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Abstract

Regulated exocytosis occurs in a number of cell types and has been studied in many of

these. There appears to be a commonality of function in the cells that exhibit regulated

exocytosis. Many proteins have been implicated in the process of regulated exocytosis

and a number of trigger signals have been identified. There are various means of

investigating regulated exocytosis and these include capacitance measurements,

amperometry and single-cell imaging. Reconstitution from defined components of the

steps leading to exocytosis has not yet been achieved, whereas the investigation of the

actual exocytotic event is well described. Access to the cytosolic components of the cell

is a requirement of any assay that attempts to investigate the process leading to the final

'fusion event' of regulated exocytosis.

The aim of this research was to develop an in-vitro assay that would allow investigation

of the steps leading to regulated exocytosis on a plasma membrane. The method was

based on the use of ‘unroofed’ bovine adrenal chromaffin cells, viewed by total internal

reflection fluorescence microscopy. Development of the assay posed a number of

challenges, not all of which were overcome during the study. The basic platform for the

assay, a cell membrane patch with adhering secretory vesicles, was produced with some

degree of success. However the imaging method had a number of limitations and this

frustrated the method’s development.

The results, although encouraging, were judged not to be robust enough to permit

development of a reconstituted system and a more reliable imaging procedure is

recommended for further study.
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1.1 Introduction to membrane fusion

Membranes compartmentalise the cell into multiple functional units (organelles),

maintaining the integrity of the cell. Membrane fusion and budding is essential to the

compartmentalisation and traffic of cellular compartments within a cell and the ability of

a cell to share its content with other cells.  Traffic of macromolecules between cellular

compartments is essential to eukaryocte cell survival. The ability of membranes

surrounding compartments to fuse with each other and to bud off smaller compartments

(vesicles) from a larger compartment makes traffic of macromolecules possible.

Membrane fusion also allows cells to communicate with each other by sharing their

secretory products with other cells, in the surrounding tissue (paracrine) or with others at

a greater distance away (endocrine) and also by release of neurotransmitter substances.

In this context membrane fusion is termed exocytosis. There are two fundamental types

of exocytosis: constitutive, as in the secretion of protein products by some cell types, or

regulated, as in neurotransmission and release of hormones by neuroendocrine cells.

Research on regulated exocytosis has demonstrated that the fusion process can be highly

regulated in time and be very tightly controlled within localised areas, thereby allowing

release of products to occur in precisely timed spatial patterns. Products released in such

temporo-spatial patterns include many of the peptide hormones, digestive enzymes, a

vast array of mediators, cytokines, growth factors and neurotransmitters.

Before discussing synaptic and neurosecretory vesicles a short review of the history

(Katz, 1996; Eccles, 1990; Shepherd and Erulkar, 1997) of synaptic transmission and the

important findings leading to our current knowledge is included. Sherington, a

neurophysiologist who was working on the spinal reflexes, introduced the term ‘synaptic

transmission’ in a textbook of physiology edited by Foster (Sherington 1897). He was

referring to the junction between adjacent nerve cells, which had been alluded to in 1856

by Bernard. Visualisation of the neuromuscular junction by microscopy was greatly



2

assisted by the development of the Golgi stain in about 1886 and this led to the

improved understanding of the anatomy of nerve endings. The debate around the nature

of the synapse resulted in intense study over many years (Shepherd and Erulkar, 1997).

In the mid-twentieth century physiologists began to define the synapse. Fatt and Katz

(1950; 1951), working on the frog neuromuscular junction introduced the concept of

End Plate Potential (EPP), a change in the post-synaptic membrane potential induced by

the action potential reaching the nerve terminal. They used intracellular recording

electrodes that had recently been developed. The action of acetylcholine as a

neurotransmitter was characterised at the neuromuscular junction, which then became a

model system for studying the mechanism of the synapse. Eccles and his colleagues

applied the same technology to the spinal cord reflexes and soon characterised the

neurone to neurone synapse. Katz and Fatt (1952) introduced the idea that

neurotransmitters are released in quanta that represented packages of the

neurotransmitter released in an all-or-nothing fashion. This was inferred from their

observation and recording of miniature End Plate Potentials (MEPPs), spontaneous

transient potential changes of low amplitude (~0.5 mV) that are now known to be

brought about by the random exocytotic fusion of individual synaptic vesicles. Del

Castillo and Katz (1954) demonstrated that MEPPs were aboloshised by curare, and that

quantal frequency was controlled by the presynaptic membrane potential while quantal

amplitude was controlled by the postsynaptic receptors. A full-blown EPP was produced

by large depolarisation of the presynaptic membrane resulting in rapid increase in the

rate of quantal secretion.

Simultaneously, anatomists began to unravel the structure of the synapse by use of the

electron microscope. Palay (1954;1956) described the components of the neuromuscular

junction and these included the collection of small vesicles near the presynaptic

membrane. The possibility that the synaptic vesicles were the morphological correlate of

physiological quanta was immediately obvious but remained controversial for some
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time. The best evidence for the vesicles being the source of the physiological quanta has

come from neuroendocrine cells and this evidence is discussed in section 1.2 that covers

single vesicle exocytosis.

Vesicles are small membrane-bounded organelles that act as transporters by moving

between compartments within the cell, and can potentially excrete cell content/product

to the extracellular environment. A variety of different kinds of vesicles travel through

the cytoplasm, executing a complex pattern of secretory, biosynthetic and endocytotic

protein traffic to deliver distinct groups of proteins and lipids to the different organelles

they target for fusion. Biosynthetic transport of many newly-synthesised proteins occurs

from their site of synthesis in the endoplasmic reticulum (ER) via the Golgi stack to the

various intracellular compartments in which they function. Vesicle transport originating

at the plasma membrane, a process called endocytosis, is responsible for internalizing

and distributing macromolecules and key nutrients such as vitamins, iron, and

cholesterol. Endocytosis also allows the sensitivity of cells to external signals to be

dynamically regulated by providing means to control the turnover of signalling

receptors.

To achieve these movements and interactions the membranes of organelles fuse and

split. As the two lipid bilayers merge into one, the lumen of the vesicle becomes

continuous with the lumen of the target compartment, resulting in sharing of the stored

content. There seems to be a common pathway for all trafficking reactions, with some

means of identifying specific pathways for the appropriate molecules. Likewise the

events of exocytosis and endocytosis that allow cells to exchange products with other

cells also require membrane fusion and budding. The dynamics of membrane fusion are

an essential part of exocytosis of vesicles.

Intracellular membrane fusion

The fusion of membranes within cells has been well studied but there are still many gaps

in our knowledge. Studies of enveloped viral membrane fusion have demonstrated
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striking similarities to membrane fusion in eukaryotic cells. The best described

processes in eukaryocytes are those involving secretory vesicles and the plasma

membrane. Other techniques that have helped our understanding of the mechanisms of

membrane fusion include the in vitro use of Golgi stacks and other intracellular

compartments, while mutant yeast cells have provided insight into vesicular transport

from the endoplasmic reticulum to the Golgi, and of vacuolar fusion.   
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The process that is central to the fusion of membrane is the ability of two phospholipid

bilayers to fuse under certain conditions. Biological membranes are composed

predominantly of phospholipids and these membrane phospholipids have head and tail

groups of similar diameter resulting in a planar structure. Other formations are possible

and these include amphiphilic lipids (large head group and small tail diameter) that form

micelles and when present in a phospholipid monolayer will cause a positive (outside of

a sphere) curvature of the membrane. Conversely, phospholipids with a small head

group and large tail diameter will support a negative curvature. These can form

"inverted" micelles as shown in figure 1.1.1 adapted from (Chernomordik et al., 1985).

The fusion of two phospholipid bilayers is a process with a large activation energy,

needed to overcome the repulsive force that exists between two phospholipid bilayers.

Under experimental conditions the required energy is provided by one of the following

mechanisms; 1) thermal fluctuation, 2) abstraction of hydration water, 3) charge

shielding or 4) mechanical energy. This experimental fusion must also take place within

an aqueous environment that enhances the repulsive force between two phospholipids

bilayers. If the repulsive force is overcome the two phospholipid bilayers will either

dissociate into monolayers or the two proximal monolayers ('hemifusion') will merge as

demonstrated by cartoon in figure 1.1.2 (Chernomordik et al., 1995; Jahn and Sudhof,

1999). This implies that the phospholipid bilayers must be rearranged during fusion into

monolayers that are highly curved. It is this formation of the transitional state that

requires large amounts of energy (the lowest energy state of a phospholipid bilayer is

planar). Figure 1.1.2 demonstrates in cartoon the steps involved in the formation of a

fusion pore. The primary stage is the local reorganisation of the interacting membranes,

followed by the formation of a stalk between two bilayers (Chernomordik et al., 1985;

Chernomordik et al., 1995). The two opposing bilayers (A) have the opposing forces

reduced. This results in the merging of the proximal monolayers producing a stalk (B).

The stalk may consist of either one or two monolayers from a bilayer. Monolayer stalks

result in a trilaminar structures, while bilayer stalks result in immediate fusion. The stalk

then either produces a fusion pore or a hemifusion diaphragm (C).  The stalk may also
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elongate or grow ansiotropically rather than radially (D) and finally fusion takes place

(E). Recently more work has been performed on the mechansims of lipid bilayer fusion

in model systems. This has shown that the pore may elongate linearly and that the fusion

pore may not be round (Kozlovsky et al., 2002). This work has also demonstrated that
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the lipid arrangements may be slightly different to that proposed earlier by Chernomodik

and others, in that the void between the lipid bilayers may actually be filled by tilting of

the hydrocarbon chains. The bending and tilt of the monolayers results in sharp corners

in the fusion pore. This structure possesses less energy than that proposed previously

and may solve the "energy crisis" of membrane fusion. Figure 1.1.2 IIb demonstrates

this change in conformation.

For fusion between membranes to occur within cells specialised processes have been

developed to overcome the inherent repulsive energy.  Many cytoplasmic and membrane

associated proteins have been identified and implicated in membrane fusion. However

their roles have not yet been fully characterised. An overview of our current knowledge

of regulated exocytosis will follow in section 1.1.1. Two different proposals have been

put forward with respect to the mechanism of fusion; (1) a proteinaceous ring spans the

two membranes bringing them into close proximity and allowing a protein-containing

fusion pore to form (Almers, 1990; Lindau and Almers, 1995) and (2) a mainly lipidic

fusion pore forms, with proteins helping to lower the energy requirement of pore

formation (Monck et al., 1995). Whichever proposal proves to be correct there is a

requirement for specialised protein components in membrane fusion to assist in

overcoming the repulsive force between two lipid bilayers.

Exocytosis is the fusion of secretory vesicles with the plasma membrane. Certain cells

such as Mast cells and the adrenal chromaffin cells have relatively large secretory

vesicles, and the large vesicle size has allowed optical and electophysiological study of

exocytosis (see section 1.2). These studies have enhanced our knowledge about some of

the mechanisms of exocytosis. Studies of fusion pores have demonstrated that lipid

passes between the donor and the acceptor plasma membrane during fusion

demonstrating that the pores are not entirely composed of a protein ring inserted through

the membranes (Chizmadzhev et al., 1999). In vesicle studies using a lipid mixing assay

(Weber et al., 1998) the membrane bilayers are shown to merge. If the pore was

composed entirely of proteins then the lipids would not mix (Chizmadzhev et al., 1999).

The studies performed in different cell types indicate that the membrane fusion observed
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in exocytosis is similar to that observed in in vitro lipidic experiments and also similar to

viral fusion reactions. It has been postulated that other membrane fusion reactions will

be similar even though these have not been observed. These observations also lead to the

tentative conclusion that the biophysical processes and transition states regulating fusion

of phospholipid membrane, viral membranes and cellular membranes are similar.

Proteins have an essential role in the process of membrane fusion. Some of these

proteins appear to be universal, in that homologous proteins have been described in

yeast and mammalian cells. These proteins include the soluble N-ethylmaleimide

sensitive fusion protein (NSF) receptors (SNARE) proteins, soluble NSF attachment

proteins (SNAPs) and Sec1/Munc18 homologs (SM) proteins. Other proteins apparently

play an indirect or regulatory role and this includes the Rab proteins, rabphillin and

cysteine string protein. Proteins are also involved in the formation of vesicles: recently

the importance in secretory vesicle biogenesis of ‘cargo’ proteins, such as the

chromograinins/secretograninis, has come to light (Tooze et al., 2001) . Other proteins,

such as the vesicle coat proteins, play a role in vesicular traffic within the ER-Golgi

complex, and in the targeting of vesicles to their receptor membranes.

1.1.1 Proteins involved in regulated exocytosis

Background

Early biochemical work in the study of vesicle transport was performed in vitro, using

Golgi stack preparations. This 'cell-free' biochemical assay established the principles and

opened the way for studying the molecular mechanisms underlying protein transport.

Membranes isolated from VSV-infected, 35S-labelled CHO cells were incubated with

cytosol and ATP, this allowing for vesicles to transport packaged proteins from ER to

Golgi and between Golgi cisternae. Transport was detected by SDS-PAGE analysis of a

model protein, VSV-G, using ‘donor’ membranes from cells with a mutational defect in

oligosaccharide processing, and ‘acceptor” membranes from wild-type cells.

This early in vitro work demonstrated that a non-specific alkyalting agent, N-ethyl

maleimide (NEM) blocked vesicle transport indicating that a NEM-sensitive fusion
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protein (NSF) must play a role in fusion. The factor was cytosolic as transport could be

restored by the addition of fresh cytosol. Subsequently NSF was purified. Its sequence

was homologous to that of a yeast protein Sec18p, that was known to be required for

secretion in the yeast. NSF is an ATPase with two homologous domains containing ATP

binding sites. It does not bind directly to Golgi membranes but requires the presence of

other cytosolic molecules for it to facilitate transport. This allowed the development of

an assay to purify the soluble NSF attachment proteins (SNAPs), which are also

necessary for vesicle fusion (Sollner et al., 1993b). Yeast homologues to SNAPs (e.g.

sec17p, analagous to a-SNAP) have also been demonstrated to have a role in vesicle

fusion. SNAPs can bind to Golgi membranes in the absence of NSF indicating the

presence of an integral membrane receptor. These receptor proteins are called SNAP

receptors (SNARE). To purify SNAREs, recombinant SNAPs and epitope-tagged NSF

were used (Sollner et al., 1993b). Pull-down experiments revealed the formation of

stoichiometric complexes of NSF, SNAPs and SNAREs, and these complexes were also

isolated from solubilized brain membranes by velocity centrifugation through sucrose

gradients (Sollner et al., 1993a). The study of the genome of many eukaryotic organisms

from yeast to man has enabled further comparison of the protein families involved in

S. cerevisiae C. elegans D. melanogaster H. sapiens

Coat complexes (subunit) 6 (31) 6 (29) 6 (29) 7 (53)

Rabs 11 29 26 60
SNAREs 21 23 20 35

Qa-SNAREs/syntaxins 7 9 7 12
Qb-SNAREs/SNAP Ns 5 7 5 9
Qc-SNAREs/ SNAP Cs 6 4 5 8
R-SNAREs/VAMPs 5 6 5 9

Sec1s 4 6 5 7
Total predicted genes 6,241 18,242 13,601 30,000-50,000

Table 1.1.1  Number of members of vesicle-trafficking families

For a more extensive ananlysis of these protein families, including accession numbers and searching 
methodology, see Supplementary Information on Nature website (JB Bock et al, A genomic perspective on 
membrane compartment organization. Nature 409:839-41 (2001)). SNARE helical definitions were determined 
by protein profiling. Some proteins (SNAP-25) contain two SNARE-coil domains and thus are counted twice in 
the coil subdivisions. Table 1 from JB Bock et al, A genomic perspective on membrane compartment 
organization. Nature 409:839-41 (2001).
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vesicle trafficking. Table 1.1.1 (Bock et al., 2001) demonstrates the number of members

of the important proteins for vesicle traffic in 4 eukaryotic species.  From this table we

can see that the number of members of each group increases with complexity of each

organism. The variety of proteins is thought to play a very important role in localising

and directing membrane traffic (Bock et al., 2001).

1.1.1.1 SNAREs

Classification

SNARE proteins were identified independently in yeast and neurones (Review by

(Bennett and Scheller, 1993)). The initial classification was based on their localisation,

either on the target membrane (t-SNAREs) or on the vesicular membrane (v-SNAREs)

(Sollner et al., 1993a). Syntaxin and SNAP-25 were the first groups of  t-SNAREs to be

described, while synaptobrevin/VAMPs were the first v-SNAREs. Many other SNARE

proteins have been described subsequently and more recently new classifications have

evolved dependent on the binding characteristics of the SNAREs as not all the new

SNAREs can be allocated easily to the v-/t-SNARE classification.

The basis of the SNARE action is the formation of a heterotrimeric complex, known as

the core complex, that was originally postulated to confer specificity on vesicle tethering

and docking, but is now thought to have a fundamental role in the fusion process itself.

A complex formed between SNAREs on different membranes (i.e. vesicular and plasma

membranes is called a trans-complex; after fusion, all the SNAREs are in the same

membrane (the cis-complex).

Profile-based sequencing of the SNARE proteins has demonstrated that all these proteins

have a highly conserved homologous domain of ~60 amino acids dubbed the SNARE

motif (Weimbs et al., 1997). The SNARE motif, apart from defining the family, is

functional in that it is the domain that mediates the formation of SNARE complexes.

SNAREs are divided into subfamilies on the basis of the number of SNARE motifs (1 or

2), the sequences of SNARE motifs and on the type and sequence of the flanking

domains.



11

The SNARE motif has recently been further divided into tN and tC domains for the t-

SNAREs and vN and vC domains for v-SNARES. The vN or tN domain is membrane-

distal and pair before the vC and tC domains that are membrane-proximal.  This

structural independence is important for the conformational patterns in SNARE complex

formation. It potentially enables the concept of a tC fusion switch to regulate the final

step of fusion (Melia et al., 2002).

Another classification based on crystal structure is also in use. In the middle of the four-

helix bundle is a highly conserved layer of interacting aminoacids, known as the zero-

layer.  SNAREs are defined as the R-SNAREs, which have an arginine in this central

position and Q-SNAREs, with a glutamine (Fasshauer et al., 1998).  The arginine and

glutamine interact to produce the central ionic layer within the SNARE core complex.

The SNARE motif classification shown in table 1.1.1 is based on the SNARE motifs of

VAMP, syntaxin and the C and N terminal motifs of SNAP-25. This divides Q-SNAREs

into 3 groups; a) Qa-SNAREs/syntaxins; b) Q-b SNAREs/SNAP Ns and Q-c SNAREs

/SNAP Cs; c) with R-SNAREs/VAMPs.

As described there are a number of different classifications for SNAREs in use.

Preference for use varies with author and context. The SNAREs are found in different

isoforms in all cellular compartments and probably function in all cellular fusion

reactions. The membrane-associated SNAREs are inserted into the membrane of the

endoplasmic reticulum and then transported to other cell compartments. It appears that

SNAREs are essential for membrane fusion at all intracellular trafficking sites, from

endoplasmic reticulum to synaptic vesicles.

VAMP, syntaxin and SNAP-25

These are the neuronal SNAREs that were first described and on which much of the

classification is based. The initial identification work was done on crude brain

membrane preparations using functional assays of complex formation based on NSF and

SNAPs (Baumert et al., 1989; Trimble et al., 1988). These assays resulted in the

purification of three SNAREs, all proteins that turned out to have been cloned and
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sequenced previously. SNAP-25 is a lipid-anchored target membrane protein; VAMP

(synaptobrevin-2) is inserted into synaptic vesicles by a single hydrophobic C-terminal

segment, the remainder being cytoplasmic; and syntaxin is an integral protein of the

plasma membrane, that appears to be concentrated in the active zones of the target

membrane (Sollner et al., 1993b). Syntaxin can be present in either an ‘open’ or ‘closed’

formation: in the closed formation its SNARE motif is complexed with a three-helix

bundle formed by the N-terminal Habc domain, and therefore unavailable for complex

formation, while in the open conformation the SNARE motif is exposed and able to

interact with cognate SNARE proteins (Misura et al., 2000).

Elucidation of the molecular action of the clostridial neurotoxins provided important

evidence of the essential function of SNARE proteins in neurotransmission ( see

(Burgoyne and Morgan, 2003)). Tetanus toxin and the seven types of botulinum toxin

are heterodimers, each containing a heavy chain (H) that targets the toxin to a particular

neuronal type, and a light chain (L) that is a metalloproteinase. After entry into the

cytoplasm, these endoproteinases specifically cleave VAMP (tetanus toxin or botulinum

toxins B,D,F and G), SNAP-25 (botulinum toxins A and E) or syntaxin 1 (botulinum

toxin C). Even in neuroendocrine cells, which have no receptors for the toxins,

exocytosis is blocked if the toxins are introduced into the cytoplasm by permeabilization

of the plasma membrane or expression within the cell itself. In some cell types

exocytosis is resistant to these toxins through expression of toxin-resistant SNARE

isoforms.

SNAREs and the core complex

SNAREpins (trans SNARE complexes) are formed when v-SNAREs on a vesicle

membrane pair with their cognate t-SNAREs on the target membrane (Sollner et al.,

1993b). Figure 1.1.1.1.1 taken from Weber (Weber et al., 1998) shows the SNAREpin

complex.

A SNARE complex is formed by 3 Q-SNAREs binding 1 R-SNARE. The 3 SNAREs

involved in the core complex have 4 SNARE motifs between them, one contributed by
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each of syntaxin and VAMP (synaptobrevin-2) and two by SNAP-25. The complex is

formed with four parallel chains in a helical bundle with an ionic layer formed within the

complex and the interactions in the core mainly between hydrophobic layers (Sutton et

al., 1998).

Subsequent to this stepwise SNARE assembly, the ‘zippering up’ of the helices in the

trans core complex brings the two membranes into close apposition, a process called

“loose’ to ‘tight’ transition. The formation of the tight SNARE complex, which is
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extremely stable, may release enough energy to overcome the thermodynamic barrier to

membrane fusion. The surface of the core complex includes four shallow grooves that

contain charged and hydrophobic regions. Although the formation of the core complex is

an essential step in membrane fusion its precise function in the fusion process is not yet

clearly defined (reviewed by (Jahn and Sudhof, 1999)). One of its functions may be the

energy-releasing step that allows membrane fusion. As mentioned in section 1.1 the

fusion of two lipid bilayers requires a large amount of activation energy to overcome the

repulsive force. The individual v- and t- SNAREs exist in a thermodynamically

metastable state but when combined to form a SNAREpin they exist in a lower energy

state. The large free energy change accompanying complex formation is thought to be

able to overcome the activation energy required to allow disruption of a lipid bilayer

(Weber et al., 1998).

Figure 1.1.1.1.2 (Rizo and Sudhof, 2002) illustrates a model of neuronal SNAREs in

complex formation. The SNARE complex is stable, unusually resistant to denaturation

by heat or, resistant to detergent (SDS) and resistant to proteolysis by Clostridial

neurotoxins (botulinum and tetanus). Although monomeric VAMP, syntaxin 1 and

SNAP 25 are very sensitive to proteolytic cleavage by neurotoxins, it is only once the

SNAREs form the core complex they become resistant to the proteolytic effect of the

neurotoxins (Jahn and Niemann, 1994; Schiavo et al., 1992).

The cytoplasmic domains of SNAREs can be expressed as soluble proteins, and readily

form core complexes when in solution. However it has been claimed that the

transmembrane domains are also functional in complex formation (Hu et al., 2003).

Partial complexes may be formed in solution but the ternary complex is the most stable

(Lang et al., 2002). The SNARE motif undergoes a structural change to form a helix on

assembly of a core complex. The SNAREs have little specificity and will form

complexes with a number of other SNAREs. Transmembrane domains of synaptobrevin

and syntaxin allow the formation of homo and hetero-oligomeric complexes. This

contributes further to stability and allows association into larger entities that may play

role in membrane fusion.
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In vitro assays have shown that the SNARE proteins alone are sufficient for membrane

fusion, as they permit the slow fusion of proteoliposomes containing them (Weber et al.,

1998). However the very slow speed of fusion of SNARE-containing proteoliposomes

suggests that other as yet unidentified factors must act to accelerate the fusion process to

speeds required for neurotransmission.
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The disassembly of the very stable core complex requires an input of energy provided by

soluble NSF attachment proteins (SNAPs) and N-ethyl maleimide sensitive factor

(NSF). NSF and SNAPs act as core complex chaperones in almost all intracellular

transport steps. They also appear to be conserved between species. NSF is an ATPase

and is activated by the binding of a SNAP to the core complex. Not much is yet known

about the conformation of the SNAREs after dissociation from a core complex by NSF.
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1.1.1.2 Sec1/Munc18 Family of Proteins

Sec1/Munc18 (SM) proteins are a family of proteins that have been found in yeasts,

Caenorhabditis elegans and vertebrates. They are hydrophilic proteins that share

homology throughout their sequences and appear to be devoid of subdomains. In

vertebrates at least seven SM proteins have been associated with action at the plasma

membrane (Bock et al., 2001). (See table 1.1.1) The function of SM proteins is still not

entirely clear although they must have an essential role in membrane fusion as mutations

in SM proteins completely block membrane fusion (Rizo and Sudhof, 2002). The most

probable role seems to be binding to syntaxin-like Q-SNAREs and an undefined role

downstream from docking (Verhage et al., 2000; Voets et al., 2001b; Rizo and Sudhof,

2002), but there may well be other functions. The binding of Munc18 to syntaxin
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appears to prevent the SNARE motif of syntaxin from interacting with the other SNARE

motifs, that is it seems to lock syntaxin in its closed formation (Yang et al., 2000).

Figure 1.1.1.2 illustrates the postulated interactions of Munc18 and Syntaxin (Rizo and

Sudhof, 2002).

SM proteins also interact functionally with other proteins, but the functions of these

interactions are not yet well established and the association with exocytosis is unclear.

Table 1.1.1.2 highlights some of the known functional interactions with SM proteins.

1.1.1.3  Rab Proteins

These are a family of low molecular weight GTPases, that are highly conserved across

species. There are many isoforms (~40), each specific to a membrane compartment. Rab

proteins undergo an intricate cycle of membrane and protein interactions. There are three

ways in which Rab interactions are likely to regulate vesicle targeting and membrane

fusion: (1) they may facilitate vesicle targeting to the appropriate destination; (2) they

may regulate trafficking at the vesicle docking step; (3) Rabs potentially facilitate the

correct pairing of SNAREs by selectively activating the SNARE fusion machinery

(Gonzalez and Scheller, 1999). Figure 1.1.1.3, taken from (Gonzalez and Scheller, 1999)

illustrates the cycle of a Rab protein from the membrane to a vesicle and back to the

membrane. The addition of two geranylgeranyl groups at the C-terminal cysteines

mediates membrane association when the Rab is in a GTP-bound state. Next GTP

hydrolysis occurs, resulting in Rab forming a complex with GDP-dissociation inhibitor

(GDI) and extracting itself from the membrane. GDI, a cytosolic intermediate, is

recycled to a newly forming vesicle, probably through displacement by a secondary

factor termed GDI dissociation factor (GDF). The rab protein then becomes membrane-

bound (to the new vesicle). A guanidine nucleotide exchange factor (GEF) then

promotes release of GDP and the subsequent loading of GTP. In the GTP-bound form

the Rab protein can then associate with a specific set of effectors. These effectors may

lead to the eventual fusion of the vesicle with the target membrane. To complete the

cycle, a GTPase activating protein (GAP) accelerates nucleotide hydrolysis, switching
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off the GTPase. The remaining GDP-bound Rab can participate in another round of

fusion (Gonzalez and Scheller, 1999).
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1.1.1.4 Synaptotagmins

The synaptotagmins constitute a family of membrane-trafficking proteins that are

characterised by an N-terminal glycosylated domain, a single transmembrane region

(TMR), a central linker and two C-terminal C2 domains, sequentially numbered C2A

and C2B. There are 13 vertebrate synaptotagmins described, and table 1.1.1.4 provides

the details of each including a class stratification. The two C2-domains represent the

only homologous domains of the synaptotagmin sequences.  These C2A- and C2B-

domains are structurally similar to the C2 regulatory domain on protein kinase C and

have been shown to be functional Ca2+ binding modules and are functionally conserved

in all synaptotagmins suggesting a specialised role. The C2A-domains generally bind

three Ca2+ ions while the C2B-domains bind only two Ca2+ ions, however the Ca2+

affinities of the different synaptotagmins vary greatly.  Synaptotagmins also interact

with other ligands: for example Synaptotagmin I binds syntaxin, phospholipids,

phosphoinositides, the synaptic vesicle membrane protein SV2, the clatherin adaptor

AP2 and the synprint sequence of Ca2+ Channels. There are a number of other proteins

with two C2-domains including some that have been implicated in the regulation of

synaptic function; rabphilin, DOC2 and munc13-1, but these are not classified as
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synaptotagmins as they do not have a TMR. Figure 1.1.1.4 illustrates some of the

proposed roles of the different synaptotagmins associated with membranes. The

presence of C2-domains suggest that most synaptotagmins are membrane bound Ca2+

signalling machines. Different classes of synaptotagmins are found on different

membrane compartments, notably synaptic vesicles and plasma membrane/active zone

membrane. The model in figure 1.1.1.4 proposes that at least synaptotagmins 1,2,3,6 and

7 perform complementary functions in Ca2+ triggered exocytosis. It is proposed the Ca2+

binding to each synaptotagmin contributes differently to the process of exocytosis:

vesicular synaptotagmins have a lower Ca2+ affinity and are more important in fast
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synaptic exocytosis; while plasma membrane synaptotagmins have a higher Ca2+ affinity

and may be more important for endocrine exocytosis. The different properties of the

synaptotagmins and their relative abundance could contribute to modulating the Ca2+

response of different neuroendocrine cells (Sudhof, 2002).

1.1.1.5 Cysteine String Proteins (Csp)

These soluble proteins have a central palmitoylated cysteine-rich string that facilitates

membrane attachment and an N-terminal "J" domain that is found in molecular

chaperone proteins that interact with and regulate members of the Hsc-70/Hsp-70

chaperone family. There is also a highly conserved linker region between the cys-string

and the J domain (Chamberlain and Burgoyne, 2000). Csp is found in many tissues and

is particularly associated with synaptic vesicles. It forms about 1% of the neuronal

synaptic vesicle protein and 0.45% of the adrenal chromaffin cell protein (Chamberlain

and Burgoyne, 2000), and is also found on other secretory granules in cells. It has been

shown to be essential for neurotransmission in Drosophila. There is evidence for two

roles in of Csp in regulating exocytosis. The first is as a modulator of Ca2+ channels

(Umbach et al., 1998; Graham and Burgoyne, 2000) and the second as modulator of

vesicle fusion machinery (Chamberlain and Burgoyne, 1998; Graham and Burgoyne,

2000). When Csp is phosphorylated it releases syntaxin from its closed formation

making it available to form SNAREpins with SNAP25 and synaptobrevin. Over-

expression of Csp in chromaffin cells changes the amperometric measurements of

exocytosis in an opposite  way to that produced by protein kinase C (PKC) activation by

phorbol myristate acetate(PMA) (Graham et al., 2000). Recently it has been shown that

phosphorylation of Csp by protein kinase A (PKA) will modify the release kinetics and

quantal size, which may suggest that Csp acts as a syntaxin chaperone. Phosphorylation

of Csp releases syntaxin allowing it to engage with other proteins that then act to slow

the late stages of exocytosis. Phosphorylation of Csp may also act by affecting Ca2+

signalling through reduced binding to syntaxin (Evans et al., 2001). Further work in this

area is still required to finally define the role of Csp in exocytosis.
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1.1.1.6 Complexins

Complexins are small (~17kDa) cytoplasmic proteins that bind specifically to the ternary

SNARE complex, though not to monomeric SNAREs. Complexin I and II are conserved

between species and particularly found in brain where they co-localise with neuronal

SNAREs. Complexin II is found more widely and has been isolated from adrenal

chromaffin cells, although complexin I is also present in adrenal chromaffin cells

(Archer et al., 2002). They have been shown to function in the Ca2+-dependent step of

exocytosis. Complexins bind in an anti-parallel a-helical conformation to the central

region of the core complex, at the interface between synaptobrevin and syntaxin, without

substantially altering the structure of the core complex (Pabst et al., 2002). Complexin
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seems to act as a stabilising agent acting not only at the contact region but also towards

the carboxy-terminal, membrane proximal region of the core complex. This suggests that

complexins may freeze a primed state with a fully assemble core complex that is crucial

to fast exocytosis. Figure 1.1.1.6 (Rizo and Sudhof, 2002) illustrates a model proposing

that priming occurs in more than one step. Complexin possibly acts after the release of

syntaxin by Munc-18 and then holds the SNARE complex in a release ready state.

Archer et al (Archer et al., 2002) have proposed that complexin II may regulate kiss-

and-run recycling of exocytosis. There are potentially other roles for complexins and the

proposed role here has yet to be confirmed. (Rizo and Sudhof, 2002).

1.1.2 Current Models of Exocytosis by regulated secretion

The SNARE hypothesis

The SNARE hypothesis (Sollner et al., 1993b) postulates that for vesicle targeting each

transport vesicle bears a unique address marker of one or more v-SNAREs obtained

from its parental membrane during budding, while the target membrane is identified by

one or more t-SNAREs. Targeting specificity is thus achieved by v-SNAREs binding to

matching t-SNAREs. If the interaction between the cognate SNAREs were strong

enough then docking could be achieved by SNAREs alone without the additional

binding energy provided by interactions with SNAPs and NSF. The SNARE hypothesis

postulated that the assembly of SNAREs mediates the attachment of membranes before

fusion and that NSF-driven disassembly would lead to fusion completion. Although it is

clear that ATP hydrolysis by NSF is required for the overall process of exocytosis, it is

now appears that this reaction is part of the vesicle 'priming' process, and that ATP

hydrolysis is not required for the membrane fusion event itself.

Zipper model of SNARE function

This model hypothesises that SNARE proteins "zip" together from their membrane

distant amino terminal end toward the membrane-proximal carboxy termini (Bruns and

Jahn, 2002). The energy to overcome the repulsive electrostatic forces may come from
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the conformational changes that occur as this happens. The hemifusion state may be

achieved by the protein -protein interactions in the form of amino-termini of the

SNAREs locating each other and then "zipping". This may also be equivalent to the
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docked state. Figure 1.1.2.1 (Bruns and Jahn, 2002) presents the docking step as the step

prior to hemifusion. Much of this hypothesis is based on viral fusion pore proteins,

which have some properties in common suggesting that SNARE proteins work in a

similar way. The important unanswered questions are: which molecule completes the

fusion step and does this step require Ca2+?

Current thinking tends to favour the zipper model for SNARE function. With NSF

playing a role in SNARE complex disassembly but without being directly involved in
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membrane fusion as was originally suggested by the SNARE hypothesis. Syntaxin is

held in its closed formation by Munc 18 and this acts as a clamp preventing fusion. Once

Syntaxin is released by Munc 18 it unfolds allowing interactions with VAMP and

SNAP-25 to form the SNARE complex resulting in fusion of the membrane (Misura et

al., 2000). Figure 1.1.2.2 from Rizo (Rizo and Sudhof, 2002) demonstrates recent

thinking in the assembly and disassembly of the core complex. In this model the

disassembly of the core complex requires energy from NSF-mediated ATP hydrolysis

that returns the SNAREs to their initial high energy state and makes them available for

further fusion events. Clearly membrane fusion is initiated by SNARE proteins, but the

gradual expansion of the fusion pores after fusion suggest that the pore formation

involves lipids. Even though amperometry and capacitance measurements have yielded a

great deal of information about the kinetic characteristics of the fusion pore, its

molecular structure remains unresolved. None of the proteins discussed has been shown

to form pores in membrane and it has not been shown that at the onset the pore is

constructed entirely of protein components. A further radical proposal, derived from

work on vacuolar fusion in yeast, is that the fusion pore is formed by the H+-conducting

sector, called Vo, of the vacuolar H+-ATPase (Bayer et al., 2003). This enzyme also

occurs in secretory vesicles, where its function is luminal acidification, but there is no

evidence that it has a direct role in exocytosis in mammalian cells.

Quantal release during vesicle fusion

Until recently it was assumed that neurotransmission was determined by quantal release

of neurotransmitter, the quantal size being constant. This assumption presumes the

release of a constant amount of neurotransmitter per vesicle (probably the entire

content). To change the stimulus of neurotransmission it was assumed that the number

of vesicles released would be increased or decreased. This concept was modified as

more details of the regulation of controlled exocytosis were elucidated. Amperometry

with carbon fibre electrodes has demonstrated that catecholamines can be released from

adrenal chromaffin cells in variable proportions, figure 1.1.2.3, this seems to be
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controlled by variations in [Ca2+] (Elhamdani et al., 2001). The concept of 'kiss-and-run'

exocytosis, in which the connection through the fusion pore is transient, resulting in

incomplete release of vesicle content, has been described as a means to limit the amount

of transmitter released at any one fusion event. As 40ms is long enough to allow full

release of the contents of a chromaffin granule the opening and closing of the fusion

pore to allow partial release of transmitter must be faster than 40ms. This has been

described as flickering between open and closed states. This mechanism has been

described in adrenal chromaffin cells but not yet in neuronal synapses as it remains

difficult to measure single exocytotic events in a synapse with current techniques

(Burgoyne and Barclay, 2002).
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Regulation of core fusion machinery

As would be expected for a system that both directs and regulates traffic between

membrane compartments, there are a number of sites at which control may take place,

these sites are demonstrated in figure 1.1.2.4 (Melia et al., 2002). Regulation of SNARE

proteins can be performed at a number of stages:

(i) Prior to  SNAREpin assembly, regulation of the movement of the v- and t-

SNAREs toward each other;

(ii) During SNAREpin assembly, controlling the rate of membrane fusion;
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(iii) After SNARE complex assembly, regulating and fusion pore opening,

disassembly of the complex and recycling of the proteins.

The role of NSF and SNAP proteins in disassembly has been discussed in section 1.1.1,

as was the role of Munc-18 in keeping syntaxin folded in it closed conformation, and

thus unavailable for SNARE complex formation. These switches will work at stages (iii)

and (i) respectively. The switch at stage (ii) could be controlled by one of or a

combination of synaptotagmin, complexin, or the tC fusion switch. The tC fusion switch

is part of the t-SNARE SNARE motif that has been divided into tN and tC domains as

discussed in section 1.1.1.1.

Other molecules could well be involved in regulation by controlling the proximity of

vesicles to target membranes, by affecting the conformation or availability of free

SNARE proteins and the insertion of specific SNAREs and other proteins in the vesicle

membrane in the trans-Golgi network.

1.1.3 The role of Calcium in exocytosis

Calcium (Ca2+) is an essential component for membrane fusion in regulated exocytosis.

Ca2+  has been best characterised in its role as the trigger of regulated exocytosis in a

number of neuronal and neuroendocrine cell models (for reviews see (Zucker, 1996;

Bennett, 1997)). Increases in Ca2+ concentration ([Ca2+]) in the microdomains

surrounding docked vesicles induce neurotransmission by regulated exocytosis in a very

rapid period of time (0.2-0.5 ms). The rate of exocytosis is a non-linear one, dependent

on the [Ca2+] raised to the power of between 3 and 4 and experiments with caged Ca2+

compounds have demonstrated that there is a gradient of response to [Ca2+]. Exocytosis

has been demonstrated in the [Ca2+] range of 3 to 600 mMol (Heinemann et al., 1994)

and it would be expected that any [Ca2+] in excess of 50 mMol would induce rapid

exocytosis.  Detailed analysis of the dependence of the fast and slow phases of

exocytosis on [Ca2+] (Voets et al., 2001a) indicate that, as well as acting as the trigger

for fusion, Ca2+ is required for vesicle priming. In addition it may be involved in steps

upstream even of vesicle tethering: in chromaffin cells the Ca2+ -dependent acting
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severing protein scinderin has been implicated in dissolution of the cortical actin

network, allowing LDCVs to move to the cell periphery (Vitale et al., 1995).

The mechanism by which Ca2+ triggers regulated exocytosis is yet to be finalised.

Current knowledge suggests that exocytosis requires that Ca2+  enters through voltage-

gated Ca2+  channels, although intracellular Ca2+ reservoirs may also play a role as empty

stores may serve as a sink for external Ca2+ entering during depolarisation and thus blunt

the exocytotic effect. In addition other receptors such as the muscarinic receptors

activate pathways that provoke a rise in Ca2+ from intracellular stores and yet other

receptors activate inositol phosphate pathways leading to Ca2+ rise (Aunis and Langley,

1999), however this is much less effective that Ca2+ that enters through channels in the

plasma membrane, presumably because the local [Ca2+] at the sites of docked vesicles

does not achieve such high levels. The molecules that function as Ca2+ regulated triggers

of exocytosis must be located near the Ca2+ channels where local microdomains of high

[Ca2+] are generated.

We know that a number of proteins involved in exocytosis have Ca2+ binding properties,

in particular synaptotagmin (Bennett, 1997) and complexins. Synaptotagmin 1 is the

prime candidate for the Ca2+ sensor in the central nervous system for fast synaptic

exocytosis (Mahal et al., 2002; Yoshihara et al., 2003).The exact mechanism of action

of synaptotagmin 1 remains unclear.

In Drosphila and C.elegans, genetic knockout of synaptotagmin 1 appears to have

effects on vesicle docking and SNARE complex assembly, as well as abolishing fusion;

but this was not seen in the mouse suggesting that synaptotagmins have multiple

functions, some of which can be performed by other proteins, including synaptotagmin

isoforms, in mammalian neurons. More acute knockout of synaptotagmin I in

Drosophila suggests that only the fusion reaction is blocked (Marek and Davis 2002).

Although synaptotagmin has been suggested to act as a fusion clamp, preventing fusion

of docked vesicles until released by Ca2+, acute knockout of synaptotagmin appears not

to increase the rate of spontaneous fusion events, contradicting this theory. Recently

some doubt has been thrown on the need for Ca2+ to induce the action of synaptotagmin
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1 as Mahal et al have shown that synaptotagmin 1 on its own speeds up the process of

SNAREpin assembly and membrane fusion in a reconstructed system (Mahal et al.,

2002). This leads to the possibility of other Ca2+ dependent factors in membrane fusion.

As discussed in section 1.1.2.5 the synaptotagmin family and other proteins exhibiting

C2-domains may have roles in modulating membrane fusion in distinct ways (Sudhof,

2002)

It is interesting that in some systems, notably in the exocytosis of sea-urchin egg cortical

granules and in vacuolar fusion in yeast, Ca2+-triggered exocytosis seems to occur

independently of the formation of the SNARE complex (Coorssen et al., 1998). The role

of Ca2+ is more clearly defined in membrane fusion of vesicles docked to the plasma

membrane.

Further, the necessity of Ca2+ does not seem to be universal. Ca2+ has a critical role in all

neurone and neuroendocrine cells that have been used as models for the study of

regulated exocytosis but the requirement for Ca2+ has not been established in all other

cells that have receptor based signalling leading to regulated exocytosis (Hille et al.,

1999).

1.1.4 Summary

Membrane fusion is essential to eukaryotic cell function. It requires a large amount of

energy to overcome the repulsive force that exists between cell membranes and there are

a number of proteins involved in the process of membrane fusion. There appears to be a

degree of commonality in the process of membrane fusion for regulated exocytosis

between species. Furthermore there is commonality in the different forms of membrane

fusion within a cell type. The following steps are most likely common and they form the

basis of membrane fusion in regulated exocytosis.

• Membrane attachment (docking); this occurs prior to fusion and is reversible. It is

independent of the fusion process and may be regulated by rab GTPases.
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• SNARE complex formation; the availability of SNAREs may be regulated by SM

and other proteins.

• Priming; this is ATP-dependent and involves the Ca2+ dependent conversion of the

SNARE core complex to a state in which Ca2+ can trigger fusion.

• Fusion pore formation; merging of proximal and distal lipid monolayers to open a

fusion pore, in response to elevated [Ca2+].

• Fusion pore dilation; expansion of the fusion pore.

• Disassembly of the SNARE complex by NSF and a-SNAP

The proposed models for the mechanisms of exocytosis and the control of regulated

exocytosis have also been discussed. None of these models has been proven and the

exact nature of regulated exocytosis remains to be determined.  With current advances in

the field we are moving toward a better understanding of the intricate details of

regulated exocytosis. However it is important to note that even though a number of

protein groups involved in regulated exocytosis have been described that not all of their

actions have been proven in experiments and others remain postulated. There are still

many unsolved questions relating to protein function and interaction, particularly in the

process leading to the final steps of exocytosis.
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1.2 Exocytosis Observed At Single Vesicle Resolution

Studying exocytosis at single vesicle resolution is important to allow interpretation of

molecular events leading up to and occurring in relation to exocytosis. There have been

a number of methods used to observe single vesicle exocytosis and the successful ones

will be discussed in this section (Angleson and Betz, 1997; Henry et al., 1998)..

1.2.1 Methods used to study single vesicle exocytosis

Recently methods have been developed for measuring exocytosis, endocytosis and

vesicle cycling in living cells in real time. This has resulted in a rapid expansion in the

knowledge of these processes in secretory cells. The techniques covered in this section

include electrical, electrochemical and optical methods. Each technique has on its own

provided a share of our current knowledge of the kinetics of membrane fusion. However

the combination of some of the techniques has added even more to our knowledge.

Other techniques used in monitoring exocytosis that are not appropriate to single vesicle

resolution, for example postsynaptic current measurement, are not discussed.

1.2.2 Capacitance

Vesicles are surrounded by lipid bi-layer membrane and thus vesicle fusion with cell

plasma membrane (lipid bi-layer) during exocytosis results in the cell plasma membrane

surface area expanding and conversely endocytosis results in a decrease in cell plasma

membrane surface area. Scientists have been able to use the electrical properties of the

cell to monitor changes in cell surface area.  Cell membrane electrical capacitance is

proportional to cell surface area and thus changes in cell surface area can be measured as

changes in electrical capacitance. The relationship between surface area and capacitance

is the specific capacitance of biological membranes, which is typically in the order of

0.8-1.1 mF/cm2. Cellular capacitance measurements have been used in many systems,

the first description being from fertilisation studies of sea urchin eggs. The technique has
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been refined and now measurements of single vesicle events are possible with

millisecond temporal resolution (Chow et al., 1996).Capacitance measurements can be

performed in either conventional whole cell configuration or perforated patch

configuration. Each method has distinct advantages for certain experiments. Whole cell

dialysis allows for direct control of the ionic and second messenger composition of the

cell by introduction of products, while a perforated patch is more suited to investigating

the physiological context (Angleson and Betz, 1997).

To measure the time-resolved membrane capacitance of single cells in whole cell patch-

clamp recordings, the cell and the cell-attached pipette are modelled as a linear three-

element circuit with an access resistance, Ra, in series with the parallel membrane

resistance, Rm, and membrane capacitance, Cm. In the frequency-domain method of

measuring capacitance, a sinusoidal voltage command is superimposed on the holding

potential, and the resulting current is analysed. This method allows for continuous

recording of vesicle fusion and providing the secretory vesicles are large enough, fusion

of individual vesicles can be detected as discrete events. The incorporation of a single

vesicle, Cves, results in an increase in capacitance, DC, given by :

DC = Cves/(1+(wCvesRp)
2 ),

where w is the frequency of the sine wave and Rp is the resistance of the fusion pore

between the vesicle and the plasma membrane (von Gersdorff and Matthews, 1999).

Figure 1.2.2 illustrates the features of capacitance changes that are observed during

exocytosis.

There are limitations to this technique. Not all changes in capacitance are the direct

result of vesicle exocytosis. For example gating charge movement in transmembrane

proteins may bring about changes in capacitance. Other sources of artefact are non-

exocytotic change in passive membrane electrical parameters, Ca2+-dependent

conductance changes, access resistance changes and improperly compensated pipette

capacitance. Further, the technique is based on linear voltage and the three-element
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passive circuit model used to calculate capacitance is based on a spherical cell with

equal electrical access to all parts of the cell surface. As capacitance detects net surface

area change it is affected by both exocytosis and endocytosis and the one may reduce the

effect of the other. For these reasons capacitance measurements have been combined

with other techniques of the same time-resolution that detect other aspects of exocytosis,

such as monitoring of catecholamine release by amperometry (Chow et al., 1992).

1.2.3 Amperometry

Regulated exocytosis results in the secretion of neurotransmitters or hormones. The

released transmitter molecule may be detected after oxidation or reduction with a change

in current measured by amperometry or fast cyclic voltammetry. Fast cyclic

voltammetry has an advantage in that it can give information about the chemical species

whereas amperometry gives a higher time resolution. The most extensively studied

secreted products are noradrenaline, adrenaline, dopamine and serotonin. Figure 1.2.3.1

shows oxidation of noradrenaline to its quinone product.  The techniques have been

miniaturised and only in the early 1990's was the technique applied to single cells

(Wightman et al., 1991). Since then there have been extensive studies of isolated cells,

particularly mast cells and chromaffin cells because these cells have large vesicles with

measurable amounts of exocytosed content.

The detection relies on an appropriate detector, which is a polarisable electrode. These

electrodes when immersed in physiological solutions do not allow current to flow across

the solid-liquid interface unless the electrode surface can undergo a rapid reaction with

one of the dissolved species to covert ions to electrons and visa versa. The silver/silver

chloride electrode immersed into a sodium chloride solution is such an electrode. When

a voltage is applied to a polarisable electrode it will accumulate a charge on the surface

facing the solution. The excess charge must be balanced by an equal and opposite charge

in the solution. Mobile counter ions in the solution are attracted to the interface and form

an aligned layer. The electroneutrality is achieved over a finite distance falling away

with a space constant called Debye length. At equilibrium little or no current flows.
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When oxidisable or reducable molecules diffuse to the surface of the electrode, electrons

are transferred and current flows. The current generated may allow the calculation of the

number of molecules released. This depends on the release of only one electro-active

species and knowledge about the number of electrons transferred per molecule.

The relationship is known as Faraday's law:

Q =   Idt = zFM/NA = zeM

Q represents the total charge, obtained by integrating the current (I) transient; M

represents the number of molecules reacted; z is the number of moles of electrons

transferred per mole of compound reacted; F is Faraday's constant, NA is Avogadro's

number and e is the elementary charge (1.6 X 10-19 coul)  (Chow et al., 1996).

An example of such an electrode is a carbon fibre electrode. These can be placed near

the cell can detect single exocytotic events by detecting the current generated by

oxidation or reduction of the secreted molecule. The technique is limited to detectable

secretory products, some of which are mentioned above. These electrochemical

techniques are fast and sensitive, with a time resolution of milliseconds, and the ability

to detect partial release of vesicle content (Chow and Von Ruden, 1995). As the method

only measures events in the proximity of the electrode it also provides spatial

information about secretion. For example single exocytotic events in isolated chromaffin

cells have been temporally and spatially characterised through the relationships between

voltage-gated Ca2+ influx and subsequent fusion events (Chow et al., 1996). It is

important to note that this measurement is not susceptible to interference from

endocytosis. Figure 1.2.3.2 illustrates this technique.
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Single exocytotic events appear as current spikes, allowing the recording of the

frequency of fusion events from the area of the cell detected by the electrode. Detailed

analysis of the height, half-width, rise and area of the individual current spikes gives

information about the fusion pore opening and closing and information about the vesicle

size (Chow and Von Ruden, 1995), thus providing insights into the kinetics of the last

stage in exocytosis (Burgoyne and Barclay, 2002). Figure 1.2.3.3 demonstrates a model

spike with measurements used for detailed analysis. Q represents total granule charge

and Q1/3 roughly indicates granule size, see paragraph 2 on page 38 (Wightman et al.,

1991). Imax is the maximum concentration of exocytosed content reaching the electrode

tip. The half-width (t1/2) and rise time (tP) may indicate the speed of exocytosis (Segura

et al., 2000). Figure 1.2.3.3. also demonstrates a foot, line m extrapololates the rising

phase back to baseline to allow determination of the rise time (Chow et al., 1992). The

foot appears to be the escape of vesicle contents through the narrow initial opening of

the fusion pore. Conceivably the

fusion pore can flicker open and

closed leading to ‘stand alone’

foot signals that do not result in a

full amperometric spike (Chow

and Von Ruden, 1995).

Amperometry has in particular

provided knowledge about fusion

pore dynamics and the ability of

vesicles to release part of their

content (Graham and Burgoyne,

2000, Elhamdani et al., 2001). It

has also provided knowledge

about the time course of

exocytosis (Chow et al., 1992).
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1.2.4 Optical Methods

A variety of microscopy techniques have been used to image single vesicle exocytosis in

living cells. These include epi-fluoresence, confocal microscopy, differential

interference contrast (DIC) microscopy, total internal reflectance fluorescence

microscopy (TIRFM) and multi-photon microscopy. Of these only DIC does not rely on

fluorescence. Total internal reflectance fluorescence microscopy, confocal and multi-

photon microscopy will be discussed in detail in section 2.

Fluorescence microscopy is an important biophysical tool for studies in living cells and

in reconstituted preparations in vitro. Fluorescent markers can be incorporated into

living cells to measure a variety of functions, such as:

a. Physiological changes in cytosolic or organellar pH

b. Ca2+ fluxes into the cytoplasm or sub-cellular compartments

c. Membrane potentials

d. Sub-cellular locations and interactions of defined proteins

e. Lateral movement of lipids and proteins in membranes

With respect to imaging of single vesicle exocytosis, fluorescent markers can be used in

the following ways:

i. labelling membrane proteins, by expressing them as fluorescent chimeras

ii. labelling contents of vesicles, with acidophillic dyes or targeted fluorescent proteins

iii. using dyes that change fluorescence depending on hydrogen ion concentration

iv. linking a released product to change in fluorescence of a marker dye

Imaging of vesicles has been challenging as the microscope spreads out the image so

that the individual vesicle is not seen as a single spot of light but rather as a cone with

the vesicle in focus as the point and the three-dimensional spread of light as the cone.

Resolving two individual vesicles becomes difficult if they lie close to one another, and

since the bovine chromaffin cell is packed with up to 20,000 secretory vesicles this is of
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particular concern. It is possible to resolve vesicles that are separated by a distance equal

to the wavelength of light but with the density and size of vesicle this can prove difficult

in certain cell types.

The other limitations of optical methods depend critically upon the size of the secretory

vesicle. Some cells, such as adrenal medulla chromaffin cells and mast cells, have

relatively large secretory vesicles, which make them more suitable for these techniques.

Technical limitations include auto-fluorescence (many endogenous molecules will

fluoresce at certain wavelengths), photo-bleaching (destruction of fluorescence by light-

induced conversion of the fluorophore to a non-fluorescent compound) and light

scattering, from the object of interest and other specimen content. Quantitation of

fluorescence intensity is directly proportional to its concentration only in very dilute

concentrations that follow Beer's law. At higher concentrations the intensity can

decrease through self-quenching. Further, saturation of the optical detector may occur if

the emitted fluorescence is too intense (Lansing Taylor and Salmon, 1989).

Recently there have been huge advances in the ability to obtain video images from the

fluorescence microscope. The computer software available to monitor and analyse the

data has improved in the recent past. The combination of powerful computing and

versatile new markers such as green fluorescent protein (and its variants) has added

much to our knowledge of the mechanisms of vesicle cycling.

The main advantage of optical imaging is, apart from the fact that we can see what is

happening, that information about vesicle function can be obtained at multiple spatial

locations simultaneously (Murthy, 1999). With the fast acquisition rate of modern

specialised digital cameras we can record events that we could not determine in the past.

The ability to visualise single vesicle secretory events is possible with a number of the

microscopy techniques. TIRFM (Steyer et al., 1997) and confocal laser scanning

microscopy (Burke et al., 1997) have provided a means of monitoring single vesicle

events in living cells. There have been further improvements in the speed of confocal

microscopy while and the application of multi-photon microscopy has assisted progress

in imaging in recent years.
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TIRFM has been used to image single vesicle events with some success since first

described for this purpose in 1997 by Steyer and Lang (Steyer et al., 1997; Lang et al.,

1997). Individual granules can be tracked as they approach the membrane, dock and fuse

(Oheim et al., 1998, Steyer and Almers, 1999). The use of TIRFM is still limited by the

numbers of vesicles present in the intact cell at the glass cell interface. We observed in

our confocal experiments that most vesicles appeared close to the base of the cell and

this was also reported by Cuchillo-Ibanez (1999). As the number of vesicles in the

region of excitation of TIRF is high, complicated de-convolution and thresholding steps

are often required to resolve single vesicles. TIRFM has other theoretical advantages

over confocal laser scanning microscopy and multi-photon microscopy and these are

discussed in more detail in section 2.

1.2.5 Combinations

The combination of optical and electrical methods has only been successful with one

approach thus far. The use of a fluorescent styrene dye, FM 1-43, that partitions into

membranes adjacent to the solution containing it, have led to some interesting results in

combination with capacitance measurements (Smith and Betz, 1996). These have not yet

been translated into single vesicle events. In TIRFM optical monitoring of vesicles

occurs in the excitation field adjacent to the cover slip, while the carbon fibre electrode

is placed along side the cell; this complicates TIRFM when attempted in combination

with amperometry. In effect different areas of the cell are monitored and it is difficult to

make any one to one comparisons (Steyer et al., 1997). The combination of

amperometry and capacitance has, however, been very informative and has improved

our knowledge extensively (Chow et al., 1994; Chow et al., 1996).

1.2.6 Summary

In summary, each of these methods on its own can provide insight into the membrane

fusion event of single vesicles. The findings from one method can be compared to the

findings from another method and this enables a better understanding of the dynamics of
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membrane fusion. As each method gets more developed we will begin to understand

more fully the dynamics of the membrane fusion event associated with regulated

exocytosis.

1.3 Cell-free models

As discussed previously regulated exocytosis involves the highly ordered fusion of a

vesicle with the plasma membrane. The cell-free biochemical approach has established

the principles and molecular mechanisms underlying protein transport from the

endoplasmic reticulum (ER) through the Golgi to the plasma membrane (Alberts et al.,

2002). These in vitro experiments have been based on isolated membrane compartments

in combination with constituents of cytosol, including the appropriate energy source.

The principle of these in vitro assays has been applied to vesicles and the plasma

membrane to try to understand the interactions of the proteins and molecules described

in section 1.2. The first successful assay was developed in sea urchin eggs (Vacquier,

1975), however this assay has proved difficult to extend to mammalian cells. Further

work on developing a cell free plasma membrane model from which regulated

exocytosis can be triggered is required. The development of an assay to investigate

regulated exocytosis in a controlled environment will provide a powerful tool for

elucidating the roles of the proteins that are known to be associated with the vesicles and

the plasma membrane (Avery et al., 1999). Two recent papers that report promising

systems have nevertheless not resulted in a flurry of new work (Edwardson, 1998; Avery

et al., 2000).

In this section the two methods used for establishing a cell-free environment for

monitoring exocytosis from plamsa membrane will be discussed. The design of our own

method will be discussed in the methods section.
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1.3.1 Cortical Lawns

The sea urchin egg is the basis of this system. Prior to fertilisation the sea urchin egg has

a large number of large cortical secretory vesicles docked at the cytoplasmic face of the

plasma membrane. As the sperm fertilises the egg the intracellular [Ca2+] transiently

increases triggering a number of events. One of these is exocytosis of the cortical

secretory vesicles, their contents forming a fertilisation barrier around the egg (reviewed

by(Zimmerberg et al., 1999)).

Vacquier was first to use sea urchin eggs in a cell-free system (Vacquier, 1975). They

prepared a lawn of membrane by shearing the eggs attached to a polylysine-coated

surface using a buffer of similar composition to the intracellular compartment of the cell.

Once the cell contents had been washed away the egg plasma membrane and its attached

secretory vesicles were left attached to the polylysine-coated surface. Addition of

buffers with Ca2+ in micromolar concentrations triggered exocytosis of these attached

vesicles.

Crabb and Jackson (1985) later were able to add exogenous vesicles to such a membrane

lawn and achieve exocytosis (Crabb and Jackson, 1985). As these vesicles are large

(1mm) in size the events could be monitored by light microscopy. Other methods have

also been used to monitor these experiments, for example changes in turbidity. It has

been concluded that the disappearance of granules is due to fusion and exocytosis rather

than to vesicle lysis.

The ‘cortical lawn’ studies have been particularly helpful in characterising the

requirements of ATP for priming and Ca2+ for triggering regulated exocytosis. Some

progress in elucidating the fusion reaction has also been made but has not kept up with

the characterisation of the proteins involved in fusion. Very briefly some of the findings

include: (a) synaptobrevin, syntaxin, SNAP-25, synaptotagmin and rabs have been

identified in sea urchin egg cortex using antibodies raised against the mammalian

homologues; (b) incubation with tetanus toxin light chain cleaves the synaptobrevin

immunoreactive protein and this partially inhibits Ca2+ dependent exocytosis (reviewed
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by (Avery et al., 1999)); (c) Ca2+ disruption of the sea urchin SNARE complexes prior

to membrane fusion suggests that VAMP is not an absolutely required protein for

membrane fusion in this system (Tahara et al., 1998).

1.3.2 Permeabilised cells

Creating holes in the membrane of cells allows access to the intracellular cytoplasm.

Cells with such holes in the plasma membrane are termed permeabilised cells. As in

intact cells, exocytosis is measured by monitoring release of secretory product into the

surrounding medium or lipid mixing with fluorescent probe. Permeabilised cells retain

most of the cytoarchitecture involved in secretion and are at present the most useful in

vitro model for vesicle to plasma membrane fusion. However, the model is limited by

the size of the created pores.

There are a number of methods described for permeabilising cells (reviewed by (Avery

et al., 1999)). These techniques render the membrane of the cell permeable to exogenous

compounds. The techniques include the following:

1- high voltage discharges resulting in breakdown of plasma membrane

2- application of detergents (eg. digitonin & saponin);

3- pore-forming bacterial toxins (a-toxin, streptolysin-O); this utilises  the bacterial

toxin's ability to form a pore through the plasma membrane to allow entry of the

bacteria to the cell.

4- amphotericin B or nystatin, polyene antibiotics that form channels in cholesterol or

ergosterol containing membranes

5- ATP4- ; utilises the ATP receptors on certain cell types (Mast cells) to create

electrical access to the cell

6- Mechanical shearing forces (Klenchin et al., 1998)

a) Cracked cells with a single pass through a precision ball homogeniser
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b) Freeze-thawed cells, permeabilisation determined by the rates of freezing and

thawing the cells.

c) Secretory granule-plasma membrane complexes; prepared from cell

homogenates by centrifugation (Martin and Kowalchyk, 1997)

d) Sonication of cells attached to glass coverslips (Avery et al., 2000)

7- Patch clamp pipette with (as described in section 1.2.2)

a) whole cell dialysis

b) permeabilised membrane patch (using methods 2,3,4 and 5 above (Rae and

Fernandez, 1991))

Once a cell has been permeabilised by one of these methods the study of small effector

molecules and soluble proteins may take place. The different techniques described each

have different characteristics and the most suitable for the planned experiment should be

chosen. On the whole they are more suited to molecules that diffuse easily into the

cytoplasm and are not suited to experiments where essential cytosolic components may

wash out while the cell is permeabilised. However cell 'run down' after digitonin

permeabilisation has been exploited to identify the soluble proteins involved in

exocytosis (Morgan et al., 1993).

Cell permeabilisation techniques have been highly informative in the study of the

mechanisms controlling regulated exocytosis. Definition of the stages of exocytosis has

been one of the core findings from cell permeabilisation experiments. They have also

been instrumental in identifying regulatory proteins in the exocytotic pathway. Further,

other potential regulating factors have been investigated in permeabilised cells. The

roles of all the factors involved in regulated exocytosis are still far from clear and this

technique has several limitations. Washing out of cytosolic components occurs at

variable rates in different experimental conditions and varies between components. This

makes it difficult to control the depletion of certain proteins that rate-limit exocytosis

(eg. NSF and a-SNAP). Another limitation is that only the final fusion event can be

assayed. The intermediate steps cannot be accessed directly, thus the permeabilised cells
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can offer a vast amount of information in the kinetics of the final stages of fusion but

less in the priming, docking and triggering stages and offer no insight into the

cytoskeletal movement of vesicles. Studies on individual proteins are limited to those

where specific inhibitors or effectors are available (eg. SNARE cleaving neurotoxins).

As the upstream regulatory events cannot be monitored the effect of an applied

compound can only be interpreted at the membrane fusion stage. This may be obscured

by events leading up to membrane fusion and has led to multiple interpretations.

A very brief review of some of the findings from permeabilised cells follows.

Permeabilised cell studies were crucial in originally establishing that a rise in

intracellular Ca2+ is required to trigger exocytosis. Likewise the need for MgATP was

demonstrated. A number of cell types have been used in the experimental models,

including adrenal chromaffin cells, platelets, pituitary tumour cells, insulin-secreting

tumour cells and pancreatic b-cells. These studies have led to the definition of a number

of Ca2+ dependent steps leading up to exocytosis. There is an apparent difference in the

number of reported steps depending on the cell type and the method of permeabilisation

(reviewed by (Avery et al., 1999)).

The steps characterised in the PC12 cell line are as follows. Firstly distinct cytosolic

factors are responsible for mediating ATP dependent priming of Ca2+-activated

exocytosis, including phosphatidyl inositol-4-phosphate 5-kinase and

phosphatidylinositol transfer proteins. Similar requirements have been demonstrated in

chromaffin cells. The exact nature of the dependence on polyphosphinositides for

exocytosis is not well understood. Their involvement has been demonstrated in

mammalian cells and yeasts. They also play a role in other membrane trafficking steps.

Secondly, triggering of exocytosis has been documented. The SNAREs as previously

discussed have an integral role in exocytosis although whether they participate in the

fusion reaction per se is still controversial, but most evidence from animal systems

suggests that they are involved in the fusion process itself. The SNAREs can be

degraded by the use of Clostridial neurotoxins (tetanus and botulinum). The active light

chains of these toxins can inhibit Ca2+ regulated secretion in a variety of cell types in
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different permeabilised models. Work in Richard Scheller's laboratory has demonstrated

some of these principles in secretory granule-plasma membrane complexes (Chen et al.,

1999).

Thirdly, soluble Ca2+ binding proteins have been investigated with a degree of success in

permeabilised models. The role of Ca2+ Activator Protein for Secretion (CAPS) in

exocytosis was discovered, but remains to be fully determined (Martin and Kowalchyk,

1997). On the other hand it is far more difficult to investigate the membrane bound Ca2+

binding proteins, as these are not removed on cell breakage. Some experiments using

antisense oligonucleotides, over expression of protein fragments (eg synaptotagmin

fragments) and injection of peptides corresponding to domains of proteins have been

performed, particularly for synaptotagmin (Shin et al., 2002). The results of these

studies are difficult to interpret as high concentrations of the additive are required and

this often results in loss of function.

1.3.3 Conclusion

Current methods allow investigation of the final steps of exocytosis. The steps leading

up to the final event remain difficult to investigate with current cell-free methods.

Speculative pathways have been proposed from current knowledge (section 1.1.1) but

none of these has been fully documented experimentally and there are many large gaps

in our knowledge. Thus there is a need to develop a cell-free model that allows better

regulation of the pre-docking stages of vesicle transport as well as better access to

monitoring of the stages of exocytosis. This method or a number of methods need to be

able to investigate all the trafficking steps in vesicle movement from cytoskeleton to cell

membrane and the final regulated exocytotic event. Permeabilised cells have proved

very useful and will continue to provide insight into exocytosis but they do not offer the

possibility to manipulate fully the machinery of regulated exocytosis. The membrane

patch of the sea urchin egg is a good model but a mammalian cell membrane model

requires development for investigation of regulated exocytosis. This mammalian model

has thus far been fairly elusive to investigators.



50

1.4 Second Messenger (or Molecular) Manipulation of

Exocytosis

A number of molecular agents including toxins and drugs have been used to manipulate

exocytosis. These will be briefly described each and illustrated with a published

example.

1.4.1.1 Neurotoxins that block exocytosis

The different Clostridial neurotoxins each cleave one or more of the SNARE proteins

involved in exocytosis resulting in disruption of exocytosis. Tetanus neurotoxin (TeNT)

and botulinum neurotoxin (BoNT) B/D/F and /G cleave synaptobrevin/VAMP, but each

at a different point in the sequence. BoNT/A and /E cleave SNAP-25 at two different

sites in the carboxy-terminal, while BoBT/C cleaves both syntaxin and SNAP-25. Figure

1.4.1.1 demonstrates the site of action of the BoNT’s. Clostridial neurotoxins (CNT) has

been shown to cleave synaptobrevin, SNAP-25 and syntaxin (Meunier et al., 2002).

1.4.1.2 Neurotoxins that stimulate exocytosis 

a-Latrotoxin results in exocytosis by one of two mechanisms. Firstly it facilitates an a-

latrotoxin induced cation channel in the plasma membrane, the subsequent influx of

Ca2+ resulting in exocytosis. Secondly it enhances secretion by interacting with a Ca2+-

independent receptor for a-latrotoxin (latrophillin) and neurexin 1a (Bittner et al.,

1998). This action seems to be mainly one of placing the toxin at the  plasma membrane

and allowing it to bind to the plasma membrane and form the cation pore. However,

recent work has postulated that latrophillin may regulate secretion by slowing a discrete

rate limiting step and if bound by a-latrotoxin that the inhibitory effect is removed

(Bittner, 2000).

1.4.2 Molecules that interact with Ca2+

As described in section 1.1.3 Ca2+ is required for exocytosis. Ca2+ plays a role in

recruiting vesicles to the plasma membrane, docking of vesicles, priming of vesicles and
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in fusion pore formation and expansion. Manipulations in the Ca2+ concentration of the

solutions applied to whole cells, permeabilised cells or membrane patches allow the

study of the effect of Ca2+. The proteins that are thought to mediate the Ca2+ stimulus

can also be studied in this way. Martin and Kolwalchyk (1997) demonstrated that the
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Ca2+ -activated fusion mechanisms were preserved after cell homogenisation (Martin

and Kowalchyk, 1997). They also demonstrated that ATP and cytosol where required for

fusion of large dense core vesicles and plasma membrane.

1.4.2.1 ATP

ATP plays a role in exocytosis and is a required factor for exocytosis. ATP plays a role

in priming the vesicles through PI transfer protein and phosphoinostide kinases catalyse

the synthesis of PI(4,5)P2 which is required for Ca2+ triggered fusion (Avery et al.,

1999). ATP is also required as a co-factor in NSF and a-SNAP disassembly of the cis-

SNARE complex. Variations in the ATP concentration have been used to demonstrate

that there is a readily releasable pool of vesicles that are docked to plasma membrane

that do not require ATP to undergo membrane fusion (Chestkov et al., 1998).

1.4.2.2 Protein kinase C (PKC)

Phorbol ester PMA has been shown to stimulate evoked cathecholamine release from

adrenal chromaffin cells by increasing the size of the readily releasable pool (Gillis et

al., 1996). PMA activates PKC and also binds to munc-13 (Betz et al., 1998). By using

the PKC inhibitor bisindolylmaleimide is used to block the PKC ATP-binding site it has

been shown that the effect of PMA on exocytosis is due to PKC activation (Graham et

al., 2000).

1.4.2.3 Guanylate Cylcase (PKG)

Activation of PKG by nitric oxide slows down the amount of granule content released

(Machado et al., 2000). This is an interesting observation and if confirmed will

demonstrate the ability of nitric oxide to modulate the amount of granule content

released. The actions of nitric oxide on exocytosis remain controversial, as not all the

findings are consistent.
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1.4.2.4 Protein kinase A (PKA)

Activation of PKA with mild stimuli, b-adrenergic agonists, results in a slowing of

exocytosis similar to PKG activation by nitric oxide. Stronger stimuli, forskolin

treatment, result in an apparent increase in granule content. This may be due to two or

more granules fusing together prior to fusion (Borges et al., 2002). The underlying

mechanism seems to be PKA potentiation of Ca2+ entry to the cell.

1.4.3 Purified proteins

The ability to insert c-DNA into bacterial plasmids allows the production of purified

proteins or domains of proteins and antibodies to proteins. These purified proteins can

then be added to a permeabilised cell or membrane patch to investigate the effect. For

example, bacterially expressed soluble coil domain of neuronal VAMP/synaptobrevin

and syntaxin inhibit docked dense core vesicle release. The soluble coil domain formed

SDS-resistant complexes with endogenous SNAREs and thus prevented the SNAREs

anchoring the two target membranes together (Scales et al., 2000). Another example is

the SNAP-25 specific Cl 71.1 Fab fragment that have been demonstrated to inhibit the

sustained phase of exocytosis (release of vesicles after the initial release of the docked

vesicles of the readily releasable pool) after stimulation of an adrenal chromaffin cell by

caged Ca2+ release (Xu et al., 1999).
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1.5 Concluding comments

1.5.1 Reconstitution of Exocytosis

The goal of a cell free in vitro assay is to be able to reconstitute vesicle exocytosis on a

plasma membrane. A number of added components are required to produce the end

result and theoretically each of these can be manipulated to produce evidence about the

function of individual proteins and molecules involved in regulated exocytosis.

Preparation of vesicles from a number of tissues and cell types, including adrenal

chromaffin cells, have been described.  These isolated secretory vesicles have been

shown to be functional in that they can fuse with plasma membranes and they will

exocytose their contents. Preparation of cytosol from chromaffin cells has also been

described. The addition of isolated vesicles and cytosol to the membrane is the basic

requirement of the cell-free assay.

The manipulation of the cytosol to alter change the concentrations of known factors in

exocytosis, such as NSF, a-SNAP, ATP and Ca2+, and potentially other soluble proteins

should provide insight into the requirement and function of these factors. Further the use

of specific inhibitors of proteins (eg. neurotoxins that cleave SNARE proteins) or

specific effectors will further add to the assay as a tool to examine regulated exocytosis.

Modification of the vesicle attached (v-SNAREs) and other membrane associated

proteins by mutation or by labelling them with GFP would provide new information

about their interactions with plasma membrane attached proteins.

1.5.2 Proposal

To further current knowledge in the field of regulated exocytosis better methods of

investigating the interactions at the cell membrane need to be developed. These methods

should be robust and reliable to allow cell free investigation of regulated exocytosis in

mammalian cells.
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The aim of this project was to develop such a method. The basic requirements of this

method would include an optical technique that could acquire images fast enough and

with high enough resolution to image exocytotic events occurring in a sub-second time

frame and TIRFM was chosen for the features described in section 2. Subsequently this

method has been commended as the best technique to study granule motion (Borges and

Machado, 2002). A cell model for regulated exocytosis that is well characterised would

be an important requirement. Bovine adrenal chromaffin cells have been used in a

variety of such experiments and were chosen for use in our method development. A

further requirement is a means of adhering cells tightly to a glass coverslip allowing the

disruption of the membrane and retaining a membrane patch that remains closely

adhered to the glass. This has been described for other applications and the methods

required investigation in our particular setting.

Once developed the method would require validation by the current means of regulating

exocytosis, including demonstrable Ca2+ activation, ATP dependence and blockade by

neurotoxins. The images of single vesicles would need to be of reasonable clarity, these

vesicles would need to be tracked and be recorded during exocytosis by demonstration

of the flash in fluorescence as the dye leaves the vesicle. The ultimate experiment would

be the addition of prepared vesicles in a cytosol solution over the membrane patch and

being able to record exoctysois of these vesicles from the membrane patch. It would also

be useful to demonstrate the existence of two pools of exocytotically competent vesicles,

the readily releasable pool and the reserve pool.

In conclusion the introductory chapters have set the scene behind the idea of a

mammalian cell free model for the study of regulated exocytosis. Robert H Chow

initiated and produced the concept and funding was provided by a Sir Henry Wellcome

Commemorative Award for Innovative Research.
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2.1 Total Internal Reflectance Fluorescence Microscopy

Hirschfeld first described Total Internal Reflectance Fluorescence Microscopy (TIRFM)

in 1965 as a technique for selective surface illumination (Hirschfeld, 1965). Since then it

has been used for a number of applications in biochemistry and cell biology. The theory

of TIRF is described in this section along with its application to the development of the

method.

TIRF is a method of exciting fluorophores very near a solid surface, depth of field

between 100 and 200nm, without exciting fluorescence from regions further from the

surface (Axelrod et al., 1992). This overcomes the potential difficulty in observing

surface-associated molecules with conventional epi-fluoresence (in which the whole area

and depth has fluorescence excited) if there are non surface-associated molecules in the

adjacent medium. As the cell membrane and associated attachment proteins are in the

order of 30nm in thickness TIRF is ideally suited to investigating cellular trafficking at

the cell membrane (Axelrod, 2001).

2.1.1 Evanescent field

The evanescent field is a very thin electromagnetic field with the same frequency as the

incident light. This electromagnetic field is able to excite fluorophores near the surface

while not exciting those further away. The evanescent field decays exponentially from

the interface. The decay characteristic is defined by the refractive indices of the media,

incident angle and illumination wavelength. The intensity is also dependent on the

polarisation of the incident light. For an infinitely wide beam, the intensity of the

I(z) = I(0)e-z/d
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evanescent wave decays exponentially with perpendicular distance ‘z’ from the

interface. This is measured in units of energy per unit area, per second.

Fig 2.1.1 demonstrates the decay of the evanescent field as calculated for the BK7 glass

coverslips, interface with water and incident light at l = 488nm. These are

approximations for the conditions of our experiments.

d = l0/4p(n3
2sin2q-n1

2)-1/2

d , depth dependant on with l0, the wavelength of the incident light in a

vacuum and the refractive indices of the two media
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                                                 qc=sin-1(n1/n3)

2.1.2 Evanescent wave

Total internal reflection (TIR) relies on the physical properties of light that are described

by Snell’s law (figure 2.1.2). As a beam of light crosses from one medium to another

with a different refractive index it will be refracted. When the incident angle of the light

beam is above a critical angle (defined by Snell’s law) light will be totally reflected back

into the medium with the higher refractive index rather than pass through into the

medium with lower refractive index.  When the light beam reflects, an evanescent field

is created in the lower index medium (Axelrod et al., 1992).

The critical angle qc for TIR is given by:

Where n1 and n3 are the refractive indices of the liquid (lower refractive index) and the

solid (higher refractive index), respectively. (Use of n2 will be reserved for discussing an

optional intermediate layer below.) The ratio n1/n3 needs to be ≤ 1 for TIR to occur.

Figure 2.1.2 demonstrates the principal of Snell's law.  Incident light with q < qc will

refract through the interface with a refraction angle, also given by Snell’s law. There
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will be some reflection of the

incident light back into the

solid medium. For q >qc all of

the incident light reflects back

into the solid medium. Some

of the incident energy

penetrates through the

interface and propagates

parallel to the surface in the

plane of incidence. This

evanescent field is capable of

exciting fluorescence.

2.1.2.1 Intermediate

layers

Due to the higher complexity

of preparations needed for

laboratory measurements, the

theoretical bi-layer approach

may not always be

appropriate. For example a

cell membrane (lipid bilayer)

interfacing with a glass

coverslip is a complex

stratified multilayer system

consisting of glass, culture

medium, lipid bilayer and cytoplasm.

To consider the implication of a multilayer system a theoretical 3 layer system is

discussed briefly. The full consideration of the physics and mathematics of the

implication has been reviewed by Axelrod (Axelrod et al., 1992).
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For a three layer system with medium 3, refractive index n3, medium 2, refractive index

n2 and medium 1 refractive index n1, with light travelling from medium 3 to medium 1,

several features have been noted. Qualitatively there is no particular change to TIR. The

question of whether TIR occurs at the n3:n2 or the n2:n3 interface is interesting but

appears to have little importance in qualitative studies. This is because, in practice, the

n2 layer is often very thin.

The evanescent wave profile in medium 1 will follow the characteristic exponential

decay as given in the section 2.1.1. This will be the identical regardless of the refractive

index (n2) and thickness of the intermediate layer (medium 2). There will be a difference

in depth of penetration as this is measured from the surface of medium 3. Figure 2.1.2.1

demonstrates the potential TIR points in a simple diagrammatic format. Further, it

should be noted that irregularities of the intermediate layer could theoretically give rise

to incident light scattering in all directions. There may be an advantage in placing a thin

metal film as the intermediate layer, as this provides much greater intensity in a range

from 10-200nm from the metal surface, as is used in plasma resonance spectroscopy.

This is demonstrated in fig 2.1.2.2 (Axelrod, 2001). Potential advantages of a thin metal

layer include not having to use a collimated incident light beam and the production of a

highly polarised evanescent wave regardless of the purity of the incident polarisation.

Specialised coverslips with thin metal films applied by the manufacturer are available

commercially. A few of these where purchased to enable us to assess them for use.

Unfortunately they were not suitable for cell culture work.

2.1.3 Optical configurations for TIRF with a microscope

A number of systems have been designed for TIRF microscopy (Axelrod et al., 1992;

Oheim et al., 1999; Axelrod, 2001). These may use inverted or upright microscopes,

with or without a prism. Each of these will be briefly discussed with more detail

provided on the upright prism system that was in use in our laboratory. The excitation

incident light source may be from a laser or from an epifluorescent lamp.
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2.1.3.1 Inverted microscope with a prism

Fig 2.1.3.1 represents the basis of this design. The first four diagrams (A-D) show the

prism above the sample. The prism was in optical contact with the coverslip or

microscope slide. Optical contact was achieved with a drop of immersion oil or glycerol

with refractive index equal to that of the prism glass and coverslip glass. The prism

produces an incident light beam of greater than the critical angle, and hence TIR. Only
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air or water lenses can be used with these systems, as oil immersion will prevent internal

reflection because the refractive index of oil will not allow total reflection of the incident

beam at the chosen incident angle.

2.1.3.2 Upright Microscope with a prism

This is a convenient and low cost way of setting up TIRF. Figure 2.1.3.2.1 demonstrates

the instrument arrangement. A water immersion lens is used for biological experiments,

while any lens that does not require oil immersion can be used in other applications.

The water immersion lens can be immersed directly in the culture medium in which the

cells are growing and provides high quality images.
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This is the system adapted for use in our laboratory. We retained the light microscope

attachments and introduced the laser beam through an optic cable and holding device.

The holding device allowed 2 dimensional (X-Y) movement of the laser beam, allowing

accurate placing of the TIR area.  The microscope also had an epifluorescent lamp

attached to the rear of the microscope and a filter block allowing the insertion of specific

light filters to allow different excitation wavelengths. A water immersion lens (Zeiss

63X NA 0.9) with working distance of 1.4mm allowed us to place micropipettes onto

cells under imaging. A 70o prism was placed in an engineered holder allowing some

lateral (X- Y) movement above the condenser. This enabled us to produce a means of
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holding 35mm cell culture dishes in place above the prism. We could then produce a

small focussed area of TIR in the cell culture dish. The transmitted light fittings were

retained on the microscope allowing us to select cells and manipulate them with pipettes.

Figure 2.1.3.2.2 is an illustration demonstrating the configuration used in our TIRFM

experiments. The microscope is an upright-style instrument. For routine non-

fluorescence observation, a lamphouse is positioned below the microscope stage to

enable visualization of specimens through conventional techniques. To the right of the

microscopy body is an argon laser system. Control of the laser is achieved through

mechanical units and an electronic shutter linked to the controlling computer, The laser

is linked to the microscope stage through an optic fibre coupling. A cooled CCD camera

(Pentemax, Princeton Instruments) is attached to the microscope allowing detection and

digital image capture of the emitted light. Digital images collected by the camera are

processed and analysed by an accompanying computer workstation with specialised

imaging software from Universal Imaging Corporation. Figure 2.1.3.2.3 shows some

photographs of the instruments in use in our laboratory.

2.1.3.3 Prismless TIR

TIR without a prism can be achieved by using an objective with high enough numerical

aperture (NA). The incident beam must be constrained to pass through the periphery of

the objective’s pupil and must emerge with only a narrow spread of angles. This can be

achieved with focussing the incident beam off-axis at the back focal plane. The further

the beam is focussed off axis, the larger the angle of the beam emerging from the

objective. The maximum possible angle of emergence qm is given by a formula

containing the refractive index of the oil and NA.

NA = noil –sinqm  (n3sinq3) where 3 is the coverslip substrate.

For TIR to occur with an aqueous medium of refractive index n1, q3 must be greater than

the critical angle qc.  Thus to view TIR in water the NA must be greater than the

refractive index of water, i.e. > 1.33. This is achievable with the 1.4 NA lenses.

However it is more difficult within a cell with n= 1.38 as TIR is just possible due to the
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limitations to the angle of incidence and the refractive indices of the two media, giving a

deeper penetration of the evanescent field. The deeper evanescent wave results in higher

levels of scattered fluorescence propagation due to cellular organelles and other dense

heterogeneity's in the layer of excitation. Higher NA objectives are now available and

this is less of a problem than previously described. Fig 2.1.3.3 demonstrates the options

for prismless TIR.

2.1.4 Advantages of TIRFM

At the time this project was being planned TIRFM has a number of distinct advantages

over the two other methods described. Some of these advantages have been eroded with

the subsequent improvement in the technology of the other two microscopy methods.

The first advantage was in the area of excitation. Laser scanning confocal microscopy

excites a large area but only collects the image from the pinhole. This results in

significant photobleaching and cell damage. Multiphoton and TIRFM excite much more

specific areas of the cell resulting in less photobleaching and cell damage (Oheim,

2001).

The second advantage was in the speed of image acquisition. The TIRFM system used a

cooled CCD camera that was capable of imaging at up to 200 Hz. These rates were not

possible with either multiphoton or laser scanning confocal (~0.1-5Hz) imaging at the

time.  It was also noted above that the faster scan speed in laser scanning confocal

microscopy results in more background noise (Toomre and Manstein, 2001).

The third advantage is in section thickness. TIRFM has a thinner plane of excitation

(100nm) than the 500 – 800nm obtained in laser scanning confocal layers (Toomre and

Manstein, 2001).

The final advantage was in the actual cost of the equipment. The TIRFM system was

built in the laboratory at a reasonable cost whereas the laser scanning confocal

equipment and multi-photon equipment were purpose-built commercial microscopes and

could incur a significant cost.
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2.2 Other Microscopy techniques

Confocal microscopy and multiphoton excitation enable observation of the details within

cells by a process known as optical sectioning, without the artefacts that accompany

specimen preparation by physical sectioning. We used confocal microscopy for related

experiments to localise EGFP protein constructs. Due to slower acquisition times on the

Leica laser scanning confocal microscope, the technique was not suitable for the planned

experiments for exocytosis. Multiphoton excitation microscopy was not readily available

at the onset of this study. However as we have considered its use in future experiments a

description is included here.

When fluorescent specimens are imaged using a conventional wide-field optical

microscope, secondary fluorescence emitted by the specimen that appears away from the

region of interest often interferes with the resolution of the features that are in focus.

This situation is especially problematic for specimens having a thickness greater than

about 2 micrometers. The confocal imaging approach provides a marginal improvement

in both axial and lateral resolution, but it is the ability of the instrument to exclude from

the image the "out-of focus" flare that occurs in thick fluorescently labelled specimens,

which has caused the recent popularity of the technique. Multiphoton imaging also has

the ability to remove the out-of-focus flare (Oheim, 2001; White et al., 2001).

2.2.1 Laser scanning confocal microscopes

The laser scanning confocal microscopes employ a pair of pinhole apertures to limit the

specimen focal plane to a confined volume approximately one micron in size. Relatively

thick specimens can be imaged in successive volumes by acquiring a series of sections

along the optical (z) axis of the microscope. The excitation laser scans the specimen and

the emission light is filtered by a pinhole, whose aperture can be varied. Small pinholes

afford the greatest resolution with the confocal microscope, while successively larger

pinholes permit more of the fluorescence background noise to appear in the image.
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Further, the scan speed can be adjusted. Increases in the scan speed result in a

corresponding increase in the amount of background noise captured by the

photomultipliers.

Figure 2.2.1 illustrates the confocal principle, as applied in epifluorescence microscopy,

which has become the basic configuration of most modern confocal systems used for

fluorescence imaging. Light passing through a pinhole is focussed by an objective lens

at the desired focal plane in the specimen.

A second objective lens at a second pinhole with the same focus as the first pinhole

(confocal) allowed the emitted fluorescence from the chosen focal plane to be collected

in a low-noise photomulitiplier. The photomulitiplier generates a signal related to the

brightness of the emitted light. The second pinhole prevents light from other planes

reaching the photomultiplier.
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Limitations of laser scanning confocal microscopes include:

1- the whole field is illuminated by the excitation light (in common with wide-field

fluorescence microscopy).This results in a higher potential for photo-damage.

2- for individual vesicle imaging the depth of the confocal section is a trade off

between time resolution and signal resulting in the inefficient use of excitation

light leading to higher degree of photo-damage.

The laser scanning microscope continues to be widely used in cell biology imaging.

2.2.2 Multi photon microscopy

Two photon microscopy (TPM) is another method that allows optical sectioning. This is

true optical sectioning in that only the plane of interest is excited. TPM is not limited to

any particular plane but the plane remains thicker than in TIRFM.

The basic principles of multiphoton excitation are that at high photon densities, two

photons can be simultaneously absorbed (mediated by a virtual state) by combining their

energies to provoke the electronic transition of a fluorophore to the excited state. The

energy of a photon is inversely proportional to its wavelength. Therefore the two

photons should have wavelengths about twice that required for single-photon excitation.

This means that longer wavelengths, extending into the infrared region, can be utilised to

excite chromophores in a single quantum event, which subsequently emit secondary

radiation at lower wavelengths.

High photon densities are necessary in multiphoton fluorescence to ensure a sufficient

level of fluorophore excitation. Photon concentration must be approximately a million

times that required for an equivalent number of single-photon absorptions. This is

accomplished with high-power mode-locked pulsed lasers. Brief, but intense, pulses

emitted by the laser increase the average two-photon absorption probability for a given

fluorophore at a constant average incident laser power level. Minimizing the average

excitation power level reduces the amount of single photon absorption. It is these events
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that lead to a majority of the heating and some of the photo-damage that occurs during

fluorescence experiments.

Excitation in multiphoton microscopy occurs only at the focal point of a diffraction-

limited microscope. This provides the ability to optically section thick biological

specimens in order to obtain three-dimensional resolution. Individual optical sections are

acquired by raster scanning the specimen in the x-y plane, and a full three-dimensional

image is composed by serially scanning the specimen at sequential z positions. The

position of the focal point can be accurately determined and controlled by the software.

For this reason multiphoton microscopy is useful for exciting fluorescence in selected

regions inside the specimen. The highly localised excitation energy minimises

photobleaching of the fluorophores and reduces photodamage of the cell. This allows for

a longer duration of experiments when compared to laser scanning confocal microscopy.

Higher excitation wavelengths permit deeper penetration into biological materials and

reduce the high degree of light scattering that is observed at shorter wavelengths. The

disadvantages of the multiphoton microscope include in-plane photobleaching and some

photo-damage from single photons. The cost of these microscopes is a further

disadvantage. For single-vesicle events the scanning nature of the excitation limits the

suitability of the multi-photon microscope. However the possibility of using a localised

wide-field approach may overcome this limitation.
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3 Methods

3.1 Introduction to methods

The aim of the project was the development of an optical method of monitoring

regulated exocytosis in a cell-free environment. The methods described required

modification and adaptation over the time course of the project. Not all the possibilities

had been considered at the beginning of the project and thus there were a number of

methodological alterations during the first year. The descriptions in this text are of those

methods in use at the end of the first year when I was still working full-time on the

project.

The aim of the method development was to produce a cell-free environment for the

study of regulated exocytosis using the total internal reflectance fluorescence

microscope (TIRFM) as the analytical platform. For this I required a cell culture and

specialised culture dishes for the TIRFM. Methods related to these requirements are: a

primary cell culture; transfection of the cells with Semliki Forest Virus to enable

transduction of cDNA encoding fluorescent constructs of secreted proteins; and the

procedure for producing culture dishes and promoting cell adherence to glass.

Procedures for operating the microscopes, data collection and processing will be

described. Experimental methods for planned experiments will also be described.

Each method is described in this section with more detailed laboratory standard

operating procedures (SOP) for specific methods included for reference purposes, as

appendix B. Working COSHH forms for each of the main procedures are available in the

laboratory.

3.2 Cell Culture

Primary cultures of bovine adrenal chromaffin cells have been used for many studies of

regulated exocytosis. These are neuroendocrine cells that secrete adrenalin and

noradrenalin as well as nucleotides and various proteins from large dense core vesicles
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(LDCVs). The release process (exocytosis) can be studied at the single-cell level by

amperometry, membrane capacitance measurements and microscopy.

3.2.1 Primary culture

Bovine adrenal chromaffin cells were prepared from adrenal glands freshly obtained

from an abattoir. The collection was performed under the supervision of the health

inspector at the abattoir and all regulations were adhered to. The adrenal glands were

collected after the inspector had completed the health inspection of the offal. Excess

connective tissue and fat was trimmed with dissecting scissors, taking care to protect the

adrenal artery and vein. Once cleaned the gland was perfused with iced Locke’s solution

using a syringe and then placed in ice-cold Locke's solution and transported to the

laboratory covered by ice. In the laboratory the glands were perfused again with Locke’s

solution until no blood returned from the blood vessels. The gland was then filled with

digesting solution, Collagenase 0.25mg/ml (Worthington type 2) and DNAse 0.18mg/ml

(Mannheim) in Locke’s solution, and placed in a 37°C water bath for 5 minutes. This

was repeated 4 times before the gland was bisected by careful dissection to remove the

medullary portion .The medulla was placed in a petri dish containing a few millilitres of

the digesting solution. Mechanical dispersion of the adrenal medulla was performed

using scalpel blades and the dispersed tissue was placed in a sterile jar containing a stir

bar. The jar was then placed in the 37°C water bath and stirred gently for 20 minutes.

The larger remains of the dispersed and digested medullary tissue were removed from

the solution using forceps. The remaining solution was aspirated into a syringe and then

filtered through a 100 mm filter moistened (with digesting solution) into a 20 ml sterile

centrifuge tube. The centrifuge tube was placed in the bench-top centrifuge and spun at

700 rpm for 5 minutes. The supernatant was removed using the aspirator pipette. The

cell pellet was resuspended gently using 5 ml of culture medium, then a further 15 ml of

culture medium was addedto bring the volume up to 20ml. The centrifugation and

resuspension were repeated for a second time, and a cell count was carried out using a

haemocytometer after the second resuspension with 5mls of culture medium.

Calculations of cell numbers were then performed to allow an appropriate cell
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concentration for the planned experiment. The cells were then reconstituted in the

appropriate amount of culture medium. The dispersed cells were maintained in culture

for up to 5 days in a variety of different culture chambers and glass coverslips in

Dulbecco’s modified Eagle’s medium supplemented with 1% (v/v) 1x

insulin/transferring/selenium supplement (ITS-X), 0.1% penicillin/streptomycin and 1%

(w/v) sodium pyruvate (all from Gibco BRL Life Technologies) at 37°C in 95% air, 5%

CO2.

3.2.2 Infection protocol.

Approximately 1 x 106 freshly prepared chromaffin cells were plated onto the glass

coverslips attached to the bespoke culture dishes (see later). After 24 hours of culture at

37°C in 95% air, 5% CO2 the conditioned medium was removed and stored for later use.

Virus stock was activated by the addition of chymotrypsin A4 (250mg/ml; Sigma-

Aldrich) and digestion for 10 minutes on ice. Proteolysis was halted by the addition of

aprotonin (0.67mg/ml; Sigma-Aldrich). A 1:10 dilution of the virus stock was made in

the conditioned chromaffin cell medium, and approximately 1ml was overlaid onto the

cells. The cells were incubated with the virus for 2 hours at 37°C in 95% air, 5% CO2,

then the medium was removed and replaced again with conditioned chromaffin cell

medium.

Alternatively, the infection was carried out during the last reconstitution step of the

primary culture process. In this instance conditioned medium was not available and the

unconditioned medium was used. The cells were incubated with viral stock for 2 hours

prior to final reconstitution and plating into the bespoke dishes or culture wells. The

infected cells were cultured for specific times before experiments on the TIRFM or

confocal microscope.

3.2.3 Modifications to primary culture

Modifications to the original cell culture specification included:

(1) Changes in the perfusion of the gland;
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(2) Changes to the timing of the digestion steps;

(3) Modifications to the cell culture medium and;

(4) Alterations to the timing of the centrifugation steps.

The optimised cell culture method produced fairly consistent batches of cells that were

used for the experiments described.

3.3 Bespoke Dish preparation

The use of an upright microscope and the requirement for a glass coverslip for TIRFM

required the design and testing of bespoke dishes. See figure 3.3 for images of the

different dishes used and a brief description of the characteristics.

The requirements for the dishes were:

• That they could be used for cell culture, allowing cells to live for up to 5 days.

• The dishes had to be sterilisable.

• That a 16-19 mm glass coverslip could be attached to a dish in a manner that allowed

use of the microscope stage.

The microscope stage had been built to hold a 35mm Nunc plastic cell culture dish. The

original dish design used these 35 mm cell culture dishes that had a 12-14 mm hole

drilled through the centre of the base (fig 3.3 Ai-ii). The 19mm glass coverslip could

then be attached with Silgard and the dishes were sterilised under UV light.

The first modification was engineered initially by Dr M Oheim, who was hoping to

perform amperometry or capacitance measurements on cells at the same time as imaging

with TIRFM. He produced a dish that was flat at the base and the body angled back from

the opening where the coverslip could be placed. This design allowed for the use of

pipettes under the upright microscope lens (fig 3.3 A iii-vi). The prototype dish was

prepared in aluminium and the interaction between the aluminium surface and the

physiological solutions for cell culture was found to be deleterious to good cell survival.

For this reason plastic compounds were investigated. The first was a black vinyl
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compound (polyvinyl chloride) that was rigid, allowing the engineering department to

manufacture the dishes to the shape shown in figure 3.3 (A iii-vi), from 40mm diameter

cylinders of black vinyl. These dishes performed well until they had been through the

glass attachment and sterilising cycles a few times when it was noticed that the cells did

not survive well. The next product tested was Teflon“ (tetrafluoroethylene); a white

Teflon“ product was available in 40mm diameter cylinders. The dishes engineered from

the Teflon“ cylinder produced excellent results with the cells but often became slightly

misshapen during the heat-curing step for Silgard resulting in problems with the

coverslip attachment and fitment to the microscope stage. The final product was

engineered from aluminium and coated with black Teflon“ and these met all the

requirements (figure 3.3 A vi). The black Teflon“ used to coat the aluminium dishes

was available to the specialist-engineering firm for a pressurised spray coat application.

The test dishes were all engineered in the University of Edinburgh workshop under the

care of John Lissimore and Peter Frew. The Teflon® coat was applied by a specialist

engineering firm in Glasgow.

3.3.1 Preparation of Dishes for use on the microscope

The edge of the hole in the dish was lined with a thin layer of Silgard using an orange

stick as the applicator. A coverslip was fixed evenly over the hole using Silgard as glue.

The Silgard was allowed to cure overnight or cured in the 60oC oven for 1 hour and then

the glass was cleaned using an acid wash by soaking the dishes in a 0.1N sulphuric acid

for 1 hour followed by an alkaline wash by soaking the dishes in 0.1N sodium hydroxide

for 10 minutes and then rinsed with distilled water. The dishes were sterilised using 70%

alcohol by soaking for 1 hour. The dishes were then rinsed in distilled water and

collagen type I 0.4mg/ml (Sigma-Aldrich) was placed centrally on the glass and left to

incubate at 37°C for 1 hour. The remaining solution was then aspirated off the coverslip

and the coverslip rinsed with sterile filtered water and left to dry in a cupboard or drying

oven as seen in figure 3.3.
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3.3.1.1 Other glass treatments

Flame sterilisation and cleaning

The coverslip was picked up and dipped into 70% alcohol and then passed through the

flame of a Bunsen burner and placed into the culture well.

Protein treatment

Poly-L-Lysine 0.1mg/ml (Sigma-Aldrich), Collagen type IV 0.4mg/ml (Sigma Aldrich),

Fibronectin 0.01mg/ml (Sigma Aldrich) and a 1:1 mixture of collagen type 1 and IV

0.4mg/ml were placed on the glass. 3ml of protein solution was placed centrally on the

coverslip and left to incubate at 37°C for 1 hour. The remaining solution was then

aspirated off the coverslip and the coverslip rinsed with sterile filtered water and left to

dry as described above (Aplin and Hughes, 1981; Macklis et al., 1985).

Silane treatment

3-aminopropyltriethoxysilane (APTS) was placed on the cover-slips (one side) and then

left for 4mins. The APTS was then removed and disposed of with copious water down

the drain in fume hood. The coverslips were then washed carefully with distilled water.

The coverslips then had 1% w/v glutaraldehyde (diluted in HBSS) placed on them to

cover the area treated with APTS and then they were incubated at room temp for 30

minutes. A further washing step was then carried out by rinsing 3 times with HBSS prior

to sterilizing the glass with 70% ethanol by soaking them for 1 hour and a final wash

step with HBSS and filtered sterile water. The treated coverslips were then left to dry in

a drying oven (Aplin and Hughes, 1981; Nobles and Abbott, 1996).
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3.4 Microscopy

3.4.1 Cell Selection

The aim of this project was to create a cell membrane patch from which regulated

exocytosis could be triggered. To make a patch of membrane it was important to choose

living, healthy cells for the imaging experiments. Figure 3.4.1 demonstrates the

appearance of healthy cells in transmitted light. The cell should adhere tightly to glass to

allow rupture of the cell membrane and removal of the cell content. Tapping the side of

the microscope stage gently can test the attachment to the glass; a little or no movement

indicated attachment and large movements of the cell indicated poor attachment. The

cell shape was another important aspect in evaluating firm attachment. The cells that

appear flattened out, or spindle-shaped are usually the most firmly attached. The cell

should appear healthy. This is subjective and difficult to describe, but involves looking

at cytoplasmic features and the nucleus of the cell. I avoided cells that appeared to have

a very granular appearance, as these cells were often apoptotic. A dense granular nucleus

often indicated a dead cell. Under fluorescence microscopy, stained nuclear DNA

indicates an unhealthy or dead cell. Fluorescence in transduced cells is not always an

indicator of a good cell and the distribution of the fluorescence needs to be assessed. The

images of transduced cells in figures 3.4.2 a and b demonstrate appropriate cells imaged

on the confocal microscope.

3.4.2 Confocal microscopy

The use of the confocal microscope is described as it was used to establish co-

localisation of the LDCV-associated fusion protein DOC2b EGFP with the secretory

protein chromogranin A and later for similar experiments with pre-proANF EGFP.

DOC2b is a vesicle membrane associated protein that we investigated and the initial

paper was to demonstrate that DOC2b was co-localised to LysoTracker Red-stained
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vesicles in living cells and colocalised with chromogranin A in fixed cells (Duncan et

al., 1999), preproANF is a protein that is directed to large dense core vesicles for

exocytosis (Nguyen et al., 1988).  c-DNA for preproANF EGFP was obtained from Dr E

Levitan in Pittsburgh (Burke et al., 1997, Johns et al., 2001) and Dr R Duncan inserted

the c-DNA into the Semliki Forest Virus vector. The preproANF-EGFP has been shown

to co-localise to LysoTracker Red-stained vesicles in chromaffin cells (Greaves et al.,

2002).  I will include some of my own results for preproANF-EGFP and LysoTracker

Red stained vesicles that have not been published using the analytical method used for

the results presented previuosly (Duncan et al., 1999).  The usefulness of preproANF-

EGFP was investigated initially by myself but Dr I Matskevich performed the majority

of the confocal studies as well as the TIRFM studies with the preproANF EGFP

chromaffin cells. Later Ms J Greaves performed further confocal experiments.

The confocal microscope was run and managed by Ms L Wilson. Experimental planning

and cell selection for the experiment were very important and Ms L Wilson performed

the actual microscopy and image collection. For the purposes of localising the expressed

protein, a single healthy chromaffin cell imaged with the 63X oil immersion lens and

zoom 4X was ideal for demonstrating the required features. Another choice was a group

of cells as this provided more information about the level of expression of the

transfected c-DNA and for these localisation and expression experiments a zoom 2X

was required on the confocal microscope settings. Cell selection was important, as there

was no point in selecting cells that were not expressing the protein of interest in the

expected way. Obviously this requires knowledge of where the particular protein should

be distributed within the cell. Figure 3.4.2 demonstrates the appearance of DOC2b-

EGFP (a) and preproANF-EGFP (b), both of which should localise to vesicles,

preproANF-EGFP to the vesicle lumen as a packaged protein for exocytosis (Nguyen et

al., 1988) and as shown in the paper by Duncan et al (Duncan et al., 1999) DOC2b-

EGFP is cytoplasmic, but bound to the large dense core vesicles. Once the cell had been

selected a scan was made through the cell to collect data on distribution of granules. We
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needed to produce 3D reconstruction models for the localisation experiments and so thin

(500 nm) slices were standard.

Thereafter the procedure for experiments requiring the addition of a stimulatory medium

was as follows:

• Select the plane with most visible granules of correct size for any experiments.
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• Prepare the software for the fastest possible scans (or the appropriate time lapse)

• Decide on which cycle to use for adding medium for the chosen experiment.

• Begin the time lapse.

• Add the medium to the dish carefully so that the cell moves as little as possible.

• Save files as *.tif export files and an overall image of the fluorescent channel.

Analysis of the saved images was performed by selecting corresponding planes from the

red and green channels. The planes were then overlaid and merged producing a new

image. The areas that appeared yellow indicated compartments that had stained with

both fluorescent markers. The numbers of red and green compartments were recorded

along with the number of yellow. From this we calculated the total percentage of co-

localisation. Another method of determining co-localisation is demonstrated in figure

4.4.1 (Duncan et al., 1999). This produced very similar results that are not shown in the

thesis.

3.4.3 TIRFM

TIRFM was the method of choice for our experiments for the reasons described in

section 2. The microscope was situated in a purpose-built room and the instructions for

running it are included as an appendix to this thesis (Appendix A). As for confocal

microscopy the choice of cell for experimentation was important, since for TIRFM the

cells needed to be firmly adhering to give a good footprint visible in the 200nm layer of

excitation. The TIRFM was not as robust as the confocal microscope and it often

required fine adjustment to optimise performance. Figure 3.4.1 illustrates healthy-

appearing cells for TIRFM as seen by light microscopy. A number of experimental

procedures were planned for use and the description of these follows in section 3.6.
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Data collection from the microscope was initially in the form of large image files,

collected for each time point in an experiment. Good file management is essential for

managing the image data collection and a data file system was set up before collecting

images. It was useful to allocate a specific directory for collecting series of images as

this facilitated the running of journals (macros) within the Metamorph‘ (Universal

Imaging Corporation) software package that was used for camera control, image

collection and processing. It was a very versatile package and extremely good for

imaging.

3.5 Analysis of Images

Metamorph‘ software was used to analyse

the images for single vesicles. When patches

of cell membrane had been produced the

number of vesicles present docked on the cell

membrane was generally not high and this

permitted analysis without the aid of image

de-convolution. Most of the data presented

here were taken from vesicles that could

easily be identified without the aid of a de-

convolution algorithm. In whole cells there

were many more vesicles present and the use

of de-convolution was required. To define a

suitable algorithm fluorescent latex beads of

diameter of 200nm (similar in size to large

dense core vesicles) were used, to construct a

de-convolution algorithm using the

Metamorph‘ software. Figure 3.5.1 shows an

image of 200nm beads before and after running the de-convolution algorithm. The

method used to produce the data presented in the thesis was based on work done by a

colleague, Dr U Wiegand (Wiegand et al., 2002). I had attempted a number of different
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methods of assessing vesicle exocytosis on the membrane patches but none was as

successful as that adapted from Dr U Wiegand. The technique is described in figure

3.5.2 which demonstrates the concepts behind the method. The published method was

based on a higher frequency of imaging resulting in the ability to detect a “flash” of

exocytosis. My images had been collected at a lower frequency and had been averaged

to produce a clearer image. This made the exact analysis performed by Dr Wiegand

difficult to apply. I used a similar technique that demonstrated a clear drop in intensity

difference when a vesicle disappeared. This used two regions of different size, the first

being 7 X 7 pixels, covering the vesicle itself, and the second 16 X 16 pixels that

included the vesicle and a wider surrounding area. Metamorph‘ calculated the average
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intensity for each area and the difference between the two average intensities was

calculated in Microsoft Excel. The difference of intensity was then plotted against

decimal time to achieve a standardised time course. Decimal time is a conversion of time

units from the standard time to metric units. This produced a standardised axis for

plotting the time course data. Experiments in which Ca2+ was added to the Ca2+-buffered

medium had the time of Ca2+ addition recorded as time zero. With this method each

vesicle was viewed graphically as reported in the results.

3.6 Experimental Procedures

3.6.1 Cell adherence to glass coverslips

The aim of this experiment was to determine the best means of attaching the cell to the

glass so as to leave behind a membrane patch following rupture of the cell.

To allow good cell health and attachment it was important to clean any debris from the

glass. The use of flamed glass is well established for patch clamp experiments and acid-

cleaned glass is well described. As we needed to have a method that we could use for a

coverslip attached to a plastic dish, we wanted to investigate the acid washing methods

to ensure that the acid cleaned glass was as good for cell health as flame-cleaned glass.

The second part of this experiment was to determine the ability of cells to adhere tightly

to the glass surface. The experimental design was to prepare coverslips with different

coatings and to then subjectively examine cell health and adherence of the cell to the

coverslip. The methods have been described in section

Initially cell health and adhesion were investigated by:-

(1) Comparing acid-washed glass with alcohol (Saltzman et al., 1991) and flamed

glass as means of cleaning glass cover-slips.

(2) Comparing the four protein products used elsewhere (poly-L-lysine, fibronectin,

collagen types I and IV) (Macklis et al., 1985; Aplin and Hughes, 1981) on glass

coverslips placed in 12-well cell culture chambers.
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(3) Experimenting with silane treated glass (Nobles and Abbott, 1996).

(4) Subsequently cell adherence was investigated with the rupturing technique using

the acid-washed glass treated with protein.

3.6.2 Measuring exocytosis by TIRFM

The aim of this experiment was to measure exocytotic events by use of  TIRFM and to

establish the how long after cell culture we could still achieve exocytosis.

Cells plated on glass coverslips in the bespoke dishes were investigated on days 2-4 after

culturing. A single cell was chosen in each dish following the criteria outlined above.

Once the cell had been imaged by light microscopy, it was imaged by TIRFM to check

that individual vesicles could be seen in the evanescent field. The cell was then

stimulated by addition of a K+-containing solution to allow exocytosis. Potassium ion at

a concentration of around 60mM depolarises bovine adrenal chromaffin cells resulting in

regulated exocytosis. We planned to measure “flashes” of exocytosis as described by

Steyer and colleagues (Steyer and Almers, 1999) for these experiments indicating the

presence of regulated exocytosis.

3.6.2.1 Basic stimulation experiment

A bespoke dish of cells was removed from the incubator and stained with one of the

following acidophilic dyes: Acridine Orange (2 mmol/L) use 10ml per 2ml of culture

medium; LysoTracker Red™(40 nM) use 20ml per 2ml of culture medium; LysoSensor

Green™ (40 nM) use 20ml per 2ml of culture medium. The cells were then incubated

with the dye for 20 minutes. The bespoke dish was removed from incubator and the

culture medium with dye was aspirated, the cells were washed twice with HBSS warmed

to 37oC and the culture medium was replaced with 500 ml external solution (KCl

2.8mM, NaCl 140mM, CaCl2 2mM, Mg Cl2 0.2mM, HEPES NaOH10mM and glucose

10mM) warmed to 37oC. The bespoke dish was carefully transported to the TIRFM

laboratory and placed in the holder on the microscope stage. A cell was selected under

transmitted light and imaged with TIRFM. If the cell was suitable then the imaging
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sequence was selected and the cell stimulated by adding 500 ml of excitation solution

(KCl 60mM, NaCl 82,8mM, CaCl2 2mM, Mg Cl2 0.2mM, HEPES NaOH 10mM and

glucose 10mM) with a micro-pipette at the correct time in the sequence. Images were

collected for the required period of time for the experiment. Exocytosis was expected to

occur within 2 minutes of the addition of the excitation medium. The data stack was

saved.

3.6.3 Preparing the membrane patch and monitoring release of

the docked vesicles

The aim of this procedure is to produce a piece of membrane from a single cell that

remains attached firmly to the glass coverslip after removal of the opposing (upper) cell

membrane and most of the cell contents. These patches should theoretically still have

docked large dense core vesicles attached to them that could be released under the

correct stimulation. This method required development, as it had not been described

before in mammalian cells. Most methods of preparing cell membranes rely on

membranes produced from the rupture of a population of cells (Vacquier, 1975; Crabb

and Jackson, 1985; MacLean and Edwardson, 1992; Martin and Kowalchyk, 1997)  and

these ideas were adapted for single adrenal chromaffin cells. The measure of exocytosis

was originally taken to be the “flash” of dye being released from the vesicle but because

of difficulty in capturing images of flashes, we ended up using the loss of fluorescence

intensity (section 3.5) as a substitute (Steyer and Almers, 1999).

3.6.3.1 Basic membrane patch preparation

A bespoke dish of cells was removed from the incubator and stained with Acridine

Orange (2 mmol/L) and incubated for 20 minutes. The bespoke dish was removed from

incubator and the culture medium with dye was aspirated, the cells were washed twice

with HBSS warmed to 37oC and the culture medium was replaced with 500 ml modified

internal solution (L- glutamic acid 145mM, NaCl 8mM, Mg Cl2 1mM, MgATP 4mM,

HEPES NaOH 10mM, EGTA 1mM, GTP 0.3mM and glucose 10mM) warmed to 37oC.

The rupturing pipette was prepared, placed in the holder and flushed through with
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internal solution without MgATP or GTP. The bespoke dish was carefully transported to

the TIRFM laboratory and placed in the holder on the microscope stage. A cell was

selected under transmitted light and imaged with TIRFM. The rupturing pipette was

placed over the cell and the cell was broken open by using the jet of internal fluid and

the cell contents were washed away, leaving behind a patch of membrane adhering to the

glass surface. The imaging sequence was started and recorded. Stimulation of exocytosis

was produced by adding 10 ml 1M Ca2+ with a micropipette to overcome the EGTA

1mM at the chosen time point.

3.6.4 Other planned experiments

The grant proposal to the Wellcome Trust mentioned further experiments using

Clostridial neurotoxins to block exocytosis, addition of prepared large dense core

vesicles to the area above the membrane and the manipulation of certain cytosolic

proteins with addition of cloned proteins of interest. None of these were performed due

to the technical difficulties with the procedure, which made the method unreliable. This

will be discussed in detail in the discussion chapter.
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4 Results

The aim of the experiment was to produce a patch of cell membrane that remains closely

adhered to the glass coverslip after rupture allowing imaging with TIRFM. Following

this demonstration of exocytosis of the LDCV’s still attached to the membrane by Ca2+

stimulation was to be demonstrated by a flash of extruding dye. Parallel experiments on

the confocal microscope are also shown.

Sections 4.1, 4.2 and 4.3 review the results of the basic experiments performed prior to

the membrane patch experiments. The two methods for cleaning the glass are compared

in 4.1 by looking at the cell health both subjectively and by capacitance. Section 4.2

compares the subjective results from the different protein substrates used to assist the

cells adherence to the glass. The results of confocal experiments are given in 4.4 and the

results of the membrane patch experiments in 4.5.

4.1 Cell adherence and health under different conditions.

The two conditions investigated were acid-washed coverslips compared to flame-

cleaned coverslips. The flame-cleaned coverslips are used routinely in

electophysiological techniques and these were taken as the standard against which the

acid washed glass was compared. The requirement for tightly adhering cells for the

rupturing procedure meant that these experiments had to be carried out prior to any

microscope-based experiments.

The findings suggested that there was a slight improvement in cell attachment with the

acid-washed glass compared to the flame-cleaned glass. Capacitance measurements

performed on these cells showed no significant differences in the responses of cells on

the two different types of coverslip. (Personal communication Dr S Tapechum) As the

adherence and health are subjective findings actual results have not been reported, what

was important is that there was no obvious disadvantage presented by the use of acid-

washed glass when compared to flame-cleaned glass.
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4.2 Comparison of different protein substrates.

The results are reported in table 4.2.1. The results demonstrated that all the protein

substrates improve cell adherence compared with cleaned, untreated glass. There was a

slight preference for collagen type I from the results in table 4.2.1. Table 4.2.2 reports

the subjective appearance for health of the cells. From this table it becomes clear that the

advantage of collagen type I was the interesting finding in that it did not promote

fibroblast growth as much as did collagen type IV or fibronectin. This was an important

finding as the chromaffin cells, when well adhered, may appear similar to fibroblasts
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under light microscopy. Chromaffin cells have not been reported to proliferate under cell

culture conditions whereas fibroblasts are well known to proliferate in chromaffin cell

primary preparations.

The use of silane to treat glass prior to treatment with proteins was not very successful.

All the coverslips (control and protein treated) demonstrated poor cell survival on the

three occasions that this was attempted.

The final part of this experiment was to compare the adherence under rupturing

conditions. Only fibronectin and collagen treatments (type I, type IV and a mixture of

type I and type IV) were used for this part of the experiment. 5 cells were chosen from

each preparation for the rupturing experiment. The results shown in table 4.2.3 indicated

that the use of collagen type I alone was the most suitable preparation for good cell

health and adherence under the rupturing technique chosen.

4.3 Exocytosis experiments in whole cells

These were some of the earlier experiments carried out and as I was still learning the

technique the results are rather poor and have not been presented. However, this line of

experimentation was also undertaken by another member of the research group, Dr I

Matskevich, who performed a much larger number of TIRFM experiments on whole

cells, in parallel to my membrane patch experiments. These cells came from the same

primary cultures and the results demonstrated that our cell preparation was suitable to
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demonstrate exocytosis as published by others (Steyer, et al. 1997). A total of 28 cells

are recorded, 25 of these underwent exocytosis as measured by a flashes of exocytosis

on TIRFM. The video file 43 on the CD-ROM included with the thesis demonstrates the

flashes of exocytosis that were seen. The cells were transfected at primary culture and

experiments were done at 48, 72 and 96 hours. Both acridine orange and pre-proANF-

EGFP were used as vesicle markers. There was a lead-in period during which Dr I

Matskevich was becoming familiar with the experimental technique and when the results

were unreliable, and this period of time coincided with the time when I was performing

the bulk of my experiments. As the technique improved better results were obtained.

The next section covers the parallel experiments performed by myself on the confocal

microscope.

4.4 Confocal experiments with DOC2b-EGFP and preproANF-

EGFP

Confocal microscopy was performed with whole cells that were handled in the same

manner as those for the TIRFM experiments. Table 4.4.1 demonstrates the results from a

few cells transfected with DOC2b-EGFP cDNA. The results show that 98% of the

DOC2b-EGFP labelled structures were also labelled by LysoTracker Red. This indicated

that DOC2b is a vesicle-associated protein (Duncan et al., 1999). These results also

confirmed the usefulness of the Semliki Forest Virus vector (Duncan et al., 1999).
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The figure published in Duncan et al. (1999) is reprinted as Figure 4.4.1 and this

illustrates a group of cells and the technique used to evaluate co-localisation of the two

fluorescent markers.

The preproANF-EGFP experiments were

imaged by the same method and analysed

in a similar way. Table 4.4.2 shows the

results from a number of cells. These are

consistent with preproANF-EGFP being a

vesicle-packaged ‘cargo’ protein as all the

green areas co-localise with LysoTracker

Red and have a very punctate appearance. There is a 100% co-localisation of

preproANF-EGFP with LysoTracker Red while not every LysoTracker Red labelled

structure appears in the green channel. This is because vesicles containing preproANF-

EGFP are young ones, assembled after transfection of the cells, whereas LysoTracker

red labels the entire population of LDCVs, irrespective of age; furthermore this

acidophilic dye also labels other subcellular compoents with acidic lumens, such as

lysosomes and endosomes. The experiments reported here have not been reported

previously but similar results were published by another member of the research group,

Ms J Greaves (Greaves et al., 2002).  The purpose of these experiments was to confirm

that virally-transfected cells expressing preproANF-EGFP were healthy and that the

fluorescent marker could be detected. All of the cells investigated showed some degree

of expression of the fluorescent marker indicating that there was a high efficiency of

transfection. The relatively small number of vesicles labelled with preproANF-EGFP

was an important finding, as this would allow easier monitoring of the movement and

function of the tagged vesicle (Duncan et al., 2003).

These experiments led on to the confidence to start producing membrane patches with

labelled vesicles. These results are presented in the next section.
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4.5 Exocytosis from membrane patches

Table 4.5.1 provides a summary of the successful experiments on membrane patches. A

summary of the TIRFM experiments is shown in Table 4.5.2. Acridine Orange was used

most often as the fluorescent marker of the vesicle lumen and more detail of the success

and failure of these experiments is provided in Table 4.5.3.  A total of 179 cells were

examined with only 42 producing a successful result. These included 19 cells that were

ruptured for the membrane patch validation experiments as shown in table 4.5.1.  The

other successful rupturing experiments included observation of the membrane patch

without collecting data and membrane patches where it was impossible to follow

vesicles throughout the image stack because of movement of the coverslip during the

procedure. The initial whole-cell imaging where the successful outcome was seeing

vesicles with TIRF, imaging of cells transfected with DOC2b-EGFP to look for

evidence of transfection and a number of other once one-off experiments were listed as

successful in tables 4.5.2 and 4.5.3. The other 137 cells did not appear to secrete or were

not stimulated, for reasons that are unknown but that presumably reflect uncontrolled

parameters in the experimental process. This high failure rate of 77% is discussed in

section 5. The experimental failure rate in the rupturing experiments was slightly higher

at 80% and since rupturing required physical shearing of the cells, this was not an

unexpected finding. The reasons for experimental failure are not always clear-cut. For

example the cells that do not demonstrate exocytosis may be of poor quality from the

primary culture, may not adequately demonstrate TIRFM either before or after the

addition of the stimulating medium because of poor adhesion, the medium may be added

incorrectly or the collection and processing of the images to report exocytosis may be

inadequate. The categorization in table 4.5.3 is based on the comments entered in the

laboratory book. Due to the high failure rate both in my experiments and subsequently in

those of Dr U Wiegand  (data not shown) the more interesting further experiments, to

examine molecular interaction at the cell membrane, were not undertaken.
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Figure 4.5.1 illustrates the loss of total fluorescence and the appearance of the membrane

patch before and after the experiment. Images of the membrane patch are shown in the

panels on the right and the traces on the left are from a membrane patch and, for

comparison, a whole cell (in which addition of external Ca2+ cannot trigger exocytosis).

The video file 45 in the CD included with the thesis demonstrates the same cell pair

throughout the experiment. The video demonstrates the gradual loss of intensity in the

footprint during the time-lapse recording. The sudden loss of vesicles was also apparent.

Figure 4.5.2 shows a series of recordings of the fluorescence of individual LDCVs,

taken from a cell in which vesicles appeared to undergo exocytosis. The recordings are

superimposed so that the time of Ca2+ addition (time 0) coincides; exocytosis appeared

as a drop in the average intensity. Exocytosis was presumed to have occurred when the

intensity difference line dropped suddenly and continued at the lower level. A single

example of such a vesicle line (taken from a different cell) is shown in figure 4.5.3. This

particular cell has been excluded from analysis as there was some doubt regarding the

addition of Ca2+ to the medium (a drop of fluid was noted on the objective at the end of

the experiment and therefore it was not certain that the Ca2+ containing medium had in

fact been added). The second line on the figure shows a second vesicle that slowly loses
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intensity throughout the experiment. We can only speculate to the cause of intensity loss

but we need to consider photo-bleaching, alteration in vesicle pH and movement away

from the evanescent field as possibilities. Figure 4.5.4 shows fluorescence traces from

12 vesicles that appeared to fuse with the membrane. The variation in time between Ca2+

addition and fusion (shown as a rapid drop in fluorescence) was wide, perhaps reflecting

the unpredictable arrival of Ca2+ at the membrane-bound vesicle.  The fall in

fluorescence intensity was variable and there were large fluctuations in background

intensity. The total number of vesicles selected for investigation (Table 4.5.1) was
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117, of which 77 were from patches that had Ca2+ added at some point during the

observation and 40 had no Ca2+ added. A total of 12 vesicles were deemed to have

undergone exocytosis, 11 of these after the addition of Ca2+ and 1 when no Ca2+ was

present. Using a one-tailed Fishers exact test a p value of 0.04 is obtained indicating that

Ca2+ was an important requirement to the ability of vesicles to undergo exocytosis in

this experimental procedure.
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 4.6 Summary

The method development has produced a reliable means of producing chromaffin cells

adhering tightly to glass coverslips, allowing cell rupture and removal of cell membrane

and cell content. The experiments to demonstrate functionality of the membrane patch

have not been completed due to the high rate of variability in the experimental outcome.

The results presented here are encouraging and justify further development of the

method. The methodological problems described here and that are discussed in more

detail in the next section should not be insurmountable, and recommendations for

improvements are suggested in section 5.
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5 Discussion

In the introduction a number of potential methods for investigating exocytosis in a cell-

free environment were reviewed (section 1.3). The optical methods have produced some

successful experiments but none has resulted in major advances or discoveries. When

this is compared to electrophysiological methods, where much has been learned about

the dynamics of exocytosis in whole and permeabilised cells one realises that methods

using imaging techniques have been comparatively unproductive. The biochemical

approach developed in the sea-urchin egg model is an exception, but this has not yet

been successfully applied to a mammalian cell type. The lack of a biochemical

mammalian cell-free model and the difficulty with the optical methods highlights the

challenge of producing an optical cell-free assay for monitoring exocytosis.

The results from our experiments are encouraging as we were able to produce a model

system that appeared to function in accordance with current knowledge. The successful

experiments confirm previous work using different experimental approaches that

regulated exocytosis can be triggered under specific conditions. The experimental design

potentially provides an excellent platform for the investigation of the required factors for

regulated exocytosis, however, we reluctantly decided not to pursue this interesting

direction as the experiments did not appear to be robust in my hands nor in the hands of

my colleague Dr U Wiegand (data not shown). The main limitation of the experimental

process was our confidence in the equipment and the technique. This will be discussed

in more detail later in this section.

As the aim of this project was to develop a method for in vitro study of exocytosis the

discussion will revolve around the method development and the process of this method

development. Initially the features that demonstrated that the method fulfilled its task as

described in section 1.4 are discussed. The features of good experimental method are

then discussed in relation to the method under development. The weaknesses of the

method are commented on with suggestions for improvement and further investigation.
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5.1 Meeting the Aims stated in section 1.5

The method development met several of the aims stated in section 1.5, but not all of

them. Each of the aims mentioned is discussed under its own heading. Another

successful aspect of the method development was the development of a cell culture dish

that allowed healthy cell culture and also gave access to a pipette under the upright

microscope. These dishes have been used for other applications as well as continued use

on the TIRFM platform. The method for coating the glass with collagen has been

successful for the rupturing experiments and continues to be used for these experiments.

There could be improvements made in the dish preparation method and this is discussed

in section 5.2.

5.1.1 Demonstration of Calcium sensitivity

Table 4.5.1 shows that we are able to demonstrate a significant difference (p=0.039)

between Ca2+-stimulated patches and unstimulated patches with respect to exocytosis as

measured in this experimental design. This confirms that this in vitro system does

exhibit Ca2+-stimulated exocytosis and therefore meets this expected standard. This is an

important base for the rest of the method investigation as if this had not been confirmed

then further work on this method would have been difficult to justify. This measurement

is however rather a gross measure of the Ca2+ relationship with the membrane patch. The

technique used to apply Ca2+ was imprecise in that we cannot be certain of the exact

concentration of Ca2+ that reached the membrane patch. The diffusion time from

application of the Ca2+ containing solution to the Ca2+ free medium to the required

environment at the membrane patch is uncertain. Suggested improvements are made

later in section 5.3.2.

5.1.2 Blockade of regulated exocytosis by Clostridial

neurotoxins

These experiments were not performed, as we could not reliably record Ca2+-stimulated

exocytosis from every membrane patch. If we could not be certain that the exocytotic
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stimulus would work on each occasion that it was applied, we could not demonstrate that

by applying a Clostridial neurotoxin light-chain that is expected to inhibit evoked LCDV

release that we had in fact blocked exocytosis. This aim has therefore not been met.

5.1.3 Imaging of single vesicles, tracking of these vesicles and

the “flash” at exocytosis

Figure 4.5.3 demonstrates an example of single vesicles on a membrane patch. This is

similar to other published images achieved with TIRFM (Han et al., 1999;Oheim et al.,

1999; Steyer et al., 1997) and is comparable to confocal images of whole cells that we

obtained with the same cell culture techniques. This confirms the system’s ability to

visualise single large dense core vesicles. The stack of images available as a video file

(43) (data from Dr I Matskevich) on the CD included with this thesis demonstrates the

systems ability to follow a vesicle moving in the intact cell with the “flashes” of

exocytosis.  Movement of vesicles on a cell patch is shown in a video file (45). The

software tracking of these vesicles was a little less robust but with more use better

results would have been obtained. Finally we have images that demonstrate a flash when

exocytosis occurs. My own experiments only achieved this in whole cells, however Dr U

Wiegand (personal communication, data not shown) has successfully demonstrated this

in membrane patches. TIRFM has proved to be a successful technique for these

purposes. With improvements in certain aspects of the set-up it should be a very useful

technique in the future for imaging both living cells and cell membrane patches.

5.1.4 Addition of prepared vesicles to the membrane patch

The experiments to demonstrate the addition of prepared vesicles to the membrane

patches were not attempted, as we could not be confident in the reliability of the method

to produce repeatable experiments nor had we completed the confirmatory experiments

with neurotoxins.
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5.1.5 Demonstration of two pools of vesicles

We could postulate that the flashes seen are often from vesicles recruited from the

reserve pool of vesicles, as they seem to approach the membrane prior to undergoing

exocytosis. However we do not have enough data to adequately validate the method.

This aim has not been met.

5.2 Experimental Method Assessment

Good experimental method is not always well defined but yet is an important concept

that is essential to method development. For a method to produce results that are

acceptable to peer review it should meet certain quality standards. In method

development the need for the new method must first be established, the new method

must be evaluated against other methods that measure similar parameters and finally the

method must meet quality standards. The quality standards are based on reproducibility

and accuracy allowing other investigators to produce similar results. The basis of most

quality standards is a reference method but in new method development there is not

always a reference method. Performance parameters such as accuracy, analytical range,

analytical sensitivity, analytical specificity, blank reading, detection limit, interferences,

precision and reagent stability may be useful in assessing a method. The basis of quality

standards is often a comparison with reference methods. When no reference method is

available what quality standard is appropriate? Repeatability and reproducibility are the

basics of quality control and quality assessment and thus these must be the principal

tests of a new method.

To what extent does the method we have developed method meet the criteria described

above? The need for a different approach to measuring exocytosis and the proteins

involved in regulated exocytosis has been proposed in the introduction. There are many

unanswered questions and much more knowledge is required to finally establish the

exact mechanism of regulated exocytosis. The introduction also reviews a number of

other methods of monitoring regulated exocytosis and we can compare what we find

with the knowledge gained from other experimental methods. There is no reference
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method for comparison and thus an alternative, the response to well documented stimuli,

was chosen for comparison, the responsiveness to change in free [Ca2+] at the

cytoplasmic side of the cell membrane. This is well documented in a variety of systems

and is therefore the most robust measure of the ability of the method to reproduce

regulated exocytosis. As demonstrated in the results section the method does in fact

meet these criteria but it fails on the reproducibility and repeatability criteria in that only

4 out of the 13 membrane patches actually demonstrated a vesicle that underwent

exocytosis. It is also of concern that, for various technical reasons, more than 75% of

attempted patch experiments yielded no image data at all. It was because of this high

experimental failure rate that the clostridial neurotoxin experiments were not performed

and because we could not validate the method by the neurotoxin method the other

planned experiments were not performed.

5.3 Limitations of the method

The fact that so many experiments failed completely is the most worrying issue and this

is discussed in the following section. As the method has four main areas of potential

failure these will be discussed individually (Table 4.5.3). These areas of weakness have

mostly been identified, and probably none is insurmountable, although they all posed

problems at the time that the work was being carried out.

5.3.1 Cell Culture

The method is based on a primary cell culture that in an individual’s hands was

reproducible but still suffered from some seasonal and circumstantial variation. When

different members of staff undertook cell culture a wider variation was noted. This can

be overcome by training an individual to perform the primary cell culture on all

occasions but the seasonal and circumstantial variations are difficult to control and

difficult to quantify. We and others have noticed changes in our cell culture depending

on the season. Possibly this is indicative of changes to the bovine adrenal axis

(hypothalamus-pituitary-adrenal) brought on by exposure to sunlight. Use of a cell line

may be the way to improve this aspect of the method but no cell line has LDCVs in the
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quantity and size of bovine chromaffin cells. As imaging ability increases to allow better

resolution of smaller vesicles, cell lines such as PC-12 cells will become more useful for

these experiments. These cells contain smaller secretory vesicles than do chromaffin

cells, but a larger proportion of them are docked at the plasma membrane; this is not

necessarily an advantage for TIRFM studies, since it greatly increases the complexity of

image analysis.  Other secretory cells that have a better propensity to growth and

adherence, such as endothelial cells or AtT-20s, may also improve certain aspects of the

experimental process. Dr U Wiegand is currently working with AtT-20 cells with some

success (personal communication). This mouse pituitary cell line has fewer LDCVs than

are found in chromaffin cell (only a few hundred per cell) but they are of about twice the

diameter of chromaffin granules.

The cells demonstrated different survival patterns in the different bespoke dishes that

were produced and also in the standard cell culture dishes. Some cultures produced good

batches of cells while others were very poor. Attempts to improve cell survival included

variations in the medium, supplements and actual technique of primary culture. The

description in the methods section (3.2s) is the one that I found produced the most

reliable batch of cells.

The bespoke dishes required investigation to find a combination of chemical and

physical treatment that was compatible with reasonable cell survival. In some instances

the cells did not survive in any number beyond a few hours whereas in others we had a

much better result and occasionally found cells surviving up to 7 days (data not shown),

which matched untreated commercial cell culture dishes. Tables 4.2.1 and 4.2.2 cover

these aspects of the investigation. The use of collagen type I was continued throughout

the experiments and the data on cell survival (Table 4.2.3) does not include the cells

cultured for the rupturing and experimentation phase of the method development.

The bespoke dishes performed well on most occasions but there was a degree of

difficulty in preparing standardised dishes on all occasions. A more robust dish

manufacturing process with demonstrable quality control would improve this aspect.

Again this could be achieved by training an individual to perform the task on a regular
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basis to a standardised protocol. The step that was probably most important and most

variable was protein coating. As this step relies on the proteins attaching to the glass

surface as the medium evaporates, the final product can have variable degrees of protein

layering. Using a liquid spray application and quicker drying steps would achieve a

more even and reliable coat. Such methods are difficult to establish locally but a

commercial organisation with specialised equipment would be able to produce the dishes

in this way. The cost of producing these dishes commercially will be prohibitive until

there is a widespread demand for them. With the advancement of microscopy techniques

there may well come a time when this is a feasible product.

5.3.2 Rupturing of adhered cells

Rupturing of the cells to produce a cell membrane attached to the glass worked well

once the technique had been practised. Initially attempts were made to lance the cell

with a pulled pipette but this technique did not leave visible cell membrane on the glass

surface. The technique described in the methods, which used a jet of fluid over the cell

to rupture the membrane, worked well on most occasions. One problem was that cells

that were poorly attached to the glass surface rolled away rather than rupturing. It was

noted on more than one occasion that these cells left behind a fluorescent footprint that

may well have confounded the experimental technique. This was a particular problem

with LysoSensor Green and also noted with Acridine Orange. It has been demonstrated

that cells do not adhere smoothly to glass or other surfaces and TIRFM appears to be the

best method for investigating adherence proteins and contact regions of cell membranes

(Reichert and Truskey, 1990). The footprint noted may well be residual dye in

compartments between the cell membrane and the substrate. The footprint did not seem

to be an issue with cells expressing preproANF-EGFP and this more specific vesicle

marker is recommended for future work, although it has the disadvantage that the

fluorescence of LDCVs is much less bright than when they are labelled with the

acidophilic dyes. Once ruptured the cellular components were washed away with a jet of

fluid to leave behind a patch of cell membrane with attached vesicles and cytosolic

components. The membrane did not reseal immediately as the medium in which the cell
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was ruptured was Ca2+-free: a Ca2+ chelator was present in a concentration well above

that of Ca2+ likely to be released from intracellular stores when the cell was ruptured.

Initially the cell was ruptured without washing the content of the cell away from the

membrane attached to the coverslip. In these cells it was noted that the membrane

resealed once Ca2+ was added back to the solution. This is not unexpected, as it has been

shown that Ca2+ is important in resealing of injured cell membranes (Steinhardt et al.,

1994). The force of the jet of fluid from the pulled pipette often resulted in the

membrane lifting from the glass. This technique required practice but with regular use

produced enough cell membrane patches for experimental use. Injection of fluid was

done manually as described in the methods section. One improvement would be with the

use of a pressure injector allowing a constant and even jet that may produce more

reliable results. Further use of the pressure injector would be the application of the Ca2+

containing medium and the other experimental media (reconstituted cytosol, vesicles and

other molecules of interest). In our experiments we relied on Ca2+ diffusing to the

membrane patch after being applied with a pipette to the medium in the cell culture dish.

This technique, Ca2+ addition by pipette, did result in a number of failed experiments.

Initially the increased volume of fluid resulted in focus drift and later when smaller

volumes were used there were the occasional experiments in which the drop of Ca2+

containing fluid was found on the edge of the dish above the culture medium. Overall

the technique worked but for a more reliable method the other stages of the planned

experiments would have required the development of a precise method of applying the

experimental media. As mentioned above a pressure injector could be used for this

purpose, allowing a more controlled application of medium into the direct environment

of the membrane patch.

5.3.3 Vesicle Staining

Visualising LDCVs by fluorescence microscopy requires some form of vesicle labelling.

Acridine Orange, an acidophilic dye, was used most commonly in my experiments.

Other acidophilic dyes such as LysoTracker and LysoSensor dyes were tested and some

time was spent investigating the use of cells that were virally transfected so as to express
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the fluorescent secretory chimeric protein preproANF-EGFP. My experiments with

preproANF-EGFP demonstrated that it did label vesicles suitably. Most of the early

TIRFM experiments with the preproANF-EGFP construct were performed by Dr I

Matskevich and later continued by Dr U Wiegand. The reason for investigating at an

alternative label was the non-specificity of labelling by the acidophilic dye, which

results in cellular compartments other than LDCVs, such as lysosomes and endosomes,

becoming fluorescent. Further the footprint effect (when cells rolled away) of the

acidophilic dyes had been noted and a means of avoiding this complicating area of

fluorescence was required. The fluorescent chimeric protein, introduced by Dr E Levitan

in Pittsburgh, seemed an ideal candidate as it is specifically targeted to vesicles for

regulated exocytosis (Burke et al., 1997;Johns et al., 2001). Dr Levitan kindly provided

me with the cDNA, and Dr R Duncan then inserted the cDNA into the Semliki Forest

Virus vector that allowed us transduce chromaffin cells with great efficiency. Much

exciting work has come from this in the hands of other members of the research group

(Duncan et al., 2002; Greaves et al., 2002; Wiegand et al., 2002; Duncan et al., 2003;

Wiegand et al., 2003).

5.3.4 Equipment issues

The microscope was a bespoke unit purpose built for these experiments by Dr G

Bodammer, a colleague with training in physics. It was limited in that there was a large

proportion of downtime and it required regular adjustment to keep it working. Errors in

the adjustment of the laser, fibre optics, prism placement and piezo focus device all

contributed to physical mishaps in the experiments. Further the microscope stage was

occasionally affected by vibration resulting in lateral movement of vesicles. The most

difficult problem, however, was the drift in focus during time-lapse experiments. After

much consideration the problem was diagnosed to be the weight of the camera bearing

down on the focus mechanism of the microscope. This resulted in a slow drift in the

focal plane that affected the fluorescence intensity of most of the experiments. With

some engineering a counterbalance device was rigged into the microscope stage. This

eventually produced a steady image that was suitable for analysis. Adjustment of the
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counterbalance weight was still required on occasion. More recently commercially

produced microscopes with purpose-built digital cameras have become available. It

would be interesting to see if they are more reliable for experimental purposes as we had

experienced a 19% (Table 4.5.3) failure due to microscope equipment problems.

Imaging software and the interface between the digital camera and the computer created

another group of problems related to equipment. Data transfer from the camera to the

computer was not usually an issue. The frequency of imaging was limited by the data

transfer rate to 200Hz but this did not produce particular problems in our experiments as

imaging was done at a lower frequency. The software package, MetaMorph‰ (Universal

Imaging), usually produced good images and allowed analysis. On occasion good

experimental data was lost due to errors in writing data to the hard drive. This occurred

when the software application crashed due to a processing error. Few experiments were

lost in this way (1%) but this was particularly frustrating if all the other factors had

worked satisfactorily. All the computing issues will presumably be improved as

technology advances. Already computer processing speeds have increased and the

available hard drive space is no longer an issue now that larger capacity hard drives and

better quality CD writers have become available.

Data analysis was limited by the protocol that I used to collect data and work carried out

later by my colleague, Dr U Wiegand, achieved a better confirmation of exocytosis. I

routinely employed a short burst of high frequency imaging and then created an average

image from 4 images taken in sequence. All the final images presented in the results

section are constructed from a series of 4 images taken as fast as the camera was capable

(25ms exposure per image and using half the CCD chip for each image with a data

transfer occurring from the one half while the other half was exposed, resulted in the 4

images being collected in approximately 120 ms) and then averaged. The series of

averaged images was then analysed for vesicles as described in the methods. This was

limited because Dr U Wiegand has subsequently demonstrated that by using the

individual images one can distinguish between vesicles that exocytose and those that

simply move away from the cell membrane (area of TIR excitation). The ‘mushroom
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flash’ (Nature, issue no.6928, cover picture) is another way of presenting such data.

Some of the first images to be analysed in this way were those produced using

preproANF-EGFP transfected into bovine chromaffin cells and imaged on the same

microscope by Dr U Wiegand. For future experiments it would be recommended to

collect the images individually at predetermined frequency that is shown to allow

analysis as described by Dr U Wiegand (Wiegand et al., 2002).

5.4 Recommendations for future work in this field

The total number of experiments that produced a result that could be analysed was small

but the results were interesting and do offer the potential further development of the

method. Most importantly the method does demonstrate the sensitivity of vesicle fusion

to the free Ca2+ concentration and it would be interesting to establish the [Ca2+] that was

able to release the vesicles attached to the membrane in this system, as has been done

using permeabilised cells and by flash photolysis of patch-clamped cells (Smith et al.,

1998). Considering that many of the problems with the method are simply related to

technical limitations the potential for further work on this method still exists once the

technical limitations are overcome.

5.4.1 Chromaffin cells

If further work with this method is to be attempted with chromaffin cells it would be

sensible to study conformational changes in the chromaffin cell architecture that occur

when the chromaffin cell flattens itself against the glass. Use of dopamine-beta-

hydoxyalse as a chromaffin granule marker could identify where in the flattened cell the

granules lie, if required studies of fixed cells to determine cytoskeletal changes may be

interesting. Further the effect of the solution used for rupturing should also be

investigated in the chromaffin cells to look at the effect of the high potassium

concentration. We presumed that by having a 1mM calcium buffer in the solution that

even if the cells depolarized that the chromaffin granules would not undergo exocytosis

as the Ca2+ signal would not occur. It would be therefore be beneficial to demonstrate

the presence of chromaffin granule at the cell membrane in fixed cells that had been
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exposed to the internal solution. This could be done with confocal microscopy using one

of the vesicle markers or by electron microscopy.

The effect of the collagen type I coating of the coverslips on the physiology of the

chromaffin cells should also be investigated. Capacitance measurements of cells on the

coated coverslips should be compared with uncoated coverslips. Both cell configurations

(normal round chromaffin cell and flattened chromaffin cell) should be investigated as

the capacitance measurements are expected to be different.

5.4.2 Solutions

The solution used for rupturing the cells requires further consideration. The solution

used in these experiments used a concentration of potassium ion that would under

normal circumstances depolarise the cell, allowing [Ca2+] to enter through the calcium

channels and thereby triggering exocytosis. The calcium buffer was presumed to block

the signal for exocytosis but this should be confirmed by a biochemical assay. Other

supplements that could be added to the solution include protease inhibitors to block the

effect of proteases released on cell rupture and a reducing agent to neutralise the

oxidative products released on cell rupture. These factors may allow better functioning

of regulated exocytosis, however the changes would require experimental evidence to

confirm this. The ionic components of the solution could also be adjusted, particularly if

[K+] is found to allow Ca2+ into the cell following depolarization. Use of Na+ is a

possibility with a lower amount of K+. A control solution for Ca2+ induced exocytosis

should also be formulated and here Mg2+ could replace Ca2+.

5.4.3 Membrane patch preparation

Improvements to the dish preparation could be made but for the purposes of these

experiments they are adequate, as is the method of applying a collagen coat. The

primary cell culture is suitable but the use of a line of cells that naturally adhered to

glass/collagen better than chromaffin cells would be recommended. These cells would

need to demonstrate regulated exocytosis and be able to direct the preproANF-EGFP to

the appropriate vesicle. PreproANF-EGFP would be the recommended fluorescent



114

marker as it specifically labels a small population of LDCVs (i.e. those assembled

between cell transfection and the imaging experiment – usually 48h). This amounts to no

more than 150 vesicles per chromaffin cell (Duncan et al., 2003) making it easier to

follow and analyse the marked vesicles. It also does not produce the footprint under the

cell membrane that was noted with the acidophilic dyes.

Membrane patch preparation could be improved by the use of a pressure injector

producing a more regulated flow of medium. The addition of stimulatory media,

prepared vesicles, protein products and neurotoxins could also be done with more

precision with a pressure injector.

5.4.4 Imaging

Imaging of the experiments could continue with TIRFM but as the laser scanning

confocal and multi-photon microscopes now have faster acquisition speeds the

advantage of the purpose-built TIRFM equipment is less. Both the other systems could

be investigated for suitability for the planned experiments as the equipment is now more

readily accessible. As the rupturing technique requires a number of other fitments to the

microscope stage the equipment may have to be dedicated to this work. The

commercially available TIRFM equipment could also be investigated, as it may be less

prone to some of the problems we faced with the equipment at our disposal.

Finally image data analysis is improving with more powerful and more specialised

computers. My experience with these is minimal but much more analytical work is now

possible than when this project started.
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Appendix A

The TIRF Setup -- a guide

Georg Bodammer

20. August 1998

Modified

Andrew Don-Wauchope

14. May 1999

System Start-up

Decide if epifluoresence will be used. If so, then switch on the mercury lamp before switching on any

other equipment.

CAUTION! Mercury lamp generates an electromagnetic wave that can damage  electronic

equipment that is powered.

1. Ensure that microscope camera shutter is closed (i.e. beampath to oculars is open)

2. Switch camera cooling-unit on.

3. Switch camera on.

4. Switch piezo-focus device on. (not yet linked to software)

5. Start computer. [Screensaver password is 'sommer'.]

6. Switch Uniblitz shutter on, flick the reset button, make sure shutter is closed (when both the green and

red light on the right hand side of the controller are off).

7. Start MetaMorph and ensure that software and hardware are synchronised, i.e. the physical shutter

state corresponds with the state the software thinks the shutter is in by opening the window Set shutter

state from the Devices menu.

8. Make sure that heat indicator on controller shows -20. Should be running for half hour for optimum

cooling.

9. Activate door interlock system and insure laser warning light in the corridor is illuminated.

10. Turn on cooling water supply.

11. Turn on 3-phase power behind apple stand.

12. Ensure that on the laser control panel the current control dial is set to its highest level (fully to right),

the light control dial is turned fully off, and power selector pushbutton .2 W is pressed. Also, check

that the Autostart button is pressed.

13. CAUTION! Ensure again that mechanical shutter is closed and the prism is in its proper

position on the microscope stage! Permanent damage to your eyes is otherwise possible.
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14. Insert safeties key and activate laser control panel. The warning about too little water flow should

disappear after a few seconds. If not, try to adjust the water pressure by closing/ opening the valve at

the short-circuited taps. Once all warning lights have disengaged press start on the control panel.

After approximately 30 seconds the laser will have the potential to lase as indicated by the upper bar

strip.

15. If the laser power is too high, the control panel will indicate an overpressure fault. Do not operate the

laser for any length of time in this regime. The fault condition will be reset after turning the laser

power (in these circumstances, the light regulator dial) below the fault indication threshold.

16. CAUTION: If any other fault (apart from the above mentioned ones) conditions occur, reduce laser

power immediately and shut system down.

2. System shutdown

Emergency procedure

1. Stay calm. Move towards exit sign/ door and press emergency shutdown switch that is located to the

right of the door.

2. Vacate the room, make sure door closes behind you.

3. Raise the alarm.

Scheduled shutdown

1. Set laser light regulator dial to lowest level. Press off switch on the control panel. Remove key and

leave in secure place.

2. Raise microscope turret.

3. Switch 3-phase power at main isolator panel off.

4. After 5-10 minutes switch off laser cooling-water.

5. Shut computer down.

6. Switch camera and it's cooling water unit off.

7. Switch Uniblitz shutter off.

8. Switch piezo-focus driver unit off.

9. Remove culture dish.

10. Clean prism.

11. Reassemble microscope stage.

3. Trouble shooting
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Laser

1. Fault: low water flow rate. Solution: close valve at short further to increase water flow through

recirculation system. Make sure you do not cut off flow completely.

2. Fault: water high temperature. Solution: shut laser system down and contact departmental supervisor

Bill Mitchell.

3. Fault: overpressure. Solution: reduce laser light power.

4. Fault: laser does not lase after pressing the start button.

4.1. Solution: check for faults on the laser power control panel and look under the relevant section

above.

4.2. Cause: have you waited for less than 30 seconds? Solution: wait for at least 30 seconds after

pressing the start button.

4.3. Cause: has the door interlock been activated? Solution: activate door interlock.

4.4. Cause: laser mirrors are not aligned properly. Solution: realign laser mirrors following the

procedure outlined in the laser handbook: coarse vertical alignment. If you see a bright flash

whilst wobbling the rear mirror using the big handle on top of the laser case at the rear, stop

wobbling and try to find lasing conditions with the wavelength selector. DO NOT TOUCH the

rear mirror adjustment screws.

Optics

1. Fault: low light level at fiber output.

1.1. Cause: shutter closed. Solution: Check both shutters (i.e. the shutter at the end of the laser tube

and the mechanical external shutter).

1.2. Cause: low laser power. Solution: increase laser power. CAUTION: do not exceed maximum

power ratings for fiber optics (500 mW).

1.3. Cause: neutral density with too large ND number in use. Solution: change to lower ND number

filter.

1.4. Cause: optical fiber not optimally aligned. Solution: realign optical fiber following instructions

in the fiber launcher manual. Usually, the fiber alignment only needs to be optimised.  This is

accomplished by adjusting the two screws on the launch block downstream from the laser. Make

only tiny adjustments. The assembly is very sensitive.

If small adjustments do not increase throughput significantly, remove fiber from fiber holder.

Insert alignment support tool with pinhole towards laser. Make sure pinhole is clean and open.

Maximise power throughput by adjusting the two screws at the back of the launch block. Only if
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absolutely necessary loosen the screws that attach fiber launcher to the base plate and carry out a

coarse adjustment. Once the throughput has been optimised insert the alignment support tool

with the pinhole pointing away from the laser. Optimise the throughput using the two forward

screws of the launcher block. Finally, re-insert the optical fiber cable and optimise the

throughput using only the two forward screws. A good indication of optimised throughput is

saturation of the photodiode in the Spindler & Hoyer adapter holder at lowest laser power and

with ND 3.0 in the beampath.

2. Fault: light level indicator on laser control panel changes when mechanical shutter is operated.

Cause: laser is operated in current control rather than light control mode. Solution: turn the current

control dial fully to the right, and the light control dial fully to the left. The green light next to the

light control dial should illuminate indicating that the laser is operating in light control mode. Make

sure you always work in the light control mode, as the laser control system will otherwise attempt to

achieve a constant current that will result in light level fluctuations that are undesirable.

3. Fault: low light level at the prism interface. Cause: beam not centred on objective. Solution: centre

beam using x-y stage beneath the microscope stage.

4. Fault: a lot of background light is observed without the filterset. Cause: iris on stage launcher is too

wide open. Solution: close iris as much as possible.

5. Fault: a lot of light is transmitted into the ocular without the filterset. Cause: total internal reflection

does not occur. Prism is not flush with the top of the microscope stage. Solution: adjust prism

position.

6. Fault: a lot of stray light is observed. Cause: prism not properly cleaned before use. Solution: clean

prism again.

7. Fault: a lot of light is transmitted into the ocular without the filterset and ripples are visible. Cause:

too much index-matching oil has been applied. Solution: remove prism and clean. Apply less index-

matching oil.

8. Fault: focal plane changes a lot when moving culture dish and total internal reflection is difficult to

achieve. Cause: dust particles between cover slip and prism surface. Solution: remove prism etc,

clean prism and coverslip more carefully.

9. Fault: no fluorescence emission can be detected.

9.1. Cause: wrong fluorophore. Solution: check the excitation and emission characteristics of your

fluorophore.

9.2. Cause: wrong filterset. Solution: check your filterset specifications. The filterset specs can be

found on the rim of the filters. The filters need to be removed from the filtercube to allow

inspection. CAUTION: Do not touch any filter surface. During re-assembly make sure that the

arrow on the filters point in the direction of light propagation.
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9.3. Cause: wrong excitation wavelength. Solution: check laser wavelength (with 488 nm excitation

filter) and adjust laser wavelength if necessary using the wavelength selector dial at the rear end

of the laser.

9.4. Cause: emission intensity too low. Solution: increase excitation light level.

9.5. Cause: camera exposure time too short. Solution: increase exposure time.

9.6. Cause: camera not sensitive enough. Solution: get in contact with camera vendor.

9.7. Cause: camera shutter or ocular shutter not in correct position. Solution: bring shutter in correct

position for respective observation mode.

9.8. Cause: no total internal reflection. Solution: check prism position.

10. Fault: no total internal reflection.

10.1. Cause: prism not optimally placed. Solution: readjust prism position and ensure that its surface

is flush with top of microscope stage.

10.2. Cause: fluorophores not close enough to interface. Solution: check that your fluorophore (in the

cell or on your bead) is close enough to the optical interface to be excited by the evanescent

wave.

10.3. Cause: to little excitation intensity. Solution: increase laser power or open up iris at stage

launcher. See also causes for too little light intensity at interface above.

4. Software/ Hardware

1. Fault: MetaMorph does not start up.

1.1 Cause: hardware key not inserted properly. Solution: check whether the appropriate hardware key

(the one which has the serial number 4158 attached to it) has been inserted. If yes, remove hardware key

and re-insert it into printer port 1 (marked parallel port on the computer's case). If this does not help

contact Princeton Instruments at 01628 890858 and ask for John Wilkinson/ Andrew Philipps.

1.2  Cause: camera power is not on. Solution: switch on camera

2. Fault: MetaMorph does start up but gives an error message regarding the system identification code.

Cause: this is most probably caused by an out-dated version Solution: of the camera driver. Contact

at John Wilkinson/ Andrew Philipps john@princt.co.uk.

3. Fault: Camera does not initialise. Cause: wrong version of camera drive is used. Solution: update

camera driver. Contact John Wilkinson/ Andrew Philipps john@princt.co.uk.

4. Fault: Shutter does not respond.

4.1. Cause: shutter device not powered up. Solution: switch shutter controller on.

4.2. Cause: shutter not connected with controller unit. Solution: check cable connection between

shutter and its controller unit.
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4.3. Cause: after powering the unit up the reset switch has not been flicked. Solution: Press reset

switch.

4.4. Cause: connection between PC and shutter unit loose. Solution: check cable connections. The

cable should connect pins 14 and 24 of printer port LPT2 at the bottom of the computer with

Pulse Input on the back of the shutter controller unit.

4.5. Cause: MetaMorph software is not properly configured. Solution: go to menu point Devices

Install and configure devices. Find the configuration dialog for the Uniblitz Shutter. Make sure

LPT2 and pin 14 is selected. Make sure that Illumination Device is activated in the software.

4.6. Cause: Computer not properly configured. Solution: check in Settings System that the second

printer port has base address 278.

5. Fault: Focus device does not respond.

5.1. Cause: Controller not switched on. Solution: Switch controller on.

5.2. Cause: Faulty cable connections. Solution: Check cable connections between piezo unit and its

controller.

5.3. Cause: Connection between PC and piezo controller loose. Solution: check cable connections.

The cable should connect the Input BNC connector with the D connector on the D/A card that is

the second one from the bottom. Signal is connected with pin 18 and ground with pin 25.

5.4. Cause: MetaMorph software is not properly configured. Solution: reconfigure device driver

through menu point Devices Install and configure devices. Find the configuration dialog for the

Physick driver. Make sure base address 300 is selected.

6. Fault: Camera does not appear to work.

6.1. Cause: Camera not switched on. Solution: Check whether camera is powered up.

6.2. Cause: Camera overheated. Solution: Switch camera off and check power unit.

6.3. Cause: Camera not properly connected to frame grabber board. Solution: Check camera cable

correctly connected to camera, power supply and computer.

6.4. Cause: Inappropriate camera driver loaded. Solution: Using the Video Manager confirm that

the correct camera driver (i.e. Princeton Instruments) has been installed. Remember to restart the

computer after you made a change.

6.5. Cause: Camera drive not appropriately configured. Solution: Using the Video Manager confirm

that the Princeton Instruments driver has been configured correctly (i.e. set to a resolution of 512

x 512 pixels).

6.6. Cause: Shutter on microscope turret in position that directs the light to the ocular. Solution:

bring turret shutter in appropriate position.

7. Fault: The EPC-9 does not respond to remote trigger. NOT YET CONNECTED TO TIRF SETUP

7.1. Cause: EPC-9 not switched on. Solution: Switch EPC-9 on.
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7.2. Cause: connections between PC and EPC-9 are loose. Solution: check the connections. The

cable should run from pin 16 on the second parallel card (i.e. LPT2) to the input BNC connector

on the back of the EPC-9. Pin 23 provided the common ground.

7.3. Cause: software not configured properly. Solution: make sure that the custom I/O device is

active. Also in the Devices Install and configure devices menu, ensure that the output stream is

fed through pin 16.

7.4. Cause: Journal has been deleted. Solution: for triggering the EPC-9 a journal has to be written.

If you cannot figure out yourself how to do it contact Georg Bodammer at

g.bodammer@ed.ac.uk.

8. Fault: Metamorph cannot be triggered by the EPC-9.

8.1. Cause: EPC-9 switched off. Solution: Switch EPC-9 on.

8.2. Cause: faulty connections between the EPC-9 and the PC. Solution: Make

9. Fault: Icons for MetaMorph cannot be found on the desktop. Cause: Someone has messed about with

the desktop. Solution: Look under the start menu for Metamorph.
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Appendix B

3.1s PRIMARY CELL CULTURE TECHNIQUES

Standard operating procedure

Purpose:

Routine primary culture of bovine chromaffin cells for use in excitation and membrane patch experiments.
The transfection procedure for introducing cDNA into the cells is also described.

COSHH Status:

The risk was low when the procedure involved cells derived from pathogen-free animals or cell lines
which are known to be free of adventitious agents.

General Comments

• Good laboratory practice was required for all handling of reagents and animal tissues.
• All work involving the handling of potential pathogens should be performed in a Class II laminar

flow hood or other microbiological safety cabinet appropriate to the organism involved.
• Working area must be cleaned before use and maintained accordingly using 70% ethanol.
• It was recommended that gloves and a laboratory coat were worn throughout procedure.
• All disposable contaminated items and spent media were autoclaved following use.
• Any contaminated sharps were disposed of in a sharps bin.
• Cultures that harboured pathogens were clearly labelled. A separate incubator was used for such

specimens.
• When work was finished, uncontaminated and autoclaved waste was disposed of through the

appropriate waste management system.

References

Lindau, M. and Neher, E. Pfluegers Arch. 411, 137-146 (1988)
Duncan, RR. Don-Wauchope, AC. et al .Biochemical Journal. 342, 497-501 (1999)

Materials

Cell culture media.
Dulbeccos Modified Eagle’s medium (DMEM) with HEPES, Gibco BRL Life Technologies
Dulbeccos Modified Eagle’s medium (DMEM) without HEPES and without NaPyruvate, Gibco BRL Life
Technologies
Locke's solution, (see formulation below).
Antibiotics (filter sterile)
Penicillin /Streptomycin 0.1%, Gibco BRL Life Technologies
Supplements (filter sterile)
Insulin Transferrin Selenium supplement (ITSX), Gibco BRL Life Technologies
Sodium Pyruvate 1% w/v, Sigma Aldrich
Foetal calf serum, Gibco BRL Life Technologies.

For primary culture
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Collagenase ,Worthington type 2 CLS2, S6C157 or similar activity
DNAse, Mannheim 104159 84838420-29/31

For Semliki Forest Virus procedures

Chymotrypsin A4, 250 mg/ml, Sigma-Aldrich
Aprotonin, 0.67 mg/ml, Sigma-Aldrich

Other standard reagents

70% ethanol
NaCl
KCl
K2HPO4

KH2HPO4

Glucose
HEPES
Distilled water
Bleach

Equipment

Light microscope.
Water bath (37°C).
Bench-top centrifuge.
Incubator at 37°C gassed with 95% air / 5% CO2

Cell counter chamber for microscope (haemocytometer)

Plasticware

Cell culture flasks (sterile) 50ml.
Disposable plastic pipettes (sterile) 5,10 and 20ml.
Disposable plastic syringes (sterile) 10 and 20 ml.
Disposable plastic tubes (sterile) 10 and 20ml.
0.2 m m syringe filters (sterile).
100mm dishes (sterile)
Glassware
50 and 200 cm3 beakers
3 x 200 cm3 bottles
1 x 1000 cm3 bottle

Other equipment

Toothed forceps
Plain forceps
Dissecting scissors
Size 100 scalpel blades
100 mm nylon mesh filter
Rubber boots
White coat
Latex gloves
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Hair net
Hard hat
Containers for ice and transport of adrenal glands

Procedures:

Time:
Preparative: 30mins
Abattoir: 2-3 Hours
Primary Cell Preparation: 2-3hrs.

Solutions

Locke's 10X stock solution
NaCl 1542 mM
KCl 26 mM
K2HPO4 22 mM
KH2HPO4 85 mM
Distilled water Up to 1000 ml

Locke's solution
Locke’s 10X stock 100 ml
Glucose 10 mM, 1.8g
HEPES 20 mM, 4.766g
Pen/Strep 0.1% 2 ml
Distilled water Up to 1000 ml
pH correct to: 7.4

Digesting solution
Collagenase and DNAse are added at 0.25mg/ml and 0.18mg/ml to a measured amount of Locke's
solution.

Culture medium
DMEM no NaPYR, no HEPES 98 ml
ITSX 1 ml
Na Pyruvate 1% 1ml
Pen/Strep 0.1% 0.1ml

Protocols:

A) Preparation for adrenal gland collection
[1] All the glassware and instruments were autoclaved before use.
[2] The Locke's solution (for storage and washing of adrenal glands) was prepared in advance and filtered
through a 200nm sterile filter and then stored for use in 2 X 100ml and 1 X 250ml sterile jars..
[3] All the solutions were placed on ice in an appropriate container.
B) Abattoir
[1] Dress was appropriate according to the health and safety guidance given by the meat inspector. (White
coat, hair net, hardhat and appropriate footwear (rubber boots) were required.)
[2] The adrenal glands were collected after the meat inspector had completed the health inspection of the
offal.
[3] Excess connective tissue and fat was trimmed with dissecting scissors, taking care to protect the
adrenal artery and vein.
[4] The cleaned gland was placed in ice-cold Locke's solution
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[5] Once enough glands had been collected work was continued outside the cattle line of the abattoir.   4-6
glands of reasonable quality were usually sufficient. Occasionally a larger number were required.
[5] The adrenal glands were perfused with iced Locke's solution using a syringe.
[6] The adrenal glands were stored in clean sterile Locke's solution on ice.
[7] The glands were transported on ice to the laboratory.
C) Primary Cell Preparation
[1] All media, sera, antibiotics and any supplements needed from storage were placed in a 37°C water
bath.
[2] The laminar flow hood was opened and the working area was cleaned with 70% ethanol.
[3] The media for primary cell culture were then made up, along with digesting solution and culture
medium. Antibiotics and supplements were filter-sterilised before use. All media were placed in the 37°C
water bath.
[4] The glands were removed from the storage jar and perfused with Locke's solution until no blood
returned from the artery.
[5] Further perfusion with the warmed digesting solution was then performed. The gland was filled with
digesting solution until the gland was swollen.
[6] The gland was then placed in a sterile beaker in the 37°C water bath for 5 minutes.
[7] The perfusion step was repeated with digesting solution a total of 4 times (steps 5 and 6).
[8] The gland was bisected by careful dissection to remove the medullary portion and the removed
medulla was placed in a petri dish containing a few millilitres of the digesting solution.
[9] Mechanical dispersion of the adrenal medulla was performed using scalpel blades and the dispersed
tissue was placed in a sterile jar containing a stir bar. The jar was then placed in the 37°C water bath and
stirred gently for 20 minutes.
[10] The larger remains of the dispersed and digested medullary tissue were removed from the solution
using forceps. The remaining solution was aspirated into a syringe and then filtered through a moistened
(with digesting solution) 100 mm filter into a 20 ml sterile centrifuge tube.
[11] The centrifuge tube was placed in the bench-top centrifuge and spun at 700 rpm for 5 minutes.
[12] The supernatant was removed using the aspirator pipette.
[13] The cell pellet was resuspended gently using 5 ml of culture medium, then adding a further 15 ml of
culture medium to bring the volume up to 20ml.
[14] Steps 11 to 13 were repeated for a second time.
[15] At this point, a cell count was carried out using a haemocytometer.
[16] Calculations of cell numbers were then performed to allow an appropriate cell concentration for the
planned experiment. The cells were then reconstituted in culture medium.
[17] The cells were plated onto the appropriate glass coverslips in wells or in the bespoke dishes for the
chosen experiments.
[18] More culture medium was used to top up the cell suspension volume per container to 1.5 ml.
[19] Covers were then placed over the cells and the containers placed in the appropriate cell culture
incubator with 95% / 5% CO2 at 37°C.
D) Transfection protocol.
Extra precautions must be taken when working with the viral agent. All of these procedures must take
place in the level 2 cell culture room following standard procedure and the universal precautions
mentioned above must be adhered to.
[1] All media, sera, antibiotics and any supplements needed from storage were placed in a 37°C water
bath.
[2] The laminar flow hood was opened and the working area was cleaned with 70% ethanol.
[3] The made up media, antibiotics and supplements were filter-sterilised before use.
[4] The required viral stock (200 ml) was defrosted.
[5] Chymotrypsin 10ml (250mg/ml) was added to the virus containing medium and left on ice for 10
minutes allowing the virus to become activated by digestion, then 2 ml aprotonin (0.67mg/ml) was added to
halt the proteolysis.
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[6] 2ml suspension cells were removed from the concentrated cell solution after resuspension and the
activated virus was added. Alternatively 20ml of the activated viral stock was added to the cells plated on
the bespoke microscope dishes.
[7] The mixture of cells and viral stock was stirred gently for 5 minutes.
[8] The cells were resuspended to the required volume for plating onto glass cover-slips or the bespoke
microscope dishes.
[7] The covers were then placed over the cells and the containers then placed in the appropriate cell
culture incubator with 95% air / 5% CO2 at 37°C.
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3.3s BESPOKE DISHES FOR MICROSCOPY

Standard operating procedure

Purpose:

Preparation of dishes used for cell culture and experiments on living cells with microscopy.

COSHH Status:

There was a moderate degree of risk when these dishes were being prepared. This related to the use of acid
and alkali and in some instances the silane (medium risk) treatment.

General Comments

• Good laboratory practice was required for all handling of reagents and animal tissues.
• It was recommended that gloves and a laboratory coat were worn throughout procedure.
• All disposable contaminated items and spent media were autoclaved following use.
• Any contaminated sharps were disposed of in a sharps bin.
• Care must be taken when using the acid and alkali and particular care must be taken when

preparing the acid and alkali solutions from concentrated stock. Appropriate safety equipment
must be used during these steps.

• Any waste solution must be disposed of properly with adequate volumes of water.
• Working area must be cleaned before the procedure is started and sterile areas must be

maintained accordingly using 70% ethanol.
• When work was finished, uncontaminated and autoclaved waste was disposed of through the

appropriate waste management system.

References:

Nobles, M and Abbott, NJ. Endothelium. 4, 297-307. (1996)
Aplin, JD and Hughs RC. Anal Biochem. 113, 144-8. (1981)
Macklis, JD. Sidman RL, et al. In Vitro Cell Dev Biol . 21, 189-94. (1985)
Saltzman, WM. Parsons-Wingerter, P. et al. J Biomed Mater Res. 25, 741-59 (1991)

Reagents:

0.1N sulphuric acid
0.1N NaOH
3-aminopropyltriethoxysilane (APTS), Sigma-Aldrich
Distilled water
Sterile filtered distilled water
Glutaraldeyhde (approx.50%w/v) )
Hanks Balanced Salt Solution (HBSS), Gibco BRL Life Technologies
Collagen type I, 0.4mg/ml, Sigma-Aldrich
Collagen type IV, 0.4mg/ml, Sigma-Aldrich
Poly-L-lysine, 0.1mg/ml, Sigma-Aldrich
Fibronectin, 0.01mg/ml, Sigma-Aldrich
70% ethanol
Ammonia (~14.8M)
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Equipment:

Cover-slips 16mm / 19mm
Gauze
Orange sticks
Silgard
35 mm dishes, Nunc/ white Teflon‘/ black vinyl/ aluminium coated with Teflon‘
100 mm sterile dishes with lids
12 well cell culture plates with lids
Incubator: 80oC oven
Fume hood
Level 1 hood
Incubator at 37°C in presence of 95% air and 5% CO2

Glassware
50, 200, 1000 cm3 beakers

Procedures:

Time:
Preparative: 30mins
Basic Procedure: 5 hours, and then overnight to dry
Protein treatment: 2-3 hours, and then overnight to dry

Protocol:

A) Preparation of bespoke dishes
[1] The dishes were placed on a metal sheet for use in the oven.
[2] The edge of the hole in the dish was lined with a thin layer of Silgard using an orange stick as the
applicator.
[3] A coverslip was placed evenly over the hole
[4] The Silgard was allowed to cure overnight or cured at 60oC in the oven for 1 hour. CAUTION: do not
use oven for white dishes.

B) Glass cover-slip cleaning
Two methods of cleaning the glass were used depending on the planned experiment.
a)
[1] The bespoke dishes were placed in 0.1N sulphuric acid for 1 hour.
[2] These dishes were then removed from the sulphuric acid and placed in 0.1N sodium hydroxide for 10
minutes.
[3] The dishes were removed from the sodium hydroxide and rinsed 3 times with distilled water.
[4] Sterilization procedure follows in section D.
b)
[1] The laminar flow hood was opened and the working area cleaned with 70% ethanol.
[2] Each coverslip was picked up with forceps, dipped into 70% alcohol and then passed through a flame
from bunsen burner.
[3] The coverslips were then placed in the cell culture wells (12 well plate) and then sterilised by UV light.

C) Silane treatment
Extra precaution was taken when working with silane and glutaraldehyde. All these procedures took place
in the fume hood and the universal precautions mentioned above were adhered to.
[1] 3-aminopropyltriethoxysilane (APTS) was placed on the cover-slips (one side) and then left for 4mins.
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[2] The APTS was then removed and disposed of with copious water down the drain in fume hood.
[3] The coverslips were then washed carefully with distilled water.
[4] The coverslips then had 1% w/v glutaraldehyde (diluted in HBSS) placed on them to cover the area
treated with APTS and then they were incubated at room temp for 30 minutes.
[5] A further washing step was then carried by rinsing 3 times with HBSS.

D) Sterilisation protocol
[1] The bespoke dishes with coverslips in place and cleaned as described above were placed in 70%
ethanol for 1 hour.
[2] The laminar flow hood was opened and the working area cleaned with 70% ethanol.
[3] The dishes were removed from the 70% ethanol inside the laminar flow hood and rinsed with sterile
filtered distilled water.
[4] 3 bespoke dishes were placed in a 100mm dish.
[5] The aspirator pipette was used to rinse each bespoke dish 3 times with sterile filtered distilled water.
[6] The 100mm dishes were covered with their lids and placed in the drying oven upside down and left
until the liquid had evaporated.

E) Protein treatment
[1] The laminar flow hood was opened and the working area cleaned with 70% ethanol.
[2] The 100mm dishes with 3 bespoke dishes that had been prepared and sterilised as described above
were placed inside the laminar hood and had the lids removed.
[3] 0.3 ml of protein solution was applied at required concentration to centre of each glass coverslip.
[4] The dishes were covered and placed in the appropriate incubator at 37°C in presence of 95% air and
5% CO2 at 37°C.
[5] They were then removed from incubator and placed back in the laminar flow hood.
[6] The remaining fluid was aspirated and the covers were placed over the dishes again.
[7] The 100mm dishes were then transferred to fume cupboard and fumigated with ammonia fumes for 10
minutes.
[8] These dishes were then placed in storage cupboard overnight to allow drying.
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3.4.3sA TOTAL INTERNAL REFLECTANCE FLUORESCENCE

MICROSCOPY (TIRFM)

Standard operating procedure

Purpose:

To describe the practical use of the TIRFM equipment.

COSHH Status:

This microscope was a class 2 laser and any person who used it had undergone appropriate laser safety
training. All users had signed the appropriate COSHH forms. With the appropriate training and use of the
correct guidelines the risk of injury was minimal.

General Comments

• Good laboratory practice was required for all handling of reagents and animal tissues.
• A laboratory coat was worn throughout procedure and eye protection was used whenever the

laser beam was exposed.
• When work was finished, uncontaminated and autoclaved waste was disposed of through the

appropriate waste management system.

References:

Bodammer, G. The TIRF Setup - a guide (1998) (Modified Don-Wauchope, AC (1999)), see appendix A.
Oheim, M. Loerke, D. et al. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences. 354, 307-318 (1999)
Duncan, R.R.. Greaves, J. et al. Nature. 422, 176-80 (2003)

Equipment:

415V power supply, Leeds Transformer Co
Coherent INOVA 90 argon ion laser
Fibre optic cable and coupling device
Olympus upright microscope with purpose engineered stage
Princeton instruments digital camera
Uniblitz shutter driver
Image intensifier, Princeton instruments
PC to run controlling software
Glass prism (70o)
200nm fluorescent beads, Molecular Probes
Bespoke dish
Lens cleaning paper
Isopropanol
Acetone
LENS CLENS“ kit
Sonicator
Drying oven
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The instructions for switching on and maintaining the equipment can be found in the document: The TIRF
setup (appendix A). The important procedures for experiments are described here.

Protocols

(A) Centring the laser spot for TIRFM
To optimise TIRFM illumination, the laser beam was aimed at a central spot on the top surface of the
trapezoidal prism. To arrange this, there were two basic steps:
(i) Arranging Kohler illumination of the transillumination system and stopping down the field diaphragm,
so that the transilluminated light is confined to an easily visible spot, centred in the objective field.
(ii) Securing the fiber-optic light guide to the microscope bench system, stopping down the iris diaphragm
to the smallest diameter, and adjusting the X-Y translational stage to position the laser spot at the same
place as the transillumination spot.

[1] The trapezoidal prism was placed in its cradle on the microscope stage. It fell into a stable, non-mobile
position.
[2] A drop of immersion oil was placed on top of the prism and then the glass-bottomed chamber with
200-nm fluorescent beads dried on the chamber bottom was placed on the oil drop. (The 200 nm
fluorescent bead cover-slip was prepared previously by applying a small drop of bead suspension in
distilled water and allowing the water to evaporate)
[3] The 40X dry objective Focus was focussed on to the chamber bottom.
[4] The condenser front lens was rotated into position above the condenser assembly and the entire
assembly was advanced upwards until it just touched the prism, then it was slightly lowered, so that it was
no longer in contact with the prism.
[5] The condenser field diaphragm (located below the condenser assembly, on the microscope base) was
closed down to a tiny spot.
[6] While looking through the microscope, the transillumination spot in the microscope's objective field
was centred, using the two knurled knobs attached at the sides of the condenser assembly. When
positioned correctly, the spot was in the centre of the microscope field, and it was possible to see the spot
when looking into the chamber from the side. If it was not possible to see the spot from the side of the
chamber, the light intensity was increased or the diameter of the field diaphragm aperture was increased.
The spot was then located in the midpoint of the prism. If this did not line up then the prism cradle was
moved until the spot appeared at the midpoint of the prism's top face.
[7] Adjustments of the laser beam position were then made. To allow the laser light to enter the
microscope stage the Uniblitz shutter was switched to open, and the diaphragm in the laser beam pathway
was stopped down to its smallest diameter.
[8] Then by using the X-Y translational stage, the laser beam spot was positioned at the same point as the
transillumination spot.

When these steps have been completed, the transillumination spot and the laser spot should coincide in the
centre of the microscope's objective field. This was confirmed by looking through the microscope at the
coverslip. Total internal reflection illumination was then visualised.

To demonstrate that TIR illumination, a drop of bead suspension was added on top of the beads that had
been previously dried onto the bottom of the glass chamber. When using TIR illumination, only the beads
attached to the glass bottom were seen. When the epi-illumination system with a filter set that selected the
488 nm light was activated, not only the stationary beads on the bottom of the chamber were observed, but
also beads dancing above the bottom of the chamber.
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The transmitted light was set-up for Kohler illumination. Once in position the fine adjustment of the laser
position was left untouched. If TIRF was not seen on cells then it was often a biological problem, rather
than a problem with the physics. Fine adjustments were often made to optimise the fluorescence,
particularly during the learning phase, but fine adjustments were not made once experiments were being
underway.

(B) Cleaning the prism
This was a regular procedure carried out after every occasion that a dish had been coupled to the prism
with immersion oil.
[1] A sheet of lens paper was cut into strips
[2] A strip of lens paper was placed on the prism.
[3] A drop of acetone was placed onto the paper and then the paper was dragged over the prism surface.
[4] After the acetone had evaporated a drop of isopropanol was placed onto the paper and then dragged
over the surface again.
[5] This was repeated for all surfaces of the prism.
The acetone was to remove the oil from the surface. The procedure often required repeating with
isopropanol a number of times to clean the lens.
[6] On one occasion monthly, or at any other time that this was required, the general lens cleaning solution
(LENS CLENS“) was used to give the prism a thorough clean.

(C) Cleaning a spillage of liquid onto the condenser
The design of the dishes meant that spills of culture medium could not always be prevented. The position
of the lens was also important because if it was pushed onto the glass surface it was likely to cause a flood
of fluid from the dish.
[1] The condenser was removed and any excess liquid was dried up.
[2] The liquid usually got into the iris section and this needed to be dried and cleaned.
[3] The iris was cleaned in the sonicator.
[4] The iris was dried in a drying oven.
[5] All the lens surfaces were cleaned with the appropriate cleaning agent LENS CLENS“ for plastic,
coated optics etc. available.
[6] All the parts were reassembled once clean and dry.
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3.4.3sB USING METAMORPH‰

Standard operating procedure

Purpose:

To describe the practical use of Metamorph‰ software.

COSHH Status:

Standard PC operating procedures must be followed, with correct seating and positioning of the computer
components

References:

Metamorph‰ help files on CD-ROM.

Equipment:

Windows 95‘ PC to run software.
Serial port dongle.
Software package from Universal Imaging Corporation.
The software was designed to work in Windows 95‰ and the basic operation of the software was similar
to other Windows 95‰ software. Important procedures for experiments are described here.

Protocols

(A) Define acquisitions
[1] The define acquisitions window was selected from the toolbar in Metamorph‘.
[2] The exposure time was defined, usually 25 milliseconds.
[3] The gain was then set to allow enough light to be detected for recording purposes. The gain was
adjusted on the image intensifier with TIRF (too much light would saturate the recording chip).

(B) Journal set up: to enable software to run imaging sequences during procedures.
[1] The journal window was selected from the toolbar in Metamorph‘.
[2] The journals were either recorded by using the record facility or written following the instructions in
the required text format. See figure 3.4.3sB for an example of a journal.
[3] The timing of each phase was set correctly for the experiment.
[4] Settings for focal plane steps were made if required.
[5] The settings for exposure were dependent on the settings chosen in the define acquisitions window.

(C) Focus controller
[1] The focus window was selected from the toolbar in Metamorph‘.
[2] The piezo focus device was switched on.
[3] The microscope was focussed manually.
[4] The focus controller was set to zero.
[5] The expected movement range required (-50 to 50 nm) was checked by running the piezo focus device
with the software.



141

(D) File naming
[1] A directory was created for each experiment.
[2] The sequential file name function was used to allow the software to automatically generate and save
files created from the imaging device.

(E) Region selection
[1] The region window was selected from the toolbar in Metamorph‘.
[2] The marker was placed over the area of interest for imaging.

(F) Image analysis
[1] Metamorph‰ has built-in de-convolution processes based on the Fourier theory. By using known
objects (fluorescent latex beads of 200nm, molecular probes) we were able to define a suitable de-
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convolution algorithm for use on individual vesicles.  This enabled images of the object to be viewed with
less background haze and hence more could be determined about the functions being investigated. (Figure
3.5.1)
[2] The image analysis window was selected from the toolbar in Metamorph‘.
[3] An appropriate algorithm was selected.
[4] The algorithm was applied to image.
[5] The modified image was saved as a file.
[6] Data generated in Metamorph‘ were exported directly to Microsoft Excel by using the export data
function.
[7] A variety of measurements could be applied to areas of interest. For example fluorescence intensity
measurements were performed through a stack of images representing a time course experiment.
[8] Further data analysis could be undertaken in Microsoft Excel or Igor pro.

(G) Vesicle exocytosis
[1] A stack of images from an experiment were opened in Metamorph‘.
[2] Single vesicles were selected by using the region tools function and placing a 7 X 7 pixel region over
the vesicle. (Figure 3.5.2)
[3] The image stack was played to check that the vesicle was covered by the chosen region throughout the
image stack, or until the vesicle had disappeared.
[4] A second, larger, region of 16 X 16 pixels was placed over the first region. (Figure 3.5.2)
[5] Steps 2-4 were repeated for all single vesicles visible in the stack of images.
[6] A data transfer file for Microsoft Excel was opened using the image analysis window in Metamorph‘.
[7] Measurements for the regions, including time and average intensity, were then recorded.
[8] Once recorded the Microsoft Excel file was opened, a decimal time column was inserted and decimal
time calculated (1024 X time field), an intensity difference column was inserted and the average intensity
difference between the paired regions calculated.
[9] The Intensity difference was plotted against decimal time to look for vesicles that undergo sudden
disappearance (exocytosis).
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3.6.2s EXCITATION OF BOVINE ADRENAL CHROMAFFIN CELLS

Standard operating procedure

Purpose

Stimulation of exocytosis from cultured bovine adrenal chromaffin cells allowing measurement of
episodes of exocytosis by TIRFM.

COSHH Status

Risks were low when experiments involved cells derived from pathogen-free animals or cell lines which
were known to be free of adventitious agents. Cells transfected by Semliki Forest Virus were of medium
risk, as the virus was not known to be a pathogen in humans.

General Comments

• Good laboratory practice was required for all handling of reagents and animal tissues.
• All work involving the handling of potential pathogens should be performed in a Class II laminar

flow hood or other microbiological safety cabinet appropriate to the organism involved.
• Working area must be cleaned before use and maintained accordingly using 70% ethanol.
• It was recommended that gloves and a laboratory coat were worn throughout procedure.
• All disposable contaminated items and spent media were autoclaved following use.
• Any contaminated sharps must be disposed of in a sharps bin.
• Cultures that harboured pathogens were clearly labelled. A separate incubator was used for such

specimens.
• When work was finished, uncontaminated and autoclaved waste was disposed of through the

appropriate waste management system.

Reagents

Fluorescent Dyes for vesicles
Acridine orange, 2.5 mM,Sigma
LysoSensor Green, 40 nM, Molecular Probes
LysoTracker Red, 40 nM, Molecular Probes

Standard reagents
NaCl
KCl
CaCl2

MgCl2

HEPES
Glucose
NaOH
Distilled water

Equipment

Glass beakers 50ml
Glass bottles 250ml
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Syringes 1/2.5/10/20 ml
Adjustable micro-pipettes and tips for 20 ml/ 100 ml / 1000 ml
Stir bars and plate
Level 1/2 laminar flow hood
Incubator at 37°C gassed with 95% air/5% CO2

Procedures

Time:
Preparative: 1 hour
Experimental  Procedure: 30 minutes to 1 hour  per cell

Solutions

External solution
NaCl 140 mM
KCl 2.8 mM
CaCl2 2.0 mM
MgCl2 0.2 mM
HEPES NaOH (titrated to pH7.2) 10 mM
Glucose 10 mM

Excitation solution
NaCl (this varied from 82.8-22.8mM) 82.8 mM
KCl (this varied from 60-120mM) 60 mM
CaCl2 2.0 mM
MgCl2 0.2 mM
HEPES NaOH (titrated to pH7.2) 10 mM
Glucose 10 mM

Protocol

A) Basic stimulation experiment
[1] The laser, microscope, computer and stage-heating device (this required 2 hours to warm the
microscope to 30oC) were switched on.
[2] The laminar flow hood was opened and the working area was cleaned with 70% ethanol.
[3] A 100mm dish with cultured cells in 3 bespoke dishes was removed from the incubator.
[4] The dye (usually acridine orange, see staining procedure below) was added to the culture medium in
which the cells were cultured. If the cells had a transduced GFP tagged protein this step was not
performed unless dual staining with Lysotracker Red was required.
[5] The 100mm dish was placed back into the appropriate incubator for 20 minutes.
[6] During the 20 minutes the computer was set and the microscope stage was prepared for the
experiment.
[7] The excitation fluid was prepared and the micro-pipettes checked.
[8] The 100mm dish was removed from incubator and the culture medium with dye was aspirated from the
bespoke dish, the cells were washed twice with HBSS warmed to 37 oC and the culture medium was
replaced with 500 ml external solution warmed to 37 oC.
[9] The bespoke dish was carefully transported to the TIRFM laboratory.
[10] The dish was placed in the holder on the microscope stage.
[11] A cell was selected under transmitted light.
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[12] The selected cell was imaged with TIRFM, and if the cell was suitable then the experiment began,
otherwise repeat step 11.
[13] The imaging sequence was selected and preparations to stimulate cell the cell were made.
[14] 500 ml of excitation solution was added with a micro-pipette at correct time in sequence.
[15] Images were collected for the required period of time for the experiment. Exocytosis was expected to
occur within 2 minutes of the addition of the excitation medium.
[16] The data stack was saved.
[17] All used items were disposed of in the appropriate manner.
[18] The prism was cleaned for next experiment.

B) Staining of Vesicles
Large dense core vesicles in bovine adrenal chromaffin cells are acidophilic and take up dyes that
concentrate and fluoresce in an acid environment. We used a number of such dyes for their different
characteristics. Acridine Orange was used most often and was used for all of the experiments analysed in
the methods section.
[1] Steps from procedure A 1- 3 were followed.
[2] The dye of choice was selected and applied according to following:
Acridine Orange  (2 mmol/L) use 10ml per 2ml of culture medium.
LysoTracker Red“ (40 nM) use 20ml per 2ml of culture medium.
LysoSensor Green“ (40 nM) use 20ml per 2ml of culture medium.
[3] The incubation period was 20 minutes. The recommended period for the Molecular probes products
was 30 minutes but we found that we had suitable uptake of dye after 20 minutes.
[4] Step 8 from procedure A was then followed.
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3.6.3s MEMBRANE PATCH

Standard operating procedure

Purpose

Preparation of a membrane patch for use in other experiments.

COSHH Status

Risks were low when experiments involved cells derived from pathogen-free animals or cell lines which
were known to be free of adventitious agents. Cells transfected by Semliki Forest Virus were of medium
risk, as the virus was not known to be a pathogen in humans.

General Comments

• Good laboratory practice was required for all handling of reagents and animal tissues.
• All work involving the handling of potential pathogens should be performed in a Class II laminar

flow hood or other microbiological safety cabinet appropriate to the organism involved.
• Working area must be cleaned before use and maintained accordingly using 70% ethanol.
• It was recommended that gloves and a laboratory coat were worn throughout procedure.
• All disposable contaminated items and spent media were autoclaved following use.
• Any contaminated sharps must be disposed of in a sharps bin.
• Cultures that harboured pathogens were clearly labelled. A separate incubator was used for such

specimens.
• When work was finished, uncontaminated and autoclaved waste was disposed of through the

appropriate waste management system.

Reagents

Fluorescent Dyes for vesicles
Acridine Orange, 2.5 mM,Sigma
LysoSensor Green, 40 nM, Molecular Probes
LysoTracker Red, 40 nM, Molecular Probes

Standard reagents
NaCl
L-Glutamic acid
CaCl2

MgCl2

MgATP
GTP
HEPES
Glucose
KOH
Distilled water

Equipment

Glass beakers 50ml
Glass bottles 250ml
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Syringes 1/2.5/10/20 ml
Adjustable pipettes and tips for 20 ml/ 100 ml / 1000 ml
Stir bars and plate
Level 1/2 laminar flow hood
Incubator at 37°C in presence of 95% air and 5% CO2

Glass 1mm diameter micropipettes
Pipette puller
Rack for storage of pulled pipettes

Procedure

Time:
Preparative: 1 hour
Experimental Procedure: 30 minutes to 1 hour per cell

Protocol

Solutions
Internal solution

L-Glutamic acid (monopotassium salt) 145 mM
NaCl 8 mM
MgCl2 1 mM
MgATP 4 mM
HEPES (KOH titrated to pH 7,2) 10 mM
EGTA 1 mM
GTP 0.3 mM
Glucose 10 mM
NB. Ca2+-free solution with Ca2+ chelator

A) Preparation of rupturing pipette
This technique produced a pipette with an opening about half the diameter of a chromaffin cell (~10mm)
and was suitable for applying a jet of fluid over the cell allowing rupture of the cell membrane and
washing out of the cell contents.
[1] The pipette puller was switched on.
[2] A pipette was placed in the puller with 5mm of the pipette protruding above the top clamp. The top
heater filament was set to 2mm and the base clamp to 3.5mm.
[3] The first heat setting was set at 100%
[4] The second heat setting was set at 4.0
[5] The heater on the pipette puller was activated
[6] The position of the pipette was not adjusted after the first pull
[7] The second heater on the pipette puller was activated
[8] The pipette was removed and checked under microscope that there was an open tip.

B) Basic membrane patch preparation
[1] The laser, microscope, computer and stage-heating device (this required 2 hours to warm the
microscope to 30oC) were switched on.
[2] The rupturing pipette was prepared, placed in the holder and flushed through with internal solution
without MgATP or GTP.
[3] The laminar flow hood was opened and the working area was cleaned with 70% ethanol.
[4] A 100mm dish with cultured cells in 3 bespoke dishes was removed from the incubator.
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[5] The dye (usually Acridine Orange) was added to the culture medium in which the cells were cultured.
If the cells had a transduced GFP tagged protein this step was not performed.
[6] The 100mm dish was placed back into the appropriate incubator for 20 minutes.
[7] During the 20 minutes the computer was set and the microscope stage was prepared for the
experiment.
[8] Thawed MgATP and GTP (from frozen stock) were added to the pre-prepared internal solution.
[9] The 100mm dish was removed from incubator and the culture medium with dye was aspirated from the
bespoke dish, the cells were washed twice with HBSS warmed to 37 oC and the culture medium was
replaced with 500 ml external solution with MgATP and GTP warmed to 37 oC.
[10] The bespoke dish was carefully transported to the TIRFM laboratory.
[11] The dish was placed in the holder on the microscope stage.
[12] A cell was selected under transmitted light.
[13] The selected cell was imaged with TIRFM, if the cell was suitable then the experiment began,
otherwise repeat step 12.
[14] The rupturing pipette was placed over the cell.
[15] By using the jet of internal fluid the cell was broken open and the cell contents were washed away as
far as possible, leaving behind some membrane tethered to the glass surface.
[16] A 10 minutes imaging sequence was started, unless another length of time was preferred.
[17] 10 ml 1M Ca2+ Chloride was added to overcome EGTA 1mM at the chosen time point if required to
stimulate exocytosis.
[18] The data stack was saved.
[19] All used items were disposed of in the appropriate manner.
[20] The prism was cleaned for next experiment.
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Appendix C

Published papers. Permission to place copies of these papers has been given by the

respective editors.
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Adrenal chromaffin cells are commonly used in studies of

exocytosis. Progress in characterizing the molecular mechanisms

has been slow, because no simple, high-efficiency technique is

available for introducing and expressing heterologous cDNA in

chromaffin cells. Here we demonstrate that Semliki Forest virus

INTRODUCTION

Adrenal chromaffin cells have long been a model system of

choice for studies of exocytosis. These neuroendocrine cells, like

neurons, fire action potentials, exhibit calcium-dependent

exocytosis, and express many proteins closely related to synaptic

proteins.

An important barrier to the advance in understanding of the

molecular mechanisms underlying exocytosis is the lack of a

high-efficiency technique for introducing heterologous DNA or

RNA into chromaffin cells. ‘Traditional ’ methods for mam-

malian cell transfection, such as calcium phosphate precipitation,

lipid-mediated transfection and electroporation have met with

limited success and have variable efficiencies [1–4].

A number of viral transduction systems have been developed

to permit the efficient transduction of cDNA into eukaryotic

cells. The ideal viral-vector system would be easy to use, have a

broad host range but low human pathogenicity, and permit

efficient infection of target cells with high-level protein expression

and low cytotoxicity. Of the existing expression systems for

higher eukaryotic cells, perhaps the most efficient in terms of

protein production is the baculovirus system for insect cell hosts

[5]. Efficient viral transduction systems for mammalian cells

based on a recombinant vaccinia virus, adenovirus or defective

herpes simplex virus-1 have been developed (for a review, see [6]),

but these require considerable expertise for use and can be time-

consuming and expensive. In addition, adequate containment

facilities may not be available.

The recently introduced Semliki Forest virus (SFV) trans-

duction system [7,8] has several potential benefits over other viral

transduction systems, in particular, minimal containment

requirements and ease of use. The gene of interest may be ligated

directly to a DNA cloning vector encoding non-structural SFV

genes for replicase, reverse transcriptase and helicase. After in

�itro transcription, resultant capped RNA is co-electroporated

alongside structural gene RNA into a permissive host cell line,

Abbreviations used: BHK, baby-hamster kidney ; DOC2β, double C2 protein β-isoform; GFP, green fluorescent protein ; EGFP, enhanced GFP; SFV,
Semliki Forest virus.

1 To whom correspondence should be addressed (e-mail Peter.Estibeiro!ed.ac.uk).

(SFV) vectors allow high-efficiency expression of heterologous

protein in chromaffin cells.

Key words: acidic vesicle, confocal, double C2 protein β-isoform,

exocytosis, SFV.

commonly baby-hamster kidney (BHK)-21 cells. Attenuated,

non-infectious packaged viral particles are assembled in the host

cells, secreted into the extracellular medium and can be stored for

future use. Treatment of these viral particles with a protease

renders them infectious [7–8].

The SFV transduction system has already been used to express

a number of proteins in a broad range of mammalian cells,

including cultured rat hippocampal neurons, BHK-21, HeLa,

and Madin–Darby canine kidney cells [7–10,11]. This broad host

cell range, the ability to sub-clone directly into the expression

vector without the need for in �i�o recombination steps, and the

excellent attenuation of recombinant SFV together make this

system a particularly attractive candidate for transducing cDNA

into chromaffin cells. In the present study, we examine the

efficacy of SFV transduction of green fluorescent protein

(GFP) mut3 and double C2 protein β-isoform-enhanced GFP

(DOC2β-EGFP) in chromaffin cells. DOC2β is a protein that has

been shown to associate with secretory vesicles previously [12],

and which may play a role in exocytosis [13]. Efficient SFV

transduction of chromaffin cells is obtained with the modification

of previously published procedures.

MATERIALS AND METHODS

Isolation of a cDNA encoding mouse brain DOC2β

A reverse-transcription PCR strategy was used to amplify a

cDNA encoding the open reading frame of mouse brain DOC2β.

mRNA (1 µg) was used as a template in a first-strand cDNA

synthesis directed from an anchored deoxyoligo d(T) (5«-
TTCTAGAATTCAGCGGCCGC(T)

$!
N

"
N

#
) primer, using

Superscript II reverse transcriptase (Gibco BRL Life Tech-

nologies). The resultant cDNA was diluted and used in a PCR

reaction between forward (5«-CTGCCTGCATGACCCTCCG-

GC) and reverse (5«-TCAGTCGCTGAGYACAGCCCCTG-
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GG) deoxyoligonucleotides, using Expand polymerase cocktail

(Boehringer Mannheim). The PCR product(s) were ligated to a

T}A vector (pCR2.1, Invitrogen) and completely sequenced on

both strands (Oswel DNA Services, Southampton, U.K.).

Cell culture

Bovine adrenal chromaffin cells were prepared from adrenal

glands freshly obtained from an abattoir. The standard approach

[14] involved collagenase digestion and mechanical dispersion.

The dispersed cells were maintained in culture for up to 5 days

in 30-mm diameter plastic culture chambers and on glass

coverslips in Dulbecco’s modified Eagle’s medium supplemented

with 1% (v}v) 1¬ insulin}transferrin}selenium supplement

(ITS-X), 0.1% penicillin}streptomycin and 1% (w}v) sodium

pyruvate (all from Gibco BRL Life Technologies) at 37 °C in

95% air, 5% CO
#
. BHK-21 cells were cultured in Glasgow

Modified Eagle’s medium supplemented with 10% (v}v) tryptose

phosphate broth, 10% (v}v) foetal bovine serum, 2 mM glut-

amine and 100 units}ml of penicillin}streptomycin (all from

Gibco BRL Life Technologies) at 37 °C in 95% air, 5% CO
#
,

and used between passage numbers 5 and 15.

Generation of recombinant SFV particles

PCR was used to generate an EcoRI-BamHI flanked DOC2β

fragment for ligation to pEGFPN1 (Clontech). DOC2β-EGFP

cDNA was sub-cloned into the SmaI site of pSFV1 expression

vector (Life Technologies) as a T4 DNA polymerase blunt-ended

EcoRI-NotI fragment from pEGFPN1. A GFPmut3 insert was

amplified by PCR using forward (5«-CGGAGATCTATGAGT-

AAAGGAGAAGAACTTTTCACT) and reverse (5«-GCCGG-

ATCCCATATGTTTGTATAGTTCATCCATGCCATGTGT-

AAT) deoxyoligonucleotides, and a GFPmut3 plasmid as a

template. The PCR product was treated with Klenow enzyme

and ligated to the EcoRV site of pBluescript II KS (Stratagene).

The insert was subcloned as a BamHI-BglII fragment into

pSFV1. The orientation and integrity of the cDNA inserts were

confirmed by DNA sequencing. Capped mRNA was generated

from these constructs and pSFV2 helper vector (Gibco BRL Life

Technologies) by linearizing both vectors with SpeI and tran-

scribing in �itro using SP6 RNA polymerase according to the

manufacturer’s instructions. Five to ten micrograms of each in

�itro-transcribed mRNA were electroporated into approx. 1¬10(

BHK-21 cells in Glasgow modified Eagle’s medium supplemented

with 2 mM glutamine at 2125 V}cm, 25 µF and pulsed twice

using a Bio-Rad GenePulser apparatus. Cells were allowed to

recover for 5 min, resuspended in 24 ml of complete medium and

plated for culture for a further 48 h. Medium was recovered from

these plates, and filtered through a 0.25 µm-pore-size filter before

storage at ®20 °C.

Infection of chromaffin cells with recombinant SFV particles

Approx. 1¬10' freshly prepared chromaffin cells were plated in

90-mm diameter tissue-culture plates containing sterile glass

coverslips. After 24 h of culture at 37 °C, the conditioned culture

medium was removed and stored for later use. Virus stock was

activated by the addition of chymotrypsin A4 (250 µg}ml;

Sigma–Aldrich) and digestion for 10 min on ice. Proteolysis was

halted by the addition of aprotinin (0.67 mg}ml; Sigma–Aldrich).

A 1:10 dilution of the virus stock was made in conditioned

chromaffin cell medium, and approx. 1 ml of this was overlaid on

to the cells. The cells were incubated with the virus for 2 h, then

the medium was removed and replaced again with conditioned

chromaffin cell medium. The infected cells were cultured for

specific times post-infection before harvesting for immunoblot

analysis and confocal fluorescence microscopy.

Immunoblotting

Cells were removed from culture at appropriate time points after

infection and washed three times with ice-cold PBS, pH 7.4

(Gibco BRL Life Technologies). Cells were homogenized in the

plate by the addition of 500 µl of lysis buffer [10 mM Tris}HCl,

0.1% (w}v) SDS, 1µg}ml leupeptin, 1 µg}ml aprotinin, 0.2 mM

4-(2-aminoethyl)benzenesulphonyl fluoride, pH 7.4] and scrap-

ing into a fresh tube. The protein concentration was determined

by assaying a 1 in10 dilution of the mixture using the Bradford

method according to the manufacturer’s instructions (Bio-Rad).

Approx. 10 µg of protein per sample were electrophoresed in an

SDS}10% polyacrylamide gel using the method of Laemmli [15].

Proteinswere transferred topoly(vinylidene difluoride) (Bio-Rad)

using a Trans-Blot SD (Bio-Rad) semi-dry electroblotter at 20 V

for 30 min. Following transfer, excess binding sites on the

membrane were blocked by incubating in blotting buffer (PBS,

5% (w}v) non-fat skimmed milk) for 1 h. Monoclonal anti-

synaptotagmin, anti-rSEC8, anti-rabphilin-3A, anti-munc-18

(Transduction Laboratories), monoclonal anti-GFP (Clontech)

or polyclonal anti-dopamine-β-hydroxylase (D-β-H) were diluted

in blocking buffer and incubated with the membranes for 1 h.

Membranes were washed extensively with PBS before incu-

bation with horseradish peroxidase-conjugated anti-mouse IgG

(Transduction Laboratories, for monoclonals) or horseradish-

peroxidase conjugated anti-rabbit IgG (Amersham–Pharmacia

Biotech, for polyclonal), diluted in blocking buffer as before.

Decorated proteins were revealed by ECL2 (Amersham–

Pharmacia Biotech) according to the manufacturer’s instructions.

Single-cell fluorescence and electrophysiology

Cells expressing GFP or EGFP fusion proteins were identified by

their green fluorescence. The cells attached to glass coverslips

were mounted in a perfusion chamber located on the stage of an

inverted microscope (Zeiss Axiovert 100), and illuminated via the

epi-illumination pathway by a monochromated light source

(TILL Photonics, Planegg, Germany). Excitation was at 488 nm

for EGFP and 395 nm for the mut3.1GFP. The filter combination

was a dichroic mirror Q500L and the emission filter HQ500LP

(Chroma Technology, Brattleboro, VT, U.S.A.).

Fluorescent cells were subjected to perforated-patch recording

with an EPC-9 patch clamp system (HEKA Elektronik, Ger-

many); a system which performs automated on-line measure-

ments of ionic currents, membrane capacitance, membrane

conductance and series conductance. Membrane capacitance is

proportional to cell-membrane-surface area and serves as a

measure of secretion, since the surface area increases upon

exocytotic addition of vesicular membrane and decreases upon

endocytosis [14]. The patch pipette solution contained 135 mM

caesium glutamate, 9 mM NaCl, 1 mM triethylammonium chlor-

ide, 10 mM Hepes (pH 7.3, titrated with CsOH). For perforation

of the membrane patch, standard protocols were followed [16]

and the amphotericin (Sigma–Aldrich) concentration was

200 µg}ml. After seal formation, the series resistance was

measured continuously and recordings were started when the

series resistance dropped below 20 MΩ. The external bath

solution contained 145 mM NaCl, 2.8 mM KCl, 5 mM CaCl
#
,

1 mM MgCl
#
, 10 mM Hepes (pH 7.3, titrated with NaOH) and

10 mM glucose. The external bath solution was constantly

perfused at 0.5–1 ml}min. Recordings were made at room
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temperature (approx. 20 °C). The values of membrane current

and capacitance responses are reported as the mean³S.E.M. in

the text.

Confocal microscopy

Cells cultured on glass coverslips were washed twice with PBS

supplemented with Ca#+ and Mg#+ before fixation for 5 min with

ice-cold 4% (w}v) buffered paraformaldehyde, or living cells

were imaged using a Leica TCS NT Confocal System (Leica

Lasertechnik GmbH, Heidelberg, Germany) with a PL APO

63¬}1.32–0.6 oil immersion lens, also made by Leica. If required,

cells were counter-stained using the acidotropic dye LysoTracker

Red according to the manufacturer’s instructions (Molecular

Probes).

RESULTS

Highly efficient SFV infection of adrenal chromaffin cells

Previously published procedures for SFV transduction yielded

low efficiencies of infection}expression (10–20%) in chromaffin

cells. Adding the step of inactivating the chymotrypsin A (used

to activate the viral particles) increased the number of cells that

survived viral incubation, but the numbers of cells expressing

GFP still remained low (! 30%). The further modification

using conditioned chromaffin cell medium rather than PBS or

BHK-21 medium for both the virus incubation and recovery

stages dramatically improved the final percentage of cells

Figure 1 (A) Immunoblot analysis of DOC2β-EGFP fusion protein expression in SFV-infected bovine adrenal chromaffin cells, and (B) low-power confocal
images superimposed on bright-field images of SFV-infected bovine adrenal chromaffin cells

(A) DOC2β-EGFP fusion protein was first detected between 16 h and 19 h post-infection (p.i.), with the level of detectable protein increasing with time up to 72 h post-infection. The levels of

synaptotagmin, dopamine-β-hydroxylase (D-β-H), rSEC8, rabphilin-3A and munc-18 did not decrease over the time of the study. The time course of expression is in contrast with the time course

of SFV-transduced expression, reported previously, where host-cell protein synthesis was sequestered as early as 9 h post-infection (see text for references). (B) Cells grown on sterile glass coverslips

were removed from the same cultures used for immunoblot analysis and examined under 488 nm illumination as described in Materials and methods section. DOC2β-EGFP could be seen from

19 h post-infection, and increased in intensity up to 72 h post-infection. No EGFP fluorescence could be detected in non-infected cells. (a) At 16 h post-infection, no fluorescence is visible. (b)

At 19 h post-infection, some EGFP fluorescence is just visible. This correlates with immunoblot analyses, which first detected decorated DOC2β-EGFP between 16 h and 19 h. (c) and (d) The

intensity of the EGFP-fluorescence appeared to increase between 24 h and 72 h post-infection. The relative percentage of cells with the green fluorescent phenotype can be judged by comparing

fluorescent cells with non-infected cells, revealed by the superimposition of the bright-field image. At 24 h post-infection, a single cell (arrow) that is not expressing DOC2β-EGFP can be seen

in this field. In these experiments, we judged the efficiency of infection and expression to be 90–100% by 48–72 h post-infection. These images are representative of several independent experiments,

where the observed transduction efficiencies were comparable (n " 25 experiments). Scale bars : 10 µm.

observed to have a fluorescent phenotype 48–72 h post-infection.

Approx. 90–100% of all cells were observed to fluoresce,

estimated by directly counting the fluorescent cells compared

with the total number of cells counted under visible light (Figure

1B). Immunoblot studies of viral-infected chromaffin cells

demonstrated that DOC2β-EGFP could be detected using a

monoclonal anti-GFP antibody between 16–19 h post-infection.

These observations were supported by the development of a

fluorescent-chromaffin-cell phenotype in infected cells between

these time-points. The levels of detectable decorated DOC2β-

EGFP increased steadily up to 72 h post-infection, with no

apparent change in cellular morphology (Figures 1A and 1B).

In this study, we used a 1:10 dilution of one-sixtieth of the

virus stock (approx. 8¬10' infectious units) to infect approx.

1¬10& cells. This provided a multiplicity of infection of

approx. 8, assuming that all the viral particles were competent to

infect chromaffin cells. In practice, the dilution of the viral stock

could have been greater.

Chromaffin cell biology after SFV infection

Immunoblot studies of the endogenous chromaffin cell proteins

synaptotagmin, D-β-H, rSEC8, rabphilin-3A and munc-18

demonstrated that the steady-state levels of these proteins did

not decrease throughout this time course (Figure 1A). The

stabilities of synaptic proteins are variable [11], although no data

is available relating to these proteins in bovine adrenal chromaffin

# 1999 Biochemical Society
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Figure 2 Confocal microscopy and electrophysiology of DOC2β-EGFP-expressing chromaffin cells

(A) High-power confocal images of a group of three DOC2β-EGFP-expressing chromaffin cells 48 h post-infection. A single 1 µm-thick confocal optical section, illuminated at 488 nm and 577 nm,

was used to produce these images. (a) The EGFP fluorescence is seen distributed throughout the chromaffin cell in a punctate distribution with nuclear sparing, reminiscent of a vesicular localization.

This coincides with the distribution of LysoTracker Red in the same cell (b), which also shows a punctate distribution with nuclear sparing. (c) Superimposition of the two images revealed the

fluorescent spots to be overlapping, as indicated by yellow. A yellow line AB shown on (a) and (b), was measured for fluorescence intensity. (d) Shows the normalized intensity under the line

proceeding in arbitrary distance units from point A to point B. Similar vertical lines were drawn through 55 vesicular areas in 5 cells. DOC2β-EGFP peaks were coincident with LysoTracker Red

peaks in 98% of cells. Conversely LysoTracker Red peaks were coincident with DOC2β-EGFP peaks in 76% of cells. The arrows mark peaks that are representative of vesicular fluorescence. Scale

bar : 10 µm with bold inset (yellow square on left hand end of scale bar in panel c ; 0.39 µm) representing the approximate size of a large dense core vesicle. Membrane currents and capacitance

responses in response to depolarizations of 100-ms duration to ­10 mV, from a holding potential of ®70 mV for (B) non-infected cells and (C) infected cells. The solutions have been designed

to isolate the inward currents – an initial rapidly inactivating sodium current, followed by a maintained calcium current. The membrane capacitance increases in response to the injections of calcium

due to the depolarizations. There is a gap during the depolarizations, during which the capacitance measurements are not calculated.

cells. Interestingly, the half-life of synaptotagmin I in neurons

has recently been shown to be within 8–22 h during 1–3 days of

culture [11]. The stable synaptotagmin level in our experiments

suggest that the ability of SFV-infected cells to synthesize new

proteins remains unaffected over the course of this experiment.

Biophysical studies of cells expressing GFP and DOC2-EGFP

constructs 48 h after SFV infection revealed that the cell mem-

branes were intact, with no significant increase in the leak current

[2.8³0.4 pA (n¯ 18) compared with 3.2³0.5 pA (n¯ 18) in

non-infected cells], and the cells displayed significant calcium

currents and capacitance increases, indicative of exocytosis

(Figures 2B and 2C). When subjected to 100-ms depolarizations

to ­10 mV, the chromaffin cells displayed a mean calcium

current amplitude of 297³23 pA (n¯ 18), which is approx.
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25% less than the current measured in non-infected chromaffin

cells at 407³37 pA (n¯ 18). In response to the injection of

calcium current, the transduced cells responded with an increase

in membrane capacitance of 14³2 fF (n¯ 18), compared with

31³4 (n¯ 18) in non-infected cells. Thus, 48 h after viral

infection, all the infected cells are expressing heterologous

protein, and they continue to carry out normal physiological

processes of calcium current conduction and exocytosis.

DOC2β is localized to an acidic, vesicular compartment in
chromaffin cells

Confocal microscopy revealed that DOC2β-EGFP fluorescence

was distributed throughout the cell in a characteristic punctate

pattern with nuclear sparing, reminiscent of a vesicular locali-

zation. Cells that were loaded with the acidic compartment probe

LysoTracker Red showed a similar fluorescence distribution.

The vesicular distribution of DOC2β-EGFP shows 98% co-

incidence with LysoTracker Red in double-labelled cells,

suggesting that the DOC2β-EGFP fusion protein was directed to

an acidic compartment in these cells (Figure 2A). In contrast,

transduced GFPmut3 displayed a homogeneous cytoplasmic

distribution (results not shown).

DISCUSSION

We have developed a modification of the SFV transduction

approach that efficiently introduces heterologous cDNA into

bovine adrenal chromaffin cells. The steady-state levels of several

endogenous chromaffin cell proteins remain unaffected up to

72 h post-infection. This result is surprising because SFV has

been shown to sequester host-cell protein-synthesis machinery

after infection, effectively halting endogenous protein synthesis

in favour of viral protein production; however, the observation

suggests that there may be a time window over which meaningful

biophysical studies of exocytosis can be carried out. Indeed, our

preliminary results with patch-clamp measurements have demon-

strated that the cells still have significant calcium currents and

secretion, though somewhat depressed compared with non-

infected cells. These data are in agreement with a recent paper

describing the use of SFV vectors to express synaptic proteins in

cultured neurons without cytotoxic effects [11].

The time course of heterologous protein expression in

chromaffin cells appeared to be slower than in cultured cell-lines

such as BHK-21 cells, COS-7 cells and Chinese hamster ovary

cells (e.g. [17]), where it has been reported that expressed protein

can be detected as early as 9 h post-infection, at which point host

endogenous protein synthesis is already depressed. Furthermore,

the levels of heterologous protein expression, judged by im-

Received 7 May 1999/30 June 1999 ; accepted 16 July 1999

munoblotting and GFP fluorescence intensity, are relatively low

compared with those in other cell types reported previously

[8–10].

The observation here that DOC2β-EGFP is directed to an

intracellular acidic compartment, in support of earlier work on

DOC2 intracellular localization (e.g. [12]), provides evidence that

proteins expressed from SFV-based vector systems in chromaffin

cells can be correctly processed and targeted. Furthermore, this

is the first direct visualization of DOC2-EGFP in �i�o. Additional

experiments using SFV-GFPmut3 alone confirmed the high-

efficiency of transduction using these conditions, and the ability

of SFV-expressed proteins to be directed to the appropriate

intracellular localization.

SFV transduction systems have, until now, been used for

large-scale, high-efficiency protein production in mammalian

cells. The slow time course, high-efficiency of infection and

expression, and reduced expression levels seen in bovine chro-

maffin cells should make the SFV transduction system a valuable

tool in the study of chromaffin cell biology.
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