Workshop on Reconstruction Schemes for MR Data 17th August 2016

Magnetic Resonance Microlmaging of a Swine Infarcted Heart: Performing Cardiac Virtual Histologies

<u>Rafael Ortiz-Ramón</u>¹, José Manuel Morales², Silvia Ruiz-España¹, Vicente Bodí^{3,4}, Daniel Monleón³ and David Moratal¹

- ¹ Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
- ² Unidad Central de Investigación en Medicina, Universitat de València, Valencia, Spain
- ³ Fundación de Investigación del Hospital Clínico Universitario de Valencia, Valencia, Spain
- ⁴ Department of Medicine, Universitat de València, Valencia, Spain

UNIVERSITAT Politècnica de valència

This is a presentation of the work exhibited in the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'15) in Milan, Italy (August 25th-29th, 2015).

R. Ortiz, J. M. Morales, S. Ruiz-España, V. Bodí, D. Monleón and D. Moratal, "Magnetic resonance microimaging of a swine infarcted heart: Performing cardiac virtual histologies," *2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, Milan, 2015, pp. 1584-1587. DOI: 10.1109/EMBC.2015.7318676

- - MI occurs when blood flow stops to part of the heart, causing damage to the heart muscle.
- - ➢ It is necessary to control the evolution of these patients' hearts and prevent and identify future cardiovascular risks → CARDIAC IMAGING

Introduction

Swine as model in cardiovascular research

- Swine are commonly used in cardiovascular research because porcine and human hearts share important anatomic and physiologic characteristics:
 - > Similar size and shape
 - Similar distribution of blood supply by the coronary artery
- ₭ Magnetic Resonance Imaging (MRI):
 - > Non-invasive technique
 - Strong control over the data acquisition and how it can be managed.
 - > Image with high precision and reliability.

Porcine Heart

Human Heart

Objectives

- B Development of an intuitive software tool in MATLAB that allows a detailed study of the magnetic properties of infarcted hearts tissue by the mathematical processing of a set of Magnetic Resonance (MR) microimages of that tissue.
 - > Recreation of a virtual histology of infarcted heart tissue.
- **#** Preliminary stage: Work with a swine's hearts and establish a complete analysis of the conditions of the heart after an infarction
 - > Compare the results of the virtual histology with the results of the histopathology
 - > Relate the study, as a last resort, to human hearts.

- **H** Two small samples (size 1 cm \times 1.6 cm) of the infarcted heart of two different young female domestic pigs.
- > Obtaining the images:
 - 1. The samples are introduced in an agarose matrix inside a tube.
 - 2. These tubes with the heart samples are introduced one by one in the NMR tube of the spectrometre (1 cm wide) and correctly positioned in the inside of the coil
 - 3. Run the required sequences in order to obtain the MR microimages.

Bruker Spectrometre ADVANCE 14 Teslas

- > Acquisition of 5 types of weighted images (matrix size = 256×256):
 - T1-weighted reference image (TR = 500 ms; TE = 9,3 ms)
 - T2-weighted reference image (TR = 4000 ms; TE = 57,6 ms)
 - Diffusion-Weighted Images (DWI) (16 b-values)
 - T2-weighted images (TR = 2000 ms; 16 TE values)
 - T2*-weighted images (TR = 1500 ms; 12 TE values)

T2-weighted Image

DWI Acquisition num. 8 b-value=822.297 s/mm²

T2-weighted Image Acquisition num. 8 TE=78.19 ms

T2*-weighted Image Acquisition num. 8 TE=34 ms

Generating the maps: Process

The process to generate the maps consists on: H

- 1. Analyse pixel by pixel every acquisition of each slice of the sample and store the values of the pixels.
- 2. Execute the fitting process of the set of values of the pixels using the values of the variable parameter, previously known.

Valores re Curve de alus

Valores reale 0 Fitting

b-values (s/mm²

3. Generate the map with the ADC, T2 or T2* value obtained for each pixel

ADC ¹ 1	ADC ¹ 2	ADC ¹ 3
ADC ¹ 4	ADC ¹ 5	ADC ¹ 6
ADC ¹ 7	ADC ¹ 8	ADC ¹ 9

Generating the maps: Equations

ADC map: the variable parameter is the *b*-value (s/mm²)

- > Mono-Exponential
- > Bi-exponential

$$S(b) = S_0 e^{-bD}$$

$$S(b) = S_0 [\xi e^{-bD_f} + (1 - \xi)e^{-bD_s}]$$

T2 and T2* maps: the variable parameter is the Time of Echo TE (s)

> Mono-exponential

$$S(TE) = S_0 e^{-\frac{TE}{T2}}$$

Structure of the Graphical User Interface

Image Options Types of images

- **#** The images are classified in two groups:
- GROUP A: Reference images that do not need a fitting process:
- T1-weighted image
- T2-weighted image

GROUP B: Images that need a fitting process in order to generate a map:

IMAGE OPTIONS

BRUKER CONVERTER

SELECT A TYPE OF IMAGE

Show error map

Show all acquisitions of the same section

TYPE OF IMAGE SELECTED: Mapa de difusión

POSITION OF THE SLIDERS: IMAGE No=2 CUT=4 NT ID:<PIG32inf01> ADQ DATA:<09:57:28 5 Jun 2012>

Lock on the image

- DWI (16 acq.) \rightarrow ADC map
- T2-weighted images (16 acq.) \rightarrow T2 map
- T2*-weighted images (12 acq.) \rightarrow T2* map

 \mathfrak{H} The tool implements four methods in order to fit the data.

- > Curve fitting using nonlinear regression, with previous models
- **#** Good fitting and graphical results for many cases but improvable

> Linearization of exponential equation \rightarrow Linear regression.

$$S' = \log S(b) = \log S_0 + (-bD) = S'_0 - bD$$

Worst fitting results but faster operations

➤ Compensation of the biexponential behavior of some curves by introducing a baseline → Nonlinear regression using customized models

 $S(b) = S_0 [1 + \xi e^{-bD}]$

₭ Better approach (reliable data and image) but slower operations

- > Curve fitting using nonlinear regression, with previous models
- **#** Perfect fitting results but problems with the resulting image

Image Options Maps

* Tested with a Dell Computer with Intel Core i7-4790 Processor, 16 GB of RAM and Windows 7 Professional 64 bit

Image Options Maps

- **#** The duration of the process is very variable:
 - > It depends on the selected fitting method and the power of the computer.
 - ➢ Generally SLOW.

Downsampling

Decimate the image: fitting method applied to a reduced number of pixels and the rest of the pixels reconstructed by interpolation.

IMAGE OPTIONS

BRUKER CONVERTER

Show error map Lock o

TYPE OF IMAGE SELECTED: Mapa de difusión

POSITION OF THE SLIDERS: IMAGE No=2 CUT=4 IENT ID:<PIG32inf01> ADQ DATA:<09:57:28 5 Jun 2012>

Lock on the image

SELECT A TYPE OF IMAGE

> Decrease of the quality of the map but faster process

- Wide view of the differences between the original data and its approximated curve
- > Each pixel of the Error Map represents the error caused when applying the fitting on the respective data.
- R-squared error map:

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \quad SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \quad R^2 = \frac{SST}{SSR}$$

Image Options Error Maps

ROI options

- **#** ROI area, in number of pixels
- ₿ Slice number
- **#** MR microimage number
- **℃** Type of image
- **#** Mean value of the pixels of the ROI
- **#** Standard deviation of the pixels of the ROI
- ₿ Minimum of the ROI
- **#** Maximum of the ROI
- **#** Identifier of the sample
- **#** Acquisition date of the sample

Segmentation Options

- **#** Smart and semiautomatic selection of regions
 - > **Region-growing method:** Region growing criterion based on an "analysis window"

Segmentation Options

Conclusions

- B Development of an intuitive tool to perform virtual histologies by analyzing MR microimages of swine infracted heart samples.
 - Processing of 5 type of MR microimages.
 - Implementation of 4 types of exponential fitting methods in order to obtain ADC, T2 and T2* maps.
 - > Evaluation of the fitting results using Error maps.
 - > Image analysis using ROIs.
 - Smart selection of regions using segmentation methods.
- Herotonical and Metabolomics Group (UIMM) of the Fundación de Investigación of the Hospital Clínico Universitario de Valencia (Valencia, Spain).

Workshop on Reconstruction Schemes for MR Data 17th August 2016

Magnetic Resonance Microlmaging of a Swine Infarcted Heart: Performing Cardiac Virtual Histologies

<u>Rafael Ortiz-Ramón</u>¹, José Manuel Morales², Silvia Ruiz-España¹, Vicente Bodí^{3,4}, Daniel Monleón³ and David Moratal¹

- ¹ Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
- ² Unidad Central de Investigación en Medicina, Universitat de València, Valencia, Spain
- ³ Fundación de Investigación del Hospital Clínico Universitario de Valencia, Valencia, Spain
- ⁴ Department of Medicine, Universitat de València, Valencia, Spain

UNIVERSITAT Politècnica de valència