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Abstract 

The atmospheric [CO2] has been rising steadily for the last 150 years, largely as a 
result of land-use change and anthropogenic emissions from the burning of fossil 
fuels. Models predict that the current concentration of atmospheric [CO2] will double 
within the next century and that temperatures will increase. Predicted increases in 
[CO2] and temperature are likely to affect plant growth, yield, biomass allocation, 
and bud phenology. The likely increase in the evapotranspiration potential caused by 
an increase in air and soil temperature could have a negative effect in particular in 
areas with limited water resources. 

The present experiments were designed to study the effects of rising [CO2] on the 
long-term growth and carbon allocation of four clones of Sitka spruce (Picea 
sitchensis (Bong.) Carr.) taken from two provenances, and the long-term interactive 
effects of elevated [CO2] and water stress on growth, plant water use and plant water 
relations of cherry seedlings (Prunus aviuin L.). 

Two-year-old saplings of four clones of Sitka spruce were grown in ten open top 
chambers (OTCs) at two CO2 concentrations (-350 and —700 pmol mol') for two 
growing seasons at the Institute of Terrestrial Ecology, near Edinburgh (UK). The 
saplings in elevated [CO2] were significantly larger in all respects than those grown 
in ambient [CO2]. Each clone showed a positive growth response to elevated [CO2] 
over the whole duration of the experiment. Only a few studies have been made to 
date on responses of clonal plant to elevated [CO2]. 

Cherry plants were grown at two CO2 concentrations (-350 and —700 pmol 
for two years from seed in six OTCs within an unheated glasshouse at the University 
of Edinburgh. The experiment was designed to mimic the effects of natural water 
stress on the growth of young cherry seedlings. Elevated [CO2] significantly 
increased total dry mass production in both water regimes. Since water uptake did 
not differ in either well-watered or water-stressed seedlings between elevated and 
ambient [CU2), the growth increase brought about in elevated [CO2] led to 
significantly higher plant water use efficiency. However, the interaction between 
elevated [CO2] and water stress was not significant, and elevated [CO2] did not 
ameliorate the depression in growth of cherry seedlings subjected to two subsequent 
drying cycles. Consequently, with the future scenario of global change with higher 
temperature and evapotranspiration, cultivation of cherry trees may be cut back in 
regions which will experience an increased frequency and intensity of drought. 

Measurements of A/C1 curves and of Rubisco activity in Sitka spruce showed a 
certain degree of down-regulation of photosynthesis in elevated [CO2] in the third 
year. Whereas in cherry, measurements of A/C, curves made during both growing 
seasons, showed no down-regulation of photosynthesis per unit leaf area grown in 
elevated [CO2], although Rubisco activity was reduced. 

In both species, long-term relative growth rates were significantly higher in elevated 
[CU2]. However, the differences in plant dry mass at the end of the experiments were 



a consequence of the more rapid growth in the early phase of exposure to elevated 
[CO2]. After this initial phase current relative growth rates were similar in elevated 
[CO2] than in ambient [CO21. When both elevated and ambient .[CO 2]-grown Sitka 
spruce and cherry saplings were compared when the same size, the trees were similar 
in the two [CO2] treatments with respect to the characteristics measured (basal area, 
component dry mass). Thus, one of the main effects of elevated [CO2] on long-term 
tree growth is to speed-up of development in all aspects. 
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CHAPTER 1 

Introduction 

1.1 Introduction 

Ice core data from USSR Vostok Station have shown that the concentration of CO2 

in the atmosphere has varied considerably over geological time (Barnola et al., 

1987). The atmospheric [CO2] ranged from 180 to 200 Rmol moL 1  during the last 

two glacial maxima (130,000 to 160,000 and 13,000 to 40,000 years ago), but 

following the last glacial melting, the [CO2] rose to about 260 to 270 Rmol mol' and 

remained stable until the beginning of the industrial revolution. However, over the 

last 150 years, the atmospheric [CO2] has been rising steadily, largely as a result of 

land-use change and anthropogenic emissions from the burning of fossil fuels. 

About one third of the Earth's land area is covered by forest (Kozlowski et al., 

1991). Many forest tree species are long-lived, and likely to experience atmospheric 

[CO2] double the pre-industrial level in the years between 2050 and 2100 (Hidore, 

1996). The steady build-up of atmospheric CO2 concentration may affect plant 

growth and productivity in different ways. Models also predict that over some period 

temperatures will increase by about. 3 °C (IPCC, 1996). Consequently, fossil-fuel-

driven increases in [CO2] may modify the composition of plant communities, 

through forest migration (Bradshaw and McNeilly, 1991; Huntley, 1991). The 

potential rapid temperature changes are also likely to shift thermal limits which will 

raise both the latitudinal and the altitudinal limits of agricultural crop cultivation 

(Parry, 1992; Parry et at, 1992; Lee et al., 1994), and there may also be changes in 

climatic extremes, such as the magnitude and frequency of drought, storms, heat 

waves, and severe frost, rising sea levels and changes in the frequency and 

distribution of precipitation (Hougton, 1994). The combination of elevated 

temperatures and floods, and especially the increased incidence of droughts in some 
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areas, probably constitutes the greatest risk to the biosphere of global climate change 

(Kozlowski et al., 1991; Woodward et al., 1991; Houghton, 1994; Hidore, 1996). 

However, carbon dioxide is essential for photosynthesis, which sustains plant life 

(the basis of the entire food chain), and, thus, increasing levels of [CO2] will directly 

influence plant physiology. Drake et al. (1997) have recently pointed out that 

photosynthesis, transpiration and respiration seem to be the only processes by which 

elevated [CO2] can be sensed directly by plants and ecosystems. Therefore, study of 

the effects of elevated [CO2] on these processes is crucial to understanding the 

effects of rising CO2 concentration on plant production and resource use efficiency. 

Because of the dependence of photosynthetic rate (A) on [CO2], the question whether 

plants possess physiological and morphological mechanisms for directly sensing 

changes of atmospheric [CO2] has frequently been raised (Mott, 1990). Morison 

(1985) by analysing the response of A to photon flux density, found that C1 reached a 

plateau value at low irradiance while A was still increasing, and suggested that 

stomatal conductance (g) is controlled in order to maintain a quasi-constant Ci  in 

changing environment. Mott (1988) showed that stomatal aperture responds to the 

intercellular CO2 concentrations, such that the ratio of ambient to intercellular [CO2] 

remains approximately constant. A conservative value of the ratio Ci to ambient 

[CO2] indicates that changes in ambient [CO2], by causing proportional changes in 

C, make responses to Ci effective sensors of changes of atmospheric [CO2] (Ca) 

(Mott, 1990). Decreased g associated with high C1 is an adaptive response to C, by 

which diffusional limitations to A are adjusted in response to changes in mesophyll 

demand for CO2 (i.e. the biochemical limitations to A) resulting in an increase in 

water use efficiency (WUE). 

Analysis of the effects of elevated [COj on gs  in woody plants shows that responses 

are highly variable. Eamus & Jarvis (1989) reported an average decrease between 0 

to 70% in g, but recent studies have demonstrated that there can be lack of response 

of g (Curtis, 1996; Murthy et al., 1997) or even increase of g (Heath & Kerstiens, 
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1997) in elevated [CO2]. However, decrease of stomatal conductance does not 

necessary imply that the diffusional limitations to A are increased in elevated [CO2] 

(Long, 1991). Indeed Drake et al. (1997) have shown that the ratio of Cj/Ca is almost 

identical in ambient and elevated [CO2] and that the maintenance of this constant 

ratio ias coupled with decreased g. Thus, decrease in g can explain reduction in leaf 

transpiration (Morison, 1993), and, because g, is not strongly limiting A, will 

improve WUE per unit of leaf area in elevated [CO2]. 

In C3 species, short-term response of A to changes in intercellular CO2 

concentrations (Cj) are well known (Von Caemmerer & Farquhar, 1981). Carbon 

dioxide is in competition with oxygen for the active sites of ribulose 1,5-

bisphosphate carboxylase-oxygenase (Rubisco), thus increases in CO2 will shift the 

balance towards carboxylation and reduce photorespiratory loss (Stitt, 1991; 1996). 

However, the greenhouse effect brought about by anthropogenic emissions of CO2 

includes correlated increases in temperature. Increase in [CO2] and temperature will 

have contrasting effects on the ratio of photorespiration to photosynthesis. Rising 

temperature will increase the solubility of 02 and especially the specificity of 

Rubisco for 02, relative to CO2, and this will decrease the RuBP-saturated and the 

RuBP-limited rates of carboxylation, favouring oxygenation and thus increasing the 

proportion of photosynthesis lost to photorespiration (Jordan & Ogren, 1984). 

However, as the atmospheric CO2 concentration increases, carboxylation by Rubisco 

will be favoured. Furthermore, depression of the rate of oxygenation relative to 

carboxylation by elevated [CO2] will produce an upward shift in the temperature 

optimum of photosynthesis (Long, 1991). Moreover, Ehieringer & Bjorkman (1977) 

have shown that the maximum quantum yield (4)) of C3 species decreases with 

increase in temperature, since increasing amounts of the NADPH and ATP produced 

by electron transport are diverted into photorespiration. However, by decreasing 

photorespiration elevated [CO2] will reduce the decline in 4) at all temperatures 

(Ehleringer & Bjorkman, 1977). Consequently, also the compensation photon flux 

density of photosynthesis is depressed at all temperatures by elevated [CO2], and, as 

for photosynthesis and 4), the effect will be largest at higher temperatures (Long & 

3 



Drake, 1992). This decrease is of considerable significance for the ground-flora and 

understorey plants in forest (Long, 1991). 

In short-term experiments elevated [CO2] stimulates photosynthesis of woody plants 

(about 40% in conifers and 61% in broad leaves), and the evidence for this is 

overwhelming (Ceulemans & Mousseau, 1994) (see also reviews by Strain & Cure, 

1985; Eamus & Jarvis 1989; Luxmoore et al., 1993; Amthor, 1995). Nonetheless, a 

consistent feature of many long-term studies has been a decline in Rubisco activity 

and pigments of the light harvesting system, resulting in downward acclimation of 

photosynthesis process. However, this down-regulation of photosynthesis rarely 

makes up completely for the stimulation of A in elevated [CO2]. Both inadequate 

potting volume (Arp, 1991) and nutrition (Linder & McDonald, 1993), by altering 

the source/sink balance, can contribute to acclimation in the photosynthetic 

apparatus. In plants well-supplied with nutrients, acclimation of assimilation rate has 

commonly not been found in elevated [CO2] (Ziska et al., 1990; Pettersson & 

McDonald, 1992). When trees growing in elevated [CO2] are rooted in the ground, 

and adequate sinks are available, down-regulation of photosynthesis does not 

generally occur (Long & Drake, 1991; Idso and Kimball, 1992c; Teskey, 1997). 

Masle et al. (1993) showed that growth in elevated [CO2] of transgenic plants of 

Nicotiana tabacum transformed to produce 13 - 18% less small subunit of Rubisco 

was similar to that of the wild type. Long & Drake (1992) calculated that about 35% 

of Rubisco content can be lost in elevated [CO2] before Rubisco will co-limit A. This 

suggests that acclimation may represent an optimisation of the distribution of the 

resources within the chloroplast to avoid the situation that either Rubisco or the 

apparatus for the regeneration of RuBP are in excess (Sage et al., 1989). Following 

reduction in Rubisco, pigments of the light-harvesting complexes are usually 

decreased by elevated [CO2]. Moreover, since protein turn-over is energetically 

costly, this down-ward acclimation in photosynthetic capacity leads to reduced 

maintenance respiration in elevated [CO2] through reduced amounts of tissue protein 

(Ziska & Bunce, 1994; Wullschleger et al., 1994; Amthor, 1995). Nitrogen 
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redistribution away from non-limiting components may greatly increase nitrogen use 

efficiency, since more carbon is assimilated per unit of leaf nitrogen, irrespective of 

the availability of nitrogen in the soil (Drake et al., 1997). 

Forests are important in the global carbon budget because they are the ecosystems 

which hold the largest pool of carbon. Kauppi et al. (1992) studied the variation of 

forest resources in Western Europe (i.e. Austria, Finland, France, Germany, Sweden 

and Switzerland) and found that the standing biomass built-up in the 1970s and 

1980s as result of both increase in afforested area and enhanced plant growth. During 

this period, European forests accumulated 85 to 120 million tons of carbon per year, 

which could account for 8 to 10% of the 'missing sink' for CO2 in the global carbon 

budget (Moffat, 1997). This increase in forest resources was caused both by growth 

of the existing forest and reversion of agricultural land to forest. In the eastern and 

southern parts of USA 9 to 11 millions hectares of agricultural land have been 

reverted to forest in the last 100 years. The increased biomass of forest ecosystems in 

USA has offset about 25% of U.S. greenhouse gas emission in the last 40 years 

(Moffat, 1997). The important role that forests can play in the global carbon cycle 

has encouraged a very large number of studies on the effects of increasing [CO2] on 

tree growth and physiology. 

There is increasing evidence that tree growth in elevated [CO21 is increased. 

However, different experimental conditions and age of the species have often 

produced contrasting results, and there are still major uncertainties about the effects 

of elevated [CO2] on tree growth. Poor control of adequate nutrient supply and 

limited rooting volume have resulted in artifacts, and it is important to separate the 

effect of elevated [CO2] per se from the effects of sink and nutrient limitation. In 

addition, there is little information available on growth of different genotypes in 

elevated [CO2]. It is very likely that the genetic source of plants will affect growth as 

global change occurs, and this may have major consequence for selection of 

genotypes of forest species, i.e. there is considerable variation within, as well as 

between, species in response to elevated [CO21. Finally, there is need for research on 
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Chapter 1 

the interaction between elevated [CO21 and water stress, which is the major factor 

limiting plant productivity over large areas of the globe, the Mediterranean region in 

particular. 

1.2 Aim of the study 

The following aims are addressed: 

To study the effects of elevated [CO2] on the long-term growth and carbon 

allocation of clonal saplings of two different provenance and of seedlings when 

both nutrient and soil volume are not limiting. 

. To determine whether the growth increase in elevated [CO2] is a long-term or a 

transient effect. 

To investigate the occurrence of acclimation of the photosynthetic capacity in 

stress-free (adequate nutrition, water, rooting volume) plants. 

• To assess whether elevated [CO2] alleviates the inhibition of tree growth induced 

by water stress, and whether the higher instantaneous transpiration efficiency 

(1TE) per unit of leaf area in elevated [CO21, can be offset (at the plant level) by 

an increase in leaf area. 

• To determine if elevated [CO2], by improving plant water relations, increases 

tolerance to water stress. 

• To test the hypothesis that the rapid onset of water stress imposed at the height of 

the growing season (increasing evaporative demand and decreasing soil water 

availability), when seedlings growing in elevated [CO2] have already developed 

maximum leaf area and reached a larger size (both above and below the ground), 



results in faster consumption of the available water in elevated [CO2] than in 

ambient [CO2]. 

1.3 Outline of the thesis 

Chapter 2 describes the two tree species studied, Sitka spruce (Picea sitchensis 

(Bong.) Carr.) and cherry (Prunus avium L.), the experimental sites, growth 

conditions and some methods of chemical analysis used. 

Chapter 3 focuses on the effects of elevated CO2 concentration and provenance on 

biomass production and allocation, phenology and ontogeny of four clones of Sitka 

spruce over two growing seasons. 

Chapter 4 deals with the long-term effects of stress-free growth in elevated [CO21 on 

leaf gas exchange, photosynthetic capacity, carbon and nitrogen relationship of four 

clones of Sitka spruce. 

Chapters 5 reports the long-term interactive effects of elevated [CO2] and water 

stress on the growth, dry mass allocation and whole plant WUE of young cherry 

seedlings over two growing seasons. 

Chapter 6 presents the interactions between elevated [CO2] and water stress on the 

gas exchange, photosynthetic capacity, water relations, carbon and nitrogen 

concentrations, and the relationship between plant WUE and leaf IrE of young 

cherry seedlings over two growing seasons. 

Chapter 7 addresses the question as to whether the increase in total dry mass in 

response to elevated [CO2] is a long-term or a transient effect in stress-free (adequate 

nutrition, water, pot space) growth conditions. 
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Chapter 8 summarises the main conclusions from the Sitka spruce and cherry 

studies, discusses their implications for the future scenario of global change and puts 

forward suggestions for further research. 



CHAPTER 2 

Carbon Dioxide Treatment Facilities, 

Trees, and Methods of Chemical Analysis 

2.1 Trees 

Two tree species, Sitka spruce (Picea sitchensis (Bong.) Carr.) and cherry (Prunus 

avium L.), were studied. Both species are important in Europe: Sitka spruce is very 

important as a British forest crop, whereas cherry is a major tree crop in Italy. Both 

species were grown in open top chambers (OTCs), but at two different experimental 

sites. The studies on clonal Sitka spruce were done in OTCs located at the Institute 

of Terrestrial Ecology (ITE), Bush Estate, near Edinburgh, (55° 51' N, 3° 12' W, 198 

m altitude). Cherry plants were grown in OTCs installed inside a glasshouse at the 

University of Edinburgh (55° 34'N, 3° 12'W, 185 m altitude). 

2.1.1 Sitka spruce 

Sitka spruce is a conifer in the Pinaceae of the Gymnospermae. Conifers are the most 

abundant trees of the Northern temperate forests and rank amongst the world's most 

important natural resources. The Pinaceae is a medium-size, worldwide family, with 

members primarily in Europe, Asia, and North America. The genus Picea contains 

approximately 40 species largely occurring in the temperate and boreal regions of the 

Northern Hemisphere, usually to be found on wet sites with poor, shallow soils. 

Sitka spruce grows up to 60 m in height when mature, with a cylindrical trunk, and a 

short, often open crown. It is a native of North America where it grows in a narrow 

zone, about 80 km wide, from sea level to 1,000 m, along the Pacific Coastal region 

from southern Alaska to northern California. It has been introduced to Europe where 

it is widely planted, and today is a major forest crop. The wood of Sitka spruce is of 

low density (330 kg m 3), but is relatively strong and resilient. It is used in general 
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construction and for manufacturing boxes, crates, sounding boards for musical 

instruments, plywood and paper 

Four clones of Sitka spruce from two provenances, at 53.2° N (Skidegate a and 

Skidegate b) and at 41.3° N (North Bend a and North Bend b), taken from 5-year-old 

trees, were propagated in March 1990 from physiologically mature trees growing in a 

clonal provenance trial in Scotland. When the cuttings had rooted (July 1990) they 

were potted and grown in a glasshouse until 1 March 1991, when 240 saplings (60 

per clone) were transferred to six OTCs at the ITE site. There were three OTCs per 

[CO2] treatment and 10 saplings per clone per chamber. The present study started at 

the end of winter 1992, when 24 saplings (6 per clone) per {CO2] treatment were 

harvested. The clones were repotted before budburst at the end of March 1992 and 

then randomly placed in ten OTCs, five replicates per [CO2] treatment. 

2.1.2 Cherry 

Cherry is in the Rosaceae (Dicotyledonae) which contains approximately 120 genera 

and 3,600 species distributed worldwide. The genus Prunus is especially abundant in 

the temperate regions of Europe, North America, and Asia, where members of this 

genus are widely cultivated for their edible fruit. Prunus avium, commonly known as 

mazzard cherry, sweet cherry or gean, has a wide crown and can reach 24 m in 

height. It is native to southeastern Europe, North Africa and Western Asia, and has 

long been cultivated in Southern Europe for its commercially important fruits 

(principally as dessert fruits, but also for jams and liqueurs and in the food industry). 

Cherry trees are also important as a timber crop throughout Europe. 

In southern Europe drought dramatically influences tree growth and productivity. 

Growth in elevated atmospheric CO2 concentrations is expected to be less affected 

by water stress (Eamus & Jarvis, 1989; Eamus, 1991; Chaves & Pereira, 1992) and, 

as a consequence, the trees may have improved WUE over those grown in ambient 
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[CO2] conditions. However, increase in overall biomass of trees grown in elevated 

[CO2] may result in more rapid consumption of the available water. This study was 

designed to examine the effects of water stress on the growth of young P. aviwn 

seedlings, which could be used as rootstocks for cultivated sweet cherry, or as a 

timber crop. 

Plants of cherry were grown from seed in six cylindrical OTCs contained within an 

unheated glasshouse. In April 1993 seeds of cherry, from a commercial orchard in 

Italy were kept for a month in a cold room at 4 °C, then sown in cellular seed trays 

containing a mixture of sand and peat, and placed in two OTCs, one with ambient 

(-350 pmol moF 1 ) and one with elevated (ambient + —350 pmol molj CO2 

concentration. After emergence, which occurred on May 20 when at least one 

seedling had emerged in most tray cells, the seedlings were thinned, leaving one 

plant per cell. Thirty three days .after emergence, at the three-four leaf stage, 60 

seedlings germinated in elevated [CO2] and 120 seedlings in ambient [CO2] were 

selected and transplanted into soil columns (6.6 dm 3 ). The elevated [CO2] seedlings 

were then randomly placed in three elevated [CO2] OTCs, while half of the ambient 

CO2 seedlings were placed in three ambient [CO2] OTCs, and half were placed in 

three different blocks alongside the OTCs to be the unchambered control in the 

glasshouse. 

2.2 Experimental sites and carbon dioxide exposure facilities 

OTCs were originally employed for air pollution studies (Jager & Weigel, 1993), but 

since the start of [CO2] research they have become the most widely used, controlled 

environment technique for long-term [CO2] enrichment studies on young trees 

(Ceulemans & Mousseau, 1994). The characteristics of OTCs have been extensively 

described (Allen et al., 1992; Coils et al., 1993; Leadley & Drake, 1993; Lee & 

Barton, 1993; Pontailler et al., 1995). Environmental variables within the chambers, 

i.e. ventilation rate, vapour pressure deficit (VPD), air and leaf temperature, and 
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radiation, differ slightly from outside. However, their relatively simple design, low 

construction and maintenance cost (relative to phytotrons and glasshouses), along 

with the low cost of CO2 (relative to free air carbon dioxide enrichment - FACE), 

make OTCs suitable CO2 exposure facilities for studies on small to medium stature 

trees. Moreover, FACE experiments on field-grown cotton have shown that data on 

the effects of elevated [CO2] on potted plants grown in OTCs can be "transferred to 

open field situations" (Mauney et al., 1994). 

At the ITE site there were 24 OTCs, situated on a gentle slope. They were made of a 

lightweight aluminium frame with 3 mm glass panels and were designed to ensure 

uniform distribution of [CO2]-enriched air throughout the tree canopy and to 

minimise air incursion through the open top. The OTCs were 3 m in diameter with a 

floor area of 7 m 2, a volume of 22.4 m3, and a height of 2.3 m to the base of a 

frustrum, which deflected air and reduced the size of the top opening; reducing the 

incursion of external air and consequent dilution of the CO2 concentration inside the 

elevated [CO2] chambers. Air was injected from a perforated polyethylene sleeve, 

1.5 m above ground level, placed underneath a glass shelf situated 0.5 m below the 

frustrum. At the beginning of each growing season the OTCs were washed, to 

minimise the attenuation of solar radiation, and disinfected, to limit the occurrence 

of disease. Air temperature data were measured over the whole experimental period 

from one elevated and one ambient OTC at a height of 1.5 m using a ventilated, 

radiation-shielded thermistor (RS Ltd., Loughborough, UK); external air temperature 

was measured by a thermistor positioned on the roof of a "Portacabin" placed nearby 

the chambers. The data were taken every 20 seconds, averaged over five minute 

intervals, and the mean recorded by a data logger (21X, Campbell Scientific Ltd., 

Loughborough, UK). The mean daily air temperature in the OTCs was 1.7 (± 0.57 

SEM) °C higher than outside, with a maximum deviation of 5 °C, for short periods 

during the hottest summer days (Figure 2.1). Approximately 15% of the 

photosynthetic photon flux density (PPFD) was intercepted by the lightweight frame 

and glass panels (a detailed description of the physical and environmental 

characteristics of the OTCs is given by Fowler et al., 1989). 
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Chapter 2 

The OTCs at the Edinburgh site were made of three aluminium hoops covered with 

sheets of transparent acrylic plastic. They were 1.25 m in diameter; and 1.5 and 2.3 

m in height in the first and second year of the experiment, respectively, to the base of 

a frustrum, which was 0.2 m high. Air, blown from outside the glasshouse, was 

injected through a perforated polyethylene cushion situated underneath a 0.3 m high 

wire base, on which the pots were placed. Air temperature was measured inside each 

chamber and near the three outside blocks during the growth seasons 1993-94, using 

fine wire (36 swg) copper-constantan thermojunctions positioned above the plants. 

The environmental data were taken every 20 seconds, averaged over five minute 

intervals and stored in a data logger (Delta-logger, Delta-T Devices Ltd, Cambridge, 

UK). The mean air temperature within the OTCs (Figure 2.2) was about 0.86 (± 0.06 

SEM) °C higher than the outside temperature, with a maximum deviation of 3 °C, 

for short periods during the hottest summer days). The transmittance of the OTC 

acrylic sheet was 85-90% between 350 and 850 nm. 

The transmittance and the quality of the PPFD reaching the plants inside the 

chamber was similar at both sites (Lee & Barton, 1993). However, since the OTCs at 

Edinburgh University were installed inside a glasshouse the mean air temperatures at 

this site were higher than those at the TUE site. During the summer 1993, the mean 

outside air temperature at the Edinburgh site was 3.7 (± 0.05 SEM) °C higher than 

the mean outside air temperature at the TUE site, whereas the mean air temperature 

inside the chambers at Edinburgh side was 2 (± 0.03 SEM) °C higher than that at the 

TUE site, with a maximum deviation of 4 °C, for short periods during the hottest days 

- Figures 2.1b and 2.2a. 

To reduce differences between the internal and external OTC microclimates at both 

TUE and Edinburgh sites, air, from intakes positioned near the ground, was filtered 

and supplied via a fan (EK3 1, radial and axial fan, Cold Harbour Lane, Harpenden, 

Herts, UK) to each chamber at a high flow rate, providing air changes of three 

volumes per minute. To double the present day ambient CO2 concentration, pure 

CO2 was added to the air stream entering three of the OTCs. The CO2 from a tank 
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(ITE) or cylinders (Edinburgh University) was vaporised, passed through a pressure 

reducing valve, and then injected into the air inlet duct, downstream of the fan units 

where it was mixed thoroughly before being released into the OTCs. Thus, the CO2 

concentration was maintained at —350 imol mor' in the ambient [CO2] chambers 

and at ambient + —350 Rmol mol' in the elevated [CO2] chambers, i.e. at 

approximately 700 Mmol mof' depending on the fluctuations in the ambient air. The 

[CO2] monitoring and control system used, comprised sample and injection sub-units 

that were controlled continuously day and night throughout the experimental periods, 

by a personal computer via an interface card (Barton et al., 1993). 

Air from all the OTCs was continuously drawn by a diaphragm pump (B lOOSE, 

Charles Austin Ltd, Weybridge, UK) through 4 mm diameter nylon sample lines. 

Each sample line was fitted with a needle valve flow controller to balance the flow 

rates through the lines, and contained a three-way solenoid valve which was 

controlled by the computer via a multiplexer and relays. When activated, the 

solenoid valve diverted air to an infra-red gas analyser (IIRGA). The IRGA was 

regularly calibrated using air containing known concentrations of CO2. The solenoid 

valves were switched sequentially every minute; during the first 35 seconds the 

system was flushed to expel residual air and to allow the IRGA to stabilise on the 

new readings, which were taken every two seconds during the remaining 25 seconds, 

averaged and the mean recorded by the personal computer for later examination and 

display. 

Trees at both sites were exposed to elevated [CO2] for 24 h 	for 365 d per annum. 

At the ITE site, pure CO2 was supplied from a 16 tonne bulk liquid tank (Distillers 

MG, Glasgow, UK), into the ambient air stream to the elevated [CO2] chambers to 

increase the ambient CO2 concentration by 350 jimol mof', and this was 

continuously monitored by an IRGA (Mark 2, Analytical Development Co. Ltd., 

Hoddesdon, Herts, UK). The CO2 consumption was about 9.6 tonne per chamber per 

year. 
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At the Edinburgh site, the three elevated [CO,] OTCs, were supplied with pure CO2 

from packs of eight cylinders (Distillers Co. Ltd., Glasgow, UK) to increase the 

ambient CO2 concentration by 350 j.tmol moL', and this was continuously monitored 

by an IRGA (WMA-2 CO2 Analyser/Controller, PP Systems, Hitchin, UK). The CO2 

consumption was about 1 tonne per chamber per year. Every two weeks, the 

glasshouse CO2 concentration was monitored for 24 hours. The glasshouse side 

windows remained open to prevent a build-up of [CO2], and thus the diurnal cycle in 

[CO21 was maintained close to that of the ambient [CO21 chambers. 

2.3 Determination of nutrient, sugar, and starch concentrations 

Samples were collected from leaves and roots of both Sitka spruce and cherry at each 

harvest to determine nutrient, sugar, and starch concentrations. These samples were 

first plunged into liquid nitrogen, subsequently kept in small plastic vials in a freezer 

at -25 °C, and than transferred to a freeze-drier (Edwards High Vacuum Ltd., 

Crawley, Sussex, UK). The freeze-dried tissue was ground to fine powder using a 

ceramic grinding vessel. Details of number of samples analysed at each stage and for 

each of these analyses are given in Chapter 4 for Sitka spruce and Chapter 6 for 

cherry. 

2.3.1 Nutrient analysis 

Nutrient concentrations (N, P, K, Mg, Ca) were measured following the wet 

digestion procedure for plant material Allen et al., 1974). Freeze-dried, ground 

tissue, ranging in mass (Al) between 0.095 and 0.105 g, was accurately weighed into 

"Pyrex" test-tubes. First 2 cm 3  of concentrated H2SO4 was added to each test tube, 

shaken to avoid clumping of the material. Subsequently 0.75 cm  of 1I2O2 was added 

twice, shaking the tube again and controlling the vigorous reaction. The tubes were 

then placed for six hours in a dry-block heater at 320 °C until a colourless solution 

17 



was obtained. The solution was allowed to cool to room temperature and after 

having added (very carefully) distilled water it was transferred to a 50 cm  

volumetric flask (VFLASK) where 0.25 cm  of a 10% solution of lanthanum was then 

added before adjusting to volume 

The cations K, Mg, Ca were determined by atomic absorption spectroscopy 

(UNICAM 919, A.A. Cambridge, UK). Standard solutions were made in the range of 

10-40 g m 3  for K, 0-4 g m 3  for Mg, and 10-30 g m 3  for Ca, N and P were measured 

using a flow-injection analyser (FLOW 3000, Perstorp, Oregon, USA). Nitrogen was 

measured by a gas diffusion system (as described in application note ASN 50-03/84, 

Perstorp Analytical Ltd, Maidenhead, UK). The sample was injected into a stream of 

NaOH 2 M 8 %, where the N present as NH was converted to NH3(911)  which then 

migrated through a gas-permeable membrane into a stream of acid-base indicator. 

The colour change was measured at 590 nm. Standard solutions of N were prepared 

in the range of 0-60 g m 3  N, adding H2SO4  (concentrated) so that the values of the 

samples lay within concentrations of the standard solutions but not at their extremes. 

Phosphorus was measured colorimetrically by the ammonium molybdate-ascorbic 

acid method at 690 nm (as described in application note ASN 60-04/83, Perstorp 

Analytical Ltd, Maidenhead, UK). Standard solutions of P were prepared in the 

range of 0-5 g m 3  P, adding H2SO4  (concentrated) so that the values of the samples 

lay within concentrations of the standard solutions but not at their extremes. 

Three replicate analyses were made on the same sample, and the averaged optical 

density was used by the instrumentation software to calculate the concentration (g 

M-3) of each element (Nc) in the solutions. The percentage of each element in a 

sample was then worked out as follows: 

% element = (Nc VFLA5K) / (M 10) 
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2.3.2 Soluble carbohydrate analysis 

Soluble sugar pool were measured by high pressure anion-exchange liquid 

chromatography (1-IPLC) coupled with pulsed amperometric detection (Corradini et 

at., 1993). In order to extract the soluble sugars, 5cm 3  of double distilled water was 

added to freeze-dried, ground tissue of the cherry samples ranging in DM between 

0.049-0.051 g. The Sitka spruce samples were particularly acid, thus instead of 

adding double-distilled water, 5 cm  of NaOH solution 0.0025 mol m 3  was added to 

—0.050 g of ground tissue. The samples were shaken to avoid clumping of the 

material and incubated for 15 mm. in a water bath at 30 °C. The solutions were then 

centrifuged for 15 minutes at 5000 rpm, and the supernatant was poured off and 

vacuum filtered using a 0.2 gm nitrocellulose filter (Whatman International Ltd, 

Maidstone, UK). The filtered supernatants of root samples were diluted 1:50, 

whereas those of leaf samples were diluted 1:100, adding double distilled water. The 

diluted solutions were then assayed using a Dionex DX 500 (Dionex Corporation, 

Sunnyvale, California, USA) equipped with a ED40 electrochemical detector in 

pulsed amperometric mode. A CarboPac PA! (250 x 4 i.D) pellicular anion 

exchange column, equipped with a CarboPac PAl guard column (50 x 4 mm I.D.), 

was used. The chromatographic data were collected and plotted using the Dionex 

Auto Ion 450 Chromatography Workstation. The Dionex DX 500 was calibrated 

using standard solutions of 100 g m 3  sugars. Details of the type and amounts of the 

soluble sugars used in the standard solutions are given in Appendix I. The samples 

were eluted under isocratic conditions with mobile phases containing sodium 

hydroxide 60 mM. The sample loop volume was 10 jil, and the eluent flow rate 0.8 

ml/min. The percentage of soluble sugars in a sample was calculated as follows: 

% soluble sugars = ((HPLC reading• dilution factor /1000) / M) - 100 
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2.3.3 Starch analysis 

Starch concentration was determined by the iodometric method (Allen, 1989). Starch 

was extracted adding 5 cm  of 32% HC104 (by volume) to samples of freeze-dried, 

ground tissue ranging in mass between 0.049-0.051 g. The solution was shaken for 

30 minutes at room temperature, and then centrifuged at 5000 rpm for 15 minutes. A 

volume (1 con 3)  of the supernatant was poured into a 25 cm 3  volumetric flask 

containing about 15 cm  of distilled water, to which were added first 150 mm  of 

HCI 103 mol m 3  and immediately after 0.25 cm 3  of iodine solution (0.2 % 12 in 2% 

KI), before adjusting to volume with distilled water. 

A sample of —0.05 g of pure starch was treated following the same procedure as for 

the starch extracted described above. Volumes of pure starch solution were added in 

the range of 0-0.24 cm  to the volumetric flasks and made up to 25 cm 3  to obtain the 

standard solutions used for the calibration curve. The absorbance of the iodine was 

read at 610 nm using a spectrophotometer, using the standard solution without starch 

as a blank for the readings. The concentration of starch (Sc) in each standard solution 

was calculated as follows: 

SC = (MI5 Vss)/(VHCIOe VFLASK) 

where, Mp5 is mass of pure starch, and V55 is volume of pure starch solution, VHcIo4 

is volume of HC104, and VJZLASK is the volume of the volumetric flasks (i.e., 25 cm 3 ). 

A linear regression between the absorbance and pure starch concentration of the 

standard solutions was then determined (R 2  = 0.997). The parameters of the 

regression of the calibration curve were used to transform the absorbance of tissue 

samples into known concentrations of starch. The percentage of starch in the tissue 

samples was then worked out as follows: 

% starch = ((Sc VncI04 VAsK)/(VsN A'f)) 100 

where VSN is volume of the supernatant. 
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2.4 Chlorophyll analysis 

The concentration of chlorophylls a and b, and a+b were measured in intact leaf 

tissues by immersion in N,N-dimethylformamide (DMF) following the techniques 

described by Porra et al. (1989). For Sitka spruce, three needles from one clone per 

chamber were sampled from the middle part of a current-year branch, and 

immediately plunged into liquid nitrogen. After measuring the leaf area (AL) and 

fresh mass, the needles were put in glass vials containing 5 cm  DMF (VDMF) and 

immediately placed in darkness. The vials were kept in darkness for seven to eight 

days before absorbance (ABS) of the solution was read on a spectrophotometer at 647 

nm, 664 nm, and 750 nm, using DMF as a blank 

For cherry, three leaf discs were taken from leaves of the same age from one seedling 

per chamber of each treatment. The discs were taken from the central portion of the 

leaves, avoiding large veins, and were immediately plunged into liquid nitrogen. 

Subsequently, the leaf discs, which had a total area of 2.40 cm 2 , were immersed in 5 

cm  DMF and immediately placed in darkness for four to five days before 

absorbance was read. Chlorophyll concentration in mg cm -2  was calculated according 

to the following equations: 

chlorophyll a = (12.00 	(664) 
(Ass 	- ABS (750) ) - 3.11 (ABs647 - A5 750 ) / (VDMF/AL) 

chlorophyll b = (20.78 (ABs t647  - AB5 750 ) - 4.88 (ABS 664  - A35 750 ) / (VDMF/AL) 

chlorophyll a+b = (17.67 	(A115 647  - A BS (750)) + 7.12 (ABS664 - A85 750 ) / 

(VDMF/AL) 

2.5 Nutrient stock solutions 

Trees were fertilized once a week throughout each growing season, following 

Ingestad principles (Ingestad & Agren, 1992, 1995). These involve nutrient supply at 

exponentially-increasing amounts to the rooting medium, so that plant nutrient 

concentrations assume steady-state values (i.e. the time derivative of the nutrient 
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concentration is zero). At steady-state internal nutrient status, the relative nutrient 

uptake rate must equal the plant relative growth rate, and the different plant parts 

have an almost identical relative growth rate. To maintain plant nutrient 

concentrations at steady-state after exponential growth, nutrients must be supplied at 

free access (i.e. nutrient addition rate higher than the requirement). At free access 

'maximal' plant growth rate is maintained. 

Full details of the amounts of the hydrated compounds and of the elements used in 

the stock solutions are given in Appendix II. 
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CHAPTER 3 

Long Term Growth of Four Clones of Sitka Spruce 

Under Elevated Carbon Dioxide Concentrations 

3.1 Introduction 

Carbon dioxide concentration in the atmosphere may double during the next century 

(IPCC, 1996). Forest growth is likely to be beneficial to the global carbon balance: as 

trees grow they store carbon as wood in stems, branches and roots, preventing it from 

returning to the atmosphere. If forest growth, and consequent storage of carbon, 

creates a net sink of CO2 this will lead to negative feedbacks, off-setting, to some 

extent, the [CO2] build-up in the atmosphere. Thus, forest tree growth may be 

important for the global carbon cycle and can contribute to the mitigation of global 

warming (Jarvis, 1995). However, as trees mature the net carbon stored will tend 

towards a steady state value, unless further forests are planted. 

The increasing attention and concern about the likely impact of the greenhouse effect 

on terrestrial ecosystems, and forests in particular, has encouraged a very large 

number of studies. Plants grown in elevated [CO2] often show an increase in biomass 

production (Eamus & Jarvis, 1989). There is now an extensive literature and some 

will be summarised below, starting with those studies that showed a positive 

response of plant growth to enhanced [CO2]. 

The total dry mass of four Populus clones was significantly increased by an average 

of 45% in elevated [CO2]; the increase in growth response ranging from a minimum 

of 22% for Columbia River to a maximum of 90% for Robusta (Radoglou & Jarvis, 

1990). Dry mass production of sweetgum (Liquidambar styraciflua) grown for 112 

days in both high and low irradiance was significantly increased in elevated CO2 

(Tolley & Strain, 1984a). The dry mass of small birch seedlings grown with optimum 

nutrition, was enhanced after 70 days in elevated [CO2} (Pettersson & McDonald, 
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1992). High rates of nutrient supply stimulated growth of Salix phylicifolia by about 

100% after four months of growth in enhanced [CO2] (Silvola & Ahlholm, 1993). 

The extent of the increase in biomass production brought about by enhanced [CO2] 

differed between Ochroma lagopus, a fast-growing tropical tree species, and 

Pentaclethra macroloba, a slow-growing tropical tree species (Oberbauer et al., 

1985); the increase in growth of 0. lagopus was twice as high as that of P. 

macroloba. The dry mass of Pinus radiata and Nothofagus fusca was significantly 

larger in elevated [CO2] (Hollinger, 1987); dry mass production of Pinus radiata was 

enhanced by 30-40% when the present CO2 concentration was doubled and 

phosphorus was not deficient. Moreover, the growth response to elevated [CO2] was 

larger at lower water potentials (Conroy et at, 1986a,b; Conroy et al., 1988). Similar 

results were found in two advanced selections (families 20010 and 20062) of P. 

radiata grown for two years in elevated [CO2] (Conroy et al., 1990), but this was in 

contrast to the growth response shown by phosphorus deficient Eucalyptus grandis 

seedlings grown for six weeks in elevated [CO2] (Conroy et al., 1992). Dry mass of 

E. grandis seedlings was significantly increased by elevated [CO2] at each rate of 

nitrogen or phosphorus supply, but the highest relative increase in plant dry mass was 

obtained at low rates of phosphorus supply. Growth of Castanea sativa was 

increased by about 20% in response to doubled [CO2] (Mousseau & Enoch, 1989; El 

Kohen et at, 1992; El Kohen & Mousseau, 1994), and this did not differ 

significantly between plants grown on fertilized or unfertilized soil (El Kohen et al., 

1992; El Kohen & Mousseau, 1994). Similarly, the increase in whole plant dry mass 

of yellow-poplar (Liriodendron tu1ipfera) in elevated [CO2] after 24 weeks was 

slightly more in unfertilized than in fertilized seedlings (Norby & O'Neill, 1991). 

Positive growth responses to elevated [CO2], although not always significant, were 

obtained, despite nitrogen deficiency, in one-year-old seedlings of Quercus alba 

(Norby et al., 1986; Norby & O'Neill, 1989). Johnson et al. (1995) found no effect of 

elevated [CO2} on Pinus ponderosa seedlings grown for 58 weeks in conditions of 

extreme nitrogen deficiency, whereas in conditions of higher (but still suboptimal), 

nitrogen supply, the total biomass of ponderosa pine was increased by about 100% in 

elevated [CO2], and the increment was larger at a CO2 concentration of 525 Rmol 
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moL' than at 700 j.tmol moi'. Similar results were found by Silvola & Ahlhoim 

(1995) on birch (Betula pendula) seedlings grown for four months at four 

concentrations of CO2 and at three nutrient supply rates. A far larger increase in 

growth was found in sour orange trees planted directly into the ground and grown for 

three years in elevated CO2 concentrations compared with control trees (Idso & 

Kimball, 1992a,b). 

In general, the increased growth response to elevated [CO2] seems to be the 

consequence of more rapid early growth, and the response is variable amongst 

species and clones (Radoglou & Jarvis, 1990; Ceulemans et al. 1994). Over a range 

of 156 species there was an increase of 37% in the vegetative biomass of plants 

exposed to elevated [CO2] (Poorter, 1993). Tree biomass increased by about 40% in 

elevated [CO2] compared to ambient [CO2] (Eamus & Jarvis, 1989; Jarvis, 1989; Lee 

& Jarvis, 1996). However, there are many conflicting reports in the literature on 

growth responses to elevated [CO2]. Ceulemans et al. (1994) reported that elevated 

[CO2] increased whole plant dry mass in only one out of three poplar clones studied; 

in the other two clones total dry mass was actually reduced in response to elevated 

[CO2]. The dry mass of Pseudotsuga menziesii was not affected by enhanced [CO2] 

(Hollinger, 1987). No significant effect of elevated [CO2I was detected on dry mass 

production of Pinus taeda seedlings grown for 84 days in both high and low 

irradiance (Tolley & Strain, 1984a), of Liriodendron tulipifera after three growing 

seasons in field conditions (without supply of fertiliser or supplementary water) 

(Norby et al., 1992), and of Salix phylic(folia when grown in a pure peat-sand 

mixture (Silvola & Ahlholm, 1993). Elevated [CO2] increased dry mass of birch 

seedlings after four months (Silvola & Ahlholm, 1995), and after one year of growth 

(Evans, 1994). However, during the second year the growth the response was 

reversed and the seedlings accumulated about 20% less total biomass in elevated 

[CO2] than in ambient [CO2] (Lee et al., 1.993). 

Many of the results reported in the literature are affected by low rates of nutrient 

supply, along with inadequate rooting volume (Ceulemans & Mousseau, 994). 
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Because of limiting nutrients and interaction with other stresses, these results can not 

necessarily be applied to trees in the natural environment. In addition, many of these 

observations were obtained in short-term studies on trees not acclimated to elevated 

[CO2], and hence potentially generating misinformation and confusion. Thus, many 

uncertainties and assumptions still exist in predicting the long-term effect of elevated 

[CO2] on tree growth. 

Shifts in biomass allocation driven by temperature increase may also reduce the 

effect of elevated [CO2] on tree growth. DeLucia et al. (1994) investigated biomass 

allocation in Pinus ponderosa trees of equivalent height or diameter growing in 

montane or desert stands on the same soil type. The differences in climatic conditions 

between the two sites were comparable to those predicted by general circulation 

models over the next 50 to 100 years at these particular locations. Calculations made 

using allometric relationships showed that considerably more dry mass was allocated 

into sapwood at the expense of foliage in the desert trees compared to the montane 

trees. The authors concluded that this shift in dry mass allocation, brought about by 

temperature and water stress may offset the growth stimulation of ponderosa pine 

induced by future [CO2] elevation. 

Changes in allocation patterns may have large repercussions on productivity and 

competitive ability. For instance, affects on the rate of branch production may change 

canopy structure and influence the absorption of radiation, whereas affects on fine 

root production improves the potential for nutrient absorption and water uptake. It 

has frequently been reported that growth in elevated [CO,] causes changes in dry 

mass allocation between plant components, although this appears to be species-

specific. However, ontogenic changes in allocation usually occur during growth, so 

this does not necessarily imply changes in the allometric relationship between plant 

components when plants are the same size. In a number of the studies, an increase in 

elevated [CO,] resulted in increase in fine-root dry mass and turnover (Idso & 

Kimball, 1992b; Norby et al., 1992; Rogers et al., 1994; Norby et at., 1996). Conroy 

et at. (1990) studying the response of two advanced selections of Pinus radiata to 
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elevated [CO2] found that one allocated extra dry mass to the trunk, whereas the 

second allocated more dry mass to roots and branches. Conflicting results have been 

obtained for the root to shoot mass ratio of plants grown in elevated [CO2] (Norby & 

O'Neill, 1991). 

The tap root and live fine root mass of Liriodendron tulip4fera saplings grown in the 

field were the only plant components that were significantly increased after three 

years of growth in elevated [CO2] (Norby et al., 1992). A significant increase in the 

root:shoot ratio was found for Castanea saliva (El Kohen et al., 1992; El Kohen & 

Mousseau, 1994) grown on unfertilized soils. However, in plants grown on fertilized 

soils the root:shoot ratio was unchanged in Pinus taeda (seedlings grown for 84 days 

in high irradiance) (Tolley & Strain, 1984a), in Pinus radiata, Nothofagusfusca, and 

Pseudotsuga menziesii after 120 days of growth in elevated [CO 2 ] (Hollinger, 1987), 

and in Betula pendula grown for 70 days in Jrigestad units (Pettersson & McDonald, 

1992). There was no change also in the root to shoot ratio of Sitka spruce in response 

to elevated [CO2] (Townend, 1993). Moreover, the root to shoot ratio was decreased 

in Pinus taeda seedlings grown for 84 days in low irradiance (Tolley & Strain, 

1984a), in Castanea saliva (El Kohen et al., 1992; El Kohen & Mousseau, 1994), in 

Eucalyptus grandis (Conroy et al., 1992), and in Liquidambar styraczflua (grown for 

112 days in both high and low irradiance) (Tolley & Strain, 1984b). 

The present experiments were designed to study the effects of rising [CO2] on long-

term growth and carbon allocation in four clones of Sitka spruce taken from two 

provenances. Despite being a non-native species, originating from North-western 

America (see Chapter 2), Sitka spruce (Picea sitchensis (Bong.) Carr.) is a major 

forest crop in Europe. Predicted increases in [CO2] and temperature are likely to 

affect plant growth, yield, biomass allocation, and bud phenology. Timing and 

duration of bud dormancy is likely to be affected by future changes in air temperature 

(Hanninen, 1991). A pronounced effect of enhanced [CU,] on bud dormancy of 

Sitka spruce was found by Murray et al. (1994). Seedlings grown in elevated [CO2] 

had a shorter growing season than ambient [CO 2]-grown seedlings, which flushed 
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earlier in the spring and delayed dormancy in autumn. However, this effect was 

found to be a consequence of the interaction between elevated [CO21 and low 

nutrient supply, since with a high nutrient supply bud dormancy was unaffected by 

elevated CO2 concentrations. The authors concluded that rising [CO2] along with 

global warming is likely to reduce the risk of frost damage on Sitka spruce, and that 

this effect will be larger on plants growing on nutrient-poor soil than on fertile soil. 

Shifts in thermal limits may change the degree to which the phenological 

characteristics of Sitka spruce plants are coupled with local climatic conditions, and 

this can affect the likelihood of frost damage (Hanninen, 1991; Murray et al., 1994). 

It is very likely that the magnitude of such responses may vary amongst clones. 

3.2 Materials and Methods 

In March 1991 four clones of Sitka spruce (North Bend a, North Bend b, Skidegate a, 

and Skidegate b), taken from 5-year-old trees, were potted into standard potting 

compost (sand:peat:loam mixture 1:5:3) and grown in OTCs for three years in 

elevated (-700 M1  mol') or ambient (-350 pmol molj CO2 (120 saplings per 

[CO2] treatment; 30 per clone). The study started in 1992, at the onset of the second 

growing season (see Chapter 2). The plants were repotted into 4 dm ,  pots in spring 

1992 (96 saplings per [CO2] treatment, 24 per clone), and into 10 din  pots in spring 

1993 (28 saplings per [CO2] treatment, 7 per clone), while the plants were dormant. 

The saplings were regularly watered to pot water capacity and fertilized in order to 

supply mineral nutrients at free access rates (details of the growth conditions are 

given in Chapter 2). 

Non-destructive growth measurements (height, leader extension, number of main 

branches, basal diameter) of all plants in each chamber (96 saplings per [CO2] 

treatment, 24 per clone in 1992, and 28 saplings per [CO2] treatment, 7 per clone in 

1993) were followed throughout the growing seasons. The basal diameter (d), 

measured at the plant collar, was used to calculate basal area ((d/2) 2  it), where it = 

W. 



3.14) 

After the baseline harvest made in March 1991 (day 1), four other harvests were 

made to determine growth: in March 1992, day 381 (24 saplings per [CO2] treatment, 

6 per clone), in September 1992, day 551 (40 saplings per [CO2} treatment, 10 per 

clone), in February 1993, day 719 (20 saplings per [CO2] treatment, 5 per clone), and 

in October 1993, day 972 (20 saplings per [CO2] treatment, 5 per clone). Each plant 

was divided in to leaf, main stem, side stems, and roots, which were separated from 

soil by washing carefully by hand to minimise the loss of fine roots. Plant component 

parts were then oven dried for 48 h at 70 °C and weighed, using an electronic balance 

(Sauter, model RE1E14, Fiscus Scientific Equipment, Loughborough), to give dry 

mass (DM). 

Data were tested using factorial ANOVA (four-way maximum interactions) to 

determine the main effects of [CO2], clone, time, and chamber on all dependent 

variables. Where appropriate, the treatment means were compared using Duncan's 

multiple range test. 

3.3 Results 

The results presented in this study relate to the second (1992) and third (1993) 

growing season during the exposure of Sitka spruce saplings in ambient or elevated 

[CO2]. No significant inter-chamber effect on any of the growth parameters measured 

on the four clones of Sitka spruce was found, and thus the interactions with 

'chamber' are not shown. 

Plants grown in elevated [CO2] were significantly taller (P c 0.001) in both 1992 

(Figure 3.1 a) and 1993 (Figure 3.1 b), but leader extension showed a consistent large 

positive response to elevated [CO2] only during the 1992 growing season (P c 

0.001). No significant differences were found in leader extension throughout the 
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third growing season between the [CO2] treatments. In 1993 leader extension was 

slightly larger in elevated [CO2] than in ambient [CO2] for most of the growing 

season, but because of lammas growth of the ambient [CO2] saplings the overall 

mean leader extension of the saplings in the two [CO21 treatments became equal at 

the end of the growing season. 

Days 	 Days 

Figure 3.1. Height of the Sitka spruce saplings grown in ambient (.....) or elevated 
()[CO2], shown as days from the beginning of the experiment (1 March 1991), 
in the growing seasons a) 1992 (data are means of 96 plants per treatment ± 1 SEM) 
and b) 1993 (data are means of 28 plants per treatment ± 1 SEM). 

Clone provenance had a strong influence on sapling height. In 1992 the North Bend b 

clone was the tallest irrespective of [CO2] treatment, although differences in height 

were significant (P <0.01) only with respect to the Skidegate clones (Table 3.1). In 

the following growing season the North Bend a clone was tallest (P < 0.05) in both 

[CO2] treatments (Table 3.1). Thus, the two more southerly clones were significantly 

taller (P <0.001) than the two more northerly clones in both [CO2] treatments and in 

both growing seasons. Elevated [CO,] significantly affected the height of the 

Skidegate clones (P < 0.01) but not that of the North Bend clones in the 1992 

growing season. In 1993, however, only the Skidegate b clone showed a significant 

positive response of height (P <0.01) to elevated [CO2]. 
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Table 3.1. Summary of the effects of the two [CO21 treatments on some growth characteristics of the 
four clones of Sitka spruce, measured at the end of the growing seasons 1992 (data are means of 24 
plants per treatment ± 1 SEM) and 1993 (data are means of 7 plants per treatment ± 1 SEM); ely = 
elevated [CO2], amb = ambient CO21, Sk.aSkidegate a, Sk.bSkidegate b, N.B.a=North Bend a, and 
N.B.b=North Bend b, no. = number. 

Treat. clone height (em) - 	height (cm) 
1992 	1993 

- leader (cm) 
1992 

leader (cm) 
1993 

I basal area (cm2)Ibasai  

1 	1992 
area 
1993 

branch (no.) 
1992 

branch (no.) 
1993 

clv Sk.a 73.0 ± 2.04 	124.5+ 2.14 44.9 ± 1.93 48.4 ± 2.81 2.41+ 0.14 5.39 ± 0.41 50.9 ± 4.19 186.2 ± 20.46 
amb Sk.a 68.2± 2.97 k  118.4± 4.4 L98± 44 .423  ±....0 . 2  47.2.. 	..4.19 •  172.0± 28.07 
ely k.b 83.7 ± 4.53 	133.0 ± 4.89 54.3± 3.10 53.0+- 3.97 2.43± ,  0.14 5.66 ± 0.29 

...... 
42.9 ± 3.13 177.6 ± 18.10 

amb 48Q 	3.82 	113.3 ± 2.39 38.6± 3.30 48.2± 4.67 2.05 ± 0.12 4.96± 0.32 41.5 ± 3.03 1508+ . 
clv N.B.a 93.6± 5.79 	149.2+- 6.02 50.5 ± 3.01 52.4 ± 5.47 2.48 ± 0.24 6.25 ± 0.18 48.4 ± 3.57 167.2 ± 	0.89 
amb N.B.a 

. 

. 

84.2± 4.59 	132.7± 6.22 42.7± 2.50 50.9± 6.28 1.77± 0.14 4.40± 0.25 43.7± 4.30 129.6± 13.76 
clv NBb 

. 

992± 697 	1396± 739 512± 355 390± 645 252± 022 558± 033 807± 751 2268± 2630 
amb  N.B.b 88.9± 6.09 	126.3 ± 5.23 1 	44.3 ± 2.63 42.7 ± 6.80 2.19 ± 0.20 4.48± 0.15 67.7 ± 8.16 211.4 ± 24.79 



The magnitude and pattern of the response to elevated [G02] differed among clones 

over the two growing seasons. In 1992 elevated [CO2] significantly affected leader 

extension in all the clones (P < 0.001) (Figure 3.2a-d). Elevated [CO2] had a 

pronounced effect on leader extension of the Skidegate b clone (Figure 3.2b), 

resulting in about 41% (P c 0.01) increase in leader extension compared with 

ambient [CO2]-grown trees by the end of the season (Table 3.1). The Skidegate a 

clone also had a significant height increase in elevated [G02] (P c 0.05). The 

Skidegate b clone showed slightly larger leader extension than the North Bend b and 

North Bend a clones, and grew 10 cm more than the Skidegate a clone in elevated 

[CO2] (Table 3.1), but the difference was not significant at the 5% level. The North 

Bend a clone was the only clone which did not have free (lammas) growth during the 

growing season of 1992 (Figure 3.2c), resulting in a period of shoot extension about 

40 days shorter than that of the other clones. However, the [G02] treatments did not 

significantly affect length of the growing season of any of the four clones (Figure 

3.2a-d). 
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Figure 3.2. Leader extension of the clones Skidegate a (a,e), Skidegate b (bf), 
North Bend a (c,g), and North Bend b (d,h) grown in ambient (.....) or elevated 
(-) [G02], shown as days from the beginning of the experiment (1 March 1991) 
in the growing seasons 1992 (a,b,c,d) and 1993 (e,f,g,h). Data are means of 24 
plants in 1992 and 7 plants in 1993 per treatment ± 1 SEM. 
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In contrast to the results in 1992, no significant difference in leader extension of each 

clone was found between the two [CO2] treatments throughout the third growing 

season (Figure 3.2 e-h), although the more northerly clones showed, on average, 

slightly larger leader extension than the North Bend clones in both ambient and 

elevated [CO2] in 1993. Elevated [CO2] did, however, affect the timing of bud set, 

leading to dormancy (around the end of July) about 43 to 53 days earlier in three of 

the four clones, with the exception of Skidegate b which showed, along with all the 

ambient [CO2]-grown clones, lammas growth late in the summer. By the 
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Figure 3.3. Basal area of the Sitka spruce saplings grown in ambient 
( -) or elevated [CO2] (-) shown as days from the beginning of 
the experiment (1 March 1991), in the growing seasons 1992 (data 
are means of 96 plants per treatment ± 1 SEM) and 1993 (data are 
means of 28 plants per treatment ± 1 SEM). 

end of the growing season this resulted in the Skidegate a and North Bend b clones 

(Figure 3.2e,h) having slightly larger leader extension in ambient [CO2} than in 

elevated [CO2]. The Skidegate b, North Bend a, and, to some extent, Skidegate a 
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clones showed leader extension similar to that of the previous year in elevated [CO2], 

whereas the North Bend b clone showed a large decrease in extension in elevated 

[CO2] by comparison with the previous year. Thus, the Skidegate b and the North 

Bend a clones had the largest, and the North Bend b clone the smallest, leader 

extension in elevated [CO2] in 1993 (Table 3.1). 
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Figure 3.4. Number of branches of the Sitka spruce saplings grown 
in ambient or elevated [CO2] shown as days from the beginning of 
the experiment (1 March 1991), in the growing seasons 1992 (data 
are means of 96 plants per treatment ± 1 SEM) and 1993 (data are 
means of 28 plants per treatment ± 1 SEM). 

The saplings grown in elevated [CO2] had significantly (P c 0.001) larger basal area 

throughout both the growing seasons 1992 and 1993 (Figure 3.3). Towards the end of 

the second growing season (days 567) basal area had increased by about 23% in 

elevated [CO21 compared to ambient [CO21, and this effect persisted to the end of the 

third growing season (days 972). Basal area showed a positive response to elevated 
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[CO2] in all the clones, although the increase was not significant in the North Bend b 

clone in 1992 and in the Skidegate clones in 1993 (P <0. 10) (Table 3.1). The relative 

stimulation in basal area was largest in the North Bend a clone: about 40% at the end 

of the second, and 42% at the end of the third growing season; whereas it was least 

for North Bend b in 1992 (about 15%), and for the two Skidegate clones in 1993 

(about 14%). On average, at the end of the experiment, the southerly clones had a 

larger, although not significant, increase in basal area in response to elevated [CO2] 

than either of the Skidegate clones. 

More branches were produced in elevated [CO2] in both 1992 and 1993 in each 

clone, but the overall difference was not significant at the 5% level (Figure 3.4). The 

increase was significant only for the North Bend a clone in 1993, which produced 

about 29% more branches in elevated [CO2] than in ambient [CO2] (Table 3.1). 
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Figure 3.5. Linear relationships between combined mean (a) number of 
branches, and (b) basal area (R 2  = 0.961) and the mean total dry mass of the 
Sitka spruce saplings. Coefficients of determination (R 2) of the linear 
relationships:  

component 	 elevated 	ambient 
number of branches 	0.999 	0.999 
basal area 	 0.967 	0.962 

However when ambient and elevated [CO2] saplings were compared at the same size, 
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there was evidence that the number of branches was larger in ambient [CO2] than in 

elevated [CO21 (Figure 3.5a), whereas a linear relationships was found between basal 

area and the mean total dry mass of the Sitka spruce saplings (Figure 3.5b; R2  = 

0.961). 
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Figure 3.6. Dry mass allocation in Sitka spruce saplings grown in ambient or 
elevated [CO2] in the growing seasons 1992-1993, shown as days from the 
beginning of the experiment (1 March 1991). Data are means of 20 to 40 plants 
Per [CO2] treatment ± 1 SEM; W = wood dry mass, L = leaf dry mass, A = 
above ground dry mass, R = root dry mass, T = total dry mass. 

Figure 3.6 presents the results of four harvests made in March 1992 (day 382), 

September 1992 (day 551), February 1993 (day 719), and October 1993 (day 972) 

where the data from the four clones have been combined. The overall response to 

elevated [CO2I, in terms of total and component dry mass, was similar throughout the 

three growing seasons. The saplings grown in elevated [CO2] were approximately 
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42% larger than those grown in ambient [CO2] (Table 3.2). Enhancement of leaf dry 

mass by elevated [CO21 was remarkably constant during the second and the third year 

of growth, whereas the relative increase in wood dry mass declined during the second 

and third growing seasons. Relatively more dry mass was allocated below-ground 

than above-ground mass in both years, and the relative increase was larger at the end 

of each growing season (day 551 and 972) than at the onset (day 382 and 719). 

Table 3.2. Percentage increase (calculated as: 100 (ELv-AMB)/AMB, where ELy is 
mass in elevated [CO2], and AMB is mass in ambient [CO21) in total and 
component dry mass of Sitka spruce saplings in response to elevated [CO2], 
shown as days from the beginning of the [CO2] exposure. Data are means of 20 to 
40 plants per ICO,1 treatment. 
days leaf wood above-ground root total biomass 

382 33Pc0.01 55P<0.001 44P<0.001 45Pc0.001 45Pc0.001 

551 33P<0.01 45P<0.001 40Pc0.001 57P<0.001 44P<0.001 

719 34Pc0.05 35Pc0.05 35P<0.05 39P<0.01 37Pc0.05 

972 35P<0.001 35Pc0.001 35P<0.001 54P<0.001 41Pc0.001 

Figure 3.7 shows the total dry mass produced in the four clones grown in ambient or 

elevated [CO2] over the growing seasons 1992-93. There were no significant 

differences in sapling dry mass among the clones grown in ambient [CO2] throughout 

the duration of the experiment. At each harvest the North Bend b clone showed the 

highest dry mass production at both CO2 concentrations. However, total dry mass 

produced by the North Bend b clone was significantly larger (P < 0.05) than that 

produced by the Skidegate a clone on day 551 and at the end of the experiment (day 

972) in elevated [CO2]. With the exception of the Skidegate b clone, which showed 

Table 3.3. Percentage increase in component dry mass of four clones of 
Sitka spruce in response to elevated [CO2], after three years of growth (day 
972)_ Data are means of S niants ner [C011 treatment- 

clone leaf 	- - 	 wood above ground root 

Skidegate a 18.2 	ns 15.5 	ns 16.4 	ns 38.5 P <0.05 

Skidegateb 24.0P.c0.05 35.9Pc0.05 31.8P<0.05 37.0P<0.05 

North Bend a 47.4 P <0.01 50.1 Pc 0.01 49.4 P <0.01 81.5 P <0.001 

North Bend b 47.9 P <0.05 38.8 P <0.05 42.3 P <0.05 63.9 P <0.01 
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significant differences in total dry mass between the two [CO2] treatments from day 

551, significant differences in biomass of each of the other three clones in response 

to CO2 concentration, became evident only at the end of the third growing season. 

The more northerly clones were significantly less responsive to CO2 enrichment than 

the North Bend clones in total dry mass (P < 0.01), leaf (P <0.05), wood (P <0.01), 

and root (P c 0.05). On day 972, the increase in total dry mass related to growth in 
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Figure 3.7. Total dry mass production of the four Sitka spruce clones in 
ambient and elevated [CO2] in the growing seasons 1992-1993, shown as days 
from the beginning of the experiment (1 March 1991); the significance levels 

= P < 0.05, ** = P < 0.01, = P < 0.001) indicate the difference in total 
dry mass of each clone in response to the [CO2] treatments. Data are means of 
5 to 10 plants per [CO2] treatment ± 1 SEM; SK a = Skidegate a, SK b = 
Skidegate b, NB a = North Bend a, and NB b = North Bend b. 
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elevated 1CO21 was about 58% in North Bend a, 49% in North Bend b, 34% in 

Skidegate b, and 24% in Skidegate a. Both the North Bend clones and the Skidegate 

b clone showed a significant increase in dry mass of each plant component part in 

response to CO2 fertilisation (Table 3.3). On the other hand, the Skidegate a clone 

showed a significant increase only in root dry mass. A large increase was observed in 

the root dry mass of the North Bend a and b clones, and in wood dry mass of the 

North Bend a clone. 
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Figure 3.8. Root to shoot mass ratio (RIS) of the Sitka spruce saplings grown 
in ambient and elevated [CO2] in the growing seasons 1992-1993, shown as 
days from the beginning of the experiment (1 March 1991). Data are means of 
20 to 40 plants per [CO2] treatment ± 1 SEM. 

The dry mass of each plant component part was not statistically different among the 

clones grown in ambient [CO2] (Table 3.4). Elevated [CO2] significantly affected the 

production of leaf dry mass in the North Bend b clone, and wood dry mass in the 

North Bend a clone. This led to an increase in above-ground dry mass produced in 
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Table 3.4. Component dry mass (g) allocation in the four Sitka spruce clones after three years of growth (day 972) in 
ambient or elevated [CO2]. Data are means of 5 plants per [CO 2] treatment ± 1 SEM; letters (a,b) are used to indicate 
si2nificant differences at P c 0.05 in the same column. 

clone 
ambient CO2  -concentration 

leaf 	wood 	above ground 	root leaf 
elevated CO2  concentration 

wood 	above ground root 

Skidegate a 73.7±6.7T130± 	6.9 a 216.7 ± 12.2 a 	102.8 ± 10.7 a 87.1 ± 6.8 aTiii2F.2aJ25T3Ti5.6al42.4+_ 9.4 a 

Skidegate b 72.5 ± 	6.2 a 	139.6± 	9.0a 212.1 ± 15.0 a 	102.1 ± 	9.2 a 89.9± 	5.1 a 189.7 ± 12.4 a 	279.6± 17.4 ab 139.9± 	8.4 a 

North Bend a 65.8± 	6.0a157.0±13.8a 222.7± 19.6a 	86.1± 	3.9a 97.0± 	4.1 a 235.6±10.0b 	332.6±11.5b 156.3± 	6.6a 

North Bend b 92.0±10.5a148.5± 	8.9a 240.5± 19.0a 	103.4± 	8.7a 136.1±16.6b206.1 ±18.Oab 	342.2±28.9b 169.5±14.6a 
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both the North Bend clones, although it was only significantly different from that of 

the Skidegate a clone. 
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Figure 3.9. Root to shoot mass ratio (R/S) of four clones of Sitka 
spruce grown in elevated CO2 in the growing seasons 1992 and 1993, 
shown as days from the beginning of the experiment (1 March 1991). 
Data are means of 5 to 10 plants per CO2 treatment ± 1 SEM. 

The combined mean root to shoot mass ratio (RIS) was influenced by the time of 

harvest (Figure 3.8). The ratio RIS of saplings harvested at the beginning of the 

growing season (days 382 and 719) did not differ between treatments, whereas 

saplings harvested at the end of the growing season (days 551 and 972) had larger (P 

<0.001) Ri'S in elevated [CO2]. On day 972, CO2 fertilisation significantly increased 

(P .c 0.05) the ratio R/S of both North Bend clones, and the Skidegate a clone, but 

not the Skidegate b clone. However, the Skidegate clones allocated proportionally 
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more dry mass to the root than the North Bend clones in elevated [CO2] (Figure 3.9). 

The relative distribution of the mean total dry mass amongst the components showed 

no effects in allocation following growth in elevated [CO2}. 

Figure 3.10 shows the relationships between the dry mass allocation and the mean 

total dry mass produced in both ambient and elevated [CO2]. Growth in different 

CO2 concentrations did not affect the proportion of dry mass allocated to the various 

organs, as demonstrated by the linear relationships between the mean total dry mass 

and mass allocated to leaves (Figure 3.10a), wood (Figure 3.10b), above-ground 

organs (Figure 3.10c), and roots (Figure 3.10d). 
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Figure 3.10. Linear relationships between combined mean (a) leaf dry mass (R 2  = 

0.997), (b) wood dry mass (R2  = 0.999), (c) above ground (Ab.gr.) dry mass (R 2  = 
0.999), and (d) root dry mass (R 2  = 0.995) and the mean total dry mass of the 
Sitka spruce saplings. 
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3.4 Discussion 

Saplings in elevated [CO2] were significantly larger in all respects than those grown 

in ambient [CO21 (Table 3.2, Figure 3.6). The basal area (a measure of the sapwood 

area) of the elevated [CO21-grown saplings was significantly increased (Figure 3.3). 

However, the plot of basal area (Figure 3.5b) versus total sapling dry mass shows 

that there were no effect of [CO2] treatment when plants were the same size, but 

elevated [CO2] enhanced the rate of plant development. More branches were 

produced in response to CO2 enrichment, although this was not statistically 

significant (Figure 3.4), and the percentage increase in branch production in elevated 

CO2 concentrations became larger at the end of each growing season, from about 2% 

in 1991 to 14% in 1993. Evans (1994) found that the number of current year 

branches of SilIca spruce seedlings grown for two growing seasons in elevated or 

ambient [CO2] did not differ significantly. Furthermore, exposure to elevated [CO2] 

did not increase branch production in seedlings of Castanea sativa (Mousseau & 

Enoch, 1989), or in bagged branches of mature Sitka spruce trees (Barton, 1997). In 

contrast, Evans (1994) and Rey (1997) found that branching was increased in 

seedlings of silver birch grown from seed in elevated [CO2]. Branching in poplar 

clones was either not affected (Radoglou & Jarvis, 1990) or there were significantly 

fewer branches (Ceulemans et al., 1994) in elevated [CO2]. 

The growth responses of the four clones of Sitka spruce were well within the ranges 

reported in the literature for other clonal saplings (Radoglou & Jarvis, 1990; 

Ceulemans et al., 1994; Ceulemans et al., 1995) or seedlings (Eamus & Jarvis, 1989; 

Luxmoore et al., 1993; Ceulemans & Mousseau, 1994; Amthor, 1995; Lee & Jarvis, 

1996). Each clone showed a positive growth response to elevated [CO2] over the 

three-year duration of the experiment, but only at the end of the third growing season 

was the increase in dry mass statistically significant in all four clones (Figure 3.7). 

Increases in total dry mass production of Sitka spruce in response to elevated [CO2] 

were also found by Townend (1993; 1995). After six months of exposure to elevated 

[CO2], he found that the relative growth rate was increased by 9.8% in well-watered 
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saplings and 6.9% in droughted saplings (Townend, 1993). When Sitka spruce plants 

were germinated and grown for two years in elevated [CO2], without nutrient and 

water limitations, total dry mass was increased by about 52% (Townend, 1995). The 

increase was, thus, slightly larger than that observed in the present study and much 

larger than that observed in other experiments on Sitka spruce (e.g. branches on 

mature clonal trees and long-term experiments with seedlings). Nutrition may be one 

of the reasons. Townend (1995) found that total dry mass was only increased by 19% 

in response to elevated [CO2] in unfertilized seedlings. Murray et al. (1996), on the 

other hand, did not find any increase in total dry mass in Sitka spruce saplings after 

three years of growth in elevated [CO2], in an experiment in which pot volume was 

not limiting, but the saplings were supplied with nutrients only once a year (i.e. at the 

beginning of each growing season). In Evans' experiment (1994) on Sitka spruce, 

performed the same site and using the same carbon dioxide exposure facilities, 

seedlings were about 40% larger than those grown in ambient [CO2] after one 

growing season, but at the end of the second season the effect of elevated [CO,] on 

total dry mass had completely disappeared and there were no significant differences 

in total plant dry mass between plants grown in ambient or elevated [CD2]. Root 

restriction may have occurred since the seedlings were repotted into small pots, 1.5 

dm3  and 5 dm3  pots before the beginning of the first and second growing seasons, 

respectively. After repotting prior to the beginning of the experiment, the seedlings 

did not receive any additional fertilizer, and they were only fertilized monthly with a 

commercial liquid fertiliser during the second growing season. Nonetheless, at the 

beginning of the third growing season, the seedlings were repotted into 15 dm  pots 

and fertilized following the Ingestad approach (Ingestad & Agren, 1992), to provide a 

supply of mineral nutrients at free access, however at the end of the third year, 

elevated [CO2] increased the total dry mass by only about 10% (Lee & Jarvis, 1996). 

Juvenile and mature trees have developmental and physiological differences which 

lead to different sensitivities to CO, fertilisation (Jarvis, 1995; Lee & Jarvis, 1996). 

Branch bags were used to study growth and physiological processes in elevated 

[CO2] in a stand of a 19-year-old clone of Sitka spruce (Barton et al., 1993). At the 



end of the four-year experiment dry mass of branches in elevated [CO2] was about 

15% larger than in ambient [CO2] but this difference was not statistically significant 

(P > 0.05) (Barton, 1997). Thus, age of the Sitka spruce plant material used in 

experiments simulating environmental changes is another factor which must be taken 

into account, since young plants can compound small changes in growth rate over a 

long period of time (see Chapter 7). However, the four clones used here may have 

been particularly responsive to elevated [CO2] because they had been selected for 

their forestry potential to give a good yield of timber in the shortest possible time. 

In ambient [CO2] clonal provenance did not affect dry mass production, which was 

similar throughout the experiment in terms of both total (Figure 3.7) and component 

dry mass (Table 3.4). However, in elevated [CO2] the North Bend b clone produced 

significantly more dry mass than the Skidegate a clone, and in general, the more 

southerly clones significantly out-performed the Skidegate clones. Differences 

amongst clones in response to doubling the concentration of [COj have been 

reported previously (Ceulemans et al., 1994). Elevated [CO2] enhanced the above-

ground dry mass of Beaupré by about 38% and Robusta by about 55%, which was 

thus relatively more stimulated (Ceulemans et al., 1995), and in the second year of 

growth, elevated [CO2] further increased above-ground dry mass of both poplar 

clones (Lee & Overdieck, 1997). This increase was proportionally larger in the 

slower-growing clone Robusta. In yet another study on the same poplar clones 

(Radoglou & Jarvis, 1990), the clones Beaupré, Columbia River, Robusta and 

Raspaije were grown for three-months in OTCs in Scotland with elevated or ambient 

[CO2]. As in the Sitka spruce clones, the total dry mass of all four poplar clones 

responded positively to doubling the concentration of [CO2], ranging from 22% for 

Columbia River to 90% for the clone Robusta. Similar to the findings of Ceulemans 

et cii. (1995), the fast-growing clone Beaupré was the most productive and the slow-

growing clone Robusta was relatively more stimulated by elevated [CO2]. 

Environmental changes affecting both interspecific and intraspecific growth 

responses may result in changed wood structure and composition as CO2 
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concentration rises. Three out of the four Sitka spruce clones significantly increased 

wood dry mass in elevated [CO2] (Table 3.3). The North Bend a clone responded 

particularly strongly to [CO2], showing the highest relative (Table 3.3) and absolute 

(Table 3.4) increases in wood production and basal area (Table 3.1). Differences in 

wood production were also found in two advanced selections of P. radiata grown for 

two years in elevated [CO2} (Conroy et al., 1990). One family (20010) allocated 

extra dry mass to the trunk, whereas the high ranking (for commercial wood 

production) family (20062) allocated more dry mass to roots and branches. 

According to the authors this family may be outstripped as CO2 concentration rises. 

Similarly, the present study would suggest that the more southerly clones of Sitka 

spruce, in particular North Bend a, could turn out to be more productive in elevated 

[CO2] and, therefore, more widely cultivated in the future. Unfortunately, nothing is 

known about the effect of elevated [CO2] on wood quality of the different clones, 

although wood density of Pinus radiata increased in elevated [CO2], and this is an 

indicator of timber quality (Conroy et al., 1990). In a recent study (Hattenschwiler et 

al., 1996), enhanced CO2 concentrations significantly increased the wood densities of 

six genotypes of Picea abies after three-year growth in model ecosystems by about 

12%. Conversely, wood density was decreased by wet deposition of N which could 

offset the effect of rising CO2 concentration on wood density. As well as being 

important from the immediate economic point of view, wood production can be 

converted into long-lived products, which can lock-up large amounts of carbon, 

effectively removing some of the anthropogenic [CO2] from the atmosphere. 

Height and leader extension are important characteristics that affect competitiveness 

and survival and thus may allow more rapid establishment of young seedlings and 

exploitation of gaps within forests. The elevated [CO 2]-grown saplings were 

significantly taller than the ambient [CO2]-grown saplings at the end of the 

experiment (Figure 3.1). However, this was the result of more growth in the earlier 

years of [CO2] exposure, since no differences were found in leader extension in the 

final year (Figure 3.2). The more southerly clones were significantly taller than the 

Skidegate clones in both ambient and elevated [CO2]. However, after three years 



growth in elevated [CO2] only the Skidegate b clone was significantly taller than the 

other clones (Table 3.1). Again, this was a consequence of the larger growth seen in 

the earlier years 

The ambient [CO2]-grown clones had a period of free-growth late in the summer 

(Figure 3.2e-h), producing further buds and shoots, whereas free-growth was 

apparently inhibited in elevated CO2. This led to a reduction in the growth difference 

between saplings in the two [CO2] treatments, and gave the ambient [CO2] saplings a 

growth advantage which could have been compounded in the following years, since 

each parental shoot of a young tree can produce a number of branches in proportion 

to its length (Cannell, 1987). The loss of lammas growth may result from the effect 

of elevated [CO2] on development, i.e. earlier transition from indeterminate to 

determinate growth pattern. Contrasting height responses to elevated [CO2] over time 

have been reported previously. For example, height of Sitka spruce saplings was not 

affected by three-years growth in elevated [CO2] (Murray et al., 1996). In birch, less 

stem elongation during the second year of growth in elevated [CO2] was found to 

allow seedlings grown at the ambient [CO2] to grown taller than their counterparts 

raised in elevated [CO2] (Lee et al., personal communication). Mousseau & Enoch 

(1989) also found an unusual early cessation of stem elongation in Castanea sativa 

seedlings grown in elevated [CO2]. 

The four clones of Sitka spruce showed different patterns of bud phenology between 

the two seasons (Figure 3.2). In 1992 elevated [CO2] did not affect the timing of bud-

set (Figure 3.2a-d), and only the North Bend a clone had a shorter growing season 

(by about 40 days) (Figure 3.2c). However, in the following year, elevated [CO2] 

significantly advanced the timing of cessation of growth of the two North Bend 

clones (Figure 3.2g,h) and of the Skidegate a clone by about 43 to 53 days (Figure 

3.2e). Murray et al. (1994) reported that during the first year of growth (1991) of 

these four clones in elevated [CO2], the length of the growing season of three out of 

the four clones was significantly affected. Enhanced [CO2] delayed the timing of 

bud-burst and brought forward bud-set of the two North Bend clones and the 
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Skidegate b clone. The length of the growing season of the Skidegate a clone was 

also reduced, but not significantly. However, the reduction in length of the growing 

season found by Murray et cii. (1994) ranged from a minimum of seven days in the 

Skidegate a clone to a maximum of 20 days in the North Bend b clone, and thus was 

much less than in the 1993 growing season. 

Phenological characteristics affecting the length of the growing season are important 

not only for growth, but also for escaping the likelihood of frost damage, especially 

for non-native trees (such as Sitka spruce in Europe, where bud phenology may not 

be well coupled to the local climate) (Murray et at., 1994). Repo et al. (1996) 

reported that frost hardening of 25-year-old Scots pine saplings was enhanced in the 

first, but not in the second, year of growth in elevated [CO,]. In contrast to the results 

found by Murray et cii. (1994), dehardening of the Scots pine saplings proceeded 

faster in elevated [CO2] than in ambient [CO2} in the spring of both years. 

The potential usefulness of experiments in artificial conditions on the effects of 

elevated [CO2] on long term growth of trees has frequently been raised (e.g. Eamus 

& Jarvis, 1989; Ceulemans & Mousseau, 1994; Amthor, 1995). Am (1991) claimed 

that pot volume could restrict root growth and affect root to shoot ratio as well as 

photosynthetic capacity. Using data compiled from the available literature, he found 

a significant, high correlation between pot size and change in the root to shoot mass 

ratio of plants grown in elevated [CO2]. Apparently, small pot volumes (less than 

—3.5 dm) strongly increased the R/S ratio, compared with plants grown in large 

containers or in the field, and pot volumes of —3.5 to —12.5 dm  led to an 

intermediate response. However, McConnaughay et al. (1 993a,b) argued that small 

pots do not necessarily reduce growth response to elevated [CO21, since [CO21- 

induced growth enhancement of Abutilon theophrasti, a C3 dicotyledon shrub, and 

Setaria fabereii, a C4 monocotyledon grass, was highly stimulated by nutrient 

concentration, regardless of pot volume, and fine root length densities of both species 

were similar to those found in the field (Berntson et al., 1993). Other studies 

(Pettersson & McDonald, 1992; Linder & McDonald, 1993) have emphasised the 
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importance of controlling plant nutrition in order to interpret the impact of elevated 

[CO21 on plant growth and allocation, since nutrient availability (primarily nitrogen) 

can determine both growth rate and the pattern of dry mass allocation amongst plant 

organs (Ericsson, 1995; McDonald et al., 1996). Moreover, the literature shows no 

effect of elevated [COj on R/S ratio if there is no change in the C:N ratio and water 

is not limiting (Stulen & den Hertog, 1993; Jarvis, 1995.). 

The rooting volume of the pots used in this study was increased as the saplings grew 

from 4 dm  at the start of the 1992 growing season to 10 dm  at the start of the 1993 

growing season. Thus according to Arp (1991), the pot volumes used for the clonal 

saplings were adequate for plants with an intermediate response by the root shoot 

ratio to elevated [CO2]. In addition, the saplings were also free of water stress and 

supplied with free access to nutrients and so avoided the occurrence of constrained 

rooting which could lead to anomalous results. In fact, the linear relationships found 

between total plant dry mass and basal area (Figure 3.5b), and dry mass allocated to 

each plant component (Figure 3.10) indicate that there were no overall differences 

between the [CO2] treatments in the proportion of dry mass allocated to the shoot 

(Figure 3. lOc) or root (Figure 3. lOd) in plants at an equivalent growth stage, and this 

suggests that the saplings were not pot limited. During growth and development 

changes in allocation pattern occur. Consequently, the significant shift in the R/S 

ratio (Figure 3.8) in response to elevated [CO2], may be a developmental response, 

since there were no differences in allocation between [CO2] treatments when the 

saplings were the same size. Similarly, Evans (1994) found that after one growing 

season in elevated [CO2], Sitka spruce seedlings were about 40% larger and had an 

increased root to shoot ratio. However, at the end of the second growing season there 

was no differences between the two [CO2] treatments in both biomass production and 

allocation. Similar results were found by Murray a al. (1996). Both total dry mass 

and R/S ratio of Sitka spruce seedlings were not affected after three years growth in 

elevated [CO2], and the allometric relationship between shoot and root dry mass did 

not change throughout the duration of the experiment. 



Only a few studies have been made to date on clonal plant response to elevated 

[CO2], and the differential growth of different genotypes may prove to be important 

for forest species, particularly for forest crops. The results obtained with the Sitka 

spruce saplings indicate that some clones, for instance the North Bend clones, may 

grow better in lowland Scotland as climate change occurs. This may be exploited in 

assessment of nursery stock for future forest planting, although it may be 

questionable whether results obtained with potted clonal saplings, without nutrient 

limitation, and with little competition can be applied to growth in the field (Amthor, 

1995). Townend (1995) and Murray et al. (1996) have shown, for instance, that when 

nutrition was limiting Sitka spruce growth was little affected by elevated [CO2]. 

However, we deliberately chose in this study to grow the saplings without any 

nutrient limitation to rule out any natural environmental constraint that might have 

interfered with growth. Indeed, growth was stimulated by elevated [CO2], and this 

resulted from an initial higher growth rate (Chapter 7), but at the same size the trees 

were similar in the two [CO2] treatments. This indicates the one of the main effect of 

elevated [CO2] on long-term tree growth is to speed-up development in all aspects. 
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CHAPTER 4 

The Effect of Elevated Carbon Dioxide Concentrations 

on the Physiology of Four Clones of Sitka Spruce 

4.1 Introduction 

The accuracy of predictions of future atmospheric [CO2] is limited by the 

uncertainties in the size of the individual sources and sinks. However, the natural 

biogeochemical movement of carbon into and out of terrestrial vegetation and oceans 

is much larger than that from anthropogenic activities (fossil-fuel use and 

deforestation) (Hidore, 1996). About 100 gigatons of carbon per year (-15% of the 

atmospheric pool of carbon) is exchanged between the atmosphere and terrestrial 

vegetation (removed from the atmosphere through photosynthesis, and returned to 

the atmosphere by plant respiration and organic mass decomposition) (Houghton, 

1994; Amthor, 1995). Thus, any increase in plant photosynthesis and forest tree 

growth brought about by elevated [CO2] is of particular importance in regulating the 

global carbon cycle. The task of forecasting the magnitude of the rate of carbon gain 

and water loss by forest trees in response to rising [CO2] is limited by the lack of 

information on the long-term impact of elevated [CO2] on tree physiology. 

Plants using the C3 pathway of photosynthesis constitute about 95% of terrestrial 

species. Since CO2 is in competition with 02 for the active sites of Rubisco, which is 

a bifunctional enzyme having both carboxylase and oxygenase activity (Leegood, 

1993), an increase of CO2 concentration shifts the balance towards carboxylation. 

Thus, C3 plants are more sensitive than C4 and CAM plants to variations in CO2 

concentration in the atmosphere. Predicted changes in atmospheric [CO2] are 

expected to increase the photosynthetic rate in C3 plants both by increasing the rate 

of carbon fixation and by reducing photorespiratory loss of carbon. At the present 

CO2 concentration, the ratio of photorespiratory loss of carbon to photosynthetic gain 

is estimated in the range 0.10-0.30 for C3 plants (Amthor, 1995). Generally, the 
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photosynthetic rate of woody plants is increased by a doubling in CO2 concentration 

(Eamus & Jarvis, 1989). Furthermore, elevated [CO2] can also affect the rate of 

increase in assimilation rate from winter to early spring (Murthy et al., 1997). 

Gunderson & Wullschleger (1994), in surveying studies of 39 tree species, showed 

an average gain in photosynthetic rate of 44% as a result of doubling [CO2]. 

In C3 species, short-term responses of photosynthetic rate to stepwise changes in 

intercellular CO2 concentration (C1) are well characterised (Von Caemmerer & 

Farquhar, 1981). A/C1 relationships at saturating PPFDs show an initial linear 

response which is related to the Rubisco limited rate of carboxylation. As C1 

increases further, the curve becomes curvilinear, and A is believed to be related to the 

rate of ribulose I ,5-bisphosphate (RuBP) regeneration, which may be limited by both 

electron transport capacity and inorganic phosphate turnover (triose phosphate use). 

Long-term growth in elevated [CO2] often results in a variable decrease (depending 

on the species) in the amount of the photosynthetic pigments and enzymes, for 

instance in the amount and activation state of Rubisco. This has commonly been 

referred to as 'photosynthetic acclimation' (Long & Drake, 1992; Amthor, 1995). 

Apparently, this decrease occurs even when the supply of nitrogen is adequate and 

rooting volume large (Long, 1991). Another consistent feature of long-term studies is 

an enhanced accumulation of nonstructural carbohydrates in leaves of plants exposed 

to elevated [CO2] (Sage, 1994; Bowes, 1996). The increased content of nonstructural 

carbohydrates, and particularly hexoses (i.e. fructose and glucose), may act end-

product repressors of photosynthetic gene expression, triggering a cascade of 

reactions which lead to acclimation of the photosynthetic apparatus (Sheen, 1994; 

Bowes, 1996; Van Oosten & Besford, 1996). Induced down-regulation of Rubisco in 

response to enhanced [CO2] was mimicked when tomato leaf tissues were fed with 

soluble sugars and was increased by reducing sink demand (Van Oosten & Besford, 

1994; Van Oosten a al., 1994). Transgenic plants of tomato, potato, tobacco and 

Arabidopsis thaliana have been shown to adapt the rate of photosynthesis to the 

demand for photoassimilates, showing that photosynthesis is sink-regulated 

(Sonnewald & Willmitzer, 1992). 
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Stomatal conductance of trees has either been decreased by elevated [CO2] (by 

approximately 30-40%; see reviews by Eamus & Jarvis, 1989; Jarvis, 1989; Mott, 

1990), remained unaffected (Hollinger 1987; Conroy ci' al., 1988; Ellsworth a al., 

1995; Murthy et al., 1997) or even increased (Heath & Kerstiens, 1997). However, in 

a recent review Drake ci' al. (1997), using data compiled from the available literature, 

have shown that photosynthesis in elevated [CO2] appears to be less limited by 

stomata than in ambient [CO2], since the ratio of Ci Ca (the intercellular CO2 

concentration to atmospheric CO2 concentration ratio) is not affected by elevated 

[CO2]. Since stomatal resistance (1/g,) is the only important limitation to water 

vapour loss, partial closure of the stomata may reduce transpiration, which, coupled 

with increased A, will necessarily improve WUE at the leaf level in elevated [CO2]. 

This study reports the long-term effects of stress-free (adequate nutrition, water, pot 

space) growth in elevated [CO2] on gas exchange, and carbon and nitrogen 

relationships of four clones of Sitka spruce after three years of CO2 exposure. No 

work has previously been done to compare the effects of elevated [CO2] on clonal 

plants originating from provenance at different latitudes propagated from parent trees 

evolved in different climates. It has been shown in Chapter 3 that the dry mass of all 

four clones was significantly increased by elevated [CO2], but the more northerly 

clones were significantly less responsive than the more southerly clones. To 

understand whether these growth differences resulted from a direct effect of elevated 

[CO2] on photosynthesis, the photosynthetic capacity of the clones was studied. 

Physiological responses to elevated [CO21  may differ amongst clones, and it is 

fundamental to understand how these processes are influenced. This may have major 

consequences for the choice of different genotypes used for plant breeding and 

reforestation programmes, since the selection of genotypes at current atmospheric 

[CO2] is likely to provide an inadequate guide to the derivation of parameters for 

scaling-up models and enabling predictions to be made on the likely effects of 

elevated [CO2I on forests. 
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4.2 Materials and Methods 

Saplings of four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two 

provenances, at 53.2° N (Skidegate a and Skidegate b) and at 41.3° N (North Bend a 

and North Bend b), were grown for three growing seasons in OTCs with ambient 

[CO2] (-350 pmol molj or elevated [CO2] (ambient + —350 pmol moF'). The OTCs 

were located at the Institute of Terrestrial Ecology (ITE), Bush Estate, near 

Edinburgh. The present study was made during the second and third growing season. 

The saplings were potted into standard potting compost, watered every other day to 

pot water capacity and regularly fertilized in both growing seasons following 

Ingestad principles (Ingestad & Agren, .1992, 1995). Full details of the four clones of 

Sitka spruce, growth conditions, number of harvests made, and of the statistical 

analyses used to test the data are given in Chapters 2 and 3. 

Gas exchange measurements were made inside a glasshouse at the University of 

Edinburgh, on the central section of current-year branches using a portable gas 

exchange system (ADC-LCA-3, Analytical Development Co. Ltd., Hoddesdon, UK) 

equipped with a Parkinson leaf chamber (conifer PLC-3). To ensure a gas-tight seal 

for the conifer leaf cuvette, needles were removed from each side of the central 

section of the branches at the beginning of July. To enable measurements of PPFD-

saturated photosynthetic rates, illumination of the leaf cuvette by natural sunlight was 

supplemented with artificial light (provided by a white fluorescent lamp) to maintain 

the PPFD at the level of the needles above 1700 pmol m -2  S -1 . The projected area of 

needles was determined by removing all the needles enclosed in the leaf cuvette and 

passing them through a leaf area meter (LI 3000, LI-COR Inc., Lincoln, NE, USA). 

Instantaneous leaf CO2 assimilation rates (A) and stomatal conductance (g) were 

measured between 11.00 and 13.00 h at the end of July 1993 on 20 saplings (five 

plants per clone) per [CO2] treatment, at the growth CO2 concentrations. 

Instantaneous water use efficiency (WUE,) was than calculated as the rate of CO2 

assimilation per unit of water transpired. Short-term measurements (-10 minutes) of 

PPFD-saturated CO2 assimilation rate in relation to changes in leaf internal CO2 

concentration (A/C1) were made between 10.00 and 17.00 h in August 1993, over a 

54 



Chapter 4 

range of CO2 concentrations between 40 and 1200 iimol mof' on twelve saplings 

(three per clone) per CO 2] treatment. The initial slope of the A/C1 curves is an 

estimate of the carboxylation efficiency (RuBP-saturated rate of Rubisco), whereas 

the maximum rate of assimilation (AMAX) (the net CO, assimilation rate under 

conditions of PPFD and CO2 saturation) is indicative of the role of RuBP regulation. 

Relative stomatal limitation (1) to photosynthetic rates was estimated from A/C1 

curves, according to Long & Hallgren (1993), as follows: 

l=(A0 -A)/A 0  

where A is the photosynthetic rate measured at the growth CO2 concentrations and A. 

is the rate of photosynthesis which would occur with Ci equal to the growth CO2 

concentrations. 

Rubisco activity was analysed in vitro by Dr. R. Besford at Horticulture Research 

International Institute, Littlehampton (UK); 'final' Rubisco activity was assayed 

spectrophotometrically by a coupled enzyme method (determining 3PGA 

phosphokinase activity and NADP-G3P dehydrogenase) after pre-incubation at 20 °C 

in extraction medium containing 25 MM  MgCl2 (Besford, 1984, Van Oosten et al., 

1995). Five needles from one clone per chamber (i.e. 100 needles per [CO21 

treatment) were sampled in July 1993 for Rubisco activity assays. The needles, 

removed from mid-way along current-year branches (upper-most whorl), were 

rapidly weighed before plunging them in to liquid nitrogen. Before measuring 

Rubisco activity, the projected area of needles was measured using a leaf area meter. 

Needle concentration of chlorophylls a, b, and a+b was measured on different 

needles sampled in the same way as above. The saplings were sampled once a month 

from March to October in 1992, and from February to October in 1993. Three 

needles from one clone per chamber were removed from mid-way down a current-

year branch (upper-most whorl) and immediately plunged in to liquid nitrogen. The 

method for extraction and measurement of chlorophyll (Porra et al., 1989) has been 

described in Chapter 2. Before measuring the concentration of chlorophylls the 

projected area of needles was measured using a leaf area meter. 
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Samples for macro-nutrient (nitrogen, phosphorus, potassium, calcium and 

manganese), sugar and starch concentrations of roots and current year needles (from 

midway down a current-year branch of the upper-most whorl) were taken at each 

harvest made during the 1992 and 1993 growing seasons. The numbers of root and 

leaf samples taken were 24 per [CO2] treatment (6 per clone) on day 381, 40 per 

[CO2] treatment (10 per clone) on day 551, and 20 per [CO2] treatment (5 per clone) 

on day 719 and 972. Full details of the methods of nutrient, sugar, and starch analysis 

are given in Chapter 2. 

4.3 Results 

As found in Chapter 3, there were no significant inter-chamber effects on any of the 

physiological parameters measured on the four clones of Sitka spruce, and, thus, the 

interactions 'chamber' are not shown. 

CO2 assimilation rate 

Elevated CO2 significantly (P c 0.001) increased CO2 assimilation rate of Sitka 

spruce saplings by about 62% in summer 1993, when measured at the growth CO2 

concentrations (Table 4.1). This stimulation occurred in all the clones, but was higher 

in the Skidegate a and b clones (about 95% and 76%, respectively) than in the North 

Bend clones (about 43%) (Table 4.2). Thus, photosynthesis of the more northerly 

clones was more responsive to elevated CO2 concentration, although not significantly 

so, than photosynthesis of the North Bend clones. The relationship between PPFD-

saturated CO2 assimilation rate and leaf internal CO2 concentration was used to 

ascertain the biochemical limitation to photosynthesis. These A/Ct measurements 

showed a certain degree of down-regulation of photosynthesis in the saplings grown 

in elevated [CO2} (Figure 4.1). The decrease in AMAX in the elevated [CO2] treatment 

was of the order of -25% (P < 0.001). This downward acclimation of AMAX was 

observed in all four clones grown in elevated [CO2] (Figure 4.2). It was significant at 
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P .c 0.05 in the North Bend a (about -28%, the largest difference), North Bend b, and 

Skidegate b clones, and at .P < 0.10 in the Skidegate a (about -21%, the least 

difference). 

Table 4.1. Rubisco activity in vitro (on leaf area basis), assimilation rate (A), 
stomatal conductance (g), and WUE 1  of the Sitka spruce saplings (all clones) 
in ambient or elevated [CO2]. Data are means of 20 plants per [CO2] treatment 
± 1 SEM. A, g, and WUE 1  were measured inside a glasshouse at the University 
of Edinburgh at the end of July 1993. Assimilation measurements were made at 
the growth CO2 concentration, with a mean temperature of 24.9 ± 0.28 °C (1 
SEM) at saturating PPFD (> 1700  umol  m-2  S -1 ) between 11.00 and 13.00 h. 

Rubisco A 9S WUE1 
(jimol M-2  S -1 ) (.tmol m 2s 1

) (mol m 2s1 ) (mmol moL') 
elevated 27.88±1.54 16.83±0.44 0.17±0.004 6.78±0.29 
ambient 43.72±3.13 10.09±0.37 0.21+0.005 4.34±0.23 
Statistical significance: 
[CO2] Pc0.001 Pc0.001 P<0.00l Pc0.001 
clone 
[CO21 x clone 

Rubiscb activity 

The A/C1 response curves also showed that ambient [CO2]-grown saplings had higher 

carboxylation efficiency than elevated [CO2]-grown saplings (Figure 4.1). 

Carboxylation efficiency is generally interpreted as a limitation by Rubisco activity, 

which was significantly reduced in vitro by 36% in elevated [CO2] (Table 4.1). 

Figure 4.2 shows that all elevated [CO2] clones had a depression in carboxylation 

efficiency in vivo. In parallel, Rubisco activity in vitro significantly decreased by 

about -22% in Skidegate b, -36% in North Bend b, -39% in North Bend a, and -43% 

in Skidegate a in response to long-term growth in elevated [CO2] (Table 4.2). 

However, there were no significant differences in Rubisco activity among the clones, 

or in the extent of the change in Rubisco activity induced by elevated [CO2]. 

Needle chlorophyll concentration 

Elevated [CO2] did not affect the chlorophyll alb ratio, in both growing seasons 

(Tables 4.3 and 4.4). However, chlorophyll concentrations (a, b, and, total) were 
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statistically affected in both growing seasons, and were lower at all sampling times in 

the saplings grown in elevated [CO2] compared with the ambient [CO21-grown 
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Figure 4.1. The relationship between net CO2 assimilation rate (A) of Sitka 
spruce saplings of the four clones and intercellular CO2 concentration (Ci) in 
conditions of PPFD saturation. The measurements were made between 
August and October 1993 on shoots of twelve saplings per [CO2] treatment. 
Mean AMAX,  averaged across the four clones, was statistically different 
between treatments (P <0.001). 

Stomatal conductance 

Stomatal conductance was strongly affected by growth in elevated CO21 (P <0.001). 

Stomatal conductance of saplings grown and measured in elevated [CO2] was about 

20% less than that of plants grown and measured in ambient [CO2} (Table 4.1). 
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However, relative stomatal limitation to photosynthesis was decreased from about 

36% in ambient [CO21 to about 18% in elevated [CO21-grown saplings. All the four 

clones showed a significant decrease in g in elevated [CO2}, when measured at the 

growth CO2 concentrations (Table 4.2). This decrease in g was largest in the North 

Bend a clone (about -29%), and least for Skidegate a (about -11%). Short-term 

response of stomatal conductance to stepwise changes in intercellular CO2 

concentrations was relatively high in both elevated- and ambient [CO2]-grown 

saplings (Figure 4.3). The North Bend a clone was the only clone in which elevated 

[CO2]-grown plants showed significant reduction in gs  over range of Ci 's, since there 

were no differences in the gjCj relationship in the other three clones between the 

[CO2] treatments (P < 0.05). 

Instantaneous water use efficiency 

An estimate of the instantaneous leaf water use efficiency was calculated as the ratio 

of net assimilation rate to water lost by transpiration. WUE1 increased significantly 

(about +56%) in saplings grown and measured in elevated [CO2] compared to 

saplings grown and measured in ambient [CO2] (Table 4.1). All the four clones had a 

significant increase in instantaneous WUE1 in response to elevated [CO2], when 

measured at the growth CO2 concentrations (Table 4.2). This increase was about 

40% in North Bend a, 59% in Skidegate a, 61% in North Bend b, and 65% in 

Skidegate b. However, there were no significant differences (P < 0.05) in WUE1 

among the clones in both the [CO2] treatments. 

Sugar and starch concentrations 

Sugar concentration (sucrose, fructose, glucose, etc. percentages are reported in 

Appendix 3 Table 1) per unit of dry mass in both needle and root (Figure 4.4) were 

not significantly increased by elevated [CO2], other than at the first harvest (382 d). 

There was no clear trend in the sugar concentrations among clones, and all responded 

similarly to elevated [CO21 (Appendix 3 Figure 1). 
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Table 4.2. Rubisco activity in vitro (on leaf area basis), assimilation rate (A), stomata! conductance (g), and 
WUE1 of the four Sitka spruce clones. A, g, and WUE1 were measured at the growth CO2 concentrations. 
Data represent the means of 5 plants per treatment ± 1 SEM. The significance levels (* = P < 0.05, ** = P 
0.01, 	= P <0.001) apply to the difference in response to the [CO2] treatments of each clone. 

Rubisco (umol m 2s") 	 A (p.tmol m 2s1 ) 	 g. 
(Mot m2s1) moY1) 

elevated 	ambient 	elevated 	. 	ambient 	elevated 	ambient elevated 	ambient 
Skidegate a 	29.97 ± 1.99 52.41 ±7.48 ** 	18.33 ±0.99 	9.39 ±0.52 *** 	0.184±0.006 	0.206±0.010 *  7.27 ±0.91 4.56 ± 0.58 * 
Skidegateb 	28.10 ± 2.13 36.23 ± 2.77 * 	16.33 ±0,72 	9.27 ±0.11 ** 	0.175±0.007 	0.219±0.002 ***  6.61 ± 0.37 4.01 ± 0.35 ** 
North Bend a 	27.51 ± 4.41 45.48 ± 6.35 * 	15.88+0.49 11.15 ±0.23 *** 	0.155±0.002 	0.217±0.002*** 6.12 ± 0.65 4.38 ± 0.59 * 
North Bend 	25.94 ± 2.90 40.75 ± 5.33 * 	16.19 ± 067 11.29 ± 1.28 ** 	0.166±0.009 	0.205±0.018 *  7.11 ± 0.24 4.42 ±0.54 
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Figure 4.2. The relationship between net CO2 assimilation rate (A) of the four 
Sitka spruce clones and intercellular CO2 concentration (Ci) in conditions of 
PPFD saturation; (a) Skidegate a, (b) Skidegate b, (c) North Bend a, and (d) 
North Bend b. The measurements were made between August and October 1993 
on shoots of three plants per clone per [CO2] treatment. 

There was a significant increase in starch concentration at the end of both the 1992 

and 1993 growing season (days 551 and 972, respectively) in the needles (Figure 

4.5a) and roots (Figure 4.5b) of saplings grown in elevated [CO2] compared with 

ambient [CO2]-grown plants. The amount of starch accumulated in the needles of the 

four clones of Sitka spruce grown in elevated [CO2] was much larger on day 972, 
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Figure 4.3. The relationship between stomata! conductance (g e) of the four 
Sitka spruce clones and leaf internal CO2 concentration (C1) in conditions 
of PPFD saturation; (a) Skidegate a, (b) Skidegate b, (c) North Bend a, and 
(d) North Bend 5. The measurements were made between August and 
October 1993 on shoots, of three plants per clone per [CO2] treatment. 

compared with day 551 (Figure 4.6a). Starch concentrations of the roots of all the 

clones were also increased at the end of the 1992 and 1993 growing season by 

elevated [CO2] (Figure 4.6b). This increase was significant in each clone on day 551, 

but on day 972 root starch concentration increased significantly only in the North 

Bend clones grown in elevated [CO2]. 
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Table 4.3. Chlorophyll concentration (mg cm-2) measured at monthly intervals from March to 
October 1992 on needles of Sitka spruce saplings grown in ambient or elevated [CO2]. One-year- 
old foliage was analysed from March to May while the later assays were on current year foliage. 
Data are means of 20 plants per treatment ± 1 SEM. 

chlorophyll alb 	 chlorophyll a chlorophyll b total chlorophyll 
elevated 	ambient 	elevated 	ambient elevated 	ambient elevated ambient 

March 	2.67±0.04 	2.71 ±0.04 	56.32±2.14 	64.14±2.72 21.22±0.84 	23.84± 1.14 77.53 ±2.93 87.98±3.83 
April 	2.58 ± 0.04 	2.64 ± 0.04 	50.84+2.14 	58.75 ± 2.72 19.67 ± 0.84 	22.23+1.14 70.53 ± 2.93 80.98 ± 3.83 
May 	2.59 ± 0.07 	2.51 ± 0.03 	37.44 ± 1.10 	41.19 ± 1.46 14.64 ± 0.57 	16.49 ± 0.67 52.09 ± 1.61 57.68 ± 2.10 
June 	2.25 ± 0.06 	2.33 ± 0.08 	50.45 ± 2.75 	58.87 ± 2.80 22.83 ± 1.36 	25.59 ± 1.52 73.28 ± 3.99 84.46 ± 4.08 

ON 	 July 	3.53 ± 0.15 	3.63 ± 0.15 	50.38 ± 2.90 	59.66 ± 3.02 15.01 ± 0.74 	17.09 ± 1.00 66.44 ± 3.05 76.76 ± 3.53 
August 	3.06±0.23 	2.91+0.11 	55.09±6.41 	70.81 ±5.05 20.61 ±2.98 	25.19±2.19 75.70±9.36 96.01 ±7.14 
September 	2.56 ± 0.10 	2.68 ± 0.07 	57.29 ± 2.88 	62.11 ± 3.31 22.85 ± 1.50 	23.43+ 1.34 80.14 ± 4.07 85.54 ±4.52 
October 	3.34±0.18 	3.63+0.20 	60.51 ±3.81 	66.99±2.43 19.24 ± 1.71 	19.50± 1.39 79.75 ±5.46 86.49±3.66 

Statistical significance: 
[CO21 	 us 	 Pc0.001 P<0.001 pco.00i 
Time 	 Pc 0.001 	 P <0.001 ° <0.001 P <0.001 
Interaction 	 ns 	 ns as ns 



Table 4.4. Chlorophyll concentration (mg cm 2) measured at monthly intervals from February to 
October 1993 on needles of Sitka spruce saplings grown in ambient or elevated [CO21. One-year-
old foliage was analysed from February to May while the later assays were on current year foliage. 
Data are means of 20 plants per treatment ± 1 SEM. 

chlorophyll alb chlorophyll a chlorophyll b total chlorophyll 
elevated ambient elevated ambient elevated ambient elevated ambient 

February 2.08 ±0.04 2.06 ±0.05 61.27 ±4.23 72.39 ± 3.55 30.00± 2.43 35.51 ± 2.10 91.27 ± 6.62 107.90 ±5.51 
March 2.38 ±0.07 2.54 ±0.16 55.06 ±4.42 59.05 ± 3.13 23.61 ± 2.15 24.90 ± 1.84 78.66 ± 6.51 83.95 ±4.88 
April 2.29±0.05 2.20±0.06 73.49±4.96 76.05±4.81 32.04±2.08 34.99±2.49 105.53±6.96 111.04±7.16 
May 2.65 ±0.16 2.47 ±0.04 80.57 ±4.64 87.21 ± 5.18 31.33 ± 2.15 35.52 ± 2.25 111.90 ± 6.43 122.73 ± 7.39 
June 2.61 ±0.04 2.51 ±0.04 23.89 ± 1.79 25.83 ± 1.25 9.29 ±0.78 10.30± 0.49 33.18 ± 2.56 36.14 ± 1.72 
July 2.66 ±0.10 2.61 ±0.02 22.47 ± 2.05 29.77+2.08 8.68 ±0.88 11.44 ± 0.84 31.15 ± 2.91 41.21 ±2.92 
August 2.58 ±0.06 2.55 ±0.11 28.97 ± 2.76 35.98 ± 2.59 11.47 ± 1.21 14.73 ± 1.27 40.44 ± 3.95 50.71 ±3.73 
September 2.44 ± 0.03 2.37 ± 0.05 23.66± 2.25 36.01+3.05 9.78 ± 0.97 15.19 ± 1.28 33.45 ± 3.22 51.20 ± 4.31 
October 2.96±0.14 2.57 ± 0.04 27.89 ± 2.47 36.38 ±2.03 9.91 ± 1.10 14.32±0.96 37.80±3.50 50.70±2.97 

Statistical significance: 
[CO,] ns P <0.001 P< 0.001 P <0.001 
Time P <0.001 P <0.001 P <0.001 P <0.001 
Interaction ns ns as as 
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Figure 4.4. Needle (a) and root (b) soluble sugar concentrations per unit dry 
mass in the Sitka spruce saplings grown in ambient or elevated [CO2] in the 
growing seasons 1992 and 1993, shown as days from the beginning of the 
experiment (1 March 1991). Data are means of 20 to 40 plants per treatment ± 
1 SEM. The significance level (** = P c 0.01) shows the difference in sugar 
concentration in response to the [CO2] treatments. 

Nutrient concentrations 

Although the saplings were supplied with non-limiting nutrients to ensure free access 

(details are given in Chapters 2 and 3), differences were found in the nutrient 

concentrations of needles and roots between the [CO2] treatments. In elevated [CO2] 

there was a significant reduction in needle (Figure 4.7a) and root (Figure 4.7b) N 

concentration of the Sitka spruce saplings harvested at the beginning and end of both 

the 1992 and 1993 growing seasons. The decrease in N concentrations ranged from 

-16% (on day 551) to -38% (on day 972) in the needles, whereas in roots it was 

remarkably constant at each harvest (about -15%). In addition, N concentration of 

both needles and roots (Table 4.5) was significantly reduced in each clone grown in 

elevated [CO2] at the end of the third growing season (day 972). Figure 4.8 shows the 

relationships between leaf N concentration and mean total dry mass of the saplings in 

both ambient and elevated [CO2]. Growth in different CO2 concentrations affected 

the nitrogen concentrations when the saplings were the same size, as demonstrated 

by the linear relationships between the mean total dry mass and nitrogen 
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concentration of leaves (R 2  = 0.926 for the elevated [CO2] saplings, and R 2  = 0.993 

for the ambient [CO21 saplings). 
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Figure 4.5. Needle (a) and root (b) starch concentrations per unit of dry mass 
in the Sitka spruce saplings grown in ambient or elevated [CO2], shown as 
days from the beginning of the experiment. Data are means of 20 to 40 plants 
per treatment ± 1 SEM. The significance levels (* = P <0.05, ** = p < 0.0 1, 

= P < 0.001) show the difference in starch concentration in response to 
the [CO2} treatments. 

At each harvest, needle (Figure 4.9a) and root (Figure 4.9b) P concentrations of the 

saplings in elevated [CO2] decreased, but the differences were significant only on day 

972 in needles and on day 551 in roots. There were no significant differences in P 

concentration of needles and roots among clones in the two [CO2] treatments after 

three years of growth (Table 4.5). Significantly different K concentrations were 

found in needles (Figure 4.9c) and roots (Figure 4.9d) of the saplings between the 

two [CO2] treatments at the end of both 1992 and 1993 growing seasons. At the end 

of the third growing season, only the Skidegate a clone and the North Bend clones 

showed significant reductions in needle and root K concentration (Table 4.5). 



Table 4.5. Nutrient concentration (mg g 1 ) in the four clones of Sitka spruce after three years of 
growth (day 972) in ambient or elevated [CO21. Data are means of 5 plants per treatment ± 1 SEM. 
The significance levels (* = P C 0.05, ** = P c 0.01) show the difference in each clone in response to 
the [CO21 treatments. 

Skidegate a Skidegate b North Bend a North Bend b 
elevated ambient elevated ambient elevated ambient elevated ambient 

needle nutrient content: 
N 0.89±0.117 1.44±0.168 * 1.03 ±0.103 1.54±0.141 * 0.94 ±0.024 1.31 ±0.115 * 0.87±0.095 1.57±0.069 ** 
P 0.30±0.020 0.35±0.022ns 0.21 ±0.009 0.21 ±0.009ns 0.26±0.006 0.29±0.016ns 0.24±0.023 0.30±0.012ns 
K 1.25 ± 0.047 1,49 ± 0.023 ** 1.22 ±0.051 1.24 ± 0.045 ns 1.53 ±0.033 1.59 ±0.026 ns 1.43 ± 0.048 1.55 ± 0.029 ns 
K 1.25 ±0.047 1.49±0.023 ** 1.22 ±0.051 1.24±0.045 ns 1.53±0.033 1.59 ±0.026 ns 1.43±0.048 1.55 ±0.029 ns 
Ca 0.76±0.030 0.83 ±0.016 ns 0.65 ±0.025 034±0.034 ns 0.27±0.015 0.31 ±0.037 ns 0.19±0.026 0.36 v0.047 * 
Mg 0.12±0.002 0.14±0.009ns 0.09±0.007 0.10±0.006ns 0.06±0.002 0.07±0.003ns 0.07±0.011 0.10±0.010ns 

root nutrient content 
N 1.00±0.024 1.24±0.058* 1.29±0.039 1.14±0.038* 1.05±0.052 1.54±0.124* 1.11±0.032 1.31 ±o.019** 
E 0.22 ±0.031 0.24 ± 0.014 ns 0.27 ± 0.012 0.23 ±0.015 ns 0.20 ±0.010 0.25 ± 0.019 ns 0.22 ±0.005 0.27 ± 0.023 ns 
K 0.88 ±0.024 1.05 ±0.084 ns 0.95 ±0.042 0:96±0.048 ns 1.13 ±0.060 1.46±0.074 * 1.08 ±0.051 1.31 ±0.038 * 
Ca 0.34 ± 0.016 0.36 ± 0.016 ns 0.39 ± 0.044 0.45 ± 0.020 ns 0.44 ± 0.033 0.52 ± 0.026 ns 0.39 ± 0.022 0.48 ± 0.018 * 
Mg 0.18±0.005 0.17±0.008ns 0.18±0.002 0.14±0.011 * 0.16±0.006 0.18±0.005 ns 0.17±0.002 0.20±0.016ns 
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Figure 4.6. Needle (a) and root (b) starch concentrations per unit dry mass in 
the four Sitka spruce clones grown in ambient or elevated [CO2], shown as 
days from the beginning of the experiment. Data are means of 5 to 10 plants 
per treatment ± 1 SEM. The significance levels (* = P c 0.05, ** = P < 0.01, 

= P c 0.001) show the difference in starch concentration in each clone in 
response to the [CO2] treatment. SK a = Skidegate a, SK b = Skidegate b, NB 
a = North Bend a, and NB b = North Bend b. 
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Calcium and magnesium concentrations were also reduced in elevated [CO2]. 

However, needle calcium concentration was significantly affected only on day 382 

(Figure 4.9e), and root calcium concentration was significantly decreased only on day 

972 (Figure 4.91) in saplings grown in elevated [CO2]. With the exception of the 

North Bend b clone, which showed significant differences in both needle and root 

calcium concentrations between the two [CO2] treatments at the end of the third 

growing season, there were no significant differences in calcium concentration of 

each of the other three clones in response to elevated [CO2] (Table 4.5). Needle 

magnesium concentration of the elevated [CO2] saplings was significantly reduced at 

the beginning of both the 1992 and 1993 growing seasons compared to that of the 

ambient [CO2]-grown plants (Figure 4.9g). Accordingly, the needle magnesium 

concentrations of each clone were not statistically different between the two [CO2] 

treatments on day 972 (Table 4.5). There were no differences in root magnesium 

concentration of saplings between the two [CO2] treatments at each harvest (Figure 

4.9h). However, root magnesium concentration of the Skidegate b clone grown in 

elevated [CO2] was significantly affected at the end of the third growing season. 
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Figure 4.7. Needle (a) and root (b) nitrogen concentrations per unit of dry 
mass in the Sitka spruce saplings grown in ambient or elevated [CO2], shown 
as days from the beginning of the experiment. Data are means of 20 to 40 
plants per treatment ± 1 SEM. The significance levels (* = P < 0.05, ** = P C 

0.01, = P C 0.001) show the difference in nitrogen concentration in 
response to the [CO2] treatments. 
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Figure 4.8. Linear relationships between of the combined mean foliar 
nitrogen concentration and total dry mass of the Sitka spruce saplings 
grown in ambient or elevated [CO2]. Data are means of 20 to 40 plants 
per treatment ± 1 SEM. 

4.4 Discussion 

The four clones of Sitka spruce were grown in stress-free conditions (adequate 

nutrition and water) to assess the effect of elevated [CO2] on tree physiology per Se, 

thus ruling out any other effects that insufficient water or nutrient supply might have 

caused. Some species, for instance Pinus radiata (Conroy et al., 1986b) and Pinus 

taeda (Thomas ci' al., 1994), have shown a lack of response of A to elevated CO2 

concentration in low nutrient conditions. Recently, Drake et al., (1997) have stressed 

the importance of available nutrients in determining the extent of the stimulation of A 

in elevated [CO2]: in a review of eight experiments the average stimulation dropped 
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Figure 4.9. Needle (a,c,e,g) and root (b,d,f,h) phosphorus (a,b), potassium (c,d), 
calcium (e,f), and magnesium (g,h) concentrations per unit of dry mass in the Sitka 
spruce saplings grown in ambient or elevated [CO2], shown as days from the 
beginning of the experiment. Data are means of 20 to 40 plants per treatment ± 1 
SEM. The significance levels (* = P c 0.05, ** = P c 0.01) show the difference in 
nutrient concentration in response to the [CO2] treatments. 
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from 57% at high nitrogen supply to 23% with low availability of nitrogen. Long-

term growth in elevated [CO2] significantly increased instantaneous photosynthetic 

rates of the clonal Sitka spruce saplings by about 62% (Table 4.1). Similar increases 

in assimilation rate were found, on average over the entire study period, in juvenile 

foliage of nine-year-old Pinus taeda trees exposed for the second year to doubling of 

the CO2 concentration (Murthy et al., 1997). There are not many studies available on 

the effects of growth in elevated [CO21 on the photosynthetic rates of Sitka spruce. 

Townend (1993) found a significant effect of elevated [CO2] on the response ofA to 

PPFD in two-year old Silica spruce clones, but he did not quantify this increase. A of 

both current year and one-year-old shoots of mature Sitka spruce was doubled in 

elevated [CO2] in a branch bag experiment (Barton, 1997). Similar results have been 

found in other coniferous species. The relative increase in photosynthetic rate of 

foliage of branches of 22-year-old Pinus taeda trees in elevated [CO2] (A arnb+330/Aamh) 

was slightly more than twice that in ambient [CO2] (Teskey, 1997). Similar results 

were observed on mature trees of P. tact/a exposed to FACE (Ellsworth et al., 1995) 

and on Pinus eldarica (Garcia et al., 1994). 

Instantaneous photosynthetic rates of the two different provenance of the four clones 

of Sitka spruce responded differently to elevated [CO2] (Table 4.2). The more 

southerly clones (North Bend a and b) showed an increase in assimilation rate of 

about 43%, which is very close to the average increase reported in the survey by 

Gunderson & Wullschleger (1994), whereas the increases in photosynthetic rates of 

the more northerly clones (Skidegate a and b) were well above the average. However, 

the Skidegate a and b clones produced significantly less total dry mass than the North 

Bend clones in elevated [CO2] at the end of the third growing season (see Chapter 3). 

Either the increase in instantaneous [CO2] assimilation rates of each clone measured 

at the beginning of August 1993 were not representative of the average increase over 

the entire growth period studied, or there were larger losses of carbon in respiration, 

volatilization, root exudation and fine root turnover in the more northerly clones. 

Unfortunately, these processes were not studied in this work, but they can account for 

a large proportion of the assimilates lost (Lynch & Whipps, 1990; Amthor, 1995). 
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Chapter 4 

Long-term growth in elevated CO2] often results in reduced amounts of 

photosynthetic pigments and enzymes (Eamus & Jarvis, 1989; Bowes, 1996). 

However, Arp (199 1) showed that acclimation of photosynthetic capacity and size of 

pot were highly correlated, and that constrained rooting caused by inadequate pot 

volume may down-regulate photosynthetic capacity in elevated [CO2]. In contrast, 

plants rooted into the ground did not show any degree of acclimation of 

photosynthetic capability (Arp & Drake, 1991; Idso & Kimball, 1992c; Liu & 

Teskey, 1995; Scarascia-Mugnozza et al., 1996). Exposure to elevated [CO2] of 

branches of mature Sitka spruce in a stand did not cause any acclimation of A in 

current year shoots, but it did result in some degree of down-regulation in one-year-

old shoots (Barton, 1997). There were no significant changes in the A/C1 relationship 

measured in branches exposed to elevated [CO2] of 22-year-old Pinus taeda trees in 

all the three years of growth, indicating that elevated [CO2} did not alter the 

photosynthetic capacity of the foliage when adequate sinks are available (Teskey, 

1997). Low rate of supply of nutrients can affect the size and activity of the 

photosynthetic system in elevated [CO2] plants. Miglietta et al. (1996) showed that 

photosynthetic capacity of wheat was significantly decreased in plants grown with 

nitrogen deficiency in FACE, whereas A/C1 response curves did not reveal any 

significant effects of elevated [CO2] on the photosynthetic capacity of well-fertilized 

plants. Similar results were found with Pinus taeda (Tissue et al., 1993; Thomas et 

al., 1994). There were no significant differences in A/Ct curves between the elevated 

and ambient CO2] plants of Betula pendula grown in Ingestad units with steady-

state nutrition (Pettersson & McDonald, 1992). As emphasized above, the Sitka 

spruce saplings in this study were supplied with free access to nutrients. Moreover, 

dry mass allocation was identical when the plants were the same size suggesting that 

they were not pot limited (see Chapter 3). Yet nonetheless, acclimation of 

photosynthetic capacity occurred (Figure 4.1) in each clone (Figure 4.2). Acclimation 

of A was also found by Barton (1997) in two-year-old seedlings of Sitka spruce. He 

found that whole plant A was strongly down-regulated in elevated [CO2} during the 

second year of growth, and it was not affected by different nutrient treatments. 
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A/C1 response curves showed both a decrease in Amax, which is biochemically related 

to the rate of regeneration of RuBP, and in carboxylation efficiency, which is limited 

by Rubisco activity. The latter is consistent with the measurements of Rubisco 

activity in vitro which decreased in elevated [CO2]-grown saplings (Table 4.1). This 

decline of photosynthesis was in agreement with a down-regulation of Rubisco (Van 

Oosten & Besford, 1995), which may result from both lowered enzyme activation or 

a reduced amount of the enzyme (Van Oosten a al., 1992; Tissue a al., 1993; Vu et 

al., 1997). Tomato plants in elevated [CO2] showed more rapid ontogenetic decrease 

in the transcription of the Rubisco small-subunit than in ambient [CO21 (Van Oosten 

& Besford, 1994; Van Oosten a al., 1994). Acclimation of PPFD-saturated 

photosynthesis to CO2 enrichment started before the tomato leaves were fully 

expanded (presumably when these leaves changed their "status" from sinks to 

photosynthetic active source organs). This decline of carboxylation capacity in 

tomato plants in elevated [CO2] was followed after about 10 days by acclimation of 

the electron transport capacity of the light-harvesting complexes (i.e. the thylakoid 

proteins and chlorophyll of both photosystems, and cytochrome J) of mature leaves 

(Van Oosten & Besford, 1995; Van Oosten et al., 1995). 

The decline in chlorophyll concentration, which has been found in a number of 

- experiments on plants grown in elevated [CO2] (De Lucia et al., 1985; Mousseau & 

Enoch, 1989; Radoglou & Jarvis, 1992; Wullschleger et al., 1992), may also affect 

the assimilation capacity. Thus, the down-regulation of A,nax shown by the elevated 

[CO2}-grown clonal Sitka spruce saplings in this study may have been due, at least in 

part, to a significant reduction in chlorophyll concentration found during both the 

1992 and 1993 growing seasons (Tables 4.3 and 4.4). 

Nitrogen concentration was affected by growth in elevated [CO2] in the Sitka spruce 

clones in the present study (Figure 4.7). Reduction in leaf N concentration in 

elevated [CO,] was only partially caused by starch dilution, since starch 

concentration was not always affected (Figure 4.5a). There are many processes that if 

affected by elevated [CO2] can lead to a decreased leaf N concentration. Rubisco is 

the largest pool of nitrogen in leaves (Stitt & Schulze, 1994; Drake et al., 1997), and 
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its content can be reduced by about 35% in elevated [CO2] before resulting in co-

limitation of A (Long & Drake, 1992). Since less Rubisco is required in elevated 

[CO2], the more carbon assimilated per unit of leaf N leads to increased nitrogen use 

efficiency (NUE). Inhibition of photorespiration in elevated [CO2] plants may also 

reduce the amount of nitrogen required per unit dry mass produced (Conroy & 

Hocking, 1993). For example, Van Oosten et al. (1992) showed that the activity of 

two photorespiratory enzymes (glycolate oxidase and hydroxypyruvate) were 

decreased in Picea abies grown for two years in elevated [CO23. Chlorophyll 

concentration also constitutes a major pool of N in leaves (Evans, 1989), and 

pigments of the light-harvesting complexes are usually decreased by elevated [CO2] 

(Ceulemans & Mousseau, 1994). Moreover, respiration associated with protein turn-

over accounts for a considerable fraction of maintenance respiration (Amthor, 1995). 

Thus, changes in plant biochemistry in response to elevated [CO2] may reduce 

specific maintenance respiration rates and hence the N requirement. Changes in the 

biochemistry of photosynthesis and photorespiration usually occur when N uptake 

does not keep pace with carbon uptake (Conroy & Hocking, 1993; Sage, 1994; 

Jarvis, 1995). This may be regarded as an optimisation process which involves 

reallocation of nitrogen away from non-limiting components into more limiting 

processes or organs (i.e. additional or larger sinks for the extra-carbon assimilated), 

leading to increased NUE. 

The lower N requirement per unit of leaf area in elevated [CO2] may account for the 

acclimation of the photosynthetic capability of the four clones, despite free access to 

nitrogen and the large rooting volume (10 dm 3), although, as Drake et al. (1997) 

pointed out, acclimation of A is the exception, rather than the rule, when the rooting 

volume exceeds 10 dm 3 . However, a recent study on the interactive effect of elevated 

[CO2] and N supply in field grown rice, has shown that reduced foliage concentration 

of N (even if calculated as a percentage of structural dry mass) was always 

associated with increased [CO2] (Ziska et al., 1996). In the Sitka spruce saplings leaf 

N concentration was different when the plants were the same size (Figure 4.8), 

indicating that growth in elevated [CO2] increased the dry mass produced per unit of 

nitrogen taken up. Increased growth per unit of plant nitrogen and phosphorus was 
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also noted with seedlings of Pinus ponderosa grown in elevated [CU2] (DeLucia et 

al., 1997). 

In a recent paper Van Oosten & Besford (1996) have described a molecular model 

for photosynthetic acclithation. The model invokes metabolite regulation of gene 

expression which probably occurs when the production of new assimilates is higher 

than the capacity to handle them. This can involve a source-sink imbalance leading to 

feedback effects on photosynthesis via end-product accumulation (Stitt, 1991). The 

cytoplasmatic pool of glucose may provide a regulatory signal for coarse control, 

which determines the amount of photosynthetic systems, by repressing the 

transcription of photosynthetic genes (Farrar, 1992). Yet, sugar concentration in 

needles of the Sitka spruce saplings was not increased significantly at the beginning, 

and end, of the 1993 growing season (Figure 4.4), at a time when photosynthetic 

acclimation in elevated [CO2] was detected (Figure 4.1). This finding seems to 

conflict with the model put forward by Van Oosten & Besford (1996). However, Paul 

& Driscoll (1997) have recently shown that loss of photosynthetic activity is more 

correlated to the ON ratio than to carbohydrate status per se. Accordingly, the 

increased leaf carbon/nitrogen ratio found on days 719 and 972 (i.e. equal sugar 

concentration, Figure 4.4a, and lower nitrogen concentration, Figure 4.7a) may be 

consistent with the photosynthetic acclimation in the clonal saplings grown in 

elevated [CU,]. This result is consistent with the findings of a number of other 

studies. For instance, A of two full-sib families of Pinus ponderosa seedlings was 

decreased in elevated [CO2] after about 39 days from germination; after 112 days 

from the beginning of the experiment elevated and ambient [CO2] seedlings 

maintained similar A rates (Grulke ci' al., 1993). However, the C/N ratio of needle 

tissues had been significantly increased in elevated [CO2] since day 22. 

Short-term responses of g sICi relationship showed that stomatal conductance 

decreased with increasing CO2 concentrations in both the elevated and ambient 

[CO2] clonal saplings (Figure 4.3). A similar trend was observed in all four clones 

(Figure 4.3), but this was not necessarily associated with an increase in the gas-phase 

limitations to CO2 uptake (Long & Drake, 1992). Elevated CO2 concentration 
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frequently leads to a decline in g in C3 plants (approximately 30-40%; see reviews 

by Eamus & Jarvis, 1989; Jarvis, 1989; Mott, 1990), but g in Sitka spruce is 

relatively insensitive to elevated [CO2] (Ludlow et al., 1971; Beadle et al., 1979; 

Barton, 1997). Other, more recent, studies on conifers have shown that g of mature 

trees of Pinus taeda was insensitive to elevated [CO,] (Ellsworth et al., 1995; Liu & 

Teskey, 1995; Murthy ci al., 1997). In the present study, the overall mean g 

measured over growth [CO2] conditions was decreased by approximately 20% in 

elevated [G02] (Table 4.1) and stomata] limitation to photosynthesis was halved. The 

combined mean WUE 1  of the Sitka spruce clonal saplings was increased in response 

to elevated [G02] and this resulted from both increased photosynthetic rate and 

decreased stomata] conductance (Table 4.1). This result was consistent within the 

four clones (Table 4.2). 

This study has highlighted acclimation of Rubisco and chlorophyll concentration as 

a means of improving nitrogen use efficiency in elevated [CO2]. This is likely to 

result in an advantage for plants growing in nitrogen-limited environments, since 

the amount of N needed for growth was less when Sitka spruce saplings growing in 

elevated [CO2] were the same size as saplings in ambient [CO2]. Murray et as!. 

(1996) found that total dry mass of Sitka spruce seedlings was marginally affected 

after three years of growth in elevated [G02] in nutritional conditions which 

resulted in —1.7% leaf N concentration. Our experiment also lasted three years and 

the sapling total dry mass was significantly increased in elevated [CO2] (see 

Chapter 3), however nutritional conditions resulted in —0.8% leaf N concentration. 

It is important to appreciate that both these experiments were done on the same site, 

with the same carbon dioxide exposure facilities. Pot volume was not limiting in 

either study. The main differences were the age of the plant material (seedlings in 

Murray et al's experiment and clonal saplings in this work) and the nutrient 

conditions. The four clones had been selected for their forestry potential and were 

also genetically more uniform than the seedlings, but they were taken from five-

year-old trees (see Chapter 2) and consequently had a higher degree of tissue 

maturity than the seedlings. However, one might expect the seedlings, being more 

plastic and having a higher degree of totipotency, to be more responsive to elevated 
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[CO,] than the clonal saplings. When Sitka spruce seedlings were grown without 

nutrient limitation with a weekly supply of nutrients (Townend, 1995), the increase 

in total dry mass in response to elevated [CO2] was larger than that seen here in the 

clonal saplings. In the experiment of Murray et al. the seedlings were top dressed 

with a slow release fertiliser at the start of each growing season. That apparently 

ensured an adequate supply of N, but there is no information available on the 

concentration of other macronutrients. The clonal saplings instead were fertilized 

weekly to ensure immediate free access to all nutrients. There is increasing 

evidence that elevated [CO2] stimulates an early higher growth rate which is then 

magnified over time (see Chapter 7). It is not possible to see this initial growth 

stimulation in the experiment of Murray et al. so perhaps the slow release of 

fertiliser may have been inadequate to keep up with the initial higher growth 

stimulation in elevated [CO2]. This once again raises the importance of supply and 

timing of nutrients. 

Grulke et al. (1993) found that elevated [CO2] had a much larger impact on growth 

of two full-sib families of Pinus ponderosa than the genetic source of the plants. 

However, the experiment was done on seedlings germinated and grown for four 

months in elevated or ambient [CO2], and there are no data available either on total 

dry mass or on growth rates of the two full-sib families seedlings. Moreover, in our 

clonal Sitka spruce saplings, provenance did not significantly influence the 

photosynthetic capability (Figure 4.2 and Table 4.2), A and WUBI measured at the 

growth CO2 concentrations, although, as we have shown in Chapter 3, the more 

northerly clones were significantly less responsive to elevated [CO2]. In our 

experiment genetic differences in growth response to elevated [CO2] were already 

evident after the first year of growth, and they were magnified over time becoming 

significant after three full growing seasons (Figure 3.7). Many factors may have 

caused the initial larger growth stimulation in the North Bend clones than in the 

Skidegate clones in response to elevated [CU2]. Oleksyn et al. (1992) found that in 

Pinus sylvestris root respiration accounted for about two-thirds of the total 

respiratory cost. Unfortunately, we were not able to measure the specific respiration 

rates of the four clones. However, the Skidegate clones allocated initially 
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proportionally more dry mass to the roots than the North Bend clones did (Figure 

3.9), and this might have increased their whole-plant respiratory losses. Moreover, 

the more southerly clones had higher initial NUE than the more northerly clones 

(data not shown), showing that they had more N available for those processes or 

organs which were most limiting to growth at that particular time. Clonal provenance 

did affect growth in elevated [CO 2} and plant allocation and nitrogen use efficiency 

may have played an important role. This is particularly important for the northern 

countries where N is the most limiting resource and, therefore, will affect Sitka 

spruce growth as the atmospheric CO2 concentration rises. 
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CHAPTER 5 

Long-Term Interactive Effects of Elevated [CO21 

and Water Stress on Growth and Plant Water 

Use of Cherry (Prunus avium) Seedlings 

5.1 Introduction 

Water is the main factor limiting plant productivity in the Mediterranean region and 

thus the interaction between water availability and rising CO2 concentrations is a 

major concern with respect to its effects on plant growth. If the emission of 

greenhouse gases continues to increase as expected, the average surface temperature 

of the Earth will increase by 0.2 - 0.4 °C per decade throughout the next century, as 

compared to an increase in temperature of 0.6 °C recorded during this century 

(Houghton et al., 1990; Houghton, 1994; IPCC, 1996). Seasonal distribution and 

frequency of rainfall will also be greatly affected. The temperature increase will 

cause an increase in evaporative demand and water holding capacity of the air, and 

this could have a negative effect on plants in areas with limited water resources 

(Parry, 1990; Parry & Jiachen, 1991; Parry, 1992; Parry et al., 1992; Jarvis, 1993). 

Rising [CO2]-driven reduced soil water availability and the higher potential 

evapotranspiration will probably have the most important consequences for 

agriculture and for forest vegetation in which competition determines species 

composition (Tolley & Strain, 1984b; Rogers & Dahlman, 1993; Lee a al., 1994; 

Jarvis, 1995). 

It has been suggested that the beneficial effects of elevated [CO2] on plant growth 

may depend upon plant water status (Idso, 1988): elevated [CO2] would have less 

effect on plants in the well-watered optimum growth phase, more effect under non-

lethal water-stressed conditions, and be most beneficial to severely water-stressed 

plants, resulting in an appreciable increase in growth. Several studies have shown 

that growth responses to elevated [CO2] were larger in water-stressed plants than in 



well-watered plants (Sionit et at., 1980; Morison & Gifford, 1984a,b; Tolley & 

Strain, 1984b; Conroy et al., 1986a, 1988; Marks & Strain, 1989; Kimball et al., 

1995). Clifford et at. (1993) found that plants of Arachis hypogaea grown in 

elevated [CO,] in droughted conditions produced more than double the above 

ground dry mass of plants grown in ambient [CO2], but that elevated [CO 2 ] also 

increased the harvest index of the droughted plants resulting in a six-fold increase in 

yield. However, quite variable results have been reported in studies on Quercus 

petraea and Pinus pinaster grown for one growing season in elevated [CO2] in well-

watered and water-stressed conditions (Guehi ci at., 1994). Total dry mass increase 

brought about by elevated [CO2] was 138% in well-watered and 47% in droughted 

Q. petraea plants, whereas the total dry mass increase was 63% in well-watered P. 

pinaster plants but there was no increase in droughted conditions. The overall mean 

relative growth rate of two-year-old Picea sitchensis saplings was increased by 9.8% 

in well-watered saplings and 6.9% in droughted saplings after six months of growth 

in elevated [CO2] (Townend, 1993). In a different experiment on Sitka spruce 

seedlings, Townend (1995) found that the growth response to the interaction 

between water stress and elevated [CO2] was dependent on nutrient supply: elevated 

[CO2} increased the percentage of dry mass produced by droughted seedlings 

compared to well-watered seedlings in the unfertilized treatment, but the increase 

was reduced in the fertilized treatment. The increase in relative growth rate of Acer 

saccharum in response to elevated [CO2] was also dramatically reduced in 

droughted conditions compared to well-watered conditions, but conversely the 

percentage increase in dry mass of both Liquidarnbar styraczflua and Ptatanus 

occidentatis was larger in droughted than in well-watered conditions (Tschaplinski 

et at., 1995). 

In elevated CO2 concentrations water use efficiency (WUE) per unit of leaf area has 

been shown to increase as a consequence of reduced transpiration rate (brought 

about by a decrease in stomatal conductance) and/or an increased assimilation rate 

(see reviews: Eamus & Jarvis, 1989; Jarvis, 1989; Eamus, 1991; Chaves & Pereira, 

1992; Morison, 1993). Stomatal closure, reducing the amount of water loss through 

transpiration, is a mechanism of drought avoidance and thus the onset of water 
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stress may be delayed in plants growing in elevated [CO 2] because of reductions in 

stomatal conductance (Bhattacharya et al., 1990). However, conflicting results were 

found by Heath & Kerstiens (1997) in Fagus sylvatica after two growing seasons in 

elevated [CO2]. Stomata] conductance was not only increased by elevated [CO2], but 

as drought developed stomata] closure was significantly delayed in beech plants 

growing with low nutrient supply. This resulted in a faster rate of soil drying even 

though elevated [CO2] did not significantly increase leaf area. Thus, there is less 

certainty about the effects of high concentrations of [CO2] on total water use per 

unit of ground area (Mousseau & Saugier, 1992). 

Additionally, growth in elevated [CO2] usually leads to faster growth of both leaf 

area and fine roots. This may increase total water consumption which in turn could 

offset higher instantaneous transpiration efficiency per unit of leaf surface (I'VE) in 

elevated [CO2] (Kerstiens ci' al., 1995; Heath & Kerstiens, 1997), resulting in lower 

whole plant water use efficiency (Gaudillere & Mousseau, 1989; Melillo ci al., 

1990). Thus, a measure of WUE based on the ratio of whole plant dry mass to total 

water transpired over the period of measurements may provide a more realistic 

description of WUE (Marks & Strain, 1989; Norby & O'Neill, 1989). Although 

Norby & O'Neill (1989) found a close relationship between ITE and whole plant 

WUE, the two indices do not contain identical information and generally increase of 

I'VE in elevated [CO2] is larger than increases in whole plant WUE (Morison, 1985). 

Thus, increased I'VE does not necessarily imply that elevated [CO2] improves 

resistance to water stress (Tschaplinski ci' al., 1995; Beetling ci' al., 1996). Drought 

resistance involves cellular and metabolic adaptations which affect plant water 

relations, and, in turn, photosynthesis and transpiration, root length and surface area, 

fine root turnover, soil exploration by roots, and xylem hydraulic conductivity 

(Tyree & Alexander, 1993). 

Research on interactions between water stress and elevated [CO2] has mostly been 

done on crops (Morison & Gifford, 1984a,b; Bhattacharya et al., 1990; Chaudhuri ci' 

al., 1990; Clifford et al., 1993; Mauney et al., 1994; Samarakoon et al., 1995) or to 

study competition between C3 - C4 species (Marks & Strain, 1989). Little 
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Chapter 5 

information is available on the impact of water stress and elevated [CO2] on tree 

growth and plant WUE. Moreover, no experimental work has been done on the 

effects of long-term interactions between elevated [CO,] and drought on tree 

growth. Elevated [CO2] increased whole plant WUE of Aster pilosus (C3) over a 13 

day-period by about 154% in well-watered conditions and 111% in droughted 

conditions, and in water-stressed plants of Andropogon virgunicus (C4), by about 

66%, although there was no increase in well-watered plants (Marks & Strain, 1989). 

However, Morison & Gifford (1984b) observed similar relative increases in WUE in 

response to elevated [CO2] in C3 crop species (average increase of 57%) and C4 crop 

species (average increase of 50%). A constant, higher WUE, of almost 50%, was 

found during two years growth of Lolium perenne swards in elevated [CO2] than in 

ambient [CO21 (Schapendonk et al., 1997). WUE of Pinus radiata plants grown for 

22 weeks in elevated [CO2] was increased by about 34% when the seedlings were 

adequately supplied with phosphorus, but was not significantly increased when the 

supply of phosphorus was limiting (Conroy et al., 1988). Norby & O'Neill (1989) 

found an increase in whole plant WUE of 82% in Quercus alba over a 36-week 

experiment in elevated [CO2]. A similar increase was found in Quercus petraea 

(80%, average of well-watered and droughted treatments), whereas in Pinus 

pinaster, the increase in WUE was about 50% (average of well-watered and 

droughted seedlings) in elevated [CO2] (Guehl et al., 1994). 

Cherry (Prunus avium) is an important and valuable agricultural and timber crop 

throughout Europe. Cherry fruit production is economically important in Southern 

Europe, where droughts generally occur in the summer, at the time of maximum leaf 

and fruit growth, and influence tree growth and productivity. The current series of 

experiments was designed to mimic the effects of natural water stress on the growth 

of young cherry seedlings. In the first growing season, gradual water stress was 

imposed on rapidly growing cherry saplings. In the second growing season, rapid 

onset of water stress was imposed at the height of the growing season, when the 

cherry seedlings had already developed maximum leaf area. Our hypothesis was that 

rapidly growing young trees, out-performing in elevated [CO2] those in ambient 

[CO2] when the evaporative demand was rapidly increasing and while soil water 
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availability was rapidly decreasing, could have used up the available water more 

rapidly. In this Chapter we report the long-term interactive effects of elevated [CO21 

and water stress on growth and whole plant WUE of cherry saplings. 

5.2 Materials and Methods 

Cherry seeds were germinated in spring 1993 and grown for two years in ambient 

(-350 jimol mof') or elevated (ambient + —350 pmol mol') CO2 concentrations in 

six open-top chambers located inside a glasshouse at the University of Edinburgh. A 

further set of trees was maintained outside the chambers in three different blocks as a 

control - i.e. to separate the carbon dioxide effect from any temperature increase or 

other changes related to growth in the OTCs (details of the growth conditions are 

given in Chapter 2). The pots were frequently moved within the OTCs and outside 

blocks to overcome position effects. The seedlings were potted into potting compost 

(gravel: sand: peat:loam mixture 1:1:1.5:3) and regularly fertilized in both growing 

seasons in order to supply mineral nutrients at free access rates (details of the growth 

conditions are given in Chapter 2). 

After the baseline harvest, made 33 days after emergence (dae), 180 seedlings (60 

seedlings per [CO2] treatment, 20 per OTC/outside block) were transplanted into 40 

cm-long soil columns (6.6 dm 3),  contained in black polythene tubes 45 cm long and 

14.5 cm in diameter. Because of their volume and form, the plant roots in the soil 

columns were not pot bound, and allowed unrestricted root growth and gradual soil 

drying (Khalil & Grace, 1992). The walls and the base of the polythene tubes were 

perforated (at —10 cm intervals) to allow free aeration of the soil and flow of excess 

water to the bottom of the column. 

The seedlings were irrigated every other day to pot water capacity for the first five 

weeks until 69 dae. Then half of the seedlings (eight per OTC and outside block) 

were water-stressed by with-holding water for a six-week drying cycle (until 115 

dae when the seedlings showed symptoms of severe water stress); simulating a 
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progressive decrease in water availability, while the remaining seedlings continued 

to be well-watered (pot capacity). At the end of the drying cycle the water-stressed 

seedlings were re-watered to pot capacity until the end of the first growing season (3 

October, 135 dae). In 1994 the seedlings were transplanted before budburst into 15 

dm3  pots. The second growing season started on 1 April 1994 which is shown, for 

convenience, consecutively on the figures as 136 dae. The seedlings (nine for each 

water, [CO2] treatment) were kept at pot water capacity for the first eleven weeks 

until 212 dae. Then the seedlings which had already experienced water stress in the 

first growing season were water-stressed again until 251 dae, while the remaining 

seedlings continued to be grown in well-watered conditions (pot capacity). In order 

to prevent a rapid decrease in water availability, the water-stressed seedlings were 

watered with 2 dm  of tap water after 10, 20 and 30 days, from the beginning of the 

drying cycle. 

After the baseline harvest (when six plants for each [CO2] treatment were 

harvested), six other harvests were made to determine growth during the 1993 

growing season: on 60 and 69 dae (six seedlings for each [G01] treatment), on 80, 

90, 103, and 115 dae (three for each water and [G02] treatment). There were two 

harvests during the second growing season: at the beginning of the water stress 

cycle, 212 dae (three seedlings for each water and [CO2] treatment), and at the end 

of the drying cycle, 251 dae (final harvest - six seedlings for each water and [G02] 

treatment). To measure dry mass (.DM) production, each plant was divided into leaf, 

main stem, side stems, and roots, which were separated from soil by washing and 

sieving carefully to minimise the loss of fine roots. Plant component parts were then 

oven dried for 48 h at 70 °G and weighed, using an electronic balance (Sauter, 

model REIE14, Fisons Scientific Equipment, Loughborough). Leaf area (LA) was 

measured using a leaf area meter (LI 3100, LI-GOR Inc., Lincoln, NB, USA). 

Non-destructive growth measurements (height, leader extension, number of 

branches, basal diameter) of all seedlings in each chamber (ranging from 12 to 30 

seedlings for each water and [G02] treatment in 1993, and from six to nine seedlings 

for each water and [G02] treatment in 1994) were followed throughout the growing 

seasons. The basal diameter (d), measured at the plant collar, was used to calculate 



basal sapwood area as follows: ((d12) 2  it), where it = 3.14. 

Plant water use efficiency (the ratio of dry mass produced to total amount of water 

taken up in the same period of growth) was estimated in water-stressed plants in the 

first growing season and on well-watered and water-stressed plants in the second 

growing season. At the onset of the first drying cycle (69 dae), the water-stressed 

seedlings were first irrigated to pot water capacity and after the excess water had 

been drained the seedlings were weighed to 1 g on a digital balance (model QS32A, 

Sartorius Instrumentation Ltd, Germany). On each following harvest date, the 

droughted pots and seedlings were weighed before being harvested. Mean relative 

growth rates (R) of total dry mass was calculated between the harvest made on 80, 

90, 103 and 115 dae and the harvests made on 69 dae in each [CO2] treatment 

(details of R are given in Chapter 7). R was used to calculate the total dry mass that 

seedlings harvested on 80, 90, 103 and 115 dae, had had on 69 dae in each [CO2] 

treatment, as follows: 

M =e In  (M__69) 
69  

where M69 is the total dry mass of each seedling on 69 dae, c is the [CO2] treatment, 

e is the base of Napierian logarithms (2.718), Mt  is the total dry mass of each 

seedling harvested on t dae (i.e. 80, 90, 103 and 115), R is the mean relative growth 

rate during the time interval of day 69 to t (Table 5.1). Thus, the dry mass increase 

(Cr) of each seedling in each [CO2] treatment and at each harvest date was then 

calculated as 

ctc = MC  MC 

and the total water uptake (Ur) of each seedling in each [CO2] treatment and at each 

harvest date was calculated as 

Ute= /3C_(PC+CC) 

where Pt  is the pot weight of each seedling harvested on t dae (i.e. 80, 90, 103 and 

115), P69 is the pot weight that the same seedlings had on 69 dae. Plant water use 

efficiency (DM  kg-1 1o ) was then estimated as the ratio of Cf to Uf. In 1994, during 

the whole second drying cycle (212 - 251 dae), all the well-watered seedlings (six 



per [CO2] treatment) were irrigated in excess with a known volume of water every 

other day (to ensure pot water capacity) and the drained water measured. Also the 

water-stressed seedlings (six per [CO2] treatment) were irrigated in excess with a 

known volume of water on 212 dae, and then the amount of water which drained 

was measured. At the end of the drought period (Just before the last harvest, 251 

dae), the water-stressed seedlings were rewatered in excess with a known volume of 

water (to ensure pot capacity) and the drained water measured. R of total dry mass, 

calculated between 212 - 251 dae in each water regime (w) per [CO2} treatment 

(Table 5. 1), was used to calculate the total dry mass that the seedlings harvested on 

251 dae had had on 212 dae in each [CO2} treatment, as follows: 

Mc = e ln (M 251 )—R (251-212) 
w212 

where M 212  and M 25  are the total dry mass of each seedling in each water regime 

per [CO2] treatment on 212 and 251 dae, respectively. Consequently, plant biomass 

increase over the period 212 to 251 dae (C) was calculated as M,, 25  - M 212 . Thus, 

the water uptake by each seedling in each water regime per [CO21 treatment (U) 

was calculated by subtracting the water drained (D) and plant biomass increase 

from the water supplied (S,) as follows: 

Uw 	'3
c = cwC._(DC +cC) 

and plant WUE was then estimated as the ratio of C,, to U. 

Table 5.1. Mean relative growth rate (d') of total dry mass of cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, 
used to calculate M and M, 212 . Data are means of 3 to 6 plants per 

treatment; dae = days after emergence. 

dae 
well-watered 

elevated 	ambient 	outside elevated 
water-stressed 

ambient 	outside 
69-80 0.0649 0.0543 0.0417 
69-90 0.0417 0.0365 0.0412 
69-103 0.0308 0.0333 0.0378 
69-115 ----- 	 ----- 	 - ---- 0.0255 0.0267 0.0302 
212-129 0.0150 	0.0150 	0.0213 0.0109 0.0114 0.0171 
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Data were tested using a factorial ANOVA (four-way maximum interactions) to 

determine the main effects of [CO2] treatment, water treatment, time, and chamber 

on all dependent variables. Where appropriate, the treatment means were compared 

using Duncan's multiple range test. 

5. 3 Results 

No significant inter-chamber effect on any of the growth parameters measured on 

the cherry seedlings was found in each [CO2] treatment, and, thus, the interactions 

chamber—day—[CO2}— water regime are not shown 

Less than 30 days after germination, there was already a significant difference in 

height of the well-watered seedlings amongst the [CO2] treatments (Figure 5.1 a). 

Leader extension of both well-watered and water-stressed elevated [CO?] seedlings 

showed consistently positive responses throughout the first growing season, whereas 

no significant differences were found between the elevated and ambient [CO2] 

seedlings throughout the second growing season. Water regime significantly 

affected the height of the cherry seedlings in each of the [CO2] treatments in the 

first, but not in second growing season (Table 5.2). 

The [CO2] treatments significantly affected the number of branches produced by the 

well-watered seedlings, but not those produced by the droughted plants (Appendix 

4, Figure 1). There was no effect of water stress in any [CO2] treatment (Table 5.2). 

The seedlings grown in elevated [CO2] had significantly larger basal area 

throughout the duration of the experiment in both water treatments (Appendix 4, 

Table 1; Figure 5.2). Water stress had a dramatic effect in each [CO2] treatment, but 

the relative stimulation was larger in ambient than in elevated [CO2] at the end of 

both growing seasons (Table 5.2). Figure 5.3 shows the relationship between 

number of branches (Figure 5.3a,b) and basal diameter (Figure 5.3c,d) and mean 

total dry mass produced. The linear relationships found between mean total dry 

mass and both number of branches and basal area of well-watered and water- 
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stressed seedlings (Figure 5.3), indicates that when plants were the same size there 

was no differences in number of branches or basal area. 
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- well watered elevated 	well watered ambient 	well watered outside 
-e---- droughted elevated 	I . droughted ambient 	-°-- droughted outside 

Figure 5.1. Height of the cherry seedlings grown in ambient [CO2], elevated [CO'], 
or outside control shown as days after emergence, in the growing season a) 1993 (data 
are means of 12 to 30 plants per treatment ± 1 SEM) and b) 1994 (data are means of 6 
to 12 plants per treatment ± 1 SEM). I = onset of the water stress cycle; dae = days 
after emergence. The letters (a, b, c) indicate significant differences at P c 0.05 
amongst the [CO2] treatments. 

well-watered 	. 	water-stressed 

1993 1994 1993 1994 
[CO2] PcO.O01 P<0.001 P<0.001 Pc0.00l 
Time P <0.001 Pc 0.001 P <0.001 P <0.001 
Interaction P <0.001 P <0.001 ns P <0.00! 

dae 135 251 136 251 
elevated 70.00 c 154.31 b 61.86 c 143.63 b 
ambient 61.53 b 153.00 b 51.53 b 149.63 b 
outside 47.71 a 119.31 a 42.60 a 115.25 a 

[CO,] treatments did not have any overall effect on number of leaves (Appendix 4, 

Table 1 and Figure 2). Also water stress did not have any significant effect, but by 

the end of the first growing season the relative stimulation in the number of leaves 

in the well-watered seedlings was large (Table 5.2). In contrast, leaf area was 

significantly affected by [CO2] treatment (Appendix 4, Table 1), but was 

significantly larger in elevated [CO2] than in ambient [CO2] only in the first growing 

ME 



Table 5.2. Percentage increase (calculated as: 100 [W - D] / D) of some growth 
characteristics of well-watered (145 cherry seedlings in response to water stress 
(D), measured at the end of the growing seasons 1993 and 1994. The significance 
levels (* = P c 0.05, ** = P < 0.01, = P < 0.001, ns = not significant) show 
the difference in response to water stress. 

hei2ht basal area branch number leaf number leaf area 

treatment 1993 	1994 1993 1994 1993 1994 1993 1994 1993 1994 

elevated 14* 	7 	n 50*** 46*** -36ns 38 as 37 as 7 n 45** 8 ns 
ambient 19** 	2 	a 93*** I03*** -12 as 12 as 34 as 2 a 62** 9 ns 

outside 14* 	-2 	n 73*** 74*** -46ns 18 n 28 n 6 n 75** 23** 

season (Figure 5.4). Water stress induced a significant reduction of leaf area in both 

[CO2] treatments in the first growing season, but the differences between the two 

water regimes were drastically reduced 251 dae (Table 5.2). The relationship 

between the leaf area and basal area (a measure of the sapwood area) of the 

seedlings was affected by elevated [CO2] in the water-stressed treatment, but not in 

the well-watered treatment (Appendix 4, Figure 3a). 

Table 5.3. Percentage increase in total dry mass 
(calculated as in Table 5.2) of well-watered cherry 
seedlings in response to water stress (data are means 
of 3 to 6 plants per [CO2] treatment). The significance 
levels (* = P< 0.05, ** = P <0.01, = P <0.001, 
ns = not significant) show the difference in response 
to water stress; dae = days after emergence. 

dae elevated ambient outside 
80 0.16ns 5.54ns 13.68ns 
90 10.51ns 33.15ns 12.02ns 
103 67.91 ** 86.26 ** 44.69 * 
115 65.72** 86.81 ** 72.50 
212 22.08 ns 27.99 ns 24.69 ns 
251 42.93 ** 47.18 *** 46.41 ** 

The overall response of well-watered cherry seedlings in terms of total and 

component dry mass was significantly affected by [CO2] treatments (Appendix 4, 

Table 1). With the exception of leaf dry mass (Figure 5.5a), the other component dry 

mass, i.e. wood dry mass (Figure 5.5b) and root dry mass (Figure 5.5c), were 

significantly increased in response to elevated [CO2] at the end of the experiment. 

Consequently, both above-ground dry mass (Appendix 4, Figure 4a) and total dry 
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mass (Figure 5.5d) of well-watered seedlings were significantly larger in elevated 

[CO2] than in ambient [CO2] (Table 5.5). It is worth noting that, with the sole 

exception of root dry mass, significant differences in total and component dry mass 

between elevated [CO2] and ambient [CO2] were already evident after 33 days of 

growth. Also the stressed seedlings were larger in all respects, i.e. leaf dry mass 

(Figure 5.5e), wood dry mass (Figure 5.5±) and root dry mass (Figure 5.5g) and thus 

total dry mass (Figure 5.5h), in elevated [CO2] than in ambient [CO2] (Table 5.5). 

(a) a (b) 

b 
C  b 71 

I a  
a  

b b  b 0 I b a  b aa aa 
OWL 

69 	90 	115 	135 	212 	251 	69 
	

90 	115 	135 	212 	251 
Days after emergence 	 Days after emergence 

elevated 	ambient 

Figure 5.2. Basal area of a) well-watered and b) water-stressed cherry seedlings 
grown in ambient [CO2], elevated [CO2], or outside control, shown as days after 
emergence. Data are means of 6 to 30 plants per treatment ± 1 SEM. Letters (a, b, 
c) indicate significant differences at P < 0.05. Statistical significance: 

well-watered water-stressed 
[CO2 ] 	 P <0.001 P <0.001 
Time 	P <0.001 P <0.001 
Interaction 	P < 0.001 P <0.001 

Table 5.3 shows that differences in total biomass between the water treatments were 

not significant until 103 dae, i.e. more than 30 days into water stress. At the end of 

the 1993 season, dry mass production in ambient [CO2] was more affected by water 

stress, mainly because of depressed root growth of the water-stressed seedlings 
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(Table 5.4). In the second growing season, the differences in total dry mass between 

watered and the water-stressed seedlings were not significant at the beginning of the 

drying cycle (212 dae). However, at the end of the water stress cycle dry mass of 

drought seedlings was significantly depressed to the same extent in all [CO2] 

treatments. Leaf dry mass in elevated and ambient [CO2] was the only component of 

dry mass which was not significantly affected by drought (Table 5.4). 
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Figure 5.3. Linear relationships between the number of branches of (a) well-
watered (R2  = 0.889), and (b) water-stressed (R 2  = 0.877) plants, and all the 
basal area of (c) well-watered (R 2  = 0.988), and (d) water-stressed (R 2  = 

0.942) plants, versus total dry mass of cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control in each water regime. 

There was a similar pattern in growth responses, expressed as percentage increase 

induced by elevated [CO2], in the well-watered and the water-stressed seedlings, 

particularly as plants grew larger (Figure 5.6). The percentage increase in leaf area 
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over time was remarkably similar over both growing seasons (Figure 5.6a), whereas 

the percentage increase in root dry mass became similar only in the second growing 

season (Figure 5.6b). However, the percentage increase in above-ground dry mass 

(Figure 5.6c) and total dry mass (Figure 5.6d) showed that growth in elevated CO2 

concentrations did not reduce the effects of water stress. In general, it is possible to 

see in Figure 5.6 that after an initial stimulation growth increase in response to 

elevated [CO2] began declining. Growth decline in elevated [CO21 is analysed in 

Chapter 7. 
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33 	60 69 	80 	90 103 115 212 251 33 	60 69 	80 	90 103 115 212 251 
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Figure 5.4. Leaf area of a) well-watered and b) water-stressed cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, shown 
as days after emergence. Data are means of 3 to 6 plants per treatment ± 1 
SEM. Letters (a, b) indicate significant differences at P < 0.05. Statistical 
significance: 

well-watered water-stressed 
[CO2 ] PcO.00l Pc0.05 
Time Pc 0.001 P< 0.001 
Interaction P c 0.05 as 

The root to shoot mass ratio of well-watered seedlings was not significantly affected 

by elevated CO2 throughout the duration of the experiment, with the exception of 

results 251 dae; when more dry mass was allocated to roots in elevated [CO2] than 

ambient [CO2] (Appendix 4, Figure 5a). Conversely, the overall allocation of dry 
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mass between root and shoot of the water-stressed plants was significantly affected 

by the [CO2] treatments, although only on 80 and 251 dae was R/S ratio 

significantly higher in elevated [CO2] than in ambient [CO2] (Appendix 4, Figure 

Sb). 

To compare dry mass allocation patterns amongst the [CO2] treatments when plants 

were the same size, each component of dry mass was related to mean total dry mass 

produced in all [CO2] treatments in both well-watered (Figure 5.7) and water-

stressed seedlings (Figure 5.8). Linear relationships were found between mean total 

dry mass and combined leaf, wood, above-ground, and root dry mass in both water 

regimes, indicating that the proportion of dry mass allocated to the various organs 

was not affected by growth in different CO2 concentrations. 

Table 5.4. Percentage increase in component dry mass of well-
watered cherry seedlings in response to water stress, measured at 
the end of the 1993 and 1994 water stress cycles. The significance 
levels (* = P < 0.05, ** = P <0.01, = P < 0.001, ns = not 
significant) show the difference in response to water stress. 

leaf  wood above-ground root 
treatment 1993 	1994 1993 	1994 1993 1994 1993 1994 
elevated 61* 	17 n 82* 	46*** 71* 35** 61* 54** 

ambient 53 * 	15 ns 97 	53 71 " 37 'K 108 ** 65 *** 

outside 82 *** 	26 * 78 ** 	47 ** 81 *** 38 ** 63 * 61 ** 

The total amount of water transpired by the water-stressed seedlings did not differ at 

each harvest date amongst the [CO2] treatments (Figure 5.9a; Table 5.6). Similarly, 

water uptake by the well-watered seedlings was similar in elevated and ambient 

[CO2] (Table 5.6). However, plant WIDE was highly affected by elevated [CO2] at 

each harvest date in both the water-stressed and well-watered seedlings (Figure 5.9a, 

Table 5.6). The relative increase in WUE ranged between 56 - 103% in the water-

stressed plants during the first growing season and was similar for the seedlings 

grown in the two water treatments (about 47% in well-watered plants and about 

52% in droughted plants) in the second growing season. It is noteworthy that WUE 

of the water-stressed seedlings was remarkably similar during both drying 
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Figure 5.5. Leaf dry mass of (a,e), wood dry mass (b,f), root dry mass (c,g), and total 
dry mass (d,h) of well-watered (a-d) and water-stressed (e-h) cherry seedlings grown 
in ambient [CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 to 6 plants per treatment ± 1 SEM). Letters (a, b, c) indicate 
significant differences at P -c 0.05. The statistical significance is reported in Table 
5.5. 
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Table 5.5. Statistics for total and component dry mass shown in 
Figure 5.5. Significance level of P (*** = P < 0.001, ns = not 
significant) from two-way ANOVA for the whole duration of the 
experiment; DM = dry mass. 

well-watered 

leaf DM wood DM root DM total DM 

[CO2] Pc 0.001 P< 0.001 P <0.001 p <0001 
Time P <0.001 P <0.001 P <0.001 P <0.001 
Interaction Pc 0.001 P<0.001 P <0.001 P< 0.001 

water-stressed 

leaf DM wood DM root DM total DM 

[CO2] Pc 0.001 P <0.001 P <0.001 P <0.001 
Time Pc 0.001 P <0.001 P <0.001 P <0.001 
Interaction ns P<0.001 P<0.001 Pc 0.001 

50 	100 	150 	200 	250 
	

50 	1011 	1511 	200 	250 

Days after emergence 
	 Days after emergence 

well watered 
	

0 	 dro.ighled 

Figure 5.6. Percentage increase in a) leaf area, b) root dry mass, c) above-
ground dry mass, and d) total dry mass of both well-watered and water-
stressed seedlings in response to elevated {CO2]. I = onset of the second 
growing season (dae 136). 

cycles. However, the relative increase attributable to elevated [CO2] was about 19% 

larger in WUE than in total plant dry mass at the end of the first drying cycle, 

whereas at the end of the second drying cycle it was about 8% larger in both water 

treatments. 



Significant, lasting differences in growth between seedlings grown in ambient [CO2] 

in the OTCs and in the outside control blocks were found only in height (Figure 

5.1), since the significant differences seen in both well-watered and droughted 

seedlings in basal area (Figure 5.2a), number of leaves (Appendix 4, Figure 2), leaf 

area (Figure 5.4), and in total and component dry mass (Figure 5.5) were transient, 

and disappeared by the end of the experiment. Total water uptake was similar in 

ambient [CO2] in the OTCs and in the outside control blocks in both water treatment 

(Figure 5.9a, Table 5.6). Also plant WUE of water-stressed seedlings was similar in 

the first growing season (Figure 5.9b), but was significantly reduced in the outside 

control seedlings in both water treatments during the second growing season (Table 

5.6). 
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Figure 5.7. Linear relationships between combined mean (a) leaf dry mass 
(R2  = 0.962), (b) wood dry mass (R 2  = 0.995), (c) above ground (Ab.gr.) dry 
mass (R2  = 0.995), and (d) root dry mass (R 2  = 0.991) and mean total dry 
mass of well-watered cherry seedlings grown in elevated [CO21, ambient 
[CO2], or outside control. 
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Figure 5.8. Linear relationships between combined mean (a) leaf dry mass (R 2  
= 0.963), (b) wood dry mass (R2  = 0.997), (c) above ground (Ab.gr.) dry mass 
(R2  = 0.992), and (d) root dry mass (R 2  = 0.979) and mean total dry mass of 
water-stressed cherry seedlings grown in ambient [CO2], elevated [CO2], or 
outside control. 

5. 4 Discussion 

Elevated [CO2] significantly increased total dry mass production in both water 

regimes (Figure 5.5d,h). Since water uptake did not differ in either well-watered or 

water-stressed seedlings between elevated and ambient [CO,], the growth increase 

brought about in elevated [CO2] led to significantly higher WUE (Figure 5.9, Table 

5.6). However, the interaction between elevated [CO2] and water stress was not 

significant (Appendix 4, Table 1), and thus elevated [CO2] did not ameliorate the 

growth response of cherry seedlings subjected to two sequential drying cycles 

(Figure 5.6). 
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Figure 5.9. Total water uptake (a) and plant WUE (b) of water-stressed cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, during 
the 1993 water stress cycle. Data are means of 3 plants per treatment ± 1 SEM. 
Letters (a, b) indicate significant differences at P <0.05. Statistical significance: 

Water uptake 	WUE 
[CO2] 	 as 	P< 0.001 
Time 	 P< 0.001 	as 
Interaction 	as 	 nS 

Table 5.6. Total water uptake and plant WUE of well-watered and water-
stressed cherry seedlings grown in ambient [CO2], elevated [CO2], or outside 
control, during the 1994 water stress cycle. Data are means of 6 plants per 
treatment ± 1 SEM; letters (a, b, c) indicate significant differences at P < 0.05 
in the same column. 

water uptake 	water use efficency 
treatment 	 well watered water 	well watered water 

stressed 	 stressed 
elevated 	 16.97 ±0.46 a 	8.45 ±0.16a 	11.48+0.44c 18.98+0.89c 

ambient 	 17.99 ± 0.54 ab 8.88 ± 0.21 ab 	7.79 ± 0.22 b 12.40 ± 0.62 b 

outside 	 18.69 ± 0.54 b 	9.24 ± 0.16 b 	5.04 ± 0.28 a 	8.21 ± 0.33 a 

Statistical significance: 
[CO2] 	 P<0.05 	 P<0.001 
water treatment 	 P <0.001 	 P <0.001 
[CO21 x water 	 its 	 P <0.01 

Long-term growth in elevated [CO2] increased total dry mass of well-watered 



seedlings of about 39%. This growth response is well within the ranges reported in 

the literature for tree biomass (Eamus & Jarvis, 1989; Jarvis, 1989; Ceulemans & 

Mousseau, 1994; Lee& Jarvis, 1996). Wilkins ci' al. (1994) also studied the growth 

response of Prunus avium to elevated [COj. They grew two-year-old seedlings and 

clonal rooted cuttings taken from mature trees, for two years with high or low 

nutrient supply. At the end of the second season of treatment there were no 

differences in growth response between the plants in elevated and ambient [CO2] in 

the low nutrient supply. Whereas, in the high nutrient supply total dry mass increase 

in response to elevated [CO2] was about 81% and 57% for seedlings and clones, 

respectively. However, both seedlings and clones were pruned at the beginning of 

the second growing season (half of the previous season's growth was removed), and 

thus their results were obtained in totally different conditions with respect to our 

study. A lower increase (24%) in dry mass production of one-year-old cherry 

seedlings grown in solardromes was found by Kerstiens & Hawes (1994) in an 

experiment set-up to evaluate to what extent root restriction could reduce growth 

response to elevated CO2 concentrations. 

The differences in wood dry mass (Figure 5.5b,f) between elevated and ambient 

[CO2] were not accompanied by an increase in height (Figure 5.1) at the end of the 

second growing season. Also water stress did not decrease height-growth during the 

second drying cycle in any [CO2] treatment (Table 5.2). However, this lack of effect 

may have been caused by the late occurrence of the drying cycle, which started 

when the seasonal height-growth was already slowing down. The absence of a 

lasting stimulation of elevated [CO2] on height has been found several times. Leader 

extension of four-year-old Sitka spruce saplings was no different in elevated and 

ambient [CO2] in the last year of growth (see Chapter 3). Height of Pinus radiata 

seedlings was affected by water stress, but not by elevated [COj, over a period of 

22 weeks (Conroy a al., 1986a). Height-growth of birch seedlings grown in pots in 

ambient [CO2] exceeded that of the elevated [CO 2]-grown seedlings during the 

second year of growth in elevated [CO2] (Lee a al., 1993). Tree height of four-year-

old birch seedlings rooted in the ground did not differ in elevated and ambient 

[CO2] (Rey, 1997). Mousseau & Enoch (1989) also found an unusually early 
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cessation of stem elongation in Castanea sativa seedlings grown in elevated [CO,]. 

The significant, transient differences in growth in ambient [CO 2] (i.e. advanced leaf 

development of the trees in the chambers) seedlings in the OTCs and in the outside 

control blocks could be a consequence of slower phenological development of the 

outside seedlings (i.e. a temperature effect). 

The hypothesis that increased leaf area may offset the higher transpiration efficiency 

per unit of leaf surface, leading to an increased total water uptake in elevated [CO2] 

is in conflict with the results. The area of individual leaves of the cherry seedlings 

was larger in elevated [CO 2 1 in the first growing season and the number of leaves 

did not differ among the [CO2} treatments (Appendix 4, Figure 2), so that the total 

leaf area was larger. Yet, the total amount of water uptake was similar in the 

elevated and ambient [CO2] droughted seedlings in 1993 (Figure 5.9). 

Consequently, daily evapotranspiration rate per unit of leaf area, the ratio of total 

daily water loss to leaf area, was reduced in elevated CO2]. Also in Pinus pinaster 

the total amount of water uptake was not affected by elevated [CO2] in both well-

watered and water stress conditions (Guehl et al., 1994). Morison & Gifford 

(1984a,b) found that elevated [CO2] increased leaf area in 14 out of 16 crop species 

by an average of 40%. In their experiments, the daily water loss by elevated [CO2] 

plants had a similar time course to that in ambient [CO2], indicating that the effect 

of increased leaf area in elevated [CO2] nullified the effect of reduction of stomatal 

conductance on daily transpiration rate. Similar results were found in seedlings of 

Acacia smallii (Polley et al., 1997), in Lolium perenne swards (Schapendonk et al., 

1997), and droughted plants of Glycine max (Prior et al., 1991) grown in elevated 

[CO2]. 

However, cherry leaf area was not affected by elevated [CO21 in the second growing 

season (Figure 5.4), but still the total amount of water uptakt was similar in elevated 

and ambient [CO2] in both water treatments (Table 5.6). Therefore, total daily water 

loss and daily evapotranspiration rate per unit of leaf area of both well-watered and 

droughted plants were similar in elevated and ambient [CO2]. Similarly, leaf area 
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and total water consumption of water-stressed seedlings of Quercus petraea were 

not affected by elevated [CO21, whereas in well-watered conditions both leaf area 

and water uptake were increased by about 34% and 38%, respectively (Guehl et al., 

1994). In a recent paper Heath & Kerstiens (1997) observed that Fagus sylvatica 

seedlings grown with high nutrient supply in elevated [CO2] had larger rates of soil 

water depletion, which resulted from both stimulation of leaf area development and 

lack of effect on stomatal conductance. 

Water use efficiency of droughted seedlings in elevated [CO2] was very similar in 

both the drying cycles. However, increase in WUE was affected differently by the 

increased total dry mass production and by the amount of evapotranspiration per 

unit leaf area. Droughted plants in elevated [CO2] had both larger total dry mass and 

reduced evapotranspiration rate per unit of leaf area at the end of the first drying 

cycle, thus both factors contributed to increase WUE. Similarly, Norby & O'Neill 

(1989) in Quercus alba, and Morison & Gifford (1984b) in 16 crop species, 

observed that in elevated [CO2} the increase in WUE exceeded the decrease in 

transpiration rate, indicating that the increase in dry mass production also 

contributed to enhance WUE. 

It has frequently been reported that elevated [CO2] may increase the root to shoot 

ratio (Tolley & Strain, 1984a; Norby & O'Neill, 1991; El Kohen et al., 1992; Guehl 

et al., 1994: El Kohen & Mousseau, 1994). Growth is extremely sensitive to water 

stress and hence is strongly influenced by the ability with which roots grow in 

drying soil and maintain an optimal water status (Tyree & Alexander, 1993). 

Bottomley et al. (1993) observed, by using proton nuclear magnetic resonance 

imaging, that 24-day-old seedlings of Vicia faba grown in elevated [CO2] showed 

significantly increased hydration of upper roots and below ground stem after a 

drying cycle, whereas the ambient [CO2] plants were water depleted from the entire 

root system. Any shift in biomass allocation driven by elevated [CO2] may thus 

influence plant growth in droughted conditions. Carbon allocation of cherry 

seedlings between root and shoot was significantly affected in droughted conditions 

by elevated [CO2] (Appendix 4, Figure 5). However, this was neither a consequence 
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of unbalanced nutrition since the seedlings were supplied with free access to 

nutrients, nor the occurrence of constrained rooting, since large pot volumes were 

used. It seems to be more a consequence of faster growth in elevated [CO2] and thus 

ontogeny, since biomass allocation was similar when the seedlings were the same 

size in either the water-stressed (Figure 5.8) or well-watered (Figure 5.7) treatments. 

Similarly, the linear relationship between combined basal area and total seedling dry 

mass is additional evidence of faster growth and consequently a speeding-up of 

development in elevated [CO 2] (Figure 5.3). By plotting root dry mass versus shoot 

dry mass Kerstiens & Hawes (1994) showed that allocation was not affected by 

elevated [CO2] when their cherry seedlings were the same size. Seedlings of Pinus 

radiata also showed a more advanced stage of development brought about by 

elevated [CO21 (Conroy a al., 1986a). Morison & Gifford (1984b) also found that 

annual plant matured more rapidly in elevated [CO2]. Similar results were found in 

Jpomoea batatas (Bhattacharya a at, 1985). Similarly, there were no significant 

effects on the percentage of dry mass allocated to the roots in response to elevated 

[CO2] in clones of Sitka spruce grown under droughted conditions (Townend, 

1993). 

The hypothesis that plants growing in elevated [CO2], which reach a larger size 

(both above and below the ground) when the evaporative demand is increasing 

while soil water availability is decreasing, may consume water faster was not 

demonstrated. Water uptake did not differ between the elevated and ambient [CO21-

grown plants, and the increased water use efficiency of droughted seedlings in 

elevated [CO2] did not result from a less severe than average influence of water 

stress on cherry plant dry mass production in long-term growth (Figure 5.6). This 

finding leads to two main considerations. Firstly, the main cultivation area of cherry 

in Europe is the Mediterranean basin which is characterised by summer droughts 

which heavily influence tree growth and productivity. With the future scenario of 

global change, with higher temperatures and potentially higher rates of 

evapotranspiration, cherry plants may undergo major drawbacks in regions which 

will experience an increased frequency and intensity of drought. Secondly, small 

changes in water stress tolerance may lead to growth decline in the long-run. In 
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order to assess whether elevated [CO,] alleviates growth responses of trees to water 

stress, interactive studies need to be prolonged for several growth seasons, in order 

to take into account plant acclimation and the differential decline of growth which 

occurs in elevated and ambient [COjI (Figure 5.6). 
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CHAPTER 6 

The Effects of Elevated [CO 2] and Water Stress on the 

Physiology of Cherry (Prunus avium) Seedlings 

6.1 Introduction 

Water stress is a major factor limiting plant productivity over large areas of the 

globe, where it affects growth of both agricultural and forestry species and also 

influencing vegetation distribution and composition. Because of the steady increase 

in greenhouse gases leading to the scenario of future higher temperatures and 

evaporative demand, drought occurrences will be increased in frequency, intensity, 

and erratic patterns, and will possibly affect regions that are not currently hit by 

drought. This raises important issues as to how growth in elevated [CO2] is related 

to evaporative demand, water supply and water stress, and whether increased growth 

in elevated [CO2] could be offset by the adverse influence of water stress on the 

soil-plant-atmosphere-continuum. 

Instantaneous WUE 1  may be affected directly in response to elevated [CO2] or 

indirectly through interacting feedback pathways with leaf growth, leaf gas 

exchange, Rubisco and temperature (Jarvis, 1993). Elevated CO2 concentration 

frequently leads to a decline in g g  of C3 plants (approximately 30-40%; see reviews 

by Eamus & Jarvis, 1989; Jarvis, 1989; Mott, 1990; Drake et al., 1997). Mott (1990) 

pointed out that stomata respond to intercellular CO2 concentration (C1) to adjust the 

diffusive limitations to the biochemical limitations on A, so improving WUE1 . Thus, 

with all else equal, decreased stomatal conductance is associated with elevated C. 

The apparent reduction in stomatal density since the beginning of the industrial 

revolution has been interpreted as an ecological evolution which may compensate 

for the increasing [CO2] (Woodward, 1987; Körner, 1988; Beetling & Chaloner, 

1993; Paoletti & Gellirii, 1993). However, conflicting results have been found. For 

example, Bunce (1992) with Malus domestica, Quercus prinus, and Q. robur and 
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Overdieck & Forstreuter (1994) with Fagus sylvatica failed to find a decrease in g 

in response to elevated [CO21. Seedlings of F. sylvatica grown in elevated [CO2] 

had faster rates of soil drying, resulting from a combination of higher g with no 

change in leaf area at low nutrient supply, and no change in g with increased leaf 

area at high nutrient supply (Heath & Kerstiens, 1997). Transpiration rate per unit of 

leaf area was also not affected in a different experiment on F. sylvatica using the 

branch bag technique (Dufrene et al., 1993). However, evapotranspiration on a 

ground area basis was reduced and leaf area index increased in a mini-stand of F. 

sylvatica grown in elevated [CO2] (Overdieck & Forstreuter, 1994). 

Hence, by reducing g, and thus reducing E and increasing A, elevated [CO2] causes 

increased instantaneous transpiration efficiency (ITE) per unit of leaf area (Morison, 

1985; Jarvis, 1989; Tyree & Alexander, 1993). Theoretically, improved ITE in 

thought-prone habitats should be relatively more beneficial to plant growth than in 

well-watered environments, because with the same amount of water available more 

biomass can be produced. However, the problem lies in scaling up 1TE to whole 

trees, and then to forests over longer periods, to provide reliable estimates of long-

term water use efficiency (WUE, dry mass produced/water consumed). 

The ability of plants to function in droughted conditions involves a range of 

physiological mechanisms which affect plant water relations. Stomatal closure 

reducing the amount of water loss through transpiration is a mechanism of drought 

avoidance (Bhattacharya et al., 1990). Hence, elevated [CO2], by causing a decline 

in g, may reduce transpiration, leading to increases in plant water potential and a 

delayed onset of water stress. Moreover, it is reasonable to suppose that less 

negative plant water potentials in drying soils, enable plants to remain turgid and 

functional for a longer period. For instance, elevated [CO 2] may directly affect leaf 

expansion by increasing turgor (Morison, 1993). Thus, whether elevated [CO21 

ameliorates water stress depends on its interactions with plant water relations, g, 

and the biophysical and biochemical processes affecting photosynthesis that increase 

resistance to drought (Tyree & Alexander, 1993). The present study focused on the 

long-term interactions between elevated [CO2] and water stress, and their effects on 
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leaf gas exchange, water relations, carbon and nitrogen concentrations, and the 

relationship between plant WUE and leaf ITE, in cherry seedlings. 

6.2 Materials and Methods 

Cherry seedlings (Prunus aviuin L.) were grown from seed for two growing seasons 

in three ambient [CO2] OTCs (-350 pmol moF5,  three elevated [CO2] OTCs 

(ambient + —350 pmol mof'), and in three outside blocks, all located inside a 

glasshouse at the University of Edinburgh. The seedlings were regularly fertilised in 

both growing seasons following Ingestad principles (Ingestad & Agren, 1992, 1995). 

During the first growing season, the cherry seedlings were grown in 40 cm-long soil 

columns (6.6 dm 3), 
 contained in black polythene tubes 45 cm long and 14.5 cm in 

diameter. The first growing season ended on 135 dae; the beginning of the second 

growing season is indicated consecutively as 136 dae. In the second growing season, 

the seedlings were transplanted before budburst into 15 din  pots. Two water 

treatments were imposed on the seedlings: well-watered (seedlings irrigated every 

other day to pot water capacity throughout both growing seasons) and droughted. A 

drying cycle was imposed in both the growing seasons to half of the seedlings per 

OTC and outside block: from 69 to 115 dae in the first growing season, and in the 

second growing season from 212 to 251 dae on the same seedlings which had 

already experienced water stress. Until 69 dae, and from 115 to 212 dae, the 

droughted seedlings were watered every other day to pot water capacity. Full details 

of the growth conditions, number of harvests made, and of the statistical analyses 

used to test the data are given in Chapters 2 and 5. 

Gas exchange measurements were made inside the glasshouse at the University of 

Edinburgh, on the central section of a newly-expanded leaf using a portable gas 

exchange system (ADC-LCA-3, Analytical Development Co. Ltd., Hoddesdon, 

Herts, UK) equipped with a Parkinson leaf chamber (narrow PLC-2). To enable 

measurements of PPFD-saturated photosynthetic rates, illumination of the leaf 

cuvette by natural sunlight was supplemented with artificial light (provided by a 
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white fluorescent lamp) to maintain a PPFD at the leaf surface of > 1700 pmol 

m_2 
 S -1 . Leaf CO2 assimilation rates (A), stomatal conductance (g), and instantaneous 

transpiration efficiency (ITE), calculated as the rate of CO2 assimilation per unit of 

water transpired, were measured between 11.00 and 14.00 h on three plants per 

[CO,]-water treatment, on 69, 80, 90, 103, 115, 123 and 133 dae in the first 

growing season, and on 212, 235, and 251 dae in the second growing season. Gas 

exchange measurements were made at the growth CO2 concentration and at the 

opposite CO2 concentration (i.e. those seedlings growing in 700 pmol mol' [CO2] 

were first measured at that concentration, and after exposure for at least an hour of 

the whole plants to ambient [CO21 gas exchange was re-measured on the same leaf 

at this concentration, and vice versa with respect to seedlings growing in ambient 

[CO2] both within and outside the OTCs). A daily course of gas exchange was 

measured on 103 dae, at 8:30, 13:30, 17:00, and 19:00 h, on three seedlings per 

[CO2]-water treatment at the growth CO2 concentration. 

Short-term measurements (-10 minutes) of PPFD-saturated CO2 assimilation rate in 

relation to leaf internal CO2 concentration (A/Ct) were made between 10.00 and 

17.00 h over a range of cuvette CO2 concentrations between 40 and 1200 M'° 

mol', on three to four seedlings per [CO21-water treatment. Measurements of the 

A/C, response curves were made between 80-103 dae in the first growing season, 

and between 235-251 dae in the second growing season on the well-watered 

seedlings, whereas on droughted seedlings the measurements were made in the first 

growing season between 85-87 dae. The initial slope of the A/C, curves is an 

estimate of the carboxylation efficiency (RuBP-saturated rate of Rubisco), whereas 

the maximum rate of assimilation (AMAX) (the net CO2 assimilation rate under 

conditions of PPFD and CO2 saturation) is indicative of the role of RuBP 

regeneration and P i  limitation. 

Stomatal density (MM-2)  was determined after the first drying cycle by making 

impressions of the abaxial surface of the leaves (Weyers & Johansen, 1985; Weyers 

& Meidner, 1990). Negative replicas of seven mature leaves per plant (six plants per 

[CO2]-water treatment) were made by applying a silicon rubber matrix (Xantropren, 
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Bayer AG, Leverkusen, Germany) to the abaxial surface of leaves. To make positive 

impressions, the negative replicas were imprinted on microscope slides coated with 

clear finger-nail varnish. Three fields per positive imprint were randomly selected 

under a light microscope (Ortholux, Leitz Ltd., Luton, Beds) with the camera 

attachment at x 250 magnification, and photographed. Then, the stomatal density 

was calculated as the number of stomata per mm  of leaf area. 

Gravimetric soil water content at pot water capacity was determined on a group of 

five soil columns. These were watered and sealed at the top to prevent loss of water 

by evaporation. After the excess water had drained for 24 h, the five soil columns 

were divided into four horizontal layers of 10 cm each (volume of -4650 cm 3 ). 

Then, soil water content, as the volumetric fraction of each layer, was calculated by 

multiplying the mass fraction (percentage of oven-dry mass determined at 105 0C for 

48 h) by the soil bulk density (the ratio between oven-dry mass to sample volume) 

(Beadle et al., 1993). Soil cores of 2 cm diameter were collected from the mid-point 

of each 10 cm soil column layer, soon after the gas exchange measurements on the 

same seedlings. The volumetric water content of each soil layer was estimated by 

multiplying its soil bulk density by the moisture mass fraction of the soil core 

collected from the same soil layer. Then, mean volumetric water content of each soil 

column was obtained as the averaged over the four layers. 

Immediately after the gas exchange measurements, one newly expanded leaf per 

plant (three plants per [CO2]-water treatment) was detached to determine bulk leaf 

water potential ('iI, using a pressure chamber (SKYM 1400, Skye Instruments, 

Llandrindod Wells, UK). A daily course of 'F' was measured on 103 dae, at 4:30 

(pre-dawn V, 8:30, 13:30, 17:00, and 19:30 h, on three seedlings per [CO 2]-water 

treatment. Leaf osmotic potential (%) was measured on the same leaves used for 

determining W. Following removal from the pressure chamber, each leaf was rapidly 

placed in a 1 cm 3  plastic syringe and plunged into liquid nitrogen and stored in a 

freezer at -25 °C. Subsequently, the material collected was allowed to thaw, and the 

leaf inside the syringe was squeezed to force sap from the tissue. In this way, 8 mm 3  
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of exuded sap were collected for measuring the osmotic potential using a vapour 

pressure osmometer (5100C, Wescor Inc., Logan, USA). 

Tissue water relations parameters of cherry leaves were derived from pressure-

volume analysis (Tyree & Hammel, 1972). A newly-expanded leaf was detached 

from three plants per [CO2}-water treatment around the end of the first drying cycle: 

in the late evening of 114-115 dae (droughted seedlings) and 116-117 dae (well-

watered seedlings). Each leaf was recut under water, covered with a plastic bag, and 

allowed to rehydrate with the cut-end under water in a dark cold room at 5 °C for 12 

h prior to measurement of pressure-volume curves. Immediately after rehydration, 

each leaf was weighed to determine the saturated mass (SM). The pressure-volume 

curves were made employing the method described by Wilson et al. (1979). The 

hydrated leaf was placed in a Scholander pressure bomb, and increasing pressure 

was applied. The water exuded by the cut end was weighed to determine the leaf 

fresh mass (FM) at the balancing pressure. At the end of the analyses each leaf was 

oven-dried at 80 °C for 48 hours to determine dry mass (DM). The relative water 

content (R*)  was then calculated as follows: 

R* =(FM - DM)/( 5M - DM) 

The data obtained were used to calculate the osmotic potential at full turgor (7t100), 

osmotic potential at zero turgor (no),  relative water content at zero turgor (R0), bulk 

modulus of elasticity of the cell (c8), and leaf dry mass to leaf turgid mass ratio 

(DM/TM ratio). 

Samples for biochemical analysis (Rubisco activity and chlorophyll concentration) 

were taken simultaneously with the gas exchange measurements. A leaf disc (0.8 

cm 2)  was taken from the central section of three newly-expanded leaves on each 

plant (three plants per [CO 2}-water treatment) for Rubisco activity assays on 69, 80, 

103, 115, 212, and 251 dae. The leaf discs were rapidly plunged into liquid nitrogen. 

Rubisco activity was analysed in vitro by Dr. R. Besford at Horticulture Research 

International Institute, Littlehampton (UK); 'final' Rubisco activity was assayed 

spectrophotometrically by a coupled enzyme method (determining 3PGA 
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phosphokinase activity and NADP-G3P dehydrogenase) after pre-incubation at 20 

°C in extraction medium containing 25 MM  MgCl2 (Besford, 1984, Van Oosten et 

al., 1995). Similarly, a leaf disk was taken from each of three leaves of the same age 

per seedling (three plants per [CO21-water treatment) to measure the chlorophyll a, 

b, and a+b concentrations on 69, 80, 90, 103, 115, 212, and 251 dae. The method 

for extraction and measurement of chlorophyll (Porra et al., 1989) has been 

described in Chapter 2. Chlorophyll concentration was also measured in situ in well-

watered seedlings on 251 dae using a hand-held chlorophyll meter (SPAD-502, 

Minolta Camera Co. Ltd, Osaka, Japan), which measures the leaf transmittance at 

two wavelengths of —430 nm and —750 min. The measurements were made on the 

same leaf section which was later used for biochemical assay of chlorophyll 

concentration and for determination of macro-nutrient concentrations. In situ 

measurements of chlorophyll concentration made on the upper-most fully grown 

leaves of field grown Solanum tüberosum were shown by Vos & Born (1993) to be 

well correlated (R 2  > 0.95) with both leaf nitrogen concentration and leaf 

chlorophyll concentration assayed by biochemical analysis. 

Samples (three plants per [CO2]-water treatment) for soluble sugar and starch 

concentrations of roots and leaves were taken at each harvest made during the first 

growing season. Three samples per [CO2}-water treatment were also taken to 

determine macro-nutrient concentrations (nitrogen, phosphorus, potassium, calcium 

and manganese) at harvests made during both the growing seasons. Full details of 

the methods of nutrient, sugar, and starch analysis are given in Chapter 2. 

6.3 Results 

As found in Chapter 5, there were no significant inter-chamber effects on any of the 

physiological parameters measured on the cherry seedlings, and thus the interactions 

with 'chamber' are not shown. 
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CO2 assimilation rate 

The overall effect of elevated [CO2] and water regime on A measured at the growth 

[CO2] condition was significant in both the first (Appendix 5, Table 1) and second 

(Appendix 5, Table 2) growing seasons. Figure 6. la illustrates the effect of [CO2] 

and water treatment on A over the first growing season. Assimilation rate of well-

watered cherry seedlings was significantly increased by elevated [CO2] throughout 

the growing season. A similar pattern of changes in A measured in the growth [CO2] 

conditions on well-watered seedlings was found during the second growing season 

(Figure 6.2a). Acclimation of A was not found in elevated [CO 2]-grown seedlings 

when measured at the same CO2 concentrations in both the first (Appendix 5, Figure 

1) and second (Appendix 5, Figure 2) growing seasons. This is consistent with A/Ct 

measurements (Figures 6.3a and 6.4a), and AMAX was not significantly different (P c 

0.05) between the [CO2] treatments. However, AMAX was higher in the first growing 

season (37.2, 35.4, and 33.4 j.tmol m-2  S -1 in elevated [CO2], in the ambient [CO2] 

OTCs and outside-control, respectively) than in the second growing season (22.2, 

24.6, and 24.6 Rmol m-2  S -1 in the elevated [CO2] OTCs, and in the ambient [CO2] 

OTCs and outside-control, respectively). 

Water stress dramatically affected A of the droughted seedlings even during the 

early phase of the drying cycle in the first growing season (Figure 6.1 a). A was 

significantly increased in response to elevated [CO2] over the whole growing 

season, but water stress was so severe that by the end of the first drying cycle (115 

dae) there were no differences between seedlings raised in elevated and ambient 

[CO2]. Similar results were found during the second drying cycle (Figure 6.2a). It is 

worth noticing the "after-effect" following rewatering in the first growing season: A 

did not recover to well-watered rates for eight days (123 dae) in both [CO2] 

treatments, but had recovered by the following measurement occasion, i.e. after 18 

days (1 33 dae). Short-term PPFD-saturated A/C1 measurements made on 85-87 dae 

(i.e., after 16-18 days from the onset of the drying cycle), showed that AMAX of 

droughted seedlings (17.9, 17.0, and 20.1 prnol n1 2s' in the elevated [CO2] OTCs, 

and in the ambient [CO2] OTCs and outside-control, respectively) was halved in 
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both elevated and ambient [CO2] (Figure 6.5a) compared to that of the well-watered 

seedlings (Figure 6.3a). 
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Stomatal conductance and density 

Growth in elevated [CO2] and water stress significantly affected g measured at the 

growth [CO2] condition throughout the duration of the experiment, although the 

interaction between time-[CO2] and treatment-water regime were not significant 

(Appendix 5, Tables 1 and 2). Stomatal conductance of well-watered seedlings was 
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[COj, or outside control in the growing season 1993. Data are means of 3 
plants. 

strongly decreased by elevated [CO2] (P < 0.01) during the first growing season, 

whereas for the droughted seedlings there were no significant differences in g 

between [CO2] treatments (Figure 6.1b). Following rewatering, g g  of droughted 

seedlings did not immediately recover to well-watered in both [CO2] treatments, and 

after 18 days it was still lower, although not significantly so, in droughted seedlings 
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than in well-watered seedlings. Short-term response of g to step-wise changes in C 

showed a slight trend for lower stomatal conductance in elevated [CO2] seedlings 

compared to ambient [CO21 seedlings in both well-watered (Figure 6.3b) and 

droughted (Figure 6.5b) conditions. However, g, of droughted seedlings was 

relatively insensitive to C1. Abaxial stomatal density measured at the end of the first 

drying cycle was not influenced by either [CO2} treatment or water regime (Table 

6.1). In the second growing season, the response of g s  to elevated [CO2] and water 

stress was similar to that in the previous year: elevated CO2 significantly (P < 0.10) 

decreased g of well-watered seedlings but not that of droughted seedlings (Figure 

However, g of well-watered seedlings remained relatively insensitive to 

intercellular CO2 concentrations in the second growing season (Figure 6.4b). 

Table 6.1. Abaxial stomatal density (mm 2) determined at 

the end of the first drying cycle on leaves of cherry 

seedlings, grown in ambient [CO2], elevated [CO2], or 

outside control. Data are means of 6 plants (nine leaves 

per plant) ± 1 SEM; ns = not significant level of P from 

two-way ANOVA. 

well-watered water-stressed 
elevated 81.0± 1.3 75.4±5.1 
ambient 84.4 ± 3.9 83.3 ± 3.5 
outside 84.8 ± 1.6 85.1+2.3 
[CO2] ns 
water ns 
[CO2] x water ns 

Instantaneous water use efficiency 

Instantaneous transpiration use efficiency (ITE) (the ratio of leaf assimilation rate to 

transpiration rate) was strongly affected by growth in elevated [CO2] (P <0.001) but 

not by water regime in both the growing seasons (Appendix 5, Tables 1 and 2): ITE 

was significantly higher in elevated [CO2] than in ambient [CO2 (Figures 6.1c and 

The increase in lIE of well-watered seedlings ranged from —94% to —186% in 

the first growing season (with the only exception of 115 dae when the increase was 
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Figure 6.7. Time course of a) soil water capacity (s.w.c.) b) osmotic 
potential (%), and c) bulk leaf water potential ('p1 of well-watered and 
water-stressed cherry seedlings grown in ambient [CO2], elevated [CO2], 
or outside control, during and after the first drought cycle (69-115 dae). I 
= end of the drying cycle. Data are mean of 3 plants per treatment ± 1 
SEM. Statistical significance: 

well-watered water-stressed 

S.W.C. 	'P 'F, S.W.C. 'P 'F, 
time * 	*** *** *** *** *** 

[CO2] ns ns ** 

time 	[CO2] ns 	* ns * ns 
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Figure 6.8. Time course of osmotic potential (W) of well-watered and 
water-stressed cherry seedlings grown in ambient [CO?], elevated [CO2], 
or outside control, over the second drought cycle (dae 212-251). Data are 
means of 3 plants per treatment ± 1 SEM. Statistical significance: 

well watered water stress 
time 
[CO2 ] 	ns 	ns 
time x[CO2] ns 	P<O.lO 

only about 32%) and from —74% to —144% in the second growing season. In the 

droughted seedlings the increase in ITE brought about by elevated [CO2] was —70% 

on dae 103 and ranged from —108% to —198% during the rest of the first growing 

season, whereas in the second year of growth the increase ranged from —122% to 

—133%. 

121 



There were no significant differences in any of the gas exchange parameters 

measured between the ambient [CO,] seedlings in OTCs and outside in both water 

treatments. 

Instantaneous transpiration efficiency of droughted seedlings measured during both 

drying cycles was depressed by high (incipient water stress) and very low 

(maximum drought developed) values of g in all [CO2] treatments (Figures 6.6a). 

However, plant WUE (see Chapter 5) varied very little as both g g  (Figures 6.6b) and 

ITE (Figures 6.6c) increased. Consequently, there was no relationship between plant 

WUE (dry mass produced to water lost ratio) and nE (assimilation rate to 

transpiration rate ratio). 

Soil water content and water relations 

Figure 6.7 shows changes in soil water content, osmotic potential, and bulk leaf 

water potential over the first growing season. As expected, soil water content was 

strongly affected by water regime (Appendix 5, Table 3), but there were no 

differences in the rate of soil drying between the [CO2] treatments between well-

watered and droughted ssedlings (Figure 6.7a). Both [CO2] and water treatments had 

a significant overall influence on midday osmotic potential, 'PS, and W(Appendix 5, 

Table 4). 'P (Figure 6.7b) and 'P (Figure 6.7c) of well-watered plants fluctuated 

throughout the season. However, the time course of W, in elevated [CO2] was 

significantly lower than in ambient [CO2] in both the well-watered (P c 0.001) and 

droughted (P c 0.05) plants. There were no significant differences in 'P of well-

watered seedlings (P .c 0.10) between elevated and ambient [CO2] (Figure 6.7c). 

With increasing water stress, IF started declining after about a week. Elevated [CO2] 

did not delay the onset of the decline in IF, which was faster in elevated [CO2] than 

in ambient [CO2], resulting in significant differences over the whole season at P < 

0.05. However, on 110 dae (41 days after the onset of water stress) 'P in ambient 

½ 

	

	[CO2} reached the same negative value as in elevated [CO2], and from then on there 

were no longer significant differences between the treatments. 
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Table 6.2. Effects of the interaction between elevated [CO2] and water stress on tissue water relations parameters 
derived from pressure-volume curves of cherry leaves. Data are means of 3 plants ± 1 SEM ; letters (a, b, c) indicate 
significant differences at P <0.05 in the same line; irioo = osmotic potential at full turgor, Jib = osmotic potential at 
zero turgor, R0 relative water content at zero turgor, eB bulk modulus of elasticity of the cell, DM / TM ratio of leaf dry 
mass to leaf turgid mass. 

Water 	 well-watered 	 water-stressed 
relations 
characteristics 	elevated 	ambient 	 outside 	 elevated 	ambient 	 outside 
ita (MPa) 	1.413 ± 0.070 c 	1.609 ± 0.115 bc 	1.570 ± 0.127 be 	2.008 ± 0.023 a 	1.935 ± 0.071 ab 	1.832 ± 0.128 ab 
im (MPa) 	1.797 ± 0.021 C 	1.880 ± 0.087 c 	1.978 ± 0.116 be 	2.484 ± 0.085 a 	2.445 ± 0.066 a 	2.257 ± 0.079 at, 

- 	 R0 (%) 	91.877 ± 2.040 ab 93.660 ± 0.050 b 	87.353 ± 2.036 a 	89.340 ± 0.893 ab 89.157 ± 0.290 ab 90.553 ± 0.645 ab 
LB (MPa) 	14.103 ± 2.452 a 	18.700 ± 1.415 a 	12.437 ± 2.062 a 	17.367 ± 1.293 a 	15.257 ± 0.321 a 	17.430 ± 0.559 a 
DM/ TM 	0.288 ± 0.008 abc 0.280 ± 0.004 ab 	0.271 ± 0.003 a 	0.303 ± 0.003 c 	0.293 ± 0.005 be 	0.299 ± 0.003 c 



Chapter 6 

During the second growing season, midday IF was affected only by the water 

treatments but not by [CO2] treatments (Appendix 5, Table 2). 'P of droughted 

seedlings declined rapidly from 235 dae (23 days after the onset of water stress) to 

the end of the experiment, and fell below -3 MPa to the same minimum value in all 

[CO2] treatments (Figure 6.8). 

In the first growing season there were significant differences between ¶PS in the 

ambient [CO2] OTCs and outside control treatments in both well-watered (P < 0.10) 

and droughted (P .c 0.05) seedlings. Significant differences were also found in IF of 

well-watered plants (P < 0.01), but not in droughted seedlings, between the ambient 

[CO2] OTCs and outside control treatments. However, there were no differences in 

'P between plants in ambient [CO2] OTCs- and outside control-grown seedlings in 

both water treatments during the second growing season. 

0.2 
	R2 =0.899 

0.1 
to 

0.0 

0.1 	0.2 	0.3 	0.4 

Soil water content (cm 3cm 3 ) 

0 elevated A  ambient S outside 

Figure 6.9. Linear relationship between all stomatal 
conductance (g) and all soil water content, measured 
during the first drought cycle (dae 69-115), of water-
stressed cherry seedlings grown in elevated [CO2], 
ambient [CO2], or outside control. 
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Figure 6.10. Time course on 103 dae of PPFD saturated a) assimilation 
rate (A), b) stomatal conductance (gb), and c) 1TE measured at the growth 
CO2 concentration of well-watered and well-watered cherry seedlings 
grown in ambient [CO21, elevated [CO2], or outside control. Data are 
mean of 3 plants per treatment ± 1 SEM. Statistical significance: 

well-watered 	water-stressed 

A 	g 	lit A 	g 	ITE 

hour 	 *** 	*** 	*** 	*** 	** 

[CO2] 	 *** 	*** 	*** 	** 	*** 

hour x[CO2] 	* 	*** 	*** 	* 	ns 	* 
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All of the stomatal conductance data of droughted seedlings were re-plotted versus 

the mean soil water content, 'P, ¶1', and turgor potential (F) measured over the first 

drying cycle, and versus mean W measured over the second drying cycle. A stronger 

linear relationship was found between g and soil water content (Figure 6.9) than 

between g and either ¶P or W (Appendix 5, Figure 3a,b) during the first drying 

cycle, whereas g was not correlated with VJp (Appendix 5, Figure 3c). A low R2  of 

the linear relationship between g, and ¶1' was also found during the second drying 

cycle (Appendix 5, Figure 4). 

Water stress significantly affected osmotic potentials at full ('tloo)  and zero turgor 

(m), but they were not influenced by [CO2} treatment (Appendix 5, Table 4): both 

it00 and it0 were significantly lower in well-watered plants than in droughted plants 

in all [CO2] treatments (Table 6.2). However, all other tissue water relations 

parameters derived from pressure-volume curve analysis (i.e., R0, tB,  and DM/TM 

ratio) were not significantly affected by water or [CO2] treatments, with the only 

exception of the DM/TM ratio which was significantly (P cc 0.05) increased by 

water stress in the outside control seedlings. 

Diurnal cycle 

The overall diurnal fluctuation of gas exchange and water relations parameters 

measured on 103 dae (i.e. after 34 into the drought) was significantly affected by 

both the [CO2] and water treatments (Appendix 5, Table 5). The diurnal trend of A 

and g,, measured in the growth [CO2] conditions was typically higher in the morning 

and steadily declined during the afternoon in all treatments (Figure 6.10). Both A 

and g, were significantly influenced by elevated [CO2] in both water treatments, 

although the increase in A and the decrease in gs  disappeared in droughted seedlings 

by the end of the diurnal cycle. Stomatal conductance was very low throughout the 

day in the water-stressed seedlings of [CO2] treatments, and was practically zero by 

the end of the day. ITE was significantly increased throughout the day in both water 

treatments in response to elevated [CO2]. This increase was higher during the 

afternoon in the well-watered seedlings (between —98 and -110%), and in the 
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Figure 6.11. Time course on dae 103 of a) osmotic potential (%), and b) 
bulk leaf water potential ('I of well-watered and water-stressed cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, 
during and after the first drought cycle (dae 69-115). Data are means of 3 
plants per treatment ± 1 SEM. Statistical significance: 

well-watered 	water-stressed 

IF 	W , 	V1  
hour 	 * 

[CO 2 ] 	as 	 *** 	* 

hour  [CU2] PcO.1O ns 	ns 	ns 

morning in the stressed seedlings (-129%). Diurnal fluctuations of 'l  and W were 

overall affected by both [CO2] and water treatments (Appendix 5, Table 5). 

However, there were no significant differences (P <0.05) in the diurnal cycle of % 
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of the well-watered seedlings in elevated and ambient [CO2}, whereas ¶P was 

significantly decreased in the water-stressed plants in response to elevated [CO2] 

(Figure 6.11). Pre-dawn 9' was not affected by elevated [CO2] in both water 

treatments, but 9' of droughted plants was significantly lower (P c 0.001) in 

elevated [G02] than in ambient [CO21 for the rest of the day, whereas there were no 

differences in well-watered seedlings between [CO21 treatments. 

There were no significant differences in any of the gas exchange parameters 

measured on seedlings in ambient [G02] in the OTCs and outside in both water 

treatments. The diurnal fluctuations of 9' and 'P instead, were significantly lower in 

the well-watered seedlings in ambient [CO2} in the OTCs than outside but not in the 

stressed seedlings. 

01  

ab 

01100,  IFFI 10100,0, 

0A. 

69 	80 	103 115 212 251 	69 	80 	103 115 212 251 
Days after emergence 	 Days after emergence 

Figure 6.12. Rubisco activity of a) well-watered and b) water-stressed cherry 
seedlings grown in ambient [G02], elevated [G02], or outside control, shown 
as days after emergence. Data are means of 3 plants per treatment ± 1 SEM. 
Letters (a, b) indicate significant differences at P c 0.05 amongst the [G02] 
treatments. Statistical significance: 

well-watered 	water-stressed 

1993 	1994 	1993 	1994 
time 	 ** 	 * 

[CO2] 	** 	* 	** 	P<0.10 
time  [CO2] * 	ns 	Pc 0.10 ns 
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Figure 6.13. Total chlorophyll of a) well-watered and b) water-stressed 
cherry seedlings grown in ambient [G02], elevated [G02], or outside control, 
shown as days after emergence. Data are means of 3 plants per treatment ± 1 
SEM. Letters (a, b) indicate significant differences at P < 0.05 amongst the 
[CO2] treatments. Statistical significance: 

well-watered 	water-stressed 
1993 	1994 	1993 	1994 

time 	 n 	** 

[CO2] 	ns 	* 	 *as 
time  [CO,] ns 	as 	as 	ns 

Rubisco activity 

Rubisco activity was significantly affected by [G02] treatment but not by water 

regime in both the first (Appendix 5, Table 1) and second (Appendix 5, Table 2) 

growing seasons. Thus, there were no significant differences (P c 0.10) between 

well-watered and droughted seedlings in both elevated and ambient [G02] on each 

measuring date (Figure 6.12). However, Rubisco activity was slightly higher in 

water-stressed than in well-watered plants in elevated [G02] (up to 25% on 103 

dae), but there was no clear pattern in ambient [G02]. Rubisco activity of the well-

watered seedlings was reduced throughout the duration of the experiment in 

response to elevated [G02], although significant differences between elevated and 

ambient [G02] were restricted to 103 dae (during the first growing season), and on 

both sampling dates in the second growing season. Rubisco activity the of well- 
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watered seedlings was linearly related to leaf nitrogen concentration on 251 dae 

(Appendix 5, Figure 5). In stressed plants Rubisco activity was also decreased by 

elevated [CO2], but the reduction was significant only on 212 dae. 
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Figure 6.14. Leaf (a,b) and root (c,d) soluble sugars concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO 2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SEM. Letters (a, b) indicate 
significant differences at P c 0.05 amongst the [CO2] treatments. Statistical 
significance: 

well-watered 	water-stressed 
leaf 	root 	leaf 	root 

time 	** 
[CO2] 	** 	P<0.10 * 	* 
time  [CO,] 	 Pc 0.10 ** 	as 

There were no significant differences in Rubisco activity between seedlings in 

ambient [CO2]  in the OTCs and outside control in both water treatments. However, 
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Rubisco activity was significantly increased on dae 80 and 90 and significantly 

decreased on dae 115 at P <0.10 by water stress in the outside control treatment. 

Chlorophyll concentration 

The overall effect of elevated [CO2] on leaf total chlorophyll concentration was 

significant in the second growing season (Appendix 5, Table 2) but not in the first 

growing season (Appendix 5, Table 1), whereas the water treatment had a 

significant effect in both years. Moreover, the chlorophyll alb ratio was not affected 

by either [CO2] or water treatments in the first growing season, whereas it was 

influenced by the water treatment in the second growing season. Figure 6.13 shows 

total chlorophyll concentration at each sampling time. There were no differences in 

the well-watered seedlings between elevated and ambient [CO2], whereas in the 

water-stressed seedlings total chlorophyll concentration was significantly decreased 

by elevated [CO2] only on 212 dae. Water stress did not influence total chlorophyll 

concentration in elevated [CO2] on any sampling date, whereas in ambient [CO2] it 

significantly increased chlorophyll concentration in the water-stressed seedlings on 

251 dae. 

Total chlorophyll concentration assayed spectrophotometrically in solution was not 

correlated with in situ measurements of chlorophyll concentration made using a leaf 

reflectance meter (Appendix 5, Figure 6a). Moreover, in situ measurements of 

chlorophyll concentration were not correlated with leaf nitrogen concentration 

(Appendix 5, Figure 6b). 

Total chlorophyll concentration was similar in ambient [CO2] in the OTCs and in 

the outside control in both well-watered and droughted seedlings. Significant 

differences were found only on 251 dae in well-watered plants and on 90 dae in 

water-stressed plants. Water stress had an irregular influence on total chlorophyll 

concentration of the outside control seedlings: the chlorophyll concentration of 

stressed plants significantly increased, on 90 dae (P c 0.10) and 251 dae (P c 

0.001), and significantly decreased, on 103 dae (P c 0.05). 

131 



 10 Cl) 
Ct 

E 

"0 6 

U 

Cl) 

12 

[$1 

C,) 
Ct 

E 

"0 

U 

Cl) 

5 

4 

3 

2 

1 

0 
69 	80 	90 	103 	115 	69 	80 	90 	103 	115 

Days after emergence 	 Days after emergence 
I 	I elevated 	V/////1 ambient 	outside 

Figure 6.15. Leaf (a,b) and root (c,d) starch concentrations in well-watered 
(a,c) and water-stressed (b,d) cherry seedlings grown in ambient [CO2], 
elevated [CO2], or outside control, shown as days after emergence. Data are 
means of 3 plants per treatment ± 1 SEM. Letters (a, b) indicate significant 
differences at P <0.05 amongst the [CO2] treatments. Statistical significance: 

well-watered 	water-stressed 
leaf 	root 	leaf 	root 

time 	 ** 
[CO2] 	 Pc 0.10 *** 	ns 
time  [CO2] Pc 0.10 as 	 as 

Sugar and starch concentration 

[CO2] treatment influenced overall leaf and root soluble sugar concentration 

(sorbitol, sucrose, fructose, glucose, etc.) per unit of dry mass of the cherry 

seedlings harvested before and during the first drying cycle (Appendix 5, Table 3). 

However, the soluble carbohydrate concentration was not increased in leaves of both 
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well-watered and droughted seedlings in response to elevated [CO2], whereas in 

roots significant increases in elevated [CO2] were found only 90 dae in both well-

watered and stressed seedlings (Figure 6.14). Leaf sugar content was, in general, not 

affected by water stress (Appendix 5, Table 3). However, significant differences 

between water treatments were found, although without a clear trend, 103 dae in 

elevated [CO2] (P < 0.10) and 90 dae in ambient [CO2] (P < 0.05). There was a 

clear increase in soluble sugar concentration of roots of the water-stressed plants, 

although this was significant only 103 dae in both elevated (P < 0.01) and ambient 

(P < 0.05) [CO2]. 

Differences in soluble sugar concentration in ambient [CO2] between the seedlings 

in OTCs and outside were seen 103 dae in leaves and 90 dae in roots of well-

watered seedlings, whereas in the water-stressed plants significant reductions were 

found 90 dae and 103 dae in leaf sugar concentration of the outside control 

seedlings. There was no clear trend in the outside control in response to water stress 

in leaf sugar concentration, which was significantly decreased 90 dae (P <0.01) and 

significantly increased 115 dae (P c 0.10) in water-stressed plants. Conversely, root 

sugar concentration was increased by water stress, although this was significant only 

103 dae (P <0.05). 

Leaf starch concentration was strongly increased by [CO2] and water treatments in 

the cherry seedlings harvested before and during the first drying cycle (Appendix 5, 

Table 3). The increase in [CO2] in the well-watered seedlings ranged from —33% (80 

dae) to —198% (69 dae), whereas in the water-stressed seedlings the increase was 

significant only on 115 dae (-61%) (Figure 6.15). The amount of starch 

accumulated in the roots was, in general, not affected by elevated [CO2] (Appendix 

5, Table 3): it was always higher in elevated than in ambient [COj in the well-

watered seedlings, but the increase was significant only 90 dae (-128%). In contrast, 

there was no clear trend in starch concentration between elevated and ambient [CO2] 

in the water-stressed seedlings, but a significant increase was found in elevated 

[CO2] on 80 dae (-51%). Water stress reduced significantly leaf starch 
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Figure 6.16. Leaf (a,b) and root (c,d) nitrogen (N) concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SEM. Letters (a, b) indicate 
significant differences at P < 0.05 amongst the [CO2] treatments. Statistical 
significance: 

1993 well-watered water-stressed. 
leaf 	root leaf 	root 

time ns 
[CO2] ** P<O.1O 
time x [CO2] * r 
1994 well-watered water-stressed 

leaf 	root leaf 	root 
time * 	ns ns 	ns 
[CO2] ** 	* *** 	Pc 0.10 
time 	[CO2] as 	ns ns 	ns 
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concentration per unit of dry mass in all the [CO21 treatments. The natural 

ontogenetic reduction in leaf starch over time which started 80 dae, was amplified as 

water stress increased. Conversely, water stress had the opposite effect on root 

starch, where the increasing ontogenetic trend was enhanced as soil moisture 

decreased. 

There were no significant differences in leaf and root starch concentration between 

ambient [CO2] seedlings in the OTCs and outside in either water treatment. 

Nutrient concentration 

Figure 6.16 shows leaf and root nitrogen concentration per unit of dry mass over the 

whole experimental period. [CO2] treatment affected N concentrations of both 

leaves and roots in the first growing season (Appendix 5, Table 6), whereas only 

leaf nitrogen concentration was affected in the second growing season (Appendix 5, 

Table 7). Significant decreases in leaf and root N concentration were evident in both 

water treatments as the two growing seasons proceeded (115 and 251 dae, 

respectively). Water stress, in general, did not influence N concentration in any 

[CO2] treatment. 

In general, [CO2] treatment did not affect P concentration of leaves in either 

growing season, although this was significantly reduced in elevated [CO2} on 251 

dae in both water regimes (Appendix 5, Figure 7). Root P concentration was 

decreased in the first, but not in the second growing season. However, P 

concentrations of both leaves and roots were significantly reduced by water stress 

(Appendix 5, Tables 6 and 7). The response of K (Appendix 5, Figure 8), Ca 

(Appendix 5, Figure 9), and Mg (Appendix 5, Figure 10) concentration of leaves 

and roots to the [CO2] and water treatments was not uniform in the two growing 

seasons (Appendix 5, Tables 6 and 7). 
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6.4 Discussion 

Stomatal conductance was significantly reduced in elevated [CO21-grown, 

unstressed seedlings in both the first (Figure 6.1) and second (Figure 6.2) growing 

seasons, whereas water-stressed seedlings showed little or no reduction in g. In 

contrast, A was significantly increased in response to elevated [CO2] in both water 

regimes leading to improved ITE over the whole duration of the experiment. 

However, elevated [CO2] did not increase water stress tolerance and the rate of 

water uptake was independent of [CO2] treatment (Figure 6.7). Consequently, there 

was no relationship between ITE and plant WUE (Figure 6.6). 

Higher A in elevated [CO2] was evident in both growing seasons (Figures 6. la and 

2a), and the increase was larger in magnitude than the average increase of 

photosynthetic rates of 44% found by Gunderson & Wullschleger (1994) in survey 

of studies on 39 tree species. Moreover, long-term growth in elevated [CO2] did not 

cause acclimation of photosynthesis of well-watered seedlings (Figures 6.3 and 6.4). 

Also, in water stress conditions A max  was unaffected by treatment [CO2] (Figure 

6.5). Absence of acclimation of Am ax was found in leaves of Quercus petraea grown 

in elevated or ambient [CO2] (Epron et al., 1994), whereas acclimation was found in 

four clones of Sitka spruce (see Chapter 4). The cherry seedlings were grown in pots 

of large volume (10 din  and 15 din  in the first and second growing season, 

respectively) and were supplied with free access of nutrients to avoid the occurrence 

of unbalanced nutrition and constrained rooting. Arp (1991), surveying experiments 

done in elevated [CO2], found that acclimation of photosynthesis and size of pot 

were highly correlated. In a recent paper Drake et al., (1997) pointed out that when 

there is no limitation of rooting-volume, i.e. pot volume exceeding 10 dm 3 , down-

regulation of photosynthesis is an exception. The results obtained with cherry 

seedlings are in agreement with this view. 

However, Rubisco activity of well-watered seedlings was decreased by elevated 

[CO21 (Figure 6.12), and consistent with the lower leaf nitrogen concentration found 

at the end of the two growing seasons (Figure 6.16). Lower Ruhisco activity in 
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elevated [CO2] than in ambient [CO2] was also found in cherry by Wilkins et cii. 

(1994). Rubisco is the most abundant protein in the biosphere and may account for 

over 25% of the leaf nitrogen in C3 species (Drake et al., 1997), and is the most 

important form of nitrogen storage in vegetative tissues (Stitt & Schulze, 1994). 

Long-term growth in elevated [CO2] often results in decrease in amounts of the 

photosynthetic pigments and enzymes (Long & Drake, 1992; Amthor, 1995). 

Apparently, this decrease may occur even when the supply of nitrogen is adequate 

and rooting volume large (Long, 1991). Long & Drake (1992) calculated that in 

elevated [CO2] Rubisco can be reduced by about 35% before resulting in co-

limitation of A. However, chlorophyll concentration of well-watered seedlings was 

not affected by elevated [CO2] (Figure 6.13), confirming that the photosynthetic 

antennae pigments are less sensitive than Rubisco content to elevated [CO2] (Van 

Oosten & Besford, 1995; Van Uosten et al., 1995). 

It has been proposed that increase in mass of sugars would regulate gene expression 

of the photosynthetic apparatus, and hence Rubisco activity and amount (Bowes, 

1996; Van Oosten & Besford, 1996). However, in the cherry seedlings total soluble 

sugar concentrations were not different in the elevated and ambient [CO2] 

treatments (Figure 6.14). Leaf starch concentration, however, did increase in 

response to elevated [CO2] (Figure 6.15). Starch accumulation in leaves, by 

maintaining stroma P1  cycling, allows A to continue (Stitt, 1991; 1996), and by 

lowering the amount of soluble sugar in the cytosol reduces the source of the 

regulatory signal that, according to Van Uosten & Besford (1996), may effect coarse 

control of the photosynthetic genes. Paul & Driscoll (1997), by manipulating the 

source-sink ratio of Nicotiana tabacum, found that the loss of photosynthetic 

activity was more correlated to the hexose/amino acid ratio than to sugar 

concentration per Se, and concluded that the regulatory signal causing repression of 

A depends more crucially on the carbon-nitrogen ratio than on the carbohydrate 

status of leaves. Accordingly, the increased leaf carbon/nitrogen ratio (i.e. equal 

soluble sugar concentration and lower nitrogen concentration - Figures 6.14 and 

6.16) found on 103 and 105 dae may account for the loss of about 25% in Rubisco 

activity of the leaves of the cherry seedlings grown in elevated [CO2]. 
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It has been suggested that elevated [CO2] may increase tolerance to drought by 

lowering osmotic potential, through the direct effect of elevated [CO2] on A and 

consequently on soluble sugar concentration, thereby maintaining high ¶1' (Tyree & 

Alexander, 1993). The osmotic potential of plants of Triticwn aestivum grown in 

elevated [CO2] declined more rapidly than in ambient [CO21, resulting in the 

maintenance of turgor pressure and permitting growth to continue as water deficits 

develop (Sionit et al., 1980). Conroy et al. (1988) found that droughted plants of 

Helianthus annuus grown in elevated [CO2] maintained ¶P at lower values. The 

osmotic adjustment, by increasing turgor pressure and relative water content, 

prevented total stomatal closure in the water-stressed plants, and allowed the 

maintenance of A: similar results were found by Paez et at. (1984). In contrast, ¶P of 

well-watered, tropical species was not affected in elevated [CO2] (Reekie & Bazzaz, 

1989). 

Water-stressed plants of Ipomoea batatas showed a more rapid decrease in leaf 

water potential in ambient [CO2] than in elevated [CO2} (Bhattacharya et al., 1990). 

Stressed plants of H. annuus maintained 9' at a more negative level in elevated 

[CO2] than in ambient [CO2] (COnroy et al., 1988). In Triticum aestivum 9' of the 

flag leaf declined more rapidly and reached a lower value in ambient CO2 than in 

elevated [CO2] (Sionit et al., 1980). Leaf water potentials of droughted Triticum 

aestivum were often significantly less negative in the FACE than in the control 

treatment (Pinter et al., 1996). However, in Gossypium hirsutum 9' was less 

negative in the FACE treatment only towards the end of the season. Similarly, 

higher values of 9' were found in plants of Arachis hypogaea grown in elevated 

[CO2] in both irrigated and droughted conditions (Clifford et al., 1993), as was 

observed by Rogers et al. (1984) on Glycine max. Other studies have shown that 

even in well-watered plants ¶1' was less negative (Sionit & Patterson, 1985) or 

unchanged (Paez et al., 1983, 1984) in elevated [CO2] than in ambient [CO2]. 

However, tolerance to water stress of cherry seedlings was not improved in response 

to long-term growth in elevated [CO2]. Values of % of elevated [CO 2]-grown 
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cherry seedlings were decreased in both water regimes (Figure 6.7), but no 

differences were found between [CO2] treatments in any of the other physiological 

parameters (i.e., ,rioo, n, R0, Cfl, and DM/TM ratio) which contribute to confer 

increased water stress tolerance (Table 6.2). Moreover, midday ¶1' of stressed 

seedlings declined more rapidly in elevated [CO2] than in ambient [CO2] during the 

first drying cycle. It can be argued that midday P depends strongly on 

environmental variables and consequently is subjected to much short-term 

variability, whereas pre-dawn ¶P by approaching equilibrium with the effective soil 

water potential over night, is a more appropriate measure of plant water status 

(Jones, 1992). When pre-dawn Wwas measured, on 103 (34 dae days from the onset 

of drought), there were no significant differences between [CO2] treatments (Figure 

6.1 lb). 

The reduction in g in well-watered seedlings grown in elevated [CO2] was not 

caused by a decrease in stomatal density, which was also unaffected by water regime 

(Table 6.1). Similarly, stomatal density of Quercus petraea and Pinus pinaster 

seedlings was not altered by either elevated [CO2] or water stress (Guehl et al., 

1994). Elevated [CO2] did not significantly reduce values of g in droughted 

seedlings, which were, on the contrary, highly correlated with soil water status 

(Figure 6.9), more so than with plant water status (Appendix 5, Figures 3 and 4). 

Moreover, following rewatering of the water-stressed plants, leaf water potential 

recovered after eight days to that of the unstressed seedlings, whereas g did not 

(Figure 6.7). Recently it has been widely shown that g is more closely related to soil 

water content than IF or IF., (e.g. Jones, 1992; Khalil & Grace, 1992). That stomata 

respond more closely to root than to shoot events may result from a root-sourced 

signal (e.g. ABA) being transported in the transpiration stream to the shoot and 

causing stomatal closure (Davies & Zhang, 1991; Khalil & Grace, 1993; Tardieu & 

Davies, 1993). 

Increased A in elevated [CO2] resulted in considerable enhancement of ITE over 

both growing seasons. In general, a higher ITE may help plant growth in dry 
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environments where water availability is scarce. However, as has been put forward 

several times .(e.g. Jarvis, 1993; Morison, 1993; Drake et al., 1997), higher 1TE per 

unit of leaf area may be partly offset on a plant scale in elevated [CO2], because of 

the increase in leaf area. Moreover, if decrease in g, reduces E, this will change the 

leaf energy balance leading to higher leaf temperature (e.g. Pinter a al., 1996), 

which will in turn increase the vapour pressure difference through the leaf surface, 

and will partially offset the impact of stomata] closure on leaf transpiration. Because 

several feedbacks contribute to control whole-plant transpiration, it is possibly not 

surprising that soil water content was not affected by elevated [CO2}, and that plant 

WUE was almost unchanged, although ITE increased (Figure 6.6). 

In Chapter 5 it was shown that plant WUE was highly affected by elevated [CO2] at 

each harvest date, but that the total amount of water loss did not differ between 

ambient and elevated [CO2], and consequently that elevated [CO2] did not 

ameliorate the long-term growth response of the cherry seedlings to water stress. 

This is in keeping with the finding that elevated [CO2] did not improve plant water 

relations through any of the parameters measured (W, and the parameters derived 

from the pressure-curve analysis - Table 6.2) other than 9S  However, 'P by 

increasing turgor affects leaf expansion (Morison, 1993), and thus may concur in 

increasing leaf area development in elevated [CO2] from the very early stages of 

growth. Increased leaf area, in turn, affects the amount of water consumption. 

Indeed, leaf area of the cherry seedlings was increased by elevated [CO21 in the first 

growing season (Figure 5.6), and this could explain to some extent the lack of effect 

of elevated [CO2] on total water taken-up by the water-stressed seedlings during the 

first drying cycle (Figure 6.7 and Figure 5.16). However, g was not significantly 

reduced by elevated [CO2] in the water-stressed plants, and leaf area was not 

affected by [CO2] treatment in the second growing season. 

Water flux through the soil-plant-atmosphere-continuum is proportional to the drop 

in water potential across the plant and the hydraulic conductance, and depends on 

leaf area, stomatal and aerodynamic conductance of the leaves, and on the radiation 

absorbed and local atmospheric vapour pressure deficit (Monteith & Unsworth, 
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1990). The degree of soil exploration by roots affects water uptake, but there was no 

difference in soil water status, expressed gravimetrically as soil water content, 

between the ambient and elevated [CO2] treatments (Figure 6.7). Consequently, it is 

likely that the degree of exploitation of soil volume by the plants was similar, and 

consequently root and soil resistances in the soil-plant-atmosphere pathway are 

unlikely to have been different in ambient and elevated [CO2] treatments. 

However, the slope (5) of the relationship between leaf area and cross-sectional area 

of sapwood of the water-stressed seedlings was less steep in elevated [CO2], 

indicating that less leaf area was supported per unit area of conducting tissue 

(Appendix 4, Figure 3b). As Whitehead & Jarvis (1981) pointed out  is affected by 

the properties of the wood (i.e. hydraulic conductance), plant height, gradient of 

and transpiration rate which in turn is related to the ratios of stomatal to boundary-

layer conductances and to properties of the climate expressed as a climatological 

resistance (i.e. the ratio of VPD to net radiation). All else equal, the higher the 

transpiration rate, the smaller S. However, in Figure 3b (Appendix 4) two different 

patterns can be seen: the basal area less than 1 cm 2,  i.e. growth during the first 

growing season, and the basal area larger than 1 cm 2,  i.e. growth in the second 

growing season. In the first growing season S does not change, the reduced 

transpiration rates per unit of leaf area in elevated [CO2] were counterbalanced by 

the increased leaf area and height. Therefore, the hydraulic conductance is likely to 

have been similar in the different [CO2] treatments so that the size and diameter of 

the xylem vessels was not affected by elevated [CO2]. 

However, in the second year of growth S was affected by elevated [CO2], but height, 

leaf area, and g g  were not (see Chapter 5). Since there were no systematic 

differences in air temperature inside the OTCs and air was supplied to the OTCs at 

the same flow rate (three air changes per minute, see 'Chapter 2), one might expect 

that there were also no differences in VPD inside the OTCs, or in the boundary-layer 

conductances and in the climatological resistances. Therefore, the hydraulic 

conductance was reduced by elevated [CO2] in water stress conditions. Thus, the 

size and diameter of the xylem vessels may have been influenced by the 
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combination of [G02] and water stress. In the recent paper Heath et cii. (1997) have 

measured the hydraulic conductance of Fagus syivatica and Quercus robur after 

three years of growth in elevated [G02]. They found that the whole-shoot hydraulic 

conductance was reduced, although not significantly, in Q. robur but not in F. 

sylvatica. The authors explained these results in term of coordination between 

maximum transpiration rate and hydraulic conductance, since during the previous 

year of growth, g of Q. robur was decreased in elevated [G02] during drought, 

whereas on the contrary gs  of F. syivatica was increased. 

Temperature and humidity gradients through the leaf boundary layers and 

atmospheric surface layer depend on the ratios of leaf stomatal to boundary-layer 

conductances and canopy to bulk air transfer conductances (McNaughton & Jarvis, 

1991). These ratios are expressed as the degree of 'coupling' between the plants and 

the atmosphere, i.e. the effectiveness of vapour water and energy transfer, which is 

inversely related to the convective decoupling coefficient, the Q factor (Jarvis, 

1985; Jarvis & McNaughton, 1986). The Q factor in OTCs (with three air changes 

per minute) is large (-0.8 for the large leaves in the watered treatment, and -0.6 in 

the water-stressed treatment), and therefore the net radiation absorbed is the major 

driving force for transpiration (Jarvis, 1985). Thus VPD at the leaf surface does not 

change much with stomata] movement and transpiration is rather  insensitive to 

small changes in stomatal conductance (McNaughton & Jarvis, 1991; Jarvis, 1993). 

This may explain the lack of effect of elevated [G02] on total plant transpiration, 

which was similar at each harvest in ambient and elevated [G02] in both water 

treatments (Figure 6.7; Figure 5.16 and Table 5.6), although in the well-watered 

plants leaf area was not affected and stomatal conductance was significantly reduced 

by elevated [G02]. 

Elevated [G02] neither increased water stress tolerance of cherry seedlings, nor had 

any particular beneficial effect on long-term growth indrought conditions (Chapter 

5). Recent studies have shown that some trees may undergo higher risk of damage in 

drying soils in elevated [G02] than ambient [G02] (Kerstiens et al., 1995; Beerling 

et al., 1996; Heath & Kerstiens, 1997). Deciduous trees in woodland have a 
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relatively large value of Q as in the OTCs (Jarvis & McNaughton, 1986) with a 

relatively large ratio of canopy to surface-layer conductances at canopy scale. As a 

result transpiration here also is likely to depend more on net radiation than on VPD 

and decrease in stomatal conductance brought about by elevated [CO2] 

(McNaoghton & Jarvis, 1991; Jarvis, 1993). Considering the predicted increase in 

temperature associated with [CO2] build-up in the atmosphere, and that elevated 

[CO2] may have a little impact upon transpiration of cherry, it is possible to 

conclude that in dry environments elevated [CO2] may have a far lower impact on 

plant WUE of cherry than one may deduce from the literature. 
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CHAPTER 7 

Growth in Elevated CO 2  Concentrations: a Long-term 

Effect or a Short-term Response? 

7.1 Introduction 

A doubling of the atmospheric CO2 concentration increases C3 plant growth by an 

average of 30 to 40%; in terms of agricultural marketable yield there is a 33% 

increase (Kimball, 1983); over a range of 156 species there is an increase of 37% of 

the vegetative biomass (Poorter, 1993) and tree biomass increases by about 40% 

(Eamus & Jarvis, 1989; Jarvis, 1989; Lee & Jarvis, 1996). However, the increase in 

CO2 assimilation rate brought about by elevated atmospheric [CO2] is often in the 

range of 60 to 80% (Luxmoore et al., 1993; Ceulemans & Mousseau, 1994, Lee & 

Jarvis, 1996). Thus, even taking into account losses of assimilated CO2 through 

respiration, the increase in photosynthesis exceeds the increase that would be needed 

to support the average growth increment found in the above reports. 

During the phase of exponential growth plants are generally source-limited, since 

only part of the incident radiation is intercepted by the plant canopy. Thus, at this 

stage because of the compound interest law' (Blackman, 1919), even small 

differences in the rate of leaf growth, and hence in the size of the assimilatory 

system, can have large repercussions on the production of total biomass over time 

(Hsiao, 1982, 1994). According to Hsiao's model (1982), the phase of exponential 

growth ends when canopy closure is reached, and almost all the available photon flux 

reaching the canopy is intercepted. At this time, the compound interest of growth is 

lost and as a result biomass production is no longer determined by relative growth 

rate (RGR) of the leaves, but becomes proportional to canopy assimilation rate. 

Therefore, when plants are in the phase of exponential growth more emphasis should 

be placed on RUR of the leaves than on photosynthesis, but after canopy closure 

more emphasis should be placed on photosynthetic capacity. 
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Classical growth analysis, as elaborated by the British school (e.g. Kvèt etal., 1971; 

Evans, 1972), can be regarded as an established standard method for analysing the 

effects of environmental variables on plant production, and, therefore, can be applied 

to estimate the impact of climate change on plant growth and biomass allocation 

(Bazzaz, 1993). The most appropriate growth characteristic enabling analysis of net 

photosynthetic production of plants in relation to environmental variables is RGR, 

the rate of dry matter increase per unit of dry mass (Al) present per unit of time, 

which is independent of the number of growing plants per unit of ground area. Mean 

RGR over a time interval from t, to t2 of two consecutive harvests (Mi and M2) is 

traditionally given by: R = (mM2 - lnM1) / (t2 - t1), where RGR is a proportionality 

factor which, using the 'monetary analogy' (Evans, 1972), corresponds to the rate of 

interest at which the initial 'capital has to be invested to obtain the final 'capital gain 

(Kvèt et al., 1971). 

Reviews have reported that elevated [CO2] increases plant growth (e.g. Cure & 

Acock, 1986; Mortensen, 1987; Eamus & Jarvis, 1989; Rogers & Dahlman, 1993; 

Idso & Idso, 1994), and consequently mean RGR over the experimental period (i.e. 

between the initial and the final harvest) must be higher in elevated [CO2] than in 

ambient [CO2]. However, it is widely believed that the increased growth in elevated 

CO2  concentrations results mainly from an initial stimulation, which may decline and 

even disappear over time. Enoch (1990), reviewing crop response to increasing 

[CO2], hypothesised the existence of either a trigger or a threshold effect on growth. 

Furthermore, evidence of a faster decline in mean RGR (measured between two 

consecutive harvests as the experiment proceeds) in elevated [CO2] than in ambient 

[CO2} has been reported (e.g., Bazzaz, 1990; Bazzaz, 1993; Poorter, 1993). 

A differential decline in mean RGR was also found when processing data from the 

FACE (free-air carbon dioxide enrichment) cotton project (Mauney et al., 1994). The 

relative growth rates of cotton plants in the FACE and control treatments became 

similar 53 days after the beginning of CO2 enrichment (81 days after seedling 

emergence) in 1989, 11 days (12 days after seedling emergence) in 1990 and 20 days 

(20 days after seedling emergence) in 1991. 
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Poorter (1993) factored RT into NAR (net assimilation rate) and LAR (leaf area 

ratio), and then factored LAR into SLA (specific leaf area) and LMR (leaf mass 

ratio), and found that a decrease in SLA in elevated [CO2] partly offset the increase 

in NAR. Lambers & Poorter (1992), reviewing the inherent variation of RT between 

fast-growing and slow-growing plants, found that SLA is highly correlated with 

LAR, and that the latter outweighed NAR in explaining inherent variation in R1 . 

They concluded that LAR, the amount of plant biomass needed in order to produce 

the same LA (leaf area), is an important factor determining the potential growth of a 

plant, as found much earlier (e.g., Blackman & Wilson, 1951; Hughes & Evans, 

1962). 

In general, higher values of LAR occur in fast-growing plants than in slow-growing 

plants. However, plants grown in elevated [CO21 usually have a lower SLA than in 

ambient [CO2] mainly because of accumulation of starch in leaves, whereas NAR is 

always higher. The rate of CO2 assimilation per unit of LA is also higher, but 

proportionally less biomass is invested in leaf area and therefore in new 

photosynthetic systems (e.g. in relation to a doubling of photosynthesis, there is only 

40% more LA). However, accumulation of starch in leaves can be seen as storage of 

assimilates which occurs when the flux of new assimilate production exceeds the 

flux of assimilates loaded into the phloem (Korner et al., 1995) and exported for 

growth and formation of reserve and defence compounds, and therefore should not be 

regarded as in competition with growth (Chapin et al., 1990; Stitt & Schulze, 1994; 

Schulze & Stitt, 1995). In addition, starch accumulation reducing the size of the 

cytoplasmatic pool of sugars, can to some extent decrease the fine control (end-

product feedback), which regulates metabolism, and the coarse control (gene 

expression), which determines the amount of photosynthetic systems (Farrar, 1992). 

Thus, starch accumulation in chioroplasts, as long as it does not reach levels which 

may damage thylakoid membranes, cannot be a major factor in the down-regulation 

of photosynthesis occurring in elevated [CO2] conditions. 

Elevated [CO2]-grown plants have traits of both fast- and slow-growing plants. These 

traits include: higher NAR, thicker leaves (extra layers of mesophyll cells in some 
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species), higher photosynthetic nitrogen use efficiency, reduced chlorophyll content 

per unit area, and lower SLA and, therefore, LAR (Lambers & Poorter, 1992; 

Ceulemans & Mousseau, 1994). Thus, less organic nitrogen is invested in 

photosynthetic proteins (mainly Rubisco) and in light-harvesting complexes in 

heavier leaves as a consequence of acclimation to more favourable growth conditions 

(Lambers & Poorter, 1992), and, therefore, the specific maintenance respiration 

resulting from protein turnover of the photosynthetic system should be reduced 

(Amthor, 1995). 

Elevated [CO2]-grown plants also have similar traits to plants grown under high 

photosynthetic photon flux density (Fichtner et al., 1994) including: higher 

photosynthetic rates, which lead to increased carbohydrate production, more starch 

accumulation, higher NAR, thicker leaves, and a shift in the allocation of biomass 

from shoot to root. These similar traits are presumably the common result of 

enhanced CO2 assimilation in high photosynthetic photon flux density and 

atmospheric CO2 concentration. All these traits would allow more rapid exploitatior; 

of gaps within forests and establishment of young seedlings. Conversely, more rapid 

growth will lead to more rapid canopy closure thus limiting growth and 

establishment of new tree seedlings. In other words the process of ecological 

succession may be accelerated and those plants best able to use the extra CO2 will 

come to dominate the ecosystem. 

The question that this study addresses is whether the increase in total biomass 

brought about by enhanced [CO2] is a long-term or a transient effect under non-

limiting conditions, i.e. whether the differential compound interest of growth 

between elevated and ambient [CO2] plants that occurs during early exponential 

growth is maintained or declines. The present study used classic growth analysis to 

examine the effect of long-term exposure to ambient (-350 pmol mor') or elevated 

(ambient + —350 iimol m01 - 5 CO2 concentrations on four clones of Sitka spruce and 

cherry saplings grown in open top chambers. 
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7.2 Materials and Methods 

Full 	details of the four clones of Sitka spruce and cherry seedlings, growth 

conditions, number of harvests made, and the statistical analyses used to test the data 

are given in Chapter 2, 3, and 5 

The number of Sitka spruce harvested varied between 20 to 40 per [CO2] treatment 

depending on harvest date. In cherry, the number of plants harvested was six per 

[CO2] treatment for the baseline and final harvests, and three per [CO2] treatment for 

all the intermediate harvests. Each plant was divided into leaf, stem (including 

branches), and root and then oven dried for 48 h at 70 °C to give dry mass (Al). Leaf 

area (LA) of cherry was measured using a leaf area meter (LI 3100, LI-COR Inc., 

Lincoln, NE, USA). 

Classical growth analysis (Kvèt et. al., 1971; Evans, 1972) was applied to both 

species and current mean relative growth rates were calculated for total dry mass (RT) 

and leaf dry mass (RL) between two consecutive harvests, and long term mean 

relative growth rates for total thy mass and leaf dry mass (R 4- and R L, respectively) 

between each harvest and the baseline harvest. Cherry R 4- was broken down into 

NAR (amount of biomass produced per unit of LA), and LAR (amount of LA per 

unit of plant dry mass, i.e. the size of assimilatory apparatus per unit of plant dry 

mass). LAR can be equated with the product of SLA and LMR, where SLA (LA per 

unit of leaf dry mass) is a measure of leaf density and thickness, and LMR (leaf dry 

mass per unit of plant dry mass) is the proportion of the total dry mass in the leaves. 

NAR is regarded as being the functional component and LAR the morphological 

component of RT (Evans, 1972), but, as Lambers & Poorter (1992) pointed out, the 

two growth characteristics are not completely independent but, on the contrary, are to 

some extent mutually dependent. 

The NAR of cherry saplings was calculated, according to Kvèt et. al., (1971), as 

follows: 
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[(7142-Mi) / 42 - t 1 )] [(L - L) I (L - L)] [(X/((X -  1)] 

where LA! and LA2 are the values of mean leaf area at the harvest carried out at times 

t1 and t2, respectively, a is equal to the ratio RT to RA (mean relative growth rate of 

leaf area), and was calculated as the slope of the linear regression plotted between 

1nDM and InLA of the elevated (R 2  = 0.995, a = 1.11) and ambient (R 2  = 0.994, a = 

1.09) [CO2] treatments, and of the outside control (R 2  = 0.997, a = 1.08). 

Since no significant inter-chamber effect on growth of both clonal Sitka spruce and 

cherry saplings was found in each [CO2] treatment (see Chapter 3 and 5), a two way 

analysis of variance (ANOVA) was used to determine effects of the [CO2] treatments 

and time on the cherry LAR and SLA, and on both current and long term RGR of the 

Sitka spruce saplings, averaged across the four clones mean, i.e. RT, RL, R 4', and R L. 
No replicates of current and long term RGR were available for cherry and for the 

four clones of Sitka spruce. Thus, in order to determine differences of these growth 

characteristics in response to the [CO2] treatments, the variance of mean current and 

long term RGRs (St)  was calculated according to Kvèt et. al., (197 1) as follows: 

2 	2 	2 	2 	2 	 2 
SR = [(SM!/M j + (SM2/M2 )] I(t2- t) 

where Sm2I  and S2  are the variances of the primary values M1 and A42,  respectively. 

The treatment means of total and leaf dry mass of both cherry and Sitka spruce were 

compared using Duncan's multiple range test. 

7.3 Results 

Total dry mass and leaf dry mass of Sitka spruce saplings were significantly higher in 

elevated [CO2] (ca 40% for total dry mass and ca 34% for leaf dry mass) than in 

ambient [CO2] at each harvest throughout the experimental period (Table 7.1). 

However, the logarithmic plots in Figure 7.1, the slopes of which are RORs, show 

that during the first year the relative growth rates of both total (Figure 7.1 a) and leaf 

(Figure 7. lb) dry mass were larger in elevated [CO2] than in ambient [CO2], but that 

subsequently the distance between the two curves remained constant (i.e. with the 

149 



same slope) indicating that both R' and RL for the two treatments did not differ. The 

long term relative growth rates, R Tt  (Figure 7.2a) and R L (Figure 7.2b), were always 

significantly higher at each harvest in elevated [CO 2}-grown than in ambient [CO2]-

grown plants. By contrast, after the first interval of growth (days 1-382), both the 

current RT and RL were not significantly different between CO2 treatments and 

remained unchanged for the rest of the experimental period, even when calculated 

over long periods, i.e. the period 382-972 (Table 7.2). This trend was consistent for 

both current and long term relative growth rate in each of the four clones of Sitka 

spruce (Table 7.3). 

Table 7.1 Percentage increase in leaf 
and total dry mass of the Sitka spruce 
saplings in response to elevated [CO2], 
shown as days from the beginning of 
the [CO2] exposure. Data are means of 
20 to 40 plants per treatment. 

days 	leaf 	 total 
382 33Pc0.01 45P<0.001 
551 33P<0.01 44P<0.001 
719 34Pc0.05 37P<0.05 
972 35P<0.001 41Pc0.001 

Total dry mass of cherry saplings was almost always significantly higher in elevated 

[CO2] than in ambient [CO2] or in the outside control (Table 7.4). However, after an 

initial stimulation, the increase in total dry mass began declining relative to the 

ambient [CO2] saplings. The increase in total biomass in elevated [CO2] with respect 

to outside control, showed a similar pattern during the first growing season, but 

another remarkable increase was recorded on 212 dae in the second growing season. 

At the end of the experiment, enhanced [CO2] significantly increased the total dry 

mass produced of about 39% and 62% compared to that of the ambient [CO2] and the 

outside control treatments, respectively. A similar trend was seen in leaf dry mass 
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Figure 7.1 Combined exponential total dry mass (a) and leaf dry mass (b) of 
the Sitka spruce saplings versus days of exposure to ambient [CO2] (---) or 
elevated [CO2] (—); the dry mass data are plotted on a logarithmic scale so• 
that the slopes of the lines show the relative growth rates. Data are means of 
20 to 40 plants per treatment ± 1 SEM. 

production in response to elevated [CO2] (Table 7.4). However, in general, the 

relative increase in leaf thy mass in elevated [CO2] was lower than that of total 
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biomass after 33 dae. In addition, the percentage increases in leaf dry mass resulting 

from CO2 enrichment were not significant at the end of the experiment. The larger 

difference in total and leaf dry mass during, rather than at the end of, the growing 

season between the trees in the chambers and those of the outside control may be a 

consequence of slower phenological development in the outside control (i.e. a 

temperature effect). 

Table 7.2 Mean current relative growth rate (mg g'd') of total (Rr) and leaf (RL) 

dry mass of the Sitka spruce saplings grown in ambient ('-350 pmol mol 1  - amb) 
or elevated (-700 pmol moF 1  - ely) [CO2], for three periods from the beginning of 
the [CO2] exposure. Data are means of four plants per treatment ± 1 SEM 
(calculated across the four clones), ns = not significant. 

	

total dry mass RGR 
	

leaf dry mass RGR 
ely 	 amb 
	

ely 	 amb 

382-551 8.22±0.38 8.12±0.53 7.88±0.34 7.87±0.36 
551-719 2.24±0.28 2.28±0.55 1.02±0,36 0.96±0.14 
719-972 4.37 ± 0.03 4.50 ± 0.16 4.32 ± 0.14 4.30 ± 0.33 
Statistical significance (P > F) 
CO1 ns ns 
Time <0.001 <0.001 
Interaction ns ns 
382-972 4.86 ± 0.07 ns 4.91 ± 0.02 4,40+0.05 ns 	4.37 ± 0.08 

Since there were several sequential harvests in the first year after seedling 

emergence, it is possible to see that the differences between treatments of RT (Figure 

7.3a) and RL (Figure 7.3b) were set at a very early stage during the first month after 

emergence (i.e. by 33 dae), when the trees were less than 20 cm high and had only 

six or seven leaves. At this time radiation was not attenuated by overlapping leaves 

and, therefore, shading was not a factor influencing growth in either treatment. 

Biomass accumulation of cherry (Figure 7.3a,b) and, therefore, Kr and RL (Table 

7.5), then followed the same parallel pattern as did Sitka spruce for the remainder of 

the first and for the whole of the second growing season. When calculated on a long-

term basis, i.e. the period 33-251 dae, RT did not differ among the treatments, 

whereas RL was even significantly lower in elevated [CO2] than in ambient [CO2] 

(Table 7.5). On the other hand, mean long-term relative growth rates of cherry 
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saplings, R 4' and R 4', were significantly higher in elevated [CU,] than in ambient 

[CO2] both in the OTCs and in the outside control (Figure 7.4). Current and long 

term NAR did respond positively to doubling the concentrations of CO2 (Table 7.6) 

whereas, by contrast, LAR and SLA were negatively affected (P <0.001) (Table 7.7). 

7 

6 

F 

4 

S 
1-382 	1-551 	1-719 	1-972 	1-382 	1-551 	1-719 	1-972 

Days 	 Days 

Figure 7.2 Combined mean long term relative growth rates of (a) total dry 
mass (R 4') and (b) leaf dry mass (R 4') of the Sitka spruce saplings versus 

days of exposure (period between each harvest date and the baseline harvest 
made on day 1) to ambient (I_I) or elevated [CU,] (k\\'). Data are 
means of the long term relative growth rate of the 4 clones per [CO'] 
treatment ± 1 SEM, and the significance levels (** = P<0.01, = 
P<0.001) show the difference in response to the [CO2] treatments. 

Although the Sitka spruce and cherry trees were large, well-branched and leafed at 

the end of the experiment, they only experienced a small amount of self-shading and 

did not experience light-limitation because the experimental design and chamber 

design allowed unlimited side-light to reach the plants. However, there was an 

ontogenetic decline in growth by the end of each growing season in both species. 

Sitka spruce and cherry sapling RT was affected by size of the plants only when the 

saplings were small: RT plotted versus total dry mass was higher in elevated [COI] 

than in ambient [CO2] only when less than about 20 to 25 g of total biomass had been 

produced (Figure 7.5). 

153 



Table 7.3 Mean current (RT) and long term (R Tt  ) relative growth rates of total dry mass 
(mg g'&) of the four Sitka spruce clones grown in ambient (amb) or elevated (ely) [CO21, 
as a function of days from the beginning of the [CO2] exposure. Data are means of 5 to 10 
plants per treatment ± S L 

Skidegate a 	Skidegate b 	North Bend a 	North Bend b 
days 	ely 	amb 	ely 	amb 	ely 	amb 	ely 	amb 

UI a 

551 
719 
972 

382-972 
n t 

1-382 
1-551 
1-719 
1-972 

7.6 ± 0.62 6.8 ± 0.41 
2.5 ± 0.64 3.9 ± 0.75 
4.4±0.14 4.2±0.21 
4.7 ± 0.02 4.9± 0.01 

4.8±0.17 4.0±0.13 
5,7 ± 0.09 4.9 ± 0.09 
4.9 ± 0.05 4.7 ± 0.05 
4.8 ± 0.02 4.6 ± 0.02 

9.1 ±0.40 8.0 ±0.97 
1.9 ±0.48 2.1 ±0.75 
4.5 ±0,12 4.9 ±0.17 
5.1 ±0.05 5.0 ±0.05 

4.5 ± 0.18 3.9 ± 0.26 
5.9±0.10 5.1 ± 0.12 
5.0 ± 0.06 4.4 ± 0.06 
4.8 ± 0.03 4.5 ± 0.03 

7.5 ±0.52 8.1 ± 1.06 
2.8± 1.00 2.5± 1.51 
4.4 ± 0.31 4.3 ± 0.41 
4.9 ± 0.02 4.9 ± 0.04 

5.2±0.17 3.9 ±0.20 
5.9 ± 0.09 5.2 ± 0.12 
5.2 ±0.07 4.6±0.08 
5.0±0.02 4.5 ±0.02 

8.5 ± 0.92 9.4 ± 0.77 
1.6 ± 1.25 1.3 ± 1.19 
4.5 ± 0.37 4.2 ± 0.29 
4.8±0.04 4.9 ±0.02 

5.4 ± 0.21 4.2 ± 0.16 
6.3 ± 0.12 5.8 ± 0.12 
5.2 ± 0.08 4.8 ± 0.07 
5.0±0.02 4.6±0.02 
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Figure 7.3 Exponential total dry mass (a) and leaf dry mass (b) of cherry 
saplings versus days after emergence in ambient [CO2] (---), elevated 
[CO2] (), or outside control (). The dry mass data are plotted on a 
logarithmic scale so that the slopes of the lines show relative growth rates. 
The beginning of the second growing season is shown, for convenience, 
consecutively as dae 136; Data are means of 3 to 6 plants per treatment ± 
1 SEM. 

7.4 Discussion 

No overall differences amongst the treatments were found in the proportion of dry 

mass allocated to the roots when plants are the same size (Chapter 3 and 5), and, 
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therefore, the saplings were not pot limited, regardless of [CO2] treatment. Thus, 

both tree species were stress-free (adequate nutrition, water, pot space), but with 

growth departing from initial exponentiality as a result of ontogenenetic loss of 

totipotency. 

Table 7.4 Percentage increase in leaf and total dry mass of the cherry 
saplings in response to elevated [CO2] with respect to ambient [CO2] 
(amb) and outside control (out) saplings, as a function of days after 
emergence (dae). Data are means of 3 to 6 plants per treatment, ns = 
not significant. 

dae 
amb 

leaf 	total 
out 

leaf total 
33 67Pc0.001 64Pc0.001 79Pc0.001 75Pc0.001 
60 44 n 62 n 32 n 42 n 
69 75Pc0.05 79P<0.05 129P<0.05 124P<0.05 
80 65Pc0.01 91 P<0.05 132Pc0.01 155P<0.05 
90 50P<0.01 66Pcz0.01 98Pc0.01 124Pc0.01 
103 42P<0.05 48Pc0.05 90P.c0.05 105.Pc0.05 
115 44P<0.01 50Pc0.001 40Pc0.01 74P<0.001 
212 22P<0.05 39Pc0.05 69Pc0.05 107P<0.05 
251 25 n 39Pc0.001 20 n 62Pc0.001 

The saplings of Sitka spruce (Figure 7.1a) and cherry (Figure 7.3a) showed positive 

growth responses to elevated CO2 during the experiment. The overall response to 

elevated [CO2], in terms of total plant dry mass, increased throughout the 

experiments: at the end of the experiments both species were approximately 40% 

larger in elevated [CO2] than in ambient [CO2] (Table 7.1 and 4). As a result, the 

long term mean R . and R L were significantly higher in elevated [CO2] in the 

saplings of Sitka spruce (Figure 7.2) and cherry (Figure 7.4). However, because of 

the differential decline in RGR with time, RT and RL of Sitka spruce (Table 7.2 and 

7.3) and cherry (Table 7.5) saplings in elevated [CO2] became the same as in ambient 

[CO2]. As a result, in both Sitka spruce and cherry the large differences in total 

biomass at the end of the experiments were a consequence of the more rapid growth 

in the early phase of exposure to elevated [CO2]. In fact, after this initial phase 

(namely the period 1-382 for Sitka spruce and 1-33 for cherry), mean RT and R. 
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measured on a long-term basis, i.e. until the end of the experiment (period 382-972 

for Sitka spruce and 33-251 for cherry), were similar, or even lower in elevated 

[CO2] than in ambient [CO21 (Table 7.2 and 7.5). This pattern of growth was seen 

also in each of the four clones of Sitka spruce (Table 7.3). 

Table 7.5 Mean current relative growth rate (mg gd 4 ) of total and leaf dry mass 
of the cherry saplings grown in ambient [CO21 (-350 pmol mol', - amb), in 
elevated (-700 pmol mol", - ely) [CO2], or as outside control (out) as a function of 
days after emergence (dae). 212 and 251 dae are the harvest days in the second 
growth season, which started on dae 136. Data are means of 3 to 6 plants per 
treatment ±S 2  . 

dae 
total dry mass RT 

ely 	amb out ely 
leaf dry mass Ri 

amb out 
60 70.6 ± 0.2 70.9 ± 0.3 78.2 ± 0.3 64.3 ± 0.2 69.9 ± 0.3 75.5 ± 0.2 
69 79.4 ± 2.6 70.0 ± 2.8 49.3 ± 3.1 88.9 ± 2.7 69.7 ± 3.0 47.4 ± 2.9 
80 65.0 ± 1.3 59.8 ± 1.9 514 ± 1.0 48.7 ± 1.0 54.2 ±0.8 47.8 ± 1.1 
90 26.1±0.9 40.1 ±0.6 39.1 ±0.5 18.4±0.5 28.2±0.4 34.1±0.9 
103 45.2 ± 0.5 53.9 ± 0.1 52.1 +0.3 36.1 ± 0.5 40.3 ± 0.1 39.2 ± 0.3 
115 9.5 ± 0.3 8.9 ± 02 23,4 ± 0.4 4.9 ±0.5 5.2 ±0.1 20.7 ± 0.2 
212 14.8 ± 0.1 15.6 ± 0.1 13.0 ± 0.1 13.0±0.1 14.5 ± 0.1 12.3 ± 0.1 
251 15.0±0.1 15.0±0.2 213±0.2 6.8±0.1 6.3±0.1 15.4±0.1 

33-251 29.0 ± 0.1 29.8 ± 0.1 29.4 ± 0.1 24.4 ± 0.3 25.7 ±0.1 26.2 ± 0.1 

The decline of RGR in elevated [CO2] to equal that in ambient [CO2] with time, 

found for both cherry and Sitka spruce, raises an important question. Although both 

total plant growth and net assimilation rate remained higher in elevated than in 

ambient [CO2], what combination of compensatory process leads to subsequent 

equality of relative growth rate in stress-free conditions? 

The net photosynthetic rate (A) per unit leaf area of Sitka spruce grown and measured 

in elevated [CO2] was about 67% higher during the second year, and about 62% 

higher during the third year, than for plants grown and measured in ambient CO2. 

Measurements of A/C 1  (C1 is the mean intercellular space CO2 concentration) curves 

and of Rubisco activity showed a certain degree of down-regulation of 

photosynthesis in elevated [CO2] in the third year (Chapter 4). Whereas, for cherry 

the net photosynthetic rate of elevated [CO2]-grown plants was in the range of 40 to 

140% higher throughout the first growing season and 79% higher during the second 
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140% higher throughout the first growing season and 79% higher during the second 

year of growth, than for the ambient [CU,] plants. Measurements of A/C, curves 

made during the second growing season, showed no down-regulation of 

photosynthesis per unit leaf area in plants grown in elevated [CO'], although Rubisco 

activity was significantly reduced (Chapter 6). 
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33 60 69 80 90 103 115 212 251 33 60 69 80 90 103 115 212 251 

Days after emergence 	 Days after emergence 

Figure 7.4 Mean long term relative growth rates of (a) total dry mass (R I ) 
and (b) leaf dry mass (R L) of cherry saplings versus days after emergence 
(period between each harvest date and the baseline harvest made on day 1) to 
ambient [CO2] (L_I) and elevated [CO,] (), or outside control 
(E1). 212 and 251 dae are the harvest days in the second growth season, 
which started on dae 136. Data are means of 3 to 6 plants per treatment ± S . 

That increasing growth in elevated atmospheric CO2 concentrations is less than the 

increase in photosynthesis has frequently been observed, as was found for both 

cherry and Sitka spruce in the present work. Evans (1994) found that at the end of the 

second year of growth of Sitka spruce seedlings in elevated [CO2], differences in 

biomass production between the treatments had disappeared, although no evidence of 

down-regulation was shown by the elevated [CO2]-grown plants. However (see 

reviews by Eamus and Jarvis, 1989; Luxmoore et al., 1993; Ceulemans & MouSseau, 



increase in respiration rate, change in starch accumulation, change in size of the 

cytoplasmic pool of sugars, increase in volatilisation and root exudation losses, fine 

root turnover, and nitrogen deficiency. 

Table 7.6 Current and long term net 
assimilation rate, NAR (g m -2  d-1 ) of the cherry 
saplings grown in ambient [CO2] (amb), 
elevated (ely) [CO2], or outside control (out) 
as a function of days after emergence (dae). 
Data are means of 3 to 6 plants per treatment. 

dae ely amb out 
Current NAR 

60 7.13 5.39 6.87 
69 8.84 6.22 2.85 
80 7.27 5.60 5.60 
90 3.07 4.05 4.30 
103 6.75 6.79 6.59 
115 1.86 1.35 3.80 
212 3.00 2.46 205 
251 3.87 2.91 3.78 

33-251 6.33 5.18 4.65 
Long term NAR 

1-33 10.32 7.73 9.10 
1-60 9.33 6.89 7:89 
1-69 8.56 7.35 7.64 
1-80 8.16 6.66 7.49 
1-90 7.84 6.97 7.15 
1-103 10.27 8.44 8.25 
1-115 10.72 9.54 9.75 
1-212 6.27 4.78 4.70 
1-251 8.36 6.82 5.98 

Rhizodeposition products and respiratory CO2 from the roots and associated micro-

organisms can account for a large proportion of lost assimilates, even more than 40% 

of the dry matter produced (Lynch & Whipps, 1990). Norby et al. (1992) found that 

CO2 efflux from the soil in elevated [CO2] chambers, as a result of yellow-poplar 

fine root turnover, was about 24% higher than that from ambient [CO2] chambers. 

Acceleration of some of these processes in elevated CO2] may be the cause of 

convergence of the relative growth rates in in elevated and ambient [CO2]. However, 
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some of the processes mentioned above may not be the cause of the limitation to 

growth of stress-free plants in elevated [CO2], but may in fact be the result of a 

'limited' capacity to increase growth. 

Table 7.7 Leaf area ratio (LAR) and specific leaf area (SLA) of the 
cherry saplings grown in ambient [CO2], elevated [CO2], or outside 
control (out);. dae = days after emergence. Data are means of 3 to 6 
plants per treatment ± 1 SEM. 

LAR (cm 2  g') 
dae ely amb out 

33 114.7 ± 4.4 147.4 ± 6.4 118.8 ± 5.5 
60 89.9± 4.8 118.1 ±6.7 114.2±7.2 
69 89.7± 4.8 104.4±2.7 99.1 ±6.9 
80 91.8±30.7 107.9 ± 3.5 93.7+9.1 
90 84.7± 8.5 92.7 ±6.7 89.1 ±6.5 
103 55.6 ± 6.3 70.0 ± 2.4 72.1 ± 4.5 
115 47.7± 	1.1 55.1 ±5.2 540±5.5 
212 49.0± 4.3 67.1 ± 1.6 68.9± 1.3 
251 31.6± 	1.4 40.1 ± 1.3 47.8 ± 1.3 
Statistical significance (P> F) 
Co2  <0.001 
Time <0.001 
Interaction ns 

SLA (cm2  ') 
ely 	amb 	out 

227.9 ± 13.1 296.2+ 11.3 237.8+ 12.3 
208.8 ± 	4.9 244.8+ 	7.9 236.7 ± 6.3 
192.8± 	5.5 222.1 ± 	6.1 216.6± 5.1 
227.3 ± 10.6 237.0 ± 	8.1 216.3 ± 6.6 
233.7± 14.1 232.7±16.0 223.1 ± 16.7 
177.8±23.7 208.4± 4.4 205.1 ± 4.0 
177.6 ± 	6.8 193.4 ± 12.3 160.7 ± 9.9 
192.5 ± 12.6 233.0 ± 	6.8 222.7 ± 2.9 
172.8± 	6.8 196.7± 	5.3 193.1 ± 4.7 

<0.003 
<0.001 

0.104 

The convergence of RGR in elevated [CO2] with that in ambient [CO21 occurred 

when both Sitka spruce and cherry plants were not limited by self-shading. Although 

in cherry NAR (Table 7.6) was much higher in elevated [CO2] throughout the 

experimental period, both LAR and SLA showed the opposite trend (Table 7). Even 

during the first period of rapid growth of cherry when Rt  in elevated [CO2] was much 

higher than in ambient [CO2], the reductions in LAR and SLA amounted to about 

30%. In general, RGR is highly correlated with LAR and SLA (Evans, 1972; 

Lumbers & Poorter, 1992). Higher LAR indicates that a larger size of assimilatory 

apparatus is maintained per unit of plant dry mass. Similarly, higher SLA indicates 

an increase in the leaf area maintained per unit of leaf dry mass. Thus, higher LAR 

and SLA occur when the construction costs of the assimilatory apparatus is reduced. 

This is a typical compensatory response for declining growth with reduced carbon 
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Figure 7.5 Mean current relative growth rate of total dry mass (RT) of 
(a) the Sitka spruce and (b) the cherry saplings grown in ambient 

[CO2] (L), elevated CO2 (0), or outside control (only cherry - A), 
versus total dry mass. For Sitka spruce saplings data are means of 20 
to 40 plants ± 1 SEM per treatment, whereas for cherry data are 
means of 3 to 6 plants per treatment ± s. 
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gain that results a from lower rate of photosynthesis (Fichtner et al., 1994). The 

larger LAR and SLA observed in ambient [CO2] saplings was a compensation by 

which they maintained ROR similar to that of the elevated [CO2] saplings despite a 

lower NAR. Similar results were found by DeLucia et al. (1994): NAR of Pinus 

ponderosa seedlings was significantly increased by elevated [CO,] but this was offset 

by a reduced LAR, resulting in similar RGRs of seedlings grown in ambient or 

elevated [CO2]. 

Poorter (1993) pointed out that increase in plant size, with more biomass invested in 

support tissue, increases self-shading, which together with acclimation and size 

constraints, can totally offset, with time, the stimulation in growth rate of elevated 

[CO2]-grown plants. Goudriaan (1994), using the expolinear growth equation 

investigated the apparent down-regulation of growth in elevated [CO2] and 

concluded that the primary explanation for the differential decline in RGR is more 

mechanistic than functional: growth and hence shading, is so strongly accelerated 

that the reduction of RGR sets in much earlier. In other words, elevated [CO2] leads 

to plants getting bigger quicker, with all the associated regulation that results 

progressively from increase in size. 

However, our results demonstrate that the primary effect of elevated [CO2] is an 

increase in the initial relative growth rate for a restricted period beyond which ROR 

is essentially similar for all treatments, the enhancement in elevated [CO2] being lost. 

The explanation for this may be the faster decline in elevated [CO2] of RL (i.e., the 

relative growth rate of the size of the assimilatory apparatus). This was only detected 

after 382 days in Sitka spruce (Figure 7.1b), because of the lack of intermediate 

harvests, but became evident after only 33 dae in cherry saplings (Figure 7.3b) where 

more sequential harvests were carried out. Because cherry plants were still growing 

exponentially after 33 dae, leaf growth rate could well be the major factor 

determining final biomass accumulation (Hsiao, 1982, 1994). 

For ontogenetic reasons, RGR declines as plants get larger and this is particularly so 

with young woody plants (Jarvis & Jarvis, 1964). The tissue are not all totipotent 
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with respect to cell division and in young trees in particular, mass becomes 

sequestered in dead structural and conducting tissues so that RGR falls dramatically 

as trees age (e.g. Rutter, 1957). Thus if young trees get bigger more quickly in 

elevated [CO2}, it is to be expected that this decline in RGR will be brought forward. 

In other words, to some extent there is a certain 'inevitability' (Gifford et al., 1996) 

that RGR will be similar in young trees growing in elevated [CO2] and in ambient 

[CO2], when compared at the same time (Table 7.2-7.5). Conversely, it is possible 

that no difference in RGR will be evident if the comparison is made between plants 

of the same size (Evans, 1972), so long as allocation and developmental processes 

are not affected by the treatment. In fact, only during the early phase of exposure to 

CO2 fertilisation, did elevated [CO2]-grown saplings have a higher RT, despite the 

much larger total dry mass (Figure 7.5). In contrast, RT plotted versus total dry mass 

was similar in elevated [CO2] and ambient [CO2] for both Sitka spruce (Figure 7.5a) 

and cherry (Figure 7.5b) as the saplings grew larger. However, even when the relative 

growth rate of plants of similar dry mass is similar amongst treatments, the same 

question still arises: what are the reasons that the RGR is no longer affected by the 

treatments? 

Since the maximum potential growth of a plant is genetically fixed, it is possible that 

in both the genetically identical clones (Sitka spruce) and the open-pollinated 

seedling cherry, after the initial phase when RGR was higher in elevated [CO2] than 

in ambient [CO21, the total plant photosynthetic production exceeded the potential 

needs of plant growth processes in elevated [CO2]. Both Sitka spruce and cherry 

were supplied with adequate nutrition and water, and did nor suffer from root 

restriction. If there were other environmental limitations, they were natural 

constraints which all trees in this study were exposed to. The potential for growth 

may be the result of either natural selection made over evolutionary time scales or 

genetic manipulation made by plant breeders, both resulting in plants optimised for 

the environments in which they are grown. That is to say, the trade-offs amongst the 

current physiological processes of growth may not be balanced as climate change 

occurs. As a result, the sink constraints that are generally put forward to account for 

growth acclimation to elevated [CO2] may actually be genetic growth limitations 
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which determine the maximum effect of elevated [CO2]. Thus, as Amthor (1995) has 

pointed out, scientific improvements, namely molecular engineering, plant breeding 

and management practice, are the most important driving forces (much more than 

elevated [CO2] concentrations) in improving plant productivity, and could be 

employed to balance better the different processes affecting growth and to optimise 

the internal constraints limiting plant response to rising [CO2]. 

The reliability of [CO2] studies performed in enclosed environments and on potted 

plants as a basis for conclusions on the effect of elevated [CO2] on the long term 

growth of trees has been frequently raised (e.g. Eamus & Jarvis, 1989; Ceulemans & 

Mousseau, 1994; Amthor, 1995). However, following the conclusions of Mauney et 

al. (1994), drawn from a FACE experiment with field-grown cotton, it may be 

possible to claim that data on the effects of elevated [CO,] on growth obtained from 

glasshouse and OTC experiments that were done mainly on potted plants can be 

"transferred to open field situations". Moreover, a recent study (Hattenschwiler et 

al., 1997) found that annual stimulation of stem diameter of mature Mediterranean 

oaks, belonging to a natural forest stand grown for their entire life around natural 

CO2 vents, declined from 80% when the oaks were five-years old to 20% when they 

were 30-years old, thus confirming the declining effect of elevated [CO2] with tree 

age. Thus, the differential decline of RGR highlighted in this paper may be relevant 

for models predicting the magnitude of tree response to rising [CO2]. 
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CHAPTER 8 

Concluding Remarks 

Forest tree species can live from decades to centuries and will experience climate change, 

from rising [CO2] and changed patterns of precipitation and evaporation, during their life-

span. Because of the importance of trees as carbon sinks, their positive influence on the 

water cycle and feedbacks on local climate, many studies in the last 15 years have been 

undertaken on the effects of climate change on tree growth and physiology. However, the 

majority of these studies have focused on agricultural crops, and when trees were studied 

the results were found to be influenced by the length of the experiments, and inadequate 

nutrient supply and rooting volume. When the experiments described here were started 

these three 'factors' were taken into account. In the previous Chapters we have analysed the 

effects of elevated [CO2] in conjunction with provenance of clonal Sitka spruce and with 

subsequent drying cycles in cherry. In Chapter 7 we have focused on the comparative 

growth of the two species, and have emphasised the importance of an initial stimulus 

which, compounded over time, magnifies the effect of elevated [CO2] on growth. The 

following discussion places the results of the thesis into context. 

In the first analysis, the photosynthetic capability of the two species was differently affected 

by elevated [CO2]. Amax (Figure 4.1), Rubisco activity (Table 4.1), and total chlorophyll 

concentration (Tables 4.4) of Sitka spruce saplings were significantly decreased in elevated 

[CO2] in the third growing season, whereas cherry showed downward acclimation of 

Rubisco activity only in both growing seasons (Figures 6.12a). The decline in Rubisco 

activity in cherry did not affect Amax (Figures 6.3 and 6.4), but in the second year in elevated 

[CO2], Rubisco activity decreased from the beginning of the growing season. Thus, one 

might speculate that if the experiment had lasted longer (as for the Sitka spruce saplings, 

for instance), the inhibition of Rubisco activity may well have resulted in down-regulation 

of A. 
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However, as reported in Chapter 7, the percentage increase in A was higher than the 

percentage increase in growth in response to elevated [CO,] in both Sitka spruce and 

cherry. This is another common trait between the two species, but it is also the usual 

response to growth in elevated [CO 21 (Luxmoore et al., 1993; Norby et al., 1996). Increased 

A, lower Rubisco content, and inhibition of photorespiration are probably the main reasons 

for the changes in chemical properties of the leaves in elevated [CO2]. Higher A in elevated 

[CO2] affects carbohydrate concentration of foliage, while decreased Rubisco and 

photorespiration, and in turn maintenance respiration, reduce leaf nitrogen concentration 

(Koch & Mooney, 1996). Because both leaf starch and N concentration were significantly 

affected during the growing seasons in Sitka spruce and cherry, both species had a higher 

NUE in elevated [CO2] than in ambient [CO2]. 

The experiments on the two species were totally different in all respect other than the 

supply and timing of nutrients (i.e. genetics, tissue age, provenance, soil, and, especially, 

temperature, see Chapter 2). However, having ruled out any nutrient and rooting volume 

limitations, which would have caused several artifacts, it is possible to conclude that long-

term exposure to elevated CO2] had similar impacts on the physiology of Sitka spruce and 

cherry. Moreover, growth of both species, clonal Sitka spruce and cherry, was similarly 

affected by elevated [CO2] at the end of the experiments. The total plant dry mass increase 

in elevated [CO2} relative to ambient [CO2] was approximately 40% (Table 7.1 and 7.4). 

However, the increase in total dry mass in Sitka spruce was the average of the increase in 

all four clones in response to elevated [CO2], and the genetic differences in the growth 

response to elevated [CO2] were significant. The more southerly clones were significantly 

larger than the more northerly in elevated [CO2]. Since the clones originated from different 

latitudinal provenances, and were acclimated to different temperature and daylength 

climates, it is possibly not surprising that they had different abilities to adapt to their new 

environment, even if all the four clones had been selected for their forestry potential and, 

thus, were fast-growing genotypes. Since there is variation amongst Sitka spruce clones in 

response to elevated [CO2] it may be possible that the similarities in mean Sitka spruce 

response and cherry response are coincidental. 
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However, there were two further traits common to both Sitka spruce and cherry. Firstly, 

allocation was not affected by elevated [CO2]: when plants of both species were grown in 

elevated and ambient [CO2] and compared when they were the same size, the allocation of 

biomass to each plant component was similar (see Chapters 3 and 5). Secondly, after an 

early higher growth stimulation in elevated [CO2], the current relative growth rate of both 

Sitka spruce and cherry was similar between [CO2] treatments (see Chapters 7). The 

unchanged pattern of dry mass allocation and the differential decline of mean R are among 

the most interesting results of growth in elevated [CO2]. According to Ingestad's principles 

(hgestad & Lund, 1986; Ingestad & Agren, 1992; 1995), by suppling plants with 

exponentially-increasing amount of nutrients, the internal nutrient concentration remains 

stable over time (steady-state). When plants are in steady-state conditions, the relative 

uptake rate is equal to the plant relative growth rate, and in theory, in this condition R 

should be equal for each plant organ. All plants in this study were supplied with free access 

to nutrients and this allowed both Sitka spruce saplings and cherry seedlings to maintain a 

constant ratio amongst the different plant components. This emphasises once again the 

importance of adequate nutrition in the elevated [CO2] experiments. 

The similar R between the [CO2] treatments after a more rapid growth in the early phase of 

exposure to elevated [CO2] and the similar allocation pattern suggests that elevated [CO2] 

accelerates ontogeny. Thus one of the main effects of elevated [CO21 on long-term tree 

growth is to speed-up ontogenic development in all aspects, so that, for instance, a three-

year-old tree has all the characteristics of a five-year-old tree. The findings by 

Hattenschwiler et al. (1997a,b) seem to be in keeping with the acceleration in ontogenic 

development. They found that mature Mediterranean oaks from a natural forest stand 

grown for their entire life around natural CO2 springs had a shift of about three years in 

biomass increment compared to control trees. 

After initial stimulation, the fast decline of R in elevated [CO2] plants over time to values 

similar to those measured in ambient [CO2] plants does not imply that both agricultural and 

forest ecosystems are unresponsive to rising [CO2]. When plants are the same size R is 

higher in elevated [CO2] than in ambient [CO2] and consequently absolute growth is 

stimulated by elevated [CO2]. However, even in the absence of stress high absolute growth 
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can not be sustained indefinitely: there is a high probability that canopy closure will occur 

earlier in elevated [CO2] thus limiting growth rates (Norb' et al., 1996) - eventually 

ambient CO2] plants will catch up. Moreover, the increased amounts of assimilates that 

may be allocated below ground in elevated [CO21 plants by means of enhanced fine-root 

turnover and rhizo-deposition of exudates is potentially important ecologically and can 

have strong indirect effects on plant production as well as contributing as a stable sink to 

CO2 sequestration. There is increasing evidence that the amount of carbon stored in soil as 

peat or as other forms of organic matter can account for about two-thirds of the total carbon 

sequestrated by the high-latitude forests (Dixon et al., 1994). 

Forest ecosystems hold the largest pool of carbon, and, thus forest growth can, to some 

extent, offset rising greenhouse gas emissions and global warming (Dixon et al., 1994). 

There is evidence that the carbon stocks of boreal forests are expanding and are, therefore, 

withdrawing CO2 from the atmosphere and locking it away in organic matter. Kauppi et al. 

(1992) have demonstrated that in Western Europe, for instance, forest resources increased 

in the 1970s and 1980s. However, in the 1980s deforestation in the tropics was about 0.8% 

per year of the area of the tropical forest, and the carbon storage capacity of the tropical 

forest averages from 1.5 to 2.5 times the carbon storage capacity of mid- and high- latitude 

forests (Houghton, 1995). Thus, the potential role that boreal forests can play as a sink in 

the global carbon cycle may be limited in the face of increased deforestation in the Tropics. 

The last hundred years have witnessed a reversion of agricultural land to forests in Western 

Europe and the USA. However, it is not clear whether such a trend can continue in the 

future. It is estimated that current world food production barely meets the present world 

food demand and the world population is steadily increasing (Houghton, 1994; Hidore, 

1996). It is, therefore, likely that as global demand for energy and for agricultural land 

continues to increase, the reversion of agricultural land to forest in the developed countries 

will soon stop and deforestation in the tropics will continue - unless a new agricultural 

revolution takes place at the beginning of the 21st century. 

The likely increase in frequency and intensity of drought as consequence of the rising 

temperature, will strongly affect forest growth in regions such as the Mediterranean basin 
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where water is already the main factor limiting plant productivity. Although, the impact of 

elevated [CO2] on the regional scale may be minimal (Jarvis & McNaughton, 1986; Eamus, 

1991; Jarvis, 1993), at the plant and stand scale elevated [CO2] may result in increased 

WUE (Eamus, 1991). The cherry study has confirmed that elevated [CO2] increased plant 

WUE, however, stomatal conductance and total water consumption of water-stressed 

seedlings were not reduced in elevated [CO2]. In this study ambient [CO2] plants and 

elevated {CO2] plants were grown under similar temperatures. However, as temperature 

increases with rising atmospheric CO2 the leaf-to-air VPD will also increase, and, thus, 

transpiration from vegetation will further increase leading to a decrease in plant WUE. 

Any gains to plant growth from an increase in WUE due to elevated [CO2] may be offset 

by a reduction in WUE from temperature effects. As the frequency and intensity of drought 

will increase with global climate change water availability in soil will decrease. If drought 

tolerance is increased due to elevated [CO2] then WUE may not be affected adversely by 

reduced water availability. However, no evidence was found to suggest that drought 

tolerance was increased in cherry with elevated [CO2] and so WUE may be expected to 

decrease further under conditions of decreased water availability. 

As global change progresses new technologies may be used to fully take advantage of the 

effects on plant growth of increased [CO2]. Both molecular engineering and traditional 

plant breeding could be employed to produce plants better able to cope with the various 

processes limiting plant growth in elevated CO2 environments. For instance, breeding of 

cultivars which can sustain a higher relative growth rate of leaf dry mass for longer periods 

during the exponential phase of growth may be very important since they could compound 

a higher "interest". Thus, the differential decline of plant R would be postponed to take full 

advantage, in terms of final plant productivity, of the more rapid initial growth rate. 
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APPENDIX 1 

Sugar standard solutions 

Stock solutions 100 g m 3  of inositol, sorbitol, fucose, rhamnose, arabinose, 

galactose, glucose, xylose, fructose and sucrose were made by dissolving the 

equivalent amount of each sugar in double-distilled water. 100 cm  of sugar standard 

solution were then prepared by adding: 

5 cm  of inositol, sorbitol, fucose, rhamnose, arabinose stock solutions, 

15cm3  of galactose stock solution, 

10cm3  of glucose and xylose stock solutions, 

20 cm  of fructose and sucrose stock solutions, 

to obtain a final concentration of each sugar in the standard solution as follows: 

Inositol 	5 g 

Sorbitol 5 g m 3  

Fucose 5 g 

Rhamnose 5 g 

Arabinose 5 g 

Galactose 15 g m 3  

Glucose 10 g m 3  

Xylose 10 g m 3  

Fructose 20 g 

Sucrose 20 g m 3  
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Appendix 2 

Appendix II 

Nutrient stock solutions 

The amounts of the hydrated compounds in g dm -3  used in the stock solutions, 

diluted 1:1000, were as follows (from: Ingestad & Lund, 1986): 

Solution 1 Solution 2 
K2SO4 48.97 Ca(NO3) 2 41.3386 
K211PO4 33.62 Mg(NO3)2 89.76943 
K}12PO4  30.89 Fe(NO3 )3 5.050418 
KNO3 49.24 Mn(NO3)2 1.827112 
NH4NO3  221.6 H31303 1.144 

Zn(NO3)2 0.273283 
CuCl2 0.080487 
Na2MoO4 0.017626 

The amounts of elements in g dm -3  were as follows: 

Macronutrients Micronutrients 
N 99.83789 Fe 0.698145 
P 13.0079 Mn 0.399912 
K 64.98384 B 0.20001 
S 9.007333 Zn 0.060055 
Ca 7.014611 Cu 0.030001 
Mg 8.509208 Na 0.00335 

Mo 0.006989 
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Table 1. Percentage of the known soluble sugar of Sitka spruce saplings grown in ambient 
or elevated CO2. 

needles soluble carbohydrate 
382 551 719 972 

sugar 	elevated ambient elevated ambient elevated ambient elevated ambient 
inositol 	5.87 	7.60 11.03 12.53 7.17 8.88 5.07 8.07 
sorbitol 	0.20 	0.28 0.48 0.97 2.84 4.47 0.25 0.45 
fucose 	0.24 	0.23 0.42 0.40 0.33 0.31 0.56 0.60 
rhamnose 	0.24 	0.23 0.55 0.48 0.21 0.16 0.44 0.42 
arabinose 	0.93 	1.98 1.58 0.15 2.55 1.69 1.60 0.67 4 
glucose 	7.59 	7.75 - 33.51 37.19 13.43 11.04 20.01 23.39 
fructose 	1.99 	1.11 22.76 26.47 1.40 0.64 43.78 18.92 a 
sucrose 	69.81 71.68 20.53 14.75 59.54 63.10 43.41 28.55 
total known 	86.87 90.86 90.87 92.93 87.47 90.30 85.10 81.06 

root soluble carbohydrate 
382 551 719 972 

sugar elevated ambient elevated ambient elevated ambient elevated ambient 

inositol 3.20 4.93 1.60 2.08 2.13 2.68 3.61 3.74 

mannitol 1.06 1.21 1.40 1.54 1.80 2.18 3.82 3.16 

glucose 5.32 4.66 19.60 11.27 7.09 8.03 23.61 23.70 

fructose 7.68 5.83 23.29 21.51 21.02 15.29 28.66 32.33 

sucrose 78.89 79.44 25.47 36.99 59.39 66.23 36.86 33.72 

total known 96.16 96.07 71.36 73.39 91.43 94.42 96.57 96.65 
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Figure 1. Neddle (a) and root (b) soluble sugar concentration per unit of dry mass (DM) 
of the four Sitka spruce clones grown in ambient or elevated G02, shown as days from 
the beginning of the experiment. Data are means of 5 plants per treatment ± SEM, the 
significance level (*= Pc0.05, ** = Pc0.01, = Pc0.001) show the difference in 
soluble sugar content of each clone in response to the CO2 treatments. SK a = Skidegate 
a, SK b = Skidegate b, NB a = North Bend a, and NB b = North Bend b. 
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Table 1. Significance level of P (* = P <0.05, ** = P <0.01, 	= P <0.001, ns = not 
significant) from three-way ANOVA for the whole duration of the experiment; no. = 
number, LA = leaf area, DM = dry mass, Ab-gr = above ground, R/S = root to shoot mass 
ratio. 

Basal Leaf Wood Leaf Ab-gr Root Total 
Height area (no.) LA DM DM DM DM DM RJS 

Time *** *** *** *** *** *** *** *** *** *** 

[CO2] *** ** as *** *** *** *** *** 

Water treatment *** *** ** *** *** *** *** *** ns 
- 	 Timex [CO2] ** * ** *** *** *** *** *** ns 

"" ''"' a 
	

Time xwater ns ns '" *** *** *** ns 
[CO2] x water ** @1' ns ns ns as ns ns ns ns 

Time x[CO2]xwater ns ** ns ns as ns ns as as as 
L2 

0' 
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C elevated 	ambient 	outside 

Figure 1. Number of branches of a) well-watered and b) water-stressed cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, shown as 
days after emergence. Data are means of 6 to 15 plants per treatment ± 1 SEM. 
Letters (a, b) indicate significant differences at P <0.05. Statistical significance: 

well-watered water-stressed. 
[CO2 } 	 Pc 0.001 ns 
Time 	Pc 0.001 P <0.001 
Interaction 	P < 0.001 ns 
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Figure 2. Number of leaves of a) well-watered and b) water-stressed cherry 
seedlings grown in ambient [CO2], elevated [CO2], or outside control, shown as 
days after emergence: Data are means of 3 to 6 plants per treatment ± 1 SEM. 
Letters (a, b) indicate significant differences at P < 0.05. Statistical 
significance: 

well-watered water-stressed 
[CO2] 	 ns 	ns 
Time 	Pc 0.01 	Pc 0.001 
Interaction 	us 	ns 
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Appendix 4 
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Figure 3. Linear relationships between leaf area and basal area of (a) well-
watered and (b) water-stressed cherry seedlings grown in ambient [CO2], 
elevated [CO2], or outside control. The coefficients of determination (R 2) of 
the linear relationships are: 

well-watered water-stressed - 

elevated 	0.930 0.995 
ambient 	0.904 0.991 
outside 	0.944 0.964 

177 



- (a) 	

ja 

	(b) 
 b 

C 	 C aa. 

	

b I
b

baa flrPj I p p 	fl4 1k 
33 	60 69 	80 	90 103 115 212 251 33 	60 69 	80 	90 103 115 212 251 

	

Days after emergence 	 Days after emergence 

	

c elevated 	ambient 	outside 

Figure 4. Above-ground dry mass of a) well-watered and b) water-stressed 
cherry seedlings grown in ambient [CO2], elevated [CO2], or outside control, 
shown as days after emergence. Data are means of 3 to 6 plants per treatment 
± I SEM. Letters (a, b, c) indicate significant differences at P C 0.05. 
Statistical significance: 

well-watered water-stressed 
[CO2] PcO.001 Pc0.001 
Time P <0.001 P <0.001 
Interaction P < 0.001 P < 0.001 
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Figure 5. Root to shoot mass ratio (RIS) of a) well-watered and b) water-
stressed cherry seedlings grown in ambient [CO2], elevated [CO2], or outside 
control, shown as days after emergence. Data are means of 3 to 6 plants per 
treatment ± 1 SEM. Letters (a, b) are used to indicate significant differences 
at P c 0.05. Statistical significance: 

well-watered water-stressed 

[CO2] 	 as 	Pc 0.001 
Time 	 P.cO.001 	PcO.00f 
Interaction 	 as 	 ns 
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Appendix 5 

APPENDIX 5 

Table 1. Significance level of P (* = P <0.05, ** = P <0.01, 	= Pc 
0.001, ns = not significant) from three-way ANOVA for the first 
growing season; A = assimilation rate, g = stomatal conductance, ITE = 
instantaneous transpiration efficiency. 

total chlorophyll 
A Ss JTE Rubisco chlorophyll a/b 

time *** *** *** 

[CO2] ns as 
water "tI' ns * flS 

time 	{CO2} ** as ** * ns ns 
[CO2] x water * Pc 0.10 ns ns as 
time 	water ** . *** *** * as 
time 	[COjj x water * ns * as ns 

Table 2. Significance level of P (* = Pc 0.05, ** = Pc 0.0 1, 	= P <0.001, ns 
= not significant) from three-way ANOVA for the second growing season; A = 
assimilation rate, g = stomatal conductance, JTE = instantaneous transpiration 
efficiency; 'P = bulk leaf water potential. 

total chlorophyll 

A & lIE Rubisco '1' chlorophyll alb 

time ** '< ns 
[CO21 *** ** *** ** ns *** ns 
water *** *** ns as *** ** 

time 	[CO 2] us as us ns as flS 

[CO2 ] x water ns ns as us as us 
time 	water *** *** us *** * 

time x[CO2]x water ns PcO.lO us * PcO.i0 us 

IFU 



	

Table 3. Significance level of P (* = P < 0.05, ** = P < 	= P < 
0.001, ns = not significant) from three-way ANOVA for the first growing 
season; swc = soil water content, 1E, = osmotic potential, 'p = bulk leaf water 
potential. 

leaf 	root 	leaf 	root 
SWC 	'P 	'P 	sugars sugars starch 	starch 

[CO2] its ** 	*** 	us 
water ns 	 * 

time 	[CO2] ns ns 	 ns 	 us 
[CO21 x water ns its 	ns 	ns 	ns 	 ns 
time 	water  

time x [CO2] x water ns its 	ns 	ns 	as 	* 

Table 4. Significance level of P (* = P c 0.05, ** = p < 
0.01, = P c 0.001, ns = not significant) from three-
way ANOVA for the first growing season; 7t100 = osmotic 
potential at full turgor, no = osmotic potential at zero 
turgor, R0 relative water content at zero turgor, LB bulk 
modulus of elasticity of the cell, DM / TM ratio of leaf dry 
mass to leaf turgid mass. 

	

LB 	DM/TM 

[CO2 ] 	 ns 	ns 	as 	as 	as 
water 	 ** 	*** 	as 	as 	** 

[CO,1 x water 	as 	ns 	as 	ns 	as 

Table 5. Significance level of P (* = P <0.05, ** = 
P c 0.01, = P < 0.001, ns = not significant) 
from three-way ANOVA for the diurnal cycle on 
dae 103; A = assimilation rate, g, = stomatal 
conductance, IF, = osmotic potential, 'I' = bulk leaf 
water potential. 

A 	g 	ITE 	'1' 	'F, 

hour *** *** *** *** 

[CO2] 

water *** *** *** *** 

hour x [CO,] ** *** ns as ns 
[CU2] x water *** * *** its 
hour x water *** Pc 0.10 ns 
hours [CO 2 ] x water P<0.10 s""' *** as ns 
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Table 6. Significance level of P (* = P < 0.05, ** = P < 0.01, 	= P < 0.001, ns = not 
significant) from three-way ANOVA for the first growing season; N = nitrogen, P = phosphorus, 
K = potassium, Ca = calcium, Mg = magnesium. 

leaf 	leaf 	leaf 	leaf leaf root root root root root 
N 	P 	K 	Ca Mg N P K Ca Mg 

time 	 ** 	*** 	*** * *** *** *** *** *** 
[CO2] 	 ns 	P <0.10 	as *** *** *** *** 
water 	 ns 	 ** 	ns ** flS *** ns ns 
time 	[CO2 ] 	 ns 	** 	ns ns * *** ** ns 
[CO21 x water 	* 	flS 	flS 	flS flS flS flS flS flS flS 

time xwater 	ns 	 * 	ns ** * Pc0.l0 * ns * 

— 	 time x [CO2] x water 	Ic 	ns 	ns 	ns ns ris as ns ns ns 
00 
I'-) 

Table 7. Significance level of  (* = P <0.05, ** = P <0.01, 	= P <0.001, ns = not significant) 
from three-way ANOVA for the second 
potassium, Ca = calcium, Mg = magnesium. 

growing season; N = nitrogen, P = phosphorus, K = 

leaf leaf 	leaf leaf leaf root root root root root 
N P 	K Ca Mg N P K Ca Mg 

time 	 * * 	* ** *** ns *** *** * 

[CO2] 	. ns 	** ns ** ns * *** ** 

water 	 nS P<0.10 	ns ns P<0.10 ns * ns * ns 
time 	[CO2] 	ns * 	ns ns ns ns ns ns * ns 
[CO2] x water 	as as 	tis ns P <0.10 as ns ns ns ns 
time xwater 	ns ns 	ns as ns as Pcz0.10 P<0.10 * as 
time 	1CO21 x water 	ns ns 	ns ns ns ns ns ns as ns 
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Figure 1. Time course of PPFD saturated assimilation rate (A) measured at 
350 and 700 imo1 m-2  S -1 CO2 concentration of (a) well-watered and (b) water-
stressed cherry seedlings grown in ambient [CO2], elevated [CO2], or outside 
control, during and after the first drought cycle (dae 69-115). t = end of the 
drying cycle. Data are means of 3 plants per treatment ± 1 SEM. 
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Figure 2. Time course of PPFD saturated assimilation rate (A) measured 
at 350 and 700 Rmol m 2s1  CO2 concentration of (a) well-watered and 
(b) water-stressed cherry seedlings grown in ambient [CO2], elevated 
[CO2], or outside control, over the second drought cycle (dae 212-251). 
Data are means of 3 plants per treatment ± 1 SEM. 
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Figure 4. Linear relationship between all mean stomata] 
conductance (g) and all mean midday bulk leaf water 
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Figure 5. Linear relationship between all mean Rubisco activity 
and combined mean leaf nitrogen (N) concentration in well-
watered cherry seedlings grown in ambient [CO2], elevated [CO2], 
or outside control. Data are means of 3 plants per treatment ± 1 
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Figure 6. Linear relationship between all in situ chlorophyll 
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[CO2], elevated [CO2], or outside control. Data are means of 3 plants per 
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Figure 7. Leaf (a,b) and root (c,d) phosphorus (P) concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SEM. Letters (a, b, c) indicate 
significant differences at P c 0.05 amongst the [CO2] treatments. Statistical 
significance: 
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Figure 8. Leaf (a,b) and root (c,d) potassium (K) concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SEM. Letters (a, b, c) indicate 
significant differences at P c 0.05 amongst the [CO2] treatments. Statistical 
significance: 
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Figure 9. Leaf (a,b) and root (c,d) calcium (Ca) concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SENT. Letters (a, b, c) indicate 
significant differences at P c 0.05 amongst the [CO,] treatments. Statistical 
significance: 
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Figure 10. Leaf (a,b) and root (c,d) magnesium (Mg) concentrations in well-
watered (a,c) and water-stressed (b,d) cherry seedlings grown in ambient 
[CO2], elevated [CO2], or outside control, shown as days after emergence. 
Data are means of 3 plants per treatment ± 1 SEM. Letters (a, b) indicate 
significant differences at P c 0.05 amongst the [CO2] treatments. Statistical 
significance: 
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