74). Although this may 

be explained by compensatory increases in other GABAAR subunits (143,351,540–543), it at 

least suggests that in WT-DGGCs, other GABAAR isoforms – perhaps α5βγ and/or α1β1/3γ2 

receptors – are also able to open spontaneously to deliver some of the s-GABAAR current (74). 

This idea is also supported in the most basic sense by gene and protein expression data: 

DGGCs express 11 of the 19 total GABAAR subunit genes (111–116): moderate-to-high levels 
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of the α1,2,4,5; β1,2,3; γ2 and δ GABAAR subunits, low/no γ1+3 subunits (111–116); DGGCs 

may also express α3 (111,112) and ε subunits, although reports of these subunits have been 

inconsistent (114,115,544). Thus, DGGCs express all the subunits required to assemble α5βγ 

and α1β1/3γ2 receptors – the other isoforms previously posited to be s-GABAARs in other 

neuron types (233,234). Furthermore, the expression data shows that there are only a few 

isoforms, such as those containing α6 subunits (111–116), that can be discounted a priori, 

leaving open the possibility that other receptor isoforms contribute to s-GABAARs tonic currents. 

Thus, there are many possible GABAAR isoforms that could be opening spontaneously to 

produce the s-GABAAR current.  

We posit that using compounds that affect the activity of extrasynaptic δ-subunit-containing 

GABAAR isoforms (δ-GABAARs) will be a method for modulating s-GABAAR tonic currents. 

Compounds that target α5βγ2, which are also extrasynaptic, and α1βγ2 receptor isoforms, as 

well as those targeting other isoforms that have not been formally identified as s-GABAARs, may 

also be able to affect s-GABAAR tonic currents. 

 Assessing the modulation of s-GABAAR-mediated tonic 4.2.2
currents 

There is an important consideration to note before we proceed: in this chapter, we are 

specifically trying to identify compounds that modulate s-GABAAR tonic currents by affecting 

their spontaneous activity and not, for instance: 1) agonists that bind to the orthosteric site to 

directly activate s-GABAARs (and/or other types of GABAARs); nor are we aiming to identify 2) 

compounds that increase the potency for GABA at s-GABAARs (and/or other types of 

GABAARs) so that they generate GABA-dependent tonic currents. A necessary, albeit not 

sufficient (see discussion), indication of whether a compound is modulating spontaneous activity 

is that the effect they produce, for instance, a change in tonic holding current, should persist in 

the presence of SR, the neutral competitive antagonist that prevents agonists binding to the 

orthosteric site. If any compounds do produce an SR-resistant effect (e.g. increase or decrease 

in holding current) then this effect should be blocked PTX to indicate that it is due to s-

GABAARs. Thus, with the aim of this chapter being to modulate the spontaneous activity of s-

GABAARs, it was important to only select compounds that act via non-orthosteric (allosteric) 
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sites – and ideally compounds that have already been confirmed to affect the constitutive 

activity of GABAARs.   

All experiments in this section were whole-cell voltage-clamp recordings using CsCl intracellular 

solution, which enables GABAAR currents to be recorded at RMP (EGABA ~ 0 mV). In this 

recording configuration, compounds that potentiate s-GABAAR tonic currents will generate an 

inward tonic current that is resistant SR and, as a result, increase the amplitude of the PTX-

induced outward current. Conversely, compounds that inhibit s-GABAARs will generate an 

outward current that is unaffected by SR and, as a result, will lead to a reduction in the 

amplitude of the subsequent PTX-induced outward current.  

 Targeting extrasynaptic GABAARs to directly modulate  4.2.3
s-GABAAR tonic currents 

If it is the case that compounds that affect the activity of δ-subunit containing isoforms and/or 

α5-subunit containing isoforms are able to modulate s-GABAAR tonic currents, it would give 

further support to the proposition made by Wlodarczyk et al. Namely, that in DGGCs, 

extrasynaptic GABAAR isoforms that can be activated by elevated ambient GABA to produce 

GABA-dependent tonic currents also exhibit a degree of constitutive activity that allows them, 

under conditions of low-to-no ambient GABA, to maintain a ‘floor’ of inhibition because they can 

open spontaneously (74,224,376).  

In DGGCs, δ-subunits (351) primarily assemble with α4-subunits (254) and β2-subunits (352) to 

form α4β2δ receptors; α4β1δ and α4β3δ receptor isoforms are also likely to be present, but at 

lower abundances (352,371). The potency of GABA at α4βδ receptor isoforms is high 

(179,235,372,375), and this allows them, along with α5βγ receptor isoforms, to be persistently 

activated by low concentrations of GABA to generate relatively small, but long-lived tonic 

currents (105,179,235,372). α4βδ and α5βγ receptor isoforms can do this despite being located 

at peri- and extrasynaptic sites (72,179,254,351,352,545,546). The role of α4βδ and α5βγ 

receptor isoforms in generating the GABA-dependent tonic inhibition was identified by Glykys et 

al, who showed that tonic currents in DGGCs, generated by applying 5 μM GABA to these cells, 

were virtually absent in double gene-knockout mice that lacked both the δ- and α5-subunits 

(Gabra5/Gabrd−/−) (351). They further showed, using single-knockout mice, that δ-GABAARs 
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contribute >70% of the GABA-dependent tonic current in DGGCs, and that α5-GABAARs 

contribute the remaining ~30% (351). Interestingly the relative proportion of the residual GABA-

dependent current that persists following single KO of the δ-subunit (~30%) reported by Glykys 

et al is comparable to the residual s-GABAAR tonic current reported in these mice by 

Wlodarczyk et al (~40%) (74,351). Further supporting evidence for the role of δ-subunit-

containing GABAARs in generating s-GABAAR tonic currents, is that all three of the α4βδ 

receptor isoforms have been reported to exhibit constitutive receptor activity and produce leak 

currents when expressed in recombinant systems: a4β1δ (371,372), a4β2δ (372–375), a4β3δ 

(371,372,376,377). Indeed, the a4β2δ receptor isoform was recently shown to exhibits an 

unusually high constitutive open probability (~0.1) (375). 

We utilised two compounds that we thought might be able to bi-directionally modulate s-

GABAAR tonic currents through their action at α4βδ receptor isoforms: DS2 and DPP-4-PIOL. 

The imidazopyridine DS2 (Delta Selective compound 2) is a positive allosteric enhancer 

modulator at δ-subunit-containing GABAARs (selectivity: α4/6βxδ > α1βxδ >> γ2-receptors > 

α4β3) (377,547). The main effect of DS2 on α4βδ receptor isoforms is to increase the maximal 

effect (efficacy) of GABA (377,547). Pertinent to the present thesis, DS2 has also been shown 

to increase the constitutive activity of α4β2δ (374) and α4β3δ (377) receptor isoforms. Because 

DS2 binds to an allosteric site, we reasoned that DS2 should be able to potentiate the s-

GABAAR tonic currents in the presence of SR, and this will be revealed as a larger PTX-

sensitive current. 

DPP-4-PIOL is a potent, mixed competitive and non-competitive antagonist that has a 3-fold 

higher potency for α4β3δ vs α1β3γ2 receptor isoforms (548). DPP-4-PIOL has an IC50 of 1 nM 

at α4β3δ receptors expressed in Xenopus oocytes and is able to potently suppresses the 

maximum GABA current due its non-competitive effect (e.g. it exhibits negative efficacy). Using 

the in vitro slice preparation, it was shown that 2.3 nM DPP-4-PIOL can inhibit a portion of 

GABA-dependent tonic current in DGGCs without affecting IPSCs (268); at higher 

concentrations (>30 nM) DPP-4-PIOL begins to inhibit IPSCs. We posit that the non-competitive 

component of DPP-4-PIOL may allow it to suppress constitutive s-GABAAR activity in the 
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presence of SR, as indicated by an outward current and a decrease in the amplitude of the PTX 

sensitive current.  

α5βγ2 receptor isoforms produce s-GABAAR tonic currents in PKCδ-positive neurons of the 

central amygdala (234) and deliver ~30% of the GABA-dependent tonic currents in DGGCs 

(351). We posit that they might also deliver a portion of the s-GABAAR tonic current in DGGCs 

(perhaps corresponding to the residual s-GABAAR tonic current that remains in Gabrd−/− mice) 

(74). Botta et al demonstrated that L-655,708, a partial-inverse agonist that is selective for the 

benzodiazepine (BDZ)-site of α5βγ2 receptor isoforms (549), can inhibit a portion of s-GABAAR 

tonic currents in PKCδ-positive neurons of the central amygdala (234). Thus, L-655,708 might 

also be able to attenuate s-GABAAR currents in DGGCs. Importantly, L-655,708 and other BDZ-

site ligands, interact with the receptor at an allosteric site (α+/γ- subunit interface), that is distinct 

from the orthosteric sites (β+/α- subunit interface) (98). This means that they can still affect 

receptor function when SR is bound to the receptor (74,199,233) and, thus, are a powerful 

pharmacological mechanism for modulating s-GABAARs. 

 Using BDZ-site ligands to directly modulate s-GABAAR 4.2.4
tonic currents 

Other BDZ-site ligands might also be able to modulate s-GABAARs in DGGCs. This is 

supported by McCartney et al, who showed that s-GABAAR tonic currents in hippocampal 

pyramidal neurons are potentiated flunitrazepam (1 μM), a BDZ-site agonist (233), and 

identified the BDZ-sensitive α1β1γ2 and α1β3γ2 receptor isoforms as potential sources of the s-

GABAAR current (233). When these receptor isoforms (233,369) are expressed in recombinant 

systems they exhibit constitutive activity to produce s-GABAAR currents – the same is also true 

for as well as wild-type α1β2γ2L (198,205) and mutant α1β2γ2L/S receptor isoforms 

(196,198,199,205,260). And BDZ-site ligands can bidirectionally modulate the constitutive 

activity of these isoforms (196,198,199,205,233,260,369). Further convincing evidence for s-

GABAARs being sensitive to BDZ-site ligands comes from studies that, like McCartney et al, 

have shown that BDZ-site ligands can potentiate tonic currents in a manner that is resistant 

block by SR, but sensitive to bicuculline/PTX (269,270,303,522,550). Although rarely 
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acknowledged as such, this is an indicator of modulating tonic currents through s-GABAAR 

(233).  

As a class of drugs, BDZ-site ligands are many and varied. Variation is present both in terms of 

efficacy: some BDZ-site ligands positively modulate GABAARs, others negatively; and in terms 

of subunit selectivity. At the level of the class as a whole, selectivity is conferred by the fact that 

most BDZ-site ligands are only effective at α1/2/3/5βγ2 receptor isoforms (551,552), whereas 

α4/6βδ receptor isoforms are generally classed as BDZ-insensitive receptors (553–557). Thus, 

BDZ-site ligands allow us to test if modulating subunit isoforms that do not contain the δ-subunit 

can affect s-GABAAR tonic currents. Selectivity is also present within the class, with different 

BDZ-site ligands acting at different subunit isoforms, e.g. L-655,708 negatively affects α5β3γ2 

receptor responses, but is virtually ineffective at α1β3γ2 receptors. In contrast, the reverse is 

true for zolpidem: it potentiates α1β3γ2 receptor responses, but does not affect α5β3γ2 receptor 

responses (549). Thus, BDZ-site ligands provide a way to assess the contribution of specific 

receptor isoforms to the s-GABAAR tonic current. For the purposes of clarity, the pharmacology 

of the BDZ-site ligands used in this section is embedded within the results section. 

 Targeting PKC and PKA to indirectly modulate  4.2.5
s-GABAAR tonic currents 

All of the strategies proposed so far to modulate s-GABAAR activity involve compounds acting 

directly on s-GABAARs to affect their constitutive activity. However, the activity/expression of 

GABAARs can also be modulated indirectly, through changes to the receptor phosphorylation 

state that follows from altering the activity of serine/threonine kinases (558). Notably, in DGGCs, 

Bright et al showed that bicuculline-sensitive tonic GABAAR currents are bidirectionally 

modulated by PKC: activation of PKC inhibits tonic GABAAR currents, whereas inhibition of PKC 

potentiates them (559). They also showed that PKC activation, but not inhibition, had the same 

effect on GABA-activated currents at recombinant α4β2δ receptor isoforms (559), i.e. 

extrasynaptic receptors primarily responsible for GABA-dependent tonic currents in DGGCs 

(254,351,352). Pertinent to the present thesis, Tang et al showed that activation of PKA 

enhances the spontaneous activity of recombinant α4β3δ receptors, both in terms of whole-cell 

PTX-sensitive currents and increasing single-channel open frequency (376). Interestingly, the 
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effect of PKA on GABA-activated α4β3δ responses was the opposite to that of constitutive 

activity, causing inhibition of GABA responses (376), indicating that PKA might be a mechanism 

to selectively affect s-GABAARs. One piece of evidence supporting the modulation of s-GABAAR 

activity in DGGCs by PKA/PKC (or another cytoplasmic factor) comes from the study by 

Wlodarczyk et al: they failed to detect s-GABAAR single-channel openings using the 

conventional outside-out recording technique; however, s-GABAAR single-channel openings 

could be recorded using the nucleated macropatches, in which a larger piece of cell membrane 

is withdrawn from the cell to include the intact nuclei and cytoplasm (74). This suggests that 1) 

s-GABAARs are expressed at a low density on the cell soma, and/or 2) the activity of s-

GABAARs depends on, or is augmented by, cytoplasmic factors e.g. PKA/PKC. Potentiation and 

inhibition of serine/threonine kinases might thus provide an additional mechanism by which to 

modulate s-GABAARs tonic currents. 
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4.3 Aims 

The overall aims of the present chapter (Chapter 4; Results 2) were to, first, characterise the 

pharmacology of s-GABAAR-mediated tonic currents in DGGCs; and, as an adjunct to this, 

investigate if the amplitude of these currents is affected by modulating intracellular kinase 

pathways. Three experimental steps were pursued to achieve this aim:  

Step 1) Investigate if ligands targeting extrasynaptic δ-subunit- and α5-subunit-containing 

GABAARs, which have been previously shown to modulate GABA-dependent tonic currents, 

also affect s-GABAAR tonic current amplitudes.  

Step 2) Test if benzodiazepine-site ligands, which have been previously shown to affect 

constitutive receptor activity, can modulate s-GABAAR tonic currents.  

Step 3) Use intracellular blockers and activators of PKA and PKC-pathways to investigate if – 

as with GABA-dependent tonic currents – serine/threonine kinase pathways affect the amplitude 

of s-GABAAR tonic currents. 
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4.4 Hypothesis 

Previous work using knockout mice indicates that GABAARs containing the δ-subunit produce a 

significant portion of the s-GABAAR tonic current in DGGCs. We, therefore, hypothesise that we 

will be able to bi-directionally modulate the amplitude of s-GABAAR tonic currents using 

compounds that target δ-GABAARs. Because knockout of the δ-subunit does not completely 

ablate the s-GABAAR tonic current, we also hypothesise, informed by previous findings in the 

central amygdala, that α5-subunit GABAARs can spontaneously open. If this is the case, then 

inhibiting α5-GABAARs should decrease the amplitude of s-GABAAR currents. As an alternate 

hypothesis, non-α5/δ-subunit-containing GABAARs may make a significant contribution to the s-

GABAAR current; we will test this using BDZ-site ligands. The spontaneous activity of GABAARs 

can be altered by serine/threonine kinases and in the DG tonic currents have been shown to be 

modulated by both PKA and PKC. Therefore, we hypothesise inhibitors and activators of 

PKA/PKC will be able to modulate s-GABAARs tonic currents.  
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4.5 Results 

 Zinc partially inhibits s-GABAAR tonic currents 4.5.1

For the first experiment, we performed what essentially amounted to a positive control to ensure 

that we can detect changes in the s-GABAAR current amplitude. Specifically, we checked if s-

GABAARs were sensitive to the cation Zinc (Zn
2+

), an allosteric antagonist of all GABAARs 

(263,560). The potency of Zn
2+

-mediated antagonism of GABA-gated currents has been shown 

to vary across different GABAAR subtypes: αβ receptors show high sensitivity to Zn
2+ 

inhibition 

(561–563), αβδ and αβε receptors show intermediate sensitivity (336,350,564), whereas αβγ 

generally show weak sensitivity (561–563). However, this is not always the case, for instance 

Brown et al, 2002 showed that α4β3δ and α4β3γ2 receptors were equally sensitive to Zn
2+

(248). 

Most pertinent to the present thesis, Zn
2+ 

can inhibit the spontaneous activity of GABAARs 

(233,336,350). Application of 100 μM Zn
2+ 

has been previously shown to partially inhibit native 

s-GABAAR currents in hippocampal pyramidal cells (233), and the spontaneous activity of 

recombinant GABAARs in HEK293 cells (α1β1γ2 and α1β3γ2) (233) and L929 cells (α1β1ε and 

α1β3ε) (336,350). Because Zn
2+ 

acts via allosteric sites (one at the N-terminal α-β subunit 

interface and another within the ion channel (561), it means that Zn
2+ 

can inhibit the GABAARs 

even when the orthosteric site is occupied by a competitive antagonist (e.g. SR).  

To test if Zn
2+ 

can block s-GABAAR activity in DGGCs, we exposed neurons (N=6) to 100 μM 

Zn
2+

 and then to SRSR+PTX (Fig.4.1A+B). In line with the previous report by McCartney et al 

recording from CA1 pyramidal neurons (233), we found that PTX sensitive currents were 

smaller in the presence of Zn
2+ 

(8.5 ± 1.0 pA; “Zn
2+

+SR”””+PTX) compared to in CTRL 

conditions (12.45 ± 0.79 pA; SRSR+PTX). This represented a significant (Unpaired Student’s 

t-test, t(11,5)= 3.04 P = 0.0089), 32% reduction in the amplitude of the s-GABAAR-mediated tonic 

current (Fig.4.1). Thus, Zn
2+ 

is able to partially inhibit s-GABAAR activity. This effect was also 

apparent in the small (3.26 ± 1.15 pA), but significant, outward shift in holding current that 

supersedes the addition of Zn
2+

 (Paired Student’s t-test, t(5)= 2.56; P= 0.048). As an aside, Zn
2+

 

has been shown to have the opposite effect on GlyRs, in that it positively modulates their 

currents (233,565). Hence, the inhibitory effect of Zn
2+

 on the SR-resistant PTX-sensitive 

current further corroborates the report by Wlodarczyk et al, that GlyRs are not contributing to 
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 DS2 does not affect the amplitude of s-GABAAR tonic 4.5.2
currents  

GABAARs containing the δ-subunit, primarily the α4β2δ isoform, are responsible for generating 

the majority of the GABA-dependent tonic currents in DGGCs (179,254,351,352,546). 

Wlodarczyk et al provided evidence, using δ-subunit knockout mice, that these same receptors 

also generate a significant (~60%) portion of the GABA-independent s-GABAAR tonic current in 

mouse DGGCs (74); this aligns well with their reported spontaneous openings in certain 

recombinant expression systems (371–377). The spontaneous activity of δ-subunit-containing 

receptors is enhanced by DS2 (0.1 – 10 μM), a positive allosteric enhancer that binds at a site 

distinct from the orthosteric site (374,377). We therefore tested if DS2 could increase GABA-

independent tonic currents (Fig.4.2). As a first step, we assessed the effect of 3 μM DS2 in the 

absence of SR (i.e. with GABA-dependent signalling intact) and showed that application of DS2 

generates inward tonic current of -7.8 ± 0.43 pA (N=5) (Fig.4.2A-Ci), which represents a 

significant shift in holding current relative to baseline, measured prior to DS2 (CTRL vs DS2 

Paired Student’s t-test t(4)= 18.1; P < 0.0001) and also relative the small inward current induced 

by SR that was reported in Chapter 3.5.1 (SR vs DS2: Unpaired Student’s t-test t(11,4)= 4.33; P = 

0.0006).  
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We found that with SR, DS2 could no longer generate significant inward currents, indicating that 

the DS2 effect in the absence of SR was GABA-dependent Fig.4.3A-C. The average current 

induced by 3 μM DS2+SR was -1.21 ± 0.7 pA (N=4), which is smaller than with DS2 alone (DS2 

vs DS2+SR: Unpaired Student’s t-test t(4,3)=7.85; P=0.0001) and is not significantly different 

from the baseline before DS2+SR were added (CTRL vs. 3 μM DS2+SR: Paired Student’s t-test 

t(3)= 1.58; P=0.213) Fig.4.3C. We also tested if raising the concentration of DS2 could overcome 

this apparent block by SR Fig.4.3A-C. However, we found that even at 10 μM DS2+SR (N=5), the 

average change in baseline was -4.5 ± 1.8 pA, which is not significant compared to baseline 

(before adding DS2+SR) (CTRL vs. 10 μM DS2+SR: Paired Student’s t-test t(4)= 2.44; 

P=0.0712). That SR can block the inwards currents generated by SR was also demonstrated in 

the ANOVA of currents induced by SR vs. 3 μM DS2+SR vs. 10 μM DS2+SR (One-way, 

ANOVA, F(2,18) = 1.60; P= 0.229).  

The inability of DS2 (3 or 10 μM) to generate inward currents in the presence of SR suggests 

that this compound is unable to modulate native s-GABAARs in DGGCs, and is instead likely 

increasing the potency of GABA at δ-GABAARs to produce a GABA-dependent tonic 

conductance. To confirm that DS2 does not modulate s-GABAARs we exposed neurons to SR 

and 3/10 μM DS2 and then, in their continued presence, to PTX. We found that the s-GABAAR 

current that is blocked by PTX is unchanged by the presence of DS2+SR: 3 μM DS2 (15.24 ± 

2.53 pA; N=6) and 10 μM DS2 (10.25 ± 2.02 pA; N=5), relative to SR alone (12.45 ± 0.79 pA; 

N=10) (One-way, ANOVA, F(2,18) = 1.88; P= 0.181). Despite the ANOVA being >0.05, for the 

purpose of illustration, we also performed uncorrected t-tests to compare the means of each 

group with SRPTX; this again showed that there was no detectable change in the s-GABAAR 

tonic current with DS2: (3 μM DS2+SRPTX vs. SRPTX: Unpaired Student’s t-test t(9,5)=1.28; 

P=0.221) and (10 μM DS2+SRPTX vs. SRPTX: Unpaired Student’s t-test t(9,4)=1.22; 

P=0.241).  
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 DPP-4-PIOL does not block s-GABAAR tonic currents  4.5.3

We next explored if s-GABAAR tonic currents could be fully or partially inhibited by DPP-4-PIOL, 

a novel mixed competitive and non-competitive antagonist that has a 3-fold higher potency for 

α4β3δ vs. α1β3γ2 receptor isoforms (548). Although DPP-4-PIOL has not been explicitly shown 

to block constitutive activity at δ-subunit-containing GABAARs, the non-competitive component 

of its antagonism was shown to decrease the maximum response, by 60%, of α4β3δ receptors 

to GABA (548), indicating that the compound has a degree of negative efficacy. DPP-4-PIOL 

has an IC50 of 1 nM at α4β3δ expressed in Xenopus oocytes and at 2.3 nM was shown to inhibit 

>70% of the GABA (5 μM) activated tonic currents in DGGCs (IC50 for the tonic current was 0.87 

nM) (268). If 1) δ-subunit containing GABAARs open spontaneously to produce s-GABAAR 

currents and 2) DPP-4-PIOL can inhibit these openings, then application of DPP-4-PIOL should 

induce an outward current analogous to those produced by PTX. We tested DPP-4-PIOL on 

both GABA-dependent and GABA-independent tonic current (Fig.4.5). For GABA-dependent 

tonic currents, neurons were perfused with 5 μM GABA, which activates an inward current of 

44.4 ± 8.5 pA (n=4), and then we applied DPP-4-PIOL over a concentration range of 1,3 and 10 

nM (N=5); this experiment is analogous to that previously reported (268).  

Unfortunately, in contrast to previous reports, we were unable to detect any significant outward 

currents in the presence of DPP-4-PIOL, reflecting an apparent inability to block GABA-

dependent tonic currents in our preparation (Fig.4.5A-B). To make sure a persistent leak current 

was not obscuring a small outward current we measured the change in holding current relative 

to the previously applied concentration of DPP-4-PIOL (or in the case of 1nM DPP-4-PIOL, 

relative to GABA baseline), but we were still unable to detect any consistent outward current at 

any concentration of DPP-4-PIOL (Fig.4.5C). Nevertheless, we repeated our experiment in the 

absence of GABA to test if a portion the s-GABAAR tonic current could be blocked by DPP-4-

PIOL over a concentration range of 1, 3, 10 and 30 nM (Fig.4.5D+E). However, we were, again, 

unable to detect any notable outward currents at any of the concentrations (N=8) (Fig.4.5F). This 

indicates that DPP-4-PIOL cannot block the GABA-independent tonic currents that are mediated 

by s-GABAARs. 
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 L-655,708 partially inhibits GABA-dependent tonic 4.5.4
currents but not s-GABAAR currents 

Because we found that two ligands that target the δ-GABAARs (DS2 and DPP-4-PIOL) were 

ineffective at modulating the s-GABAAR tonic current, we turned our attention to the α5-

GABAARs. We hypothesised that GABAARs containing the α5-subunit are also spontaneously 

opening and mediate a portion of the s-GABAAR current (i.e. corresponding to the s-GABAAR 

current that persists in δ-subunit knockout mice). This is in line with α5-GABAARs producing 

~30% of the GABA-dependent tonic currents activated by 5 μM GABA (351). Also supporting 

the involvement of α5-GABAARs in generating a portion of the s-GABAAR tonic current is Botta 

et al’s publication. They showed 1) that s-GABAARs generate GABA-independent tonic currents 

in PKCδ positive neurons of the central amygdala, and 2) that these tonic currents could be 

significantly reduced using α5-subunit selective inverse agonists (L-655,708 and PWZ-029) or 

by knocking out the α5-subunit (Gabra5−/−). We used L-655,708, an imidazo[1,5-

α]benzodiazepine that binds to the benzodiazepine (BDZ)-site and functions as a selective, 

partial inverse agonist at α5-GABAARs (568–570); its intrinsic negative efficacy means that it 

can inhibit ~20% of EC20 GABA responses. L-655,708 was used by Botta et al to block s-

GABAAR currents and has also been shown to block GABA-dependent tonic currents in DGGCs 

(88,351), CA1 pyramidal cells (351), and a host of other neurons. The concentration we used 

(20 μM), is within the range of that previously used by Botta et al to block s-GABAAR tonic 

currents: [50 nM, 5 µM, and 50 µM]; and by Scimemi et al: [50 μM] (571) and Caraiscos et al: [5 

– 50 μM] to block GABA-dependent tonic currents (572).  
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 Benzodiazepine-site ligands modulate s-GABAAR tonic 4.5.5
currents 

So far, the only compound that we have found that affects the s-GABAAR tonic current is Zn
2+

; 

modulators acting at δ-GABAARs (DS2, DPP-4-PIOL) and α5-GABAARs (L-655,708) have 

proved ineffective. Although L-655,708 interacts with the BDZ-site and has no effect on the s-

GABAAR current, we tested if other BDZ-site ligands, which target other receptor isoforms, 

could modulate s-GABAARs. 

The canonical high-affinity BDZ-site on the GABAAR is located within the receptor’s extracellular 

domain, at the α+/γ- subunit interface, in an analogous position to the orthosteric (agonist 

recognition) sites, which form at the two β+/α- subunit interfaces (98,573). Diazepam and other 

classical BDZs have the highest affinity and efficacy at receptor isoforms containing α1/2/3/5 

subunits in combination with β subunits and the γ2 subunit (BDZ sensitive isoforms), but can 

also interact, albeit often with a lower affinity/efficacy, with isoforms that incorporate the γ1 or γ3 

subunits (551,552). Importantly, α4/6βδ receptor isoforms are generally classed as BDZ-

insensitive receptors (553–557). At high concentrations, however, BDZs can also bind and 

modulate GABAARs through lower affinity ‘non-canonical‘ BDZ-sites (98,574–576).  

Ligands for the canonical BDZ-site are traditionally (and often exclusively) characterised in 

reference to their impact on agonist-/partial agonist-evoked responses, be it macroscopic 

responses (whole-cell current amplitudes), or microscopic responses (frequency of single 

channel openings), see Sieghart and Savić, 2018 for a comprehensive review (104). Briefly, and 

with reference to the compounds used in this section, BDZ-site agonists (diazepam, zolpidem 

and midazolam) function as GABAAR positive allosteric modulators: they increase the apparent 

GABA binding affinity and enhance responses to non-saturating concentrations of GABA. This 

reflects an increase in GABA potency (because the [GABA]-response curve is shifted to the left, 

i.e. EC50 is decreased), but not efficacy (because the maximal response is not increased) 

(198,203,573,577). BDZ-site agonists are also able to increase the apparent binding affinity and 

enhance responses to saturating concentrations of partial agonists (decreasing EC50 and 

increasing the maximal response) (198,203,573). BDZ-site inverse agonists (DMCM) function 

as GABAAR negative allosteric modulators, reducing the apparent binding affinity and 
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decreasing electrophysiologic response of the receptor to GABA and partial agonists 

(198,203,573). BDZ-site competitive antagonists (flumazenil) function as null/neutral 

modulators, meaning that they block the effects of BDZ-site agonists/inverse agonist without 

affecting the apparent binding affinity or responsiveness of the receptor to GABA and partial 

agonists (198,203,573). 

BDZ-site agonists were originally posited to potentiate GABA responses by increasing the 

affinity of GABA binding at the orthosteric sites (578,579); however, contemporary research 

consistently favours an alternative view: that BDZ-site ligands shift the equilibrium between 

receptor states that link channel shutting and opening (196,198,199,203–205,260,580,581). The 

exact mechanism for this has not been fully resolved, with some studies inferring that BDZ-site 

agonists increase the actual efficacy of gating (i.e. shifts the final equilibrium between shut and 

open states) (196,198,260,580). And other studies convincingly demonstrate that BDZ-site 

agonists shift the equilibrium between the resting shut states and preactivated (flipped) states – 

the latter describes the state that immediately precedes channel gating/opening (203–205). 

Other studies have also posited that intermediate states (581) and/or desensitised states (205) 

might also be involved in BDZ-site GABAAR modulation 

One of the key experimental findings that evidenced in favour BDZ-site ligands modulating the 

equilibrium of state transitions was that BDZ-site ligands affect the spontaneous activity of 

recombinant wild-type α1β2γ2L (198,205) and mutant α1β2γ2L/S receptors 

(196,198,199,205,260). The same is also true for BDZ-site ligands acting on spontaneously 

opening recombinant wild-type α1β1γ2L (233) and α1β3γ2L receptors (233,369). These findings 

are of direct importance for the present thesis.  

First, they show that the wild-type α1β2γ2 isoform, the most abundant and widespread GABAAR 

in the brain, can open spontaneously in the absence of an agonist and, thus, along with α1β1γ2 

and α1β3γ2 isoforms, can be considered a potential candidates for producing some or all of the 

s-GABAAR current. Second, they show that BDZ-site ligands can bi-directionally affect the 

constitutive activity of spontaneously opening GABAARs and thus may be able to affect the s-

GABAAR tonic current in DGGCs.  
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This results section aimed to test if BDZ-site ligands can modulate s-GABAAR tonic currents in 

line with what would be predicted from their effect on recombinant receptors. If this does turn 

out to be the case, it will evidence that a portion of the GABA-independent tonic inhibition is 

produced by GABAAR isoforms that have the canonical BDZ-site. The BDZ-site ligands that we 

used in this section have all been shown to modulate the spontaneous activity of wildtype 

and/or mutant α1β2γ2 receptors. The BDZ-site agonists, diazepam (196,198,199), zolpidem 

(199,260) and midazolam (196), all increase spontaneous receptor activity. The BDZ-site 

inverse agonist, DMCM, decreases spontaneous receptor activity (198,260). Flumazenil can be 

used to antagonise the action of BDZ-site agonists and inverse agonists (196,199) but is 

actually a very low‐efficacy BDZ-site partial agonist (196,199).  

To put simply the experimental approach used in this section: if BDZ-site agonists potentiate s-

GABAAR tonic currents in DGGCs, they should generate an inward tonic current that is resistant 

SR and, as a result, increase the amplitude of the PTX-induced outward current. Similarly, if 

BDZ-site inverse agonists inhibit s-GABAAR tonic currents, they should cause an outward 

current that is unaffected by SR and also reduce the amplitude of the PTX-induced outward 

current. The logic of this approach has been validated experimentally in studies that have 

demonstrated that the spontaneous currents that are potentiated by BDZ-site agonists are 

resistant to competitive antagonism by SR (199), but are inhibited by PTX (205). This is also 

entirely in line with the pharmacology of SR and PTX. SR only exhibits a small amount of 

negative efficacy and does not compete with ligands binding at the BDZ-site; conversely, PTX 

acts as an allosteric inverse agonist by binding within the channel and stabilising the receptor in 

a closed state.  

There is already some evidence that suggests that in neurons, BDZ-sensitive GABAAR isoforms 

spontaneously open to generate GABA-independent tonic currents. The clearest indication of 

this was provided by McCartney et al, who originally characterised s-GABAAR tonic currents in 

pyramidal neurons (233). They showed that in these cells, flunitrazepam (1 μM), a BDZ-site 

agonist, potentiates s-GABAAR-mediated tonic currents in a manner that is resistant to SR. 

They went further and also showed that recombinant wild-type α1β1γ2 and α1β3γ2 isoforms, 

both of which have the canonical BDZ-site, open spontaneously and exhibit a pharmacological 
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profile that is strikingly similar to the GABA-independent s-GABAAR tonic currents that were 

recorded from pyramidal neurons (233). In further support of this, not only have all three of the 

BDZ-site agonists tested in this section – diazepam (360,582,583), zolpidem (269,303,550), and 

midazolam (269,270,522) – been shown to potentiate GABAAR tonic currents, in some 

instances (269,270,303,522,550) they potentiate tonic currents in a manner that is resistant 

block by SR, but sensitive to bicuculline/PTX – the pharmacological ‘finger-print’ of s-GABAAR 

tonic currents. 
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 Diazepam does not modulate s-GABAAR tonic currents 4.5.6

We first tested if diazepam, a BDZ-site agonist, could potentiate s-GABAAR-mediated tonic 

currents (Fig.4.8). We used 1 μM diazepam in this set of experiments. At this concentration, 

diazepam is able to potentiate the spontaneous openings of wildtype and mutant α1β2γ2 

(196,198,199) and α1β3γ2 (369) receptor isoforms; it is also able to potentiate the tonic currents 

(presumed to be GABA-dependent) in sympathetic pre-ganglionic neurons (360), CA3 (582) and 

CA1 pyramidal neurons (583). When used at 1 μM diazepam has the greatest potentiating 

effect (highest efficacy) on EC3 GABA responses generated by α3βγ2 receptors, but also 

strongly (>3 fold) potentiates α2βγ2, α1βγ2 and α5βγ2 receptor isoforms (549).   

First, we exposed neurons (N=4) to 1 μM diazepam and observed a small inward holding 

current (-5.7 ± 1.0 pA), which was not blocked by the subsequent addition of SR (-8.4 ± 3.1 pA) 

(Fig.4.8A-C); this diazepam+SR current was significantly larger than SR alone (-2.4 ± 0.8 pA) 

(SR vs SR+diazepam: Unpaired Student’s t-test t(11,3)= 2.78; P = 0.0146), indicating that this 

current is to a significant degree GABA-independent (Fig.4.8A-C). To confirm this, we then 

exposed neurons to PTX in the continued presence of diazepam+SR to see if the s-GABAAR 

tonic currents were enhanced (N=6; 4+ 2 neurons that were already exposed to diazepam just 

before recording commenced) (Fig.4.8A+D+E). The s-GABAAR, PTX-sensitive tonic current in the 

presence of diazepam was 14.05 ± 1.0 pA, which is not significantly different from the control 

SRPTX current (12.45 ± 0.79 pA; N=10), (Diazepam+SRPTX vs SRPTX: Unpaired 

Student’s t-test t(9,5)=1.243; P= 0.2345) (Fig.4.8E). The lack of effect of diazepam on the PTX-

mediated s-GABAAR may reflect a lack of BDZ-sensitive isoforms in the s-GABAAR pool; 

alternatively, it may be that diazepam is not efficacious enough at increasing spontaneous 

activity. To test this, we will use zolpidem (199) and midazolam at (196), both of which are more 

efficacious than diazepam at potentiating spontaneous currents.  
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 Zolpidem potentiates s-GABAAR tonic currents  4.5.7

We next explored if zolpidem could enhance s-GABAAR-mediated tonic currents (Fig.4.9). 

Zolpidem is not chemically a benzodiazepine, it is an imidazopyridine, but it binds to the BDZ-

site where it functions as an agonist; importantly, it has been shown to enhance spontaneous 

α1β2γ2 receptor currents (199,260) and does so with greater efficacy than diazepam (199). 

Zolpidem has a ten-fold higher apparent affinity and 5-8 times higher potency for α1β3γ2 

receptors compared to α2β3γ2 or α3β3γ2 receptors (549). This has led some to characterise 

zolpidem as an α1-subunit-specific modulator (104); however, zolpidem has a higher efficacy for 

potentiating α2β3γ2 and α3β3γ2 receptors, than α1β3γ2. As a result, at concentrations >50 nM, 

zolpidem loses its α1-subunit specificity (549). A notable feature of zolpidem is that it has an 

ultra-low apparent affinity and efficacy at α5-subunit-containing receptors (549), meaning that 

any potentiation of the s-GABAAR tonic current will not be due to α5-GABAARs, nor the 

traditional BDZ-insensitive α4- and α6-receptors (549). Zolpidem has been shown to increase 

tonic currents in layers II/III and V pyramidal somatosensory pyramidal neurons (269), dorsal 

motor nucleus neurons of the vagus (550) and fast-spiking interneurons in the motor cortex 

(303). The latter two studies are of specific relevance to the study of s-GABAARs (303,550). In 

neurons in the dorsal motor nucleus of the vagus, zolpidem potentiated tonic currents are 

partially insensitive to SR – a hallmark of s-GABAARs (550). In fast-spiking interneurons in the 

motor cortex, there is evidence that zolpidem is potentiating tonic currents by altering gating 

kinetics to stabilise the receptor in a spontaneously open (unbound) receptor state (303). 

Zolpidem is able to enhance spontaneous openings of recombinant α1β2γ2 receptors when 

used at a concentration of 1 μM (199,260); in our experiments we opted for 500 nM in order to 

try and mitigate any off-target effects of zolpidem acting through non-canonical BDZ-sites (584). 

Based upon the effect of zolpidem on GABA EC3 responses, 500 nM zolpidem will be 

potentiating α1βγ2, α2βγ2 and α3βγ2 responses to an equal degree, with no effect on α5, α4, or 

α6 subunit-containing receptors (549). We assessed the impact of zolpidem on s-GABAAR tonic 

currents in an analogous fashion to experiments performed with diazepam: i.e 

zolpidemzolpidem+SRzolpidem+SR+PTX (N=6) (Fig.4.9A). 
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As with diazepam, zolpidem induced inward currents (-7.96 ± 1.66 pA) that persisted in the 

presence of SR (-13.22 ± 1.54 pA) and were significantly larger than those reported for SR 

alone (-2.4 ± 0.8 pA) (SR vs SR+zolpidem: Unpaired Student’s t-test t(11,5)= 7.083; P < 0.0001) 

(Fig.4.9A-C). This increase in SR-resistant current translated into an increase in the PTX-

sensitive s-GABAAR tonic current (Fig.4.9D+E). The amplitude of outward current induced by 

PTX in the presence of zolpidem+SR was 17.32 ± 2.19 pA (N=6), which represents a 

significant, 39%, potentiation compared to control conditions (SRPTX = 12.45 ± 0.79 pA; 

N=10). (zolpidem+SRPTX vs SRPTX: Unpaired Student’s t-test t(9,5)=2.492; P= 0.0259) 

(Fig.4.9D+E). 
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In the presence of flumazenil (with zolpidem and SR) the PTX-induced outward current was 

10.53 ± 1.02 pA (N=7) (Fig.4.10A+B). This is notably less with the PTX current with zolpidem+SR 

(17.32 ± 2.191 pA) but on par with that recorded with just SR (12.45 ± 0.79 pA; N=10) 

(Fig.4.10A+B). Performing an ANOVA revealed the effect of the three treatments on the PTX-

sensitive current (one-way ANOVA: F(2,20) = 6.432; P=0.007); and Bonferroni corrected post-hoc 

test revealed that there was a specific effect of flumazenil: the outward current was significantly 

lower than with SR+zolpidem (Corrected unpaired Student’s t-test t(20df)=3.49; P= 0.0069), and 

not significantly different from the control PTX-sensitive current, in the presence of just SR 

(Corrected unpaired Student’s t-test t(20df)=1.113; P= 0.8369). In addition, the potentiation of the 

PTX-sensitive tonic current by zolpidem relative to control conditions (with just SR) was still 

present, even with the Bonferroni correction (Corrected unpaired Student’s t-test t(20df)=2.698; 

P= 0.0415). These findings demonstrate that the zolpidem is acting as a BDZ-site agonist to 

potentiate the SR-resistant, PTX-sensitive s-GABAAR current. 

The apparent potentiation of SR-resistant, PTX-sensitive s-GABAAR tonic currents by zolpidem 

is an important finding – there are, however, multiple possible explanations. One explanation is 

that zolpidem is binding to the basal ‘s-GABAAR pool’ of already constitutively active receptors 

and augmenting their constitutive activity to generate larger GABA-independent currents. 

Another potential explanation is that zolpidem is recruiting additional GABAARs, which are not 

typically spontaneously active, into the ‘s-GABAAR pool’ of receptors. We wanted to try and 

tease apart these possibilities. We reasoned that if BDZ-site agonists are potentiating receptors 

that are already constitutively active at rest, a BDZ-site inverse agonist should inhibit their 

activity; and that this should be detectable as a decrease in the amplitude of the s-GABAAR 

tonic currents. Conversely, if s-GABAAR tonic currents are not inhibited by BDZ-site inverse 

agonists, this would imply that 1) the basal pool of s-GABAARs is BDZ-insensitive and 2) BDZ-

site agonists potentiate GABA-independent currents by causing additional, otherwise non-

constitutively active, receptors to spontaneously open. We used the BDZ-site inverse agonist, 

DMCM, to assess if we could decrease the constitutive activity of s-GABAARs. 
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 DMCM partially inhibits s-GABAAR tonic currents 4.5.9

The β-carboline DMCM is a BDZ-site full inverse agonist that has been shown to decrease 

spontaneous receptor activity of wild-type and mutant α1β2γ2 receptors (198,260). DMCM has 

a high level of negative efficacy in that it blocks 50-70% of EC20 GABA currents at α1-5β3γ2 

receptors (585) – for comparison L-655,708, a BDZ-site partial inverse agonist, only blocks 20% 

(570). If DMCM is able to inhibit the tonic currents generated by the basal pool of s-GABAARs 

we would expect to see two things. First, DMCM should produce outward currents that are 

similar but smaller, perhaps 50—70%, to those produced by PTX in control conditions and that 

these currents should not be affected by the subsequent addition of SR. Second, the partial 

block of basal tonic currents should translate into a smaller PTX-mediated outward current. The 

sum of the DMCM and the PTX current with DMCM should be roughly equivalent to the total 

PTX-sensitive current in control conditions. We opted for 5 μM DMCM, a concentration that has 

been previously shown to near maximally inhibit GABAAR currents evoked by 5 μM GABA in 

histaminergic neurons (586); higher concentrations can lead to a potentiation of the response. 

The protocol was as follows: DMCMDMCM+SRDMCM+SR+PTX (N=9) (Fig.4.11A).  

The effect of DMCM (5 μM) on holding current was mixed; in 4 of the 9 cells tested, we 

observed outward currents averaging 2.31 ± 1.30 pA. However, the remaining 5 cells displayed 

small inward currents averaging -2.53 ± 0.66 pA, meaning that overall there was no overall 

effect of DMCM on holding current = -0.38 ± 0.96 pA, N=9 (Fig.4.11B+C); this change of holding 

current is not significantly different from baseline before vs after DMCM: (Paired Student’s t-test, 

t(8)= 0.396; P= 0.702) or compared to the effect of SR alone (Unaired Student’s t-test, t(8,11)= 

1.618; P= 0.1221). We did note, however, that the percentage of cells displaying outward 

currents following DMCM (44%), was higher than in cells just exposed to SR (8%; 1/12 cells 

tested). Based on the subsequent effect of DMCM on the PTX-sensitive s-GABAAR current, we 

suggest that a slow leak current, which tends to arise during long recordings, may have been 

masking a small outward current by DMCM. In support of this, when we applied SRSR+PTX 

in the presence of DMCM, we found that the s-GABAAR current was 8.37 ± 1.65 pA (N=9), 

which represents a significant, 33%, reduction compared to control conditions (SRPTX = 

12.45 ± 0.79 pA; N=10): (DMCM+SRPTX vs SRPTX: Unpaired Student’s t-test t(9,8)=2.302; 

P= 0.0342) (Fig.4.11D+E).  
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 Midazolam potently potentiates s-GABAAR tonic currents 4.5.10

The result of the DMCM experiment suggests that a portion of the receptors in the basal s-

GABAAR pool contain the canonical BDZ-site, and that BDZ-site agonists are not causing 

additional GABAARs to enter into spontaneously active state. As a final step in examining the 

modulation of s-GABAARs by BDZ-site ligands, we explored the effect of midazolam, another 

BDZ-site agonist, which we hypothesised would potentiate s-GABAARs to a greater degree than 

zolpidem. We viewed this as an important experiment because the degree of potentiation by 

zolpidem was quite marginal (39%). The efficacies of zolpidem and midazolam at potentiating 

spontaneously opening receptors have, to the best of our knowledge, not been directly 

compared; however, both compounds have been separately compared to diazepam (196,199), 

and midazolam appears to be the more efficacious (196). Another reason we opted to study 

midazolam is that it has been reported to potentiate GABAAR tonic currents in cultured 

hippocampal neurons (270,522) and in layer V pyramidal neurons (269) in a manner that was 

insensitive competitive antagonism by SR, but sensitive to bicuculline/PTX (269,270,522). This 

strongly suggests that midazolam can potentiate s-GABAARs. We opted to use midazolam at 40 

nM and 120 nM; these concentrations have been previously shown to give rise to a partial and 

maximal potentiation of tonic currents, respectively (270). Modelling of the midazolam effect at 

recombinant receptors by Rüsch et al indicates that 40 nM midazolam increases the 

spontaneous opening probability by ~75%, whereas 120 nM midazolam increases it by 

approximately 125% (196). Based upon the effect midazolam at modulating GABA EC10 

responses, at 40 nM and 120 nM midazolam will be effectively potentiating α3β2γ2 receptors, 

as well as, to a slightly lesser degree α2β2γ2, α1β2γ2 and α5β2γ2 receptors; conversely, 

midazolam is ineffective at α4- and α6-subunit-containing receptors (587). 

We applied SR, then midazolam at 40 nM (N=8) or 120 nM (N=6) and then, in their continued 

presence, added PTX (Fig.4.12A). As with all BDZ-site agonists tested, midazolam generates 

inward currents in the presence of SR: 40 nM midazolam+SR = -9.98 ± 0.87 pA; 120 nM 

midazolam+SR = -9.02 ± 1.39 pA (Fig.4.12A-C). Comparing the midazolam+SR induced inward 

currents with SR alone revealed a significant different between the means (one-way ANOVA: 

F(2,21) = 21.72; P<0.0001) post-hoc Bonferroni test revealed that both 40 nM midazolam 

(Corrected unpaired Student’s t-test t(23df)=5.97; P<0.0001) and 120 nM (Corrected unpaired 
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Student’s t-test t(23df)=4.77; P=0.0002) are larger than SR, but not significantly different from 

each other (Corrected unpaired Student’s t-test t(23df)=0.637; P>0.999). The increase in SR-

resistant current caused by midazolam translated into an increase in the PTX-sensitive tonic 

current (Fig.4.12D+E). 

The amplitude of outward current induced by PTX in the presence of 40 nM midazolam+SR was 

19.29 ± 2.27 pA (N=8), which represents a 55% potentiation compared to control conditions 

(SRPTX = 12.45 ± 0.79 pA; N=10). The amplitude of the PTX-sensitive current was increased 

still further by 120 nM midazolam+SR to 26.3 ± 2.5 pA (N=6), a 111% increase relative to 

control, with just SR (Fig.4.12E). The degree of potentiation of the s-GABAAR tonic current is in 

line with predictions made by Rüsch et al from midazolam’s effect at recombinant receptors 

(196). An ANOVA indicated that the effect of midazolam was significant (One-way ANOVA: 

F(2,21) = 14.59; <0.0001); post-hoc Bonferroni test revealed that the increase in tonic current 

compared to control was significant for both 40 nM midazolam (Corrected unpaired Student’s t-

test t(23df)= 2.87; P=0.0271) and 120 nM (Corrected unpaired Student’s t-test t(23df)=5.35; 

P<0.0001). The difference in the tonic current amplitude between 40 nM and 120 nM was at the 

threshold for significance (Corrected unpaired Student’s t-test t(23df)= 2.58; P=0.051). 
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In summary, we have demonstrated that BDZ-site ligands can bi-directionally modulate s-

GABAAR tonic currents. The direction and magnitude of this modulation is consistent with the 

previously reported actions of these ligands at constitutively active and GABA-activated 

recombinant receptors. Diazepam, the least efficacious BDZ-site agonist at potentiating 

spontaneous activity, did not alter the s-GABAAR current; whereas zolpidem, and the even more 

efficacious midazolam, both potentiated the s-GABAARs current. The different chemical 

structure of these compounds, together with the sensitivity of the zolpidem-mediated 

potentiation to flumazenil, suggests that their effects are mediated through the canonical BDZ-

site. The sensitivity of the basal s-GABAAR currents to the BDZ-site inverse agonist, DMCM, 

evidences that BDZ-site agonists are potentiating the activity of the existing pool of s-GABAARs, 

and not simply converting additional receptor isoforms into a spontaneously active state. 

Henceforth we conclude, like McCartney et al, that BDZ-sensitive GABAAR isoforms can 

spontaneously open to produce a portion of the s-GABAAR tonic current. 

 Targeting PKC and PKA to indirectly modulate  4.5.11
s-GABAAR tonic currents 

In the final section of this chapter, we wanted to test if s-GABAARs tonic currents could be 

modulated indirectly, by altering the activity of PKA and PKC. Both of these serine/threonine 

kinases have been shown previously to modulate tonic currents in DGGCs. Specifically, 

activation of PKC inhibits tonic GABAAR currents, whereas inhibition of PKC potentiates them 

(559). Analogous to this, decreasing in PKA activity by way of activating metabotropic GABABRs 

has been shown to potentiate GABA-dependent tonic currents in DGGCs (588). However, the 

reverse was true at spontaneously opening recombinant α4β3δ receptors, which are potentiated 

by PKA (376). To assess the impact of serine/threonine kinase signalling on s-GARAAR tonic 

currents, we included blockers of PKA and PKC pathways in the intracellular solution (CsCl) and 

then performed the standard SRSR+PTX protocol. Applying drugs to the intracellular solution 

allowed us to test the impact of serine/threonine kinases specifically on the cell being recorded, 

without any off-target presynaptic/network effects.  

For the first experiment, the intracellular solution contained pertussis toxin (1 μg/mL), which 

catalyses the ADP ribosylation of the α-subunit of the trimeric G-protein Gi/o (589). This 
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Chapter 5  
 

General discussion and future directions 

Key findings 

In the present thesis, we show that spontaneously opening GABAARs, activating independently 

of GABA, generate a tonic conductance that suppresses DGGC excitability. This is, to our 

knowledge, the first direct demonstration of the functional role of s-GABAARs in hippocampal 

neurons.  

The importance of s-GABAARs to DGGCs is demonstrated by their contribution to inhibitory 

tone: s-GABAARs transfer twenty times more inhibitory charge than IPSCs. And blocking s-

GABAARs shifts DGGCs into a more excitable state, as evidenced by the decrease in the 

rheobase current and the increase in input-output gain following s-GABAAR block. Thus, without 

s-GABAAR conductance, neurons require less excitation to fire an AP, and when they are firing, 

they are able to fire at a higher rate and are more sensitive to changes in excitation. s-GABAARs 

also enhance the precision of excitatory transmission in DGGCs: blocking s-GABAAR 

conductance widens the temporal window over which two excitatory signals can be successfully 

summated to fire an action potential.  

We also demonstrate that BDZ-site ligands, which affect γ2-subunit-containing GABAARs, can 

bidirectionally modulate the s-GABAAR-meditated tonic conductance. This is in contrast to 

compounds targeting the prototypical extrasynaptic GABAAR isoforms (containing the δ- or α5-

subunit), which did not affect the s-GABAAR-meditated tonic conductance.  

The present thesis answers several key unknowns: the s-GABAAR-mediated tonic conductance 

is not a stochastic artefact, and clinically used drugs do modulate their activity. The work 

presented here also opens up many new avenues for future studies into s-GABAAR function and 

pharmacological modulation. 
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5.1 The functional impact of s-GABAARs in DGGCs  

We utilised the different mechanisms of action of the GABAAR antagonists SR (competitive) and 

PTX (channel-blocker) to characterise the hitherto unknown function of s-GABAARs in DGGCs. 

SR is applied at saturating concentrations to block the action of GABA at GABAARs, whilst 

preserving the constitutive activity of s-GABAARs. In the continued presence of SR, PTX is then 

added to block constitutive s-GABAAR activity. The difference between SR and PTX 

corresponds to the s-GABAAR signal. 

Using this approach, we characterised the nature of the s-GABAAR signal that is inputted to 

DGGCs. At RMP, the effect of s-GABAARs in DGGCs is limited to a small, ~7%, but significant 

membrane shunt, which decreases the input resistance and quickens the membrane time 

constant without affecting Vm. Importantly, this experiment represents the first time that 

hippocampal s-GABAARs have been detected using an intracellular solution with a physiological 

[Cl
- ](8 mM); thus spontaneous GABAAR openings are not an artefact of high levels of 

intracellular Cl
-
, which have been previously used to study s-GABAARs (74,233).  

Membrane shunting is a key mechanism for inhibition in the brain. The contaminant increase in 

membrane conductance and decrease in membrane time constant means that voltage 

transients are 1) divisively scaled-down and 2) decay faster. Shunting decreases excitability 

because more excitatory current is required to reach threshold (the rheobase current) (80,317). 

Shunting also increases the temporal fidelity of neuronal firing because excitatory inputs need to 

coincide within a narrower temporal window to successfully summate and cross threshold 

(coincidence detection) (298). Shunting inhibition also decreases first spike latency and jitter 

(319).  

The inhibitory power of shunting is evidenced by its ability to override the excitatory effect of 

depolarising tonic GABAAR currents (226,298). Moreover, shunting can further decrease 

excitability by exacerbating the cumulative depolarisation-dependent inactivation of voltage-

gated Na
+ 

channels (294,298). The decrease in excitability that is caused by shunting is 

indicated by a multiplicative increase in rheobase and a change to the input-output (I-O; F-I) 

relationship. Specifically, in the absence of synaptic noise, shunting is generally assumed to 

cause a subtraction in F-I curves (there are important exceptions to this, as will be detailed 
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later). As explained in the introduction, the different effect of shunting below 

(division/multiplication) vs. above (subtraction/addition) threshold is because the spiking 

mechanism clamps the steady-state potential at (or close to) threshold potential and converts 

the shunt into source for a hyperpolarising ‘leak’ current (322,325). In line with this, early 

investigations into the function of tonic inhibition demonstrated that in cerebellar granule cells, 

recorded in vitro (80) and in vivo (590), block of tonic GABAAR shunt offsets the I-O relationship 

(F-I curve) to the left without a significant change in gain; i.e. less current is required to achieve 

a given firing rate. As is explained in the appendix, the presence of synaptic noise can allow a 

shunting conductance to affect gain (292,293). Noise achieves this by exerting an asymmetric 

effect on the upper vs lower part of the F-I curve, causing a leftward offset (addition) and a 

decrease in the gain (division) (292–294,317,519,591). Because shunting reduces noise 

amplitude, it provides a route through which shunting can modulate gain (292,293). In the 

recordings that we performed to characterise the impact of s-GABAAR-mediated shunt on the I-

O relationship, excitatory transmission was blocked. Thus, although a degree of noise is present 

due to intrinsic channel activity (592), gain control through modulation of noise should not 

feature in our experiments 

Based on the small, ~7%, s-GABAAR-mediated shunt at RMP, we expected that inhibiting s-

GABAARs would cause a similarly small (5-10%) decrease in rheobase current (because 

rheobase  =  depolarisation voltage/input resistance). And that block of s-GABAARs would lead 

to a leftward offset in the F-I curve, not a multiplative increase in gain. If this were the case, it 

would still be an important finding (after all, the functional role of s-GABAARs in the 

hippocampus was unknown prior to this PhD), but it would indicate that s-GABAARs are only of 

minor importance to DGGCs. However, when we characterised the impact of s-GABAARs upon 

excitability, contrary to expectation, we found that block of s-GABAAR tonic conductance 

resulted in a substantial decrease in rheobase current of ~30%, and an increase in F-I gain 

(slope) of ~40%.  

Also relevant here, is that blocking IPSCs with SR did not affect the rheobase current. 

Moreover, the amount of inhibitory charge that is transferred by s-GABAARs exceeds that of 

IPSCs by a factor of twenty-to-one. The direction and magnitude of this difference is consistent 
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with previous studies that have compared the charge transferred by GABA-dependent tonic and 

phasic currents (80,524). It is the persistence of tonic currents that enables them to pass such 

large amounts of inhibitory charge, often in spite of their relatively small amplitudes (80,524). 

Despite the good alignment with previous findings it is, nevertheless, still impressive – and 

perhaps counterintuitive – that, in terms of charge transfer and the effect on rheobase, the most 

significant contributor to inhibition in DGGCs is the GABA-independent s-GABAARs  

We demonstrated that s-GABAARs suppress excitability to a much greater degree than would 

be predicted from their small effect at RMP. In the absence of s-GABAAR-mediated tonic 

conductance, neurons require notably less excitatory current to fire an action potential. And 

when they are firing, they are much more sensitive to changes in the excitatory current. In short, 

s-GABAARs as a significant break on excitability in DGGCs. We found that both the s-GABAAR 

signal and a number of intrinsic properties of DGGCs act collaboratively to enhance the 

inhibitory effect of s-GABAARs.  

The idea that the functional consequences of a tonic GABAAR signal are influenced by the 

electrophysiological properties of the neuron is supported by many studies 

(225,226,294,295,317,387,517). Bryson et al, in their assessment of the functional impact of 

tonic inhibition in interneurons, provides a good recent example. They found that in fast-spiking 

interneurons, tonic inhibition suppresses F-I gain, but in non–fast-spiking interneurons, it 

increases gain. This disparate effect of tonic inhibition was attributed to 1) whether the tonic 

conductance was linear or outwardly rectifying and 2) cell-specific differences in a) the 

magnitude of an “ultraslow” conductance responsible for spike-frequency adaptation and b) 

repolarising K
+ 

currents (291). They demonstrated, using modelling, that identical tonic GABAAR 

input signals can elicit very different output responses in different interneurons, due to variations 

in the intrinsic spiking dynamics (291). 

DGGCs have a variety of intrinsic (active and passive) properties that facilitate their sparse 

activity pattern. DGGCs have a relatively hyperpolarised membrane potential, typically between 

-68 mV and -80 mV (404–411,413,414), a depolarised AP threshold of ~ -41 mV ( ~ 10 mV 

more depolarised than CA1 pyramidal neurons) (414), a high rheobase current (414), high 

input-output gain (414), strong dendritic attenuation (483,485), and substantial spike-frequency 
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adaptation that is caused by depolarisation-dependent Na
+
 channel inactivation (480). In the 

present thesis, we show, for the first time, that s-GABAAR tonic conductance is outwardly 

rectifying. We provide direct evidence that the outward rectification of s-GABAARs works 

together with the depolarised AP threshold to increase the rheobase current. Moreover, we 

show that s-GABAARs actually depolarise the threshold, which will further increase the 

rheobase current. We also provide direct evidence that divisive effect that s-GABAARs have on 

F-I gain is due to an enhancement of spike-frequency adaptation. This increase in adaptation is 

associated with a depolarised steady-state firing potential. In line with this, we provide indirect 

evidence that the depolarised AP threshold and the enhanced adaptation are due to s-

GABAARs increasing the depolarisation-dependent Na
+
 channel inactivation.  

Outward rectification of tonic GABAAR responses has been observed across multiple neuron 

types, including hippocampal pyramidal neurons (387) and interneurons (225,296), and can be 

observed in GABA-activated single-channel openings in DGGCs (593). Membrane 

depolarisation thus enhances the inhibitory effect of s-GABAARs in two ways. First, it 

establishes a driving force on the permeant anions, which leads to inward hyperpolarising 

currents. And, second, depolarisation increases the s-GABAAR conductance due to outward 

rectification. As a result, when DGGCs approach threshold, s-GABAARs transmit progressively 

larger hyperpolarising currents and are able to shunt excitatory currents to a greater degree 

than at RMP. Both these factors, directly and indirectly, respectively, suppress DGGC 

excitability. Importantly, DGGCs have a relatively depolarised AP threshold: -38 mV in our 

study, which is in line with previous reports (414), and is ~ 10 mV more depolarised than CA1 

pyramidal neurons (414). Because of the depolarised AP threshold, DGGCs will experience a 

greater effect of s-GABAAR outward rectification in the lead up to spiking than neurons with a 

more hyperpolarised threshold. Indeed, Pavlov et al demonstrated that in CA1 neurons, outward 

rectification only has a minimal impact on sub-threshold voltage noise because, in these 

neurons, the outward rectification is activated at a potential close to the spiking mechanism 

(387). However, in DGGCs there is at least a 10 mV window in which outward rectification is the 

clearly present, but the neuron is not yet at threshold. Added onto this, s-GABAARs appear to 

actually depolarise the AP threshold and thereby enhance the effect of outward rectification still 

further. Interestingly, the depolarisation of DGGC AP threshold is not unique to s-GABAARs: 
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GABA-activated tonic currents have been shown to depolarise the AP threshold of DGGCs in 

post-natal day 7 and adult mice (71). It is likely because of the outward rectification of s-

GABAARs, in conjunction depolarised voltage threshold, that blocking s-GABAARs causes a 

~30% reduction in rheobase, which is over four times greater than would be predicted from their 

shunting effect at RMP. As an aside, the reversal at EGABA is further proof the s-GABAAR current 

blocked by PTX is not due to PTX blocking another channel (e.g. 5-HT3R, which would cause a 

depolarised reversal). 

One of the most surprising findings was that s-GABAARs exert a divisive effect on the F-I curves 

and decrease neuronal gain. Blocking s-GABAARs caused a ~40% increase in the slope and 

area under the curve of the F-I curves. Thus blocking s-GABAARs not only increase the 

excitability of DGGCs, but also increase their sensitivity to changes in excitation. Of note, is that 

it has previously been reported that artificially inducing GABA-dependent tonic inhibition in 

DGGCs, using NO-711, reduces F-I curve gain, indicating that our observation is not an 

experimental artefact (e.g due to the use of PTX) (313). Gain is an important property of 

DGGCs because it allows them to transition from a silent state to burst firing, and, therefore, 

once active to signal to CA3 pyramidal neurons effectively. This is thought to be important for 

pattern separation (432,445–453). Modulation of gain was evidently not due to shunting of 

synaptic noise because excitatory transmission was blocked in our experiments (292,293). We 

also demonstrated that s-GABAARs were unlikely to be modulating gain by an effect on active 

dendritic conductances: the AHP amplitude, an important readout for gain control by active 

dendrites, was not altered by blocking s-GABAARs (295). In line with this, DGGCs dendrites are 

strongly attenuate back-propagating APs and afterpotentials (483,485), the effective 

propagation of which is necessary for gain control by active dendrites (295).  

Instead, we report that s-GABAARs decrease gain by enhancing spike-frequency adaptation 

(the decrease in firing rate during prolong suprathreshold depolarisation). DGGCs show 

profound spike-frequency adaptation; this intrinsic neuron property prevents runaway excitation 

and supports burst firing (413,468,480). Importantly, spike-frequency adaptation is not just a 

mechanism for reducing overall excitability: it decreases gain as well, by changing the shape 

(reducing the slope) of the F-I curve (536). In our study, and others (294), adaptation can be 
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observed from the decrease in firing rate that occurs during sustained injections of supra-

threshold step currents (i.e. the firing rate immediate to depolarisation is higher than at the 

steady-state firing rate at the end of the depolarising step). Changes to spike adaptation are 

evidenced by asymmetric changes in the initial firing rate F-I vs the steady-state firing rate F-I 

(294). In line with s-GABAARs controlling gain through the spike-frequency adaptation 

mechanism, we showed that blocking s-GABAAR conductance differentially affected the initial 

firing rate F-I vs the steady-state firing rate F-I. Specifically, the initial firing rate F-I, before 

adaptation occurs, was linear, and the effect of inhibiting s-GABAARs was to shift the F-I 

relationship to the left without a change in gain. Thus, if the depolarising currents used to excite 

DGGCs were extremely short-lived, adaptation would not be engaged and s-GABAARs would 

not affect gain. In contrast, the steady-state firing rate F-I was non-linear and plateaued 

(saturated) with high levels of depolarisation; inhibiting s-GABAARs caused a substantial, ~60%, 

increase in gain of the linear portion of the F-I, and increased the plateau frequency. The 

steady-state F-I relationship was thus multiplicatively scaled by s-GABAARs, not offset. Most 

importantly, when s-GABAARs were blocked, the multiplicative increase of the steady-state F-I 

gain is sufficient to increase the gain of the F-I relationship as a whole (i.e. when frequency was 

recorded over the entire depolarising step). This mechanism of gain control is analogous to that 

reported by Fernandez and White (294). They showed that shunting inhibition enhances spike-

frequency adaptation to decrease the gain of CA1 pyramidal (294).  

In both DGGCs (480) and CA1 pyramidal neurons (294), spike-frequency adaptation depends 

on depolarization-dependent partial inactivation of Na
+
 channels. In DGGCs, this inactivation is 

associated with a spreading of the AIS from the soma (480). The initiation of AP spiking at 

threshold voltage depends on the availability of Na
+
 channel current; thus, inactivation of Na

+
 

channels decreases excitability (i.e. adapts the firing rate) (594). The level of Na
+
 channel 

inactivation depends on depolarisation: at more depolarised potentials, more of the channels 

inactivate (594).  

In the present thesis, we provide indirect evidence that that the s-GABAAR-mediated shunting 

conductance exacerbates Na
+
 channel inactivation; and that it is this that leads to an increase in 

spike-frequency adaptation and a decrease in gain. The evidence supporting this is that both 
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the AP threshold voltage and the steady-state firing voltage were hyperpolarised when s-

GABAARs were blocked. Thus, under normal conditions, the intact s-GABAAR conductance acts 

to depolarise these firing potentials. Although as yet unproven, it is likely that because the 

neuron is more depolarised during spiking in the presence of s-GABAARs, a greater proportion 

of Na
+
 channels will inactivate and that this will decrease the steady-state firing rate (more 

adaptation).  

If this is the case, it would be analogous to the mechanism put forward in Fernandez and 

White’s study (294). They demonstrate that when a neuron is depolarised, a conductance that is 

shunting at rest produces an outward leak current that opposes the inward Na
+
 current that is 

needed for spiking (594). To initiate spiking in the presence of a tonic shunt, neurons require a 

greater amount of Na
+
 current to overcome the leak current and the increase in conductance 

(294,533). The only way this can be achieved is by further depolarising the membrane potential 

(294,533). Thus, the voltage at which spiking is initiated, the threshold, is depolarised in the 

presence of shunting conductance and, as a knock-on effect, so is the mean firing voltage 

(294). This persistent increase in depolarisation over the course of AP firing results in a greater 

amount of Na
+
 channel inactivation and, therefore, a more substantial decrease to the steady-

state firing rate for a given excitatory current (294). Thus the apparent paradox: that in the 

presence of a shunting conductance, neurons are more depolarised yet fire less frequently, is 

resolved by more depolarisation leading to more Na
+
 channel inactivation (294). The reason 

why the initial firing rate, measured at the stimulus onset, is not diminished is because Na
+ 

channel inactivation is not instantaneous: the initial APs occur before Na
+
 inactivation can take 

place (294). Interestingly, in Fernandez and White’s study, the depolarised spiking threshold 

also caused the rheobase current to be increased to a larger degree than would be predicted 

from the conductance alone (294). Thus relief from Na
+ 

channel inactivation can also explain the 

hyperpolarisation of AP threshold and substantial decrease in rheobase that occurred following 

block of s-GABAARs. 

Although this mechanism is attractive in explaining the observed effects of s-GABAARs on 

DGGC excitability, it currently remains conjecture. To assess if s-GABAARs do enhance Na
+
 

channel inactivation, future studies should measure the rate of rise of the AP upstroke of 



 

169 

individual spikes at steady-state. The rate at which the AP rises is used to quantify the 

availability of Na
+
 current; if s-GABAARs do cause Na

+
 channel inactivation, then blocking s-

GABAAR conductance should increase the rate of AP rise (294). Future studies should also 

assess the voltage relationship of steady-state inactivation of Na
+ 

channel inactivation in 

DGGCs. To effectively clamp Na
+ 

channel currents, it may be necessary to reduce the Na
+ 

driving force and to apply low concentrations of TTX (517). Steady-state inactivation of Na
+ 

channel currents should be apparent at voltages at the reported AP threshold for DGGCs with 

intact s-GABAAR tonic conductance (517). Furthermore, there should be a detectable decrease 

in the amount of inactivation at the hyperpolarised AP threshold that is reported for DGGCs with 

s-GABAARs blocked. In addition, the effects of blocking s-GABAARs on threshold 

(hyperpolarised), spike-frequency adaptation (decreased) and gain (increased) should be 

recapitulated by Na
+
 channel activators, e.g. anemone toxin or veratridine (595). And further to 

this, the effect of blocking s-GABAARs should be prevented by partially inactivating Na
+
 

channels with TTX (294).  

Interestingly, activation of GABAARs has been previously shown to depolarise the AP threshold 

of DGGCs, but only when GABAARs on the axon were activated; activation of somatic 

GABAARs does not alter threshold (532). Thus, s-GABAARs might be enriched at or close to the 

AIS. Different GABAAR isoforms are known to preferentially cluster in different cell 

compartments (144,228,229), and the spatial distribution of GABAARs is known to affect their 

functional impact (295,596). It is not currently known where s-GABAARs are localised in 

DGGCs. A way to assess this would be to perform voltage-clamp recordings in the presence of 

SR and then ‘puff’ on PTX to different cell compartments. If, for instance, s-GABAARs are 

enriched in/restricted to the AIS, then puffs of PTX to this region should result in the block of s-

GABAAR-mediated tonic currents, whereas puffs of PTX on the dendrites/soma should not block 

tonic currents. Likewise, puffing on PTX to the AIS should be sufficient to increase DGGC 

excitability. One limiting factor here is the relatively slow effect of PTX (it requires open-

channels to access its binding site); thus, high concentrations of bicuculline, which partially 

inhibits s-GABAARs, may be more useful. To ensure that the antagonist (PTX or bicuculline) is 

not diffusing and blocking s-GABAARs in other compartments, the antagonist should be applied 
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to an adjacent cell and should not block tonic currents of the recorded neuron. The 

incorporation of fluorescent dyes into the antagonist puff solution would also be of utility here.  

It is not just GABAARs that are compartmentalised in neurons – Cl
-
 is too. The intracellular  

[Cl
-
] varies across different subcellular compartments, and, with it, so does EGABA (216). The 

intracellular solution we used to characterise the functional impact of s-GABAARs matches that 

found in mature DGGCs, approximating both the native RMP and EGABA. Nevertheless, by 

recording in whole-cell mode, directly from the soma, we will have disrupted the internal Cl
- 

environment. Variations to Cl
-
 compartmentalisation can affect measures of neural excitability, 

including the I-O relationship (597). Henceforth, the most important future experiment immediate 

to the present thesis is to record the functional impact of s-GABAARs in conditions wherein the 

native Cl
-
 environment of DGGCs is unperturbed. The perforated patch-clamp recording 

technique will be of great utility to this end (296), and when combined with dynamic clamp, 

could also be used to assess the influence of stochastic noise on s-GABAAR-mediated gain 

modulation of DGGCs (292,293).  

It would also be of interest to record the impact of s-GABAARs on the spontaneous firing of 

DGGCs, without the need for non-physiological depolarising current steps. However, hampering 

this experiment is that DGGCs are largely quiescent (441): recordings from awake behaving 

rats or mice have demonstrated that only a small portion (2-5%) of the DGGC population are 

active during a given cognitive task (467,468), and that the DGGCs that are active have a low 

overall firing rate (413,468–470), typically < 1 Hz. However, DGGC excitability can be artificially 

increased by altering the composition of the extracellular fluid: e.g. Rojas et al reported that 

DGGCs could be driven to fire at 2-10 Hz with an extracellular solution with altered levels of 

Ca
2+,

 Mg
2+

 and K
+
 ( 0.25 mM CaCl2, 0.25 mM MgCl2, and 4 mM K

+
) (532). Using this approach, 

the impact of s-GABAARs on spontaneous firing rate could be studied using loose cell-attached 

patched and puffing on SR and then SR+PTX. The difference in the average spontaneous firing 

rate in SR vs SR+PTX would reflect the effect of the s-GABAAR tonic conductance. From our 

experiments, we predict that in conditions with s-GABAARs blocked (SR+PTX), DGGCs will 

spontaneously fire at a higher rate than when their conductance is intact (SR). 
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DGGCs are regarded as effective coincidence detectors because of the narrow temporal 

window over which they can summate synaptic inputs to fire an action potential. If synaptic 

inputs arrive outside of this narrow time window, the probability that DGGC will fire an AP is 

extremely low. Relatively large amounts of convergent excitation are, therefore, required for 

DGGCs to send an output (e.g. fire one or a burst of APs) to CA3. By acting as coincidence 

detectors, DGGCs are able to filter incoming perforant path inputs before they reach the 

downstream hippocampal circuits. This ‘filtering’ is thought to be an essential component of the 

DG acting as a gatekeeper and as a pattern separator. Multiple factors contribute to DGGCs 

functioning as effective coincidence detectors, both in terms of the DG circuit organisation and 

the DGGC intrinsic properties that affect excitability and EPSP summation. In the present thesis, 

we show that s-GABAARs appear to be an important conductance for establishing a narrow 

temporal window for successful coincidence detection. Blocking s-GABAARs caused a widening 

of the time window over which two subthreshold perforant path inputs, activated 

asynchronously, could summate to effectively trigger an action potential. Inter-stimulus intervals 

that were previously too far apart to reliably drive DGGCs to spike (e.g. were effectively filtered 

out) were able, in the absence of s-GABAAR conductance, to drive DGGCs to spike with a high 

probability. This represents a severe disruption in the capacity of DGGCs to filter input noise; it 

turns DGGCs from effective coincidence detectors with a high signalling fidelity into integrators 

with a low signalling fidelity. This finding has since been repeated – and confirmed – by Dr 

Sergiy Sylantyev, using a greater number of repeat stimulations over a wider time window (415).  

Together, these results show that s-GABAARs enhance the precision of coincidence detection 

coding in DGGCs. s-GABAARs could be achieving this by 1) depressing DGGC intrinsic 

excitability (through the mechanisms outlined above) and/or by shunting excitatory inputs in the 

dendrites (thereby increasing EPSP attenuation and decay). Both intrinsic excitability and EPSP 

size/duration are negatively correlated with the sharpness of coincidence detection (298). 

However, because we used a suprathreshold read-out ‘signal’ to assess coincidence detection 

in our experiments (i.e. the probability the neuron fired), we are currently not able to assess 

whether it was a change in excitability and/or a change in EPSP size and decay that was the 

primary driver of changes in coincidence detection. Clearly, as outlined above, s-GABAARs do 

have a strong effect on intrinsic excitability; it, therefore, seems a virtual certainty that part of the 
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effect on coincidence detection will be due to a change in rheobase. Nevertheless, because the 

EPSP duration is short relative to the step currents used to assess excitability, it is possible that 

synaptic excitation will not engage some of the mechanisms that appear to amplify the inhibitory 

effect of s-GABAARs in DGGCs (e.g. depolarisation of AP threshold that may be driven by Na
+
 

inactivation). Because s-GABAARs increase membrane conductance and decrease the 

membrane time constant, they also have the ability to improve coincidence detection by 

suppressing EPSP amplitude and accelerating their decay (298). Moreover, if s-GABAARs are 

enriched within the dendrites, their ability to shunt EPSPs would be amplified (295,538). This 

would be similar to A-type K
+ 

channel, which are the channels primarily responsible for 

attenuation in DGGCs (483,485). 

To assess the mechanisms of how s-GABAARs modulate suprathreshold coincidence detection, 

future studies should repeat the coincidence detection experiment using a subthreshold ‘read-

out’ signal. Specifically, future experiments could assess the effect of s-GABAARs on the 

amplitude and decay of EPSPs and EPSP coincidence detection. Relevant to this, is the study 

by Schmidt-Hieber et al, which assessed subthreshold dendritic signal processing and 

coincidence detection in DGGCs (484). They recorded from the DGGC soma and stimulated 

evoked EPSPs at proximal and distal dendrites to assess the distance-dependent attenuation of 

EPSPs. The influence of s-GABAARs on this attenuation could be assessed by performing the 

experiment in the presence of SR and then SR+PTX. To assess subthreshold coincidence 

detection, Schmidt-Hieber et al evoked two synaptic events separated by time intervals. The 

‘read-out’ for subthreshold coincidence detection was the change in EPSP amplitude relative 

when two synaptic events were evoked relative to a single EPSP. They showed that DGGCs 

have a very narrow time window (<10 ms), over which EPSPs can be effectively summated to 

give rise to an EPSP with a larger amplitude than the single EPSP. Blocking s-GABAARs may 

widen this temporal window. 

LTP has been proposed to be the cellular mechanism for learning and memory in the brain 

(24,503–511) and might be involved in pattern separation in the DG (452,491). In DGGCs, 

because of their strongly attenuating dendrites, LTP depends on depolarising local dendritic 

spikes, not back-propagating APs (485). As outlined in Chapter 3, we hypothesised that 
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blocking s-GABAARs would be able to increase LTP amplitude at perforant path synapses. 

Perhaps by decreasing the shunt of dendritic spikes and/or increasing intrinsic excitability so 

that more depolarisation can back propagates into the dendrites. In line with this, increasing 

GABA-activated tonic conductance in DGGCs has been previously shown to be detrimental to 

LTP in the DG (299). However, we found that there was no notable effect of blocking s-

GABAARs on LTP at perforant path synapses. Importantly, in our study, we were explicitly 

studying the effect of s-GABAARs on LTP amplitude; however, it remains unknown if s-

GABAARs affect the threshold for LTP. Studying the threshold for LTP is slightly more complex 

than amplitude. Future studies will need to perform what essentially amounts to a dose-

response analysis on LTP at perforant path synapses, by varying the intensity of the LTP 

induction protocol and recording the amplitude of potentiation. The intensity of the LTP induction 

protocol can be altered by changing the frequency of stimulation (598), the number of 

stimulation trains (599), or the number of pulses within a train (600). The influence of s-

GABAARs could be assessed by first, designing an LTP induction protocol that is subthreshold 

in the presence of SR (e.g. does not induce LTP), and then repeating this experiment in the 

presence of SR+PTX. We predict that s-GABAARs raise the threshold for LTP; if this is the 

case, then an LTP induction protocol that is subthreshold with SR should be able to produce 

LTP in the presence of SR+PTX (e.g. is suprathreshold). Future studies should also assess the 

impact of s-GABAARs on LTD; this plasticity mechanism is thought to support pattern separation 

in the DG by removing redundant DGGC representations (452,491). 
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5.2 The pharmacological modulation of s-GABAARs in DGGCs  

One of the frustrations that we encountered when examining the functional impact of s-GABAAR 

mediated tonic conductance in DGGCs was that, at the time, no compounds had been identified 

to potentiate the GABA-independent activity of s-GABAARs in these neurons. Hence, in the 

present thesis, the most significant finding pertaining to the pharmacology of s-GABAARs was 

that BDZ-site ligands bidirectionally modulate s-GABAAR-mediated tonic currents. Specifically, 

SR-resistant, PTX-sensitive tonic currents are potentiated by the BDZ-site agonists, zolpidem, 

and to a greater degree, midazolam; and are partially inhibited by the BDZ-site inverse agonist, 

DMCM. These findings are important for the s-GABAAR field for three key reasons. First, BDZ-

site ligands will be of great utility to future functional studies on s-GABAARs (we now have the 

tools to potentiate, as well as inhibit their activity). Second, understanding the pharmacology of 

any receptor is an important end in and of itself; it also gives us a greater understanding of the 

mechanisms of action of drugs that are regularly used in the laboratory and clinical settings. 

Third, it provides a window into the GABAAR subunit isoforms that are delivering the s-GABAAR 

tonic conductance. 

The finding is also relevant to the study of tonic inhibition more generally. One of the difficulties 

when examining the function of GABA-dependent tonic inhibition has been that ligands that 

potentiate or activate this mode of tonic inhibition also affect phasic inhibition. Moreover, ligands 

that block tonic currents rarely preserve phasic inhibition (because both forms of inhibition are 

GABA-dependent). And because the alterations to GABA-dependent tonic and phasic currents 

occur simultaneously, it is not always possible to causally link the functional effect of a ligand 

(e.g increase in rheobase) with the change in tonic inhibition (80,298). However, by modulating 

s-GABAARs using BDZ-site ligands in conjunction with SR, the effect of phasic and tonic 

inhibition can be teased apart. First, phasic currents are blocked by SR without an impact on 

tonic inhibition (the effect of phasic inhibition can be quantified). And then, second, a BDZ-site 

ligand is added to alter the level of tonic inhibition. Any functional changes that occur between 

SR and SR+BDZ-site ligand can be attributed to changes in tonic inhibition. 

Initially, we were surprised to observe that BDZ-site ligands were able to modulate s-GABAAR-

mediated tonic currents. This was primarily because the action of BDZ-site ligands is virtually 

always framed around their effect on GABA-activated GABAAR responses (104). With the 
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benefit of hindsight, however, it should have been more apparent to us that BDZ-site ligands 

have the ability to modulate s-GABAARs. This is informed by 1) McCartney et al’s report that s-

GABAAR-mediated tonic currents in CA1 pyramidal cells are potentiated by flunitrazepam (233). 

2) Birnir et al’s study showing that diazepam increases the conductance of s-GABAAR single-

channel openings in CA1 pyramidal cells (349). And 3) that BDZ-site ligands affect the 

spontaneous activity of recombinant wild-type α1β2γ2L (198,205), α1β1γ2L (233), and α1β3γ2L 

receptors (233,369) and mutant α1β2γ2L/S receptors (196,198,199,205,260). Linked to this, is 

that BDZ-site ligands are thought to modulate GABAARs through an effect on gating, not agonist 

affinity (196,198,199,203–205,260,580,581). 

Our results indicate that, under basal conditions in the ex vivo slice, BDZ-sensitive GABAAR 

isoform(s) have a degree of constitutive activity and contribute to the s-GABAAR tonic 

conductance in DGGCs. As explained in Chapter 4 (Results 2), BDZ-site ligands behave as 

would be expected from their previously detailed effects on spontaneously opening recombinant 

GABAARs. Midazolam was the most effective BDZ-site agonist at potentiating s-GABAAR-

mediated tonic conductance and will be a useful tool for subsequent studies of these receptors. 

Future studies should confirm that, as with zolpidem, midazolam’s potentiating effects can be 

blocked by the BDZ-site antagonist, flumazenil, to ensure that it is acting through the canonical 

BDZ-site. To this same end, future studies could utilise the γ2F77I-swap mutant mouse (549). 

These mice carry a point mutation in their γ2 subunit that disrupts the canonical BDZ-site and 

eliminates the ability of zolpidem, diazepam, DMCM and flumazenil to modulate EC3 GABA 

responses (midazolam has not been tried) (549). s-GABAAR-mediated tonic conductance 

should not be affected by BDZ-site ligands in these mutant mice. 

Probably the most important future experiment pertaining to modulation of s-GABAARs by BDZ-

site ligands is to record the effect of these ligands on spontaneous single-channel openings. 

Wlodarczyk et al indicated that nucleated patches are needed to record s-GABAAR single-

channel openings from DGGCs, not the more conventional outside-out patches (74). However, 

experiments performed by Dr Sergiy Sylantyev indicate that s-GABAAR openings can be 

recorded in the outside-out configuration, providing that low-impedance pipettes (~3 MΩ) are 

used (415). This likely reflects a relatively low density of s-GABAARs on the soma, aggravated 

by the tendency of GABAARs to cluster (601).  
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Characterising the effect of BDZ-site ligands on single-channel s-GABAAR openings is 

necessary for two reasons. The first is to ensure that, in our slice recordings, BDZ-site agonists 

are actually increasing the constitutive activity of s-GABAARs and not the potency/apparent 

affinity of GABAARs for GABA, to the degree that they can deliver a GABA-dependent tonic 

conductance. Although the use of saturating concentrations of SR and the effect of DMCM to 

inhibit s-GABAARs argues against this possibility, it is, nevertheless, an important control. To 

limit the impact of ambient GABA, outside-out patches should be excised from DGGCs and 

moved away from the slice to near the top of the bath. Next, a double-barrelled (θ-glass), piezo-

driven micropipette should be brought close to the excised patch so that when solutions are 

ejected, they saturate the patch (602). One pipette channel should be filled with standard ACSF, 

and the other channel should be filled with ACSF and the BDZ-site agonist of choice e.g. 

midazolam. Both of these solutions should be analysed with an HPLC assay to ensure there is 

no contamination with GABA (212). Continuous pressure ejection this GABA-free ACSF onto 

the patch prevents any contaminating effect of GABA; the piezoelectric element allows for rapid 

and controlled exchange of ACSF and BDZ-ACSF. If, as we propose, BDZ-site agonists are 

potentiating the constitutive activity of s-GABAARs, this should be evidenced in the spontaneous 

single-channel openings. Specifically, based on previous reports, BDZ-site agonists could be 

increasing s-GABAAR single-channel open-times (205) or conductance (349). Based on our 

work, midazolam should be a more efficacious potentiator of single-channel openings than 

zolpidem, whereas DMCM should be a partial inhibitor of single-channel openings. 

The second reason to perform single-channel analysis of s-GABAARs is to ensure that the 

potentiating effects of BDZ-site agonists are not due to a conversion of SR into a weak partial 

agonist. Indeed, at mutant β2(Y157S) receptors, both SR and bicuculline can act as weak 

partial agonists (246). Perhaps BDZ-site ligands could cause an analogous conformational 

change, turning SR from an antagonist/weak inverse agonist into a partial agonist. Furthermore, 

Chesnoy-Marchais demonstrated that in hypoglossal motor neurons, SR can actually act as a 

partial agonist at the atypical ρ-subunit-containing GABAARs (previously termed GABACRs) 

(140,523). However, ρ-subunit-containing GABAARs evidently do not produce tonic currents in 

DGGCs because these receptor isoforms are insensitive to both bicuculline and PTX (140,523); 

and Wlodarczyk et al demonstrated that TPMPA, an antagonist at ρ-subunit-containing 
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GABAARs, does not block DGGC tonic currents (74). To test the possibility of BDZ-site ligand 

induced partial agonism of SR, the above single-channel analysis should be repeated but with 

one pipette chamber containing the GABA free-ACSF and the other chamber containing 

ACSF+SR. s-GABAAR should be present in the GABA free-ACSF, and, as in Wlodarczyk et al, 

they should not be affected by application of 25 μM SR. Next, the pipette solutions should be 

exchanged so that one chamber contains ACSF+BDZ-site agonist and the other chamber 

contains ACSF+BDZ-site agonist+SR. Multiple drug-exchange filaments will be required to 

achieve solution exchange – for an example, see (602). The ACSF+BDZ-site agonist solution 

should be first applied to the patch; this should potentiate the constitutive activity of s-GABAARs 

(e.g. increased open time). Then the solution containing the SR+BDZ-site agonist should be 

applied. If, as expected, SR does not act as a partial agonist, then the single-channel s-

GABAARs activity in the presence of BDZ-site agonists should be unaffected with SR vs without 

SR. Indeed, given SR’s reported negative efficacy (246), s-GABAARs might even be 

suppressed. Conversely, if BDZ-site agonists do enable SR to act as a partial agonist, then 

single-channel s-GABAAR activity in the presence of BDZ-site agonists should be increased with 

SR vs without SR. 

The inhibitory effect of DMCM, a BDZ-site inverse agonist, on the SR-resistant, PTX-sensitive 

tonic s-GABAAR current was an important finding. It indicates that the basal pool of s-GABAARs 

contains BDZ-sensitive GABAAR isoforms. And that BDZ-site agonists are not just recruiting 

additional GABAARs, which are not typically spontaneously opening, into s-GABAARs. The 

classical BDZ-sensitive receptor isoforms are α1βγ2, α2βγ2, α3βγ2, or α5βγ2. BDZ-sensitive 

receptor isoforms were also evidenced to be s-GABAARs by McCartney et al (α1β1γ2 and 

α1β3γ2) (233) and Botta et al (α5βγ2) (234). And as indicated in the introduction, many of these 

isoforms have been shown to spontaneously open when expressed in recombinant systems.  

What can the pharmacology of the s-GABAAR-mediated tonic currents tell us about their subunit 

composition in DGGCs? Zolpidem has an ultra-low apparent affinity and efficacy at α5βγ2 

receptor isoforms and has no effect on EC3 GABA responses at this receptor (549). Hence, the 

potentiating effect of zolpidem that we observed shows that receptors, in addition to/other than 

α5βγ2 isoforms, are constitutively active in DGGCs: α1,2,3βγ2. This is in contrast to PKCδ-

positive neurons of the central amygdala, where zolpidem is ineffective (234). Based on this, it 
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is tempting to conclude that the lack of effect of L-655,708 that we observed confirms that 

α5βγ2 receptor isoforms are not involved in generating the s-GABAAR tonic current. However, 

this would be premature: α5-subunits are expressed in DGGCs, and their associated receptors 

mediate ~30% of the GABA-dependent tonic inhibition (351). L-655,708 is a BDZ-site partial 

inverse agonist selective for α5βγ2; we used L-655,708 because it was demonstrated to inhibit 

s-GABAARs in the central amygdala (234). However, the negative efficacy of L-655,708 is not 

high: it only inhibits ~20% of EC20 GABA responses (568–570). If α5βγ2 receptor isoforms make 

a small-to-moderate contribution to the s-GABAAR tonic current, a blocking effect of L-655,708 

may fall below the limit of detection in our assay. Related to this, we presumed that the larger 

potentiation of s-GABAAR tonic currents by midazolam than zolpidem simply reflected a higher 

efficacy of the former at s-GABAARs. However, midazolam, unlike zolpidem, can potentiate 

α5βγ2 responses (doubling the response of α5β2γ2 receptors to EC20 GABA) (587). Thus, the 

powerful effect of midazolam on s-GABAAR tonic currents may actually reflect potentiation of 

α5βγ2 receptor constitutive activity (which zolpidem cannot achieve). To test these possibilities, 

midazolam should be applied with SR and then, in their continued presence, L-655,708 should 

be applied. If a significant portion of midazolam’s potentiation of s-GABAAR is due an effect on 

α5βγ2 receptors, then L-655,708 should partially reverse the SR-resistant increase in tonic 

current, and decrease the outward current that is caused by PTX. α5IA-II is another allosteric, 

α5-subunit selective inverse agonist with greater negative efficacy than L-655,708 (585); it could 

be useful as alternative to L-655,708 (585). PWZ-029 could also be used; this compound was 

shown to be more effective than L-655,708 at inhibiting s-GABAARs currents in the central 

amygdala (234).  

Ultimately, to test which GABAAR isoforms are potentiated by BDZ-site agonists to increase the 

s-GABAAR tonic current requires a genetic approach. Future studies should consider using 

α_(H1__R) mutant mice (603). This histidine to arginine point-mutation in α1, α2, α3 or α5 

subunits disrupts the binding of BDZ-site ligands, thereby turning specific BDZ-sensitive 

isoforms into BDZ-insensitive isoforms. Using α5 (H105R) mice it would be possible to assess if 

the differences in the degree of potentiation of s-GABAARs tonic currents by zolpidem and 

midazolam are due to differential effects on α5βγ2 receptors. If, as McCartney indicated (233), 

α1β1/3γ2 receptors function as s-GABAARs, then midazolam, zolpidem, and DMCM should be 
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less effective at modulating s-GABAAR tonic currents in α1(H101R) mice. Similarly, α2(H101R) 

and α3(H126R) mice would be of interest because BDZ-sensitivity in α2βγ2 receptors is 

necessary for various behavioural effects of midazolam (604), and midazolam most effectively 

potentiates GABA responses at α3βγ2 receptors (587). 

Just as it is improper to conclude that α5-GABAARs are not involved in producing the s-GABAAR 

tonic current based on the lack of effect of L-655,708, it is also wrong to infer that the lack of 

effect of DS2 and DPP-4-PIOL reflects a lack of contribution from δ-GABAARs. α4βδ receptor 

isoforms still represent a key candidate for s-GABAARs in DGGCs. This is primarily based on 

the finding reported in Wlodarczyk et al that in δ-subunit null mice, s-GABAAR-mediated tonic 

conductance is depressed by ~60% relative to WT-mice (74). Even when caveated with the 

possibility of species differences (a portion of DGGC tonic current in mice is GABA-dependent, 

but is not in rats (74)), α4βδ receptors do appear to be mediating a portion of s-GABAAR tonic 

current. That said, it is not impossible to imagine that the δ-subunit knockout might trigger loss 

of the s-GABAAR tonic current indirectly. In this scenario, the deficit in s-GABAAR current arises 

not as a direct result of lack of δ-GABAARs, but, instead, results from a compensatory cascade 

following knockout that leads to an altered expression/subunit composition of the ‘actual’ s-

GABAAR isoforms, leading to a decrease in their current. For instance, if, as in CA1 pyramidal 

cells (233), α1βγ2 receptor isoforms are s-GABAARs in DGGCs, δ-subunit knockout may lead to 

an increase in α4βγ2 receptors and a decrease in α1βγ2 receptor (potentially s-GABAARs) 

expression. Although this possibility may seem remote, GABAAR subunit knockouts are known 

to be plagued by compensatory changes (143,351,540–543). And moreover, in pilocarpine-

treated epileptic mice, there is a decrease in δ-subunit expression in DGGCs, which leads to an 

increase in α4βγ2 receptors, which is consistent with a shift in localisation and subunit 

incorporation of the γ2 subunit (141,142); similar changes are reported in δ-subunit knockout 

mice (543). The reverse to this is also possible: that α4βδ receptor isoforms produce virtually all 

the s-GABAAR current, and knockout triggers a compensatory increase in the other potential s-

GABAARs to partially restore the GABA-independent signal. That said, our finding that DGGC s-

GABAAR currents are BDZ-sensitive indicates that, under basal conditions, the BDZ-insensitive 

α4βδ receptor isoforms are not the sole mediator of the s-GABAAR current. Our finding that Zn
2+ 

partially blocks the s-GABAAR current could be taken as evidence for a major contribution of 
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α4βδ to s-GABAARs. This is based on recombinant studies showing that Zn
2+ 

is a much more 

potent blocker of α1β1δ receptors than α1β1γ2S receptors (605). However, McCartney et al 

demonstrated that BDZ-sensitive s-GABAARs can also be blocked by Zn
2+ 

(233), and in our 

study, Zn
2+

 was primarily investigated to see how consistent the pharmacology of s-GABAARs 

was across different neurons (Zn
2+

 had not been previously trialled against DGGC s-GABAARs) 

(74). 

DS2 was expected to potentiate the s-GABAAR current, given that it 1) can increase the 

spontaneous activity of δ-subunit-containing receptors, and 2) binds at a site distinct from the 

orthosteric site (374,377). However, our results indicate that it instead potentiates a previously 

undetectable GABA-dependent tonic conductance (the increase in holding current was sensitive 

to SR). DPP-4-PIOL is a novel and relatively unexplored compound; it has not previously been 

shown to modulate spontaneous GABAAR activity, but was trialled against s-GABAARs because 

it was shown to decrease the maximum response, by 60%, of α4β3δ receptors to GABA, 

inferring a that it has non-competitive effect/negative efficacy (548). Future studies should 

further explore this interesting compound. Future studies might also consider the use of 

neuroactive steroids, for which α4βδ receptors are a target, to try and modulate s-GABAAR tonic 

currents. THDOC (allotetrahydrodeoxycorticosterone), for instance, is a naturally occurring 

neuroactive steroid that potentiates α4βδ receptor currents activated by GABA and is active in 

the nanomolar range (248,606). And THDOC potentiates the GABA-dependent tonic current in 

DGGCs recorded from wild-type mice; knocking out the δ-subunit (Gabrd−/−) greatly curtails 

this potentiation (546). Importantly, although neuroactive steroids are allosteric modulators, 

binding within the transmembrane domain, they are able to activate the receptor in the absence 

of GABA. For instance, recombinant α6β2δ receptors exhibit constitutive activity that can be 

potentiated by 5α-THDOC (259). And, of particular note, GABA-independent allosteric activation 

by the neuroactive steroid, alphaxalone, is partially resistant to SR in recombinant GABAARs 

(246). Similarly, (3,5)-3-hydroxypregnan-20-one activates GABAARs in the absence of GABA in 

cultured hippocampal neurons; and, as would be expected, this activation is partially resistant to 

SR (607).  

Other compounds that might be of interest to the study of s-GABAARs more generally include 

flurazepam (205) and flunitrazepam (233). Both of these BDZ-site agonists have been shown to 
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increase the constitutive activity of recombinant GABAARs, and the latter has been shown to 

potentiate s-GABAAR tonic currents in CA1 pyramidal neurons (233). It would also be of interest 

to test the effect of high-efficacy BDZ-site agonists such as indiplon, which is efficacious at all 

GABAAR subtypes investigated. Although to our knowledge, indiplon has not been used at 

constitutively active GABAARs, it would be of interest to see if, owing to its high efficacy, it can 

potentiate s-GABAAR responses to a greater degree than midazolam. Certain compounds have 

been shown to enhance tonic GABAAR responses in a manner that is resistant to SR and are 

thus also of interest to future studies on s-GABAARs. These include menthol (363), 

methyleugenol (365), and propofol (233). Interestingly, we did try to modulate s-GABAAR tonic 

currents with propofol in a series of pilot experiments; however, we observed cell-swelling when 

neurons were exposed to propofol and following the addition of PTX seals rapidly degraded 

(unpublished observation). This could be due to Cl
- loading and, if so, supports the view laid out 

by Yelhekar et al that s-GABAARs facilitate recovery from Cl
- 
loading (which is prevented by 

PTX) (366). Henceforth, perhaps, in addition to regulating excitability, s-GABAARs are 

necessary for proper intracellular Cl
-
 homeostasis (366). 

Many of the pharmacological experiments performed in this thesis circle in on the big unknown 

concerning s-GABAARs in DGGCs. Namely, which GABAAR subunit isoforms, probably in 

addition to α4βδ receptors, are producing the s-GABAAR tonic current? An obvious way to 

address this is with subunit knockout mice. Specifically of interest is the double gene-knockout 

mice that lack both the δ- and α5-subunits (Gabra5/Gabrd−/−) (351). This mouse-line was used 

by Glykys et al to show that δ- and α5-GABAARs produce virtually all the GABA-dependent tonic 

current in DGGCs that was activated by adding 5 μM GABA to the perfusate (351). This mouse 

line could, thus, be used to test that the hypothesis laid out by Wlodarczyk et al: that the same 

high potency GABAARs that produce GABA-dependent tonic inhibition are also able, in 

conditions of no-to-low GABA, to activate spontaneously and produce the s-GABAAR tonic 

current. If this is the case, then the SR-resistant, PTX-sensitive s-GABAAR tonic current in 

DGGCs should be absent in the Gabra5/Gabrd−/− mice (74). However, as explained above, 

GABAAR subunit knockouts are not without their complications. An alternative approach would 

be to use a knock-in/chemogenetic approach. Specifically, to use mice with a point mutation in 

the δ or γ2 subunit that renders them insensitive to PTX (69). This point mutation allows for the 
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pharmacological separation of GABAAR isoforms and has been previously used to demonstrate 

the contribution of δ-GABAARs to IPSC kinetics in DGGCs (69). In mutant mice with PTX-

resistant δ-GABAARs, the application of PTX will block all other GABAARs but leave the δ-

GABAARs unscathed. Crucially, this point mutation does not alter the activation kinetics of δ-

GABAARs or their expression (69). If the amplitude of the PTX sensitive s-GABAAR-mediated 

tonic currents in DGGCs was suppressed in these mice, it would conclusively demonstrate that 

δ-GABAAR are s-GABAARs and would allow investigators to assess if the δ-knockout did 

promote any compensational changes. Unfortunately, in mice with PTX-resistant γ2-GABAARs 

the kinetics of the receptor are changed (IPSC decay and frequency) (69). However, it is not 

clear if this mutation alters the spontaneous activity of these receptors – recombinant studies 

would be required to assess this – and, thus, this mutant mice might also prove useful to assess 

the contribution of BDZ-sensitive GABAARs to s-GABAAR tonic currents. 

In this study we also demonstrated that s-GABAAR-mediated tonic currents could be slightly 

suppressed by the inclusion of pertussis toxin into the intracellular solution; however, we did not 

find any effect of modulating PKA (the kinase associated with pertussis toxin’s effect) or PKC. It 

is also not clear how pertussis toxin is modulating s-GABAARs: i.e. the results could be 

explained by a change in s-GABAAR activity or expression. However, the effect of pertussis 

toxin does not appear to be a false-positive in this thesis. In additional published experiments by 

Dr Sergiy Sylantyev, pertussis toxin was shown to significantly decrease the open-time GABA-

activated GABAARs and the open-time fraction of s-GABAARs. Pertussis toxin was also shown 

to attenuate the increase in DGGC excitability that was caused by block of s-GABAARs: the ratio 

of APs recorded in SR vs SR+PTX was lower in the presence of pertussis toxin than in control 

conditions (416).  

Other experiments performed by Dr Sergiy Sylantyev pertaining to s-GABAARs show that 

spontaneous single-channel openings have a lower frequency and shorter average open-time 

than GABA-activated GABAARs, but have the same conductance (415). Evidence was also 

provided that s-GABAARs contribute to the decay kinetics of GABA-activated responses evoked 

from nucleated patches and of native IPSCs (415). And, finally, the role of s-GABAARs in 

narrowing the window for successful coincidence detection was reaffirmed (415). These findings 

demonstrate that s-GABAARs may have a number of roles in neurons in addition to generating 
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tonic conductance, and further reaffirms the importance of further studies into this unusual 

signalling mechanism. Based upon our findings on the functional impact of s-GABAARs in 

DGGCs, it is clear that studies into tonic inhibition should incorporate the possibility of a GABA-

independent signal into their analysis. As a bare minimum, this requires testing the relative 

effectiveness of SR and PTX at blocking tonic inhibition. It is also worth noting that, in this 

thesis, we demonstrate that clinically used drugs (midazolam and zolpidem) modulate s-

GABAAR activity. It is, of course, not clear if the clinical efficacy of these drugs is determined or 

affected by s-GABAARs; nevertheless, modulation of s-GABAARs may represent an 

underappreciated route through which GABAAR ligands could be mediating their effect on 

neural function. Likewise, s-GABAARs would be an interesting target for novel experimental 

compounds and therapeutics. Finally, and related to this, it will be important to assess if known 

disease-causing mutations in GABAARs, such as those that cause temporal lobe epilepsy (312), 

affect the levels of constitutive activity. If this is the case, then it will provide evidence that, like 

with GPCRs, constitutive activity is a physiologically important mechanism through which 

receptors can signal.   
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5.3 Conclusion 

In conclusion, we demonstrate that constitutively active s-GABAARs, opening in the absence of 

GABA, are important regulators of DGGC excitability. Blocking s-GABAARs affected many of the 

intrinsic DGGC properties that are necessary for both sparse firing and proper signal integration. 

Moreover, our findings demonstrate that there is a reciprocal relationship between the intrinsic 

properties of DGGCs and s-GABAARs. The outward rectification of s-GABAAR currents works 

with the depolarised AP threshold to amplify the inhibitory effect of s-GABAARs in DGGCs. In 

the absence of s-GABAAR conductance, DGGCs are much more easily excited and are no 

longer able to properly filter excitatory signals. Henceforth, this atypical and previously 

underappreciated mode of GABAAR signalling can now be recognised as a key component of 

DGGC physiology. The interaction between intrinsic neuron properties and the s-GABAAR 

signal suggests that the function of s-GABAARs will vary across different neuron types. Given 

that there is already some evidence that s-GABAAR signalling is more widespread than 

previously anticipated, future studies should aim to characterise both the presence and function 

of s-GABAAR-mediated tonic conductance in other neuron-types. In the present thesis, we 

identify various pharmacological tools that will aid these investigations. Most notably, we 

demonstrate that BDZ-site ligands can bidirectionally modulate s-GABAAR activity. This finding 

suggests that GABAARs containing the γ2-subunit are able to open spontaneously to produce a 

portion of the s-GABAAR tonic conductance in DGGCs. 
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Chapter 6  
 

Appendix 

Mechanisms of controlling gain by a shunting conductance 

6.1 The effect of stochastic noise on shunting conductance 

In vivo, neurons face a constant barrage of excitatory and inhibitory synaptic inputs that induce 

high-amounts of stochastic fluctuations in the membrane potential (519). This ‘noise’ converts a 

relatively stable membrane potential into a distribution of voltage values (it increases the 

standard deviation of Vm) (292–294,317,519,591). If the distribution is sufficiently broad, it 

means that threshold voltage can be crossed, and the spiking mechanism initiated, even when 

the average voltage value is well below threshold (292–294,317,519,591). Noise thus increases 

the responsiveness of the neuron; it allows inputs that would usually be subthreshold to make 

transient excursions beyond threshold to initiate spiking (591). Importantly, this pro-excitatory 

effect of noise is not uniform across the F-I curve (292,591). Noise increases excitability at the 

lower part of the F-I curve: increasing AP firing rate when excitation currents are small, the 

mean voltage is approaching or just above threshold, and the neuron is silent/infrequently firing 

(292,591). But has a much weaker effect on the upper part of the F-I curve: AP number firing 

rate is not changed when excitation currents are large, the mean voltage is consistently above 

threshold, and the neuron is firing frequently (292,591). By acting in an asymmetric manner on 

the low vs high excitation currents/firing rates, noise results in a leftward offset (addition) and a 

decrease in the gain (division) of the F-I curves (292–294,317,519,591). And so whilst the 

responsiveness of a neuron to a small excitatory current is increased by noise, it also decreases 

its sensitivity to a further change in this current. (292–294,317,519,591).  

Although noise is present to a degree in neurons that are recorded ex vivo – arising from short-

range synaptic inputs and intrinsic channel activity (592) – the overall amount of noise is 

substantially diminished, primarily due to the sheering of the long range inputs that occurs 

during the slicing procedure (317). Ex vivo levels of noise can be artificially increased to 

approximate those found in vivo using the dynamic clamp technique (317). Dynamic clamp was 
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used to explore how noise interacts with shunting conductance to affect neuronal activity in the 

early 2000’s by Chance et al, recording ex vivo from the rat somatosensory cortex (292), and by 

Mitchell and Silver, recording ex vivo from cerebellar granule cells (293). These two studies 

showed that, given a specific set of externalities, in vivo-like levels noise can convert the effect 

of shunting from subtraction to division (292,293).  

Briefly, Chance et al delivered balanced excitatory and inhibitory inputs to a neuron, which 

allowed the authors to add noise and/or shunting conductance without changing its membrane 

polarisation (292). They found that, as expected, addition of only noise induced a leftward offset 

and a decrease in gain of the F-I curve, whereas addition of only shunting conductance induced 

a rightward (subtractive) offset in the F-I (292). When noise and shunting conductance were 

applied in unison, however, their opposing offsets cancelled out, meaning that the only net 

effect was a pure decrease in F-I curve gain (292). Importantly, to observe this purely divisive 

effect, the amount of noise and shunting conductance introduced had to be properly matched 

(292). 

Mitchell et al used a more complex methodology to explore the interaction of shunting 

conductance and noise (293). Instead of stimulating the neuron with simple excitatory current 

steps, they used excitatory-rate coded inputs – a form of stimulation found in vivo in which 

excitation current is positively coupled to noise (i.e. larger excitation currents = more noise) 

(293). In the presence of shunting conductance, because of the subtractive effect on F-I curves 

outlined earlier (322), a greater amount of excitatory current was required to elicit a given firing 

rate (293). But because noise is positively coupled to excitatory current in rate-coded inputs, 

there was also a greater amount of noise for a given firing rate (293). It is this increase in noise, 

prompted by shunting inhibition and driven by rate-coded inputs, that causes the F-I curve to 

undergo divisive scaling of gain (293,317).  

Although these two studies show that shunting conductance can decrease F-I gain in the 

presence of noise, it must be stressed that in both studies a constrained set of externalities was 

required to see this divisive effect – be it balanced excitation and inhibition, and appropriately 

matched noise and conductance (292); or rate-coded inputs (293). As such, it is not possible to 

generalise these mechanisms of gain reduction across different externalities and/or different 
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neuron types (317). Keeping with this theme, other studies have failed to find any effect of 

shunting inhibition paired with noise on F-I gain (608). Moreover, in 2010, Pavlov et al presented 

good evidence that in CA1 pyramidal neurons, in the presence of injected noise, shunting 

conductance can actually increase the gain of the F-I curve (N.B. this finding is in the 

supplementary Fig.S4 of their publication) (387). This effect was dependent on the shunting 

conductance exhibiting a linear I-V and decreasing the amplitude of sub-threshold voltage 

fluctuations (387). If the shunting conductance was outwardly rectifying the effect on gain 

completely dissipated (because it’s effect on sub-threshold voltage fluctuations was greatly 

attenuated) (387). 

6.2 The effect of active dendrites on shunting conductance 

A distinct but related factor to stochastic input noise is the transmission and computation of the 

input signal through dendrites. Whilst some excitatory synapses are present on the cell body 

and transmit currents directly into the soma, the vast majority are located on the dendritic tree. 

One of the short-comings of the seminal modelling study of Koch and Holt was viewing 

dendrites to be passive cables; indeed, they stated that “active dendritic conductances 

complicate the interaction of synaptic excitation and inhibition” (322). It is now clear that 

dendrites do not function as passive cables – in most neurons they are ‘active’ in their own right 

due to expression of voltage dependent conductances (317). This endows them with the ability 

to modulate incoming signals in a variety of ways. Active dendrites can amplify excitatory inputs 

coming from distant parts of the dendritic tree, which would otherwise be diminished by 

travelling on passive cables (317). They can also prevent saturation of close-together inputs, 

allowing currents to summate in a supra-linear manner as ‘dendritic spikes’, rather than 

divisively shunt each other (317). Furthermore, and perhaps of most relevant to gain control in 

neurons, voltage-dependent conductances, specifically dendritic voltage-gated Na
+
 channels, 

support the active ‘back-propagation’ of APs (295,317). This means that the AP waveform does 

not just travel forward, from the AIS to the axon terminals: it also propagates antidromically, 

back into the dendritic tree. These back-propagating action potentials (b-APs) generate a new 

source of depolarising current that flows into the dendritic tree and also re-invades the soma; 

the dendro-somatic current flow creates a change in somatic voltages that is termed the 

“depolarising after potential” (DAP) (295,317). DAPs have been shown to affect neural function 
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by altering the late phase of the AP waveform in the soma; this has a role in determining the 

rate at which a neuron can fire and, in turn, the gain of the F-I curve (295,317). Based on these 

findings it was hypothesised that a shunting conductance could perform gain control in neurons 

by diminishing the amplitude of the DAP (295,317). 

In 2005 Mehaffey et al investigated the role of DAPs, and of shunting conductance on DAPs, in 

electrosensory lateral line lobe pyramidal cells of the Apteronotus leptorhynchus (295). They 

used depolarising square wave currents to excite the neuron and demonstrated that DAPs – 

generated by b-APs – have a pro-excitatory effect on pyramidal cells: blocking DAPs with a 

focal application of TTX to the dendritic tree caused neurons to fire less frequently in response 

to a given current step; this resulted in a divisive reduction to F-I curve gain (295). Henceforth, 

the inherent effect of DAPs in pyramidal neurons is to facilitate firing and increase (multiply) the 

gain of the F-I curve (295). The authors showed that DAPs increase gain because they occur 

simultaneously with – and thus act to decrease the amplitude of – the AHP of the preceding AP 

(295). Attenuation of AHP allows the next AP to occur more rapidly. Indeed, when DAPs were 

blocked by TTX applied to the dendrites, a large AHP was revealed that extended the inter-

spike interval and decreased the firing rate (295). 

The authors subsequently tested if a dendritic shunt – generated by focal application of 

muscimol, the GABAAR agonist – could exert a similar effect on neural function as dendritic 

application of TTX (295). They found that a dendritic shunting conductance accelerated the 

repolarisation phase of the b-AP, which resulted in a smaller DAP reaching the soma, 

manifesting itself as an augmented AHP (295). The increase of the AHP amplitude resulted in a 

divisive scaling of the F-I curve. Thus, b-APs generated by active dendrites can allow shunting 

conductance to reduce neural gain (295). It is important to note that this mechanism of shunt-

induced gain control is not unique to the Apteronotus leptorhynchus. Indeed, shunting inhibition 

has been shown to regulate neuronal gain by affecting the discharge characteristics of active 

dendrites of CA1 pyramidal cells (in vitro) (289), neocortical layer V pyramidal neurons (in vivo) 

(290), and somatostain interneurons (in vitro + modelling) (291).  



 

190 

6.3 The effect of spike-frequency adaptation on shunting 
conductance 

Spike-frequency adaptation (sometimes termed spike accommodation) describes the reduction 

in firing rate that occurs during sustained injections of supra-threshold step currents 

(294,517,536,537). It is a near-ubiquitous phenomenon across the brain, with most neurons 

showing a higher firing rate at the onset of the stimulus than near the end, when the neuron is 

firing at a ‘steady-state’ frequency (294,517,536,537). Spike-frequency adaptation is not just a 

mechanism to decrease firing rate, it also controls gain: the slope of the F-I curve is steeper 

when firing rate is measured at stimulus onset, than if it is measured at steady-state (294). 

There are three main ‘adaptation currents’ that dictate the degree to which firing rate decays 

over time. They are 1) M-type currents (high threshold potassium channels), 2) AHP currents 

(calcium-activated potassium channels) and 3) currents arising from the inactivation (and 

recovery from inactivation) of voltage-gated Na
+
 channels (533,536). In DGGCs, spike-

frequency adaptation depends on depolarization-dependent partial inactivation of anxonal Na
+
 

channels, which leads to spreading of the AIS away from the soma (480). 

Because of the divisive effect of spike-frequency adaptation on gain, Fernandez and White 

investigated if it could provide a route through which shunting could impact gain (294). That is to 

say, could shunting conductance affect any (or many) of the ‘adaptation currents’ in a way that 

has a knock-on impact on gain? Recording ex vivo from CA1 pyramidal neurons and stimulating 

them with long (4 sec) current steps, Fernandez and White showed that shunting conductance 

differentially affected the onset firing rate vs the steady state firing rate of the neuron – this 

asymmetric effect demonstrated that shunting conductance was altering spike-frequency 

adaptation mechanism (294). Specifically, shunting conductance had little effect on firing rate 

measured at the onset of the stimulus (when the neuron was in a non-adapted state), but had a 

powerful effect on the steady state firing rate, causing it to be significantly reduced (294). 

Shunting inhibition was thus enhancing the degree to which the neuron adapts to prolonged 

excitation (294). Most importantly, this enhancement of spike-frequency adaptation, which 

caused a decrease in steady-state firing rate, was sufficient to cause a decrease in gain of the 

F-I response as a whole (i.e. when frequency was recorded over the entire 4 seconds) (294). In 

CA1 neurons shunting conductance is thus able to decrease neuronal gain.  
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Looking further into the mechanism, Fernandez and White used an experimental and theoretical 

approach to show that the enhancement of spike-frequency adaptation that drove the decrease 

in gain, likely occurred because shunting conductance exacerbated Na
+ 

channel inactivation 

(294). The initiation of AP spiking at threshold voltage depends on the availability of Na
+
 

channel current (594). Na
+
 channels require depolarisation to activate, but they do not remain 

open indefinitely: in the presence of sustained depolarisation they undergo progressive 

inactivation; and at more depolarised potentials, more of them inactivate (594). This ‘slow’ form 

of inactivation, which takes place on the millisecond time-scale, is the main driver of spike 

adaptation in CA1 pyramidal neurons (294). Fernandez and White, supported by previous work 

(533), showed, firstly, that expression of a shunting conductance causes larger amounts of 

outward leak currents to be transferred when the neuron is depolarised and, secondly, that this 

outward leak current works against the inward Na
+
 current that is needed for spiking (594). To 

counteract the leak current and initiate spiking, the neuron therefore requires a greater amount 

of Na
+
 current (294,533). The only way this can be achieved is by further depolarising the 

membrane potential (294,533). Thus, the voltage at which spiking is initiated, the threshold, is 

depolarised in the presence of shunting conductance and, as a knock on effect, so is the mean 

firing voltage (294). This persistent increase in depolarisation over the course of AP firing results 

in a greater amount of Na
+
 channel inactivation and, therefore, a more substantial decrease to 

the steady-state firing rate for a given excitatory current (294). Thus the apparent paradox: that 

in the presence of a shunting conductance neurons are more depolarised yet fire less 

frequently, is resolved by more depolarisation leading to more Na
+
 channel inactivation (294). 

The reason why the initial firing rate, measured at the stimulus onset, is not diminished is 

because Na
+
 channel inactivation is not instantaneous: the initial APs occur before Na

+
 

inactivation can take place (294). Interestingly, the depolarised spiking threshold also causes 

the rheobase current to be increased to a larger degree than would be predicted from the 

conductance alone; this is because the input current not only has to overcome the divisive effect 

of a leakier cell (V=I/G), but also has to take the cell to a more depolarised membrane potential 

to initiate spiking (294). 
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