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I maintain that the cosmic religious feeling is the single strongest and noblest motive

for scientific research.

- Albert Einstein, Ideas and Opinions

She was a wonder junkie. In her mind, she was a hill tribesman standing slack-jawed

before the real Ishtar Gate of ancient Babylon; Dorothy catching her first glimpse of

the vaulted spires of the Emerald City of Oz; a small boy from darkest Brooklyn

plunked down in the Corridor of Nations of the 1939 world's Fair, the Trylon and

Perisphere beckoning in the distance; she was Pocahontas sailing up the Thames

estuary with London spread out before her from horizon to horizon. ... Her heart

sang with anticipation. ... Advocate and practitioner of romance, she was off to see

the Wizard.

- Carl Sagan, Contact

Scepticism is the chastity of the intellect, and it is shameful to surrender it too soon

or to the first comer: there is nobility in preserving it coolly and proudly through long

youth, until at last, in the ripeness of instinct and discretion, it can be safely

exchanged for fidelity and happiness.

- George Santayana, Scepticism and Animal Faith, IX
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Abstract

Death Associated Protein Kinase (DAPK) has a wide-ranging role in cell death

signaling and growth control. Over the past decade the importance of DAPK as a

tumour suppressor has been highlighted by numerous studies that show its expression

is ablated in many cancer types by epigenetic silencing. However the mechanisms by

which this multi-domain protein exerts death-inducing effects have not been well

defined, given that very few substrates or interaction partners have been discovered.

Many protein-protein interactions involving cell signaling processes are driven by

linear interaction motifs. Therefore combinatorial peptide libraries displayed on Ml3

filamentous bacteriophage were used to identify peptide consensus binding sites for

the kinase domain of DAPK. Peptides that bound to the DAPKcore kinase domain

were then isolated and sequenced leading to the discovery of binding peptides with

striking homology to the SHI-4 family of transcription factors, the Promyelocytic

Leukemia protein (PML) and the microtubule associating protein MAP IB.

Immunobinding assays, immunofluorescent cell staining studies and biochemical

fractionations demonstrated that DAPK can interact with human MAP IB via an N-

terminal interface in-vitro and in cells and so this interaction was subject to further

study. DAPK has been shown to integrate death inducing signals through a number

of pathways including the p53 tumour suppression pathway and apoptotic and

autophagic cell death inducing pathways. Therefore a range of assays were

developed to characterise the biological significance of DAPK interaction with

MAP IB in the context of each pathway. Cell growth and viability assays

demonstrated that MAP IB co-operates with DAPK to reduce cell proliferation. This

co-operative cell growth inhibition was independent of the p53 pathway and

17



apoptotic (Type I) cell death, but induced autophagic (Type II) cell death. MAP IB

co-operation with DAPK was marked by a striking increase in the number of cells

with membrane blebbing morphology, an effect previously shown to involve DAPK

interaction with the actin cytoskeleton leading to actin-myosin contraction. This was

in contrast to the known role of MAP IB that is primarily thought of as a tubulin

associating protein that modifies microtubule dynamics. Therefore the role of the

cytoskeleton in DAPK co-operation with MAP IB was studied in detail using

immunofluorescent cytoskeleton staining and microtubule purification assays.

During DAPK transfection induced membrane blebbing, a pool of DAPK and

MAP IB co-localise and co-purify with tubulin whereas a separate pool is co-located

to cortical actin. Thus DAPK and MAP IB cooperation-induced membrane blebbing

involves a novel interaction with both microtubules and microfilaments. These

studies highlight the utility of peptide combinatorial libraries to identify novel

binding interfaces and highlight a positive role for MAP IB in DAPK dependent

cytoskeletal rearrangement and the autophagic cell death program.

18



Chapter 1

Introduction

1.1 The DAPK Family Members, Structural and Functional Homology

DAPK was discovered using a technical knock out (TNO) screen designed to target

genes involved in cell death (Deiss et ah, 1995). The TNO screen worked on the

basis of random inactivation of genes in HeLa cells with antisense cDNA expression

libraries. Interferon gamma (IFN-y) was used as a killing agent so that IFN- y

signaling genes sequences could be isolated from transformants with increased

resistance. This approach was based on the assumption that a specific anti-sense

RNA-mediated inactivation of a rate limiting death-promoting gene would confer a

growth advantage to treated cells. In this way genes of interest could be isolated and

cloned by virtue of a specific phonotypic change, in this case reduced susceptibility

to death inducing signaling by IFN- y. Using this forward selection approach to

rescue death promoting cDNAs, seven novel genes were isolated including five

novel genes and two previously characterised genes, thioredoxin and cathespin D

(Levy-Strumpf and Kimchi, 1998). The five novel genes were termed Death

Associated Proteins (DAPs) DAP-1 through DAP-5. Subsequently DAP-2 was

renamed DAP-kinase (DAPK1 simply referred to as DAPK in this thesis).

Amino acid sequence analysis comparison lead to the discovery of five family

members that share a high level of sequence similarity to DAPK in their respective

kinase domains (Kawai et al., 1998; Kawai et al., 1999; Sanjo et al., 1998). These
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five members include three closely related kinases; DAPK1 (DAPK), DAPK2 (Also

known as DRP-1 (DAPK Related Protein 1)) and DAPK3 (Also known as ZIPK (ZIP

Kinase) or (Dlk) (DAPK-Like Kinase)) that share 80% and 83% amino acid

sequence homology in their kinase domains. More distantly related are the DRAKs

(DAPK-related apoptosis inducing protein kinases); DRAK1 and DRAK2 that share

48% and 51% respective kinase domain sequence homology (Figure 1.1). The DAPK

family is phylogeneticaly placed in the Ca2+/CaM-regulated serene/threonine kinase

family which includes Myosin Light Chain Kinase (MLCK) (Figure 1.2).

Homologous DAPK proteins are present in vertebrate species through rodents to

C.elegans but not in drosophila or lower organisms. However, this is only the case

with DAPK. In contrast DAPK2 and ZIPK orthologues are only present in mammals

and DRAK-1 only in rodents. No DRAK-2 orthologues have been discovered (For

review see (Bialik and Kimchi, 2006)). Whereas the function and mechanism of

action of the DRAK proteins is virtually unknown, functions for the DAPK family

members have been discovered, and the mechanisms by which they regulate death-

inducing stimuli are beginning to be uncovered. DAPK is by far the better

characterised and is a prototypical representative of the three closest family members

DAPK 1-3.

1.2 The Modular Structure of DAPK

DAPK is a structurally unique 160 kDa modular multidomain protein with an N-

terminal catalytic kinase domain negatively regulated by a calmodulin (CaM)

binding region. Adjacent to this are 8 ankryn repeats followed by two P-loop motifs

and a cytoskeleton binding domain. Towards the carboxyl end of the protein is a
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death domain. The C-terminus contains a threonine and serine rich regulatory tail

module (Raveh et ah, 2000).

1.2.1 The DAPK Kinase Domain

The kinase domain of DAPK spans 255 amino acids from position 13 to 267 and

consists of the 11 subdomains archetypical of serine/threonine kinases. The crystal

structure of the DAPK kinase domain has been resolved to 1.5A resolution providing

invaluable information indicative of its function and its mechanism of substrate

recognition. The structures of the kinase domain in its apo (inactive) form and its

binary and tertiary active intermediate forms have been resolved (Tereshko et al.,

2001) permitting analysis of the conformational changes that take place during

substrate binding, phosphorylation and release. Comparison between these

intermediate structures and crystals from 5 other kinases' sharing close sequence

homologies (twitchin kinase (TDB), titin kinase (TK), Ca2+/CaM-dependent protein

kinase 1 (CaMKl), phosphorylase kinase (PHK) and cAMP-dependent kinase

(cAPK)) has disclosed unique features of the DAPK catalytic domain. Comparisons

of conserved and unique substructures within the domains lead to the discovery of a

basic loop structure found above the cleft of the kinase domain. This loop, unique to

the DAPK family termed the 'DAPK family fingerprint region' consists of mainly

basic residues (7 of arginine or lysine), from Lys45 to Val 56 inclusively and maps to

the surface of the kinase domain, protruding from it as a 'lid' above the putative

peptide binding ledge. The exact function of the basic loop remains unknown. It has

been perturbed by site directed mutagenesis (Velentza et al., 2001) with no effect on

Km values suggesting that it does not play a role in classic CaM kinase

autoinhibition. In addition, this loop is present on ZIPK which does not posses a
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calmodulin regulatory region also indicating that it is not involved in CaM kinase

autoinhibition. The position of the loop in proximity to the substrate binding

interface suggests that it may interact with regulatory proteins to keep its activity in

check. This is an attractive possibility because the corresponding amino acids are

conserved across the death promoting kinases where death promoting effects must be

negatively regulated in order to allow normal cell growth conditions.

1.2.2 The Calmodulin-Binding Regulatory Domain

The autoinhibitory region of DAPK is a calmodulin binding region directly C-

terminal to the kinase domain. Numerous studies have shown that the activity of

DAPK is dependant on available Ca2+ and binding of CaM to this domain (Cohen et

ah, 1997) Methods of regulation of DAPK kinase activity are discussed in more

detail below.

1.2.3 The Ankyrin Repeats

Adjacent to the CaM regulatory domain are a series of 8 ankyrin repeat motifs

running from residues 373 to 637. The ankyrin repeat a common protein-protein

interaction motif. Deletion of this domain results in miss localised ectopically

expressed protein (Bialik et ah, 2004). In addition, disruption of the ankyrin repeats

on endogenous protein with interfering-peptide fragments reduces DAPK death

promoting activity (Raveh et ah, 2000). This suggests that this domain could function

by mediating interaction with as yet unknown factors that are required for correct

localisation and function.
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1.2.4 The p-loop Motifs and the Cytoskeletal Binding Domain

C-terminal to the ankyrin repeats are two phosphate binding loop (p-loop) motifs

(Ala/Gly-X-X-X-X-Gly-Lys-Ser/Thr) located at regions 639-646 and 695-702, the

second within the cytoskeletal binding domain which runs from position 649 to 844.

P-loop motifs are wide spread among nucleotide binding proteins that undergo

conformational changes upon GTP/ATP binding and hydrolysis (Walker et al.,

1982). Because these lie within the cytoskeletal binding domain, this suggests that

DAPK may have a role in regulation of cytoskeletal dynamis. Subsequent studies

have provided evidence that DAPK is primarily an actin-associated kinase, where it

controls microfilament dynamics by positively regulating myosin contraction (Bialik

et ah, 2004). The role of DAPK in the regulation of cytoskeletal dynamics is

discussed in section 4.5.

1.2.5 The Death Domain

Death domains are homeotypic protein interaction modules composed of a bundle of

six alpha-helices. They are evolutionarily related to death effecter domains and the

caspase recruitment domains, have analogous properties and function in similar

pathways (Reed et ah, 2004). Death domains bind each other facilitating homeotypic

interactions with other proteins (Reed et ah, 2004). Death domain-containing

proteins are involved in the regulation of cell death programs and inflammation often

through activation of caspases and NF-kappaB. This typically involves interactions

with the tumour necrosis factor (TNF) cytokine receptors (Baker and Reddy, 1998).

Cohen et. ah (1999) observed that Tumour Necrosis Factor alpha (TNFa) and Fas

signaling activated DAPK resulting in apoptosis in transfected cells. This activity

required an intact death domain, providing the first evidence that this region is a
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positive regulator of DAPK activity. Subsequent studies have shown that a death

domain deleted mutant of DAPK (DAPK-ADD) has reduced ability to kill cells (Kuo

et al., 2003) (Cohen et al., 1999). Also, transfection of this mutant protein protects

against cell death triggered by death receptors, even when the kinase is constitutively

active suggesting it is able to act as a dominant negative. Multiple studies have

demonstrated that the death domain is an integral positive regulator of DAPK

activity, directing protein-protein interactions that are critical fur its killing ability

(Chen et al., 2005; Llambi et al., 2005).

The death domain of DAPK harbors a germ-line mutation, N1347S that prevents

death domain binding to extracellular regulated kinase (ERK), a positive regulator of

DAPK activity (Stevens et al., 2007). 1347S mutation fundamentally disrupts the

higher order structure of purified recombinant death domain miniprotein, and

accordingly, is defective in directing protein-protein interactions in-vivo as

determined by protein cross-linking experiments. In human genomic DNA, this SNP

is present in 41 to 47% of heterozygotes, and 12 to 15% of homozygotes.

1.2.6 The C-terminal Serine-Rich Tail

At the C-terminus of DAPK is a serine rich tail thought to function as a negative

regulator of DAPK activity (Raveh et al., 2000). However, the mechanisms where by

this region imparts negative regulation remain unknown. Given its linear and serine

rich structure it is likely modified by inhibitory kinases, possibly to alostericaly block

interactions with the adjacent death domain (see section 1.7.2).
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1.3 DAPK is a Tumour Suppressor

In 1995, initial genomic studies using rodent-human cell hybrids probed by FISH

with labeled DAPK cDNA mapped DAPK to position 9q34.1 (Feinstein et ah,

1995a). Loss of heterozygosity studies in tumor samples have shown that this region

is often lost in tumours (Feinstein et al., 1995a), providing an early indication that

DAPK could be a tumour suppressor gene. An important study relating to DAPK

action as a tumour suppressor was then published by Inbal et. al. 1997 who were

investigating the levels of DAPK in cancer cell lines. They observed that DAPK

mRNA and protein expression was undetectable in highly-metastatic cell lines from

murine Lewis and lung carcinomas. When transformed with ectopic DAPK and

injected into mice, the growth of highly-metastatic cell lines was delayed

accompanied by a marked reduction in the number of lung metastases compared to

DAPK null cells. The number of metastases in recipients was inversely proportional

to DAPK expression and examination of the intra-foot-pad recipient's lung

metastases revealed loss of DAPK expression in 55% of cases. This could be

rectified by treatment with 5-aza-2'-deoxcytidine, an inhibitor of DNA methylation.

These results indicated that loss of DAPK expression provided a positive selective

advantage during the formation of lung metastases and furthermore that DAPK

expression was attenuated by methylation. This was ascribed to the apoptosis

inducing activity of DAPK, because cells retrieved from DAPK expressing tumors

had a higher apoptotic index and were more amenable to apoptotic stimuli such as

TNF, in contrast to the DAPK-methylated tumors which were much less responsive

to TNF. Loss of DAPK expression, resulted in resistance to apoptotic stimuli

particularly in metastastases, thus supporting the proposal that loss of apoptotic
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control is an important factor in metastasis and providing a link between DAPK and

metastasis.

1.3.1 Epigenetic Silencing and loss ofDAPK Expression by Promoter Methylation

DAPK has been comprehensively shown to be inactivated by promoter methylation

in a verity of solid tumours and leukiemias including B-cell malignancies, thyroid

lymphomas, non-small cell lung cancer, T- and natural killer T-cell malignancies and

gastric cancers (Brakensiek et ah, 2004; Cohen and Kimchi, 2001; Gonzalez-Gomez

et ah, 2003; Katzenellenbogen et ah, 1999; Nakatsuka et ah, 2001; Nakatsuka et ah,

2000; Schneider-Stock et ah, 2005; Waki et ah, 2003). B-cell chronic lymphocytic

leukemia (CLL) is associated with loss of expression of DAPK caused by promoter

hypermethylation in nearly all sporadic cases. However, CLL also has a relatively

high degree is a heritability, and heritable tumours are also hypermethylated in most

cases (Raval et ah, 2007). This is caused by decreased DAPK expression by 75% in

cells from CLL patients due to increased HOXB7 binding in the DAPK promoter

(Raval et ah, 2007). This then increases susceptibility to CLL by further promoter

methylation resulting in additional loss of DAPK expression.

1.4 Methods of DAPK Tumour Suppression

DAPK can be downregulated by epigenetic silencing during the natural history of a

tumour or by germ line mutation resulting in increased HOXB7 binding to the DAPK

promoter (Raval et ah, 2007). This loss of DAPK expression provides a selective

advantage to cells, increasing the likelihood of subsequent clonal expansion and

tumour growth. DAPK loss then provides resistance to death inducing stimuli and

resistance to cell detachment increasing the chance of tumour metastasis. DAPK-
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induced tumour suppression results from cell death activated by multiple stimuli

including, IFN-y, TNF-a, Fas, cyclohexamide, amino acid depletion, steroid

withdrawal, and detachment from the extracellular matrix. During apoptosis, DAPK

acts upstream of the terminator caspases and the apoptosome and above

mitochondrial events involving BAX/bcl2. DAPK is downsteam of the initiator

caspases and in the case of cytokine signalling, downstream of death receptor

complexes (Cohen et al., 1999; Jang et al., 2002; Pelled et al., 2002).

1.4.1 DAPK Activation by Death Receptors

DAPK is implicated in apoptotic signaling from death receptors. Death receptors are

cell surface receptors that transmit apoptosis signals initiated by specific ligands

though activation of the caspase cascade. They belong to the tumor necrosis factor

(TNF) gene superfamily, of which CD95 (or Fas), TNFR1 (TNF receptor-1) and the

TRAIL (TNF-related apoptosis inducing ligand) receptors DR4 and DR5 have been

well characterised (Figure 1.3). TNF is produced by T-cells and activated

macrophages in response to infection. By ligating TNFR1, TNF can initiate

apoptosis and can also activate NF-kB and AP-1 leading to the induction of

proinflammatory and immunomodulatory genes (For review of death receptors see

(Baud and Karin, 2001)) (Figure 1.4).

Binding of TNFa ligand to TNFR1 results in receptor trimerisation and clustering of

its intracellular death domains. This induces binding of an intracellular adapter

molecule called TRADD (TNFR-associated death domain) via homeotypic death

domain interaction. TRADD then recruits a number of different proteins to the

activated receptor. Apoptosis is induced by subsequent association of FADD, after

recruitment and cleavage of pro-caspase 8. TNFR1 is also able to mediate apoptosis
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through the recruitment of an adapter molecule called RAIDD (RIP-associated ICH-

1 / CED-3 homologous protein with a death domain). RAIDD associates with RIP

through interactions between death domains and can recruit caspase 2 through an

interaction with a motif, similar to the death effector domain, known as CARD

(caspase recruitment domain). Recruitment of caspase 2 then leads to induction of

apoptosis.

Roles for fas include cytotoxic T-cell mediated cell killing, removal of activated T-

cells after an immune response and destruction of inflammatory and immune cells in

immune-privileged sites. Fas mediated activation of apoptosis is induced by fas

ligand (FasL). A trimer that, on association with the receptor, promotes receptor

trimerisation in turn resulting in intracellular clustering of the receptor at death

domains. This allows the FADD adapter protein (Fas-associated death domain) to

associate with the receptor through homologous death domains on the receptor and

on FADD. As well as containing a death domain, FADD also contains a death

effector domain (DED). The death effecter domain allows binding of pro-caspase 8

to the ras-FADD complex. Pro-caspase 8 then associates with FADD though its own

death effector domain, and is cleaved to produce caspase 8. This then triggers

activation of execution caspases (such as caspase 9). The Fas, FADD and pro-

caspase 8 complex that triggers apoptosis is termed the Death Inducing Signaling

Complex (DISC).

Ectopic expression of TNFR or presentation with agonistic anti-fas antibody results

in oligomerisation of receptor and apoptosis in HeLa cells. Expression of DAPK

antisense RNA or DAPK-ADD (dominant negative, death domain deleted DAPK)
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results in reduction of cell death as measured by cell membrane blebbing (Cohen et

al., 1999). Co-transfection of dominant negative DAPK and FADD resulted in

rescue from cell death, whereas cotransfection of dominant negative FADD or

dominant negative caspase-8 with DAPK-ACaM (constitutively active DAPK)

results in cell death. Also, transfection of DAPK-ACaM with bcl-2 or treatment with

terminator caspase inhibitors reduces cell death. These results suggest that DAPK is

involved in TNF-a and Fas-induced cell death and that DAPK is down stream of the

DISK (containing FADD and Caspase 8) and upstream of bcl-2 and the apoptosome

in this pathway. However the role of DAPK in TNF signaling is controversial and

research has been published contradicting this, raising the possibility that DAPK can

inhibit cell death caused by death receptors in some circumstances (see section 1.8).

Supporting evidence showing that DAPK positively mediates death receptor

signaling through another pathway was published by Jang et. al. 2002 (Jang et al.,

2002). Using a complementary microarray approach they observed DAPK

upregulation after treatment of HEP3B hepatoma cells with transforming growth

factor beta (TGF-P). This was then confirmed by northern blot analysis of mRNA

levels and western blot analysis of protein levels, where DAPK expression was

increased at both levels. An 8-fold induction of DAPK was recorded after 8 hours

treatment and proceeding apoptosis. Apoptosis could be blocked by expression of

DAPK-ADD or DAPK antisense RNA.

Like TNFa signaling TGF-P signaling is implicated both in the regulation of growth

and proliferation and in oncogenesis . The TGF-P receptor includes Type I and Type

II subunits that are serine-threonine kinases that signal through the Smad family of
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transcription factors. Binding of TGF-P ligand to Type II receptor leads to

phosphorylation of the Type I receptor. Type I receptor then phosphorylates and

activates Smad2. Smad2, in combination with Smad4, is translocated to the nucleus

where the activated Smad complex recruits other transcription factors activating the

expression of target genes (Figure 1.5). Paradoxically, some of the activated target

genes stimulate tumorigenesis, while others have tumor suppressor functions (for

review see (Liu, 2003). Jangs' group observed that upregulation of DAPK was

blocked after treatment with the transcription inhibitor actinomycin suggesting that

regulation of DAPK by TGF-p was at transcriptional level. Using cloned 5'

fragments of DAPK in a luciferase reporter promoter deletion experiment, they saw

that the region -705 to -352 was responsive to TGF-p. Cotransfection of this region

with Smad 2, 3 and 4 resulted in a 4-fold increase in mRNA levels suggesting that

DAPK is a transcriptional target for Smads. The Smad proteins initiate transcription

of DAPK by binding to 4 consensus Smad binding elements on the DAPK promoter

region. Bcl-2 and cyotochrome-c protein levels were reduced by cotransfection of

DAPK with DAPK-ADD, consistent with other studies placing DAPK upstream of

mitochondrial events after stimulation with apoptotic factors.

1.4.2 DAPK Activation by Ceramide

Ceramide is a pleiotropic lipid second messenger generated by sphingomyelin

hydrolysis or produced by the binding of nerve growth factor (NGF) to the p75

neurotrophin receptor. Ceramide is also a second messenger in the TNF pathway

(Figure 1.4). Ceramide plays a key role in cell fate decisions making, regulating cell

cycle arrest, differentiation and apoptosis during different stages of neuronal

development (Warzocha et al., 1995). Exposure to cell-permeable ceramide analogs
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(C2/C6-ceramide) induces apoptosis in a wide range of cells including many types of

neuronal cells. DAPK expression is increased after exposure to ceramide (Pelled et

al., 2002) and DAPK null cells are resistant to its effects. Also, transfection of

DAPK-ADD conferres a protective effect from ceramide treatment. Cell death

induced by C2-ceramide is independent of Calmodulin and treatment does not induce

an increase in cellular Ca2+ levels, suggesting that the DAPK response to ceramide

is regulated by other means as yet unknown (Yamamoto et al., 2002).

1.4.3 DAPK and Extracellular Signal-Regulated Kinase (ERK)

The extracellular signal-regulated kinase (ERK) family of mitogen-activated kinases

(MAPK) is activated by mitogens through Ras, Raf and MEK (Cobb, 1999;

Schaeffer and Weber, 1999; Chang and Karin, 2001). ERK translocates from the

cytoplasm to the nucleus and signals the upregulation of specific gene transcription

influencing cell fate decisions by inducing cell proliferation, differentiation or

apoptosis depending on the situation (Howe et al, 2002). ERK's sub-cellular

compartmentalisation is regulated by interactions within the MAPK cascade or with

nuclear and cytoplasmic retention proteins.

ERK binds to DAPK via a death domain interaction and phosphorylates Ser735

increasing DAPK kinase activity both in-vitro and in cells (Chen et al., 2005). Also,

DAPK promotes cytoplasmic retention of ERK, inhibiting nuclear ERK signaling

(Chen et al., 2005). This 2-way regulation between DAPK and ERK comprises a

positive feedback loop promoting the apoptotic activity of DAPK, and inhibiting the

anti-apoptotic or proliferative role of ERK. Co-transfection of ERK with DAPK

results in increased DAPK-induced apoptosis as determined by caspase activity.

Also, induction of cell death by physiological stimuli can be blocked by siRNA to
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both ERK and DAPK (Chen et ah, 2005). DAPK harboring the N1347S death

domain mutation (see section 1.2.5) was unable to interact with ERK and was

deficient in induction of apoptosis as defined by poly(ADP-ribose) polymerase

(PARP) cleavage, Annexin V staining, and terminal deoxynucleotidyl transferase-

mediated dUTP nick end labeling (TUNEL) imaging (Stevens et al., 2007). These

independent studies show that bidirectional signals between DAPK and ERK

contribute to the apoptosis-promoting function of DAPK.

1.4.4 DAPK and the p53 Pathway

In mouse embryonic fibroblasts, p53 is required for DAPK mediated cell death

(Raveh et al., 2001). Coexpression of Myc, Ras or El a oncogenes with DAPK into

MEFs lead to decreased oncogenic transformation in foci assays as compared to

transfection of oncogene without DAPK. Co-expression of large-T antigen or

dominant negative p53 mutants with DAPK blocks inhibition of transformation.

Also, knock-out of p53 or ARF from MEFs blocks apoptosis induced by DAPK.

Whereas in wild-type cells expression DAPK death inducing effects are retained.

These results suggest that DAPK induced apoptosis and suppression of oncogene

transformation in MEFS executes through an apoptotic p53/ARF dependent

mechanism. It should be noted that DAPK is active in both p53 null / inactive cell

lines (such as HeLa cells that express viral T-antigen), and also in p53 active cell

lines, sugesting that DAPK may act through p53 dependent and independent

pathways (Bialik and Kimchi, 2006) (see section 4.33).

DAPK is a transcriptional target of p53. p53 transfection can induce expression of

DAPK in various cell lines by interaction with p53 consensus binding sites present

on both the human and mouse DAPK promoters (Martoriati et al., 2005). For
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example, DAPK expression induces p53 and its target genes in both transformed and

primary fibroblasts (Raveh et al., 2001). In the absence of DAPK, p53 is only

partially upregulated in response to proliferative signals induced by oncogene

expression (Raveh et al., 2001). Thus DAPK is an activator of p53 in addition to p53

being an activator of DAPK. This strongly suggests that there is a positive feedback

loop in which DAPK and p53 can activate one another.

The downstream targets of p53; MDM2, pl9ARF and p21 are also implicated in

regulating DAPK-induced apoptotic signaling. Upregulation of p53 and

commensurate induction of Type I cell death require the expression of pl9ARF

(Raveh et al., 2001), which is a positive regulator of the p53 pathway. pl9ARF

inhibits the p53 E3 ubiquitin ligase MDM2, a promoter of ubiquitin-dependent

degradation of p53 (Sherr and Weber, 2000). Using a phage peptide interaction

screen, ZIPK was found to interact directly with MDM2 and was subsequently

shown to phosphorylate Mdm2 on Serl66 (Burch et al., 2004a; Burch et al., 2004b).

This is interesting because ZIPK is a positive regulator of DAPK, and this provides a

mechanism to link MDM2 to the DAPK pathway. p53 is regulated by

posttranslational modification at multiple sites to control its specific activity as a

transcription factor. For example, the phosphoaccepter Ser20 is within the N-

terminal transactivation domain and mediates p300-catalyzed DNA-dependent p53

acetylation (Dornan et al., 2003b). A host of candidate Ser20 kinases have been

proposed including HK2, CHK1, DAPK1, DAPK3, DRAK-1, and AMPK that are

able to phosphorylate this site in cell free kinase assays. Of these possible Ser20

kinases, CHK1 and DAPK1 have been shown to stimulate p53 transactivation in

conjunction with Ser20 phosphorylation in cells (Craig et al., 2007). Interestingly,
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peptides derived from the MDM2 ubiquitination signal of p53 are able to enhance

DAPK and CHK1 induced Ser20 phosphorylation in trans, suggesting that DAPK

interaction with p53 is regulated by an allosteric mechanism. These results provide

further evidence that DAPK plays a major role in signaling to p53 and reveal yet

another layer of complexity to the regulation of DAPK interplay with p53. The

cyclin dependent kinase inhibitor p21/Wafl is a well characterised transcriptional

target of p53. This protein has a highly conserved DAPK consensus phosphorylation

site, consisting of the basic and hydrophobic cores. Phosporylation of p21 by DAPK

is highly efficient in-vitro (Figure 3.10 a), and also in cells (Fraser and Hupp, 2007).

Synthesised overlapping fragments of p21 have been used as peptide ligands for

characterisation in phosphorylation assays and for manipulation of DAPK

interactions in trans. Strikingly, three distinct p21-derived peptides bind to the

DAPKcore kinase domain and stimulate DAPK activity specifically toward p53 and

not toward the well characterised in-vivo substrate MLC or to p21 itself (Fraser and

Hupp, 2007). These data provide yet more evidence that DAPK is a regulator of the

p53 pathway showing that DAPK interacts with p21 and p53 in concert, where by the

former allostericaly enhances interaction with the latter, this in addition to allosteric

regulation by the MDM2 signal region of p53.

1.5 Autophagy and Autophagic Cell Death

It is widely accepted that caspase dependent apoptosis is one of many programs of

cell death. Programmed cell death (PCD) is classified based on morphological

criteria into several categories. Apoptosis or type I cell death is the most extensively

studied and is characterised by cell rounding and cytoplasmic condensation,
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membrane blebbing, cytoskeletal collapse, chromatin condensation and

fragmentation, and formation of apoptotic bodies that are phagocytosed by

macrophages or neighboring cells (Kerr et al., 1972; Wyllie et al., 1980). Autophagic

or type II cell death is characterised by the formation of autophagic vesicles in the

cytoplasm accompanied by mitochondrial dilation, enlargement of the ER and the

Golgi, nuclear condensation without fragmentation and membrane blebbing (Clarke,

1990). Type II cell death has been observed both in whole organisms during

development (for review see Clarke, 1990; Zakeri et al., 1995), in pathological

situations, during neurodegeneration such during as Alzheimer's (Cataldo et al.,

1994)and Parkinson's diseases (Anglade et al., 1997), and in cell culture (Paglin et

al., 2001). Type I and type II cell death programs are in no way mutually exclusive

and can coincide in-vivo in certain tissues (Clarke, 1990), and in cell culture (Xue et

al., 1999).

The very existence of autophagic cell death remains a topic for debate because

autophagy is also a mechanism to maintain homeostasis. Controlled breakdown of

intracellular components provides a nutrient supply during starvation and other

stresses where removal of damaged organelles, such as mitochondria with reduced

membrane potential, can protect cells from damage (Gozuacik and Kimchi, 2004;

Mills et al., 2004). The mechanism of how autophagy contributes to cell death is

largely unknown. Both apoptotic and autophagic processes may be regulated by the

same pathways, although one form of cell death can be enhanced when the other is

blocked (for reviews see (Bursch, 2004; Yoshimori, 2007). For example, autophagy

inhibition can enhance apoptotic signaling. As such, activation of autophagy during

death may be a cause of lethality or may actually be a futile attempt at rescue.
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1.6 The DAPK Family and Induction of Autophagic Cell Death

Autophagy has a dualistic nature, able to provide support or to cause cell death in

stressed cells. The decision of whether to live or die presumably depends on the type

and severity of damage, and is under tight regulation by death promoting and

inhibitory proteins. The DAPK family proteins are the first molecules described to

directly regulate autophagic cell death.

Autophagic cell death induced by transfection of DAPK family members is

independent of caspase activity and is characterised by striking extensive formation

of autophagic vesicles and cell- membrane blebs and nuclear condensation without

DNA degradation accompanied by no measurable loss of mitochondrial membrane

potential or release of cytochrome c (Inbal et ah, 2002). Knockdown of DAPK by

antisense RNA blocks autophagic cell death induced by serum withdrawal or amino

acid starvation in MCF7 cells, providing strong evidence that it is necessary for

autophagic cell death in this system (Inbal et ah, 2002).

DAPK is capable of initiating both Type I apoptotic and Type II autophagic cell

death programs, depending on the cell system and specific stimulus. The extent to

which DAPK contributes to Type I apoptotic death often depends on p53 status, but

p53 does not impact on regulation of type II cell death induced by DAPK (see

sections 1.4.4 and 4.3.4.4). The proposed 2 modes of action of DAPK add to the

notion that it is a central player in cell death activated by a diverse array of different

stimuli.

It has been proposed that autophagic cell death is a more ancient-based type of cell

death program (Wada et ah, 1990), because many of the autophagy associated genes

36



are evolutionary conserved between yeast and mammalian organisms. However the

DAPK family does not have related paralogues in yeast and so probably evolved

afterward to link the basic evolutionary conserved autophagic machinery and the

apoptotic machinery.

1.7 Regulation of DAPK Activity

DAPK is expressed in healthy cells non-cycling cells and in actively dividing cells

during development. As a result, its catalytic activity needs to be tightly regulated to

ensure a response only upon the correct apoptotic triggers. Multiple layers of

regulation of DAPK death-inducing activity have been discovered.

1.7.1 Regulation ofKinase Activity by the CaM domain and by Autophosphorylation

Adjacent to the kinase domain of DAPK is the CaM binding autoregulatory domain,

which suppresses activity by physical association with the catalytic cleft (Tereshko et

al., 2001; Yamakawa et al., 2004). The kinase domain is also autophosphorylated at

Ser308, resulting in increased binding to the CaM-binding domain and reduced

affinity to calmodulin. This reduces the stimulatory ability of calmodulin after

autophosphorylation and conversely, dephosphorylation results in increased

propensity to activation by calmodulin. Activation of DAPK catalytic activity then

requires binding of Ca2+ activated CaM, releasing this domain out from the catalytic

cleft and dephosphorylation of Ser308 increasing the affinity for CaM. As a result,

two factors are thought to activate DAPK: elevation of intracellular Ca2+ levels and

an as yet unknown phosphatase that would dephosphorylate Ser308.

Dephosphorylation of DAPK at Ser308 has been observed in response to ceramide,

TNF-a, UNC5H2 signaling and IFN-y (Bialik and Kimchi, 2006). However, the
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physiological consequence of Ser308 dephosphorylation is disputed, with reports

showing it can activate DAPK activity in response to TNF in certain circumstance (

(see section 1.8).

1.7.2 Regulation by the Serine-rich C-terminal Tail

The discovery of a peptide fragment that binds to the C-terminus of DAPK and that

can inhibit its function in trans, suggests that this region confers another level of

regulation (Raveh et ah, 2000). Subsequent deletion of this region and ectopic

expression of the resulting protein results in an increase in death inducing ability.

This region is homologous to serine rich tails present on other death domain

containing proteins (Feinstein et ah, 1995a; Feinstein et ah, 1995b). Deletion of this

region from other death domain containing proteins such as fas, has also been shown

to increase their cell killing potency. In the case of fas, deletion of this region

increases its affinity to bind to the death domain on FADD, and dephosphorylation

by phosphotase activity reduces binding. It is therefore feasible that the C-terminal

region of DAPK could play a similar role, inhibiting interactions with death domain

binding proteins and this effect could be regulated by its phosphorylation state.

1.7.3 Regulation o/DAPK Activity by the MARK ERK Pathway

As already discussed, ERK phosphorylation of DAPK at Ser735 correlates with

enhanced DAPK killing activity (section 1.4.3). This is attributed to a direct

enhancement of in-vitro catalytic activity which is surprising because Ser735 is

within the cytoskeletal interacting domain. How this post-translational modification

effects DAPK kinase activity is unknown. Also, a downstream effecter of the ERK

pathway, the p90 ribosomal S6 kinase (RSK), inhibits transfected DAPK kinase
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activity by phosphorylation at Ser289. This residue is within the autoregulatory CaM

binding domain, suggesting that modification at this site either increases affinity for

calmodulin or increases its inhibitory interaction with the adjacent kinase domain

(Anjum et al., 2005). These studies suggest that activation of the ERK pathway can

regulate DAPK by either activation or inhibition of DAPK activity (Figure 1.6).

The duel nature of the ERK pathway's interaction with DAPK may serve to

differentially regulate DAPK activity depending upon variations in upstream

signaling events which require alternative cellular responses. This may involve

simultaneous phosphorylation or sequential modifications acting to transiently

enhance or reduce DAPK activity. However, it is not known how ERK signaling and

modification of Ser289 or Ser735 effect DAPK cell fate decision making in response

to physiological stimuli

1.7.4 Regulation o/DAPK Protein Levels

IFNy, C6-ceramide, and oncogene expression stabilise DAPK protein levels (Pelled

et ah, 2002; Raveh et ah, 2001). The mechanisms of DAPK stabilisation by

physiological stimuli have not been defined, but it is known that DAPK is regulated

at the transcriptional level and by protein degradation. DAPK regulatory motifs

within the DAPK gene promoter include a TGFP-response element with Smad

binding motifs (Jang et ah, 2002) and a p53 consensus binding site (Martoriati et ah,

2005)as discussed above. Accordingly, DAPK gene expression increases in response

to TGFp and to p53 activating stimuli, such as DNA damaging agents and oncogene

expression (Raveh et ah, 2001).
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DAPK protein has a long half-life, and its protein levels are uncoupled from mRNA

levels after viral RNA treatment suggesting that its activity is regulated at the protein

level (Lin et al., 2007). There is growing evidence showing that changes in DAPK

protein levels are regulated by a cathepsin B-dependent dependent mechanism

(Henshall et ah, 2003). The binding region on DAPK for cathepsin-B maps to amino

acids 836-947, and. transfection of DAPK(836-947) miniprotein disrupts cathepsin-B

binding to DAPK. DAPK(836-947) miniprotein acts in a dominant negative manner

to induce endogenous DAPK protein degradation, suggesting that cathepsin-B is a

negative regulator of DAPK degradation (Lin et ah, 2007).

1.8 A Role for DAPK in Cell Survival Signalling

Although it is widely accepted that DAPK is a cell death promoting protein thought

to primarily initiate type I apoptotic cell death programs, a series of papers have been

published by P. Gallagher's group and others challenging this paradigm (Jin et ah,

2001; Jin et ah, 2002; Jin et ah, 2006; Jin and Gallagher, 2003; Zhang et ah, 2007).

P. Gallagher's group found that over expression of mouse DAPK in human HeLa

and in canine MDCK cells protected them from TNF-induced apoptosis. Expression

of a kinase-dead mutant of mouse DAPK (K42AmDAPK) resulted in increased

levels of apoptosis. Apoptosis levels were determined by measurement of DNA

fragmentation by FACS analysis, and by levels of caspase 3, 9 and 8 cleavage (Jin et

ah, 2001). Using a yeast 2 hybrid screen they isolated a novel binding partner of

wild-type mouse DAPK (mDAPK) called DIP-1. DIP-1 is a ring finger domain

containing protein and is a homologue of drosophila mind bomb (MIB). Co-

transfection of mDAPK with DIP-1 in FleLa cells resulted in reduction of mDAPK
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levels. This was presumably due to the activity of DIP-1 which was shown to have

ubiquitin ligase activity. Reduction of exogenous mDAPK levels by transfected DIP-

I protected cells from TNF-induced apoptosis (Jin et ah, 2002).

The above results seemed a direct contradiction to the previously published A.

Kimchi report suggesting that DAPK is a positive regulator of TNF-induced

apoptosis (Cohen et al., 1999). A. Kimchi suggested that the mouse form of DAPK

used in these studies could have a different function to the Human DAPK used in her

studies and suggested that mouse DAPK could have acted as a dominant negative in

the canine and human cells used in P. Gallagher's studies (Shohat et al., 2002).

However, Gallagher's group subsequently showed that antisense depletion of

endogenous DAPK in HeLa and in primary human aortic smooth muscle cells

(HASMC) also protected from TNF-induced apoptosis as determined by quantitation

of DNA fragmentation and caspase cleavage. Thus demonstrating that this effect was

not limited to mouse DAPK (Jin and Gallagher., 2003). Importantly and in contrast

to this, data is presented showing that depletion of DAPK levels enhanced survival of

cells treated with INFy. Additionally, treatment with INFy resulted in caspase

independent cell death where DNA was not fragmented, both of which are hallmarks

of autophagic cell death. This suggested that DAPK was a positive regulator of type

II cell death induced by INFy and a negative regulator of type I cell induced by TNF.

Subsequent studies by A. Kimchi's group have shown that DAPK and ZIPK do

indeed protect cells from a type II cell death program initiated by INFy {Shani, 2004

#133).
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Further data is presented by Gallagher's group suggesting that phosphorylation of

DAPK Ser308 results in decreased CaM binding and increased DAPK kinase activity

towards MLC in response to TNF (Jin et ah, 2006). Which is a direct contradiction to

previous findings suggesting the opposite (Shani et al., 2001) (see section 1.7.1),

where DAPK autophosphorylation decreases its activity in hippocampal neurons

treated with ceramide (Pelled et al., 2002). However, Ser308 phosphorylation by

TNF signaling has been shown to increase DAPK activity in hippocampal neurons

(Henshall et al., 2003) (see section 4.4.1.7.2) in agreement with the Gallagher study

(Jin et al., 2006).

Transfection of the TNR receptor; TNFR1 (p55) into A549 cells induces complex

formation between DAPK and cathepsin B. Depletion of cathepsin B using siRNA

stimulates TNFR1 dependent apoptosis. Transfection of DAPK(836-947)

miniprotein (Lin et al., 2007) acts in a dominant negative manner to induce

endogenous DAPK protein degradation in a TNFR1-dependent manner. These data

suggest that DAPK forms a multiprotein complex with cathepsin B, increasing cell

survival by countering the rate of TNFR1-dependent apoptosis. Thus providing a

mechanism to explain the suggested role of DAPK in protection from TNF-induced

death.

Although contradictory data is presented in the published literature, it is clear that

DAPK has an important and direct role in TNF signaling. It is well known that the

TNF signaling pathway has two functional arms that can result in promoting

apoptosis or alternatively promoting cell growth and proliferation, and this could go

some way to explaining the discrepancies between published studies. Also, given that
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DAPK can induce type I and type II cell death, this may suggest that some studies

failed to see DAPK induced death if relying on assays for activation of caspases and

apoptotic dependent events, such as DNA fragmentation that would have missed the

autophagic component. Rather, during autophagy nuclei undergo pyknosis and DNA

is randomly fragmented (Figure 1.7). These nuclei can easily be mistaken for

apoptotic nuclei. Therefore assays that measure nuclear fragmentation should be used

to determine that extent of apoptosis in response to DAPK activity (Jin et al., 2003 ).

1.9 The DAPK Interactome, Discovery of New Binding Partners

Given that DAPK is a multi-domain protein involved in the regulation of multiple

cell death programs induced by multiple signals, it is highly likely that it interacts

with multiple different proteins. Various studies have been conducted to find new

binding partners for DAPK including yeast 2-hybrid assays using the death domain

(Cohen et al., 1999) and using whole protein (Jin et al., 2002).

1.9.1 Linear Interaction Motifs in Signal Transduction

A proteome is defined as the complete set of proteins and protein networks encoded

by a given organisms genome. It is estimated that the human genome encodes around

30000 to 50000 genes (Lander et al., 2001; Venter et al., 2001). The number of

proteins in the human proteome is expected to be many fold greater than this due to

variations such as splice variants, post-translational modifications (such as

phosphorylation, glycosylation, lipidadation, etc.) and combinatorial changes such as

domain shuffling (Bogarad and Deem, 1999; Riechmann and Winter, 2000). Each of

these individual peptide moieties is expected to bind with many other partners

creating the network of protein interactions that control diverse biological activity.

43



These networks and their constituent protein-protein interactions are critical for all

cellular processes, and so their perturbation can lead to disease states such as cancer.

The study and mapping of protein interactions is fundamental to understanding

biochemical pathways. Protein interaction networks can be visualised as protein

interaction maps (PIMs) that represent a snapshot of a given set of protein-protein

interactions ranging from whole proteome maps to signal transduction pathways and

smaller interaction groups. Classically, studies in model organisms such as yeast that

are easily manipulated and genetically tractable, have been used to expand on protein

interaction maps and characterise biochemical pathways. Conserved networks can

then be extrapolated from yeast to higher organisms leading to identification of

biochemical pathways in humans. However, many elements involved in cancer

growth control are not present in model organisms and so classical genetics cannot

always be relied upon to identify novel cancer regulators. Therefore novel

approaches are required to expand protein-interaction maps in humans due to our

genetic intractability. For example, although DAPK has homologues in vertabrate

species it is not expressed in yeast (Bialik and Kimchi, 2006). Also, mouse DAPK

(mDAPK) has been shown to act differently to human DAPK (hDAPK), where

mDAPK has alternate splice verients that play a more prominent cell survival role

than hDAPK (Jin et al„ 2001).

Throughout evolution, proteins have diverged and have been extensively duplicated

allowing them to be grouped into families where clusters share a similar function.

This process of divergent evolution has given rise to protein modular structure, each

module being a discrete region assigned a discrete function. There are currently over
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7000 known protein globular domains, modular elements typically more that 30

amino acids in length that form folded independent compact structures (Bateman et

al., 2002). Globular domains perform a vastly diverse set of functions ranging from

death signaling to catalysis during metabolism.

Studies have shown that globular protein domains cover only a fraction of an

organism's total amino-acid sequence (McEntyre and Gibson, 2004). The remaining

peptide sequence is either of low-complexity or is intrinsically disordered (McEntyre

and Gibson, 2004). Although a proportion of these regions are designated linker

regions dividing globular domains, the majority are known to have critical functional

roles in signaling pathways (Dyson and Wright, 2005). For example, protein

interaction regions such as phosporylation motifs and binding sites are often located

in linear disordered regions of proteins. These very short functional regions are on

average only 4 amino acids in length and like globular domains conform to

evolutionarily conserved sequence patterns (Puntervoll et ah, 2003).

Linear motifs evolve in a fundamentally different way from globular domains. Linear

motifs are short sequences, of which only a few amino acids are critical to their

function, and so have a much higher probability of evolving by chance. This is

apposed to globular domains that are highly constrained due a requirement to

conserve elements involved in correct folding. Therefore linear motifs have a higher

degree of evolutionary plasticity than globular domains. Whereas globular domains

are often conserved down to lower eukaryotes, as far as humans are concerned it is

estimated that only 65% of linear motifs are conserved outside the vertebrates

(McEntyre and Gibson, 2004).
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Globular domains and linear motifs differ greatly in affinity for binding partners.

Whereas globular domains bind partners relatively strongly, down to picomolar

affinities, linear motifs have weaker binding kinetics often as high as the 1 OpM range

(Neduva and Russell, 2005). Thus, linear motifs are often involved in transient

interactions such as those in signaling networks (e.g., at phophorylation sites or

through the SH3 domain or 14-3-3 domain etc.). Sensitive regulation of cellular

processes requires transient signals from many weakly interacting components

interacting in synergy. Useful information could not be provided by strong and long-

term interactions between only pairs of proteins. Therefore signal transduction

among many components interacting via linear motifs with weaker binding kinetics

can provide specific and sensitive regulation of cellular processes.

1.9.2 Signal Transduction Through the Intrinsically UnstructuredN-Terminus ofp53

p53 is a protein with characterised regions of unstructured and globular domains and

serves as a good example. Even though p53 is one of the most well characterised

proteins associated with cancer, establishing a structure function relationship for its

entire amino acid sequence has proven difficult.. This is in part due to the fact that

only 30% of its residues are present in well defined structured globular domains; the

highly conserved DNA binding domain and the tetramerisation domain. Because the

remaining sequence is not folded into secondary or tertiary structure, p53 can be

designated an intrinsically unstructured protein (IUP). Under physiological

conditions the entire N-terminal region of p53 (amino acid residuesl-93) is not only

devoid of tertiary structure it is also largely missing secondary structure elements

(Dawson et ah, 2003). However, this region is the site for multiple linear motif-

driven interactions with a series of acetyltransferases, ubiquitin ligases and protein
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kinases that are critical for signaling through the p53 pathway. Characterised linear

interaction motifs within the N terminal activation domain of p53 include the highly

conserved 15 amino acid Box I linear domain which harbors multiple interaction

sites including; an LXXLL-type p300 cofactor interaction site (Avantaggiati et al.,

1997), an FXXWXXXL consensus MDM2 interaction site and multiple

phosphoaccepter residues with their adjacent consensus motifs. Outside the box I

domain, within the N-terminus are five proline-rich SH3 binding PXXP motif

domains and a secondary proline-repeat domain required for allosteric control of

DNA dependent acetylation. It is not surprising therefore that many signal

transduction cascades converge at the N-terminal region of p53. For example, DNA

damage activated kinases like CF1K1 and CHK2 modify Thrl8 and Ser20 by means

of an allosteric mechanism (Craig et al., 2003; Shieh et al., 2000). These

modifications differentially modulate positive interactions involving the p300

acetyltransferase or inhibitory interactions via the ubiquitin E3 ligase MDM2.

Whereas phosporylation at Thrl8 blocks MDM2 binding, phosphorylation of Ser20

has no effect on MDM2 interaction (Craig et al., 1999b; Schon et al., 2002). but

creates a p300 phospoacceptor LXXLL concensus motif (Dornan and Hupp, 2001).

N-terminal binding of MDM2 sterically suppresses p53 dependent transcription by

competing with binding of positive adapters like p300. In this way p300 stabalises

the p53-DNA complex and blocks its degradation via the MDM2 ubiquitin

degradation pathway. In addition, interaction with p300 via the LXXLL motif

promotes DNA-dependent acetylation of p53 and recruitment of chromatin-

remodeling enzymes to co-operate in transcription activation (Barlev et al., 2001;

Dornan et al., 2004; Espinosa and Emerson, 2001). DAPK has been recently
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identified as a p53 Ser20 kinase (Craig et al., 2007). Ser20 kinase activity from cell

lysates co-elutes with DAPK, and recombinant DAPK is able to phosphorylate Ser20

in a cell free kinase assay. DAPK and p53 complexes can be isolated by co-

immunoprecipitation, and DAPK protein depletion by siRNA attenuates basal p53

Ser20 phosphorylation in cells. This Ser20 kinase activity directed by DAPK

correlates with p53 dependent transactivation. That the action of multiple kinases

such as ATM, DAPK and CHK1/CHK2 can be activated by multiple stress

pathways, this provides a mechanism for linking specific stresses to p53 activation

and resultant tumour suppression via its intrinsically unstructured N-terminal

domain.

The importance of the linear motifs within the N-terminal region of p53 to cancer

development is highlighted by studies showing that their mutation in-vivo increases

cancer incidence. Transgenic animals with an alanine substituted CHK2

phosphoacceptor site have attenuated levels of UV-induced p53-dependent

transcription in mouse skin and are sensitive to UV-induced skin cancer development

(Hoogervorst et al., 2003; MacPherson et al., 2004). Also, a separate study shows

that mutation of Ser20 in mice stimulates spontaneous B-cell lymphoma in

transgenic mice models (Craig et al., 1999a). Knowledge of multiple linear

interaction motifs in transduction pathways is therefore required to develop a full

appreciation of signaling events in cancer development.

1.9.3 Using Phage Display to Discover Protein-Protein Interactions

Linear motifs have a much lower affinity for binding partners and interact transiently

making them ideal candidates for study with regards to signaling pathways. It is

predicted that there are far more instances of linear motif modules involved in
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signaling-pathway regulation than there are globular domain modules in the entire

proteome. However, current online search resources contain around 7000 globular

domains and yet only 200 linear motifs (elm.eu.org). This is because the

experimental procedures employed to discover new protein interactions often rely on

fishing methods that select for globular domains. For example, tagged-protein

complex immunoprecipitation selects for higher affinity interactions and so is unable

to pull down lower affinity transiently binding proteins. Also, homogenisation of cell

lysates, employed during protein purification enriches globular domains because

disordered proteins are more likely to be disrupted by proteases (Dyson and Wright,

2005). Likewise, yeast 2-hybrid technologies have difficulty resolving transient

interactions when presented with library protein that binds a with lower Km. In

addition to this, bait or prey may be miss folded and full length proteins may obscure

smaller interaction sites so they are only transiently exposed. Finally, expression of

exogenous protein in host species can obscure interaction surfaces due to aberrant

post translational modification. Therefore standard proteomics involving epitope-

tagging, yeast 2-hybrid and mass spectrometry are sub optimal tools for discovering

protein-protein interactions involving linear intrinsically disordered peptides that are

critical to signal transduction pathways.

ln-vitro phage peptide display technology can be used to identify novel protein-

protein contact sites driven by small linear interaction motifs. Phage display allows

the antigenic presentation of extensive combinatorial peptide libraries to purified

recombinant bait protein. Peptide libraries are expressed as fusions on the coat

protein of the filamentous phage Ml3 and allowed to interact with isolated target

protein. This is followed by removal of non-reacting phage so specifically bound
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phage can then be eluted using either a co-factor, such as ATP or metal ions, or by

denaturing conditions such as concentrated acid. After binding phage have been

eluted, higher affinity peptide interactions can be selected for by a biopanning to

isolate a few highly specific reacting phage. Panning involves elution of bound

phage, enrichment and amplification of phage in E.coli and then subsequent

reintroduction of purified phage particles onto the isolated bait protein. After the

desired number of pans, enriched and isolated phage DNA from individual plaques is

sequenced to allow identification of the primary structure of the specifically binding

peptides. Using this method of sequential biopanning, lower affinity interacting

peptides can be identified during the first binding through to higher binding

interactions isolated during later subsequent pans.

Use of phage peptide display technology methodology has classically been geared

towards characterising contact sites for known binding partners. For example, a

second MDM2-binding site in the DNA binding domain of p53 and a second p300-

docking site in p53 have both been identified in this manner (Dornan et al., 2003a;

Shimizu et al., 2002). Also, because the purified bait can be manipulated relatively

easily in-vitro, phage display has often been used to determine binding affinity

changes upon alteration of the target proteins conformation. However, broader use of

phage display to identify truly novel interaction partners has only recently been

developed. Expansion of putative protein interaction maps has been achieved using

MDM2 as prototypical bait target (Burch et al., 2004a; Burch et al., 2004b).

Unsurprisingly, the majority of MDM2 associating phage had significant homology

to the p53 box I domain, a known interaction interface between MDM2 and p53. But

10% of isolated phage did not display peptide with homology to any previously
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known binding partner. These peptide sequences were then used to define novel

binding partners for MDM2, including the DAPK family member ZIP kinase, the

ubiquitin ligase NEDD4 and the HSP90 heat shock protein. These novel MDM2

binding partners were then subject to further phage display in order to develop an

interaction map. Using this tandem approach to phage display, the MDM2 interacting

ZIP-kianse was in turn found to interact with p21. This is especially striking because

using this method ZIP kinase was identified as a novel modifier of 2 key components

of the p53 pathway; MDM2 and p21. These studies demonstrate that phage display

technology can be used to rapidly discover novel binding partners and expand on

protein interaction maps involving signal transduction pathways.
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Chapter 2

Materials and Methods

2.1 Reagents

All chemicals were obtained from Sigma- Aldrich or Merk-BDH unless stated

otherwise.

2.1.1 Purified Proteins

Purified p53 tetramers (Expressed in Sf9 insect cells), His-tagged CHK2 (Expressed

in E.coli) and His-tagged and GST tagged DAPKcore (Expressed in E.coli) were

provided by Dr A Craig. GST-DAPKcore (amino acids 1-264) in destination vector

pDEST20 was obtained from Dr L. Burch.

2.1.2 Plasmids

Full length native DAPK in Gateway entry vector was obtained from Dr L Pohler.

Full length human native transcript variant 1 (NM 005909) of MAP IB was

purchased from Origene (USA). HA-tagged DAPK (NM 004938), kinase activity

attenuated (K42A) and calmodulin domain deleted (ACaM) DAPK constructs were a

gift from Adi Kimchi (Weizmann Institute, Israel).

2.1.2 Antibodies

The suppliers and dilution factors used for western blotting and immunofluorescent

studies are detailed in Figure 2.1.
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2.2 Chromatographic Separation of Protein Samples by SDS Polyacrylamide
Gel Electrophoresis

Protein samples were dissolved in SDS loading buffer (5% SDS, 20% Glycerol, 20

mM Tris, 10 mM EDTA, 200 mM DTT, pH 6.8) and incubated at 85C for 5 minuets

to reduce. Samples were then loaded into 4-12% NuPAGE Tris-Glycine gels unless

stated otherwise in the figure legend, before separation using MOPS-SDS buffer at

150 V for 2 hours.

2.3 In-Gel Coomassie Staining of Separated Proteins

Gels were stained using coomassie blue (R-250) solution in 45% methalol, 10%

acetic acid for 1 hour and washed until background staining was reduced.

2.4 Western Immunoblotting

Gels were assembled into electroblotting apparatus for transfer onto Hybond-C

nitrocellulose membranes using transfer buffer (0.192 M glycine and 25 mM Tris)

supplemented with 20% methanol. Proteins were transferred using 200A current for

2 hours at 4C.

For separation of MAP1B; 1.5X transfer buffer was used (0.288 M glycine and 37.5

mM Tris) and was supplemented with only 10% methanol. Proteins were transferred

using 400A current for 2 hours at 4C. These optimised conditions allowed efficient

transfer of proteins with molecular weights above 200 kDa.
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Even transfer of proteins onto membranes was verified by Indian ink-staining, before

blocking with 5% non-fat milk in blot wash buffer (PBS with 0.05% Tween 20).

Primary antibodies were then incubated at room temperature for 2 hours at diluted in

blocking buffer at the concentrations indicated in the figure legend. After primary

antibody binding, membranes were washed 3 times for 5 minuets with blot wash

buffer, before incubation with the appropriate HRP-conjugated secondary antibody

(DAKO) at 1:1000 dilution. Protein bands were detected using enhanced

chemiluminescence (ECL). ECL solution was incubated on blots for 1 minuet and

then removed with blotting paper. Blots were then covered with cling film and

exposed to ECL hyperfilm.

2.5 Purification of GST-DAPKcore

GST-tagged DAPK kinase domain corresponding to amino acids 1-274 (GST-

DAPK-core) was cloned into destination insect cell expression vector pDEST20

using the invitrogen gateway cloning system.. Sf9 insect cells were infected with

plasmid allowing expression of GST-DAPKcore using the baculovirus expression

system (Invitrogen).

Cells were grown in suspension in serum-free 900II medium until needed, and the

plated at 4x107 cells per 175cm2 flask for use. Once adhered media was removed

and replaced before infection with GST-DAPKcore in pDEST20 expression vector.

72 hours post-infection, cells were scraped, pelleted and snap frozen in liquid

nitrogen. Frozen pellet was then resuspended in gentle lysis buffer (lOmM HEPES,

10 mM NaCl, 2 mM DTT and protease inhibitors at pEl 7.4), incubated on ice for 5
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minuets and centrifuged at 13000g for 15 minutes at 4C. Supernatent was then

removed and lysate was snap frozen for later purification of protein.

After gentle lysis, GST fusion proteins were purified using glutathione-sepharose 4B

beads (Amersham).

2.6 Non-radioactive DAPK Kinase Assay Using p53 Tetramers as a Substrate

The activity of purified kinase fractions was determined by a non-radioactive kinase

assay using tetrameric p53 as a substrate. Tetrameric p53 was obtained from Dr A

Craig. lOOng p53 was mixed into kinase buffer (lOmM ATP, 50mM HEPES, 50mM

KC1, lOmM MgC12, 0.2mM EDTA ImM DTT at pH 7.5) containing purified kinase

fractions. Kinase reactions were allowed to proceed for 30 minuets at 30C. The

extent of p53 Ser20 phosphorylation was visualised by immunoblotting using

phosphospecific monoclonal antibody FPS20.

2.7 Development of DAPK Binding Ligands Using Peptide Combinatorial
Libraries

The phage peptide interaction screen was jointly performed by Dr L. Burch and

myself.

A Peptide Display Library of random 12- mer peptides (New England Biolabs) was

used as a source of combinatorial peptides. 96-well flat bottom plate wells

(Microlite 2 - Dynatech laboratories) were coated with 1 pg/ml anti-GST mouse

monoclonal antibody (Sigma) to capture purified GST-DAPKcore. After capture and

washing, wells were incubated for one hour with 2x1011 phages in PBS containing

55



0.1% Tween20. The phage particles were eluted by acid incubation and neutralised

with 15 pi of 1 M Tris- HC1 (pH 9.1). Eluted phage particles were then amplified by

infection of ER2378 cells and then PEG-precipitated. This procedure was repeated

three times with approximately 2x1011 pfu of the first or second round amplified

eluate used as input phage. In addition, the concentration of Tween20 in the binding

and wash buffers was increased stepwise, from 0.1% to 0.5%, with each successive

round of biopanning in order to reduce non-specific binding of the amplified phage-

peptide particles. The third round PEG-precipitated phage were titrated and

individual plaques were regrown and tested for GST-DAPKcore binding activity.

DNA from 10 binding phage plaques was then amplified and prepared according to

the manufacturer's protocol (New England Biolabs). The Abi Prism 377 automated

DNA sequencer was used to sequence the DNA with the -96gIII primer.

After phage display biopanning, the ability of purified DAPK to bind isolated phage

12-mers was further assessed using synthesised biotinylated peptides (Cambridge

Peptides) by ELISA. Peptide association was detected using HRJP-conjugated

streptavidin.

2.8 Bioinformatics

2.8.1 Determination of Homology between Isolated Phage Display Peptide
Sequences and Human Proteins.

Sequence data from the 12-mer peptides was inputted into E-motif

(http://brutlag.stanford.edu/emotif-search/) or BLAST search programs of the NCBI

(http://www.ncbi.nlm.nih.gov/BLAST/) genbanc human protein database to identify
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consensus or individual peptide motifs with homology to known or uncharacterised

proteins.

The BLAST search program was optimised to find short nearly exact hits. Hits that

consisted of 5 or more identical amino acids were considered for further analysis.

The E-motif search used to identify any consensus motifs arising from more than one

isolated peptide that had significant homology to proteins in the genbanc database.

2.8.2 Analysis ofEvolutionary Conservation within the N-terminus ofMAPIB

MAP IB paralogue sequences were obtained by blast searching of the emble whole

genome databases ranging from vertebrates to insects. Sequences were then aligned

using ClustalW (www.ebi.ac.uk/clustalw/), and color coded according to amino acid

chemistry.

2.8.3 Mining the Cancer Genome Anatomy Databaser to Determine MAP IB and
DAPK Expression Levels in Cancer Cell Lines

The NCBI cancer genome anatomy database consists of data from microarray

analysis of RNA from the NCI60 panel of cancer cell lines (http://cgap.nci.nih.gov/).

The level of expression of DAPK and MAP IB was determined from representative

arrays in the database.

2.9 Evaluation of Protein Binding Using Enzyme-Linked Immunosorbant Assay
(ELISA)

ELISA assays were conducted in 96 well Dynex microtitre plates. For direct

adsorption onto the solid phase, purified GST-DAPKcore or p53 tetramer proteins

were diluted in high pH buffer (0.1M NaB4 at pH9) over night at 4C. For antibody

capture or capture by glutathione, proteins were dissolved in PBS and incubated for 1
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hour at room temperature. Wells were washed with PBS-T 3 times, before blocking

with PBS supplemented with 3% BSA for 1 hour at room temperature. After

blocking, the indicated proteins and/or peptides were incubated for 2 hours at room

temperature before washing 3 times with PBS-T.

For antibody detection of bound proteins, primary antibody was incubated for 1 hour

at room temperature before washing 3 times with PBS-T. The appropriate HRP-

conjugated secondary antibody was incubated for 1 hour at room temperature before

washing 3 times with PBS-T. Binding was detected after addition of ECL solution

using a luminometer (Labsystems, Fluoroscan Ascent FL). For detection of bound

biotinylated peptides, HRP conjugated streptavidin was used.

2.10 Propagation of Exogenous Plasmid DNA in Bacteria

2.10.1 Preparation ofTransformation-Competent Bacteria

E.coli DPI5a bacteria grown in LB broth were used to propagate plamid DNA. Heat

shock competent cells were created by incubation with TFBI buffer (30 mM

Potasium Acetate, 100 mM RbC12, lOmM CaC12, 50 mM MnC12 at pH 5.8) for 10

minuets at 4C. Then after pelleting the bacteria were resuspended in TFBII (10 mM

MOPS, 75 mM CaC12, 10 mM RbC12, 15% Glycerol at pH 6.5) at 4C for 15 minuets

before aliquoting and snap freezing on dry ice-methanol for storage at -80C.

2.10.2 Transformation ofCompetent Bacteria

50pl competent E.coli DH5a bacteria aliquots were thawed before addition of lOOng

of the required plasmid DNA and mixed, before allowing to stand in ice for 1 hour.

Bacteria were then heat shocked for 45 seconds at 42C before retuning to ice for a
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further 5 mins. Before plating, samples were incubated at 37C for 1 hour with

agitation to allow expression of resistance markers. Cells were then streaked on LB

plates containing the appropriate antibiotic resistance marker and allowed to grow

overnight at 37C.

2.10.3 Preservation of Transformed E-Coli Stocks by Freezing in Glycerol

800pl 80% sterile glycerol was added to 200pl of transformed E.coli in log phase

growth before snap freezing and storage at -80C.

2.10.4 Purification ofPlasmid DNA from Transformed Bacteria

Plasmid DNA was amplified in transformed bacteria over night before purification

using Qiagen plasmid purification kits as per manufacturer's protocol. DNA

concentration was determined using 260nm UV spectroscopy.

2.11 Analysis of DNA by Agarose Gel Electrophoresis

DNA samples were diluted in loading buffer (0.04% bromophenol blue, 0.04%

xylene cyanol FF, 2.5% Ficoll) and chromatographically separated in 0.8% agarose

gels using TBE buffer (90 mM tris, 90 mM barate, 300 mM EDTA at pH 8.0) unless

otherwise stated. After electrophoresis, gels were stained using ethidium bromide to

visualise the DNA banding pattern.

2.12 Gene Cloning

MAP1B fragments VI, V2 and N126 were created using the Gateway recombinase

system. DAPK, DAPK2 and ZIPK genes were cloned into donor vectors in house by
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Dr L. Pohler or Dr L. Burch. HA-tagged DAPK constructs were obtained from Adi

Kimchi. All DNA primers were purchased from Sigma Genesis.

2.12.1 Using the Gateway System for Gene Cloning

Recombination cloning vectors and recombinase reagents were obtained from

Invitrogen for use in the Gateway cloning system. Cloning into donor vectors was

facilitated by DNA recombination between att sites using DNA recombinase.

Forward and reverse primers were designed to contain the att sites; attBl

(ggggacaagtttgtacaaaaaagcaggctgg) and attB2 (ggggaccactttgtacaagaaagctgggtg)

respectively for incorporation into the donor vector pDONR201 using the BP

reaction as per the manufatorers protocol. This resulted in DNA cloned into plasmid

with flanking recombination sites for further subcloning into destination vectors.

Cloned genes were sequenced to ensure that they were in the correct reading frame

and to verify sequence integrity.

Genes cloned into pDONR221 constructs were then recombined using the LR

reaction into the required destination vector as per manufacturers protocol. This

system allowed multiple expression vectors to be created from a single gene clone

for use as required. DAPK, MAP IB VI, MAP IB V2 and N126 Genes were

subcloned into destination vectors containing promoters designed for bacterial, insect

cell or mammalian expression. Native, His tagged, GST tagged, V5 tagged and GFP

tagged genes were created. Empty vector constructs contained lkb of non-specific

DNA preceded by 2 stop codons incorporated by Gateway recombination cloning.
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2.13 Cloning of MAP1B Gene Fragments from Human Foetal Brain RNA

MAP IB gene fragments were cloned from human foetal brain total RNA (Ambion)

into pDONR221 using the gateway system. ~ 4kb fragments of transcript variants 1

(VI) and 2 (V2) (corresponding to the rat constructs cloned by Y. Uchida (Uchida,

2003)) were cloned using forward primers: atggcgaccgtggtggtgg and

atgatcactgatgctgccc respectively. For both of these constructs the reverse primer:

actgaattcaaaactcactg was used. The N terminus of variant 1 (N126) was cloned using

the reverse primer: taagcgcacctcggtg. All primers were optimised to have annealing

temperatures above 60C. See section 3.3.4.

2.13.1 RT-PCR ofMAPIB Fragments from Brain RNA

lpg of human foetal brain total RNA was denatured with 50 picomoles of oligodT

primer for 10 minuets at 65C before immediate cooling on ice. Reverse transcription

buffer, lOOmM DDT, 10 mM dNTPs, RNase inhibitor and reverse transcriptase

(Roche long template system) were then added and incubated at 43C for 60 minuets

in a thermocycler with heated lid.

After the reaction, the RT mix was immediately used for PCR to reduce the

possibility of denaturing the long MAP IB cDNAs. 1 pi RT buffer was used with

300nmoles of each primer in PCR buffer and 1 pi DNA polymerase (Roche long

template system) per 50pl PCR reaction. PCR was performed in a thermocycler for

30 cycles using a 58.5C annealing temperature.
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2.14 Tissue Culture

2.14.1 Growth media

HCT116 cells were cultured in McCoys 5A medium, MC7 cells in RPMI medium

and primary fibroblasts in primary fibroblast media, all supplemented with 10% FBS.

All other cell lines were cultured in DMEM supplemented with 10% FBS. Cells were

grown in a humidified incubator in 5% C02 at 37oC.

2.14.2 Subculturing

Cultures were grown to 80% confluency before subculturing. Cells were washed

with sterile PBS and removed from the culture vessel by trypsination at room

temperature until visibly dislodged. Pre-warmed media was then used to stop the

trypsin before replating at 1 /6th cell concentration.

2.14.3 Cryogenic Storage ofCell Lines

After suspension by trypsinisation, pelleting and washing cell pellets were

resuspended in growth FBS supplemented with 10% DMSO. Cells were then slowly

frozen over night to -80C before transfer into liquid nitrogen for long term storage.

Cryogenically frozen stocks were recovered by fast warming to 37C in a water bath

before quick addition into 10 ml growth media. Cell suspension was then pelleted

and resuspended in fresh media to remove DMSO before plating and culturing.

2.15 Transfection of Expression Plasmid DNA into Cell Lines

For transfections, cells were seeded into six-well plates at a density of 2X105 per

well 1 day prior to transfection unless otherwise stated. Transient transfections were

performed using 3pi of Lipofectamine2000 reagent per microgram DNA in Optimem
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(Invitrogen) according to the manufacturer's instruction. Cells were harvested 24 h

after transfection unless otherwise stated. After washing, cells were harvested into

PBS using a rubber policeman at 4C.

2.15.1 Preparation ofTransfected Cell Lysates

For direct immunoblotting to determine protein composition, cells were lysed in

denaturing RIPA buffer (10 mM Tris pH 7.5, 150 mM NaCl, 1% NP40, 1%

deoxycholic acid, 0.1% SDS and 1 mM EDTA with lx protease inhibitor cocktail

(Roche). Lysates were reduced in sample buffer containing 0.2 M DTT at 85°C for 5

min before chromatographic separation by SDS-PAGE.

2.16 Immunoprecipitation

2.16.1 Co-immunoprecipitation ofCotransfected Proteins

HCT116 or A375 cells were co-transfected for 24h with a total of 2pg plasmid DNA

consisting of 1 pg DAPK and 1 pg V5-tagged MAP IB V1/V2 construct or control

vector as indicated. Cells were lysed with mammalian cell detergent lysis buffer (1%

NP40, 50 mM HEPES (pH 7.6), 5 mM DTT, 0.4 M KC1 with lx protease inhibitor

cocktail (ROCHE) for 20 min on ice and cleared at 13,000 r.p.m. for 10 min. 2pg

Anti-V5 mouse monoclonal antibody (Invitrogen) was immobilised per 20pl Protein

G-Agarose beads (Amersham) and washed 3 times in 1 ml PBS-T for

immunoprecipitaion. Immunoprecipitations were carried out on a rotor for 2 h at 4°C

in binding buffer (25 mM HEPES (pH7.5, 15% glycerol, 0.1% Triton X-100, 1 mM

DTT, 100 mM KC1 and protease inhibitor) using 20 pi of V5- beads with 200 pg of

total protein. After precipitation, the beads were sedimented, washed 3 times with

PBS-T and incubated for 5 min at 850C with sample buffer + 0.2 M DTT. Co-
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precipitated DAPK was detected by immunoblotting using mouse monoclonal anti-

DAPK antibody (BD Biosciences).

2.16.2 Co-immunoprecipitation of endogenous MAPIB with Transfected HA-tagged
DAPK

A375 cells were transfected for 24 hours before lysis with mammalian cell detergent

lysis buffer as above. Bi-directional immunoprecipitation was performed as above

using 2pg goat polyclonal anti-MAPIB antibody N19 (sigma) or 2pg Anti-HA 3F10

rat monoclonal antibody (Roche) immobilised per 20pl Protein G-Agarose beads.

Co-precipitated proteins were detected by immunoblotting using anti- DAPK (BD

Biosciences) and anti MAP IB (AA6) antibodies.

2.16.3 Co-immunoprecipitation of Endogenous MAP IB with Endogenous DAPK
form A549 Cells

A549 cells were grown to 80% confluency before lysis with mammalian cell

detergent lysis buffer. Bi-directional immunoprecipitation of MAP IB and DAPK

was performed using 2pg goat polyclonal anti-MAPlB antibody N19 (sigma) or 2pg

Anti-DAPK (BD Biosciences) mouse monoclonal antibody (Roche) immobilised per

20pl Protein G-Agarose beads. Co-precipitated proteins were detected by

immunoblotting using anti- DAPK (BD Biosciences) and anti MAP IB (AA6)

antibodies.

2.17 Radioactive GST-DAPKcore Kinase Assay.

lOOng of p21 (positive control) or a titration of N126 was mixed into kinase buffer

(lOmM 32P-ATP, 50mM HEPES, 50mM KC1, lOmM MgC12, 0.2mM EDTA ImM

DTT at pH 7.5) containing purified kinase fraction E2. Samples were incubated at
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30C for 30 mins before separation by SDS-PAGE. The extent of phosphorylation

was visualised by autoradiography of gels followed by scanning using a

phosphoimager (Amersham) to allow electronic quantitaion of radioactive band

intensities.

2.18 Tandem Ion Exchange / Gel Filtration Chromatography

Cell culture, lysis and preparation in addition to ion exchange chromatography

experiments were performed by Dr J Fraser. Gel filtration experiments were jointly

performed by Dr T. Hupp and myself.

MAP IB and DAPK containing complexes from A549 cells were isolated using Ion

exchange chromatography followed by gel filtration. 4 13.7cm tissue culture plates

of cells were grown to 80% confluency, harvested, resuspended in 3ml lysis buffer

(25mM HEPES pH7.4, ImM DTT, 500mM ng to Kcl, 10% glycerol and 1% triton

X with 1 X protease inhibitor cocktail (Roche)) and lysed by 3 X freeze-thaw cycles

followed by passage through a fine gauge needle. The lysate was cleared by gentle

centrifugation at lOOOrpm for 5 min at 4C and the supernatant diluted with 20 mis

buffer A (25mM HEPES pH7.4, ImM DTT, 10% glycerol with 1 X protease

inhibitor cocktail) to achieve a final KC1 salt concentration of ~50mM.

2.18.1 Ion Exchange

Samples were loaded onto a 5 ml column and eluted by 10 column volumes of 0 to

1M linear gradient KC1 running buffer at 0.5ml/min into 1ml fractions. The elution

profiles of MAP IB and DAPK was determined by immunoblotting.
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2.18.2 Size Exclusion

MAP IB and DAPK positive fractions 36 - 41 (inclusive) were pooled and

concentrated using a 30KDa spin column Centricon filter devise (Millipore) at 500g

for 30 mins. The resulting concentrated sample was loaded onto a column for gel

filtration at 0.5ml/min into 1ml fractions. The protein in each fraction was

concentrated using TCA-precipitation followed by resuspension of the pellet in 20pl

of sample buffer. Fractions were then analysed by immunoblotting.

2.19 Microtubule Polymerisation Cycling

137 mm plates of 80% confluent cells were used to prepare microtubule complexes

by temperature dependent polymerisation/depolymerisation cycling. Cells were

harvested in 2.5 ml homogenisation buffer HB (0.1 M MES, 0.5 mM MgC12, 1 mM

EGTA) containing phosphatase inhibitor 10 mM |3- glycerophosphate and protease

inhibitor cocktail (Calbiochem). Cell lysis was achieved by addition of Triton X-100

to a final concentration of 0.1% for 30 min at 4oC on a rotor and then the lysates

were cleared by 2 x 20 min 13,000g centrifugation. GTP was added to cleared lysates

(final concentration 1 mM) to allow microtubules to form at 37oC for 30 min.

Microtubules were then pelleted by centrifugation at 13,000g. for 15 min, the

supernatant removed and the microtubules in the pellet depolymerised in 1 ml HB for

40 min at 4oC. Microtubule polymerisation and depolymerisation was performed a

further 2 cycles to obtain a purified microtubule preparation.
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2.20 2D Differential in-Gel Electrophoresis (DIGE) of Purified microtubules

2.20.1 Creation ofTetracycline DAVK-inducible A375 cells.

A375 cells were stably transfected with pCDNA6Tet vector expressing the tet operon

(Invitrogen) using the blastocidin resistance marker present in the plasmid. Selection

was allowed to proceed for 2 weaks to allow sufficient growth of clones. 10

independent clones were then picked by pipette tip and cultured separately. To test

the clones for tet repressor expression, native DAPK was subcloned into pDEST30

expression vector under control of the tet operon. This construct was then used to

screen clones for stable expression of tet repressor. To this end 500ng DAPK was

transfected into the panel of 10 independent clones in 6 well plates for 24 hours

before harvesting, cell lysis and analysis by western blot. Expression of DAPK then

indicated that tet repressor was not present in sufficient amounts to block

transcription and was therefore discarded. Of the 10 clones tested, 2 clones (Tet3 and

Tet3) effectively repressed DAPK expression. Tet4 was isolated for further

manipulation (Figure 2.2a).

Clone Tet4 was stably transfected with DAPK pDEST30 using by selection using the

geneticin resistant marker. Selection was allowed to proceed for 14 days to allow

sufficient growth of clones. 6 independent clones were then picked by pipette tip and

screened for DAPK-inducibility using 5pg.ini tetracycline. Of the 6 clones tested 2

expressed DAPK after 24 hours induction (Figure 2.2b Clones TD1 and TD2).

DAPK expression can be efficiently induced in both clones by treatment with 5pg/ml

tetracycline for 24 hours, with no detectable background DAPK expression (Figure

2.2c). Clone TD2 was isolated for use in DIGE experiments.
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2.20.2 Preparation of Microtubules from Tetracycline Induced Cells for DICE
Analysis

10 13.7cm plates of clone TD2 were grown to 50% confluence. 5 plates were

induced by 5pg/ml tetracycline for 24 hours and 5 treated with vehicle control to act

as a reference sample. Cells were harvested and processed for 3 rounds of

microtubule polymerisation.

2.20.3 DIGE Analysis: Isoelectric Focusing, SDS-PAGE separation, Flourescent
Dye Labeling and Scanning.

DIGE analysis was conduced by Dr R. Burchmore at the functional genomics

department, Glasgow University.

Briefly, Reference and induced samples were acetone precipitated and resuspended

in 2D-gel buffer using mass spectrometry grade reagents. Induced sample was

labeled by Cy5 die and the reference sample with Cy3 dye. Samples were then

pooled and separated by SDS-PAGE in an 8% tris-glycine gel. 2D protein profiles

were visualised by fluorescent scanning before automated spot intensity calculation.

2.21 Cell Growth Assay

The required cell lines were grown in 6-well plates and transfected with 2pg of

plasmid consisting of; 1 pg of the designated DAPK construct, 1 pg of the designated

MAP IB construct or 1 pg of control vector. 48 hours later each well was washed with

PBS and the cells trypsinised for 5 min at room temperature. After addition of serum

containing media to stop the trypsin, cells were carefully and thoroughly suspended

before titration onto 10cm plates in selective media for 7 days, replenishing the

media after 3 days. After selection and growth of resistant cells, plates were washed,
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fixed in methanol at -20C for lOmins and stained with IX Giemsa (Sigma) for 30min

to visualise colonies. The extent of cell growth was quantified by densitometric

analysis of scanned images. Plates were scanned using a flat bed scanner and the

mean staining intensity determined by scnimage software.

2.22 Cell Viability Determination by Trypan Blue Exclusion

Cells were transfected for 24 hours before harvesting by trypsinisation. Cells were

diluted to approximately 1*10A6 cells/ml in PBS before addition 1:1 to 0.4% trypan

blue solution. 20pl of cells were then loaded into the hemocytometer before

immediately counting the total number of cells and the number of trypan blue

positive cells to calculate percentage cell viability.

2.23 Transient MAP1B Knock-Down Using siRNA

For transient MAP IB knock-down cells were seeded at half density (1X105) per

30mm diameter plate. MAP1B siGENOME SMARTpool siRNA was obtained from

Dharmacon. 120 picomoles of siRNA oligos were transfected per 30mm plate with

2pl of Lipofectamine for 48 hours. Non-targeting siCONTROL was used as a

negative control in siRNA experiments.

2.24 Cell Cycle Analysis

Cell cycle analysis experiments were jointly performed by Dr K Samuel and myself.

HCT116 cells were co-transfected with the indicated amounts of full length native

DAPK and full length native MAP IB expression vectors for the indicated times.
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Cells were co-transfected with the cell surface marker CD-20 (at 1:5 DNA ratio) to

allow efficient selection of the transfected population using anti CD20-FITC

conjugated antibody (Caltag Biotech). After transfection adherent cells were

thoroughly resuspended by trypsination and pooled with floating cells, washed

stained with FITC-conjugated anti CD20 antibody and fixed with 50% ethanol

suplimented with 10% FCS overnight. After anti-CD20 staining and fixation, cells

were treated with RNase A and simultaneously stained with propidium iodide for 30

minuets at 37C to stain cell nuclei. CD20 positive cell nuclei were gated and sorted

according to FL height using a Becton Dickinson FACSCalibur flow cytometer to

visualise cell cycle profiles. Cell Quest and quantfit software was used to determine

the percentage of nuclei at each stage of the cell cycle.

2.25 Apoptosis Assays

2.25.1 Annexin V Assay

Cells were transfected with the indicated amounts of DNA for the indicated times.

Following transfection, adherent cells were thoroughly resuspended by trypsinisation

and pooled with floating cells before washing and staining with APC-conjugated

annexin V and propidium iodide (Bender Medsystems) as per manufacturers

instruction. Phosphatidylserine positive cells were visualised using using a Becton

Dickinson FACSCalibur flow cytometer on the FL 4 channel

2.25.2 TUNEL Assay

The TUNEL assays were performed by Dr C. Stevens.
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HCT116 cells were grown directly on cover slips and transfected with the indicated

amounts of expression vectors for 24h. Following transfection cells were fixed in 1%

paraformaldehyde for lOmin at room temperature. Apoptotic cells were labelled

using Apoptag Plus Fluorescein In-Situ Apoptosis Detection Kit S7 111 (Chemicon

International) according to the manufacturers instruction and viewed by fluorescence

microscopy.

2.26 Autophagy Assays

2.26.1 GFP-LC3 Cleavage Assay

Autophagy was detected in a HEK-293 cell line stably expressing the autophagy

marker GFP-LC3 (Kochl et al., 2006). HEK293-LC3 cells were a gift from Sharon

Tooze (CRUK, London). For LC3 cleavage analysis, cells were transfected with the

indicated combination of expression vectors for the indicated times susing 3 pi of

lipofectamine2000 transfection reagent per total microgram of DNA. Cells were then

lysed using RIPA lysis buffer and GFP-LC3 protein was detected by western blot

using anti-GFP antibody. The ratio of GFP-LC3-I to lipidated GFP-LC3-II was

quantified using scnimage densitometry software.

For assay of autophagy after MAP IB siRNA, FIEK-LC3 cells were seeded at half

density and 25 picomoles per cm2 of MAP1B siGENOME SMARTpool siRNA

oligos were transfected using 0.4pl/cm2 Lipofectamine2000 for 32 hours. After 32

hours siRNA knock-down, growth medium was changed and cells were transfected

for a further 32 hours with 100ng/cm2 of each of the indicated expression vectors

with 0.8pl/cm2 of Lipofectamin2000. Cell lysates were assayed for LC3 cleavage as

above.
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2.26.2 GFP-LC3 Foci Assay

Autophagosomes were also counted in fixed and stained GFP-LC3 stably expression

HEK-293 cells, providing a separate quantifiable marker of autophagy. Cells were

transfected with the indicated combination of expression vectors for 32 hours using

3pi of lipofectamine2000 transfection reagent per total microgram of DNA. Separate

cultures were starved by replacement of growth medium with Earle's balanced salt

solution for 3 hours. 10 random fields were analysed per cover slip. In each field the

total number of cells was counted. The total number of autophagosomes in each field

was visualised by increasing the fluorescent threshold using Leica SP5 confocal

microscope and software. This highlighted the very intense GFP fluorescent foci,

facilitating counting. The extent of autophagy induction was determined as the total

number of autophagosomes per field per total number of cells per field.

2.27 Membrane Blebbing Assays

2.27.1 Blebbing Assay in Co-Transfected HCT116 Cells

E1CT116 or A375 cells were used for blebbing analysis in co-transfected cells where

the indicated MAP IB proteins and GFP-tagged DAPK were co-transfected for 24

hours. 200 co-transfected cells were detected by dual imunofluorescent staining and

scored for blebbing morphology along transverse sections of cover slips. Cells were

fixed with 4% paraformaldehyde in PBS for 10 minuets, washed and blocked with

antibody dilution buffer. Fixed cells were simultaneously blocked and membrane-

permeabilised using antibody dilution buffer (PBS with 0.1% Triton and 10% horse

serum) to allow entry of primary antibodies into the cells. Full length MAP IB was

detected using mouse monoclonal AA6 (1:200), V5-tagged MAP1B VI and V2
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proteins were detected using mouse monoclonal anti-V5 antibody (Invitrogen

1:1000), and GFP-tagged DAPK detected with rabbit anti- GFP (Abeam ab290

1:2000). After incubation of primary antibodies for 1 hour cells were washed and

stained with Alexa conjugated secondary antibodies alexa568 anti-mouse and

alexa488 anti-rabbit before scoring with a standard fluorescent microscope using a

100X objective.

2.27.2 Blebbing Assay in A3 75 Cells

In A375 cells HA-DAPK WT, HA-DAPK K42A or HADAPK ACaM was

transfected for 24 hours and cells were scored for membrane blebbing morphology

along converse sections of cover slips using a standard fluorescent microscope. Cells

were fixed with 4% paraformaldehyde in PBS for 10 mins before simultaneous

blocking and membrane permeabilisation. Transfected cells were visualised using

anti-HA antibody 3F10 (1:50) and anti-rat alexa488 conjugated secondary antibody

(1:100).

2.27.3 Blebbing Assay in after MAP1B siRNA in A375 Cells

For blebbing analysis after transient MAP IB knock-down in A375 cells, cells were

seeded at half density and 25 picomoles of MAP IB siGENOME SMARTpool

siRNA oligos were transfected per lcm2 coverslip using 0.4pl of Lipofectamine for

48 hours. After 48 hours knock-down the growth medium was changed and cells

were transfected for a further 24 hours with HA-DAPK constructs before fixing and

staining. Non-targeting siRNA was used as a negative control.
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2.28 Immunofluorescence Staining and Cell Morphology Assessment

2.28.1 Quantification o/ DAPK-induced Cell Morphology Changes

A375 cells were fixed with 3% formaldehyde and 0.2% glutaraldehyde in PBS for 10

min at 37oC before simultaneous blocking and membrane permeabilisation in

antibody dilution buffer for 30 mins. Primary antibodies were used at the following

concentrations MAP1B (AA6) 1:200 and HA (Rat monoclonal 3F10 Roche) 1:50 in

antibody dilution buffer for 1 hour at room temperature. Fluorescent highly cross-

adsorbed Alexa dye-conjugated alexa488 anti-rat and alexa568 ant-mouse secondary

antibodies were diluted 1:100 in antibody dilution buffer and incubated at room

temperature for 45 mins. F-actin was stained with alexa633 conjugated phalloidin.

Cells were visualised using a Leica SP1 or SP5 confocal microscope using the 100X

or 63X objective lens, respectively.

2.28.2 Imunofluorescent Staining of A375 Cell Cytoskeletons after Partial
Cytplasmic Extraction

A375 cell cytoskeletons were visualised by partial cytoplasm extraction using

fixative supplemented with detergent (3% paraformaldehyde and 0.01% triton in

PHEM Buffer - 60 mM Pipes, 25 mM Hepes, 10 mM EGTA, 2 mM MgC12 - pH

6.9). After transfection HA-DAPK or GFP and full length MAP IB or dsRED for the

indicated times cells were fixed for 15 minutes at 37C, washed with PBS and then

incubated at room temperature for 30 minutes with antibody dilution buffer (10%

normal horse serum and 0.1% triton in PBS) to block. Blocked cells were then

incubated for 1 hour at room temperature with the following primary antibodies in

antibody dilution buffer: rat anti-HA 1:50 (3F10 Roche), rabbit anti-tubulin 1:100

(Abeam ab6046), and mouse anti-MAPlB 1:200 (Mouse monoclonal AA6 Sigma).

After washing with PBS the following highly cross-adsorbed fluorescent Alexa dye
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conjugated secondary antibodies (Invitrogen) were diluted 1:100 and bound for 45

mins at room temperature: alexa488 anti-rat, alexa405 anti-tubulin and alexa568 anti-

mouse. F-actin was stained with alexa633 conjugated phalloidin. Cells were

visualised using a Leica SP5 confocal microscope using the 63X objective lens.
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Antibody

Supplier

WesternBlot
Immunoflourescence
ELISA

HRP-AntiMouse

Dako

1

1000

1

1000

HRP-AntiRabbit

Dako

1

1000

1

1000

p53Serine20(7F7)

DrACraig

1

2000

1

2000

p53(D01)

Borek

1

2000

1

2000

p53(ICA9)

Borek

1

1000

1

1000

DAPK

BDBiosciences

1

500

1

500

MAPIB(AA6)

Sigma

1

500

1:200

1

500

V5

Invitrogen

1

5000

1:1000

1

5000

HA(3F10)

Roche

1:100

GST

Sigma

1

5000

1:5000

GFP

Abeam

1

2000

1:1000

Tubulin

Abeam

1

1000

1:200

Actin

Sigma

1

5000

DAPK2

Abeam

1

1000

DAPK3

Abeam

1

1000

p21

OncogeneBiosciences
1

1000

Bax

SantaCruz

1

1000

AlexaFlouroflourConjugated
Invitrogen

1:100

Figure2.1TableofAntibodiesincludingsupplierdetailsanddilutionfactorsusedforWesternblotting, immunoflourescenceandELISAassays.
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Chapter 3

3.1 Introduction

DAPK is a 160kDa serine/threoine calcium-calmodulin regulated kinase with a

multi-domain structure. DAPK is able to reduce cancer growth and metastasis, and is

often deactivated by epigenetic silencing during the development of many cancer

types. A wide array of signaling pathways can activate DAPK including death

receptor pathways, cytokines, ceramide, the ERK/MAPK and JUNK/SAPK

pathways, the p53 pathway and physical detachment from the extracellular matrix.

Through DAPK, these signals initiate type I and/or type II cell death programs

characterised by morphological changes such cell membrane blebbing and nuclear

fragmentation and/or nuclear condensation and autophagosome production.

Although DAPK activation by a multitude of signals has been well documented,

there is an inadequate understanding of the genetic and biochemical mechanisms that

underlie this activity. In order to understand DAPK-induced tumour suppression

pathway more fully, it is required to define new interaction partners. The kinase

domain of DAPK is elemental for integration of DAPK-mediated tumour

suppression where post-translational modification of target substrates by DAPK

integrates numerous signaling events with their effective response to aberrant cell

growth. Therefore identification of novel DAPK kinase domain binding proteins and
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substrates would expand on our understanding of the mechanisms of the diverse

functions of DAPK.
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3.2 Results

3.2.1 Purification and Characterisation of Active Recombinant DAPK Kinase
Domain.

Phage peptide display was chosen as a technology to find novel proteins that interact

with the kinase domain of DAPK. This approach leads to enrichment of short linear

peptides that interact specifically with their target. The primary structure of these

could then be used to deduce in-vivo associating proteins and hence draw inferences

about the mode of DAPK action in tumors. In order to ensure that the interacting

peptides would be representative of proteins that could interact with DAPK in-vivo, it

was imperative to generate a highly purified, active and hence conformational bait

protein. Highly purified protein is required to limit the possibility of phage binding to

contaminants and active protein is indicative of conformational and stable protein

that is folded identically to how it would be folded in-vivo. To achieve this, GST-

tagged recombinant DAPK kinase domain amino acids 1-274 (GST-DAPKcore) was

subcloned into E.coli and Sf9 insect cell expression vectors using the Gateway

destination vector system. After host transformation and gene induction, the

respective protein was purified from the cell lysates on glutathione beads. A

representative purification is shown in Figure 3.1a, GST-DAPKcore protein from

lysates derived from Sf9 cells infected with GST-DAPK-core virus (Figure 3a, lanes

1-2) was purified from a Glutathione column (Figure 3a, lanes 4 and 5). Lane 3 is

control lysate from non-infected cells and lanes 6-9 show wash and flow through
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contaminants. Coomassie gel staining ensured that GST-DAPKcore was of a high

concentration and purity.

Next the purified kinase was examined to determine if the conformational integrity

of the enzyme was intact. The GST-DAPKcore fractions were tested for both kinase

activity and peptide-binding capacity. To assess the activity of the fractions, a p53-

tetramer kinase assay was used. Tthis non-radioactive kinase assay was developed

based on using phospho-protein specific antibodies that detect phosporylation of p53

at Ser20. DAPK was shown to phopshorylate Ser20 to the same level as classic

Ser20 kinases such as CHK2 as p53 has significant homology to the DAPK

consensus phosphorylation site(Craig et al., 1999a; Craig et ah, 1999b). A titration of

GST-DAPKcore fractions (arbitrarily designated fractions El and E2) in this assay

demonstrated that both fractions could stimulate Ser20-site phosphorylation of p53

(Figure 3.1b, lanes 2-5 and 7-10). The background bands observed without kinase

(Figure 3b, lanes 1 and 6) are present because the monoclonal antibody used has a

non-phospho-epitope component to its specificity whilst phosphorylation stabilises

the antibody binding to its phospho-epitope (34). When various purified DAPKcore

fractions were tested, using different N-terminal tags and expression systems, it was

found that GST-DAPKcore from insect Sf9 cells has the highest specific activity

(Figure 3.1c, lane 4 vs. lane 1) and it is this fraction that was used for further

analysis. The specific activity of purified kinase was higher when prepared form

insect cells as compared to the preparation from bacteria (Figure 3.1 c). This is

because insect cells have protein folding machinery and chaperones that are more

closely related to mammalian cells than bacteria. Thus, protein expressed from insect

cells is more likely to be in a native conformation. Also, GST-tagged kinase was
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more active than his-tagged. This is because GST is able to recruit folding machinery

that recognises GST to the expressed protein.

As it was planned to elute peptides from GST-DAPKcore not only with ATP (to

dissociate ATP-binding affected substrates) but also with acid (to dissociate ATP-

independent binding substrates), GST-DAPKcore protein was tested for ability to

bind to p53 within the ubiquitin signal in the DNA-binding domain of p53 (Craig et

al., 2007). This motif forms a docking site for certain calcium-calmodulin kinase

superfamily members including DAPK(Craig et al., 2007). When p53 was coated

onto a solid phase, there was a dose-dependent binding of GST-DAPKcore to p53

(Figure 3.1a). Further, when GST-DAPKcore was coated onto a solid phase, dose-

dependent binding of p53 to the kinase was detected (Figure 3.1b) and glutathione

captured GST-DAPKcore also was able to bind to p53 in a dose-dependent manner

(Figure 3.lei). When the BOX-V docking site peptide (which binds MDM2 and

DAPK/CHK1) from the core domain of p53 was added to reactions, binding of GST-

DAPKcore protein to p53 was stimulated (Figure 3.2b). Also, using this system

addition of ATP dissociated p53 from the antibody-captured DAPK (Figure 3.2.cii).

These data demonstrated that the purified recombinant GST-DAPKcore bound to the

solid phase is active in both substrate phosphorylation and in peptide-docking when

bound to the solid phase. Therefore this fraction was used as a bait to select for

peptide binding ligands.
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3.2.2 Elution of different classes of peptide motifs from the DAPK kinase
domain.

Active and conformationaly stable GST-DAPKcore was adsorbed onto the solid

phase. Random peptides from an extensive combinatorial library were allowed to

interact and were then eluted in cycles with either ATP cofactor or removed with

acid. Isolated phage were then propagated in E.coli and reintroduced onto fresh

kinase domain for subsequent biopanning (Figure 3.3). The biopanning process was

repeated three times, as previous studies have shown that one or two biopans yield an

unmanageable number of peptides ranging from lower binding affinities. Conversely,

four or more biopans generates very few peptides with only very high binding

affinities (Burch et ah, 2004a; Burch et ah, 2004b). Therefore threee biopans were

used. After selection and sequencing the amino acid sequence from each peptide was

input into a BLAST search configured to check for small nearly exact sequences or

motifs present in all known human proteins.

Using ATP co-factor elution two independent phage clones were isolated that

displayed peptide with significant homology to one protein in the database,

transcription factor Spl (SP1) which as a sequence specific DNA-binding protein

and transcription factor (Figure 3.4a. Peptides 1 and 2, Motif: T/S.PSPLALL).

Secondly, two identical phage were isolated displaying peptide SPPSNLIPPTLR

(Figure 3.4a. Peptides 3 and 4) that has no significant homology to any known

human protein sequence. Lastly, two classess of independent phage with separate

sequences were isolated that combined to give the motif TXXHLLXSA (Figure 3.4a

Peptides 5 and 6). However, using the Emotif search engine it was not possible to

find a human protein in the database containing this motif. The acid eluted phage
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displayed peptides with homology to Microtubule Associated Protein IB (MAPIB),

PML (promyelocyte leukaemia protein), and RPL3 (ribosomal protein L3) (Figure

3.4b Peptides 1-3). Also isolated were 3 independent phage with no significant

homology to sequences in the NCBI database (Figure 3.4b Peptides 4-6) (see section

2.7).

3.2.3 Characterisation of the GST-DAPKcore to MAP1B Peptide Interaction

The phage display biopanning procedure lead to the isolation of 5 independent phage

displaying significant homology to sequences in the NCBI protein database. Two

independent phage sequenced had homology to the SP1-4 family of transcription

factors eluted with ATP. Three separate peptides were eluted with acid with

homology to MAP IB, PML or RPL3. During the course of these studies a report was

published showing that DAPK-3 can localise to PML bodies in interferon treated

cells (Kawai et al., 2003). Given that there is such a high degree of sequence

similarity between the kinase domains of DAPK1 and DAPK3 there is a possibility

that this result represents a false positive, or it could be that PML interacts with both

DAPK and DAPK3. However, because this is not a novel interaction PML was not

evaluated as a potential DAPK binding protein. Ribosomal protein L3 is a very

poorly characterised protein with an unknown function and so development of assays

to characterise a DAPK to RP3 interaction would be difficult. In hindsight, the

possibility of an interaction between DAPK and RPL3 is very interesting because it

implies an interface with DAPK and the translational machinery. However, this has

only recently been highlighted as important by research papers published late during

the course of these studies (Anjum et al., 2005; Schumacher et al., 2006).
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The possibility of an interaction between SP1-4 and DAPK is an interesting prospect

that warrants further investigation. However, the SP transcription factors are

primarily confined to the cell nucleus whereas DAPK1 is confined to the cytoplasmic

compartment. This, in addition to the fact that DAPK3 is a nuclear protein that could

be a more likely binding partner led us to decide that further study would be confined

to the characterisation of a possible interaction with MAP IB. MAP IB is a

cytoplasmic protein known to interact with microtubules and microfilaments where it

influences cytoskeletal dynamics. This theoretically puts MAP IB in the same

cellular compartment with DAPK. In addition to this, MAP IB, like DAPK, is

primarily expressed in the brain where it is known to influence cell fate decisions.

There were no direct links established between MAP IB and the DAPK family prior

to these studies.

The isolated phage peptide with homology to MAP IB maps to the N-terminal region

of human MAP IB at position 46-57. This region is conserved throughout higher

vertebrates were the amino acid chemistry similarity is EH(L/V)(R/K)X(P/A)(I/V/L),

where X is not conserved in xenopus or zebrafish (Figure 3.5). However the fact that

the protein chemistry of this motif is conserved in vertebrates is unsurprising because

the entire MAP IB protein is also highly conserved in these species, with the

exception of the N-terminal 30 or so amino acids that are less conserved in xenopus

and zebrafish. What is interesting is that the four center amino acids in this motif

(HLRR) are conserved down to lower invertebrates including fruit flies in an area of

otherwise unconserved amino acid sequence at the N-terminus. This gave further

confidence that the phage peptide screen had isolated an interaction motif with

homology to a conserved interaction site on MAP IB.
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An ELISA based assay was used to characterise the interaction of the phage peptide

(®-peptide) and the corresponding MAP IB homologous peptide with GST-

DAPKcore (Figure 1.6). Biotinilated synthetic peptides were obtained for use in an

ELISA based assay. First, an optimisation experiment was performed to calculate the

optimal peptide concentrations for specific binding (Figure 3.6a). GST-DAPKcore

binding to a non-relevant control peptide (NR), phage peptide with homology to

MAP1B (®; LPFEEHLRRPVG) and the naturally occurring peptide sequence in

MAP1B itself (IB, IVTEEHLRRAIG) were titrated and assessed for binding. Using

this system it was determined that using lOOng of peptide provided the optimal

resolution of differential binding. GST-DAPKcore binding could be detected to Pep

® and Pep IB, relative to the control Pep NR (Figure 1.6b, right 3 bars vs GST-only

control left three bars). These data confirm that GST-DAPKcore can interact with

peptides containing the core EEHLRRx(I/V)G motif, and that this is not due to non¬

specific interaction with GST or with contaminants.

3.3.4 Cloning MAP1B Constructs into Expression Vectors

Having determined that the MAP IB peptide could bind specifically to GST-

DAPKcore it was decided to clone MAP IB protein from human tissue. Cloned

MAP IB in a protein expression plasmid would be an invaluable reagent to assess the

ability of naturally occurring peptide to bind GST-DAPKcore and to elucidate any

functional role that this interaction may have in-vivo. MAP IB has two known splice

variants expressed in human cells designated transcript variants 1 (VI) and 2 (V2).

Protein isoform 1, is derived from transcript variant 1 which has an extra exon

designated exon 3A. Variant 1 therefore gives rise to protein that is 126 amino acids
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longer than transcript variant 2 that lacks this 5' exon. These 126 amino acids are

located at the N-terminus or variant 1 and are designated N126.

A previous research paper indicates that rat transcript variant 1 may play a role in

cell fate decisions in developing brain because it induces apoptosis in cultured rat

hippocampal neurons. This effect is specific to rat variant 1 because rat variant 2

expression does not induce apoptosis. This is of interest because the putative

EEHLRRx(I/V)G interaction site uncovered by the phage display screen is only

present in variant 1, being positioned within the N126 region. This would suggest

that DAPK interaction would be different with respect to isoform 1 and isoform 2

and therefore fragments of MAP IB were cloned corresponding to both splice

variants. Fragments were cloned from 5' position 1 (for VI) and 5' position 378 (for

V2) to an arbitrary 3' location 4101. This 3' location was chosen because it

corresponds to the position of the rat clones created by Uchida (Uchida, 2003). Also,

cloned was a miniprotein corresponding to the N-terminal amino acids (Nl-126) of

VI. Eluman fetal brain RNA that has a high abundance of MAP IB was chosen as

template using the indicated primers for cloning (Figure 1.7a). Fragments of the

indicated sizes were obtained (Figure 1.7b) by RT-PCR and cloned into the Gateway

system for characterisation. The full length sequence of each clone was verified

(Figure 1.7c).

The full length MAP IB gene encodes a polyprotein precursor that is post-

translationaly processed into heavy chain and light chain forms of MAP IB (Figure

3.8). The heavy chain (HC) contains a microtubule binding (MT) domain, whereas

the light chain (LC) has an actin binding and oligomerisation domain (A/O) in
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addition to an independent microtubule binding domain (MT). An expression vector

containing full length human MAP IB gene was obtained from a commercial source

because it was difficult to clone in house owing to its large size. This clone is

present in an expression vector that leads to production of full length native MAP IB

protein when transfected into cells (Figure 3.8 lane 2). Fragments VI, V2 and N126

were sub-cloned into expression vectors that lead to the expression of C-terminal V5

viral epitope-tagged fusion protein when transfected into cells (Figure 3.8 lanes 3-5).

Transfected VI and V2 lead to expression of multiple bands corresponding to the

predicted size (approx. 170kDa) and also to a faster migrating band (approx. 100

kDa). This indicated that these constructs were sbject to post translational

modification. Also, VI transfection lead to expression of an additional higher

molecular weight band (approx. 250 kDa) indicating that VI is differentially

modified.

3.2.5 Characterisation of DAPK and MAP1B Protein Interaction In-vitro and in
Cells

The isolated phage peptide and peptide corresponding to the human MAP IB sequnec

specifically interacted with purified GST-DAPKcore in the solid phase in-vitro.

MAP IB gene fragments were therefore cloned into expression vectors to produce

naturally occurring mini-protein to assess for binding to DAPK proteins. In-vitro

binding assays were performed using GST-DAPKcore and MAP IB protein

synthesised in transfected human HCT116 cells including; full-length human

MAP1B, V5-tagged MAP1B-V1 (amino acids 1-1367, containing the N-terminal

EEHLRRx(I/V)G motif), V5-tagged MAP1B-V2 (without the N terminal

EEHLRRx(I/V)G motif), and N126 (containing the N-terminal EEHLRRx(I/V)G
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motif). Full length native DAPK was separately expressed in HCT116 cells and

precipitated onto the solid phase using anti-DAPK monoclonal antibody. Stable

binding to antibody-captured DAPK was detected with full-length MAP IB,

MAP1BV1, and N126 (Figure 1.9a). However, less binding was observed to

MAP1B-V2, which lacks the N-terminal EEHLRRx(I/V)G motif. The difference in

binding affinity between MAP1B-V1 and MAP1B-V2 was also demonstrated using a

co-immunoprecipitation assay with lysate from co-transfected human cells. Co-

transfection of V5-tagged variants of MAP IB with untagged DAPK was followed by

immunoprecipitation of MAP IB with anti-V5 sepharose beads and assay of the

resulting precipitate by immunoblotting for DAPK. Relative to empty vector

controls, MAP1B-V1 bound to DAPK (Figure 3F, lane 4 vs 3) to a higher extent than

MAP1B-V2 (Figure 3F, lane 7 vs 6) again suggesting that the primary interaction

site between DAPK and MAP IB is on the N-terminal domain of the MAP IB protein.

Endogenous MAP IB can be isolated in complex with HA-tagged DAPK by

immunoprecipitation with an anti-HA antibody (Figure 3.9c). AA6 antibody was

used to immunoprecipitate MAP1B from lysates prepared from A375 melanoma

cells transfected with HA-DAPK. Immunoblotting of the precipitated MAP IB

protein (Figure 3.9c, lanes 9 and 10) showed that most of the HA-DAPK was present

in the bound fraction (Figure 3.9c, lane 10 vs 9 compared to lanes 6 and 5). Equally,

HA-antibody was used to immunoprecipitate HA-DAPK from lysates (Figure 3.9c,

lanes 7 vs 8) and most of the MAP1B was present in the bound fraction (Figure 3.9c,

lane 8 vs 7 compared to lanes 3 and 4). Actin was not present in any of the

immunoprecipitates (Figure 3.9c, lanes 7-10), which might be surprising given that

the documented role for DAPK involves its association with actin. However, a
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possible explanation for this is that during gentle lysis conditions used to preserve the

protein-protein complexes, some microfilaments are not disrupted and hence any

DAPK associated with the actin cytoskeleton will not be present in the centrifuge-

cleared soluble lysate. Therefore only cytoplasmic associated pools were available

for coimmunoprecipitation. Tubulin levels could not be determined in the

precipitated fractions because of interference with IgG heavy chain (both approx. Mr

50 kDa).

3.2.6 Purified Recombinant N126 is Phosphorylated by GST-DAPKcore In-vitro

Recombinant DAPKcore was able to bind to the MAP IB peptide deduced from

phage isolated during the interaction screen (Figure 3.6). This peptide mapped to the

N-terminus of transcript variant 1 (VI) of MAP1B, and subsequent binding assays

showed that full length recombinant DAPK was able to bind to this region (Figure

3.9 a and b). During the phage peptide screen, a MAP IB homologous peptide was

eluted from GST-DAPKcore by acid and not by ATP suggesting that this interaction

site could be a docking area not directly phosphorylated by DAPK. In addition to this

there are no serine or threonine phosphoaccepters on the phage peptide or the

equivalent area on MAP IB. The N-terminus of MAP IB-VI is an unordered linear

region that is evolving relatively quickly as compared to highly conserved areas

further down stream that are conserved from insects (Figure 3.5). This suggests that

the N-terminus of MAP IB could be a regulatory region, possibly involved in

modifying MAP IB response to signalling events (See Section 1.9). Often, linear

regulatory domains of proteins are post-translationaly modified by kinases to effect

signal transduction. Therefore, the N-terminus of MAP1B-V1 (N126) was assessed
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for ability to be phosphorylated by DAPK. This was facilitated by the fact that N126

had been already cloned in house (Figure 3.8) and so could easily be subcloned into a

bacterial expression vector for rapid expression and purification given its small size.

His-tagged N126 was expressed in E.coli and purified using nickel beads and

incubated with GST-DAPKcore in a kinase assay. Titration of N126 revealed that it

was phosphorylated when 50ng was added to the reaction (Figure 3.10 a, lanes 5 and

6 - band highlighted by arrow). lOOng of p21 was used as a positive control that was

efficiently phosphorylated by DAPK as previously reported (Craig et al., 2007;

Fraser and FIupp, 2007). These data show that N126 can be phosphorlated by GST-

DAPKcore in-vitro and suggest that MAP IB may be a substrate for post-translational

modification by DAPK. However, this does not prove that DAPK can phosphorylate

MAP1B-V1 in cells.

3.2.7 Isolation of High Molecular Weight Multiprotein Complexes Containing
MAP1B and DAPK Using Ion Exchange and Gel Filtration Chromatography

The immunoprecipitation experiments detailed above involve transfection of either

DAPK or both MAP IB with DAPK. Therefore, further experiments were devised in

order to determine if endogenous proteins interact. A549 cells co-express large

amounts of MAP IB and DAPK and so endogenous co-IP experiments were set up in

these cells. Immunoprecipitation using mouse monoclonal anti MAP IB AA6 or

mouse monoclonal anti DAPK resulted in efficient purification of the respective

endogenous proteins (Figure 3.10 a). However, only a small amount of DAPK was

reproducibly co-precipitated with anti-MAPlB and vica-verca only a small amount

of MAP IB reproducibly with anti-DAPK. This suggests that only a small amount of

89



the endogenous proteins bind. This could indicate that the interaction between the

two could be transient and therefore involve a small pool of the total MAP IB and

DAPK. However, the fact that only a weak IP was obtained might be due to

experimental reasons associated with co-IP experiments. For example the epitopes

could be occluded or antibody binding could disrupt endogenous complex formation

or the multi-protein complex might be disrupted from by buffers used for cell lysis.

Another possibility is that MAP IB and DAPK complexes could interact with

microfilaments that would remain insoluble during lysis. It should be noted that

microtubule polymerisation is highly temperature dependent. Therefore this would

not be the case with microtubules that are dissolved during lysis and as such any

associating proteins are liberated. This could also be a reason for a weak co-IP,

because if the endogenous DAPK and MAP IB interaction relies on polymerised

tubulin it would be dissociated during lysis.

Because preparing a convincing immunoprecipitate with endogenous MAP IB and

DAPK in complex was unsuccessful, it was assessed whether the two proteins could

co-purify using chromatography, which would be suggestive that they can assemble

into a stable complex. A549 small cell lung carcinoma cell lysate, which contains

relatively large amounts of MAPIB and DAPK (Figure 4.2) was applied to an ion

exchange column and eluted with an increasing salt gradient. DAPK broadly eluted

from the column in fractions 10-21 (Figure 3.11b). In contrast MAP IB elution was

confined to a peak in fractions 18-24. Endogenous DAPK and MAP IB proteins are

therefore not in a stable complex in A549 cell lysate as they generally co-purify

away from each other. This might explain, in part, why is has been difficult to isolate

a stable endogenous MAP1B-DAPK protein complex by co-precipitation as the
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abundance of interacting protein in lysates is relatively low. The broad elution of

DAPK suggests it is heterogeneous with respect to charge or binding proteins.

However, a portion of DAPK did co-elute with MAP IB and so fractions 18-21 were

pooled based on the assumption that these could contain a stable DAPK-MAP1B

complex. This pooled fraction was subsequently applied to a gel filtration column.

After gel filtration, DAPK roughly eluted into two pools, the first corresponding to

its monomeric molecular weight (3.11c Fraction 14) and the second in a higher

molecular weight fraction that co-elutes with MAP IB (Figure 3.11c Fraction 9).

MAP IB eluted into fraction 10 and into fraction 9. Interestingly fraction 9 had

multiple immunoreactive bands migrating faster than the protein present in both

fractions 9 and 10. This suggests that there are multiple forms of MAP IB in A549

cell lysate, however only the slowest migrating form co-eluted with DAPK. These

multiple bands could be isoforms, or could be post translationaly modified moieties.

Together, these data imply that a proportion DAPK and a slow migrating isoform of

MAP IB are present in a high molecular weight complex in A549 cells.

3.2.8 Quantitation of DAPK and MAP1B Association with Microtubules

Co-immunoprecipitation and chromatography assays provided evidence suggesting

that only small pool of soluble endogenous MAP IB and DAPK associate in complex

in cell lysate. However, the HA tag of transfected HA-DAPK could be used to

efficiently pull down MAP IB in complex with DAPK. No actin was detected in the

immunoprecipitate, all of which remained in the unbound fraction. Using co-IP it

was not possible to assay the level of tubulin in the precipitate because of

interference with the heavy chain of IgG which is approximately the same molecular
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weight. So experiments were conducted to determine if DAPK, like MAP IB could

interact with polymerised tubulin.

In-vitro microtubule polymerisation and depolymerisation cycling is a classic method

used to determine if a protein is capable of binding to microtubules. To achieve this,

a microtubule preparation was prepared in-vitro using lysate that has been thoroughly

clarified by centrifugation. During cold lysis, microtubule depolymerisation is

spontaneously induced and so any associated proteins are liberated and dissolved.

Then GTP is added to the lysate before incubation at 37C to stimulate polymerisation

of microtubules. In-vitro microtubules and any associated proteins are then separated

by centrifugation and can be assayed for protein content by western blot.

Initially, tubulin precipitation was employed to screen multiple cell lines for DAPK

and MAP1B co-precipitation with tubulin (Figure 3.12 a). A549 cells and A375 cells

that express endogenous MAP IB were transfected with HA-DAPK only, whereas

HCT116 colon carcinoma cells that express very little MAP1B were co-transfected

with MAP IB and HA-DAPK. Microtubule pellets (p) and supernatants (s) were

assayed for MAP IB, DAPK and tubulin content using SDS PAGE and western

blotting. Transfected HA-DAPK was enriched in microtubule preparations from all

cell lines.

The isolation of bona-fide microtubule associating proteins (MAPs) requires that the

prepared microtubules are depolymerised and re-polymerised during three

subsequent rounds of cycling. In this way, non-specific interactions are eliminated by

dilution so that after the third cycle only specifically interacting proteins are

precipitated with tubulin polymers. A375 cells were transfected with HA-DAPK for
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24 hours before lysis and 3 rounds of microtubule cycling. DAPK and MAP IB both

co-purified with tubulin whereas only a smaller residual amount of each remained

soluble in the supernatant. The stoichiometry of binding to microtubules was roughly

3 to 1 for MAP IB and a striking 5 to 1 for DAPK after 3 rounds of cycling. Actin

was eliminated form the preparation after 2 cycles, indicating that interaction with

actin by either MAP IB or DAPK was not required for their binding to mictotubules.

In addition, this provided confidence that only specifically bound protein was present

in the preparation and that non interacting proteins were removed with the

supernatant fraction. These data provide compelling evidence that DAPK is able to

strongly interact either with microtubules directly or with microtubule associated

proteins. This is a remarkable result because previous published work has

concentrated on DAPK as an actin associating protein. This proposed interaction of

DAPK with the microtubule network is entirely novel.

3.2.9 Proteomic Analysis of Microtubule Preparations Using Fluorescence 2-D
Difference in-Gel Electrophoresis (DIGE)

If DAPK interacts strongly with microtubules, it is highly likely that this will induce

changes in the total microtubule associated proteome. Given DAPK's role in the

regulation of cell death it is therefore also likely that these proteomic changes will

effect DAPK induced tumour regulation. As a consequence, study of DAPK's effect

on the microtubule network could shed light of DAPK-induced tumour suppression.

A proteomic study was set up to determine the effect of DAPK interaction with

microtubules on the microtubule associated proteome.
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Differential in Gel Electrophoresis (DIGE) is used to monitor the difference between

proteomic profiles of biological samples. Protein preparations are tagged with

different fluorescent dyes and then separated on the same 2D-gel. After separation

the two fluorescent images are superimposed to visualise protein moieties at similar

concentrations in both samples and protein moieties that are present at different

concentrations. The main advantage of using this technology is that it allows for

simultaneous comparison of multiple samples on one gel, thereby negating inter-gel

variation.

A375 cells were used to create a DAPK stabile-inducible cell line. DAPK expression

was under regulation by tet operon, and could be induced by addition of tetracycline

into the growth medium. This cell line expressed very low basal levels of DAPK

without induction. Addition of 5pg/ml tetracycline into the culture medium for 48

hours resulted in induction of DAPK expression to high levels (Figure 3.13 b).

Therefore, the effect of DAPK on the microtubule associating proteome could be

determined by differential analysis of microtubules prepared from non-induced and

induced samples. After 3 cycles of polymerisation, proteins were separated by SDS-

PAGE and visualised using colloidal blue staining (Figure 3.13 a) to visualise any

large changes in the amount of protein mioties after DAPK expression. Over 50

distinct bands were observed, however no differentially expressed moieties were

observed using this method. The presence of MAP IB, DAPK tubulin and actin was

verified by western blot analysis of the preparation (Figure 3.13 b).

Purified microtubule samples prepared from induced cells were labeled with Cy5

(red) and the reference preparation with Cy3 (green) and isoelectrically focused
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overnight between pH 4 and pH 8. After focusing samples were separated on an 8%

gel resulting in a duel stained 2D gel profile (Figure 3.13 c). Pattern recognition

software determined that the intensity of 41 spots was 3-fold decreased as compared

to the reference, and that 238 spots were increased above this threshold (Figure 3.13

d). Thus demonstrating that exogenous DAPK induces a wide variety of changes to

the microtubule associated proteome.
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3.3 Discussion

3.3.1 Use of the Phage Peptide Combinatorial Library to Identify Novel Protein
Interactions

One of the difficulties of cancer research in humans is that investigation of non-

conserved biochemical pathways cannot rely on classic genetic screens such as those

employed in model organisms. An additional difficulty is that signalling pathways

that often evolve quickly are not always conserved and so extrapolation from lower

organisms may not be feasible. Therefore methods in cancer research to identify

novel protein signalling interactions have generally included antibody based

immunoprecipitation methods such as TAP-tagging, two-hybrid methods and peptide

aptamers. These techniques have advantages and disadvantages ranging from in-vivo

relevance to incomplete representation of a library. There is a growing realisation

that signalling interactions are often regulated by linear interaction motifs often as

small as 4 amino acids. Such small peptide motifs may act as scaffolds to anchor a

protein to a target or to allosterically alter function or they may be acceptor motifs

for posttranslational modification. As such, proteomic methods geared towards

identifying bioreactive linear binding motifs will assist in expanding the known

"interactome" of a target protein.

Peptide display technologies may be prone to giving false positives owing in part to

the fact that the displayed peptide might interact with contaminants that are

inevitably present with proteins purified using most methods. The purity of the GST-

DAPKcore preparation was assessed using SDS-PAGE in conjunction with
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coomassie blue staining (Figure 3.1 a). This method is sensitive enough to detect

contaminants in the preparation at concentrations above the lOnm range. Even

though it was not possible to determine the extent of contamination with proteins

below this concentration, the purity was considered sufficient. This assumption was

verified post-isolation of the phage peptides by using an ELISA based method to

evaluate the specificity of binding (Figure 3.6 b). The GST-DAPKcore preparation

was compared to a GST-only control prepared from E.coli. Elere, binding of phage

peptide to GST-DAPKcore was 3 fold higher than to GST alone. This suggested that

the non-specific element of phage peptide binding was much smaller than specific

binding. This non-specific binding to GST alone was likely due to the biotinilated

peptide used in the ELISA assay being at a concentration many orders of magnitude

higher than the phage peptide would be in the combinatorial library.

The phage peptide combinatorial library was presented to bait protein isolated on the

solid phase. As a consequence of this, a method was required that would allow

DAPKcore to be captured in an active and conformationaly stable state. Enzyme that

was precipitated on ELISA wells using glutathione was able to efficiently bind p53.

Also, presentation of docking site peptides that reflect the calcium-calmodulin family

binding site within the MDM2 ubiquitination signal of p53, resulted in increased

association between DAPK and p53. This indicated that the DAPKcore was

alostericaly modified by these peptides. Also, isolated kinase released a proportion of

bound p53 when ATP cofactor was added. These observations, taken together

demonstrated that glutathione captured kinase is able to interact with target protein in

3 distinct ways; through binding, via docking site mediated allosteric interaction and

by phosporylation which requires precise substrate recognition. Therefore DAPKcore
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captured in the solid phase was a good target protein for phage display because any

binding peptides should reflect those that bind in an in-vivo situation.

Three rounds of biopaning were conducted. It was hoped that this would strike a

balance between obtaining an unmanageable number of peptides usually obtained

after just 2 rounds and isolating too few peptides after more than 3 rounds. If only 2

rounds of biopanning are conducted then there is a risk that false positives will be

obtained as a result of none-specific binding of weaker interactors. After 3 rounds the

number of false positives is significantly reduced as strongly interacting peptides are

enriched at the expense of weaker non-specific interactions that are diluted. The

disadvantage of using three rounds is that the number of different peptides obtained

is decreased as the stronger binders become more prevalent. It was determined by

previous work that in order to conserve resources the optimum number of phage

plaques to be processed for sequencing is just 6 after 3 rounds of panning to identify

the prevailing interacting peptides. After elution with ATP for example, sequencing

of 6 phage plaques revealed that they displayed 2 groups of 2 identical peptides

(Figure 3.4 a: peptides 1 and 2, peptides 3 and 4), confirming that the optimum

number of plaques had been sequenced.

The sequenced phage displayed peptides were inputted into a BLAST search

program optimised to find short nearly exact hits from the entire known human

proteome. Hits that consisted of 5 or more identical amino acids were determined to

be statistically significant. This is because the chances that 5 amino acids would

appear at specific places at random in a 12mer peptide are much greater than the

expected number of genes in the human proteome. As such, isolated peptide with 5
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or more amino acids in common with known protein was considered for further

analysis. Also, a search was undertaken to try and identify any motifs arising from

more than one peptide. However, only one such motif was found by grouping

together 2 distinct peptides (Figure 3.4 a: peptides 5 an6 6). This motif was then

inputted into the e-motif database to search for homologous motifs within the human

proteome. However, this revealed no significant hits. In addition to this, in total 6

individual binding peptides were isolated that had no significant homology to any

known protein in the data base, 3 eluted using ATP and 3 with low pH. Given that

these peptides were isolated after 3 rounds of panning along side other peptides with

high sequence homology to known proteins it remains unlikely that these are

genuinely unrelated to any naturally occurring peptide. The fact that no homologous

hits were found could be due to a number of reasons: Firstly, linear interaction motifs

can often consist of as little as 4 amino acids in succession but these would be

flagged as insignificant during the search process. Secondly homologous proteins are

found by the pattern recognition algorithms employed by the BLAST search

program. These algorithms can not easily find all patterns such as those with more

than one gap between groups of homologous residues, and as such the search process

will miss these. Lastly, the isolated peptides may be homologous to known proteins

with respect to amino acid chemistry rather than simply because of sequence

homology. For example, using the search method employed, it was not possible to

highlight residues with a similar charge or with similar functional groups. Therefore

a more sophisticated bioinformatics method is required for future studies that can

address these issues.
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3.3.2 The Nature of the MAP1B to DAPK Protein-Protein Binding

In mouse and rat, the MAP IB gene is transcribed into 3 different transcripts that vary

at their N-termini (Kutschera et al., 1998). The first transcript contains exons 1

through to 7, whereas the second and the third transcripts contain either exon 3A or

exon 3U fused 5' to exon 3. The fusion of exon 3U with 3 results in removal of the

start codon, so that transcription is started further down stream in exon 4. This rodent

transcript with exon 3U corresponds to human MAP IB transcript variant 2 whose

translation is also started further down stream at the corresponding start codon. In

both the human and rat, this leads to expression of 2 distinct isoforms of MAP IB,

variant 2 having an N-terminal truncation that has an otherwise identical amino acid

sequence. The isolated phage peptide with significant homology to MAP IB maps to

the N terminus of transcript variant 1 and so is not present on transcript variant 2.

Therefore, fragments of both variants were cloned from human fetal brain RNA

providing a convenient system to study the 2 MAP IB variants, one with (VI) and

one without (V2) the putative binding motif. In addition to the VI and V2 fragments,

the N-terminal 126 amino acids were separately cloned to make a mini protein

containing the proposed DAPK interaction site. Full length MAP IB was obtained

from a commercial source owing to the difficulty in cloning such a large transcript.

Unfortunately full length transcript variant 2 could not be obtained.

Once cloned, the constructs were sub-cloned into expression vectors for protein

expression to study interaction with DAPK. Initially expressed MAP IB was

introduced to DAPK isolated in an ELISA well in the solid phase. All constructs that

contained the N-terminal phage peptide mapped site could efficiently bind to DAPK,

whereas V2 could not (Figure 3.9 a). N126 and VI were able to bind with higher
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affinity than the full length protein indicating that regulatory elements may be

present C-terminal to the proposed binding site. This was reproduced by co-

transfection of both proteins followed by immunoprecipitation, where only VI was

able to pull down DAPK (Figure 3.9 b). This indicates that the N-terminal region

containing the putative interacting motif is the primary binding site for DAPK on

MAP IB. However, it is still possible that there is another interaction site further

down stream that is not covered by V2. Mouse anti-DAPK antibody (BD Biosciences

- See figure 2.1) was used for the reverse IP in these experiments to attempt to pull

down co-transfected MAP IB variants. However, IP using this antibody was not

successful on a number of occasions. The epitope of this monoclonal antibody maps

to somewhere within the ankyrin repeat domain, a domain thought to be critical for

protein-protein interactions. Therefore, it is proposed that this reverse IP was not

successful because of anti-DAPK antibody epitope masking. Subsequent experiments

revealed however, that transfection of HA-tagged wild-type DAPK used in

conjunction with anti-HA pull down can be used to purify exogenous DAPK-

containing multi-protein complexes from cells (Figure 3.9 c). Given more time the

VI/V2 co-ip would be repeated using this relatively new method of HA-tag pull

down.

A body of literature deals with DAPK and its association with microfilaments. As a

consequence of this it was predicted that immunoprecipitation of DAPK would pull

down actin. Given the fact that the HA-pull down was so efficient it is surprising that

all actin in the lysate was left in the unbound fraction and so not co-precipitated with

DAPK (Figure 3.9 c). This was the case in all the IP experiments, where no evidence

of actin co-IP with DAPK was detected. Again, there could be numerous reasons for
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this; owing to the limitations associated with co-IP methods, such as epitope masking

or sub-optimal salt concentrations in the buffer. DAPK association with actin is

critical for it activity in cells (Bialik et ah, 2004) and so it is unlikely that DAPK

does not interact with actin in the cell lines tested. It is proposed that a likely reason

for the lack of actin co-IP was because the microfilaments remained intact and

insoluble during the lysis procedure. Any DAPK bound to microfilaments would

then be spun down into the pellet during lysis clearance. A simple method that could

be used to test this hypothesis would involve the use of microfilament disrupting

drugs such as latrunculin A during lysis. Then, any DAPK associated with actin

would be dissolved and available for co-immunoprecipitaion. This experiment could

also answer questions pertaining to the nature of MAP 1B interaction with DAPK.

One such question is do MAP IB and DAPK form complexes on microfilaments? In

this case, MAP IB and DAPK would both be liberated by latrunculin A and could

co-IP with actin.

Extremely weak DAPK and MAP IB-containing co-IPs were obtained from A549

cells where both proteins are endogenously expressed (Figure 3.10 a). This could

again be due to methodological reasons, but could equally represent the real situation

in these cells. The assumption that only a small proportion of MAP IB interacts with

DAPK in A549 cells was tested using a chromatograpic method. Here, a small

proportion of MAP IB co-eluted with DAPK in fractions from an ion exchange

column. Multi-protein complexes in these co-eluting fractions, were then

subsequently fractionated according to size using a gel filtration column. A large

proportion of MAP IB and DAPK then co-eluted in a heavy molecular weight

fraction, providing corroborating evidence that a small proportion of endogenous
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MAP IB and DAPK are present in complexes A549 cells. These complexes, of

around 600kDA are 160 kDa heavier than a dimer of DAPK (160kDa) and MAP IB

heavy chain (280kDa) would be. It is therefore probable that other protein moieties

would be associated in this putative multi-protein complex.

It should be mentioned that there are problems associated with this tandem

chromatography approach: Firstly, ion exchange chromatography, unlike size

exclusion, can disrupt multi-protein complexes by virtue of the ionic strength of the

elution, therefore more DAPK and MAP IB may in fact bind than the co-elution

profile might suggest. Secondly, this approach does not provide any proof of direct

interaction, and only suggests such an association when taken into account with other

evidence. For example, MAP IB and DAPK could co-elute after ion- exchange and

size exclusion by chance. In other words, they could be in separate complexes

roughly of the same charge and weight. It should be said however that the chances of

this happening randomly are diminished as two tandem purifications were

performed. Lastly, this method required a lot of starting material, so that there would

be just enough protein to analyse by western blot after the final step. As a

consequence, there was not enough protein to set up a co-IP using co-eluting

fractions. This was unfortunate because such an experiment would be good evidence

of an interaction. As a result, any future work would benefit greatly from such an

experiment if it was successful, but more starting material is required.

In summary, the immunoprecipitation methods employed in this thesis are a good

starting point, and could be optimised further to gather information about DAPK and

MAP IB interactions in cells. Some IPs did not work in the reverse direction,
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probably due to epitope masking and this could be resolved using newer antibodies

or epitope tags. Also, the use of microfilament disrupting may help to dissolve any

residual DAPK and bound proteins that would otherwise remain insoluble and

unavailable for analysis. Also, the weak endogenous interaction in A549 cells in

conjunction with chromatography is suggestive that the two endogenous proteins

interact but is not a complete proof. Therefore further experimentation is required to

determine the extent of endogenous MAP IB and DAPK interaction in other cancer

cell lines and also in primary cell lines.

It may be that the MAP IB with DAPK interaction is occluded in cancer cells to

provide a survival advantage to these cells. A possible mechanism for this would be

via differential expression of the DAPK binding site (as in transcript variant 1) by

alteranative splicing. This would provide a switch that could regulate any functional

consequence of MAP IB interaction with DAPK. This idea is supported by the fact

that only slower migrating bands of MAP IB co-eluted with DAPK and that this band

could be transcript variant 1. There may therefore need to be a stimulus to induce

interaction between the two. For example, this may be in the form of a cell death or

survival signal or cell migration. It has been extensively reported that ectopic

expression of DAPK is sufficient to induce programmed cell death accompanied by

associated morphological changes (Bialik and Kimchi, 2006). This suggests that an

increase in DAPK levels by transfection is sufficient to induce DAPK-related effects

and as a result, signaling events down-stream of DAPK are activated. This could

explain why transfected DAPK interacted with MAP 1B whereas endogenous protein

did not. If this is the case, screening of cells treated with various stimuli would reveal

a stress that induces MAP IB interaction with DAPK.
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A binding interaction between DAPK and MAP IB raises the question; does DAPK

interact with the microtubule network in cells? Co-immunoprecipitation methods

were unable to address this because tubulin is approximately the same size as IgG

heavy chain and so can not be observed by western blot in samples containing

immunoglobulin. Further experimentation involving conjugation of antibody to the

beeds could be employed to address this. However, a tubulin cycling assay was

employed to measure DAPK association with polymerised tubulin in-vitro.

Transfected HA-DAPK was able to strongly interact with tubulin prepared from the

panel of cancer cell lines; A549, HCT116 and A375 cells, after 1 cycle of

polymerisation. This correlated with MAPlB-tubulin association in A549 and A375

cells. It is interesting that in HCT116 cells transfected MAP1B did not interact with

tubulin when co-transfected with DAPK. This could indicate that in this cell line

transfected DAPK inhibits MAP IB binding to tubulin. It is proposed that this is an

artefact. During the first cycle of polymerisation a large proportion of DAPK is left

in the supernatant. Therefore co-transfected MAP IB would be held in the

supernatant by excess DAPK whereas endogenous MAP IB in the other cell lines is

not.

After 3 polymerisation cycles the majority of endogenous MAP IB and transfected

DAPK is bound to microtubules (Figure 3.12 b). It is very striking that DAPK

interacts with polymerised tubulin so strongly and this proves that DAPK can

interact with microtubules in-vitro. This is at odds with a previously published

research paper suggesting that DAPK interacts with microfilaments alone and does

not interact with microtubules (Levy-Strumpf and Kimchi, 1998). In this paper the

authors assay the amount of liberated DAPK under different lysis conditions. After
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addition of the microfilament disrupting agent latrunculin A they show that there is

an increased amount of DAPK in the lysate, showing that DAPK is liberated by

dissociation of the actin cytoskeleton. However after addition of the microtubule

disrupting drug nocodazol they observe no effect on the amount of DAPK in the

lysate which they interpret as suggesting that DAPK was not bound to microtubules.

However this interpretation does not take into account the fact that microtubules

spontaneously depolymerise at low temperature during the lysis. Therefore the

validity of these results is questionable. In any case the polymerisation cycling assay

employed in this thesis does not determine if DAPK can associate with microtubules

in cells in-vitro. Therefore further experimentation is required to confirm or refute

this.

A final observation relating to the interaction of DAPK with the microtubule network

was that actin did not co-bind in the in-vitro cycling assay. Given that DAPK can

interact with actin, it was feasible that actin could be co-precipitated with DAPK. It

seems likely however that DAPK can only interact with either actin or, as in this

case, with tubulin.

3.3.3 Proteomic Analysis of Microtubule Associated Proteins

DIGE proteomic analysis of microtubule preparations with and without DAPK

expression resulted in 2D gel differential profiles with approximately 300

differentially regulated spots (Figure 3.13). This was in contrast to profiles seen after

ID gel analysis visualised by colloidal blue staining, where no differences could be

seen (Figure 3.13 a). However, DAPK was clearly abundant in the induced

preparation (Figure 3.13 b) suggesting that ID electrophoresis was not sensitive
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enough to resolve this. Also, most of the differentially regulated spots were along

horizontal sections of the 2D gel (Figure 3.13 d). This suggests that the majority of

changes induced by DAPK were as a result of post-translational modification,

affecting the isoelectric point of protein moieties rather than their migration through

the gel.

Approximately 200 above 3-fold differentially regulated spots were flagged by the

automated analysis (Figure 3.13 d). Some of these would be false

positives/negatives due to background and some would be the same spot flagged

multiple times due to the nature of the employed pattern recognition software.

However, there were clearly many differential spots that are unlikely to be false.

These were mainly up-regulated along horizontal sections of the profile in the

induced sample, suggesting that DAPK induced post-translational modification of

microtubule associated proteins. These could be directly modified by DAPK catalytic

activity or could be modified by other enzymes activated by DAPK.

These experiments demonstrated the utility of this approach to determine differential

post-translational modifications of the microtubule proteome induced by DAPK.

Therefore, this experiment should be repeated, followed with mass spectrometrical

analysis of the differential spots. This powerful technique would then uncover the

identity of differentially regulated protein moieties, providing invaluable information

about DAPK action in relation to microtubules.
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a - DAPK Core Domain Purification
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b - Activity of Fractions in p53 Ser20 Kinase Assay
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FIGURE 3.1 Purification of Active DAPK-1 Kinase Domain, (a) Sf9 cells were
infected with baculovirus encoding GST-tagged DAPK core kinase domain (GST-DAPK)
The indicated fractions were separated by SDS-PAGE and stained with Coomassie blue.
Induced (lanes 1-2) and non-induced (lane 3) lysates were applied to a Glutathione column
for affinity purification. Protein is depicted in the flow through (lane 9), in the wash (lanes
6-8), and in the Glutathione eluates from induced cultures (lanes 4 and 5). (b) GST-DAPK
eluates El and E2 (lanes 1-5 and lanes 6-10 are increasing amounts of eluates El and E2,
respectively) were titrated in a non-radioactiv kinase assay using p53 as a substrate and
evaluated using phospho-specific antibodies to the Ser20 phosphoaccepter that is in the p53
activation domain (Craig et al., 2007) and to total p53 using DO-12 MAb. (c) The specific
activity of DAPK purified using different methods in a p53 kinase assay was tested. Kinase
reactions were assembled in buffer containing p53 and the indicated kinase (lane 1 = no
kinase, lane 2 = HIS-tagged DAPK-1 from E. coli, lane 3 = GST-tagged DAPK from E. coli
and lane 4 = GST-tagged DAPK fom Sf9 insect cells. Lane 5 depicts HIS-tagged CHK2
from Sf9 cells as a comparison. Again, the reaction products were analysed for p53
phosphorylation using phospho-specific antibodies to phospho-Ser20 and to total p53 using
DO-12 MAb.
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FIGURE 3.2 Integrity of DAPK Kinase Domain in the Solid Phase. The conformational
integrity of GST-DAPKcore was evaluated using a two-site ELISA assay binding to p53.
The protein-protein complexes were detected with anti-GST IgG or anti-p53 IgG (DO-1 or
1CA-9), as indicated, and detected using peroxidase labelled anti-mouse or anti-rabbit IgG
followed by ECL quantitation using a Fluoroskan plate reader. The diagrams to the left of
each figure reflect the order of protein complex formation from protein in the solid phase
through to the HRP-20 antibody detection system. The binding activity in the ordinate
(relative light units) is plotted as a function of increasing amounts of protein, (a) DAPK
titration and evaluation of binding to p53 in the solid phase, (b) p53 titration and evaluation
of binding to DAPK in the solid phase without and with BOX-V docking-site peptides that
map to the calcium-calmodulin kinase interaction site in the core domain of p53 (Craig et
al., 2007). (c) i p53 titration and evaluation of binding to GST-DAPK in the solid phase, ii
100 ng of p53 was incubated in kinase buffer and ATP with GST-DAPKcore in the solid
phase for 30 minuets.
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a - ATP Elution
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b - Acid Elution

Phage Acid 1
MAP lb
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ATWSHHLSSAGL
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No significant homology found

Phage Acid 2
PML

SNLPQSWPPHQW
TYHPPAWPPHQP

Phage Acid 3
RPL3
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Phage Acid 4
Phage Acid 5
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FIGURE 3.4 Peptide Sequences Isolated After Three Rounds of Panning. Peptides were
eluted from DAPK with (a) ATP or (b) acid. After 3 rounds of panning, phage displaying
DNA was sequenced and the corresponding amino acid deduced. Isolated peptides are
summarised as indicated.



4> Peptide
Human MATVVVEATEPEPSGSIANPAASTSPSLSHRFLDS-KFYLLVVVGE
Rat MATVVVEATEPEPSGSIGNPAATTSPSLSHRFLDS-KFYLLVVVGE
Chicken MATVVVEADS-EPSCSLPNPAAP-SPSLSHRFLDS-KFYLLVVIGE

Xenopus M-DPAHTVPIPAA—SPSLSHRFLDS-KFYLLVVIGE
Zebra Fish MATLVDTAETPAPFGGVGSLRSTASPTASTQHFDEGKYYLLVVIGE
Fruit Fly MSDEGGQK

LPFEEHLRRPVG

IVTEEHLIRAIG NIELGIRSWDTNLIECNLDQELK
TVTEEHLIRAIG NIELGIRSWDTNLIECNLDQELK
LVTEEHLRRAIA NIERGIRSWDTNLIECNLDQELK
TVTEEHVRCALS NIERGIRSWDTDLIQCNLDQELK
LVTDEHLKCAIA DIEG-IRSWDTNLIDCNLDQELK
PHHSPHLRRHHHRHYRGALRVVAKVAGKVAPTRGNCATGDAALEAVETIKLDNSNPLDAP

LFVSRHSARFSP EVPGQKILHHRSDVLETVVLINPSDEAVSTEVRLMITDAA
LFVSRHSARFSP EVPGQKILHHRSDVLETWLINPSDEAVSTEVRLMITDAA
LFVSRHSARFSP EVRGQKILHHRSDVLETVVLINPSDEAVSTEVRLMITDAA
LFVSRHSARFSP EVRGQKILHHRSDVLETWLINPSDEAVSTEVRLMITDAA
LFVSRHSARFSA DVRGQKILHHKSNVLETVVLINPSDEAVSTEVRLMVSDTA
CVLESMSVPASPGIAFISDSTSDRERLIQYASENLVTEVLIHPQYNTLIQCMRNLLSSFT

RHKLLVLTGQCFENTGELILQSGSFSFQNFIEIFTDQEIGELLSTTHPANKASLTLFCPE
RHfCLLVLTGQCFENTGELILQSGSFSFQNFIEIFTDQEIGELLSTTHPANKASLTLFCPE
RHKLLVLTGQCFENTGELILQSGSFSFQNFIEIFTDQEIGELLSTTHPANKASLTLFCPE
RHKLLVLTGQCFENTGELILQSGSFSFQNFIEIFTDQEIGELLSTTHPGNKASLTLFCPE
HHfCLLVLAGQCFENTGELILQSGSFSLSSFIDIFTDQEIGELLSTVHPANKASLTLFCPE
RHRHIIHAGYTFSGNGSWILQDGTFSVADFSEAFQEHDVQRVIR--AYADTITMNIHCAD

EGDWKNSNLDRHNLQDFINIKLNSASILP-EMEGLSEFTEYLSESVEVPSPFDILEPPTS
EGDWKNSNLDRHNLQDFINIKLNSASILP-EMEGLSEFTEYLSESVEVPSPFDILEPPTS
EGDWKNSNLDRHNLQDFINIKLNSSSILP-EMEGLSEFTEYLSESVEVPSPFDILEPPTS
EGY«KNSNLERHNLQDFINIKLl9SASILP-EMEGLSEFTEYLSESVEMPSPFDILEPPTS
HGDI$KNSNLDKHNLQDFIYMKLr||SPTILP-EMEGLSEFTEYLSESVEISSPFDMLEPPTS
AGLWHT--LPEKAFARQCRIRINPVDVLDTSSECINGFIDYLAPMVMPTSLRELLE—TS

GGFLKLSKPCCYIFPGGRGDSALFAV-NGFNMLINGGSERKSCFWKLIRH
GGFLKLSKPCCYIFPGGRGDSALFAV-NGFNMLINGGSERKSCFWKLIRH
GGFLKLSKPCCYIFPGGRGDSALFAV-NGFNMLINGGSERKSCFWKLIRHLDRVD
GGFLKLSKPCCYIFPGGRGDSALFAV-NGFNMLVNGGSDRKSCFWKLIRHLDRVD
GGFLKLSKPCCYIFPGGRGDSALFAV-NGFNMLINGGSDRKSCFWKLVRH

DVVGN-IRFTHPTLYVFPGGQGD-AALFGINGFNMLVDGGFNRKACFWDFARHLDRLD
FIGURE 3.5 The Isolated MAPIB-Homologous Peptide Maps to a highly Conserved
Motif on the N-terminus of MAP1B. Human MAP1B amino acid sequence data was
retrieved from genbank and used to find paralogues from rodent, avian, amphibian, fish and
insect species using blast searching of the homologene data base. Clustalw was used to
compile multiple alignments using the obtained sequences. Residues with similar chemistry
were coloured blue (negative charge), pink (positive charge), red (non-polar) and blue
(polar). Shaded areas are highly conserved from invertebrates.



a - Assay Optimisation
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FIGURE 3.6 Specific Binding of the (D-peptide and Mapped MAP1B Peptide to GST-
DAPKcore. Microtitre wells were coated with anti-GST IgG followed by incubation with
GST only or with GST-tagged DAPKcore as indicated. Synthetic peptide (<t>) with
homology to MAP IB (O - LPFEEHLRRPVG), the corresponding homologous peptide
derived from MAP1B (IB - IVTEEHLRRAIG), or control peptide (NR) were added into to
the wells. Peptide complexes were quantified using streptavidin peroxidase. The data are
plotted as peptide-binding activity (RLU) as a function of target protein in the solid phase.
The diagram to the left of figures reflect the order of protein complex formation between
DAPK in the solid phase and peptide through to the HRP-20 antibody detection system, (a)
Titration of dissolved peptide onto GST-DAPKcore in the solid phase, (b) Addition of 50ng
peptide to GST-DAPKcore in the solid phase, error bars show standard deviation.



a - Primer Positions Relative to MAPI B gene
1 378 4-101 7377

3'

b - RT-PCR Products

MAPI B Transcript Variant 1 Fragment (V1):
Forward: atggcgaccgtggtggtgg
Reverse: actgaattcaaaactcactg

MAPI B Transcript Variant 2 Fragment (V2):
Forward: atgatcactgatgctgccc
Reverse: actgaattcaaaactcactg

MAPI B N-Terminal Mini-protein (N126):
Forward: atggcgaccgtggtggtgg

Reverse:

C - Nucleotide Sequence Analysis of Plasmid Clones
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FIGURE 3.7 Cloning of MAP1B Fragments from Human Brain Total-RNA. (a)
Primers were designed for cloning fragments of MAP1B transcript variant 1 (VI) and
transcript variant 2 (V2) using 5' primers at positions 1 (red arrow) and 327 (blue arrow)
respectively and 3' primers at position 4101 (with respect to the full length MAP IB cDNA
sequence). The N-terminal mini-protein; N126 was cloned using reverse primers designed
at position 378. (b) RT-PCR products were resolved on a 1% agarose gel before gel
purification and subsequent cloning into gateway pDONR221 plasmid. (c) Sequences from
the 5' positions of each clone in pDONR221 vector are shown.
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a - Transfected MAP1B Binding to DAPK on Solid Phase
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b - Exogenous MAP1B and DAPK Association in HCT116 Cells
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FIGURE 3.9 Interaction of Tranfected DAPK with MAP1B Protein in Cells, (a)
Expression Vectors (1 pg of each) native DAPK and MAP1B variants were co-transfected
into HCT116 cells. After 24 h, cultures were lysed and processed for two-site ELISA. The
binding of MAP IB variants to DAPK was quantified using the appropriate anti-V5 or AA6
anti-MAPlB IgG and secondary antibody linked to peroxidase followed. Peroxidase activity
was detected by ECL. (b) Vectors encoding V5-tagged MAP1B (V1 [lanes 3-5] or V2
[lanes 6-8]) and native DAPK (1 (jg of each) were co-transfected into HCT116 cells
and after lysis, the amount of DAPK bound in the anti-V5 immune complex was
quantified by immunoblotting with anti-DAPK IgG. (c) A375 cells were transfected
with either HA-DAPK or vector control for 24 hours, harvested in NP-40 lysis buffer
and the resultant lysate cleared for co-immunoprecipitation. Complexes were
precipitated using anti-HA or AA6 (anti-MAP1 B) antibodies. MAP1B and HA-DAPK
protein in the input lysate (lanes 1 and 2) and resulting unbound (3 to 6) and bound
immunoprecipitate (7 to 10) fractions were detected by immunoblot. The extent of
tubulin co-precipitation could not be determined in lanes 7-10 because the heavy
chain from the IgG used in immunoprecipitation co-migrated with tubulin and
masked the signal.



a Using N126 as a Substrate for GST-DAPKcore
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b Candidate Phosphoaccepter Site on N126
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FIGURE 3.10 The N126 MAP1B Mini-protein is Phosphorylated by GST-DAPKcore
in-vitro. His tagged N126 mini-protein was over expressed in E.coli before gentle lysis and
purification of soluble peptide using nickle beads. Purified protein was then added to a
radioactive kinase assay before separation using a 4-12% gradien novex SDS-PAGE gel.
(a) Autoradiograph of His-N126 titrated into kinase assay buffer containing 32P-labelled
ATP and DAPK (lanes 3-6). No substrate (lane 1) and p21 substrate (lane 2) controls are
shown. Graph below shows band density of phosporylated His-N126 as a function of the
amount of protein in the reaction, (b) The sequence of N126 is shown with the candidate
phosphoaccepter site (bold) and upstream positively charged residues highlighted in red.
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FIGURE 3.11 Isolation of High Molecular Weight Multi-Protein Complexes From
A549 Cells. A549 cells that contain large amounts of endogenous MAP IB and DAPK were
used as a source for study of endogenous protein, (a) Cells were lysed in native lysis buffer
and MAP IB was precipitated using Mab AA6 beads and DAPK precipitated using anti-
DAPK Mab beads. Input protein levels and no-antibody control precipitate is shown. The
mean ratio between co-precipitated protein and the corresponding no-antibody control
precipitation is plotted as a function of precipitating antibody. Error bars show standard
deviation of the means from 3 separate precipitations, (b) A549 cells were lysed and protein
applied to an ion exchange column followed by elution with an increasing salt gradient.
Fractions were immunoblotted for DAPK and MAP IB (as indicated), (c) Fractions
containing co-eluting pools of DAPK and MAP IB were applied to a Superose-6 gel
filtration column and the elution of DAPK and MAPI B was analysed by immunoblotting as
indicated. The elution of two molecular weight markers at 600 and 160 kDa are highlighted.
*1 = degradation products. *2 = none-specific band.
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FIGURE 3.12 DAPK and MAP1B Co-precipitate with Microtubules During
Temperature Dependent Microtubule Polymerisation/Depolymerisation Cycling. The
indicated panel of cancer cell lines were transfected for 24 hours with vector control or
HA-DAPK. MAP IB was co-transfeced into all HCT116 cultures because this cell line does
not express large amounts of endogenous MAP1B. Cell cultures were then harvested and
lysed in microtubule polymerisation buffer supplemented with 0.1% triton and then span 3
times for 15 minuets to create thoroughly clear lysate. Lysates were then incubated at 37C
for 40 minuets with ImM GTP to allow formation of microtubules. After polymerisation,
samples were span at 13000g for 20 minuets at 25C to pellet the microtubules.
Microtubules were then re-suspended in gel loading buffer and the protein separated using
4-12% gradient SDS-PAGE. (P) = microtubule pellet and (S) = supernatant, (b) A375 cells
were transfected with HA-DAPK for 24 h before lysis and tubulin polymerisation and
depolymerisation cycling. After 3 cycles, the resulting pellets and supernatants (S/N) were
probed for MAPIB, HA-DAPK, tubulin and actin, as indicated.
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FIGURE 3.13 Use of Fluorescence 2-D Difference Gel Electrophoresis (DIGE) to
Determine DAPK-Induced Changes to the Microtubule Associated Proteome
A stable tetracycline-inducible DAPK cell line was created using A375 cells that contain
high levels of endogenous MAP1B. Cultures were treated with 5|ig/ml tetracycline (+) to
induce DAPK or treated with vehicle control (-) providing a reference sample, for 48
hours. 1*1(T8 Cells were then harvested with microtubule polymerisation buffer, sonicated
10X for 10 seconds and then ground using a dounce tissue grinder before allowing
microtubules to depolymerise on ice for 30 minuets. Lysates were then cleared 3 times at
13000g for 30 minuets before addition of ImM GTP for 30 minuets at 37C to allow
microtubules to form. After polymerisation, microtubules were separated by centrifugation
at 13000g for 1 hour before depolymerisation on ice for a further 40 minuets. Microtubules
were then polymerised and depolymerised a total of 3 times to prepare pure microtubules
and specifically interacting proteins. Proteins in the pellet and supernatant prepared from
Induced and non-induced samples were separated by SDS- PAGE and examined by
colloidal blue staining (a). MAP1B, DAPK, Tubulin and Actin levels were assessed by
immunoblot (b). (c) For DIGE analysis 50pg induced sample was labelled with Cy5 (red
channel) and 50pg of reference (non-induced) sample with Cy3 (green channel), (d)
Differential spots were noted (with respect to Cy3 labelled gel) above the 3-fold threshold
level: Decreased (red outline) 41 spots (6%) Increased (blue outline) 238 spots (3.1%).



Chapter 4

4.1 Introduction

A novel interaction between DAPK and MAP IB has been discovered by employing

a phage peptide display based interaction screen. Using in-vitro and cell based

assays, this interaction has been determined to occur primarily via an interface

located at the amino-terminus of MAP IB transcript variant 1. Interaction with

MAP IB transcript variant 2 therefore is reduced suggesting that alternate splicing of

MAP IB could be a mechanism for regulation of this interaction. In addition to this,

the N-terminal 126 amino acids of MAP IB can be phosphorylated by purified DAPK

kinase domain in-vitro, making the N-terminus of MAP IB a putative substrate for

DAPK.

The interrelation between MAP IB, which is a microtubule associating protein, and

DAPK, primarily thought of as an actin associating protein, suggests that DAPK may

interact with a wider range of cytoskeletal elements than was previously thought.

This is of particular interest because DAPK and MAP IB co-purify with microtubules

from cells. Further investigation is warranted to study the relevance of the interaction

between DAPK and MAP IB for signal transduction events during cell fate decisions

and tumour suppression.
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4.1.1 Discovery and Structure of MAP1B

MAP IB was discovered in the mid nineteen eighties as one of three microtubule

associating high molecular weight proteins (Noble et ah, 1989; Riederer et ah, 1986).

At the time, independent studies showed that MAP IB is expressed in embryonic

brain as a major component of the neuronal cytoskeleton. It is known to be the

earliest expressed embryonic MAP present in axons, somata and dendrites, where it

is particularly abundant in developing axons. In the brain, MAP IB is at its most

abundant at birth and its expression decreases with progression of post natal

development of the nervous system. Therefore, MAP IB was quickly defined as a

developmentally regulated protein and subsequent in-vitro and in-vivo models have

proven this (Tucker, 1990; Tucker et ah, 1988; Tucker et al., 1989; Tucker and

Matus, 1987; Tucker and Matus, 1988; Viereck et ah, 1989; Vouyiouklis and

Brophy, 1993) (see section 4.1.2).

MAP IB is a very large protein that migrates with an apparent molecular weight of

320 kDa. However, its calculated molecular weight is smaller than this at 255 kDa,

composed of 2462 amino acids. The microtubule binding domain of MAP IB consists

of KKEE or KKEVI motif repeats and a further twelve imperfect repeat motifs of 15

amino acids in length. MAP IB not only binds microtubules but also to

microfilaments via two actin-binding sites; binding site 1, at the N-terminus ending

at position 517 and binding site 2, toward the C-terminus at positions 2336 - 2549

within the light chain region (Figure 3.5). The C-terminus of the heavy chain

contains a hydrophilic region (amino acids 1866-2071) consisting of 12 imperfect

repeat motifs of YSYETXEXTTXXPXX). Both the heavy chains and light chains

can dimerise or oligomerise. The oligomerisation domain on LCI is at its N terminus
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near to the actin binding domain, whist the oligomerisation domain of MAP1B-HC is

unknown (for review see (Riederer, 2007).

The full length human MAP IB gene is transcribed into mRNA of approximately 11

kb in length from a locus on the long arm of chromosome 15 (Lien et al., 1991).

Human MAP IB shares 90% sequence homology to rat and mouse genes that have

been studied as models for human MAP IB. Analysis of the MAP IB gene revealed

two independent TATA boxes within the promoter (Liu and Fischer, 1996). These

can independently direct expression when fused to reporter, and are infact part of two

separate promoters that can direct temporal and tissue specific expression depending

on the given situation (Liu and Fischer, 1996). This is controlled by the

homeoprotein transcription factors engrailed and HNF3beta/Foxa2 that overlap

(Foucher et al., 2003). This is a highly conserved mechanism where Foxa2 binding

inhibits expression that would be otherwise driven by the positive regulator

engrailed. In addition to alternative splicing at the 5' end (see above for details)

transcripts of MAP IB are regulated by alternate splicing in the 3' UTR. This is

thought to control cell specific expression of MAP IB where different splice patterns

are seen in neuronal, kidney and skeletal muscle tissues (Liu and Fischer, 1996).

As explained previously, the MAP IB gene is expressed as a poly-precursor protein

post translationaly cleaved at a position near amino acid 2100 (Figure 3.4). This

yields a heavy chain (MAPIB HC) and a light chain (LCI) that can subsequently

interact with each other. Both MAP IB and the closely related MAPI A and are

cleaved in this manner yielding two regulatory heavy chains (MAP1B-HC and

MAP1A-HC) and two light chains (LCI (of MAP IB) and LC2 (of MAPI A)) that
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can form a dimer involving any one heavy chain and light chain. The combination of

chains in the complex is governed by poly-agglutination that controls the relative

abundance and composition of MAPs in complex with microtubules. Cessation of

neuronal development and cellular differentiation is associated with a switch

between MAP IB chains to MAPI A chains. There are also separate homologous

proteins that can interact in this manner. This includes LC3 which is an autophagy

associated protein (Kabeya et al., 2000)and RASSF1A, a candidate tumour

suppressor closely related to MAP1B-HC (Dallol et al., 2004; Liu et al., 2005a; Liu

et al., 2005b).

Reading research published over recent years it is clear that MAP IB is involved in a

variety of cell functions. In fact the name microtubule associated protein may now be

misleading because MAP IB has been found to interact with multiple proteins

involving many cellular compartments. Although a proportion of MAP IB is located

on microtubules there is also a large soluble fraction in the cytosol. By turnover

studies it was determined that there are multiple forms of MAP IB with multiple half

lives. In in 10 day old rat brain there are two soluble forms with half-lives of 5.8 days

and 4.8 days whilst the insoluble form has a half life of. 18.5 days (Safaei and

Fischer, 1990).

4.1.2 MAP1B, A Differentiation-Associated Protein

MAP IB is expressed as homologues in many species through vertebrate animals to

invertebrates such as flies (Figure 3.4). Fascinatingly, the trypanosome parasite

responsible for African sleeping sickness: Trypanosoma brucei, expresses a 110 kDa

protein with 60% homology to MAP IB, and this is thought to be associated with
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molecular mimicry during parasite-host interaction (Baron et al., 2007). In

continuously growing fish such as the tench, MAP IB is expressed in the nervous

system throughout the organisms life span correlating with its development,

suggesting that MAP IB is closely related to developmental differentiation in these

fish (Tomasiewicz and Wood, 1999).

Studies of MAP IB knock out mice have shown that MAP IB protein is required for

co-ordination of cytoskeletal components during neuronal differentiation. The fact

that MAP IB mutants survive indicates that MAP IB is not essential for development.

Rather, study of null embryos has revealed that MAP IB knock out leads to delayed

neuronal development and abnormal morphology of individual cells. These cells,

cultured from knock out mice tissues, are deficient in morphologies characteristic of

differentiation including axon formation and neurite out growth and this correlates

with cytoskeletal defects such as reduced microtubule bundling in these cells

(Bouquet et al., 2004).

Not only is MAP IB present in developing tissues it is also expressed in primary

cultures and various cell lines. In cell culture, neuronal cells that resemble committed

CNS precursor cells (NT2/D1 cells) express MAP1B along with other markers of

neuronal cell fate. Knock down of MAP IB with antisence mRNA inhibits neural

growth factor (NGF)-induced PC 12 cell differentiation, whereas subsequent

antisense removal leads to recovery of differentiation of these cells (Brugg and

Matus, 1988).
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4.1.3 Post-Translational Modification of MAP1B

MAP IB is expressed as poly-precursor protein that is cleaved into heavy and light

chains. These can subsequently interact with each other and with closely related map

proteins to form a dimer involving any one heavy chain and light chain. The

combination of chains in the complex is governed by post translational poly-

agglutination regulating the abundance and composition of MAPs on microtubules.

MAP IB phosphorylation plays a crucial role in modulation of its function. Over the

years multiple kinases have been found to phosphorylate many separate sites on

MAP IB. Two programs of MAP IB phosphorylation are often defined in research

papers referred to as mode I and mode II phosphorylation. Mode I phosphorylation is

primarily catalysed by proline-directed kinases (PDK's) and is associated with early

development, whereas mode II phosphorylation is sustained into adulthood. These

different modes have been studied in tissues, primary culture and in cell lines.

The list of characterised MAP IB kinases include mode II kinase; CK2, and kinases

responsible for mode I phosphorylation including; cyclin dependent kinases such as

cdc2, glycogen synthase kinase 3 (GSK3) or cdk5 and Jun N-terminal Kinase (JNK)

(For review see (Riederer, 2007)). The main documented roles for these kinases

include phosphorylation of MAP 1B within or near to the heavy chain microtubule

binding domain. It is not surprising therefore that modification by these kinases

results in differential regulation of MAP IB association with tubulin. For example,

JNK1 and cdk5 activity is for the most part believed to induce microtubule stability

via modification of MAP IB, whereas modification by GSK3[3 is considered to

induce dynamically unstable microtubules. However the exact role for these kinases
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via association with MAP IB is often controversial, with different reports sometimes

offering opposing evidence (see sections 4.1.5 and 4.1.6).

4.1.4 GSK3p Signalling to MAP1B

Maintaining a fraction of dynamically unstable microtubules in neuronal cells is

important for axon growth and path finding. Phillip Gordon-Weak's group have

demonstrated that GSK3P plays a central role in the control of neuronal microtubule

dynamics acting as a molecular switch to regulate microtubule stability during

axonogenesis (Goold and Gordon-Weeks, 2001; Goold and Gordon-Weeks, 2003;

Goold and Gordon-Weeks, 2005; Goold et al., 1999). Known phosphoaccepter sites

for GSK3P on MAP1B include serl260 and thr 1265 in growing axons. Expression of

GSK3P induces PC 12 cell differentiation and modulates microtubule stability via

phosphorylation of MAP1B at these sites. Chemical inhibition of GSK3P on the

other hand, inhibits the induction of morphological changes indicative of MAP IB

loss in neurons including; reduction in axon elongation and alteration of microtubule

and F-actin distribution. This shows that signalling through GSK3P modifies

MAP IB function during differentiation. During NGF induced PC 12 cell

differentiation, the mitogen activated protein kinase (MAPK) pathway is upstream of

GSK3P in signalling to MAP IB. This is induced by NGF that docks with the

tropomyosin-related tyrosine kinase (TrkA) receptor. Engagement of factor with

receptor leads to activation of GSK3P that is then able phosphorylate MAP IB. TrkA

can trigger a number of signaling pathways, including the MAPK pathway and the

phosphatidylinositol-3 kinase (PI3K) pathway. Using pharmacological inhibitors in

PC 12 cells sympathetic neurons in culture and in vitro kinase and activation assays
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Gordon Weaks' lab determined that the MAPK pathway, and not the PI3K pathway,

links NGF signaling to GSK3(3 activation. As a consequence, NGF increases

differentiation and neurite growth rates by coupling the MAPK pathway to the

activation of GSK3(3 and thereby phosphorylation of MAP1B (Goold and Gordon-

Weeks, 2005).

4.1.5 MAP1B and the Role of JNK in Neuronal Survival and Degeneration

Whereas GSK3P activity is associated with dynamic instability of microtubules, JNK

on the other hand is believed to phosphorylate MAP IB leading to induction of stable

microtubules. Hoshino's group in 2003 observed that pharmacological inhibition of

JNK in-utero lead to irregular neuron morphology and increased stable microtubules

and this correlated with decreased phosphorylation of MAP IB (Kawauchi et al.,

2003). The authors concluded that this raised the possibility of involvement of JNK

in controlling tubulin dynamics in migrating neurons by MAP IB phosphorylation

(Kawauchi et al., 2003). They also published evidence in 2005 showing that a JNK

inhibitor suppressed mode I phosphorylation of MAP IB in primary and slice cultures

providing corroborating evidence that mode I phosphorylation of MAP IB is

facilitated by JNK leading to increased microtubule stability. (Kawauchi et al.,

2005). Also, an independent study was published in 2005 using Jnkl(-/-) knock out

mice that exhibited a progressive loss of MTs within axons and dendrites correlating

with MAP IB hypophosphorylation in the Jnkl(-/-) brains. Here, the authors suggest

this resulted in compromised ability of MAP IB to bind MTs and promote their

assembly. These studies together suggest that JNK1 is required for maintaining

cytoskeletal stability in neuronal cells and negatively regulates MAP1B activity and
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MT assembly (Chang et al., 2003). There is no evidence however showing that JNK

can directly phosphorylate MAP IB and only a correlation exists between JNK

activity, microtubule stability and MAP IB phosphorylation. This raises the

possibility that other kinases could be responsible for this effect.

The JNK genes are responsible for coding a wide variety of peptides. The JNK

family consists of three genes (JNK1, JNK2, JNK3) coding for many splice variants,

of which 10 have (Gupta et al., 1996)been characterised. In addition to this, isoform

and substrate specific functions add a further layer of complexity. JNK activity is

classically associated with phosphorylation and activation of c-Jun transcription

factor, but the role of JNK is much wider than that. Other substrates are known such

as activating transcription factor 2 (ATF2), Elk-1 and p53 in the nucleus, and 14-3-3,

Smac and Bcl-2 in (Moretti et al., 2007)cytoplasmic compartments. Therefore the

JNK pathway has many multifaceted functions through multiple pathways.

Classically, activity of the JNKs (or stress associated protien kinases - SAPKs) were

considered an anti-proliferation or degenerative signal having initially been

characterised in response to stresses such as (Newbern et al., 2007) cytokines and

osmotic stress. It is interesting therefore that JNK has been implicated in signalling

to MAPs in brain, where it is believed to confer neuronal stability and has a neuro¬

protective effect. The JNKs are activated by various stimuli during neural

development as well as being activated during neuronal death following a stress. Yet

to date, no differences have been defined between JNK activity in differentiating

neurons and its activity in dying ones, and this strongly suggests the JNK pathway

maybe involved in the regulation of both circumstances.
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Neurons require target-derived trophic support for survival. The term 'trophic

support' is a general term used to encompass a range of factors that impact neuronal

survival (e.g., growth factors, structural/metabolic precursors and even blood supply

etc.). In motoneuron cell culture for example, skeletal muscle extract is often used as

a supplement containing a range of trophic factors. In motoneurons deprived of

trophic support, pharmacological inhibition of JNK attenuates death associated

events such as caspase activation, and nuclear condensation. Suggesting that JNK

activity promotes programmed cell death in these circumstances. However, inhibition

of JNK in healthy motoneurons supplied with trophic support results in increased

degenerative associated events such as lowered mitochondrial membrane, and

attenuation of neurite outgrowth with associated reduction in phosphorylation of

MAP IB. These findings highlight the dualistic nature of JNK activity in both

survival and degeneration of neuronal tissues (Newbern et al., 2007) During

development, neural cells must compete with each other for limited trophic support

(Tevi-Montalcini, 1987). This presumably leads to temporal and pathway specific

differences in the regulation of cell death or survival and so leads to selective

vulnerability of specific cell populations. In other words, the activity of JNK could

regulate survival or growth depending upon the given situation during development.

4.1.6 MAP1B Modification by Cyclin Dependent Kinase 5 (cdk5)

The role for cdk5 in regulation of MAP IB and its resulting impact on microtubule

dynamics is also unclear. Initial studies found that a Cdk5 inhibitor did not suppress

mode I phosphorylation of MAP IB in primary and slice cultures. Primary culture

studies showed an involvement of Cdk5 in regulating microtubule dynamics
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however, but this did not effect MAP IB phosphorylation status. On the other hand,

an increase in phosphorylated MAP IB was observed in COS7 cells when Cdk5 was

co-transfected with p25 which is a co-factor specifically produced in pathogenic

brains. The authors concluded from this evidence that mode I phosphorylation of

MAP IB is not facilitated by Cdk5 in the normal developing cerebral cortex, only by

Cdk5/p25 in diseased state brain tissue (Kawauchi et al., 2005).

In an apparent contradiction to this, two separate studies provide evidence that Cdk5

induces Mode I phosphorylation of MAP IB in developing cerebral cortex. During

differentiation of neurons their axons elongate and perform steering reactions to

coordinate connections with neighboring cells. Mode I phosphorylated MAP IB is

present in stable regions and not in unstable regions of turning axons, whereas the

total pool of MAP IB is expressed throughout in the entire growth cone of extending

axons. The first report demonstrated that inhibition Cdk5 results in reduction of

mode 1 phosphorylated MAP IB in steering axons. This was supported by inhibition

of Cdk5 by antibodies or the inhibitor Roscovitine that resulted in growth cone

collapse and axon retraction preventing axon outgrowth. Here the authors conclude

that the presence of Cdk5-phosphorylated MAP IB in stabilised growth cone areas

can be attributed to the local activation of Cdk5 and that this highlights a role for

cdk5 in steering and path finding of growth cones (Hahn et al., 2005) . A mechanism

for this was reported in an independent study where Reelin, a factor crucial for

regulating neuronal migration and path finding in the developing brain, induced

mode I MAP IB phosphorylation, both in-vivo and in-vitro, through cdk5 activation.

Therefore a proposed function for cdk5 is integration of Reelin signalling through
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induction of post-translational modifications on MAP IB in the growth cone of

extending axons (Gonzalez-Billault et al., 2005).

A possible explanation for the apparent contradictions between studies involving

cdk5 action and MAP IB could be that signals activated in a "diseased state" brain

are also activated in the developing brain. This would be a similar situation to JNK

that is also active in differentiating and injured neurons. This implies that

pathological brain is similar to developing brain in this respect and that signals

during both processes converge through MAP1B. For example, during development

of the central nervous system, most developing cells are surplus to requirement and

are removed by programmed cell death. There has to be therefore a balance between

survival of neurons that have made correct connections with neighbouring cells and

the death of neurons that are not required. Differentiating cells, like regenerating

neurons in injured brain will display differentiation associated morphologies such as

axon migration and path finding. As described above, these morphologies are

controlled by signalling through JNK and cdk5 pathways impinging on MAP IB,

therefore it can be assumed that MAP IB could play a central role in the control of

life or death decisions, much like DAPK plays a central role in this process also.

4.1.7 Convergence of DAPK and MAP1B Expression Patterns, Biochemistry
and Function

The rat pleochromocytoma 12 (PC 12) cell line is an experimentally tractable model

used to study neuronal differentiation in cell culture. MAP IB protein expression is

induced by treatment of PC12 cells with NGF, commensurate with differentiation of

these cells and axon out growth. This is in addition to activation of ERK/MAPK
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pathway leading to mode I phosphorylation of MAP IB by GSK3P and is

commensurate with cytoskeletal rearrangements and neurite out growth. Also, DAPK

catalytic activity and protein levels increase after nerve growth factor (NGF)-induced

differentiation of rat PC 12 cells (Schumacher et ah, 2002a). This suggests that

DAPK and MAP IB may both be co-regulated during neuronal differentiation. The

following discussion highlights functional and biochemical overlap between the

DAPK and MAP IB pathways.

4.1.7.1 DAPK and MAPIB in Neural Plasticity

The brain with its axon and dendrite circuitry is not "hard-wired". Rather, neural

networks are deemed plastic because they are modifiable by experience, where the

brain has a significant ability to adapt not only during early development, but also in

adulthood. Even during development, precise axonal connections are formed in the

brain based on the actual experience of a given organism, and the adult brain retains

a capacity for adaptation in response to continued interaction with its environment.

This experience-dependent plasticity is not only the basis for learning and memory it

is also crucial for the brain to recover from damage and disease states. A lack of

neuronal plasticity during later adulthood is responsible for age-related brain

degeneration and cognitive decline.

Using Northern blot analysis and in-situ hybridisation, DAPK mRNA levels were

observed to be highest in the brain and lung during development (Yamamoto et ah,

1999). DAPK mRNA expression starts at around embryonic day 13 in the brain and

then throughout embryonic development. Specifically, DAPK is expressed at the

highest levels in proliferative regions within cerebral cortex, hippocampus, and

cerebella Purkinje cells. Thereafter, DAPK mRNA levels gradually decline
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postnataly with the exception of hippocampus where expression remains high. This

observation suggests that not only may DAPK play a role in neurogenesis but also in

neural plasticity in adult brain hippocampus. Like DAPK, MAP IB is

developmentally regulated and present at high concentrations in developing neuronal

tissues. After development, both proteins are depleted, where MAP IB chains are

replaced with MAPI A chains. There are however, exceptions to this rule, and it is

recognised that DAPK and MAP IB are both expressed in areas of adult brain

associated with neuroplasticity. In adult brain, MAP IB is also found in selected areas

where there is active neural outgrowth, including the olfactory bulb and regions of

the brain associated with neuronal plasticity such as the hippocampus and the

dendrites of Purkinje cells in the cerebellum.

In adult brain DAPK is highly expressed in hippocampal neurons and is implicated in

spatial learning and memory. DAPK-mutant mice have been bread by deleting 74

amino acids from the DAPK core kinase domain, creating a kinase dead mouse

(Chevalier, 2006). These mice were used to study the effect of DAPK kinase

mutation on the regulation of spatial memory using Morris water maze tests. This

test involves recording the ability of mice to locate a hidden escape platform in a

pool of water. Both mutant and wild-type mice were able to learn the water maze

however mutant mice had an increased ability to memorise the platform position

compared to wild-type mice. This was observed in the original test where the

platform was present in one location and also in a reversal test, where the DAPK

mutant mice quickly learned the location of the platform located at a different

position. Therefore DAPK kinase-dead mutant mice exhibit superior spatial learning
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in addition to a more precise memory than wild-type littermate's (Yukawa et al.,

2006).

It is highly likely therefore that both MAP IB and DAPK, being expressed in areas

associated in neuroplasticity in adult brain, such as the hippocampus, are both

involved in regulating neuronal path finding, survival and plasticity-associated cell

fate decisions in these tissues.

4.1.7.2 DAPK and MAPIB in Recovery from Brain Injury

During recovery from central nervous system (CNS) and peripheral nervous system

(PNS) injury MAP1B is expressed in regenerating neurons. After injuries such as

ischemia after stroke or after chemically induced seizure, both DAPK and MAP IB

expression is sharply increased. This elevation in expression of both proteins

correlates with differentiation-associated morphologies such as axon regeneration

and path finding and cytoskeletal rearrangements (Popa-Wagner et al., 1999a; Popa-

Wagner et al., 1999b; Schmoll et al., 2001; Schumacher et al., 2002b).

The function and biochemistry of DAPK in brain injury has been studied by two

independent groups; Henshall's group and Wattersons's group. Initially Watterson's

group, using a rat model of neonatal cerebral hypoxia-ischemia (HI) quantified an

increase in DAPK activity in hippocampus homogenates from injured right

hemisphere compared to the uninjured left hemisphere, 7 days after injury

(Schumacher et al., 2002b). This preliminary observation raised the possibility that

DAPK activity was associated with recovery from HI, during neuronal repair and

differentiation. These studies were backed up by corroborating evidence from

Henshall's group using a model of focally induce siezure in rats that causes neuronal
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injury within the hippocampus. DAPK was found to be constitutively expressed in

uninjured hippocampus by western blot analysis. However, immunohistochemistry

study showed that seizures triggered an increase in the counts of DAPK expressing

cells specifically in affected areas. This was accompanied by changes in DAPK

interaction with death associated factors as determined by binding studies.

Interestingly, DAPK co-immunoprecipitation with actin was increased immediately

after injury and then was reduced after only 4 hours of recovery. After injury DAPK

also co-precipitated with antibodies directed to tumour necrosis factor receptor 1

(TNF1) and the Fas-associated death domain protein, commensurate with caspase-8

proteolysis, suggesting that the TNF pathway is involved in activating DAPK in this

model. In contrast to this, within surviving fields of the hippocampus, DAPK

interacted with the chaperone protein 14-3-3 known to be involved in molecular

sequestration of cell death promoters. This is interesting because it provides a

mechanism by where DAPK can be activated or repressed depending on the context

within specific fields of the brain. The importance of DAPK in response to seizure in

human brain was examined in further study (Henshall et al., 2004). DAPK

expression and localisation in hippocampal resections from patients with intractable

temporal lobe epilepsy was compared to autopsy controls. Here, expression of DAPK

was significantly increased in epilepsy brain compared to control brain

commensurate with increased FADD co-immunoprecipitation. This suggests that

DAPK is activated by the TNF pathway in both human and rat in response to siezure.

It is worth noting that the research papers from Henshall's group present data that

contradicts the prevailing view of DAPK as a promoter of cell death only (Cohen and

Kimchi, 2001). For example they demonstrate a high constitutive and post-seizure
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expression of DAPK within both surviving and in vulnerable hippocampal regions.

In addition to this they show that although seizure increases the number DAPK

expressing cells, these out number TUNEL positive cells within the cortex, which is

also largely resistant to cell death using their model. These data suggest that DAPK

may have alternative roles within these resistant tissues. This also brings to mind

studies showing anti-apoptotic effects of DAPK from non-neuronal tissues, where

mouse DAPK inhibited TNF-induced cell death, also in contradiction to the DAPK

dogma (Jin et ah, 2001; Jin et ah, 2002; Jin et ah, 2006). The studies in human brain

showed that levels of both DAPK and DAPK interacting protein 1 (DIP-1) were

increased in the cytoplasm and endoplasmic reticulum fractions in epilepsy brains

(Henshall et ah, 2004). This correlated with increased DAPK binding to DIP-1 as

determined by immunprecipitation. Again, this could be in contradiction to the

prevailing view because DIP-1 is a ubiquitin E3 ligase and so likely to be a positive

regulator of DAPK sequestration and degradation. Therefore according to dogma,

increased DIP-1 binding might suggest reduced DAPK activity. Even more

strikingly, the authors observed increased auto-phosphorylation of DAPK at the

phosphoaccepter serine 308. And although the authors mistake this for an activating

modification, phosphorylation at this site is actually considered an auto-inhibitory

modification, reducing DAPK activity. Again though, other studies directly

contradict this (see section 1.8 for a detailed review of these studies). Further

investigation is therefore needed to clarify what role DAPK performs in non-dying

cells such as in normal brain. In other words, how does DAPK contribute to the cell

fate decision making process in different situations during development and during

recovery from injury in the brain? Also, is the situation in the brain replicated in non-
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neuronal tissues and in diseases such as cancer where there is very good evidence

that DAPK is a tumour suppressor (see section 1.3)?

Old age is associated with an enhanced susceptibility to stroke and poor recovery

from brain injury. One potential mechanism for this is by alteration of the activity of

brain plasticity-promoting factors. Behaviorally, aged rats are more severely

impaired by stroke than are young rats, and they also show diminished functional

recovery. After induced stroke in rats, infarct volume and the severity of the initial

damage is not increased by age, rather there are differences in the cytological and

biochemical response to the stroke. In older rats, stroke is associated with increased

neuronal degeneration, premature accumulation of BrdU-positive cells and

accelerated apoptosis. Expression of MAP IB and other plasticity-associated proteins

are delayed in the aged rats and there is also an increase in the amount of the

neurotoxic C-terminal fragment of the (3-amyloid precursor protein (PAPP) (Popa-

Wagner et al., 2007). Therefore, although aged brain is able to respond to injury, the

timing of the cellular and biochemical response is dissregulated. Therefore, it is

proposed that this model would provide a convenient system to elucidate the exact

role of MAP IB and also DAPK in regeneration by comparison of the biochemistry

of stroke in aging brain to young brain.

4.1. 7.3 MAPIB and DAPK Responses to Neuronal Guidance Cues

The human central nervous system contains around 1012 neurons and around 10b

synaptic contacts between them. Therefore there is an extremely precise pattern of

connections in the human brain established during embryonic and early postnatal

development. Once postmitotic neurons have migrated from proliferative sites their

axons must select the correct targets, usually some distance away and this is directed
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by the action of chemotropic molecules. It is interesting that chemotropic molecules

are not only involved in guidance of axons, but they also influence cell fate decision

making. This is perhaps not surprising given that there is a high level of programmed

cell death during normal neural development a process often referred to as neural

Darwinism (Edelman, 1993). During this process during early development neurons

and their synapses are overproduced and subsequently lost as cells compete for brain

space. This is analogous to the process of synaptic pruning in adult brain where

axons will only persist if they have become members of functional neuronal

networks (Toulouse et al., 1986).

4.1.7.4 MAPIB and DAPK Response to Nelrin Signalling

Netrins are secreted chemotrophic proteins important for contact-mediated

stimulation of axonal guidance and growth. There are 4 members of the netrin family

(netrin 1-4) in vertebrates. Netrins 1 and 2 engage with the cell surface receptors;

deleted in colon cancer (DCC), neogenin and the Unc5H 1-4 family. Binding to DCC

or neogenin results in attraction of the axon toward the molecular source, whereas

interaction with the Unc5H family results in repulsion (for review see (de Castro

Soubriet, 2001)). Engagement with both types of netrin receptors exerts a survival-

promoting (trophic) effect on neurons.

The signalling cascades governing neuronal migration link extracellular signals to

cytoskeletal components. For example, as mentioned in section 4.1.7.3, MAP IB is

required for Reelin signalling in neuronal migration and axonal guidance via the

GSK3P and cdk5 pathways, resulting in changes in the dynamic instability of

microtubules and cross-talk between microtubules and actin filaments. A separate

study has demonstrated that Netrin-1 also regulates mode I MAP IB phosphorylation
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of MAP IB both in-vitro and in-vivo. This activity also depends on GSK3 and cdk5

kinases. Here, MAP IB deficient neurons had reduced chemoattractive response to

Netrin 1 in vitro and MAP IB mutant mice had abnormalities indicative of netrin 1-

deficient signaling. This implicated MAP IB as a downstream effector in the Netrin-1

guidance pathway (Del Rio et al., 2004).

Cell surface receptors are often thought of as inactive until bound by ligand,

however, it has been recently discovered that some receptors are active in absence of

ligand. A class of these receptors are called dependence receptors that induce death

signals when the ligand is absent from the cell. As a result, expression of these

receptors leads to dependence on ligand for cell survival. As well as being a system

to allow correct patterning of neuronal development, this provides a mechanism

allowing inhibition of tumor growth, by programmed cell death induction in miss

placed cells that would usually only grow in settings of ligand unavailability (For

review see (Bernet and Mehlen, 2007). The netrin 1 receptors (Unc5Hl-4) have

recently been described as dependence factors, and so are able to trigger cell death in

the absence of netrin 1.

The netrin-binding dependence factor: UNC5H2, is a death domain containing

protein that interacts with DAPK by a homeotypic binding interaction via their two

death domains. Death induced by expression of UNC5H2 in the absence of netrin

was attenuated by the ablation of DAPK protein in cells derived from knockout mice,

indicating that interaction between the two proteins effects UNC5H2 death

promotion (Bialik and Kimchi, 2006; Gozuacik and Kimchi, 2006). However,

Netrin- 1 binding to UNC5H2 had no effect on its binding to DAPK but removal of
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ligand led to dephosphorylation of DAPK at Ser308 which the authors say is

indicative of DAPK activation. It is very interesting that netrin 1 is implicated in both

regulation of neuronal cell guidance and in tumourigenesis, because this provides a

possible biochemical link between MAP IB function and DAPK death signaling.

4.1.7.5 Semophorin 3A and Induction ofProgrammed Cell Death in Neurons

The Semophorins are a separate large family of chemotactic molecules comprising

approximately 30 members. Semophorins are either secreted or expressed as

transmembrane proteins with a common "sema" domain which confers the binding

specificity of each (reviewed (de Castro, 2003; de Castro and Bribian, 2005)). Class

3 semaphorins bind selectively to the neuropilin receptors neurophillin 1 and 2 where

they cause chemorepulsion of growing axons often accompanied by collapse of the

effected neuron leading to programmed cell death during early development.

Experimentally, neuronal apoptosis is induced by exposure to semaphorin 3A

(Sema3A) that can be blocked by antibodies against neuropilins. These molecules are

also secreted by early apoptotic neurons suggesting that, before their death, these

neurons may produce destructive axon guidance molecules affecting neighboring

cells and thus transferring a bystander effect across specific neuronal populations

(Shirvan et al., 1999).

An internalised form of Sema3A is associated with degeneration of neurons in

hippocampus during Alzheimer's disease (AD). During this process an internalised

form of Sema3A is accumulated in dying neurons correlating with the appearance of

phosphorylated MAP1B. This suggests that Sema3A signaling may be coupled to

alteration of cytoskeletal dynamics during neurodegeneration in AD. In addition to

this, a multi-protein complex was isolated from human AD hippocampus consisting
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of MAP IB, Sema3A, collapsin-response mediator protein 2 (CRMP-2) and Plexins

A1 and A2 (Good et al., 2004). Therefore sema3A is implicated in programmed cell

death during not only early development, but also during brain damage as a result of

AD. Also, this is an example of MAP IB involvement in degeneration of neuronal

tissues.

4.1.8 A Role for the DAPK and MAP1B Interaction in Cell Fate Decision

Making?

The detailed review of the literature detailed in the above discussion suggests that

there is considerable overlap between the known roles of DAPK and MAP IB in

neuronal development. Both proteins are highly expressed throughout early

developing brain, and then reduced in adult brain, indicating that they both have roles

important to neural development. During NGF-induced differentiation of PC 12 cells,

both MAP IB and DAPK expression is induced, preceding differentiation in these

cells. Both proteins are expressed in areas of adult brain associated with

neuroplasticity, and are expressed during recovery from injuries arising form seizure

and stroke. Finally, both DAPK and MAP IB are central in signalling by netrins,

which act as guidance factors and as survival factors.

Although the majority of research involving MAP IB has been focused on its role

during axon growth, there is a growing body of evidence showing that it has many

more functions. Regulation of cytoskeletal dynamics is a major effecter of MAP IB

activity, but this is not the only way it can affect cytological response. The fact that

there is a large soluble cytosolic fraction of MAP IB only goes to highlight this. A

brief search of the published literature shows that MAP IB is often thought of in 2
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complimentary ways; 1) That is it a marker of neuronal development and

recapitulation of development during regeneration, perhaps as a positive regulator of

survival, 2) That is it is a marker of neuronal plasticity, facilitating axon growth and

path finding in these cells. However, a more detailed study of the published evidence

presented above leads to the hypothesis; 3) That MAP IB is a marker of neuronal

injury, involved in life or death decision-making in regenerating tissues. This

hypothesised role for MAP IB is not incompatible with points 1 and 2, on the

contrary, it is highly likely that they should compliment each other as a consequence

of the neural growth and regeneration process.

MAP IB knockout mice survive into adulthood, but have defected brains, not only

due to abnormal axon morphology but also due to delayed neural development and

altered brain size. This indicates that MAP IB knock-out causes miss-regulation of

neural development above the level of axonal growth, possibly due to altered cell

fate decision making. In a cell culture based situation, MAP IB knockout by anti-

sense mRNA in PC 12 cells causes inhibition of NGF-induced differentiation on the

whole, not simply inhibition of axon generation. Subsequent removal of anti-sense

mRNA then results in differentiation. This suggests that cell fate is regulated by

MAP IB and not simply just axon growth and path finding. MAP IB phosphorylation

state can be regulated by the JNKs/SAPKs, kinases classically involved in signalling

anti-proliferation or degeneration. However, in the brain JNK is active during diverse

situations such as differentiation, regeneration and degeneration, not involving the

activities of cJun. This suggests that other down-stream factors, possibly including

MAP IB, are critical for regulation of cell fate after JNK signalling. The cell

guidance factors, netrin and semophorin are both known to influence neuronal
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survival, and both have been shown to influence MAP IB phosphorylation state. This

is perhaps the most compelling evidence that MAP IB could be integral in cell fate

decision making in plastic fields of the brain.

Recent reports have highlighted a role for MAP IB in the control of programmed cell

death in neurons. P-amyloid (AP) accumulates in the brain after injury and is also

associated with various pathologies such as AD and Down's syndrome. P-amyloid

causes programmed cell death and degeneration in neuroal tissues . An important

report shows that MAP IB VI expression is induced in cultured cortical neurons by

active P-amyloid fragments. Over-expression of MAP1B-V1 in these cells causes

programmed cell death whereas MAP1B-V2 does not. This is evidence that the N-

terminal 126 amino acids of MAP IB is a programmed cell death-effecting signal. In

addition to this, a recent report published in Nature provides evidence that the Giant

axonal neuropathy (GAN) gene, gigaxonin induces degradation of MAP IB light

chain (LCI), and that this induces programmed cell death in cultured neurons. Over

expression of MAP 1B lead to programmed cell death in wild-type neurons whereas

reduction of MAP IB expression in GAN-null neurons enhanced survival. This is

corroborative evidence showing that MAP IB can act as an effecter of programmed

cell death and implicates MAP IB in neurodegenerative disease.

Both MAP IB and DAPK are cytoskeletal-associated proteins previously explicated

to influence cytoskeletal dynamics. Data is presented in this study suggesting that

DAPK interacts with MAP IB via an N-terminal interaction site. Also, in-vitro study

shows that DAPK can bind to polymerised microtubules. Both MAP IB and DAPK

have been previously shown to interact with actin and microfilaments, however it
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was not possible to reproduce this using the microtubule polymerisation assay or the

co-IP experiments presented in this thesis chapter. Further experimentation is

required to study interaction between DAPK, MAP IB and both the microtubule and

microfilament cytoskeletal elements. This may shed light on the role of MAP IB

interaction with DAPK.

Although only a small proportion of endogenous MAP IB and DAPK proteins from

A549 cells co-bound, HA-DAPK transfection into MAP IB-expressing A375 cells

was sufficient to induce interaction between the two. DAPK transfection has been

shown in numerous studies to be sufficient to induce DAPK-related signalling and

subsequent cell death. Therefore it is assumed that MAP IB binding to DAPK was

induced by over expression of DAPK. To prove that this is not a transfection artefact,

a non-synthetic signal needs to be found that will induce interaction of endogenous

DAPK with MAP IB. This can only be achieved after further DAPK transfection

studies have been directed in order to determine the down-stream effects of this

interaction.

A mechanism that could explain the different roles of MAP IB, could be by

differential post-translational modification. For example, there are two broad modes

of MAP IB phosphorylation; Mode I and Mode II that show different intracellular

localisation. Also, it has been reported that under different circumstances, MAP IB

phosphorylation may lead to microtubule stability or dynamic-instability. This

apparent contradiction could come about by phosphorylation by different enzymes

on different phosphoaccepters leading to an allosteric change in MAP IB or a change

in down stream MAP IB binding, or both. More detailed studies of MAP IB
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interacting proteins are required in order to understand their role in cell fate decision

making processes.

Is MAP IB a positive or negative regulator of DAPK activity in cancer cells? This is

the vital question that needs to be answered with regards to MAP IB influence on

DAPK action. Therefore initial experiments should be designed to address this. This

would address 2 further fundamental questions; 1) is there a functional interaction

between MAP IB and DAPK in cells and 2) Does this interaction impinge on tumour

suppression?
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4.2 Results

4.2.1 MAP1B Protein is Expressed in a Wide Variety of Cancer Cell Lines.

Previous research has shown that MAP IB and DAPK are both implicated in brain

developmental processes and during response to disease states in the brain including

after injury and following seizures. Although, it is well known that DAPK is

expressed in a range of normal tissues, the extent of MAP1B expression in tissues

other than brain has not been determined. An exception to this is in the male

reproductive organs, where MAP IB has been shown to be expressed in efferent

ductules and epididymis (DB et al., 2006), although the role of MAP1B in these

tissues is not well defined. A vast body of research has been published over resent

years showing conclusively that DAPK expression is attenuated by epigenetic

silencing in many cancer types. However, as is the case with many tumour

suppressor proteins, DAPK expression can also be elevated in cancers (Stevens et al.,

2007) and in cancer cell lines, where presumably the tumour suppressor pathway has

been inactivated further downstream or where other co-factors have been modified

during cancer progression. Here paradoxically, expression of tumour suppressor

protein is elevated, indicative of a response to aberrant growth. Under non-disease

conditions this effect might be sufficient to induce growth inhibition, but during

disease progression this response has been inactivated.

The extent of MAP IB expression in cancer cell lines was initially examined by

bioinformatics using the Cancer Genome Anatomy Project data base. MAP IB is
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expressed in many cancer cell lines, especially those derived from lung, CNS and

renal cancers (Figure 4.1 a). DAPK is also expressed in many of the NCI60 cell

lines, especially in renal cancer and melanoma. Also, DAPK is highly expressed in

some lung cancer lines like A549s. Although DAPK is down regulated in CNS

carcinoma lines, MAP IB is strikingly expressed to very high levels in all the CNS

lines. Unfortunately, only the top 10 positively or negatively correlating genes could

be retrieved using this method. Therefore it was not possible to obtain a statistical

analysis of any possible correlation between DAPK and MAP IB expression levels.

The protein level of MAP IB in available cell lines was determined by western blot

using the highly specific mouse monoclonal antibody clone AA6, that recognises all

forms of MAP1B (Figure 4.2). MAP1B was expressed at high levels in A549, A375,

PC 12 and HEK293 cells, comparable to the level of expression in embryonic rat

brain. It is interesting that multiple bands were observed, generating a different

banding pattern in each cell line. There could be many reasons for this including

alternative splicing, incomplete cleavage into heavy chain and light chain and

various types of post-translational modification. In any case, this data suggests that

MAP IB is expressed as many different isoforms in different cell lines.

4.2.2 Development of a Cell Growth Assay to Characterise the DAPK and
MAP1B Interaction

A variety of assays have been developed to measure the activity of DAPK with

respect to multiple specific pathways including apoptosis, autophagy and membrane

blebbing assays. Therefore, an assay was developed to directly determine the activity

of DAPK independent of the mode of action. The effect of DAPK on cell growth in a
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clonogenic assay was measured, since this measures cell survival under long-term

conditions and often gives distinct results, and hence different information from

more acute assays. Short term over expression of DAPK gene relies on transient

transfection where treatment can be achieved for a maximum of 24 to 48 hours.

Stable transfection using antibody resistance (such as genetacin or blastocidin) as a

selection marker on the other hand, allows for over expression of gene for as long as

is required.

When DAPK was stably transfected into HCT116 cells (that have an active p53

pathway), a reduction in cell growth was observed relative to the cell growth

achieved using a vector control transfection (Figure 4.3, a i). This effect was more

pronounced at lower plating densities, whereas at higher densities DAPK induced

cell growth inhibition is saturated.

Various links between the DAPK pathway and the p53 pathway have been observed

in previous studies. For example, DAPK can phosphorylate p53 Ser20, an important

phosphoaccepter site involved in the regulation of p53 transactivation activity. Also,

over expression of DAPK activates an ARF dependent p53 induced checkpoint to

protect cells from oncogenic transformation (see section 1.4.4). Therefore, the

sensitivity of the clonogenic assay and its ability to quantify changes in DAPK

induced growth inhibition was determined by measuring the effect of p53 status.

As expected, HCT116 p53-null cells did not respond to DAPK over expression in the

same way. There was in fact an increase in cell survival in the p53-null cells relative

to cell growth allowed by vector control transfection (Figure 4.3, a ii). This effect is

illustrated (Figure 4.3, a iii). Again, this was more pronounced at lower plating
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densities. These data indicate that DAPK mediated suppression of cell growth can be

p53-dependent and illustrate the utility of this cell growth assay in measuring DAPK

activity in cells.

The cell growth assay was used to determine whether co-transfected MAP IB

antagonises or stimulates DAPK function as a growth suppressor. When DAPK or

MAP IB variants were stably over expressed in cells a decrease in cell growth was

observed (Figure 4.3 b). This growth inhibitory effect of MAP IB was significantly

reduced at higher plating densities. By contrast, a striking reduction in colony

formation was observed when DAPK and MAP IB transcript variant 1 were co-

expressed. This effect was most pronounced at higher plating densities, where the co¬

operation between MAP IB variant 1 and DAPK was synergistic. DAPK did not

synergise with MAP IB variant 2 with respect to cell growth as measured by this

assay. Flowever it was not possible to rule out cooperation with endogenous DAPK

in this cell line, which expresses significant amounts of the kinase. These data

suggest that that MAP IB can co-operate with DAPK to reduce cell growth at high

cell densities when the activity of either gene alone is limited. This co-operation

requires MAP IB N-terminal 126 amino acids only present on transcript variant 1.

4.2.3 Characterisation of the MAP1B and DAPK Interaction Using an

Optimised Cell Growth Assay

The N-terminus of transcript variant 1 has been show to be a binding interface

between MAP IB and the DAPK kinase domain. When transcript variant 1 is over

expressed with DAPK, cell growth is reduced at high plating densities. This optimal

plating density was used in subsequent cell growth assays designed to further
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characterise the MAP IB and DAPK interaction. As shown previously, MAP IB

variants VI and V2 have a negligible effect on colony survival at this plating density.

VI, which is able to bind with DAPK kinase domain was able to synergise with

DAPK and reduce cell survival (Figure 4.4, a), whereas, the form of MAP IB unable

to bind tightly to DAPK, V2, was not able to co-suppress with DAPK. Interestingly,

the N-terminus (N126) was able to mimic VI and formed a synthetic lethal

interaction with DAPK. These data correlate the binding assay data, where the N-

terminus of MAP IB is able to bind to DAPK, with a genetic cooperation as

determined using a cell growth suppressor assay.

The contribution of DAPK protein domains to cell growth inhibition was then tested

using the developed clonogenic assay. To this end DAPK kinase domain and the

Death Domain of DAPK were stably transfected into cells with control vector or with

full length MAP IB. The DAPK core domain did not cooperate with full-length

MAP IB and in fact inhibited the growth suppression induced by MAP IB alone

(Figure 4.4 b). This indicated that the transfected kinase domain can possibly act in a

dominant negative manner by competing with the endogenous full length DAPK

protein. The isolated Death Domain, though unable by itself to induce significant

inhibition of cell growth, was able to cooperate with full-length MAP IB to suppress

cell growth in a synthetic lethal interaction. These experiments indicate that in

addition to binding with the DAPK kinase domain, MAP IB co-operation with

DAPK involves a death domain interaction and that the death domain can form a

synthetic lethal interaction with MAP IB. It is unknown whether this death domain

interaction involves the recruitment of an additional unknown co-factor, or whether
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the synthetic lethal effect is as a consequence of direct interaction between MAP IB

and the DAPK death domain.

Next, a panel of DAPK mutants including the kinase dead version (K42A) and a

form of DAPK with the negatively regulating calmodulin domain deleted were

evaluated to determine if DAPK kinase activity was required for optimal cooperation

with MAP1B using. These genes were transfected into A375 cells that express large

amounts of endogenous MAP IB and only a small amount of DAPK. MAP IB

expression can be efficiently reduced in this cell line by siRNA transfection 24 hours

prior to treatment with gene of interest (Figure 4.4 c ii). Using this system of stable

transfection into A375 cells with or without a reduction in endogenous MAP IB, it

was possible to evaluate the effect of exogenous DAPK kinase activity without

interference from endogenous kinase. Over expression of both wild type DAPK and

calmodulin deleted DAPK reduced cell growth, and this was reduced in cells with

attenuated MAP1B expression (Figure 4.4 c i). Ablation of DAPK kinase activity by

mutation of K42 to A42 completely eliminated DAPK induced cell growth

suppression with or without endogenous MAP IB. These data are strong evidence

suggesting that MAP IB co-operates with DAPK to reduce cell growth and that this

requires functional DAPK kinase activity.

The cell growth assay was used to measure the inhibition of growth of coherent cells

in culture due to transfected gene activity. However, this assay does not provide

information relating to the method of cell growth inhibition. There are many

mechanisms that could reduce cell growth as a result of trans-gene activity, including

apoptosis, autpphagic cell death, cell cycle regulation or cell senescence amongst

139



many. When DAPK was transfected into HCT116 cells for 24 hours there was an

increase in the number of non-viable cells as determined by counting trypan blue

positive cells (Figure 4.4 d). This effect was reduced by K42A mutation, suggesting

that death was dependent on an active kinase domain, however deletion of the CaM

regulatory region had no significant effect. DAPK-induced loss of cell viability was

enhanced by co-transfection of full length MAP IB (Figure 4.4 d - shaded bars),

demonstrating that MAP IB can synergise with DAPK to induce cell death in this cell

line. This is not only evidence that DAPK-induced death is enhanced by MAP IB

expression, but it also suggests that cell death is a mechanism that could account for

MAP IB enhanced growth-suppression (Previous assay: Figure 4,4 a).

4.2.4 The Effect of MAP1B and DAPK Over Expression on the p53 Pathway

Using the cell growth assays, it was determined that transcript variant 1 of MAP IB

can co-operate with DAPK to reduce colony growth at high plating densities. This

co-operation required active DAPK kinase activity and transfected DAPK kinase

domain blocked growth suppression in a dominant negative manner. DAPK activity

has been implicated by previous studies in interaction with and activation of the p53

pathway. This is supported by the cell growth assay optimisation data (Figure 4.3 a)

where DAPK activity is suppressed by p53 inactivation using the isogenic HCT116

cell lines. It is widely accepted that DAPK has p53 dependent and independent

functions and so the p53 status of cell lines is therefore an important factor to

consider when studying DAPK activity (see section 4.3.3.2).

It was demonstrated that DAPK activity in the cell growth assay was dependent on

wild type p53, and so experiments were conducted in order to determine if DAPK
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interaction with MAP IB could influence and act through the p53 pathway. 3 tumour

cell lines which express wild type p53 were examined for DAPK and MAP IB

expression (Figure 4.5 a). DAPK and MAP1B were expressed at highest levels in

A549 cells, whilst DAPK is lower in A375 cells. Interestingly, in the isogenic

HCT116 cell line panel, DAPK expression is minimal in the p21-null cell line, whilst

MAP IB is lower in the p53 null and p21 null cells. DAPK3/ZIPK and DAPK2

protein expression was also assayed. Expression of both proteins is unchanged across

the HCT116 panel, indicating that the effect of p53 status in these cell lines was

specific to DAPK1 alone and not a general effect on DAPK family members.

p53 activity results in the transactivation of target genes with regulatory and

functional roles within the p53 pathway. Therefore, a principle method to determine

the status of the p53 pathway is to assay for target gene expression. For example,

when HCT116 parent cells are transfected with GST-DAPK1 or GST-DAPK3,

induction of p21 target protein is both p53-dependent and is DAPK1 specific (Figure

4.5 b i). Whereas, expression of the negative regulator MDM2 is not enhanced

suggesting that DAPK can indeed activate the p53 pathway.

When DAPK and MAP1B were transfected alone into HCT116 cells there was an

increase in the amount of p21 protein, modified Bax, and marginal increases in

Ser20-phosphorylated p53 protein, suggesting that MAP IB alone can activate the

p53 pathway independently. As a control, X-ray exposure can induce significant

amounts of p21, Ser20-phosphorylation of p53, and Bax-adduct formation. However,

co-transfection of both MAP IB and DAPK only marginally stimulated Ser20

phosphorylation and Bax and p21 protein induction above the levels stimulated by
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either gene alone. Therefore a trend was observed indicating that MAP IB and DAPK

can activate the p53 pathway, yet this assay was not sensitive enough to provide

significant information about the interaction of DAPK with MAP IB.

Using the p21 expression assay it was not feasible to determine if DAPK and

MAP IB could act independently or in cooperation to activate p53. Therefore the cell

growth assay was set up in conjunction with the 3 HCT116 isogenic cell lines so that

the influence of p53 and its down stream target p21 could be assessed. In this

situation the effect of p53 and p21 inactivation on cell growth inhibition could be

quantified (Figure 4.5 c). To this end cells were co-transfected with DAPK and

MAP IB VI, known to interact with DAPK or with V2 that would act as a negative

control. As observed previously, p53 knock out reduced the ability of DAPK alone to

inhibit cell growth (Figure 4.5 c i) whereas transfection of VI or V2 alone was

insufficient to reduce cell survival in either cell line as compared to growth allowed

by the empty vector control. Co-over expression of DAPK with V2 did not reduce

growth significantly as compared to the situation with DAPK alone in either cell line.

Co-transfection of DAPK with VI resulted in a striking reduction in survival in not

only the p53 wild type, but also in the p53 functional null cell line as well. This

situation was repeated using the p21 null line where DAPK and VI co-operate to

reduce cell growth in both cell lines. These data clearly show that the synergy

between DAPK and MAP IB does not require an intact p53 pathway, both at the level

of functional p53 protein and at the level of the p53 transactivation target, p21.

Nevertheless, cell growth co-repression was attenuated in the p53 null background

(Figure 4.5 c i; data highlighted by asterisk) indicating that the p53 pathway can

enhance the synergistic growth suppression.
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4.2.5 Induction of Apoptosis by MAP1B and DAPK

Apoptotic programmed cell death is activated in damaged or senescent cells,

allowing them to be removed from otherwise healthy tissues. Removal of apoptotic

cells by phagocytosis is carried out by white blood cells such as macrophages or

dendritic cells. Phagocytic cells recognise apoptotic cells that present negatively

charged phosphatidylserine on their cell surface. In non-apoptotic cells,

phosphatidylserine is detained on the inner surface of the cell membrane. Then,

during the early stages of apoptosis, phosphatidylserine is transported to the outer

cell surface to be detected by phagocytes. Annexin V specifically binds to

phosphatidylserine on the cell surface of apoptotic cells. This property can be utilised

to detect apoptotic cells using fluorophore-conjugated annexin 5.

The annexin V assay was employed to assess the extent of apoptotic cell death

during MAP IB and DAPK co-transfection. Given that this assay is optimised to

detect early stage apoptotic cells, it was necessary to set up a time course study to

gauge the optimal treatment time. HCT116 cells were co-transfected with a 2-way

titration of MAP IB and DAPK expression plasmid DNA for 12, 24 and 48 hours

(Figure 4.6 a). Then, the extent of apoptosis was quantified using FACS analysis. As

the phosphatidylserine is flipped from the inner to outer surface of the membrane,

cells are stained with fluorescent Annexin V. This can be visualised by plotting

Annexin V fluorescence on the ordinate axis. In addition, cells were stained with

propidium iodide (PI), which is a non-membrane permeable nuclear stain. So as a

consequence, only cells with perturbed membranes will be positive for PI staining.

The extent of PI staining can be visualised by plotting on the abscissa. Therefore,

Annexin V staining and PI staining can be monitored on a single scatter plot. This
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scatter plot is then divided onto 4 quadrants; Lower Left (LL), Lower Right (LR),

Upper Right (UR) and Upper Left (UL) each containing a separate population of

cells with a distinct combination of staining. LL cells are negative for both and so are

designated non-apoptotic. LR cells are the cell populations of interest because they

are annexin V positive, and so early-apoptotic. The upper quadrants contain

populations of cells only positive for PI (UL) and populations of cells positive for

both stains. This indicates that the cell membrane is compromised, perhaps as a

consequence of later stage apoptosis. Still, data from the upper quadrants can not be

considered informative because these populations will be contaminated by non¬

viable cells that have not necessarily undergone an apoptotic program, such as

necrotic cells. Transfection of 0.5pg of plasmid DNA of either MAP1B or DAPK

was sufficient to induce detectable apoptosis after 24 hours (Figure 4.6 a). Prior to

this, after only 12 hours transfection, no apoptosis was detected. After 48 hours, no

above-background annexin V staining was detected. Thus 24 hours post-transfection

was determined to be an optimal time point to study early apoptosis using this assay.

At this time point, 0.5pg of DAPK DNA alone was able to induce 17.5% annexin V

positive cells, and 0.5pg of MAP1B 16.5% annexin V positive cells. Titration of

more DNA did not significantly enhance the response. In addition, co-transfection of

any combination of amounts of DAPK and MAP IB DNA did not lead to an increase

in early stage apoptosis. This would suggest that 0.5pg of expression plasmid was

able to saturate this assay. In other words, 18% annexin V staining is approximately

the maximum allowed using this system of transfected cells. As a result, the effect of

200ng of MAP IB and DAPK was assayed after 24 hours transfection (Figure 4.6 b).

A transfection of 200ng apoptosis inducing tumour necrosis factor receptor
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expression vector was included as a positive control. Over expression of DAPK

alone resulted in 8.72% of cells in the LR quadrant and expression of MAP IB

8.60%. Co-expression from both vectors resulted in 9.99% of cells in the LR

quadrant. These data indicate that MAP IB and DAPK ectopic expression can induce

apoptosis in this cell line. However, co-expression of both exogenous proteins did

not enhance the apoptotic response. Therefore, the synergistic interaction between

the 2 proteins, uncovered using the growth suppression assay can not be as a result of

early apoptotic induction induced immediately after vector transfection.

The annexin V apoptosis assay can only be reliably used to assess the extent of early

stage apoptosis within cell populations. Measurement of later stages of apoptosis

relies on other methods to observe events such as chromatin condensation or DNA

fragmentation. The terminal transferase dUTP nick end labeling (TUNEL) assay,

utilises an antibody based method to detect nicks in DNA which are identified by

terminal transferase. This enzyme catalyses the addition of dUTPs that are then

secondarily labelled with a fluorescent marker. This assay is optimised to specifically

detect DNA lesions formed during the later stages of apoptosis and so provides a

'second opinion' to the annexin V assay. MAP IB and DAPK were transfected into

HCT116 cells on coverslips using vector DNA amounts equivalent to those used in

the optimised annexin V assay (Figure 4.6 b). Both vectors could independently

induce apoptosis where specifically, MAP IB transfection alone was able to induce

TUNEL positive staining approximately 3 fold higher than DAPK alone. Co-

transfection of MAP 1B with DAPK in this assay did not result in any increase in

TUNEL staining as compared to MAP IB alone. Taken together, results from the

annexin V and TUNEL assays indicated that synergy in the co-growth suppression
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assay can not be explained by way of an apoptosis mechanism. Although transfection

of MAP IB and DAPK alone can clearly induce apoptosis, no co-operation between

the two was observed. Therefore this evidence supports the idea that apoptosis

induced immediately after MAP IB and DAPK transfection would not impact on the

long term growth suppression observed in the synergistic growth suppression assay.

In other words, these data suggest that apoptosis is not a mechanism that would

explain the positive cooperation between the two proteins in the clonogenic assay.

4.2.6 The Impact of DAPK and MAP1B on the Cell Cycle

Tumour suppressor pathways often have a cell cycle regulatory element. After p53

activation by DNA damage for example, cell cycle arrest at G1 is activated if the

severity of damage does not warrant programmed cell death. Arrest of the cell cycle

is often transient, allowing progression after damage repair, but can be permanent if

damage is too great. In this way, cell cycle arrest may act as a survival mechanism in

addition to a being a system that halts aberrant cell growth.

Although ectopically expressed MAP IB and DAPK can independently induce an

apoptotic response, there is no evidence showing that both proteins can act in concert

to enhance this response. It is unlikely therefore that the observed synergistic growth

suppression works though an apoptotic cell death pathway. To attempt to discern the

mechanism of DAPK and MAP IB induced cell growth repression, both genes were

over expressed in HCT116 cells. Any perturbation in cell cycle parameters was then

assayed by measuring cell nuclei size using FACS analysis. Cell cycle profiles were

determined for vector control, MAP IB or DAPK transfected and MAP IB with

DAPK co-transfected samples (Figure 4.8 i). DAPK transfection alone stimulated a
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reproducible 12% increase in the G1 population accompanied by a reciprocal

decrease in the G2 population (Figure 4.8 ii). MAP1B alone stimulated a slight but

significant increase in the G1 population also at the expense of the G2 population.

However MAP IB co-transfection with and DAPK did not enhance cell cycle

distribution as compared to DAPK transfection alone. Again, no evidence of co¬

operation between DAPK and MAP IB was observed using this assay, therefore

DAPK and MAP IB synergistic co-growth suppression is likely to not be linked to

cell cycle changes induced in the short term after transfection.

4.2.7 The Autophagic Cell Death Program is Induced by DAPK and MAP1B

In addition to the documented role of DAPK during type I (apoptotic) cell death,

published data also implicates DAPK in type II (autophagic) cell death where

overexpression of DAPK in HEK293 cells leads to caspase independent cell death in

conjunction with formation of autophagic vesicles (Inbal et al., 2002). Autophagic

vesicles can be distinguished from regular lysosomes at the molecular level because

they are decorated with Light Chain 3 (LC3) (Tanida et ah, 2005). Interestingly, LC3

is a member of the MAPI family of microtubule proteins and is homologous to the

light chains; LCI and LC2, of MAPI A and MAP IB respectively. A report has

recently been published showing that LC3 interacts with high affinity to MAP IB

(Halpain and Dehmelt, 2006), where phosphorylated MAP IB associates with

autophagosomes.

The effect of MAP IB and DAPK co-expression on autophagy in HEK293 cells that

stably express the autophagy marker GFP-LC3 was assessed (Kochl et ah, 2006).

During Autophagy, this marker decorates autophagosomes so that they can be
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identified and quantified as GFP-LC3 foci which fluoresce much brighter than the

diffuse GFP-LC3 background. By this method, the autophagic index is calculated as

(GFP-LC3 Foci per Field) / (Total Cells per Field). HA-DAPK induces GFP-LC3

foci formation 32 hours after transfection (Figure 4.9 a). Before 32 hours, no foci

were observed, and after 48 hours transfection the number of foci induced was

depleted by around a half. Thus there was a very tight time window of loci induction.

Subsequent GFP-LC3 loci assays were performed at this time point. This result

provides further evidence that DAPK is involved in the autophagy pathway,

supporting the previous work reported from other laboratories.

HEK293 cells express large amounts of MAP IB can that can be substantially

reduced by MAP IB siRNA (Figure 4.9 bi). This provides a convenient system

where by the effect of endogenous MAP IB protein levels on HA-DAPK-induced

foci formation can be monitored. Cells were treated with MAP IB siRNA or siRNA

control for 32 hours before transfection with HA-DAPK. As expected, HA-DAPK

efficiently induced LC3 foci formation (Figure 4.9 b i), reproducing the results from

the optimisation experiment (Figure 4.9 a). MAP IB siRNA reduced the number of

GFP-LC3 foci formed by approximately a half. The effect of MAP 1B on the number

of LC3 foci formed, is illustrated (Figure 4.9 b ii). The fact that MAP1B depletion

can attenuate DAPK induced autophagosome formation provides strong evidence to

suggest that MAP IB is involved in DAPK induced Autophagy.

During autophagy, soluble LC3 (LC3-I) is cleaved and lipidated to form LC3-II and

this cleavage event can be monitored using western blot analysis. HEK293 GFP-LC3

cells were co-transfected with MAP IB and DAPK and the extent of GFP-LC3
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modification was quantified. As a positive control, separate cultures were starved

using balanced salt solution for 2 hours to efficiently induce autophagy (Figure 4.10

a). MAP IB and DAPK could both independently stimulate LC3 modification as

compared to the vector only transfection control. A higher level of LC3 modification

was observed when the genes were co-transfected. This provides further evidence to

substantiate the claim that DAPK is a positive regulator of Autophagy. Also the fact

that MAP IB transfection alone can induce LC3 modification further implicates

MAP IB in the autophagic process. The ratio of lipidated GFP-LC3-II to soluble

GFP-LC3-I was quantified using densitometic analysis of respective bands on the

western blot. Densitometry revealed that although there was an increase in GFP-LC3

modification when both proteins were co expressed, this increase was only additive

when compared to DAPK or MAP IB expression alone. As a consequence, it was

desirable to provide further evidence to establish if MAP IB and DAPK act through

the same pathway, or independently to induce LC3 modification. The contribution of

MAP IB to DAPK induced LC3-II production was assessed further by depleting

endogenous MAP IB protein using siRNA. Reduction of MAP IB levels resulted in

the ablation of LC3-II formation otherwise induced by transfected HA-DAPK

(Figure 4.10 b). The DAPK kinase death mutant K42A was unable to induce

modification of LC3 providing a solid negative control for this transfection assay.

Induction of LC3 modification therefore was dependent on DAPK kinase activity

and not just an artefact of protein over-expression.

GFP-LC3 foci formation and LC3 modification are established biomarkers often

used to specifically quantify the extent of autophagy in cell culture. Therefore, taken

together, these data establish a positive role for MAP IB in DAPK-induced
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autophagy. This correlates with the extent of DAPK-induced cell death in these

cultures that is both MAP IB and DAPK-kinase activity dependent. In addition, these

data correlate with the growth suppression data, where co-transfection of DAPK with

MAP IB resulted in synergy to reduce cell growth.

4.2.8 MAP1B Enhances DAPK Induced Cell Membrane Blebbing

Cell membrane blebbing is characteristic of DAPK action in cells, and is a robust

marker of DAPK-induced cell death. Therefore, a membrane blebbing assay was set

up to quantify changes in transfected DAPK activity. Ectopic over-expression of

DAPK protein in HCT116 cells was able to efficiently induce membrane blebbing

relative to that induced by control vector transfection. In this cell line approximately

40% of DAPK positive cells have cell membrane blebbing morphology after 24

hours treatment (Figure 4.11 a). Over expression of MAP IB alone lead to only a

slight stimulation of membrane blebbing. Co-transfected MAP IB synergised with

transfected DAPK to stimulate membrane blebbing in over 80% of co-transfected

cells. These data provide molecular evidence that a functional cooperation exists

between MAP IB and DAPK to induce the morphologic changes that are

characteristic of DAPK action in cells.

In order to determine the effect of DAPK kinase activity in this assay, a panel of HA-

DAPK kinase activity mutant expression vectors were assessed for their membrane

blebbing inducing activity in A375 cells (Figure 4.11 b i). Kinase activated ACAM

had enhanced activity as a greater proportion of cells had membrane blebbing

morphology, whereas the kinase activity attenuated mutant K42A had a reduced

ability to cause membrane blebbing activity. This is a reproduction of previous work
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showing that the membrane blebbing function of DAPK is kinase activity dependent.

When endogenous levels of MAP IB were depleted by siRNA, the ability of wild

type (WT) and kinase activated (ACAM) to induce membrane blebbing was reduced.

This was in contrast to the situation after K42A transfection, where MAP IB

depletion had no significant effect on the proportion of cells with membrane

blebbing morphology. This indicates that, not only is the K42A mutant's membrane

blebbing activity reduced, but this mutant is also unable to functionally interact with

MAP IB in this assay. To further substantiate this claim, the MAP IB mutants VI and

V2 were inputted into this assay using co-transfection with DAPK into HCT116

cells. As was the case after over-expression in A375 cells, MAP IB enhancement of

DAPK induced membrane blebbing was dependent on kinase activity where the

activity of K42A was independent of MAP1B (Figure 4.11 b ii). Co-transfection of

DAPK with the MAP IB mutant lacking the N-terminal DAPK binding site

(MAP1B-V2) resulted in reduced membrane blebbing activity, relative to full-length

MAP IB and MAP1B-V1 which have the N-terminal binding site.

These data generated by the blebbing assays strongly correlate with the data

generated by the growth suppression assay (Figure 4.4), where MAP IB synergy with

DAPK is dependent on DAPK kinase activity and also on the MAP IB N-terminal

126 amino acids. Synergy in the growth suppression assay was not dependent on

functional p53. This was determined in the HCT116 p53 null line because MAP1B

transcript variant 1 co-operated with DAPK regardless of p53 status. This situation

was repeated using the blebbing assay where MAP IB and DAPK co-operation was

also independent of p53 status (Figure 4.11 c). This further strengthens the

correlation between observations using the growth suppression and blebbing assays.
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4.2.9 Inhibition of DAPK and MAP1B Synergy by the Autophagy Inhibitor 3-
MA

The results from the above studies show that there is a striking correlation between

the effect of DAPK and MAP IB co-operation on growth suppression, autophagy and

cell membrane blebbing. These data were strengthened by controls, where co¬

operation in each case relied on active DAPK kinase and the presence of the N-

terminal binding site on MAP IB. Nevertheless, it was still necessary to establish if

the observed correlation, between the induction of autophagy, the stimulation of

membrane blebbing and inhibition of cell growth was in fact due to a causal

relationship stimulated by cooperation between MAP 1B and DAPK.

Cell membrane blebbing is a well defined marker for the activity of ectopic DAPK in

transfected cells. For that reason this marker has been employed in numerous

previously published studies. The studies above show that using this marker, assays

can be accurately and rapidly conducted owing to the fact that transient transfection

of DAPK is sufficient to stimulate a reproducible end point. In addition to this, the

specificity of this assay can easily be controlled for. For example, empty vector

transfection alone will give a read out for background blebbing and the functional

null mutants; DAPK K42A or MAP1B-V2, can be used as specificity controls. Given

that membrane blebbing is an end-point that can be utilised in the short term, and that

this end point strongly correlates with the longer term growth suppression from

multiple studies, further analysis was conducted using the membrane blebbing assay.

The methylated nucleotide 3-methyladenine (3-MA) is a well characterised

pharmacological inhibitor of autophagy (Seglen and Gordon, 1982). Therefore, it

was predicted that if there was a causal relationship between autophagy and
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membrane blebbing, then DAPK-induced blebbing would be decreased by 3-MA. To

test this, 3-MA was added to HA-DAPK transfected cells to determine the extent of

HA-DAPK-induced membrane blebbing that was due to autophagy. A375 cells were

transfected with DAPK for 18 hours and treated with a concentration range of 3-MA

for 6 hours before fixing and staining to visualise HA-DAPK transfected cells. 3-MA

was able to reduce membrane blebbing at low concentrations (2-5 pM) and

completely blocked blebbing at higher concentrations (lOpM) (Figure 4.12 a). Given

that 3-MA is an inhibitor of autophagy, this dose-dependent reduction in blebbing

indicates that there is a causal relationship between DAPK-induced autophagy and

DAPK-induced membrane blebbing. What's more, this positions the influence of 3-

MA up-stream of blebbing and indicates that, under these conditions HA-DAPK-

induced blebbing is dependent on an active autophagy program.

To determine if blebbing induced by cooperation between DAPK and MAP IB was

due to autophagy, A375 cells were co-transfected for 18 hours and treated with

lOpM of the autophagy inhibitor 3-MA before fixing and staining for co-transfected

cells. 3-MA treatment completely blocked membrane blebbing in co-transfected cells

(Figure 4.12 b) providing further evidence that MAP IB cooperates with DAPK to

induce autophagy in these cells corroborating with evidence from the GFP-LC3 foci

assay (Figure 4.10). Also, these data indicate that there is a causal relationship

between DAPK:MAP1B co-induced blebbing and autophagy. Additionally, these

data place cooperation-induced autophagy up stream of membrane blebbing.

A recent study suggests that 3-MA can also inhibit the PI3k pathway (Ito et al.,

2007). Therefore, a second autophagy inhibitor was used to rule out the possibility
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of non-specific action through the PI3k pathway. The anti-malarial drug chloroquine

modulates autophagocytic protein degradation in the lysosome system, thereby

inducing the formation of rimmed vacuoles consisting of autophagosomes fused to

autolysosomes (Suzuki et al., 2002). The exact effect this has depends on the cell

type and model being observed (Xu et al., 2007; Zaidi et al., 2001), but chloroquine

is generally considered to be an inhibitor of autophagy. It was therefore predicted

that this drug would reduce DAPK and MAP IB induced autophagy and so co-

transfected cells were treated, fixed and stained before scoring for cell membrane

blebbing. Autophagy is a caspase-independent cell death program and so a pan-

caspase inhibitor treatment was included as a negative control. As expected, 3-MA

blocked membrane blebbing induced by co-transfection (Figure 4.12 c). Chloroquine

also reduced the percentage of blebbing co-transfected cells although it was not as

efficacious as 3-MA in these conditions. This reproduced the observation that

autophagy inhibitors block blebbing, providing corroborative evidence. The pan-

caspase inhibitor did not have any effect on blebbing, also evidence that DAPK and

MAP IB induced blebbing is as a result of caspase-independent autophagy and not

apoptosis.

From the above studies it was concluded that transfected DAPK and MAP IB

synergise to induce membrane blebbing in cells and this is dependent on an active

autophagic program (Figure 4.12). Given that membrane blebbing is a marker of

DAPK-induced programmed cell death, this suggests that DAPK and MAP IB

synergise to induce programmed cell death to reduce cultured cancer cell growth

(Figure 4.4), and this is independent of apoptosis (Figure 4.6, 2.7 and 2.12 c) or cell

cycle regulation (Figure 4.8).
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Further study is proposed to strengthen the evidence suggesting that DAPK:MAP1B

cooperation-induced membrane blebbing depends on an active autophagic program.

Specific inhibitors of PI3k such as wortmanin or LY29Y002 could be used as

controls to determine if PI3k activity is required for blebbing. Also, siRNA to

autophagy genes such as ATG5 or beclin should also inhibit blebbing. This

approach, using siRNAs to specificly knock-down autophagy genes could also be

used to uncover the biocehemical elements required for DAPK:MAP1B induced

blebbing.

4.2.10 Transfected HA-DAPK Co-localises with Cortical Actin During
Membrane Blebbing

Immunofluorescence studies were designed to attempt to further understand the

mechanism of DAPK and MAP IB induced membrane blebbing.

Immunoflourescense imaging methodology was chosen to supplement the

biochemical studies (Figurea 1.9 and 1.11) where actin did not co-immunoprecipitate

with MAP1B and DAPK in PIA-DAPK transfected A375 cells. This was suprising

given the known role of DAPK as a microfillament associating protein, and given

that MAP IB has actin binding domains on its heavy and light chains. It was

speculated that this could be due to limitations of the co-IP, in which microfilaments

would not be dissolved during the gentle lysis conditions. Also, the in-vitro

microtubule polymerisation cycling studies (Figure 4.12) determined that DAPK

binds to microtubules and this discovery is at odds with previously published

research that emphasises DAPK interaction with actin and microfilaments. It was

hoped that this discrepancy could be addressed using imaging studies after obtaining

corroborating evidence.
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Initially, it was necessary to image HA-DAPK transfected cells to define DAPK

transfection-induced morphological changes. A375 cells were transfected with HA-

DAPK or GFP control for 24 hours before fixing and staining to visualise the

transfected cell population. A phalliodin counter-stain was employed to visualise F-

actin fibers. The fibroblast-like morphology of A375 cells was unchanged by GFP

transfection (Figure 4.13 a), where GFP is diffuse throughout the cell and the F-actin

distribution is unchanged. However, HA-DAPK transfected cells could be split into 3

distinct subpopulations each with a different class of morphological change defined

as subpopulations 1, 2 and 3 (Figure 4.13 b, c and d). Subpopulation 1 consisted of

large, spread-out and healthy looking cells with very little or no change in

morphology as compared to surrounding non-transfected cells (Figure 4.13 b). Cells

grouped into subpopulation 2 had gross changes in cell morphology including

cytoplasmic shrinkage, large bulbous processes and small membrane blebs (Figure

4.13 c). Cells grouped into sub population 3 were much smaller and had multiple

large cell membrane blebs (Figure 4.13 d). Also, it was observed that cells grouped

into sub-population 2 had HA-DAPK co-localised with cortical F-actin fibers.

Three subpopulations of cells were observed after 24 hours of HA-DAPK

transfection, each with a different extent of cell membrane blebbing, with no blebs in

subpopulation 1, a few small blebs in subpopulation 2 and a larger number of large

blebs in subpopulation 3. This superficial observation indicates that there is a

sequence of events starting in subpopulation 1 and ending in subpopulation 3. This

assumption was tested using a time course of transfected cultures by counting the

number of cells at each time point. The percentage of cells in subpopulation 3

increases over time whist the percentage in subpopulation 1 decreases (Figure 4.13
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e). The proportion of cells in subpopulation 2 increases from 12 to 24 hours and then

decreases from 24 to 48 hours. Thus, it can be assumed that subpopulation 1

precedes subpopulation 2 precedes subpopulation 3 with regards to time.

To attempt to discover which protein domain of HA-DAPK is responsible for

inducing these morphological changes, a series of C-terminal deletion mutants were

transfected into A375 cells and the percentage of transfected cells in each population

was determined. Removal of the C-terminal death domain form HA-DAPK resulted

in a significant increase in the proportion of cells in subpopulation 1 accompanied by

a decrease in populations 2 and 3 (Figure 4.13 f). This was enhanced by additional

removal of the death domain to cytoskeleton-binding domain linker region.

Interestingly, subsequent removal of the cytoskeleton-binding domain yielded an

active construct consisting of amino acids 1-641 which includes the N-terminal

kinase domain and the ankyrin repeat domain. Additional removal of the ankyrin

repeats yielded a less active construct, reduced in ability to induce morphological

changes. These data suggest that the death domain is critical for DAPK-induced

morphological changes. Also, the fact that the 1-641 construct is synthetically active,

suggests that there is a negative regulatory element within the cytoskeletal binding

domain and that the ankyrin repeat domain is a positive effectors of morphological

change. The effect of kinase activity on induction of morphological changes was

assessed using the constitutively active ACaM and the kinase attenuated K42A

mutants. The ACaM mutant was superactive with respect to morphology change, as

the percentage of cells in subpopulation 1 was decreased accompanied by an increase

in the proportion of subpopulation 2 and 3 cells (Figure 4.13 g). The K42A mutant's

ability to induce morphological change was attenuated as the number of cells
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retained in subpopulation 1 was increased. Together, these data suggest that DAPK-

induced morphological changes are dependent on kinase activity and death domain

signaling that is negatively regulated by elements within the cytoskeletal binding

domain and positively regulated by the ankyrin repeat domain.

4.2.10.1 Transfected DAPK Co-localises with Cortical F-actin in Cells Grouped in
Subpopulation 2.

Analysis of the images obtained during morphological assessment lead to the

observation that HA-DAPK co-localised with cortical F-actin fibers in cells grouped

into subpopulation 2 (Figure 4.13 c). However, this has not been reported previously

in any published research involving detailed cell imaging of the effects of transfected

DAPK (Bialik et ah, 2004). Therefore this effect staining was examined in detail

from numerous independent cultures (and 2.14 a), where HA-DAPK staining at the

cell membrane was observed in each. In order to determine the position of the

nucleus in these cells, cultures wares counterstained with TOPRO nuclear stain.

Here, HA-DAPK clearly stains the cell periphery, near to the plasma membrane.

These experiments demonstrated that the observed cortical stain was not due to an

"edge-effect" where the nucleus compresses the cell contents to the edge of the cell.

4.2.11 Endogenous MAP1B Co-localises with Transfected HA-DAPK at Cortical
F-actin in Cells Grouped in Subpopulation 2.

Having defined the immunofluorescent staining patterns of transfected HA-DAPK, it

was then desirable to observe the location of endogenous MAP IB in the 3 defined

subpopulations. A375 cells were transfected with HA-DAPK for 24 hours before

triple staining for HA, MAP IB (using Mab AA6) and F-actin using phalliodin

counter-stain. The MAP IB staining in cells grouped in subpopulation 1 was
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unchanged as compared to the surrounding non-transfected cells (Figure 4.15 a).

However, MAP IB staining in subpopulation 2 cells was concentrated at the cell

periphery, co-localising with cortical F-actin and HA-DAPK (Figure 4.15 b).

MAP IB staining in subpopulation 3 was concentrated in the blebs, co-staining with

HA-DAPK (Figure 4.15 c). This superficial observation suggested that MAP IB was

concentrated with HA-DAPK at cortical F-actin near to the cell membrane.

Therefore, the fluorescent intensity of MAP IB in the cytoplasm was compared to the

fluorescent intensity of MAP IB in the cortical region in order to quantify this

observation. In each cell in subpopulation 2, the ratio of the average intensity of

MAP IB in the cortical region to the average intensity of MAP IB in the cytoplasm

was increased as compared to the average fluorescence ratio in surrounding non-

transfected cells (Figure 4.12 b and d). These data provide a quantitative analysis of

the initial superficial observation and show that endogenous MAP IB is co-located

with HA-DAPK at cortical F-actin during in cell subpopulation 2. This suggests that

MAP IB and DAPK interact with F-actin during the initial stages of HA-DAPK

transfection-induced membrane blebbing.

In order to determine the protein domain of DAPK that is responsible for induction

of MAPlB-F-actin co-localisation, a series of DAPK C-terminal deletion constructs

were transfected into A3 75 cells. The average cortical to cytoplasmic MAP IB

staining ratio was compared to average ratios generated from transfected cell

populations. Data are averages of 10 cells from 3 independent experiments.

Transfection of wild-type HA-DAPK (WT) resulted in an average ratio of 2, where

the average MAP IB staining intensity in the cortex was twice as intense as the

average staining in the cytoplasm (Figure 4.15 e). The average ratio was decreased
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upon removal of death domain but remained significantly higher than in non-

transfected controls (p=0.001). Additional removal of the linker region resulted in a

ratio that was less than 1 and not significantly higher than in non-transfected

controls. Subsequent removal of the cytoskeletal domain resulted in an average ratio

that was significantly higher than the non-transfected control cells (p=0.01).

Additional removal of the ankyrin repeat domain reduced the ratio to less than 1 and

not significantly higher than in non-transfected controls. Co-transfection of HA-

DAPK with GFP control had no effect on the intensity ratio of cortical to

cytoplasmic GFP. The effect of kinase activity on the MAP IB staining ratio was

determined using the ACaM and K42A mutant panel. Deletion of the calmodulin

regulatory domain (CaM) resulted in an increase in the average cortical to

cytoplasmic MAP IB ratio, and mutation of K42 to alanine significantly decreased

the ratio (Figure 4.15 f). The ratio of cortical to cytoplsmic HA-DAPK was also

quantified using the same method to allow quantification of DAPK staining at

cortical F-actin. Here, the average intensity of wild type HA-DAPK (FL) was 3 times

higher than in the cytoplasm. This ratio was slightly enhanced by deletion of the

calmodulin domain and significantly reduced by mutation of K42 to alanine. This

confirmed that DAPK was also co-located with cortical F-actin in these cells.

Considered together, these data suggest that; A) MAP IB co-locates with cortical F-

actin during HA-DAPK-induced cell morphology changes, B) That this involves

DAPK death domain signaling, is enhanced by the ankyrin repeats and is negatively

regulated by elements within the cytoskeletal-binding domain, and finally C) That

this is dependent on DAPK kinase activity.
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4.2.12 Transient Localisation of Co-transfected MAP1B and HA-DAPK with
Microfilaments and Microtubules

Microtubule polymerisation and depolymerisation cycling revealed that transfected

HA-DAPK efficiently binds to purified microtubules prepared in-vitro. This was an

entirely novel discovery and could be controversial given previous work describing

DAPK as an actin associating protein, in addition to previous studies showing that

nocodazol treatment does not increase DAPK levels in cell lysates (Cohen and

Kimchi, 2001). However, this study did not take temperature dependent

depolymerisation of tubulin into account and so its validity is questionable.

It was not possible to use co-IP studies to determine the amount of tubulin that co-

immunoprecipitates with DAPK because of interference with the heavy chain of

immunoglobulin. Therefore, immunofluorescent studies were undertaken to

determine if DAPK can co-localise with microtubules in cells. HA-DAPK was co-

transfected with full length native MAP1B in A375 cells for 10, 18 and 32 hours

before fixing and staining for MAP IB, HA, A-tubulin, and F-actin using phalliodin

counter-stain. During fixation of cells, the cytoplasm was partially extracted using

0.01% Triton X100 in microtubule stabilising buffer, a technique often used to

visualise the microtubule cytoskeleton in cells (Tanaka et al., 1992). As expected,

after 10 hours treatment the majority of co-transfected cells had morphology which

could be grouped into subpopulation 1. In these cells, HA-DAPK and MAP IB

clearly co-localised with microtubules, especially at the microtubule organising

center (MTOC) (Figure 4.16 a). After 18 hours, the majority of co-transfected cells

could be grouped into subpopulation 2 or 3, with gross morphological changes and

blebs (Figure 4.16 b). Co-localisation with tubulin was less pronounced in stage 2
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cells than in stage 1 cells, rather the transfected proteins strikingly decorated F-actin

fibers. This was accompanied by a reduction in microtubule staining intensity, and

the MTOC was less defined. After 48 hours all co-transfected cells had shrunk and

had extensive membrane blebs. In these cells, the Triton XI00 fixation method

revealed that both MAP IB and DAPK decorate cortical F-actin filaments around the

surface of the blebs. These data show that DAPK and MAP IB transiently interact

with microtubules in cells grouped into subpopulation 1 and then with F-actin in cells

grouped into subpopulations 2 and 3. In addition to this, microtubule staining

intensity was reduced in subpopulation 2 cells suggesting that co-transfection of the

2 proteins induced general collapse of the microtubule cytoskeleton after 18 hours.
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4.3 Discussion

4.3.1 Functional Transfection Assays Reveal a Genetic Interaction between
DAPK and MAP1B

There is a growing body of evidence showing that DAPK is a tumour suppressor

kinase, silenced by promoter methylation in many cancer types (Raval et al., 2007).

During the course of these studies various wide ranging biochemical and genetic

mechanisms of DAPK action in cancer have been suggested including autophagy and

apoptosis in response to diverse signaling events. These signals include cytokines

such as TNFa, TGFP and ceramide, physical events such as cell-matrix detachment

and genetic transformation stimulated by aberrant oncogene activation (see section

1.4). As a result, DAPK is increasingly thought of as a key programmed cell death

signaling protein, having a major effect on cell fate decision making.

Given the wide ranging role of DAPK in programmed cell death, it is likely that this

protein should interact with and influence many signaling pathways in cancer. The

underlying biochemical events are just beginning to be understood, with recent

papers documenting interactions with the ERK MAPK pathway, the JNK/SAPK

pathway and in signaling to ribosomal S6-kinase (Anjum et al., 2005; Raval et al.,

2007; Schumacher et al., 2006; Stevens et al., 2007). And the consequence of DAPK

activity has been advanced in recent papers providing evidence of DAPK interaction

with actin/myosin microfilaments, suggesting a role for DAPK in effecting

cytoskeletal dynamics. The studies presented in this thesis add to these findings,

showing that DAPK can effect type II programmed cell death, through interaction
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with MAP IB. It is proposed that this interaction induces cytoskeletal alterations

involving both microtubules and microfilaments, causing cell membrane blebbing

and leading to eventual suppression of cell growth. In chapter 3, evidence was

presented demonstrating that the kinase domain of DAPK binds to MAP IB via an

interface towards the N-terminus of transcript variant 1. This novel biochemical

interaction was studied using the functional studies presented in chapter 4 in order to

determine its consequence on cancer cell biology.

4.3.2 The Use of Rudimentary Cell Growth Assays to Quantify the Activity of
Death-Inducing Trans-genes

A cell growth assay was developed to measure the effect of MAP IB on DAPK-

induced tumour suppression. This assay proved invaluable, allowing it to be rapidly

established that MAP IB is a positive regulator of DAPK-induced growth

suppression. This observation was of particular use because it clarified some of the

conflicting reports showing that DAPK and MAP IB can both be effectors of growth

inhibition or even growth stimulation under different circumstances (see section

4.1.8) . Comparing this assay to subsequent assays performed during the course of

these studies, an array of consistent data is presented detailing observations showing

that both MAP IB and DAPK are negative regulators of cell growth.

The sensitivity of the cell growth assay proved more than adequate to resolve the

difference in activities between mutant genes in different genetic backgrounds. For

example, it was able to determine that, whilst knock out of p53 blocked DAPK-

induced growth inhibition (Figure 4.3a), this had very little effect on co-operation of

MAP IB with DAPK (Figure 4.5c i). Also, this assay was sensitive enough to discern
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differences in DAPK catalytic activity as a result of K42A mutation or removal of

the calmodulin domain (Figure 4.4 c), showing that DAPK-kinase activity was

necessary for co-growth suppression.

Expression plasmids were expressed in cell lines for 24-48 hours before re-plating

and antibody selection of transfected cells. Thereafter cultures were left to develop

for a further 7 days, during which time cells were expressing the desired gene at high

levels. This resulted in a situation where the short term effects of over expression

were combined with the enduring effects, allowing measurement of cell growth-

inhibition in the long term. This was the advantage of the assay as well as its biggest

disadvantage, because subsequent assays relied on transient transfection to determine

the mechanism of cell growth suppression and were therefore limited to short term

observations. As a result, it was not possible to be 100% certain that effects observed

after transient transfection based assays reflected the situation in the clonogenic

assay. In other words, transfection assays might have been unable to account for the

result of long term stable expression. For example, even though MAP IB and DAPK

induced apoptosis independently, no co-operation was observed between the two

(Figure 4.6 and 2.7), but it was not feasible to rule out the possibility that co¬

operation might occur over longer time periods. The same applies to cell cycle

regulation, where again either protein alone stimulated accumulation of cells in Gl,

yet co-expression of both proteins did not enhance this effect (Figure 4.8). This

might be of particular relevance because cell cycle effects are cumulative and so

often inhibit cell growth measured over longer time periods. Using these assays it

was therefore not feasible to rule out the possibility that apoptosis or cell cycle
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regulation could contribute to MAP IB and DAPK co-growth repression in the longer

term.

Although the cell growth assay proved useful for determining the effects of transgene

expression on long-term cell growth, it could not provide information relating to the

underlying mechanisms of cell growth modification. There are many mechanisms

that could explain the reason for growth repression induced by over expression of a

given protein, some relying on programmed cell death, or some relying on inhibition

of cell division including cell cycle regulation or events leading to cell senescence. In

any case, short-term expression of DAPK and MAP IB resulted in cooperative

induction of cell death as determined by trypan blue exclusion assay (Figure 4.4 d).

As such it seems highly likely that MAP IB and DAPK co-growth repression

observed over the long term would be as a result of a cell death-inducing mechanism.

Clonogenic assays are based on the fact that under normal conditions, non-cancerous

cells should not survive without trophic support from neighboring cells. The reason

for this is two-fold as cell growth is dependent on direct cell-cell contact and on

diffusible factors such as mitogens. These are required to inform the cell that it is in a

position to survive or to divide depending on the given situation. This is a

mechanism to prevent aberrant cell growth and migration, thereby preventing

cancerous growth. However, the situation is partially reversed in actively dividing

cells grown in culture, such cancer cell lines that are able to grow under abnormal

conditions. These cell lines will expend when separated after trypsinisation and re-

plating, providing that they are seeded above a critical concentration of cells per unit

volume of media. Below this concentration, a fraction of plated cells will die due to
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lack of trophic support. It is this property of cancer cell lines that is exploited by

clonogenic cell growth assays, as stable expression of transgene will then alter the

ability of cells to expand after seeding.

The ability of DAPK and MAP IB to reduce cell growth was highly dependent on

seeding density. For example, when only 2500 (approx.) cells were plated, VI or V2

alone were sufficient to reduce cell growth (Figure 4.3 b). Yet, as more cells were

added, the ability of VI or V2 to reduce cell growth was diminished to almost vector

control levels. However, transfection of V1 with DAPK resulted in a very high level

of synergistic growth inhibition at all seeding densities, low to high. This was in

contrast to V2 transfection with DAPK, where at high densities the growth inhibitory

effect was simply additive. As a consequence, this higher seeding density was used

for all subsequent growth assays. This density dependent effect could offer a clue as

to the in-vivo relevance of DAPK interaction with MAP1B. It can be speculated that

a critical concentration of diffusible factor is required to activate the interaction. This

could be a cell-cell communication molecule, or could simply be as a consequence of

higher levels of dead cells in the plating media killed by the selection antibiotic. No

transfection method is 100% efficient and so non-transfected cells are present upon

re-plating that will die due to the absence of antibody resistance marker. These dying

cells will then release cell contents and death markers into the surrounding media,

thereby stimulating a bystander effect where DAPK and MAP IB co-transfected cells

die. This line of thought would imply that DAPK and MAP IB are involved signal

transduction from death inducers such as inflammatory cytokines and tumour

necrosis factors.
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The in-vivo relevance of DAPK and MAP IB-induced co-growth repression has not

been studied. Therefore, it is not possible to know if the results obtained using

transfected cancer cells would be replicated in a whole organism situation. This issue

could be addressed using a system of multiple knock-out cell xenotransplantation

into immuno-compromised mice. Many reports have shown that highly metastatic

cancer variants have hyper-methylated DAPK promoters and this is often in contrast

to low metastatic counterparts (see section 1.3). Restoration of DAPK to normal

levels in high-metastatic Lewis carcinoma cells suppresses their ability to metastases

after injection into nude mice (Inbal et al., 1997). It would be interesting to determine

if MAP IB expression would enhance the anti-metestatic ability of these clones to

understand to role of MAP IB in inhibition of cancer progression.

4.3.3 The p53 Pathway in DAPK- and MAPIB-Induced Programmed Cell
Death

Multiple studies have shown that over-expression of DAPK is sufficient in initiating

cell death programs. It is a generally held view that simple over-expression of one

death-promoting gene alone is usually not adequate to induce cell death, because

other negatively regulating elements come into play. This is clearly not the case with

DAPK, where ectopic expression of this kinase has been extensively used to trigger

programmed cell death in many circumstances (Gozuacik and Kimchi, 2006). In this

study it is demonstrated that overexpressed DAPK induces autophagy that is

attenuated by siRNA knock-down of MAP1B (Figures 2.9 and 2.10).

Pharmacological inhibition of autophagy by 3-MA not only blocks DAPK-induced

cell membrane blebbing, but also blocks synergistic membrane blebbing co-induced

by MAP IB with DAPK. Given that membrane blebbing is a robust hallmark of
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DAPK overexpression-induced PCD, these results suggest that MAP IB co-operates

with DAPK to induce Type II autophagic PCD.

The majority of studies have dealt with DAPK overexpression-induced type I PCD,

where the kinase can induce apoptosis in cells both expressing and not expressing

functional wild-type p53. For example, exogenous expression of DAPK in p53

negative Hep3B hepatoma cells causes caspase-dependent apoptosis characterised by

nuclear fragmentation. Interestingly, treatment of Hep3B cells with TGF-P induces

DAPK expression and apoptosis which can be attenuated by endogenous DAPK

inactivation (Jang et al., 2002). This suggests that expression of DAPK to

physiological levels is sufficient to induce apoptosis in p53 negative cells. However,

knock-out of p53 from primary mouse and rat embryonic fibroblasts is sufficient to

block apoptosis induced by exogenous DAPK (Raveh et al., 2001). As such, there are

clearly p53-dependent and -independent pathways stimulated by DAPK that can

induce apoptosis depending on tissue type and cellular context. A clue as to the

specificity of p53 action in DAPK-induced programmed cell comes from a resent

study where synthesised overlapping fragments of p21 were been used as peptide

ligands for characterisation in phosphorylation assays and for manipulation of DAPK

interactions. Strikingly, three distinct p21-derived peptides bound to the DAPKcore

kinase domain and stimulated DAPK activity specifically toward p53 and not toward

the well characterised in-vivo substrate MLC or to p21 itself (Fraser and Hupp,

2007). These data provide an incite into the multi-faceted nature of DAPK,

suggesting that DAPK integration with the p53 pathway is distinct from DAPK

modification of cytoskeletal dynamics.
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4.3.3.1 The p53 Pathway in DAPK and MAPIB Induced Cell Cycle Perturbation

p53 activation in response to cellular stress can result in a number of physiological

end points, ranging from cell death to cell cycle arrest. The cell fate decision of

whether to die or to repair as a result of stress is thought to depend on the severity of

the damage. If damage is not to great, then a major down stream effect of p53

activation is cell cycle arrest, allowing cells to enter a quiescent state. Transfection of

DAPK, or to a lesser extent MAP IB, resulted in a significant accumulation of cells

in the G1 phase of the cell cycle in HCT116 p53 wild type cells after 24 hours

(Figure 4.8 i), and this was accompanied by a reciprocal reduction in G2 cells. This

suggests that either protein transfected alone is capable of initiating a G1 arrest

program in these cells. However, co-transfection of both proteins together did not

enhance this effect indicating that they act through separate pathways to activate cell

cycle arrest. Even though MAP IB did not co-operate with DAPK in this assay, it is

still entirely novel and very interesting that DAPK alone can initiate G1 arrest. Given

that DAPK interacts with and modifies p53 and p21, both key effectors of G1 arrest,

it seems highly likely that these interactions will play a part. Therefore it is easy to

envisage a series of experiments designed to study and characterise DAPK-induced

G1 arrest in conjunction with p53 and p21 knock-down. This seems especially

compelling given that p21 or p53 knock-out can both strikingly reduce DAPK-

induced cell growth inhibition in the isogenic HCT116 lines (Figure 4.5 c).

4.3.3.2 The p53 pathway in DAPK and MAPIB Induced Growth Supression

Whilst the p53 pathway is strongly implicated in DAPK-induced apoptosis, there is

no evidence suggesting that this pathway is involved in regulating DAPK-induced

autophagic cell death. For example, DAPK siRNA knockdown studies have

170



demonstrated that DAPK is necessary for autophagic cell death, induced either by

IFN-y in HeLa cells or by steroid withdrawal and amino acid starvation of 293T and

MCF-7 cells (Inbal et al., 2002; Shani et ah, 2004). Whilst MCF7 cells are p53 wild

type, both HeLa and 293T cells express viral SV40 T-antigen, and as such are p53

dysfunctional. Therefore, autophagic cell death does not require an intact p53

pathway and can be induced in both wild type and functional-null backgrounds.

The above highlights the importance of defining the role of p53 in DAPK-induced

cell death programs. DAPK transfection induced accumulation of p21 protein (Figure

4.5 b i and ii). Given that DAPK expression can activate p53, it seems likely that this

is as a result of enhanced p53 transactivation and subsequent increased p21 mRNA

expression. This is accompanied by an increase in Ser20 phosphorylation, also

evidence that p53 is activated by DAPK expression in this system. Transfection of

DAPK also lead to increased bax expression, accompanied by increased bax

modification. Bax protein levels are regulated by ubiqitination as part of regulation

of late stage apoptosis. The pattern of modification of bax seen after DAPK

transfection could therefore be due to ubiquitination, negatively regulating the levels

of late-stage apoptosis seen in these cells (see below).

Using the cell growth assay, it was determined that p53 played a positive role in

DAPK transfection-induced growth repression in HCT116 cells (Figure 4.3 a). Here,

knock-out of p53 in this cell line resulted in increased cell growth as compared to the

wild type control. However, when MAP IB was co-transfected, synergistic

interaction was observed regardless of p53 status (Figure 4.5 c). It should be noted

however that p53 functional knock-out did slightly but significantly reduce the total
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co-growth repression. This could indicate that presence of p53 protein enhances co¬

operation but is not necessary for co-operation in this cell situation. This could be

explained by the fact that the p53 null HCT116 cell-line is in reality a functional null,

created by deletion of exon 1. This does not result in complete loss of expression but

rather results in expression of truncated protein missing the N-terminal

transactivation domain, AN-p53. This protein is expressed as an isoform by

alternative initiation of translation at codon 40. As a result, interaction with p53 out-

with the transaction domain is still possible and this may result in partial activity. It

is feasible that MAP IB co-operation with DAPK may signal in-part through

elements on AN-p53. In any case, although it is clear that p53 plays an important role

in DAPK signaling during cell death initiated in multiple cell types and in many

situations, it has not been possible to coherently ascertain the role of p53 in MAP IB

co-operation with DAPK. Therefore it is proposed that the growth assay should be

repeated in a panel of p53 wild-type and true null lines in order to verify the extent of

p53 dependence.

4.3.4 DAPK and MAP1B induced Type I and Type II Cell Death

Apoptotic cells undergo ordered DNA fragmentation that can be observed as a

distinct ladder after agarose gel electrophoresis or as a sub-Gl peak during cell cycle

analysis using FACS. This effect is specific to apoptotic cell death. Necrotic cells

undergo random fragmentation of DNA that presents as a smear and will not

establish a sub-Gl peak. Autophagic cells undergo nuclear condensation but this is

not accompanied by ordered fragmentation, rather DNA is randomly degraded and as

such does not accumulate as a sub-Gl peak. Transfection of 200ng of either DAPK
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or MAP IB alone stimulated a transient presentation of phosphatidylserine (PS) on

the outer membrane of approximately 10% of cells (Figure 4.6 b). This effect was

seen after 24 hours only, where after 48 hours, no above-background external

phosphatidylserine was observed (Figure 4.6 a). After 32 hours of transfection,

apoptotic DNA fragmentation was also slightly increased (Figure 4.7), as determined

by TUNEL staining. This indicated that there was a small increase in late stage

apoptosis in the transfected culture. Even though the measured percentage of DAPK

or MAP IB transfected cells with positive staining was 5 and 15 fold higher

(respectively) than that of vector control transfected cells, the actual number of cells

was very small. Only 0.5% of cells were TUNEL positive after DAPK transfection

and 1.4% after MAP1B transfection. This is in comparison to the relatively high

number of phosphatidylserine (PS) positive cells at 8.72 and 8.6% respectively after

24 hours. These data, where PS presentation was transient and not accompanied by

DNA fragmentation, suggest that PS presentation is uncoupled from ordered DNA

fragmentation in DAPK and MAP IB transfected cells. This is backed by data

obtained by FACS cell cycle analysis where there was no observed increase the

percentage of cells with sub-Gl DNA (Figure 4.8) after ectopic expression of either

protein. Therefore, even though transfection of DAPK with MAP IB lead to

synergistic long-term co-growth repression, this could not have been due to short

term apoptosis involving ordered DNA fragmentation.

4.3.4.1 MAPIB, DAPK and Phosphatidylserine Externalisation

It was interesting that PS presentation was uncoupled from ordered DNA

fragmentation. The purpose of PS externalisation is to encourage engulfment of the

effected cell by phagocytes. Phagocytosis of apoptotic and necrotic cells has been
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extensively studied, where in both cases clearance of dying cells leads to recycling of

nutrients and reduction of inflammation. Very recent data has been published

detailing how cells dying through autophagy are removed from developing tissues

(Qu et ah, 2007)and from a second study using cultured MCF-7 cells (Petrovski et

ah, 2007). Autophagic cell death is involved during PCD in development spanning

from early developmental processes such as cavitation through to later events such as

synaptic pruning (Luo and O'Leary, 2005). Data is presented in the first study using

mammalian embryoid bodies (EBs) derived from the autophagy gene - atg5 knock¬

out cells. Interestingly, these atg5 knock-out EBs failed to cavitate, due to impaired

clearance of cell corpses, rather than impairment of PCD per se. Dying cells in the

knock-our EBs failed to express externalised PS, and so were not recognised by

phagocytes for clearance. Also, atg5 knockouts contained low levels of cellular ATP,

and treatment with metabolic substrate could restore PS externalisation and

engulfment. From this data the authers conclude that autophagy contributes to cell

clearance during PCD by a mechanism that involves the generation of energy

dependent PS externalisation (Qu et ah, 2007). MCF-7 cells are often used as a

model to study autophagy because they undergo autophagic cell death upon

treatment with multiple stimuli. In the second paper, tamoxifen treated autophagic

MCF7 cells were engulfed by human macrophages and by bystander MCF7 cells.

This effect required an intact PS pathway and could be blocked by addition of the

autophagy inhibitor, 3-methyladenine (Petrovski et al., 2007). Thus these two recent

papers provide compelling evidence that the autophagic program is required for

clearance of dying cells, and that this involves externalisation of PS. This supports

the theory that there is a complex interplay between autphagy and apoptosis where
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here, nutrient deprivation-dependent autophagy stimulates PS-externalisation during

apoptosis. Either MAP IB or DAPK alone are able to promote LC3 modification

(Figure 4.10 a), suggesting that either protein alone is sufficient to initiate autophagic

pathways. This could explain why MAP IB and DAPK transfected cells present PS as

determined by the annexinV assay and yet apoptosis rates are low as determined by

TUNEL and sub-Gl DNA quantitation using FACS. (Figure 4.6 vs. 2.7 and 2.8).

Nevertheless, DAPK co-transfection with MAP IB did not enhance PS presentation,

suggesting that this is a distinct pathway from LC3 modification (Figure 4.10 b) and

autophagosome sequestration (Figure 4.9 b) which involves a synergistic interaction.

These data support the prevalent model is that DAPK can be linked to various

biochemical pathways depending on the cellular setting, and that these culminate in

different forms of cell death. They also support the theory that there is a complex

interplay between type I and type II PCD (see the end of section 1.8).

4.3.4.2 MAPIB is a positive Regulator ofDAPK-Induced Type II Cell Death

Autophagosomes were observed in DAPK transfected cell populations as determined

by the GFP-LC3 foci assay (Figure 4.9). In addition to this, DAPK transfection

stimulated LC3 modification that was dependent on kinase activity (Figure 4.10).

These data correlate with DAPK-induced cell growth inhibition and cell viability

loss, which was also dependent on an active kinase domain (Figure 4.4). This

evidence corroborates with that of published data showing that DAPK can induce

autophagic cell death dependent on DAPK catalyitic activity (Inbal et al., 2002).

MAP IB siRNA significantly reduced GFP-LC3 foci formation (Figure 4.9 b) and

LC3 modification (Figure 4.10 b), showing that MAP IB is a positive regulator of

DAPK induced autophagy. MAP IB has a positive role in regulating DAPK-induced
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cell membrane blebbing, where co-transfection is synergistic and MAP IB knock¬

down attenuates blebbing (Figure 4.11). Because these effects can be blocked by the

autophagy inhibitors (Figure 4.12c), and because blebbing is a robust marker of

DAPK-induced cell death, these data strongly suggest that MAP IB is a positive

regulator of DAPK-induced type I autophagic cell death.

4.3.4.3 MAPIB as a Regulator ofAutophagy

It is possible that MAP IB alone was weakly able to induce autophagy. MAP IB

transfection alone lead to LC3 modification (Figure 4.10 a), and to a slight induction

of cell membrane blebbing as compared to transfection controls (Figure 4.11 b).

However, it was not possible to rule out the possibility this was due to interaction

with low levels of endogenous DAPK. Recent papers have considered the possibility

that MAP IB could have a negative effect on neuronal cell growth (see section 4.1.8).

Stable over-expression of mouse MtaplB-LCl (the mouse MAP IB LCI homologue)

in NIH 3T3 cells lead to reduction of cell proliferation, evident after 5 days post-

plating (Lerch-Gaggl et ah, 2007). This suggests that MAP1B-LC1 alone was

sufficient to reduced cell growth after a time similar to that in these studies (Figure

4.3 b). Gigaxonin expression leads to degradation of MAP1B-LC1 in cortical

neurons (Allen et ah, 2005). Degradation of LCI by gigaxonin leads to enhanced

survival of neurons, and gigaxonin null neurons accumulate LCI. Accumulation of

LCI results in reduction in neuron survival evident after 7 days when compared to

wild-type cultured neurons. In addition to this, over expression of full length MAP IB

in neurons leads to cell death characteristic of gigaxonin null neurons, and siRNA of

MAP IB leads to enhanced survival. These data provide additional evidence from an

independent study clearly showing that MAP IB can be a negative regulator of cell
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survival. In Y Uchida's paper (Uchida, 2003), data is presented indicating that over

expression of MAP IB fragments containing the N-terminal 126 amino acids results

in cell death accompanied by neurite out-growth. This suggests that extension of

neurites correlates with sensitivity to death, in accordance to the hypothesis

presented in section 4.1.8 based on the well known tenet that progression of neuronal

development must be accompanied by significant loss of superfluous cells. It is

interesting that additional data is presented in this paper showing that MAP IB VI

(containing the N-126 amino acid domain) sensitises neurons to cell death after

serum withdrawal. Uchida concluded that MAP IB over expression resulted in

neurons dying through via type 1 death, however there is little evidence to support

this as dying cells were scored by nuclear staining. It would not easily be able to

distinguish apoptotic cells from autophagic cells using this method and so it is

possible that these neurons were dying via a type II cell death program. Further

evidence to support this comes from published data showing that serum withdrawal

is able to stimulate autophagic cell death in multiple cell lines (Inbal et al., 2002;

Shani et al., 2004), and from data presented in this thesis indicating that that MAP IB

over expression is able stimulate autophagy (Figure 4.10 a and 2.11 b). Also, nuclear

staining of MAP IB transfected cells revealed that nuclei were condensed (Figure

4.14 b) and so could easily be mistaken for apoptotic cells using this method. It is

still unknown if MAP IB alone is able to stimulate cell death in the absence of

endogenous DAPK. MAP IB over expression was able to reduce cell proliferation in

HCT116 cells plated at low density (Figure 4.3b), and reduce survival or cause cell

death in cultured developing neurons in multiple studies (Allen et al., 2005; Lerch-

Gaggl et al., 2007; Uchida, 2003). HCT116 cells and developing neurons both
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contain significant amounts of endogenous DAPK, which might contribute to

MAP IB activity in each case.

4.3.4.4 Type I and Type II Cell Death and the p53 Pathway

As detailed above, DAPK-induced autophagic cell death is independent on p53 as

determined in previous studies (Inbal et ah, 2002; Shani et ah, 2004)using both p53

wild-type and p53 null cell lines. However, in most cases ablation of p53 activity

reduces DAPK ability to induce apoptosis (Gozuacik and Kimchi, 2006; Raveh et al.,

2001). It is not surprising therefore that MAP IB co-operation with DAPK was also

largely independent on p53 (Figure 4.5 c) if this interaction proceeds through an

autophagic program (Figure 4.9, 2.10 and 2.12) and not through an apoptotic

program (Figure 4.6, 2.7 and 2.8). Co-operation between MAP IB and DAPK in the

blebbing assay was also independent of p53 (Figure 4.11c), rather this interaction

could be blocked by pharmacological autophagy inhibition (Figure 4.12 b, c, d).

These corroborative data developed from multiple assays provide compelling

evidence that MAP1B interacts with DAPK to induce a p53-independent autophagic

Type II cell death program.

4.3.5 Plasma Cell-Membrane Blebbing as a Marker of Programmed Cell Death

The first paper demonstrating that DAPK was involved in autophagic cell death was

published in April 2002 by Adi Kimchi's group (Inbal et ah, 2002). Prior to this,

DAPK and its two other family members; DRP-1 (DAPK2) and Dlk/ZIPK (DAPK3),

had been characterised as apoptosis-inducing proteins and positive effectors of cell

membrane blebbing (Shohat et ah, 2002). In 2001 a paper was published by Prehn's

group detailing studies demonstrating ZIPK's involvement in cell death programs.
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ZIPK-induced apoptosis was blocked by over expression of the apoptosis inhibitor

Bcl-Xl and by the pan caspase inhibitor zVAD-fmk (Murata-Hori et al., 2001). They

publish data showing that neither treatment blocked membrane blebbing induced by

ZIPK, and so concluded that protection by Bcl-Xl or caspase inhibition was down

stream of blebbing. However, if resent published data is taken into account, showing

that all three DAPK family members can induce blebbing independent of apoptosis

(Inbal et al., 2002; Shani et al., 2004), it now seems likely that the Bcl-XI and

caspase pathways are in fact uncoupled from plasma membrane blebbing induced by

DAPK family members. MAP IB synergistic cooperation with DAPK could not be

blocked by caspase inhibitors and did not induce DNA fragmentation (Figure 4.12 c),

and so this strongly suggests that membrane blebbing induced by the DAPK:MAP1B

cooperation is independent of type I cell death.

4.3.5.1 Membrane Blebbng and Actin/Myosin Contraction

F-actin is necessary for membrane blebbing, where the concentration of cortical F-

actin at the base of blebs correlates with bleb size (Cunningham, 1995; Laster and

Mackenzie, 1996; Rajashree et al., 2005). Through interaction with F-actin, the

myosin family of motor proteins provide the contraction force necessary to form

blebs. Non muscle myosin (myosin II) is essential for basic cellular processes such as

cytokinesis, stress fiber forces, secretion of vesicles and maintenance of the cortical

actin layer. Myosin II contractile activity is stimulated by phosphorylation of myosin

regulatory light chain (MLC) at serine 19 by myosin regulatory light chain kinase

(MLCK) (Kohama et al., 1996; Gallagher et al., 1997). This then promotes

interaction of the myosin head with actin allowing the myosin ATPase to produce

sliding force. Phosphorylation of MLC by MLCK is positively regulated by the small
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G protein, Rho which stimulates Rho kinase (ROCK), which phosphorylates and

inactivates MLC phosphatase (Sebbagh et al., 2001). In addition to this, both ROCK

and MLCK can phosphorylate MLC serl9, increasing myosin contractile activity

(Amano et al., 1996).

Current dogma dictates that cell membrane blebbing is a hallmark of extranuclear

apoptosis, induced during the early stages of type I cell death (Mills et al., 1998).

During apoptotic blebbing, myosin light chain (MLC) is phosphorylated by myosin

light chain kinase (MLCK) mediated by the small GTPase Rho (Mills et al., 1998).

ROCK1 stimulated by Rho is cleaved by caspase-3 thereby removing its carboxy-

terminal inhibitory domain. This results in constitutive ROCK kinase activity and

subsequent increase in phosphorylation of MLC. This phosphorylation then leads to

membrane blebbing that can be abrogated by inhibition of caspases (Sebbagh et al.,

2005; Sebbagh et al., 2001).

ROCK1 mediated activation of MLC is an example of a mechanism of caspase

dependent apoptotic membrane blebbing (Coleman et al., 2001). However,

membrane blebbing has been shown to be caspase independent in many cases

(reviews: (Borner and Monney, 1999; Borner et al., 1999)), suggesting that it can

proceed without cleaved ROCK. The kinase domain of DAPK shares a high degree

of sequence homology with ROCK (Deiss et al., 1995; Feinstein et al., 1995a;

Feinstein et al., 1995b)and is able to phosphorylate MLC at ser 19 in-vitro and in

cells (Kuo et al., 2003). MLC phosphorylation by DAPK then induces actin-myosin

contraction independent of ROCK and Rho. This shows that DAPK acts as an

additional effecter of membrane blebbing, acting independently of caspase cleaved

180



ROCK. Therefore, it is proposed that the cell has multiple MLC kinases, able to

induce blebbing through multiple pathways.

4.3.5.2 Membrane Blebbing and Type II Cell Death

It is widely accepted that apoptosis can proceed independently of caspases. In this

case, cell death is still characterised by the supposed hallmarks of apoptosis

including cell membrane blebbing and ordered fragmentation of DNA whilst the

organelles remain largely intact (review (Borner and Monney, 1999; Borner et al.,

1999). The DAPK family of proteins are unique in being the only known proteins to

induce membrane blebbing independently of ordered fragmentation of DNA.

Transfected DAPK1, 2 or 3 induce caspase independent cell death in cells that have

condensed but non-fragmented nuclei, and no loss of mitochondrial membrane

potential (Inbal et ah, 2002; Shani et ah, 2004).These cells have multiple autophagic

vesicles and so are categorised as autophagic, yet in addition to this they have

extensive cell membrane blebbing. This would explain why MAP IB co-operated

with DAPK to induce autophagic vesicles and membrane blebbing (figures 2.6, 2.7

and 2.8) independently of caspases (Figure 4.12), yet did not co-operate to induce

apoptosis (Figures 2.9 2.10 and 2.11). Considered together, these results suggest that

MAP IB cooperates with DAPK to induce membrane blebbing in non-apoptotic cells,

which instead have hallmarks of autophagic cell death including autophagosomes.

4.3.6 A Role for MAP1B and DAPK in the Control of Matastasis?

4.3.6.1 Membrane Blebbing and Migration

Although plasma cell membrane blebbing has been used as a marker for cell death

programs, the exact physiological significance of blebbing is unclear. Blebbing has
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been observed during cytokenesis, during cellular locomotion, during differentiation

and during apoptosis where it is thought to be involved in antigen recognition (see

(Verhoef et ah, 2004) for discussion). It is possible that blebbing might be an

epiphenomenon simply resulting from activation of cortical actin contraction, or

equally it might have a positive function in these processes. A recent paper clearly

shows that blebbing triggers assembly of F-actin that integrates into the cortex as

blebs form. The authers suggest that this might function as a pathway for new cortex

generation when cells need to expand their surface area, such as during cytokinesis

or during cell movement (Charras et al., 2006).

There is mounting evidence showing that plasma membrane blebbing correlates with

increased levels of cell migration. For example; 1) The transmembrane 4 L6 family

member 5 (TM4SF5) interacts with and activates integrin A2, preventing migration

in cancer cells. Ablation of this interaction with anti-A2 antibodies induces migration

of cells accompanied by membrane blebbing. (Lee et al., 2006). 2) Stimulation of

small cell lung cancer cells with hepatocyte growth factor (HGF) leads to increased

migration of cellular clusters. This correlates with increased formation of filopodia

and induction of membrane blebbing (Maulik et al., 2002). However, these studies

do not determine if membrane blebbing is required for migration, and simply show a

correlation. On the other hand, transfection of dominant-active Rho-kinase leads to

increased MLC phosphorylation and myosin contraction. This also correlates with

membrane blebbing, and inhibition of cell polarisation (Gutjahr et al., 2005). Cell

polarisation is essential for coordination of cell migration, and so this study suggests

that membrane blebbing is as a consequence of negatively regulated migration. To

address this apparent contradiction, the authers show that basel levels of Rho-kinase
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activity is required to maintain polarity and migration. Only when Rho-kinase

activity is increased above a certain level do cells go crazy and bleb. These studies

strongly suggest that migration is tied to membrane blebbing and that blebbing is the

physiological consequence of highly active myosin contraction. Therefore, regulation

of myosin contraction to above basal levels can negatively regulate migration.

4.3.6.2 Cell Migration and Metastasis

Metastasis is believed to involve active migration of cancer cells, and not simply due

to random detachment and re-attachment of cells. During metastasis, migration and

invasion is highly coordinated and depends on re-organisation of the cytoskeleton

resulting in altered cell-cell and extracellular matrix (ECM) adhesion properties

(Guo et ah, 2006) (Carragher and Frame, 2004). Cancer cells migrate singly or as

collective groups along collagen fibres involving assembly of cell protrusions, and

ECM-degrading focal adhesions arbitrate intravasation (Condeelis et ah, 2005).

Comparison of gene expression profiles between primary and metastatic lines and

between chemotaxing and stationary cells has revealed that multiple cytoskeletal

components and regulatory proteins are up-regulated during this process (Condeelis

et ah, 2005).

MAP IB is involved in the regulation of cytoskeletal dynamics during extension of

axons and dendrites and neuronal cell migration. Phosphorylation of MAP IB by

multiple kinases alters its interaction with the cytoskeleton leading to dynamicity or

stability depending on the pattern of modification (see section 4.1.3). Migrating

axons are then guided by signals to MAP IB including chemorepulsive or attractive

factors such as semophorins or netrins. As such, MAP IB plays a central role in the

regulation of neuronal cell migration and axon movements. It would seem likely
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therefore that MAP IB could play a role in regulation of cell movement in non-

neuronal tissues or in cancer. This might seem possible in light of studies showing

that MAP IB is extensively expressed in cancer cell lines (Figure 4.1, 2.2), that are

highly metastatic.

4.3.6.3 DAPK and Anoikis in the Regulation ofMetastasis

In an in-vivo cell-injection metastasis model, expression level of DAPK is inversely

correlated with the metastatic activity, and reintroduction of DAPK into highly

metastatic tumors suppresses their ability to form metastases in mice (Inbal et al.,

1997). Most normal cells require cell-cell contact or contact with the ECM for

survival and inadequate or aberrant ECM interaction can cause programmed cell

death. This phenomenon is termed anoikis (Frisch and Ruoslahti, 1997; Frisch and

Screaton, 2001) and provides a mechanism for maintenance of the organisation of

tissues. Resistance to anoikis results in anchorage independence, which is a hallmark

of malignant tumor cells. Anchorage independence then leads to miss-regulated

adhesion and migration as the disconnected cells are permitted to survive, thus

promoting metastasis.

ECM adhesion is mediated by integrins present on the cell surface. Integrins can be

activated by intracellular signals, called inside-out signals that converge on the

cytoplasmic domain of integrins and induce a high affinity state. DAPK over-

expression was found to inhibit cell adhesion through inactivation of integrins. This

occurred in numerous cell lines positive for p53 (such as 3T3 cells) and in cells with

inactivated p53 (such as 293T cells). Also, inhibition of cell adhesion by DAPK was

independent of apoptosis as determined by caspase cleavage assays and by nuclear

fragmentation assays and was not affected by pretreatment of cells with the broad-
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spectrum caspase inhibitors. However, transfected cells displayed the expected

DAPK-induced morphology changes such as blebbing (Wang et al., 2002). Detached

cells then died from both p53 positive and negative lines, suggesting that they

entered a p53 independent type II cell death program. This study provides evidence

that DAPK induces caspase-independent membrane blebbing and that this induces

cell detachment resulting in anoikis.

4.3.6.4 Anoikis in Type II Cell Death?

Anoikis, is often thought to proceed through type I cell death programs after aberrant

cell detachment. However, there is evidence to suggest that type II cell death is able

to activate anoikis. Treatment of MCF-7 cells with tamoxifen induces autophagy.

When plated on a non-adhesive substratum these cells die by anoikis after induction

autophagy as revealed by monodansylcadaverine staining, LC3 expression and

scoring of autophagosomes by electron microscopy. This effect could be blocked by

inhibition of autophagy by 3-MA, but this did not stop cells dying when plated on

adhesive substrate (Petrovski et al., 2007). Thus, aniokis can be activated by

autophagic programs when cells are not provided with support from the substratum.

4.3.6.5 DAPK and Cdc42

DAPK can also inhibit cell migration by suppressing the integrin-Cdc42 cell polarity

pathway that is essential for directional persistence and directed migration. This

action of DAPK blocks migration and invasion of tumour cells (Kuo et al., 2006).

Interestingly, DAPK inhibition of migration is documented to take place in tumour

lines that are resistant to DAPK-induced apoptosis. This could be as a consequence

of DAPK's multiple functions, initiating apoptosis where possible or activating an
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anti-migratory program in resistant tissue. This anti-migratory program might

involve cell death programs other than apoptosis, such as autophagy.

4.4 Is Aberrant Cell Migration Regulated by Autophagic Cell Death?

As discussed above, cell migration involves dynamic reorganisation of cytoskeletal

networks. Cells migrate by protrusions in the forward end and retraction in the rear

end. It is extremely interesting that both MAP IB and DAPK can induce cell

protrusions and alterations in cell migration by regulation of components of the

cytoskeleton. HA-DAPK-transfected cells grouped into subpopulation 2 often had

large extended processes in addition to blebs (Figure 4.13c), where DAPK co-located

with cortical F-actin (Figure 4.14). Also, transfected and endogenous MAP IB co-

located with HA-DAPK at cortical actin (Figure 4.15 d, 2.16 b). This suggested that

MAP IB played a positive role in this process, especially as knock-out of MAP IB

reduced the number of cells and as MAP IB co-transfection increased this number

(Figure 4.11). Therefore it seems very possible that cooperation of MAP IB with

DAPK might be involved in regulation of cell movement in these cells.

It is proposed that further study should be geared to address the relationship between

MAP IB and DAPK with regards to cell migration and metastasis. The molecular and

cell biological aspects could be studied using cell imaging of extensions produced in

subpopulation 2 cells, to find out if MAP IB is required for this process. But perhaps

more importantly, the physiological implication of this process could be investigated

in animal tumour models. For example, it would be desirable to determine if MAP IB

is required for DAPK's inhibition of metastasis, and to what role does MAP IB play

in carcinoma cell migration. What's more, the fact that this is coupled to MAP IB
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and DAPK co-stimulated autophagy, suggests that the availability of growth factors

and nutrients could play an integral role in this process.

Chemical inhibition of autophagy in MAP IB and DAPK co-transfected cells not

only blocked plasma membrane blebbing but also blocked HA-DAPK association

with cortical actin and inhibited that formation of large cell extensions (Figure

4.12d). In light of the discussion above, this suggests that there is a complex

interplay between autophagy, blebbing and cell migration, and that this process can

be stimulated by cooperation between MAP IB and DAPK. It has been previously

documented that DAPK is a novel effecter of caspase-independent non-apoptotic

membrane blebbing (Inbal et al., 2002; Shani et ah, 2004). However, it is entirely

novel that the membrane blebbing function of DAPK can be blocked by

pharmacological inhibition of autophagy (Figure 4.12). Interestingly, this suggests

that the autophagic function of DAPK is up stream of blebbing. Induction of

autophagy by steroid withdrawal or by removal of amino acids can be attenuated by

disruption of DAPK activity by dominant negative mutant transfection or by siRNA

to DAPK (Inbal et ah, 2002). This correlates with reduction in DAPK-induced

membrane blebbing and as such this suggests that starvation can induce DAPK-

dependent blebbing in addition to DAPK-dependent autophagy. It remains to be seen

if MAP IB interaction with DAPK can be stimulated by steroid withdrawal or amino

acids starvation, and this is an area of research that must be addressed. It seems likely

that amino acid withdrawal would be a positive regulator of DAPK and MAP IB co-

induced blebbing and autophagy.
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Migration of cancer cells can be initiated as a result of lack of nutrient availability.

This is thought to initiate matastasis as well as angiogenesis in order to provide the

developing tumour with increased nutrition. Therefore, if nutrient deprivation

induces autophagy and migration, it seems this could be regulated by blebbing and

cell death by an anoikis mechanism. Miss regulation of this process could then

provide a survival advantage to cells, as they would become anchorage independent.

It is proposed that DAPK signaling to MAP IB would be required for sensing

aberrant cell detachment as a result of autophagy during nutrient deprivation.

However, this interaction was stimulated by over expression of DAPK, which is

known to be sufficient to initiate DAPK-dependent processes.

4.5 Cytoskeletal Aspects of the Interaction between DAPK and MAP1B

To attempt to uncover the underlying biochemical mechanism of cooperation

between DAPK and MAP IB, cell imaging studies were performed to visualise the

cytoskeletons of HA-DAPK transfected A375 cells. These cells contain high levels

of endogenous MAP1B, thus creating a system able to track changes in cytoskeletal

distribution of MAP IB resulting from transfected DAPK activity.

4.5.1 DAPK and MAPIB Interaction with the Contractile Cortex?

Underneath the cell membrane is a meshwork of cytoskeletal proteins able to initiate

directional forces called the contractile cortex. Cell membrane blebbing is initiated

by detachment of a small area of membrane from the contractile cortex. These are is

then inflated, forming a spherical protrusion 1-10 pm in diameter filled with cytosol

(Cunningham, 1995). After expansion, the contractile cortex then reassembles under

the bleb membrane, and the bleb can then be retracted. If retraction proceeds, the
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bleb cortex then reintegrates into the cell cortex. Bleb inflation is thought to be

driven by intracellular pressures generated by myosin II contraction within the actin

cortex because drugs that relax the cortex by inhibiting actin or myosin II also inhibit

blebbing (Charras et al., 2006).

During HA-DAPK induced morphological changes, polymerised F-actin remains

visible in all 3 subpopulations, and is strongly stained. This is especially true for

cortical actin that stains brighter as blebbing progresses (Figure 4.13). During this

process DAPK and MAP1B co-localise with cortical actin (Figure 4.14 a, Figure

4.15), where the mean staining intensities in the cortex are 2 and 3 fold higher than in

the cytoplasm respectively (Figure 4.15 f- Bars labeled FL). This is in comparison

to in the non-transfected situation where MAP IB mean staining intensity in the

cortex is 70% of that in the cytoplasm (Figure 4.15 f- Bars labeled N/T). This effect,

where MAP IB is relocated to the cortex does not involve migration of all

cytoplasmic proteins because when GFP is co-transfected it does not change location

(Figure 4.15 f). Therefore this effect is either specific to MAP1B or involves a sub¬

set of the cytoplasmic proteome. The above data strongly suggest that DAPK

activates translocation of MAP IB to cortical actin during membrane blebbing. This

could only be the case if there was a temporal relationship between cells in each

subpopulation, and that the mix of subpopulations comes about due to differences in

cell cycle distribution when the cells are transfected. Common sense would suggest

that this would be the case, but evidence to support this comes from the fact that the

proportion of subpopulation 1 cells decreases with time, subpopulation 3 cells

increases and subpopulation 2 cells increases before retreating after 24 hours (Figure

4.13 e). A detailed search through the published literature reveals that this concept

189



has been addressed before. Dlk/ZIPK (DAPK3) transfection has been shown to

induce blebbing in D-283 cells in the 3 distinct stages identical to the ones detailed

here, and the authors are quick to conclude that the first precedes the second precedes

the third (Shani et al., 2004). Also, DAPK1 and DAPK2 have both been shown to

induce distinct morphological stages, some cells having no blebs, a with few small

blebs, and others with extensive larger blebs, again identical to the situation

presented here (Inbal et al., 2002; Shani et al., 2004). Therefore there is little room

for doubt that there is a temporal relationship between the subpopulations of cells

induced by HA-DAPK transfection. As a result it can be safely concluded that

DAPK induces translocation of MAP IB to cortical F-actin during membrane

blebbing.

Considered as a whole, the data detailed in the above summary suggest that DAPK

and MAP IB interaction with cortical F-actin progressively increases as blebbing

progresses. Thus, the proteome of the contractile cortex is changed by the activity of

DAPK transfection. This effect, where the constituent proteins of the cortex changes

during blebbing has been documented in a recent study. This paper describes the

complex situation where the cytoskeletal proteins of the contractile cortex and

constituent actin filaments are rearranged during formation, extension and retraction

of blebs (Charras et al., 2006). This involves sequential recruitment of myosin

kinases and structural scaffolds, that can be altered by specific elements depending

upon the situation. Thus, bleb formation and function is controlled by local changes

in the proteome of the contractile cortex (see Figure 4.17, taken from this paper). The

fact that MAP IB and DAPK are recruited to the cortex during blebbing strongly

suggests that they should play an integral part in this process during autophagic
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membrane blebbing. Further detailed study is required to understand the role of

MAP IB interaction with DAPK with regards to the contractile cortex.

4.5.2 A Role for DAPK in Regualtion of Microtubule Dynamics?

Surprisingly, DAPK was able to interact strongly with microtubules purified from

transfected A375 cells (Figure 4.12). This interaction resulted in a change to the

proteome of purified microtubules (Figure 4.13), showing that transfected DAPK is a

novel modifier of the microtubule cytoskeleton purified from cells. As a result, cell

imaging studies were conducted using transfected A375 cells fixed by partial

cytoplasmic extraction. This allowed visualisation of the cytoskeleton and associated

proteins by fluorescent imaging. Transfected MAP1B and DAPK clearly co-localise

with microtubules after 10 hours co-transfection into A375 cells (Figure 4.16 a).

These also seem to partially co-localise with F-actin at what is likely to be the

microtubule organising center (MTOC). After 18 hours co-transfection MAP IB co-

localises with DAPK predominantly at cortical F-actin fibres (Figure 4. 16 b),

reproducing the results obtained using single transfection of DAPK (Figure 4.15).

What's more, the MTOC in these cells (after 18 hours) is degraded, and is not stained

by tubulin or F-actin, MAP1B or DAPK. This proceeds extensive membrane

blebbing observed at the later time point (Figure 4.16 c) where is it difficult to

discern the specific pattern of staining due to cell shrinkage. However, it looks as

though DAPK, MAP IB and F-actin strongly stain the outer rim of blebs (Figure 4.16

c - Example 3).

The action of the contractile cortical actin in cell membrane relies on the status of the

microtubule cytosleleton. Microtubule disassembly by disrupting drugs is known to

stimulate blebbing by inducing phosphorylation of MLC leading to actomyosin
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contraction (Kolodney and Elson, 1995). Therefore, it is extremely encouraging that

DAPK transfection stimulated the disruption of microtubules during induction of

membrane blebbing. This suggests that MAP IB with DAPK can induce blebbing and

that this involves changes in the dynamics of and proteome of mictrotubules as well

as changes in the dynamics and proteome of contractile cortical actin.

The above studies using cell imaging show that there is a complex interplay between

the microtubule and microfilament cytoskeletons during membrane blebbing, and

highlight a role for DAPK and MAP IB in this process. The action of DAPK induced

blebbing is synergistically enhanced by MAP IB, and given that DAPK can bind

directly to MAP IB, and that this induces microtubule disrupction, this suggests that

there is a novel pathway involving the two proteins, to induced cell membrane

blebbing via interaction with microtubules..

4.5.3 Microtubules in Autophagy

2 recent papers have been published showing that microtubules play an important

role in autophagy because they support production and transport of microtubules

(Fass et al., 2007; Kochl et al., 2006). In both cases, treatment of cells with

microtubule disrupting drugs that depolymerise tubulin resulted in reduction in the

number of mature autophagosomes. This might suggest that DAPK induced

depolymerisation of microtubules would also inhibit the production of

autophagosomes and thereby inhibit autophagic cell death. However, this superficial

contradiction can be easily explained. Firstly, initial treatment with the disrupting

drug lead to an initial transient 2-fold increase in autophagosomes (Kochl et al.,

2006) before total disruption of microtubules was observed. Secondly, the drugs

used, vinblastine and nocodazole induced non-reversible disruption of microtubules
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by inhibiting polymerisation of tubulin dymers. Thirdly, disruption by drugs did not

affect the life span or function of autophagosomes that had already been formed

(Fass et ah, 2006) and; Lastly, DAPK and MAP1B transiently interact with intact

microtubules before depolymerisation, suggesting that there would be a time window

in which microtubules would be intact. Therefore, taken together these results can be

interpreted as that the formation of autophagosomes requires microtubules in a

dynamic state that; Firstly would lead to a transient production of autophagosomes

immediately after disrupting drug treatment, before; Secondly, the disrupting drugs

artificially reduced tubulin into a dimeric state thereby inhibiting dynamics. This

would thirdly, not effect the life span of autophagosomes already produced. So lastly,

DAPK and MAP IB -induced loss of microtubule polymerisation suggests an

increase in dynamic microtubules that would in fact stimulate autophagosome

production. Therefore, it is proposed that DAPK interacts with MAP IB to induce

dynamic microtubules to stimulate the formation of autophagosomes.

The above proposal seems especially likely because MAP IB is known to play a

major role in regulation of microtubule dynamics and because autophagosomes are

produced near to the microtubule organising center, as noted by one of the papers

discussed above (Fass et ah, 2006). This is an area of co-localisation between

MAP IB, DAPK, tubulin and F-actin observed here (Figure 4.16 a), suggesting that

DAPK and MAP IB could play a part in this process. Also, in a recent paper,

MAP IB was demonstrated to interact with high affinity to the autophagosome

marker and LCI related LC3 (Wang et ah, 2006) inhibiting autphagosome

production. Therefore the authors conclude that MAP IB binding to LC3 is inhibitory

to autophagy. It is therefore possible that release of MAP IB from LC3 could be
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refractory to this inhibition. As such, one could speculate that interaction with and

modification of MAP IB by other factors might stimulate autophagosome production

by liberating the otherwise tightly bound LC3. Of course, DAPK is a prime candidate

for this because it binds to MAP IB during induction of autophagy and this involves

transient co-localisation at the MTOC, the site of autophagosome production.
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Figure 4.1 MAP1B Gene Expression in Cancer. RNA expression level or DAPK (a) and
MAP1B (b) as determined by microarray analysis of the NCI60 cell lines. High expression
is represented as red colour through to low expression as blue. Genes with similar
expression patterns are listed as positive correlations, and genes with opposing patterns as
negative correlations. Data were obtained from the Cancer Genome Anatomy Project
(http://cgap.nci.nih.gov/).
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Figure 4.2 MAP1B Protein is Expressed in Cell Lines. Cells lines were grown to 80%
confluency, scraped and lysed with denaturing RIPA lysis buffer. Proteins from 30pg of
each sample were separated by SDS-PAGE in 4-12% gradient gels before transfer onto a
nitrocellulose membrane. Mouse monoclonal anti-MAPlB antibody AA6, a highly specific
antibody that recognises all forms of MAP IB was used to probe the membrane.



a Development of a Cell Growth Assay to Measure DAPK Activity
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Figure 4.3 Development of a Cell Growth Assay to Quantify DAPK and MAP1B
Function, (a) HCT116 Cells (i) or the p53-null derivative (ii) were co-transfected with
vector control or DAPK expression plasmids conferring resistance to blastocidin as
indicated. 48 hours later, cells were trypsinised and plated at differing densities in media
containing blastocidin. Cell growth was visualised by dye staining, photographed and
quantified using densitometry. Graphs show plate staining as a function of seeding density
after DAPK or empty vector expression plasmid transfection. (iii) Representative
photographs showing the extent of cell growth 1 week after plating 10000 cells, (b) HCT116
cells were co-transfected with the indicated blastocidin resistance marker vectors for 48
hours. Cells were then trypsinised and plated at differing densities in media containing
blastocidin. Cell growth was visualized by dye staining and quantified using densitometry.
Plotted data is cell growth as a function of cell density after MAPI B-Vl or MAPI B-V2 and
DAPK or empty vector co-transfection.
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Figure 4.4 Characterisation of the DAPK:MAP1B Interaction Using the Optimised
Cell Growth Assay. Cells were co-transfected with expression vectors conferring antibody
resistance markers. 48 hours later after trypsinisation, 10000 cells were plated in media
containing the selective antibiotic. Cell growth was visualized by Giemsa dye staining and
quantified using densitometry. Plotted data are relative plate densities as a function of co-
transfected expression vectors, (a) The indicated MAP IB constructs (full length MAP IB
(FL), VI, V2, or N126) and/or DAPK were co-transfected in HCT116 cells before selection
of transfected cells using blastocidin. Photograph shows extent of cell growth after 1 week,
(b) DAPK constructs and/or full length MAP IB were co transfected in HCT116 cells before
selecting co-transfected cells using blastocidin. (c) A375 cells were transfected with MAP IB
siRNA for 48 hours before a further transfection with the indicated expression vectors for 24
hours, i Cells were then trypsinised and 10000 cells plated in media containing geneticin.
Graph shows mean extent of cell growth as a function of co-transfected expression plasmids
(Vec = Empty Vector, WT = wild type, ACam =Calmodulin domain deleted, K42A = Kinase
dead). Error bars are standard deviation. * = significant difference as determined by students
t-test. ii Western blot showing effect of MAP IB siRNA in this experiment, (d) 24 hours after
transfection, adherent cells were by suspended by trypsin digestion and pooled with floating
cells from the growth medium. Suspended cultures were then stained with trypan blue to
visualise non-viable cells. Graph shows mean non viable cells as a function of transfected
HA-DAPK expression vectors (error bars show standard deviation of data from 3 counts).



a Assay of p53-expressing Cell Lines for Expression of DAPK-1 and MAPI B.
4m. 4-p53

- - — <*-p21 1 = A549

— | -*-MAP1 B 2 = A375

w •4-DAPK1 3 = HCT116 Parent

(Ml m m -«-dapk2 4 = HCT 116 p53 null
-4-DAPK3 5 = HCT 116 p21 null
^-Actin

1 2 3 4 5
b The Effect of DAPK and MAPI B Co-expression on p53-transactivated Genes

p53 null p53 wtI

Transfection:

G

D Z C D Z C
GST- >

DAPK

DAPK - + - +

MAPI B - - + + N X

GST->

— - —

- •

H (Mi W
ZIPK ^ ^ «■» — ■— — —.

I
P21 > ■§(•(•••••• 12 3 4 5 6

J MDM2 >

K P53 >

12 3 4 5 6

Total p53

Ser20 p53

p21

C Cell Growth After DAPK + MAPI B Co-transfection in HCT116 Cells

02
TO

Q.

CD
>

ro
CD
a:

□ Wild type

S3p53 Null

100 :

80

60 -

40

20 -

o I I1 I IM.il,
V1 V2 D V1+DV2+D

140

120

100

80

60

40 -

20

0

□ Wild type

S3 p21 Null

J J
V1

1 JLS.
V1 + D V2 + C

Figure 4.5 Effects of DAPK and MAP1B Co-expression on the p53 Pathway, (a) Cell
lines that express wild type p53 were grown to 80% confluency, lysed and assayed for
protein expression using antibodies to p53, p21, MAP1B, DAPK1, DAPK2, and DAPK3 as
indicated, (b) i HCT116 parent type (lanes 4-6) and p53 null (lanes 1-3) cells were
transfected with GST-DAPK1 (lanes 1 and 4), GST-DAPK3 (lanes 2 and 5) or GST (lanes 3
and 6). Lysates were assayed for expression of GST tag, p53 and the p53-transactivated
proteins p21 and MDM2. ii HCT116 parent type cells were co-transfected with vector (lane
1), DAPK1 (lane 2), MAP1B (lane 3), DAPK1 + MAP1B (lane 4), left untreated (lane 5) or
treated with X-rays (8 Gy, lane 6) and harvested for immunoblotting to detect: p53 protein;
Ser20-phospho-p53 protein; p21 protein, or Bax adducts (as indicated), (c) Cells were co-
transfected with blastocidin-resistant vector, vector control (V), MAP IB variants (VI or

V2), DAPK1 (D), as indicated) and 48 hours later, were trypsinized and plated in media
containing blastocidin. Cell growth was visualized by dye staining and quantified using
densitometry. Cell growth of HCT parent cells was compared to p53 null (i) or p21 null (ii)
derivatives.
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Figure 4.6 Optimisation of an Annexin V Apoptosis Assay Using Fluorescent Activated
Cell Sorting (FACS) Analysis, (a) HCT116 cells were co-transfected with MAP1B and
DAPK titrations of 0, 0.5, 1.0 and 2.0pg of expression plasmid DNA for the indicated times.
After transfection, cells were suspended, washed and co-stained for external cell membrane
phosphatidylserine using APC-conjugated AnnexinV. The membrane integrity of cells was
determined by co-staining with propidium iodide. Using FACS, cells were assayed for APC
fluorescence on the ordinate and for propidium iodide flourescence on the abscissa. Cells
were separated into four populations: 1 negative staining viable non-apoptotic cells (lower
left quadrant LL), 2 annexinV positive apoptotic cells (lower right quadrent LR), 3 annexinV
+ propidium iodide positive late apoptotic cells (upper right quadrant UR) and 4 propidium
iodide positive non-viable cells (upper left quadrant UL). Blank spaces are missing data
points, (b) HCT116 cells were co-transfected with 200ng of the indicated expression
plasmids for 24 hours and assayed for early apoptotic cells (LR quadrants). A tumour
necrosis factor receptor (TNFR) expression plasmid was used as a positive control.
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Figure 4.7 Quantitation of Late Stage Apoptosis Induced by DAPK and MAP1B Co-
Expression Using the TUNEL assay. HCT116 cells were grown on cover slips and co-
transfected with 300ng of the indicated expression plasmids for 32 hours before fixing and
staining, i Green fluorescent TUNEL staining was observed by fluorescent microscopy using
the 10X objective and quantified by image analysis. The total cell population was visualised
using DAPI nuclear counterstaining. ii % cells positive for TUNEL staining.
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Figure 4.8 The Effect of DAPK and MAPI B Co-transfection on Cell Cycle Distribution
as Determined by FACS Analysis. HCTl 16 cells were co-transfected with 500ng of the
indicated expression plasmids and GFP marker for 24 hours before fixing with 70% ethanol
overnight. Cell nuclei were stained with propidium iodide. Transfected cells were gated by
GFP marker fluorescence before sorting according to size as determined by propidium
iodide fluorescence, i Representative cell cycle profiles of GFP positive cells (shaded blue).
Green line is profile of total cells (not to scale), ii Mean percentage change in cell cycle
parameters as compared to vector control. Data are means of 4 independent experiments
(error bars show standard deviation).



Figure 4.9 a Optimisation of the LC3 Foci Assay
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Figure 4.9 Attenuation of DAPK-Induced GFP-LC3 Foci Formation by MAP1B
Depletion. HEK293 cells that that stably express the GFP-LC3 autophagy biomarker (35)
were transfected with the indicated expression vectors. Cultures were fixed and stained for
transfected gene in the red channel before examination by confocal microscopy using a X63
objective. GFP-LC3 decorated autophagosomes were visualised by elevating the fluorescent
threshold in the green channel thereby producing saturated foci. The autophagic index was
calculated as the mean LC3-foci per field / total number of cells per field, (a) Cultures were
transfected with HA-DAPK for the indicated times before fixing, staining and GFP-foci
counting. Data points are mean autophagic index calculated from 10 random fields. Error
bars show standard deviation, (b) Cells were treated with MAP1B siRNA or control siRNA
for 32 hours before HA-DAPK transfection for a further 32 hours, i Cells were

immunostained for HA-DAPK (red) and GFP-LC3 (green). Bars show mean autophagic
index from 10 random fields (error bars show standard deviation). Students T-test was used
to calculate the significance of the difference between DAPK transfected cultures with and
without MAP IB knock down (p = 0.013). ii Example fields showing GFP fluorescence and
HA-DAPK staining (red). The GFP-LC3 foci from each field are shown in the bottom
panels.



a LC3 Modification after MAP1B and DAPK Co-transfection
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Figure 4.10 The Effect of MAP1B and DAPK on Autophagy as Determined by LC3
Cleavage. LC3 is post translationally cleaved and lipidated during formation of autophagic
vesicles. LC3 cleavage is therefore a biomarker for the extent of autophagy within cells, (a)
HEK293 cells stably expressing the GFP-LC3 marker were co-transfected with the indicated
expression vectors. 32 hours later cells were harvested, lysed and assayed for LC3 protein
modification using GFP antibody. The ratio of LC3 modification from GFP-LC3-I to GFP-
LC3-II is plotted as a function of co-transfected genes, (b) The effect of DAPK kinase
activity on GFP-LC3 modification was determined using kinase-activated (ACam) and -

inactivated (K42A) constructs in A375 cells with or without endogenous MAP IB. Cells
were treated with MAP IB siRNA for 32 hours before co-transfection with the indicated

plasmids for a further 32 hours and assayed for GFP-LC3 modification using anti-GFP
antibody.



a MAP1B and DAPK Cooperate to Induce Membrane Blebbing.
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Figure 4.11 DAPK Mediated Cell Membrane Blebbing is Stimulated by MAP1B. (a) i
HCT116 Cells were co-transfected with GFP vector and empty vector, GFP and MAP1B,
GFP-DAPK and empty vector or GFP-DAPK and MAP IB as indicated on the four images.
Transfected cells were visualised by flourescent microscopy and evaluated for membrane
blebbing using a XI00 objective as described previously (16). ii 200 co-transfected cells
were scored for blebbing morphology along transverse sections of cover slips. Graph shows
the mean percentage blebbing cells from 3 representative experiments (error bars show
standard error), (b) Transfected cell populations were assessed for membrane blebbing
morphology (as in a i). i A375 Cells were treated with MAP IB siRNA or siRNA control for
48 hours before transfection with the indicated HA-tagged DAPK genes (WT = wild type,
ACam =Calmodulin domain deleted, K42A = Kinase dead). Transfected cells were stained
using anti-HA antibody. Data are mean % blebbing cells from 3 independent cover slips.
Error bars show standard deviation. * = p as determined by students T-test. ii HCT116 Cells
were co-transfected with full-length native MAP1B, V5-tagged VI or V2 constructs or GFP
and HA-tagged full-length, ACAM or K42A DAPK constructs. Co-transfected cells were
screened using the appropriate antibody stains, (c) HCT116 parent or p53 null cells were
co-transfected with empty vector (V), VI or V2 and empty vector or wild type DAPK (D) as
indicated on the ordinate. Cultures were fixed and stained with anti V5 and anti DAPK

antibody to visualise transfected cells. 200 co-transfected cells were scored for membrane
blebbing morphology along transverse sections of cover slips. Bars are mean percentage
blebbing cells.



Figure 4.12 a Effect 3-Methyladenine on HA-DAPK-lnduced Membrane Blebbing
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Figure 4.12 HA-DAPK and MAP1B Stimulated Membrane Blebbing is Blocked By
Pharmacological Inhibition of Autophagy. (a) A375 cells were transfected with HA-
DAPK for 18 hours before treatment with the indicated concentrations of the autophagy
inhibitor 3-Methyladenine (3-MA). Cells were fixed and stained with anti-HA rat
monoclonal antibody 2A10 and Alexa488 anti-mouse secondary antibody. Transfected cells
were assessed for membrane blebbing by fluorescent microscopy using a X100 objective.
200 transfected cells were counted per data point, (b) Cultures were co-transfected with the
indicated expression vectors for 18 hours before treatment with lOpM 3-MA for 6 hours.
Cells were fixed and stained with anti-MAPlB MAb (AA6) and rat monoclonal anti-HA.
Co-transfected cells were assessed for membrane blebbing as above. Data are the mean

percentage transfected cells from 3 independent experiments. Error bars show standard
deviation, (c) Cells were transfected with the indicated expression vectors before treatment
with either 10 pM 3-MA, 20 pM chloroquine or 10 pM pan-caspase inhibitor as indicated
for 6 hours. The percentage of membrane blebbing cells was calculated as above, (d)
MAP IB and HA-DAPK was stained with antibody as above for imaging using a confocal
microscope. Images are random fields from each treatment.



Figure 4.13 a GFP Transfected A375 Cell Morphology
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Figure 4.13 b HA-DAPK Transfected A375 Cells: Subpopulation 1
HA-DAPK Phalloidin Merge



Figure 4.13 C HA-DAPK Transfected A375 Cells: Subpopulation 2
HA-DAPK Phalloidin Merge



Figure4.13d HA-DAPKTransfectedA375Cells:Subpopulation3
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Figure 4.13 e - Time Course of Induced Morphological Changes
— Population 1
— Population 2

00 1 t- ^ Population 3

o ~—
c ^2 40 1
O Q)
tr o
O T3
Q. d) 20 3
2 o

Q_ £
(/)
c
ro 0

12 18 24 36

Time After Transfection

48

f - HA-DAPK Domains: Morphology Distribution After 24 Hours

] Population 1 Q Population 2 | Population 3
0.8<D

o
"O
0)
o

£
£ o

,2 x 0.4

0.6

o
c
o
tr
o
o_
o
L_

Q_

0.2

j A U1 II II
c -

WT 1313

i

835 641

i

387

- DD - Cyto Ank KD N

g - HA-DAPK Kinase Mutants: Morphology Distribution After 24 Hours

] Population 1 Q Population 2 J Population 3
"D
<1)
o 0.
<D

*4—

£ o
2 X 0.4 -

I— vO
x- 2T I
°

=S2
O d) 0.2 H

■-e o
o
Q.
0
1

Q_
li Jl

WT ACam K42A

Transfected DAPK Construct



Figure 4.13 HA-DAPK Transfection-Induced Morphological Changes are Grouped
into 3 Categories. A375 cells were transfected with GFP or HA-DAPK for 24 hours before
fixing and stained with anti-HA rat monoclonal antibody 2A10 and Alexa488 anti-rat
secondary antibody. F-actin was visualised using phalliodin counter-stain. Fluorescent
micrographs were taken using a confocal microscope using a XI00 objective, (a) GFP
transfected cells had normal fibroblast-like morphology, (b) HA-DAPK transfected cells
with no change in morphology were grouped into subpopulation 1. (c) Cells with, large
extended processes (I) and/or small membrane blebs (II) were grouped into subpopulation
2. (d) Cells grouped into sub population 3 had multiple large membrane blebs (III), (e) The
mean percentage of cells in each subpopulation was determined from at least 3 independent
transfected cultures fixed at the indicated times. Error bars show standard deviation, (f) The
mean percentage of cells in each subpopulation was calculated from cultures transfected
with HA-tagged wild type (WT), death domain deleted (amino acids 1-1313), linker region
deleted (amino acids 1-835), cytoskeletal-binding domain deleted (amino acids 1-641) or
kinase domain only (amino acids 1.387). (g) Mean percentage of cells in each subpopulation
was calculated from cultures transfected with HA-tagged kinase wild type (WT), kinase
activated (Cam), or Kinase inactivated (K42A) constructs.



Figure 4.14 a - Transfected HA-DAPK Association with Cortical Actin in
Transfected Cell Subpopulation 2

HA-DAPK Phalloidin Merge

©
CL

E
CO

.3

CM

j®
a

E
CO
X

CO

CL
E
CO
X

4 V

*

C3

S-

A oy A o
w

■

m i Tj



Figure 4.14 b - HA-DAPK Association with Cortical Actin in Cell Transfected Ell
Subpopulation 2- Nuclear stain
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Figure 4.14 Transfected HA-DAPK Decorates Cortical F actin Fibres. A37S cells were
transfected with HA-DAPK for 24 hours before fixing and staining. Fluorescent
micrographs were taken using a con focal microscope using a XI 0() objective, (a) Cortical
F-actio was visualised using phaOiodin counter-stain. 3 representative fields with
subpopulation 2 cells are shown, (b) Cell nuclei were visualised using TOPRO nuclear
stain. 3 representative fields with subpopulalian 2 cells are shown.



 



Figure 4.15 b - Fluorescence Intensity of Endogenous MAP1B and Transfected
HA-DAPK Relative to Cortical F-actin in Subpopulation 2
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C - Quantification of Endogenous MAP1B Staining Intensity at Cortical F-actin in
Cell Subpopulation 2
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Figure 4.15 Endogenous MAP1B Co-locates with Transfected HA-DAPK at Cortical
F-actin Fibres in Cells Grouped in Subpopulation 2. A375 cells were transfected with
HA-DAPK for 24 hours before fixing and staining for HA, endogenous MAP1B (using
MAb AA6) and F-actin using phalloidin. Cells were grouped into subpopulations as in
Figure 4.13). Representative fields are shown with cells from subpopulation 1. Fluorescent
micrographs were taken using a confocal microscope using a XI00 objective, (a) Example
of cells categorised in subpopulation 2. (b) Fluorescence histogram plots were used to
quantify the staining intensity of HA, MAP IB and F-actin along transverse sections of
transfected (i) and neighbouring non-transfected (ii and iii) cells. Figure shows a
representative field with cell grouped into subpopulation 2. (c) Cultures were transfected
with HA-tagged full length DAPK (FL), death domain deleted (amino acids 1-1313), linker
region deleted (amino acids 1-835), cytoskeletal-binding domain deleted (amino acids 1-
641), kinase domain only (amino acids 1.387) or vector control (NT). Separate control
cultures were co-transfected with GFP before fixing and staining for HA-tag in the red
channel. The average fluorescence intensity of MAP IB or GFP co-located with cortical F-
actin was compared to the average fluorescence intensity of MAP IB or GFP in the
cytoplasm to derive an average staining intensity ratio. Data are the average ratio from 3
experiments of 10 subpopulation 2 cells each. Error bars show standard deviation. The
significance of the increase in ratio from vector only -transfected cells was calculated using
students T-test (*). (d) The effect of DAPK kinase activity on cortical F-actin localisation
was determined using DAPK kinase mutant constructs as indicated. Data are mean MAP IB
or DAPK cortical to cytoplasmic ratios. Error bars show standard deviation.
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Figure 4.16 Co-Transfected MAP1B and DAPK Transiently Co-locate with
Microtubules After 10 Hours. A375 cells were co-transfected with HA-DAPK and
MAP IB for 10 hours (a), 18 hours (b) and 32 hours (c) before fixing by partial cytosol
extraction with 3% formaldehyde in PHEM buffer supplemented with 0.01% triton for 15.
Cytoskeletons were then stained with rat anti-HA, mouse anti-MAPlB (AA6) and rabbit
anti-tubulin antibodies followed by the appropriate highly cross-adsorbed alexa dye
conjugated secondary antibodies. F-actin fibres were visualised using phalloidin counter-
stain.



A

Actin
PH PLCS lr

1/V.o 3sf V 60s

0

85s

Figure 4.17 Dynamic Regulation of the Contractile Cortex Proteome During Plasma
Membrane Blebbing. All images were acquired using confocal microscopy. Timing
relative to the first image is indicated in white text. (A) Localization of the membrane
marker (the PH domain of PLCS, red) and actin (green) during bleb expansion and
retraction. The actin cortex is intact during bleb expansion (arrows) and is disassembled at
later time points. (B-D) Ankyrin B (B), protein 4.1 (C), and myosin I (myr3, D) localize to
the cell membrane throughout the life of a bleb. (E) Spectrin (green) colocalizes with actin
(red) in retracting blebs. Bars, 1 pirn.

Figure is from: GT. Charras, CK Hu, M Coughlin and TJ Mitchisonl JCB (2007)



Chapter 5

Conclusion and Future Perspectives

DAPK is a tumour suppressor that plays a wide ranging role in the regulation of cell

death. In order to understand the mechanisms of DAPK induced cell death more fully

it was necessary to discover new interaction partners for DAPK protein. This

objective has been accomplished, and three novel interactions are now proposed.

Firstly: a novel interaction with MAP IB transcript variant 1, as uncovered by the

phage display screen, secondly a novel interaction with the microtubule network, as

suggested by in-vitro microtubule cycling and 2D gel analysis and substantiated by

immunofluorescent co-localisation, and thirdly a novel interaction with the

contractile cortex is proposed based on immunofluorescent studies. The

physiological relevance of these interactions has been studied and a role for each

during DAPK-induced cell growth inhibition is proposed (Figure 5.1).

The novel interaction with MAP IB occurs primarily via a short linear interaction

motif (Figure 3.9 a and b) that is conserved through vertebrate species from

drosophila (Figure 3.5). This is surprising given the rate of evolution of most

interaction motifs that are less constrained throughout evolution. It is possible that

this motif is present on other proteins and could direct interactions between them.

Therefore it is proposed that further study should be undertaken to determine the

frequency of this motif in the proteome using bioinformatics. In conjunction with

further binding studies, this may then lead to discovery of other novel DAPK

interactors.
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Interaction with MAP1B was initiated by transfection of DAPK (Figure 3.9 c),

whereas evidence suggests that a very small proportion of the two proteins interact in

non-transfected cells (Figure 3.11 a), although high molecular weight complexes can

be purified that contain both (figure 3.11 c). Therefore it is proposed that further

study needs to be conducted to determine if a physiologically relevant stimulus can

initiate complex formation, possibly starting with autophagy-inducing stimuli such as

amino acid starvation.

The discovered DAPK association with microtubules provides a valuable insight into

DAPK effects in cells. This interaction appears to be transient and correlates with

disruption of microtubules (Figure 4.16) and with post-translational modification of

the microtubule associated proteome (Figure 3.13). As such, it likely that DAPK

effects microtubule dynamics either directly or though activation of MAP IB activity.

Also, DAPK and MAP IB transiently co-locate at the microtubule organising center

(MTOC) (Figure 4.16), the site of autophagosome production. This correlates with

stimulation of autophagosome production (Figure 4.9 and 4.10) and it is proposed

that this might require dynamic microtubules (see section 4.5.3). Therefore an

interesting line of investigation would be to determine if DAPK effects the rate of

microtubule formation using the in-vitro polymerization assay, and whether this

influences the rate of autophagosome production. Thus determining one way or

another, whether DAPK effects microtubule dynamics to increase autophagosome

production. This is an attractive possibility because MAP IB interacts strongly with

LC3 (see section 4.5.3). And so further investigation is also warranted to determine if

DAPK effects this interaction and how this impacts on autophagosome production

and autophagic cell death.
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MAP IB and DAPK co-locate to the contractile cortex after DAPK transfection

(Figure 4.15). Given that cell membrane blebbing is highly regulated and involves

transient changes in the cytoskeletal-associated proteome (Figure 4.17), this indicates

that MAP IB and DAPK play a direct role in the mechanics of membrane blebbing.

This, in addition to DAPK sharing a high degree of homology with the MLCK kinase

domain, a known bleb-inducer, suggests that DAPK catalytic activity towards MLC

could be positively regulated by MAP IB. Therefore examination of the

phosphorylation status of MLC at Serl9 would help to reveal the mechanism of

action of DAPK and MAP IB co-induced blebbing (see section 4.3.5.1).

Finally, the wider physiological relevance of DAPK and MAP IB co-induced

autophagic cell death needs to be investigated. It is proposed that migration of cancer

cells can be regulated by local availability of nutrients in the cells microenvironment

(see section 4.4). It is proposed that this may regulate rates of metastasis (see section

4.3.6), and also of angiogenesis when tumours require access to metabolic substrates.

Therefore because firstly, DAPK and MAP IB have known roles in the regulation of

cell migration (see sections 4.1.7 and 4.3.6) and secondly that both proteins influence

cell survival, it is proposed that they operate in synergy to regulate the rate of

possible nutrient-dependent migration by initiating autophagic cell death in response

to tumour growth and/or during development when cells are surplus to requirement.

Also, following from this, it could be speculated that nutrient availability may be a

key regulator of developmental processes in addition to apoptosis. Type II cell death

being a more ancient form of programmed cell death may crudely regulate

development and be highly dependent on nutrient availability or levels of tropic
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support. Apoptosis on the other hand, having evolved more recently is activated by a

much wider range of stimuli, and would exert a more controllable regulation on

development. Ultimateley, development and proliferation would be a regulated by a

mixture of the both.
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