
Learning Utility Surfaces for Movement Selection

Matthew Howard∗, Michael Gienger†, Christian Goerick† and Sethu Vijayakumar∗
∗School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

Email: {matthew.howard, sethu.vijayakumar}@ed.ac.uk
†Honda Research Institute Europe GmbH, Offenbach/Main D-63073, Germany.

E-mail: {michael.gienger, christian.goerick}@honda-ri.de

Abstract— Humanoid robots are highly redundant systems
with respect to the tasks they are asked to perform. This redun-
dancy manifests itself in the number of degrees of freedom of
the robot exceeding the dimensionality of the task. Traditionally
this redundancy has been utilised through optimal control in the
null-space. Some cost function is defined that encodes secondary
movement goals and movements are optimised with respect to
this function, subject to fulfilment of task constraints. Until now
design of cost functions has been carried out on an ad-hoc basis
and has required time-consuming hand-tuning to ensure that the
desired (or acceptable) behaviour is realised. Here we present a
novel approach for designing cost functions for optimal control
in the null-space by exploiting recent advances in statistical
machine learning. The behaviour of a (kinematically or dynam-
ically controlled) mechanical system performing some task is
observed and separated into task- and null-space components.
The null-space component is then modelled as a first order
differential equation with the cost as the independent variable.
Numerical solution of this equation provides training data for a
statistical learning algorithm that is used to build an open-form
model of the cost function. Results are presented in which the
reconstructed function is used to replace that of the original
control scheme and the resultant behaviour, for the same set of
tasks, is compared.

Index Terms— Redundancy, Null-space control, Dynamic and
Kinematic control, Learning.

I. INTRODUCTION

Humanoid robots such as Honda’s ASIMO robot (Fig. 1) are
by nature highly redundant systems both at the kinematic
control level and the task execution/planning level. This
redundancy manifests itself in the high numbers of redundant
degrees of freedom (DOFs), large space of possible configu-
rations, large range of motion capabilities and availability of
multiple effectors.

In order to resolve this redundancy and make choices about
the planning or execution of movements, an intuitive approach
is to specify some cost or utility function as a metric by which
to measure a movement’s optimality. Cost functions can be
defined over the state-space of the problem (or any subspace
thereof) and provided they contain some unique global opti-
mum, they can be used to specify a unique preferred strategy
for movement. Additionally if motor learning is considered
as the process of optimisation of movements [1], then cost
functions can be considered the goals of the learning process.

A. Cost Functions for Motor Control

Research into cost functions in motor control seems to focus
around two main threads; the design of cost functions for

Fig. 1. Simulation of the ASIMO humanoid robot.

robotic control and the search for cost functions that provide
a theory of human movement selection.

In the engineering domain, the cost functional approach
has been successfully applied to problems in redundancy
resolution in robotic manipulators [2]. Several optimisation
criteria have been designed for movement planning (see [3]
for a review) with notable ones including joint-limit avoidance
[4], singularity avoidance [5] and obstacle avoidance [6],
[7] criteria. In practice such criteria are frequently used as
‘heuristics’ for redundancy resolution – offering secondary
constraints on actuation assuming the desired task-space
movement is achieved – by mapping their effects onto the
null-space of the movement [8].

In biological research, the idea of optimisation of some
cost function has been popular in the attempt to understand
the stereotypical features of human motion (see [9] for a
review). The goal here is to find some underlying principle
that explains how movement selection takes place in animals
or humans. Many possible cost functions have been suggested
such as the well-known minimum jerk [10], minimum torque-
change [11] and minimum end-point variance [12] criteria and
have been successfully used to predict invariant features of
movements such as hand trajectories and velocity profiles or
the two-thirds power law [13], [14].

However, the approaches taken so far share one common
feature that limits their general applicability, namely, the fact
that the cost functions defined are usually pre-specified, hand-
constructed functions designed for a specific application.
For example when designing optimisation criteria for robot

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429715564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

platforms, though they are constructed in a principled way,
frequently there are open parameters and functions that need
to be hand-tuned in order to realise desired behaviour. Also
when trying to determine the optimisation criteria used by
humans, the approach has often been to hand-design a func-
tion whose optimisation reproduces some property of human
movements [9] or to empirically determine functions from
experiments designed to elicit preferences in behaviour [1],
[15]. The resultant criteria explain many features of human
motion in certain types of movements well (e.g. single hand
point-to-point reaching) but their extension to more complex
scenarios (e.g. the choice between walking and leaning when
reaching to a point out of range) is not clear.

Here, we propose to take a new approach to the problem
whereby optimisation criteria are directly modelled from
observed behaviour using statistical machine learning tech-
niques. The principle is similar to that of inverse reinforce-
ment learning [16], [17] whereby reward (cf. cost) functions
are inferred for Markov decision processes from known action
policies or from the trajectories generated by some unknown
policy. We tailor our approach to movement selection in
high-dimensional movement systems, i.e. for problems where
multiple actions (in terms of choices of actuation) will achieve
a given goal and where the task is to develop some criterion
for choosing which to realise. We take a constructive approach
whereby open-form, non-parametric models of cost functions
are built incrementally. Once constructed these models can be
used for optimal control in the context of optimal feedback
control, gradient-based trajectory generation and planning,
and null-space movement optimisation.

II. PROBLEM FORMULATION

The problem we wish to address is that of determining
how, given some task, redundant DOFs are utilised by some
movement system in an optimal way with respect to some
metric (i.e. cost function). Formally:
Given: (i) Some general set of control variables c ∈ �n; (ii)
Some task formalised as a set of partial constraints on c, i.e.
h(c) ∈ �k, where k < n; (iii) Observations of a system
performing the task in a way such as to optimise some cost
J in the (n − k)-dimensional task null-space;
Find The null-space optimisation criterion J .

In general, the complexity of this problem will depend on
what information is available a priori. This includes knowing
what variables, θ, are relevant to the calculation of the cost
and whether observation data is complete with respect to those
variables. For the purposes of this paper, we will assume
that all the information required to reconstruct J is contained
in our observation data. A second important consideration
is knowledge about the optimisation mechanism used in
conjunction with the cost function. This is crucial when we
wish to directly derive the cost from observations since, for
the same cost function, different optimisation schemes may
produce different behaviours. Here, we make the assumption
that the optimisation mechanism is known and takes the form
of online gradient ascent in the task null-space. This allows us

to infer values for J from observed trajectories by formulating
the optimisation as a differential equation (where α is a rate
constant)

θ̇ = −α∇J (1)

and then, solving that equation for J . In the following we
motivate this assumption in the context of common kinematic
and dynamic control schemes.

A. Resolved Velocity Kinematic Control

For velocity-based kinematic control one of the most popu-
lar control schemes is that of resolved motion rate control
(RMRC) [18] which assumes a linearised forward model of
the mechanical system

ẋ = J(q)q̇ (2)

where x ∈ �k and q ∈ �n are the task- and joint-space
coordinates respectively, ẋ and q̇ denote the task- and joint-
space velocities and J(q) is the Jacobian relating the two.
Typically, the task is to track a desired trajectory xd(t), i.e.
the constraint can be formulated as h ≡ xd(t) − x(t) = 0.
Also it is usually the case that k < n so that the joint-space
trajectory q(t) is redundant with respect to the task.

To exploit this redundancy a common strategy is to make
use of the well-known Liégeois inverse kinematic model [19]

q̇ = G1ẋ − (I − G2J)a (3)

where I denotes the identity matrix, a ∈ �n is some arbitrary
vector and G1 and G2 are generalised inverses of J. It
was recently shown that the Liégeois model can be used
to represent most velocity-control methods (where an exact
prescribed ẋd is given) [20]. Choosing G1 = G2 = G where

G = W−1JT (JW−1JT)−1 ≡ W−1/2(JW−1/2)† (4)

i.e. the W-weighted pseudo-inverse1 of J, and a as

a = −αW−1∇Jq (5)

where Jq ≡ f(q), many established velocity-control tech-
niques can be cast in this form [20]. It has been long
established (see e.g. [2]) that in the case that a = 0, if there
exists a solution for q̇ in (2), the control law defined by (3)–
(5) will choose that which minimises

JLS = q̇T Wq̇ (6)

and obeys the constraints h (or minimises violation of these
constraints in terms of the least-squared transformation error
||ẋ − J(q)q̇||2). One of the nice properties of this control
scheme is that it gives a clear decomposition of the task- and
null-space parts of the motion. While the first term in (3)
handles the constraints h, the second term determines how

1A† denotes the Moore-Penrose pseudo-inverse of A

Start Position

a(t) = a (t)1

a(t) = a (t)2

Fig. 2. Two ways to utilise the null-space under the constraint that the
end-effector tracks a desired trajectory h ≡ x(t)−xd(t) = 0 (dashed line)
with a three link arm. The choice a(t) = a1(t) uses the second and third
joints more, whereas the choice a(t) = a2(t) uses the three joints equally.

the null-space is utilised. By appropriate choice of Jq, joint-
space motion can be controlled with no effect on task-space
motion (see Fig. 2). This scheme has been used for a variety
of purposes such as joint-limit avoidance, obstacle avoidance
and singularity avoidance.

B. Dynamic Control

For control at the level of dynamics and resolved acceleration
kinematics, a similar approach can be taken. In particular, we
can make use of a general methodology that was recently pro-
posed for the design of optimal control laws for mechanical
systems [21]–[23]. While kinematic control as described in
the previous section assumes the existence of some ‘dynamics
compensator’ allowing control to take place in kinematic
position and velocity space [19], this methodology is based
directly on physical principles of rigid-body mechanics.

The methodology assumes a robot model based on the
Lagrangian equations of motion

u = M(q)q̈ + Fc(q, q̇) + Fg(q) (7)

where u ∈ �n is the commanded force, q, q̇, q̈ ∈ �n are
joint-space positions, velocities and accelerations M(q) ∈
�n×n is a mass or inertia matrix, Fc(q, q̇) ∈ �n represents
centrifugal and Coriolis forces and Fg(q) ∈ �n represents
gravity. If the task description is defined in terms of a set of
constraints of the form h(q, q̇, t) = 0 where h ∈ �k and if
these constraints can be reformulated as

A(q, q̇, t)q̈ = b(q, q̇, t) (8)

it has been shown [21]–[23] that the class of controllers given
by

u = W−1/2(AM−1W−1/2)†(b − AM−1F) (9)

where F = −Fc − Fg, both satisfies the task constraint (8)
and minimises the quantity

JDLS(t) = uT Wu (10)

where W is some pre-defined metric. The choice of the metric
W can be used to classify several control paradigms [21],
such as resolved acceleration kinematic control (W = M−2)
or the Operational Space Formulation [24] (W = M−1).

Since here our interest is in redundant systems (i.e. those
for which k < n), use of the pseudo-inverse in (9) means we
can again decompose the applied control force into the task-
and null-spaces of the system [21]. By analogy with (3) and
(4), we can modify (9) so that

u = W−1/2T†(b − AM−1F) − (I − W−1/2T†T)a (11)

where T ≡ AM−1W−1/2. If we define

a = −αW−1∇Ju (12)

we again have a potential, Ju, in the null-space of T which
will be minimised with every time-step. Fig. 3 gives an
example of a task where different choices of a are possible
for the task of applying a force to a mass. The null-space
term (12) could be used for joint-stabilisation as in [21] or
impedance control for over-actuated arms.

U 1

2U

2U

U 3

U 1

U 3

F

Fig. 3. Two ways to utilise the null-space in dynamics control when applying
a force F to mass (box) with a fixed-base three link arm. The upper scheme
applies a large torque to the base joint, a medium torque to the second joint
and a small torque to the third joint. The lower scheme uses equal torques
for each joint. The choice of a in (11) determines the scheme used.

III. LEARNING COST FUNCTIONS

In order to set up a robot controller that utilises the null
space optimisation schemes discussed in the previous section,
it is frequently necessary to rely on some hand-designed
cost functions. Here we suggest a mechanism to reverse
engineer the cost function used by a system assumed to
obey the same control laws as the plant to be controlled.
Our approach has some parallels in the empirical studies
of human subjects such as [1], [15] in that our aim is to
directly model cost functions from observations of behaviour.
However, the setting explored here differs in that we do
not receive explicit information about preferred (i.e. low
cost) behaviour as compared to the forced-choice paradigm
used in [15]. Instead, we directly observe the optimisation

process from the null-space movement and the preferences
in behaviour are implicit in the path taken through the cost
function parameter space during that movement.

Parallels can also be found in recent work on inverse
reinforcement learning (IRL) such as [16], [17]. In both
approaches the goal is to infer the reward (i.e. cost) function
optimised without explicit information about that reward.
However, in the IRL approach the reward function is inferred
from the actions of a behaviour policy assumed optimal in the
sense of Bellman optimality (i.e. maximum expected reward
over future states and actions). In contrast, our approach deals
with actions generated from online optimisation of the cost
as more commonly found in robot control schemes.

The method developed below is therefore tailored to infer-
ring the form of the cost function from passive observation
of trajectories, and the incremental building of a model of
the function from these observations. Next, we outline the
approach taken to model the cost function and to extract
training data for the modelling process.

A. Modelling Approach

Our approach is to try to directly learn the mapping:

θ −→ J(θ) (13)

where θ is the vector of parameters of J which may contain
control variables2 c = (c1, . . . , cn)T as well as indepen-
dent (i.e. uncontrolled) state-variables x = (x1, . . . , xm)T

which may be significant to the optimisation. Assuming the
existence of an explicit signal for J that is measurable as
the system moves through θ, (13) can be modelled with a
supervised learning approach.

Our algorithm of choice is locally weighted projection
regression (LWPR) [25] a fast non-parametric regression tool.
LWPR has several features that make it well-suited to this
task. Its Gaussian-kernel formulation gives smooth approx-
imations of functions ensuring stability of gradient-based
optimisation techniques. It is capable of dealing efficiently
with high input dimensionality as found in high-redundancy
movement systems and its partial least squares based dimen-
sionality reduction feature effectively prunes out irrelevant or
redundant input information. Furthermore, it learns incremen-
tally; useful for learning from trajectories as and when they
arrive. Finally, since LWPR is a non-parametric technique we
need not assume any prior knowledge of the form of the cost
function other than that it is a smooth, static function of the
input parameters θ.

B. Collecting Data

The supervised learning of (13) requires that our training data
consists of tuples of the form (θ, J) for training the model.
However, since in general, the cost J is not directly observ-
able from movements, we require some way of inferring its
value in a given state. Here we outline how this can be done
purely from observations of the movement system.

2For kinematic control c = q̇, for dynamics control c = u.

J

θ1 2θ

1

42

3x

Fig. 4. Equalising trajectories to build a global model of the cost function.

1) Reconstructing J along a Single Null-space Trajectory:
The first step in building the model of the cost function is
to reconstruct the form of the function along each trajectory
that the system performs. We assume for the moment that this
trajectory is purely due to optimisation in the null-space and
that the task constraints do not cause motion in θ. This is
the case when, for example, ẋ = 0 in the kinematic control
scheme outlined in II-A.

The simplest method requires that we take samples of θ
during each trajectory at sampling rate r. This results in a set
of via-points Θ = (θ1 . . . θrτ)T for a trajectory of duration
τ and the aim is to infer a value for J at each of these
points. In order to do this, we take note of two observations.
The first observation is that if we set r sufficiently high, the
optimisation dynamics can be modelled as locally linear. This
means that the trajectory generation mechanism (1) can be
approximated by

θn+1 = θn + ∇J(θn) (14)

where the differentiation is with respect to θ. This gives us
an estimate of the gradient at each point along the trajectory
in terms of the distance between consecutive sampling points
in θ. The second observation is that the absolute value of J
is unimportant for the optimisation. This means that for any
given trajectory, we can select one of the points along the
trajectory and assign it some arbitrary value Jref . Then, if
we use the Euler method

J(θn+1) = J(θn) + (θn+1 − θn)T∇J(θn) (15)

starting at that point and using Jref as the initial value, we
can iterate to find the value of J (measured relative to Jref)
for each remaining point on that trajectory.

2) Building a Global Model: The result
of the above process is a set of data-points(
(θ1, . . . ,θrτ)T , (J(θ1), . . . , J(θrτ))T

)
for each trajectory

recorded. The problem, however, is that there is no guarantee
that the values for J from any two trajectories are measured
with respect to the same reference point. In other words,
we do not know the translation of the single-trajectory data
sets relative to each other; this is analogous to obtaining
‘indifference curves’ [15] where utility has equal value
without explicit knowledge of the relative utility between

them. However, assuming the cost surface to be a single-
valued static function, the cost at the point of intersection
between two trajectories is equal. This means that novel
trajectories that intersect those previously seen can be
translated to ensure the costs are equal at that point.

If necessary, this principle can also be extended to novel
trajectories that approach (but do not intersect) seen ones to
within some small distance by making local linear extrapola-
tions of the modelled surface at the point of closest approach.
The principle is shown in Fig. 4. Having assigned values
for J for the two trajectories, the cost at the new point x
can be estimated from a local linear regression of the plane
defined by points 1–4. In this example, since the surface is
two-dimensional, the learning process can be seeded with just
two intersecting trajectories. It should be noted that in general,
for an N -dimensional surface, at least N trajectories will be
needed to define a surface from which we can extrapolate and
grow our global model.

IV. EXPERIMENTS

We performed simulations of kinematic controllers of the
form described in Section II-A that has been implemented on
the ASIMO humanoid robot [8]. However, in order to better
illustrate the issues involved in the methodology, we report
experiments performed on a reduced version of the system
consisting of a planar three-link arm of unit link length and
with revolute joints.

A. Learning Cost Functions from Trajectories

Our first set of experiments demonstrated the learning of a
simple joint-limit avoidance cost function. A controller, C,
similar to that described in [8] was used to generate data that
optimised the cost function

J = (q − qc)T (q − qc) (16)

where qc is a constant vector defining the position of the joint
centres. The centres were chosen such that the default (min-
imum cost) position of the arm corresponded to the straight,
fully-stretched position. The arm was assigned random initial
end-effector (hand) positions and joint configurations from
which linear hand trajectories at random speeds and directions
were commanded. Samples of the cost and joint configura-
tion (q, J), at twenty equally-spaced via points along these
trajectories were used to incrementally train LWPR.

There was a rapid convergence of the learnt cost function
to the true analytical version as the number of trajectories
seen increased (refer Fig. 5). After 250 trajectories seen the
normalised mean squared cost function prediction error was
0.0624 ± 0.0051. For less than fifty trajectories seen, the
nMSE was more variable reflecting the fact that the random
trajectories did not necessarily cover the space uniformly.

Since LWPR also has the feature of pruning irrelevant input
information it is possible to learn cost functions using our
approach without too much care about selecting what inputs
to use, provided a subset of the inputs contains the relevant
information. To show this we also tried learning the cost

50 100 150 200 250

10
−1

nM
S

E
 (

C
os

t F
un

ct
io

n
P

re
di

ct
io

n
E

rr
or

)

Trajectories Seen

Fig. 5. Cost function prediction error against number of trajectories seen
during learning averaged over 50 runs and 250 trajectories when learning
q → J (black) and when learning with irrelevant inputs q, q̇ → J (grey).

Fig. 6. Cost profile (right) during tracking of the test trajectory recorded
from the true cost function (black line) and the learnt cost function after
training with 1, 2, 5, 20, 50 (light grey lines) and 250 (thick grey line,
error shown as dashed grey lines) trajectories. Since the trajectory was a
circuit, the cost profile is periodic with the large peaks corresponding to the
end-effector at the base of the eight-figure, forcing the arm into a high-cost
‘folded’ position (left).

function using the vector of joint positions augmented by the
joint velocities, (q, q̇), as inputs. Since the mapping was now
�6 → � the training took longer (refer Fig. 5), however once
complete the null-space behaviour was again quantitatively
reproduced.

To test the predictions of the learnt cost function, the arm
controller was given an unseen test trajectory (a figure-eight
curve) to track (refer Fig. 6, left) while optimising the true
cost function (16). In tracking this trajectory, the arm was
forced successively into low and high cost positions as the
arm had to fold up for the base loop of the eight and unfold
for the top loop. This gave a periodic structure to the cost
profile that is clearly reproduced by the learnt model (Fig. 6,
right).

Our final test was to compare the joint-space trajectories
of controller C with those of a second controller, Ĉ, that
used the learnt cost function to see how well null-space
behaviour was reproduced. Controller Ĉ was presented with

Fig. 7. Joint trajectories using the true cost function (black line) and learnt
cost function after training with 1, 2, 5, 20, 50 (light grey lines) and 250
(thick grey line, error shown as dashed grey lines) trajectories.

the same figure-eight test trajectory and optimised movements
with respect to the learnt cost function. Fig. 7 shows the
trajectories of the three joints during tracking after several
intervals of training of the cost function. Fig. 8 summarises
the normalised mean squared (joint) tracking error of Ĉ as
compared to the trajectory produced by controller C. The
joint trajectories of the controller with the learnt cost function
rapidly approached those of the original. Interestingly there
was more variability in the joint trajectories of Ĉ as time
progressed, possibly due to slight asymmetries in the learnt
cost function being magnified over repeated loops of the
figure-eight.

B. Obstacle Avoidance Cost Function

To demonstrate the application of our approach to more
complex null-space behaviour the cost function (16) was
augmented with a term designed for obstacle avoidance. The
new cost function took the analytic form

J = (q − qc)T (q − qc) + β
∑

i

||xi − xobs||−2 (17)

where xi are task-space coordinates of a series of reference
points attached to the arm, xobs is the task-space coordinate
of an obstacle and β was a scaling constant. Since the position
of the reference points depended on the configuration of the

50 100 150 200 250

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

nM
S

E
 (

T
ra

ck
in

g
E

rr
or

)

Trajectories Seen

Fig. 8. Normalised mean squared (joint) tracking error against number of
trajectories seen during learning, when learning q → J (black) and when
learning with irrelevant inputs q, q̇ → J (grey).

arm, there was a highly non-linear relationship between the
input parameters, θ ≡ (x,q), and the cost.

We performed experiments in learning this cost function for
the case where the hand position was constrained to a fixed
position and a single obstacle was moving in the vicinity
of the arm. This is similar to behaviour shown in humans,
for example when carrying a tray of drinks, it is necessary
to hold the tray steady to avoid spillage while avoiding
obstacles in one’s path. Using the learnt cost function the
null-space behaviour of moving away from nearby obstacles
was reproduced. Fig. 9 shows schematics of how the arm
moved as the obstacle came near.

Fig. 9. Schematics of the arm reconfiguring its initial posture (dashed lines)
to avoid an approaching obstacle (filled circle) as reproduced by learning the
cost function (17).

C. Extracting J for a Constrained Kinematic Manipulator

In our final set of experiments the controller was again given
the cost function (16), but this time we attempted to infer
the cost function given only the movement data, i.e. given
only observations of the joint space velocities q̇. The scheme
outlined in Section III-B was used to reconstruct the form of
the cost function. The constraint chosen in these experiments
was of the kind ‘maintain a given end-effector position while
minimising the cost’. This kind of constraint can be seen in
tasks where a contact point between the manipulator and the
environment needs to be maintained (a detailed exploration
of contact-constraint tasks can be found in [26]).

Again the manipulator was assigned a random initial hand
position and joint configuration for each trajectory. The hand

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Fig. 10. Reconstruction of the cost function from movement data. (Left)
True cost function; Reconstructed cost function after (Centre) 20 trajectories,
(Right) 200 trajectories were seen.

was then constrained to the initial position (ẋ = 0 in
(3)) and the manipulator was allowed to reconfigure itself
into the ‘most comfortable’ position according to the cost
function. The trajectory in joint-space was sampled and used
to reconstruct the form of the cost function. The resultant data
was then used to train LWPR to learn the surface.

Convergence of learning was again fast with profiles of
the nMSE similar to those shown in Fig. 5. Fig. 10 shows
contour plots of the learnt cost function as a function of two
of the joints of the arm after 20 and 200 trajectories seen.
The radially symmetric form of the cost function started to
emerge after just 20 trajectories were seen.

V. CONCLUSION

Research into null-space optimisation criteria has, so far,
focused on the design of cost functions either for explain-
ing human motion or for application to robot control. The
disadvantages of this approach are clear in that the design
process is highly time-consuming, requires hand tuning of
parameters, and the resultant criteria may be applicable only
to the system for which they were designed.

We propose a method that automates the process by using
statistical machine learning to reverse-engineer the null-space
behaviour of existing systems. It has been shown that learnt
models of cost functions can be used in place of analytical
ones with little loss of performance in terms of joint-space
tracking error. Furthermore, it has been shown that cost
functions can be reconstructed from trajectory information
even if there is no explicit cost signal for supervised learning,
given sufficiently dense samples of trajectories.

In future work, we intend to extend the current methodol-
ogy to the case where task constraints perturb the optimisation
in the null-space. In such cases, extraction of cost information
is more complex since the joint-space movement then consists
of a combination of task-space motion and null-space motion,
introducing an error in the Euler method dependent on the
task-space motion. Furthermore, we intend to demonstrate the
use of the proposed methodology in the null-space control of
very high-dimensional systems such as the humanoid robot
ASIMO.

REFERENCES

[1] K. Körding and D. Wolpert, “The loss function of sensorimotor
learning,” in Proceedings of the National Academy of Sciences, vol.
101, 2004, pp. 9839–42.

[2] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Reading, MA: AddisonWesley, 1991.

[3] W. L. Nelson, “Physical principles for economies of skilled move-
ments,” Biological Cybernetics, vol. 46, pp. 135–47, 1983.

[4] F. Chaumette and E. Marchand., “A new redundancy-based iterative
scheme for avoiding joint limits: Application to visual servoing.” in
IEEE Int. Conf. on Robotics and Automation, 2000, pp. 1720–1725.

[5] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robotics
Research, vol. 4, no. 2, pp. 3–9, 1985.

[6] S. I. Choi and B. K. Kim, “Obstacle avoidance control for redundant
manipulators using collidability measure,” Robotica, vol. 8, pp. 143–
151, 2000.

[7] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE Intl. Conf. on Robotics and Automation, vol. 1, 1985,
pp. 428–436.

[8] M. U. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole
body motion for humanoid robots,” in Proc. IEEE-RAS International
Conference on Humanoid Robots. IEEE Press, 2005, pp. 238–244.

[9] S. Engelbrecht, “Minimum principles in motor control,” Journal of
Mathematical Psychology, vol. 45, no. 3, pp. 497–542, 2001.

[10] T. Flash and N. Hogan, “The co-ordination of arm movements: An ex-
perimentally confirmed mathematical model,” Journal of Neuroscience,
vol. 5, pp. 1688–1703, 1985.

[11] E. Nakano, H. Imamizu, R. Osu, Y. Uno, H. Gomi, T. Yoshioka, and
M. Kawato, “Quantitative examinations of internal representations for
arm trajectory planning: minimum commanded torque change model,”
J Neurophysiol, vol. 81, pp. 2140–55, 1999.

[12] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines
motor planning,” Nature, vol. 394, pp. 780–784, 1998.

[13] F. Lacquaniti, C. Terzuolo, and P. Viviani, “The law relating the kine-
matic and figural aspects of drawing movements,” Acta Psychologica,
vol. 54, pp. 115–130, 1983.

[14] E. Todorov and M. Jordan, “Smoothness maximization along a pre-
defined path accurately predicts the speed profiles of complex arm
movements,” Journal of Neurophysiology, vol. 80, pp. 696–714, 1998.

[15] K. Körding, I. Fukunaga, I. Howard, J. Ingram, and D. Wolpert, “A
neuroeconomics approach to inferring utility functions in sensorimotor
control,” PLoS Biol, vol. 2, no. 10, p. 330, 2004.

[16] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in Proc. 17th International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 2000, pp. 663–670.

[17] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. ICML, 2004.

[18] D. E. Whitney, “Resolved motion rate control of manipulators and
human prostheses,” in IEEE Trans. Man–Mach. Syst., vol. MMS-10,
no. 22, 1969, pp. 47–53.

[19] A. Ligeois, “Automatic supervisory control of the configuration and be-
havior of multibody mechanisms,” in IEEE Trans. Syst., Man, Cybern.,
vol. SMC-7, 1977, pp. 868–871.

[20] J. D. English and A. A. Maciejewski, “On the implementation of
velocity control for kinematically redundant manipulators,” in IEEE
Transactions On Systems, Man, And Cybernetics-Part A: Systems And
Humans, vol. 30, no. 3, 2000, p. 233.

[21] J. Peters, M. Mistry, F. Udwadia, R. Cory, J. Nakanishi, and S. Schaal,
“A unifying methodology for the control of robotic systems,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005, pp. 1575–1582.

[22] F. E. Udwadia, “A new perspective on the tracking control of nonlinear
structural and mechanical systems,” in Proc. of the Royal Society of
London, Series A, vol. 459, 2003, pp. 1783–1800.

[23] H. Bruyninckx and O. Khatib, “Gauss’ principle and the dynamics of
redundant and constrained manipulators,” in Proc. IEEE International
Conference on Robotics and Automation, 2000, pp. 2563–2568.

[24] O. Khatib, Robot Control: Dynamics, Motion Planning and Analysis.
IEEE Press, 1993, ch. A Unified Approach to Motion and Force Control
of Robot Manipulators: The Operational Space Formulation, pp. 277–
287.

[25] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[26] J. Park and O. Khatib, “Contact consistent control framework for
humanoid robots,” in Proc. 2006 IEEE International Conference on
Robotics and Automation, 2006, pp. 1963–69.

