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Abstract 

Abdominal aortic aneurysms (AAA) are a major cause of death in men above the 

age of 65 in the western world. Currently decisions for AAA management are 

based on the size of maximum AAA diameter (>5.5cm), measured using 

ultrasound imaging. However, as a proportion of AAAs rupture whilst still below 

this diameter threshold, while larger AAAs may never rupture, better methods 

for AAA expansion and rupture prediction are required. Previous research 

suggested that the presence of “hotspots” (focal areas) of inflammation as 

detected with USPIO-enhanced MRI may have potential in identifying faster-

growing AAAs. However, the identification of these USPIO “hotspots” had been up 

to this point restricted to manual processing of the MRI data in a time-consuming 

and laborious slice-by-slice method, which only used 2D information. Inter- and 

intra- observer variability were an issue, as well as the use of empirically-defined 

signal thresholds which were dependent on each acquisition protocol. 

The work presented in this thesis aimed to evaluate current methodologies for 

AAA assessment and growth prediction and to contribute to improved prediction 

models by introducing novel techniques. Ultrasound was found to undermeasure 

AAA size and the use of maximum AAA diameter was found to be problematic, 

especially for growth calculations. Automatically calculated alternatives which 

account for the total size and shape of the AAA, as measured with MRI, were 

introduced for more reproducible measurements. Furthermore, automation and 

standardisation of the previously-employed manual methods for hotspot 

detection and AAA classification were achieved, with the development of an 

efficient algorithm with excellent agreement levels. Taken a step further, two 

improved algorithms were introduced, adaptive to the data and USPIO 

distribution of individual AAAs and eliminating the universal threshold 

previously used. These algorithms incorporated information on 3D USPIO 

distribution along the length of the AAAs to detect and visualise 3D hotspots of 

inflammation for the first time. Novel 2D and 3D metrics were introduced, while 

the algorithms were also incorporated into a GUI for ease of clinical use. 
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Additional aneurysm metrics automatically derived by the algorithms were 

incorporated into multiple linear regression models to investigate prediction of 

AAA growth rate. This investigation introduced three significant predictors 

which have not been used in previous predictive models of AAA expansion: the 

“mean thrombus major axis” metric, which reflected baseline size of AAA 

throughout multiple axial slices of the AAA; the “eccentricity WT” metric which 

reflected the relationship between wall shape and thrombus; and the presence of 

“3D hotspots” which may potentially reflect transported USPIO within a network 

of vascular channels along the length of the aneurysm. In line with previous 

literature, family history of AAA and high diastolic BP were also found to be 

significant predictors, but larger cohorts are needed for more reliable assessment 

of the predictive models suggested in this thesis. 
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Lay Summary 

An Abdominal Aortic Aneurysm (AAA) is an enlargement of the aorta, the largest 

blood vessel of the body, in the abdominal area. Currently, only large AAAs (wider 

than 5.5cm) are immediately considered for surgery. However, sometimes 

smaller aneurysms will rupture, so better methods for prediction of growth and 

rupture are required. Using Magnetic Resonance Imaging (MRI) and a contrast 

agent made of iron particles, it was previously shown that inflammation in AAAs 

could be visualised, and that AAAs which had areas of concentrated inflammation 

(“hotspots”) on their wall grew faster. This analysis of the data was done in a 

laborious and time-consuming way by experienced clinicians, slice-by-slice 

throughout the length of the aneurysm, in which the images also had to be filtered 

for the clinicians to be able to easily detect the inflammation and classify the 

patients in groups to allow AAA growth predictions.  Additionally, there is some 

level of variability in the way different clinicians would process the data, as they 

had to rely on relatively subjective visual observations to make decisions.  

In this thesis, I created a series of computer software programs that perform all 

the of the analysis explained above in an automatic way. My software detects the 

“inflammatory hotspots”, and then classifies the patients into groups 

automatically. The software also includes automatically calculated 

measurements of the shape of the AAAs and checks the patterns of inflammation 

along the length of the aneurysm, rather than slice-by-slice as before, to try to 

help to predict growth of AAAs more accurately. The images do not need to get 

filtered for my software, so it uses all of the available information about 

inflammation, while the program is much faster than the manual processing. 

Since no visual observations or manual processing are needed with this software, 

the results are objective and always identical, regardless of how many times they 

are performed or with different operators using the software. I also identified 

some variables that show some potential in helping to predict the AAA growth 

rate: a novel way of measuring the size of AAAs, the novel way of measuring the 

relative shape of its different parts (the aortic wall and thrombus/aneurysm 
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itself) and whether the aneurysm might have a network of tiny vessels that allows 

blood to go through the AAA thrombus and reach the wall. High blood pressure 

and a family history of AAAs were also found to predict AAA expansion rate, but 

larger numbers of patients are needed to provide adequately reliable prediction 

using these measurements. 

My software may provide clinicians with a more robust and faster tool to assist 

with the assessment of future AAA patients. The techniques used in this software 

can also be adapted in the future to contribute in the imaging of inflammation in 

different parts of the body in other clinical applications. 
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Chapter 1 Introduction  

1.1 Definition of the Problem and Study Objectives 

Despite a considerable decrease in the number of deaths caused by 

cardiovascular disease (CVD) in recent years, CVD remains the leading cause of 

death globally, claiming 17.5 million lives in 2012 [1]. According to the most 

recently published European cardiovascular disease statistics, CVD causes over 4 

million deaths in Europe, reaching the significant percentage of 47% of total 

deaths [2]. 

Early diagnosis of CVD is undoubtedly advantageous but, in some cases, it is 

considered crucial in order to save lives. Abdominal Aortic Aneurysms (AAAs) 

are such a case. Aneurysm, from the Greek ‘ανεύρυσμα’, meaning widening, is a 

permanent and irreversible localised dilatation of a vessel to more than 1.5 times 

its normal diameter. Abdominal aortic aneurysms are found in the aorta, the 

largest artery in the human body, usually distal to the renal arteries, although 

they may extend up past the point of renal arteries [3], as depicted in the 

schematic in Figure 1.1. and in the gross anatomy image of a large unruptured 

AAA extending to the aortic bifurcation in Figure 1.2. The process of aneurysm 

progression is expansion, leading to possible eventual rupture [4]. 

AAA deaths pose a considerable burden in the western world, being responsible 

for 1- 3% of deaths of men between the age of 65 and 80 [5]. Given that the 

mortality rates for ruptured AAAs reach 80%-90% [6], early diagnosis and 

successful management are necessary. However, elective surgery (open surgical 

treatment or endovascular repair) has considerable risks, with 30-day post-

intervention mortality reaching 27.1% , so the expected risk of rupture has to be 

weighed against the risk of procedural complications [7]–[10].  
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Figure 1.1: An Abdominal Aortic Aneurysm (AAA): Normal aorta (A), as opposed to aorta 
with large AAA (B) [11]. 

AAAs are most often asymptomatic until rupture and are therefore identified 

either by chance, or via national screening programs [12]. After detection, 

decisions for the management of asymptomatic AAAs are based on their size, 

which is calculated by measuring the maximum anterior-to-posterior (AP) 

diameter with ultrasound: only AAAs with diameters larger than 5.5 cm, or with 

annual growth of more than 1.0 cm are considered for surgical intervention.  

However, this criterion is insufficient, as 60% of AAAs with max AP diameters 

surpassing the 5.5 cm threshold will never rupture [13], while 10-20% of AAAs 

with max AP diameters under the 5.5 cm threshold will still rupture [3], [14]. 

There are currently no alternative methods used to better predict the progress of 

AAAs, so novel approaches are urgently required.  

Previous research into AAA growth and rupture [15] suggested that the presence 

of localised inflammation on the aortic wall of AAAs, also known as “hotspots”, 

may allow to distinguish faster growing AAAs from less active ones. For the 

visualisation of inflammation, Magnetic Resonance Imaging (MRI) enhanced with 

Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) was used. From 

A B
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the scans acquired, USPIO-uptake maps corresponding to inflammation were 

created for each slice of the AAA.  

 

Figure 1.2: Unruptured and unopened, large typical AAA (gross, natural colour). The AAA 
extends from below the renal arteries(A), (B) to the aortic bifurcation(C) (Image source: PEIR 
Digital Library 2017). 

For the identification of the hotspots, an empirically-determined threshold was 

applied to the inflammation maps and clinicians manually processed each 

individual slice. This threshold was specific to the scanning protocol of the study, 

thus not applicable to differently acquired datasets and, hence hindering 

A

B

C



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

Chapter 1: Introduction 4 

 

reproducibility. Furthermore, the threshold approach possibly excluded 

important information about USPIO distribution throughout the aneurysm. 

This manual processing methodology was time-consuming and laborious, while 

introducing inter- and intra-observer variability to hotspot detection and AAA 

classification. Importantly, being restricted to manual analysis, clinicians were 

not able to utilise the full extent of data produced by the MRI scanning: they only 

used 2D images without taking 3D information of the entire AAA mass into 

consideration, and they could not efficiently calculate any reproducible 

anatomical or functional metrics which could potentially assist with further AAA 

stratification.  

The objective of the work presented in this thesis was to evaluate current 

methodologies for AAA assessment and growth prediction and to contribute to 

improved prediction models by introducing novel automated techniques.  

More specifically, this thesis aimed to: 

• Investigate the accuracy and reproducibility of currently used AAA size 

and growth measurement methods and suggest better alternatives. 

• Automate the current hotspot identification and classification method for 

greater efficiency and reproducibility.  

• Replace the threshold technique used by clinicians in manual processing 

with less restrictive alternative. 

• Introduce algorithm which makes use of 3D data for hotspot assessment 

and visualisation. 

• Identify alternative variables extracted from the data, which can further 

describe AAAs and assist in their classification. 

• Introduce new growth prediction models. 
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1.2 Thesis Outline 

In Chapter 2, the necessary background and context within which this PhD 

research lies is provided.  A literature review on AAA disease is presented, 

describing the anatomy, underlying pathophysiology, epidemiology, 

demographics, aetiology, and risks associated with AAAs.  The currently standard 

protocols for assessment and management are introduced, along with a summary 

of the alternative methods suggested in the literature. An overview of anatomical 

imaging methods for AAAs is provided, with a special focus on MRI and its use for 

inflammation tracking with USPIO.  

The pilot study, which first introduced the hotspots of inflammation as a potential 

AAA growth predictor and upon which the MA3RS trial expanded, is described. As 

the research described in this thesis was conducted mainly under the MA3RS 

study umbrella, with use of its data and techniques, an extensive description of 

the MA3RS protocols and methods is also presented. 

In Chapter 3, some basic image processing background is presented, mainly 

aimed at readers with clinical training. The main concepts behind clustering 

generally, and k-means clustering specifically are introduced, as they are 

required for a better understanding of the methods applied in Chapter 5. 

The results of this thesis are presented in the three following chapters. Each of 

these chapters is structured in a stand-alone format, containing the necessary 

context and background information, the individual materials and methods, the 

findings, discussion and conclusion.  

More specifically, in Chapter 4, the currently practised methods for AAA size and 

growth measurement are described and critically evaluated, with a special focus 

on the accuracy and reproducibility of maximum AP diameter. The agreement 

levels between ultrasound, CT and MRI data are explored with the use of MA3RS 

subsets. Adjustments to the current threshold of 5.5cm are investigated, and 
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alternatives to the use of max AP diameter with ultrasound are introduced. These 

alternative metrics will consequently be used in the following chapters. 

Chapter 5 focuses on the process towards building the main algorithms created 

in this work and on their validation on MA3RS and pilot study subsets.  An 

algorithm for the accurate replication of the manual processing is described and 

evaluated, followed by two more advanced algorithms. These two algorithms 

take the AAA classification a step further, by eliminating the previously used 

threshold, incorporating 2D and 3D data, offering options for visualisation and 

introducing novel 2D and 3D metrics for AAA stratification. 

In Chapter 6, building upon the work presented in the previous chapters, the 

prediction of AAA growth rate is investigated. The findings from Chapter 4 on 

improved measurement techniques are used to calculate AAA expansion rates 

and use them as output for prediction models. The 2D and 3D classifications 

produced with the algorithms described in Chapter 5 are used to assess the 

influence of inflammation on AAA growth rate. Furthermore, several metrics 

derived from these algorithms are evaluated as potential AAA growth rate 

predictors. Finally, a multiple linear regression model is introduced as a starting 

point upon which further investigation with larger sample sizes may be 

undertaken in the future.  

In Chapter 7 the conclusions derived from this thesis are presented, and 

potential paths for further investigation are described. 

In Appendix 1, research outcomes derived from the work presented in this thesis 

are presented.  

Finally, in Appendix 2, detailed tables of the Multiple Linear Regression models 

described in Chapter 6 are presented.  
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Chapter 2 Background  

In this chapter, the context within which this research lies is presented. An 

overview of the pathophysiological background, the demographics and the risks 

associated with Abdominal Aortic Aneurysms (AAAs) are introduced. The current 

commonly used assessment and management protocols and methodologies for 

this condition are described, including a synopsis of alternative methods and 

hypotheses described in the literature. 

The necessary background information on Magnetic Resonance Imaging is 

presented, as well as the way in which it is combined with the application of 

contrast agents to image cellular inflammation in cardiovascular applications, 

with a particular focus on AAAs. 

A brief description of the pilot study (previously conducted by members of the 

MA3RS research team) that introduced inflammatory patterns as a potential 

predictor of AAA expansion and rupture follows, upon which the MRI for 

Abdominal Aortic Aneurysms to predict Rupture or Surgery (MA3RS) trial later 

expanded. The protocols and methods implemented in MA3RS and the necessary 

technical background are also introduced and discussed in relation to the work 

presented in this thesis. 

The work presented in this thesis mainly used data acquired within the MA3RS 

trial to further develop and automate the techniques employed in these research 

trials and offer alternative approaches for AAA classification and growth 

prediction.  
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2.1 Abdominal Aortic Aneurysms: Background 

2.1.1 Anatomy of an AAA 

2.1.1.1 Normal Aorta 

The typical size of a healthy aorta is between 2.0 cm and 3.0 cm. A wall thickness 

of less than 4mm is considered normal [17]. The healthy aorta consists of the 

aortic wall and the aortic lumen. The aortic lumen is the tubular cavity of the 

aorta, which is the normal passageway of blood, as shown in Figure 2.1.  

 

Figure 2.1: Schematic of cross section of healthy aorta. Its size ranges between 2.0cm and 3.0 cm 
and there is normal blood flow in the lumen.  

The aortic wall consists of three distinct layers: the tunica adventitia, which is 

the outermost layer, the tunica media and the tunica intima, which is the 

innermost, as shown in Figure 2.2.  

The tunica intima is the thinnest of the three layers and is composed of a layer 

of simple squamous epithelium, known as endothelium [18], [19]. The 

endothelial cells rest on a basement membrane and a thin subendothelial 

extracellular matrix consisting of elastic and collagenous fibres bound together 

[20]. The endothelium acts as a physical boundary between the blood and the 

surrounding tissue, but also engages in the regulation of inflammation, 

coagulation and vessel tone. 
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Figure 2.2: Cross section of healthy abdominal wall. The three wall layers can be seen, from 
outer to inner: tunica adventitia, tunica media and tunica intima. The endothelium, which 
comprises part of the tunica intima, is also visible. An external elastic lamina separates the tunica 
adventitia from the tunica media and an internal elastic lamina separates the tunica media from 
the tunica intima. (Image adapted from (Brown et al., 2017)). 

The tunica media is made up of organised layers of vascular smooth muscle cells, 

set in a subendothelial extracellular matrix comprising of elastin, collagen, and 

proteoglycans. This layer mainly contributes to the structural and elastic 

properties of the aorta [19].  

The tunica adventitia is primarily composed of collagenous connective tissue, 

but it also includes other cells (e.g. immunomodulatory cells and fibroblasts) and 

adrenergic nerves. The vasa vasorum (network of small blood vessels) deliver 

nutrients and oxygen to the blood vessel itself [21].  

An internal elastic lamina separates the tunica intima and media, and an external 

elastic lamina separates the tunica media and adventitia [19]. 
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2.1.1.2 The Intraluminal Thrombus  

The intraluminal thrombus (ILT) can be found in at least 70-80% of AAA 

patients [22] and it is believed to be created via the deposition of blood 

components during aortic dilation (Figure 2.3) [23]. It is a complex laminated, 

non-occlusive fibrin structure, permeated by a network of canaliculi, platelets, 

red blood cells and other hematopoietic blood cells [24]–[27].  

 

Figure 2.3: Schematic of cross section of a healthy aorta and an aorta with an abdominal 
aortic aneurysm. Compared to the healthy aorta, the AAA aorta is dilated, it has a non-circular 
shape and the wall is distorted. Thrombus is occupying a large proportion of the aorta and the 
lumen is smaller and distorted, affecting the blood flow.  

The size and location of the thrombus vary among different patients, as well as 

the percentage of wall covered by it: as demonstrated in Figure 2.4, the thrombus 

may cover the entire wall (Figure 2.4 A), or only parts of it (Figure 2.4 B) [28]. 

The thrombus is in constant contact with the blood flow and undergoes 

continuous remodelling, with its size commonly increasing concurrently with 

AAA growth [24], [29], [30].  Two main layers can be approximately distinguished 

within the thrombus: first, a luminal layer, which is rich in red blood cells due to 

its contact with the lumen, and second, a brown-coloured fibrinolysed layer 

adjacent to the aortic wall [27].  
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Figure 2.4: A) Axial CT image of AAA demonstrating substantial quantity of posterior-
eccentric thrombus. B) Axial CT image of AAA with moderate quantity of posterior-eccentric 
thrombus. L=lumen; ILT=intraluminal thrombus; AV=abdominal vertebra (Moxon et al., 2010).  

 

 

Figure 2.5: A) Axial CT image of infrarenal AAA with intraluminal thrombus. B) 
Corresponding intraluminal thrombus removed during open surgical repair ( gross, natural 
colour) [31]. 
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2.1.2 Epidemiology 

AAAs are commonly asymptomatic until rupture [12]. Detection of AAAs 

frequently occurs as an incidental finding during investigation of some other 

more symptomatic pathology. With an overall mortality from ruptured AAAs 

reaching 80%-90% [6], early identification and prognosis of dilation and rupture 

becomes a necessity. Studies between 2002 and 2005 indicated a prevalence of 

AAAs in 4-8% of men aged 65 to 80 in the western world [32]–[34], with AAAs 

being overall responsible for between 1 and 3% of deaths of men in this age group 

[5]. According to statistics from 2013, in the UK AAAs cause 1.5% of deaths in 

men over 55 years [35], while the United States Centre for Disease Control 

reported for the same year AAAs as the 15th leading cause of death for American 

men of ages 60 to 64 [36].  

In recent years the prevalence of AAAs appears to be declining in the western 

world, potentially because of reduction in risk factor levels, especially a decrease 

in smoking [37], [38]. However, a large global epidemiological study in 2013 

concluded that AAA mortality has not declined at a global level, since there are 

large variations between countries, with some (e.g. Austria, Hungary) showing an 

increase in AAAs [39]. 

 

2.1.3 Aetiology - Risk Factors 

The underlying biological mechanisms of AAAs have been investigated for many 

years but are still not well understood.  Both genetic and epigenetic factors are 

believed to be involved in aneurysm disease [40]–[42]. AAAs had traditionally 

been considered to be a direct result of atherosclerosis [43], but research in 

recent years suggests that atherosclerosis is either not the sole factor, or a non-

causal event that happens in parallel to the AAA disorder [44], [45]. 
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Tobacco has been strongly associated with the pathogenesis behind AAA 

development [46]–[48], with a recent longitudinal study [49] reporting a 6 to 7 

times higher risk of AAA in current smokers compared with those who never 

smoked. Furthermore, it has been demonstrated [47], [50] that smoking 

increases the rate of expansion and the risk of rupture of already existing AAAs. 

Norman and Curci [47] suggested that long-lasting alterations in vascular smooth 

muscle and inflammatory cell function caused by smoking are implicated in the 

underlying mechanisms of AAA development. 

Other risk factors suggested in the literature include male gender, advanced age, 

hypertension, chronic obstructive pulmonary disease, hyperlipidaemia, obesity, 

and family history of AAA,  [37], [45], [51], [52]. More recently two more risk 

factors were introduced, namely ethnicity (Caucasian) and height, with >5-fold 

incidence of AAAs observed in subjects in the top tertile group for height [49]. 

Diabetes mellitus appears to have a negative association with AAA incidence, for 

reasons not yet defined [53]–[55]. 

It should be noted that although male gender is considered a risk factor for AAA 

development, women appear to have higher rupture rates for small AAAs 

(<5.5cm) [56], [57] and it has been suggested that aneurysm size indexed to body 

surface area is a more reliable predictor of rupture in women than aneurysm size 

alone [58]. A 2017 study indicated that women have higher mortality rates after 

elective AAA repair (either open or endovascular) compared to men [59]. 

Additionally, current female smokers have a higher risk than males who have 

never smoked, equal to the risk of male former smokers [49].  
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2.1.4 Pathophysiology 

2.1.4.1 Biomechanical Factors 

2.1.4.1.1 Law of Laplace 

The development of AAAs is connected to changes of the connective tissue in the 

aortic wall. The mechanical properties of the aorta are determined by fibrillar 

collagens and elastic fibres [5], [60].  The Law of Laplace, according to which the 

wall tension required to withstand the internal fluid (in this case blood) pressure 

is proportional to the radius of the vessel (aorta), was previously used to describe 

the mechanical properties of AAAs [61], [62].  This law however assumes that the 

vessel is of strictly cylindrical shape with consistent wall thickness and uniform 

mechanical properties throughout and, as demonstrated in a number of studies 

[63]–[66], these assumptions cannot be accurately applied to AAAs. AAAs are 

characterised by a more complex geometry, being often asymmetrical and with 

variations in wall thickness, tortuosity, potential presence and variable thickness 

of intraluminal thrombus (ILT) and are affected by a range of heterogeneous 

biological processes [67]–[71]. 

2.1.4.1.2 Finite Element Analysis (FEA) 

On the other hand, Finite Element Analysis (FEA) appears to be a more 

promising methodology for wall stress calculation in AAAs [64], [72], [73]. FEA, 

as a practical application of Finite Element Method (FEM), focuses on solving 

highly complex problems by breaking them down into smaller (and easier) sub-

problems. In the case of AAAs, FEA combines CT scan data to initially produce 3D 

(geometrical) models of the AAAs. These 3D models are thereupon segmented 

into smaller components, i.e. Finite Elements (FEs), with the use of FE mesh 

generation algorithms. The Finite Elements extracted can then be studied 

separately focusing on individual characteristics and micro-environments. This 

way a more detailed and accurate description of the intricate stress patterns of 

the entirety of the AAA can be achieved.  
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However, despite the higher accuracy of the wall stress estimations that FEA 

provides, it does not offer any information on the tensile strength of the AAA wall 

(i.e. the amount of force that would be required for the wall to rupture). 

Interestingly, Tanios et al. recently demonstrated that adaptive biological 

mechanisms may be counteracting increased localised wall stress and strain 

through elevated production of collagen and proteoglycans [74].  It would hence 

be erroneous to solely rely on FEA for rupture prediction, unless it was combined 

with other techniques capable of determining the weakened areas of the aortic 

wall non-invasively. Such non-invasive techniques however are not yet routinely 

available, despite some promising recent studies that used Bayesian regression 

for the calculation of wall strength distribution [75]–[77].  

2.1.4.1.3 Role of thrombus  

Intraluminal thrombus (ILT) is present in the majority of AAAs and it 

comprises many layers of heterogeneous consistency [24], [78]. It is not yet 

certain whether the presence of thrombus hinders or advances AAA growth, or 

whether it has little influence. ILT has been found to affect wall stress [63], [79] 

and specifically decrease peak wall stress [63], [80], [81]. Accelerated ILT growth 

was proposed as a probable predictor for rupture [82] in 2000, and in 2015, Virag 

et al suggested that the complex biomechanical nature of the ILT could cause 

either rupture or a halt of AAA growth and should therefore be taken into 

consideration in growth and rupture predictions [83]. In the case of ILT failure, 

blood from the lumen infiltrates the thrombus through the resulting fissure and 

in the next stage the blood penetrates the aortic wall. This haemorrhagic 

phenomenon appears as a high-attenuating crescent sign within the AAA on 

computed tomography (CT) scans (Figure 2.6) and is considered a potential 

predictor of acute or impending rupture [84]–[89]. 
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Figure 2.6: Hyperattenuating crescent sign. Axial unenhanced CT scan presenting crescent-

shaped intramural haematoma (H) of higher attenuation than the aortic lumen (L) [90] . 

 

2.1.4.2 Biological Factors 

In the abdominal part of the aorta, with no microvasculature available, the wall 

relies on direct supply of oxygen through the lumen. The presence of intraluminal 

thrombus (ILT) is hypothesised to be hindering normal diffusion of oxygen 

towards the wall and consequently inducing cellular hypoxia at various degrees, 

leading to wall thinning [63], [91]. These conditions are believed to trigger 

inflammation and neovascularisation [4], [91]. 

Inflammation has been accepted as a critical factor contributing to AAA 

development and growth [5], [92]–[95]. Through a series of mechanisms, 

inflammation drastically alters the pathology of the AAA, eventually rendering 

the wall more susceptible to AAA development and rupture. 
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Concentrations of macrophages are found in the aortic wall from the early stages 

of AAA formation and contribute to its pathogenesis in a number of ways [96], 

[97] which are out of the scope of this thesis. Importantly, activated macrophages 

promote an increase of oxidative stress which thereupon intensifies tissue 

damage [98]. 

Amidst the processes taking place around the enlargement of the aortic wall and 

the AAA formation and progress, elastin and collagen levels are disrupted, 

leading to wall stiffness and reduction of tensile strength [99]–[101]. 

 

2.1.5 Biological “Hotspots” of Inflammation 

The pathological mechanisms present within the AAA (see section 2.1.4), namely 

cellular hypoxia, wall thinning, inflammation, neovascularisation, oxidative 

stress, tissue damage, wall stiffness and reduction of tensile strength, do not 

develop uniformly throughout the aorta, but rather have been demonstrated to 

appear in a focal manner, suggesting areas at high risk of rupture [64], [97], 

[102]–[104]. 

Being so biologically active, these areas may prove to be rich sources of predictive 

information, if novel analysis techniques are applied to them.  Non-invasive 

techniques are obviously preferable when considering the aorta, so targeted 

imaging applications are very attractive for the assessment of AAAs. 

 

2.1.6 Risk of Rupture and AAA Management 

2.1.6.1 Risk of Rupture 

AAAs can either be managed with open surgical treatment, endovascular 

repair (EVAR), or non-invasive prevention of growth and rupture [105]–[107]. 
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Given that elective repair has an estimated mean overall 30-day mortality 

between 0.5% and 27.1%, surgical and endovascular interventions are only 

considered when the perceived risk of rupture is higher than the risk of 

procedural complications [7]–[10].  

For many years and still currently in practice, the universally recognised metric 

to predict AAA rupture has been maximum aortic diameter. It should be noted 

that symptomatic AAAs, with symptoms including abdominal pain, back pain and 

limb ischemia, are considered to be at a higher risk of rupture and are therefore 

considered for surgical treatment regardless of their size [5], [108], [109]. 

Asymptomatic AAAs with diameters smaller than 5.5cm are not considered for 

surgical or endovascular intervention. The diameter threshold was accepted after 

two large studies, the United Kingdom Small Aneurysm Trial (UKSAT, n=1090) 

and the United States Aneurysm Detection and Management study (USADAM, 

n=1136) concluded that there was no survival benefit for immediate surgery for 

patients with AAAs of 4-5.5cm diameter size [13], [110]. This measurement is 

made by serial ultrasound monitoring, with CT imaging commonly being applied 

as part of surgical planning when the 5.5cm antero-posterior (AP) diameter 

threshold has been reached on ultrasound.  

However, this criterion is currently under debate, because 60% of AAAs larger 

than 5.5 cm in diameter which are under surveillance do not appear to rupture 

[13],  and 10-20% of AAAs presenting at point of rupture are found to be under 

5.5 cm in diameter [3], [14]. 

Alternative criteria for rupture risk prediction suggested in the literature mainly 

focus on mechanical properties of the AAA, such as wall tension [62], wall 

stiffness [100], peak AAA wall stress [65], [66], [69] and intraluminal 

thrombus (ILT) growth [63], [79], [82], with none of them having yet proved to 

be a better rupture predictor than the diameter criterion [73]. 
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There are currently no other methods used to successfully augment rupture 

prediction in aneurysms under surveillance, so novel methods for rupture 

stratification are urgently needed.  

 

2.1.6.2 NHS AAA Screening Programme (NAAASP) 

Screening is the process of assessing whether individuals without any signs or 

symptoms may have a disease or may be at increased risk of developing it.  

In the case of aneurysm disease, most patients experience no symptoms 

throughout AAA development until rupture [5]. Research has shown that AAA 

screening  has the potential to reduce AAA rupture-induced deaths by 53% to 

73% [32], [111], [112]. 

In the United Kingdom (UK), the National Health Service (NHS) introduced the 

NHS AAA Screening Programme (NAAASP) in 2010, which has ever since been 

inviting all men aged above 65 to attend local hospitals for an AAA assessment  

[113]. Women are not invited to be screened because occurrence of AAAs in 

female individuals appears to be up to six times less prevalent than occurrence in 

males [114]; the exclusion of women from AAA screening has however been 

challenged [59], [115], [116]. 

In the first instance of the screening, all eligible men are offered an abdominal 

ultrasound scan (US) in order to examine whether they have an aortic diameter 

of size larger than 3 cm, which then qualifies as an AAA.  

Based on the aortic diameter measurement, individuals are then classified into 

three groups: 

1. If their aorta is found to be smaller than 3cm, the individual is 

discharged. 
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2. If their aorta is found to be between 3.1 cm and 5.4 cm (small or medium 

AAAs), they are invited for ongoing surveillance, with surveillance 

intervals depending on the size of the AAA. Surveillance is terminated 

when: 

a. The AAA reaches 5.5 cm, so the individual is moved to group 3 

(detailed below). 

b. Referral for treatment is decided based on other factors (e.g. 

appearance of symptoms). 

c. The aortic diameter is found to be smaller than 3 cm in three 

successive ultrasound scans. 

d. The size of the AAA diameter remains smaller than 4.5 cm after 15 

yearly scans. 

e. The individual declines participation, fails to attend, moves to 

another area or passes away. 

3. If they are found to have a large AAA (at least 5.5 cm), they are referred 

to a vascular surgeon to be considered for treatment options, including 

surgery. 

The same AAA screening programmes are also offered by NHS Scotland, NHS 

Wales and HSC (Health and Social Care) Northern Ireland [117]. 
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2.2 Abdominal Aortic Aneurysm (AAA): Anatomical 
Imaging Methods 

Various methods may be used for AAA imaging, focusing either on anatomical, 

functional or molecular  properties [118].  

The established methods for anatomical imaging are Ultrasound (US) Scanning, 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). All three 

modalities were used to image AAAs for the analysis activities described in this 

thesis and will be introduced in the following sections. 

In an anatomical examination of an AAA, of interest is the size of the aneurysm, 

but also its position and shape. In a typical AAA scan, 3 main components can be 

discerned and segmented for further scrutiny: namely the aortic wall (which is 

commonly widened throughout the AAA length), the intraluminal thrombus (ILT) 

and the luminal area (lumen), as depicted in the cross section of an AAA in Figure 

2.7.  

More detailed metrics describing the AAA anatomy may also be of interest, e.g. 

the relative size of lumen or thrombus compared with the total AAA size, the 

thickness of thrombus and wall and how these vary throughout the AAA and the 

variations in shape and symmetry, as they can be possible sources of information 

for growth and rupture prediction, as discussed in sections 2.1.4 and 2.1.6 and 

further explored in results Chapter 5. 
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Figure 2.7: Cross section of AAA. The main anatomical features of interest include the aortic 
wall, the lumen and the thrombus (Image source: PEIR Digital Library 2017a).  

Functional/Molecular imaging, applied to study biological mechanisms, is 

commonly performed, among others, with MRI, Magnetic Resonance 

Spectroscopy (MRS), optical fluorescence and bioluminescence imaging, SPECT 

and Positron Emission Tomography (PET) [118], [120]. In the research presented 

here, the interest was in studying the anatomy of AAAs as well as functional 

information that can be derived from MRI scans. MRI combined with the 

application of a particular type of imaging contrast agent (USPIO) affords the 

opportunity to look at inflammation, one of the key factors observed in AAA 

histology samples; this mechanism will be discussed in section 2.3.2. 
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2.2.1 Ultrasound Scanning  

 

Figure 2.8: Abdominal ultrasound scan performed as part of the NHS AAA Screening 
Programme [121]. The US technician can be observed as she moves the US transducer against the 
skin of the subject, while simultaneously assessing the real-time images produced on the screen. 

Ultrasound (US) scanning (Figure 2.8) is characterised by ease of use, safety and 

wide availability, while being the most inexpensive imaging modality applied to 

AAAs. It is thus commonly preferred as a first-stage diagnostic and monitoring 

tool [5], [118].  

US scanning, also known as Ultrasonography, uses high-frequency sound waves 

above 20,000 Hz to create images of tissues, vessels and organs within the human 

body. During a US scan, a hand-held transducer (or probe) is placed directly 

against the skin of the subject and moved accordingly so that the whole area of 

interest is scanned. Water-based gel is applied on the skin, to ensure there is no 

attenuation of the sound waves through air interfaces.  
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 Ultrasound waves are emitted from the transducer through the gel, via the skin 

and into the body structures. The transducer receives the soundwaves that 

bounce back (echoes), converts them into an electrical signal and sends that to a 

computer where real-time images are produced on a screen. US has the 

advantage of being non-invasive and providing real-time scanning. The 

resolution of the output images is of acceptable standards, but only within the 

limited view of the manually operated probe [122].  

A typical US scan of an AAA can be seen in Figure 2.9. 

 

Figure 2.9: Ultrasound Imaging of an AAA. Transabdominal transverse US scan of the aorta 
of an AAA patient, concentrating on the aneurysm mass. The maximum antero-posterior 
diameter is the distance marked between the “+” symbols, and the lateral diameter is the distance 
marked between the “*” symbols. (Image source: MA3RS trial). 

A considerable disadvantage of US imaging lies in the fact that the image quality 

is non-isotropic and susceptible to noise. The fact that the US probe is manually 

operated introduces inter- and intra-observer variability, and makes the 

comparison between separately acquired US scans challenging. [3]. US scans 

thrombus

lumen

wall



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 2: Background 25 

consist of “screenshots” of the real-time view that the sonographer selects to save 

and there is commonly no information regarding the third dimension (which 

level of the aorta length is being imaged) saved with the scan [123]–[125].  

Other limitations of US are caused by the soundwave properties: US waves cannot 

adequately penetrate dense bone tissue, and are disrupted by gas and air (making 

it thus difficult to image through air-filled bowels). Issues also arise in the case of 

obese patient imaging, as higher US wave attenuation is caused by the greater 

mass of tissue needing to be penetrated by the waves [125]–[128]. 

A more detailed analysis of US compared to CT and MRI is presented in Chapter 

4 (AAA Measurements: US vs. CT vs. MRI). 

 

2.2.2 Computed Tomography 

Computed Tomography (CT), sometimes referred to as “CAT scanning” 

(Computerised Axial Tomography), consists of a series of high resolution 2D X-

ray images that when combined together produce high quality 3D data (Figure 

2.10).    

CT images have very good spatial resolution, particularly in the z-axis, or slice 

width, and produce very detailed 3D geometry. A major advantage of CT is that it 

can image bone, soft tissue and blood vessels at the same time. It generally has 

good vascular differentiation, but inferior soft tissue differentiation compared to 

MRI [88], [89], [129].  

CT is relatively fast, with approximately one second (actual scanning time) 

required per slice. AAA imaging with CT usually consists of 70-90 slices (so under 

2 minutes actual scanning time) and the total scan time is around 5 minutes [130]. 

The fast imaging speed of CT warrants fewer motion artefacts and higher 
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resolution, although the presence of calcium or metal do tend to cause artefacts 

that obscure anatomical features in the images [131], [132].  

 

Figure 2.10: CT scanner and stack of CT slices produced (Photograph of CT scanner source: 
Edinburgh Wellcome Trust Clinical Research Facility, CT images source: MA3RS trial)  

CT is not used for routine AAA monitoring due to the associated relatively high 

ionising radiation exposure. It is however the preferred method for pre-surgical 

assessment [3]. Contraindications against CT include allergies to intravenous 

contrast agents (which are considered rare, but more common than with MRI), 

risk of contrast-induced nephropathy, especially in cases of subjects suffering 

from renal insufficiency, diabetes and dehydration [118], [133]. 

A typical slice of a transverse CT scan of an AAA can be seen in Figure 2.11. 
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Figure 2.11: CT Imaging of an AAA. Transabdominal transverse CT scan slice of the aorta of 
an AAA patient, with AAA depicted within the yellow rectangle. The luminal area appears in 
white colour and parts of the aortic wall surrounding the thrombus (grey area) are subtly visible. 
Standard CT iodine-based contrast agent, Iomeron 400 (BRACCO, USA) used. (Image source: MA3RS 
trial). 

 

2.2.3 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) makes use of the spinning nuclear 

magnetisation of the hydrogen atoms within tissues and how they interact with 

magnetic fields created by the scanner in order to create images. MRI is a very 

effective imaging modality system due to its non-invasive nature, while the 

absence of ionising radiation makes it an ideal modality for serial imaging 

research [134]. 

lumen

thrombus

wall
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MRI has not yet been established as a routine clinical practice for AAA, but it may 

well become systematically used for serial AAA screening in the near future. The 

main reason preventing its prevalence is its relatively high cost compared to US 

and CT: in 2016, a  US scan of an AAA would cost £43, a CT scan £77, while an MRI 

scan would cost £123 [135]. 

 

Figure 2.12: MRI scanner and stack of MRI slices produced. (Photograph of MRI scanner 
source: Weston Area Health NHS Trust, MRI images source: MA3RS trial). 

MRI scanners can generate images in any plane, with exceptional 3-dimensional 

sub-millimetre spatial resolution in some applications (Figure 2.12). The 

strongest advantage of MRI is its excellent and user-variable soft tissue contrast, 

allowing the illustration of subtle differences within tissues. Compared to CT, MRI 

provides less details of bony structures, but offers far superior soft tissue contrast 

[127], [129], [132], [136]. 

Additionally, MRI can be used in combination with the application of contrast 

agents, which allow more detailed imaging, provide additional soft tissue 

contrast, and can demonstrate biological functions of the tissues as well as 

indicate pathological processes. Some MRI contrast agents have the additional 

benefit of comparatively long half-lives, allowing studies with several-day follow-

up scans to take place.  More details on MRI contrast agents can be found in 

section 2.3.2.1. 
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A typical slice of a transverse MRI scan of an AAA can be seen in Figure 2.13. 

 

 
 

Figure 2.13: MRI Imaging of an AAA. Transabdominal infrarenal transverse T2W MRI slice 
of MA3RS cohort patient, with AAA regions clearly visible, by virtue of the exceptional soft 
tissue contrast. The luminal area (bloodflow) appears dark and is clearly distinguishable from the 
lighter thrombus. The aortic wall appears to be distinct as well. The bright signal level is 
cerebrospinal fluid (CSF) in the vertebral canal. (Image source: MA3RS trial). 

MRI is susceptible to motion-related artefacts, and abdominal and thoracic 

imaging may require repeated breath holds by the patient, resulting in relatively 

long (and tiring for old patients) imaging protocol times compared to CT and US. 

Indicatively, a routine MRI scanning procedure of an AAA lasts approximately 30 

minutes, while the corresponding CT scan would require less than 5-10 minutes 

and a US AAA assessment would last 10 to 15 minutes. However, the US data 

acquired within this time comprise only a few (2 to 4 usually) images of the AAA, 

while the data acquired during an MRI session may consist of hundreds of slices: 

within one MRI session, the same AAA volume may be imaged several times with 

thrombus

wall

lumen
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separate acquisitions with differing soft tissue contrasts obtained, with a mixture 

of 2D and 3D images obtained [137], [138].  

MRI might be unsuitable for some categories of patients, such as people who 

suffer from claustrophobia (even in the case of short-bore or open MRI) [139], or 

subjects containing metal implants, pacemakers or other devices that would be a 

safety concern or interfere with the magnetic field of MRI and therefore cause 

imaging artefacts. Additional considerations arise in the case of contrast agent 

administration, affecting subjects who are allergic to the agent (even though this 

is a very rare phenomenon), pregnant, breastfeeding or suffering from kidney or 

liver disorders [14], [118]. 

 

2.2.4 Discussion 

There are many factors that affect the choice of imaging modalities in AAA 

scanning, including availability, cost, and safety, but the most important factor 

in the context of this AAA research is spatial resolution.  

CT has exceptional spatial resolution in the z-axis, thus producing high-quality 

3D reconstructions. It can simultaneously image bone, soft tissue and vessels. 

The short scanning times required for CT ensure minimal presence of motion 

artefacts. The vascular differentiation of CT is good, but it underperforms in soft 

tissue differentiation, especially when compared to MRI. This weakness is 

evident in AAA imaging, where the differentiation between the aortic wall and 

the luminal thrombus is very challenging. CT scans may also suffer from 

artefacts in the presence of metal or calcium. As a typical example of achievable 

spatial resolution of CT for imaging in the torso, the resolution achieved in the 

MA3RS trial was 0.6 mm. 

The spatial resolution of MRI is highly dependent on the specific area of the 

body being scanned. In the case of abdominal scans, non-rigid coils with less 
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elements are used, generating a smaller signal to noise ratio compared to other 

body parts. The acquisition of high-quality images with MRI in the abdominal 

area is further challenged by the comparatively long scanning times, which 

make the scans susceptible to movement artefacts (respiratory, cardiac, 

gastrointestinal). Scanning within the time of a breath-hold and other artefact 

minimisation techniques such as gating to cardiac and respiratory motion can 

significantly improve resolution. The strongest point of MRI is soft tissue 

differentiation, which makes it an ideal imaging modality for AAA research. The 

resolution of the MRI scans of AAAs in the MA3RS study was 1 mm.  

The spatial resolution of ultrasound in the abdominal area is generally very 

good, typically achieving values of 1mm or lower with the use of standard 

3.5MHz transducers. However, ultrasound waves cannot penetrate dense bone 

tissue and are distorted by the presence of air or gas. Additionally, as ultrasound 

resolution is dependent on beam attenuation, imaging at great depth, e.g. in the 

case of obese patients, can be challenging. The spatial resolution of ultrasound 

scans acquired for the MA3RS study was 1 mm.  

Among the three modalities described, MRI appears to be the best suited for the 

needs of this study, especially when enhanced with contrast agents to visualise 

underlying physiological mechanisms like inflammation.   
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2.3 Abdominal Aortic Aneurysm: Molecular Imaging 
with MRI 

2.3.1 Basic Principles of Magnetic Resonance Imaging  

Following is a brief description of the relevant background information relating 

to MRI.  For a more in-depth discussion, please refer to: [138], [140], [141]. 

Human tissue consists of 60-80% of water (H2O), with each molecule of water 

containing two atoms of hydrogen (H) and each atom of hydrogen containing one 

proton. The spinning nuclear charge of each of these protons creates a tiny 

magnetic field known as magnetic moment. Thus, for simplification, each 

hydrogen nucleus can be regarded as a small magnet with its own magnetic 

moment or spin.  

In the absence of magnetic fields in their environment, the millions of magnetic 

moments within a tissue have random orientations, resulting in no net magnetic 

field. When a strong external magnetic field 𝐵0, like the one created with an MRI 

scanner, is introduced, the magnetic moments of the hydrogen nuclei align along 

with the magnetic field, either parallel or anti-parallel. Quantum physics dictates 

that hydrogen nuclei have only two possible energy states: Low energy nuclei 

align parallel to 𝐵0 and high energy nuclei align anti-parallel. The net magnetic 

moment of hydrogen is called net magnetisation vector (NMV).  

The introduction of the external field 𝐵0 causes an additional spin of the NMV 

around  𝐵0 at a characteristic frequency called the precessional frequency 𝝎𝟎 

or Larmor frequency, and given by the Larmor equation:  𝜔0 = 𝛾𝐵0 

Where 𝛾 is a constant called the magnetogyric ratio. 

When a radio frequency (RF) pulse of energy is applied, energy is transferred to 

the NMV; this process is called excitation. During excitation, the protons gain 

energy such that the magnetic moments start spiralling in a motion away from 
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the direction of  𝐵0, resulting in the NMV turning towards the transverse plane 

(xy plane) when viewed in the “rotating frame of reference” (which rotates at the 

Larmor frequency). A receiver coil can be used to detect the magnetic field 

fluctuations caused after the excitation of the protons; a voltage is generated 

within this receiver coil, which is then used to form the MR signal. 

When the RF pulse is removed, the NMV loses energy and returns to realign with 

𝐵0, in a process called relaxation. Relaxation consists of two simultaneous but 

independent processes.  

The first is spin-lattice relaxation, which occurs as nuclei release their energy 

to their environment. This process is also called T1 recovery, and it results in 

regaining magnetisation in the longitudinal plane, as depicted in Figure 2.14. T1 

recovery has an exponential rate.  

 

Figure 2.14: Spin-lattice relaxation/T1 recovery: Energy is transferred from the nuclear spin 
system to the environment, resulting in relaxation in the longitudinal (z’) plane. (Image 
credit: Scott Semple) 
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The second process is spin-spin relaxation, and it occurs when nuclei exchange 

energy with their neighbouring nuclei. It is also known as T2 decay, and it results 

in loss of magnetisation in the transverse plane, as shown in Figure 2.15. This 

relaxation process is also described by an exponential rate.  

 

Figure 2.15: Spin-spin relaxation/T2 decay: Nuclei exchange energy with neighbouring 
nuclei, leading to loss of magnetisation in the transverse(x’-y’) plane. (Image credit: Scott 
Semple) 

 

Simultaneous to the decay of transverse magnetisation, the magnitude of the 

voltage created within the coil is also reduced. This transient oscillation is known 

as free induction decay (FID) signal. 
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2.3.1.1 Weighting 

In order to illustrate the differences in T1 relaxation times or alternatively in T2 

relaxation times in different tissues, the timing of the application of the 

radiofrequency pulse and other magnetic field gradients of the imaging sequence 

can be altered so that one relaxation contrast mechanism predominates, giving 

T1-weighted (T1W) or T2-weighted (T2W) images.  Two of the most common 

sequence parameters used to influence the contrast weighting of the imaging 

sequence are the repetition time (TR) and the echo time (TE) of the sequence 

(outlined further below). 

In the protocols used for this research, T2-weighted (T2W) scans were used for 

extraction of anatomical information. 

2.3.1.1.1 T2-weighting 

A T2-weighted (T2W) image demonstrates the differences found between the T2 

relaxation rates of different soft tissues. The amount of T2 decay taking place is 

strongly regulated by the choice of the imaging sequence parameter TE. 

2.3.1.2 T2* decay 

There is a further component of proton magnetisation relaxation associated with 

actual applications of scanning. T2* decay consists of the combination of the T2 

decay and dephasing caused by local magnetic field inhomogeneities.  These local 

field inhomogeneities may be caused by the varying magnetic properties of 

different tissues within the body.  These effects are often therefore particularly 

strong at the boundary between two tissues with significantly different magnetic 

susceptibilities.  The presence of ferrous objects or paramagnetic (possessing 

magnetisation in direct proportion to field strength of externally applied 

magnetic field; paramagnetism appears in atoms that have unpaired electrons) 

or superparamagnetic (characterised by a large magnetic moment in the 

presence of a static external field, no magnetic memory, suitable for MRI) contrast 

agents will strongly contribute to increased, localised T2* decay, as shown in 
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Figure 2.16.  T2* decay is therefore always faster than T2 decay.  T2* decay may be 

thought of in practical terms as the decay of the FID that occurs after the RF pulse 

is switched off. 

 

Figure 2.16: The presence of iron causes faster T2* decay. (Image credit: Scott Semple) 
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Figure 2.17: T2* exponential decay of the signal intensity against gradient echo time (TE) 
(adapted from [142]. 

 

The T2* value is the time constant of the decay rate of transverse magnetisation 

(signal intensity) against echo time (TE), as can be seen in Figure 2.17. The 

relationship is described by the Equation 2.1: 

 𝑆(𝑡) = 𝑆(0)𝑒
−𝑡

𝑇2∗⁄  

Equation 2.1 

Where 𝑆(𝑡) is the signal intensity at time 𝑡 and 𝑆(0) is the signal intensity at 

starting time (𝑡 = 0). 

The calculation of the T2* value is useful for the estimation of USPIO accumulation, 

as explained in section 2.2.3.  
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2.3.1.3 Spin echo pulse sequence 

The spin echo pulse sequence uses a 90° RF excitation pulse in order to flip the 

longitudinal NMV to the transverse plane.  Voltage is then induced within the 

receiver coil and after the 90° RF pulse is switched off, T2 dephasing begins and 

the signal decays.  

A 180° RF pulse is introduced, and it has enough energy to compensate for the 

dephasing, thus causing protons to recover their transverse magnetisation and 

producing a spin echo. 

Echo time (TE) corresponds to the time between the application of the 90° RF 

excitation pulse and the spin echo (the time of MR signal sampling). The TE 

determines the amount of T2 decay that is allowed to happen. 

Repetition time (TR) is the time interval between each 90° RF excitation pulse. 

 

2.3.1.4 Gradient echo pulse sequence 

A gradient echo pulse sequence uses a single RF excitation pulse of variable 

degree, so the NMV can flip to a variable angle. If the flip angle used is other than 

90°, then only a part of the longitudinal magnetisation is converted to transverse 

magnetisation (and therefore to MR signal). After the removal of the RF pulse, T2* 

dephasing immediately begins. This decaying signal is sampled after time TE and 

this signal is termed a gradient echo, as shown in Figure 2.18 

An advantage of gradient echo pulse sequences is their shorter scan times 

compared to spin echo pulse sequences. 

A disadvantage of gradient echo pulse sequences is their sensitivity to magnetic 

field inhomogeneities, which sometimes causes imaging artefacts, but may be 

exploited to make gradient echo specifically T2*-weighted. 
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Figure 2.18: A multi-echo gradient-echo sequence, consisting of 4 echoes at TE=4.92ms, 
TE=7.71ms, TE=10.50ms and TE=13.29ms acquired axially through the AAA demonstrating 
differential T2* decay in different soft tissue of the AAA. The AAA area has been annotated. The 
T2* decay can be seen, as the signal appears increasingly darker in the echoes, the relaxation rate is 
faster in some tissues than others. (Source of data used for this image: The MA3RS trial) 

 

2.3.2 Inflammation tracking with MRI 

2.3.2.1 MRI Contrast Agents for Imaging of Inflammation 

The ability of MRI to provide good soft tissue contrast relies on the differences in 

water content locally (proton density), but also importantly on the regional 

differences in the longitudinal (T1) and transverse (T2) relaxation times [143]. 

The differences in T1 and T2 can be intensified by adapting the scanning 

parameters accordingly, as briefly outlined above. Diseased tissue can sometimes 

be differentiated from healthy tissue based on these differences, but  many 

conditions will not be detected without the introduction of a contrast agent [144]. 

MRI contrast agents are pharmaceutical substances which are administered to 

subjects before or during an MRI scan in order to improve soft tissue 

discrimination and allow more targeted imaging [145]. The introduction of 

Echo 1 Echo 2 Echo 3 Echo 4

TE = 4.92 ms TE = 7.71 ms TE = 10.50 ms TE = 13.29 ms
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contrast agents has been demonstrated to increase sensitivity and specificity in 

diagnostic MRI [146], [147].  

Based on their magnetic behaviour, MRI contrast agents can be commonly 

classified into two main groups. The first group is paramagnetic agents, which 

shorten the T1 relaxation times of the tissues in which they concentrate and are 

mostly Gadolinium (Gd3+) – based. The second group is super-paramagnetic 

agents, which shorten T1, T2 and particularly T2* relaxation times of the tissues 

and are most commonly based on iron oxide (FeO) particles  [143], [144].  

Gadolinium (Gd3+) contrast agents have been successful in identifying 

atherosclerotic plaque components, such as calcified plaque, fibrous cap  and 

lipid core [148]–[150], as well as assessing neovascularisation in human vascular 

tissue [151]. In the case of AAAs, gadolinium-based contrast agents have been 

found to distinguish between the fibrous cap and the thrombus, but have failed 

to provide any information about the underlying pathophysiological mechanisms 

[152]. 

2.3.2.2 USPIO Structure and Use 

Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) are a range of 

contrast agents that can offer additional insights into underlying biological 

processes. Additionally, USPIO have the advantage of being trackable in lower 

concentrations than gadolinium-based contrast agents [153]. 

USPIO have been used in many applications, such as myocardial and renal 

perfusion assessment, macrophage activity detection, atherosclerosis imaging, 

detection of inflammation and identification of unstable lesions within carotid 

atheroma [154]–[159]. Of special interest to our team’s research has been the 

ability of USPIO agents to identify areas of inflammation as demonstrated by 

Howarth et al in 2009 [160]. Specifically for AAA disease, USPIO were found to 

function as a marker of cellular inflammation, first in pre-clinical models and 

small clinical studies [161]–[163] and in 2011 with the pilot study (described in 
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section 2.4.1) conducted within our department [15] which further confirmed 

this role in the specific application of AAAs.  

Iron oxide particles are clinically used in a variety of sizes, comprising of: very 

small (VSPIO, <20 nm in diameter), ultrasmall (USPIO, 20–50 nm in diameter), 

small (SPIO, 60–250 nm in diameter) nano-sized superparamagnetic particles of 

iron oxide and micron-sized (MPIO, 1-8 µm in diameter) particles of iron oxide  

[134]. Iron oxide particles generally consist of a nonstoichiometric 

microcrystalline magnetite core and have a coating of carbohydrate or polymer 

[164].  

 

2.3.2.3 Cellular Uptake of USPIO 

Since iron oxide particles are administered intravenously, their size and coating 

influence their uptake by cells [165]. USPIO have a blood pool half –life between 

16 and 24 hours, which is significantly longer than SPIO (2-6 hours) or 

gadolinium (approximately 1.5 hours) [166]–[170]. Having a longer circulating 

time, USPIO are thus more effective in the imaging of vessel walls. Although 

USPIO are mainly found within the blood pool, they also enter inflamed tissues; 

the mechanism behind their migration however is not fully understood. It has 

been hypothesised that the small size of the USPIO allows them to transport 

across the endothelium, especially in cases when the latter is compromised and 

inflammatory neovasculature is present. After entering the tissues, the USPIO  are 

ingested by resident macrophages [134], [171]. The alternative theory suggests 

that USPIO are engulfed by monocytes or macrophages in the blood circulation 

and are consequently transported to sites of inflammation [172], [173]. 
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2.3.2.4 Detection of USPIO with MRI 

In AAAs, the co-localisation of superparamagnetic particles of iron oxide (SPIO) 

and macrophages within the aortic wall has been previously verified 

histologically [15] within the pilot study described in section 2.4.1. As a result of 

the high concentration of USPIO in inflamed sites, local magnetic disturbances 

shorten T2 and T2* relaxation times. The inflamed areas therefore appear darker 

than the non-inflamed sites in the T2 and T2*W images [134]. The MRI signal 

reduction observed has been previously demonstrated to be proportionate to 

macrophage density [174], hence the local differences in signal in T2* maps 

before and after administration of USPIO can be used to calculate the extent of 

inflammation within the tissues. 
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2.4 From the Pilot Study to the MA3RS Study 

2.4.1 Introduction 

In 2009, a pilot study [15] was set up to evaluate a novel way of predicting AAA 

expansion, which would potentially replace or supplement the diameter-

measuring method described in section 2.1.6.  

As described in 2.1.4 and 2.1.5, among other mechanisms, cellular inflammation 

has been shown to play a critical role in AAA development and expansion, by 

altering the pathology of the aortic wall through proteolytic degradation. This 

mechanism appears to function locally, in focal areas of the wall. 

Based on this, the hypothesis of the pilot study was that the presence of 

concentrated cellular inflammation in the wall of AAAs would correlate with the 

rate of AAA expansion more strongly than diameter size alone did. MRI with 

USPIO contrast was ideally suited to directly assess the inflammation process 

within AAAs (see 2.3.2). 29 patients with asymptomatic AAAs measuring 4.0-

6.6cm (as measured with US) were imaged using a 3-T MRI scanner before and 

24 to 36 hours after administration of USPIO to visualise areas of USPIO uptake, 

corresponding to regions of inflammation. 

2.4.2 Visualisation of Inflammation in AAAs 

In the pilot study, regions of interest (ROIs) depicting the lumen, thrombus and 

aortic wall were manually labelled on anatomical T1W or T2W scans for each slice, 

using Mayo Analyze software (AnalyzeDirect, Overland Park, KS, USA). 

4-echo gradient T2* sequences of axial scans were combined to generate pre-

USPIO T2* maps (Figure 2.19 A) and post-USPIO T2* maps (Figure 2.19 B) for each 

slice of each AAA. USPIO uptake within AAA tissues was identified by calculating 

percent change (%ΔT2*) of the T2* values before and after USPIO injection (Figure 

2.19 C). 
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All images were registered to T2W using a semi-automatic rigid 3-dimensional 

voxel registration protocol in Mayo Analyze. The ROIs that had been defined on 

the T2W images could then be applied to the T2*-weighted images and resulting 

T2* maps. 

The percent change ΔT2* was visualised in the form of colour maps superimposed 

over anatomical T2W AAA slices. The areas with higher concentration of USPIO 

(higher inflammation level) appeared “warmer”, as illustrated in Figure 2.19 C. 

The colour scale expanded from blue (cold), representing insignificant change in 

T2* values (thus no USPIO uptake) to red (warm), representing significant change 

in T2* values (thus highest USPIO uptake). Percent change smaller than 59% was 

considered insignificant and was thus depicted as 0% change (blue colour on 

map). The methodology used for the 59% threshold decision and the colour map 

generation is presented next. 
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Figure 2.19: Representation of ΔT2* as a means of USPIO uptake visualisation within the 
AAA. The AAA can be seen within the highlighted yellow area. A representative AAA slice is used for 
this example of %ΔT2*. The pre-USPIO (A) and the post-USPIO (B) T2* maps are calculated from the 
combination of 4 corresponding gradient echoes. The percent change in T2* values (ΔT2*) between 
them is then calculated and visualised in form of a colour map (jet scale) superimposed on the 
corresponding T2W anatomic image (C). As can be seen in the colour bar, changes smaller than 
59% are considered insignificant and are represented as 0% (blue). (Source of data used for this 
image: The Pilot Study [15]). 

 

2.4.2.1.1 ΔT2* threshold method 

Repeatability was examined by performing two consecutive scans on patients 

without moving them and the bias was established with the Bland & Altman 

method. 

Reproducibility scans were consequently used to establish a threshold, above 

which any ΔT2* change would be attributed to USPIO uptake, rather than noise. 8 

patients had an initial scan (without USPIO administration), with T2* values 
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measured, then they were moved out of the MRI scanner and later repositioned in the 

scanner and had the same scanning sequence and T2* measurements repeated. The per 

cent change in T2* value (%ΔT2*) was calculated for each voxel. The threshold was 

derived by calculating the 95th percentile value for the (non-USPIO) %ΔT2* and 

averaging over all 8 patients, thus resulting in the significance threshold value of 

59.1%. 

 

2.4.3 Classification: Groups explained 

The AAAs were classified into three groups based on inflammation patterns as 

identified at baseline through MRI scanning with USPIO.  These groups were 

hypothesised to represent different underlying biological mechanisms, with 

Group3 being the one of greatest interest, as it was thought to correspond to the 

biological “hotspots” of inflammation previously described in section 2.1.5.  

More specifically, the 3 classification groups were as follows: 

• Group1: no mural or thrombus USPIO uptake, except for isolated 

periluminal T2* enhancement (see 2.4.3.1) occurring immediately 

adjacent to, and in continuity with the lumen, as illustrated in Figure 2.20 

A. 

• Group2: diffuse USPIO uptake that was distinct from the periluminal 

thrombus (see 2.4.3.1) and the aortic wall, as depicted in Figure 2.20 B. 

• Group3: concentrated areas consisting of at least 10 contiguous voxels of 

USPIO uptake within the aortic wall of the aneurysm distinct from 

periluminal area and thrombus (see 2.4.3.1), representing “inflammatory 

hotspots”, as shown in Figure 2.20 C.  
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Figure 2.20: Colour maps illustrating representative slices from AAAs of each of the 3 
groups.  The colour scale corresponds to the degree of difference between pre-USPIO and post-
USPIO T2* values (%ΔT2*). Differences smaller than 59% are considered insignificant and are thus 
replaced by 0% values (depicted in blue colour). The colour maps have been superimposed on T2W 
anatomic images.  The three AAA groups based on patterns of inflammation consist of: A) Group1, 
with only periluminal USPIO uptake. B) Group2, with diffuse USPIO uptake (distinct from 
periluminal area and wall area). C) Group3, with an “inflammatory hotspot”, consisting of at least 
10 contiguous voxels of USPIO uptake, within the AAA wall and distinct from the periluminal area. 
(Image source: Pilot Study (Jennifer M J Richards et al. 2011)). 

 

2.4.3.1 USPIO uptake in Periluminal Area 

A high change in T2* value in the periluminal area of the AAA was a constant 

finding in all patients (forming a “halo shape” around the lumen). This was 

attributed to physical trapping of USPIO in fresh, possibly gelatinous and 

permeable thrombus which is found close to the blood flow [15], [24], rather than 

being considered a manifestation of inflammation. Periluminal enhancement was 

therefore not used as a contributing factor in the AAA classification. 

 

2.4.4 Findings and Limitations of the Pilot Study 

To account for the “staccato” growth pattern of the AAAs, the annual growth rate 

of the AAAs was calculated from the baseline ultrasound scan and 2 further 

ultrasound scans performed at 6 and 12 months. Potential correlation between 
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the AAA classifications and yearly growth was subsequently investigated, to 

evaluate the prognostic power of this method in predicting AAA growth.  

It was found that the AAAs of the third group (Figure 2.21 - highlighted bars) grew 

significantly faster than the other two groups, while the initial diameters (as 

measured at baseline) of all 3 groups were of similar range, as demonstrated in 

Figure 2.21. 

 

 

Figure 2.21: Relationship between baseline diameter and annual growth for each of the 3 
AAA groups. It is clearly shown that the initial AAA diameters are of similar sizes for all 3 groups, 
while the growth rate for AAAs of the 3rd group is significantly higher (0.66cm/y) than that of 
group 1 AAAs (0.22 cm/y) and that of group 2 AAAs (0.24 cm/y), (P=0.020). No significant 
difference between 1st and 2nd group growing rates is observed.(Image source: Pilot Study [15]). 

Importantly, histological staining with CD68 and Prussian-blue verified that the 

areas of concentrated USPIO uptake corresponded to areas high macrophage 

concentration. It was thus demonstrated that uptake of USPIO in AAAs identifies 

cellular inflammation.  

Additionally, this proof-of-concept study proposed for the first time that the 

presence of focal areas of inflammation (“inflammatory hotspots”) adjacent to the 
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AAA wall appear to distinguish patients at risk of more rapidly progressive AAA 

expansion. 

2.4.4.1.1 Limitations 

This pilot study appeared to give new promise for a more effective way of 

stratifying AAA patients, compared to the established diameter-size criterion. 

Being however the first clinical study in this niche area, it had some limitations: 

• The sample size was considerably small (only 29 patients).  

• Growth of the AAAs was calculated for a period of only 6 months.  

• Most of the data processing was done manually, including: 

o  Semi-manual registration of all images (pre-USPIO and post-

USPIO T2*W) to anatomical T2W images. 

o Manual inflammation pattern (“hotspot”) identification on %ΔT2* 

colour maps. 

o Manual AAA classification 

• The methodology in this pilot study also did not account for the 3D nature 

of the MRI data, but rather processed all available slices as independent 

2D images. This had the disadvantage that the information contained in 

each slice could not be easily combined with the information from the 

adjacent slices. In this way, crucial pieces of information could have been 

omitted during the manual segmentation and hotspot identification.  

• The definition of “hotspot” of inflammation as requiring to exhibit a 10-

voxel sized area was somewhat arbitrary (based approximately around 

assumptions relating to the intrinsic spatial resolution of the images as 

compared to thrombus/AAA size). Different sized area thresholds of 

significance could have been tested. 
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• No sub-classification of Group3 patients was conducted (the small sample 

hindered this as well), e.g. based on size or shape of hotspots. 

• AAA shape and anatomical metrics were not taken into consideration, as 

this was out of the scope of the pilot study.  
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2.5 The MA3RS Study 

2.5.1 Introduction 

 

The MA3RS (MRI for Abdominal Aortic Aneurysms to predict Rupture or Surgery) 

study aimed to expand on the pilot study by validating the previous findings and 

providing additional information to the current simplistic gold-standard of 

ultrasound measurement of aneurysm diameter.  

 The study design of  MA3RS  has been previously presented in detail  [175]. A 

description of the main points that are relevant to this PhD work are presented 

here. 

 

2.5.2 Methods 

 

2.5.2.1 Study Cohort 

342 patients were recruited between November 2012 and December 2014 from 

3 centres in Scotland (Royal Infirmary of Edinburgh, Western Infirmary of 

Glasgow and Forth Valley Royal Hospital in Lambert). The inclusion criteria 

were: age above 40 years, maximum antero-posterior (AP) AAA diameter of at 

least 40mm and being under ultrasound surveillance programmes. Exclusion 

criteria included patients with renal failure, inflammatory AAAs, AAAs resulting 

from connective tissue disorders, scheduled imminent AAA repair and women of 

childbearing potential. 

2.5.2.2 Study protocol 

The study flowchart, as published by the Edinburgh group in 2015 [175] is 

presented in Figure 2.22.   
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Briefly, the baseline assessment involved a full clinical assessment, collection of 

clinical data such as medical history and cardiovascular risk profile (e.g. smoking 

status, hypertension, family history of AAAs, diabetes mellitus), blood sample 

collection, pulse wave analysis, an ultrasound scan, a CT scan and two MRI scans.  

Every six months after the baseline (at 6th, 12th and 18th month), a clinical 

assessment and an ultrasound scan took place in all 3 centres.  

Additionally, out of the 342 patients in the study, 20 had repeat USPIO-enhanced 

MRI scans within a month of baseline in order to evaluate reproducibility of the 

technique. A further group of 59 subjects had MRI scans repeated 1 year after 

baseline and 20 patients were scanned 2 years after baseline.  

The final 2-year assessment included a clinical assessment, an ultrasound scan, 

a CT scan, blood sample collection and pulse wave analysis for all the patients still 

participating in the study. 
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Figure 2.22: MA3RS study protocol flow chart. (i.v. stands for intravenous)[175]. 

2.5.2.2.1 Ultrasound  

Recruited patients received a baseline ultrasound scan (3.5 MHz linear array 

transducer) as part of the screening process, which provided longitudinal B-scan 

images of the AAAs to determine maximum antero-posterior (AP) diameter at 

baseline. After this, ultrasound scans were conducted every 6 ±2 months by 

accredited clinical vascular scientists in the 3 participating centres. 
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2.5.2.2.2 CT  

Patients underwent contrast-enhanced CT imaging at baseline (or within 1 

month) and at 2 years. A 320-multidetector CT scanner (Aquilion ONE; Toshiba) 

was used in Edinburgh, and a 64-multidetector CT scanner (Brilliance 64; Philips) 

was used in Glasgow. Anatomical regions of interest (ROIs) were manually 

segmented on the resulting CT images. The length of the max AP diameter for 

each AAA was also documented. 

2.5.2.2.3 MRI 

2.5.2.2.3.1 Anatomical 

The position of the AAA was initially identified with the use of coronal and sagittal 

T2-weighted (T2W) multi-slice HASTE sequences with breath-holding. 

Anatomical information was obtained with the use of T2W turbo spin echo 

sequences, with and without Spectral Attenuated Inversion Recovery fat 

suppression (TR/TE 2500/252 ms; 365x384 matrix; slice width 5mm; field of 

view 300x400 mm).  

2.5.2.2.3.1.1 Manual Segmentation of ROI  

Regions of interest (ROIs) corresponding to the lumen, thrombus and aortic wall 

were manually drawn on each slice of the anatomical T2W scans (Figure 2.23 and 

Figure 2.24) by clinical observers using SliceOmatic 4.3 (TomoVision). Scans with 

or without fat suppression would be used, depending on the quality of the images.  
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Figure 2.23: Regions of Interest in AAA. Transabdominal transverse T2W MRI slice on a level 
near the centre of AAA (cross-section of AAA). The ROIs have been manually segmented (using 
SliceOmatic software by TomoVision): the aortic wall is depicted in yellow, the thrombus in green 
and the lumen in red.  

 

All available sets of scans were registered to the anatomical T2W images using 

bespoke automatic multi-parametric registration software created by members 

of our research group [176]. The ROIs that had been defined on the T2W images 

were then applied to the registered sequences of MRI scans available (e.g. pre-

USPIO T2*W, post-USPIO T2*W). 
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Figure 2.24: Regions of Interest (ROIs) throughout whole AAA. Example of all manually 
segmented ROIs on all 23 transabdominal transverse MRI slices of an AAA. 

 

2.5.2.2.3.1.2 USPIO detection 

Participants had a baseline 3-T MRI scan (Magnetom Verio 3T scanner, Siemens 

Healthcare, Erlangen, Germany), followed by a USPIO injection (4 mg/kg of 

ferumoxytol; Rienso). They subsequently underwent a second MRI scan within 

24 to 36 hours of the USPIO administration.  

For the USPIO detection, a multi-echo, gradient echo T2*W sequence (TE 4.9, 7.7, 

10.5, 13.3 ms; TR 133 ms; flip angle 15°; matrix 192x256; field of view 400x400 

mm; slice width 5 mm) was used for the pre-contrast and post-contrast scans.  

 

2.5.2.2.3.1.3 T2* map generation from echoes and noise filtering 

An algorithm accompanied with a GUI (Graphical User Interface) for T2* map 

generation had been previously created in-house in MATLAB R2015a (The 
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MathWorks, Inc., Natick, MA, USA), in order to ensure that we had full control of 

all the levels of image processing applied on the MRI data after extracting them 

from the scanner.  

For the generation of T2* maps, the four echoes in the multi-echo T2*W sequence 

were combined, as described in section 2.3.1.4. The T2* mapping software 

imports the four echoes for each patient and initially applies a Gaussian 

smoothing filter on each echo to reduce noise. The selected filter has a window 

size of [3x3], which was determined experimentally. 

Next, the r2 coefficient of determination (the proportion of the variance in the 

dependent variable that is predictable from the independent variable) is used to 

identify data that do not present an acceptable straight line fit when the log of 

signal intensity is plotted against echo time. These data points are then excluded 

from the T2* processing.  

A threshold for noise level is also applied to further identify voxel eligibility. For 

the voxels excluded from the processing, an effort to replace them is made, by 

extracting information from the surrounding voxels and interpolating [15]. Any 

voxels that cannot be reliably replaced with interpolated values, are replaced 

with zero values, as illustrated in Figure 2.25. These zero values can be later 

selected and excluded from further processing.  
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Figure 2.25: Low quality voxels in T2* map generation from echoes. A pre-USPIO T2* map is 
shown in A and the corresponding post-USPIO T2* map is shown in B. In A, the marked voxels could 
not be reliably replaced with interpolated values, so were replaced with zero values, thus appear 
black in the image.  

The output of the software is a pre-USPIO T2* map, depicting T2* values for each 

voxel (Figure 2.26 A) and the corresponding post-USPIO T2* map (Figure 2.26 B). 

Colour maps (of change) are also produced, showing the percentage change per 

voxel in T2* value (%ΔT2*) after the administration of USPIO, as shown in Figure 

2.26 C.  

The regions with very significant changes (significance level here considered 

above 71%) represented USPIO uptake. Histology was also conducted on samples 

of aortic wall from patients undergoing surgical repair within 28 hours of USPIO 

administration and the presence of USPIO was verified. 
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Figure 2.26: Representation of ΔT2* as a means of USPIO uptake visualisation within the 
AAA. The AAA can be seen within the highlighted yellow area. A representative AAA slice is used for 
this example of %ΔT2*. The pre-USPIO (A) and the post-USPIO (B) T2* maps are calculated from the 
combination of 4 corresponding gradient echoes. The percent change in T2* values (ΔT2*) between 
them is then calculated and visualised in form of a colour map (jet scale) superimposed on the 
corresponding T2W anatomic image (C). As can be seen in the colour bar, changes smaller than 
71% are considered insignificant and are represented as 0% (blue). (Source of data used for this 
image: The MA3RS Study. 

 

“Dropout” areas 

In the ΔT2* map depicted in Figure 2.27, two dark areas have been marked, 

corresponding to voxels that had to be excluded from further processing (due to 

low quality, as described in the previous section). These areas will hereafter be 

referred to as “dropout areas”; they appear black in the figure because their 

intensity values have been replaced with zeroes. 
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Figure 2.27: Two "dropout" areas on ΔT2* map. The voxels corresponding to these areas have 
been replaced with zeroes (and thus appear black) in order to be excluded from further processing.  

 

2.5.2.2.3.1.4 ΔT2* Threshold Decision 

In order to identify a threshold above which the USPIO uptake would be 

considered significant, the methodology applied in the pilot study was used, as 

described in section 2.4.2. For the MA3RS study, a group of 20 patients underwent 

reproducibility MRI scans within one month of the baseline scan. The percent 

change in T2* values (%ΔT2*) was calculated for each voxel. The threshold was 

produced by calculating the 95th percentile value for the %ΔT2* and averaging it for 

all 20 patients, thus resulting in the value of 71%. 

2.5.2.2.4 Classification 

The manual classification methodology applied on the MA3RS dataset was similar 

to the methodology implemented in the Pilot Study (section 2.4.3). 

The %ΔT2* colour maps were reviewed by two independent observers, blinded 

to patient demographics, AAA diameter, and growth rate. The AAAs were 

subsequently classified into 3 groups depending on USPIO enhancement:  
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1. AAAs without USPIO enhancement (Group 1 of pilot study, Figure 2.20 A) 

2. AAAs with indeterminate USPIO enhancement (Group 2 of pilot study, 

Figure 2.20 B) 

3. AAAs with USPIO enhancement (Group 3 of pilot study, Figure 2.20 C) 

If there was significant disagreement over classification of a subject, additional 

review of the data was performed, and group consensus was agreed upon. 

Very few cases of Group 2/ indeterminate USPIO enhancement were detected in 

the MA3RS study, possibly due to the comparatively higher quality of data 

(improved scanning protocol, no gaps between slices in MRI scanning 

sequences). It should also be noted that the outcome (annual AAA growth) of 

AAAs labelled as Group 2 was not significantly different to Group1 AAAs in the 

pilot study. 

 

 

  



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 2: Background 62 

 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 3: Image Processing Background 63 

Chapter 3 Image Processing Background 

 

This chapter introduces some basic image processing background, covering 

methods such as clustering and more specifically k-means clustering. These 

concepts may be useful to the reader for better comprehension of the techniques 

applied in Chapter 5.    
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3.1 Introduction 

One of the aims of this thesis was to automate the manual detection of 

concentrated inflammation (“hotspots”) within the AAA. Hence, a computerised 

segmentation method was desirable for application to the calculated %ΔΤ2* 

difference maps of USPIO uptake in order to identify and “single out” candidate 

areas, particularly when employed in large studies, such as the MA3RS trial. 

Image segmentation techniques can be broadly grouped into three categories 

[177]:  

• Edge-based methods 

• Pixel-based methods 

• Region-based methods 

The %ΔΤ2* difference maps in the previous pilot study were presented in the 

form of colourmaps to assist easier visual interpretation and presentation [15]; 

but the underlying data consisted of grayscale images which corresponded to 

signal intensity values. The percentage change in T2* within a pixel was then 

related to the degree of localised USPIO uptake.  Since the %ΔΤ2* difference maps 

were therefore created on a pixel-by-pixel basis, a pixel-based segmentation 

method was reasoned to be appropriate to explore in this thesis. The most 

commonly used pixel-based segmentation techniques are optimal global 

thresholding and pixel classification through clustering [178]. An optimal 

global threshold was applied in the MA3RS project after empirical determination 

of a suitable threshold level (i.e.  71%) to %ΔΤ2* difference maps [179], as 

detailed in (Chapter 12.4.2). However, applying a global threshold in this manner 

may remove some potentially significant information that could describe the 

range of USPIO uptake within and around a “hotspot”.  In particular, application 

of a global threshold may also remove some interconnectivity between areas of 

uptake when subsequently viewed in three dimensions.  It is potentially 
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important to classify an aneurysm as having several small hotspots of 

inflammation, or one large interconnected area of inflammation throughout the 

aneurysm.  Automatic detection of USPIO uptake using non-thresholded data has 

the potential to yield more useful information than analysis that has had a global 

threshold applied.  In a bid to therefore avoid the use of a global threshold in the 

automatic processing, clustering of non-thresholded data was one of the methods 

tested (see Chapter 5) and the one eventually used in the final algorithm.  

Therefore, additional relevant background of clustering is outlined below. 
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3.2 Clustering 

Organising information into meaningful groups is one of the most intuitive and 

fundamental ways of understanding and solving problems with complex data 

[180].  

Clustering or Cluster Analysis is the study of methods and algorithms used in 

order to organise data by discovering and representing an underlying structure 

of “natural groups” or hierarchies [180], [181]. The given number of objects or 

variables is thus classified into groups based on their common characteristics or 

similarities [182]. Alternatively, rather than a search for similarities, 

observations of differences among the data could also be used to create mutually 

exclusive groupings for Clustering [183].  

After being clustered, the objects within each group, called a cluster, have more 

similar defined “traits” with each other rather than with objects belonging to 

different clusters [184].  

A first step to be taken in the application of clustering the objects within the group 

is to observe the group and decide which object feature would enable the best 

classification to achieve a desired result (in this case, “appropriate” grouping of 

the objects). Such a choice of object feature among the characteristics available 

for a dataset is known as feature selection.  

In general, clustering algorithms attempt to reveal hidden patterns, which would 

be impossible for the human eye to discern, among large unlabelled datasets that 

are more complicated than this simple example, (i.e. without any prior class 

knowledge or category labels as a prerequisite).  
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3.2.1 History of Clustering - Applications 

Clustering started being popular in computer science in the 1970s, with 

applications in feature selection demonstrated on a speaker identification 

database presented as early as 1978 [185].  

More specifically for medical image segmentation applications, various types 

of clustering have been previously used.  A brief overview of common 

methodologies is presented (not exhaustively) in: [186]–[190][191], [192][193]–

[195][196][197]. 

Despite the fact that Clustering can contribute to highly automated processes, it 

is important to allow a certain degree of human control and intervention in the 

processing, especially in cases where data analysis may have significant 

ramifications (e.g. analysis of medical data). Clusters can be best defined and 

interpreted by experts in the field of the specific application being considered 

[180]  In the case of medical data clustering, clinical experts should be involved 

in the assessment of the clustering output, to help ensure clinical validity of the 

results of the analysis. 

 

3.2.2 Types of Clusters 

 

Clusters can be categorised in different types, depending on the relationships 

between the objects belonging to the same or different clusters. Different kinds 

of clusters have been previously described [198], [199].  In the case of the k-

means clustering applied to medical imaging described in this thesis the focus lies 

on “prototype” or “centre-based” clusters. 

Prototype-based or centre-based clusters 
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In the case of prototype-based or centre-based clusters, each object is closer to 

the centre of the cluster it belongs to than to the centre of any other clusters, as 

depicted in the simplified case of  4 clusters in Figure 3.1 [199]. 

 

Figure 3.1: Four prototype-based/centre-based clusters. Each object is closer to the centre of 
the cluster it belongs to than the centre of any other clusters. The centres of the clusters correspond 
to the cluster centroids and are marked with yellow “x” symbols. 

 

3.2.3 Number of Clusters 

 

Since in most clustering applied to medical imaging we generally do not have pre-

labelled data (i.e. we are performing “unsupervised” learning), the choice 

regarding the number of clusters, k, to be used to bin the data is an important 

issue. This number depends on factors such as the type of data available, the total 

number of objects in the group, the features selected, and the noise levels. There 

are some documented efforts to standardise the selection of the number of 

clusters  but with varying levels of success, and there is to date no universal rule 

[200]–[202].  

In the simplified example depicted in Figure 3.2, the initial points get classified in 

different groups depending on the number of clusters used in the algorithm. 

Different shapes represent membership to different clusters. 
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Figure 3.2: Simple example of clustering a set of an initial set of points using 2, 3 or 4 clusters 
per classification [203]. 

It should be noted that clustering algorithms always give results, meaning that 

even an ‘irrational’ choice of cluster number (e.g. choosing too many clusters 

while trying to segment a low-quality image) will give a classified version of the 

initial points. Additionally, all objects are forced into one of the available clusters 

unless specific exceptions are defined to allow any objects to remain unclustered. 

 

3.2.4 Operational Definition – Clustering Steps 

An operational definition of Clustering could be described as: 

 “Given a representation of n objects, find K groups based on a measure of 

similarity such that the similarities between objects in different groups are low” 

[182]. 

Further to this definition, the Clustering process can be broken down into a set of 

steps, based on which Clustering Algorithms can be designed. A typical sequence 

of tasks to be followed for pattern Clustering would be [180], [184]: 
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A. Pattern Representation (potentially with feature extraction and/or 

feature selection included) 

B. Proximity Measure Definition (depending on data type/characteristics) 

C. Clustering of data 

D. Data Abstraction (only if necessary) 

E. Output Evaluation (only if necessary). 

These tasks are covered in more detail in the following sections. 

 

A. Pattern Representation 

Pattern Representation pertains to the choice of number of clusters selected, the 

patterns available, as well as the characteristics or features (size, type, scale) of 

the data that are accessible to the specific clustering algorithm. 

With the input in this case being in the form of grayscale images, the dataset 

available is usually a 2D matrix of intensity values. In the case of a colour image, 

it is represented as a 3D matrix, with each pixel represented by 3 colour values 

(red, green, blue).  

Feature extraction is the process of applying various processing techniques to 

the initial given features, in order to obtain a set of new features, more suitable 

for the clustering algorithm at hand [204], [205]. 

Feature selection is the process of selecting an optimal subgroup of features 

based on a specific criterion [206].  
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Importantly, in real life applications of Clustering, the data are seldom as easy to 

classify as in the simplified example described in this chapter. Commonly, there 

is noise present among the datasets, outliers in the groupings, and the objects to 

be processed are much more diverse.  

 

B. Proximity Measure Definition 

Proximity in Clustering is usually measured by calculating a distance or similarity 

between pairs of patterns [184], [207]. There are various different methods for 

calculating proximity [184], [208], [209], but in this context, the interest is in 

distance measures between points.  

Here, Euclidean distance is introduced, as it is the method used in the algorithms 

developed in this work. 

 

Euclidean Distance   

Also known as Pythagorian distance or Beeline distance, the Euclidean metric 

calculates the “as-the-crow-flies” distance between two points [210], [211]. It is 

probably the most widely-used metric for continuous features, as it provides an 

intuitive way of calculating the proximity between subjects in two-dimensional 

and three-dimensional environments [184]. 

In Cartesian coordinates, if 𝒙 = (𝑥1,, 𝑥2,, … , 𝑥𝑛) and 𝒚 = (𝑦1,, 𝑦2,, … , 𝑦𝑛) are two 

points in the Euclidean n-space, then the Euclidean Distance 𝑑(𝑥, 𝑦) between 𝒙 

and 𝒚 is depicted in Equation 3.1: 
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𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

Equation 3.1 

 

Figure 3.3: Euclidean distance between two points a and b. 

In Clustering, the Euclidean distance is a good metric to be used when the dataset 

to be clustered has “compact”, or “isolated” clusters [184], [212].  

Depicted in Figure 3.3 in the dashed line, are the Euclidean distances between 

different points.  

C. Clustering of data 

The Clustering step can utilise a wide variety of clustering methods which are too 

varied to adequately cover within this thesis [198].  The k-means clustering 

applied in this thesis specifically uses partitional clustering. 

 

In partitional clustering, the dataset is divided into non-overlapping clusters, such 

that each point only belongs to one cluster, as shown in Figure 3.4. 

b

a
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Figure 3.4: Partitional Clustering [199]. 

Among partitional algorithms, k-means clustering is the most widely used and will 

be described later in this chapter in detail [182]. 

 

D. Data Abstraction  

Data abstraction is the process of discovering representative patterns or 

prototypes among the datasets [184]. A common example is the use of centroids 

and medoids as data abstractions: the data belonging to a cluster can be 

represented by the average of all the objects within the cluster (centroid), or the 

most representative object (medoid)  [208].  

Depicted in Figure 3.5 is an example of the centroids of two clusters.  
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Figure 3.5: Centroids of two clusters. The datapoints have been assigned to two clusters (depicted 
in red for cluster 1 and blue for cluster 2) and the centroids of the clusters are marked with an “x” 
symbol. The centroids can be used to represent the corresponding clusters (Image source: MATLAB 
Documentation [213]). 

 

E. Output Evaluation 

Output evaluation, or Cluster validity analysis [184] can be described as the 

assessment of the resulting clusters of the process, based on certain chosen 

criteria. 

Very often a “gold standard” or “ground truth” is used as output evaluation. In the 

case of medical image analysis, clinical feedback from appropriately trained 

experts provides a degree of ground truth for output evaluation. 
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Regarding the specific algorithms created within this PhD work for the automatic 

detection of areas of inflammation (“inflammatory hotspots”), the output was 

evaluated against the output of the manual processing of the same datasets, as 

executed by trained clinicians. 

In the case of binary predictive output, a confusion matrix (or table of confusion) 

as shown in Figure 3.6, can be used for evaluation. In a confusion matrix, the 

predicted outcomes are compared against the actual outcomes, with 4 possible 

combinations: 

• True Positive (TP): correctly predicted event/positive outcome 

• False Positive (FP): incorrectly predicted event/positive outcome  

• True Negative (TN): correctly predicted non-event/negative outcome  

• False Negative (FN): incorrectly predicted non-event/negative outcome 

False Positive (FP) is also known as Type I error and False Negative (FN) is 

known as Type II error.  
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Figure 3.6: A confusion matrix used to evaluate the output of predictive binary clustering. The 
predicted outcome is compared against the true outcome, resulting in 4 combinations: TP, FN, FP, 
and TN. 

With the use of TP, FP, TN, FN, common metrics can be calculated for further 

analysis of the output [214]. The most commonly used metrics are Sensitivity and 

Specificity. In a diagnostic context, sensitivity evaluates the ability of a test (or 

algorithm) to correctly detect the patients who do have a condition as positive to 

this condition [215]. Specificity assesses the ability of an algorithm to correctly 

identify the patients who do not have a condition as negative for the condition.  

• Sensitivity or Recall or True Positive Rate (TPR): 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

• Specificity (SPC) or True Negative Rate: 

𝑆𝑃𝐶 =  
𝑇𝑁

𝑁
=  

𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
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Some other metrics used for output evaluation are: 

 

• Precision or Positive Predictive Value (PPV): 

𝑃𝑃𝑉 =   
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

• Negative Predictive Value (NPV): 

𝑁𝑃𝑉 =   
𝑇𝑁

(𝑇𝑁 + 𝐹𝑁)
 

• Fall-out or False Positive Rate (FPR): 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑁
=  

𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
= 1 − 𝑆𝑃𝐶 

• False Negative Rate (FNR): 

𝐹𝑁𝑅 =  
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)
= 1 − 𝑇𝑃𝑅 

• False Discovery Rate (FDR): 

𝐹𝐷𝑅 =  
𝐹𝑃

(𝑇𝑃 + 𝐹𝑃)
= 1 − 𝑃𝑃𝑉 

where P = (number of) positive events, N = (number of) negative events. 
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3.2.5 K-means Clustering 

I make use of k-means clustering in the work presented in this thesis, as it is a 

standardised clustering methodology [177]. Its robustness to applications in 

medical imaging and the unsupervised nature of the processing made it an 

appealing choice. Methodologies developed in my thesis would not be dependent 

on sourcing large volumes of training data and potentially more easily 

transferable to images from other scanners and databases.  

The k-means algorithm finds a partition in which objects within each cluster are 

as close to each other as possible, and as far from objects in other clusters as 

possible. The choice among the different distance measures available depends on 

the kind of data being handled. K-means uses centroids of clusters as data 

abstraction (see Figure 3.5). 

 

3.2.5.1 Basic Algorithm 

The basic steps of the k-means algorithm are as follows [216]: 

Basic K-means Algorithm 

1. Select K points as initial centroids. 

2. repeat  

3.     Form K clusters by assigning each point to its closest centroid. 

4.     Recompute the centroid of each cluster. 

5. until Centroids do not change. 
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3.2.5.2 Initialisation 

Application of K-means algorithms may give different results on each application, 

as the algorithm selects centres (cluster centroids) at random. This can be 

avoided by performing an initialisation step at the beginning of the algorithm. 

There are many options to choose from, always dependent on the nature of the 

data at hand: the initial centroids can be selected at random, or using a specially 

adapted approach, or popular algorithms such as Kaufman, Forgy, or MacQueen 

[217]–[219].  

In the case of the k-means clustering applied for the hotspot segmentation 

presented in this thesis, the initial centroids were spaced uniformly along the 

grey level axis. 

 

3.2.5.3 Number of clusters 

There are a variety of methods that can be used to decide the number of clusters 

to be used in k-means (see section 3.2.3). For example, a popular technique 

described by Matthew Fawcett in 2015, uses Histogram Analysis: the basic theory 

involves plotting the histogram of the initial data and, after some thresholding 

and de-noising, counting the number of peaks which should give the number of 

clusters to be used [220]. 

The number of clusters in this application was experimentally determined, as will 

be explained in more detail in Chapter 5. 
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3.3 Summary 

 

This chapter provides an overview of the basic theory of clustering, key steps in 

the application of the methodology, and the specific case of using k-means 

clustering in the analysis and segmentation of medical imaging data.  The 

application of k-means clustering to develop an automated detection method of 

“hotspots” of inflammation within the aneurysms of the MA3RS cohort is 

discussed in later chapters. 
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Chapter 4 AAA Measurements: US vs. CT vs. 
MRI 

4.1  Introduction 

In this chapter, the currently available methods used to assess AAA size and 

growth are briefly described, followed by a critical evaluation of the most 

common currently used tools for clinical assessment, maximal AP (anterior to 

posterior) diameter measured with ultrasound.  

Using subsets of the MA3RS clinical trial data, I compared AAA measurements 

obtained with the use of ultrasound (US), computed tomography (CT) and 

magnetic resonance imaging (MRI), in order to determine the level of agreement 

between the different modalities. Using CT as a gold standard, adjustments to the 

currently used 55mm threshold with ultrasound were investigated. I explored 

alternative measurement and analysis options, aiming to assess which method 

would be the most reliable to use for AAA size assessment, as well as generating 

AAA growth calculations, to use as ground truth for the classification of AAAs in 

subsequent analyses in later chapters (Chapter 6 and Chapter 7). 
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4.2 Background 

4.2.1 Use of maximum anteroposterior diameter and 
reproducibility of measurements 

The clinical method currently most commonly used for AAA surveillance involves 

the recording of two anterior-posterior (AP) measurements of the maximum 

aortic diameter (max AP) with US: one measurement is acquired in the transverse 

plane and the other one in the longitudinal plane. The largest value of these two 

measurements is used to describe the “maximum diameter” of the AAA. Within 

current NHS clinical pathways, the use of CT imaging is mainly confined to pre-

operative assessments of AAAs, as detailed in section 2.2.2. 

There is considerable variation in the specific imaging methodologies applied in 

many of the published trials assessing patients with AAAs which have 

contributed to defining current standard clinical care. Different research groups 

have employed locally defined protocols or clinical services or practices, and it is 

not uncommon for the detailed methods of US or CT employed to be unreported 

in publications. In 2012, a review [221] of 56 studies that employed either US or 

CT for AAA size measurement found that only 32 of them (57%) had fully 

reported the methods used. In this review, the four specifications of the 

methodology that were considered essential were: “plane of acquisition”, “axis of 

measurement”, “position of callipers” (whether inner or outer aortic wall was 

used as starting and finishing point of measurement) and “selected diameter” 

(e.g. maximum AP, maximum in either axis, etc.). The great diversity of AAA size 

measurement methodologies combined with the lack of detailed description 

introduces a very serious issue of reproducibility between different trials and 

importantly, problems with setting global threshold values used for clinical 

assessments and interventions between different centres [222].  

Maximum AP diameter (regardless of the imaging modality used to measure it) 

became the common clinically adopted gold standard for AAA size measurement 
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most probably because of its adoption by the UK Small Aneurysms Trial (UKSAT) 

[110], [223], [224] which took place between 1991 and 1998 and was considered 

a landmark trial. However, the selection of the maximum AP diameter as the most 

appropriate method employed in that trial was based on a pilot study with only 

10 patients [225], which measured the reproducibility of AP measurements and 

transverse measurements, finding the AP measurements to be more 

reproducible. 

Previously to this, Nevitt [226] had used “maximal transverse diameter”, either 

anteroposterior or lateral, measured in centimetres, for AAA size assessments,  

in order to keep consistency with older studies. 

More recently, in another milestone trial, namely the Multicentre Aneurysm 

Screening Study (MASS) [227], the maximal transverse diameter of the aorta in 

transverse (axial) plane was measured, followed by the maximal AP in 

longitudinal plane. The largest diameter of these two was reported.  

 

4.2.1.1 AAA Growth 

The rate of AAA growth is one of the criteria considered for surgical review, with 

growth over 1.0 cm per year being the threshold [110]. Additionally, a study on 

growth rates of AAAs in Japanese patients with a sample of 124 patients 

concluded that AAAs growing by at least 3 mm per year should be considered for 

surgery, even if their AAA is smaller than 5.0 cm (their suggested threshold for 

intervention is 5.0 cm rather than the 5.5 cm level used by the NHS in the UK) 

[113], [228]. 

Importantly, many studies [80], [82], [236], [228]–[235] use growth as an 

outcome in the absence of rupture events, but measure it with different imaging 

modalities and protocols. 
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It is therefore important to establish the bias between different measurement 

methods in calculating AAA growth.  

 

4.2.1.2 Agreement between US, CT and MRI 

A number of studies have assessed the levels of agreement in AAA measurements 

between US and CT [128], [225], [237]–[242], with 7 out of 8 demonstrating that 

US underestimates the aortic diameter by mean differences of 0.1 to 9.4 mm. Only 

one study found the US to overestimate the diameter size compared with CT 

[225]; this was however based on a sample of only 10 subjects, which was the 

smallest sample among the 8 studies. 

A more recent study [241] validated the accuracy of CT measurement of AAAs by 

scanning a silicone AAA replica phantom of known size and finding no significant 

difference between the real and the CT-acquired measurements. It then 

proceeded to identify the bias between CT and US measurements of AAA 

diameters of 123 patients and found significant differences between the two 

modalities, with US underestimating the aortic diameter by a mean difference of 

2.1 (±3.9) mm (mean difference ± 1.96 SD). Subgroup analysis revealed a greater 

mean difference of 3.9 (±3.5) mm for AAAs of size 5.0 to 5.4 cm, compared with 

AAAs of size ≥5.5 cm. With the threshold for surgical management in the UK at 

5.5 cm [113], this bias would cause 31% of that study cohort to be misclassified 

when screened with US. 

More recently in 2014, another study [242] which looked into the reproducibility 

of US measurements for AAA Screening found that, compared with CT, US 

consistently under-estimated the size of the aorta, with mean differences ranging 

from 2 mm to 5 mm, depending on the specific protocols used. This group 

therefore suggested that this underestimation could be reducing the sensitivity 

of the tests used by the NHS AAA Screening Programme (NAAASP) [113].  
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In the literature, a few studies have explored the difference between CT and MRI 

measurements in various tissue types. For example, in a 2012 study [136], 

measurements of visceral adipose tissue in humans obtained with CT and MRI 

were compared: a mean bias of -2.9% as a portion of total abdominal area was 

found in visceral adipose tissue and +0.4% for subcutaneous adipose tissue. A 

comparison between MRI and CT [243] imaging of the thoracic aorta concluded 

that MRI may satisfactorily replace CT for aortic measurements. 

A study more specific to AAAs [244] that compared aortoiliac arterial 

measurements before endovascular abdominal aortic aneurysm repair (EVAR), 

demonstrated that the inter-modality agreement between contrast-enhanced CT 

and unenhanced MRI was good-to-excellent and adequately high compared to 

inter-observer and intra-observer intra-class correlation coefficients. The 

authors of the study concluded that even though contrast-enhanced CT continues 

to be the gold standard for pre-EVAR assessment, it can be successfully replaced 

by unenhanced MRI in the presence of contraindications for CT. 

 

4.2.1.3 Use of maximum anteroposterior diameter 

As will be shown in the Results section (4.5.3), the use of maximum AP diameter 

(max AP) might be a very restrictive method, as it does not take the shape of the 

AAA into consideration, which may be non-circular in cross-section. This can be 

seen in the case of the axial MRI AAA slice in Figure 4.1, where the length of the 

max AP diameter (55.2mm) is smaller by 11.8 mm than the maximum general 

(regardless of direction) diameter (67mm). 
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Figure 4.1: Maximum AP Diameter vs. Maximum General Diameter.  Segmented T2-weighted 
cross-sectional axial MRI slice of an AAA which appears non-cylindrical. The blue area represents 
the thrombus and aortic wall combined and the lumen area has been left uncovered. In yellow, the 
max AP measurement is measured as 55.2mm. In red, the maximum diameter of the AAA shape 
(regardless of direction) is 67mm, and therefore 11.8 mm larger than the max AP. 

AAAs appear in a variety of shapes, and measurements based solely on the AP 

axis in the transverse plane cannot differentiate between AAAs of significantly 

different total sizes, as shown in the example cases in Figure 4.2, where, despite 

the almost identical values of AP diameters of the two slices as measured with 

MRI (0.1 mm difference between them), the total area of the slice (as shown in 

blue) on A is smaller than the total area of the slice on B by 434.1 mm2, as well as 

the lateral diameter of A being obviously smaller than that of B. 
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Figure 4.2: Two different AAAs with equal max AP diameters, but different max Areas (max 
slice Area per AAA). T2-weighted MRI scans, with the blue superimposed area representing 
thrombus and aortic wall combined and the lumen area in the centre uncovered. A: MRI max AP 
diam = 55.3mm, max Area = 2517.5mm2. B: MRI max AP diam = 55.2mm, max Area = 2951.6mm2. 
Difference between max AP diameters = 0.1 mm; difference between max Areas = 434.1 mm2 

In a similar manner, growth calculated as the change in maximal AP diameter 

does not necessarily reflect the growth of the entire AAA: there is no “guarantee” 

that growth would happen proportionately throughout the whole AAA mass. By 

using the change in maximal AP diameter to estimate growth, cases of AAAs 

growing significantly in directions other than AP may incorrectly be classified as 

stable. 
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4.3 Aims 

For several assessments carried out in this thesis, I needed max AP diameter 

measurements corresponding varying time points in order to calculate max AP 

diameter growth and to validate whether AAA diameter is a predictor of AAA 

growth (see chapter 6). Such measurements were already available as manually-

derived US measurements. However, as the literature indicated that US 

consistently underestimated AAA diameter size compared to CT, while MRI 

highly agreed with CT measurements, I decided to perform a comparison 

between the US and MRI measurements in a MA3RS sub-sample. I used CT as 

point of reference, since it is the currently accepted gold standard for AAA 

measurement. 

The main problem with extracting max AP diameter measurements from MRI or 

CT is that both MRI and CT AAA scans consist of a very large number of slices, 

which makes manual calculation of diameter size time-consuming, and with high 

user-dependent variability. For this reason, it was deemed necessary to design an 

algorithm which automatically calculates max AP of any previously segmented 

dataset and to validate it against manual measurements. All MA3RS MRI scans had 

already been manually segmented by suitably experienced observers, so the 

algorithm could be applied to these segmentations.  The MA3RS CT had not yet 

been segmented at the time of writing this thesis. 

Further to comparing measurements, I was interested in the effect that the use of 

max AP with US, MRI or CT would have on the calculation of growth and on the 

classification of patient risk. Finally, I aimed to explore alternative methods of 

AAA size and growth calculation and compare them against max AP 

measurements. 
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4.4 Methods 

4.4.1 Statistical Methods 

GraphPad Prism version 6 (GraphPad Software, Inc., CA.) and SPSS version 22.0 

(IBM Corp.) were used for the statistical analysis in this chapter. 

Bland-Altman plots were used to compare different clinical measurement 

methods, e.g. differences between AAA diameter measurements as measured 

with MRI, CT and US. Correlation coefficients and regression were also used. 

Bland-Altman plots with unit differences and percentage differences were both 

included in most cases. 

Pearson correlation was used, with correlation coefficient 𝑅 ranging from -1 to +1 

(with values close to ±1 suggesting perfect correlation and values approaching 0 

suggesting no correlation).  

The R squared (𝑅2) coefficient of determination was also reported for better 

interpretation of the 𝑅 value. 

In graphs where it was applicable, the identity line 𝑥 = 𝑦 was plotted with a 

dashed line to further illustrate the agreement levels of the values plotted (with 

higher agreement levels being closer to the identity line). 

Linear regression was applied when a linear relationship was suggested by the 

scatterplots of the data. The line of best-fit was plotted with a black line and the 

95% confidence intervals were represented by error bars which formed a 

“confidence band”, depicted in light blue. 

4.4.2 Ultrasound (US) Measurements 

For the MA3RS study (described in section 2.5) carried out at the Royal Infirmary 

of Edinburgh (RIE), standard NHS Lothian protocols were followed.  A 3.5 MHz 
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linear array transducer was placed on the abdomen and an anterior-posterior 

(AP) measurement of the maximum aortic diameter was reported in centimetres 

to one decimal place. The measured diameter was taken between the outside 

edges of the aortic wall, through the lumen. It should be noted that for some of 

the subjects, there was also a recording of the lateral aortic diameter size as 

measured at the same level/transverse plane where the maximum AP diameter 

had been recorded (as seen in Figure 4.3). The lateral measurements however 

were not incorporated into the MA3RS study, as there was not an adequate 

number of measurements available for reliable statistical processing. 

It was useful for the work presented in this thesis to calculate the maximum AP 

diameter with MRI using a similar approach to the one manually employed by the 

sonographers with US scanning so that direct comparison between the two 

modalities could be made.  

To achieve this, close inspection of the US scanning process was necessary. After 

“shadowing” the sonographer appointed on the MA3RS project during several 

aneurysm scanning sessions, I created a schematic approximating the various 

positions and angles that the US transducer might take during an aneurysm 

examination. 

Briefly described, the sonographer scans the AAA axially throughout the length 

of the abdominal aorta to gain an ‘insight’ of the aneurysm shape and to locate 

the widest part of the aorta. After visually identifying the broadest area in the 

antero-posterior axis on the screen, they record the corresponding maximum AP 

diameter measurement. The diameters are manually measured on the ultrasound 

monitor with callipers provided by the software supplied on the various US units 

used through the lifetime of the study, as shown on Figure 4.3, where the callipers 

have been placed to measure the maximum AP (A) diameter and the 

corresponding maximum lateral (B) diameter. Sometimes, several 

measurements are taken to accurately determine the largest one as identified by 

the sonographer. It should be noted that this process of scanning the entire AAA 
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throughout the length of the abdominal aorta to determine the level at which the 

maximum AP measure is made, is employed during each scanning session for 

each patient, without reference to any previous scans for that individual.  This 

means that the sonographer may not be calculating the maximum AP 

measurement at the same head-foot position of the aorta between subsequent 

scans.  Therefore, “growth” of the aneurysm is clinically defined as the change in 

the maximum AP of the aneurysm, regardless of the exact location in the 

aneurysm that the maximum AP diameter appears. 

 

 

Figure 4.3: US scan of an AAA. This is a typical transabdominal transverse US scan of the aorta of 
a MA3RS trial patient, concentrating on the aneurysm mass. Maximum anteroposterior (A) and 
lateral (B) diameters have been marked and measured (AP diameter size=4.90 cm, lateral diameter 
size=5.02 cm). 

Importantly, the sonographer who guided me through the US scanning process 

reported that in cases of doubt over the exact position of the aortic wall due to 
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noisy scanning, they would select the largest of the possible diameter 

measurements to record. 

According to NHS guidelines [245] the transducer must be held at a 90° angle 

against the skin. In practice however, issues of reproducibility can be introduced, 

as the position of the US transducer highly depends on the specific size and shape 

of the body of the subject being scanned. In the case of AAA screening, factors 

such as the size and shape of the abdominal area or the presence of gas within the 

abdominal area can influence the position of the transducer since it is manually 

operated. 

The inter-observer coefficient of variation of 3.5% for AAA diameter 

measurements has previously been reported [124]. 

It would be impossible to calculate all variations of the transducer position, but 

generally they would be expected to consist of a combination of translation 

(Figure 4.4 A) in two axes (the area created between axis x and axis y – the 

transducer always touches the skin, so no translation in the z axis is present) and 

rotation (Figure 4.4 B) (in all directions, “roll, pitch and yaw”, which would 

appear like “tilting”), or a combination of both (Figure 4.4 C).  
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Figure 4.4: Axial orientation schematic with approximations of different angles/positions at 
which the ultrasonic transducer can be placed on the patient’s abdomen during AAA 
measurement. During the measurement, the transducer can be moved in the plane created by x and 
y axes (A), or rotated towards different directions (B), or a combination of both (C).  
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4.4.3 Magnetic Resonance Imaging (MRI) Measurements 

4.4.3.1 Maximum AP Diameter 

In order to obtain maximum AP diameter measurements from MRI scans, 

comparable to those performed with US by sonographers, I created an algorithm 

that imitates the movements of the transducer on the patient’s abdomen, to 

account for the most likely variations in position and angle. This algorithm was 

coded in MATLAB to create a tool for efficient and automatic processing in batch 

mode. 

The algorithm uses previously segmented datasets, specifically it only needs the 

segmentation map which distinguishes between the AAA area and its 

background. Therefore, it can be applied on any similar type of segmented 

dataset, regardless of imaging modality. 

Within the algorithm, I chose to separate the AAA into 3 equal rectangles and to 

confine the measurements within the central one on each slice, as shown in 

Figure 4.5 B. The transducer would not be expected to deviate much outside the 

central part of the AAA, so a smaller central segment could have been selected (by 

separating into 5, 7 or more rectangles), but I selected the most conservative case 

of 3, to account for large deviations. Within the selected central section, all points 

belonging to the outer perimeter of the wall of the aneurysm are connected to 

each other as depicted Figure 4.5 C, forming all possible diameters that could 

potentially be drawn by the sonographers on the US scans. The largest among 

these is selected as the maximum AP diameter of the slice.  
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Figure 4.5: Max AP diameter Calculation method for MRI. The AAA area (A) is divided into 3 
equal sections (B), and the max AP diameter calculations are applied only on the middle section. All 
the points of the perimeter or the AAA belonging to the selected section are then connected to each 
other in all possible combinations of “diameters” (C). (T2-weighted MRI scan, blue area represents 
thrombus and wall, while lumen has been left uncovered (black)). 

This method of creating all possible diameters from all points available works 

well in “regular” or “cylindrical” aneurysms AAAs (with the perimeter of each 

slice being circular), similar to the one depicted in Figure 4.6 B. In this figure, the 

red line corresponds to the “true vertical” AP diameter (in reference to the 

orientation that we label the subject position in the scanner bore). The yellow line 

corresponds to an extreme case of the largest diagonal diameter that can arise 

from the connection of all available points.  This type of diameter shown in yellow 

must be excluded from the maximum AP diameter selection, as they are too 

oblique to qualify as being on the AP axis and they would be unlikely to be 
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selected by a sonographer as AP diameters, based on the feedback I obtained 

from the MA3RS sonographer I shadowed.  

In Figure 4.6, three cases of aneurysm shapes (slices) are presented to further 

explore if these diagonal lines can distort the max AP measurements. It seems 

that in most common cases of AAAs seen in Figure 4.6 A and Figure 4.6 B, there 

are no issues with these, as the vertical line is larger or equal to the diagonal line. 

In the less-common (at least within the MA3RS dataset) case of a slice with a shape 

similar to the one in Figure 4.6 C however, the diagonal line is much larger than 

the vertical one and if not excluded, it will be chosen as the max AP of the slice. 

This is avoided in my algorithm, through a simple comparison: if any candidate 

maximum diameter is found to be larger than the vertical line, it is excluded. This 

process is further illustrated in the flowchart in Figure 4.7. 

 

 

Figure 4.6: Different forms the aorta could potentially take (at the level of the AAA). The shape 
of the aorta is often not perfectly cylindrical. Approximations of 3 representative shapes can be seen 
here in cross-sectional cuts at the level of the AAA, with A and C presenting elliptical shapes and B a 
circular shape. Within the middle third of the AAA depicted within the blue rectangular area, the red 
line corresponds to the vertical diameter and the yellow line corresponds to the largest diagonal 
diameter, considered as the most extreme case of the automatically determined diameters. In the 
algorithm, cases A and B do not cause problems, as the vertical diameter is larger or equal to the 
diagonal diameter and will be the one selected as the maximum AP diameter. In case C, the diagonal 
diameter is too oblique to be considered an AP diameter; to avoid selection of such extreme 
maximum diameters in the algorithm, any diagonal diameters larger than the vertical diameter are 
automatically excluded. 

Vertical < DiagonalVertical > Diagonal Vertical ≈ DiagonalA B C
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Figure 4.7: Flowchart of algorithm (summarised) for automatic maximum AP diameter 
calculation on MRI data per slice. The algorithm was programmed in MATLAB. First, the user is 
asked to provide the location of the folder where the ROIs of any number of AAAs are stored. It then 
automatically iterates for every AAA and for every slice per AAA. The iteration for one such slice is 
depicted in the figure. 1) The coordinates of the pixel locations of all ROIs (wall, thrombus, and 
lumen) per slice are read into the program. 2) ROIs are cleaned by filling in any accidentally omitted 
pixels within the ROIs and deleting any drawn areas outside the AAA using MATLAB’s functions 
bwmorph and bwconncomp. All ROIs (wall, thrombus and lumen) per slice are combined in one ROI 
corresponding to the whole AAA. 3) The perimeter of the ROI is found with MATLAB’s bwperim 
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function 4) Among the perimeter points selected, the ones belonging to the middle third of the total 
ROI are selected. 5) The distances between all the selected points are calculated using the function 
‘pdist’. 6) Among these distances, the largest one is named ‘max_total’. 7) The largest vertical 
distance within the ROI is calculated by subtracting the smallest row (minRow) of the ROI matrix 
from the largest row (maxRow) and named ‘max_vertical’. 8) A comparison between max_vertical 
diameter and max_total diameter is made. 9) If the max_vertical diameter is larger than the 
max_total diameter, the max_vertical is selected as max AP diameter. 10) If the max_vertical 
diameter is smaller or equal to the max_total diameter, the max_total is selected as max AP diameter. 

In order to evaluate the method for automatically calculating the maximum AP 

diameter of AAAs from MRI scans, this algorithm was applied to a randomly 

selected subset of the MA3RS cohort. MRI data (ROIs defined on T2-weighted data 

by expert observers) corresponding to 20 patients were used, with two 

independent subsets available for each patient: one acquired from an MRI scan at 

baseline and one from an MRI scan a year later. Therefore, a total of 40 maximum 

AP measurements were automatically produced by my algorithm. 

As a reference, I also made the same maximum AP diameter measurements per 

slice for each patient manually, using Mayo Analyze (version 12, AnalyzeDirect, 

Overland Park, KS, USA). These measurements were also checked by two expert 

observers in our team. One maximum diameter measurement per slice was 

collected and consequently the largest of all AP diameters per AAA was saved, as 

depicted in Figure 4.8. This resulted in a total of 40 maximum AAA AP 

measurements, corresponding to the automatically calculated ones. The MRI 

manual measurement process closely imitated the US diameter measurement 

methodology described in 4.4.2. 
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Figure 4.8: Manual calculation of maximum AP diameter in MRI axial slices of AAA. Example 
of the measurements applied on consecutive slices (slices 12-23) of the AAA of one MA3RS patient. 
The ROIs have been superimposed on T2-weighted scans, with red corresponding to lumen, green for 
thrombus and yellow for the aortic wall. The AP diameter of each slice is marked with a dashed black 
line (AB), revealing the largest (max AP) diameter of the AAA to be in slice 18, with AB18=52.1mm. 
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4.4.3.1.1 Evaluation of automatic measurement of max AP Diameter in MRI 
(MRI auto vs. MRI manual) 

The evaluation of the automatic MRI max AP measurement was required so that 

if successful it could be used to automatically calculate max AP aortic diameters 

to compare against US and CT. 

 

Scatterplots and the Bland-Altman method were used to compare the 40 

maximum AP measurements calculated either manually or automatically (Figure 

4.9). A strong linear correlation was found, with correlation coefficient R=0.996 

and coefficient of determination R2=0.993, p<0.0001. The bias of differences was 

only 1.4 mm with 95% Limits of Agreement from -2.9 mm to 5.7 mm. 

 

These results verified that the automatic calculation of the maximum AP diameter 

in the MRI data was a very successful reproduction of the manual selection 

employed in the MRI data, and could therefore be used in the following 

experiments as an adequate replacement for manual selection. This saved 

processing time and made processing the MRI data more robust and 

reproducible. 

 

 

Figure 4.9: Comparison of Manual vs. Auto Measurements of 1-year Change in max AP 
Diameter (mm).  Auto MRI vs. Manual MRI measurements of max AP diameter (mm).      
A: Bland Altman plot of Difference (MRI auto diameter – MRI manual diameter) (mm) versus 
Average (average of MRI auto diameter and MRI manual diameter) (mm) for n=40 measurements 
of maximum AP diameter, corresponding to 2 measurements per patient for 20 patients, with 
bias=1.4mm, SD of bias=2.20 mm; 95% Limits of Agreement from -2.92 mm to 5.71mm.     
B: Pearson correlation for n=40 measurements of maximum AP diameter, R=0.996; identity (dashed) 
line y=x. Blue lines correspond to 95% C.I. of linear regression; R2 =0.993, equation: Y = 0.9672*X + 
0.9803, p<0.0001. 
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For the same datasets, the change in max AP diameter could be calculated, as 

𝐶ℎ𝑎𝑛𝑔𝑒 (Equation 4.1), or 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 (Equation 4.2). 

𝐶ℎ𝑎𝑛𝑔𝑒 = (𝑚𝑎𝑥𝐴𝑃𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑌𝑒𝑎𝑟1) − (𝑚𝑎𝑥𝐴𝑃𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 

Equation 4.1 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =  
(𝑚𝑎𝑥𝐴𝑃𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑌𝑒𝑎𝑟1) − (𝑚𝑎𝑥𝐴𝑃𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

(𝑚𝑎𝑥𝐴𝑃𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
∗ 100% 

Equation 4.2 

The 1-year change in max AP (mm) as measured manually was compared against 

the automatically calculated change to assess the level of agreement between the 

two methods. As demonstrated in Figure 4.10, a strong correlation was observed 

between the manually processed and the automatically processed changes, with 

correlation coefficient R=0.95 and coefficient of determination R2=0.89 

(p<0.0001) for the change in mm (Figure 4.10 A) and R=0.91 and R2=0.83 for 
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percent change (Figure 4.10 B). Additionally, the line of regression was very close 

to identity (x=y) in both cases, demonstrating a high level of agreement. 

 

 

Figure 4.10: Comparison of Manual vs. Auto Measurements of 1-year Change in max AP 
Diameter (mm).                  
A: Pearson correlation for 1-year Change in manual MRI diameter vs. Auto MRI diameter, n=20 
measurements of maximum AP diameter, r=0.95. Blue lines correspond to 95% C.I. of linear 
regression, equation: Y = 0.9289*X - 0.01192, R2=0.89, p<0.0001, identity (dashed) line y=x.             
B: Pearson correlation for 1-year %Change in manual MRI diameter vs. Auto MRI diameter, n=20 
measurements of maximum AP diameter, R=0.91. Blue lines correspond to 95% C.I. of linear 
regression, equation: Y = 0.9256*X + 0.06034, R2=0.83, p<0.0001, identity (dashed) line y=x. 
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4.4.3.2.1 Maximum General Diameter of AAA (with MRI) 

The maximum general diameter refers to the largest diameter per aneurysm, as 

measured on MRI T2-weighted data, regardless of diameter direction.  

Briefly, for each slice the algorithm projects lines starting from the centroid of the 

shape (Figure 4.11 A) and stopping when they meet the outer perimeter, while 

rotating from a 0° to 180° degrees. This way, 180 lines are created, connecting 

the centroid with the points on the perimeter of one side of the shape (continuous 

lines in Figure 4.11 B). These lines comprise one half of the diameters only. To 

define the second half, the lines are then extended from the centroid towards the 

other side of the shape until they meet points of the perimeter on the other side 

(dashed lines in Figure 4.11 B). 

The sizes of all the resulting diameters per slice are calculated and the maximum 

and minimum diameters (depicted with green and red lines in Figure 4.11 C 

respectively) of each slice is saved. 
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Figure 4.11: Measurement of Min and Max Diameters. First, the centroid of the shape is found as 
seen in (A), then the diameters are created as lines starting from 0° to 180° and passing through the 
centroid, as seen on (B). After all diameters are created(C), the minimum diameter (green line), in 
this case measuring 41.6mm and the maximum diameter (red line), in this case measuring 53mm 
per slice are selected. 

4.4.3.2.2 Maximum Area of AAA (with MRI) 

The total number of 2D pixels within a region gives an Area metric, measured in 

pixels (Equation 4.3) and applied to MRI T2-weighted data.  

𝐴𝑟𝑒𝑎(𝑝𝑖𝑥𝑒𝑙𝑠) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 

Equation 4.3 

A B

C
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The size per pixel (in mm) can then be used to calculate the Area metric in 

millimetres (mm) (Equation 4.4): 

𝑨𝒓𝒆𝒂(𝒎𝒎) = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒊𝒙𝒆𝒍𝒔 ∗ 𝑷𝒊𝒙𝒆𝒍 𝑺𝒊𝒛𝒆(𝒎𝒎) 

Equation 4.4 

4.4.3.2.3 Top5 Area Average of AAA (with MRI) 

This method calculates the cross-sectional area for each slice in the MRI T2-

weighted data of an AAA and then selects the 5 largest areas per AAA (Figure 

4.12). This way, a larger area of the AAA is taken into consideration in the 

measurements, thus diminishing the effects of any possible human errors in the 

manual ROI drawing. 

 

Figure 4.12: Top 5 area average. The slices with the 5 largest areas of an AAA (total areas, 
including wall, thrombus and lumen) are selected and their average is used. Here, area(A)= 
1211mm2, area(B)=1278mm2, area(C)= 1290mm2, area(D)= 1268mm2 and area(E)= 1250mm2. 
Thus, the average area value of 1260mm2 is used. 

4.4.3.2.4 Volume of AAA (with MRI) 

The Top5 Area Average of AAA method described above is used as an alternative 

to total AAA Volume measurements, which would require all slices of each AAA 

to be included in the processing. The underlying issue with including all MRI 

slices when comparing AAAs is the high dependence of the final result on the 

exact number of slices included in each AAA: the exclusion or addition of just a 

Α

D E

B C
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single slice due to low quality (e.g. breathing artefact, see 2.2.3 Introduction) or 

due to the variation in the exact level of the aorta that is selected as the upper and 

lower boundaries of the AAA, can alter the volume measurement greatly and thus 

hinder accurate size reporting in clinical settings and conclusive comparison 

between aneurysms.  

 

4.4.4 Computed Tomography (CT) 

It was important to include CT measurements in the comparison between US and 

MRI, as CT is considered to be the gold standard in the evaluation of AAA size 

[246]. A subset of 15 patients among the MA3RS cohort had two CT scans 

performed, the first one at the beginning of the study (baseline scan) and the 

second one 2 years later.   

At the time of my work on this thesis, the CT scans had not been annotated with 

ROIs by a clinical expert, hence the maximum AP diameters could not be 

extracted from them automatically (the automatic algorithm utilises segmented 

data only at this stage). Manual diameter measurements were conducted instead. 

The methods used were identical to the ones used for manual measurements of 

maximum AP diameters on MRI scans described in section 4.4.3.1. For each AAA, 

the maximum diameter for each slice was measured on axial CT slices and the 

largest selected as the maximum AP diameter of the AAA. The measurements 

were carried out twice and the average values of each two instances were 

accepted. 
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Figure 4.13: Manual calculation of maximum AP diameter in CT axial slices of AAA. Example 
of the measurements applied on 5 slices (slices 248, 252, 254, 257, 260)) of the AAA of one MA3RS 
patient. In the absence of pre-defined ROIs for these scans, the AP diameter has been drawn directly 
on the CT scans. The AP diameter of each slice is marked with a dashed line, and the largest (max 
AP) diameter will be detected after all available slices have been measured. 

  

slice 248

B

slice 252

slice 260slice 257

slice 254
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4.5 Results 

4.5.1 Measurement of AAA size: max AP diameter 

4.5.1.1 Maximum AP Diameter: Comparison between US, CT and MRI 

In order to perform a direct comparison of US, CT and MRI diameter 

measurements, a subset of 15 patients from the MA3RS trial, for which I had 

access to datasets acquired with all modalities at two timepoints (baseline and 2-

year follow-up) for each patient was selected.  

As explained in the Methods (4.4.3.1.1 and 4.4.4), the maximum AP diameter 

measurements in the CT data were manually calculated by an expert observer. In 

the MRI datasets, the maximum AP diameter was measured automatically using 

the previously validated technique presented in 4.4.3.1. 

In Figure 4.14, all 30 max AP diameter measurements available (2 per patient, for 

15 patients) from US, CT and MRI are plotted for comparison. The measurements 

follow similar trends, but do not agree on exact values. The graph suggests that 

the diameters measured with US have systematically lower values, while MRI and 

CT are numerically closer to each other. 
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Figure 4.14: Maximum AP diameter (mm): US vs. CT vs. MRI. N=30 measurements of maximum 
AP diameter in mm, corresponding to 2 measurements per patient (one at baseline and one 2 years 
later) for 15 patients. US Diameter measurements for US were manual (sonographer), for CT manual 
(trained observer) and for MRI automatically calculated. 

This is further demonstrated in Figure 4.15 with the comparison of the mean 

values (±SEM) of max AP diameter for each modality: The mean max AP diameter 

with US was 48.3±0.9 mm, with CT it was 54.3±1.1 mm and with MRI it was 

53.3±1.2 mm. A repeated measures one-way ANOVA, (F= 86.33, DF=2, p< 0.0001) 

followed by Tukey’s multiple comparisons test showed that the difference 

between the mean US values and the mean CT values was highly significant (p < 

0.0001), as well as the difference between US values and mean MRI values (p < 

0.0001). The difference between the mean CT values and the mean MRI values 

was not significant (p > 0.05). 
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Figure 4.15: Comparison of maximum AP diameter measurements: US vs. CT vs. MRI. Data 
show the mean ± SEM, n=30, (15 patients, with 2 measurements for each); US: mean=48.3 mm, 
SD=4.9mm, SEM=0.9mm;  CT: mean=54.3mm, SD=6.2mm, SEM=1.1mm; MRI: mean=53.3mm, 
SD=6.5mm, SEM=1.2mm; Repeated measures one-way ANOVA, F= 86.33, DF=2, p< 0.0001 followed 
by Tukey’s multiple comparisons test; ns=not significant; *p<0.05, **p<0.01, ***p<0.001. 

In a more detailed analysis, the three methods were compared against each other 

in pairs (Figure 4.16), using Bland-Altman plots and with scatterplots depicting 

correlation, linear regression and the identity line (x=y) for reference (if the 

measurements were in agreement, they should not only correlate, but also be in 

very close proximity to the identity line). 
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Figure 4.16: Bland-Altman plots and Scatterplots with Correlation and Linear Regression for 
comparison between US, CT and MRI max AP diameter measurements.                    A: 
CT vs. US: Bland-Altman plot: bias=6.0 mm, SD of bias=2.9 mm. 95% Limits of Agreement from 0.3 
mm to 11.8 mm, n=30 measurements (2 measurements per patient) for 15 patients.         
B: CT vs. US: Pearson Correlation with correlation coefficient R=0.8868, coefficient of determination 
R2=0.7865, p<0.0001, n=30 measurements (2 measurements per patient) for 15 patients, identity 
(dashed) line y=x, blue lines correspond to 95% C.I. of linear regression.     C: CT vs. MRI: 
Bland-Altman plot: bias=1.1mm, SD of bias=1.6mm. 95% Limits of Agreement from -2.1mm to 
4.2mm, n=30 measurements (2 measurements per patient) for 15 patients.         D: CT vs. 
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MRI: Pearson Correlation with correlation coefficient R=0.9685, coefficient of determination 
R2=0.9381, p<0.0001, n=30 measurements (2 measurements per patient) for 15 patients, identity 
(dashed) line y=x, blue lines correspond to 95% C.I. of linear regression.      E: US vs. MRI: 
Bland-Altman plot: bias=5.0mm, SD of bias=3.2mm. 95% Limits of Agreement from -1.3mm to 
11.3mm, n=30 measurements (2 measurements per patient) for 15 patients          F: US vs. 
MRI: Pearson Correlation with correlation coefficient R=0.8740, coefficient of determination 
R2=0.7639, p<0.0001, n=30 measurements (2 measurements per patient) for 15 patients, identity 
(dashed) line y=x, blue lines correspond to 95% C.I. of linear regression.   

As shown in Figure 4.16 D, the CT and MRI values correlated very strongly 

(R=0.97, R2=0.94, p<0.0001) and were very close to the identity line (x=y), 

presenting good agreement levels. The correlation between US and CT was less 

strong but still significant (R=0.89, R2=0.77, p<0.0001) as seen in Figure 4.16 B, 

but more importantly the level of agreement appeared considerably lower than 

that of CT-MRI agreement, as indicated by the larger distance between the 

datapoints in the scatterplot and the identity line. Similarly, for the association 

between US and MRI in Figure 4.16 F, there were similar levels of correlation as 

those of US-CT (R=0.87, R2=0.76, p<0.0001), and a considerable distance between 

the datapoints and the identity line suggested a low agreement level between the 

two modalities. 

The exact levels of disagreement are presented in the Bland-Altman plot analysis. 

The bias (average of differences) between MRI and CT as shown in Figure 4.16 A 

is only 1.1 mm, while the bias observed between US and CT demonstrated in 

Figure 4.16 C is 6.0 mm. The bias between US and MRI (Figure 4.16 E) is slightly 

smaller, with a value of 5.0 mm. 

 

4.5.2 Effects of use of maximum anteroposterior diameter in 
classifying patient risk: Comparison between 
ultrasound, CT and MRI 

As discussed previously, the current threshold for patients to be considered for 

surgery is 5.5 cm and it is commonly measured with US.  In Figure 4.17 the group 

of 30 AAAs was classified as either “small” AAAs (AAAs <5.5 cm) or “large” AAAs 
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(AAAs ≥ 5.5 cm), based on US, CT, or MRI max AP diameter measurements. When 

classified based on the US values, 28 of the 30 AAAs were categorised as small 

and only 2 as large. The CT measurements grouped 14 AAAs as small and 16 as 

large, while MRI classified 15 AAAs as small and 15 as large. This way of 

presenting the data suggests discordance between the US and the other two 

modalities, in the number of patients that would be described as exhibiting a 

“large” AAA according to this criterion; it does not however examine the 

agreement on a case-by-case level (i.e. which specific AAAs are classified as large 

or small per modality). 

 

Figure 4.17: Classifying patients with small or large AAAs with US vs. CT vs. MRI. 
Measurements conducted with US classified 28 out of 30 AAAs (93.33 %) as small (max AP diameter 
< 55mm), and 2 out of 30 (6.67%) as large (max AP diameter ≥55mm). For the same patients, 
measurements with CT classified 14 out of 30 (46.67%) as small (max AP diameter < 55mm), and 16 
out of 30 (53.33%) as large (max AP diameter ≥55mm). MRI classified 15 out of 30 (50%) as small 
(max AP diameter < 55mm), and 15 out of 30 (50%) as large (max AP diameter ≥55mm). 

Since CT is considered the gold standard for pre-operative AAA assessment, it 

was selected here to be used as the ground truth against which the accuracy of 

the US and the MRI measurements in classifying AAAs could be verified. In this 

way, the cross-tabulation (confusion matrix) of the US classification outcome 

against the CT classification outcome identified the degree of agreement as 

shown in Table 4.1. When compared with CT classification, the US classification 

resulted in 2 true positives (TN), 0 false positives (FP), 14 false negatives (FN) 
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and 14 true negatives (TN), thus achieving 100% specificity, but only 12.5% 

sensitivity. 

 

Table 4.1: Confusion matrix to evaluate Outcome of AAA classification based on US 
measurements of max AP diameter against CT classification Outcome. TP=True Positive, 
FP=False Positive, FN= False Negative, TN=True Negative; Sensitivity=TP/(TP+FN); 
Specificity=TN/(TN+FP).  

CT Outcome                      . 

U
S

 O
u

tc
o

m
e

  Positive Negative 

Positive TP = 2 FP = 0 

Negative FN = 14 TN = 14 

Sensitivity 12.5% 

Specificity 100% 
 

The confusion matrix of the MRI classification outcome against the CT 

classification outcome is depicted in Table 4.2, with 14 true positives (TP), 1 false 

positive (FP), 2 false negatives (FN) and 13 true negatives (TN), hence resulting 

in 92.9% specificity and 87.5% sensitivity. 

 

Table 4.2: Confusion matrix to evaluate Outcome of AAA classification based on MRI 
measurements of max AP diameter against CT classification Outcome. TP=True Positive, 
FP=False Positive, FN= False Negative, TN=True Negative; Sensitivity=TP/(TP+FN); 
Specificity=TN/(TN+FP).  

CT Outcome                      . 

M
R

I 
O

u
tc

o
m

e
  Positive Negative 

Positive TP = 14 FP = 1 

Negative FN = 2 TN = 13 

Sensitivity 87.5% 

Specificity 92.9% 
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There is a notable difference of 75% between the sensitivity results of the US and 

the MRI when each is compared to the gold standard of CT, while the difference 

in specificity is considerably less pronounced, at 7.1%. This discrepancy in 

sensitivity is further illustrated in the Receiver Operating Characteristic (ROC) 

curve analysis in Figure 4.18, where it becomes obvious that, assuming the CT as 

the gold standard, and with the use of the 55-mm threshold, US performs very 

poorly, as demonstrated by the low and statistically insignificant Area Under the 

ROC Curve (AUC) of AUC=0.56 (p=0.561). 

 

Figure 4.18: Receiver operating characteristic (ROC) for the US and MRI classifications of 
AAAs, assuming the CT classification as the gold standard. The 55 mm threshold was used in 
the classification of all modalities for n=30 AAAs. The area under the ROC curve (AUC) for the US 
classification was AUC= 0.56, not significant (p=0.561). For the MRI classification, AUC=0.90 
(p<0.0001). 
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Since the results of this work indicated that US largely underestimated the size 

of AAAs when compared with CT (Figure 4.14, Figure 4.15), a logical next step 

was to determine whether an adjustment of the current 55 mm threshold would 

improve the agreement between the US and CT classifications in this dataset 

and allow measurements with the different modalities to be comparable. ROC 

curve analysis was performed (Figure 4.19), this time including the raw US max 

AP diameter values against the CT classification. The coordinates of the ROC 

curve (Table 4.3 A) could then be used to identify the most appropriate 

threshold for maximising both Sensitivity and Specificity. 

Regarding the MRI measurements, the levels of agreement with CT had 

previously been satisfactorily high. The MRI values were included in the ROC 

analysis (Figure 4.19 and Table 4.3 B) in order to investigate whether the 55 

mm threshold was the best option to be used with MRI data, assuming again CT 

as the gold standard. 

The ROC curve analysis (Figure 4.19) showed that the ultrasound had potential 

for more accurate AAA classifications based on max AP diameter size, with 

AUC= 0.93, (p<0.0001). The MRI still scored slightly higher with AUC= 0.97, 

(p<0.0001). According to the analysis of the coordinates of the ROC curve in 

Table 4.3 A, the optimal threshold that should be used in Ultrasound 

classifications is ≥48.5 mm (>48 mm) which corresponds to 87.5% Sensitivity 

and 78.6% Specificity (calculated from difference: 1.0 - 0.214). Alternatively, if a 

higher level of Specificity was deemed more important, the ≥49.5 mm (>49 mm) 

threshold, corresponding to 81.3% Sensitivity and 100% Specificity (calculated 

from difference: 1.0 - 0.0) could be selected. 
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Figure 4.19: Receiver operating characteristic (ROC) for the Ultrasound and MRI 
classifications of AAAs, assuming the CT classification as the gold standard. N=30 AAAs. The 
area under the ROC curve (AUC) for the Ultrasound was AUC= 0.93, (p<0.0001). For the MRI, 
AUC=0.97, (p<0.0001). 

As shown in the analysis of the coordinates of the ROC curve in Table 4.3 B, the 

optimal threshold that should be used in MRI classifications is ≥52.6 mm (>52.5 

mm) which corresponds to 100% Sensitivity and 92.9% Specificity (calculated 

from difference: 1.0 - 0.071).  
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Table 4.3: Coordinates of the ROC curve for A) US max AP diameter B) MRI max AP diameter. 
The CT classification (with 55 mm threshold) is assumed as gold standard. In each sub-table, the 
True Positive Rate (Sensitivity) and the False Positive Rate (1-Specificity) corresponding to all the 
potential threshold values are listed. The currently used threshold and corresponding Sensitivity 
and 1-Specificity values have been highlighted in blue and the optimal thresholds and 
corresponding values have been highlighted in yellow. In A, two different thresholds have been 
suggested and the option between them can be made based on the level of Specificity considered 
acceptable. 
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4.5.3 Measurement of AAA size: Alternative Methods of 
measuring AAA size using MRI 

4.5.3.1.1 Maximum General Diameter 

As previously discussed (4.2.1.3) and illustrated in Figure 4.1, Figure 4.2 and 

Figure 4.6, the suitability of the max AP diameter to be used as a representative 

value for the whole AAA can be debated. As AAAs are often non-perfectly 

cylindrical, the max general diameter (maximum diameter per slice, regardless of 

direction, see 4.4.3.2.1) can be found to be larger than the max AP diameter. The 

two types of measurements, as automatically calculated with MRI (see 4.4.3.1), 

are compared here. 

Interestingly, as can be observed in the plot of the max AP diameter against the 

max general diameter in Figure 3.20 A, the fitted regression line and the identity 

line (x=y) are close to converging, with coefficient of determination R2=0.85, 

p<0.0001. However, further assessment with the Bland-Altman method (Figure 

4.20 B), revealed that the bias was high enough (bias=2.2mm, SD of bias=2.7mm, 

with 95% limits of agreement from -3.1mm to 7.5mm, giving a range of 10.6mm) 

to suggest that max AP diameter and max general diameter are not 

interchangeable as clinical AAA size assessment methods. 

 

Figure 4.20: Relationship between MRI max AP diameter (maxAP) and MRI max general 
diameter (maxGen).                
A) Pearson Correlation with correlation coefficient R=0.92, coefficient of determination R2=0.85, 
p<0.0001, n=30 measurements (2 measurements per patient) for 15 patients, blue lines correspond 
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to 95% C.I. of linear regression with Y = 0.8591*X + 5.619, identity (dashed) line y=x.      
B) Bland-Altman plot: bias=2.2mm, SD of bias=2.7mm, 95% Limits of Agreement from -3.1mm to 
7.5mm, n=30 measurements (2 measurements per patient) for 15 patients. 

 

 

4.5.3.1.2 MRI Maximum Area (per slice) 

Intuitively, the MRI max general diameter might appear to be a better way of 

representing the AAA size compared to max AP diameter; its calculation however 

can be challenging (especially when applied using manual processing). Using any 

single maximum diameter measure to represent an entire AAA will also always 

be a method highly influenced by the shape of the individual slices and be highly 

influenced by way the AAA slice has been segmented.  

In contrast, using the MRI maximum area as a metric for AAA size may give more 

accurate estimations, as it accounts for the entire region comprising the slice and 

does not get affected by shape, irregularities or symmetry. 

In Figure 4.21 A, the MRI max area metric and the max AP diameter, as measured 

with MRI, appear to be very strongly correlated as one might expect (R=0.95, 

p<0.0001) and with a coefficient of determination R2=0.89, p<0.0001. The 

agreement however between the MRI max area metric and the max general 

diameter (Figure 4.21 B) is even stronger, with almost perfect alignment, with 

R=0.98, p<0.0001 and R2=0.97, p<0.0001, therefore suggesting the two methods 

could be used interchangeably. Because, however, of the difficulty in determining 

the max general diameter and the potential issues with reproducibility if the 

process is not automated, it may be preferable to use the max area to measure 

AAA size. Additionally, as further explained in 4.4.3.2.3 and 4.4.3.2.4, 
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incorporating more values than just the maximum of the whole AAA (e.g. top 5 

values) could contribute even more representative values for the entire AAA.  

 

 

Figure 4.21: Relationship between Max Area and max diameters (max AP and maxGen) as 
measured with MRI.             
A) Max Area vs. max AP diameter: Pearson Correlation with correlation coefficient R=0.95, 
coefficient of determination R2=0.89, p<0.0001, n=30 measurements (2 measurements per patient) 
for 15 patients, blue lines correspond to 95% C.I. of linear regression with Y = 68.85*X - 1526. All 
measurements automatically calculated from MRI data.         
B) Max Area vs. max General diameter. Pearson Correlation with correlation coefficient R=0.98, 
coefficient of determination R2=0.97, p<0.0001, n=30 measurements (2 measurements per patient) 
for 15 patients, blue lines correspond to 95% C.I. of linear regression with Y = 66.84*X - 1566. All 
measurements automatically calculated from MRI data. 
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4.5.4 Measurement of AAA growth 

The change in max AP diameter size after 2 years, as measured with all 3 

modalities for the same 15 patients (as described in 4.5.1, 4.5.2, and 4.5.3) is 

depicted in Figure 4.22. As previously, the US and CT diameters were measured 

manually, and the MRI diameters were automatically calculated. It can be 

observed that in most cases, the changes follow the same overall trends, but for 

some subjects there are large difference in the changes calculated by different 

modalities, e.g. for patient ID=2 in Figure 4.22, MRI and CT values for change 

overlap, while the US value is notably larger by 5mm. 

A more detailed analysis of the relationships between 2-year growth as measured 

with the 3 different modalities is presented in Figure 4.23. The US changes appear 

to be in disagreement with CT and MRI changes, while the MRI and CT show 

higher levels of correlation, with Pearson correlation coefficient R=0.859, 

coefficient of determination R2=0.738, p<0.0001. More specifically, the bias 

between CT and US was 0.3mm, but with 95% limits of agreement from             -

4.2mm to 4.8mm, a range of 9mm. The bias between CT and MRI was 0.2mm, with 

95% limits of agreement from -3.8mm to 4.2mm, a range of 8mm. The bias 

between MRI and US was 0.1mm with 95% limits of agreement from -6.2mm to 

6.5mm, a range of 12.7mm.  

The ranges of the 95% limits of agreement appear to be very wide in all above 

cases, suggesting that max AP diameter might not be the optimal measurement 

for growth estimations in AAAs. As suggested previously in 4.5.3.1.2 for AAA size 

measurement, the use of max Area metrics, ideally including more than values 

(e.g. top 5 largest areas of AAA) may provide a more accurate method for growth 

estimation. 
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Figure 4.22: 2-year Change and %Change in max AP Diameter (mm): MRI vs. CT vs. US. The 
patients had one scan with each modality in baseline (±2 months) and then had a repetition of 
measurements 2 years later (±2 months), n=15 patients; Change calculated as 2year-diameter minus 
baseline diameter. Percentage change calculated as (2year-diameter minus baseline 
diameter)/baseline diameter*100. 
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Figure 4.23: 2-year Change (mm) as calculated from max AP diameter: US vs. CT vs. MRI.           
A: 2-year Change in Max AP diameter: CT vs. US: Pearson Correlation with correlation coefficient 
R=0.811, coefficient of determination R2=0.659, p<0.0002, n=15 patients, blue lines correspond to 
95% C.I. of linear regression, identity (dashed) line y=x.         
B: CT vs. US: Bland-Altman plot: bias=0.3mm, SD of bias=2.3mm. 95% Limits of Agreement from       -
4.2mm to 4.8mm, n=30 measurements (2 measurements per patient) for 15 patients.          
C: 2-year Change in Max AP diameter: CT vs. MRI: Pearson Correlation with correlation coefficient 
R=0.859, coefficient of determination R2=0.738, p<0.0001, n=15 patients, blue lines correspond to 
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95% C.I. of linear regression, identity (dashed) line y=x.            
D: CT vs. MRI: Bland-Altman plot: bias=0.2mm, SD of bias=2.0mm. 95% Limits of Agreement from -
3.8mm to 4.2mm, n=30 measurements (2 measurements per patient) for 15 patients.           
E: 2-year Change in Max AP diameter: MRI vs. US: Pearson Correlation with correlation coefficient 
R=0.643, coefficient of determination R2=0.414, p<0.0096, n=15 patients, blue lines correspond to 
95% C.I. of linear regression, identity (dashed) line y=x.             
F: MRI vs. US: Bland-Altman plot: bias=0.1mm, SD of bias=3.2mm. 95% Limits of Agreement from   -
6.2mm to 6.5mm, n=30 measurements (2 measurements per patient) for 15 patients.          
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4.6 Discussion 

4.6.1 Measurement of AAA size and growth 

Accurate identification of aortic size is of great importance, because it is the main 

criterion upon which AAA detection and management is based: according to 

current diagnostic criteria [246] maximum AP diameter measurements 

performed with US are most commonly used, with max AP sizes of 3.5 cm or 

higher signifying the existence of an AAA, while max AP sizes of >=5.5 cm or 

annual max AP growth of >=1cm qualify AAAs for surgical treatment.  CT is almost 

exclusively used for pre-operative assessments and MRI is predominantly used 

for research purposes. However, the literature indicates that US regularly 

underestimates aortic measurements, compared to CT or MRI, with the last two 

being so accordant that MRI has been suggested as a potential replacement for 

CT altogether [243].  

The results of this chapter (4.5.1.1) confirmed the literature findings in the 

MA3RS cohort. When 30 max AP diameters from the MA3RS trial data were 

compared, US measurements systematically under-measured diameter values 

compared to the other two modalities, with the mean US measurements at 

48.3±0.9 mm, mean CT at 54.3±1.1 mm and mean MRI at 53.3±1.2 mm (Figure 

4.15).  

The bias (average of differences) between US and CT (Figure 4.16 C) was found 

to be 6.0 mm, thus exceeding the maximum acceptable bias of 5 mm for US 

reproducibility, as set by the UK AAA screening programme (NAAASP) [113]. The 

bias between US and MRI (Figure 4.16 E) was 5.0 mm, being exactly on this limit.  

The bias between MRI and CT was 1.1 mm, which is excellent, since it is 4.5 times 

smaller than the maximum acceptable bias of 5mm. 

In order to demonstrate the effects of the disagreements between US, CT and MRI, 

the 30 AAAs were classified as small (<55mm) or large (>=55mm), based on the 
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measurements of each modality. US identified 2 of the AAAs as large, while CT 

identified 16 cases and MRI 15 cases.  

Using CT as ground truth (and the ≥55 mm threshold which defined “large” AAAs 

or “positive” cases), US achieved 100% specificity, but just 12.5% sensitivity, with 

14 false positives. In areas like medical diagnosis, a high level of sensitivity is 

more important that a high level of specificity. On the other hand, MRI had 92.9% 

specificity and 87.5% sensitivity, with only 2 false negatives and 1 false positive. 

These results highlight the variability between the different imaging methods and 

the danger of applying thresholds defined with one imaging modality to 

measurements performed with different modalities. Accurate documentation of 

the imaging methodologies of research studies should thus be considered of 

uttermost importance. 

The high bias between US and the other 2 modalities could be attributed to the 

intrinsic differences in the imaging methods, for example the difference in soft 

tissue contrast evident between the modalities (Figure 4.2, Figure 4.3 and Figure 

4.13). The differences in size observed would not constitute such a significant 

problem so long as they were consistent, if e.g. CT measurements were 

consistently 3mm larger than the corresponding US measurements, it would be 

possible to use both methods interchangeably after a small adaptation, but this 

was not the case.  

In order to explore the discordance between US and CT or MRI further, ROC 

analysis was performed, and it identified adjustments of the 55 mm threshold, 

which improves the classification agreement and provides a formula for US, CT 

and MRI classifications to be comparable (i.e. with a different threshold for each 

modality: >48mm for US and 52.5mm for MRI). Given that the sample size was 

only n=30, further analysis with larger sample sizes in the future would be 

advisable for more accurate thresholds.  
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Given the fact that max AP diameter growth of ≥1 cm/year qualifies AAAs for 

surgical treatment, it was of great interest to establish the bias between US, CT 

and MRI growth measurements. The comparisons were applied on a sample of 15 

subjects for whom I had access to 2-year growth data available in all 3 modalities.  

The US growth did not correlate well with CT and MRI growth, while CT and MRI 

demonstrated a stronger correlation (R2=0.738, p<0.0001). The bias (average of 

differences) between modalities was low, with CT-US bias of 0.3 mm, CT-MRI bias 

of 0.2 mm and MRI-US bias of 0.1 mm. However, the ranges of 95% limits of 

agreement derived from Bland-Altman analysis painted a different picture: very 

wide ranges, with CT-US range of 9 mm, CT-MRI range of 8 mm and MRI-US range 

of 12.7 mm revealed a very high discordance between the 3 imaging modalities 

in growth calculation. 

This finding may suggest that max AP diameter might be a restrictive method for 

calculating AAA growth, with reproducibility issues between the different 

imaging modalities.  

 

4.6.2 Alternatives to max AP 

AAAs are rarely perfectly cylindrical, thus the use of max AP diameter to 

represent their size may be debatable, because it does not account for variations 

in AAA shape. This was illustrated with specific examples from the MA3RS dataset 

(4.2.1.3 and Figure 4.1, Figure 4.2 and Figure 4.6,) and further demonstrated by 

comparing the max AP diameter against the max general diameter of AAAs. The 

max general diameter was defined as an alternative measurement to max AP 

diameter, representing the largest diameter of the AAA without being limited 

only to the AP axis. 

Comparison between the two types of diameter (automatically calculated with 

my algorithm) in a sample of 30, revealed as expected, that even though their 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 4: AAA Measurements: US vs. CT vs. MRI 129 

values correlated (R2=0.85), the bias between the values (bias=2.2mm, SD of 

bias=2.7mm, 95% Limits of Agreement from -3.1mm to 7.5mm,) is too high for 

them to be used as interchangeable methods of AAA measurement. 

The max general diameter may be a more suitable metric for AAA size, but 

nevertheless its calculation is not standardised and can introduce reproducibility 

issues. Additionally, neither max AP nor max general diameter metrics are ideal 

for growth calculations: max AP diameter growth cannot detect growth 

happening in directions other than on the AP axis, while max general diameter 

can be influenced by the shape of individual AAA slices. 

MRI maximum area was introduced as a more appropriate AAA size metric, 

unaffected as it is by the shape or symmetry of individual slices, while most 

importantly, being highly reproducible. The max area of 30 MA3RS subjects was 

automatically calculated and compared with max AP diameters and max general 

diameters.  The max area measurements correlated better with the max general 

diameter measurements (R2=0.97, p<0.0001) than with the max AP diameter 

measurements (R2=0.89, p<0.0001). This was anticipated, as the max AP 

diameter, being restricted to the AP axis, would miss any large diameters 

occurring at different directions, hence underestimating the size of some AAAs. 

This weakness of the max AP diameter becomes more detrimental in AAA growth 

calculations, where the AP-axis restriction can fail to reflect 3-dimensional 

growth that may have occurred on different planes or directions. Max general 

diameter and max area can be used almost interchangeably, but max area may be 

preferred due to its higher reproducibility. 
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4.7 Summary  

In conclusion, US appears to under-measure AAA size compared to MRI and CT. 

MRI showed very high levels of agreement with CT, indicating it can be 

successfully used to replace CT measurements. The currently used thresholds for 

AAA stratification should be revisited for more accuracy. MRI measurements for 

AAA appear better suited for the work presented in the remainder of this thesis. 

These metrics also benefit from being able to be automatically calculated via an 

objective computational approach (developed for this thesis).  

The use of max AP diameter to measure AAA size proved to be potentially 

problematic, especially for growth calculations. Alternative metrics, namely max 

general diameter and max area were found to be more reliable for growth 

measurements, among which the max area metric is more reproducible and was 

thus selected to be used for the growth calculations required in the following 

chapters of this thesis. 
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Chapter 5 Automatic Detection of “Hotspots” 
of Inflammation 

5.1 Introduction 

In this chapter I introduce a process towards building efficient algorithms for the 

automatic detection of inflammatory hotspots in USPIO-enhanced MRI images of 

AAA. Building upon the concepts described in Chapter 2, an algorithm which 

closely replicates the manual hotspot detection and AAA classification used in the 

pilot and MA3RS trials was created (Replication algorithm), followed by two 

improved algorithms (Evolution 2D and 3D), which take the inflammation 

analysis a step further by using non-thresholded data and investigating the use 

of additional metrics available within the image data. For the first time, 3D 

hotspot detection and visualisation of AAA hotspots are achieved, supplemented 

with 3D metrics to assist further AAA analysis and stratification. Finally, two 

Graphical User Interfaces created to combine the data assessment, visualisation 

and automatic processing of the algorithms by the clinical research team for the 

MA3RS trial (and potential follow-up trials) are showcased at the end of the 

chapter.  
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5.1.1 The transition from Manual to Automatic Hotspot 
Segmentation 

As described in the methods sections of the pilot and MA3RS study (see 1.4.2 and 

1.5.2), in order to identify the inflammatory hotspots in each AAA, the clinical 

observers would visually inspect colourmaps that were calculated to correspond 

to %ΔT2* values between scans which visually represented focal USPIO uptake. 

The %ΔT2* maps used for the manual hotspot segmentation had previously been 

thresholded (59% threshold in pilot protocol, 71% threshold in MA3RS protocol, 

see 1.4.2 and 1.5.2). As can be seen in Figure 5.1, the areas corresponding to 

%ΔT2* values below the threshold therefore appeared uniform (blue colour) and 

made the differentiation between inflammatory and non-inflammatory areas 

more visually obvious for manual segmentation by the clinical observers. The 

criteria for an inflammatory area to be considered a hotspot have been 

introduced in section 1.4.3 and are briefly summarised in Figure 5.1. 

 

Figure 5.1: Criteria for an area to be considered an "inflammatory hotspot". %ΔT2* map with 
colour map superimposed on T2-weighted cross-sectional axial MRI slice of an AAA. The blue area 
represents the thrombus and aortic wall combined and the lumen area has been left uncovered are 
used to visualise the areas of USPIO uptake, reflecting inflammation. The criteria depicted in the 
figure had to be fulfilled during the visual assessment for the areas to be considered “hotspots”. This 
was taken from the pilot study, hence the threshold applied to the %ΔT2* map is 59%.  
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5.2 Algorithm definition and pre-processing 

Three algorithms will be presented in this chapter (Figure 5.2). Firstly, the 

“Replication of Manual Hotspot Detection Algorithm” (5.3) was created to imitate 

previous manual hotspot selection and automate it so that it could be applicable 

on a large scale reproducibly. The output was 2D hotspots similar to those 

selected by the clinical observers and exported as *.tiff image files for visual 

presentation. 

 

Figure 5.2: The three algorithms created. All three algorithms shared the same input and pre-
processing.  

The second algorithm, presented here as “Evolution 2D Algorithm”, introduced 

some changes into the process, firstly and most importantly by using non-

thresholded %ΔT2* maps for hotspot detection and also by introducing 

additional hotspot metrics.  

The third algorithm (“Evolution 3D Algorithm”) was very similar to the 2nd, but 

segmenting 3-dimensional hotspots instead, something that would be impossible 

to be accurately performed with manual processing, as well as calculating 

additional 3D hotspot metrics.  

 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 134 

5.2.1 Prior to input 

As previously detailed in the description of the MA3RS study protocol (1.5.2.2), 

some data processing took place after the MRI scanning and before the input of 

the images to my algorithm. Briefly, these tasks comprise of: 

• Data registration  

• Noise filtering 

• T2* map generation 

 

5.2.2 Input 

As demonstrated in the flowchart in Figure 5.3, the data imported by the 

algorithm are, for each patient: 

• The manually segmented Regions of Interest (ROIs), in which the lumen, 

thrombus and aortic wall have been identified on all available slices of 

each AAA by clinical observers. These manual segmentations have been 

extracted from SliceOmatic 4.3 (TomoVision) where they were originally 

created as *.tag files and processed with in-house software so that they 

can be imported to MATLAB R2015a (The MathWorks, Inc., Natick, MA, 

USA), as DICOM files. The ROIs come in the form of a mask with values 0 

to 3, with 0 for background, 1 for lumen, 2 for thrombus and 3 for wall. 

• The T2-weighted scans for each AAA. These are used for anatomical 

reference upon which functional information is to be superimposed. 

• The T2* maps for scans pre-USPIO administration, which have been 

calculated with the T2*mapping software previously developed in-house. 
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• The T2* maps for scans post-USPIO administration, which have been 

calculated with the T2*mapping software previously developed in-house 

(see 1.5.2.2). 

All the aforementioned datasets were spatially co-registered as described 

previously. The process followed for the Input of data is presented in the 

flowchart in Figure 5.3. 

 

 

Figure 5.3: Input Flowchart. The code includes two loops, with the external loop executing one 
iteration per patient, as seen here, while the internal loop executes one iteration per slice for every 
action (e.g. importing ROIs), but it is not shown in this flowchart for simplification. 
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5.2.3 Pre-processing of data 

Generally, pre-processing of the data in image analysis systems refers to the 

application of techniques for noise suppression and artefact removal. As 

explained in 5.2.1 and 1.5.2.2, some noise removal had already been deployed 

prior to input of the data into these algorithms. Here, pre-processing dealt with 

correcting the data produced from manual segmentations. 

The pre-processing stage was the same for all 3 versions of the algorithm. 

 

5.2.3.1 Corrections of manual ROI segmentations 

5.2.3.1.1 Accidental marking of pixels as ROI 

There were many instances among manually segmented ROIs of the datasets at 

hand, where small areas or just single pixels outside the ROI had been marked 

accidentally by the clinical observers. In Figure 5.4, a representative example is 

presented, where the three colours (red for lumen, green for thrombus, yellow 

for aortic wall) have been used to manually mark the ROIs, but two small 

individual areas outside the AAA have also been selected: a cluster of pixels has 

been marked as part of the lumen in red colour (Figure 5.4 A), and less visible, 

but causing problems in the automatic calculation, there is one isolated pixel 

(Figure 5.4 C) marked as part of the wall in yellow colour.  This sort of “accidental” 

marking of pixels, which then incorrectly contribute to regional masks, is 

relatively common in tasks that involve manual segmentation of images, so it was 

important that my software had an automated method of checking the data for 

these errant pixels and removing them from further processing. 
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Figure 5.4: Accidental marking of pixels as ROI. During the manual segmentation, some pixels (A 
and C) external to the ROI (lumen in red, thrombus in green and aortic wall in yellow) were 
sometimes marked as members of the ROI. Here, the cluster of pixels at A was marked as part of the 
lumen (red) and the pixel at C was marked as part of the wall (yellow). 

To correct this recurring ROI issue, the algorithm creates a binary mask that 

divides all pixels into two groups: pixels marked as belonging to the ROI during 

the manual segmentation are assigned the value ‘1’ and all other pixels, marked 

as background, are assigned the value ‘0’, as shown in Figure 5.4.  Then MATLAB 

function bwmorph is used to remove any isolated binary objects such as the one 

marked in Figure 5.5 C.  
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Figure 5.5: Mask of originally segmented ROIs. All pixels that had been marked as members of 
the ROI during the manual segmentation are assigned the value 1 and appear here in white, while 
the background pixels have been assigned the value 0 and appear black. MATLAB’s bwmorph 
function is applied and isolated pixels are “cleaned”, thus C is deleted.   

Next, all inter-connected areas (non-background) are identified using MATLAB’s 

bwconncomp function with 2-dimensional connectivity for n=8 neighbourhood. It 

is expected that the actual ROI that includes lumen, thrombus and wall will be the 

largest interconnected area, as the accidentally marked areas were consistently 

much smaller. By sorting all interconnected areas according to size, the biggest 

area (in this case B) can be safely selected as the ROI and all remaining 

interconnected areas (in this case just A, as C had already been excluded 

previously) can be masked and excluded from further processing. 

 

5.2.3.1.2 Accidental omission of ROI pixels 

Another common issue in manual segmentation data that was recurrently 

present in some of the datasets here was the accidental omission of some pixels 

within the AAA, as depicted in Figure 5.6. To correct this during the pre-

processing, after the algorithm defined all interconnected areas as explained in 

5.2.3.1.1, all “holes” within them were closed, using MATLAB’s imfill function. 
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Figure 5.6: Accidental omission of pixels during manual segmentation. In this ROI 
representation, the dark grey area corresponds to the lumen, the light grey to the thrombus and the 
white to the wall. Sometimes pixels like the ones shown within the lumen here (arrow) were 
accidentally left unmarked during manual segmentation. MATLAB’s imfill function was applied on 
such cases and the unmarked pixels were assigned to the ROI they belonged to. 

All of the above steps of the pre-processing part of the algorithm are presented 

as a flowchart in Figure 5.7. 
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Figure 5.7: Pre-processing flowchart 
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5.3 The “Automatic Replication” Algorithm 

As a starting point, I focused on creating an algorithm that would automatically 

“replicate” the manual processing as performed by the clinical observers. In order 

to achieve a successful “imitation” of the manual hotspot detection, processing 

rules had to be identified, as well as the order in which they were being manually 

applied, so that they could then be coded into an algorithm for automation. The 

rules of the manual detection and the corresponding functions are presented in 

Table 5.1. 

Table 5.1: Manual Detection Rules and the corresponding functions in the Replication 
Algorithm, as detailed later in this chapter 

 Manual Detection Rules  
Corresponding functions in Replication 
Algorithm 

1 %ΔT2* maps have 71% threshold 
%ΔT2* maps creation 

• 71% threshold applied 

2 
Hotspots not touching dropout 
areas neighbouring with lumen 

Dropout Processing 

• Dropout areas map created. 

• Dropout areas in contact with lumen 
detected. 

• Hotspots in contact with these 
Dropout areas excluded 

3 
Hotspots distinct from 
periluminal area 

Periluminal method 

• Hotspots in contact with lumen 
excluded (number of contact points 
allowed is adjustable) 

4 Hotspots >=10 contiguous voxels 

Hotspot Detection 

• Detection of all contiguous areas (2D) 
on thresholded %ΔT2* maps 

• Only areas >=10 voxels selected as 
potential Hotspots 

5 Hotspots within aortic wall 

Mural USPIO uptake 

• Detection of outer wall Perimeter 

• Only Hotspots neighbouring with 
outer perimeter selected 
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6 

AAA Classification in 3 groups:  

• positive USPIO 
enhancement 

• negative USPIO 
enhancement 

• indeterminate USPIO 
enhancement  

AAA Classification in 2 groups 

• positive USPIO enhancement 

• negative USPIO enhancement 
 

 

5.3.1 Percentage ΔΤ2* Thresholding 

As described in the 1.4.2 and 1.5.2 (Pilot and MA3RS methods), in the case of 

manual data processing, thresholding was applied to the values of the %ΔT2* 

maps before visually reviewing them and identifying inflammatory hotpots.  

Specifically, the threshold applied on the MA3RS data was 71%, so after importing 

the datasets, a 71% threshold was applied on the %ΔT2* maps, as illustrated in 

Figure 5.8. 

 

Figure 5.8: Application of 71% threshold on %ΔT2* map. A) Anatomical T2W MRI slice of MA3RS 
cohort patient. B) The corresponding %ΔT2* values are calculated and visualised in form of a colour 
map (jet scale) superimposed on the T2W image (A). As can be seen in the colour bar, changes smaller 
than the 71% threshold are considered non-significant and are represented as a uniform value 
(blue). (Image source: MA3RS trial).  
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5.3.2 Hotspots touching “Dropout” areas  

As described in 1.5.2.2., during the process of the T2* map creation from the 4 

individual gradient echo images, pixels which could not provide a reliable T2* 

decay fit were identified and excluded, forming “dropout” areas [15]. These areas 

could be found anywhere within the AAA, but one case stood out: dropout areas 

touching the lumen. These were of special interest, because in some cases they 

expanded from the luminal area as far as to reach a candidate hotspot. An 

example of this is shown in Figure 5.9 B. It can be seen that there would be no 

way to reliably assess whether the hotspot was actually distinct from the 

periluminal area. For this reason, all candidate hotspots touching a dropout area 

which went on to neighbour with the lumen, were excluded. 

 

Figure 5.9: Two “dropout” areas within one AAA slice. %ΔT2* map superimposed on anatomical 
T2W MRI slice of MA3RS cohort patient. Both (A) and (B) dropouts are touching the lumen, but (B) is 
of special interest because it is also touching a candidate hotspot (C). This hotspot (C) will be 
excluded, as we cannot assess whether it is connected with the lumen through the periluminal area, 
because of the dropout pixels found in-between. 

This rule was also coded into the hotspot detection algorithm. After the %ΔT2* 

map creation (Figure 5.10 A), the dropout areas were identified and a mask for 

them was created (Figure 5.10 B). Next, a mask for the lumen area was created 

based on the manual segmentation performed previously and it was dilated by 
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one pixel, using the MATLAB function bwmorph (Figure 5.10 C). The dilated 

lumen mask (Figure 5.10 C) was then combined with the map of dropouts (Figure 

5.10 B) as shown in Figure 5.10 D. Having dilated the lumen by 1 pixel, the 

intersection points between lumen and dropouts were identified and the exact 

number of overlapping pixels per intersection was calculated. By calculating this 

number, instead of using simply a positive/negative answer to whether each 

dropout touched the lumen, the strictness of neighbouring rules could further be 

adapted and investigated. A threshold, for example, of 2 neighbouring pixels 

could be set, allowing dropout areas with less than 2 overlapping pixels to be 

considered separate from the lumen. 

 

Figure 5.10: Identification of dropout areas in contact with lumen. A) %ΔT2* map with 71% 
threshold applied. The dropout areas are visible in black colour. B) Mask of all dropout areas 
identified within the same slice (illustrated in white). C) Mask of the lumen of the same slice.     
D) Combining the masks of dropouts (B) and lumen (C) to find points of contact (8-pixel 
neighbourhood), marked here within the red lines. 

In the next step, each candidate hotspot would be checked to assess whether it 

was in contact with any of the dropout areas that were touching the lumen, in a 

similar manner: For each hotspot, after dilating the hotspot by 1 pixel with the 
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bwmorph function, a mask of the slice was created (with 1 for hotspot pixels and 

0 for background) and was overlapped with the mask of each single dropout area 

that was touching the lumen. If the hotspot was found to be in contact with any 

of the specific dropout areas, it was discarded. 

The whole process followed for the exclusion of hotspots that were in contact 

with dropout areas is presented in Figure 5.11. 
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Figure 5.11: Flowchart of Dropout Exclusion. 
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5.3.3 Detection of Hotspots within Periluminal Area 

One of the criteria for an inflammatory area to be considered a hotspot during 

manual segmentation was that it should not be part of the periluminal area. In 

order to incorporate this rule in the automatic processing, the following steps 

were taken.  

For the 71% thresholded data (Figure 5.12 A), the perimeter of the luminal area 

(as defined in the manually segmented ROIs) was identified. Each candidate 

hotspot (e.g. the hotspot in Figure 5.12 B) was dilated by 1 pixel (e.g. the hotspot 

has been dilated in Figure 5.12  C) and its constituent pixels consequently 

intersected with the pixels of the lumen’s perimeter (marked in red in Figure 5.12  

C). This way, the number of contact points between the lumen and each hotspot 

(marked in blue in Figure 5.12  C) was identified and the hotspots could be further 

stratified, as either not touching the lumen, or touching with a known number of 

pixels.  

 

Figure 5.12: Detection of Hotspots touching the periluminal area. A) %ΔT2* map with 71% 
threshold applied. B) Candidate hotspot detected, marked in green colour.  C) Perimeter of lumen 
(red line) and thickened hotspot (by one pixel with MATLAB bwmorph function) combined and 
overlapping pixels are marked in blue.  
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5.3.4 Hotspot Size 

As explained in section 1.4.3.1, a minimum of 10 contiguous pixels were required 

for an area of inflammation to be considered a “hotspot” during manual 

segmentation, even though this number was to some extent arbitrary, having 

been empirically selected for the original pilot AAA project data. The same 

number was used in the replication algorithm.  

 

5.3.5 Mural USPIO uptake 

After applying the Automatic Replication Algorithm, there were some cases of 

hotspots being automatically detected by the program that were omitted by the 

manual hotspot detection. Upon review of each of these cases, a common 

characteristic was determined: despite the existence of USPIO uptake on the wall, 

the uptake only appeared within the inner layers of the aortic wall and did not 

reach the outer area, as described by the outmost pixels on the perimeter of the 

AAA. It must be noted here that the thickness of the aortic wall varies among 

different AAAs, while it can also vary within the same AAA, ranging from 1 pixel 

to several pixels, as depicted in Figure 5.13. 

 

Figure 5.13: Examples of different-sized aortic walls. Cross-sectional slices depicting the 
manually segmented ROIs corresponding to 3 different AAAs (A, B, C). The aortic wall is shown in 
white, the thrombus in light grey and the lumen in dark grey. The difference in the size of the aortic 
wall is very pronounced among these cases. 
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The reason behind the failure of the manual processing to detect these hotspots 

lies on the limitations imposed by the visual examination. The manual 

assessment of inflammatory hotspots was performed on the %ΔT2* colourmaps, 

which look like Figure 5.14 A, using the SliceOmatic 4.3 (TomoVision) software.  

As a result, the observer would not have direct reference of the segmentations 

used for processing, as these could not be superimposed on the same image when 

using the SliceOmatic software used for manual segmentation. The position of the 

lumen was obvious, as it was always kept unmasked in the %ΔT2* colourmaps, 

but the aortic wall thickness was not presented visually.  This information is 

crucial for the observer to determine whether the candidate area lies within the 

aortic wall and therefore should be accepted as a hotspot, demonstrating a 

limitation in the manual hotspot process.  

Within this study, and before this issue was identified, observers tended to regard 

the outer perimeter of the AAA as wall, namely a wall of approximately 1-pixel 

width.  

 

Figure 5.14: Example of hotspot found on the inner layers of aortic wall. A) %ΔT2* colourmaps 
with 71% threshold B) %ΔT2* colourmap without threshold. C) Hotspot which intersects with aortic 
wall, but not the outer perimeter of the wall, as detected by automatic algorithm. D) ROIs, with the 
aortic wall in white, the thrombus in light grey and the lumen in dark grey. The wall clearly appears 
to be thicker than 1 pixel at the location of the hotspot (C). 

Consequently, the manually segmented hotspots only included the cases in which 

the USPIO uptake was present in the outer part of the wall, leading to 

disagreements with the automatic processing, as the algorithm checked the 

entire wall area (as segmented by clinical observers) for hotspot co-localisation, 

accepting all cases of mural USPIO uptake, regardless of their exact location 
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within the wall, as shown in Figure 5.14, where the hotspot identified by the 

algorithm in Figure 5.14 C was not selected by the clinical observers, as it was not 

located on the outer perimeter of the AAA. 

The manual segmentation issue could be potentially resolved by creating new 

%ΔT2* colourmaps which would include wall-thickness information. As this issue 

was however only discovered with the application of the automatic segmentation 

on the data (processed after the manual segmentations had been completed and 

the study database closed), re-visiting and updating the manual processing was 

not an option during the work completed in this thesis.  

The Automatic Replication algorithm was updated to ensure only hotspots found 

on the outer perimeter of the aortic wall would be accepted in order to best 

replicate manual processing for this stage of the algorithm development and 

testing. The option of including hotspots found within the inner layers of the 

aortic wall was included in the Evolution 2D Algorithm and Evolution 3D 

Algorithm which will be introduced in 5.4 and 5.5 respectively. 

 

5.3.6 Anatomical artefacts  

As mentioned previously, perhaps the most important factor that makes the 

automation and standardisation of AAA processing challenging is the variation in 

AAA shapes. Contrary to cases such as the brain and the human heart, which have 

a fairly well documented and reproducible anatomical features, and for which 

standardised segmentation techniques have been implemented, automatic 

processing of AAAs still requires human evaluation of the results produced. 

A representative case from the MA3RS dataset is presented in Figure 5.15 A, 

where a large inflammatory area on the %ΔT2* colourmap (with 71% threshold 

applied) fulfilled all the conditions to be considered a hotspot and was thus 

selected by the automatic hotspot detection algorithm (marked in Figure 5.15 B 
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with green colour). Interestingly, the specific case had been dismissed during the 

manual selection of hotspots by the clinicians involved in the MA3RS project. 

Their reasoning was that the shape and position of the specific candidate hotspot 

were suggestive of it being a part of the duodenum, which had mistakenly been 

included in the ROI during segmentation by the clinical observers. This additional 

anatomical information was not available to the algorithm and potential 

introduction of segmentations of organs external to the aorta, like the duodenum, 

was outwith the scope of this thesis. If automatic segmentation processes are 

eventually implemented, then exclusion of duodenum-related areas will need to 

be incorporated into the segmentation process and should also be implemented 

in future manual segmentations. 

 

Figure 5.15: Representative case of duodenum included in ROI. In the %ΔT2* colourmap (with 
71% threshold applied) presented in A, a large hotspot is clearly visible on the top left of the AAA. As 
such, it was selected by the automatic algorithm as shown marked with green colour in B. 

 

5.3.7 Automatic Replication Algorithm Pipeline 

The steps followed by the Automatic Replication algorithm to imitate the manual 

hotspot segmentation are outlined in the flowchart in Figure 5.16. 
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Figure 5.16: Flowchart of automatic replication algorithm 
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5.3.8 Classification of Hotspots 

AAAs are divided into two groups, depending on the presence of hotspots within 

their volume. For each AAA, if at least one hotspot has been identified within it, 

the AAA is classified by the algorithm as USPIO-positive. Otherwise the AAA is 

classified as USPIO-negative. 

A list of the hotspots identified is also saved for each AAA, as well as a folder with 

images of all the hotspots, individually superimposed on T2-weighted MRI scans. 

The hotspots that were initially detected, then subsequently discarded based on 

the selection criteria were also saved as, for future reference, and to offer the 

option of visual inspection/confirmation by the clinical observers.  

 

5.3.9 Algorithm Adaptations for different applications 

The Automatic replication algorithm has four variables that can be adjusted so 

that it can be applicable to different datasets acquired with alternative protocols, 

derived from different trials or varying scanners.  

The variables that can be adapted are:  

1. The threshold applied on the %ΔT2* maps. 

2. The minimum number of pixels neighbouring the wall required for the 

inflammatory hotspot to be accepted. 

3. The maximum number of pixels neighbouring to the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot. 

4. The minimum number of connected pixels of inflammation per slice 

required for the area to be considered an inflammatory hotspot. 
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5.3.10 Application on Pilot Dataset  

The Automatic Replication algorithm was applied on the Pilot dataset (see section 

1.4) for evaluation and identification of any issues in the hotspot detection. I went 

through this process because we had a gold standard that had been published on 

this dataset. The disadvantage of this was that, as the dataset was historical, there 

were many limitations of the acquisition protocol that could have (and actually 

were) improved on the next datasets acquired in the MA3RS trial. 

5.3.10.1 Methods – Algorithm adaptations for Pilot dataset 

The MRI datasets of a total of 25 AAAs I had access to from the Pilot study were 

used for the Automatic Replication algorithm to be tested. The ROIs had to be 

manually drawn again, as the original ROI data had been segmented following a 

different protocol than the one used in the MA3RS study, as shown in Figure 5.17. 

Visual inspection of all slices concluded that no significant differences between 

the old and new ROIs that could potentially affect hotspot detection were present. 

 

Figure 5.17: Example of old (A) and new (B) ROIs created for the pilot study dataset. A) In the 
old ROI segmentations conducted during the pilot study, the area of the thrombus and the wall (in 
red) were segmented together as one ROI; the area of the lumen was not segmented separately, but 
rather inferred as the non-covered circular area within the AAA; and some reference regions 
external to the AAA were sometimes segmented as well (in yellow and green), which corresponded 
to known areas of fat or blood, for further comparison with areas of interest within the AAA. B) The 
new ROIs as identified to be used by the Replication algorithm identified the aortic wall (yellow), 
thrombus (green) and lumen (red).  
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Following the protocol of the Pilot Study, a 59% threshold was applied to the 

%ΔT2* maps. Furthermore, different adjustments of the following 2 variables 

were trialled, to identify the highest agreement levels between the manually 

selected hotspots and the automatically identified hotspots. The selected 

variables were: 

1. The minimum number of neighbouring the wall pixels required for the 

inflammatory hotspot to be accepted was 1. 

2. The maximum number of pixels neighbouring the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot was 1. 

AAAs were classified by the Replication algorithm as “positive” (USPIO-positive) 

if they were found to contain at least 1 hotspot, otherwise they were classified as 

“negative” (USPIO-negative). As the manual classification for the pilot had also 

identified some AAAs as “diffuse USPIO uptake” (Group2), a decision had to be 

made as to whether these would correspond to the USPIO-positive or USPIO-

negative of the Replication algorithm.  The recommendation of the clinical 

observers was to consider these as USPIO-negative, as in most cases the diffuse 

inflammation did not fulfil the hotspot criteria (the inflammatory areas were 

smaller and/or not adjacent to the aortic wall). 

 

5.3.10.2 Results 

The automatic classifications were initially verified against the manual 

classifications that had previously been executed by the clinical observers, as 

summarised in the “manual outcome” of the confusion matrix in Table 5.2. 

There was a total of three disagreements between the two methods, consisting of 

one false negative and two false positives. These three cases were subsequently 
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examined visually for the sources of the disagreements to be identified and new 

assessments for “ground truth” were included in Table 5.2. 

The case reported as a false negative is presented in Figure 5.18: based on the 

areas marked as hotspots on slices A, B and C the clinical observers classified this 

AAA as USPIO-positive. The Replication algorithm however, classified it as USPIO-

negative because none of the three candidate hotspots could be differentiated 

from the periluminal area that was in contact with the lumen. This case has been 

accepted as indeed a FN (false negative) and has been included as such in the 

“ground truth” section of the Table 5.2. 

This problem, namely the existence of areas that might visually look separate 

than the periluminal area but exhibit too many contact points as to be 

distinguished by the algorithm, is further explored in section 5.4.4 and a new 

periluminal exclusion method is introduced there and later incorporated in the 

Evolution algorithms. 

Table 5.2: Confusion matrix comparing auto and manual AAA classification based on hotspot 
detection. The “Manual outcome” section depicts the initial agreement level between the auto and 
the manually classified AAAs by the clinical observers. The “Ground Truth” section depicts the 
agreement levels between the auto and the re-evaluated manual classifications. TP=True Positive, 
FP=False Positive, FN= False Negative, TN=True Negative; Sens=Sensitivity=TP/(TP+FN); 
Spec=Specificity= TN/(TN+FP), n=25. 

  
Manual Outcome  Ground Truth Outcome 

A
u

to
 O

u
tc

o
m

e
 

Positive Negative Positive Negative 

Positive TP = 10 FP = 2 TP = 12 FP = 0 

Negative FN = 1 TN = 12 FN = 1 TN = 12 

Sample size 25 25 

Disagreements 3 1 

Sensitivity 90.9% 92.3% 

Specificity 85.7% 100% 
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Figure 5.18: The case of a false negative AAA in the pilot dataset. The marked areas within slices 
A, B, and C were identified as hotspots during the manual processing and thus the clinical observers 
classified this AAA as USPIO-positive. The automatic Replication algorithm classified this AAA as 
USPIO-negative, because the candidate hotspots were indistinguishable from the periluminal 
uptake.  

The two cases of the reported false positives were also visually inspected. The 

slices upon which the Replication algorithm detected hotspots (each slice 

corresponding to a different AAA) are presented in Figure 5.19. Based on these, 

the two corresponding AAAs were automatically classified as USPIO-positive. 

These AAAs had been classified as having “diffuse USPIO uptake” by the manual 

classification. This could have been due to the manual inspection of the entirety 

of the slices per AAA and the clinical observers may have based their decision on 

the diffused-looking USPIO uptake in the majority of the slices, rather than on the 

hotspots present in one unique slice.  

However, assessed in isolation, the two cases depicted in Figure 5.19 would 

qualify as hotspots and therefore the corresponding AAAs would be considered 

USPIO-positive. For this reason, these cases have been accepted as positive in the 

“ground truth” section of Table 5.1 and as such, they have thus been included 

within the TP (true positive) cases of the table. 
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Figure 5.19: Additional hotspots detected by Automatic Replication algorithm. A and C are 
%ΔT2* colourmaps (with 59% threshold applied), corresponding to 2 different AAAs. They are 
accompanied by the automatically identified hotspot (in green) for each slice (B and D respectively).  

5.3.11 Application on MA3RS Dataset 

As a next step, the Automatic Replication algorithm was applied to a subset of the 

MA3RS dataset and the results were verified against the manual processing 

previously performed by clinical observers. 

5.3.11.1 Methods 

A total of 176 randomly selected AAAs were used, for which the ROIs had been 

manually segmented previously. Following the protocol of the MA3RS study, a 

71% threshold was applied to the %ΔT2* maps. After trialling different 

combinations, the selected variables for the Replication algorithm to be applied 

to the MA3RS dataset were: 

1. The minimum number of pixels neighbouring the wall required for the 

inflammatory hotspot to be accepted was 1. 

2. The maximum number of pixels neighbouring the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot was 0. 

As explained in 5.3.10.1, AAAs including at least one hotspot were classified by 

the Replication algorithm as USPIO-positive, otherwise as USPIO-negative. The 

MA3RS protocol included a small number of AAAs classified as having 
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“indeterminate USPIO enhancement”. Those were considered as part of the 

USPIO-negative group for comparison with the automatic classifications. 

5.3.11.2 Results 

The automatic classifications were initially verified against the manual 

classifications previously performed by the clinical observers, as summarised in 

the “manual outcome” section of the confusion matrix in Table 5.3. There was a 

total of 16 initial disagreements between the two methods (among 176 samples), 

consisting of one false negative (FN) and 15 false positives (FP).  

These cases were subsequently examined visually for the sources of the 

disagreements to be identified and new assessments for “ground truth” were 

included in the “ground truth outcomes” of Table 5.3, after agreement with the 

clinical observers.  

Table 5.3: Confusion matrix comparing auto and manual AAA classification based on hotspot 
detection. The “Manual outcome” section depicts the initial agreement level between the auto and 
the manually classified AAAs by the clinical observers. The “Ground Truth Outcome” section depicts 
the agreement levels between the auto and the re-evaluated manual classifications. The “Ground 
Truth ROI outcome” section depicts the agreement levels if the cases caused due to incorrect ROIs 
were excluded.  TP=True Positive, FP=False Positive, FN= False Negative, TN=True Negative; 
Sens=Sensitivity=TP/(TP+FN); Spec=Specificity= TN/(TN+FP). 

  
Manual Outcome  

Ground Truth 
Outc. 

Ground Truth ROI 
Outc. 

A
u

to
 O

u
tc

o
m

e
 

Positive Negative Positive Negative Positive Negative 

Positive TP = 77 FP = 15 TP = 88 FP = 4 TP = 88 FP = 0 

Negative FN = 1 TN = 83 FN = 1 TN = 83 FN = 1 TN = 83 

Sample size 176 176 172 

Disagreem. 16 5 1 

Sensitivity 98.7% 98.9% 98.9% 

Specificity 84.7% 95.4% 100% 
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The case of the AAA reported as a false negative is presented in Figure 5.20. As 

seen in Figure 5.20 B and Figure 5.20 D, two candidate hotspots were indeed 

identified by the Replication algorithm in two consecutive slices. However, these 

were then automatically dismissed because they were found to be in contact with 

the lumen. On the other hand, the clinical observers accepted these hotspots as 

valid, as they suggested that they appeared to be connected to each other in 3D. 

This case will be further explored in section  5.4.4.3. It was accepted as a false 

negative (FN) in the ground truth outcome in Table 5.3. 

 

Figure 5.20: A case of disagreement between auto and manual: hotspots in contact with 
lumen. A and C are %ΔT2* colourmaps (with 71% threshold applied) corresponding to two 
consecutive slices (20 and 21) within one AAA. In B and D, the automatically detected hotspots of the 
respective maps are illustrated; these were dismissed by the Replication algorithm, as they were in 
contact with the lumen, while the clinical observers accepted them as valid.  

Visual inspection of the 15 cases that had been identified as false positives 

revealed that there were three reasons behind the disagreements: accidentally 

missed hotspots as depicted in example cases in Figure 5.21 (presence of these 

hotspots were agreed with the clinical observers after detection by my 

algorithm); hotspots of “uncommon” shapes which clinical observers suggested 

could be indicative of artefacts, as depicted in the examples in Figure 5.22; and 

hotspots detected on ROIs that, upon examination, were considered inaccurate, 

by e.g. including the duodenum as part of a ROI, as shown the examples in Figure 

5.23. The manual classifications of the affected MA3RS datasets were 

consequently amended accordingly, incorporating the findings of the Replication 

algorithm and as shown in the “ground truth outcome” of Table 5.3, reducing the 

number of disagreements to just five. Furthermore, in the “ground truth ROI 
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outcome” section of the table, the 4 AAAs with ROI problems were excluded from 

the comparison. 

 

Figure 5.21: Examples of accidentally missed hotspots which were detected by Replication 
algorithm. The hotspots on B, D, F and H were automatically detected on the %ΔT2* colourmaps 
(with 71% threshold applied) of A, C, E and G, respectively. Each hotspot belongs to a different AAA. 

 

 

Figure 5.22: Examples of hotspots with “uncommon” shape, as detected by Replication 
algorithm. The hotspots on B and D were automatically detected on the %ΔT2* colourmaps (with 
71% threshold applied) of A and C. They were dismissed by the clinical observers, because of their 
uncommon shape that they suggested was an artefact. 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 162 

 

Figure 5.23: Disagreements between auto and manual hotspot detection because of ROI: 
duodenum. The hotspots on B, D, F and H were automatically detected on the %ΔT2* colourmaps 
(with 71% threshold applied) of A, C, E and G, respectively. Cases AB and CD belong to different AAAs 
(one case per AAA). Cases EF and GH belong to two consecutive slices of the same AAA. The clinical 
observers dismissed these hotspots, considering them part of the duodenum which they suggested 
had incorrectly been segmented as part of the three AAAs.  

 

  



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 163 

5.4 “Evolution 2D” Algorithm 

The next step after the development of the Replication Algorithm which 

reproduced the manual Hotspot detection, was towards the creation of a more 

advanced algorithm, hereby named “Evolution 2D Algorithm”. The goal was to 

introduce alternative or additional methods which would assist in further 

stratifying the AAA patients in an automated way by providing a potentially more 

accurate detection of inflammation within the aneurysm. The differences 

between the basic functions of the Replication and the Evolution 2D algorithm 

are presented in Table 5.4. 

Table 5.4: Differences between Replication algorithm and Evolution algorithm 

 
Replication Algorithm Evolution 2D Algorithm 

1 %ΔT2* maps have 71% threshold %ΔT2* maps have 0% threshold 

2 Hotspots not touching dropout areas 
neighbouring with lumen 

Hotspots not touching dropout areas 
neighbouring with lumen 

3 Hotspot Detection:  
connectivity on thresholded %ΔT2* 
maps 

2D Hotspot Detection:  
• k-means clustering (k=7) 
• 2D connectivity on thresholded 

%ΔT2* maps 

4 Hotspots >=10 contiguous voxels Hotspots >=8 contiguous voxels 

5 Hotspots within aortic wall (outer 
only) 

Hotspots within aortic wall (outer or 
inner) 

6 Periluminal function 
Detection of hotspots touching 
lumen 

Updated Periluminal (k-means 
clustering) 

• Connectivity with lumen (n=8) 
• Periluminal area excluded on 

%ΔT2* maps before hotspot 
detection 

7 No metrics calculated 2D Metrics calculated 
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5.4.1 Percentage ΔΤ2* Thresholding  

The goal of the threshold application in the manual processing was to reliably 

allow only significant USPIO uptake to be depicted on the difference maps, in an 

effort to standardise the process: any focal area fulfilling the hotspot criteria 

would have to be selected by the observer, without any doubts over including or 

excluding any pixels.  Thresholding the data also helped to speed up the manual 

classification process applied to both studies, which allowed the larger MA3RS 

study to be performed using manual classification. 

The major disadvantage of applying any threshold value on the data lies on the 

threshold’s universality. AAAs inherently appear in many variations, hence the 

application of a global “cut-off point” introduces the risk of excluding valuable 

data, with some cases of AAAs being affected more than others. 

It was obvious in some cases, that applying a threshold could exclude pixels of 

slightly lower USPIO uptake, which were possibly indicating lower but still 

significant inflammation and also function as “bridges” between two or more 

areas of high uptake: by removing these “bridges”, the number of pixels of each 

area was not enough to reach the 10-pixel criterion for hotspot acceptance, as 

shown in Figure 5.24. In Figure 5.24 A, some high USPIO uptake areas can be seen 

in the 71% thresholded ΔΤ2* map, but they are disconnected, while in Figure 5.24 

B, the same areas appear connected in the non-thresholded ΔΤ2* map, and are 

thus picked up by the algorithm as shown in Figure 5.24 C.  



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 165 

 

Figure 5.24: Differences in hotspot detection between different thresholds. A) The marked 
areas of high USPIO uptake in this 71% thresholded ΔΤ2* map are disconnected. B) The same marked 
areas appear connected in the non-thresholded ΔΤ2* map. C) The automatic algorithm uses non-
thresholded ΔΤ2* maps, thus selects the aforementioned area as a hotspot. 

For such diverse datasets, introducing a level of adaptability in the image 

processing methods would be beneficial. For this reason, I chose to use non-

thresholded data in the next stage of my processing. 

 

5.4.1.1 Other Limitations of thresholding 

The 71% threshold for the MA3RS dataset was chosen by checking the 

distribution of the specific datasets available (Figure 5.25). This approach is 

therefore not universal, as it depends on the imaging centre in which the scans 

take place: different scanners, imaging coils, spatial resolution, imaging 

sequences, different degree and type of image artefacts, etc. Importantly, data 

acquired from different patients may correspond to different ranges of signal 

intensity and using a more personalised approach is preferable. 

On the other hand, as the automatic algorithm introduced here is using non-

thresholded data, as shown in Figure 5.25 (a), it can be applied to any datasets 

available. Any thresholding happens at the final stages of the algorithm. 
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Figure 5.25: An example of %ΔT2* maps without threshold (a) and with 71% threshold (b). 

5.4.2 Hotspot size 

The criterion used in the pilot study for the hotspot size to be at least 10 pixels 

could be challenged, as it was suggested as a starting point in the pilot study 

which might be subsequently modified with more statistical evidence and larger 

patient numbers. In order to include a wider set of candidate hotspots in further 

analysis and possibly allow for further stratification of AAAs, the Evolution 2D 

Algorithm accepted hotspots comprising of a minimum of 8 pixels in the 

applications showcased in this thesis. The specific number was selected for the 

MA3RS trial, because within this dataset, many instances of isolated 8-pixel and 

9-pixel areas adjacent to the aortic wall and not belonging to broader diffused 

inflammation had been visually detected and identified as potential smaller 

hotspots to further explore. The clinicians involved in the study agreed that the 

inclusion of these smaller areas in the automatic detection could identify 

previously missed regions which could potentially assist with further AAA 

stratification. For datasets of different spatial resolution, this number should be 

re-evaluated. 
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As will be outlined in 5.4.7, the hotspot size used in the Evolution 2D algorithm 

can be changed to accommodate different datasets. 

5.4.3 Methods for Hotspot Detection on Un-thresholded data 

A variety of methods were applied to the %ΔT2* maps to explore their hotspot 

segmentation potential.  

Initially, histograms of different AAAs were studied: histograms of %ΔT2* values 

corresponding to slices containing manually identified hotspots were compared 

against histograms from slices without any inflammation. These were visually 

observed to identify potentially obvious patterns. To quantify the differences 

between the distributions, Earth Mover’s Distance (EMD) [247]–[249] and 

Kolmogorov-Smirnov test [250], [251] were used. This histogram-based method 

pointed towards the existence of some patterns, but it did not prove to be scalable 

in an accurate way which could be implemented automatically. 

The next method trialled was Watershed segmentation. This technique is based 

on the notion of visualising an image in three dimensions, in the form of a surface. 

The areas with high intensity values correspond to “high” values topographically, 

akin to watershed lines, while the areas with lower intensity correspond to “low” 

topographical areas, akin to catchment basins [178] as shown in Figure 5.26. The 

idea was to use the inverse image of the %ΔT2* map (using the MATLAB function 

imcomplement) so that areas of high USPIO (potential hotspots) would be 

detected within deeper catchment basins. 
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Figure 5.26: Watershed segmentation - basic concept. A 2D image like the one depicted in A is 
imagined like a 3D surface, with higher intensity areas (brighter) on A corresponding to watershed 
lines in the surface in B and lower intensity (darker) areas corresponding to catchment basins. 
(Image adapted from MATLAB-Simulink Technical Articles and Newsletters, The MathWorks, Inc.). 

However, when applied to the %ΔT2* maps, the watershed technique led to over-

segmentation, which is a well-known problem of watershed segmentation. This 

type of over-segmentation happens because every local minimum, regardless of 

its significance, creates its own catchment basin. A commonly applied solution to 

over-segmentation is removing the local minima that are considered too shallow. 

This, however, requires a decision over a threshold to be applied on the %ΔT2* 

values. As discussed previously in 5.3.1,  the use of thresholding introduces many 

disadvantages I wanted to avoid in the Evolution algorithm. Consequently, the 

Watershed method was deemed inappropriate for the hotspot segmentation.  

Region growing algorithms were not suitable for hotspot segmentation either, as 

they require an initial seed to be placed from which the region then grows, but in 

the case at hand there was no way to identify where to automatically place the 

seeds, as hotspots can appear at any region of the AAA. Additionally, more than 

one hotspot could exist per slice, thus more than one seed per slice would be 

required.  

The next method employed was k-means clustering and will be described in the 

next sections. 
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5.4.3.1 K-means Clustering for Hotspot Detection 

The background on Clustering and k-means clustering have been presented in 

Chapter 2.  

The specification of the three parameters that are required by the user,  namely 

cluster initialisation, number of clusters and distance metric [182], will be 

described in this section. 

5.4.3.1.1 Cluster initialisation 

The results produced with k-means clustering are highly dependent on the 

initialisation of the clusters. Given that k-means only converges to local minima, 

different initialisations are expected to lead to different clustering outcomes. 

For the version of k-means used here, a deterministic approach was required, to 

ensure reproducibility of the outcomes. The %ΔT2* data used were not 

thresholded and as the intensity histograms fluctuated significantly from case to 

case (some presenting with normal and some with skewed distributions), the 

initial centroids used were spaced uniformly along the grey level axis.  

For each image processed with k-means, with 𝑘 number of bins, 𝑘𝐴 = [1, 𝑘] and 

𝑚 = max(𝑖𝑚𝑎𝑔𝑒) + 1, the initial centroids 𝐶𝐴 were calculated as shown in 

Equation 5.1: 

𝐶𝐴 = 𝑘𝐴 ∗ 𝑚/(𝑘 + 1) 

Equation 5.1 

5.4.3.1.2 Number of bins/clusters 

Most commonly, for the determination of the appropriate number of clusters, k-

means is tested independently for different k values and the results are evaluated 

specifically for the domain in hand [182]. In the case of the automatic hotspot 

segmentations, the point of reference was not merely the manual segmentations 

performed by the trained observers. The additional goal was to incorporate more 
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information that was potentially missed in the manual process. In this adaptation 

of the k-means clustering, and given the initialisation described previously in 

5.4.3.1.2, the number of bins selected would determine the level of intensity of 

areas considered as potential hotspots in each AAA. A larger number of bins 

would tend to identify smaller, more concentrated and higher-intensity areas as 

candidate hotspots. To identify the most appropriate number of bins, a randomly 

selected subgroup of the MA3RS trial was used as a “training set” (n=25 AAAs), 

upon which the k-means clustering algorithm was trialled with different cluster 

numbers (for k=4, k=5, k=6, k=7, k=8 bins) as shown in the example in Figure 5.27 

and all the results were reviewed visually by me in the first stages and then 

presented to the clinicians participating in the MA3RS study. The different 

partitions produced by the different cluster numbers were compared against 

manually pre-defined hotspots. Upon agreement with the clinicians of the MA3RS 

study, it was concluded that k=6 was the best option, as indicated in Table 5.5. It 

should be noted that the detection of the hotspots was not the only factor 

considered, but also the size of the detected areas was taken into consideration, 

as large bin sizes tended to detect smaller areas and smaller bin sizes detected 

very large areas. 

Table 5.5: Comparison between different k-means bin sizes and their effect on correct hotspot 
detection. Bin sizes from k=4 to k=8 were assessed on 25 cases, with the most successful being k=6. 

 k=4 k=5 k=6 k=7 k=8 

correct cases 

out of 25 
17 20 23 21 18 

% correct cases 68% 80% 92% 84% 72% 
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Figure 5.27: Example of panel with different bin numbers used for k-means. A)  %ΔT2* maps 
(non- thresholded) of 6 consecutive slices of an AAA. B) The 5th cluster of all slices after applying k-
means with 5 bins on the %ΔT2* maps. C) The 6th cluster of all slices after applying k-means with 6 
bins on the %ΔT2* maps. D) The 7th cluster of all slices after applying k-means with 7 bins on the 
%ΔT2* maps 
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5.4.3.1.3 Distance Metric 

The Euclidean metric was chosen to be used in this version of k-means clustering 

algorithm because of the shorter processing time it needs compared to other 

commonly used distance metrics. Furthermore, as this metric is considered to be 

good at discerning “compact” clusters [184], [212], it was considered suitable for 

identifying potential hotspots, because they consist of pixels belonging to very 

similar signal intensities (thus forming “compact” clusters). 

5.4.3.1.4 Advantages of k-means clustering 

Using k-means clustering offers a variety of advantages. Firstly, this method 

works without imposing a universal threshold to the data, but instead it adapts 

to each AAA individually. It also offers the possibility of various adjustments 

(number of clusters, type of distance, etc. as detailed in 5.4.7) and can thus be 

applied to data from different trials and different scanners, altered to adjust for 

protocol and data quality variability. Furthermore, with k-means clustering, all 

inflammatory hotspots per slice are detected in the first stage (before being 

processed through the selection criteria), regardless of size, shape, etc., thus 

providing us with more data that can be used to extract supplementary 

characteristics or metrics for further AAA stratification as presented in 5.4.5. 

Finally, the speed of the k-means clustering was satisfactorily high, with 

processing times with the Evolution 2D algorithm of less than 45 seconds per 

AAA, compared to a total of more than 15 to 30 minutes per AAA for manual 

processing (total time depended on numbers of slices and AAA complexity in each 

case), which does not identify any metrics or produce visualisations.  
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5.4.4 Exclusion of periluminal area 

In the course of detecting inflammatory hotspots, the algorithm faced a problem 

that had not been previously considered: In some slices of the non-thresholded 

%ΔT2* maps there were instances of large areas of inflammation adjacent to the 

wall, but at the same time extending towards the luminal area, as in the case 

shown in Figure 5.28 and Figure 5.29.  

 

Figure 5.28: Example of application of periluminal exclusion algorithm. The candidate hotspot 
depicted in the marked area of this non-thresholded ΔΤ2* map appears to be separate from the 
periluminal area upon visual inspection. The USPIO intensity decreases as proximity to periluminal 
area increases. The challenge was for the algorithm to be able to distinguish this case from cases 
where the hotspot clearly is part of the periluminal area and needs to be excluded. 

The algorithm would detect the proximity of these areas to the periluminal area 

and dismiss them as widespread inflammation rather than a concentrated 

hotspot. 

Contrary to this, in the thresholded datasets used by the clinicians to visually 

identify the hotspots, the area would appear to be clearly distinct from the 

periluminal area, thus convincing the observers to classify the whole area of 

USPIO enhancement as a large hotspot. This problem was approached with the 

methods outlined in the following sections. 
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Figure 5.29: Example of periluminal area issue. A) In the 71% thresholded ΔΤ2* map, the 
periluminal USPIO uptake appears to be distinct from the uptake observed nearer to the wall, which 
consists of a candidate hotspot. B) In the non-thresholded ΔΤ2* map however, the separation 
between the periluminal and the rest of the uptake does not appear to be as obvious. As the 
automatic algorithm uses non-thresholded data, it segments the entire area as one part and 
therefore rejects the potential hotspot (C).  

5.4.4.1 “Improfile” method for exclusion of periluminal area 

The first method tested for periluminal exclusion utilised MATLAB’s improfile 

function, which retrieves the intensity values of pixels along specified 

orientations in the image as shown in Figure 5.30 A and Figure 5.30 B and 

displays a plot of the intensity values, as shown in Figure 5.30 C. 

The proposal was to employ improfile within the algorithm as a means of 

identifying the reduction in intensity that was observed in the problematic cases, 

as illustrated in Figure 5.30. For lines beginning from the lumen, then going 

through potential hotspots and finally meeting the wall, the intensity value plot 

demonstrated reductions in areas of reduced USPIO uptake, so it was investigated 

whether abrupt reductions in signal intensity throughout the profile could be 

used to separate areas of more significant USPIO uptake, thus helping to accept 

potential hotspots automatically which had been accepted in the manual 

classification of hotspots by clinical observers.  
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Figure 5.30: Application of MATLAB function ‘improfile’ to distinguish periluminal USPIO 
uptake from inflammatory hotspots. A) Non-thresholded ΔΤ2* map and B) Non-thresholded ΔΤ2* 
map with colourmap applied, making USPIO uptake levels more visible. C) The resulting graph of 
the MATLAB improfile function, for the lines manually selected as seen on A and B. A reduction in 
signal intensity is obvious in all graphs, corresponding to the region where the periluminal area and 
the hotspot are connected via areas of lower USPIO uptake.  

In Figure 5.30 A and Figure 5.30 B, the lines across the AAA were manually 

selected during the initial assessment of this method. This process was not taken 
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forward because it would require a threshold for signal intensity to be defined, 

which would restrict the adaptability of the algorithm to each specific AAA. 

Alternative methods were explored and k-means clustering produced 

satisfactory results in delineating areas of high and low uptake of USPIO to 

successfully address the issue raise in figure 4.22 and will be presented in 5.4.4.2. 

 

5.4.4.2 K-means for Periluminal Area Segmentation 

After none of the methods tested showed promising results for the segmentation 

of the periluminal area, mainly due to the area’s complicated and not-reliably-

connected shape, I hypothesised that excluding the lumen from the processing 

could be a needlessly introduced barrier and so investigated the option of not 

excluding the luminal area from the hotspot detection algorithm. 

This is illustrated in the example case in Figure 5.31: if the lumen is excluded from 

the %ΔT2* map as in Figure 5.31 A (excluded lumen area in black), it is 

challenging for the algorithm to detect the visually obvious “halo” of periluminal 

USPIO uptake marked with red arrows, because it is spread over a very thin area 

on the edge of the lumen without consistent signal intensity. If, however, the 

luminal segmentation is ignored and the %ΔT2* maps are presented with the 

lumen included as depicted in Figure 5.31 B, a concentrated, usually fairly round 

area of high %ΔT2* values is visible. This high signal intensity area includes the 

lumen and also extends to include the “problematic” periluminal area that I was 

trying to identify, both of which are assumed to have high signal intensity due to 

“passive” vascular supply of USPIO rather than macrophage/inflammation 

“active” delivery of USPIO. Within the %ΔT2* maps, there seems to be no 

discernible border between the lumen and the periluminal area, since their signal 

intensity values are very similar. 
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Figure 5.31: %ΔT2* maps with light areas corresponding to higher USPIO uptake. In A, the 
area of the lumen has been excluded (depicted in black) and a “halo” of periluminal USPIO is obvious, 
marked with the red arrows. In B, with the lumen included, the luminal and periluminal areas appear 
indistinguishable, as they have similar intensity values. 

Taking this observation into consideration, I tested inclusion of the lumen in the 

processing, so that it could be detected in combination with the periluminal area 

as a single large cluster of high signal intensity in the %ΔT2* maps and thereupon 

the lumen could be excluded, leaving the periluminal area accurately marked. 

Since the adapted k-means clustering combined with the connectivity process 

had performed well in identifying connected areas of high USPIO uptake for 

hotspot detection (see section 5.4.3.1), I tested this method for the purpose of 

periluminal detection, with a few adjustments. The experimental process to 

determine the best modifications was repeated for a range of periluminal areas 

from the population (Figure 5.32), with varying shapes, size, position within the 

AAA and USPIO uptake levels. K-means clustering was followed by the 

bwconncomp function to identify connected regions.  
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Figure 5.32: Different cases of periluminal USPIO uptake. 

Of particular interest were the cases of AAAs presenting a hotspot in close 

proximity to the periluminal area. It was important to avoid missing potential 

hotspots by automatically clustering them as periluminal inflammation. For this 

reason, a balance had to be identified, between having a very conservative and 

restrictive area marked as periluminal, versus allowing the periluminal area 

selection to expand too much outside the lumen.  

The level of definition (whether big blocks of pixels or more intricate/detailed 

shapes are segmented) is dependent on the binning size selected for the k-means 

clustering, as previously discussed in 5.4.3.1.2. A MA3RS subset of 10 

representative cases of variable periluminal uptake was selected and different 

binning sizes were assessed experimentally (k=3, k=4, k=5 bins). Among these, 

the best compromise was achieved with the 4-bin processing, as shown in Table 

5.6.  
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Table 5.6: Comparison between different k-means bin sizes and their effect on correct 
periluminal detection. Bin sizes from k=3 to k=5 were assessed on 10 cases, with the most successful 
being k=4. 

 k=3 k=4 k=5 

correct cases out of 10 7 9 7 

% correct cases 70% 90% 70% 

 

This choice was more conservative than the 3-bin version, which tended to cover 

larger areas, as shown in the example case of Figure 5.33, where the use of 3 bins 

(Figure 5.33 B) failed to distinguish between the marked hotspot and the 

periluminal area (Figure 5.33 C). With the application of the 4-bin version of the 

algorithm on the same slice (Figure 5.33 D), it was evident that there is a very 

good distinction of the hotspot (Figure 5.33 E).  
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Figure 5.33: Example of different binning sizes of k-means for periluminal detection. A) Non-
thresholded %ΔT2* map with colourmap applied and lumen area excluded. B) The 3rd cluster among 
the 3 clusters produced after the application of k-means clustering with 3 bins on the %ΔT2* map of 
A. C) The resulting individual (unconnected) segments identified with the application of MATLAB’s 
bwconncomp function on the 3rd cluster in B, marked in different colour per segment. D) The 4rd 
cluster among the 4 clusters produced after the application of k-means clustering with 4 bins on the 
%ΔT2* map of A. E) The resulting individual (unconnected) segments identified with the application 
of MATLAB’s bwconncomp function on the 4th cluster in D, marked in different colour per segment. 

These results were also discussed with the clinicians participating in the MA3RS 

project and the periluminal process gained their approval. Furthermore, the k-

means clustering enabled the processing to be sufficiently fast (processing time 

of under 6 seconds per slice).  

It should be noted that as the selection of the number of bins was experimentally 

defined for the specific dataset, it may need to be re-performed if the imaging 

protocol is changed, or the data is acquired on another scanner, as the data 

resolution/quality may change.   
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The entire periluminal processing methodology is summed up in the pipeline in 

Figure 5.34 and visually presented in Figure 5.35.  

For each slice, adapted k-means clustering (described in 5.4.3.1) with k=4 bins 

was applied to the unthresholded %ΔT2* map, segmenting the map into 4 clusters 

(Figure 5.34 A). MATLAB’s bwconncomp function was then applied to the 4th 

cluster to identify all individual (un-connected) components (B) and a mask for 

them (bin4_Segments) was created (C). This mask was then intersected with the 

Lumen mask, which had been created based on the previously segmented 

(manually) ROIs (D). 

From the intersection of the bin4_Segments mask and the Lumen mask (E), the 

segments which were in contact with the lumen were identified as parts of the 

periluminal area and were stored in a logical matrix called Periluminal (F). 

These periluminal segments were then combined with the lumen to create the 

Total Mask (G). Any holes within the combined luminal and periluminal mask 

were filled using the imfill function of MATLAB (H) and the updated Total Mask 

was applied to the %ΔT2* map. 

This Total Mask would be returned to the algorithm to be used to exclude the 

lumen and the periluminal area of the AAA before running the hotspot detection 

algorithm, so that it would be ensured that periluminal areas wouldn’t be 

wrongly selected as hotspots. 
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Figure 5.34: Flowchart of periluminal exclusion algorithm. 
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Figure 5.35: Diagram of k-means clustering for periluminal exclusion. A) Non-thresholded 
%ΔT2* map with colourmap applied and lumen area excluded. B) Same non-thresholded %ΔT2* map 
with lumen included. C) The 4 clusters resulting after applying k-means clustering with 4 bins on the 
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%ΔT2* map seen on B. D) The resulting individual components, marked in different colours, of the 
4th cluster after applying MATLAB’s bwconncomp function for connectivity assessment.  

5.4.4.3 Exact number of pixels touching the periluminal area 

The general rule was that hotspots should not be touching the area of the lumen 

and the periluminal area adjacent to it at all (zero neighbouring pixels).  However, 

the trained observers would apply some additional criteria in some exceptional 

cases. For example, in the case shown in Figure 5.36, they accepted the candidate 

hotspot of slice 20 (Figure 5.36 A) as valid, despite the fact that 4 of its pixels were 

touching the lumen.  Some degree of flexibility from one of the core rules allowed 

relevant clinical/anatomical information to be included in the classification 

decision-making process. 

 

Figure 5.36: Example of exception to periluminal area neighbouring rule. The marked hotspot 
in slice 20 in A is in contact with the lumen in 4 pixels, but it was accepted as a valid hotspot by the 
clinical observers, based on the existence of a hotspot on the consecutive slice (slice 21) in B, which 
indicated that the 2 hotspots were connected. 

In this particular case, the clinical observer’s decision was based on the 

examination of the consecutive slice (slice 21) depicted in Figure 5.36 B, which 

presented a hotspot at the same region, thus they concluded that the candidate 

hotspot of slice 20 was an extension of the hotspot of slice 21. This sort of 

exception was not commonly applied in the MA3RS project, as the continuity of 
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hotspots between slices could not be accurately verified manually by the clinical 

observers in many cases.  

This is an issue that could not be addressed in 2D automatic processing, and it 

became apparent that a 3D approach would be required in order to increase the 

sensitivity of the automatic hotspot identification, as will be described in section 

5.5.1.  

 

5.4.5 Hotspot Metrics 

Within the Evolution 2D algorithm, a variety of metrics are automatically 

calculated for each hotspot detected, to enable sub-classification of the hotspots, 

which might be useful in future steps. The Hotspot metrics extracted for each 

hotspot are described here. 

5.4.5.1 2D Hotspot Metrics 

Metrics calculated using MATLAB’s regionprops function, descriptions adapted 

from [252] are presented in Chapter 5-metrics: 

• Size 

• Mean/Minimum/Maximum Intensity  

• Eccentricity 

• Equivalent Diameter 

• Major/Minor Axis Length 

• Orientation  

5.4.5.2 Additional 2D Metrics  

• Minimum Distance from Lumen: This metric refers to the distance 

between the hotspot and the lumen at their closest instance. It is 

calculated by detecting the pixels on the perimeter of the lumen and the 
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pixels on the perimeter of the hotspot and calculating the distances of all 

the possible combinations between them, then selecting the smallest 

distance.  

• Position: The position returned ranges between 9 values: North (N), East 

(E), South (S), West (W), NorthEast (NE), NorthWest (NW), SouthEast 

(SE), SouthWest (SW), Centre (C), which refer to the relative position of 

the coordinates of the centroid of the hotspot over the centroid of the AAA 

(in the specific slice). Centre refers to the extreme case in which the two 

centroids have the exact same coordinates. 
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5.4.6 Evolution 2D Algorithm Pipeline 

The process followed by the Evolution algorithm in a bid to expand the manual 

segmentation is summarised in the flowchart in Figure 5.37.  

Figure 5.37: Evolution 2D Algorithm flowchart 
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5.4.7 Algorithm Adaptations for different applications 

Similar to the Replication algorithm, the Evolution 2D algorithm has a (larger) 

number of variables that can be adapted so that it can be applicable to datasets 

obtained with alternative protocols, derived from different trials or different 

scanners.  

The variables that can be adapted are:  

1. The minimum number of connected pixels of inflammation per slice 

required for the area to be considered an inflammatory hotspot. 

2. The number (k1) of clusters of k-means for Hotspot detection (see section 

5.4.3.1.2) 

3. The number (k2) of clusters of k-means for Periluminal Processing (see 

section 5.4.4). 

4. The minimum number of pixels neighbouring the wall required for the 

inflammatory hotspot to be accepted. 

5. The maximum number of pixels neighbouring the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot. 

  



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 189 

5.4.8 Application on MA3RS Dataset  

The Evolution 2D algorithm was applied to a subset of the MA3RS dataset and the 

results were compared with the manual classifications previously produced by 

clinical observers as reference. However, the goal of the Evolution 2D was not to 

replicate manual results (as the Replication algorithm did, see 5.3), but rather to 

explore alternatives for the detection and measurement of hotspots. 

5.4.8.1 Methods 

A total of 173 randomly selected AAAs were used, for which the ROIs had been 

manually segmented previously. Following the protocol of the MA3RS study, the 

%ΔT2* maps were created, but no threshold was applied on them. The variables 

used in the Evolution 2D to be applied on the MA3RS dataset were: 

1. The minimum number of connected pixels of inflammation per slice 

required for the area to be considered an inflammatory hotspot was 8. 

2. The number (k1) of clusters of the k-means for Hotspot detection (see 

section 5.4.3.1.2) was 6. 

3. The number (k2) of clusters of the k-means for Periluminal Processing 

(see section 5.4.4) was 4. 

4. The minimum number of pixels neighbouring the wall required for the 

inflammatory hotspot to be accepted was 1. In the first instance, only the 

hotspots in contact with the outer layer (perimeter) of the wall were 

accepted. 

5. The maximum number of pixels neighbouring the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot was 0. 
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Similar to 5.3.10.1, AAAs including at least one hotspot were classified by the 

Evolution 2D algorithm as USPIO-positive, otherwise as USPIO-negative. The 

MA3RS protocol included a small number of AAAs classified as having 

“indeterminate USPIO enhancement”. Those were considered as part of the 

USPIO-negative group for comparison with the automatic classifications. 

5.4.8.2 Results 

In Table 5.7, the manual classifications are compared with the classifications on 

the Evolution 2D algorithm: in a total of 173 AAAs, 90 true positives (TP), 20 false 

positives (FP), 61 true negatives (TN) and 2 false negatives (FN) were identified, 

amounting to 22 disagreements.  

Table 5.7: Confusion matrix comparing auto and manual AAA classification based on hotspot 
detection. The Manual outcome correspond to results produced from the manual classification of 
AAAs by the clinical observers. TP=True Positive, FP=False Positive, FN= False Negative, TN=True 
Negative; Sens=Sensitivity=TP/(TP+FN); Spec=Specificity= TN/(TN+FP). 

  
Manual Outcome  

A
u

to
 O

u
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m
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Positive Negative 

Positive TP = 90 FP = 20 

Negative FN = 2 TN = 61 

Sample size 173 

Disagreements 22 

Sensitivity 97.8% 

Specificity 75.3% 
 

The high number of “false positives” reflects the additional cases of hotspots 

suggested by the algorithm, based on the lack of data thresholding, the inclusion 

of smaller hotspots (8 pixels) and the differences in the processing method, as 

described in the previous sections.  

Visual examination of the individual cases revealed the ways in which previously-

discarded areas were now accepted as hotspots by the algorithm.  As shown in 
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Figure 5.38, an inflammatory area adjacent to the aortic wall, that however 

appeared too small (only 3 pixels) in the 71%-thresholded %ΔT2* map (Figure 

5.38 A), was large enough in the non-thresholded %ΔT2* data (Figure 5.38 B) to 

be accepted as a hotspot (Figure 5.38 C). Similarly, the area shown with the 

yellow arrow in Figure 5.38 D consisted of just 9 pixels in the 71%-thresholded 

%ΔT2* map, while it appeared larger in the non-thresholded map of Figure 5.38 

E and a 12-pixel hotspot was detected (Figure 5.38 F). The slice depicted in Figure 

5.38 D had a second hotspot detected (white arrow), as seen in Figure 5.38 G, 

which did not appear at all in the thresholded map (Figure 5.38 D). This case of 

hotspot was of lower intensity and could be re-assessed later, with the intensity 

metrics taken into account. 

 

Figure 5.38: Examples of additional hotspots detected by Evolution 2D. A and D are %ΔT2* 
colourmaps (with 71% threshold applied). B and E are the corresponding non-thresholded %ΔT2* 
colourmaps. In C, F and G, the automatically detected hotspots (arrows) of the respective maps are 
illustrated; both F and G correspond to the same slice.  

Another common finding was cases of inflammatory areas which in the 

thresholded %ΔT2* maps appeared to be distinct from the aortic wall, as seen in 

Figure 5.39 A and Figure 5.39 D. Non-thresholded maps (Figure 5.39 B,E) 

revealed larger areas which expanded to the wall, therefore qualifying as 
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hotspots (Figure 5.39 C,F). In some cases, the inclusion of the previously 

thresholded data also allowed for “bridges” to be formed between smaller areas, 

to form a larger hotspot as depicted in Figure 5.39 D, E and F. 

 

Figure 5.39: Examples of additional hotspots detected by Evolution 2D. A and D are %ΔT2* 
colourmaps (with 71% threshold applied). B and E are the corresponding non-thresholded %ΔT2* 
colourmaps. In C and F, the automatically detected hotspots (arrow) of the respective maps are 
illustrated. 

A representative example of an interesting category of additional hotspots is 

presented in Figure 5.40. This type of USPIO uptake is challenging to manually 

classify in a reproducible way, as it could either be considered diffused USPIO, or, 

if a hotspot was identified, there would be no way of reproducibly defining its 

boundaries manually.   



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 193 

 

Figure 5.40: Example of additional hotspots detected by Evolution 2D. A is a %ΔT2* colourmap 
(with 71% threshold applied). B is the corresponding non-thresholded %ΔT2* colourmap. In C, the 
automatically detected hotspot (arrow) is illustrated. 

Finally, some cases of accidental omission of hotspots during manual processing 

were also identified as shown in the examples in Figure 5.41, and the clinical 

observers were informed and the manually processed results were updated 

accordingly.  

 

Figure 5.41: Examples of additional hotspots detected by Evolution 2D. A and D are %ΔT2* 
colourmaps (with 71% threshold applied). B and E are the corresponding non-thresholded %ΔT2* 
colourmaps. In C and F, the automatically detected hotspots (arrow) of the respective maps are 
illustrated. These hotspots were accidentally missed by the clinical observers. 
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Metrics on size, intensity of each hotspot and geometrical features were also 

recorded for all the AAAs processed. Even though a larger total number of 

potential hotspots are detected with the Evolution 2D algorithm, the additional 

information that accompanies each of them can enable us to sub-classify them 

and possibly discard some sub-categories. For example, by using the “mean 

intensity” metric to sub-classify hotspots, candidate hotspots with low mean 

values like the one depicted in Figure 5.38 E and G, can be identified as “non-very 

active” and be excluded, while cases with very high average values could be 

distinguished and assessed further. 

 

5.4.8.2.1 Wall thickness 

The first round of processing reported above accepted only hotspots that were 

found to be adjacent to the outer layer of the aortic wall, as calculated by finding 

the wall’s perimeter. The same dataset was later re-processed to include the 

candidate hotspots that were only in contact with the inner wall layers. This 

change in the method lead to the identification of 5 additional hotspots, which 

then lead to 4 AAAs being classified as USPIO-positive. These AAAs could 

consequently be grouped together for further AAA stratification.  
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5.5 “Evolution 3D” Algorithm 

In the initial analysis of the pilot study, the need for a 3-dimensional approach in 

detecting hotspots of inflammation had become apparent, as there were many 

cases in which the clinical observers noticed some continuity between the 

inflammation present in contiguous slices. The continuity was even more evident 

in the MA3RS datasets due to the improvements in the imaging protocol and 

raised the question of whether by only identifying hotspots in 2D (per slice), large 

inflammation areas spreading within a number of consecutive slices (in 3D) were 

being missed, or counted as smaller individual hotspots per slice, omitting 

information that may potentially be useful in further sub-classifying presence and 

degree of inflammation. 

Manually determining the existence of 3D hotspots in an accurate, reproducible 

and efficient way was not possible, as is suggested in the example in Figure 5.42: 

visual examination of the inflammatory areas (in green) of slices 7, 8 and 9 

would not ascertain the fact that they were all inter-connected and as such, 

formed a 3D hotspot which extended within all three slices. 

 

Figure 5.42: Example of 3D Hotspot detection. Using 3D connectivity with MATLAB’s 
bwconncomp function, the green areas of high USPIO concentration in slices 7 and 8 are found to be 
connected with the hotspot detected (in green) in slice 9, thus forming a 3D hotspot which extends 
within all three slices.  
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Consequently, the Evolution 3D algorithm was developed, as an extension to the 

Evolution 2D algorithm, to detect and visualise 3D inflammatory hotspots for the 

first time and to allow more comprehensive analysis of the inflammation and 

further stratification with 3D metrics (describing size, geometrical features and 

signal intensity of each hotspot). The algorithm was developed and tested on the 

MA3RS dataset. While it could, practically, have been applied to the pilot dataset 

as well, the 5mm gap between consecutive slices of the pilot MRI acquisitions (see 

1.4.4.) would render the 3D processing inaccurate. On the other hand, the MA3RS 

MRI dataset had been acquired without gaps between consecutive slices and its 

higher-quality MR images were more suitable for the 3D assessment. 

As outlined in Table 5.8, the methods implemented for the Evolution 3D 

algorithm were largely the same as the ones used in the Evolution 2D algorithm, 

except for the hotspot detection (Table 5.8 F) and the metrics calculation (Table 

5.8 G) which will be described in the following sections.  

 

Table 5.8: Differences between Evolution 2D algorithm and Evolution 3D algorithm 

 
Evolution 2D Algorithm Evolution 3D Algorithm 

A %ΔT2* maps have 0% threshold %ΔT2* maps have 0% threshold 

B Hotspots not touching dropout 
areas neighbouring with lumen 

3D Hotspots not touching dropout 
areas neighbouring with lumen 

C Updated Periluminal (k-means 
clustering) 

• Connectivity with lumen, 
n=8 

• Periluminal area excluded 
on %ΔT2* maps before 
hotspot detection 

Updated Periluminal (k-means 
clustering) 

• Connectivity with lumen, n=8 
• Periluminal area excluded on 

%ΔT2* maps before hotspot 
detection 

D Hotspots >=8 contiguous voxels Hotspots >=8 contiguous voxels 
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E Hotspots within aortic wall (outer 
or inner) 

Hotspots within aortic wall (outer or 
inner) 

F 2D Hotspot Detection:  
• k-means clustering (k=7) 
• 2D connectivity (n=8) on 

thresholded %ΔT2* maps 

3D Hotspot Detection:  
• k-means clustering (k=7) 
• 3D connectivity (n=26) on 

thresholded %ΔT2* maps 

G 2D Hotspot Metrics 3D Hotspot Metrics  

 

 

5.5.1 Detection of 3D Hotspots 

The dropout exclusion method described in 5.3.2 (from the Replication algorithm 

methods) and the periluminal exclusion method described in 5.4.4 (from the 

Evolution 2D methods) were applied by the Evolution 3D algorithm on a slice-by-

slice basis for each AAA being processed.   

Furthermore, the same clustering technique (k-means clustering with k=6 bins) 

as the one implemented in the Evolution 2D algorithm was applied on the %ΔT2* 

maps of each slice individually.  

 

5.5.1.1 3D Connectivity 

After all the slices per AAA had been segmented with the k-means clustering, 3D 

connectivity with MATLAB’s function bwconncomp with n=26 was applied on the 

3D volume consisting of the areas of the 6th cluster. This process is illustrated 

with two slices in Figure 5.43: for each slice, the corresponding 6th bin 

segmentation is depicted in Figure 5.43 B. With the application of the 3-D 

connectivity function to these, the interconnected areas of the two slices were 
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determined and marked with corresponding colours for illustration in Figure 

5.43 C. 

 

Figure 5.43: The identification of 3D-connected hotspots. A) %ΔT2* colourmaps (no threshold) 
of two consecutive slices (slices 13 and 14). B) The 6th cluster after application of k-means clustering 
(k=6) for each slice. C) 3D connectivity applied on the two B slices identifies which pixels of slice 13 
are connected with pixels of slice 14. Four neighbouring groups are identified (green, red, blue, 
orange); groups of the same colour are connected in 3D between the two slices. 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 199 

5.5.1.2 Visualisation of 3D Inflammatory Hotspots 

The 3D hotspots detected by the Evolution 3D algorithm were automatically 

saved as series of consecutive 2D images as previously shown in Figure 5.42. As 

a supplementary way of visualising the USPIO uptake within the AAA volume, 

semi-automatic 3D reconstructions of the AAAs like the one presented in Figure 

5.44 were also created.  

For the 3D reconstruction of the AAAs, the manually defined ROIs were used for 

the lumen and thrombus areas and combined with maps of the 3D hotspots to 

create 3D volumes, while the wall region was not visualised for practical reasons. 

 

Figure 5.44: An example of a 3D hotspot visualised within an AAA. The hotspot is marked in 
magenta colour, while the lumen (bloodflow) is depicted in red, and the thrombus in green/yellow. 

A protocol for the 3D reconstruction and visualisation was created, but the 

procedure was not yet fully automated at the time of writing. A combination of 

software packages was used, namely of MATLAB, Analyze and Paraview 4.0 

(Kitware Inc., Los Alamos National laboratory). 
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5.5.2 Algorithm Adaptations for different applications 

The set of variables described in section 5.4.7 for the Evolution 2D can also be 

adapted within the Evolution 3D algorithm for it to be usable with varying 

datasets acquired from different scanners and with alternative protocols. 

Additionally, the %ΔT2* datasets can be thresholded at any level required.  

 

5.5.3 3D Hotspot Metrics 

The following 3D metrics were calculated with MATLAB’s regionprops3 function. 

• Volume: the number of voxels comprising the hotspot. 

• Mean/Minimum/Maximum Intensity of the %ΔT2* values per hotspot. 

• Equivalent Diameter: This value corresponds to the diameter that a 

sphere with the same volume as the hotspot would have. It is estimated as 

(6 ∗
𝑉𝑜𝑙𝑢𝑚𝑒

𝑝𝑖
)

1

3
. 

• Principal Axis Length: Given by the length (in voxels) of the major axes 

of the ellipsoids that have the same normalised second central moments 

as the hotspot volume, returned as a 1-by-3 vector. 

• Orientation: Given by Euler angles, returned as a 1-by-3 vector. As the 

angles are based on the right-hand rule, a positive angle represents a 

rotation in the counter-clockwise direction. 

 

5.5.4 Application on MA3RS Dataset 

The Evolution 3D algorithm was applied on a subset of the MA3RS dataset to 

explore new ways of identifying, visualising and quantifying 3D inflammation 

within AAAs. As this, to my knowledge, was the first time a 3D approach was 

being implemented within this specific context of detecting inflammation within 
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a 3D structure, there was no gold standard available for direct comparison of the 

results produced by the algorithm.  

 

5.5.4.1 Methods 

A total of 173 randomly selected AAAs were used, for which the ROIs had been 

manually segmented previously. As the 3D hotspots spanned more than one slice 

in most cases, the criteria of the mural and periluminal uptake (described in 5.3.5 

and 5.4.4 respectively) had to be re-assessed for the 3D algorithm. For this 

assessment, a subset of 10 AAAs from the MA3RS study which had been 

automatically identified as having 3D hotspots were used, with zero contact 

points with the periluminal area and at least one contact point with the wall.  

The selection of the hotspots was such that it included 5 cases that clearly had to 

be dismissed, as they mainly consisted of periluminal uptake and 5 cases with the 

USPIO mainly focused on the aortic wall. 

Different combinations of mural contact sizes (minimum of 1 to 6 pixels) and 

periluminal contact sizes (maximum of 0 to 5 pixels) were trialled.  The best 

combination, with 8/10 success rate was given for a minimum of 2 contact points 

with the wall and a maximum of 3 contact points with the periluminal area.  

Is summary, the variables used in the Evolution 3D to be applied on the MA3RS 

dataset were: 

1. The minimum number of connected pixels of inflammation per slice 

required for the area to be considered an inflammatory hotspot was 8. 

2. The number (k1) of clusters of the k-means for Hotspot detection (see 

section 5.4.3.1.2) was 6. 
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3. The number (k2) of clusters of the k-means for Periluminal Processing 

(see section 5.4.4) was 4. 

4. The minimum number of pixels neighbouring the wall required for the 

inflammatory hotspot to be accepted was 2. Only hotspots in contact with 

the outer layer (perimeter) of the wall were accepted. 

5. The maximum number of pixels neighbouring the periluminal area that 

would be accepted for the inflammatory area to be considered a separate 

hotspot was 3. 

6. The algorithm was applied both on thresholded %ΔT2* maps (71% 

threshold) and on non-thresholded maps.  

Similar to 5.3.10.1, AAAs including at least one hotspot were classified by the 

Evolution 3D algorithm as USPIO-positive, otherwise as USPIO-negative. 

In order to examine the effects of 3D processing on the 71%-thresholded maps 

which were used by the clinical observers for manual processing and by the 

Replication algorithm, the Evolution 3D algorithm was first applied on 

thresholded data, to explore whether 3D hotspots could be detected despite the 

threshold application. Following this, the Evolution 3D algorithm was applied on 

non-thresholded data. 

5.5.4.2 Results 

When the Evolution 3D algorithm was applied to thresholded (71% threshold) 

%ΔT2* maps, a total of 44 AAAs bearing at least one 3D hotspot each were 

identified. Application of the algorithm on non-thresholded %ΔT2* maps resulted 

in the identification of 50 AAAs with 3D hotspots.  

Applied on the thresholded data, this algorithm detected 3D hotspots which 

would be too small to be accepted as such per individual slice but were 
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adequately large if all the slices they occupied in 3 dimensions were included. A 

representative case is demonstrated in Figure 5.45 I. In A, the hotspot was 

identified in manual processing, but the inflammatory area in the next slice (B) 

did not qualify as a hotspot due to its small size. The Evolution 3D algorithm 

found that these areas defined in C and D were part of one 3D hotspot.  

Additionally, by detecting 3D areas, the algorithm identified cases of 

inflammatory areas which were not adjacent to the aortic wall but were 

connected to other areas that were in contact with the wall, as illustrated in 

Figure 5.45 II. In this example, only the 10-pixel hotspot of E had been manually 

identified as a hotspot. The inflammatory area in F (arrow) fulfilled all the 

conditions to be a hotspot, except for the proximity to the aortic wall.  The 

automatic processing revealed that the areas of both slices formed a single 3D 

hotspot (Figure 5.45 G and H).  

 

Figure 5.45: Example of 3D hotspots spanning within many consecutive slices. Slices belonging 
to two AAAs, marked as I and II. A, B, E and F are %ΔT2* colourmaps (with 71% threshold applied). 
The green areas marked on C, D correspond to the automatically detected 3D hotspot which extends 
on both slice 13 and slice 14 of I. The green areas marked on G, H correspond to the automatically 
detected 3D hotspot which extends on both slice 14 and slice 15 of II.    
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The case depicted in Figure 5.46 was included here to demonstrate the difference 

between the manually detected hotspots in a series of slices (A) on thresholded 

data, against the automatically detected 3D hotspots which have been identified 

on non-thresholded %ΔT2* maps. In A, six separate hotspots could be identified 

manually. With the Evolution 3D algorithm however, it is revealed that the 

previously defined hotspots actually belong to two large 3D hotspots that expand 

over several slices of the AAA: as shown in B, the first 3D hotspot spans from slice 

11 to slice 17, while as shown in C, the second 3D hotspot is contained within 

slices 15 and 16.  

 

Figure 5.46: Comparison between manually detected 2D hotspots and automatically detected 
3D hotspots. A) %ΔT2* colourmaps (with 71% threshold applied) of consecutive slices. Six manually 
identified hotspots are marked in slices 14, 15, 16 and 17. B) All marked areas on the seven 
consecutive slices correspond to one 3D hotspot, automatically detected by the Evolution 3D 
algorithm. C) The two areas marked in slices 15 and 16 belong to a separate 3D hotspot detected by 
the algorithm. 

The example in Figure 5.47 aims to highlight the fact that seemingly small, low-

intensity areas of USPIO uptake which would be discarded in manual processing 

or if the 71% threshold was applied, can actually be part of a 3D “object” within 
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the AAA. In the specific example of Figure 5.47, the detected 3D hotspot spans 11 

consecutive slices.  

 

Figure 5.47: A and C are %ΔT2* colourmaps (no threshold applied) of consecutive slices. In B and D, 
the green areas (arrows) of the total of 11 slices are part of one 3D hotspot, automatically detected 
by the Evolution 3D algorithm.  

Furthermore, the 3D hotspot detection can potentially assist with cases of 

inflammation at the thinnest part of the thrombus in the AAA, where the lumen 

is in close proximity to the wall and therefore detecting hotspots is very 

challenging, as shown in Figure 5.48, where a 3D hotspot spanning the 3 slices is 

automatically detected.  
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Figure 5.48: An example case of a 3D hotspot detected on the thinnest part of the thrombus.  

Another variable revealed by running the 3D hotspot detection on the MA3RS 

dataset was the relative position of large 3D hotspots within AAAs. This has not 

been defined as one of the metrics currently calculated but could be implemented 

as future work. In the meantime, patterns of different positions can be visually 

studied on reconstructed 3D models. Among the MA3RS subset used for 3D 

hotspot detection, two patterns were easily discernible, namely 3D hotspots 

present either near the lower part of the AAA, as shown in Figure 5.49 A, or cases 

of them near the centre of the AAA, as shown in Figure 5.49 B. However, no 

quantitative assessment of different patterns was conducted within this work. 

This could be considered as something to be further developed in future work.  
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Figure 5.49: Examples of 3D-reconstructions of two AAAs with hotspots included. These 3D 
models were made based on the 2D manually segmented ROIs for lumen (red) and thrombus 
(green/yellow). The wall is not depicted. The hotspots (magenta) have been identified automatically 
by the Evolution 3D algorithm. The 3D reconstruction was made in a semi-automatic way with a 
combination of MATLAB, Analyze and Paraview software.  
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5.6 Graphical User Interface 

5.6.1 Visualisation Graphical User Interface 

As previously shown in the data input in 5.2.2, there was a variety of datasets 

required for the processing of each AAA, with many slices per AAA per dataset. 

Visually inspecting images from many sources in parallel for each slice was time 

consuming, laborious and occasionally prone to errors and was making manual 

processing and data assessment challenging. 

In the first stages of the algorithm development, I also needed to have access to 

quick visualisations of the data for my own review, and to be easily accessible for 

review with the clinical team. I therefore created a MATLAB Graphical User 

Interface (GUI) which enabled easy visualisation of all available data per slice per 

AAA with just one click. A screenshot of the GUI can be seen in Figure 5.50.  

The user would select a patient code from a drop-down list of all available 

patients with AAA scans and the specific slice they were interested in (Figure 5.50 

A). By clicking “Load data”, the %ΔT2* map (no threshold) would appear on the 

left panel (Figure 5.50 B). Simultaneously, the corresponding T2* maps (Figure 

5.50 F and K) and the four gradient echoes would appear on the panels on the 

right, for pre-USPIO (day1) and post-USPIO (day 2) data (Figure 5.50 K and L). 

The user could choose via radio-buttons between T2* and R2* maps (Figure 5.50 

H and M) and the four gradient echoes (Figure 5.50 I and N).  

Furthermore, the user could use the “Select Voxel” button (Figure 5.50 C) and 

choose any voxel of interest by clicking on the %ΔT2* map (Figure 5.50 B). This 

would make the intensity value of the specific voxel appear, as well as the 

intensity values of the same voxel on the corresponding T2*/R2* maps. This tool 

was offered for quantitative assessment of any datapoints of interest. 
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Finally, a button for debugging was available, which gave access to the source 

code (Figure 5.50 D) for troubleshooting.  

 

Figure 5.50: The visualisation GUI. This GUI was created in MATLAB for efficient data visualisation 
and quality assessment.  

 

5.6.2 AAA Classification Graphical User Interface 

After the finalisation of the Evolution 2D Algorithm, the code was incorporated 

into an improved version of the GUI. The new version did not require a specific 

slice number to be selected and loaded, but rather loaded the entire dataset for 

the AAA selected by the user (Figure 5.51 A). After the “Load Data” button was 

clicked, thresholded (71%) %ΔT2* maps (Figure 5.51 B) and non-thresholded 

maps (Figure 5.51 C) of the AAA were loaded, as well as T2* maps and 

corresponding gradient echoes. Simultaneously to these, the classification result 

of the AAA according to the Evolution 2D algorithm was printed (Figure 5.51 L), 

as well as a list of all the hotspots detected and their location (slice number) 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

 

Chapter 5: Automatic Detection of “Hotspots” of Inflammation 210 

within the AAA (Figure 5.51 M). Additionally, the identified hotspots could be 

visualised one-by-one by clicking the button “Show Hotspots” (Figure 5.51 N).  

The user could choose via radio-buttons between T2* and R2* maps (Figure 5.51 

F and J) and the four gradient echoes (Figure 5.51 G and K) and use the slider 

under the loaded images to scroll through the different slices available per AAA.  

Finally, a button for debugging was available, which gave access to the source 

code (Figure 5.51 0) for troubleshooting.  

 

Figure 5.51: The improved, AAA classification GUI. This GUI incorporated, additionally to the 
dataset visualisations, the code of the evolution 2D algorithm, thus presenting the classification 
result for the loaded AAA, as well as visualising the hotspots detected within it. 

The same GUI can also incorporate the Evolution 3D algorithm, but in its current 

form can only visualise the detected 3D hotspots in a slice-by-slice basis, rather 

than creating a 3D reconstruction.  
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5.7 Discussion  

The detection of inflammatory hotspots was one of the core elements of the 

MA3RS trial and previously the pilot study. The methods employed for hotspot 

detection and classification of AAAs were performed manually in both studies. 

The manual processing, however, of such large and complex datasets introduced 

some challenges which I aimed to address by introducing automatic processing 

methods. The resulting three algorithms not only replicated the manual 

processing, but also introduced alternative hotspot detection techniques 

including the specific inclusion of detection and connectivity of hotspots in 3 

dimensions, novel metrics and visualisations and a guided user interface which 

combined all the above.  The 3D combination of USPIO uptake had been 

highlighted as a requirement as early as the pilot study (refer to Richards et al 

pilot paper here). 

 

5.7.1 Automatic Replication of Manual Processing 

Given the fact that the MA3RS trial included 342 patients, with an average of 

approximately 30 slices per AAA needing individual review, manual processing 

was very time-consuming. Depending on the complexity of each AAA, manual 

hotspot detection could take between 15 to 30 minutes per AAA. Furthermore, 

the large amount of data involved introduced high chances of human error, while 

the nature of manual processing is inherently prone to low reproducibility levels.  

The Automatic Replication algorithm was designed to be able to reproduce and 

speed up the manual processing. It imitated the manual protocol as closely as 

possible, by applying the same 71% threshold to %ΔT2* maps, processing the 

AAAs on a slice-by-slice basis, incorporating controls for the exclusion of 
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“Dropout” areas, and accepting hotspots of at least 10 pixels, which were adjacent 

to the outer layers of the aortic wall and distinct from the periluminal area. 

The outcome of the Replication algorithm was evaluated by being applied first to 

the Pilot dataset (sample size n=25) and with its outcomes compared against the 

previously produced manual outcomes, achieving a compelling 92.3% Sensitivity 

rate and 100% rate for Specificity after adjustments that accounted for some 

variability in the manual processing and were agreed with the clinical team.  It 

was subsequently validated against the manual outcome of a subset of the MA3RS 

dataset (sample size n=173), with 98.9% Sensitivity rate and 100% Specificity 

(adjusted to account for manual processing variability, also agreed with the 

clinical team).  

Along with the successful replication of manual processing, the algorithm was 

also very efficient, with processing time of less than 20 seconds per AAA, which 

was a substantial improvement compared to the 15-30 minutes of the manual 

method, while being fully reproducible.  

 These findings suggest that the Replication algorithm could successfully replace 

the manual processing in a reliable and reproducible manner, at a fraction of the 

currently required time. Additionally, this algorithm has the potential to be 

applicable to datasets that have been obtained with alternative scanning 

protocols or are derived from different trials and scanners.  

 

5.7.2 Advanced Hotspot Analysis: The Evolution algorithms 

5.7.2.1 Evolution 2D algorithm  

The method followed in the manual processing and the Replication algorithm 

introduced some restrictions to the detection and analysis of hotspots, by 

imposing a universal 71% threshold on the %ΔT2* maps, ignoring any USPIO-
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uptake area of less than 10 pixels and discarding hotspots which were in contact 

only with the inner layers of the aortic wall rather than the outer layer (due to a 

lack of visualisation of the wall thickness in the manual process that I was 

replicating). Another issue was the lack of any more specific quantification 

methods to “qualify” the hotspots in terms of dimensions (hotspot “metrics”), 

other than the manual count of pixels per hotspot, which was not routinely 

recorded by the clinical observers.  My hope was that additional metrics which 

could be made available using an automated analysis methodology could allow 

for the hotspots to be further assessed and sub-classified.  

The Evolution 2D algorithm was therefore developed to tackle these issues and 

expand on the previous hotspot analysis. It did not apply a threshold to the %ΔT2* 

maps, but instead used an adjusted k-means clustering technique for hotspot 

detection which adapted to every AAA case individually. This allowed me to 

potentially use all of the data available which reflected total USPIO distribution 

within these datasets, rather than restricting to thresholded data.  More “subtle” 

or variable USPIO distribution information could therefore be incorporated into 

my analysis.  This algorithm also incorporated smaller hotspots (>=8 pixels) and 

employed a more advanced periluminal-exclusion technique than the one used in 

the Replication algorithm.  Crucially, this algorithm also identified hotspots 

adjacent to the inner layers of the aortic wall, aside from the ones in contact only 

with the outer layers.   One of the key features of inflammation in relation to AAA 

wall stress that the clinical team valued highly was the presence of inflammation 

in the aortic wall.  More accurately determining whether USPIO uptake was 

present in the full thickness of the aortic wall was therefore a key step forward 

for my algorithm.  The aortic wall thickness was demonstrated to be highly 

variable in the study performed in Edinburgh in this population and the manual 

processing employed by the clinical was not able to take this into account. 
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Furthermore, with a large number of variables in the algorithm being adjustable, 

it can be applied to varying datasets/applications, or facilitate the investigation 

of the effects of different factors to the data being studied, in an automatic, 

efficient and reproducible way. 

The Evolution 2D algorithm introduced additional hotspot metrics which were 

not employed in the previous manual processes, which could describe hotspot 

size, intensity and shape, and also the relative position of the hotspot within the 

AAA and its distance from the lumen area. These were all requests that came from 

the clinical team who performed the pilot study.  A better understanding of USPIO 

uptake (and therefore inflammation) distribution throughout these aneurysms is 

highly desirable.  Inflammation has been highlighted as an important pathological 

factor in AAA (provide some references here back from your introductory 

chapters, and the pilot and MA3RS papers).  A more definitive description of the 

nature and distribution of inflammation within the aneurysms.  These metrics 

may have some merit in the further stratification of AAA patient groups and 

potentially assist in the prediction of AAA growth and rupture (which will be 

explored in Chapter 5). 

When applied to a MA3RS subset (sample size n=173), twenty additional hotspots 

to the manually selected ones were identified. These included cases of: hotspots 

which had previously been too small because of the 71% intensity threshold or 

the 10-pixel threshold; hotspots that had appeared to be distinct from the aortic 

wall, but without the 71% threshold were expanding into the wall, hotspots of 

lower mean intensity (which could be further assessed with the metrics); 

hotspots formed as a composite of smaller areas when the lack of thresholding 

allowed “bridges” to interconnect them; and finally accidentally omitted 

hotspots. Importantly, this algorithm contributed to the effective distinction of 

hotspots which were found among diffuse USPIO uptake and were too 

challenging to segment manually. Lastly, separate application of the algorithm to 
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detect hotspots which were adjacent to the inner aortic wall layers introduced 

five extra hotspots. 

 

5.7.2.2 Evolution 3D algorithm 

The Evolution 2D algorithm introduced many improvements and additional 

insights to the previous hotspot detection techniques. It was however still 

confined to using only 2-dimensional techniques, while the MRI datasets of the 

MA3RS study, with their improved image quality over the pilot dataset and 

implementation of contiguous slices, offered more 3D information.   The clinical 

MA3RS evaluation was developed using the pilot data methodology, and so was 

not designed to take into account 3D information, however the clinical team 

acknowledged that this was potentially useful information on the distribution of 

USPIO within the aneurysm. 

The Evolution 3D algorithm was therefore developed as an expansion of the 2D 

version to incorporate additional 3D information available and offer better 

insights and opportunities for further AAA classifications. Using 3D connectivity 

to identify areas of high USPIO uptake that expanded beyond one slice to adjacent 

slices, this algorithm detected hotspots in three dimensions for the first time, 

allowing an assessment of hotspot volume. As with the 2D version, the Evolution 

3D algorithm could be adapted for different datasets and scanning protocols 

using aa number of user-defined variables, with the ability to re-process multiple 

datasets rapidly. 

Application of the 3D algorithm to the MA3RS subset (sample n=173) previously 

processed with the Evolution 2D algorithm, identified a total of 43 AAAs 

containing hotspots which spanned multiple slices (3D hotspots) when 

thresholded %ΔT2* maps (71% threshold) were used, and 49 AAAs when non-

thresholded data were used. As expected, these results were fundamentally 
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different than the outcomes of the 2D algorithms, since they described USPIO 

uptake in different ways. Some of the most representative ways in which the 

application of the Evolution 3D algorithm differed in detecting hotspots, were: 

high-USPIO areas previously considered too small per slice were identified as 

parts of larger 3D hotspots spanning more than one slice; candidate 2D hotspots 

that had appeared to be distinct from the aortic wall in one slice and dismissed, 

belonged to 3D hotspots which were in contact with the wall on another slice 

level; many individual 2D hotspots within an AAA were found to be part of one 

larger single 3D hotspot spanning multiple slices.  

Importantly, 3D hotspot detection can potentially assist with complex cases of 

inflammation at the thinnest part of the thrombus which are challenging to 

segment. As the thrombus has been shown to potentially play a protective role 

for the AAA by decreasing wall stress [63], [80], [81], these areas can be 

extremely important, as they may be more prone to rupture. In cases of 

uncertainty over a slice, the automatically detected presence or absence of USPIO 

uptake on adjacent slices may have some potential in acting as guidance to the 

clinical observer.  

Furthermore, the 3D processing may help differentiate between “diffuse” USPIO 

uptake and actual hotspots, by checking if the USPIO uptake is only present in 

small isolated areas in each slice, or expanding vertically to adjacent slices 

forming long, thin 3D hotspots.  

Finally, the 3D hotspot metrics of size, shape and position produced by the 

Evolution 3D algorithm, may assist in AAA assessment if used as potential 

classifiers.  If hotspot “size” is in fact a valuable descriptor of USPIO uptake, then 

volume of hotspot across slices, rather than area within a single slice is obviously 

an important factor to take into account. 
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5.7.2.3 GUI 

As the detection of hotspots required the input of many datasets in parallel, a GUI 

for efficient data assessment and data visualisation was created. After the 

development of the algorithms presented in this chapter, the GUI was further 

improved and upgraded to incorporate the Evolution 2D algorithm. It proved 

useful in allowing rapid combinations of data assessment and visualisation 

options in hotspot detection. 

5.7.2.4 ROI issues 

A problem encountered by the automatic hotspot detection algorithms was ROI 

accuracy. All three algorithms included a pre-processing stage which successfully 

corrected small-scale inaccuracies, namely accidental marking of pixels as ROI 

and accidental omission of ROI pixels. However, in more complex cases, where 

the assessment of ROIs required anatomical information, human input was 

required, as was evident in the case of erroneous inclusion of the duodenum in 

the AAA. 

Automating the ROI segmentation would potentially help prevent such problems, 

but it was outwith the scope of this thesis. Members of our research group have 

been working on this problem in parallel to the work presented in this thesis, and 

their algorithms could potentially be combined with this work in the future.  AAA 

segmentation has proven challenging, particularly accurate segmentation of the 

aortic wall thickness, which can be highly variable across patients.  
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5.8 Summary 

In this chapter, the detection of inflammatory hotspots in AAAs was investigated 

in depth. Three algorithms were developed:  

1. The automatic Replication algorithm, which can successfully replace the 

previously employed manual hotspot detection, with faster, reliable and 

fully reproducible methods.  

2. The Evolution 2D algorithm, which took hotspot detection a step further 

by using non-thresholded data and introducing hotspot metrics. 

3. The Evolution 3D algorithm, which expanded on the 2D version by 

incorporating 3D information and identifying 3D distribution of hotspots 

for the first time, supplemented with useful visualisations and 3D hotspot 

metrics. 

The Evolution 2D algorithm was subsequently incorporated into a data 

assessment and visualisation GUI, to provide clinical observers with a complete 

and useful tool for better AAA analysis.  

The novel information and insights extracted from these algorithms may be 

useful classifiers for further AAA analysis and stratification. The effect of these 

newfound hotspot metrics on AAA growth will be explored in Chapter 5.  
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Chapter 6 Prediction of AAA Expansion 

This chapter builds upon the work presented in the previous chapters to 

investigate prediction of AAA growth rate. The results from Chapter 3 on AAA 

measurement techniques using different modalities were applied here in order 

to calculate AAA size and AAA expansion rates. The classification of AAAs based 

on 2D and 3D hotspot detection, derived from the algorithms developed and 

presented in Chapter 4 (Hotspot detection) were used here to evaluate influence 

of detected USPIO uptake on AAA growth rate. Additionally, a number of 

anatomical metrics derived during the automatic processing of these datasets, for 

additional AAA stratification, are described and evaluated as potential AAA 

growth rate predictors. Finally, a multiple linear regression model for the 

prediction of AAA expansion rate is suggested as a starting point for further 

investigation using these methods with larger sample sizes in the future.  
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6.1 Introduction 

One of the main goals of numerous imaging studies of AAAs is the identification 

of an accurate method to predict AAA expansion and rupture. It has been 

suggested in several studies that aneurysm diameter, the current criterion for 

AAA management, is an inadequately imprecise predictor [118], [253], [254]. 

Given the urgent need for additional growth and rupture predictors [255], [256], 

I focused on developing additional variables which could be extracted from the 

MA3RS cohort dataset and be assessed for their potential predictive power.  This 

research dataset featured several novel imaging parameters acquired in a large 

surveillance patient population, which could be tested alongside these patients’ 

clinical assessments of aneurysm size and growth as assessed with ultrasound. 
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6.2 Methods  

6.2.1 Output (dependent variable) 

First, the most suitable measurement of AAA growth and rupture outcome to 

assess the predictive variables for the MA3RS trial had to be defined. At the time 

of the data processing for this chapter, the sample size available for AAA rupture 

or AAA-related deaths was too small (6 ruptures) to be used as an outcome. 

Therefore, only AAA growth rate could be used as the outcome to investigate 

predictors.  

The results presented in chapter 3 strongly indicated that CT and MRI 

measurements for AAA growth were interchangeable and were more accurate 

and reproducible than ultrasound. The CT scans available at the time of the 

processing of this chapter had not been segmented, so MRI-derived growth 

variables were used. Specifically, the max area metric was used to measure AAA 

growth rate, as it had been found to be more accurate than max AP diameter in 

chapter 3 section 3.5.4.  

Therefore, only MA3RS subjects for which yearly growth from MRI could be 

estimated were selected; namely individuals who had a baseline MRI scan and a 

1-year or 2-year follow-up MRI scan were included in this analysis, amounting to 

a sample of 79 patients.  

The AAA growth rate (of max area) was calculated as shown in Equation 6.1. 

𝐴𝐴𝐴 𝐺𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 max 𝑎𝑟𝑒𝑎  𝑓𝑟𝑜𝑚 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑠𝑐𝑎𝑛

𝑑𝑎𝑦𝑠 𝑓𝑟𝑜𝑚 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑜 𝑠𝑐𝑎𝑛 
∗ 365.25 

Equation 6.1 

The max area growth rate (mm2) variable corresponding to the 79-patient 

sample is presented in Table 6.1 and Figure 6.1.  
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Table 6.1: Basic statistics of Max Area Growth Rate (mm2). 

Max Area Growth Rate   

N Valid 79 

Missing 0 

Mean 254.1 

Median 226.1 

Std. Deviation 200.3 

Range 1022.5 

Minimum -87.3 

Maximum 935.2 

 

 

Figure 6.1:  Histogram of max area growth rate (mm2) as measured with MRI. 
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6.2.2 Multiple Linear Regression Predictors  

6.2.2.1 Available variables 

Predictors of AAA rupture previously hypothesised and/or investigated by other 

groups were described in the Introduction chapter (1.1.3-1.1.6).  

From those, the variables that had been acquired during baseline assessment of 

the patients and were examined in this chapter are: 

Continuous variables (descriptive statistics in Table 6.2): 

• Diastolic blood pressure (in mmHg) 

• Body Mass Index (BMI) 

Categorical variables (frequencies in Table 6.3 and Figure 6.2): 

• Gender (male/female) 

• Smoking (current/previous/never) 

• Diabetes (positive/negative) 

• Family history of AAA (positive/negative) 

 
Table 6.2: Descriptive statistics of available continuous variables. 

 N Minimum Maximum Mean Std. Deviation 

BMI 79 19.2 36.3 27.3 3.4 

BPdiast 79 62.0 118.0 80.8 10.2 

 

 

Table 6.3: Frequencies of available categorical variables. For Gender: 0= female, 1=male; for 
Smoking: 0 = current smoker, 1=previous smoker, 2=never smoker; for Diabetes: 0=negative, 
1=positive; for Family History of AAA: 0=negative, 1=positive; n=79 patients. These variables were 
collected during patient assessment at baseline.  

 
Gender Smoking Diabetes 

Family History of 

AAA 
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Freq. Percent Freq. Percent Freq. Percent Freq. Percent 

Valid 0 8 10.1 23 29.1 65 82.3 67 84.8 

1 71 89.9 45 57.0 14 17.7 12 15.2 

2 - - 11 13.9 - - - - 

Total 79 100.0 79 100.0 79 100.0 79 100.0 

 

 

Figure 6.2: Frequencies of categorical variables. A) Gender: 0= female (8 cases); 1=male (71 
cases). B)  Smoking: 0 = current smoker (23 cases), 1=previous smoker (45 cases), 2=never smoker 
(11 cases). C) Diabetes: 0=negative (65 cases), 1=positive (14 cases). D) Family History of AAA: 
0=negative (67 cases), 1=positive (12 cases); n=79 patients. These variables were collected during 
patient assessment at baseline.  

Additionally, from the automatic hotspot detection algorithms presented in 

chapter 4, the following classifications were investigated as potential predictors 

(categorical variables) and are further described in Table 6.4 and Figure 6.3: 
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o 2D hotspots on non-thresholded data (positive/negative) 

o 2D hotspots on 71%-thresholded data (positive/negative) 

o 3D hotspots on non-thresholded data (positive/negative) 

o 3D hotspots on 71%-thresholded data (positive/negative) 

 

Table 6.4: Frequencies of categorical variables corresponding to 2D and 3D hotspots as 
detected in sample with or without 71% threshold; n=79. 

 

Class2D_0 Class2D_71 Class3D_0 Class2D_71 

Freq. Percent Freq. Percent Freq. Percent Freq. Percent 

Valid 0 32 40.5 40 50.6 59 74.7 60 75.9 

1 47 59.5 39 49.4 20 25.3 19 24.1 

Total 79 100.0 79 100.0 79 100.0 79 100.0 

 

The application of the automatic 2D and 3D hotspot detection algorithms on the 

current sample revealed that the 71% threshold had more impact on the 2D 

classifications than in the 3D. As shown in Figure 6.3 A and B, 47 cases of USPIO-

positive AAAs were identified in 2D data without threshold, while the number of 

USPIO-positive cases was decreased to 39 with the threshold applied. 3D 

classification (Figure 6.3 C and D) determined 20 cases of USPIO-positive AAAs 

in the non-thresholded data and only 1 less (19 cases) in thresholded data.  
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Figure 6.3: Frequencies of categorical variables. A) 2D Hotspots on 0% threshold: 0= negative 
(32 cases), 1=positive (47 cases). B)  2D Hotspots on 71% threshold: 0= negative (40 cases), 
1=positive (39 cases). C) 3D Hotspots on 0% threshold: 0= negative (59 cases), 1=positive (20 cases). 
D) 3D Hotspots on 71% threshold: 0= negative (60 cases), 1=positive (19 cases); n=79 patients. These 
variables have been produced with the automatic algorithms presented in chapter 4. 

Finally, a set of experimental anatomical AAA measurements were automatically 

extracted from the manually segmented MRI scans, using MATLAB’s regionprops 

function. 

The descriptions below have been adapted from [252]: 

• Size or Area (measured in pixels): the number of pixels comprising the 

ROI. 

• Eccentricity: This value corresponds to the eccentricity of the ellipse that 

has the same second-moments (or covariance matrix) as the ROI area. The 

eccentricity refers to the ratio of the distance between the foci of the 

ellipse and its major axis length. The range of the value is between 0 and 
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1, with 0 corresponding to the extreme case that the ellipse is a circle and 

1 to the extreme case that the ellipse is a line. 

• Equivalent Diameter: This value corresponds to the diameter that a 

circle with the same area as the ROI would have. It is estimated as 

𝑠𝑞𝑟𝑡 (4 ∗
𝐴𝑟𝑒𝑎

𝑝𝑖
). 

• Major/Minor Axis Length: Given by the length (in pixels) of the 

major/minor axis of the ellipse that has the same normalised second 

central moments (or covariance matrix) as the ROI area. 

• Orientation: Given by the angle between the x-axis and the major axis of 

the ellipse that has the same second-moments (or covariance matrix) as 

the ROI area. This value is presented in degrees, with a range between -90 

to 90.  

These metrics were calculated for every slice of each AAA, and separately per 

each region, for example the size for the lumen, thrombus and wall were 

calculated separately per slice. In this way, ratios between different regions of the 

AAA could be calculated, reflecting anatomical relationships between them, to be 

examined as predictors for AAA growth.  

Average and maximum values were calculated for metrics of Eccentricity, 

Equivalent Diameter, Major Axis, Minor Axis and Orientation. The descriptive 

statistics for the average metric values calculated for this sample is presented in 

Table 6.5. and the descriptive statistics for the maximum metric values in Table 

6.6.  
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Table 6.5: Descriptive Statistics of Mean values of automatically produced metrics. 

 N Minimum Maximum Mean Std. 

Deviation 

Lumen Mean 

Eccentricity 

79 .29 .72 .51 .12 

Lumen Mean 

EquivDiameter 

79 18.2 45.3 32.5 6.0 

Lumen Mean MajorAxis 79 21.5 48.0 36.0 6.1 

Lumen Mean MinorAxis 79 15.8 44.4 29.9 6.2 

Lumen Mean 

Orientation 

79 -71.9 61.0 -9.8 28.5 

Wall Mean Eccentricity 79 .24 .66 .41 .08 

Wall Mean 

EquivDiameter 

79 14.4 28.6 19.7 3.3 

Wall Mean MajorAxis 79 51.7 114.6 67.2 9.8 

Wall Mean MinorAxis 79 46.0 105.7 60.6 8.8 

Wall Mean Orientation 79 -59.0 42.1 -7.1 24.0 

Thrombus Mean 

Eccentricity 

79 .23 .63 .40 .09 

Thrombus Mean 

EquivDiameter 

79 32.7 76.8 43.6 6.5 

Thrombus Mean 

MajorAxis 

79 35.0 81.0 46.0 6.8 

Thrombus Mean 

MinorAxis 

79 30.3 73.2 41.6 6.4 

Thrombus Mean 

Orientation 

79 -63.8 60.2 -5.5 29.3 

 

Table 6.6: Descriptive Statistics of Max values of automatically produced metrics 

 
N Minimum Maximum Mean 

Std. 

Deviation 

Lumen 

MaxEccentricity 
79 .34 .89 .65 .14 

Lumen 

MaxEquivDiameter 
79 22.9 50.2 36.3 6.3 

Lumen MaxMajorAxis 79 24.0 55.3 40.0 6.5 
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Lumen MaxMinorAxis 79 19.0 47.8 34.1 6.5 

Lumen 

MaxOrientation 
79 -61.24 89.28 44.4106 39.6 

Wall MaxEccentricity 79 .35 .75 .55 .092 

Wall 

MaxEquivDiameter 
79 14.7 32.9 22.3 4.3 

Wall MaxMajorAxis 79 57.1 125.0 73.6 11.2 

Wall MaxMinorAxis 79 51.7 117.1 65.9 9.7 

Wall MaxOrientation 79 -30.0 89.9 53.7 34.0 

Thrombus 

MaxEccentricity 
79 .32 .76 .54 .11 

Thrombus 

MaxEquivDiameter 
79 35.7 82.3 46.8 7.0 

Thrombus 

MaxMajorAxis 
79 37.0 86.4 49.9 7.8 

Thrombus 

MaxMinorAxis 
79 33.8 78.9 45.0 6.8 

Thrombus 

MaxOrientation 
79 -49.4 88.9 46.7 36.5 

 

In Table 6.7, some cases where the ratios of the metrics corresponding to 

different ROIs per slice are shown. For example, for Mean WT pixels, it was 

calculated as: Mean (Wall size/Thrombus size). A more detailed formula is 

presented in 6.3.1. 

Table 6.7: Descriptive Statistics for automatically produced metrics of Area (pixels) and 
Eccentricity ratios. These metrics have been produced automatically with an algorithm applied on 
MRI data.  N=79. 

 N Minimum Maximum Mean Std. Deviation 

Mean WT pixels 79 .14 3.97 .81 .72 

Mean WL pixels 79 .14 2.03 .44 .28 

Mean TL pixels 79 .09 6.09 1.02 .94 

Mean WT eccent 79 .66 2.15 1.13 .29 

Mean WL eccent 79 .38 1.52 .86 .24 

Mean TL eccent 79 .42 1.50 .85 .25 
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6.2.2.2 Limitations in Multiple Linear Regression 

The variables described in 6.2.2.1 were tested with Multiple Linear regression 

(MLR) analysis in various combinations. Simultaneous examination of all the 

variables available with MLR analysis was not possible, as this would violate two 

statistical assumptions of MLR, multicollinearity and sample size.  

The MLR assumption for multicollinearity states that no independent variables 

are highly correlated with each other. To meet this assumption, some variables 

could not be simultaneously included in the MLR model, e.g. MRI measurements 

of the baseline maxAP diameter had to be tested separately from max area 

measurements, as they were highly correlated. The Variance Inflation Factor 

(VIF) was used to quantitatively identify highly correlated variables in less 

obvious cases. The VIF creates an index which reflects the effects of collinearity 

on the variance of a predictor.  

For the 𝑘𝑡ℎ predictor of the multiple linear regression the 𝑉𝐼𝐹𝑘 is: 

𝑉𝐼𝐹𝑘 =  
1

1 − 𝑅𝑘
2 

Equation 6.2 

Where 𝑅𝑘
2 is the 𝑅2-value obtained by regressing the 𝑘𝑡ℎ predictor on the 

remaining predictors. A VIF of 1 can be interpreted as no correlation among the 

𝑘𝑡ℎ predictor and the rest of the predictor variables. Generally, values of 𝑉𝐼𝐹 > 4 

require further investigation, while values of 𝑉𝐼𝐹 > 10 are indicative of severe 

multicollinearity problems. 

Sample size also posed a challenge, as the available sample size determines the 

maximum number of predictors included in an MLR model to provide reliable 

estimates. To identify the maximum number of predictors for this sample, Green’s 

formula 5.1 was used [257], [258]: 
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min(𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒) = 50 + 8𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 

Equation 6.3 

According to this formula, 3 predictors would require a sample of at least 74 

patients, while 4 predictors would require at least 82. For this sample of 79 

patients therefore, MLR models with combinations of 3 predictors were primarily 

examined.  

 

6.2.2.3 Statistical Methods 

Multiple Linear Regression (MLR) analysis with SPSS version 22.0 (IBM Corp.) 

was used to examine whether AAA expansion could be significantly predicted by 

a combination of the available variables. A series of Stepwise and Enter method 

MLRs were used to identify the most significant combinations of predictors, in 

sets of 3. 
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6.3 Predictive Models 

The three predictors which were initially identified as the most significant in 

predicting the yearly rate of max area growth were Diameter, Eccentricity WT 

and 3D Hotspots (non-thresholded data), as presented in 6.3.1. Two additional 

predictors were identified as significant, namely Family History of AAA and 

diastolic BP. Family History of AAA was added as a 4th predictor to create the 2nd 

model (6.3.2) and subsequently diastolic BP was added as a 5th predictor to build 

the 3rd model (6.3.3). However, it should be noted here that as the available 

sample is only 79 patients, and as highlighted in section 0, using a 4th and a 5th 

predictor does indeed “stretch” the MLR sample assumptions and may potentially 

be weakening the statistical “relevance” of the MLR models. The 2nd and 3rd model 

were therefore included for completeness and to suggest potential predictors 

that should be considered in the future for models with larger sample numbers. 

 

6.3.1 First Model: 3 predictors  

The dependent and independent variable of the first MLR model (created with 

“Enter” method) are described below. 

Dependent Variable:  

MaxAreaGrowthRate (mm2 per year): Yearly growth rate of Maximum Area of 

AAA (calculated as average of 3 largest areas per AAA), measured with MRI. 

Independent Variables: 

1. Diameter (mm): Baseline maxAP diameter as measured with MRI 

2. 3D Hotspots: Binary (dichotomous) variable with value equal to 1 for 

subjects with at least one 3D hotspot detected (on 0%thresholded maps) 
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and 0 for subjects with no 3D hotspots (on 0%thresholded maps) 

detected. 

Eccentricity WT: Mean (Wall eccentricity/Thrombus eccentricity) per 

slice ratio, measured with MRI:  

 
1

𝑛
∗  (

𝑤𝑎𝑙𝑙 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦1

𝑡ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦1
+  

𝑤𝑎𝑙𝑙 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦2

𝑡ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦2
+ ⋯ +  

𝑤𝑎𝑙𝑙 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑛

𝑡ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑛
) , 

for n=number of slices per AAA. 

Eccentricity: A measure of how much a conic section deviates from 

being circular. Values ranging from 0 (circle) to 1 (highly elongated 

ellipse).  

 

Table 6.8: Descriptive statistics of first MLR model 

 Mean Std. Deviation N 

MaxAreaGrowthRate (mm2/year) 254.11 200.30 79 

Diameter (mm) 50.27 7. 58 79 

Eccentricity WT 1.13 .29 79 

3D Hotspots .25 .44 79 

 

For these, a modest but significant regression equation was found (𝐹 (3, 75)  =

 5.643, 𝑝 =  .002), with 𝑅 = .429, 𝑅2 = .184, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .152 and Durbin-

Watson = 2.206. 
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Figure 6.4: Predictor Importance of First Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictor depicted in blue (Diameter) with 
Beta=0.37 (p=0.001) is positive, while the predictors depicted in magenta (Eccentricity WT with 
Beta=-0.26 (p=0.16), 3D Hotspots with Beta=-0.22 (p=0.054)) are negative. 

The participants’ predicted yearly max area growth is modelled by:  

−6.167 + 9.747 (𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) − 181.912 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) − 98.383 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) 

 

Collinearity was assessed for the three predictors, with 𝑉𝐼𝐹(𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) =

1.113, 𝑉𝐼𝐹(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) = 1.113 𝑎𝑛𝑑 𝑉𝐼𝐹(3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) = 1.008.  

 

More detailed tables of the model are included in Appendix 2, section 2.1.1.  

 

Following the development of the first MLR model and determining the high 

prediction level of the max AP diameter as measured with MRI, a series of 

potential alternatives to this were investigated to identify whether they would 
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predict growth rate with more accuracy. The results of the multi-collinearity 

analysis between the alternative variables, the max AP diameter and the max area 

growth rate are presented in maximum and average values for equivalent 

diameter, major axis and minor axis of the thrombus and the wall were 

investigated. The highest correlation was presented by the mean of the major 

axes of the thrombus (highlighted in Table 6.9). 

 

The MLR model was also tested with the mean major axis of the thrombus instead 

of max AP diameter, as depicted in Figure 6.5 
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Table 6.9: Multicollinearity between alternatives to maxAP diameter and Max Area growth rate.  
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Pearson 

Correlation 
.288* .042 .328** .362** .385** .387** .372** -.055 .248* .285* .314** .306** .286* 

Sig. (2-

tailed) 
.010 .712 .003 .001 .000 .000 .001 .630 .027 .011 .005 .006 .011 

N 79 79 79 79 79 79 79 79 79 79 79 79 79 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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With the max AP diameter replaced with the thrombus major axis, an alternative, 

modest but significant regression equation was found (𝐹 (3, 75)  =  8.482, 𝑝 =

 .002), with 𝑅 = .503, 𝑅2 = .253, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .223 and Durbin-Watson = 

2.295. 

 

 

Figure 6.5: Predictor Importance of First Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictor depicted in blue (Thrombus major 
axis) with Beta=0.46 (p<0.001) is positive, while the predictors depicted in magenta (Eccentricity 
WT with Beta=-0.23 (p=0.023), 3D Hotspots with Beta=-0.25 (p=0.022)) are negative. 

The participants’ predicted yearly max area growth is equal to:  

−156.058 + 13.554 (𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠) − 163.513 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇)

− 112.967 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) 

Collinearity was assessed for the three predictors, with 

𝑉𝐼𝐹 (𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠) = 1.114, 𝑉𝐼𝐹 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) =

1.002 𝑎𝑛𝑑 𝑉𝐼𝐹 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) = 1.117.  

More detailed tables of the model are included in Appendix 2, section 2.1.2.  
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6.3.2 Second Model: 4 predictors 

The dependent and independent variable of the second MLR model (created with 

“Enter” method) are described below. 

Dependent Variable: MaxAreaGrowthRate (mm2 per year) 

Independent Variables (first three same as first model): 

1. Diameter (mm) 

2. 3D Hotspots 

3. Eccentricity WT  

4. Family History AAA: Binary (dichotomous) variable with value equal to 

1 for subjects with positive Family History of AAA and 0 for negative. 

Table 6.10: Descriptive statistics of second MLR model 

 Mean Std. Deviation N 

MaxAreaGrowthRate (mm2/year) 254.11 200.27 79 

Diameter (mm) 50.27 7.58 79 

Eccentricity WT 1.13 .29 79 

3D Hotspots .25 .44 79 

FamHistoryAAA .15 .36 79 

 

With Family History AAA added to the MLR model as a 4th predictor, a modest 

but significant regression equation was found (𝐹 (4, 74)  =  6.394, 𝑝 <  .000), 

with 𝑅 = .507, 𝑅2 = .257, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .217  and Durbin-Watson = 2.151 
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Figure 6.6: Predictor Importance of Second Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictors depicted in blue (Diameter with 
Beta=0.38 (p=0.001), Family History of AAA with Beta=0.28 (p=0.009)) are positive, while the 
predictors depicted in magenta (Eccentricity WT with Beta=-0.28 (p=0.007), 3D Hotspots with 
Beta=-0.27 (p=0.011)) are negative. 

Participants’ predicted yearly max Area growth is equal to: 

−14.945 + 9.994 (𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) − 198.699 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) − 130.927 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠)

+ 154.651  (𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) 

Collinearity was assessed for the three predictors, with 𝑉𝐼𝐹(𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) =

1.114, 𝑉𝐼𝐹(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) = 1.182 𝑎𝑛𝑑 𝑉𝐼𝐹(3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) =

1.016, 𝑉𝐼𝐹(𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) = 1.070  

More detailed tables of the model are included in Appendix 2, section 2.2.1.  

With the thrombus major axis replacing the max AP diameter and the Family 

History AAA added to the MLR model as a 4th predictor, a significant regression 

equation was found (𝐹 (4, 74)  =  8.413, 𝑝 <  .000), with 𝑅 = .559, 𝑅2 = .313,

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .275  and Durbin-Watson = 2.185 
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Figure 6.7: Predictor Importance of Second Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictors depicted in blue (Thrombus Major 
Axis Beta=0.45 (p<0.001), Family History of AAA with Beta=0.25 (p=0.014)) are positive, while the 
predictors depicted in magenta (Eccentricity WT with Beta=-0.25 (p=0.011), 3D Hotspots with 
Beta=-0.31 (p=0.005)) are negative. 

Participants’ predicted yearly max Area growth is modelled by: 

−142.238 + 13.301 (𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠) − 178.267 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇)

− 139.877 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) + 139.653  (𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) 

Collinearity was assessed for the three predictors, with 

𝑉𝐼𝐹(𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠) = 1.116, 𝑉𝐼𝐹(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) =

1.010 𝑎𝑛𝑑 𝑉𝐼𝐹(3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) = 1.175, 𝑉𝐼𝐹(𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) = 1.070  

More detailed tables of the model are included in Appendix 2, section 2.2.2.  

6.3.3 Third Model: 5 predictors 

The dependent and independent variable of the third MLR model (created with 

“Enter” method) are described below. 

Dependent Variable: MaxAreaGrowthRate (mm2 per year) 
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Independent Variables: 

1. Diameter (mm) 

2. 3D Hotspots 

3. Eccentricity WT  

4. FamHistoryAAA 

5. BPdiast (mmHg): Diastolic Blood Pressure 

 

Table 6.11: Descriptive Statistics of the third MLR model 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.11 200.27 79 

Diameter (mm) 50.27 7.58 79 

Eccentricity 1.13 .29 79 

3D Hotspots .25 .44 79 

FamHistoryAAA .15 .36 79 

 

With diastolic BP added to the MLR model as a 5th predictor, an improved and 

significant regression equation was found (𝐹 (5, 73)  =  6.719, 𝑝 <  .000), with 

𝑅 = .561, 𝑅2 = .315, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .268  and Durbin-Watson = 2.030 
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Figure 6.8: Predictor Importance of Third Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictors depicted in blue (Diameter with 
Beta=0.38 (p<0.001), Family History of AAA with Beta=0.26 (p=0.013), Diast.Blood Pressure with 
Beta=0.24 (p=0.015)) are positive, while the predictors depicted in magenta (3D Hotspots with 
Beta=-0.27 (p=0.013), Eccentricity WT with Beta=-0.26 (p=0.009),) are negative. 

 

Participants’ predicted yearly max Area growth is modelled by: 

−422.313 + 10.096 (𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) − 184.338 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇)

− 122.378 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) + 142.456 (𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴)

+ 4.776 (𝐵𝑃𝑑𝑖𝑎𝑠𝑡) 

Collinearity was assessed for the three predictors, with 𝑉𝐼𝐹(𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟) = 1.115,

𝑉𝐼𝐹(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) = 1.188, 𝑉𝐼𝐹(3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) =

1.023, 𝑉𝐼𝐹(𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) = 1.079 , 𝑉𝐼𝐹(𝐵𝑃𝑑𝑖𝑎𝑠𝑡) = 1.017 

 

More detailed tables of the model are included in Appendix 2, section 2.3.1.  

With the thrombus major axis replacing the max AP diameter and with diastolic 

BP added to the MLR model as a 5th predictor, an improved and significant 
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regression equation was found (𝐹 (5, 73)  =  7.945, 𝑝 <  .000), with 𝑅 = .594,

𝑅2 = .352, 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = .308  and Durbin-Watson = 2.068 

 

Figure 6.9: Predictor Importance of Third Multiple Linear Model. The absolute values 
corresponding to the standardised beta coefficients of each predictor are depicted on this graph for 
comparison, in descending order of “importance”. The predictors depicted in blue (Thrombus major 
axis with Beta=0.44 (p<0.001), Family History of AAA with Beta=0.23 (p=0.019), Diast.Blood 
Pressure with Beta=0.20 (p=0.038)) are positive, while the predictors depicted in magenta (3D 
Hotspots with Beta=-0.28 (p=0.007), Eccentricity WT with Beta=-0.24 (p=0.015),) are negative. 

Participants’ predicted yearly max Area growth is modelled by: 

−452.006 + 12.762 (𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑀𝑎𝑗𝑜𝑟 𝐴𝑥𝑖𝑠) − 166.244 (𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇)

− 129.690 (3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) + 129.817 (𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴)

+ 3.961 (𝐵𝑃𝑑𝑖𝑎𝑠𝑡) 

Collinearity was assessed for the three predictors, with 

𝑉𝐼𝐹(𝑇ℎ𝑟𝑜𝑚𝑏𝑢𝑠 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠) = 1.124, 𝑉𝐼𝐹(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑊𝑇) = 1.017,

𝑉𝐼𝐹(3𝐷 𝐻𝑜𝑡𝑠𝑝𝑜𝑡𝑠) = 1.188, 𝑉𝐼𝐹(𝐹𝑎𝑚𝑖𝑙𝑦𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐴𝐴𝐴) = 1.078 ,

𝑉𝐼𝐹(𝐵𝑃𝑑𝑖𝑎𝑠𝑡) = 1.025 

More detailed tables of the model are included in Appendix 2, section 2.3.2.  
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6.4 Discussion 

Among the collection of variables examined within the boundaries of MLR 

analysis of the sample at hand, the three most significant predictors of annual 

AAA growth rate were included in the first MLR model presented in this chapter. 

Those were Diameter, Eccentricity WT and 3D Hotspots.  

As expected, the strongest predictor was found to be baseline size of the AAA. 

This finding is in agreement with the current AAA management practices by the 

NHS and supporting literature, as outlined in sections 1.1.3, 1.1.4 and 1.1.6.2. The 

size was initially included in the MLR models as max AP diameter, as the 

commonly used metric in current practice, and was found to be significant. 

However, further investigation into alternative size metrics revealed that the 

average size of the thrombus per AAA, noted here as Thrombus major axis 

(calculated as the mean of the major axes of all slices) predicted annual area 

growth more accurately than max AP diameter. The reason that the thrombus 

major axis appears to be a more accurate predictor may be due to the fact that as 

a multi-slice metric it provides a more comprehensive representation of the 

whole volume of the AAA, rather than focusing on one slice, as max AP diameter 

does. Furthermore, this metric does not include the wall ROI, which has been 

shown (see section 4.7.2.4) to be more error-prone during manual segmentation; 

it may thus include more accurate segmentations which provide more 

representative baseline sizes.  

 

The second most significant predictor detected was Eccentricity WT, which 

represents an anatomical feature of the AAA by expressing the mean of the per-

slice ratios of wall eccentricity over thrombus eccentricity. It was found to be a 

negative predictor in the AAA growth rate model. This suggests that in cases of 
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increasingly elliptically-shaped walls compared to the corresponding thrombi, 

the AAA growth rate would be lower.  

To visually assist with the interpretation of this finding, two hypothetical cases 

were illustrated in Figure 6.10. Case A is a case where the wall (blue) closely 

approaches the value zero and thus the shape of a circle, while the thrombus 

(green) approaches the value one and thus the shape of an ellipse with a high 

degree of ovalness. According to the MLR, this would result in the WT variable 

most predictive of the highest AAA growth rate. Case B is a case where the wall 

closely approaches the value one and thus the shape of an ellipse, while the 

thrombus approaches the value zero and thus the shape of a circle. This case 

would contribute to a prediction of the lowest AAA growth rate. 

In terms of AAA morphology, this finding could be pointing towards a delicate 

balance between the different levels of pressure imposed to the wall by the 

thrombus depending on the shape of each. The changes in the wall’s shape may 

also be influenced by the environment surrounding the AAA (e.g. whether it 

expands towards rigid organs) and on the elasticity level on the wall [259]. No 

information about the size or shape of the lumen was incorporated in this metric. 
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Figure 6.10: Two illustrations of the hypothetical extreme cases of the mean wall eccentricity 
over thrombus eccentricity ratio. The wall is depicted in blue and the thrombus in green colour. 
In A, the ratio approaches its minimum value, with wall eccentricity close to value zero and thus 
close to circular shape and thrombus eccentricity close to value one and thus close to elliptical shape 
with high degree of ovalness. In B, the reverse is seen, with the ratio approaching its maximum value, 
with wall eccentricity close to value one and thus close to elliptical shape and thrombus eccentricity 
close to value zero and thus close to circular shape. 

The histogram of the Eccentricity WT values in Figure 6.11 demonstrates that the 

majority of AAAs are concentrated near value 1, therefore most AAAs have walls 

and thrombi that tend to have a shape of similar eccentricity. The cases of AAAs 

closer to the beginning of the axes correspond to faster growing rates. As the 

distance from the beginning of the axes increases, the AAA growth rate decreases. 
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Figure 6.11: Histogram of Eccentricity WT values of all AAAs included in the MLR model 
(n=79). 

Eccentricity of the lumen has previously been suggested as potentially [260] 

influential when combined with other parameters in exerting pressure load on 

the wall, but to my knowledge this is the first time that the ratio of eccentricities 

of wall and thrombus has been used and found to predict AAA growth rate. This 

anatomical measurement merits investigation in more depth and if possible with 

larger samples.  

 

The third most significant predictor was 3D hotspots, as detected on non-

thresholded ΔT2* maps. Three more classifications of hotspots had been 

examined: 2D hotspots detected on non-thresholded data, 2D hotspots detected 

on 71%-thresholded data, and 3D hotspots detected on 71%-thresholded data, 

but none of these were found to have significant predictive power. Contrary to 

the expectations arising from the pilot study (see section 1.4) and the background 

described in section 1.3.2, the effect of the presence of 3D hotspots on the AAA 

growth rate was found to be negative.  
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As this finding was not consistent for 2D hotspots from previous analysis, the 

physiological differences between the presence of 2D and 3D hotspots, or the 

manner in which they are detected might describe different processes present in 

a range of AAA’s. 3D hotspots (derived from non-thresholded data) represent 

comparatively narrow (per slice) but elongated (to adjacent slices), complicated 

inter-connected shapes which often span over large areas/many slices and often 

expanding to reach the aortic wall.  This presentation may be consistent with the 

previous described network of channels within the thrombus described in [24], 

which were found to be of adequate size as to allow cellular passage. Histologic 

evaluation of these channels had suggested that they may be functioning as a 

delivery system for cells and macromolecules to the aortic wall of the AAA. In the 

original pilot study [15], USPIO uptake was classified into three groups, negative 

for hotspots, positive for hotspots, and a third group which demonstrated a 

“diffuse” presence of USPIO throughout the aneurysm in the thresholded data.  It 

is possible that the 3D connectivity stage of the 3D hotspot detection is sensitive 

to the presence of this interconnected network of vascular supply throughout the 

aneurysm and that the presence of 3D hotspot parameter is in fact weighted 

towards the previously described diffuse uptake group of the pilot study.  In the 

paper by Richards et al, this group demonstrated the same growth rate as the 

USPIO negative group.  If the 3D hotspots are therefore sensitive to USPIO 

trapped within this vascular network system, it could be inferred that USPIO 

detected in this case is via blood flow. In this case, if blood could travel through 

this channel system, it may be assisting in the delivery of oxygen to the aortic 

wall, and thus actually decreasing its degradation process and expansion rate, as 

originally evidenced by the lack of increased growth rate in the pilot study diffuse 

uptake group. This hypothesis should be further investigated with larger sample 

sizes and more detailed morphological analysis of the 3D hotspots, which could 

be conducted with the application of the 3D hotspot metrics introduced in 

chapter 5. 
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Family history of AAA and diastolic blood pressure were identified as fourth 

and fifth significant predictor respectively, in agreement with the literature as 

presented in section 1.1.3 of the introduction chapter.  

Predictors previously suggested in the literature, namely smoking, sex, diabetes 

(negative predictor), and BMI were also checked, but none of them was found 

to be a significant predictor of AAA expansion rate. This could be affected by the 

fact that MRI measurements were used to measure growth rate as output in the 

analysis presented in this chapter, while the majority of studies suggesting the 

aforementioned predictors (see sections 1.1.3 and 1.1.4) used ultrasound for 

output measurement.   Whist MRI appears from the material presented in this 

thesis to be a more reliable assessment of AAA size, the ultrasound studies which 

suggest demographic factors such as smoking, sex etc. to be significant predictors 

are generally in very large scale epidemiological studies in AAA populations 

where MRI growth rate is, as yet, an untested outcome. 
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6.5 Summary 

In this chapter, MLR analysis was employed to investigate possible predictive 

powers of the variables extracted from the MA3RS datasets. The relatively smaller 

sample size for which MRI growth rate outcome was available allowed for three 

significant predictors to be reliably identified, which were size (as either max 

baseline diameter or thrombus major axis), an anatomical metric (Eccentricity of 

mean wall/thrombus ratio) and the presence of 3D hotspots.  

The role of baseline size as a predictor was expected and well- documented in the 

literature, but a novel way of calculating it was presented, namely the average 

thrombus major axis, which accounted for the entire volume of each AAA, instead 

of focusing on one slice.  

Furthermore, this chapter introduced the eccentricity predictor which compared 

wall and thrombus shape and has not been used before; this introduces a new 

path to be explored in AAA growth rate prediction analysis, perhaps in 

combination with wall shear stress analysis.  

An unexpected negative relationship between the presence of 3D hotspots and 

AAA expansion rates was detected and should be further investigated, potentially 

considering the possibility that 3D hotspots detected with my algorithms might 

not correspond to inflammation, but rather to vascular transport of USPIOs 

within inter-connected networks of capillaries throughout the AAA.  

The MLR models also identified family history of AAA and high diastolic blood 

pressure as significant predictors of AAA growth rate, but these two findings 

should be further verified with larger sample sizes, as the sample available was 

not sufficient for reliably defining more than 3 predictors in the MLR models.  
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Chapter 7 Conclusion and Perspectives 

The current clinical standard of care for patients with abdominal aortic 

aneurysms is to monitor the cross-section diameter of the aneurysm using 

ultrasound imaging.  Despite this surveillance program, a significant number of 

aneurysms below the diameter threshold for intervention will rupture whilst 

patients are under surveillance (see chapter 1).  Several approaches to better 

understand aneurysm progression have been attempted, pathophysiological, 

biomechanical, and molecular in nature.  However, the prediction of aneurysm 

expansion and rupture remains a challenge (see sections 1.1.3, 1.1.4). 

Previously, a pilot study undertaken in Edinburgh [15] described a novel 

application of MR imaging of AAA’s using ultrasmall superparamagnetic iron 

oxide particles to track macrophages to site of inflammation in the aneurysms, 

inflammation having been previously identified as a key biological process 

occurring in tissue samples obtained from ruptured aneurysms [97], [102], [103].  

More recently the MA3RS trial, which started in parallel with the work described 

in this PhD thesis, expanded this pilot study in a larger multi-centre cohort of AAA 

patients under surveillance, attempting to determine whether USPIO-MRI could 

be a useful tool to investigate AAA development and the role of inflammation in 

its growth and potentially aid in rupture prediction in “at-risk” aneurysms. The 

image processing methods employed in these studies for the segmentation of 

images, and subsequent detection of inflammatory “hotspots” and AAA 

classification were performed manually.  This is exceptionally time-consuming, 

involving appropriately qualified and experience clinical observers making 

repeated manual classifications of the aneurysms.  The detection of “hotspots” of 

USPIO uptake in the aneurysms was based on application of a thresholding 

technique, determined from reproducibility data of repeated imaging with and 

without USPIO application.  It was felt by the clinical team that whilst this 
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threshold manual approach was reliable to the degree that any USPIO uptake 

observed was reliable in terms of being above this threshold, that the threshold 

methodology was perhaps too restrictive and risked potentially discarding useful 

information about the full range of USPIO distribution within the aneurysm.  

Therefore, subtle information about inflammation within the aneurysms may 

have been neglected.  The clinical team were also very keen to determine whether 

areas of inflammation could be observed to extend along the length of the 

aneurysm which was not possible using the 2D manual threshold methodology 

used (see section 1.5.2).  The work presented in this thesis aimed to enhanced 

and adapt the image analysis pipeline to a) automate and therefore speed up 

detection of USPIO hotspots of inflammation within the aneurysms, b) determine 

whether an approach could be developed which was able to detect the presence 

of hotspot of inflammation from non-thresholded data, and finally c) to determine 

whether methods could be developed to detect the extent to which hotspots of 

inflammation extended along the length of the aneurysm.  This work was 

performed in parallel to the MA3RS study with the clinical team working on 

MA3RS, to expand on the established methodology and complement the MA3RS 

study analysis.  

Firstly, the existing methods for determining AAA size and expansion rate were 

assessed.  The work presented in chapter 3 demonstrates that ultrasound tends 

to under-measure AAA diameter in comparison to both MRI and CT modalities, 

while MRI can be used essentially interchangeably with CT, which is currently 

used as a gold standard for surgical planning imaging in the AAA population 

where intervention is required. Furthermore, the use of the maximum Anterior-

Posterior diameter for AAA measurements was shown to introduce a degree of 

variability, particularly for growth measurements.  This was true to some extent 

for all modalities and was particularly present in the ultrasound data.  An 

alternative and more reproducible measurement metric was suggested for 

growth calculations, namely maximum area, derived from MRI. 
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Automation of the manual analysis process for hotspot detection was also 

achieved, making it more reproducible and less prone to operator error as 

presented in chapter 4. The automatic processing was considerably faster and 

reached excellent levels of “agreement” with the manual process, also detecting 

inflammatory “hotspots” that the clinical team agreed they had missed upon 

subsequent review.  

Further to the replication of the manual processing, and in a bid to incorporate as 

much of the AAA USPIO uptake data as was available, several methods for hotspot 

detection were evaluated and a k-means clustering approach adopted (chapter 

4).  Working with the clinical team, the clustering detection of hotspots was 

evolved to deal with problematic cases and introduce rules and exceptions to the 

initial clustering approach until a reliable replacement to the manual process was 

achieved (See section 4.3.11-4.4.4).  As well as an automatic analysis of non-

thresholded data, analysis of distribution of USPIO across multiple slices was 

introduced (see section 4.5-4.6), as well as novel visualisation of USPIO uptake 

throughout the AAA volume with 3D models. The lack of thresholding and the use 

of a clustering technique that adapted to each specific dataset, as well as the 

presence of a number of adjustable variables within the 2D and 3D automated 

algorithms developed make this process more easily applicable to datasets 

obtained with alternative acquisition protocols, or on different scanners, and 

crucially does not reduce reliability by removing user-derived thresholds of 

significance to USPIO uptake. Additionally, supplementary AAA and hotspot 

metrics were automatically derived from the MRI datasets in both the 2D and 3D 

algorithms developed which may have some potential in assisting further AAA 

stratification. The algorithms developed and presented in chapter 4 were 

incorporated into a GUI which may be used by clinicians to access the automatic 

algorithms, but also to assess and visualise datasets.   This MATLAB-based GUI 

was used to assess performance of the algorithms and aid in their refinement.  
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This tool can be easily adapted for further algorithm development or the 

requirements of the clinical team for further evaluation. 

In the last part of this thesis presented in chapter 5, the hotspot detection and 

metrics that were derived from my algorithms were applied in a subset of 79 

patients from the MA3RS population, for which outcome could be calculated from 

MRI data in terms of growth rate over 12-24 months.  The classifications derived 

from the automatic hotspot detections and the metrics were combined with size 

measurements acquired during baseline assessment of the patients, to 

investigate whether any of the derived parameters from my algorithms exhibited 

any potential in the prediction of annual AAA growth rate. Multiple linear 

regression models were investigated for this 79-patient cohort.  This sample size 

allowed for the reliable identification of three significant predictors as presented 

in chapter 6: size, eccentricity and the presence of 3D hotspots.  The “average 

thrombus major axis” was introduced as a novel size metric and it was shown to 

predict annual AAA growth more successfully than the maximum AP diameter, as 

it was representative of larger proportion of the AAA volume, rather than 

deriving the measurement from only a single 2D slice. 

The “eccentricity” predictor was also introduced as a novel morphological metric 

describing the relationship between thrombus shape and wall shape and possibly 

representative of the effects of shear wall stress on AAA growth. 

Contrary to expectations regarding the influence of focal USPIO uptake on AAA 

expansion, the MLR models developed identified a negative relationship between 

3D hotspots and expansion rate. I hypothesise that these hotspots may be 

corresponding to transported USPIO within inter-connected vascular channels 

that have previously been hypothesised in previous work and the pilot imaging 

study here in Edinburgh [15] to allow cells to reach the aortic wall and supply it 

with necessary nutrients.  If the 3D USPIO detection developed in this thesis is in 

fact sensitive to the presence of this vascular network, it has been previously 
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suggested that aneurysms exhibiting this vascular network may in fact be 

growing at a slower rate, hence the negative predictive value of this parameter 

with aneurysm growth rate. 

Family history of AAA and high diastolic blood pressure were also identified as 

significant predictors of AAA growth rate in line with previous literature in larger 

epidemiological studies. However, no more than 3 predictors could reliably be 

incorporated in the MLR models in this work due to the relatively small sample 

size used to assess the algorithm variables, which is a limitation of this work.  

Furthermore, T2* mapping of USPIO uptake has been demonstrated in 

cardiovascular imaging in particular to be prone to image artefacts, particular 

“blooming” of signal dropout around presence of USPIO [15], [261], [262].  

Therefore, further development of acquisition protocols is required to minimise 

image artefacts in these datasets.  The Edinburgh group are currently helping to 

develop application of a positive contrast USPIO imaging sequence which will 

help to reduce image artefacts in these datasets.  One further limitation to this 

work that became obvious during algorithm development was the reliance of the 

current methods on manual segmentation of the original anatomical data by 

clinical observers.  This was an arduous and time-consuming task, and therefore 

prone to some degree of operator error, as evidenced by the segmentation errors, 

both accidental (extra pixels segmented or not segmented in datasets) and 

morphological (the duodenum incorporated in aneurysm segments).  An obvious 

improvement to the analysis pipeline would be the automating of anatomical 

segmentation of the datasets.  Whilst that was desirable, it was outside of the 

scope of the work presented in this thesis.  Initially, attempts were made to 

automate AAA segmentation in parallel with the MA3RS trial and the work 

presented in this thesis.  However, reliable automatic segmentation of the aortic 

wall proved very difficult to implement, and manual segmentation was instead 

adopted into the MA3RS trial.  The USPIO-MRI methodology was further 

implemented in assessment of inflammation in the myocardium, following 
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infarct, coronary artery bypass and myocarditis [261]–[263].  Reliable automated 

segmentation of the myocardium proved much easier to implement and it would 

be interesting to apply the algorithms developed in this thesis to the 

automatically segmented myocardial USPIO-MRI datasets in further work.  

Unfortunately, there was not enough time to implement this, with the myocardial 

data only arriving towards the end of the work presented here. 

The MLR findings presented in chapter 5 present several parameters which 

exhibit at least some potential in the enhanced description of AAA’s which may 

be considered “at risk”.  To properly assess the methods presented in this thesis 

and their potential for monitoring AAA and aiding in growth rate and rupture 

prediction, further investigations should be made with larger sample sizes that 

would afford the inclusion of more potential predictors in the models and a more 

robust assessment of variable significance in predictive models. 

Furthermore, the inclusion of larger cohorts would potentially allow for sub-

classifications of AAAs to be explored, for example with the use of the hotspot 

metrics introduced here to determine whether previously identified large 

diameter aneurysms could be labelled as “at risk” if they exhibited unusual 

characteristics.  Additional hotspot metrics could also be relatively easily 

implemented using the data derived by the automated algorithms presented in 

this thesis.  Hotspot volume, or numbers of hotspots present within an aneurysm 

could be derived and investigated as potential methods to sub-classify 

aneurysms.  Unfortunately, there was no time to implement these in the work 

presented here. 

Furthermore, more sources of AAA data could be incorporated into a multi-

modality assessment of different aspects of aneurysm physiology, to enrich these 

investigations, including for example mechanical models of stress [3], [264], or 

information on appearance of calcification within AAAs as detected by positron 

emission tomography [255]. 
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Finally, the algorithms developed in this thesis would benefit from an 

implementation in a lower-level programming language such as C++, which 

would make processing faster and would enable us to develop a stand-alone 

application which clinicians would be able to use.  An executable file could be sent 

out to multiple sites for evaluation in hotspot detection, potentially in multiple 

clinical applications.  This would help to obtain feedback and evolution of the 

algorithms for wider application in the detection of contrast uptake in medical 

imaging. 
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Appendix 1: Research Output 

The work described in this thesis has been presented in the following conferences: 

 

• “Automatic Classification and 3D Visualisation of Abdominal Aortic Aneurysms to Predict 
Aneurysm Expansion and Rupture”, Conference Scientific Poster, International Society for 
Magnetic Resonance in Medicine Annual Meeting (ISMRM 2016), Singapore. 

• “Automatic detection of inflammatory ‘hotspots’ in abdominal aortic aneurysms to identify 
patients at risk of aneurysm expansion and rupture”, Oral Presentation and e-Poster in 
International Society for Magnetic Resonance in Medicine Annual Meeting (ISMRM 2015), 
Toronto, Canada 

• Oral Presentation in European Society for Magnetic Resonance in Medicine and Biology 
(ESMRMB 2015) Congress, Edinburgh, UK 

• Oral Presentation in ISMRM Workshop on “MRI Cell Tracking for Visualizing Cellular 
Therapeutics & Inflammation”, La Jolla, CA, USA 

• Oral Presentation and Traditional Poster in British Chapter of ISMRM Annual Scientific 
Meeting (2014), Edinburgh, UK 
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Scientific poster presentation, International Society for magnetic 

Resonance in Medicine Annual Meeting (ISMRM 2016) Singapore 

Automatic Classification and 3D Visualisation of Abdominal Aortic 
Aneurysms to Predict Aneurysm Expansion and Rupture 

Yolanda Georgia Koutraki1,2, Rachael O. Forsythe2, Olivia Mcbride2, Chengjia Wang1,3, Jennifer 

Robson2,  Tom J. MacGillivray1, Calum D. Gray1, David E. Newby1,2 and Scott I. Semple1,2 

1 Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom, 2 Centre for 

Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom, 3 Toshiba Medical 

Visualization System-Europe, Edinburgh, United Kingdom 

Introduction 

Abdominal aortic aneurysms (AAA) are responsible for 1-3% of deaths in men aged 65 to 85 in 

the western world1. Currently decisions for AAA repairs are based on ultrasound measures of 

the aneurysm diameter (>5.5cm), which is an imperfect criterion since 60% of AAA>5.5 cm 

never rupture, while 10-20% of AAA< 5.5 cm do rupture2,3. Ruptured AAA cause 80%-90% 

mortality, so there is an imperative need for better methods to accurately predict AAA 

expansion and rupture. 

Richards et al4 demonstrated that uptake of Ultrasmall Superparamagnetic Particles of Iron 

Oxide (USPIO) in MRI identifies cellular inflammation, while differentiation in patterns of 

inflammation correlates with aneurysm growth-rate: AAA with distinct mural uptake of USPIO 

(“inflammatory hotspots”) were found to expand significantly faster. 

This processing of the data on a 2D slice-by-slice basis however is time-consuming and it uses 

an empirically-defined threshold which may exclude important information, while inter- and 

intra-observer variability are introduced by subsequent manual classification. 

We previously suggested the use of a classification technique6 which automatically detects 

hotspots of inflammation and classifies AAA.  

We have now developed our algorithm to include 3D processing of the data. The inflammation 

throughout the whole volume of the AAA can be quantified and visualised for the first time; this 

enables us to begin sub-classification of the current groups and higher accuracy of growth 

prediction in our existing classification. 

We are also incorporating anatomical measurements to further assist our classification with 

multivariate analysis. 

Our algorithm is now included in a Graphical User Interface (GUI) and we have enabled batch 

processing to greatly reduce classification time. 
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Methods 

350 patients were imaged using a 3-T MRI Verio (Siemens GmbH, Erlangen) before and 24+ 

hours after administration of USPIO (Rienso); sub-groups were randomly selected for our 

algorithm to be tested. A multi-echo, gradient-echo T2*W sequence was used to produce T2* 

maps to detect the accumulation of USPIO within the AAA. The percentage change in T2* 

(%ΔT2*) was calculated and displayed as a colour scale. The datasets were registered 

automatically using a previously described custom algorithm5. Our program was built in 

MATLAB-R2015a (Mathworks) and uses non-thresholded data. The periluminal area of the AAA 

is automatically masked. In order to detect ‘hotspots’ of USPIO uptake, an adapted k-means 

clustering (k=7) algorithm and 2D and 3D-connectivity are applied to the %ΔT2* data. Metrics 

(e.g. lumen size and shape) are calculated using MATLAB and the 3D visualisations are created 

in MATLAB and Paraview (Kitware). 

Results 

In the subpopulation of 16 patients initially processed, classification of 12 out of 16 patients was 

in agreement between the automatic classification and the clinicians’ manual classification (92% 

of hotspots agreed). However when we checked the outcome of the percentage US growth of the 

AAA at one year, the automatic classification was more predictive of growth than manual 

classification (Figure 1). This might be the result of using non-thresholded data in the automatic 

processing, so that the automatically detected 2D hotspots appear larger and therefore less 

potential hotspots are discarded (Figures 2, 3). We are now in the process of using the 3D-

connectivity between hotspots of different slices and the metrics to subclassify the AAA 

according to hotspot size and shape. The total processing time with our program for each 

patient ranges between 70 to 95 seconds. The corresponding processing time by trained 

observers ranges between 45 to 65 minutes per patient per observer. 

Discussion 

Our automatic classification program appears to have a high success rate in reproducing the 

clinicians’ manual classification, while introducing improvements to the process that increase 

aneurysm growth-rate prediction accuracy. This software may provide clinicians with more 

automated, robust and fast data processing and can effectively assist in the assessment of future 

AAA patients. By using non-thresholded data both in 2D and 3D, we obtain more reliable 

measurements of USPIO uptake, including areas missed in manual processing. The clustering 

technique used in our algorithm adapts to every individual patient, while the 71% threshold 

used in the manual processing is population-based. The processing time of the program is 

approximately 40 times faster than the manual processing, without taking into consideration 

the extra time needed for observer training. The results are fully reproducible removing inter- 
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and intra-observer variability.  With the incorporation of anatomical metrics and 3D 

connectivity information we have the opportunity to investigate further sub-classifications 

within the AAA patients. Furthermore, these techniques can be adapted in the future to assist 

with the imaging of inflammation throughout the body in different clinical application, for 

example USPIO uptake targeting inflammation post myocardial infarction. 

 

Figure 1: Mean AAA growth rate (mm/year) of AAAs as classified by clinicians (grey 
coloured bars and by automatic algorithm (black-coloured bars). Group 1 corresponds to 
AAAs with no mural or thrombus USPIO uptake, except for isolated periluminal T2* enhancement, 
Group 2 corresponds to AAAs with diffuse USPIO uptake that was distinct from the periluminal 
thrombus and the aortic wall, and Group3 corresponds to AAAs presenting with “hotspots” of 
inflammation. 

 

Figures 2 & 3: Comparison of manual (by trained observer) against automatic detection of 
inflammatory hotspots. The hotspots chosen by our automated process appear bigger on each 
slice and additional hotspots are detected, due to the absence of thresholding. 
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Figure 4: Automated 3D Hotspot Identification and 3D-connectivity algorithms have been 
applied to the same difference map, with no threshold. The Hotspots identified by the clinician are 
now identified as 2 separate 3D Hotspots. The hotspots chosen by our automated process appear 
bigger on each slice, due to the absence of thresholding. 
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Automatic detection of inflammatory ‘hotspots’ in abdominal aortic 

aneurysms to identify patients at risk of aneurysm expansion and rupture 
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INTRODUCTION 

Abdominal aortic aneurysms (AAA) are responsible for 1-3% of deaths in men between 65 and 

85 years in the western world1. Repair of AAA is considered when the aneurysm diameter exceeds 

5.5 cm as measured with ultrasound. However, diameter is an imperfect criterion since 60% of 

AAA >5.5 cm never rupture, while 10-20% of AAA < 5.5 cm do rupture2,3. Ruptured AAA cause 

80%-90% mortality, so better criteria of AAA expansion and rupture are urgently required. 

Richards et al4 in their pilot study, showed that uptake of Ultrasmall Superparamagnetic Particles 

of Iron Oxide (USPIO) in AAA identifies cellular inflammation and demonstrated that AAA with 

distinct mural uptake of USPIO (classified as group 3) have a 3-fold increase in aneurysm growth 

rate compared to AAA with no (group 1) or nonspecific (group 2) USPIO uptake. The classification 

of “inflammatory hotspots” to stratify patients into the 3 groups was performed manually by 

trained observers. This manual processing however is time consuming and introduces inter- and 

intra-observer variability. Due to the manual nature of this classification, the data were analysed 

on 2D slice-by-slice purely on the basis of presence or absence of hotspot.  By automating this 

assessment, it is possible to assess inflammatory volume throughout the aneurysm which might 

provide a method to further sub-classify the group 3 patients and further optimise rupture 

prediction, based on hotspot size and distribution, rather than the manual “presence of hotspot” 

method alone.  Furthermore, this pilot project is now being followed up in the MA3RS study of 

350 AAA patients.  Manual processing of this large dataset would be impractical so an automated 

method of AAA classification by hotspot detection is required.  We suggest the use of a 

classification technique (programmed in-house in MATLAB R2013a, Mathworks) which can 

automatically detect hotspots of inflammation and consequently classify AAA in a robust and 

efficient way. 
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MATERIALS AND METHODS 

350 patients with asymptomatic AAA >4.0 cm were recruited and imaged using a 3-T MRI Verio 

(Siemens, Germany) before and 24 to 36 hours after administration of USPIO. T2-weighted 

imaging was acquired for anatomical data and a multi-echo, gradient-echo T2*W sequence was 

used to produce T2* maps to detect the accumulation of USPIO within the AAA. Regions or interest 

(ROI) for the lumen, thrombus and aortic wall were manually defined (SliceOmatic by TomoView) 

and automatic registration between datasets was applied5. The percentage change in T2* value 

(%ΔT2*) was calculated and displayed as a color scale. The AAAs were then assessed by trained 

clinicians to detect focal areas (‘hotspots’) of at least 10 contiguous voxels of USPIO uptake, within 

the aortic wall and distinct from the periluminal area. At this stage, a threshold of significance for 

%ΔT2* of 71% was established for the manual classification (based on 95th centile of the %ΔT2* 

of patients without USPIO). 12 patients classified as group 3 were selected to be processed with 

our technique for automatic classification. Our method does not use the 71% threshold 

introduced above, but it rather calculates the %ΔT2* on non-thresholded data to potentially allow 

better assessment of total distribution of all USPIO within the aneurysm. Due to expected uptake 

of USPIO in the periluminal area (not corresponding to inflammation, but assumed to be passive 

transport and ‘trapping’ of USPIO in periluminal friable tissue4) in a significant number of AAA, it 

was deemed necessary to create a mask in order to exclude the lumen and the periluminal area. 

These areas had similar ranges of intensity; therefore were segmented together (with k-means 

clustering, k=4) and were included in a mask. The rest of the processing was applied to both 

masked and unmasked data, as each method appears to differentiate distributions of USPIO 

within the various geometries of AAA. In order to detect ‘hotspots’ of USPIO uptake, an adapted 

k-means clustering (k=7) algorithm was applied on the %ΔT2* data (masked and unmasked). 2D 

connectivity was used to identify the ‘hotspots’ that consisted of at least 10 contiguous voxels and 

exclusion criteria were applied: the hotspots were rejected if they were in contact with the lumen 

and accepted only if they were within the aortic wall. The segmented hotspots are automatically 

saved in individual folders for each slice and the AAA can be automatically classified based on 

these findings. 
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RESULTS 

In the 12 patients from group 3 that were selected to process, the hotspots were identified by our program with a 92% 

agreement rate in individual hotspots (35 out of 38 hotspots detected) and 100% agreement in classification results (12 

out of 12 patients classified as group 3). Importantly, because of the inclusion of non-thresholded data, the automatically 

detected hotspots appear to be larger (Figure 1). In addition, many extra hotspots were automatically detected and were 

later accepted as valid after assessment by the trained observers (Figure 2). The total processing time with our program 

for each patient ranged between 70 to 95 seconds. The corresponding processing time by the observers ranged between 

45 to 65 minutes per patient per observer. 

DISCUSSION/CONCLUSIONS  

The automatic classification program appears to have a very high success rate in fully reproducing the clinicians’ manual 

processing. This software may provide clinicians with more automated, robust and fast data processing and can effectively 

assist in the decision making process during the assessment of future AAA patients. By using non-thresholded data, extra 

‘hotspots’ of USPIO uptake that were previously ignored by the observers can now be detected. Additionally the ‘hotspots’ 

in agreement with the clinicians appear to constitute larger areas.  This happens partly due to the fact that the clustering 

technique adapts to every individual patient, while the 71% threshold used in the manual processing is universal. The 

processing time of the program is approximately 40 times faster than the manual processing, without taking into 

consideration the extra time needed for training the observers. The results are fully reproducible such that inter- and 

intra-observer variability are removed.  Additionally, with the use of this tool we have the opportunity to investigate 

further sub-classification within group 3 of patients.  
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INTRODUCTION 

Abdominal aortic aneurysms (AAA) are responsible for 1-3% of deaths in men between 65 and 

85 years in the western world1. Currently decisions for AAA repairs are based on ultrasound 

measures of the aneurysm diameter (>5.5cm) which is an imperfect criterion2,3. Richards et al4 , 

in their pilot study, showed that uptake of Ultrasmall Superparamagnetic Particles of Iron Oxide 

(USPIO) in MRI identifies cellular inflammation, and they demonstrated that differential USPIO 

uptake correlates with aneurysm growth-rate. The classification of patients in the pilot study 

was performed manually by trained observers. This processing of the data on 2D slice-by-slice 

however is time-consuming and it uses a user-defined threshold which may exclude important 

information, while inter- and intra-observer variability are also an issue.  

We suggest the use of a classification technique which can automatically detect patterns of 

inflammation and classify AAA in a robust and efficient way.  

 

SUBJECTS AND METHODS 

350 patients had MRI scans before and after USPIO administration from which we have tested 

our algorithm on selected sub-populations. Regions of interest were manually defined and 

automatic registration between datasets was applied5. Our algorithm was built in MATLAB-

R2013a(Mathworks), with automatic segmentations, special masks, k-means clustering and 2D- 

and 3D-connectivity applied on the percentage change in T2* value (%ΔT2*).  

 

RESULTS 

Our program has shown a 92% agreement rate in individual patterns selected by trained 

observers and 100% agreement in classification results in an initial group of 12 patients. Our 

method uses non-thresholded data and identifies more accurate inflammation patterns with a 

total processing time for each patient of 70-95 seconds. The corresponding manual processing 

time is over 70 minutes. 

We are currently incorporating additional metrics (volumes within AAA, circularity, symmetry 

etc.) and using 3Dprocessing and visualisation of AAA in order to achieve further sub-

classifications among the patients.  

 

DISCUSSION 

The automatic classification program appears to have a very high success rate in reproducing and 

developing the clinicians’ manual processing. Our software provides faster, more automated and 
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fully reproducible processing which we are improving further by using 3D techniques. It is our 

aim to develop USPIO-MRI as an aneurysm rupture risk-stratification tool using this automated 

classification process.   
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Appendix 2: Multiple Linear Regression Models 

2.1 First Model: 3 predictors  

2.1.1 Diameter 

Multiple Linear Regression (3 predictors) 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

MRImaxAP 50.2691 7.57976 79 

Class3D_0 .25 .438 79 

MeanWTeccent 1.1257 .28505 79 

 

Correlations 

 

MaxAreaGrowthR

ate MRImaxAP Class3D_0 MeanWTeccent 

Pearson Correlation MaxAreaGrowthRate 1.000 .288 -.087 -.228 

MRImaxAP .288 1.000 .311 .054 

Class3D_0 -.087 .311 1.000 -.050 

MeanWTeccent -.228 .054 -.050 1.000 
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Sig. (1-tailed) MaxAreaGrowthRate . .005 .222 .021 

MRImaxAP .005 . .003 .318 

Class3D_0 .222 .003 . .332 

MeanWTeccent .021 .318 .332 . 

N MaxAreaGrowthRate 79 79 79 79 

MRImaxAP 79 79 79 79 

Class3D_0 79 79 79 79 

MeanWTeccent 79 79 79 79 

 

Model Summaryb 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .429a .184 .152 184.47440 2.206 

a. Predictors: (Constant), MeanWTeccent, Class3D_0, MRImaxAP 

b. Dependent Variable: MaxAreaGrowthRate 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 576122.614 3 192040.871 5.643 .002b 

Residual 2552310.284 75 34030.804   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), MeanWTeccent, Class3D_0, MRImaxAP 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -6.167 161.295  -.038 .970      

MRImaxAP 9.747 2.907 .369 3.352 .001 .288 .361 .350 .898 1.113 

Class3D_0 -98.383 50.347 -.215 -1.954 .054 -.087 -.220 -.204 .899 1.113 

MeanWTeccent -181.912 73.564 -.259 -2.473 .016 -.228 -.275 -.258 .992 1.008 

a. Dependent Variable: MaxAreaGrowthRate 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -18.4611 596.5225 254.1073 85.94293 79 

Residual -374.54755 592.70245 .00000 180.89203 79 

Std. Predicted Value -3.172 3.984 .000 1.000 79 

Std. Residual -2.030 3.213 .000 .981 79 

a. Dependent Variable: MaxAreaGrowthRate 
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2.1.2 Mean thrombus major axis 

 
Multiple Linear Regression (3 predictors) 
 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

thrMeanMajorAxis 45.9529 6.82428 79 

MeanWTeccent 1.1257 .28505 79 

Class3D_0 .25 .438 79 

 

 

Correlations 

 

MaxAreaGrowthRa

te thrMeanMajorAxis MeanWTeccent Class3D_0 

Pearson Correlation MaxAreaGrowthRate 1.000 .387 -.228 -.087 

thrMeanMajorAxis .387 1.000 -.017 .320 

MeanWTeccent -.228 -.017 1.000 -.050 

Class3D_0 -.087 .320 -.050 1.000 

Sig. (1-tailed) MaxAreaGrowthRate . .000 .021 .222 

thrMeanMajorAxis .000 . .441 .002 

MeanWTeccent .021 .441 . .332 
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Class3D_0 .222 .002 .332 . 

N MaxAreaGrowthRate 79 79 79 79 

thrMeanMajorAxis 79 79 79 79 

MeanWTeccent 79 79 79 79 

Class3D_0 79 79 79 79 

Model Summaryb 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .503a .253 .223 176.48132 2.295 

a. Predictors: (Constant), Class3D_0, MeanWTeccent, thrMeanMajorAxis 

b. Dependent Variable: MaxAreaGrowthRate 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 792508.569 3 264169.523 8.482 .000b 

Residual 2335924.328 75 31145.658   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), Class3D_0, MeanWTeccent, thrMeanMajorAxis 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -156.058 161.145  -.968 .336      

thrMeanMajorAxis 13.554 3.091 .462 4.385 .000 .387 .452 .438 .897 1.114 

MeanWTeccent -163.513 70.188 -.233 -2.330 .023 -.228 -.260 -.232 .998 1.002 

Class3D_0 -112.967 48.256 -.247 -2.341 .022 -.087 -.261 -.234 .895 1.117 

a. Dependent Variable: MaxAreaGrowthRate 

 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 15.2245 682.3472 254.1073 100.79864 79 

Residual -333.96390 576.07855 .00000 173.05418 79 

Std. Predicted Value -2.370 4.248 .000 1.000 79 

Std. Residual -1.892 3.264 .000 .981 79 

a. Dependent Variable: MaxAreaGrowthRate 
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2.2 Second Model: 4 predictors  

2.2.1 Diameter 

 
Multiple Linear Regression (4 predictors) 

 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

MRImaxAP 50.2691 7.57976 79 

Class3D_0 .25 .438 79 

MeanWTeccent 1.1257 .28505 79 

FamHistoryAAA .15 .361 79 

 

Correlations 

 

MaxAreaGrowthR

ate MRImaxAP Class3D_0 MeanWTeccent FamHistoryAAA 

Pearson Correlation MaxAreaGrowthRate 1.000 .288 -.087 -.228 .209 

MRImaxAP .288 1.000 .311 .054 .050 

Class3D_0 -.087 .311 1.000 -.050 .240 

MeanWTeccent -.228 .054 -.050 1.000 .071 
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FamHistoryAAA .209 .050 .240 .071 1.000 

Sig. (1-tailed) MaxAreaGrowthRate . .005 .222 .021 .032 

MRImaxAP .005 . .003 .318 .330 

Class3D_0 .222 .003 . .332 .016 

MeanWTeccent .021 .318 .332 . .267 

FamHistoryAAA .032 .330 .016 .267 . 

N MaxAreaGrowthRate 79 79 79 79 79 

MRImaxAP 79 79 79 79 79 

Class3D_0 79 79 79 79 79 

MeanWTeccent 79 79 79 79 79 

FamHistoryAAA 79 79 79 79 79 

 

Model Summaryb 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .507a .257 .217 177.24942 2.151 

a. Predictors: (Constant), FamHistoryAAA, MRImaxAP, MeanWTeccent, Class3D_0 

b. Dependent Variable: MaxAreaGrowthRate 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 803548.559 4 200887.140 6.394 .000b 
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Residual 2324884.338 74 31417.356   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), FamHistoryAAA, MRImaxAP, MeanWTeccent, Class3D_0 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -14.945 155.012  -.096 .923      

MRImaxAP 9.994 2.795 .378 3.576 .001 .288 .384 .358 .897 1.114 

Class3D_0 -130.927 49.865 -.286 -2.626 .011 -.087 -.292 -.263 .846 1.182 

MeanWTeccent -198.699 70.958 -.283 -2.800 .007 -.228 -.310 -.281 .985 1.016 

FamHistoryAAA 154.651 57.480 .279 2.691 .009 .209 .299 .270 .934 1.070 

a. Dependent Variable: MaxAreaGrowthRate 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 46.0943 562.1419 254.1073 101.49830 79 

Residual -363.81204 530.00800 .00000 172.64475 79 

Std. Predicted Value -2.049 3.035 .000 1.000 79 

Std. Residual -2.053 2.990 .000 .974 79 

a. Dependent Variable: MaxAreaGrowthRate 
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2.2.2 Mean thrombus major axis 

Multiple Linear Regression (4 predictors) 

 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

thrMeanMajorAxis 45.9529 6.82428 79 

MeanWTeccent 1.1257 .28505 79 

Class3D_0 .25 .438 79 

FamHistoryAAA .15 .361 79 

 

Correlations 

 

MaxAreaGrowthRa

te thrMeanMajorAxis MeanWTeccent Class3D_0 FamHistoryAAA 

Pearson Correlation MaxAreaGrowthRate 1.000 .387 -.228 -.087 .209 

thrMeanMajorAxis .387 1.000 -.017 .320 .108 

MeanWTeccent -.228 -.017 1.000 -.050 .071 

Class3D_0 -.087 .320 -.050 1.000 .240 

FamHistoryAAA .209 .108 .071 .240 1.000 

Sig. (1-tailed) MaxAreaGrowthRate . .000 .021 .222 .032 

thrMeanMajorAxis .000 . .441 .002 .173 
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MeanWTeccent .021 .441 . .332 .267 

Class3D_0 .222 .002 .332 . .016 

FamHistoryAAA .032 .173 .267 .016 . 

N MaxAreaGrowthRate 79 79 79 79 79 

thrMeanMajorAxis 79 79 79 79 79 

MeanWTeccent 79 79 79 79 79 

Class3D_0 79 79 79 79 79 

FamHistoryAAA 79 79 79 79 79 

 

Model Summaryb 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .559a .313 .275 170.47137 2.185 

a. Predictors: (Constant), FamHistoryAAA, MeanWTeccent, thrMeanMajorAxis, Class3D_0 

b. Dependent Variable: MaxAreaGrowthRate 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 977956.815 4 244489.204 8.413 .000b 

Residual 2150476.083 74 29060.488   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), FamHistoryAAA, MeanWTeccent, thrMeanMajorAxis, Class3D_0 
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Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -142.238 155.754  -.913 .364      

thrMeanMajorAxis 13.301 2.987 .453 4.452 .000 .387 .460 .429 .896 1.116 

MeanWTeccent -178.267 68.049 -.254 -2.620 .011 -.228 -.291 -.252 .990 1.010 

Class3D_0 -139.877 47.814 -.306 -2.925 .005 -.087 -.322 -.282 .851 1.175 

FamHistoryAAA 139.653 55.283 .252 2.526 .014 .209 .282 .243 .934 1.070 

a. Dependent Variable: MaxAreaGrowthRate 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 42.2000 635.6752 254.1073 111.97280 79 

Residual -321.50076 568.11584 .00000 166.04278 79 

Std. Predicted Value -1.892 3.408 .000 1.000 79 

Std. Residual -1.886 3.333 .000 .974 79 

a. Dependent Variable: MaxAreaGrowthRate 
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2.3 Third Model: 5 predictors  

2.3.1 Diameter 

 
Multiple Linear Regression (5 predictors) 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

MRImaxAP 50.2691 7.57976 79 

Class3D_0 .25 .438 79 

MeanWTeccent 1.1257 .28505 79 

FamHistoryAAA .15 .361 79 

BPdiast 80.7722 10.21431 79 

Correlations 

 

MaxAreaGrowthR

ate MRImaxAP Class3D_0 MeanWTeccent FamHistoryAAA BPdiast 

Pearson Correlation MaxAreaGrowthRate 1.000 .288 -.087 -.228 .209 .280 

MRImaxAP .288 1.000 .311 .054 .050 -.040 

Class3D_0 -.087 .311 1.000 -.050 .240 -.056 

MeanWTeccent -.228 .054 -.050 1.000 .071 -.075 

FamHistoryAAA .209 .050 .240 .071 1.000 .065 

BPdiast .280 -.040 -.056 -.075 .065 1.000 
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Sig. (1-tailed) MaxAreaGrowthRate . .005 .222 .021 .032 .006 

MRImaxAP .005 . .003 .318 .330 .364 

Class3D_0 .222 .003 . .332 .016 .313 

MeanWTeccent .021 .318 .332 . .267 .257 

FamHistoryAAA .032 .330 .016 .267 . .284 

BPdiast .006 .364 .313 .257 .284 . 

N MaxAreaGrowthRate 79 79 79 79 79 79 

MRImaxAP 79 79 79 79 79 79 

Class3D_0 79 79 79 79 79 79 

MeanWTeccent 79 79 79 79 79 79 

FamHistoryAAA 79 79 79 79 79 79 

BPdiast 79 79 79 79 79 79 

 

 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .561a .315 .268 171.31397 2.030 

a. Predictors: (Constant), BPdiast, MRImaxAP, FamHistoryAAA, MeanWTeccent, Class3D_0 

b. Dependent Variable: MaxAreaGrowthRate 

 

 



Automatic Classification and 3D Visualisation of AAAs to Predict Aneurysm Expansion 

 

Appendix 2: Multiple Linear Regression 293 

ANOVAa 

Model 

Sum of 

Squares df Mean Square F Sig. 

1 Regression 985994.136 5 197198.827 6.719 .000b 

Residual 2142438.761 73 29348.476   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), BPdiast, MRImaxAP, FamHistoryAAA, MeanWTeccent, 

Class3D_0 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -422.313 221.678  -1.905 .061      

MRImaxAP 10.096 2.702 .382 3.737 .000 .288 .401 .362 .897 1.115 

Class3D_0 -122.378 48.317 -.267 -2.533 .013 -.087 -.284 -.245 .842 1.188 

MeanWTeccent -184.338 68.823 -.262 -2.678 .009 -.228 -.299 -.259 .978 1.023 

FamHistoryAAA 142.456 55.770 .257 2.554 .013 .209 .286 .247 .927 1.079 

BPdiast 4.776 1.915 .244 2.493 .015 .280 .280 .241 .983 1.017 

a. Dependent Variable: MaxAreaGrowthRate 
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Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 21.7011 576.7721 254.1073 112.43198 79 

Residual -367.70242 534.71893 .00000 165.73220 79 

Std. Predicted Value -2.067 2.870 .000 1.000 79 

Std. Residual -2.146 3.121 .000 .967 79 

a. Dependent Variable: MaxAreaGrowthRate 
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2.3.2 Mean thrombus major axis 

 
Multiple Linear Regression (5 predictors) 

Descriptive Statistics 

 Mean Std. Deviation N 

MaxAreaGrowthRate 254.1073 200.27010 79 

thrMeanMajorAxis 45.9529 6.82428 79 

MeanWTeccent 1.1257 .28505 79 

Class3D_0 .25 .438 79 

FamHistoryAAA .15 .361 79 

BPdiast 80.7722 10.21431 79 

 

Correlations 

 

MaxAreaGrowthR

ate thrMeanMajorAxis MeanWTeccent Class3D_0 FamHistoryAAA BPdiast 

Pearson Correlation MaxAreaGrowthRate 1.000 .387 -.228 -.087 .209 .280 

thrMeanMajorAxis .387 1.000 -.017 .320 .108 .066 

MeanWTeccent -.228 -.017 1.000 -.050 .071 -.075 

Class3D_0 -.087 .320 -.050 1.000 .240 -.056 

FamHistoryAAA .209 .108 .071 .240 1.000 .065 

BPdiast .280 .066 -.075 -.056 .065 1.000 

Sig. (1-tailed) MaxAreaGrowthRate . .000 .021 .222 .032 .006 
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thrMeanMajorAxis .000 . .441 .002 .173 .280 

MeanWTeccent .021 .441 . .332 .267 .257 

Class3D_0 .222 .002 .332 . .016 .313 

FamHistoryAAA .032 .173 .267 .016 . .284 

BPdiast .006 .280 .257 .313 .284 . 

N MaxAreaGrowthRate 79 79 79 79 79 79 

thrMeanMajorAxis 79 79 79 79 79 79 

MeanWTeccent 79 79 79 79 79 79 

Class3D_0 79 79 79 79 79 79 

FamHistoryAAA 79 79 79 79 79 79 

BPdiast 79 79 79 79 79 79 

 

 

Model Summaryb 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .594a .352 .308 166.59007 2.068 

a. Predictors: (Constant), BPdiast, Class3D_0, MeanWTeccent, FamHistoryAAA, thrMeanMajorAxis 

b. Dependent Variable: MaxAreaGrowthRate 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1102518.589 5 220503.718 7.945 .000b 

Residual 2025914.308 73 27752.251   

Total 3128432.897 78    

a. Dependent Variable: MaxAreaGrowthRate 

b. Predictors: (Constant), BPdiast, Class3D_0, MeanWTeccent, FamHistoryAAA, thrMeanMajorAxis 

 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 (Constant) -452.006 211.060  -2.142 .036      

thrMeanMajorAxis 12.762 2.930 .435 4.355 .000 .387 .454 .410 .890 1.124 

MeanWTeccent -166.244 66.741 -.237 -2.491 .015 -.228 -.280 -.235 .983 1.017 

Class3D_0 -129.690 46.972 -.283 -2.761 .007 -.087 -.307 -.260 .842 1.188 

FamHistoryAAA 129.817 54.223 .234 2.394 .019 .209 .270 .225 .927 1.078 

BPdiast 3.961 1.869 .202 2.119 .038 .280 .241 .200 .976 1.025 

a. Dependent Variable: MaxAreaGrowthRate 
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Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 20.6963 627.9628 254.1073 118.89009 79 

Residual -322.20560 567.41608 .00000 161.16222 79 

Std. Predicted Value -1.963 3.145 .000 1.000 79 

Std. Residual -1.934 3.406 .000 .967 79 

a. Dependent Variable: MaxAreaGrowthRate 
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