```
by
Stanlslas Hompel
Docteux ès selences
```


Poland

ACKNOWLEDGMENTS

The author is indetted to Dr. Wowtray Ritchie for his criticism and advice in the exeoution of this works he express also h1s thanks to Mr_{r} R. Xlapinski for his help in the preparation of apparatus and in the carrying out of some of the measurements.

The author writes to thank Professor James Kendall for the facilities which he hes kindly provided.
I. Introduction.
II. Apparatus for measuring the contraction of gases during the flow. 4
1II. The principle of measuring the volumes of flowinggasem whose densities vary during the flow: thecalicration of the nozzle. /DLagr. 1 and tatle 1/.. 9
IV. Interpretation of measurements. 13
V. Calculation of the time of reaction in the reac- tion chamber. 14
VI. The calculation of the compesition of the gas from the contraction values at the contratotion segmenta. 19
VII. Composition of gas of the first contraction segment. 20
VIII. Discussion 22
Bitllography. 28
Previous chemical papers putilahed by the author 29

PARTIT

1.

As far as gas mixtures are concerned. whose reactions are accompanied by a ohange in volume, the determination of composition and rates of reaotion has previously been carried out largely ky static methods i.e. ky measuring the changes of pressure oocurring at definite time intervals under constant volume conditions. To obtain satisfactory rate measurements in relatively rapid reactions, investigations have usually been undertaken at reduced pressures.

Very acourate measurements of this kind by Bodenstein ${ }^{9-11 / ~ h a v e ~ r e s u l t e d ~ i n ~ t h e ~ d e t e r m i n a t i o n ~ o f ~ t h e ~}$ velocity coefficients of the following reactions:

$$
\begin{aligned}
& 2 \mathrm{NO}+\mathrm{O}_{2}=\mathrm{N}_{2} \mathrm{O}_{4} \\
& 2 \mathrm{NO}_{2}=2 \mathrm{NO}+\mathrm{O}_{2}
\end{aligned}
$$

The velocity coefficientsthus obtained can ko applied only approximately to the measurements of ges reactions taking place in flow systemsat constant pressures oonversely the determination of velocity coefficientsty such flow rate measurements is a matter of some complexity and diffloulty*/17/.

The work to be here describedrepresents an attempt to determine the compoaition of gases reacting in a flow oystern at atmospheric pressure, the reaction investigated reing the oxidation of nitric oxide. The method suggested is based essentially on the measurements of volume variations of the reacting gases at different

2.

time intervals. This was achieved by measure of a slowmeter acting at the exit from the reaction ohamber. When the gas paseing the flowneter dœsnot change in oome position during the flow, the volume of gas passing may ke easily determined on the tasisfprevious callvetion, kut when the composition of the gas alters in density during the flow, this simple method will not suffice. In the method here adopted the flowmeter was oalivrated againet the flow of equal masses of varlous gases of dePinite density, as will te shown. The gxaphical relationship so obtained may then be used to determine the density and hence the composition of the gases issuing from the reaction vessel.

The changes in flow rate in the raction were messured on a diferential manometer by means of a cathetometer /ostimated accuracy $0.01 \mathrm{~mm} \cdot /$. With \mathbb{R} Iows applied in the present measurements, 1 mm. of pressure difference corresponded to 2.3% of the volume of gases flowing past: hence 0.1 mm . corresponaed to 0.23%, whioh is a sufficient accuracy.

The measurements were carried out under atmospheric pressure, the gases esoaping into the open. Suoh a method invoive many diffioulties. Haintaining a constant gas flow in the present instance of approx. 300 o.0./min.. necessitates many manipulations, often difficult to carry out. However, the gas flow was kept constant with an error
normally less than 0.5%, providea the constant pressure and temperature were auitably maintained in the No and O_{2} containers.

From the experimental data of the flow volumes the contents of $\mathrm{NO}_{2} \mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$ and NO_{2}, respectively, in the issuing flow gases were computed for varlous reaction periods and for different temperatures. Unlike the static method, the method suggested enakles one to measure the reaction rate, at very mall time intervals/fractions of a second/ after the reacting gases have been mixed with one another.

Such a method is ovviously of advantage when reactions under consiaeration involve the possibility of an induction period or similar indtiating phenomena.
PATTII

The apparatus which was finally adopted, after many trials and alterations, for the measurement of rates of oxidation of nitrio oxide, consisted of four parts /Fig. $1 /$.
A. apparatus enabling nitric oxide to be delivered to the reaction chamber at constant flow rate, constant temperature and constant pressure.
B. nitric oxide producing unit,
C. apparatus in which the reaction takes place, and apparatus for measuring the contraction of the reacting gases,
D. apparatus for oxygen, not shown in the drawing, but similar to that under A.
A.

This apparatus consists of a glase vossel/11/ and an arrangenent wherety water was delivered into the vessel at a definite flow rate and at room temperature, for the purpose of maintaining an uninterrupted delivery into the reaction ohamber of dry gas at a definite temperature and pressure. The vessel / $11 /$ was provided with tuke and stop-cock/12/ for fliling with gas, a water manometer, a thermometer, a tube connecting the vessel with the reation chamker: gas drying vessels with calcium chloride /17/ and phosphorus pontoxide /18/, respectivoly: and an outlet with stop-cock/8/for dis-

4 a.

Vessel of gas and arrangement for gas flow regulation

5.

chatcing wher curing rilling with gag and for pasing waber into the vessel when Es is aclivared from the vessel. In ortax to mintain the congtant flow reto wid constart temperature of displasing water, the mespective apperatus condists of: matar tap/1/5 flask/Le/ for heating watery two vossels / / / wad/3/ for mantaining the congtant wator levelg a tottle/A/ in which the water ultimetsly assuras the tempersture of the surroundIng aix an outiet/5/ rittod with a nowrie/6/, the levol of mhich onn oo atered arbitranily thus ohanging the flew retes a tuto /7/ dellvaring vaber frod noszle $/ 6 /$ through /8/ to cottle /11/. The rate of slow of wa ter through nowale /6/ was cantrollod ay adjusting the nozzle at correaponding level with regard to the level in vossel $/ 2 /$ and $/ 3 / 5$ and by measuring in a volunotric flask / $10 /$ the quantsty of water delivorod during a definito tita fron the stopecoek /9/a In order to obviate the ffeot of the variskle singtic energy of water fallo ing froin the nozzle /6/, a congtant high water level is maintainad In tuto /7/ ky means of an automatio devioo not ahown in tre drawing. Zy the azove mesng the gas
 of 0.3% aould be maintained for several hours.

Two identisal sets of such apperatue, viz. for nitric oxide, and for oxygen, rappectyoly, were employed.

5a.

Appaxatus for nitric oxide continuous production

The apparatus for the continuous production of NO consisted of a horizontal Pyrex glass tuke /13/heated ty means of tubular kurner. A cooled aqueous ferrous sulfate solution mixed with sulfuric and nitric acid is delivered from vessel / 14/ at one ond of the tukes at the other end the resultant ilquid is discherged at the kottom, while gaseous No was likerated from water in the vertical condenser / $15 /$. The nitric oxide thus ottained, when anelysed in a Hempel burette by means of potascium permanganate, was found to contain more than 99% NO, the ralanee being assumed to be nitrogen.

The oxygen was taken from a cylinder and analysed with an Orge apparatus.

c.

The apparatus in which the oxidation of NO to NO_{2} took place conslsted of the reaction chamber /13/placed In a conatant tomperature water bath $/ 29 /$, provided with an slectric heater /22/, a mercury-in-glass themoregulator /23/, a motor ariven stirrer /23/, and a thermome(2,6)
ter by which the temperature was recorded to the nearest (2,1) 0.01° C. A ges heated Pyrex coll prehester served for delivering water having the bath tomperature into the
$6 a$.

Reaction ohamber

7.

Inmer oyllnder of the raadion chamber. The reaction chamber wias connectod to a differentlal manoneter / $24 /$. the reading of whioh was determined ky moans of a cathetometar /25/ whth an ostimated error of 0.01 man. The difforontial manometor was filled with alphambromonaphthaLenv, this liquid not being appreciably attacked by NO_{2}. The manometor / $25 /$ geve the static presaure ingide the reaction chamber.

The Variatle-Volume Reaction chances. Fig. 2/

The oxldation took place in the space/L/ formed by a glas oylinder $/ 2 /$ of 23 m . boren with a som. -spherical bottom, and by an inner oylinder /3/ closely stutine into the outer eylinder. The position of the Inner eylindor defines the 51 zo of the reaotion chamber. A plece of rukcer tuking / $4 /$ prevented the entrance of alr.

The reacting gases No and O_{2} reach the reaction ohamber through tubes $/ 5 /$ and $/ 6 /$ rospestivoly, these tubes having a comon outlet at theis lotton paxts. When passing through the tuicas, the gases axe heated with water circulating through the interior cylinder from and to the constant tomperature kath. The water inlot 16 at $/ 7 /$, near the thernometor for deternining the tomperature of the water. The pointer/8/ 1s arranged
on one of the tubes for the purpose of indicating the ohamber ppaee on the soale /9/.

The gas exit in the bottox portion of the outer cylinder is ittted with a small nozale/20/ whioh increases the pressure of the gases in the ohamiocr. After passing that mozale, the gat escapos freely into the air through the tuke /21/. The pressuxes inclae the ohmmer and beyond the nozzle are tranmittod to the Aifforential manometer through tukes $/ 12 /$ and $/ 13 /$ s rospectively. The mean temperature in the lower most part of the chamker is read on a long themometer, the mercury kulb of which is arranged inside the chamber. Both the thermometor and the nozelo are connected to the chamber by greased ground joints.

It was found experimentally that a straight line is obtained if at a given temperature volumes corresponding to equal masses of various gases of different densities $/ 0 . \mathrm{g}, \mathrm{CO}_{2}, \mathrm{Cl}_{2}$, air, $\mathrm{N}_{2} /$ passing through the chamber, were plotted against the respective rises in pressures on either side of the nozzle. When dealing with the same gases at another temperature, another atraight ilne is obtained.

Chlorine and air were used for the purpose of calibrating the nozzle, since the values between their densities comprise the densities of the mixtures of gases No, $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{4}$, at any degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$. At egiven tomperature and pressure, volumes of $C L_{2}$ and $a 1 r$ have been used, corresponding to a mas of 0.4 g. per minute. The same mass was alweys used when measuring the oxidation of NO, 1.e. the sum of messes of NO and N_{2} led through the apparatus during one minute was alway equal to 0.4 g . The measurements of the pressure difference $p_{1}-p_{2}=h$ in the reaction chamber, ottained for Cl_{2} and air gave the data of h for different temperatures, as shown in diagram Dl.

From diagram 1 one obtains alagram 2 in which the abscissae represent the pressure h in millineters read on the differential manometer, while the ordinates represent the flow rates expressed in 6.0./min. at N.T.P. The mass of the gases belng always equal to $0.4 \mathrm{~g} .$, it

Table 1.

,	Gasvessel		$\begin{aligned} & \text { to of } \\ & \text { hath } \end{aligned}$	chamber		$\begin{gathered} h \\ \text { m.inn } \\ \text { hisornn. } \end{gathered}$	$\frac{h x}{5}$
	t^{0}.	Pim		t°	p.		
1	16.5	114	$29.8{ }^{\circ}$	29.8	51.	59.43	26%
2	16.5	114	35.8	35.8	59.7	53.80	269
3	16.5	114	40.1	39.6	53.4	54.76	274
4	16.6	120	45.8	49.4	54.2	55.73	248
5	16.5	114	51	50.5	55.3	56.97	284
6	16.6	$1 / 5$	56.1	55.5	56.3	57.76	289
7	16.8	116	60.8	60.4	56.8	58.65	293
8	16.8	115	66.1	66.7	58.1	59.68	128
9	16.8	115	10. 3	69.7	59.2	69.68	303
	lib	a	足	wit			
10	16.8	41	32	3.3	$19 . \%$	20.65	
11	16.8	41	41.4	41.8	14.8	? 1.05	105
12	17.4	44	52-1	58.7	20.0	2/402	14.8
13	$1 \% .4$	38	60.9	60.7	20.8	28.46	112
14	17.4	38	74.	69.3	21.8	23.14	1

has been found that the flow rate for alr vas $309.5 \mathrm{c} . \mathrm{c} . /$ /mino, and for ohlorine 124.5.c.0./min. /N.T.P./. Next, the h points for tenperature of $30^{\circ}, 35^{\circ}, 40^{\circ} \ldots$ are transformed from alagran 1 to alagram 2. Thus we obtain in alagram 2 a serles of straight lines corresponding to trmperatures $30^{\circ}, 35^{\circ}, 40^{\circ} \ldots, \quad$ plottea on axes of hand of flow rates of the gases expressed in c.c./

The diagram 2 enables one to read in e.c./min. the N.T. P. volume of a gas flowing at different teraperatures.

The meagurements of the rate of the oxidetion of NO were carried out with a mixture contalning 189.1 c.c. 200. 99.1 c.e. O_{2} and 4.5 c.e. N2 N.T.F. per minute, the total mase boing 0.4 g .

The readings of h for various chanker volumes and varlous temperatures enable one to read directly in alagram 2 the flow rate in cocolmin. at N.T.P. on the corresponding straight ine.

Rosults.

The measurements of differential pressures in reactions with flowing gases which escap freely into the surrounding eir involve many difficulties causqd ky sudden changes in the atmospheric pressure. Consequently, the measurenent have keen carried out as far as possikle
under conditions of ateady barometer pressure.
After fllling the gas containers with No and O_{2}. the geses were analysed for $\mathrm{NO}, \mathrm{O}_{2}$ and N_{2}. Assuming that the pressure in the containers was a known and constant one e.g. 100 mm . water head, the flow rates of the gases ware calculated so as to maintain thestoichiometric reLation $N O: O_{2}=2: 1$, and to have the sum total of the gaseous masses equal to $0.4 \mathrm{ge} / \mathrm{min}$. The results ottained
 $\mathbb{N}_{2}-4.50 .0 . / m i n \cdot N . T \cdot P_{0}$, hence $\mathbb{N O}: O_{2}=2.91: 1$.

After the constant temperature of the bath had been reached and the required water-flow into the gas containspe adjusted, the stop-cock/9/ was closed and the stopecook /8/ opened. Water flowed into the bottle and displaced the volumes of gas equal to the volumes of added water. This refers alike to NO and O_{2}. Each gas then entered the reaction chamber, in which the gases mixed and reacted with each other.

The measurements always tegan with the smallest chamber volume, 1.e. position 1 corresponding to the volume of 5.7 e.c. The thermometer /20/ showed the rise in temperature, while the differential manometer /24/ indicated the difference of pressures on elther side of the nozzle. As soon as the cathetometer readinge of the pressure were constant and the temperature in the chamcer did not rise any more, readings were taken as al-

12.

ready show in takle 2. Thus, measurements were oarried out for sixteen positions of the adjustatle tube, corresponding to slxteen different volumes. As shown in Table 2, the variations of teraperature in the gas bottles ald not exoeed 0.5° which is equivalent to 0.3% of the volume.

The variation of pressure within the bottle /11/ did not axseed 36 mm . $\mathrm{H}_{2} \mathrm{O}$ which is responsicle for the maxinum variation of another 0.3% of the volume of gasos in 1 Iow.

crable 2.

126.

PARTIV

The mosurements made are condensed in Tacle 2. They refer to alxteen volumes of the reaction chamber, the first of which mas 5.7 c.c.

The pressure diference $/ p_{1}-p_{2}=h /$ read on the aifferential manometer at the temperature of the reaction chamber as given ty themometer / 14 / have been referred to Diagr. 2 thus giving the corresponding gas flow rates

For the first position of the chamber, $h=43.53$ man. of alpha-kromonaphthalene head; the thermometor reading koing 69.44°, we ottain from diagram 3 the flow rate of 225 c.c./min. /N.T.P./. or $282 \mathrm{c} . \mathrm{c} . / \mathrm{min}$. for the chamber temperature and pressure observed. Similar oalculations have keon made for ottaining the flow rate values for each of the sixteen positions of the chamber. These values were expressed in c.c./min. N.T.P. $/ \mathbb{N}_{\mathrm{MP}} /$ and in c.e./min. at actual pressure and temperature conditions within the chamber $/ V_{t . c h .} /$ and are shown in diagrara 3 plottad against the chamber position.

PARTV

If at constant pressure a volume V_{g} of a gas of fixed composition $e . g \cdot{ }_{2}, O_{2}$, on passes each minute through a vessel of volume V, the "time of stay" in the vessel will be V / V_{g} min. If, however, the gas in question is a reacting mixture such that a deorease in volume occurs, as in the oxidation of nitric oxide, the average time of stay will be increased: if the reduction in volume is Inear with respect to time, then the time of stay will te increased proportionally.

This may be illustrated graphically as follows. If the volume of gas passing per minute is plotted as ordinates against the volume of the reaction vessel as atscissae, then for a vessel volume $O A$ and a flow rete of uniform gas $O V_{1}$, the time of stay in the vessel will be propor tional/the area OAPV ${ }_{1}$. For a vassel volume $O B /=20 \mathrm{~A}$

the time of stay will ke doukle and will be proportional to OBQV_{1}, and so on. For a gas volume $v_{2} /=\frac{1}{2} v_{1} /$ in a vessel volume A, the time of stay will be doukled in reo lation to the time of stay for gas volume V_{1} in vessel volume A_{i} the multiplying factor will to the ratio of the areas $O A P V_{1} / O A R V_{2}$ 。

When therefore the gas volume passing per minute aeareases linearly due to reaction from V_{2} at 0 to V_{3} at A, the multiplying factor will be $O A P V_{1} / O A S v_{3}$. For the general case, let the area $O A S V_{3}$ te A. When vessel volume is V and gas volum paseing is v at $V=0$, the proportionality factor is $\frac{V+v}{A}$ and the average time of stey in the vessel will $\mathrm{ke} \frac{\mathrm{V}+\mathrm{v}}{\mathrm{A}} \cdot \frac{\mathrm{V}}{\mathrm{v}}=\frac{\mathrm{v}^{2}}{A}$.

As shown in Diagram 3, the relation between vessel volume and gas volume passing is not 11 near and an in tegratad area A is therefore required. For the present purposes the area A was determined graphioally. It wlll be noted that, in Dlagram 3 the value v approaches a constant at high values of V, this indicating no reaction apparently for such conditions oxidation was practically complete.

In Dlagran 3 the chamber volumes are plotted on the acscissae at intervals of 25 mm . The volume curve is not a straight kut a concave line. Thus the area A of the first chamter volume has an area of 7445 sq.man. 3 hence the mean gas flow rate is $\frac{7445}{25}=298$ c.c./min. $=$
$=4.97$ c. $0 . /$ sec. Consequently, the time during which gas remains in the chamber of volume $5 \cdot 77$ oc. is $5 \cdot 7 / 4.97=1.147$ sec. Thus one obtains series of values expressing the time during which gas remains in the subsequent sections of the chamber, respectively, each section having the same volume of $5 \cdot 7$ c.c. These are given in the last column of Table 2.

Let us now consider the behaviour of gas molecules within the chamber, during the steady contraction caused in the reaction itself. Wen entering the chamber at its
 This means that molecule of which entered the chamber at the moment if w111 reach the exit nozzle at such a moment \underline{t}_{2} that $t_{2}-\Sigma_{1}=1.147$ secs.

1\%.

Let us consiaer the next position of the chamber, Viz. that with doukle the primexy volume. A molecule which pasees through fat the moment t_{1}, will be obsexved near b_{1} at the moment t_{2}, and am $>\mathrm{kb}_{1}$.

At the third position of the ohember the plage of a moleoule at moment t_{1} and t_{2} will ke a and esp respecti$v \in l y$, and $\mathrm{kb}_{1}>\mathrm{Ce}_{1}$. The distances ae. $\mathrm{kb}_{1}, \mathrm{col}, \ldots$ are then proportional to the contraction of the flowing gases at points a, b, c, respectively. The time, however, neessaxy for a moleoule to pess from \& to Eg from t to e eto. is alway the same, viz, 1.147 sec. The positions a, b, c, \ldots corresponiling to time periods of 1.147 sec, have been called here "contreation segents".

In order to obtain the values of flow gas rate per minute at these "oontraction segments" corresponding to time periode of 1.147 sec., the akscissae axis has been aivided into lengths of 17 mm . each $=1.147$ sec. /Diagr. 4/0 this being shom by vertical/red/ lines. sext. the timen of passage of the gases through tho several sections of the chanber as calculated above have been plotted on the same axis, using the same scale of 17 mme $=$ $=1 \cdot 147$ sec., against the volume of gas passing/min. /N.T.P./ Table 2. Through points thus obtained, vertical /tlack/ lines have been arawn, on which the value of the corresponiing gas ilow rate per minute /N.T.F./ have teen measured. The curve ortained enakles one to determine
the flow volumes on the "sontraction segnents" Innes. Thus, we obtain flow rates at the contraction points. The ceereasing gas flow volumes at the contraction points correspond to volume changes in the primary ges volune whieh entered the sirst chamber section. Thus, we ortaln a ploture of the contraction, as it wore, of a definite portion of the gas, subjected to the seaction of oxidation.

The same Diagr. 4 containg curves representing the chamicer temperatures and the dissociation percentage of $\mathrm{N}_{2} \mathrm{O}_{4}$ at thoso temperatures.

When maxuxing the reaction velocity by a static method, one has to measure the decrease of prossure at a conatint volume, whereas with the above flow method one has to determine the contraction of gases at a constant pressure. However, the measurements are complicated by the process of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ oocurying within the chamber at the various temperatures. This is discugs ed in the next section.

18a.

PART VI

THE CALOULATION OF THE COMPOSITION OF THE GAS FRON

THI CONTRACTION VALUES AT THE OONTRACTION SEGRENTS.

The volumes of gas ottained correspond to different "contraction segments", and express the contraction of the gases due to the gaseous reaction at different temperatures. The values of the gas chamber temperatures, when plotted against the "chamber segnents", give a curve which determines the temperetures at "contraction segments", as kefore / mee rable 3 colurans 1 and $2 /$.

The same method has been applied for diasociation percentage of $\mathrm{N}_{2} \mathrm{O}_{4}$ at aifferent temperatures. The values of the dissociation were taken from Neumann, $x /$

The first "contraction segnent" is identical with the ilist "chamber segment". Within this common segment the mean chamber temperature wes $69.4^{\circ} \mathrm{C}$., and the dissociation 65%. It should be noted that the dissociation process is a very rapid one, as assumed by Bodenstein, hence it will be considered as oocuring instantaneously.

PART VII

As an example of computation of the composition of the gas mixture at eny "contraction segrent", we may conslier the following taken from Tetle 3. Position 1 : temperature $=69 \cdot 4^{\circ}$. Dissociation of $\mathrm{H}_{2} \mathrm{O}_{4}=65^{\circ} \%$. Initial
 $\mathrm{O}_{2}=99^{\circ} \mathrm{l}$ c.c. $\mathrm{N}_{2}=4.5 \mathrm{c} . \mathrm{c}$. Volume at position $1=$ $=225 \cdot 0$ c.c. Contraction $=292.7-225=67 \cdot 7$ o.c.

Whon nitric oxide reacts with oxjeen to form $\mathbb{N}_{2} 0_{4}$, 200 c.c. NO react with 100 c.c. O_{2} to give $100 \mathrm{c} . \mathrm{c} . \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~B}^{3}$ if no dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into NO_{2} took place, the contraction would te $300-100=200$ c.c. At the teapereture concernod, however, $\mathbb{N}_{2} \mathrm{O}_{4}$ is $65^{\circ} \%$ dissociated; 1.s. In the $\mathrm{N}_{2} \mathrm{O}_{4}$ equilitrium wixture itself 100 c.e. $\mathrm{H}_{2} \mathrm{O}_{4}$ are replaced by 35 c.o. $\mathrm{N}_{2} \mathrm{O}_{4}$ and 130 c.e. NO_{2}, an expension of $165-100=65 \mathrm{c} . \mathrm{c}$. overall, therefore, the contraction of $200-65=135$ c.c. will be okservad, and we can say that an observed contraction of 135 c.c. correaponds to the conversion of 200 c.c. WO and 100 c.c. O_{2} to 35 coc . $\mathrm{N}_{2} \mathrm{O}_{4}$ and 130 c.c. NO_{2} at the terperature concerned. An actual contraction of 67.7 c.c. was observed; then by proportion, $100 \cdot 3$ o.c. No reected with 50.1 c.c. O_{2} to give 17.5 c.c. $\mathrm{N}_{2} \mathrm{O}_{4}$ and 65.2 c.c. HO_{2}, with a realdue of $\mathrm{NO}=189.1-100 \cdot 3=87.8 \mathrm{coc},. \mathrm{O}_{2}=99.1-50 \cdot 1=$ $=49.0, N_{2}=4.5$ Tatle 4.

The above method of calculation hes teen used for computing the composition of the resultant gases for

21.

twenty-six contraction points, At the point $26,1 . e$. after the time of $1 \cdot 147 \times 26=29.8$ sec., there remained $4^{\circ} 63$ c.C. NO /N.T.P./ /TaEle 3/, 1.e. $2 \cdot 45^{\circ} / 0$ of the Initial NO volune. Thus, the nitric oxice has been used to the extent of $97.55^{\circ} \%$, yielding 50.38 c.c. NO_{2} and 66.76 c.c. $\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{N} . \mathrm{T} \cdot \mathrm{P} \cdot /$.

The decrease of No during the reaction is shown in Diagram 4, where the volume in C.C. /id.T.F./ is referrea to the 26 points on the akaciesae axis, expressing the intervals of 1.147 sec. each.

\boldsymbol{r} cotract seqmant		$\%$ of bistoe. 3	$\begin{gathered} v / \omega . \\ \text { N.T.P } \\ \hline \end{gathered}$		No $\mathrm{cm}^{3} / 1$ min N.T.P.		Nol: $\mathrm{Cm}^{3} / \mathrm{m}$ fino strases $8^{\text {sin }}$	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{~cm}^{3} / \mathrm{mm} \\ \text { N.Tin } \\ 9 \\ \hline \end{gathered}$				
0			292.7		189.1	94.53		99.1		4.5		
1	69.4	65	225	281	88.1	44.05		48.9	48.95	415	65.2	17.6
2	63.8	35.6	1850	230.5	40.	20.		24.5	24.95		82.8	33.2
3	54.5	46.2	170	205	29.5	14.75		19.3	19.35		73.8	42.9
4	48.7	39.6	160	188.5	23.6	11.8		16.4	16.35		65.6	49.9
5	44.9	35.5	153	176.	19.8	$9 \cdot 6$		14.1	14.15		60.4	54.8
6	42.9	33.2	149	173.5	16.6	8.3		12.8	14.85	"	57.6	57.5
7	41.7	31.8	$14 \% 2$	170.	16.1	8.05	$8 \cdot 05$	12.6	12.60	"	\% 5	59.
8	40.7	30.7	149.5	167	15.2	$7 \cdot 6$	7.63	12.1	12.12	"	53.4	60.3
9	39.8	29.8	144.	164.5	14.56	7.28	7.21	11.57	11.76	,	52.	61.33
10	3798	29.6	143	$163 \cdot$	13.34	6.7	6.79	11.2	11,34		52.02	61.89
11	39.59	29.5	14.	162.	12.5	6.25	6.57	10.6	10.93	"	51.8	62
12	34.25	29.1	141	160.8	11.57	5.78	$5 \cdot 96$	10.34	10.49	"	S1,66	62.94
13	39.15	28.9	140.2	159.5	10.84	5.42	5.64	9.97	10.9	"	$5_{51} \cdot 5$	63.37
14	39.8	23.7	139.9	158.5	10.23	$5 \cdot 12$	$5 \cdot 12$	9.66	9.67	"	51.34	63.77
15	37.65	28.5	138.9	157	9.27	4.64	4.70	4.18	9.25	"	51.26	64.29 64.78
16	38.4	28.5	137.7	196.	3.55	4.27	4.28	8.77	8.83	"	51.6	64.78 63.13
77	38.2	28.1	$13 \% \cdot 7$	151.)	7.45	3.98	4.10	8.52	8.53	"	50.9	63.13 65.18
is	38.	28.0	137.	1918	7.82	3.91	4.02	8.57	8.57	"	50.7	${ }^{65} 6.18$
79	32.7	27.8	136.5	154.6	7.68	3.84	3.15	8.39	8.40	"	50.44	65.49
20	37.6	27.6	1360	154.3	7.31	3.65	$3 \cdot 67$	8.20	$8 \cdot 22$	"	50.18	65.81
21	37.5	27.4	133.5	154.	6.9	3.45	3.49	8.02	8.04 7.86	\%	48.92	66.12
29	37.5		$135 \cdot 2$	153.5	6.5	$3 \cdot 25$	3.31	$7 \cdot 8$	7.86	1		66.4
23			1396.	183.	6.4	$3 \cdot 8$	3.13	7.7	7.68	$"$	SO.	66.4
24			134	152.7	$5 \cdot 4$	2.95	2.96	7.40	${ }_{7}^{7.31}$	"	S0. 32	66.67
25			134.	152.4	5.44 4.63		2.16	6.8	7.33 7.15	'"	50.36	$66 . \%$
26	-	\because	$135 \cdot 5$	122	96.63	$2 \cdot 36$			1.5	"		

211.

PARTVIII

DISCUSSION.

As shown in Diagr. 4 the curve obtained in plotting the flow rate of NO against time shows a sharp decrease in the intitial stage, this keing succeoded ty an apparentiy straight in portion teginning at point 6. This kreak at position 6 may be due to accentuation of experimental error. To determine the order of the reaction, the ordinary termolecular reaction velocity equation was then applied; this is not strictly justifiakie in the present oircumstances, because the temperature is not constant for all NO ooncentrations /see temperature curve Diagr, 4/. The temperature coefficient for this reaction is however sma11. $9,10,11 /$

In the reaction

$$
2 \mathrm{NO}+\mathrm{O}_{2}=\mathrm{N}_{2} \mathrm{O}_{4}
$$

When 2 b is the initial concentration of NO, and a is the initial concentration of O_{2}

$$
\frac{d x}{d t}=k \cdot 4 / b-x / 2 / a-x / b
$$

when X is the number of O_{2} molecules used in time t . Integration of this gives the ordinary termolequiar velocity - coessicient

$$
k=\frac{1}{t / E-a /^{2}} \cdot\left\{\frac{b-a / x}{a / a-x /}+\ln \frac{b / a-x /}{a / b-x /}\right\}
$$

For comparison with the results of other worisers, flow rates were converted into concentration of grammoleoules per c.c., the unit of time teing the second. Thus at time $t=0$, the total flow rate was $189+99 \cdot 1+4 \cdot 5=$
$=292 \cdot 7$ c. c. per minute, of whioh the flow rate for No was 189.1 c.e. per minute. Since the total pressure was atmospheric the partial pressure of 0_{2} was $99.1 / 292.7$ and of NO $189 \cdot 1 / 292 \cdot 7$.

Now 1 grammolecule at N.T.P. ocoupies 22, 410 ©.C. therefore in 1 c.c. the number of gramolecules of

$$
\begin{aligned}
& \mathrm{O}_{2}=\frac{99.1}{292 \cdot 7 \times 22,410}=\mathrm{a} \\
& \mathrm{NO}=\frac{189 \cdot 1}{292 \cdot 7 \times 22,410}=2 \mathrm{~b} \\
& \mathrm{~V}=\frac{94 \cdot 55}{292.7 \times 22,410}
\end{aligned}
$$

At position $5 /$ Takle $3 /$

$$
\begin{aligned}
& t=5 \times 1.147 \text { sec. }=5.735 \text { sec. }=5.74 \text { sec. } \\
& \mathrm{NO}=19.2 \text { c.c./min. } \\
& \mathrm{O}_{2}=14.1 \\
& \mathrm{~N}_{2}=4.5 \\
& \mathrm{NO}_{2}=60.4 \\
& \mathrm{~N}_{2} \mathrm{O}_{4}=54.8
\end{aligned}
$$

Total flow $153 \cdot 0$ o.c./min.

$$
\begin{aligned}
& a=\frac{99 \cdot 1}{292 \cdot 7 \times 22,410}=\frac{0.339}{22,410} \\
& b=\frac{94 \cdot 55}{292 \cdot 7}=\frac{0.323}{22,410} \\
& / b=a /=\frac{-0.016}{22,410}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{0.339}{22.410}-\frac{14.1}{153 \times 22.410}=\frac{0.247}{22.410} \\
& a-x=\frac{0.092}{22.410} \\
& x-x=\frac{0.076}{22.410} \\
& \frac{1}{6 / 6-a / 2}=\frac{/ 22,410 / 2}{5.74 / 1.6 \times 10^{-2} / 2}=3.42 \times 10^{11} \\
& \frac{40-8 / x}{2 / 8-x /}= \frac{1.6 \times 10^{-2} \times 2.47 \times 10^{-1}}{3.39 \times 10^{-1} \times 9.2 \times 10^{-2} 2}=-0.1266
\end{aligned}
$$

$\ln \frac{b / a-x /}{a / 6-x}=2.303 \log 10 \frac{3.23 \times 10^{-1} \times 9.2 \times 10^{-2}}{3.39 \times 10^{-2} \times 7.6 \times 10^{-2}}=0.142$

$$
3.42 \times 10^{11}\{0.142-0.1266\}=5.12 \times 10^{9}
$$

The results of such calculation as applied to other contrection segents are shown in Takle 4, column 4, and are to to compared with those of Bodenstein, given in colum 3 for the same units and for the corresponding temperatures. It is to ke observed that the coefficients are of the ame oxder of magnitude, particularly for the segments 3. 4 and 5, and to this extent it may be claimed that the present method of experiment and caloulation are so far justified. In the initial stages, however, the present values are decidediy low and in the later times intervals a gradual decrease is to okserved, contrary to the recognised rise in velocity coarficient as the tomperature falls. This latter is probatly due to the non-applicacility of the termolvoular formule to the present conditions; recause of the ohanging temperature
the paile constant values of a and \underline{b} cannot strictly be taken to refer隹he entire series.

Accordingly the calculation was carried out over various ranges of segments e.g. positions 19-22, as Sollows
$a=\frac{8.4}{136.5 \times 22,410}=0.0616 ; \quad b=\frac{3.84}{136.5 \times 22,410}=0.0282$
$v-a=\frac{0.0334}{22,410}=0.0334 ;$
$x=\frac{0.0035}{22,410} ; / a-x /=\frac{0.058}{22,410} ; \quad b-x=\frac{0.0248}{22,410} ;$

$$
\frac{1}{t / t-2 /^{2}}=\frac{122,410 / 2}{3.45 / 3.34 \times 10^{-2 / 2}}=6.47 \times 10^{11}
$$

$$
\frac{\angle t-a / x}{a / a-x /}=\frac{3.34 \times 10^{-2} \times 3.45 \times 10^{-3}}{6.15 \times 10^{-2} \times 5.81 \times 10^{-2}}=0.03215
$$

$$
\text { In } \frac{v / a-x /}{3 / t-x /}=2.303 \log _{10} \frac{2.82 \times 10^{-2} \times 5.81 \times 10^{-2}}{6.16 \times 10^{-2} \times 2.475 \times 10^{-2}}=0.0723
$$

$$
k=6.47 \times 10^{11}\{0.0723-0.03215\}=6.05 \times 10^{9}
$$

The coefficients so calculated are indicated in oolumn 5 of Takle 4. The values are somewhat erratic, prokakly tecause the raction runs very raplaly in the initial segments and experimental error in the slow later stages has a corresponaingly large effect; it will noted in this connection that even at position 1, 1.157 seconds after mixing, the No flow rate has fallen from 189 to 88.

The coefificients in the initial stages as shown in

$$
\text { sable } 4
$$

column 4 shows a rapid rise, but again it is asficult to interpret this as a real effect dependent on the kineties of the reaction. It is true that Bodensteln's reo sults show a similar phenomenon, and later woriz/C. Furman, J. Phys. Chem. 1944, 18, 386; Stoddart, J.C.S., 1939, 5/ has been directed to the question as to whether the termoleoular reaction is to to more eorrectiy regarded as a stage procese, showing only in the initial stages, in which the fommen of $\mathrm{E}_{2} \mathrm{O}_{2}$ is an essontial preliminary. Uncertainty regarding the rate of proper mixing in the rapid reaction of the present experiments renders difilcult the interpretation of the present rise in coefficient values.

From the expsrimental point of view, it would seem that the temperature conditions met with in the present research require further consideration. The present results are dependent mainly on the measurement and interpretation of h, the pressure difference recorded on the manometer measuring the gas exit rate from the reaction chamber. The use of α-kromonaph ${ }^{2}$ alene in this connection appeared free from objection, a conclusion also reached by Bocensteln. The calculation of the gas composition from the value of h depende on the temperature of the issuing gas, the equilicrium aissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, teing also involved. Any error in tomperature measurement has
here a considerable affect. The therwometer which here has been teken to give the required temperature, while adjacent to the manometer nozile syatem, wlll not give the oxact temperature in the early staces whore small reaction vessel volumes exe concerned with a relatively large tomperature gradiont between entranee ana exit. It would therefore appear that in this connection it would bo adviakble to have the themometer as close as possitle to the exit from the vessel. At the ane time the temperatures recorded In the later stages of the paction are sensibly the same and little error arises in this way: the segment to segment calculation of velocity coefficient should be in this respect more accurate.

In conclusion it may te claimed that the method here devised is, from oomparison of the Bodenctioin coefficionts, essentially correct. Nodificationsare however necessery, not/fith regara to the temperature factor akove but also With further examination of the parity and conditions of entry of the reacting gases; a reaction which takes place.
less paplaly would a1so be of advantage.

ETELTCGAETH

1. fuschig, Ztschr,angew. Chemie, 1904, 17, 1777; 1905,18,121.
2. Sohnidt \& Boker, Ber., 1906, 39,1368.
3. Leklanc, Ztsohr.Electroch. 1906, 22,54.
4. Lunge, Ztachroange chom., 1906, 19, 807.
5. Lunge Berl. Ztschr, eng. Chera., 1907, $20,1717$.
6. Klinger, Ztschr.ang. Cheme, 2014. 27.7.
7. Ramay, Chor. 30 ..2rans., 1890,57:590.
8. Dixon \& Peterskin, Chem. Soc.Trans., 1890,75,629.
9. Bocenstein, Chem. Zentr., $1918,21,333$.
10. T Ztschr. f. Eleatro Ch., 1918, N13/14, 183-220.
11. | Z Ztsehr. P.Fhys.Ch. 1922, 68: 100,85: 200,78.
12. Burdicit, J. of A. Ch. S., 1922, 244.
13. Foerster \& Biteh, Ztsohr.ang, Ch. 1910, 22, 2017.
14. Wegachelar, ztachrophys. Cherno 1900, 35,577.
15. H. M. We11. Alssorption of nitrous gases, 1923.
16. A. Nouman, A.Spl., 6, $203 / 1868 /$ and Ulimann Enrykiopodie du techn.Chemie, vol. 11. 40.

Proviout ohemicel papers putilshed by the author.

F.Kehrain \& S.Hempe1, ther die Konstitution oor Chlor--toluchinoneoxime von Oliveri u. Fortorici dargeste11t aus o-Kresol und m-Kresol, Ber., 1916, 49, 1211.
F.Kehrman \& SoHempel, Hittollung ther die Farbe der Azokgrper und 2hrer salze, Ber., 1917,50,856.

St. Hempel, Action auxochromique du groupe amino dans les colorants azoiques. These de Docteur ès Science, Genève 1317.

-Diagzam 1.

