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PART I

INTRODUCTION



X.

As far as gas mixtures are concerned, whose reac¬

tions are accompanied by a change in volume, the deter¬

mination of composition and rates of reaction has pre¬

viously been carried out largely by static methods i.e.

by measuring the changes of pressure occurring at defi¬

nite time intervals under constant volume conditions.

To obtain satisfactory rate measurements in relatively

rapid reactions, investigations have usually been under¬

taken at reduced pressures.

Very accurate measurements of this kind by Boden-

steln9""11/ have resulted in the determination of the

velocity coefficients of the following raaotlons:

2N0 + 02 = N204
2NOg = 2140 +■ 0 2

The velocity coefficientsthus obtained can be applied

only approximately to the measurements of gas reactions

taking place in flow systemsat constant pressure? con¬

versely the determination of velocity ooefficientsby such

flow rate measurements is a matter of some complexity

and difficulty./IT/•
The work to be here described represents an attempt

to determine the composition of gases reacting in a flow

system at atmospheric pressure, the reaction investiga¬

ted being the oxidation of nitric oxide. The method

suggested is based essentially on the measurements of

volume variations of the reacting gases at different
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time intervals. This was achieved by measure of a flow¬

meter acting at the exit from the reaction chamber,

whan the gas passing the flowmeter dee snot change in com*

position during the flow, the volume of gas passing may
Qf

be easily determined on the basis^/prevlous calibration,
but when the composition of the gas alters in density

during the flow, this simple method will not suffice.

In the method here adopted the flowmeter was calibrated

against the flow of equal masses of various gases of de¬

finite density, as will be shown. The graphical relation¬

ship so obtained may then be used to determine the den¬

sity and hence the composition of the gases Issuing from the

reaction vessel.

The changes in flow rate in the reaction were mea¬

sured on a differential manometer by means of a catheto-

meter /estimated accuracy 0*01 mm./. With flows applied

in the present measurements, 1 mm. of pressure differen¬

ce corresponded to 2*3°/° of the volume of gases flowing
|

pastj hence 0*1 mm. corresponded to 0*23°/o# which is

a sufficient accuracy.

The measurements were carried out under atmospheric

pressure, the gases esoaping into the open. Such a method

involves many difficulties. Maintaining a constant gas

flow in the present instance of approx, 300 o.o./mln.,

necessitates many manipulations, often difficult to carry

out. However, the gas flow was kept constant with an error



normally less than Q*5°/o, provided the constant pressu¬

re and temperature war© suitably maintained in the NO

and Og containers.
From the experimental data of the flow volumes the

contents of NO, Og, NgO^ and NOg, respectively, in the
issuing flow gases were computed for various reaction

periods and for different temperatures. Unlike the sta¬

tic method, the method suggested enables one to measure

the reaction rate, at very small time intervals /fractions

of a second/ after the reacting gases have been mixed with

one another.

Such a method is obviously of advantage when reac¬

tions under consideration involve the possibility of an

induction period or similar initiating phenomena.
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PART II

APPARATUS FOR MEASURING THE CONTRACTION

OF QA3ES DURING THE FLOW.



The apparatus which was finally adopted, after

many trials and alterations,for the measurement of rates

of oxidation of nitric oxide, consisted of four parts

/Fig. 1/.
A. apparatus enabling nitric oxide to t® delivered to

the reaction chamber at a constant flow rate, constant

temperature and constant pressure,

B. nitric oxide producing unit,

0, apparatus In which the reaction tabes place, and

apparatus for measuring the contraction of the reacting

gases,

D. apparatus for oxygen, not shown in the drawing, tut

similar to that under A.

A®

This apparatus consists of a glass vessel /ll/
and an arrangement whereby water was delivered Into the

vessel at a definite flow rate and at room temperature,

for the purpose of maintaining an uninterrupted delive¬

ry Into the reaction chamber of dry gas at a definite

temperature and pressure. The vessel /ll/ was provided

with a tube and etop-oock /12/ for filling with gas,

a water manometer, a thermometer, a tube connecting the

vessel with the rsation ohamberi gas drying vessels with
A

calcium chloride /17/ and phosphorus pentoxlde /18/,

respectively! and an outlet with stop-cook /8/ for dis-
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Vessel of gas and arrangement for gas flow regulation



charging water during filling with gas, and for passing

water into the vessel when gas is delivered from the

vessel. In order to maintain the constant flow rate and

constant temperature of displacing water, the respective

apparatus consists oft a water tap /!/» a flask /la/ for

heating waterj two vessels /S/ and /3/ for maintaining

the constant water level* a bottl© /4/ In which the wa¬

ter ultimately assumes the temperature of the surround¬

ing airi an outlet /5/ fitted with a nozale /6/, the le¬

vel of which can he altered arbitrarily, thus changing

the flow rate* a tube /7/ delivering water from nozzle

/6/ through /8/ to bottle /ll/, The rate of flow of wa¬

ter through nosal9 /6/ was controlled by adjusting the

nozzle at a corresponding level with regard to the level

in vessel /a/ and /3/» and by measuring in a volumetric

flask /10/ the quantity of water delivered during a de¬

finite time from the stop-cock /9/, In order to obviate

the effect of the variable kinetic energy of water fall*

ing from the nozzle /$/, a constant high water level Is

maintained in tube /7/ by means of an automatic device

not shown in the drawing. By the above means the gas

flow rat© of 205'5 o.c.HO/mln. within the limits of error

of 0»3°/o ooold be maintained for several hours.

Two Identical sets of such apparatus, viz, for

nitric oxide, and for oxygen, respectively, were employed.
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Apparatus for nitric oxide continuous production



B.

The apparatus for the continuous production of NO

oonsietad of a horizontal Pyrex glass tube /13/ heated

by means of a tubular turner, A cooled aqueous ferrous

sulfate solution mixed with sulfurio and nitric add Is

delivered from vessel /14/ at one end of the tube* at

the other and the resultant liquid is discharged at the

bottom, while gaseous NO was liberated from water in the

vertical condenser /15/. The nitric oxldo thus obtained,

when analysed in a Herapel burette by means of potasBlura

permanganate, was found to contain more than 99°/o NO,

the balance being assumed to be nitrogen.

The oxygen was taken from a cylinder and analysed

with an Oraat apparatus.

C.

The apparatus In which the oxidation of NO to NOg

took place consisted of the reaction chamber /19/ plaoed

In a constant temperature water bath /29/, provided with

an electric heater /22/, a meroury-ln-glass thermoregu-

lator /23/» a motor driven stirrer /2S/, and a thermorae*
L%b)

tar by whioh the temperature was recorded to the nearest
[%n

0*01° C. A gas heated Pyrex coil prehester served for

delivering water having the bath temperature into the
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Reaction ohamter
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lunar cylinder of th® reaction chamber. The reaction

chamber W*as connected to a differential manometer /24/»
the reading of which was determined by means of a oathe-

tometer /25/ with an estimated error of 0*01 mm. The

differential manometer was filled with alpha-bromonaphtha¬

lene, this liquid not being appreciably attacked by NOg.
The manometer /25/ gave the static pressure inside the

reaction chamber.

The Variable-Volume Reaction Chamber. /Fig. 2/

The oxidation took place in the space /l/ formed

by a glass cylinder /2/ of 23 mm. bore, with a semi-

-spherioal bottom, and by an inner cylinder /3/ closely

fitting into the outer cylinder. The position of the

inner cylinder defines the size of the reaction chamber.

A piece of rubber tubing /4/ prevented the entrance of

air.

The reacting gases NO and Og reach th© reaction
chamber through tubes /5/ and /6/ respectively, these

tubes having a common outlet at their bottom parts.

??hsn passing through the tubes, the gases are heated

with water circulating through the Interior cylinder

from and to the constant temperature bath. The water

Inlet is at /7/» near the thermometer for determining

the temperature of the water. The pointer /8/ is arranged
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on one of the tubes for the purpose of Indicating the

chamber space on the scale /9/,
The gas exit in the bottom portion of the outer

cylinder is fitted with a small nozzle /lo/ whloh In¬

creases the pressure of the gases In the chamber. After

passing that nozzle, the gas escapes freely Into the air

through the tube /ll/. The pressures Inside the chamber

and beyond the nozzle are transmitted to the differential

manometer through tubes /IS/ and /l3/» respectively. The

mean temperature In the loweiPmost part of the chamber

is read on a long thermometer, the mercury bulb of which

Is arranged inside the chamber. Both the thermometer and

the nozzle are connected to the chamber by greased ground

Joints.
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PART III

THE PRINCIPLE OF MEASURING THE VOLUMES

OF FLOvUNQ GASES WHOSE DENSITIES VARY PUR 115G THE FLQWi

THE CALIBRATION OF THE NOZZLE. /PIAQR. 1 AND TABL. I/.
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It was found experimentally that a straight line

Is obtained If at a given temperature volumes correspond¬

ing to equal masses of various gases of different densi¬

ties /e.g. COg, Cl2, air, N2/ passing through the cham¬
ber, were plotted against the respective rises in pressu¬

res on either side of the nozzle. When dealing with the

same gases at another temperature, another straight line

is obtained.

Chlorine and air were used for the purpose of cali¬

brating the nozzle, since the values between their densi¬

ties comprise the densities of the mixtures of gases NO,

02, N2, N02 and NgO,^, at any degree of dissociation of

S*2°4# At a Slven temperature and pressure, volumes of
Cl2 and air have been used, corresponding to a mass of
0*4 g. P©r minute. The same mass was always used when

measuring the oxidation of NO, i.e. the sum of masses

of NO and N2 led through the apparatus during one minute
was always equal to 0*4 g. The measurements of the pressu¬

re difference - pg = h in the reaction chamber, obtain¬
ed for Cl2 and air gave the data of h for different tem¬
peratures, as shown in diagram Dl.

From diagram 1 one obtains diagram 2 in whioh the

abscissae represent the pressure h in millimeters read

on the differential manometer, while the ordinates re¬

present the flow rates expressed in o.o./min. at N.T.P.

The mass of the gases being always equal to 0»4 g.» It
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has bean found that the flow rate for air was 309*5 o.c./

/min,, and for chlorine 124*5 c.c./min, /N.T.P./. Next,

the h points for temperature of 30°, 35°, 40° ... are

transferred from diagram 1 to diagram 2. Thus we obtain

in diagram 2 a aeries of straight lines corresponding

to t3mperatur©B 30°, 35°, 40° ... plotted on axes

of h and of flow rates of the gases expressed In e.e./

/min. at H,T,P,

fh© diagram 2 enables one to read In c.e./mln. the

N.T.P. volume of a gas flowing at different temperatures.

The measurements of the rate of the oxidation of

NO were carried out with a mixture containing 189*1 c.o.

NO, 99*1 o.o. 0a and 4*5 Q.e. Kg H»T.P, per minute, the
total mas® being 0*4 8«

The readings of h for various chamber volumes and

various temperatures enable one to read directly in

diagram 2 the flow rate in o.c,/min. at N.T.P. on the

corresponding straight line.

Results.

The measurements of differential pressures In

reactions with flowing gases which esoape freely Into

the surrounding air Involve many difficulties caused by

sudden changes in the atmospheric pressure. Consequently,

the measurements have been oarried out as far as possible
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under conditions of steady barometer pressure.

After filling the gas containers with NO and 02,
the gases were analysed for NO, 02 and N2. Assuming that
the pressure in the containers was a known and constant

one e.g. 100 mm. water head, the flow rates of the gases

were oaloulated so as to maintain the stoichiometric re¬

lation NO i 02 = 2 i 1, and to have the sum total of the

gaseous masses equal to 0*4 g./min. The results obtained

were* volume of NO - 189-1 o.o./rain., 02 - 99*1 o.o./mln.,
Ng - 4*5 o.e./min. N.T.P., hence NO ; 02 = 1*91 » 1.

After the constant temperature of the bath had been

reached and the required water-flow into the gas con¬

tainers adjusted, the stop-cock /9/ was closed and the

stop-oook /8/ opened, water flowed into the bottle and

displaced the volumes of gas equal to the volumes of

added water. This refers alike to NO and 02. Each gas

then entered the reaction ohamber, in whioh the gases

mixed and reacted with each other.

The measurements always began with the smallest

chamber volume, i.e. position 1 corresponding to the

volume of 5*7 c.o. The thermometer /20/ showed the rise

in temperature, while the differential manometer /24/
indicated the difference of pressures on either side of

the nozzle. As soon as the oathetoraeter readings of the

pressure were constant and the temperature in the aham-
tor did not rise any more, readings ware taken as al-
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ready shorn in Table 2. Thus, measurements were oarried

out for sixteen positions of the adjustable tube, cor¬

responding to sixteen different volumes. As shown in

Table 2, the variations of temperature in the gas bottles

did not exceed 0*5° whioh is equivalent to 0*3°/® ®£ the

volume.

The variation of pressure within the bottle /ll/

did not exceed 36 mm. HgO which is responsible for the
maximum variation of another 0*3°/® of the volume of

gases in flow.



cfuott
jr.
oiitifrnI>

0

1
I
3
H
5*
6

r

9
10

II
11
13
11
1 f
1 o

J

f*S.
17 "3
17'*
17-i
<7*7
17*/
17'7
*7*4
17-4

fb'

H'

18

12

no i/e
/V

5 jfi

jVLOi.
10 f
10 f
110
u
n
V

110

1U

11
ii

11
ii

i

fafwut-Vi

I U'H
tt-H
US
U-f
U'k
If
ifi

11-H

II +

11-£
m

11*7

r

11-1
iff
11 '1
u-l

11 >7
U't

m
I J

1ft
1ft.

1\S
1f1

0^ ietse\
_a.

hMd.

u t
11 r
v
i?
iir

116

117
11 &

11 c

110

L
—V

t ojuritk

fW
(f*6
tM
1 f-S
1 L»C
16 '1

16*1

16-i

ifoM

16-3

16*4 5*

2-

t\f
Vfojtt/L
'at dux**

Prti-f1
i*Wi

If

h'

ir

3 f

J)

M-nt
:<M3
U-HS
Mi
wto

f 4

4 5-f3
.*3-3)

»3-0

"1
a-a

Uoluitii
o{qa<i

3

M

wlif
in
163
15%
mi*r
1HH

1HC-f

11 ff
13*

Wi-f

<!*>%•

dalcnnC

iff, •fou jllu+.
t'ifjf.
iftni cMou*

in
HVf
1<fl-H
qs>
164'f
mr

no

Iff

1W<*

ifi-f

ni-f

janj&tt
iv 'HM.

sedUix*-

aj(/fuu*i.

Jtveruxqe,
JtUur

iff' .(Hi1!4». X. Tj

7 HH?
a a
to 71
hfjt
HW
nil
hop
hcfh

3pf
3 po
Hfi
i$S*
JSif
ASH
Mao

1S1
lobf
153 7
17t-l
US'
ut-s
nt-

iff*
irj-t
1*6-
ifr-i
W
lii'A
JTi-i
Ul'

Jlint oj
stcwj. of
pxA m d.

I'UJ
1-M 3
1'*f6

i-jsr
I'cyr

X<n
:>/r

;jjr
:-(jf
i'U
Z'tt
I'D
X-XHT

. • c



12fc.

PART IV

INTERPRETATION OF MEASUREMENTS
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The measurements made are condensed in Table 2.

They refer to sixteen volumes of the reaction chamber*

the first of which was 5*7 c.c*

The pressure difference /p^ - p2 = h/ read on the
differential manometer at the temperature of the reaction

chamber as given by thermometer /14/ have bean referred

to Dlagr.J thus giving the corresponding gas flow rates

in e.c./min. at N.T.P.

For the first position of the chamber, h — 43*53 mm.

of alpha-bromonaphthalene head* the thermometer reading

being 69• 4°, we obtain from diagram 3 the flow rate of

225 c.o./min. /K.T.P./, or 282 o.o./mln. for the chamber

temperature and pressure observed. Similar calculations

have been made for obtaining the flow rate values for

each of the sixteen positions of the chamber. These va¬

lues were expressed in o.c./rain. N.T.P. AK7p/ and l*1
o.o,/min. at actual pressure and temperature conditions
within the chamber /Vt.oh./ and are shown in dla£raw 3
plotted against the chamber position.
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PART V

CALCULATION OF THE TIME OF REACTION

IN THE REACTION CHAMBER.
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If at constant prossure a volume Y_ of a gas ofSj

fixed composition e, g. Hg, 0g» 03 passes each, minute
through a vassal of voluaa Y, the "time of stay" in tha
vassal will fca V/Vg ain. If, however, the gas in question
is a reacting mixture such that a decrease in volume

oocurs, as in tha oxidation of nitric oxide, the avera¬

ge time of stay will he increased: if the reduction in volume

is linear with respect to time, than tha time of stay

will ta increased proportionally.

This may te illustrated graphically as follows. If

tha volume of gas passing per minute is plotted as ordi¬

nate s against the volume of the reaction vessel as abscissae,

then for a vessel volume OA and a flow rate of uniform

gas QVp the time of stay In the vessel will he propor¬
ta

tlonal^the area OAPV^. For a vessel volume OB /= 20A/
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th® tlm® of stay will b© double and will be proportional

to OBQV^# ana so on. For a gas volume V2 /= i Y^/ in a
vessel volume A, the time of stay will be doubled in re¬

lation to the time of stay for gas volume In vessel

volume A; th© multiplying factor will be the ratio of

the areas OAPV1/OARV2.
When therefore the gas volume passing per minute

decreases linearly due to reaotion from at 0 to V3
at A, the multiplying factor will be OAPVi/oASVj. For
the general case, let the area 0ASV3 be A. When vessel
volume is V and gas volume passing Is v at V = 0, the

proportionality faotor is v t v and the average time ofA
o

stay in the vessel will be v ~T T • = <j* .

As shown in Diagram 3» the relation between vessel

volume and gas volume passing is not linear and an in¬

tegrated area A is therefore required. For the present

purposes the area A was determined graphically. It will
be noted that, in Diagram 3 the value v approaches a

constant at high' values of V, this indicating no re¬

act ionj apparently for such conditions oxidation was

practically complete.

In Diagram 3 the chamber volumes are plotted on

the abscissae at intervale of 25 mm. The volume ourve

is not a straight but a concave line. Thus the area A

of the first chamber volume has an area of 7445 sq.mm.»

hence the mean gas flow rate is =. 298 o.c./mln.=
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-4*97 o.o./sec. Consequently, the time during which
gas remains In the chamber of volume 5*77 o.o. Is

5*7/4*97 = 1*147 sec. Thus one obtains a series of va¬

lues expressing the time during which gas remains In the

subsequent sections of the ohamber. respectively, each
section having the same volume of 5*7 o.o. These are gi-
ven in the last column of Table 2.

Let us now consider the behaviour of gas moleoules
within the ohamber, during the steady contraction oaused

by the reaction Itself. Mien entering the chamber at Its

position 1, the gas remains In the chamber for 1*147 sec.

This means that a molecule a which entered the chamber

at the moment will reach the exit nozzle at such a

moment tg that tg - = 1*147 sec.
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Let us consider the next position of the chamber,
viz. that with double the primary volume. A molecule

which passes through fc at tha moment t^, will be obser¬
ved near b^ at the moment t2, and a&i )> bbx.

At the third position of the chamber the place of

a molecule at moment t^ and t2 will be c and respecti¬

vely, and bb^ )> ccx* The distances aa^, bb^, ccx» ... are
then proportional to the contraction of the flowing ga¬

ses at points a, b, c, .... respectively. The time, how-t

ever, necessary for a molaoule to pass from a to b, from

b to o etc. Is always the same, viz. 1*147 sec. The po*

sltlons a, b, o, ... corresponding to time periods of

1*147 see. have been called here "contraction 9@®nenta".

In order to obtain the values of flow gas rate per

minute at these "contraction segments" corresponding to

time periods of 1*147 sec., the abscissae axis has been

divided into lengths of 17 nun. each = 1*147 see. /Diagr.
4/, " this being shown by vertical /red/ lines, x.'ext,
the times of passage of the gases through the several
sections of the chamber as calculated above have teen

plotted on the same axis, using the same scale of 17 mm.=
= 1*147 sec.,against the volume of gas pasaing/rnln.
/N.T.P./ Table 2. Through points thus obtained, vertical
/black/ lines have been drawn, on whioh the value of
the corresponding gas flow rate per minute /N.T.P./ have
teen measured. The curve obtained enables one to determine
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the flow volumes on the McontractIon segments* lines.

Thus, we obtain flow rates at the contract ion points.

The decreasing gas flow volumes at the contraction
■

points correspond to volume changes in the primary gas

volume which entered the first chamber section. Thus, we

obtain a picture of the contraction, as it were, of a

definite portion of the gas, subjected to the reaction

of oxidation.

The same Diagr. 4 contains curves representing the

chamber temperatures and the dissociation percentage of

at those temperatures.

Vtihen measuring the reaction velocity by a static

method, one has to measure the decrease of pressure at

a constant volume, whereas with the above flow method

one ha© to determine the contraction of gases at a con¬

stant pressure. However, the measurements are complicated
by the process of dissociation of N2Q4 occurring within
the chamber at the various temperatures. This Is dlscusB-

ed in the next section.
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part VI

THE CALCULATION OF THE COMPOSITION OF THE GAS FROM

THE CONTRACTION VALUES AT THE CONTRACTION SEGMENTS.
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TH® volumes of gas obtained correspond to different

"contraction segments", and express the contraction of

the gases due to the gaseous reaction at different tem¬

peratures. The values of the gas ohamber temperatures,

when plotted against the "ohamter segments", give a cur¬

ve which determines the temperatures at "contraction

segments", as before /see Table 3 columns 1 and 2/.

The same method has been applied for dissociation

percentage of at different temperatures. The values

of the dissociation were taken from Neumann, **
The first "contraction segment" Is Identical with

the first "chamber segment". Within this common segment

the mean chamber temperature was 69*4° C.» and the disso¬

ciation 65°/o. It should be noted that the dissociation

process Is a very rapid one, as assumed by Bodenstein,
hence it will be considered as oocurlng Instantaneously.
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FART VII

COMPOSITION OF GAS OF THE FIRST CONTRACTION SEGMENT.
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As an example of computation of the composition of

the gas mixture at any "contraction segment H» we may con¬

sider the following taken from Table 3. Position Is tem¬

perature = 69*4°. Dissociation of N£>4 = 65°/o. Initial
volume of gas = 292*7 o.c./min. N.T.P. NO = 189*1 c.e.,

02 = 99*1 c.o., N2 = 4*5 o.c. Volume at position 1 =

— 225*0 o.o. Contraction = 292*7 - 225 = 67*7 o.o.

When nitrlo oxide reacts with oxygen to for® 1*204,
200 c.c. NO react with 100 c.c. 02 to give 100 c.o. NgO^j
if no dissooiatlon of N2Q4 into N02 took place* the con¬
traction would he 300 - 100 — 200 c.c. At the teaperetu-

re concerned, however, N2O4 is 650/® dissociated# i.e.
in the 1^4 equilibrium mixture itself 100 c.c. N2Q4 are

replaced by 35 e.o. N^ and 130 o.c. HG2, an expansion
of 165 - 100 = 65 c.c. Overall, therefore, the contraction

of 200 - 65 = 135 c.o. will be observed, and we can eay

that : ' an observed :r contraction of 135 0.0, corresponds to

the conversion of 200 o.o. NO and 100 o.o. 02 to 35 0.0.

N204 and 130 0.0. N02 at the temperature oonoerned.
An actual contraction of 67*7 o.c. was observed#

then by proportion, 100*3 o.o. NO reacted with 50*1 c.c.

02 to give 17*5 o.c. N204 and 65*2 c.o. N02, with a re¬
sidue of NO - 189*1 - 100*3 = 87*8 c.c., 02= 99-1 - 50*1=
= 49*0, N2= 4*5 Table 4.

The above method of calculation has teen used for

computing the composition of the resultant gases for
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twenty-six contraction points. At the point 26, i.e.

after the time of 1*147 X 26 — 29*8 see., there regained

4*63 c.o. NO /N.T.P./ /Tatle 3/, i.e. 2«45°/o of the ini¬

tial NO volume. Thus, the nitric oxide has teen used to

the extent of 97*55°/o» yielding 50*38 o.c. KOg and 66*76
o.c. N^4 /K«T.P./.

The decrease of NO during the reaction is shown in

Diagram 4, where the volume in c.o. /N.T.P./ is referred
to the 26 points on the atacieaae axis, expressing the

intervals of 1*147 sec. each.
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PART VIII

DISCUSSION.
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As shown In Dlagr. 4 the curve obtained by plotting

the flow rate of NO against time shows a sharp decrease
cLil

in the initial stage* this being succeeded by/apparently
straight line portion beginning at point 6. This break

at position 6 may be due to accentuation of experimental

error. To determine the order of the reaction, the ordi¬

nary termolecular reaction velocity equation was then

applledj this is not strictly justifiable in the present

olroumstances, because the temperature is not constant

for all NO concentrations /see temperature curve Diagr#4/.
The temperature coefficient for this reaction is however

small.9' 10» 1X/
In the reaction

f

2 NO -b 02 = N204,
when 2 b is the initial concentration of NO, and a Is

the Initial concentration of 02,

|| = k • 4A - */2/a - x/»
when x Is the number of 02 molecules used In time
Integration of this gives the ordinary teraoleoular ve¬
locity - coefficient

For comparison with the results of other workers,
flow rates were converted into concentration of grammo-

leoules per c*o«, the unit of time being the seoond#
Thus at time t = 0, the total flow rate was 189+99.1+4-5 =
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= 292*7 o.o. par minute, of whloh the flow pate fop NO

was 189*1 o.o. per minute. Since the total pressure was

atmospheric the partial pressure of O2 was 99* 1/292*7
ana of NO 189*1/292*7.

Now 1 grammoleoule at N.T.P. occupies 22,410 0.0.1

therefore in 1 0.0. the number of ©raramolooules of

At position 5 /Tatle 3/
t s* 5 X 1«147 soo. =- 5*735 sec. = 5*74 sec.

NO — 19*2 c.o./min.

02=14*1 m
N2 - 4*5 "
N02- 60*4 H
N204=54*8 "

Total flow 153*0 0.0./min.

rt- _ 99.1 _ ft02 - §92.? x 24,410 " '

V - 94*55
292»7 X 22,410
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x = Q'.m

142

22! llo - I5J v4as, 4io ~

8- x = 5i^I§

b-"=^®
tA - a/4 = = 3>4S * loU
A, - »/» =. Af * -0.1266a/a - x/ 3.39 x 10-i X 9*2 X 10 *

b/a - x/ „ 3-23 * 10"1 A9.2X 1CT2111
a/b - x/ ~ 2 303 10810 139 X lo*1 x 7*6 A lo*"'2""0

3* 42 A lOUjo*142 - 0* 1266^ = 5.12 X 109
Th. or auoh calculation aa .ppU.6 to otPar

oontractlon se@nents are shown In Table 4, column 4, and

are to be compared with those of Bodenstaln, given In

oolumn 3 for the same units and for the corresponding

temperatures. It Is to be observed that the ooeffiolen

are of the same order of magnitude, particularly for the

segments 3, 4 and 5, and to this extent It may be claimed
that the present methods of experiment and calculation
are so far Justified. In the Initial stages, however,
present values are decidedly low and In the later times
Intervals a gradual deorease is to observed, contrary
to the recognised rise In velocity coefficient as the
temperature falls. This latter Is probably due to the
non-applicability of the termoleoular formula to the
present conditions? because of the changing temperature

the
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the same constant values of a and b cannot strictly be
tafcen to rsfer/the entire serieB.

Accordingly the calculation was carried out over

various ranges of segments e.g. positions- 19-22, as

follows1

a _ 8- 4
136-5 X 22,410

~ 0.0616j b = ,3*84136-5 > 22,416 ~ °*0282*
t - P - 21°

22#
= 0-0334*

x - /&-*/= ?'Q58 ; b « x - 0-Q248,
22.410 ' 22,410 22,410

- . 1 m„- = /22.410/^ =r 6- 47 X loll
t/t - a/2 3-45/3-34 J lO^/2 4r *

A ' «/* & 3-34 X IP'2 X 3-45 K iq-3 = 0#03215
a/a - x/ 6.15 X 10"* X 5-81 X 10~* 0 5
i« h/a - x/ _ .2.82 x 10-2 * 5.81 Xlo"2

a/t - x/ - 2 503 1QSlQg.ig V lo-2 * §-4t5 x to*2
k = 6-47 x 10u-^0-0723 - 0-03215^ - 6-05 K109

The coefficients so calculated are indicated in

column 5 of Table 4. ^he values are somewhat erratic,

probably because the reaction runs very rapidly in the
initial segments and experimental error in the slow la-»
ter stages has a correspondingly large effect* it will
noted in this connection that even at position 1, 1.157
seconds after mixing, the NO flow rate has fallen from
189 to 88.

The coefficients in the initial stages as shown in

- 0-0723
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column 4 shows a rapid rise, but again it is difficult

to interpret this as a real effect dependent on the kl-

netlss of the reaction. It is true that Bodansteln^ re¬

sults show a similar phenomenon, and later work/C.Fuman,
j.Phys.Chem. 1944» 18, 386* stoddart, J.C.S,, 1939, 5/
has teen directed to the question as to whether the ter-

moleoular reaction Is to te more correctly regarded as

a stage prooess, showing only in the initial stages, in

which the formation of NgOg Is an essential preliminary.

Uncertainty regarding the rate of proper mixing in the

rapid reaction of the present experiments renders diffi¬

cult the interpretation of the present rise in coefficient

values.

From the experimental point of view, it would seam

that the temperature conditions met with in the present

research require further consideration. The present re¬

sults are dependent mainly on the measurement and inter¬

pretation of h, the pressure difference recorded on the

manometer measuring the gas exit rate from the reaction
ohamber. The use of oL- broraonaph^alene in this connection
appeared free from objection, a conclusion also reached

by Bodansteln. The calculation of the gas composition
from the value of h depends on the temperature of the

Issuing gas, the equilibrium dissociation of NgO^, being
also involved. Any error in temperature measurement has
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here a considerable effect. The thermometer which here

has been taken to give the required temperature, while

adjacent to the manometer nozzle system, will not give

the exact temperature In the early stages where small

reaction vessel volumes are concerned with a relatively

large temperature gradient between entrance and exit.

It would therefor® appear that In this connection it would

be advisable to have the thermometer as close as possible

to the exit from the vessel. At the same time the tempe¬

ratures recorded In the later stages of the reaction are

sensibly the same and little error arises in tills wayi
.

the segment to segment calculation of velocity coefficient

should be In this respect more accurate.

In conclusion It may be claimed that the method here

devised Is, from comparison of the Bodenstein coefficients,

essentially correct. Modificationsare however necessary,

not^wlth regard to the temperature factor above but also
with further examination of the p&rity and conditions of

entry of the reacting gasesi a reaction which takes plaae.
less rapidly would also be of advantage.
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