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Abstract

The measurement of the seismic velocity of a medium is fundamental to many

applications in geoscience and engineering. Examples include the monitoring of: ice

sheet melting, the health of concrete structures, temperature in volcanic regions, and

sub-surface fluid pressure due to hydrocarbon extraction or the injection of CO2 to

mitigate climate change. Velocities are also used to infer elastic properties, such as

bulk and shear moduli and density, which can then be used to develop a wide range

of rock physics models. This thesis addresses two key areas of research related to the

seismic velocity: first, the improvement in the methodology of measuring changes in

velocity in the time-lapse or four dimensional mode; and second, the interpretation of

changing velocity measurements in terms of underlying processes, using various rock

physics models.

First, I investigate the use of coda wave interferometry (CWI) for measuring temporal

changes in bulk velocity, particularly in an experimental rock physics setting. CWI uses

the diffuse, multiply-scattered waves that arrive in the tail of the seismogram, sampling

the entire medium and sampling the same sub-volumes many times, thus coda waves

are far more sensitive to changes in a medium compared to the first arriving ballistic

waves. Compared to conventional methods of phase picking of first arriving waves,

CWI provides significant improvements in the accuracy and precision of estimates of

velocity changes and is far more robust in the presence of background noise. CWI is

also capable of jointly estimating changing source locations, allowing the estimation

of the relative locations of a cluster of acoustic emissions with simultaneous velocity
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perturbations, all with a single receiver. Previously, the estimate of velocity change

made by CWI has been an average of changes in compressional (P) and shear (S) wave

velocities, which has previously been a major limitation to the application of the CWI

method. I present a new method to use CWI for estimating changes in both P and S

wave velocities individually. I then validate this method using numerical simulations

on a range of media and the results of triaxial rock deformation experiments.

The second part of this thesis is based on understanding the relationship between

seismic velocity and time-dependent variables, including the evolving differential stress

during deformation and changes in porosity during cementation. I investigate the

seismic velocity-differential stress relationship during the experimental deformation

of two finely laminated carbonate samples, using CWI to measure the temporal

changes in both P and S wave velocity, allowing the inversion of crack density to

interpret the mechanical behaviour of these carbonate samples. I then investigate the

velocity-porosity relationship with an entirely digital method, using digital rocks where

deposition and cementation are computationally simulated. I then simulate wavefield

propagation through the digital rocks using a 3D finite-difference method to estimate

the velocity of the medium. I statistically test two competing inclusion models for

modelling elastic moduli-porosity data and find one that allows variable inclusion aspect

ratio to be the most appropriate for fitting the data.

I find CWI to be an effective method characterising changes in a medium in a rock

physics environment. By providing a method for estimating separate changes in P

and S wave velocity, I greatly improve the relevance and applicability of CWI for

experimental rock physics. The method can be extended for the characterisation of

media for a variety of applications in geoscience and engineering.
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Lay Summary

Imagine standing in a large empty room and clapping your hands together as hard as

you can.

What would you hear?

As your hands make contact, they create a pressure wave that travels in all directions.

As the wave reaches the air within your ears, the air vibrates, which is what you would

perceive as sound.

You may then hear an echo, which occurs when the pressure wave reaches a wall in

the room, reflects off the wall, and travels back to you. You may then hear an even

later echo, which is where the wave bounces in-between multiple walls before reaching

your ears. This process can continue, where waves bounce between more walls and

arriving at your ears later for each echo. The later you hear the sound, the larger

distance the wave has travelled. The pressure waves here travel at a constant velocity

(approximately 330 meters in a second).

In the same way, an acoustic wave can travel through solid materials, such as

rocks. Measuring the velocity at which a wave travels through different materials

is particularly important for time-lapse (or four dimensional) monitoring purposes, for

example, the velocity of the subsurface changes as the fluid properties change during

the injection of CO2 or the extraction of hydrocarbons.
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In this thesis, I use a method called coda wave interferometry (CWI), which estimates

a change in a medium with greater accuracy (closer to the true velocity change) and

precision (less variability in repeated estimates) compared to conventional methods.

This method uses the echoes (multiply-reflected waves) as opposed to the first arriving

waves. The echoes travel through the same regions multiple times so are more sensitive

to any changes in the medium. I demonstrate how this method can be used to

characterise a change in velocity in laboratory rock physics experiments. In addition,

the echoes can also be used to estimate any changes in the location of the acoustic

sources - imagine clapping your hands in different locations in the room, CWI is able

to estimate the distance between these locations by comparing the arrival times of the

echoes.

I also seek to improve the understanding of the relationship between the velocity of a

medium and time-dependent variables, such as the amount of cracks in a rock during

experimental deformation, or the amount of pore space in a rock during cementation

(precipitation of minerals into the pore space). I investigate the velocity-crack density

relationship with a laboratory experiment using two cores of finely laminated carbonate

rock, and I investigate the velocity-porosity relationship using digital rock physics,

where synthetic rocks are constructed with computer simulations of deposition and

cementation.

Throughout this thesis I make some major improvements to the methods used for

measuring a change in velocity, making CWI much more applicable for conventional

rock physics models and experiments. The method can in principle be applied to larger

field-scale seismic problems.
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Chapter 1

Introduction

1.1 The Review

The complex nature of seismic wave propagation in rocks is studied in great detail

across many different applications in geoscience. These studies are often performed

to deduce relationships between changes in external conditions and seismic properties

such as velocity (Wang, 2001), anisotropy (Christensen, 1966; Sayers and Kachanov,

1995) and attenuation (Toksöz et al., 1979; Sams et al., 1997), and to examine the

process of rock fracturing (Pyrak-Nolte et al., 1990) including the distribution of

acoustic emissions accompanying microfracturing (Lockner et al., 1992; Lockner, 1993).

The measurement and application of the seismic velocity is particularly broad. For

example, velocity maps of the subsurface are used in seismic imaging (Robein, 2003),

which are particularly important for the migration of seismic data (Versteeg, 1993),

estimating fluid pressure change due to fluid extraction or deformation due to stress

from velocity changes measured in time lapse 4D seismic data (Guilbot and Smith,

2002; Arts et al., 2004; Stork et al., 2018), deformation during laboratory rock physics

experiments (Wang, 2001; King, 1966), using changes in velocity to quantify precursory

damage accumulation before earthquakes (Volti and Crampin, 2003; Gao and Crampin,

2004), and using compressional (VP ) and shear (VS) wave velocities as input to a wide

1
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range of rock physics models (Mavko et al., 2009).

Standard methods for measuring either the velocity, or changes in the velocity (in the

‘four dimensional’ mode) of a medium involve the picking of first-break arrival times

of seismic waves traveling between a fixed source and receiver pair. Though the term

‘first-break’ is ambiguous, and can be taken to mean the signal onset which is the time

of first-arriving energy (Brillouin, 1960), the arrival time of the first peak or the time

of first zero-crossing (Hornby, 1998). The velocity of the medium is then estimated

using the known straight-line distance between the source and receiver. Problems with

the first-break method can occur in wave propagation experiments, particularly when

wavelengths are smaller or approximately the same size as the scattering heterogeneities

in the medium. One concern is that the first-break method is only sensitive to a

specific path between the source and receiver, therefore any estimates of velocity are

unrepresentative of the bulk medium. In addition to this, any perturbations that are not

located on the fastest ray path can not be detected. Such errors in velocity estimation

are carried forward to any subsequent calculations, notably in locating seismic source

positions.

Monitoring the relative locations of seismic sources is important for a variety of

applications in field and global scale seismology, such as the monitoring of induced

seismicity (Ake et al., 2005; Ellsworth, 2013), studying earthquake triggering and

interaction (Chen et al., 2013), and imaging of fault planes (Dodge et al., 1995;

Waldhauser and Ellsworth, 2002). Absolute source locations are commonly estimated

using multilateration, which takes the measured arrival time at each receiver to estimate

the source position and origin time (Lee, 1975). These estimates are strongly dependent

on the quality of the velocity model, the station coverage, and source-to-receiver

distance. Therefore, the uncertainty of earthquake locations can be on the order of

kilometers (Shearer, 1999). The accuracy of estimates for relative source locations

significantly improves when the distance between two sources is directly estimated

rather than their absolute locations (Douglas, 1967; Waldhauser and Ellsworth, 2000).
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However, these methods fail in areas with poor seismic station coverage, such as intra-

plate regions (Robinson et al., 2013).

Snieder et al. (2002) uses the seismic coda (as opposed to the first arriving ballistic

waves) to accurately and precisely estimate changes in velocity and in source location.

Coda waves are the diffuse multiply-scattered waves that are recorded at the tail of

the seismogram. Recordings of coda waves are far more sensitive than first arriving

waves to changes in external properties, such as pore-pressure or temperature (Snieder

et al., 2002; Vlastos et al., 2006), due to the fact that coda waves follow much longer

and more complex paths, eventually sampling the entire medium, and sampling any

sub-volume of the medium multiple times. There are now established methods grouped

under the name coda wave interferometry (CWI) that estimate changes in the velocity

of the medium, changes in the locations of sources or receivers, or changes in the

location of scatterers using the coda (Snieder, 2006). There have been several field

and laboratory applications of CWI, including the monitoring of velocity changes in ice

sheets (Mordret et al., 2016; James et al., 2017), concrete (Larose and Hall, 2009; Planès

and Larose, 2013), mining environments (Grêt et al., 2006), engineering structures

such as bridges (Salvermoser et al., 2015) and volcanic regions (Sens-Schönfelder and

Wegler, 2006). CWI has also been used to study velocity changes associated with

earthquakes (Hadziioannou et al., 2011), earthquake focal mechanisms (Robinson et al.,

2007), earthquake separation distances (Snieder and Vrijlandt, 2005; Robinson et al.,

2011), and relative source network locations of induced micro-seismic events (Zhao

et al., 2017; Zhao and Curtis, 2019).

One of the major limitations to the application of CWI for experimental rock physics

is that the resulting estimate of velocity change (∆V/V ) represents an unknown

weighted combination of the change in compressional and shear wave velocities (VP

and VS). These velocities are required as input to a wide range of rock physics

models (Mavko et al., 2009). Aki and Chouet (1975) first describe coda waves as

being predominately comprised of shear waves. Snieder (2002) later uses a simple

analytical model for wave scattering and conversions between P and S waves in a
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constant velocity medium with uniformly distributed point scatterers, and derives the

relationship between VP /VS ratios and the proportion of changes in VP and VS that

contribute to the change in velocity measured by CWI at equilibrium. In a Poisson

medium where VP =
√

3VS (Poisson’s ratio ν = 0.25), this relationship becomes:

∆V/V = 0.09[∆VP /VP ]+0.91[∆VS/VS ]. The change in P and S wave velocity (∆VP /VP

and ∆VS/VS), which are the desired measurements for rock physics modelling, still

remain unknown.

In order to interpret a change in the measured seismic velocity, a suitable rock physics

model is required. There is an abundance of methods used in rock physics for the

modelling of elastic moduli-porosity or velocity-porosity data. There are many flavours

of rock physics models including empirical models based on trends on observed data

(Eberhart-Phillips et al., 1989; Gardner et al., 1974), bounding models which give

a physics-based range of expected moduli (Voigt, 1928; Reuss, 1929), or inclusion-

based models which assume an unrealistic, ellipsoidal inclusion shape embedded into

a background material (Eshelby, 1957; Mori and Tanaka, 1973; Berryman, 1992). The

assumptions of these models often over-simplify the physical interactions occurring

within the rock geometry. This limitation is the motivation of using digital rock

physics to effectively charecterise the micro-structure of a rock. A digital rock is a

three-dimensional representation of a rock fabric, where individual phases within a

rock (e.g., each mineral component and pore space/fluid) are known for each voxel

in three dimensions (Andrä et al., 2013a,b), from which the physical properties can

then be estimated, such as permeability (Martys et al., 1999; Keehm, 2003), seismic

velocity (Saenger et al., 2000; Arns et al., 2002), thermal conductivity (Wiegmann and

Zemitis, 2006) or electrical resistivity (Liu et al., 2009; Zhan et al., 2010). Digital rock

physics allows for fast and flexible experimentation, and can be used to test hypotheses

and establish trends of evolving geophysical properties responding to specific geological

processes, as well as the ability to test the accuracy of methods such as CWI compared

to conventional first-break methods.



CHAPTER 1. 5

1.2 The Claim

In this thesis, I test the hypothesis that coda wave interferometry can provide an

improvement in accuracy and precision when inferring and quantifying the changes

in bulk velocity and relative source locations in rock samples, in comparison with

commonly used methods for numerical and laboratory experiments at the core-scale.

I show how separate perturbations in both velocity and source location can be

independently estimated when both perturbations occur simultaneously. This is a

significant step forward in passive seismology, as a changes in bulk velocity in a medium

can now be determined using passive sources at different locations, using a single

receiver.

I make some fundamental improvements to the CWI method, by providing a new

method for estimating the changes in P-wave and S-wave velocity independently. The

method uses CWI measurements for velocity change at multiple times along the signal,

and an extension to the model of Snieder (2002) to incorporate a fluid phase (where

shear waves are not supported). I also describe a method to separate the change in

fluid velocity from the change in the solid matrix of a medium, provided an estimate of

the fluid fraction/saturated porosity. I use results from the triaxial deformation of two

oriented finely laminated carbonates as a demonstration of this method, and use the

resulting estimates for P and S wave velocity change to monitor the compressional-to-

shear wave velocity ratio and invert for changes in crack density. I test the hypothesis

that measurements made from the coda can be used in conjunction with axial first-

break measurements to understand any anisotropy present in the samples, utilising the

directional information for the first-break, and the isotropic average that is inherent to

CWI.

Finally, I combine a process-based model for deposition and cementation of digital rocks

with the finite-difference simulation of wave propagation to determine the relationship

between elastic properties and cementation. I statistically test two competing inclusion-

based rock physics models for their ability to capture the effects of varying cementation,
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cement type, and initial rock fabric. I also investigate the effect of underlying structural

anisotropy on the relationship between porosity and elastic properties.

1.3 Thesis Overview

• Chapter 2 is a literature review of the main research areas in this thesis, first

looking at methods for monitoring seismic velocity and measuring inter-source

earthquake distances. I then review monitoring methods that utilise the seismic

coda. As there is a strong focus on the application to experimental rock physics

in this thesis, I also review rock physics and digital rock physics methodologies

and models. After identifying some of the gaps in the current literature, I form a

series of research questions that provide the motivation for the work included in

this thesis.

• In Chapter 3, I compare coda wave interferomety with the conventional first-break

method for measuring changes in velocity and source locations. I perform a variety

of numerical and laboratory experiments at the rock core scale. Experiments

include the performance of the methods with increasing levels of background

noise and investigating the performance of CWI when separate perturbations of

velocity and source location occur simultaneously. I also present a new method

for unravelling the CWI estimate for velocity change to separate estimates of

changes in P and S wave velocity.

• Chapter 4 is an extension of the previous chapter, where I describe in full the

method for estimating separate changes in P and S wave velocity. I test this

method for a range of numerical models with varying size and complexity.

• Chapter 5 is an application of the CWI method for estimating changes in P and

S wave velocity. I use laboratory data for the triaxial deformation of two oriented

laminated carbonates, and use the CWI results as input to a rock physics model

for crack density.

• Chapter 6 is a study of how seismic velocity varies with cementation in carbonate

digital rocks. I use models generated from the process based simulation of
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deposition and cementation for a grainstone (spherical grains) and coquina (shelly

fragment grains). Using the estimated elastic properties, I statistically test two

competing rock physics models.

• In Chapter 7, I discuss some of the remaining questions and limitations to coda

wave interferometry and digital rock physics. I also present some areas of possible

future research.

• Chapter 8 concludes this thesis, where I present my main findings and provide

answers to the research questions posed at the end of Chapter 2.

Chapters 3, 4, 5 and 6, are written in the form of journal articles, which have either

been accepted, submitted or are in preparation for submission at the time of writing.

At the beginning of each of these chapters I write a short preface indicating the current

status each manuscript, highlighting my contributions to each of the articles and linking

the chapter to the broader context of the thesis as a whole.
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Chapter 2

Literature Review

This chapter presents an overview of the current literature within each of the main

research areas covered in this thesis. First I review some basic seismology and methods

for measuring the seismic velocity. The work in this thesis has a strong link to the

applications in rock physics, therefore I also review some rock physics and digital rock

physics methods. After identifying some of the gaps in the current understanding in

these fields, I outline the key research questions that form the motivation for this thesis.

2.1 Seismic Waves

The way in which a seismic wave travels through a medium is studied across many

disciplines within geosciences: to examine the process of rock fracturing (Pyrak-Nolte

et al., 1990) and acoustic emissions (Lockner et al., 1992; Lockner, 1993), to develop

relationships between changes in external conditions and seismic properties such as

seismic velocity (Wang, 2001), anisotropy (Christensen, 1966; Sayers and Kachanov,

1995) and attenuation (Toksöz et al., 1979; Sams et al., 1997). The recording of

a seismic wave at a receiver, known as a seismogram, includes some main features

(labelled in the example seismogram in Figure 2.1a). These are the first arrivals of the

compressional wave (P wave) and shear waves (S wave), and the coda waves, which

9
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are found in the tail of the seismogram. In a homogenous, isotropic and elastic case,

the motion of a wave through a medium can be described mathematically for the

displacement u at a given point in space x:

ρ
∂2u(x, t)

∂t2
= (λ+ µ)∇(∇ · u(x, t)) + µ∇2u(x, t), (2.1)

where ρ is the density, λ and µ are the Lamé parameters, and t is time (Stein and

Wysession, 2009). The velocity at which compressional (P) waves and shear (S) waves

travels (VP and VS) can be derived from applying the divergence and curl operators to

Equation 2.1, respectively. The velocities are given by

VP =

√
λ+ 2µ

ρ
=

√
K − 4

3µ

ρ
, (2.2)

where K is the bulk modulus, and

VS =

√
µ

ρ
. (2.3)

The measurement and application of seismic velocity (or the associated elastic moduli)

is broad, and is the main focus of this thesis. For example, velocities are used to

build maps of the subsurface (or velocity models) which are used in seismic imaging

(Robein, 2003), notably important for the migration of seismic data (Versteeg, 1993).

Other applications include estimating fluid pressure change due to fluid extraction

or deformation due to stress from time lapse 4D seismic data (Guilbot and Smith,

2002; Arts et al., 2004; Stork et al., 2018), deformation during laboratory rock physics

experiments (Wang, 2001; King, 1966), using changes in velocity to quantify precursory

damage accumulation before earthquakes (Volti and Crampin, 2003; Gao and Crampin,

2004), and using VP and VS as input to a wide range of rock physics models (see

Section 2.3.2), for example allowing for the inversion of effective pore geometries or

crack densities. The seismic velocity is a vital property in geoscience, therefore the

accurate and precise measurement of velocity is of the utmost importance.
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Figure 2.1: a) Example seismogram with the arrival times of the compressional (P), shear (S) and

coda waves labelled. b) Illustration of the range of methods that can be used for picking the travel

time of the first arriving wave.

2.1.1 Estimating Seismic Velocity

Standard methods for measuring the velocity - as well as changes in the velocity of a

medium - involve picking of first-break arrival times of seismic waves traveling between

a fixed source and receiver pair. The term ‘first-break’ can be quite ambiguous, and

can be picked as the signal onset (Brillouin, 1960), the arrival time of the first peak

or envelope peak (Nichols, 1996), or the time of first zero-crossing (Hornby, 1998).

These different methods are illustrated in Figure 2.1b. If the propagating wavelet

shape does not evolve with time, the determination of velocity (or changes in velocity)

using any of these methods should yield identical results. However, in reality intrinsic

absorption and scattering contribute to signal attenuation, and estimates with the

different methods diverge in practice (Molyneux and Schmitt, 1999). The unaffected

signal onset may then be the most appropriate, though is the lowest amplitude and

therefore most difficult to identify, especially in the presence of background noise.

In laboratory experiments, where wavelengths are often on the same order of magnitude

as the scale of the heterogeneities within the samples, there are various problems that

occur in the determination of velocity: 1) the measured velocity is not sensitive to the

bulk properties of a medium, but rather to properties along a very specific (fastest)

ray path between the source and receiver, resulting in a bias towards higher velocities.
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2) The path followed by the first-arriving energy is unlikely to be straight, so that

velocity estimates made by assuming a straight-line path are biased towards lower

values. 3) Biases in points 1 and 2 are generally unrelated so are not expected to

cancel. 4) The effects of small perturbations in the medium that are not located along

the specific source-receiver path cannot be detected. 5) Such systematic and random

errors in velocity estimation are carried forward to any subsequent calculations, notably

in locating acoustic source positions.

2.1.2 Estimating Relative Source Locations

Another topic of importance to this thesis is the estimation of the location of seismic

source, and specifically the 3D relative locations of a cluster of sources, rather than their

location in an absolute framework. Monitoring the relative locations of seismic sources

is essential for a variety of applications in field and global scale seismology, such as the

monitoring of induced seismicity (Ake et al., 2005; Frohlich and Brunt, 2013; Ellsworth,

2013), studying earthquake triggering and interaction (Chen et al., 2013), and imaging

of fault planes (Got et al., 1994; Dodge et al., 1995; Waldhauser and Ellsworth, 2002).

Absolute locations are commonly estimated using multilateration, which takes the

arrival times measured at multiple receivers and an estimated velocity model of the

medium, and solves for the source locations and origin time (Lee, 1975). Relative

locations can be obtained from estimated absolute locations, but these estimates are

strongly dependent on the quality of the velocity model, the station coverage, and

source to receiver distance. Therefore, the uncertainty of earthquake locations can be

on the order of kilometers (Shearer, 1999).

The accuracy of estimates for distances between source locations is greatly improved

when directly calculating the relative locations. There are several suitable algorithms

with differing degrees of accuracy. Douglas (1967) first developed the Joint Epicenter

Determination method, which simultaneously estimates the relative location of a cluster

of events by accounting for azimuth dependent travel-time variations. Dodge et al.

(1995) later built on this method and proposes the Joint Hypocenter Determination

method, which uses cross-correlation to measure travel-time variations. These methods
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are somewhat limited, requiring inter-event separations to be small compared to

the dominant wavelength. Waldhauser and Ellsworth (2000) partly overcome this

limitation with the Double-Difference method, which constructs links between multiple

event clusters, thus the method is able to relocate earthquakes distributed over larger

distances. However, the Double-Difference method fails in areas with poor seismic

station coverage, such as intra-plate regions (Robinson et al., 2013). All these methods

estimate locations solely from the P and/or S wave arrivals.

2.2 Coda Waves

The coda, or tail, of a seismogram is comprised of the late arriving, multiply scattered

waves. Aki and Chouet (1975) first described the characteristics of the seismic coda for

local earthquakes. Their observations are summarized in Sato et al. (2012) as:

1. the spectral contents of the later portions of coda waves are the same at different

stations,

2. the duration of a seismogram can be reliably calculated as the length of time

between the P wave onset time and the time where the coda amplitudes decrease

to that of the background microseisms,

3. the temporal decay of coda amplitude are independent of earthquake magnitude,

4. the coda amplitude depends on the local geology of the recording site,

5. coda waves are not regular plane waves travelling directly from the source location.

It is therefore clear that recordings of coda waves are more that mere ‘noise’ but rather

carry some useful and extractable information regarding the properties of the medium.

2.2.1 Monitoring with Coda Waves

Coda waves sample a large volume and with long transit times, often sampling the

same volumes multiple times. Therefore, measurements of characteristics or properties
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of the coda can be much more sensitive to temporal changes in the medium when

compared against conventional measurements of velocity or attenuation using direct

waves (Sato et al., 2012). There is therefore strong potential for the use of coda waves

for monitoring purposes. There are early reports of temporal changes in the coda

attenuation Q−1c associated with the occurrence of earthquakes (Gusev and Lemzikov,

1985; Jin and Aki, 1986) and volcanic eruptions (Fehler et al., 1988). Jin and Aki (1991)

cite 12 cases where precursor-like changes in Q−1c have been reported associated with

earthquakes, however there have been several studies criticising the use of a change in

Q−1c as an earthquake pre-cursor as there are other possible influences such as different

earthquake focal regions and mechanisms (Frankel, 1991; Sato, 1988). Poupinet et al.

(1984) first noted the phase difference between coda waves of earthquake doublets where

the average bulk velocity of the medium is different between the occurrence of the two

earthquakes. They find a decrease in velocity of 0.2% associated with the occurrence of

the Coyote Lake earthquake in California. Following this, Ratdomopurbo and Poupinet

(1995) apply the same method to coda recorded at Merapi volcano, Indonesia, and find

a 1% increase in seismic velocity at shallow depths several months before an eruption in

1992. Snieder et al. (2002) later formalises the mathematical background for using coda

waves to measure changes in a medium, naming the method Coda Wave Interferometry,

which forms the basis for much of the work carried out as part of this thesis.

2.2.2 Coda Wave Interferometry (CWI)

Interferometry is a broad family of methods in which waves, e.g., electromagnetic, seis-

mic or acoustic waves are superimposed, causing interference, in order to extract some

information. There are now also established methods called coda wave interferometry

(CWI) that estimate changes in the velocity of the medium, changes in the locations of

sources or receivers, or changes in the scatterer locations (Snieder et al., 2002; Snieder,

2006). These three perturbation types, and their effect on the seismic coda are shown

in Figure 2.2.
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a) Perturbation of Velocity

b) Perturbation of Source Location

c) Perturbation of Scatterer Locations

Time

Figure 2.2: Illustrations of different perturbation types and their effects on coda waves. The cartoons

(left) represent a scattering medium, with a source (star), receiver (triangle), and point scatterers

(circles). Ray paths between the source and receiver, including multiple reverberations, are represented

as black arrows. A velocity perturbation (a) is represented as a yellow ellipse, which has a velocity

different to the background medium. New ray paths that are introduced due to changes in source

location (b) and scatterer locations (c) are represented as blue arrows. Example recorded signals

(right) at a range of time windows (i-iv) are shown before and after each perturbation takes place (blue

and red, respectively). Differences in travel times of arriving energy for b) and c) are highlighted by

vertical arrows.
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Velocity Change

First, consider the effect of a velocity perturbation (∆V in Figure 2.2a). The direct

arriving wave between a source and receiver would only sample the perturbed area once

(or not at all), whereas multiply scattered waves are free to pass through the perturbed

region many times. Therefore the effect of the velocity perturbation on the arrival

times for multiply scattered waves are amplified. Thus the change in arrival times for

later arriving waves (time window iv in Fig. 2.2a) is larger than for the first arrival

(time window i). There are several methods to estimate a change in velocity using

interferomtery: the double wavelet (Snieder et al., 2002), trace stretching (Lobkis and

Weaver, 2003; Sens-Schönfelder and Wegler, 2006) and dynamic time warping methods

Mikesell et al. (2015), each with their own advantages (see Hadziioannou et al. (2009)

and Mikesell et al. (2015) for comparisons). All these methods provide an estimate

of ∆V/V , which is the ratio of the change in velocity ∆V to the original velocity

V . A major difference between the estimate of velocity change given by CWI and by

the conventional first break method is the directionality implicit to the measurements.

Coda waves eventually travel in all directions and throughout the entire medium, so that

∆V/V is an isotropic average of the medium, whereas the conventional measurements

of VP or VS are only sensitive to the direction along the fastest wave path, assumed

straight. Comparing these two methods may therefore give insight to any structural

anisotropy present in a medium.

There have been several field and laboratory applications of CWI for estimating

changes in velocity to date, including the monitoring of velocity changes in ice sheets

(Mordret et al., 2016; James et al., 2017), concrete (Larose and Hall, 2009; Planès

and Larose, 2013), large scale structures such as bridges (Salvermoser et al., 2015),

mining environments (Grêt et al., 2006), volcanic regions (Sens-Schönfelder and Wegler,

2006), as well as changes associated with earthquakes (Hadziioannou et al., 2011). The

application of CWI for laboratory rock physics experiments has been comparatively

limited to date.
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One major limitation to the application of CWI, especially for rock physics experiments,

is the complicated nature of the resulting estimate of velocity change ∆V/V , which

reflects a unknown combination of both changes in P and S wave velocities. This

severely limits the applicability and interpretation of velocity changes as estimates of

VP and VS are required for bulk and shear moduli to be estimated (given an estimate

of density), which are parameters that appear in the majority of rock physics models.

Aki and Chouet (1975) first note that coda waves are comprised mainly of shear waves,

later Snieder (2002) derives a relationship between the proportions of P and S waves

in the coda, to the P and S wave velocities:

∆V

V
=

V 3
S

2V 3
P + V 3

S

∆VP
VP

+
2V 3

P

2V 3
P + V 3

S

∆VS
VS

. (2.4)

In a Poisson medium, where VP =
√

3VS (Poisson ratio ν = 0.25), this relationship

becomes:
∆V

V
= 0.09

∆VP
VP

+ 0.91
∆VS
VS

. (2.5)

Knowing the relative contributions of ∆VP /VP and ∆VS/VS to the CWI estimate of

∆V/V , while somewhat useful, does not give the actual velocity changes ∆VP /VP and

∆VS/VS . It is therefore desirable find a suitable method for unravelling the CWI

estimate of ∆V/V into independent changes in VP and VS .

Source Location Change

A second perturbation type that CWI is able to monitor is the displacement of the

source or receiver location (Figure 2.2b shows an example source displacement). In

this case, the difference in the ray paths before and after the perturbation is only the

difference between the source and the first scattering point (blue arrows in Figure

2.2b), following the first scattering point, the waves follow the exact same paths.

The different paths are shortened or lengthened depending on the location of the

first scatterer, which manifests as the advancement and retardation of signal peaks

highlighted by red and blue arrows in Figure 2.2b. Providing the source displacement

is small compared to the seismic wavelength, the extent to which these travel times
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are perturbed (specifically, the variance of the travel time perturbations) is directly

proportional to the displacement.

There are various applications of CWI for estimating inter-source separation for

earthquakes (Snieder and Vrijlandt, 2005; Robinson et al., 2011; Hayward and Bostock,

2017) and in ice (Allstadt and Malone, 2014). CWI has also been used to study changes

in earthquake focal mechanisms (Robinson et al., 2007). If the separation between a

pair of sources can be estimated, the 3D relative locations for a network of sources can

also be estimated (Robinson et al., 2013). This method has been applied for mining

induced micro-seismic events (Zhao et al., 2017) using the now publicly available source

package of Zhao and Curtis (2019).

Change in Scattering

A third perturbation type that CWI can monitor is the average displacement of all

scattering points (yellow circles in Figure 2.2c): in this case, all paths between scattering

points are perturbed (both shortened and lengthened), and similarly to the previous

case the variance of travel time perturbations is proportional to the displacement of

scattering points. This method has relevance for studying the motion of particles in

suspensions (Heckmeier and Maret, 1997; Cowan et al., 2000), though application of

this method is comparatively limited (Snieder and Page, 2007).

2.2.3 Locating a perturbation

The late arriving, multiply scattered coda waves sample the entire medium, therefore

CWI monitors the bulk properties of a medium. Many real-world situations involve a

localized perturbation, and not simply an average perturbation occurring throughout

the entire medium. Rossetto et al. (2011) describe a method for locating changes in

the diffuse waves known as LOCADIFF, which uses a maximum likelihood approach

combined with a diffusive propagation model. These methods assume statistical

homogeneity of the scattering properties therefore may not be appropriate for realistic

media with correlated structures. Obermann et al. (2016) use the time-dependent
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Figure 2.3: Figure adapted from Kanu and Snieder (2015) illustrating the localisation of wave energy

as a function of time. The far left panel is a velocity model containing a low-velocity near surface. The

four grey panels are the numerically computed sensitivity kernels at different times corresponding to

different wave scattering regimes: ballistic wave propagating (top left), single scattering (top right),

multiple scattering (bottom left), and a surface saturated regime (bottom right).

sensitivity of the coda to different depths allowing the localisation of perturbations.

Kanu and Snieder (2015) propose the use of numerical-based sensitivity kernels for

locating perturbations in structurally correlated media (see also Margerin et al. (2015)).

This method uses simulated wavefields to compute the sensitivity kernels as a function

of time along a recorded signal, showing where the wave energy is distributed thus

showing the locations contributing to the travel time perturbations measured at a

given time. An example of this method from Kanu and Snieder (2015) is shown in

Figure 2.3, showing the dominance of the low velocity near surface contributing to the

recorded signal at late times. This method requires detailed knowledge of the medium

and the accurate locations of any reflectors, which in practice are rarely known.
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2.3 Rock Physics

One major objective of this thesis is to determine how coda wave interferometry can

be applied in experimental rock physics. It is therefore appropriate to review the

methods and models involved for both experimental and digital rock physics, the latter

is reviewed in Section 2.4.

2.3.1 Principles of Experimental Rock Physics

Variations in the stress field of the Earth’s crust control a range of geological processes

such as plate tectonics, regional deformation and earthquakes. These variations in

stress control the extent and type of deformation that occur in the Earth (Ruff, 2002).

In-situ stresses can be measured directly but this process often involves the expensive

processes of drilling and pumping fluid into the subsurface (Zoback and Zoback, 1980).

Alternatively, the stress field can be simulated in experimental rock physics. These

experiments allow for the monitoring of stress, strain and physical properties such as

elastic wave velocity (Wang, 2001), electrical properties (Olhoeft, 1981), permeability

(Sahimi, 2011), acoustic emissions (Lockner et al., 1992; Lockner, 1993), and pore fluid

volume (Sammonds et al., 1992). These experiments also allow the understanding of

deformation mechanisms and the ability to isolate processes that occur simultaneously

in the field.

Stress and Strain

Nye et al. (1985) states that a body being acted upon by an external force is in a state

of stress. The orientation and strength of these stresses can be described by the stress

tensor σij(i, j = 1, 2, 3), where nine stress components in the three principal directions,

x1, x2 and x3, fully describe the stress at any point in the body (Fung, 1965):

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.6)
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Within the tensor, normal stresses are the diagonal σii components and shear stresses

are the off-diagonal σij(i 6= j) components. The hydrostatic (or isotropic) pressure P

is defined as the mean value of the normal stresses (Poirier, 1985):

P =
1

3

3∑
i−1

σii =
1

3
(σ11 + σ22 + σ33) (2.7)

and when shear stresses are not present, the differential stress (or non-isotropic stress)

σ is defined as:

σ = σmax − σmin (2.8)

where σmax and σmin are the maximum and minimum normal stresses, respectively.

The strain of the body describes the change in size or shape when an external stress

is applied (Twiss and Moores, 1992). The displacement tensor Dij describes a body’s

deformation for the position xj with it’s displaced location (ui):

Dij =
∂ui
∂xj

, (2.9)

which can be split into two components: the rotation tensor ωij , which is the

asymmetric part of Dij , and the strain tensor εij which is the symmetric part. The

strain tensor is formulated in the same way as the stress tensor (Equation 2.6),

where there is normal strain (diagonal components, εii) and shear strain (off diagonal

components, εij(i 6= j) ). Normal strain describes the linear or volumetric stretching

or compression whereas shear strain describes the angular distortion of a material. A

common measurement in experimental rock physics is linear strain εl and the volumetric

strain εv, which are the relative change in length measured along it’s respective

dimension:

εl =
l0 − l
l

=
∂u1
∂x1

(2.10)

and the ratio of the change in volume ∆v of a body to it’s original volume v:

εv =
∆v

v
≈ ∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

. (2.11)
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Figure 2.4: The stages of deformation typical of a triaxial compression experiment outlined in section

2.3.1, showing differential stress, P wave velocity (VP ) and S wave velocity (VS) as a function of axial

strain. Figure adapted after Sammonds et al. (1989).

Properties such as linear strain and seismic velocities are often evaluated with varying

differential stress in rock physics experiments.

Evolution of Physical Properties during Deformation

Typically deformation during ‘triaxial’ compression occurs in a load cell where the

axial stress is the maximum and the two radial stresses are equal (σ1 > σ2 = σ3).

The stress-strain curve typically plots axial stress, which is gradually increased at a

constant strain rate. The stress-strain curve can be divided into five regions based on

the mechanical processes that occur (Brace et al., 1966; Scholz et al., 1973; Sammonds

et al., 1989). These regions are shown on Figure 2.4 for stress, VP and VS as a function

of axial strain. These stages are described below:

1. The first stage represents crack and pore closure. Initially, strain requires
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increasing stress resulting in a concave upward trend in the stress-strain curve.

Closure of cracks and pores, particularly those at high angles to the loading axis,

reduces void space and causes an increase in both VP and VS .

2. The second stage is where the sample exhibits linear elasticity, where stress and

strain are almost directly proportional and deformation is elastic. Velocities

continue to increase indicative of crack and pore closure. Loading and unloading

in this region will not produce irreversible changes in the properties or structure

of the rock (Jaeger et al., 2009).

3. The next stage, which occurs at approximately two thirds of the peak stress

(Hallbauer et al., 1973), represents the onset of irreversible change occurring in

the rock. The stress-strain curve begins to curve downwards, marking the onset of

microcrack formation. Velocities begin to decrease, where VS commonly decreases

at a faster rate than VP , especially when measured parallel to the loading axis,

sensitive to cracks forming parallel or oblique to loading. At this stage irreversible

changes occur in the rock that lead to unrecoverable strain once the load is

removed (Jaeger et al., 2009).

4. The fourth regions represents the coalesence of microcracks and the formation of

the main macroscopic fractures. At peak stress, the rocks ability to support load

rapidly decreases, thus the gradient of the stress-strain curve becomes negative.

Velocities in all directions continue to decrease.

5. Finally is the occurrence of frictional sliding alone the failure planes. The stress-

strain curve as well as the measured velocities become constant as stress becomes

independent of strain, and stable sliding occurs along the fracture plane(s).

2.3.2 Rock Physics Models

There is a vast abundance of tools and models used in rock physics, far too many to

be fully described here. Therefore I review a non-exhaustive list comprised of models

pertinent to the contents of this thesis. There are many comprehensive reviews on rock

physics models that provide full details on the derivations, applications and limitations
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of such models (Cleary et al., 1980; Wang, 2001; Jaeger et al., 2009; Mavko et al., 2009;

Christensen, 2012; Price et al., 2017).

Statistical models

Statistical methods are entirely based on empirical matches to trends in observed data.

Such models determine the relationships between a wide range of physical properties.

For example, velocity-porosity models (Raymer et al., 1980), velocity-density models

(Gardner et al., 1974; Christensen and Mooney, 1995), velocity-porosity-clay models

(Tosaya and Nur, 1982; Han et al., 1986), velocity-pressure-porosity-clay models

(Eberhart-Phillips et al., 1989), and VP -VS models (Pickett, 1963; Castagna et al.,

1985). The assumptions and limitations for these methods are generally consistent;

strictly speaking, empirical relations only apply to the set of rocks studied (Mavko

et al., 2009), thus the extrapolation of empirically determined models can be unreliable.

Another limitation to these methods are that the statistical fitting of trends do not

provide any physical meaning, therefore no unique interpretation of the underlying

processes can be achieved, though the trends can provide significant constraints.

Bounding models

Bounding models recognize the uncertainty of elastic moduli for a given porosity and

therefore give a range of moduli, where the exact value depends on geometric factors

of the medium. The geometric interpretation of these models are shown in Figure 2.5.

An example would be the Voigt upper bound MV (Voigt, 1928) and the Reuss lower

bound MR (Reuss, 1929):

MV =

N∑
i=1

fiMi, (2.12)

1

MR
=

N∑
i=1

fi
Mi

, (2.13)
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a) Voigt model  b) Reuss model  c) Hashin-Shtrikman Bounds 

Phase 1

Phase 2

Figure 2.5: Geometric interpretations of the Voigt upper bound model (a), the Reuss lower bound

model (b), and the Hashin-Shtrikman bound (c). The upper and lower Hashin-Shtrikman bounds are

calculated by interchanging phase 1 and phase 2. Figure adapted from Mavko et al. (2009).

where fi is the volume fraction of the ith phase and Mi is the elastic modulus of the ith

phase, M can represent the bulk modulus K or the shear modulus µ. Another example

are the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963):

KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4
3µ1)

−1 (2.14)

µHS± = µ1 +
f2

(µ2 − µ1)−1 + 2f1(K1 + 2µ1)/[5µ1(K1 + 4
3µ1)])

(2.15)

where the subscripts 1 and 2 refer to the two phases in the medium and the upper and

lower bounds are computed by interchanging which phase is termed 1 and 2 (Mavko

et al., 2009). The limitations of these methods are that the bounds are often far too

broad for many practical applications, and that the models assume each constituent

phase is isotropic, linear, and elastic.

Contact models

These models use spheres as idealized representations of grains in unconsolidated

or poorly consolidated granular media. This allows for the analytic treatment of

mechanical grain interactions under varying stress (Mavko et al., 2009). Effective

elastic properties depend on the normal and tangential contact stiffness, which are a
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function of the grain elastic properties and coordination number (e.g., Mindlin (1949)

and Walton (1987)). These models assume that strains are small, grains are identical,

homogeneous, isotropic and elastic spheres, and wavelengths are much larger than the

size of the grains.

Inclusion models

Inclusion-based models such as Eshelby (1957); Mori and Tanaka (1973); Berryman

(1992) assume a specific inclusion shape embedded into a background material. This

physics-based approach generally leads to more intuitive interpretation and closer

resemble real-rock scenarios. Further information such as crack density and mean

crack aspect ratio can be inferred from changes in velocity due to a change in stress

distribution modified by the presence of damage (Walsh, 1965; Ayling et al., 1995;

Stanchits et al., 2006). A common approach is the self-consistent effective medium

model of O’Connell and Budiansky (1974).

However, the assumption of idealized ellipsoidal (or spheroidal) inclusion may be

unrealistic, particularly in granular media (Makse et al., 1999).

2.4 Digital Rock Physics

The rock physics models described above are either based on empirical relationships

from laboratory data or theoretical models based on idealized rock micro-structures.

These models are undoubtedly important for many aspects of geoscience, but their

assumptions often over-simplify the physical interactions occurring within the rock

geometry. This limitation is the motivation for using digital rock physics. A digital rock

is a three-dimensional representation of a rock fabric, where individual phases within

a rock (e.g., each mineral component and pore space/fluid) is known for each voxel in

three dimensions. Digital rock physics uses these models to compute effective properties

such as elastic moduli, electrical resistivity, and permeability (Andrä et al., 2013a,b).

Digital rock models are far more flexible and far less expensive to run compared to

laboratory experiments, and can be used to test hypotheses and establish trends of
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evolving geophysical properties responding to different processes, including the response

to stress or to specific diagentic events. Digital rocks also allow rapid sensitivity

analyses to the variability of bulk properties due to changes in model parameters. The

applications for digital rock physics are broad, including the estimation of permeability

(Martys et al., 1999; Keehm, 2003), seismic velocity (Saenger et al., 2000; Saenger, 2008;

Arns et al., 2002), thermal conductivity (Wiegmann and Zemitis, 2006) and electrical

resistivity (Liu et al., 2009; Zhan et al., 2010).

2.4.1 Generating Digital Rocks

There are two approaches to the generation of digital rocks: either by taking a ‘real rock’

(via x-ray imaging) and segmenting intensity values into individual material phases, or

by constructing a rock entirely computationally (e.g., simulating mineral deposition).

X-ray Microtomography (µCT )

In the majority of cases in digital rock physics, images are acquired using high resolution

x-ray micro-tomography to capture complex grain, crystal, and pore size and shape

distributions. There are several reviews summarising the underlying methodology, the

applications, and issues with the method (Betz et al., 2007; Stock, 2008; Baker et al.,

2012; Cnudde and Boone, 2013; Wildenschild and Sheppard, 2013; Fusseis et al., 2014),

all of which inform the review presented here.

µCT utilizes material-specific absorption of x-rays (absorption contrast tomography) or

variations in refractive index (phase contrast tomography). Absorption tomography is

based on the Beer-Lambert law, describing the exponential decrease of X-ray intensity

as a function of the line integral of the linear attenuation coefficients along the path:

I = I0 · exp
[
−
∞∫
−∞

µ(x)dx

]
(2.16)

where µ(x) is the linear absorption coefficient at position x along a particular ray

(Fusseis et al., 2014). Figure 2.6 demonstrates how with a large number of ray
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Figure 2.6: Reconstruction of the physical horizontal image slice from back-projection of absorption

intensity signals at different rotation angles around the sample. Image from taken Fusseis et al. (2014).

paths passing through a sample at different angles, a 2D image representing spatial

variation in absorption coefficients can be reconstructed. This process is completed

over a large number of slices to build up a high resolution three dimensional image of a

sample. Other methods such as phase contrast tomography, which uses material-specific

temporal phase shifts as an X-ray passes through a sample (Cloetens et al., 2002),

or Neutron tomography, which uses a neutron source, are also popular methods in

microtomography imaging. Tomographic output data is comprised of voxels, each with

a unique spatial coordinate and an intensity or temporal phase shift value ascribed to it.

Isolating intensity values from voxels and assigning a particular target material phase,

such as pore space, or a particular mineral phase, is called image segmentation. There

are several reviews on image segmentation methods (Kaestner et al., 2008; Iassonov

et al., 2009; Wang et al., 2011) covering a vast range of segmentation algorithms, each

with specialized applications. Fusseis et al. (2014) states that the choice of the most

suitable segmentation algorithm depends on the number of phases, their separability,

the size of individual object, their spatial arrangements and shapes. Segmentation is

a key step towards any following data analysis, where size, shapes and orientations of

can be quantified, and effective physical properties can be estimated.
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Process Based Simulation of Digital Rocks

There are several examples of the process-based simulation of digital rocks, where

geological processes, such as deposition, cementation or dissolution, are simulated to

generate digital rocks. These simulations allow the investigation of the influence of

such geological processes on petrophysical and hydraulic properties. These digital

rocks are generated entirely computationally, thus do not require the additional step of

segmentation. Examples include cementation in both sandstones (Mousavi and Bryant,

2012; Latief et al., 2010) and carbonates (Biswal et al., 2007; Mousavi et al., 2012) as

well as dissolution in simple porous media (Kang et al., 2003) and carbonates (Hosa

and Wood, 2017). However, the physical properties investigated during cementation are

most commonly transport properties such as permeability and electrical conductivity,

e.g., Keehm et al. (2001). To date there have been no applications of process-based

cementation modelling for the estimation of elastic properties using digital rocks.

2.4.2 Computing Effective Properties

Following the imaging of a rock sample and the digital processing and segmentation

of material phases, or the process-based simulation of a digital rock, one can simulate

physical processes within the microstructural image to determine effective properties

(provided knowledge of the physical properties of the material phases). Two common

methods for computing effective properties are the finite-difference (FDM) and finite-

element methods (FEM), both involve the discretization of the underlying partial

differential equations (e.g., Equation 2.1 for elastic property estimators) on a regular

Cartesean grid (Andrä et al., 2013b). The FDM is comparatively more straightforward

than the FEM as coordinates of image voxels directly transfer to the grid required

for the FDM, whereas the FEM requires an additional step of meshing, where

the medium is subdivided into smaller and simpler shapes, most commonly using

triangles. The majority of digital rock physics applications take high-resolution three-

dimensional images, which are not always widely available. Therefore, several authors
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use reconstruction of two-dimensional images and empirical two-dimensional to three-

dimensional relations (Karimpouli and Tahmasebi, 2016; Karimpouli et al., 2018;

Saxena and Mavko, 2016), which allows the use of more readily available thin-sections

as the input images.

Elastic property estimators

There have been many applications of digital rock physics for the estimation of elastic

properties in a range of media, including siliciclastics (Saenger et al., 2011; Saxena and

Mavko, 2016), carbonates (Kalam, 2012; Saenger et al., 2014; Jouini et al., 2015), gas

hydrate-bearing sediments (Sell et al., 2016), and also the estimation of changing elastic

properties as a function of effective stress (Madonna et al., 2012). Dvorkin et al. (2011)

compares estimated seismic velocity from digital rocks with the experimental estimation

of the equivalent ‘real rocks’, finding that generally the estimated velocities from digital

rocks are higher than for those estimated for real rocks. This highlights the limitation of

image resolution on digital rock physics estimates. Compliant cracks and grain contacts

are often too small to be imaged with conventional imaging techniques, but have a

significant contribution to the elastic properties of a rock. If these softer elements are

missing in the digital rock, the computed elastic moduli are unrealistically high. There

are various approached to mitigate the overestimation of elastic moduli: Knackstedt

et al. (2009) replace the mineral material at grain contacts with a hypothetical softer

material and other authors combine images taken at a range of resolutions to more

accurately charecterise the porosity (Saenger et al., 2014; Jouini et al., 2015).

Transport property estimators

Properties such as permeability can be estimated by attempting to numerically solve

the Navier-Stokes equation for low-Reynolds-number fluid flow in porous media (Martys

et al., 1999; Keehm et al., 2001). Keehm (2003) provides a comprehensive review of

finite-difference, finite-element, lattice-gas automata and Lattice-Boltzmann methods

for fluid flow in porous media. Similarly, the electrical resistivity (and conductivity)

can be numerically estimated (Liu et al., 2009; Zhan et al., 2010). In the majority
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of rocks, the resitivity of solid grain materials are orders of magnitude higher than

the the pore fluids, therefore the estimated electrical properties depend mostly on

the fluid properties, the porosity and the connectivity of pore space. Andrä et al.

(2013b) compares a range of algorithms for estimating permeability and and electrical

resistivity and find that there is generally good agreement with digital rock estimates

and laboratory ‘real rock’ estimate, with a much greater accuracy compared to estimates

for elastic moduli. The difference in accuracy highlights the dependence on larger

scale macro-porosity for transport properties, whereas elastic properties are strongly

controlled by sub-resolution features such as grain contacts and microcracks (Jouini

et al., 2015).

2.5 Research Questions

From the literature summarised above, I have identified current gaps and areas for

research that set the foundation for what follows in this thesis. These are formulated

as a series of research questions below:

1. For experimental rock physics, how do estimates for velocity change and source

separation vary between coda wave interferometry (CWI) and conventional first

arrival methods?

2. Can CWI estimates of velocity change and source separation be jointly estimated

when both perturbations occur simultaneously?

3. Can the estimate of velocity change provided by CWI be unravelled further into

estimates of changes in VP and VS or changes in fluid velocity and solid matrix

velocity?

4. Can CWI be used in conventional rock physics models, e.g., for the inversion of

crack density?

5. What are the implications of the implicit isotropic averaging of CWI compared

to the directionality of the first-break method?
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6. Using process-based simulation of digital rocks, what is the effect of cementation

on seismic velocity?

7. What is the most appropriate rock physics model for digital carbonate rocks?

This thesis contains chapters which include submitted or draft research papers which

address these questions. For these chapters I include a short preface where I identify

which of these key research questions the chapter seeks to answer.



Chapter 3

Coda Wave Interferometry for
Accurate Simultaneous
Monitoring of Velocity and
Acoustic Source Locations in
Experimental Rock Physics

This chapter describes some of the most important components of my thesis, seeking

to improve the way in which a change in the velocity of a medium is measured. In the

paper that follows, I introduce coda wave interferometry as a method for estimating

a changes in the bulk velocity of a medium and acoustic source locations. I compare

the method with conventional first-break methods in an experimental rock physics

environment. I also show that CWI can jointly estimate separate bulk velocity and

source location perturbations when both perturbations occur simultaneously. Finally

I present a method for the estimation of changes in P and S wave velocity using CWI.

From the series of research question that I identified in Section 2.5, the themes of this

chapter cover questions 1, 2 and 3.

This manuscript has been published in the Journal of Geophysical Research: Solid

Earth. The co-authors of the paper include Andrew Curtis, Youqian Zhao, Alexis

Cartwright-Taylor and Ian Main. I acted as the lead author for this paper. I performed

33



34 3.1 Abstract

all the experiments and analysis described herein with the exception of the inversion of

relative source locations described in Section 3.4.5, which was performed by Youqian

Zhao. Accompanying the paper is a MATLAB code package for the estimation of

changes in velocity and source location using coda wave interferometry. The user guide

for this code package can be found in Appendix A.

3.1 Abstract

In many geoscientific, material science and engineering applications it is of importance

to estimate a representative bulk seismic velocity of materials, or to locate the source of

recorded seismic or acoustic waves. Such estimates are necessary in order to interpret

industrial seismic and earthquake seismological data, for example in non-destructive

evaluation and monitoring of structural materials, and as an input to rock physics

models that predict other parameters of interest. Bulk velocity is commonly estimated

in laboratories from the time-of-flight of the first-arriving wave between a source and a

receiver, assuming a linear raypath. In heterogeneous media, that method provides

biased estimates of the bulk velocity, and of derived parameters such as temporal

velocity changes or the locations of acoustic emissions. We show that Coda Wave

Interferometry (CWI) characterizes changes in the bulk properties of scattering media

far more effectively on the scale of laboratory rock samples. Compared to conventional

methods, CWI provides significant improvements in both accuracy and precision of

estimates of velocity changes, and distances between pairs of acoustic sources, remaining

accurate in the presence of background noise, and when source location and velocity

perturbations occur simultaneously. CWI also allows 3D relative locations of clusters

of acoustic emissions to be estimated using only a single sensor. We present a

method to use CWI to infer changes in both P and S wave velocities individually.

These innovations represent significant improvements in our ability to characterize the

evolution of properties of media for a variety of applications.
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3.2 Introduction

Experimental studies of wave propagation in rock cores are often performed to deduce

relationships between changes in external conditions and seismic properties such as

seismic velocity (Wang, 2001), anisotropy (Christensen, 1966; Sayers and Kachanov,

1995) and attenuation (Toksöz et al., 1979; Sams et al., 1997), and to examine the

process of rock fracturing (Pyrak-Nolte et al., 1990) or the distribution of acoustic

emissions (Lockner et al., 1992; Lockner, 1993). Established relationships between

seismic attributes and underlying rock physical properties are particularly important

for monitoring purposes in the hydrocarbon industry and in subsurface CO2 storage

projects, notably for relating effective stress changes during subsurface injection or

production to changes that may be observed in the seismic velocity (Arts et al., 2004;

Brown, 2002; Guilbot and Smith, 2002; Herwanger and Horne, 2009; Stork et al., 2018).

It is therefore of great importance that models developed from laboratory experiments

accurately represent the response of in-situ rocks.

Standard methods for measuring either the velocity, or changes in the velocity of a

medium involve picking of first-break arrival times of seismic waves traveling between

a fixed source and receiver pair. The term ‘first-break’ is ambiguous, and can be taken

to mean the signal onset which is the time of first-arriving energy (Brillouin, 1960),

the arrival time of the first peak or the time of first zero-crossing (Hornby, 1998).

Manual picking of first-breaks is slow and may incur inconsistent user bias and error,

therefore there are many methods available for automatic picking of first-breaks (Earle

and Shearer, 1994; Boschetti et al., 1996; Hatherly, 1982; Peraldi and Clement, 1972;

Ervin et al., 1983; Molyneux and Schmitt, 1999). Here, unless otherwise stated, we use

the term first-break method to mean picking the first maximum (or extremum). This

represents the point with the highest signal to noise ratio. The velocity of the medium is

then estimated using the known straight-line distance between the source and receiver.

For many laboratory experiments measuring such velocities, the wavelengths used are

on the same order as heterogeneities in the medium (e.g., pore and grain sizes). Obvious

problems then occur: 1) the measured velocity is not sensitive to the bulk properties of
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a medium, but rather to properties along a very specific (fastest) ray path between the

source and receiver, resulting in a bias towards higher velocities. 2) The path followed

by the first-arriving energy is unlikely to be straight, so that velocity estimates made

using the straight-line path are biased towards lower values. 3) Biases in points 1

and 2 are generally unrelated so are not expected to cancel. 4) The effects of small

perturbations in the medium that are not located along the specific source-receiver path

cannot be detected. 5) Such systematic and random errors in velocity estimation are

carried forward to any subsequent calculations, notably for example to the location of

acoustic source positions. Also, the presence of attenuation and dispersion changes the

shape of a propagating wave (Molyneux and Schmitt, 2000), thus the determination of

meaningful velocity measurements can be problematic.

Weaver and Lobkis (2001) and Lobkis and Weaver (2001) showed that information

about a medium can be extracted from recordings of coda waves and background

ambient noise. Coda waves are the multiply-scattered waves that are recorded after the

arrival of the main ballistic waves. Recordings of coda waves are far more sensitive than

first arrivals to changes in pore-pressure, fracture density and temperature (Snieder

et al., 2002; Vlastos et al., 2006, 2007), due to the fact that coda waves follow much

longer and more complex paths, eventually sampling the entire medium, and sampling

any sub-volume of the medium multiple times. There are now established methods

grouped under the name coda wave interferometry (CWI) that estimate changes in the

velocity of the medium (rather than the absolute velocity), or changes in the locations

of sources or receivers using the coda (Snieder, 2006). There have been several field and

laboratory applications of CWI to date, including the monitoring of velocity changes

in ice sheets (Mordret et al., 2016; James et al., 2017), concrete (Larose and Hall, 2009;

Planès and Larose, 2013), mining environments (Grêt et al., 2006), and volcanic regions

(Sens-Schönfelder and Wegler, 2006). CWI has also been used to study earthquake

focal mechanisms (Robinson et al., 2007), earthquake separation distances (Snieder

and Vrijlandt, 2005; Robinson et al., 2011), and source network locations of induced

micro-seismic events (Zhao et al., 2017; Zhao and Curtis, 2019). So far its implications

for the interpretation of laboratory rock physics experiments has been comparatively
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limited.

In this paper we test the hypothesis that Coda Wave Interferometry (CWI) can provide

an improvement in accuracy and precision when inferring and quantifying the changes

in bulk velocity and relative source locations in rock samples in laboratory settings. We

test the hypotheses that CWI provides more representative measures of bulk properties,

in comparison with commonly used methods in numerical and laboratory experiments

at the core-scale, and at high frequencies commonly used in a laboratory setting.

First we outline the theory of Coda Wave Interferometry and how it can be used

in an experimental setting. Then we examine multiple samples of varying rock

type and heterogeneity using both numerical simulations and laboratory experiments,

where changes in source location and velocity are estimated using both CWI and

standard methods (manually-picked first breaks for velocities and multilateration for

source locations). We show how changes in source position and velocity can be

jointly estimated by CWI when both perturbations occur simultaneously. We then

demonstrate an optimization algorithm for estimating the relative locations of sources

within a cluster, given the source separations estimated from CWI, and show that it

can be applied even in the case of having only a single transducer. Following this, we

test the sensitivity of CWI as well as conventional methods to increasing contamination

of noise. In all cases CWI is shown to out-perform conventional methods.

Accompanying this manuscript, we provide a well-commented set of MATLAB func-

tions for implementing the CWI method to estimate velocity changes, and for the joint

estimation of velocity change and source separation. These codes use a form of CWI

that estimates changes relative to a moving reference seismogram, which is particularly

important for longer deformation experiments in which scattering paths may change

significantly, a situation which contravenes the assumptions of standard CWI theory,

and requires the reference seismogram to be updated periodically. Together with the

suite of CWI codes made publicly available by Zhao and Curtis (2019) this allows all

techniques used in this paper to be implemented and reproduced.
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3.3 Coda Wave Interferometry (CWI)

CWI is a method that allows small changes in velocity, the displacement of source or

receiver locations, or movement of scatterers to be monitored (Snieder et al., 2002;

Sens-Schönfelder and Wegler, 2006; Snieder, 2006). These different perturbations and

their effect on recorded signals are illustrated in Figure 3.1. First consider the effect

of a velocity perturbation (∆V in Figure 3.1a). The direct arriving wave between a

source and receiver would only sample the perturbation once (or not at all), whereas

the multiply reflected wavefield samples the perturbation many times. Therefore the

change in arrival times for later arriving waves (time window iv) is larger than for the

first arrival (time window i). The second perturbation type is a displacement of the

source or receiver location (Figure 3.1b shows a source displacement). In this case,

the difference in ray paths before and after the perturbation is the path between the

source and the first scattering point (blue arrows in Figure 3.1b). Different paths are

shortened or lengthened depending on the location of the first scatterer; this is reflected

by the advancement and retardation of peaks highlighted by red and blue arrows.

Providing the source displacement is small, the extent to which these travel times are

perturbed (specifically, the variance of the perturbation) is directly proportional to

the displacement. The third perturbation type is the displacement of all scattering

points (yellow circles in Figure 3.1c): in this case, all paths between scattering points

are perturbed (both shortened and lengthened), and similarly to the previous case the

variance of travel time perturbations is proportional to the displacement of scattering

points. All three perturbation types can be monitored by using a cross correlation

of the unperturbed (uunp) and perturbed (uper) waveforms - the waveforms from the

source recorded by the receiver before and after the change or displacement takes place.

One method to estimate the change in velocity is known as trace stretching (Sens-

Schönfelder and Wegler, 2006), where the perturbed waveform is assumed to be a time-

stretched version of a reference waveform; this follows if one assumes that a velocity

perturbation is uniform across the entire medium, so all arriving energy is perturbed

at the same temporal rate. This method also assumes no changes in the intrinsic
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a) Perturbation of Velocity

b) Perturbation of Source Location

c) Perturbation of Scatterer Locations

Time

Figure 3.1: Illustrations of different perturbation types and their effects on coda waves. The cartoons

(left) represent a scattering medium, with a source (star), receiver (triangle), and point scatterers

(circles). Ray paths between the source and receiver, including multiple reverberations, are represented

as black arrows. A velocity perturbation (a) is represented as a yellow ellipse, which has a velocity

different to the background medium. New ray paths that are introduced due to changes in source

location (b) and scatterer locations (c) are represented as blue arrows. Example recorded signals

(right) at a range of time windows (i-iv) are shown before and after each perturbation takes place (blue

and red, respectively). Differences in travel times of arriving energy for b) and c) are highlighted by

vertical arrows.
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attenuation of the medium. We stretch the time axis of the perturbed signal by a range

of stretching factors (ε) and compute the correlation coefficient R between uunp(t) and

the stretched version of the perturbed waveform uper(t[1+ε]) over a given time window

(t1, t2):

R(t1,t2)(ε) =

∫ t2
t1
uunp(t)uper(t[1 + ε])dt√∫ t2

t1
u2unp(t)dt

∫ t2
t1
u2per(t[1 + ε])dt′

. (3.1)

The optimum stretching factor εmax that maximizes the correlation coefficient (for

which R = Rmax), is related to the ratio of the change in velocity ∆V to the original

velocity V by

εmax = −∆V

V
, (3.2)

(Sens-Schönfelder and Wegler, 2006). This method requires that velocity changes are

small to avoid cycle skipping in the calculation of R in Equation 3.1. In cases where the

medium changes significantly, such as during material deformation where new scattering

paths are introduced due to fracturing, it may not be appropriate to use a constant

reference trace (uunp) for all recorded waveforms during deformation. We therefore

propose the use of a moving reference trace, where the optimum stretching factor from

the initial reference trace (u0) to any other recorded waveform during deformation (un)

can be calculated as

εu0un = εu0us + εusun , (3.3)

where εuiuj is the stretching factor of trace uj relative to ui, s = kbn/kc, n is the trace

number, k is the user-selected step size of the moving reference trace, and b. . .c denotes

a floor function, which outputs the greatest integer less than or equal to the argument.
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Accompanying this manuscript are a suite of MATLAB functions for implementing

the moving-reference stretching CWI method. Snieder (2002) derived the relationship

between the inferred medium velocity change from CWI, and changes in P-wave and

S-wave velocities in an isotropic case:

∆V

V
=

β3

2α3 + β3
∆α

α
+

2α3

2α3 + β3
∆β

β
, (3.4)

where α and β are the velocities of P and S waves, respectively. In an initial Poisson

medium where α =
√

3β, if either or both of the P or S wave velocity changes then the

relation simplifies to

∆V

V
= 0.09

∆α

α
+ 0.91

∆β

β
, (3.5)

and if α and β change such that the Poisson medium is preserved then

∆V

V
=

∆α

α
=

∆β

β
. (3.6)

The strengths of the CWI technique lie in the ability to resolve very small changes in

velocity compared to standard methods. If we take the sampling interval of a recorded

signal to be dt, the duration of the signal to be tmax, and make the conservative

assumption that one sample interval is the smallest resolvable time difference between

waveforms in the two recordings, then the maximum resolution of CWI (the smallest

resolvable change in velocity that can be measured) is

[
∆V

V

]CWI

min

=
dt

tmax
. (3.7)
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The maximum resolution for measuring ∆V/V from the standard first-break method

would be

[
∆V

V

]FB
min

=
dt

(t0 + dt)
, (3.8)

where t0 is the first-break arrival time. Both equations 3.7 and 3.8 assume no

background noise and hence no uncertainty in the recorded waveforms, nor ambiguity

in defining a first break which can be highly uncertain in many cases. Inserting typical

values for laboratory core scale measurements, such as those used in the experiments in

the following section (sampling interval dt = 0.04µs, signal duration tmax = 640µs,

and arrival time t0 = 65µs), the smallest perturbations that theoretically can be

detected are 0.00625% for CWI and 0.062% for the standard first break method. Hence,

CWI offers an order of magnitude improvement in precision in the absence of noise.

The CWI method also computes the cross-correlation function using many more data

points, which should make it less susceptible to the effects of noise than a single point

measure of say the first peak for the first break estimate. We test the hypothesis that

CWI provides a more accurate measure of relative velocity changes in the experiments

outlined in Section 3.4.3.

Another advantage of using CWI is that it allows a joint estimate of both a velocity

perturbation and the separation r between two source/receiver locations to be made

from a single receiver. This is because velocity perturbation information is retrieved

from the consistent phase information along the waveforms, whereas the source or

receiver separation is related to the variance of inconsistent phase perturbations and

hence to the maximum value of the cross correlation value (Rmax) in Equation 3.1,

and these two attributes may be observed independently. Figure 3.1b illustrates how

the perturbations of travel times (advancement and retardation of individual peaks)

relates to the displacement of the source or receiver. Snieder (2006) derives the

relationship between the maximum cross-correlation and the variance of the travel

time perturbations (σ2τ ) as
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Rmax = 1− 1

2
ω̄2σ2τ , (3.9)

where ω̄2 is the dominant mean-squared angular frequency in the recorded waveform

which can be computed as:

ω̄2 =

∫ t2
t1
u̇2(t′)dt′∫ t2

t1
u2(t′)dt′

, (3.10)

where u̇ is the temporal derivative of the waveform u. When a source/receiver is

displaced relative to another source/receiver by distance r, one can estimate separation

r from the variance of the travel time perturbations in a range of scenarios. For isotropic

sources in a two-dimensional acoustic medium:

σ2τ =
1

2α2
r2. (3.11)

For isotropic sources in a three-dimensional acoustic medium:

σ2τ =
1

3α2
r2. (3.12)

For double couple sources on the same fault plane, with the same source mechanism

and in elastic media:

σ2τ =
( 6
α8 + 7

β8 )

7( 2
α6 + 3

β6 )
r2, (3.13)

where α and β are estimates of the P- and S-wave velocities of the medium (Snieder

and Vrijlandt, 2005). These estimates of velocity represent an average for all scattering
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paths, assuming coda waves are evenly distributed in an isotropic medium. The type

of spatial averaging that is implicit in the CWI estimate is analyzed in Section 3.6.

To summarize, the main advantages of using CWI over conventional first-break method

in an experimental setting (at least in theory) are that: 1) CWI is more representative

of changes in the bulk properties of a medium because coda waves sample the entire

medium. 2) Coda waves sample the same area multiple times, so CWI is capable of

resolving smaller changes in the medium giving a theoretical order of magnitude increase

in precision for typical laboratory experiments. 3) CWI is generally less susceptible to

the presence of noise as it uses many more data points, providing more robust estimates.

4) CWI allows for the separation between nearby sources to be estimated from a single

receiver, even in cases where medium velocity changes occur simultaneously, as the two

estimates utilize different measurements made from the correlation function in Equation

3.1. The source-separation data are then sufficient to estimate the 3D relative locations

of clusters of sources using CWI with a single receiver. We now test how CWI works

in practice, using numerical simulations and laboratory experiments.

3.4 Results

3.4.1 Estimating Velocity and Source Locations: Synthetic Examples

Rock cores typically used for geomechanics and rock physics experiments are on the

scale of 3 mm to 100 mm in diameter, and seismic wave frequencies studied are on

the order of kHz - MHz. At these frequencies, wavelengths are similar to the scale

of the key heterogeneities such as pores and grains, therefore many rock samples act

as strongly scattering media. Most recorded waves take very complex, long paths and

experience multiple reflections, diffractions and reflections (Sato et al., 2012). Therefore

there are strong frequency dependent effects on properties derived from ultrasonic

recordings at these scales (Mason and McSkimin, 1947). The complex nature of wave

propagation through highly scattering media, such as the samples shown in Figure 3.2,

can be studied using methods of digital rock physics (Madonna et al., 2012). First
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Table 3.1: Parameters used for finite difference wavefield simulation through the samples shown in

Figure 3.2. Values are Voigt-Reuss-Hill averages taken from Bass (1995) and Mavko et al. (2009).

Phase Density (kg/m3) Velocity (m/s)

Pore Fluid 1000 1500

Calcite 2710 6500

Plagioclase 2620 6500

Quartz 2650 5800

Potassium Feldspar 2560 6300

Biotite 3090 5260

Muscovite 2790 6460

a reconstructed micro-tomography (µCT) cross-section is segmented into appropriate

mineral and pore phases, and converted into velocity and density models (wave physics

parameters used for different phases are shown in Table 3.1). Using finite difference

methods (Moczo et al., 2007), wave propagation through the medium can be simulated

so that full waveforms can be generated, as though they have been recorded at any point

within the medium. These methods are increasingly used for estimating the acoustic

or elastic properties of rocks based on µCT images (Saenger et al., 2014; Saxena and

Mavko, 2016). These methods are limited by the resolution of µCT images, which fail

to resolve sub-micron scale structures such as any microcracks that may exist.

Our aim is to understand and address problems facing core-scale experimental rock

physics, especially where strong scattering occurs. To emulate these physical ex-

periments, we simulate wave propagation using a two-dimensional, acoustic, rotated

staggered-grid finite-difference solver, through three different digital rock samples:

Tivoli Travertine (TT), Westerly Granite (WG) and Copp-Crag Sandstone (CS). These

rock types have been selected to represent a range of types of heterogeneity, where

Tivoli Travertine has high porosity with complex pore shapes and pore size distribu-

tion, Copp-Crag is a relatively homogeneous sandstone with more uniform pore shapes

and pore size distribution, and Westerly Granite is the most homogeneous and exhibits

little porosity. The µCT slices and corresponding models of segmented phases for each
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Figure 3.2: Set of X-ray µCT slices (left images) and equivalent models of segmented phases (right

images) for three rock cores with varying heterogeneity and rock type: a) and b) Tivoli Travertine,

c) and d) Westerly Granite, e) and f) Copp-Crag Sandstone. Model sizes are: 900x2400, 1000x3000

and 900x900 pixels for Tivoli Travertine, Westerly Granite and Copp-Crag, respectively. Approximate

wavelength λ for each sample is labeled with a white bar, where the source signals contain a peak

frequency of 30 MHz for Tivoli Travertine and Copp-Crag Sandstone, and 200 MHz for the smaller

Westerly Granite model. The properties assigned to each material phase for wavefield simulation can

be found in Table 3.1.
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rock type are shown in Figure 3.2 and are converted to wave physics models using the

parameters stated in Table 3.1 (assuming isotropic mineralogy). The simulations do

not include any effects caused by attenuation or dispersion. Each pixel is mapped to a

regular grid of cells used for the finite difference method, with cell sizes of 37.5 µm, 42

µm and 2.9 µm for the TT, CS and WG, respectively. The model includes reflecting

boundaries to account for side wall reflections.

The source input pulses used are Ricker wavelets with peak frequencies of 30 MHz for

the TT and CS models, and 200 MHz for the smaller WG model. These frequencies are

significantly higher than those conventionally used in laboratory experiments, which

typically use peak frequencies around 1 MHz for 38 mm core diameter experiments.

For comparison with conventional methods, we also use a Ricker wavelet with peak

frequency of 1 MHz for the TT model. The simulations here are well within the high-

frequency regime (approximate wavelengths for each sample are labeled as λ in Figure

3.2). We assume a point source and point receivers, much smaller than the apertures

of conventional transducers used in laboratory experiments. We also assume perfect

transducer coupling, which in a laboratory setting is unknown and may be sensitive to

external conditions. Accordingly our results explore a best-case scenario at this stage of

the modelling. High-contrast discontinuities such as those between pores and mineral

phases may cause instability problems on a staggered grid. To avoid these difficulties,

we implement the rotated staggered grid technique (Saenger and Bohlen, 2004).

First, we simulate a single point source located at the top of each sample and a row

of point receivers along the bottom (e.g., Figure 3.3e). Velocity is estimated at each

receiver by manually picking the arrival time of the first peak (as well as the signal

onset for the TT model) and assuming straight ray paths between the known source

and receiver locations (shown in Figure 3.3a, b, c and d). For the three samples, the

estimated velocities at each receiver show considerable variation depending on where

the receiver is located. For the TT model, we compare varying the source frequency (1

MHz and 30 MHz) as well as the method used for picking the first arrival (picking the

first maximum in panel a in Figure 3.3, and the signal onset in panel b). The strong
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Figure 3.3: (a-d) Estimated seismic velocity as a function of receiver position, obtained from simulated

waveforms through a µCT digital rock sample in a model shown (e) for the Tivoli Travertine. The

source (star) is fixed at the top and receivers (triangles) are distributed along the bottom. The blue

curve shows velocity estimates made using first-break arrival times and straight-line source-to-receiver

distances. The dashed green line represents the conventional estimate of velocity using a single receiver

at the center of the core. The dashed black line represent the fastest measured velocity. Results are

for a) Tivoli Travertine picking the travel time of the first maximum and using a 30 MHz (blue) and 1

MHz (red) sources, b) Tivoli Travertine picking the travel time of the signal onset and using a 30 MHz

(blue) and 1 MHz (red) sources c) Westerly Granite (200 MHz source), and d) Copp-Crag Sandstone

(30 MHz source). The results in panels c and d are from picking the first maximum.
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variation in velocity depending on receiver position is present for both frequencies and

both picking methods. This response is concerning as in many cases a single receiver and

hence a simple, non-representative velocity may be used to characterize an entire sample

- from a receiver at the center of the core in conventional experimental configurations

(shown as dashed black lines in Figure 3.3). Sometimes a plate-like receiver is used

which spans the entire base of the sample; in that case the signal recorded would be

approximately equal to the superposition of all the distributed transducers (Li et al.,

2018), and the velocity estimated using this method is shown as a dashed green line.

To further explore the variation of measured velocity, a similar numerical experiment

was carried out on the three velocity models in which eikonal ray tracing was

implemented using the methods outlined by Margrave (2007). This gives an estimated

arrival time (t[x]) for every point x in the model for a fixed source location (in this case

the source is located at the center-top of each sample). Using these arrival times, we can

imagine a receiver placed at every point within and on the boundary of a model, and

an estimate of the velocity for that source-to-receiver path can be calculated using the

standard travel time method assuming straight rays. Figure 3.4 shows the calculated

velocity v[x] for all model points x in each sample, again showing that measured

velocity may be strongly dependent on source and/or receiver locations. For Tivoli

Travetine (Figure 3.4a) the variation in velocity estimates are greater than for Copp-

Crag Sandstone (Figure 3.4c), and Westerly Granite (Figure 3.4b) has the smoothest

image, reflecting the smallest variation in estimated velocity v[x]. In all cases the longer

the source-to-receiver distance, the more stable is the result.

There are therefore several concerning implications of characterizing a medium with

velocities calculated from standard methods: 1) a measured cross-core velocity is not

sensitive to the bulk properties of a medium, but rather to the velocities along a specific

ray path between the point source and point receiver, as demonstrated by the variation

of estimated velocity with receiver position in Figures 3.3 and 3.4. Therefore, 2) the

effects of small perturbations in a medium that are not located on the specific source-

to-receiver path will not be detectable using these methods. In addition, although the



50 3.4 Results

c) Copp-Crag Sandstone

b) Westerly Granitea) Tivoli Travertine
4000

3500

3000

2500

6400

6200

6000

5800

5600

5400

6000

5000

4000

E
s
ti

m
a
te

d
 V

e
lo

c
it

y
 a

t 
R

e
c
ie

v
e
r 

L
o
c
a
ti

o
n
 (

m
/s

)

Figure 3.4: The estimated velocity as if a receiver was placed at every position in the model x, using

a fixed source location (centre of the top of the sample). To emulate estimates from the first break

method, an eikonal ray tracing method (Margrave, 2007) was used to calculate travel times t[x], while

a straight source-to-receiver ray path was used to calculate velocity v[x]. Results are for a) Tivoli

Travertine, b) Westerly Granite, and c) Copp-Crag Sandstone.

results stabilize for a more distant source and receiver pair, they are still expected to

stabilize at a velocity that is biased relative to the average across the sample since

first-arrival travel times are measured along shortest travel time ray paths.

The assumption that a medium is represented by a single constant ‘bulk’ velocity

also introduces errors into subsequent calculations, such as in the estimation of source

locations. This effect can be examined using a further numerical experiment. We

simulate a series of regularly spaced sources placed on a rectilinear grid throughout each

of the three media, representing acoustic emissions occurring throughout the sample.

We measure the arrival times for each source (S ) at a set of receivers (i) as tiS using

the first-break method, and use a single measured velocity through each sample (Vmed),

which is assumed to be representative of the entire medium. In our implementation

the exact value of this velocity does not affect source locations - it only affects the

estimates of the source origin time (t0). In this case it is therefore not inaccuracy in

the velocity estimate that will effect locations, but rather the assumption that there
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a) Tivoli Travertine

Arrow tail    - True source location 

Arrow head - Estimated source location

Receiver location

Source cluster location

b) Westerly Granite c) Copp-Crag Sandstone

Figure 3.5: The resulting systematic errors in source location, represented as black arrows, using

standard phase picking methods that assume a single representative velocity for each sample, for a)

Tivoli Travertine, b) Westerly Granite, and c) Copp-Crag Sandstone. The base of each arrow is located

at the true source positions (Sj), and estimated locations (Sest) are displayed at arrow tips. The red

points represent the source cluster used for the source location experiment with results shown in Figure

3.7.

is a single representative medium velocity. We estimate source locations (Sest) using

multilateration, by implementing a grid-search through all model positions (x) for each

receiver location (xi) and through a range of source origin times (t0), to find values of

x, and t0 that minimize the objective function

ϕ(x, t0) =

N i∑
i=1

[Vmed × (tiS − t0)− |xi − x|]. (3.14)

The estimated source location Sest is the location x that minimizes ϕ. Figure 3.5



52 3.4 Results

displays the systematic error in estimated source locations Sest (arrowheads) compared

to true locations (arrow tails) for each of the three samples. For the majority of

sources in Tivoli Travertine (3.5a) and Copp-Crag Sandstone (3.5c), the resulting

systematic error in source location is significant in both amplitude and direction. In

Westerly Granite (3.5b), such errors have much smaller amplitudes. It is therefore clear

that in more heterogeneous media, a single velocity is not appropriate and estimated

source locations in many areas are highly inaccurate when estimated using conventional

methods of multilateration assuming a single bulk velocity.

3.4.2 CWI and Conventional Estimates of Changes in Velocity and

Source Location: Synthetic Tests

We now test CWI against conventional methods for measuring a change in the velocity

of a medium, using finite difference numerical wavefield simulations through the three

µCT slices in Figure 3.2. Two slightly different velocity models for each sample are

generated: one is the unperturbed medium and the other has perturbed velocities of

both mineral and fluid phases equal to a -1% (∆V/V = −0.01). The simulated signals

are obtained from an array of receiver positions along the bottom of the sample as used

in Figure 3.3. The change in velocity (∆V/V ) between each pair of models is estimated

from these signals by CWI (using Equations 3.1 and 3.2), and using the conventional

method of manual phase-picking of first-break arrivals (time of first peak) assuming

straight rays. Figure 3.6 compares these estimates for each sample. For all samples,

CWI gives more accurate (closer to the true perturbation of the model) and more precise

(lower standard deviation) estimates of ∆V/V , and is more robust (shows significantly

less variation between different receiver locations) when compared to the first-break

method. This effect is clearly dependent on the complexity of the medium: the first-

break estimates for Tivoli Travertine (Figure 3.6a) show much stronger variation than

those for Westerly Granite (Figure 3.6b). The CWI estimates for ∆V/V , however, do

not vary between samples of differing complexity. Coda waves sample the entire medium

rather than a specific (fastest) ray path, therefore CWI is more robust to changes in

receiver location. This consistency of estimates shows that CWI is less dependent
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Figure 3.6: The estimation of a relative velocity change ∆V/V for a true change in velocity of -1%,

i.e., ∆V/V = -0.01. Results for a) Tivoli Travertine, b) Westerly Granite, and c) Copp-Crag Sandstone.

∆V/V is estimated using the standard phase-picking method and Coda Wave Interferometry using each

of 100 receiver locations along the base of each sample and a single source location at the center-top

of each sample.

on sample complexity, and on receiver location, and confirms the hypothesis that the

multiply reflected waves used in CWI effectively sample the entire medium, providing

more representative measures of velocity changes from any source and receiver pair.

We also test CWI and conventional methods for estimating changes in source locations.

For this test, waveforms were simulated for a cluster of sources along a fracture plane in

the middle of each of the three samples, and with receivers located at the bottom and at

either side of the model (experimental configuration and source cluster locations shown

in Figure 3.5). The standard method of multilateration (minimizing Equation 3.14)
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Figure 3.7: A comparison of estimated inter-source separation as a function of true inter-source

separation (scaled by the wavelength λ at peak frequency) for the conventional multilateration method

(using arrival times obtained from phase picking of first arrivals) and Coda Wave Interferometry. The

true source cluster locations are represented as red dots in Figures 3.5a, b and c. a) Tivoli Travertine,

b) Westerly Granite, and c) Copp-Crag Sandstone. The dashed line indicates the graph locations

corresponding to perfect estimates.

is used to locate source positions for each source in the cluster, assuming a constant

bulk velocity which is measured with a single source and receiver placed at the top-

center and bottom-center of the sample respectively. CWI provides the separation

between pairs of sources (it does not provide source locations in an absolute frame of

reference), so Figure 3.7 compares separations between the estimated source locations

from multilateration with source separations estimated from CWI. The latter estimates

are from Equations 3.9 and 3.13, and an estimate of the bulk velocity of the medium

(the same measured velocity used in multilateration) for each sample, and separations

were obtained using only the top receiver (multilateration estimates require the use

of all four receivers). For all three media, the multilateration-method estimates are

relatively scattered, particularly for Tivoli Travertine and Copp-Crag Sandstone. CWI

estimates of the relative source locations are more precise, and are more accurate up

to approximately 0.2-0.4λ, where λ is the dominant wavelength. At larger separations

cycle-skipping in the cross-correlation is likely to interfere with the signals that we seek

in the maximum of the correlation function, causing estimates to tend to a constant
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value at larger source separations. We demonstrate in Section 3.4.5 below how relative

locations of sources can be obtained using separation data from even only a single

receiver, and how the working-range of source separations can be increased beyond

0.4λ.

3.4.3 Experimental Examples

In experimental rock physics, trends in velocity are often measured to model the re-

sponse of seismic velocity to changes in external conditions (e.g., temperature, effective

and differential stresses, fluid properties, etc.), conferring particular importance to the

interpretation of dynamic changes. This is important for a range of geophysical sce-

narios on a larger scale, such as monitoring subsurface fluid reservoirs or changes in

rock properties using time-lapse (4D) seismic methods. Here we show results of two

laboratory experiments that impose changes in the external conditions of temperature

and stress. In the first experiment illustrated in Figure 3.8a, a 10 cm3 block of Halldale

Sandstone was heated from room temperature to an external temperature of 54◦C over

one hour, and then left to relax to room temperature. In this experiment we do not aim

for thermal equilibrium, because the CWI method does not require a constant medium

velocity. The experiment varies temperature simply to induce a non-uniform change

in velocity within the medium for comparison of CWI and conventional methods. A

thermocouple was attached to an external face for continuous temperature monitoring,

and two piezoelectric transducers (PZT) were attached on opposite faces of the sample

for continuous ultrasonic surveys, which were undertaken during the cooling phase back

down to room temperature. As the maximum temperature variation is relatively small

(∆8◦C), we assume that the PZT response to temperature variation is negligible.

To measure P-wave velocity we use Glaser-type conical piezoelectric sensors sensitive

to displacement normal to the sensor face (McLaskey and Glaser, 2012). These

laboratory-standard, wide-band sensors are calibrated against theoretical displacement

time history and have an almost flat displacement response spectrum in the 20 kHz to

1 MHz frequency band. This means that, in this frequency band, they are essentially

displacement sensors and their voltage output is linearly proportional to the surface
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Halldale Sandstone

Sample Details:

Fine grained

Quartz rich

ϕ = 15.1%
= 2248 kg/m3

Size: 10x10x10 cm

P-transducer

P-transducer

Sample  Details:

P-transducer

P-transducer

2x S-transducers

2x S-transducers

Loading Pistons

Rubber Sleve

Pressure Vessel

Finely laminated carbonate

ϕ = 10.3%

= 2374 kg/m3

Saturation: Dry

a) Experiment I: Temperature

Core parrallel with laminations

Length = 75 mm

Diameter = 38 mm

Saturated with deionized water

b) Experiment II: Differential Stress

Thermocouple

ρ

ρ

Figure 3.8: Schematic diagrams for the two experimental examples used for inducing a velocity change

in the medium. a) Experiment I uses a variation in temperature of a cubic block of Halldale Sandstone.

b) Experiment II uses varying differential stress on a finely laminated carbonate within a triaxial Hoek

cell. Values for porosity (φ), density (ρ) and other properties of each sample are shown for each case.
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Figure 3.9: Estimated values of percentage velocity change (∆V/V ) as a function of the change in

temperature (∆T) in a 10 cm3 sample of Halldale Sandstone, a) for the standard method of picking

arrival times, and b) for Coda Wave Interferometry. Solid lines are best-fit linear regressions. The zero

point on the x axis (∆T = 0) is arbitrary.

normal displacement. Aperture effects are reduced due to the relatively small 0.5 mm

sensor contact area (which is even higher than the resolution used in Figure 3.3). We

used an Itasca Image pulser-amplifier system with operating frequency range of 100

kHz to 1 MHz and pre-amp gain of 40 dB, which switches between all transducers in

an ultrasonic array, allowing each to act as both a transmitter and a receiver. The

amplitude of the pulse spike is 500 V with approximate signal rise time of 0.3 µs and

total duration of 2.8 µs, the sampling period is 40 ns. The output recorded waveform

at each receiver is a stack of received waveforms from 25 source pulses with a pulse

repetition frequency of 20 kHz (as the pulse repetition is high, we assume no loss in

phase resolution).

The change in velocity (∆V/V ) for each temperature change (∆T ) were estimated
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Figure 3.10: Example waveforms to illustrate the picking procedure for the first break method. a)

Full recorded signal using Glaser-type sensors sensitive to displacement normal to the sensor face. b)

First arriving waves: the first maximum is manually picked as the arrival time. c) Full recorded signal

using S wave transducers for the source and receiver, sensitive to displacement tangential to the sensor

face. d) Manually picked first arriving S wave maximum. The time window used for CWI is labeled in

panel a.

using both the first-break method (manually picking the first extremum) and the CWI

stretching technique (plotted in Figure 3.9). There is a large amount of scatter in the

∆V/V estimates for the first break method, where there is no clear trend that can be

resolved above the noise. In contrast, the ∆V/V estimates using CWI form a clear

and coherent response to changes in temperature - a linear, negative correlation due to

thermal contraction. This highlights the sensitivity of standard methods to noise, and

CWI’s ability to resolve small changes in spite of the presence of noise.

A second experiment was carried out, illustrated in Figure 3.8b, where a 38 mm

diameter, 75 mm length core of a fine grained laminated carbonate was held at 45 MPa

effective pressure, and a differential stress was applied with a strain rate of 10−5s−1,

until a peak stress of 235 MPa. The stress loading history is plotted in Figure 3.11a,

where pauses in loading are periods during which the permeability of the sample was
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Standard Double Wavelet Method

Figure 3.11: a) Velocity change of a finely laminated carbonate rock during experimental deformation

by increasing differential stress (red), with corresponding stress values labeled on the right axis. The

response of velocity (∆V/V ), labeled on the left axis, is estimated by the first-break method for P and S

wave velocities (dashed lines) and by a CWI moving-reference trace method (black). b) A comparison

of CWI algorithms, showing the effect of implementing a moving reference trace (Equation 3.3) for

both the stretching and double wavelet methods.
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measured. P wave velocity is estimated using the Glaser-type sensors described above.

We measure S wave velocity using sensors with PZT sensitive to displacement tangential

to the sensor face, with a central frequency of 700 kHz and a contact area of 20 mm2.

Example waveforms for this experiment are shown in Figure 3.10. The variation of

velocity during the experiment is estimated using the standard first break method for

estimating P and S wave velocities, and the CWI moving reference trace method (from

Equations 3.1, 3.2 and 3.3) using the time window labeled in Figure 3.10a (t1 = 0.35ms,

t2 = 0.65ms). In Figure 3.11a we see CWI provides a far clearer and more consistent

response to external stress changes compared against the change in P wave velocity

estimated using first-breaks, accurately mirroring the stepped stress program with far

less scatter in the estimated ∆V/V values, most strikingly for the earlier stress steps.

First-break S wave velocities exhibit a smoother response (less scatter), but also fail to

mirror the stepped stress program. ∆V/V estimates from CWI approximately mark

the average between changes in P and S wave velocities - we discuss the way in which

CWI averages changes in P and S wave velocities in Section 3.5. The higher ∆VP /VP

in estimates from the conventional method may also reflect the bias towards higher

velocities, as the first arriving waves follow only the fastest ray path. As deformation

occurs, compaction is localized to specific regions of the sample; if the fastest travel path

samples such regions, the estimated change in velocity (∆VP /VP ) would be larger using

first-breaks than estimates using CWI which is more representative of the changing bulk

properties of the sample.

As CWI uses a cross-correlation function, the method breaks down if there are very

large changes in the medium due to wave paths being significantly altered and (if

the medium fractures) new scattering points being introduced. This means that a

single reference trace is not appropriate for CWI in such deformation experiments

where the rock structure is significantly deformed. This effect can be seen in Figure

3.11b, where different CWI algorithms are compared. The “double wavelet” method

(Snieder et al., 2002) measures delay times (δτ) for multiple time windows down the

coda: these relate to the velocity perturbation by ∆V/V = −δτ/t . It is clear that

at later stages in the experiment (after 1 hour), the estimates of ∆V/V using the
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double wavelet method with a fixed reference trace (dashed purple line) are heavily

distorted due to the deformation occurring within the sample. The large amount of

scatter exhibited by this method highlights the problem of large changes occurring

in the medium. The stretching method, without implementing a moving reference

trace (dashed red line), provides more consistent estimates of ∆V/V than the double

wavelet method, estimating a consistent increase in velocity. At later stages in the

experiment, these estimates of ∆V/V become more scattered and the mirroring of

the stepped stress program becomes less clear. For both methods, implementing the

moving reference trace method (Equation 3.3) limits estimates to small changes in

velocity, for which CWI remains accurate, to obtain an overall estimate in ∆V/V that

shows a much clearer stepped response. This suggests that the moving (or periodically

updated) reference trace method can account for the more extreme changes that occur

in the medium. There is no prescribed value for how frequently the reference trace

should be updated (k in Equation 3.3) as it depends on the rate of deformation and the

surveying frequency, except that it should be introduced before any changes produce

a half-wavelength change in the waveform in the latest time window. However, the

strengths of CWI lie in the ability to resolve small changes in velocity, therefore the

step size k should remain small (k = 5 for results shown in Figure 3.11b, where surveys

are taken every minute).

3.4.4 Joint Estimation of Source Separation and Velocity Change

Since CWI estimates of the bulk velocity change (∆V/V ) and source separation

(r) are derived from different information (the phase and the maximum value of

correlation as shown in equations 3.2 and 3.9, respectively), estimates of each can

be made independently when both effects occur simultaneously. This has significant

experimental advantages, as fixed source and receiver locations might no longer be

necessary for continuous velocity measurements, and in deformation experiments when

acoustic emissions might accompany bulk velocity changes these two effects could be

analyzed independently - all using a single receiver.

We test the accuracy of these estimates using a series of finite-difference simulations
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b) Estimated V/V when r=0

Figure 3.12: Assessing the ability of CWI to estimate velocity changes ∆V/V and inter-source

separation r simultaneously in the presence of both velocity and source location perturbations. a)

Estimated r when velocity is not perturbed. b) Estimated ∆V/V when the source location is not

perturbed. c) Estimates of r with simultaneous velocity perturbations. d) Estimates of ∆V/V with

simultaneous perturbations of source location.
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taking a central source location and changing the location by up to 1.2λ and simul-

taneous velocity perturbations of up to 1%. Figures 3.12a and b show estimates of

source separation (r) where no velocity perturbation occurs, and the reverse - changes

in velocity when the source remains stationary. These represent the best possible esti-

mates from CWI, as only one perturbation type occurs at a time. The additional errors

associated with simultaneous perturbations of r and V are shown in Figures 3.12c and

d. We see that estimates of source perturbation are barely affected by the presence

of a velocity perturbation: the stretching method of CWI removes the effect of any

velocity perturbation. However, estimates of velocity perturbation are far more sensi-

tive to source location perturbations, giving errors of 0.5% for a source displacement of

around one wavelength (a relatively large error given the accuracy otherwise expected

from CWI). The additional error appears to stem from the effect of cycle skipping in

the cross-correlation function when changes result in the alteration of travel times to

on the order of half a wavelength.

These results also show that in the case of simultaneous perturbations of source location

and velocity, source separation can be estimated much more accurately than estimates

of the change in velocity. Therefore, we would expect that the 3D network of relative

locations of acoustic emissions that occur during deformation can be estimated robustly

using laboratory datasets even if velocity changes occur in the medium (Zhao et al.,

2017; Zhao and Curtis, 2019). This is demonstrated in the following section.

3.4.5 Relocating relative source locations from inter-source distance

Using the inter-source distances or separations between many pairs of sources, it is

possible to find the relative locations of a cluster of sources, provided that inter-source

distances are within the working range of CWI . However as we see in Figure 3.7,

CWI provides a slightly biased estimate of these separations. The relocation method

solves for the relative location of a cluster of sources in a probabilistic framework within

which it is possible to correct this bias to a significant extent (Robinson et al., 2013;

Zhao et al., 2017; Zhao and Curtis, 2019). For one pair of events, according to Bayes’

theorem
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P (δ̃t|δ̃CWI) ∝ P (δ̃CWI |δ̃t)× P (δ̃t), (3.15)

where the posterior probability P (δ̃t|δ̃CWI) is the probability of the true separation

having value δ̃t given that the estimated separation from CWI is δ̃CWI . This is

proportional to the likelihood P (δ̃CWI |δ̃t) of having observed δ̃CWI in the case that

the true separation is δ̃t, multiplied by the prior probability P (δ̃t) which describes any

available information about event locations known prior to the location process. The

likelihood function P (δ̃CWI |δ̃t) describes the bias in separations estimated by CWI,

and can be approximated by a Gaussian probability density function whose mean and

standard deviation are described by empirical functions proposed by Robinson et al.

(2011). The tilde over parameters indicates that the separation quantities are used in

normalized form - they are the true values divided by the wavelength of the dominant

frequency recorded in the seismogram coda.

For multiple events, Equation 3.15 holds for each event pair. The separation estimated

from CWI for a cluster of events can be incorporated into a joint posterior function

by multiplying the formulae for all available event pairs, assuming that they are

independent of one another (Robinson et al., 2013):

P (e1, . . . , en|δ̃CWI) = c
n∏
i=1

P (ei)×
n−1∏
i=1

n∏
j=i+1

P (δ̃CWI,ij |ei, ej), (3.16)

where c is a constant, n is the number of events, ei = (xi, yi, zi) is the location of event

i. Within the last term we use the locations of the ith and jth events (ei and ej)

from which we can calculate their separation δt,ij = ||ei − ej ||2 (subscript 2 denotes

the L-2 norm), and thus we implicitly include Equation 3.15. The most probable

set of the event locations can be found where the joint posterior function attains its

maximum. Therefore, the event locations can be estimated by solving an optimization

problem. The optimization problem is converted to a minimization problem by taking

the negative logarithm of Equation 3.16:
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− ln[P (e1, . . . , en|δ̃CWI)] = −ln[c]−
n∑
i=1

ln[P (ei)]−
n−1∑
i=1

n∑
j=i+1

ln[P (δ̃CWI,ij |ei, ej)].

(3.17)

A uniform prior P (ei) is considered in this work, so the terms containing ln[P (ei)] are

constant, and the term ln[c] can be ignored in the minimization problem. Thus, the

objective function becomes:

L(e1, . . . , en) = −
n−1∑
i=1

n∑
j=i+1

ln[P (δ̃)CWI,ij |ei, ej)]. (3.18)

This function can be minimized using a conjugate gradient algorithm (Press et al.,

1986).

We test this location method using the Tivoli Travertine model shown in Figure

3.2b, and source locations shown in Figure 3.13a, simulating a cluster of 80 acoustic

emissions around a fracture plane. We divided the events into multiple sub-clusters

with 20 overlapping event locations, where the maximum separations in each sub-cluster

remained roughly within or just outside of the working range of CWI (approximately

0.5λ). The separation into sub-clusters can be achieved using only the pairwise

separation estimates from CWI, by sorting pairs of events by estimated proximity,

an optimal configuration of sub-clusters can be found so that all separation values are

within 0.5λ. We therefore do not require knowledge of the true source locations for this

step in the method.

For each sub-cluster, we solved for the relative event locations by minimizing Equa-

tion 3.18 using the publicly available CWI-relocation code package of Zhao and Curtis

(2019), taking the CWI separation estimates as inputs. We conducted the location

process five times with different randomly distributed initial event locations to ensure
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Figure 3.13: a) True locations of a cluster of acoustic emissions simulated in the Tivoli Travertine µCT

slice in Figure 3.2b. b) Estimated cluster locations using the conventional method of first-break arrival

times and multilateration using the receiver geometry in Figure 3.5a. c) Estimated relative locations

found by implementing the CWI-based optimization algorithm described in Zhao et al. (2017), using

the inter-source separations estimated from CWI using the same receiver geometry (note these locations

have been rotated in plane to best fit the locations in panel b for fair for comparison, as the optimization

provides only relative locations).

convergence to the global minimum of the objective function (Equation 3.17). The op-

timizations all converge to the same minimum to within trivial numerical differences.

Receiver locations follow the same configuration as shown in Figure 3.5a. Since absolute

event locations remain unknown in this method, we then rotate and translate the result-

ing sub-clusters to match locations of the overlapping sources. For comparison, we also

performed the conventional method for locating sources, using manual phase-picking of

first-break (first extremum) arrivals for multiple receivers, and multilateration (Equa-

tion 3.14) to estimate locations of sources. The results of multilateration and CWI

relocations are shown in Figure 3.13b and c, respectively in order to cluster events.

We note immediately that the cluster of events from multilateration in Figure 3.13b is

rotated by 45◦ relative to the true locations due to velocity heterogeneity in the sample.

Since CWI only provides relative locations, the cluster of CWI location in panel c has

been rotated to best match the results in panel b for fair comparison. The spatial

area of events in panel c appears to be more rectangular (like the true shape of the

area in panel a) than the area in panel b. Nevertheless, it is difficult to decide which

of Figure 3.13b and c is better from these plots alone so Figure 3.14 shows the source
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separation values of these two clusters as a function of true source separation normalized

by wavelength λ. This highlights the improvement of accuracy and precision offered by

the CWI source relocation procedure. It is also important to note from Figure 3.14 that

using the sub-cluster matching methods, the overall source network size can extend well

beyond the usual working range of CWI and the source-separation bias can be largely

corrected, providing there are overlapping sources between sub-clusters.

3.4.6 Sensitivity to Noise

In order to test the ability of CWI to estimate changes in velocity and in source or

receiver location when using noise-contaminated data, we generate a synthetic record

of noise which is superimposed onto the numerically simulated signals used above. We

generate realistic noise as follows: 1) measure a long noise record in the Edinburgh

rock physics laboratory, and process it to create a record of de-meaned and de-trended

seismic noise. 2) Take the Fourier Transform of the noise recording, and smooth

the record in the Fourier domain to ensure there are no spectral gaps (frequency

bands without noise). 3) Convolve the resulting spectrum with a sample of random

Gaussian white noise so that generated noise is uncorrelated and transform back into

the time domain. The resulting signal is therefore a randomly generated recording

of realistic noise, which can be superimposed on the effectively noiseless waveforms

generated from synthetic finite difference simulations. The signal-to-noise ratio (SNR)

is calculated as SNR = Psignal/Pnoise, where P is the average power. We add the noise

at different SNR values to a range of numerically simulated signals where the velocity

has been perturbed from 0 - 10% and where the source location is perturbed by 0.01λ.

Estimates of the range of velocity perturbations are calculated using CWI, as well as

by using conventional phase-picking methods for each level of noise contamination.

For the phase-picking of first arrivals, we use automatic methods (STA/LTA method

described by Earle and Shearer (1994)) as well as manually picking the time of the first

extremum. These estimates are shown for low noise contamination (SNR=8) and high

noise contamination (SNR=0.43) in Figure 3.15. The total error at each SNR value,

calculated as the sum of residuals of each estimate to the true ∆V/V value is shown in



CHAPTER 3. 69

0 0.02 0.04 0.06 0.08 0.1

True V/V

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

R
e
s
id

u
a
l 
in

 
V

/V
 E

s
ti
m

a
te

a) SNR = 8

Automatic Picks

Manual Picks

CWI

0 0.02 0.04 0.06 0.08 0.1

True V/V

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

R
e
s
id

u
a
l 
in

 
V

/V
 E

s
ti
m

a
te

a) SNR = 0.43

Figure 3.15: Residuals of estimated ∆V/V from Coda Wave Interferometry, and from travel times

obtained by auto-picking and manual picks, estimated at a) SNR = 8 and b) SNR = 0.43 and plotted

as a function of the true velocity change.

Figure 3.16a. We find that at high SNR values, all estimates for ∆V/V show a clear

response to the increasing velocity perturbation, though CWI estimates are over an

order of magnitude more accurate. At low SNR values, conventional methods based

on phase-picking show much more scatter in the estimates of ∆V/V , whereas CWI is

much more precise, and is mostly unaffected by the increased contamination of noise.

The first-break arrivals are of lower amplitude and are therefore more susceptible to

contamination by noise, whereas CWI uses the entire signal, including many more data

points, and is therefore more robust in the presence of noise.

For estimation of source separation in the presence of noise (see Figure 3.16b), the

absolute locations of sources within a small cluster were estimated by multilateration

by assuming a constant, isotropic P-wave velocity. However, because CWI does not

provide absolute source locations but instead gives the separation between two sources,

r, we estimate the separation r between pairs of absolute locations from multilateration

for comparison. We compare this to the r estimate from CWI for each pair of sources,

and plot the sum of individual residuals for all source pairs and for each method

in Figure 3.16. We find that at all SNR values CWI outperforms multilateration,



70 3.5 Individual P and S Wave Contributions to CWI Observations

0 2 4 6 8

Signal-to-Noise Ratio

10
-3

10
-2

10
-1

10
0

10
1

R
e

s
id

u
a

ls
 i
n

V
/V

 E
s
ti
m

a
te

s

CWI

Autopicker

Manual Picks

0 2 4 6 8 10

Signal-to-Noise Ratio

10-1

100

101

102

R
e
s
id

u
a
ls

 i
n
 S

o
u
rc

e
 D

is
p
la

c
e
m

e
n
t 
/ 

CWI

Multilateration

b ) Source Displacement Residualsa ) Velocity Change Residuals
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particularly at high levels of noise. These results show that CWI is a more robust way

to characterize changes in a medium’s velocity or in relative source locations in the

presence of noise. Since no phase picking is necessary for CWI, this also means that

less pre-processing of data is required before analysis. CWI requires the computation of

many cross-correlation functions, therefore can be computationally expensive compared

to conventional methods, however we have demonstrated this method to offer significant

improvements in both accuracy and precision.

3.5 Individual P and S Wave Contributions to CWI Ob-

servations

The results from CWI only provide a measure of the change in velocity and not the

absolute velocity itself. In itself this is not of particular concern since in many real-

world problems, such as those relating to the interpretation of 4D seismic data, we seek

to characterize the dynamic dependence of velocity on changes in external properties

(Landrø and Stammeijer, 2004). However, ∆V/V estimates from CWI are more difficult

to interpret than separate estimates of VP and VS that are obtainable from conventional

methods. Given an estimate of density, estimates of VP and VS allow bulk and shear
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moduli to be estimated, and these are parameters that appear in the majority of rock

physics models. CWI estimates of ∆V/V reflect a combination of P-wave and S-wave

velocity information due to the multiple phase conversions that occur during wave

propagation.

To aid the interpretation of CWI ∆V/V estimates, consider the scattering model

presented by Snieder (2002) which assumes isotropic point scatterers inside a constant

velocity medium. This model represents P and S wave states as many packets of energy

traveling with velocities VP and VS . A packet can only be in one state at a given time.

When a packet of P energy travels distance a (the average distance between scatterers),

it has a probability pPS of converting to an S state; likewise a packet of S energy has

a probability pSP of converting to the P state. Over a time interval dt, a packet in

the P state encounters VPdt/a scatterers, meaning that in a system with NP and NS

packets in the P and S states, the reduction in P packets due to P − to−S conversions

is given by −2pPSNPVPdt/a and the increase due to S − to − P conversions is given

by pSPNSVSdt/a. Following from this, Snieder (2002) derives the following system of

differential equations:

ṄP =
1

a
(pSPVSNS − 2pPSVPNP ), (3.19)

ṄS =
1

a
(2pPSVPNP − pSPVSNS), (3.20)

where the dot over NP and NS on the left side indicates a rate of change over time. Now

consider a receiver not co-located with the source, at which the time of first arriving

energy in the signal is comprised of only P state energy. After this time the proportions

of P and S wave energy can be calculated using equations 3.19 and 3.20, and therefore

so can the proportions of changes in P-wave velocity (∆VP /VP ) and S-wave velocity

(∆VS/VS). The way in which these proportions of ∆V/V vary as a function of time is

shown in Figure 3.17. For time values to be independent of the scattering properties of

the medium, time is normalized by the travel time of one mean free path (τP = lP /VP ),

where the mean free path lP is defined as lP = a/(2PPS). In practice, the mean free
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path of a scattering medium can be estimated from the apparent attenuation of energy

in recorded signals (Anugonda et al., 2001; Obermann et al., 2013). Figure 3.17 shows

how the proportions of ∆VP /VP and ∆VS/VS change depend on the VP /VS ratio. At

equilibrium, the proportion of ∆VS/VS is higher than ∆VP /VP , even at very low VP /VS

ratios (Figure 3.17a), explained by S having two states (S1 and S2, which represent

the two polarizations of S waves) where P only has one state. As VP /VS increases,

so does the proportion of ∆VS/VS at equilibrium, as energy in S waves are traveling

more slowly than P waves and so spend more time in that state before encountering

scatterers.

We can use this model to estimate the independent changes of P and S wave velocity.

Define q(t, γ) to be the relative contribution of ∆VS/VS (the red curves in Figure 3.17),

where γ = VP /VS . The function q depends on time t and on the VP /VS ratio γ, and

the relative contribution of ∆VP /VP (blue curves in Figure 3.17) is 1− q(t, γ). If P and

S wave velocities change by different amounts, the measured change in velocity from

CWI [∆V/V ]CWI therefore varies as a function of time along the coda by

[
∆V

V

]
CWI

(t) = [1− q(t, γ)]

[
∆VP
VP

]
+ q(t, γ)

[
∆VS
VS

]
. (3.21)

For a single time window, this equation has two unknown parameters, ∆VP /VP and

∆VS/VS ; the value of [∆V/V ]CWI can be measured and q(t, γ) is known (from Figure

3.17). Measuring [∆V/V ]CWI in multiple time windows along the coda therefore gives

multiple equations, the same number as there are time windows. Quantities ∆VP /VP

and ∆VS/VS can be estimated using an ordinary least squares inversion approach to

solve the system: d = Am, where d is a matrix of measured values of [∆V/V ]CWI for

each time window, and A is matrix of (1−q) and q values expected at each time window

for a given VP /VS ratio γ. The resulting vector m contains estimates of ∆VP /VP

and ∆VS/VS for a given VP /VS ratio, and we denote these estimates by [ ̂∆VP /VP ]γ

and [∆̂VS/VS ]γ , respectively. Clearly, in order to estimate the changes of VP and VS

independently we need to be able to estimate γ = VP /VS .
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Figure 3.18: a) Prior distribution of VP /VS ratios from measured dry carbonate data compiled from

Bakhorji (2010), Fournier et al. (2011) and Verwer et al. (2008). The curve shows the best fitting normal

distribution function of the histogram. b) Synthetic [∆V/V ]CWI data generated using Equation 3.21,

where ∆VP /VP = 1%, ∆VS/VS = 0.5% and γ =
√

3). c) Estimated [ ̂∆VP /VP ]γ and [∆̂VS/VS ]γ from

an ordinary least squares inversion of the forward modeled [∆V/V ]CWI data in panel b, as a function

of the VP /VS ratio used in the inversion. d) and e) show the probability density functions (solid blue

lines) for estimates of ∆VP /VP and ∆VS/VS , where the dashed red lines represent the true changes

in velocity (∆VP /VP = 1%, ∆VS/VS = 0.5%), using samples from prior distribution in panel a and

Equations 3.22 and 3.23.
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One way to estimate γ would be to use the conventional experimental method to

estimate VP and VS , but as we have shown herein, those methods are less accurate

than CWI for subtle changes in the medium so it is desirable to find alternative

methods. As Figure 3.17 shows, values for q(t) can vary significantly depending on

the VP /VS ratio. We can therefore refine estimates of ∆VP /VP and ∆VS/VS within

a probabilistic framework, using a statistical distribution of VP /VS ratios rather than

a single value. We illustrate this by compiling a database of 296 measured VP /VS

ratios for dry carbonates combining data from Bakhorji (2010), Fournier et al. (2011)

and Verwer et al. (2008). This data is selected purely as a demonstration of how

such a distribution could be used; in practice such a distribution should be refined

as the database contains samples with a large range porosities, pore structures and

measurements at different confining pressures, only some of which would be relevant

for our rock type or volume of interest. From the carbonate database, we create a prior

distribution of VP /VS ratios γ for carbonate rocks Pcarb(γ), shown in Figure 3.18a. In

order to test the method we also calculate synthetic [∆V/V ]CWI data using Equation

3.21 with a change in P wave velocity of 1%, a change in S wave velocity of 0.5%,

and a VP /VS ratio equal to
√

3 (∆VP /VP = 1%, ∆VS/VS = 0.5%, γ =
√

3), which

gives [∆V/V ]CWI as a function of time (Figure 3.18b). The method then proceeds

as follows: using the generated [∆V/V ]CWI data and the known values for q(t, γ), we

invert for [ ̂∆VP /VP ]γ and [∆̂VS/VS ]γ for a range of values of VP /VS ratios (γ), shown

in Figure 3.18c. However, given the knowledge that the sample is a carbonate, not

all of these values are equally likely. We should therefore weight this set of solutions

by the probability P that each VP /VS ratio is the one in our sample - represented by

the probability distribution in Figure 3.18a. Thus we can generate probability density

functions for estimates of ∆VP /VP and ∆VS/VS with the following equations:

P

(
∆VP
VP

)
=

∫
γ∈Rγ

δ

(
∆VP
VP
−
[

∆̂VP
VP

]
γ

)
· Pcarb(γ)dγ, (3.22)

P

(
∆VS
VS

)
=

∫
γ∈Rγ

δ

(
∆VS
VS
−
[

∆̂VS
VS

]
γ

)
· Pcarb(γ)dγ, (3.23)
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where Rγ is the prior range of VP /VS ratios γ. In the case where ∆VP /VP = 1%

and ∆VS/VS = 0.5%, the resulting probability distributions for changes in P and

S wave velocities are shown in Figures 3.18d and e. For both changes in P and S

wave velocity, the method accurately estimates the velocity change. The probability

distribution change in P wave velocity ∆VP /VP is relatively precise, with almost all

estimates within ±0.01% of the true value for velocity change. The distribution of

change in S wave velocity has a wider spread, though still significant precision when

compared to standard methods, with the majority of estimates within ±0.03% of the

true velocity change. From this we can see that it is possible to estimate independent

changes in P and S wave velocity using CWI given the statistical distribution of VP /VS

ratios for a rock type, and with the assumption of isotropic scattering.

3.6 Discussion

We have demonstrated that under the conditions examined here, using Coda Wave

Interferometry for experimental applications can provide significant improvements over

conventional methods, particularly in the accuracy and precision of estimates of changes

in velocity and source location.

An important aid in the interpretation of CWI estimates is an understanding of the

type of spatial average of material parameters that is implicit in CWI estimates. To

examine this, a numerical experiment is conducted using the µCT derived velocity and

density models of the Tivoli Travertine (Figure 3.2a). The fluid velocity (initially 1500

m/s) is perturbed by a range of values (up to a +10% perturbation), and CWI is used

to estimate the velocity perturbation of the bulk medium. As the exact amount of

calcite and pore fluid phases are known, as well as their properties, the change in the

average properties of the medium can be calculated with various averaging methods.

Here we use the Voigt upper bound MV (Voigt, 1928):

MV =
N∑
i=1

fiMi, (3.24)



CHAPTER 3. 77

and the Reuss lower bound MR (Reuss, 1929):

1

MR
=

N∑
i=1

fi
Mi

, (3.25)

where fi is the volume fraction of the ith phase and Mi is the elastic modulus of the ith

phase, M can represent the bulk modulus K or the shear modulus µ. We also use the

Voigt-Reuss-Hill average (Hill, 1952) [MV +MR]/2, and the Hashin-Shtrikman bounds

(Hashin and Shtrikman, 1963):

KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 + 4
3µ1)

−1 (3.26)

µHS± = µ1 +
f2

(µ2 − µ1)−1 + 2f1(K1 + 2µ1)/[5µ1(K1 + 4
3µ1)])

(3.27)

where the subscripts 1 and 2 refer to the two phases in the medium and the upper

and lower bounds are computed by interchanging which phase is termed 1 and 2

(Mavko et al., 2009). The Reuss lower bound is equal to the Hashin-Shtrikman lower

bound when one of the constituents is a liquid with zero shear modulus. We calculate

the various averages taking the bulk and shear moduli to be Kcalcite = 129.53 GPa,

µcalcite=35 GPa, Kfluid = 2.25 GPa, and µfluid = 0. A comparison of how these

different measures spatially average the medium is shown in Figure 3.19. Of the different

methods used, the Reuss lower bound shows the closest estimate to the measured first

break velocity in Figure 3.19a, and of the CWI estimates for velocity change in Figure

3.19b.

The use of CWI estimates in current rock physics protocols is therefore possible because

the appropriate information required for many rock physics models is available: the

relative proportions of P and S wave velocity changes (Figure 3.18) is obtainable given
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Figure 3.19: a) Calculated average velocity for the Tivoli Travertine digital rock sample following

multiple perturbation of fluid velocity. The medium velocity is calculated using a range of bounding

methods including the Voigt upper bound, Reuss lower bound, the Voigt-Reuss-Hill average and the

Hashin-Shtrikman upper bound (HS+), see Mavko et al. (2009). The velocity is also estimated using

the first break method on a central receiver (black). b) The change in bulk velocity (∆V/V ) as a

function of fluid velocity perturbation, calculated with the multiple averages. The dotted black line is

the estimate of velocity change (∆V/V ) attained using CWI.
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prior knowledge of VP /VS ratios of the medium (based for instance on rock type as

in the example above), and we can infer how CWI averages the bulk velocity change

properties of a medium spatially (Figure 3.19).

The method of CWI used here (Equation 3.1) is known as trace stretching and has

some underlying assumptions and limitations. Namely it assumes that the velocity

perturbation is uniform across the entire medium so that all arriving energy is perturbed

at the same temporal rate, and therefore the trace is stretched linearly in time along

the seismogram. Mikesell et al. (2015) provides a comparison of different methods to

estimate changes in velocity for CWI, and suggests a dynamic time warping method as

a solution for inhomogeneous velocity perturbations.

As we have shown, CWI is able to resolve both changes in velocity and changes in

source and/or receiver locations, allowing for the estimation of relative source locations.

However CWI is also able to resolve another type of perturbation on which we have not

focused: the average displacement of all scatterers, δ, illustrated in Figure 3.1c (Snieder

et al., 2002). This value is related to the variance of travel time perturbations by

σ2τ =
2δ2t

vl?
, (3.28)

where l? is the transport mean free path. It would be interesting to monitor how

this parameter varies during experimental rock physics and geomechanics experiments.

For example, it may be possible to monitor changes in the average distance between

scattering points, which could act as a proxy measure for inter-pore distance, itself a

strong control on the time of failure (Vasseur et al., 2017). During the confining or

varying of fluid pressure in an isotropic sample, scattering points would be displaced in

all directions, and this displacement might be measured by CWI. Similar effects occur

at reservoir scale where fluid injection or extraction can lead to seismically observable

volumetric expansion of the reservoir. We leave this for future research.
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Most of the numerical experiments presented here assume a high frequency regime as

well as point sources and receivers. In one experiment where we lowered the frequency

of by more than an order of magnitude we did not observe any significant differences in

the method. Nevertheless, another area for the development of the CWI method is to

investigate the dependence of CWI results over a broad range of frequencies, and using

much larger aperture transducers such as those modelled by Li et al. (2018). We leave

this for future research.

The work described here relates to and compliments a wide range of literature on the

topic of CWI. For example, several studies suggest CWI to be an appropriate method

for monitoring changes in the bulk velocity of a wide range of media (e.g., Grêt et al.

(2006); Larose and Hall (2009); Salvermoser et al. (2015); Sens-Schönfelder and Wegler

(2006), however the application to experimental rock physics is relatively sparse. There

are also studies that describe a method for estimating inter-source distances and relative

locations (Robinson et al., 2013; Zhao et al., 2017). Many of the previous applications

of CWI assume that only one perturbation type is occurring. This paper shows the

importance and possibility for combining both methods with a simultaneous estimation

of both bulk velocity and source location perturbations.

There are many possible wider applications to the method presented here, outside of

experimental rock physics and geoscience. As we have shown here, changes in velocity

can be monitored using non-stationary sources, which allows for time-lapse monitoring

without active sources. This could be of great value for monitoring areas where induced

seismicity occurs, e.g., hydrocarbon extraction or CO2 injection wells. There are also

clear applications in the field of structural health monitoring, where acoustic emissions

from micro-cracking can be used for monitoring the bulk properties of a material.

3.7 Conclusion

Conventional first-break methods based on manual phase-picking provide an estimate of

seismic velocity that is not representative of the bulk medium in a high frequency regime
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with point sources and point receivers. Such estimates of seismic velocity, changes in

velocity, and source location are highly variable even for a single sample, and depend

on the specific source/receiver path of the first arriving wave. They are therefore

inadequate for characterizing the bulk properties of a rock sample, particularly those

with complicated pore structures approximately similar size to the wavelength of the

interrogating waves. By contrast, Coda Wave Interferometry is an effective method

for countering these problems because coda waves sample the entire medium, and

sample the same regions multiple times. CWI is shown to provide an increase in

precision by an order of magnitude in the absence of noise, and to be a robust and

accurate method for estimating both bulk velocity changes and perturbations of the

source or receiver locations when compared with standard methods in both synthetic

digital rock physics and laboratory experimental data. When noise is present, CWI

remains far more accurate than conventional methods, even at very low signal-to-

noise ratios. Additionally, when velocity and source/receiver location perturbations

occur simultaneously CWI can still estimate velocity and source separation under

some conditions: source separation estimates are mostly unaffected by the velocity

perturbation, but velocity change estimates are much more sensitive and become

inaccurate in the presence of larger source perturbations, possibly due to cycle-skipping.

Using source separation estimates, relative locations of a cluster of sources can be

estimated using a single receiver, and show higher precision and accuracy compared

to conventional methods. CWI estimates a combination of changes in both P and S

wave velocities, and we demonstrate a model for the equilibration of the contributions

from P and S waves as a function of time, and show how the independent changes in

P and S wave velocity can be measured, given probabilistic a priori information about

the VP /VS ratio. Overall these results show significant potential for the use of CWI to

characterize changes in porous media undergoing changes in effective stress and strain,

and in temperature.
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Chapter 4

Unravelling coda wave
interferometry: Measuring
accurate changes in both P and S
wave velocities

This chapter provides a more detailed description and multiple examples of the method

for estimating changes in both P and S wave velocities using coda wave interferometry.

In addition to this, I also demonstrate a method for estimating separate changes in

fluid and solid matrix velocities. From the research questions I identified in Section

2.5, the focus of this chapter is entirely on question 3.

At the time of writing, the manuscript is in preparation for journal submission. The

co-authors include Andrew Curtis and Ian Main. I acted as the lead author for this

paper, and performed all of the numerical and laboratory experiments and analysis

described herein.

4.1 Abstract

Measuring the seismic velocity of a medium is of great importance for many to

many applications in geoscience and engineering, including rock physics experiments,

83
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monitoring the health of concrete structures, or sub-surface fluid pressure due to

hydrocarbon extraction or the injection of CO2. Coda wave interferometry (CWI)

has been used to accurately and precisely measure a change in the velocity in many of

these applications. CWI uses the diffuse, multiply-scattered waves, found in the tail

of the seismogram. These later arriving waves are very sensitive to small changes in a

medium. Previously, CWI estimates for velocity change represent an unknown average

between changes in P and S wave velocities (VP and VS).

Here we present a method to unravel the velocity change estimate made using CWI

into independent estimates of changes in VP and VS individually, using CWI estimates

made at multiple time windows in the coda and a scattering model for the equilibriation

of P and S waves in a medium. We demonstrate the applicability of the method using

a range of numerical models with increasing complexity, differing scattering properties,

and a range of scales as well as in a laboratory rock physics experiment. We then

derive an analytical model for the temporal equilibriation of P-to-S wave energy in a

fluid saturated porous medium, and validate this model with P as S wavefield data

from numerical finite-difference simulations. The model combined with many CWI

estimates for velocity change at different time windows, provides accurate and precise

estimates of changes in VP and VS . The method requires the medium to be strongly

scattering, and hence is not universally applicable. For example, it fails in a westerly

granite numerical model where there are few scatterers and weak impedance contrast

and the accuracy of the method increases significantly when impedance contrasts are

amplified for the same model geometry. For porous, fluid-saturated media, the model

also allows for the inversion of changes in solid matrix velocity and fluid velocity, if the

proportion of fluid in the medium is known. We demonstrate this with a random point

scattering model and fluid-saturated carbonate digital rock.

These results are significant as they represent a major improvement in characterizing

the evolution of subsurface properties for time lapse-monitoring.
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4.2 Introduction

Accurate charecterisation of changes in the bulk seismic or acoustic velocity in a medium

is important for a number of applications involving imaging and monitoring of complex

porous media. Examples include estimating fluid pressure change due to fluid extraction

or deformation due to stress from time lapse 4D seismic data (Guilbot and Smith, 2002;

Arts et al., 2004; Stork et al., 2018), and laboratory rock physics (Wang, 2001; King,

1966). Coda wave interferometry (CWI) is a method for accurately and precisely

measuring a change in velocity (Snieder et al., 2002; Snieder, 2006). Specifically, CWI

measures the ratio of velocity change ∆V as a fraction of the initial velocity V (∆V/V ).

CWI uses the diffuse, multiply scattered waves found in the tail of the seismogram

after the arrival of the ballistic waves. Coda waves sample the entire medium and the

same areas multiple times, therefore provide much more representative measurements

of a change in bulk velocity in a medium, as well as providing an order of magnitude

improvement in precision when compared to conventional methods (phase picking of

first arriving waves) for measuring a bulk velocity change (Singh et al., 2019).

There have been several field and laboratory applications of measuring velocity

changes using CWI to date, including the monitoring of velocity changes in ice sheets

(Mordret et al., 2016; James et al., 2017), concrete (Larose and Hall, 2009; Planès and

Larose, 2013), large scale structures such as bridges (Salvermoser et al., 2015), mining

environments (Grêt et al., 2006), volcanic regions (Sens-Schönfelder and Wegler, 2006)

and associated with earthquakes (Hadziioannou et al., 2011). CWI has also been used

to study earthquake focal mechanisms (Robinson et al., 2007), earthquake separation

(Snieder and Vrijlandt, 2005; Robinson et al., 2011), and relative source locations of

induced micro-seismic events (Zhao et al., 2017; Zhao and Curtis, 2019). There is

one major limitation to the application of CWI at present: the resulting measurement

of bulk velocity change is an unknown combination of changes in the P-wave (VP )

and S-wave velocity (VS). Aki and Chouet (1975) first describe coda waves as being

predominately comprised of shear waves, Snieder (2002) later uses a simple analytical

model for wave scattering and conversions between P and S waves in a constant
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velocity medium with uniformly distributed point scatterers, and derive the relationship

between VP /VS ratios and the proportion of changes in VP and VS that contribute to

the change in velocity measured by CWI at equilibrium. In a Poisson medium where

VP =
√

3VS , this relationship becomes: ∆V/V = 0.09[∆VP /VP ] + 0.91[∆VS/VS ].

There have been several observations of the stabilization of compressional and shear

energies in the coda (Margerin et al., 2009), which follows a a phenomenon known as

equipartitioning (Hennino et al., 2001; Weaver, 1982, 1990). It is based on the fact

that multiple scattering tends to homogenize phase space, meaning that energy ratios

become time independent.

Here we use the method of Singh et al. (2019) for estimating the changes in P-wave

and S-wave velocity independently, using CWI measurements for velocity change at

multiple times along the signal, and a model for the equilibration (or equipartitioning)

of P and S wave based on an extension to the model of Snieder (2002) to incorporate a

fluid phase (where shear waves are not supported). We also provide a new method to

separate the change in fluid velocity from the change in the solid matrix of a medium,

provided an estimate of the fluid fraction, all using a single receiver. Obermann et al.

(2013, 2016) follow a similar method, where the contributions of changes in surface and

body wave velocities can be discriminated use temporal variations along the coda to

localize velocity perturbations.

First, we describe the method for estimating changes in both VP and VS , then illustrate

multiple methods for estimating the velocity change as a function of time along the

signal using CWI. We then describe the analytical scattering model which provides the

remaining information required for estimates of changes in both VP and VS . We validate

the scattering model with the use of 2D elastic finite difference simulations in a range of

models. We demonstrate the method for estimating the velocity change as a function

of time, both numerically as well as in a laboratory rock physics experiment. Following

this we estimate changes in VP and VS by perturbing the finite difference models, and

in a second set of experiments estimate changes in matrix and pore fluid velocities. The

assumptions of both CWI and the derived scattering model are that: a) the medium
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exhibits strong scattering, b) scattering is isotropic, and c) scatterers are randomly

distributed. We assess the performance of our method when these assumptions is

contravened using a range of 2D numerical models. For the inversion of changes in P

and S wave velocity we use a randomly generated point scattering medium, a digital rock

based on a high resolution synchrotron x-ray microtomography volume of a Westerly

granite sample and a subset of the Marmousi model. For the inversion of changes in

fluid and matrix velocity we use two 2D porous models: a random point scattering

model and a digital rock based on a high resolution x-ray microtomography volume of

a Tivoli travertine sample (porous carbonate). In the majority of cases, our method

accurately estimates changes in both P and S wave velocity, or solid matrix and pore

fluid velocity changes, at least when strong scattering is occurring.

4.3 Method

We propose a method to unravel the independent changes in P and S wave velocities

(∆VP /VP and ∆VS/VS) by comparing recorded signals before and after a perturbation

(uunp and uper, respectively), at multiple times t along the signals. The perturbation of

a medium’s velocity cause travel-time perturbations τ of the arriving waves in recorded

signal. The travel time perturbations are related to the relative velocity change ∆V/V

by:
τ

t
= −∆V

V
, (4.1)

where ∆V/V is a combination of changes in both P and S wave velocities. As the

proportions of P and S waves in a medium vary over time and eventually equilibriate

(Snieder et al., 2019), the relative proportions of changes in P and S wave velocities

that contribute towards ∆V/V also vary with time t. This variation in ∆V/V as a

function of time t can be expressed as:

[
∆V

V

]
(t) = [1− q(t)]

[
∆VP
VP

]
+ q(t)

[
∆VS
VS

]
, (4.2)

where q is the fractional proportion of the ∆VS/VS contribution to ∆V/V as a function

of time t (thus 1−q is the fractional proportion of ∆VP /VP ). From Equation 4.2, ∆V/V
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can be measured by comparing uunp and uper (demonstrated in Section 4.3.1), and q(t)

can be estimated using an analytical model for wave scattering and equilibriation of P

and S waves (described in Section 4.3.2). The remaining unknown parameters are then

∆VP /VP and ∆VS/VS , which can then be estimated using an ordinary least squares

inversion (described in Section 4.3.4).

4.3.1 Estimating Nonlinear Velocity Changes

Conventionally in coda wave interferometry only very late time windows are used, this

is to ensure the conversions of P-to-S wave states equilibriate. Many authors have

acknowledged the variation of ∆V/V estimates as a function of time along the signal

(Snieder et al., 2019; Mikesell et al., 2015), though will only consider the late time

windows that exhibit a linear relationship between travel time perturbations τ and time

t, i.e., after phases are in equilibrium (∆V/V estimates at earlier times are ignored).

However, the information required to allow independent estimates of changes in P and

S wave velocity lies not only in the coda, but also the first arriving waves and those is

non-equilibrium (i.e., the entire waveform). Standard CWI methods are therefore not

appropriate in this case.

The methods for attaining estimates of ∆V/V as a function of time along the signal can

be easily adapted from CWI (the conventional methods are described in Section 4.8 and

are illustrated in Figure 4.1). The commonly applied double wavelet method (Snieder

et al., 2002) can be extended by simply including time windows across the full signal

rather than just the coda; each time window gives an independent estimate of ∆V/V .

The trace stretching method (Sens-Schönfelder and Wegler, 2006) is conventionally

performed on much longer time windows, but still in the phase-equilibriated tail of the

signal. For this method, the signals can be divided into smaller time windows, and

independent stretching factors ε(t) calculated for each time window. This method has

been shown to be more robust to noise in the data (Hadziioannou et al., 2009).

A limitation to both of these methods is that they exhibit some degree of averaging of

the travel time perturbation within time windows, thus not accurately characterizing
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a) Double Wavelet Method

b) Trace Stretching Method

c) Dynamic Time Warping Method

= time lag that maximises correlation 

= stretch that maximises correlation

= Vector of time lags for all time sample

Unperturbed 

Perturbed 

Figure 4.1: Methods for estimating a change in velocity using coda wave interferometry. a) The

double wavelet method uses many time windows, finding the time lag τ for each window that maximizes

correlation between the perturbed and unperturbed signals. b) The trace stretching method stretches

the perturbed signal by a stretching factor ε, where εmax maximizes the correlation between the

stretched-perturbed and unperturbed signals. c) The dynamic time warping method applies a non-

linear stretch, where a time lag τ is found for every time sample in the signal.
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temporal change in ∆V/V . Using a dynamic time warping algorithm (DTW) could

potentially overcome this problem (Mikesell et al., 2015). The method applies a

nonlinear stretch of a perturbed signal to maximise similarity with the unperturbed

reference signal, giving a time lag (or travel time perturbation) τDTW for every time

sample in the signal. DTW is an algorithm used in time series analysis for measuring the

similarity between two temporal sequences, which vary in speed (Berndt and Clifford,

1994). Mikesell et al. (2015) highlight the potential for DTW to be used for CWI,

and compares results with the double-wavelet and trace stretching methods. Here we

assume the perturbed signal uper(t) is equivalent to a time stretched version of the

unperturbed reference signal uunp(t), so that

uunp(t) ≈ uper(t+ τDTW ), (4.3)

where τ is a vector of time lags with a nonlinear relationship to time t. DTW estimates

the vector τDTW that minimizes an error function e, which we define as the euclidean

distance between uunp and the time stretched perturbed signal:

e(t, τDTW ) =
√

(uunp(t)− uper(t+ τDTW ))2. (4.4)

The next step is to accumulate these errors recursively through time, generating a

distance function d(t, τDTW ):

d(t1, τDTW ) = e(t1, τDTW ), (4.5)

d(t1, τDTWj) = e(t1, τDTWj) +min


d(ti−1, τDTWj−1)

d(ti−1, τDTWj)

d(ti−1, τDTWj+1)

(4.6)

for i = 2, 3, . . . , N , where N is the number of samples in the traces and j =

2, 3, . . . ,M − 1, where M is the number of elements in the vector of possible time

lags. The output of DTW is the warping path w(t), which is set of time lags τ that

both globally minimizes the error function e while satisfying the conditions: w1 = (1, 1),
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wN = (Nunp, Nper), and if wi = (a, b), then wi−1 = (a′, b′) and where a − a′ ≤ 1 and

b− b′ ≤ 1. The time lags τDTW are related to the velocity change in the same way as

for the travel time perturbations τ in Equation 4.1.

Synthetic Convolutional Example

We test the double wavelet, trace stretching, and dynamic time warping methods for

estimating the time-varying ∆V/V function using a pair of synthetic seismograms.

We compute these signals by first convolving a randomly generated and exponentially

decaying reflectively sequence with a 100 Hz ricker wavelet. The output is the

unperturbed (blue) signal in Figure 4.2a. We then apply a non-linear stretch based

on a P and S wave velocity perturbations of ∆VP /VP = 0.001 and ∆VS/VS = 0.05,

and using the temporal variation of the relative contributions of each phase in Figure

4.2b. Interpolating the output signal onto the original time sampling grid used for the

unperturbed signal results in the perturbed signal in Figure 4.2a. This perturbation

represents the simplest case where there is no change in the signal amplitudes and no

background noise is present.

The resulting estimates of ∆V/V using the double wavelet, trace stretching, and

dynamic time warping methods are shown in Figure 4.2c. The trace stretching method

provides the least accurate estimates of ∆V/V , most likely because it requires larger

time windows, and thus more averaging within each window. The assumption of linear

stretching is inherent the trace stretching method. Therefore it should be avoided for

estimating non-linear changes in velocity at early times in the recorded signal. The

double-wavelet method provides comparatively accurate estimates, closely resembling

the true ∆V/V function plotted as the dashed black line in Figure 4.2c. However due

to averaging across time windows, the method fails where there are rapid temporal

changes in ∆V/V (t < 0.6s). These times are particularly important for the estimation

of ∆VP /VP and ∆VS/VS . Dynamic time warping, which estimates ∆V/V for every

time sample (therefore no temporal averaging), provides the greatest accuracy, almost

exactly following the true ∆V/V used for computing the synthetic signals (compare

dashed black line and yellow DTW filled circles in Figure 4.2c).
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Figure 4.2: a) Unperturbed signal (blue) from the convolution of a randomly generated and

exponentially decaying reflectivity series with a 100 Hz ricker wavelet. The perturbed signal (red)

is the unperturbed signal following a non-linear stretch of time samples. b) The scattering model used

in the generation of the perturbed signal, showing the equilibriation of proportion of P (blue) and S

(red) wave velocities to the measured ∆V/V . c) Comparison of methods for estimating a non-linear

change in velocity, where the velocity perturbations are ∆VP /VP = 0.001 and ∆VS/VS = 0.05.
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4.3.2 Scattering Model

The remaining required parameter in Equation 4.2 is the time-varying weighting factor

q, which is the relative contribution of ∆VS/VS to the total ∆V/V (the contribution of

∆VP /VP is therefore equal to 1− q). To estimate q we use a model for point scattering

in an isotropic medium. Here we take the scattering model of Snieder (2002), who

represents wave scattering and conversions as many packets of energy, either in P or S

states, travelling with velocities VP or VS . A packet can only be in one state at a given

time. When a packet of P energy travels distance a (the average distance between

scatterers), it has a probability pPS of converting to an S state; likewise a packet of S

energy has a probability pSP of converting to the P state. Over a time interval dt, a

packet in the P state encounters VPdt/a scatterers, meaning that in a system with NP

and NS packets in the P and S states, the reduction in P packets due to P − to − S

conversions is given by −2pPSNPVPdt/a and the increase due to S− to−P conversions

is given by pSPNSVSdt/a. Following from this, Snieder (2002) derives the following

system of differential equations:

ṄP =
1

a
(pSPVSNS − 2pPSVPNP ), (4.7)

ṄS =
1

a
(2pPSVPNP − pSPVSNS), (4.8)

where the dot over NP and NS on the left side indicates a rate of change over time.

Note that the factor 2 is present as there are twice as many S states, therefore should

be removed in a two-dimensional medium where only one S state exists. This model

assumes uniform and isotropic scattering. One major limitation to this model is the

assumption that both P and S states can exist in all parts of the medium. The model

therefore breaks down in the presence of fluids, which cannot support shear waves. We

extend the model of Snieder (2002) to include a proportion of fluid in the medium φ

(equivalent to the porosity in a fully saturated medium, we therefore use porosity and

fluid fraction synonymously). This new model is particularly useful in laboratory rock
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physics experiments, where rocks are commonly saturated with various fluids.

Consider a packet of P energy traveling through the solid matrix (Pm), when it

encounters a scatterer the probability that it does not convert to an S state is equal

to 1− pSP , the remaining packets either convert to one travelling in fluid Pf , therefore

the probability pmf = (1 − 2pSP )φ or remain travelling through a solid matrix, with

probability pfm = (1− 2pSP )(1− φ). Using the full list of each possible conversion of

energy and their associated probabilities (shown in Table 4.1) we derive the following

system of differential equations:

˙NPm =
1

a
([1− φ]pSP [NS1 +NS2 ]VS + [1− φ]NPfVP − [2pPS(φ− 2φpPS)NPmVP ]),

(4.9)

˙NPf =
1

a
([1− 2pPS ]φNPmVP + PPSφ[NS1 +NS2 ]VS − [1− φ]NPfVP ), (4.10)

˙NS1 =
1

a
(pPSNPmVP + pSSNS2VS − pSP [1− φ]NS1VS − pSPφS1VS), (4.11)

˙NS2 =
1

a
(pPSNPmVP + pSSNS1VS − pSP [1− φ]NS2VS − pSPφS2VS). (4.12)

We assume that the proportion of energy in each state at a given time is equivalent to

the proportion of the velocity change that the respective states contribute to the total

velocity change measured by CWI, that is to say, for a given time:

[1− q] =
NP

NP +NS
, (4.13)

q =
NS

NP +NS
, (4.14)

where NP = NPm+NPf and NS = NS1 +NS2 . Using this system of equations, assuming

that at time t = 0 all energy is the the P state (NS = 0), we model a range of scenarios

over time. First investigating the effect of varying the VP /VS ratio (Figure 4.3a) and

then varying the fluid fraction φ (Figure 4.3b). For time values to be independent of

the scattering properties of the medium, time is normalized by the travel time of one
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Table 4.1: Probability of each conversion type for scattering model with a fluid phase.

Conversion Type Probability

Pm to Pm (1− φ)(1− 2PPS)

Pm to Pf φ(1− 2PPS)

Pm to S1/S2 PPS

Pf to Pf φ

Pf to Pm 1− φ

S1/S2 to Pm (1− φ)PSP

S1/S2 to Pf φPSP

S1 to S2/S2 to S1 PSS

S1 to S1/S2 to S2 1− PSS − PSP

mean free path (τP = lP /VP ), where the mean free path lP is defined as lP = a/(2PPS).

In practice, the mean free path lP can be estimated following the method of Derode

et al. (2001), who relate the power spectrum |〈U(ω〉|2 of the coherent signal 〈u(t)〉 to

the scattering mean free path lP via:

|〈U(ω〉|2 = exp

(
− x

lP

)
, (4.15)

where x is the distance between source and receiver locations. Examples of the

application of this approach can be found in Anugonda et al. (2001) and Obermann

et al. (2013).

For all combinations of VP /VS and φ the system equilibriates with a higher proportion

of ∆VS/VS than for P wave velocity, i.e., q > 0.5. There are two reasons for this: S

waves having twice as many possible states (S1 and S2), and also VS < VP therefore

encounters fewer scatterers in a given time. The latter reason also explains the large

variation of q with varying VP /VS in Figure 4.3a, when VP /VS increases, the number of

scatterers encountered by P waves increases relative to the number of S wave-scatterer

encounters. Where porosity (fluid fraction φ) increases, there is a greater proportion

of model for which S wave states cannot be supported, therefore q decreases (Figure
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Figure 4.3: The relative proportion of ∆VS/VS that contributes to a CWI measurement of ∆V/V

derived from the scattering model described by Equations 4.9-4.12. Showing the effect of varying a)

the VP /VS ratio, and b) the fluid fraction (or saturated porosity).

4.3b).

4.3.3 Validation with Computed Wavefields

The scattering model described above assumes randomly distributed (uncorrelated

structure) and isotropic media. In reality this is not the case. Potential uses for using

CWI to monitor velocity changes are for laboratory scale rock physics experiments

(where rocks exhibit correlated structures in the form of grains, pores, crystals etc.)

and field scale seismic monitoring, where layering and stratification can often cause

anisotropy (Alkhalifah and Tsvankin, 1995). Pacheco and Snieder (2005) show that

spatial sensitivity of multiply scattered waves are not uniformly distributed, therefore

the assumptions involved in the scattering model presented may not appropriate. To

determine the effect of correlated structure and anisotropy on our method, we compare

the predicted equilibriation of P and S waves from Equations 4.9-4.12, with the

measured energy of P and S wavefields from finite difference simulations in a range

of elastic media. We consider a structurally uncorrelated medium (Figures 4.4a and

b) generated by inserting 2000 point velocity perturbations into a 1024 × 1024 grid

with a 4000 m/s background velocity and 2500 kg/m3 density. Velocity and density

models for a Westerly granite sample (Figures 4.4c and d) taken from Singh et al.
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c) Westerly Granite Velocity
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d) Westerly Granite Density
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e) Marmousi Velocity
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f) Marmousi Density

0.2 0.4 0.6 0.8 1 1.2

X (km)

0.2

0.4

0.6

Z
 (

k
m

)

1800

2000

2200

2400

2600

D
e

n
s
it
y
 (

k
g

/m
3

)

Source Location

Wavelength

Figure 4.4: P wave velocity models (left) and density models (right) for: a-b) a randomly generated

scattering model, c-d) a westerly granite digital rock, from the segmentation of a high-resolution

synchrotron x-ray microtomographay volume from Singh et al. (2019), and e-f) a subset of the Marmousi

model (Versteeg, 1994). For all models, corresponding S wave velocity models are calculated by

VS = VP /
√

3. The source location for each model are shown on the left panels as a white star,

and the approximate wavelength λ is labelled as a black line.



98 4.3 Method

0 5 10 15 20

Time ( s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

ti
o

n
 o

f 
E

n
e

rg
y

a) Point Scattering Model

0 5 10 15 20

Time ( s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
b) Westerly Granite

0 0.5 1 1.5 2 2.5

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
c) Marmousi

Measured P Wavefield E
P

Measured S Wavefield E
S

Scattering Model P (N
P
/(N

P
+N

S
)

Scattering Model S (N
S
/(N

P
+N

S
)

Figure 4.5: Calculated wavefield envelopes for P wave (blue) and S wave (red) phases from elastic

finite difference simulations in a) the random point scattering model (Fig. 4.4a), b) Westerly Granite

digital rock (Fig. 4.4b), c) a subset of the Marmousi model (Fig. 4.4c). For each figure, the predicted

proportions of P and S waves using a 2D formulation of the scattering model described by Equations

4.9-4.12 and shown as dashed lines for comparison with the measured values.

(2019) are generated following the segmentation of a high-resolution synchrotron x-

ray microtomography volume. Individual mineral phases are segmented, and velocity

and density values for each mineral are assigned to every voxel, elastic properties from

Mavko et al. (2009) are used for plagioclase, potassium feldspar, biotite and quartz.

This model closely resembles the correlated structures of real rocks while remaining

relatively isotropic. Finally we consider a subset of the Marmousi model (Figures 4.4e

and f), which is often used as a standard model for a field scale demonstration, where

variations in velocity and density represent different geological layers or structural units.

For all models, corresponding S wave velocity models are calculated by VS = VP /
√

3,

i.e., assuming a Poisson medium.

Each pixel is mapped to a regular grid of cells used as input to a two-dimensional

elastic finite-difference simulation of wavefield propagation (Moczo et al., 2007). We

avoid instability problems caused by high-contrast discontinuities such as those between

mineral phases by implementing a rotated staggered grid technique (Saenger and

Bohlen, 2004). At the source locations in the centre of each model (labelled as stars

in Figure 4.4), we input Ricker wavelets with a central frequencies of 10 MHz for the
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random scattering and Westerly granite models and 20 Hz for the Marmousi Model (the

approximate wavelengths λ are labelled as black bars in Figure 4.4). For the random

scattering model and westerly granite models we use reflecting boundary conditions (to

emulate laboratory core experiments) and for the Marmousi model we use absorbing

boundaries.

Separate wavefields for P and S waves can be decomposed by taking the divergence

and curl of the displacement vector field, respectively. The P and S wavefields (uP (x)

and uS(x)) are equivalent to recordings of P and S wave signals with receivers at every

grid cell location x. We then take the envelope E(u(x, t)) for every point in the model,

calculated as:

EP (x, s, t) = |H(uP (x, s, t))|, (4.16)

ES(x, s, t) = |H(uS(x, s, t))|, (4.17)

where H(f(t)) denotes a Hilbert transform of function f(t) and s is the source location.

To calculate the relative proportions of P and S wavefields (WP (t) and WS(t)) as a

function of time t, we take the sum of each envelope for a given time and normalize by

the combined sum for both P and S envelopes, that is:

WP (t) =

∑N
i=1EP (xi, s, t)

[
∑N

i=1EP (xi, s, t) +
∑N

i=1ES(xi, s, t)]
, (4.18)

WS(t) =

∑N
i=1ES(xi, s, t)

[
∑N

i=1EP (xi, s, t) +
∑N

i=1ES(xi, s, t)]
. (4.19)

As WP increases to 1, (decreasing WS), the proportion of P wave energy in the wavefield

increases. WS is the measured equivalent of q in Equations 4.13 and 4.14, and WP is a

measurement of 1− q. For the three models in Figure 4.4, we measure the proportions

of P and S wave energy as a function of time, using source locations in the centre of

each model, and calculate predicted proportions using the scattering model described

by Equations 4.9-4.12 (as the simulations are in a two-dimensional medium, only one

S state exists, therefore the factor 2 is removed from the scattering model equations).
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We compare the measured and predicted proportions in Figure 4.5. For the point

scattering model (Fig. 4.5a), the temporal rate of change as well as the final values at

equilibrium are accurately charecterised by the scattering model. The westerly granite

(Fig. 4.5b), exhibits a greater mismatch between modelled and measured equilibriation,

in both the temporal rate of change as well as the values at equilibrium, which seems

to be controlled by the difference between the proportions at the time t = 0 intercept.

We assume q = 0 at t = 0 because the source function used in the simulations is an

explosive P wave source. The estimates for the Marmousi model (which exhibits strong

structural heterogeneity and anisotropy) shown in Figure 4.5c, show the rapid temporal

change in phase proportions is charecterised very accurately. However there is a large

variations at equilibrium and the relative proportion of S wave to P wave energy is

significantly greater than that of the scattering model. We discuss the accuracy and

validity of the scattering model in more detail in Section 4.5.2.

As the derived scattering model described by Equations 4.9-4.12 include a fluid fraction

term φ, it may also be possible to predict the equilibriation of wave energy between

fluid and solid matrix phases. We use two porous media models shown in Figures 4.6a

and b. The first model is a randomly generated binary medium, i.e., model cells either

represent quartz (VP = 5800 m/s and ρ = 2650 kg/m3) or pore fluid (VP = 1500 m/s

and ρ = 1000 kg/m3), where 2000 small blocks of cells are randomly assigned to be the

pore fluid phase in a background 1024 × 1024 constant velocity medium. The second

model is a digital rock from the segmentation of a x-ray micro-tomography volume of a

Tivoli travertine from Singh et al. (2019). Model cells are either pore fluid (VP = 1500

m/s and ρ = 1000 kg/m3) or calcite (VP = 6500 m/s and ρ = 2710 kg/m3). We use

an acoustic finite difference simulation of wave propagation, with the source locations

labelled on Figures 4.6a and b, and a Ricker wavelet with a central frequency equal to

1.5 MHz as the source time function.

Using the output wavefield, we measure the proportion of wave energy in the matrix
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a) Random Binary Model (RBM)
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d) TTM P Wavefield Equilibriation
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Figure 4.6: Numerical experiment for measuring the equilibraition of P waves in porous saturated

media. Panel a is a model generated by adding 2000 pore fluid cells into a background quartz model.

b) A digital rock from the segmentation of a x-ray micro-tomography volume of a Tivoli Travertine

from Singh et al. (2019). The source location for each model are shown on the left panels as a white

star, and the approximate wavelength λ is labelled as a black line. The lower panels compare measured

proportions of wavefields in matrix (Wm) and fluid (Wf ) phases from Equations 4.20 and 4.21 with

predicted proportions using the scattering model described by Equations 4.9-4.12 and assuming a known

porosity.
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(quartz or calcite) and pore fluid phases as a function of time:

Wm(t) =

∑Nmatrix
m=1 EP (xm, s, t)

[
∑Nmatrix

m=1 EP (xm, s, t) +
∑Nfluid

f=1 EP (xf , s, t)]
, (4.20)

Wf (t) =

∑Nfluid
f=1 EP (xf , s, t)

[
∑Nmatrix

m=1 EP (xm, s, t) +
∑Nfluid

f=1 EP (xf , s, t)]
, (4.21)

where xm and xf are model cells corresponding to matrix and fluid phases, respectively.

Figures 4.6c and d compare the measured equilibriation of matrix and fluid phases with

those predicted by the scattering model described by Equations 4.9-4.12, using the true

porosity for each sample. Both the random binary and Tivoli travertine model results

show the analytical scattering model estimations to slightly overestimate the proportion

of energy in the fluid phase at equilibrium, and underestimate at early times.

4.3.4 Inversion Approach

Following the estimation of the ∆V/V as a function of time t described in Section

4.3.1 and the estimation of the equilibriation of P and S waves in a given medium

q described in Section 4.3.2, there are only two remaining unknown parameters in

Equation 4.2 for a given time t: ∆VP /VP and ∆VS/VS , which are time independent

changes in P and S wave velocities respectively. Many estimates of ∆V/V for different

times gives multiple equations, the same number as there are time samples. Quantities

∆VP /VP and ∆VS/VS can then be estimated using an ordinary least squares inversion

approach to solve the system:

d = Am, (4.22)

where d is a matrix of measured values of [∆V/V ](t) for each time window, and A

is matrix of (1 − q) and q values expected at each time window for a given VP /VS

ratio γ. The resulting vector m contains estimates of ∆VP /VP and ∆VS/VS for a given

VP /VS ratio, and we denote these estimates by ̂[∆VP /VP ]γ and ̂[∆VS/VS ]γ , respectively.

Clearly, in order to estimate the changes of VP and VS independently we need to be

able to estimate γ = VP /VS . As CWI only provide estimates of a change in velocity,

rather than the absolute velocity, estimates for γ must be made using conventional
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arrival time picking methods, which are less accurate for subtle changes in the medium

compared to CWI (Singh et al., 2019). It is therefore desirable to take a probabilistic

approach to estimate ∆VP /VP and ∆VS/VS , over a range of VP /VS ratios. We generate

a distribution P (γ) of VP /VS ratios, a distribution of VP /VS ratios P (γ), normally

distributed around the true γ used in the finite difference models (γ =
√

3) with a

standard deviation σ = 0.05 (typical error in the experimental estimation of VP /VS).

We then generate probability density functions for estimates of ∆VP /VP and ∆VS/VS

with the following equations:

P

(
∆VP
VP

)
=

∫
γ∈Rγ

δ

(
∆VP
VP
−
[

∆̂VP
VP

]
γ

)
· P (γ)dγ, (4.23)

P

(
∆VS
VS

)
=

∫
γ∈Rγ

δ

(
∆VS
VS
−
[

∆̂VS
VS

]
γ

)
· P (γ)dγ, (4.24)

where Rγ is the prior range of VP /VS ratios γ. In the same manner, we can estimate the

change in the matrix velocity Vm independently from the fluid velocity Vf in a porous

medium. In this case, A in Equation 4.22 becomes a matrix of relative proportions for

fluid and matrix phases, dependent on the fraction of fluid in the medium φ. In the

case of a fully saturated rock sample, the fluid fraction is equal to the porosity. Over

the range of porosities Rφ, we calculate the probability density function of ∆Vm/Vm

and ∆Vf/Vf with

P

(
∆Vm
Vm

)
=

∫
φ∈Rφ

δ

(
∆Vm
Vm

−
[

∆̂Vm
Vm

]
φ

)
· P (φ)dφ, (4.25)

P

(
∆Vf
Vf

)
=

∫
φ∈Rφ

δ

(
∆Vf
Vf
−
[

∆̂Vf
Vf

]
φ

)
· P (φ)dφ. (4.26)

We take a porosity distribution P (φ) to be normally distributed around the true

porosity of each sample (random binary model φRBM = 0.28 and Tivoli travertine

φTTM = 0.11), with a standard deviation σ = 0.06 (taken from the uncertainty analysis

of porosity measurements carried out by Kharraa et al. (2013)).
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4.4 Results

Here we present the results following the estimation of the non-linear time-varying

change in velocity ∆V/V for the random scattering model (Figs. 4.4a-b) as well as

a finely laminated carbonate sample in a laboratory rock physics experiment where a

perturbation in velocity is applied by varying the differential stress applied to the rock.

We then present the results of two sets of inversions: one for estimating different changes

in P and S wave velocity for the three numerical models in Figure 4.4, and a second

experiment for estimating different changes in fluid and matrix velocity in the random

binary and Tivoli travertine models (Fig. 4.6).

4.4.1 Estimated Velocity Change ∆V/V as a Function of Time from

Experimental and Numerical Data

There are several methods described in Section 4.3.1, that can be used for the estimation

of ∆V/V . First taking the random scattering model (Figs. 4.4a-b), we simulate wave

propagation before and after a perturbation where VP and VS are perturbed by different

amounts (∆VP /VP = 0 and ∆VS/VS = 0.05). Taking recorded signals from receivers

co-located at the source location at the centre of each model (Figure 4.7a), we estimate

the time-varying velocity change [∆V/V ](t) using the trace stretching, double wavelet

and dynamic time warping CWI methods. There is no length of time windows (t1, t2)

prescribed for the estimation of ∆V/V , here we take calculate [∆V/V ](t) over a range

of window lengths ranging from tlP /2 to 5tlP and take the mean [∆V/V ](t) across

all window lengths. The resulting estimates are shown in Figures 4.7b and c. The

windowed double wavelet method (Figure 4.7b) exhibits a smooth increase in ∆V/V

up to around 3.4 µs. At time greater than 3.4 µs, the ∆V/V shows strong unexpected

temporal variations, which we interpret as the inferred onset of the effect of cycle

skipping (yellow dashed line in Fig. 4.7b). Cycle skipping is the incorrect matching

of arriving waves, and is a function of the travel time perturbation τ , frequency of the

signal f (or it’s inverse, period T ), and the length of the time windows (t2−t1) used for
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Figure 4.7: a) Example recorded signals from the Random Scattering model (Figs. 4.4a-b) before

and after a velocity perturbation where P and S wave velocities are perturbed by different amounts

∆VP /VP = 0 and ∆VS/VS = 0.005. The dashed black box denotes the time window used for the trace

stretching method. b) Estimates of the time-varying ∆V/V function using the windowed double wavelet

method. The vertical green line denotes the onset of the effects of cycle-skipping where travel time

perturbations become too large. c) Estimates of the time-varying ∆V/V function using the dynamic

time warping method. The dashed black line in panels b and c represent the single estimate of ∆V/V

using the linear stretching method.
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Figure 4.8: a) Experimental configuration for a triaxial rock deformation experiment, using a finely

laminated carbonate sample cored parallel with sample laminations. b) Recorded signals measured

at two stages of loading, where differential stress Pdiff =48.0 MPa (blue) and 64.1 MPa (red). c)

Estimated non-linear time-varying ∆V/V function (red) and the best fitting model result (black)

following the inversion of ∆VP /VP and ∆VS/VS .

CWI. The estimates of ∆V/V made using dynamic time warping method (Figure 4.7c)

show very strong temporal variations. While this method was effective in estimating

∆V/V in the very simple example shown in Figure 4.2c, dynamic time warping appears

to fail where the perturbation of the medium causes changes in the amplitude as well

as arrival time of arriving waves. Therefore we only use the double wavelet and trace

stretching method for the following results and discuss some areas for improvement for

the dynamic time warping method in Section 4.5.1. The linear stretching method uses

a much larger time window (labelled on Fig. 4.2a) and arriving waves for the perturbed

and unperturbed signals are essentially matched with the stretching function, thus the

method is less susceptible to cycle skipping. It is possible to combine the estimates of

∆V/V made using the double wavelet method before the onset of cycle skipping, with

those made using the trace stretching method (after equilibriation).

While the two-dimensional numerical simulations performed in this study are undoubt-

edly useful for testing CWI, it is also important to examine the behaviour of real rock

experiments. Therefore, we estimate ∆V/V following a velocity perturbation induced

by varying differential stress in a laboratory experiment, illustrated in Figure 4.8a. A
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36.5 mm diameter, 75 mm length core of a fine grained laminated carbonate was held

at 35 MPa confining pressure, and a differential stress was applied with a strain rate

of 3 × 10−5s−1. We record full waveforms using the transducer configuration shown

on Figure 4.8a, at two stages of loading: differential stress Pdiff=48.0 MPa and 64.1

MPa (recorded signals shown in Figure 4.8b). The sensors used are PZT sensitive to

displacement tangential to the sensor face, with a central frequency of 700 kHz and a

contact area of 20 mm2. The amplitude of the pulse spike is 500 V with approximate

signal rise time of 0.3 µs and total duration of 2.8 µs, the sampling period is 40 ns. The

estimate of the time-varying ∆V/V function made using the double wavelet method is

shown in Figure 4.8c and very closely resembles the best fitting forward model using the

scattering model for equilibriation. The smooth transition from a high-to-low ∆V/V

indicates that ∆VP /VP > ∆VS/VS , while the true values of ∆VP /VP and ∆VS/VS are

not known, the close fit to the best fitting scattering model suggests our method is

valid for three-dimensional real rock experiments.

4.4.2 Estimating ∆VP/VP and ∆VS/VS from Numerical Data

Taking the three models shown in Figure 4.4, as well as a version of the Westerly

granite where impedance contrasts are strongly enhances (models compared in Figure

4.9), we simulate wave propagation before and after a perturbation where VP and VS

are perturbed by different amounts (∆VP /VP = 0 and ∆VS/VS = 0.05). Using the

recorded signals from receivers co-located at the source location at the centre of each

model, we estimate the time-varying ∆V/V function. We also estimate a single velocity

change ∆V/V at late time (after equilibriation) with the trace stretching method. For

the random scattering model (Fig. 4.10) and Westerly granite model (Fig. 4.11), a

combination of the double wavelet and linear trace stretching methods is used as input

into the inversion for ∆VP /VP and ∆VS/VS (d in Equation 4.22), using a piece-wise

cubic interpolation between the ∆V/V at the onset of cycle skipping to the estimate

of ∆V/V made using the trace stretching method at the centre of the time window

used (shown as the blue curve in Figs. 4.10a and 4.11a). The high contrast Westerly

granite model and the Marmousi model estimates exhibit smooth increases in ∆V/V
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Figure 4.9: Velocity and density model comparison using realistic values for Westerly Granite (a and

b) and a case where impedance contrasts are significantly stronger to increase scattering strength (c

and d)
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Figure 4.10: a) Estimates of velocity change ∆V/V as a function of time t following a perturbation

in the random scattering model (Figs. 4.4a-b). Estimates are made using the double wavelet method

(blue), as well as a single ∆V/V estimate made using the CWI stretching method (black). The solid

red line shows the ∆V/V calculated by forward modelling the best fitting ∆VP /VP and ∆VS/VS values

into Equation 4.2. The lower panels are the resulting ∆VP /VP estimates (b) and ∆VS/VS estimates

(c), compared with the true velocity perturbations (red dashed) used as input into the finite difference

simulations (∆VP /VP = 0 and ∆VS/VS = 0.05).
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Figure 4.11: a) Estimates of velocity change ∆V/V as a function of time t following a perturbation

in the Westerly granite model (Figs. 4.4c-d and 4.9a-b). Estimates are made using the double wavelet

method (blue), as well as a single ∆V/V estimate made using the CWI stretching method (black). The

solid red line shows the ∆V/V calculated by forward modelling the best fitting ∆VP /VP and ∆VS/VS

values into Equation 4.2. The lower panels are the resulting ∆VP /VP estimates (b) and ∆VS/VS

estimates (c), compared with the true velocity perturbations (red dashed) used as input into the finite

difference simulations (∆VP /VP = 0 and ∆VS/VS = 0.05).
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Figure 4.12: a) Estimates of velocity change ∆V/V as a function of time t following a perturbation

in the Westerly granite model with exaggerated impedance contrasts to increase scattering strength

(Figs. 4.9c-d). Estimates are made using the double wavelet method (blue), as well as a single ∆V/V

estimate made using the CWI stretching method (black). The solid red line shows the ∆V/V calculated

by forward modelling the best fitting ∆VP /VP and ∆VS/VS values into Equation 4.2. The lower panels

are the resulting ∆VP /VP estimates (b) and ∆VS/VS estimates (c), compared with the true velocity

perturbations (red dashed) used as input into the finite difference simulations (∆VP /VP = 0 and

∆VS/VS = 0.05).
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Figure 4.13: a) Estimates of velocity change ∆V/V as a function of time t following a perturbation

in the Marmousi model (Figs. 4.4e-f). Estimates are made using the double wavelet method (blue),

as well as a single ∆V/V estimate made using the CWI stretching method (black). The solid red line

shows the ∆V/V calculated by forward modelling the best fitting ∆VP /VP and ∆VS/VS values into

Equation 4.2. The lower panels are the resulting ∆VP /VP estimates (b) and ∆VS/VS estimates (c),

compared with the true velocity perturbations (red dashed) used as input into the finite difference

simulations (∆VP /VP = 0 and ∆VS/VS = 0.05).
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as a function of time (Figs. a and 4.11a), there is no strong variations in ∆V/V at later

times, thus do not show any effects of cycle skipping on the double wavelet method.

Therefore for the Marmousi and high contrast Westerly granite models, we only use the

double wavelet method as input into the inversion (blue curve in Figs. a and 4.13a).

Using the scattering model for equilibration of P-to-S waves described by Equations

4.9-4.12 as A in Equation 4.22, we invert for ∆VP /VP and ∆VS/VS over a distribution

of VP /VS ratios P (γ). Using such a distribution illustrates the sensitivity of estimates

for ∆VP /VP and ∆VS/VS to errors in the estimate of γ. The results are shown in the

lower panels of Figures 4.10, 4.11, and 4.13.

For all models, the estimates of ∆VP /VP are more precise (narrower probability

distribution) than those for ∆VS/VS . These estimates are more constrained by early

times in the signal (where the analytical scattering model predicts the medium is

dominated by P waves), which results in less variation as the VP /VS ratio varies.

The random scattering model estimates for ∆VP /VP and ∆VS/VS (Figs. 4.10b and

c) are accurate, very close to the true velocity changes used in the wave propagation

simulations. We take the estimates of ∆VP /VP and ∆VS/VS at the distribution peaks,

as input into Equation 4.2, forward modelling the best fitting ∆V/V (shown as a red

curve in Fig. 4.10a), the CWI estimates for ∆V/V are consistent with the best fitting

model, suggesting the scattering model is appropriate and the CWI method is effective

in this medium. The random isotropic nature of this model follows the assumptions of

the CWI method, thus the results estimates reflect the best case scenario of random and

isotropic strong scattering. The estimates made for the Westerly granite model (Figs.

4.11b and c) are comparatively inaccurate compared to the high contrast Westerly

granite model (Figs. 4.4.2b and c). The Westerly model contravenes the assumptions

of CWI in that the number of scatterers in the medium is low, and the impedance

contrasts between mineral phases are small, therefore strong scattering does not occur.

This causes the double wavelet method to fail (<13 µs in Fig. 4.11a), and the following

calculations of ∆VP /VP and ∆VS/VS are therefore inaccurate. In this medium, the

forward model of the peak estimates of ∆VP /VP and ∆VS/VS (red curve in Fig. 4.11a)

shows little resemblance to the estimated ∆V/V using CWI, indicating the failure
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Figure 4.14: a) Estimates of velocity change ∆V/V as a function of time t for the random scattering

model (Fig. 4.6a). Estimates are made using the double wavelet method (blue) as well as a single

∆V/V estimate made using the CWI stretching method (black). The solid red line shows the ∆V/V

calculated by forward modelling the best fitting ∆Vm/Vm and ∆Vf/Vf . The lower panels are inversion

results for the estimation of the change in matrix velocity ∆Vm/Vm (b) and the change in fluid velocity

∆Vf/Vf (c) using the scattering model over a distribution of fluid fraction (blue) compared with the

true velocity changes (red).

of either the scattering model, or the CWI method. Estimates for velocity change

made for the Marmousi model (Figs. 4.13b and c) are accurate despite the structural

heterogeneity and anisotropy in the medium. This suggests that the estimated ∆VP /VP

and ∆VS/VS is not so dependent on the assumption of isotropic scattering, but rather

the presence of strong scattering to allow for sufficient equilibriation.

4.4.3 Estimating a Fluid Velocity Change from Numerical Data

Here we take the two porous medium models shown in Figures 4.6a and b: the

random binary model and Tivoli travertine mode, as input to a 2D acoustic finite

difference simulation of wave propagation. We perturb the velocity model used in

for the simulation where only the fluid phases are perturbed (∆Vm/Vm = 0 and
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Figure 4.15: a) Estimates of velocity change ∆V/V as a function of time t for the Tivoli travertine

model (Fig. 4.6b). Estimates are made using the double wavelet method (blue) as well as a single

∆V/V estimate made using the CWI stretching method (black). The solid red line shows the ∆V/V

calculated by forward modelling the best fitting ∆Vm/Vm and ∆Vf/Vf . The lower panels are inversion

results for the estimation of the change in matrix velocity ∆Vm/Vm (b) and the change in fluid velocity

∆Vf/Vf (c) using the scattering model over a distribution of fluid fraction (blue) compared with the

true velocity changes (red).
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∆Vf/Vf = 0.01). Taking the recorded signals from the same source and receiver

locations for the perturbed and unperturbed media, we estimate ∆V/V as a function of

time t using the double wavelet and linear trace stretching methods, shown in Figures

4.14a and 4.15a. The estimates of ∆V/V using the double wavelet method exhibit an

increase to a constant value at late times, with no strong temporal variations, thus

do not show the effects of cycle skipping. The results are in good agreement with the

predicted equilibriation from the scattering model. We therefore use only the estimates

of the double wavelet method as input to the inversion for changes in matrix velocity

∆Vm/Vm and fluid velocity ∆Vf/Vf .

We invert for the velocity changes following Equations 4.25 and 4.26, using the

analytical scattering model for equilibration between solid and fluid phases (Equations

4.9-4.12), and over distribution of fluid fractions P (φ). The resulting distribution of

estimates for ∆Vm/Vm and ∆Vf/Vf are shown in the lower panels of Figures 4.14 and

4.15. The estimates for ∆Vm/Vm and ∆Vf/Vf in the random binary model (Figs.

4.14b and c) are both accurate and precise. We take the estimates of ∆Vm/Vm and

∆Vf/Vf at the distribution peaks and forward modelling using the analytical scattering

model to calculate ∆V/V as a function of time (red curve in Fig. 4.14a). This closely

resembles the ∆V/V measured by the CWI double wavelet method. The random binary

model contains very little/no correlated structure, therefore is close to the assumption

of the scattering model (Section 4.3.2), namely that the medium consists of randomly

distributed point scatterers.

The Tivoli travertine model exhibits much more correlation of structures (there is

variation between densely cemented regions and highly porous regions in Fig. 4.6b).

As the medium moves away from idealised random point scatterers, the analytical

scattering model becomes less appropriate. The distribution of velocity change

estimates in the Tivoli travertine model (Figs. 4.15b and c) remain accurate despite the

deviation from uncorrelated structure. However, there is a loss in precision of ∆Vf/Vf

estimates, which is due to the porosity distribution P (φ) extending to a zero porosity

case (φ = 0). As φ decreases, the ∆Vf/Vf required to account for the measured ∆V/V
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increases, when φ = 0, ∆Vf/Vf becomes infinite. Therefore this approach leads to a

loss in precision at very low porosities. The best fitting forward model shows close

resemblance to the ∆V/V measured by the CWI double wavelet method at early times

and late times (after equilibrium), though fits poorly between 0.1-0.8 ms, most likely

due to the non-uniform nature of the medium. Generally these results highlight the

strong potential for this method to be used in core scale experiments, at least in the

case where strong scattering occurs.

4.5 Discussion

We have demonstrated an extension of coda wave interferometry, which is capable

of resolving very small changes in a medium to a far greater degree of accuracy

and precision, so that changes in both P and S wave velocities can be measured

independently. This greatly improves the applicability and relevance to many real world

problems laboratory and field scale problems. There are however several limitations

and areas for future research to be considered.

4.5.1 Limitations to the estimation of ∆V/V as a function of time

The method presented here consists of multiple stages. The first is the estimation of

a non-linear velocity change as a function of time along the entire signal. Singh et al.

(2019) show that the first arriving waves, which only sample along a specific (fastest

source-to-receiver) path, are generally less representative of the changes in a medium

compared to measurements using coda waves. The method presented here includes

these early arriving waves, which take very simple paths, therefore we cannot expect

the same precision and accuracy offered by conventional CWI. However, the new ability

to separate velocity changes into independent changes in VP and VS may be worth this

loss in accuracy and precision. We use the double wavelet method for estimating ∆V/V

at multiple time windows along the signals, which introduces errors associated with the

averaging of temporal variations within the time windows. We initially suggest dynamic

time warping to be an appropriate method, as an estimate of ∆V/V is made for every
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time sample in the signal, however when used on more realistic data we see very strong

temporal variations. This is due to two effects: the presence of cycle-skipping and the

variation of signal amplitudes following a perturbation in velocity. Both of these effects

can contaminate the results. To improve results, a combination of methods and a limit

on the possible time lags allowed in the dynamic time warping algorithm, such as those

applied by (Hale, 2013), would better constrain the estimates of velocity change. We

leave this for future research. Another major limitation we identify is the dependence

on the strength of scattering. By comparing the Westerly granite sample with the high

contrast version of the Westerly granite, we see that weak impedance contrasts leads

to the absence of strong scattering, contravening the assumptions of CWI, thus the

methods presented here fail in this case.

4.5.2 Limitations to the scattering model for equilibriation

The second part to the method presented here is the estimation of equilibriation of P-to-

S waves in the medium. Figures 4.5 and 4.6 compare the equilibraition of P-to-S waves

and solid matrix to pore fluids, measured from wavefield intensities, and estimated using

the scattering model described in Section 4.3.2. There are several differences between

the measured and predicted equilibriation. A major difference is the clear mismatch

between predicted and measured proportions of P and S waves at early times, which

is particularly visible in for the westerly granite (Fig. 4.5b). The wavefield intensities

suggest a much higher than expected proportion of S waves shortly after t = 0, this

could be non-random distribution of scatterers in the medium (in the case of the

Westerly granite model, scatterers are mineral phase boundaries). If source and receiver

locations are in areas of locally concentrated scatterers, we expect more scattering,

therefore more phase conversion, in a given time. Therefore we expect this effect to vary

depending on source and receiver configuration. Another difference between predicted

and measured equilibration is the mismatch between P and S wave proportions after

equilibrium is reached. This effect most clearly visible in the Marmousi model (Fig.

4.5b). It is not clear where the inaccuracy in the scattering model stems from, the

model for the simplest case of the random scattering model generates accurate results
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(Fig. 4.5a). This suggest errors are a function of the incorrect assumption of isotropic

and randomly distributed scatterers, however the following inversion remains accurate.

The inversion approach used here assumes the correct estimation of the scattering

mean free path lP , describing the degree of scattering in the medium (therefore the

time required for the system to reach equilibrium). While our current inversion

implementation requires a correct estimate of lP , a joint inversion for lP , ∆VP /VP

and ∆VS/VS , could also be implemented, providing the signal length is long enough for

proportion of P and S waves to reach equilibrium.

In all the inversion examples presented here for the numerical data, we use two

dimensional finite difference simulations, where wave propagation is confined to a single

plane, and only one possible S wave state can exist. In reality waves propagate in three

dimensions, so we expect stronger scattering, and greater difference between P and S

waves at equilibrium. Therefore we expect the coda wave interferometry method to

perform better than in the 2D models tested here. This is supported by the smooth

curve exhibited by the estimation of ∆V/V in Figure 4.8 for the laboratory experiment

using a laminated carbonate sample.

4.5.3 Relation to other studies and wider applications

There are strong similarities with the method presented here and that of Obermann

et al. (2013, 2016), who charecterise the time-dependent relationship between mea-

surements from the coda and the contributions of both surface and bulk (body) waves,

allowing the depth localization of a velocity perturbation. They formulate the modelled

relative velocity change ∆V/V theo(d, t) measured at time t and depth d to be:

[
∆V

V

]theo
(d, t) = α(t)

[
∆V

V

]Surf
(d) + (1− α(t))

[
∆V

V

]Bulk
(d, t), (4.27)

where [∆V/V ]Surf and [∆V/V ]Bulk are the relative velocity changes of the surface and

bulk waves and α is the partition coefficient. However, the equipartition of compres-

sional and shear wave energy is not taken into account in the inversion. Combining
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Equation 4.27 with Equation 4.2 would give an expression for the contributions of

changes in bulk and surface waves as well as changes in compressional and shear waves,

a similar inversion approach could be performed using CWI measurements made at

multiple time windows (as in Equation 4.22). There is therefore strong potential to

combine the time-dependent model for α from Obermann et al. (2013) with the time-

dependent model presented here, to charecterise the changes in VP and VS , as well as

localising the perturbation in terms of its depth and distance from the source-to-receiver

path. We leave this for future work.

There are several potential uses for the method presented here that are applicable out-

side of geoscience. In medical imaging, specifically in elastography, the separation of

bulk and shear moduli is important in the mapping of soft-tissue stiffness (Gennisson

et al., 2013). These methods could also be used for improving ultrasonic charecterisa-

tion of defects in non-destructive testing.

4.6 Conclusion

Measurements of a change in velocity made using coda waves have previously been

limited to an unknown combination of changes in P and S wave velocities. We provide

a method for estimating both changes in P and S wave velocity independently, using

estimates for velocity change at multiple times along the entire signal, and a scattering

model for equilibriation of P and S waves in a medium. We show dynamic time warping

and double wavelet methods to be effective in characterizing a simple change in velocity

(where amplitudes of the signal do not change). Dynamic time warping is more sensitive

to cycle-skipping, but the double wavelet method introduces errors due to averaging

within time windows. We extend the scattering model of Snieder (2002) to incorporate

a fluid fraction, where S waves cannot exist. This models estimates the equilibriation

of P to S waves over time, as well as the equilibriation of the proportion of waves in

the solid matrix to pore fluid. Using wavefields from finite difference simulations in a

range of media with increasing structure at both the laboratory core scale and field

scale, we show the analytical scattering model to be accurate in both the temporal
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changes in P and S wave proportions, as well as the final proportions of P and S waves

at equilibrium. We estimate changes in P and S wave velocity and changes in matrix

in fluid and matrix velocity in a probabilistic framework. We accurately estimate

changes P and S wave velocity while retaining the additional precision when compared

to conventional methods of phase picking first arriving waves, which was previously

unavailable using coda wave interferomerty. This greatly improves the applicability

and relevance for many real-world problems such as those in experimental rock physics,

or field-scale monitoring projects.
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4.8 Appendix: Conventional methods for Coda Wave

Interferometry

One method for estimating a change in velocity is known as the ‘Double Wavelet

Method’ (DWM), where the coda of a unperturbed and perturbed signals (uunp and

uper) are divided into multiple time windows with start time t1, end times t2, and

central time t. For each time window, a cross correlation function is applied using the

perturbed and unperturbed signals:

RDWM (τ) =

∫ t2
t1
uunp(t)uper(t+ τ)dt√∫ t2

t1
u2unp(t)dt

∫ t2
t1
u2per(t)dt

(4.28)

The travel time perturbation τ is equivalent to the time lag that maximizes the
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correlation coefficient RDWM , and relates to the velocity perturbation by:

τ

t
= −∆V

V
. (4.29)

Another method to estimate the change in velocity is known as the ‘Trace Stretching

Method’ (TSM) (Sens-Schönfelder and Wegler, 2006), where the perturbed waveform

is assumed to be a time-stretched version of a reference waveform; this follows if one

assumes that a velocity perturbation is uniform across the entire medium, so all arriving

energy is perturbed at the same temporal rate. The time axis of the perturbed signal

is stretched by a range of stretching factors (ε) and compute the correlation coefficient

RTSM between uunp(t) and the stretched version of the perturbed waveform uper(t[1+ε])

over a given time window (t1, t2):

RTSM (ε) =

∫ t2
t1
uunp(t)upet(t[1 + ε])dt√∫ t2

t1
u2unp(t)

∫ t2
t1
u2pet(t[1 + ε])dt

(4.30)

The optimum stretching factor εmax that maximizes the correlation coefficient (for

which R = Rmax), is related to the ratio of the change in velocity ∆V to the original

velocity V ) by:

εmax = −∆V

V
. (4.31)



Chapter 5

Monitoring elastic properties
during triaxial deformation of
oriented finely laminated
carbonates using coda waves

The focus of this chapter is on the interpretation of changing seismic velocity during

the experimental deformation of rock cores. I provide a laboratory application to the

methods described in the previous two chapters for estimating both changes in P and

S wave velocity using coda wave interferometry. I use this information as input to a

rock physics model for calculating crack density during the triaxial deformation of two

finely laminated carbonate samples. I use complementary first-break method results to

investigate anisotropy within the samples. From the research questions I identified in

Section 2.5, this chapter seeks to answer questions 4 and 5.

At the time of writing, the manuscript is in preparation for journal submission. The

co-authors include Alexis Cartwright-Taylor, Andrew Curtis and Ian Main. I acted as

the lead author for this paper, and performed all of the laboratory experiments and

analysis described herein.
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5.1 Abstract

The characterisation of elastic properties and how they evolve during brittle deforma-

tion is of great importance for many applications across geoscience and engineering.

Coda wave interferometry (CWI) is a method to measure accurate and precise changes

in seismic velocity. It utilises the diffuse multiple scattered waves that are very sensitive

to small changes in a medium. Previously the estimate of velocity change made using

CWI has used an unknown weighted average between the changes in bulk compressional

(P) and shear (S) wave velocities.

Here we demonstrate a method where CWI estimates are combined with an analytical

scattering model that accounts for the equilibriation of P and S waves over time,

allowing the estimation of both changes in P and S wave velocity independently. This

allows for the calculation of changes in the P-to-S wave velocity ratio and changes in

the inverted crack density. We demonstrate the method using the triaxial deformation

of two finely laminated Aptian carbonates, cored parallel and perpendicular to the

laminations allowing the investigation of structural anisotropy. The parallel-cored

sample exhibits a 36% higher Young’s modulus and a 19.9% higher peak stress than the

perpendicular cored sample. The increase in velocity (due to stress induced pore closure

of pores and pre-existing microcracks) estimated by the conventional first-break method

is greater than CWI in the parallel core, and lower than CWI in the perpendicular core.

This reflects the contrast between the directional measurement provided by the first

break (sampling along the fastest path), and the isotropic average provided by CWI (as

the scattered waves eventually travel in all directions). The data suggest pre-existing

microcracks are oriented at a high angle to laminations.

These results represent a major improvement in the methods surrounding experimental

rock physics, as information regarding the anisotropy of a sample can be attained even

where velocities are only measured in one orientation.
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5.2 Introduction

Fractures are ubiquitous in the Earth’s lithosphere (Bonnet et al., 2001), and the study

of fractures is important for a wide range of geological and engineering applications,

such as the underground storage of hazardous waste (Green and Mair, 1983), manage-

ment of groundwater resources (Singhal and Gupta, 2010), CO2 storage and seques-

tration (Iding and Ringrose, 2010), geothermal engineering projects (Watanabe and

Takahashi, 1995), and the extraction of hydrocarbons (Medeiros et al., 2007). The

presence of fractures strongly influence the elastic properties of rocks (Nur and Sim-

mons, 1969; Nur, 1971; O’Connell and Budiansky, 1974; Crampin, 1981; Sayers and

Kachanov, 1995; Guéguen and Palciauskas, 1994). In many cases, changes in seismic

velocity have been used as a precursor to system-scale failure (Volti and Crampin, 2003;

Gao and Crampin, 2004). Here we consider the case of triaxial deformation experiments

(Paterson and Wong, 2005), where samples are deformed uniaxially under hydrostatic

stress conditions. During these experiments, seismic velocity initially increases due

to pressure-induced closure of pores and pre-existing microcracks, then velocities de-

crease at the onset of dilatancy due to microcracking (Jaeger et al., 2009; Guéguen and

Palciauskas, 1994).

In these experiments, velocity is conventionally measured axially, in the direction of

loading (Sammonds et al., 1989; Ayling et al., 1995; Schubnel et al., 2006), by taking

picking the travel times of the first arriving compressional (P) and shear (S) waves.

Recently, coda wave interferometry (CWI) has been used to measure a change in

velocity with higher precision and and accuracy compared to conventional methods

(Snieder et al., 2002; Snieder, 2006; Singh et al., 2019). The method uses the multiply

scattered coda waves, that sample the entire medium many times, thus providing a

representative isotropic average of the rock properties. The estimate of velocity change

using CWI has previously been made using an unknown weighted average of the changes

in P and S waves, limiting the applicability of CWI.

Here we demonstrate the first laboratory application of the recently developed method
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of Singh et al. (2019) for estimating changes in both P and S wave velocity by

combining CWI with an analytical scattering model that describes the conversions

and equilibriation of P and S waves in a medium. We hypothesise that measurements

made from the coda can be used in conjunction with axial first-break measurements to

understand any anisotropy present in the samples, utilising the directional information

for the first-break, and the isotropic average that is inherent to CWI. We show how

CWI estimates for changes in P and S wave velocities can be used to monitor the

compressional-to-shear wave velocity ratio (a key parameter for lithology and fluid

prediction methods, e.g., Duffaut and Landrø (2007)), and invert for changes in crack

density.

First we describe the geological properties of the two carbonate samples studies here,

and describe the experimental methodology and apparatus. We then summarise the

theory of CWI and demonstrate how it can be coupled with an analytical scattering

model to provide estimates for changes in both P and S wave velocity. We measure

the static elastic (i.e., Young’s modulus) and dynamic elastic properties (i.e., P and S

wave velocities) during deformation and compare the results of the CWI analysis with

those of the conventional method. We then invert for changes in crack density and

describe how CWI can be used in conjunction with conventional first-break methods

to understand anisotropy in the media.

5.3 Method

5.3.1 Sample Characterization

The cores studied here are dry Aptian laminated limestones from the Crato formation,

outcropping in the Araripe Basin, North-East Brazil. These rocks are finely laminated

lacustrine carbonates (Neumann, 1999), and are of particular interest as they are

close analogues to the Barra Velha Formation in the Pre-Salt layer offshore Brazil -

a significant hydrocarbon reservoir (Catto, 2015).
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Table 5.1: Sample Details

Sample Orientation to bedding Length Diameter Porosity φ

CL1 Parallel 75.44 mm 36.50 mm 7.18%

CL2 Perpendicular 74.50 mm 36.44 mm 2.50%

The main petrographic characteristics observed in these samples are fine grained matrix

(micrite or mudstone), which consists of 1 to 4 µm-diameter crystals of low-Magnesium

calcite, similar to most lacustrine calcareous muds (Miranda et al., 2016; Scholle and

Ulmer-Scholle, 2003). Scanning electron micropscope (SEM) analyses conducted by

Miranda et al. (2016) show Crato formation laminite samples exhibit an intergranular

primary porosity and some secondary porosity such as vugs and moldic structures.

Sillicon and Iron replacement of some pores due to the interaction with meteoric water

during the post-depositional diagenetic stage is observed. There are multiple fracture

systems found in the formation: shear fractures dipping 55◦, and vertical opening-mode

fractures filled mainly by recrystallized calcite (Miranda et al., 2014). These calcitic

veins exhibit zero porosity and are impermeable. The laminated limestones porosities

are found to range from 4% to 22% with an average of 12% and permeability values

ranging from 0 to 0.09 mD with an average of 0.004 mD (Miranda et al., 2016).

We take two core samples, one cored parallel to the laminations (and a high angle

to the pre-existing fractures) and one cored perpendicular to the laminations (and a

low angle to pre-existing fractures). The effective (or connected) porosity is measured

using the triple-weight method, where we measure the mass of the dry samples (mdry)

after oven drying, the mass of the water saturated samples (msat), and mass of

saturated samples immersed in water (mimm). The porosity is then estimated as

φ = (msat − mdry)/(msat − mimm). The sample dimensions and effective porosity

are shown in Table 5.1.
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5.3.2 Laboratory Apparatus

We use the two Crato formation laminites described above for dry triaxial compression

experiments varying the differential stress applied to the sample and measuring the

strain and seismic velocities. Such experiments are conducted to simulate the natural

stress states within the Earth’s crust. We use a conventional triaxial Hoek cell (Figure

5.1), which deforms sample uniaxially under hydrostatic stress conditions (i.e., two of

the three principal stresses are equal). The pressure vessel allows the application of a

confining pressure, which is held constant at 30 MPa. The load is applied through the

pistons inserted at each end of the cell. The axial stress σ1 is calculated as σ1 = F/A,

where F is the force applied by the pistons and A is the cross-sectional area of the

sample and the intermediate and principal stresses σ2 = σ3 are equal to the radial

confining pressure. The differential stress σ is calculated as σ = σ1 − σ3. Loading is

applied axially with a strain rate ε̇ = 3× 10−5 s−1, to a peak stress and sample failure.

Axial displacement is measured using two linear variable displacement transducers

(LVDTs). Linear strain ε is then calculated as the ratio of the change in length δl

as a function of the initial length l0, i.e., ε = δl/l0.

To characterise the extent of damage within the samples following the triaxial defor-

mation, we image the samples before and after loading using high-resolution x-ray

microtomography (µCT). These three-dimensional images have voxel sizes and thus

maximum resolution of 37.5 µm3.

Conventional Velocity Measurements

To measure P-wave velocity we use Glaser-type conical piezoelectric sensors sensitive

to displacement normal to the sensor face (McLaskey and Glaser, 2012). These wide-

band sensors are calibrated against theoretical displacement time history and have an

almost flat displacement response spectrum in the 20 kHz to 1 MHz frequency band.

This means that, in this frequency band, they are essentially displacement sensors

and their voltage output is linearly proportional to the surface normal displacement.
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Figure 5.1: a) Triaxial rock deformation rig, for applying confining, fluid, and loading stresses on a

36.5 mm diameter sample while measuring differential stress, axial strain, and P and S wave velocities.

Dimensions are approximate to account for variations between samples. b) Example signal recorded

using transducers sensitive to displacement perpendicular to the sensor face (P sensor). c) Example

travel time pick (first-maximum) on P sensor. d) Example signal recorded using transducer sensitive

to displacement tangential to the sensor face (S signal). e) Example S wave travel time pick.
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Aperture effects are reduced due to the relatively small 0.5 mm sensor contact area.

We used an Itasca Image pulser-amplifier system with operating frequency range of

100 kHz to 1 MHz and pre-amp gain of 40 dB, which switches between all transducers

in an ultrasonic array, allowing each to act as both a transmitter and a receiver. The

amplitude of the pulse spike is 500 V with approximate signal rise time of 0.3 µs and

total duration of 2.8 µs, the sampling period is 40 ns. The output recorded waveform

at each receiver is a stack of received waveforms from 25 source pulses with a pulse

repetition frequency of 20 kHz (as the pulse repetition is high, we assume no loss in

phase resolution). We measure S wave velocity using sensors with PZT sensitive to

displacement tangential to the sensor face, with a central frequency of 700 kHz and a

contact area of 20 mm2. Example recordings using the perpendicular (P) and tangential

(S) sensors, as well as example picks for the P and S wave arrival times are shown in

Figures 5.1b-e. The conventional method for measuring the P and S wave velocities is

to measure the arrival time of the first arriving P and S waves (specifically, we take the

arrival time of the first maximimum), and assume a straight path between the source

and receiver to calculate velocity.

5.3.3 Coda Wave Interferometry

Coda Wave Interferometry (CWI) is a method for accurately and precisely measuring a

change in velocity (Snieder et al., 2002; Snieder, 2006). CWI uses the diffuse, multiply

scattered waves found in the tail of the seismogram, Coda waves sample the entire

medium and the same areas multiple times, therefore provide much more representative

measurements of a change in bulk velocity velocity of a medium, as well as providing an

order of magnitude improvement in precision when compared to conventional methods

(phase picking of first arriving waves) for measuring a bulk velocity change (Singh et al.,

2019).

We estimate the velocity change by taking unperturbed and perturbed signals (uunp

and uper) and subdivide into multiple time windows with start time t1, end times t2,

and central time t. For each time window, a cross correlation function is computed

using the perturbed and unperturbed signals:
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R(τ) =

∫ t2
t1
uunp(t)uper(t+ τ)dt√∫ t2

t1
u2unp(t)dt

∫ t2
t1
u2per(t)dt

. (5.1)

The time lag τ that maximises the correlation coefficient R for a given time t relates

to the velocity perturbation ∆V as a fraction of the original velocity V by:

τ

t
= −∆V

V
. (5.2)

There is no length of time windows (t1, t2) prescribed for the estimation of ∆V/V , here

we take calculate [∆V/V ](t) over a range of window lengths ranging from 0.01 ms to

0.2 ms and take the mean [∆V/V ](t) across all window lengths.

There are many advantages to using CWI for measuring changes in velocity using CWI:

the process is automatic, and more accurate and precise than the conventional first-

break method Singh et al. (2019). However, the estimate of velocity change given by

CWI (∆V/V ) reflects an unknown combination of changes in P and S wave velocities

(∆VP /VP and ∆VS/VS , respectively), therefore it is not possible to compare standard

CWI results with conventional P and S-wave results. However, the relative proportions

of P and S waves in a medium change over time (Snieder et al., 2019), and equilibrate

to a constant energy ratio (a phenomenon known as equipartitioning (Hennino et al.,

2001; Weaver, 1982, 1990; Margerin et al., 2009)), therefore the relative contributions

of ∆VP /VP and ∆VS/VS to the measured ∆V/V also vary with time and stabilize in

the coda. This variation in ∆V/V as a function of time t can then be used to infer

∆VP /VP and ∆VS/VS , using the relation:

[
∆V

V

]
(t) = [1− q(t)]

[
∆VP
VP

]
+ q(t)

[
∆VS
VS

]
, (5.3)

where q(t) is the fractional proportion of the ∆VS/VS contribution to ∆V/V (thus

1− q(t) is the fractional proportion of ∆VP /VP ).

Singh et al. (2019) demonstrate a model for estimating the function q, adapting the

analytical scattering model of Snieder (2002). The model assumes that at the beginning
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of a recording, the signal is comprised of only P wave energy, thus the measurement

of ∆V/V reflects only the change in P wave velocity ∆VP /VP . As time t increases,

the proportion of P and S waves equilibriate, and the rate that this occurs depends on

the scattering properties of the medium and the proportions of P and S waves after

equilibrium depends on the VP /VS ratio. The model for the amount of P wave energy

(NP ) and S wave energy (NS) as a function of time can be described by the following

differential equations:

ṄP =
1

a
(pSPVSNS − 2pPSVPNP ), (5.4)

ṄS =
1

a
(2pPSVPNP − pSPVSNS), (5.5)

where the dot denotes a rate of change over time, a is the average distance between

scatterers, pSP and pPS are the probabilities of S-to-P and P-to-S conversions occurring

at a scatterer. The probabilities of conversions and inter-scatter distance a relate to

the mean free path lP , which is defined as lP = a/(2PPS). In some cases, the mean

free path lP can be estimated by relating the power spectrum |〈U(ω〉|2 of the coherent

signal 〈u(t)〉 to the scattering mean free path lP (Derode et al., 2001; Anugonda et al.,

2001; Obermann et al., 2013):

|〈U(ω〉|2 = exp

(
− x

lP

)
, (5.6)

where x is the distance between source and receiver locations. We assume that for a

given time t, the contribution of ∆VS/VS and ∆VP /VP is equal to the proportion of S

and P waves in the medium i.e., q = NS/(NP +NS) and 1− q = NP /(NP +NS).

The remaining unknown parameters in Equation 5.3 are ∆VP /VP and ∆VS/VS , which

are time independent changes in P and S wave velocities respectively. Many estimates

of ∆V/V measured at different times results in multiple solutions to Equation 5.3, the

same number as there are time samples. Quantities ∆VP /VP and ∆VS/VS can then be

estimated using an ordinary least squares inversion approach to solve the system:

d = Am, (5.7)
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where d is a matrix of measured values of [∆V/V ](t) for each time window, and A is

matrix of (1 − q) and q values expected at each time window for a given VP /VS ratio

γ. The resulting vector m contains estimates of ∆VP /VP and ∆VS/VS .

An important measurement in experimental rock physics and the interpretation of the

mechanical properties of a material is the ratio of compressional-to-shear wave velocity

γ = VP /VS . The estimated changes in P and S wave velocity can be used to calculate

the fractional change in γ:

∆γ

γ
=

(1 + ∆VP /VP )

(1 + ∆VS/VS)
− 1. (5.8)

One of assumptions underlying the CWI method is that small perturbations are

occurring, and that there are no changes in the ray paths or addition of any new

scatterers. In the differential stress experiments conducted here, samples are deformed

under high stress, therefore major changes occur including the addition of fracture

networks in the medium, contravening the assumption of CWI. To limit extent of

changes occurring in the recorded signals, we use a moving reference trace method,

where the velocity change from the initial reference trace (u0) to any other recorded

waveform during deformation (un) can be calculated as

[∆V/V ]u0un = [∆V/V ]u0us + [∆V/V ]usun , (5.9)

where [∆V/V ]uiuj is the stretching factor of trace uj relative to ui, s = kbn/kc, n is

the trace number, k is the user-selected step size of the moving reference trace, and

b. . .c denotes a floor function, which outputs the greatest integer less than or equal to

the argument. Here we use a range of k values of 1-3 and take the average of the three

estimates for each recording.
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5.3.4 Crack Density Models

Using the absolute VP and VS measurements made using the conventional method of

picking first arrivals, as well as the CWI measurements for velocity changes ∆VP /VP

and ∆VS/VS , we asses the damage occurring the samples using a crack density

model. Here we use the self-consistent model of O’Connell and Budiansky (1974), who

developed a general description of crack damage and its effect on the elastic properties

of rocks. The model assumes the crack density is low, so cracks are far apart and hence

crack interaction is negligible, and also that the location and orientation of cracks in

the rock is random uniform and isotropic. For the case of randomly oriented and

penny-shaped cracks, the crack density ρC is defined as:

ρC = N〈a3〉 = (3φ/4π)〈a〉, (5.10)

where a ≈ b� c (a and b are the major axes of the ellipsoidal crack and c is the crack

aperture), 〈a3〉 is therefore the mean crack radius, N is the number of cracks per unit

volume, 〈α〉 is the mean crack aspect ratio (c/a), and φ is the volume of cracks per unit

volume. Crack density can be estimated from the effective (or measured) bulk modulus

Keff and Poisson ratio νeff (O’Connell and Budiansky, 1974):

ρC =
9

16

(1− 2νeff )

(1− ν2eff )

(
1−

Keff

K∗

)
, (5.11)

where K∗ is the bulk modulus of the crack-free rock (see also Ayling et al. (1995) and

Stanchits et al. (2006) for the application of this method). We take K∗ to be the

maximum measured bulk modulus (K∗ = 49.4 GPa), where we assume all cracks are

closed.

As CWI provides a change in velocities, rather than an absolute velocity, to estimate

the change in crack density we first take the initial values of bulk modulus K0 and

Poisson ratio ν0 using the P and S wave velocities measure from first arrivals:

K0 = ρ(V 2
P0 +

4

3
V 2
S0), (5.12)
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and

ν0 =
1

2

γ20 − 2

γ20 − 1
, (5.13)

where ρ is the sample density, and VP0, VS0 and γ0 are the initial measurements

of P wave velocity, S wave velocity, and the VP /VS ratio, respectively. Using the

CWI estimates of ∆VP /VP and ∆VS/VS , the bulk modulus and Poisson ratio can be

estimated using CWI:

KCWI = ρ

((
VP0 + VP0

∆VP
VP

)2

+
4

3

(
VS0 + VS0

∆VS
VS

)2)
, (5.14)

and

νCWI =
1

2

(γ0 + γ0[∆γ/γ])2 − 2

(γ0 + γ0[∆γ/γ])2 − 1
. (5.15)

The crack density ρC can be estimated with Equation 5.11 where Keff = KCWI and

νeff = νCWI . To avoid any of the inaccuracies of using the conventional first-break

method for measuring velocity, we consider only the change in crack density ∆ρC as a

fraction of the initial crack density (∆ρC/ρC).

5.4 Results

5.4.1 Mechanical Deformation

The measured axial strain ε and differential stress during the experimental deformation

of the two Crato formation laminite samples (CL1 and CL2), as well as the estimated

absolute velocity using the conventional first-break method, are shown in Figure 5.2

and some key mechanical features are noted in Table 5.2. Figures 5.2a and b show

the relationship between stress and strain for CL1 and CL2, which are cored parallel

and perpendicular to laminations, respectively. We observe different geomechanical

behaviour, due to the different orientations of the cores relative to the laminations in

the samples. The static dynamic properties, i.e., the Young’s modulus, are measured

by taking the ratio of changing stress to strain in the quasi-linear elastic phase of

deformation (the gradient of the linear portion of the stress strain curve), and is

higher for CL1 (30 GPa) compared to CL2 (22 GPa). CL1 also reaches a higher peak
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differential stress (319 MPa) compared to CL2 (266 MPa). The geological properties

(e.g., porosity and mineralogy) of each lamination will vary depending on varying

environmental factors during deposition. Therefore the stiffness will also vary between

lamination, resulting in mechanical anisotropy. The sample that is cored parallel with

the laminations (CL1) is supported by the stiffest laminations within the sample, thus

exhibiting a higher Young’s modulus and peak stress. The static elastic properties

of the sample cored perpendicular with the laminations (CL2) are dominated by the

softer laminations, thus the sample exhibits a higher strain, lower peak stress and lower

Young’s modulus.

Table 5.2: Summary of geomechanical results

Sample Peff (MPa) ε (s−1) Young’s modulus (GPa) Peak Stress (MPa)

CL1 30.0 3× 10−5 30.2 293.0

CL2 30.0 3× 10−5 22.4 237.6

The dynamic elastic properties (i.e., P and S wave velocities) initially increase at the

early stages of deformation (Figs 5.2c and d), attributed to the closure of pores and

pre-exising microcracks (Guéguen and Palciauskas, 1994; Paterson and Wong, 2005).

As strain increases, a drop in VS and subsequent drop in VP is observed. There are

many cases in the literature of VP and VS decreasing at the onset of microcracking,

where the stress-strain curve begins to flatten to a zero gradient (Birch, 1960; Walsh,

1965; O’Connell and Budiansky, 1974; Sammonds et al., 1989; Schubnel et al., 2006).

While the observed trends in P and S wave velocity follow what is expected from the

literature quoted, the form of the strain-velocity curves shows high temporal variability,

particularly in VP , where there are large steps in velocity between contiguous strain

measurements. Such strong variations are not expected in the case of a constant

loading or creep experiment. The conventional first-break method is more susceptible

to contamination by noise, so can exhibit errors, especially when compared to CWI

(Singh et al., 2018, 2019).

We also charecterise the deformation of the two samples, shown as photographs in

Figures 5.3a and b, and compare pre- and post-deformation µCT data sliced normal
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Figure 5.2: a-b) Differential stress as a function of strain in a constant loading experiment (strain

rate =3×10−5 s−1). c-d) Measured absolute compressional (blue) and shear (red) wave velocities using

the conventional first-break method, plotted as a function of strain. The left are right panels are for

samples CL1 and CL2, cored parallel and perpendicular to laminations, respectively.
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a) CL1 b) CL2

7
5

.4
4

 m
m

7
4

.5
0

 m
m

36.50 mm 36.44 mm

c) CL1 �CT pre-deformation d) CL2 �CT pre-deformation 

e) CL1 �CT post-deformation f) CL2 �CT post-deformation 

Figure 5.3: Post-deformation photographs of CL1 (a) and CL2 (b), with slices through microto-

mography (µCT) volumes shown as dashed black boxes. The fracture exposed at the core surface are

highlighted with yellow lines. c and d) The pre-deformation µCT slices perpendicular to the strike of

the dominant fracture. e and f) The post deformation µCT slices perpendicular to the strike of the

dominant fracture.
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to the strike of the dominant fractures in Figures 5.3c-f. The deformation in CL1 is

dominated by a single fracture plane whereas CL2 exhibits many conjugate fractures.

The angle of fracture planes θ to the direction of axial loading is consistent between the

two samples (θ = 27◦ for CL1 and θ = 28◦ for CL2), meaning that despite the different

orientations of the samples, the fundamental failure mode of individual cracks remains

the same. This is possibly due to the relatively uniform mineralogy in the samples

dominating the fracture angles.

5.4.2 Dynamic Elastic Property Changes from Coda Wave Interfer-

ometry

As described in Section 5.3.3, the estimation of the fractional changes in P and S wave

velocity (∆VP /VP and ∆VS/VS) require the estimation of ∆V/V using CWI at multiple

time windows along the signal, as well as a model that describes the equilibriation of

P and S waves in a given medium. We demonstrate this processes in Figure 5.4. First

we take two recorded signals measured at two stages of loading (differential stress

Pdiff = 48 and 64.1 MPa, plotted in Fig. 5.4a). We estimate the inter-scatter distance

and input into the scattering model described by Equations 5.4 and 5.5, which gives

the estimated relative contributions of ∆VP /VP and ∆VS/VS to the measured CWI

estimate of ∆V/V (Fig. 5.4b). We also estimate ∆V/V as a function of time using

Equations 5.1 and 5.2 at multiple time windows, plotted as the red curve in Figure

5.4c, which shows a high ∆V/V at early times when the medium is dominated by P

waves, and equilibriation to a much lower ∆V/V , where S waves are dominant. We

invert for independent velocity changes using Equation 5.7 and find ∆VP /VP = 0.46%

and ∆VS/VS = −0.01%. By forward modelling these estimates into Equations 5.3

using the scattering model in Fig. 5.4b, we estimate the equivalent modelled ∆V/V

as a function of time, based on the final estimates of ∆VP /VP and ∆VS/VS (plotted

as a dashed black line in Figure 5.4c). The residuals between the forward modelled

and measured ∆V/V curves are plotted in Figure 5.4d. The residuals as a function of

time are not randomly distributed around zero, rather they show some coherence in

the error structure indicating the residuals are not independent. This is likely due to
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Figure 5.4: Demonstration of the Coda Wave Interferometry methods for estimating separate changes

of P and S wave velocities. a) Example recorded signals using the S-sensors (sensitive to tangential

displacement) at recording at stages of loading: differential stress Pdiff=48 MPa (blue) and 64.1 MPa

(red). b) Time dependent relative contributions of ∆VP /VP and ∆VS/VS to the ∆V/V measured by

CWI, derived using the scattering model described by Equations 5.4 and 5.5. c) Recorded ∆V/V as a

function of time (solid red), and the best fitting model result (dashed black) from taking the q values

from panel b and estimated velocity changes ∆VP /VP = 0.46% and ∆VS/VS = −0.01%.



CHAPTER 5. 141

the assumption of the scattering model that scatterers are randomly distributed and

isotropic, which is not the case for the samples considered here. However, the measured

and modelled functions of ∆V/V overall are in good agreement, suggesting that both

the scattering model, as well as estimates for ∆VP /VP and ∆VS/VS are appropriate.

We repeat this processes for all the recorded signals (using the moving reference trace

method described by Equation 5.9) giving an estimates of ∆VP /VP and ∆VS/VS as a

function of strain. This also allows the calculation of the change in compressional-to-

shear wave velocity ratio γ = VP /VS from Equation 5.8. The resulting estimates are

shown for both Crato formation laminite samples in Figure 5.5. The general trend of

the changes in P wave velocity (Figs. 5.5a and b) and S wave velocity (5.5c and d)

are in good agreement with the absolute velocity measurements shown in Figure 5.2.

However the CWI estimates exhibit a much smoother response to strain, suggesting

the method is less susceptible to errors and mis-picking due to the contamination of

noise.

5.4.3 Crack Density

Using the conventional first-break measurements for absolute velocity (Figure 5.2), and

the CWI measurements for velocity change (Figure 5.5), we first calculate the change

in bulk modulus (Figures 5.6a and b) and Poisson ratio (Figures 5.6c and d), then

using Equation 5.11 we invert for crack density. The resulting changes in crack density

∆ρC/ρC are shown in Figures 5.6e and f. There are a few differences between the

conventional first-break method and the CWI method results (red and blue curves in

Figure 5.6, respectively). First, the estimates made using CWI are smoother and do not

show strong temporal variations, most likely because the CWI method is more robust

to ambient background noise (Singh et al., 2019). Second, the estimated changes in

dynamic elastic properties, and thus the estimated changes in crack density ∆ρC/ρC ,

are different for CWI and first-break methods, and the differences are not consistent

between the two samples. For CL1 the measurements made using the first-break method

are more sensitive to strain, where bulk modulus K and Poisson ratio ν increase and

ρC decreases by a greater amount compared to the measurements made using CWI.
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(blue and red curves, respectively).
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The opposite occurs for CL2, where CWI measurements appear to be more sensitive

to changes in axial strain.

The difference in measurements made using CWI and first-break methods most likely

results from differences in the directionality inherent to the methods. Coda waves by

nature, sample the entire medium in all directions, thus the estimate from CWI are

an isotropic average of the entire medium. In contrast the first break method samples

only in the direction of the propagating wave, in this case transducers are measuring

velocity approximately axially along the sample.

Initially, the main mechanism for a change in velocity is the closure of pores and

pre-existing microcracks (Guéguen and Palciauskas, 1994; O’Connell and Budiansky,

1974). We therefore suggest that the difference in measurements made using CWI

and first break methods during the closure phase is caused by the preferential closing

of microcracks with a dominant orientation. In CL1, the first-break measurements

are more sensitive than CWI, suggesting pore and microcrack closure is mostly in the

axial direction. In CL2, the CWI measurements are more sensitive, suggesting that

pore closure is stronger in a non-axial orientation, or even that there is some fracture

opening in the axial direction. This is supported by the fracture charecterisation of the

Crato formation laminites carried out by (Miranda et al., 2014), who document several

fracture sets dipping at high angles to the laminations. As there are no fractures visible

in the pre-deformation µCT data, the pre-existing fractures are likely to be below the

resolution of the images (fracture apertures are less than 37.5 µm).

5.5 Discussion

Here we show CWI provides more robust estimates of changes in both the P and S

wave velocities during the deformation of two oriented structurally anisotropic samples

than conventional first-break methods. The estimated changes in dynamic elastic

properties using CWI can also provide complementary information when used alongside

the estimates made using the conventional first-break method, where information on
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the anisotropy in the medium can be attained more robustly. The information provided

is not a full diagnosis of anisotropy, i.e., the full compliance (or it’s inverse stiffness)

tensor can not be estimated, unless there were a full suite of transducers oriented in

three orthogonal directions. The method here only provides a comparison between the

direction along the (fastest) first-arrival path and the average across all directions. This

information has previously not been available using a single-orientation experimental

configuration, as is common in many experimental rock physics laboratories.

CWI is limited in its ability to resolve strong changes occurring in the medium, such as

new fracture planes or some scatterers being removed (e.g., due to pore closure). The

strengths of CWI however lies in its ability to provide accurate and precise estimates of

small changes, such as the deformation that occurs at low strains. The CWI estimates

should then be used with caution when high strains and strong deformation occurs.

We invert for changes in crack density using the model of O’Connell and Budiansky

(1974). The model assumes cracks are dilute, non-interacting, randomly distributed

and randomly oriented. The evidence from our experiments, as well as the analysis of

Miranda et al. (2014) suggests fracture sets in our samples have a strong preferred

orientation at high angles to the laminations. At late stages of deformation, the

coalasence of microcracks begins along the dominant fracture planes (Paterson and

Wong, 2005; Lennartz-Sassinek et al., 2014), at these stages cracks are in close proximity

therefore interact with each other. The crack density model is therefore not valid in

this case.

The results here compliment the work of Volti and Crampin (2003) and Gao and

Crampin (2004), where changes in seismic velocity are observed at the regional tectonics

scale as a precursor to system scale failure. Similar results are found at the laboratory

scale, where velocities decrease at the onset of dilatancy due to the formation of

microcracks (Jaeger et al., 2009; Guéguen and Palciauskas, 1994). However, these

studies use only the first arriving waves in their estimation of velocity, which as can be

biased in areas of strong heterogeneity (Singh et al., 2019). Our results yield similar

results using both the first arrivals as well as the seismic coda. In many laboratory
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scale experiments, velocity is conventionally measured axially, in the direction of loading

(Sammonds et al., 1989; Schubnel et al., 2006). The experiments conducted here follow

the same approach, the difference is that by using CWI as well as the direct arrival,

material properties from waves travelling in all directions can be estimated as well as

in the direction of the source-to-receiver path.

This study only considers the application of CWI for estimating a bulk velocity change.

There is potential to use CWI to also estimate the relative locations of acoustic

emmisions during deformation (Robinson et al., 2013; Zhao et al., 2017). As the

processes of fracturing itself generates acoustic emissions, which can be used as passive

sources for estimating the change in velocity. Other applications include the improved

accuracy and charecterisation of crack density for structural health monitoring of

engineering structures, e.g., Salvermoser et al. (2015) uses conventional CWI, though

could be extended so that changes in P and S wave velocities can be used in the

charecterisation of the material properties.

5.6 Conclusion

We study the static and dynamic elastic properties of two low-porosity Aptian lam-

inated carbonates from the Crato formation, NE Brazil. The samples are cored in

orthogonal direction, parallel and perpendicular to laminations, allowing the investiga-

tion of mechanical anisotropy. We estimate the Young’s modulus of the parallel sample

to be around 31% higher than the perpendicular core. We test and validate the method

of Singh et al. (2019) for estimating changes in P and S wave velocity that combines

coda wave interferometery and an analytical scattering model describing the conver-

sions between P and S waves in an isotropic and random point-scattering medium. We

compare this method with the conventional method of picking the travel times of the

first arriving waves to calculate velocity, and show the new method to be comparatively

robust in the presence of ambient background noise. We demonstrate how measure-

ments from CWI can be used to calculate change is the VP /VS ratio, the bulk modulus,

and Poisson’s ratio, and use these properties to invert for the changing crack density
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during deformation. As coda waves scatter in all directions and throughout the entire

medium, the estimates of CWI represent an isotropic average, whereas the first-arrival

velocity only represent a single direction in along the path of wave propagation. The

estimates of velocity change for CWI and first-breaks, particularly how the estimates

differ, can be used in the interpretation of any anisotropy in the samples. The data

here suggests the preferential closing of pores perpendicular to the laminations, most

likely pre-existing fractures at high angles to the laminations/bedding. This is sup-

ported by the known orientations of fracture sets reported for the Crato formation.

CWI can therefore be used in conjunction with existing methods to provide previ-

ously unavailable information regarding the anisotropy of the sample. These findings

mark a significant improvement and large potential for use in laboratory rock physics

experiments.
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Chapter 6

Digital rock physics in four
dimensions: simulating
cementation and its effect on
seismic velocity

The focus of this chapter is on the interpretation of changing seismic velocity due to

changes in porosity during cementation in rocks. I use a range of models generated from

the process-based simulation of cementation in digital carbonate rocks and numerical

finite-difference methods to estimate seismic velocity. I then statistically compare two

competing rock physics models. From the research questions I identified in Section 2.5,

this chapter seeks to answer questions 6 and 7.

This paper has been submitted to my project sponsors for approval to submit to

Geophysical Journal International. The co-authors include Phil Cilli, Ola Hosa and Ian

Main. I acted as lead author for this paper. My contribution to the work described are

the simulations of wavefield propagation for the estimation of velocity (Section 6.3.2),

the inversions using various rock physics models (Section 6.3.3), and the statistical

testing of each model (Section 6.3.4), as well as the analysis of the results. The process-

based simulation of the digital rocks, described in Section 6.3.1, was performed by Ola

Hosa. The rock physics model of Cilli and Chapman (2019) is fundamental to this

149
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chapter. Their paper is currently in preparation for submission. A summary of their

model is available in a shorter conference abstract (Cilli and Chapman, 2018).

6.1 Abstract

Porosity exerts a strong control on the mechanical and hydraulic properties of rocks, but

cannot be imaged directly from the surface. Therefore understanding the relationship

between seismic velocity and porosity is a fundamental goal of many rock physics

models. However, the geological processes that control porosity, such as cementation,

will often occur over very long timescales, making the experimental calibration of

velocity-porosity trends challenging. In contrast, simulating such geological processes

numerically in 3D digital rocks and digitally estimating elastic properties from the 3D

volumes allows for velocity-porosity trends to be characterized in a reasonable time

frame.

Here we first simulate initial deposition of two carbonate sediments under gravity -

grainstone (near spherical grains) and coquina (shell fragments), and then simulate

their cementation. These simulations output a set of 3D volumes (or digital rocks)

of varying controlled porosity with otherwise constant and known mineral and grain

phases. Combining these models with the known velocity and densities of the relevant

constitutive phases, we generate a set of velocity and density models corresponding to

each stage of cementation. These models are then used as input to a 3D acoustic

staggered-grid finite difference simulation of wavefield propagation, from which we

estimate bulk seismic velocity and calculate the estimated bulk modulus.

The resulting bulk modulus show realistic trends with porosity, all within the physical

limits imposed by the Hashin-Shtrikman bounds. We observe anisotropy in the

measured velocity (and bulk modulus) consistent with structural anisotropy due to the

settling of elongate grains under gravity. We also observe a critical porosity effect in the

coquina samples, where there is a sudden drop in bulk modulus as porosity increases

above 30%, attributed to the complex ray paths though convex grain shapes. We use the
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resulting bulk velocity-porosity trends to test competing rock physics models, including

one that accounts for varying effective pore aspect ratio with porosity. By inverting

our digital elastic measurements for effective pore aspect ratio, we find our modelled

rocks follow a power-law relationship between effective pore aspect ratio and porosity.

The inversion results from digital rocks are also consistent with those obtained from a

suite of laboratory carbonate grainstones. Finally, we investigate the effect of structural

anisotropy from the resulting rock fabrics on the resulting elastic properties in three

orthogonal directions using a sensitivity analysis. The results show the optimal model

to be relatively insensitive to the degree of anisotropy in the fabric. Our approach

paves the way to use the new rock physics model to link observed changes in effective

pore aspect ratio to changes in porosity due to a wider range of geological processes,

for example fracturing, dissolution and compaction.

6.2 Introduction

Geophysical properties such as seismic velocity and electrical resistivity, depend

strongly on porosity, and the form of this relationship is fundamental to applications of

imaging and modelling natural processes in the solid Earth. Specific examples include,

the characterization and monitoring of geomechanical processes such as compaction

(Zimmer, 2004) or elucidating the process of rock fracturing (Pyrak-Nolte et al., 1990).

Seismic velocity is often used to monitor hydraulic processes where spatio-temporal

changes in the seismic velocity may be caused by fluid flow and/or changes in effective

stress during subsurface injection or production (Arts et al., 2004; Brown, 2002; Guilbot

and Smith, 2002; Stork et al., 2018). Seismic velocity is also sensitive to diagentic

processes, such as cementation or dissolution (Dvorkin and Nur, 1996; Fabricius, 2003;

Weil et al., 2011).

Diagenesis is any physical, chemical, or biological alteration of sediments to form a

sedimentary rock (Bathurst, 1972; Tucker and Wright, 2009). It strongly influences

reservoir quality, with strong controls on porosity (Bjørlykke et al., 1989; Moore,

1989), permeability (Bloch et al., 2002; Nadeau, 1998), and wettability (Barclay and
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Worden, 2000). Understanding diagenetic processes, and how geophysical properties

relate to them, is therefore important for hydrocarbon production, CO2 injection,

and groundwater resource management. However, measuring geophysical properties

associated with diagenetic processes can be very challenging, even in a controlled

laboratory environment. Diagenesis often occurs over very long timescales and in

extreme conditions making it impractical to reproduce in the laboratory. In some

experiments, microbial-induced calcite precipitation has been shown to accelerate

cementation (Karol and Berardinelli, 2003; Saneiyan et al., 2018), but these methods

require elaborate and expensive experimental apparatus. This practical problem is a

prime motivation for using digital rocks, where geological or diagenetic processes such

as cementation can be simulated in principle over any time scale. A digital rock is a

three-dimensional representation of a rock fabric, where individual phases within a rock

(e.g., each mineral component and pore space/fluid) is known for each voxel in three

dimensions (see Andrä et al. (2013a,b) for an extensive review of digital rock physics).

Digital rock models are far more flexible and far less expensive to run than laboratory

experiments, and can be used to test hypotheses and establish trends of evolving

geophysical properties including specific diagentic processes. Digital rock physics begins

with a starting model from a three-dimensional image, most commonly obtained from

high resolution x-ray micro-tomography, where data is segmented into individual phases

(e.g., grain, pore, cement). Bulk rock properties can then be estimated, such as

permeability (Martys et al., 1999; Keehm, 2003), seismic velocity (Saenger et al., 2000;

Saenger, 2008; Arns et al., 2002), thermal conductivity (Wiegmann and Zemitis, 2006)

and electrical resistivity (Liu et al., 2009; Zhan et al., 2010). Rather than the x-ray

imaging of real rocks, here we simulate rock deposition and cementation to form digital

rocks.

There are several examples of process-based simulation of cementation in digital

rocks, including isopachous and syntaxial cementation in both sandstones (Mousavi

and Bryant, 2012; Latief et al., 2010) and carbonates (Biswal et al., 2007; Mousavi

et al., 2012). However, the physical properties investigated during cementation are

most commonly transport properties such as permeability and electrical conductivity
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(e.g., Keehm et al. (2001)); to date there have been no applications of process-based

cementation modelling for the estimation of elastic properties using digital rocks.

In order to interpret a change in the measured seismic velocity, a suitable rock physics

model is required. There is an abundance of methods used in rock physics for the

modelling of elastic moduli-porosity or velocity-porosity data. Empirical methods, such

as Eberhart-Phillips et al. (1989); Gardner et al. (1974); Han et al. (1986), are entirely

based on empirical matches to trends in observed data. Thus, any inference of physical

significance from using such models can be unreliable. Bounding models (Voigt, 1889;

Reuss, 1929; Hashin and Shtrikman, 1963) and bounding average models (Hill, 1952)

recognize the uncertainty of elastic moduli for a given porosity and therefore give a range

of moduli, where the exact value depends on geometric factors of the medium. However,

these bounds can be far too broad for many practical applications. Inclusion-based

models such as Eshelby (1957); Mori and Tanaka (1973); Kuster and Toksöz (1974);

Berryman (1992) assume an unrealistic, ellipsoidal inclusion shape embedded into a

background material, but having this physics-based approach generally leads to more

intuitive interpretation and model results that more closely match real-rock scenarios.

Conventionally, inclusion models assume a constant inclusion shape to characterize

an elastic modulus-porosity trend; recently Cilli and Chapman (2019) explored the

potential for a variable inclusion aspect ratio related to porosity by a power law, which

proved a better fit to existing elastic moduli-porosity data than models which ignore

the scaling of inclusion aspect ratios with porosity.

Here, we develop a process-based model for deposition and cementation in digital rocks,

combined with the finite-difference simulation of wave propagation, and show that it

is an effective method of developing understanding of changes in elastic properties. In

addition we compare the Cilli-Chapman analytical rock physics model for a material

with ellipsoidal inclusions with a commonly-used competing model. We compare these

models using a statistical model selection method known as the corrected Akaike

information criteria AICC (Akaike, 1973; Hurvich and Tsai, 1989), for their ability to

capture the effects of varying cementation, cement type, and initial rock fabric without
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over-fitting. We also investigate the effect of underlying anisotropy on the relationship

between porosity and elastic properties.

In this study, we describe the method used for generating digital rocks, including the

simulated deposition of the primary grains under gravity, followed by cementation.

Following this we demonstrate the method of estimating the bulk seismic velocity and

elastic modulus using a rotated-staggered-grid finite-difference numerical simulation

(Saenger and Bohlen, 2004). We introduce the two existing inclusion models used

for elastic moduli-porosity trends, and describe the method for selecting the most

appropriate model (AICC), which is particularly important for comparing models

with different numbers of model parameters. We compare results for grainstone

(ellipsoidal grains) and coquina (shelly fragments) digital rocks, with two different types

of cementation, and also investigate the effect of the initial structural anisotropy on

the evolution of the elastic properties with cementation. Finally, we validate the model

by comparing results from synthetic digital grainstone rocks with those of laboratory

measured elastic data from Fournier et al. (2011).

6.3 Method

The methods used in this paper consist of a three part modelling approach. First is the

process-based modelling of initial deposition and subsequent cementation to generate a

suite of digital rocks. Anisotropy in the fabric is introduced due to the ellipticity of the

clasts, and horizontal settling due to gravity. For a random horizontal orientation this

results in bulk transverse isotropy. Secondly we model wavefield propagation through

each digital rock to estimate bulk elastic properties. Finally we statistically compare

the modelling performance of the Cilli-Chapman model (variable inclusion aspect ratio)

and the commonly used differential effective medium theory model (constant inclusion

aspect ratio) to the measured elastic data using the corrected Akaike information

criterion.



CHAPTER 6. 155

6.3.1 Deposition and Cementation of Digital Rocks

To generate digital rock models with different cement types, we follow the methodology

described in detail by Hosa and Wood (2017). The process first involves the analysis of

thin-section images, so that a realistic distribution of grain shapes and sizes are used

for the initial deposition. The deposition and initial packing of grains is generated

in a process-based simulation of grains falling and settling on one another in a 3D

space under gravity. The model allows for heterogenous shapes and sizes in the grains,

modelled with normal distributions. In this study we investigate two grain shapes:

ellipsoidal grains and shells, representing those of end-member carbonate facies such

as carbonate grainstones and coquinas respectively. The initial rock fabrics from the

resulting deposition and settling due to gravity are shown as the high porosity slices

(panels a and d) in Figures 6.2, 6.3 and 6.4. The initial porosity for coquina (φ = 90%)

is much higher than that of the grainstone (φ = 38%), which is a result of the difference

in the geometries. Wadell (1932) defines the sphericity ψ as: ψ = Ssphere/Sgrain, where

Ssphere is the surface area of a sphere with the same volume of the grain, and Sgrain

is the actual surface area of the grain. Deviations from ψ = 1 (decreasing sphericity)

results in higher porosity. The average sphericities for coquina and grainstone are

ψC = 0.04 and ψG = 0.14, respectively.

After the simulation of the process of deposition, the resulting volume containing the

grains is cropped and voxelized into a 3003 voxel domain. The voxel sizes are 10 µm3

for the grainstones and 0.1 mm3 for the coquina, so the digital rock samples have

the dimensions 3 × 3 × 3 mm and 30 × 30 × 30 mm, respectively. We then model

calcite cement growth. The model considers two different grain types: polycrystalline

and monocrystalline, which develop different types of early marine calcite cement -

isopachous and syntaxial, respectively (Figure 6.1). The syntaxial cement, which is

associated with monocrystalline grains, is modelled in the shape of a parallelepiped (a

prism whose all six faces are all parallelograms) and approximates the rhombohedral

crystal form of calcite, which is a common calcite crystal form. In nature, syntaxial

cement grows rapidly until euhedral crystal faces are reached (epitaxial growth) and
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a) b)

Figure 6.1: a) Thin-section image and schematic illustrations of syntaxial cement growth, where

cement grows in the rhomobohedral crystal form of calcite, associated with monocrystalline (single

crystal) grains b) Thin-section image and schematic illustrations of isopachous cement growth, where

cement is precipitated evenly around polycrystalline grains. Figure adapted from Hosa and Wood

(2017).

approximate crystal form of calcite is achieved. The growth on the euhedral surfaces

proceeds at a slower pace (mantle growth). Our method models the first, rapid stage

of syntaxial growth. Isopachous cement, which develops on polycrystalline grains

(consisting of many small crystals), is modeled as a layer of cement precipitated evenly

around the grains. For both cement types, cementation progressed iteratively by adding

a 1-voxel thick layer of cement in each iteration.

The modelled process of deposition and cementation for generation of digital rocks

is greatly simplified compared to real-world scenarios, and has several underlying

assumptions: several processes are ignored such as the agitation of deposited material

and re-arrangement of deposited grains due to compaction, therefore initial porosities

prior to cementation are unrealistically high. This is not considered to be a problem as

the focus of this study is on the change in porosity and how seismic velocity responds.

The cementation method used here assumes fully saturated media, that cementation

is uniform throughout the rock, and cement grows on all grains. In reality, not all

pore space is accessible by percolating fluids, and cementation is linked to the fluid
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Figure 6.2: Example vertical (a-c) and horizontal (d-f) slices through digital rock models at varying

degrees of cementation. The model uses a grainstone morphology prior to cementation, which does not

change with time (yellow clasts), and a isopachous cement type that grows with time (green) into the

pore space (blue).
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Figure 6.3: Example vertical (a-c) and horizontal (d-f) slices through digital rock models at varying

degrees of cementation, using a grainstone morphology prior to cementation and a isopachous cement

type, which does not change with time (yellow clasts), and a syntaxial cement type that grows with

time (green) into the pore space (blue).
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Figure 6.4: Example vertical (a-c) and horizontal (d-f) slices through digital rock models at varying

degrees of cementation, using a coquina morphology prior to cementation and a isopachous cement

type, which does not change with time (yellow clasts), and a syntaxial cement type that grows with

time (green) into the pore space (blue).
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dynamics within the pore space. The current implementation of our method includes

the continuation of precipitation in pores even after they are cut off from the percolating

pore space. In reality, some sub-resolution porosity would likely allow the percolation

of pore fluids but not to the extent we allow in our models.

To examine the effect of cement type, we generate a range of digital rock models using

the same starting grainstone fabric assuming either polycrystalline or monocrystalline

grains, therefore modeling both isopachous and syntaxial cementation. Representative

slices through the grainstone models are shown in Figures 6.2 and 6.3. We also

examine the effect of varying the initial rock deposition, where we use shell fragments

representing a coquina, and model isopachous cementation. Two-dimensional slices

through these models are shown in Figure 6.4. The sections show horizontal alignment

of elongate grains, and thus some emergent anisotropy. This may be due to finite size

effects, for larger samples we might expect transverse isotropy in the fabric due to

sedimentation under gravity. We quantify the degree of anisotropy DOA (Harrigan

and Mann, 1984) of the initial fabrics prior to cementation as:

DOA = 1− min(λ)

max(λ)
, (6.1)

where min(λ) and max(λ) are the minimum and maximum eigenvalues of the data

cloud obtained by mean intercept length analysis. Mean intercept length analysis

determines the number of matrix voxels that intersect with a set of oriented rays

sent through the volume at different angles. The mean number of intersecting voxels

as a function of angle forms the data cloud then used in eigenvalue analysis. When

DOA = 0, the fabric is perfectly isotropic, and the increases to DOA = 1, the fabric

exhibits stronger anisotropy. Both coquina and grainstone initial fabrics exhibit some

emergent structural anisotropy. The details of the ranges of models for each rock type

are documented in Table 6.1.
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Table 6.1: Range of Digital Rock Models, where N is the number of models

Initial Fabric Cement N Porosity Range Degree of Anisotropy

Grainstone Isopachous 6 6.6-38% 0.51

Grainstone Syntaxial 20 18-38% 0.51

Shells Isopachous 21 0.1-90% 0.55

6.3.2 Estimating Elastic Properties

The digital rock models described in Table 6.1, where every voxel has an assigned phase

(either pore fluid, calcite grain or cement), are converted into corresponding 3D models

of local velocity and density (assuming isotropic mineralogy for each phase). At this

stage of the modelling we assume the properties of the precipitated cement to be the

same as those of the calcite grains. The local velocity and density of calcite is taken from

Mavko et al. (2009), to be VP = 6500 m/s and ρ = 2710 kg/m3. We take the pore fluid

velocity and density to be VP = 1500 m/s and ρ = 1000 kg/m3. Each voxel is mapped

to a regular grid of cells used as input to a three-dimensional finite-difference (FD)

simulation of wavefield propagation (Moczo et al., 2007). The FD method discretizes

the wave equation on a grid and replaces spatial derivatives by FD operators using

neighboring points. High-contrast discontinuities such as those between pores and

mineral phases may cause instability problems on a staggered grid. We avoid these

difficulties by implementing a rotated staggered grid technique (Saenger and Bohlen,

2004). We assume both point receivers and point sources as well as perfect transducer

coupling, and use Ricker wavelets with central frequencies of 40 MHz and 4 MHz for

the source time function in the grainstones and coquinas, respectively. The output is a

set of synthetic seismograms from user-selected source and receiver locations. We treat

these synthetic signals as if they were recorded in the laboratory, and estimate the bulk

velocity from the origin time of the source signal, the arrival time of the first maximum

(picked manually) and the known source-to-receiver distance. In order to measure any

velocity anisotropy in the samples, we use three pairs of sources and receivers placed

on opposite faces in orthogonal directions allowing for three measurements of velocity

(V X
P , V Y

P , V
Z
P ). We use the empirical relationship of Pickett (1963), which linearly



162 6.3 Method

relates P and S wave velocities in carbonates, to estimate S wave velocity from the P

wave velocity (i.e., VS = f(VP )). The bulk and shear moduli are then calculated using

the following equations:

K = ρ

(
V 2
P −

4

3
V 2
S

)
(6.2)

µ = ρV 2
S (6.3)

The density ρ is known for each model by taking the volumetric average of densities

for all voxel phases in each model. The resulting estimates for P-wave velocities are

shown in Figure 6.5, where each subplot either represent a different initial rock fabric

(coquina or grainstone), or a different type of cementation (isopachous or syntaxial).

In each plot the bulk velocity lies between that of the pore fluid and the assumed local

velocity of the grains and cement. For the coquina facies (Figure 6.5a) we see a dramatic

drop in bulk velocity VP at a critical porosity of φC ≈ 30%. The trend then flattens

asymptotically to a lower bound, equivalent to the velocity of the pore fluid (1500

m/s). This most likely reflects a critical porosity effect; due to the thin and convex

shape of the shells used coquina deposition (Fig. 6.4a) there are very few grain-to-grain

contacts at high porosity, thus the rock is effectively fluid-supported (i.e., a suspension).

As cementation increases and porosity decreases below a critical porosity (φ < φc), the

number of grain-to-grain contacts increases so that the rock becomes grain supported,

and the velocity rapidly increases. The diagrams show bulk velocities measured in

three directions. These synthetic data exhibit a drop in velocity at different porosities

depending on orientation of the measurement. The initial fabric of grainstones use grain

shapes which are much rounder than the shelly fragments of the coquina, and there

are many grain-to-grain contacts. Consequently these digital rocks are always below

φc and the curves in Figs. 6.5b and c exhibit a much smoother response to increasing

cementation. We see an exponential trend for isopachous cementation (Fig. 6.5b) and

a more linear one for syntaxial cementation, which is measured over a narrow porosity

range (Fig. 6.5c). Both grainstone samples exhibit anisotropy, where V Z
P (measured in

the direction of the vertical axes in the upper panels of Figs. 6.2 and 6.3) is approx. 500

m/s faster than V X
P and V Y

P , as expected from the horizontal alignment in the fabric.

The coquina facies also exhibits anisotropy, most notably in the critical porosity φC .
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Figure 6.5: Bulk velocity-porosity trends measured in three orthogonal components: V XP (blue),

V YP (red), V ZP (green), for a) Coquina (shelly fragments) with isopachous cementation, b) Grainstone

(ellipsoids) with isopachous cementation, c) Grainstone with syntaxial cementation. The lower bound

of fluid velocity (1500 m/s) and upper bound of calcite grain and cement velocity (6500 m/s) are

denoted by horizontal lines.

6.3.3 Rock Physics Modeling

Modelled elastic data estimated from synthetic digital rocks also provides an oppor-

tunity to test and validate existing analytical rock physics models. Here we test two

existing analytical rock physics models: conventional differential effective medium the-

ory (DEMT) as of Berryman (1992) and the Cilli-Chapman (CC) model (Cilli and

Chapman, 2019). In conventional DEMT, a small volume of spheroidal inclusions with

aspect ratio α and known elastic properties, are iteratively added into an initially ho-

mogeneous background medium with known elastic properties. After each iteration of

added inclusions, the average properties of the average composite are calculated and

used as background medium properties for the next iteration. When the the inclusion

volume added per iteration becomes infinitesimally small, the elastic DEMT model can

be described by the following differential equations:

(1− y)
d

dy
[K∗(y)] = (K2 −K∗(y))P (∗2) (6.4)

(1− y)
d

dy
[µ∗(y)] = (µ2 − µ∗(y))Q(∗2) (6.5)

with initial conditions K∗(0) = K1 and µ∗(0) = µ1, where K1 and µ1 are the inclusion

bulk and shear moduli; K∗ and µ∗ are the rock’s effective bulk and shear moduli; y is the
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inclusion volume fraction (i.e., porosity); P and Q are α-dependent geometric factors

(Berryman, 1980) and their superscript denotes they are to be calculated with ellipsoids

of phase 2 embedded in the effective background material. Thus, the estimated effective

moduli K∗DEMT and µ∗DEMT are functions of the bulk and shear moduli of the two

phases, the porosity, and the inclusion aspect ratio. There are several assumptions and

limitations to the application of the DEMT method, for example that the bulk rock is

assumed to be isotropic and inclusion shapes are idealized randomly-oriented ellipsoids.

Also, the processes of incrementally adding inclusions to a background matrix is also

entirely non-physical but rather a thought experiment, and does not represent the

actual evolution of a rock’s porosity.

In real rocks, pores are not ideal ellipsoids, and hence the inclusion aspect ratio is

simply a parameter that quantifies the contribution of a rock’s pore space architecture

to the rock’s overall elastic moduli. To make this distinction between the theoretical

model inclusion aspect ratio and its applied physical interpretation, Fournier et al.

(2011, 2014, 2018) refer to the applied DEMT parameter α as ‘equivalent’ pore aspect

ratio (EPAR). Similarly, Cilli and Chapman (2019) synonymously label it the ‘effective’

pore aspect ratio. The EPAR for a given sample can be estimated by minimising the

misfit between measured bulk modulus Kmeas and the forward modelled moduli using

Equations 6.4 and 6.5:

Ψ(α) = ||Kmeas −K∗DEMT (K1, µ1,K2, µ2, y, α)||2. (6.6)

The EPAR is estimated by finding the aspect ratio α that minimises Ψ, where the bulk

and shear moduli of the two phases (K1, µ1,K2, µ2) and the porosity (y) are known.

Cilli and Chapman (2019) investigated how a rock’s effective pore and grain aspect

ratio (EPAR and EGAR) parameters changed with porosity for seven public domain

datasets for elastic and electrical properties of carbonate rocks and concluded that these

parameters vary with porosity as a power law, of the form:
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α = Γφξ . (6.7)

In the case of elastic modelling, where α represents EPAR, Equation 6.7 shows the

model α = Γ = constant in the case of ξ = 0, consistent with the typical DEMT

modelling approach.

By substituting Equation 6.7 into Equations 6.4 and 6.5, the resultant bulk and shear

moduli, K∗CC and µ∗CC , can be calculated as functions of the bulk and shear moduli

of the two phases, the porosity, and two parameters Γ and ξ. The Cilli-Chapman

model uses an extra model parameter than the standard, constant-α DEMT model, so

its effectiveness cannot be compared to the standard method on the residuals alone.

Cilli and Chapman (2019) use log-relative likelihood analysis that justifies the extra

parameter used in fitting the data.

Given our digitally measured velocities and porosities, as well as the known fluid and

matrix elastic moduli, we inverted Equations 6.4 and 6.5 to estimate the EPAR of

every rock sample. We inverted for the model parameters by minimising the misfit

between each sample’s measured (from Equation 6.2) and modelled bulk modulus. We

display the inverted EPARs for each data set as a function of porosity on a log-log

scale in Figure 6.6, and fit a line of best fit through each data set’s inversion results.

We calculated a close approximation {Γ0, ξ0} of the true model parameters {Γ, ξ} by

the gradient and constant of these lines. As the inversion for each sample’s EPAR was

porosity-dependent, parameters {Γ0, ξ0} are not necessarily equal to {Γ, ξ}. We thus

performed a non-linear global optimisation to find the solution {Γ, ξ} which minimise

the l2-norm misfit of all samples by directly substituting Equation 6.7 into Equations

6.4 and 6.5 with starting point {Γ0, ξ0}.

We use this inversion technique for four suite of bulk modulus-porosity data: 1)

synthetically generated grainstones with syntaxial cementation, 2) synthetic grainstones

with isopachous cementation, 3) synthetic coquinas with isopachous cementation, and
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4) a subset of real-rock laboratory measured grainstone data from Fournier et al. (2011).

This subset laboratory data consists of 80 outcrop samples, all exhibiting grainstone

texture and with almost pure calcitic mineralogy. There is no presence of any inter-

granular, inter-crystalline, or moldic porosity in these samples, consistent with the

definition of the grainstone end-member model examined here. In principle, these

textures could be examined in future work.

6.3.4 Comparing Competing Models

Following from the inversions using both the constant-α differential effective medium

theory model and the variable-α Cilli-Chapman model, it is then necessary to test these

competing models. Here we use the corrected Akaike information criterion (AICC)

(Akaike, 1973; Hurvich and Tsai, 1989), which is a statistical tool used for model

selection based on information theory. The conventional AIC method penalizes models

with more modelling parameters (more complex models) and favours models with

smaller misfits, thus dealing with the trade-off between data fit and model simplicity.

This is necessary here because the conventional DEMT and the Cilli-Chapman models

require different numbers of model parameters.

Let k be the number of parameters for a model, and L̂ be the estimated likelihood

function of the model (goodness of fit). The AIC value for a particular model is:

AIC = 2k − 2 ln(L̂). (6.8)

When the number of samples n is small, AIC becomes biased to models with more

model parameters (McQuarrie and Tsai, 1998). As the datasets used here are

relatively small, to therefore avoid this risk of over-fitting, we use the corrected Akaike

Information Criterion AICC (Hurvich and Tsai, 1989; Cavanaugh et al., 1997), defined

as:

AICC = AIC +
2k2 + 2k

n− k − 1
. (6.9)
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The absolute AICC value generally has little indication of the validity of a model

(Burnham and Anderson, 2004); rather the difference between AICC values (∆AICC)

for competing models is the significant measure, where ∆AICC = AICDEMT
C −AICCCC .

Burnham and Anderson (2003) provide a practical rule-of-thumb method for the

interpretation of ∆AICC values, suggesting that: if ∆AICC < 2, the variable-α CC

model has “insufficient” evidence to accept as the best model; if 4 < ∆AICC < 7, the

CC model has “good” evidence and constant-α DEMT has considerably less evidence

as the best model; and if ∆AICC > 10, the variable-α CC has “compelling” evidence

to be the best model (constant-α DEMT has negligible evidence). Here we use an extra

category for where 7 < ∆AICC < 10, the CC model has “substantial” evidence.

6.4 Results

We employ these guidelines for interpreting ∆AICC values and provide all inversion

results, including the output parameters Γ and ξ from the Cilli-Chapman model and

αDEMT from conventional differential effective medium theory, summarized in Table

6.2.

6.4.1 Grainstone

In order to test both the differential effective medium theory and Cilli-Chapman models

described above, we first use elastic moduli estimated for grainstone samples using both

syntaxial and isopachous cementation, as well as the laboratory measured grainstone

data from Fournier et al. (2011). The results for both inversion techniques are shown as

model fits to the data in Figure 6.6. The grainstone samples with syntaxial cementation

(Figures 6.6a and b) show a strong power-law relationship between EPAR and porosity

(plotting linearly on a log-log scale). The data points for bulk modulus clearly cross-cut

the forward modeled line (dashed red) using DEMT, which assumes a constant aspect

ratio for all porosities. The Cilli-Chapman model (variable aspect ratio) provides

a significant improvement in data fit in these cases. This improvement is expected
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Figure 6.6: Rock physics modelling results for grainstone data. The left panels are the modelled bulk

modulus trends using a constant-α DEMT model (dashed red) and the variable-α Cilli-Chapman model

(solid blue). The right panels show inverted EPAR as a function of porosity. The figure shows results

for: a-b) syntaxial cementation, c-d) isopachous cementation, e-f) laboratory measured grainstone data

from Fournier et al. (2011). For the isopachous cementation data (c-d), we include an updated model

(green), where the low porosity is rejected in the regression as the data point has Cook’s distance dC

equal to 2.650, well above the recommended threshold dC > 1 (Cook and Weisberg, 1982).
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to some degree, as the Cilli-Chapman model uses an additional modeling parameter,

therefore an addition degree of freedom. As shown in Table 6.2, despite the additional

modeling parameter, the Cilli-Chapman model has compelling evidence as the best

model (∆AICC = 51.3).

Grainstone samples using isopachous cementation shows a similar trend (Figures 6.6c

and d), where there is clear variation of EPAR with changing porosity. However the

lowest porosity sample (φ = 6.6%) clearly does not follow the trend exhibited by the

other samples. According to AICC , there is good evidence that DEMT is the best model

to describe the data (∆AICC = −3.8). The low porosity sample can be identified as

‘highly influential’ to the model according to Cook’s distance, which is a statistical

measure used to identify the influence of individual data points when performing least-

squares regression (Cook, 1977). Cooks distance of the φ = 6.6% sample is dC = 2.65,

well above the recommended threshold for a sample to be considered highly influential,

where dC > 1 (Cook and Weisberg, 1982). This does not necessarily give grounds to

reject the sample from the inversion, but indicates the data point should be examined

more closely, and possibly indicates the limits of using digital rock physics at such low

porosities (this is further discussed in Section 6.5.2). For comparison, Figures 6.6c and

d include inversion results using Cilli-Chapman model for both the full porosity range

(blue) and one excluding the low porosity sample (green). Where the low porosity value

is excluded ∆AICC = 9.13, which suggests stronger evidence for the Cilli-Chapman

model as the preferred model.

Figures 6.6e and f show inversion results for the laboratory measured ‘real-rock’

grainstone data. Compared with the synthetic digital rock results, the EPAR-porosity

relationship exhibits a similar Γ value, but a significantly lower ξ value (gradient of best

fit line through log-log EPAR-porosity plot). When ξ is small, the Cilli-Chapman model

closer resembles the constant-aspect ratio DEMT model. Despite the small variation

in models, the improvement in data fit is regarded as statistically significant, where

∆AICC = 17.9, due to the large number of data points. The difference between digital

rock simulations and laboratory results is discussed in Section 6.5.1.
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Figure 6.7: Rock physics model comparison for Coquina samples, using bulk modulus inferred from

velocities measured perpendicular to shell orientation (Z direction, vertical direction in Figures 6.4a-c).

a) Bulk modulus-porosity trend for a constant-α DEMT model (dashed red) and the variable-α Cilli-

Chapman model (solid blue) separated into two separate porosity ranges (critical porosity φc = 0.21)

with two power-law relationships. b) Inverted aspect ratio α (circles) and two linear trend-lines: I)

φ < 0.21 and II) φ > 0.21. Porosity range I is below critical porosity (φ < 0.21) and exhibits the

previously observed power-law (linear on log-log scale) relationship. Stage II is above critical porosity

(φ > 0.21), where inverted aspect ratio values drop initially, then increase to α = 1.

6.4.2 Coquina

The estimated bulk modulus and the inverted Effective Pore Aspect Ratio (EPAR)

values for the Coquina samples, using the same method as in Section 6.4.1 are

shown in Figure 6.7. This data is using the velocity measurements taken only in

the direction perpendicular to shell orientations (V Z
P in Figure 6.5a and the vertical

direction in Figures 6.4a-c). The coquina samples contain a very large porosity range

(φ = 0.1 − 90%), and exhibit much more complex pore shapes in comparison with

those in the grainstone samples. There appears to be two distinct EPAR-porosity

trend-lines, separated into stages: I) φ < 0.21 and II) φ > 0.21 in Figure 6.7b. This is

interpreted as a critical porosity effect, where above a given porosity φC the rock can be
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treated as fluid supported, which also explains the abrupt drop in bulk modulus where

φ > 0.21 in Figure 6.4a. Below this threshold the rock is grain or clast-supported.

When the full range of porosity samples are included in the inversion the constant-α

DEMT model is statistically much stronger (∆AICC = −9.03) than a single power law

relationship. However, when two separate inversion are performed for porosities both

above and below φC = 0.21, where two power law relationships doubles the number of

model parameters, ∆AICC = 53.9, which suggests strong evidence for the two stage

Cilli-Chapman model as the most appropriate.

The EPAR of a rock is related to its solid frame’s stiffness. When α = 0, the frame is

as weak as possible and the rock’s moduli coincide with the lower Hashin-Shtrikman

(Hashin and Shtrikman, 1963) and Reuss (Reuss, 1929) bounds (Norris, 1985). A fluid-

filled porous rock with a measured porosity above its critical porosity is, in effect, a

suspension of solid material in a background of fluid and has elastic moduli coinciding

with the lower Hashin-Shtrikman bound. In the case of the Coquina samples (Figure

6.7), we see the rock’s EPAR increasing with porosity in stage I, implying the matrix

is becoming relatively more stiff as porosity increases. At the interface between stage

I and stage II, however, the inverted EPARs plummet as the rock passes its critical

porosity and becomes significantly softer. In stage II the rock is acting approximately

as a suspension. We notice the Coquina’s measured bulk modulus does not go exactly

to the Hashin-Shtrikman lower bound, but rather seems to stay at an approximately

constant value for all porosities above the critical porosity. The way in which the digital

rocks have been generated, involves the deposition of falling grains and settling due to

gravity, where grain-to-grain contacts must be present. Therefore the media cannot be

true suspensions under gravity, though a critical porosity effect is still observed during

dynamic wave propagation. Figure 6.4 shows that even at 90% porosity, there are some

load-bearing connected paths of matrix material from one side of the digital rock to

the other under gravity. We speculate that if connected paths like this exist over all

porosities, the bulk modulus will be higher than the Hashin-Shtrikman lower bound, as

observed in Figure 6.7. The bulk modulus remains approximately constant in the high

porosity samples of Figure 6.7 while the upper and lower Hashin-Shtrikman bounds
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converge with increasing porosity. The bulk modulus is hence becoming closer to the

upper Hashin-Shtrikman bound with increasing porosity in stage II, which is the cause

of the observed increasing EPAR with porosity in this stage.

Both models are constructed assuming background medium, with spheroidal inclusions

with a given aspect ratio α embedded within. Therefore using either DEMT or Cilli-

Chapman models in suspensions, where the porosity is higher than the critical porosity

φC , does not follow any physical intuition and does not allow for physical interpretation.

It may therefore be more appropriate to consider a separate rock physics models for

suspensions (e.g., Wood (1941)) in stage II.

6.4.3 Anisotropy

In the previous section measurements from a single orientation were used as input

to the rock physics inversions for coquina samples. This was done to prevent the

smoothing out of the critical porosity effect, as each orientation exhibits it’s own

distinct critical porosity. The difference in orientations is visible in Figure 6.5a, where

velocity abruptly drops at different porosities for each of the three orientations, to

approximately the velocity of the pore fluid (1500 m/s). Using an average of all

orientations for bulk modulus as input data to the rock physics inversions results in a

different trend than that observed in the single-orientation inversion. Figure 6.8 shows

the inversion results using an average bulk modulus, where the inverted EPARs as a

function of porosity appears to follow three separate power-law trends lines at different

porosity stages: I) <11.5%; I+II) 11.4-41.75%; II) >41.75%. Stage I can be physically

interpreted in the same way as before, where the medium is grain supported during

wave propagation, and exhibits the usual power-law relationship between porosity and

aspect ratio. Stage I+II is an intermediate phase, where two orientations exhibit a

critical porosity effect. This intermediate stage is an artifact of the averaging across

the three orthogonal directions. In stage II, moduli from all orientations are close to the

lower bound therefore all orientations can be treated as a suspension during dynamic

wave propagation, thus stage II exhibits a similar aspect ratio-porosity trend to stage

II for the single-orientation coquina inversion in Figure 6.7b.
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Figure 6.8: Rock physics model comparison for Coquina samples, using data averaged across three

orthogonal orientations. a) Bulk modulus-porosity trend for a constant-α DEMT model (dashed red)

and the variable-α Cilli-Chapman model (solid blue) separated into stages at different porosity ranges:

I) <11.5%; I+II) 11.4-41.75%; II) >41.75%, where the intermediate stage is an artifact of averaging

across different critical porosities exhibited by each orientation (Fig. 6.5a). b) Inverted aspect ratio α

(circles) and three linear trend-lines.
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Figure 6.9: Inverted aspect ratio α as a function of porosity, for grainstones with syntaxial

cementation. Measurements are made using elastic data measured in three orthogonal directions (the

input velocity measurements are shown in Figure 6.5c). Γ (aspect ratio α at the porosity φ=1 intersect)

and ξ (gradient of the trend-line on log-log scale) for each orientation are labelled.
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Figure 6.5b and c highlight elastic anisotropy in the initial fabric of the grainstones,

where velocity measured in the Z direction (vertical direction in Figures 6.3 and

6.2a-c) is approximately 500 m/s faster than V X
P and V Y

P . To further understand

the effect of anisotropy on the rock physics model inversions, we invert for the

independent EPAR parameters (αX , αY , αZ) using bulk modulus calculated from the

three separate orientations, using the grainstone samples with syntaxial cementation.

The resulting inverted EPAR as a function of porosity are shown in Figure 6.9. The

results are consistent with a bulk seismic anisotropy that is traversly isotropic, where

V Z
P > V X

P ≈ V Y
P leading to αZ > αX ≈ αY at all porosities in Figure 6.9. This is

consistent with the input model fabric due to sedimentation under gravity. Interestingly

the effect of anisotropy is only on the Γ parameter in the Cilli-Chapman model (the

theoretical inclusion aspect ratio α where porosity φ = 1), whereas ξ (the gradient of

the trend-line on a log-log scale) is approximately constant, independent of orientation

and anisotropy. In this case, if bulk modulus is inferred from measured velocity along

a single orientation (as is often the case in laboratory experiments), then the estimated

ξ parameter can be assumed to be representative of the entire medium.

6.5 Discussion

6.5.1 Comparison of modelled and real data

When comparing the synthetic data from modelled digital rocks and those of the ‘real’

laboratory measured grainstones, a significant difference between the inverted power-

law relationships is observed (Figure 6.6), particularly the values of ξ (in Equation

6.7). This value denotes the gradient of the aspect ratio-porosity trend-line on a log-

log graph, and reflects the sensitivity of the EPAR to porosity changes. We interpret

the high ξ values for digital rocks to be a product of considering cementation to be

the only process occurring, essentially ignoring other physical effects. This results

in much smoother trends with lower variance in the synthetic data compared to the

data from real rocks. As porosity increases, the digital rocks show increasing EPAR,

meaning the rock frame becomes relatively stiffer. However in reality, other physical
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effects also operate as porosity increase, such as the stiffness of grain contacts. Rocks

with high porosity can be poorly consolidated, these samples would exhibit relatively

low stiffness, therefore a low inverted EPAR. These different processes occurring and

acting against each other essentially reduce the sensitivity of the effective pore EPAR to

porosity (reducing ξ). A digital rock model incorporating changes in both cementation

and grain contact stiffness could overcome this observed difference, but we leave this

for future work.

6.5.2 Digital rocks at low porosity

In real rocks, pore structures are found to be fractals, i.e., the geometric features of

the pore space are similar across all scales. At the smallest scales the estimation of

physical properties of porous rocks are hampered by the resolution of the 3D images,

mainly due to the presence of unresolved microporosity. In digital rocks that attempt

to emulate real ones, the smallest possible pore is equivalent to a single voxel with a

cubic shape. Therefore digital rocks cannot replicate the fractal dimensions of a real

rock, and particularly at low porosities, the pore shapes become unrealistic. This could

be an explanation for the outlier result for the low porosity sample (φ = 6.6%) of the

grainstones using isopachous cementation seen in Figures 6.6e and d, which exhibits an

EPAR higher than expected assuming a power-law relationship. As porosity decreases

due to cementation, individual pore shapes become more cubic (closer to a sphere

where α = 1) and therefore relatively stiff. The inversion results from the laboratory

measured grainstones (Figures 6.6e and f) do not show this increase of EPAR at lower

porosities indicating the phenomenon is an artifact of the finite bandwidth scaling of

the digital rock. This can somewhat be overcome by increasing the resolution of the

digital rocks, therefore increasing the porosity range where digital rock microstructure

remains valid.

6.5.3 Critical porosity and beyond

Digital rock physics provides an insight into the elastic properties of media that either do

not often occur in nature, or would be challenging to produce in laboratory experiments,
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Figure 6.10: 2D ray tracing (Margrave, 2000) results using the vertical slices through the center of

coquina models with increasing cementation, over the porosity range that exhibits an abrupt increase

in seismic velocity. Rays originate from the center-top of the models, and are shown for a 90◦ aperture

with 5◦ intervals. Rays terminate when they leave the bounds of the velocity model.

such as the very high porosity of the initial coquina model prior to cementation. This

has allowed us to observe critical porosity effects associated with a transition from grain-

supported to fluid-supported textures during dynamic wave propagation. The critical

porosity φC is generally defined as a threshold when porosity φ > φC , the medium

can be treated as a fluid supported suspension, and when φ < φC the medium is grain

supported. However, we have previously stated that grain-to-grain contacts exist across

all porosities under static load, though a critical porosity effect is still observed. To

explore this further we take vertical slices through the center of four volumes, over the

porosity range that exhibits the abrupt change in bulk modulus. We use the slices,

converted into velocity models (following the same method described in Section 2.4),

as input into the ray-tracing software of Margrave (2000). This method takes a fan of

rays from a user-selected source location, and calculates the ray path, which terminates

when it leaves the bounds of the model. This process is to illustrate the difference in

ray path complexity, rather than calculate absolute ray paths, as our finite-difference

simulations are not limited to a 2D plane. The output shown in Figure 6.10 gives an

idea of how waves travel through each model. At high porosity (Figure 6.10a) waves

take very complex paths, with many internal reverberations. For a ray to traverse

the full length of the medium (necessary for the measurement of seismic velocity with

conventional experimental geometries) would require to take a complex path through

grain and cement, or travel through a large amount of pore fluid. Contrast this with

a lower porosity model (Figure 6.10d), where rays are transmitted through the full

length of the model, and paths are considerably simpler (fewer reflections). Therefore



CHAPTER 6. 179

0 0.2 0.4 0.6 0.8 1

Porosity

0

1

2

3

4

5

6

7

B
u
lk

 M
o
d
u
lu

s
 (

1
01

0
P

a
)

a) Coquina Percolation Model

0 0.2 0.4 0.6 0.8 1

Porosity

0

1

2

3

4

5

6

7

B
u
lk

M
o
d
u
lu

s
(1

01
0
P

a
)

b) Graintstone Isopachous Percolation Model

0 0.2 0.4 0.6 0.8 1

Porosity

0

1

2

3

4

5

6

7

B
u
lk

 M
o
d
u
lu

s
 (

1
01

0
P

a
)

c) Graintstone Syntaxial Percolation Model

Measured Bulk Modulus

Percolation Model

Power Law Model

Figure 6.11: Comparison of some alternative empirical models for fitting bulk modulus-porosity data:

a percolation model using Equation 6.10 (blue) and power law model using Equation 6.11 (red) for the

coquina (a), grainstones with isopachous (b) and syntaxial cement (c). The black lines represent the

Hashin-Shtrikman bounds.

the critical porosity reflects the transition between direct tortuous paths between the

source and receiver on opposite sample boundaries. Independently, Walker et al. (2016)

observe a step increase in the number of force chains at a critical stress when simulating

simple shear in 3D media. In principle this could provide another possible explanation

for critical porosity effect observed in the coquina, if it can be demonstrated to occur

also under static gravitational load.

6.5.4 Alternative Models

In this study we carry out an in-depth comparison of two physics-based rock physics

inclusion models: conventional differential effective medium theory (Berryman, 1992)

and the Cilli-Chapman model (Cilli and Chapman, 2019). While it would not be

feasible to statistically test all existing rock physics models, we believe it is worthwhile

considering some empirical models, which give complementary insight into physical

processes. Models arising from percolation theory (Stauffer and Aharony, 2014), where

bulk modulus Kperc can be modeled as:

Kperc = Kmax

(
|φc − φ|
φc

)m
, (6.10)

Where Kmax is the maximum measured bulk modulus, and m is a fitting parameter.

Given the power-law nature of the Cilli-Chapman model, we also consider a simple
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empirical power law model for bulk modulus Kpl:

Kpl = K0

(
φ

φ0

)n
, (6.11)

where φ0 is the initial (highest) porosity, K0 is the initial (lowest) measured bulk

modulus, and n is a fitting parameter. We invert for φc and m in Equation 6.10

and n in Equation 6.11 to find the best fitting models. We compare these models to

the estimated bulk modulus data in Figure 6.11. First we note that the percolation

model performs relatively well for the coquina data below critical porosity (Fig. 6.11a),

exhibiting a near-linear trend. Percolation theory describes the connectivity of a

network across a medium, where at a certain porosity threshold (or critical porosity),

the connected network spans the entire medium. This physical process closely resembles

the interpreted critical porosity effect observed in the coquina samples. The power

law model performs well at porosities above φc though is clearly not appropriate at

low porosities. The percolation model fails to fit the data for the grainstone with

isopachous cement (Fig. 6.11b), however the power law model fits the data relatively

well. The grainstone with syntaxial cement data (Fig. 6.11c) spans a narrow porosity

range, thus both percolation and power law models fit the data well; there is not

sufficient data to effectively asses the models. These empirical models can sometimes

show impressive fits to the measured data, however offer limited ability to infer any

physical significance. With the exception of one outlier noted above, the physics-based

approach of the inclusion models considered here provides a more complete description

of the data, and does allow for a physical interpretation of the results observed at the

bulk scale.

The work described here strongly compliments the work of Cilli and Chapman (2018),

where the power-law relationship between porosity and equivalent pore aspect ratio

is first described using the public domain laboratory datasets of (Bakhorji, 2010),

(Fournier et al., 2011) and (Verwer et al., 2008). The experimental data is measured

with a range of different lithologies, in different laboratories and in different external

conditions. Despite these differences, the observation here are the same as those

recorded in the laboratory suggesting that the power-law relationship relates to the
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underlying physics of changing porosity and its effect on elastic properties.

The use of effective medium theory models for elastic properties are exceptionally broad

across many different disciplines, thus so are the application of the findings in this study.

For example, the need for models that describe how elastic properties relate to volume

fraction are used in material science and engineering (Sun et al., 2007; Gubernatis and

Krumhansl, 1975), medical imaging (Potsika et al., 2014), the design of meta-materials

(Wu et al., 2007).

6.6 Conclusion

Measuring geophysical properties associated with geological processes, such as the

measurement of seismic velocity during rock cementation, is very challenging in a

laboratory environment. Such experiments require elaborate equipment and can require

very long timescales making them expensive in terms of cost and time. By contrast,

digital rock physics is an effective method for the estimation of seismic velocity as

cementation is occurring, while remaining cheap, fast, and without the use of any

intricate and complex laboratory equipment. The method could easily be extended to

the study of other geological processes such as compaction, dissolution, or fracturing.

The results presented here show realistic bulk modulus-porosity trends for a range of

carbonate morphologies and cementation types. We observe anisotropy in the measured

velocity (and elastic modulus) due to structural anisotropy caused by the settling

of elongate grains under gravity. We also observe a critical porosity effect in the

coquina samples, where bulk modulus above 30% porosity drops to the approximately

the lower Reuss and Hashin-Shtrikman bounds. Digital rock physics also allows

for the quantitative testing of competing rock physics models. For modelling bulk

modulus-porosity data, a variable-aspect ratio model is statistically stronger than the

conventionally used single-aspect ratio differential effective medium (DEMT) model for

both grainstone and coquina digital rocks. The variable-aspect ratio model also remains

robust to anisotropy where the conventional DEMT method fails. There are strong

similarities between simulated data and real laboratory measured data for grainstones,
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validating both the digital rock physics approach, as well as the variable aspect ratio

rock physics model. Our results also highlight a significant critical porosity effect for

the anisotropic ‘shelly’ fragments between phases that provide more direct or more

tortuous path between the source and receiver at different stages of cementation.
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Chapter 7

Discussion

7.1 Introduction

Across all scientific research, making new discoveries generally leads to a whole series

of new scientific questions or hypotheses to test. In this chapter I highlight some of

these new questions, based on some of the current limitations to the methods used in

this thesis, and present some possible areas for future work to address them. I have

already included more specific discussions relating to each chapter topic in Chapters

3-6. To avoid repetition, here I address the more general questions facing coda wave

interferometry and digital rock physics, drawing on experience from the work presented

in the whole thesis and the wider literature.

7.2 Coda Wave Interferometry

7.2.1 Dependence on absolute measurements

In Chapter 3, I show that the accuracy and precision of estimates for a change in bulk

velocity significantly increases when using CWI, which measures the relative velocity

change directly, compared with the conventional first-break method which measures the

183
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absolute velocities to calculate the velocity change. The fact that CWI only provides an

estimate for relative changes in velocity rather that absolute velocity is not a significant

concern for many applications, such as those relating to the interpretation of 4D seismic

data where there is a dynamic dependence of velocity on changes in external properties

(Landrø and Stammeijer, 2004).

However, there are some cases where an absolute velocity is desirable. An example

occurs in Chapter 5 of this thesis, where the absolute P and S wave velocities are used

for the inversion of crack density following the self-consistent model of O’Connell and

Budiansky (1974). For the case of randomly oriented and penny-shaped cracks, the

crack density ρC is defined as:

ρC = N〈a3〉 = (3φ/4π)〈a〉, (7.1)

where a ≈ b� c (a and b are the major axes of the ellipsoidal crack and c is the crack

aperture), 〈a3〉 is the mean crack radius, N is the number of cracks per unit volume,

〈α〉 is the mean crack aspect ratio (c/a), and φ is the volume of cracks per unit volume.

Crack density can be estimated from the effective (or measured) bulk modulus Keff

and Poisson’s ratio νeff (O’Connell and Budiansky, 1974):

ρC =
9

16

(1− 2νeff )

(1− ν2eff )

(
1−

Keff

K∗

)
, (7.2)

where K∗ is the bulk modulus of the crack-free rock. In Chapter 5, I use the initial

absolute measurements of VP and VS from the first-break method, then calculate the

absolute velocity using the estimated velocity changes from CWI. However, in some

conditions the estimation of absolute P and S wave velocities can be inaccurate (as

shown in Chapter 3). To illustrate the dependence of the initial estimates of the

elastic properties on the estimated change in crack density ∆ρC/ρC , I take a velocity

perturbation of a 2% increase in the P wave velocity and a 1% decrease in the S wave

velocity (∆VP /VP = 0.002, ∆VS/VS = −0.001) and calculate the change in crack

density ∆ρC/ρC over a range of initial P wave velocities varying between 4000-6000

m/s. The S wave velocity (VS = 3000 m/s) and density (2000 kg/m3) remain constant.
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Figure 7.1: The calculated change in crack density (∆ρC/ρC) using velocity perturbations of a 2.0%

increase in VP and 1.0% decrease in VS (∆VP /VP = 0.002, ∆VS/VS = −0.001), plotted as a function

of the assumed initial crack density ρC .

Using Equation 7.2, the data is equivalent to a range of initial crack densities ρC=

0.11-0.68. The calculated change in crack density (∆ρC/ρC) is plotted as a function of

the initial crack density (ρC) in Figure 7.1. There is a clear non-linear dependence on

the initial elastic moduli used in calculating the change in crack density, meaning that

the errors in the first-break method still influence the estimate of the change in crack

density even when the change in velocity is measured using CWI.

In Chapter 3, I also present a new method for the estimation of P and S wave velocities

using CWI (further described in Chapter 4). This method also requires estimates of

absolute measurements in the medium (rather than relative measurement), specifically

the VP /VS ratio and the average inter-scatterer distance a.

Rather than using the initial absolute measurements of VP and VS from the first-

break method, a more appropriate approach would be to use a weighted distribution

of initial elastic moduli, which accounts for the uncertainty and variability of the first

break method, but does not fully remove the dependence on absolute measurements.
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A beneficial future study would be to measure the sensitivity of estimates in changing

P and S wave velocities to estimates of VP /VS and inter-scatterer distance a. For any

calculations involving such absolute measurements, a suitable approach would be to

use a distribution of values (such as the distribution of VP /VS used in Chapter 3),

accounting for the uncertainty in estimates.

7.2.2 Strength of scattering

In CWI it is commonly assumed that strong scattering is occurring. If not then CWI

estimates for velocity change may be inaccurate. In Chapter 4, the Westerly Granite

digital rock used contained weak impedance contrasts, and the length scale of the

material heterogeneities were larger than the dominant wavelength. Mavko et al. (2009)

breaks down the different scattering regimes based on the ratio of seismic wavelength

λ to the diameter of the scattering heterogeneity ds. Roughly speaking there are three

domains:

• Rayleigh scattering, where λ > ds;

• stochastic/Mie scattering, where λ ≈ ds;

• diffusion scattering, where λ < ds;

When λ � ds, the heterogeneous medium behaves like an effective homogeneous

medium, and scattering effects may be negligible and conventional first break methods

are more representative of the medium. At the other limit, when λ� ds the heteroge-

neous medium may be treated as a piecewise homogeneous medium (i.e., following ray

theory). The focus of this thesis is on high-frequency laboratory experiments. There-

fore, the majority of the laboratory and numerical experiments performed within this

thesis use wavelengths much smaller that the scattering heterogeneities (ray theory

and diffusion scattering), and in some cases they are approximately equal in length

(stochastic scattering). Vlastos et al. (2007) use numerical simulations of wave propa-

gation through these scattering regimes, studying the wavefields and spectral compo-

nents. Another useful future study would be to investigate the performance of CWI
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and conventional methods, in similar experiments, varying signal frequency, as well

as varying the amount of scattering points (i.e., gradually increasing the number of

point scatterers in the medium), particularly into the Rayleigh scattering and effective

medium regimes, where the performance of CWI is expected to deteriorate.

7.2.3 Anisotropy

Another limitation of CWI is the assumption of an isotropic medium (and isotropic

scattering). This means that any estimate for velocity change made using CWI

represents an unknown weighted average of the change in velocity in all directions.

This will not be appropriate for anisotropic media, for example due to layers or micro-

crack alignment.

In Chapter 5, I compare estimates for velocity change using CWI with those made

using the first-break method. Using the directionality implicit to the two methods,

information about the anisotropy can be attained (specifically in Chapter 5, the

data suggests fractures are present at high angles to the laminations within the

samples). However, the results in Chapter 3 imply that the first-break method can

be highly susceptible to errors due to the presence of background noise and provide

unrepresentative and potentially biased results. Therefore, using these estimates to

attain information about any anisotropy should be carried out with caution. A more

appropriate method may be to extend the approach for separating changes in P and

S wave velocities (outlined in Chapter 4) to account for variations with respect to

orientation.

To illustrate this proposed method, I perform a proof-of-concept numerical experiment

here, taking a structurally anisotropic layered medium (Figure 7.2a) and a isotropic

homogeneous medium (Figure 7.2b). These models are used in a 2D elastic rotated-

staggered-grid finite-difference simulation of wave propagation with reflecting boundary

conditions, and 30 Hz ricker wavelet sources at central source locations. The measured

wavefield W is a vector of displacement, therefore can be separated into horizontal

(Wx) and vertical (Wz) components. For every model point x, I take the envelope
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Figure 7.2: a) Structurally anisotropic two-phase model where each phase has different elastic

properties. b) Structurally isotropic and homogeneous model with uniform elastic properties. c and d)

the relative proportion of the wavefields of horizontal EX (blue) and vertical EZ (red) displacement to

the total displacement wavefield for each of the models, calculated from Equations 7.3 and 7.4.
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(e(x, t)) for every point in the model, calculated as:

ex(x, t) = |H(Wx(x, t))|, (7.3)

ez(x, t) = |H(Wz(x, t))|, (7.4)

where H(f(t)) denotes a Hilbert transform of function f(t) and t is time. The relative

proportion of the horizontal and vertical envelopes are calculated as Ex = ex/(ex + ez)

and Ez = ez/(ex + ez). The resulting calculations for the proportions of vertical and

horizontal displacements for the two models are shown in Figures 7.2c and d. There is

a clear temporal variation in Ex and Ez for the structurally anisotropic model, whereas

Ex and Ez are almost exactly equal and constant for the isotropic model. Note that

the numerical examples here does not use a true anisotropic velocity model, but the

model is structurally anisotropic, i.e., the compliance tensors are symmetric.

If the temporal variation between the horizontal and vertical wavefields is known,

separate estimates for independent changes in velocity for both horizontal and vertical

travelling waves can be made using CWI estimates for velocity change at multiple

time windows. This method is essentially the same as that described in Chapter 4

for estimating relative proportions of compressional and shear waves, but taking the

relative contribution of vertical and horizontal travelling waves as a function of time

instead. This approach requires some prior information regarding the anisotropy of

the medium and a model for the temporal change in the proportion of horizontal

and vertical travelling waves. The model could be estimated using such numerical

simulations as shown here, or by incorporating into an analytical scattering model that

allows for different velocities and probabilities of a wave converting to a different phase

depending on the direction of travel. I leave this for future research.

7.3 Digital Rock Physics

Chapter 6 contains a detailed discussion regarding the specific application of digital

rock physics applied to process-based modelling of cementation. To avoid repetition,

here I discuss the limitations in the field of digital rock physics from a wider perspective.
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One of the major questions regarding this method is how close digital rocks resemble

‘real’ rocks, or more importantly how close are the estimated effective properties of

digital rocks to those measured in the laboratory. In the majority of digital rock

physics applications, the voxel sizes (maximum resolution) is on the order of microns.

Therefore, any features below this size cannot be resolved. As the elastic properties

of rocks are heavily influenced by very small structures such as fractures and grain

contacts, conventional digital rocks cannot fully charecterise the elastic properties

(Dvorkin et al., 2011). There are many attempts to calibrate digital rock estimates

with real rocks, for example Madonna et al. (2012) use a single scaling factor for the

calibration of computed moduli to effective ‘real’ moduli. This approach is limited as

any established scaling factor is only appropriate for the specific samples studies (a

similar limitation to the empirical rock physics models described in Chapter 2.3.2).

Therefore, applying such corrections for the prediction of elastic properties from digital

rocks should be carried out with caution.

I believe the strengths of digital rock physics are not its it predictive ability, but in its

repeatability. Heraclitus once said “you could not step twice into the same river”; this

is a thought-provoking challenge to many rock physics experiments. In conventional

laboratory rock physics, no two rock cores are exactly the same. Even when cored

from a homogeneous medium there will be some differences at a small scale. This is a

limitation of conventional experiments, which seek to keep all variables the same, and

vary one dependent variable, e.g., varying the effect of confining pressure on a rocks

strength. Digital rock physics allows a unique approach where digital rocks can be

exactly the same, allowing for truly repeatable experiments, and the isolation of a single

variable or process that can be varied and its effect can be determined. Therefore, there

is great potential for process based modelling of digital rocks, where physical properties

can be estimated over a wide range of geological processes, such as cementation (as in

Chapter 6), or mechanical loading and fracturing (Tang, 1997), compaction (Katsman

et al., 2005), or dissolution (Kang et al., 2003). These are the natural next steps for

research within this field.
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Conclusion

8.1 Introduction

In this chapter I summarise the main findings presented in this thesis. In Section 2.5,

I identified a series of research questions formed from the gaps I had identified in the

current literature, and which act as the motivation for this thesis. My main findings

are summarised below in the form of answers to these specific questions.

8.2 Research Questions and Answers

1. For experimental rock physics, how do estimates for velocity change and source

separation vary between coda wave interferometry (CWI) and conventional first

arrival methods?

Conventional first-break methods based on manual phase-picking provide an estimate of

seismic velocity that is not representative of the bulk medium in a high frequency regime

with point sources and point receivers. Such estimates of seismic velocity, changes in

velocity, and source location are highly variable even for a single sample, and depend

on the specific source-to-receiver path of the first arriving wave. They are therefore
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inadequate for characterizing the bulk properties of a rock sample, particularly those

with complicated pore structures approximately similar size to the wavelength of the

interrogating waves. By contrast, coda wave interferometry is an effective method for

countering these problems because coda waves sample the entire medium, and sample

the same regions multiple times. CWI is shown to provide an increase in precision

by an order of magnitude in the absence of noise, and to be a robust and accurate

method for estimating both bulk velocity changes and perturbations of the source or

receiver locations when compared with standard methods in both synthetic digital rock

physics and laboratory experimental data. When noise is present, CWI remains far

more accurate than conventional methods, even at very low signal-to-noise ratios. In

addition, using source separation estimates, relative locations of a cluster of sources can

be estimated using a single receiver, and show higher precision and accuracy compared

to conventional methods.

2. Can CWI estimates of velocity change and source separation be jointly estimated

when both perturbations occur simultaneously?

When velocity and source location perturbations occur simultaneously, CWI can

estimate velocity and source separation under the conditions of small source separations

(relative to the wavelength). Source separation estimates are mostly unaffected by

the velocity perturbation, but velocity change estimates are much more sensitive and

become inaccurate in the presence of larger source perturbations, possibly due to cycle-

skipping.

3. Can the estimate of velocity change provided by CWI be unravelled further into

estimates of changes in VP and VS or changes in fluid velocity and solid matrix

velocity?

I extend the scattering model of Snieder (2002) to incorporate a fluid fraction, where

shear waves are not supported. This models estimates the equilibriation of P to S waves



CHAPTER 8. 193

over time, as well as the equilibriation of the proportion of waves in the solid matrix

to pore fluid. Estimates of separate changes in P and S wave velocity can be made by

taking many estimates of velocity change made using CWI for different time windows

along the signal, combined with the analytical scattering model and given probabilistic

a priori information about the VP /VS ratio of the medium. In a similar way, providing

probabilistic a priori information about the fluid fraction in the medium, estimates of

separate changes in the fluid velocity and matrix velocity can also be made.

4. Can CWI be used in conventional rock physics models, e.g., for the inversion of

crack density?

Measurements of changes in P and S wave velocities from CWI can be used to calculate

changes in the VP /VS ratio, the bulk and shear moduli, and Poisson’s ratio. I

demonstrate the inversion of changing crack density during the triaxial deformation

of laminated carbonates. The results are in good agreement with previous rock

deformation theory, where crack density initially increases due to pore and micro-crack

closure, and eventually decrease at the onset of micro-cracking through to macroscopic

failure.

5. What are the implications of the implicit isotropic averaging of CWI compared to

the directionality of the first-break method?

As coda waves scatter in all directions and throughout the entire medium, the CWI

estimates of a change in velocity represent an isotropic average of the medium, whereas

the first-arrival velocity only represent a single direction along the path of wave

propagation. The estimates of velocity change for CWI and first-breaks, particularly

how the estimates differ, can be used in the interpretation of any anisotropy in the

samples. The data from two oriented finely laminated carbonates of the Crato formation

suggests preferential closing of pores perpendicular to the laminations, most likely pre-

existing fractures at high angles to the laminations/bedding. This is supported by the
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known orientations of fracture sets reported for the Crato formation (Miranda et al.,

2014). CWI can therefore be used in conjunction with existing methods to provide

previously unavailable information regarding the anisotropy in a medium.

6. Using process based simulation of digital rocks, what is the effect of cementation

on seismic velocity?

Digital rocks show realistic velocity-porosity (and bulk modulus-porosity) trends for a

range of carbonate morphologies and cementation types, all falling within the Hashin-

Shtrikman bounds for bulk modulus. Anisotropy is measured in the velocity due to

the structural anisotropy caused by the settling of elongate grains under gravity, even

when the individual grains shapes are near spherical. In the coquina samples, which

have long convex grain shapes, there is a critical porosity effect, where elastic modulus

drops above 30% porosity to the approximately the lower Reuss and Hashin-Shtrikman

bounds.

7. What is the most appropriate rock physics model for digital carbonate rocks?

For modelling bulk modulus-porosity data from digital grainstones (spherical grains)

and coquinas (shelly-fragment grains), a variable-aspect ratio model is statistically

stronger than the conventionally used single-aspect ratio differential effective medium

model for both grainstone and coquina digital rocks. The variable-aspect ratio model

also remains robust to anisotropy where the conventional differential effective medium

method fails. There are strong similarities between simulated data and real laboratory

measured data for grainstones, validating both the digital rock physics approach, as

well as the variable aspect ratio rock physics model.

8.3 Final Remarks

The findings of this thesis have been encouraging for the use of both coda wave



CHAPTER . 195

interferometry and digital rock physics in conventional rock physics workflows. The

improvements presented here are not only limited to experimental rock physics but can

be in principle extended to field-scale surface seismic data. These innovations represent

significant improvements in our ability to characterize the evolution of properties of

media across all scales for a variety of applications across geoscience and engineering.
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Appendix A

CWI MATLAB Code Package:

User Guide

A.1 Introduction

This guide accompanies Singh et al. (2019): Coda Wave Interferometry for Velocity

Monitoring and Acoustic Source Location in Experimental Rock Physics, which can

be downloaded from https://github.com/JonathanSingh/cwi_codes/. Contained

in this package are a suite of well-commented MATLAB functions for estimating the

changes in the bulk velocity of a medium, the small change in source or receiver loca-

tions, or the joint estimation of velocity and source/receiver location changes when both

occur simultaneously. This code package can be used in conjunction with the codes of

Zhao and Curtis (2019), available at https://www.geos.ed.ac.uk/eip/codes.html.

These codes provide methods for the estimation of relative source locations in a cluster

of sources. By combining these two code packages, estimates of the relative locations

of a cluster of sources can be made as well as any velocity perturbations that occur in

the medium, all using a single receiver. Users can execute all function contained in the

package by running a single script: examples−running−script.m, which demonstrates

197



198 A.2 Theory

the implementation of all the functions and how they can edited to suit the users re-

quirements. First we cover the theory of Coda Wave Interferometry (CWI) and how it

can be used to estimated changes in the velocity of a medium, a change in the location

of a source or receiver, and the random displacement of scatterer locations. We then

provide an overview of the code package contents and explain each code with examples

for their implementation.

A.2 Theory

CWI allows small changes in velocity, the displacement of source or receiver locations,

or movement of scatterers to be monitored (Snieder et al., 2002; Sens-Schönfelder

and Wegler, 2006; Snieder, 2006). These different perturbations and their effect on

recorded signals are illustrated in Figure A.1. First we consider the effect of a velocity

perturbation (∆V in Figure A.1a), where the direct arriving wave between a source and

receiver would only sample the perturbation once (or not at all), whereas the multiply

reflected waves sample the perturbation many times. Therefore the change in arrival

times for later arriving waves (t3,t4) is much larger than for the first arrival (t1,t2). The

second perturbation type is a displacement of the source or receiver location (source

displacement in Figure A.1b): in this case, the difference in ray paths before and after

the perturbation is the path between the source and the first scattering point (blue

arrows in Figure A.1b). Paths would be both shortened and lengthened depending on

the location of the first scatterer, which is reflected by the advancement and retardation

of peaks highlighted by red and blue arrows. The extent to which these travel times are

perturbed (their variance) is directly proportional to the (small) displacement of the

source. The third perturbation type is the displacement of all scattering points (yellow

circles in Figure A.1c): in this case, all paths between scattering points are perturbed

(both shortened and lengthened) and similarly to the previous case, the statistics of

travel time perturbations are related to the displacement of scattering points. All three

perturbation types can be monitored by using a cross correlation of the unperturbed

(uunp) and perturbed (uper) waveforms - the waveforms from the source recorded by

the receiver before and after the change or displacement takes place.
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a) Perturbation of Velocity

b) Perturbation of Source Location

c) Perturbation of Scatterer Locations

Time

t3 t4

t3 t4

t3 t4

Figure A.1: Illustrations of different perturbation types and their effects on coda waves. The cartoons

(left) represent a scattering medium, with a source (star), receiver (triangle), and point scatterers

(circles). Ray paths between the source and receiver, including multiple reverberations, are represented

as black arrows. A velocity perturbation (a) is represented as a yellow ellipse, which has a velocity

different to the background medium. New ray paths that are introduced due to source location (b) and

scatterer location (c) perturbations are represented as blue arrows. Example recorded signals (right) at

early (t1,t2) and late (t3,t4) time windows for each perturbation type are shown before and after each

perturbation takes place (blue and red, respectively). Differences in travel times of arriving energy for

b) and c) are highlighted with vertical arrows.
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The method we use to estimate the change in velocity is known as trace stretching

(Sens-Schönfelder and Wegler, 2006), where the perturbed waveform is assumed to be

a time-stretched version of a reference waveform; this follows if one assumes that a

velocity perturbation is uniform across the entire medium, so all arriving energy is

perturbed at the same temporal rate. We stretch the time axis of the perturbed signal

by a range of stretching factors (ε) and compute the correlation coefficient R between

uunp(t) and the stretched version of the perturbed waveform uper(t[1 + ε]) over a given

time window (t1, t2):

R(t1,t2)(ε) =

∫ t2
t1
uunp(t)uper(t[1 + ε])dt√∫ t2

t1
u2unp(t)dt

∫ t2
t1
u2per(t[1 + ε])dt′

(A.1)

The optimum stretching factor εmax that maximizes the correlation coefficient (for

which R = Rmax), is related to the ratio of the change in velocity ∆V to the original

velocity V ) by

εmax = −∆V

V
(A.2)

(Sens-Schönfelder and Wegler, 2006). That method also assumes that the velocity

changes are small to avoid cycle skipping in the calculation of R in equation A.1. In

cases where the medium changes significantly, such as during material deformation

where new scattering paths are introduced due to fracturing, it may not be appropriate

to use a constant reference trace (uunp) for all recorded waveforms during deformation.

We propose the use of a moving reference trace, where the optimum stretching factor

from the initial reference trace (u0) to any other recorded waveform during deformation

(un) can be calculated as

εu0un = εu0us + εusun (A.3)

where s = kbn/kc, n is the trace number, k is the user-selected step size of the moving

reference trace, and b. . .c denotes a floor function, which outputs the greatest integer

less than or equal to the input.

CWI allows the joint estimation of both a velocity perturbation and the displacement

r of the source/receiver location to be made from a single receiver. This is because
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velocity perturbation information is retrieved from the consistent phase information

along the waveforms, whereas the source or receiver separation is related to the variance

of inconsistent phase perturbations and hence to the maximum value of the cross

correlation value (Rmax) in equation A.1 (Figure A.1). Snieder (2006) derives the

relationship between the maximum cross-correlation and the variance of the travel

time perturbation (σ2τ ) as

Rmax = 1− 1

2
ω̄2σ2τ (A.4)

where ω̄2 is the dominant mean squared frequency in the recorded waveform. When

a source or receiver is displaced by distance r, one can estimate separation r from the

variance of the travel time perturbation

σ2τ =
( 6
α8 + 7

β8 )

7( 2
α6 + 3

β6 )
r2 (A.5)

where α and β are estimates of the representative P- and S-wave velocities of the

medium. In a two-dimensional acoustic medium this relationship simplifies to:

σ2τ =
1

2α2
r2. (A.6)

The estimates of source separation for a cluster of sources can be used to estimate

relative locations of all sources within the cluster with a single receiver (Zhao et al.,

2017). CWI is also able to resolve another type of perturbation on which we do not

focus: the average displacement of all scatterers, δ, illustrated in Figure A.1c (Snieder

et al., 2002). This value is related to the variance of travel time perturbations by

σ2τ =
2δ2t

vl?
(A.7)

where l? is the transport mean free path. An estimate for δ can be made using the

output of the cwi−sep.m function and the equation above.
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A.3 Package Contents

A.3.1 Functions

• cwi−stretch−vel.m: for estimating a velocity change, using the CWI stretching

technique (Equation A.1). The function initially searches through stretching

factors equivalent to a range of 10% to -10% velocity changes, then searches at

fine increments of 0.005% changes in velocity. If a wider search range is required,

the user should edit the s−factors variable.

Inputs:

– sig1: Reference signal recorded prior to a perturbation

– sig2: Signal recorded after a perturbation

Output:

– epsilon: Stretching factor which maximizes correlation (equal to −∆V/V )

• cwi−sep.m: for estimating the separation between a pair of sources or a pair

of receivers using coda wave interferometry. The function uses Equation A.4 to

estimate and output the variance of travel time perturbations σ2τ , which is related

to the displacement of source location by Equations A.5 and A.6.

Inputs:

– sig1: Reference signal recorded prior to a perturbation

– sig2: Signal recorded after a perturbation

– dt: Sampling interval time in seconds - must be the same for both signals

– win−start: Index of sig1 and sig2 corresponding to the start of the desired

time window

– win−end: Index of sig1 and sig2 corresponding to the end of the desired

time window

Output:
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– variance: Variance of travel time perturbations. Proportional to the

separation and the velocity of the medium (Equations A.5 and A.6).

• cwi−stretch−vel−and−sep.m: for joint estimation of changes in velocity and

source location, when both occur simultaneously.

Inputs:

– sig1: Reference signal recorded prior to a perturbation

– sig2: Signal recorded after a perturbation

– dt: Sampling interval time in seconds - must be the same for both signals

– win−start: Index of sig1 and sig2 corresponding to the start of the desired

time window

– win−end: Index of sig1 and sig2 corresponding to the end of the desired

time window

Output:

– variance: Variance of travel time perturbations. Proportional to the

separation and the velocity of the medium (Equations A.5 and A.6).

– epsilon: Stretching factor which maximizes correlation (equal to −∆V/V )

• mov−ref−trace.m: a function for combining estimates of velocity change from

coda wave interferometry (epsilon from cwi−stretch−vel.m), employing a moving

reference trace (Equation A.3)- with a user selected step size. Velocity changes

are required to be combined into a NxN matrix, where N is the number of signals.

Inputs:

– epsilon−matrix:

– k: Step size for moving reference trace

Output:

– dv−mrt: 1xN vector of cumulative velocity change.
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A.3.2 Scripts and Data

• examples−running−script.m: Full script for loading in example data and using

all functions for changes in velocity, source location, both perturbation types

occurring simultaneously, and the combination of multiple velocity changes using

a moving reference trace. This script also generates a series of plots, all contained

in this report.

• fluid−change−data.mat: example data generated from finite difference sim-

ulation of a wavefield through a Tivoli Travertine, where pore fluid velocity is

perturbed by 100 m/s.

• source−change−data.mat: example data generated at an array of source

locations, represented a fracture plane occurring in the Tivoli Travertine digital

rock.

• source−and−vel−data.mat: example generated for a range of source locations,

and a range of velocity perturbations occurring simultaneously.

• mrt−example−data.mat: example CWI data from laboratory experiment of

the deformation of a laminated carbonate core. Used for the demonstration of

the moving reference trace method.

A.4 Codes and Example

We demonstrate the use of all function listed above in the examples−running−script.m

script, using appropriate example data. We generate example data using finite

difference simulation of wavefield propogation through a model based on a x-ray micro-

tomography slice through a Tivoli Traverine core (shown in Figure A.2). Here we

demonstrate the use of each function and describe how they can be edited to be used

different data sets. All figures shown in this user guide are also generated as part of

the examples−running−script.m script.
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Figure A.2: a) X-ray micro-tomography slice of a Tivoli Travertine core. b) The equivalent model

of segmented phases, in this case we assume two phases, calcite and pore fluid. The elastic properties

of calcite and water are used in the finite difference simulations of wave propogation to generate the

example data sets used in this guide.
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Figure A.3: Example data generated from finite difference simulation of a wavefield through a Tivoli

Travertine, before (blue) and after pore fluid velocity is perturbed by 1.5 m/s (red). Comparison is

shown for a) the full signal, b) the first arriving waves and c) the coda waves.

A.4.1 Estimating a change in velocity

The first example data set was generated from finite difference simulation of a wavefield

through a Tivoli Travertine, where pore fluid velocity is perturbed by range of velocities

up to 100 m/s. The data can be loaded into MATLAB with the following lines

load(’example_data/fluid_change_data.mat’)

The example data is plotted in Figure A.3, comparing signals before and after a velocity

perturbation. The lower panels highlight how the coda waves are more sensitive to small

changes in velocity when compared against first arriving waves. CWI can be performed

on the example data set with the by computing the following:
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Figure A.4: Estimates of velocity change (∆V/V ) using CWI, as a function of pore fluid velocity in

a Tivoli Travertine digital rock.

% Unperturbed signal:

sig1 = fluid_change_data(:,1);

% Loop through all signals performing CWI

for i = 1:size(fluid_change_data,2)

% Perturbed signal:

sig2 = fluid_change_data(:,i);

% CWI stretching method for velocity change

epsilon=cwi_stretch_vel(sig1,sig2);

% Velocity change dV/V = - epsilon:

dV(i) = -epsilon;

end

The output dV is a vector of velocity change estimates between the reference signal

(sig1) and every other signal in the data set (plotted in Figure A.4). If the user

requires to apply this method on different data sets, the fluid−change−data variable

can replaced with an l × N matrix, where l is the length of the signals and N is the

number of signals.
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Figure A.5: Example data generated from finite difference simulation of a wavefield through a Tivoli

Travertine, before (blue) and after the source location is perturbed by 0.001λ (red). Comparison is

shown for a) the full signal, b) the first arriving waves and c) the coda waves.

A.4.2 Estimating a source location perturbation

The second example data set is for the estimation of a change in source location, i.e.,

inter source distance. Example data can be loaded from source−change−data.m, a pair

of signals are compared in Figure A.5, from this we see that the perturbation causes

a change in the correlation of the coda waves, but is not a coherent shift of the travel

times as seen for the velocity perturbation in Figure A.3. The data is from an array

of source locations occurring along a plane in the Tivoli Traverine digital rock sample

(shown in Figure A.6). To perform CWI to estimate the source separation, first find

the variance of travel time perturbations, then the source location perturbation can be

estimated using Equation A.6. This is achieved be executing the following:
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Figure A.6: Relative locations of a cluster of sources used to generate the example data for estimating

source separation using CWI.

% Required parameters:

N = size(source_change_data,1); % Number of signals

win_start = 100000; % Index for start time window

win_end = 150000; % Index for end of time window

dt = 5e-5; % Sampling interval

vel = 2200; % velocity of the medium

lambda = 67; % dominant wavelength in the signal

% Assign reference signal:

sig1 = source_change_data(1,:);

% Loop through all sources:

for i = 1:N

% Perturbed signal for varying source location

sig2 = source_change_data(i,:);

% Perform CWI to estimate variance of travel time perturbations

[var] = cwi_sep(sig1,sig2,dt,win_start,win_end);

% Calculate inter-source separation using relationship between

% velocity and variance of travel time perturbations.

sep_cwi(i) = sqrt(2*vel^2.*var)/lambda; % Normalised by dominant wavelength

end
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Figure A.7: Estimated source separation between a single source, and every other source in the cluster

(circles) plotted as a function of the true source separation. The red line shows the true separations

for reference.

The output sep−cwi is a vector of estimated inter source separations, normalised by the

dominant wavelength in the signal. The resulting estimates are plotted as a function

of true separation in Figure A.7. The variance var can also be used to estimate the

average displacement of scatterers (using Equation A.7) though we do not illustrate

this use in the package. To use a different data set, change the source−change−data

variable to an N × l matrix, where l is the length of the signals and N is the number

of signals.

Note: the output from this function can be used in conjunction with publicly available

codes of Zhao and Curtis (2019), for the relocation of relative source locations, using a

single receiver.

A.4.3 Estimating simultaneous source location and velocity pertur-

bations

The third example data set is synthetically generated using finite difference wavefield

simulation, where signals are generated at an array of source locations, and source
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Figure A.8: Example data generated from finite difference simulation, before (blue) and after the

simultaneous perturbation of source location by 0.05λ and velocity by 0.2 % (red). Comparison is

shown for a) the full signal, b) the first arriving waves and c) the coda waves.

locations survey are repeated with a range of velocity perturbations occurring simul-

taneously. Example signals are compared in Figure A.8, where a source location per-

turbation of 0.04λ and a velocity perturbation of 0.2% have occurred. The data is

loaded from source−and−vel−data.m, and is a 6 × 10 matrix, representing the 6 dif-

ferent velocity models, and 10 different source locations used. To estimate both the

change in velocity and source location, use the cwi−stretch−vel−and−sep.m function,

demonstrated below:
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% Required parameters:

dt = 5e-5; % Sampling interval

win_start = 500; % Index for start time window

win_end = 100000; % Index for end of time window

dt = 5e-5; % Sampling interval

vel = 3500; % velocity of the medium

% Assign reference signal:

sig1 = source_and_vel_data(:,1,1);

% Loop through all all velocity perturbations and source location changes

for i = 1:6 % Number of velocity models

for j = 1:10 % Number of source locations

% Assign perturbed signal

sig2 = source_and_vel_data(:,i,j);

% CWI for simultaneous changes in velocity and source location

[eps,var]=cwi_stretch_vel_and_sep(sig1,sig2,dt,win_start,win_end);

% Velocity change = -epsilon:

vel_change_cwi(i,j) = eps;

% Calculate inter-source separation using relationship between

% velocity and variance of travel time perturbations:

sep_cwi(i,j) = sqrt(2*vel^2.*var)/67;

end

end

The output is a pair of matrices, one represents the velocity change estimates

vel−change−cwi−mat and the other source location change estimates sep−cwi for all

combinations of velocity and source location changes. The estimates of both source

location and velocity changes are plotted against their true changes in Figure A.9.
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Figure A.9: a) Estimates of source separation with simultaneous velocity perturbation. b) Estimates

of velocity perturbation with simultaneous source location perturbations. CWI estimates plotted as

circles, and the true solutions are represented as red lines.
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Figure A.10: Velocity change ∆V/V measured by CWI (red lines) for a finely laminated carbonate

rock during experimental deformation by increasing differential stress (blue lines), with corresponding

stress values labelled on the left axes. a) Estimates of velocity change from CWI are calculated using

a single reference signal measured prior to deformation. b) Estimates of velocity change from CWI use

multiple reference signals. In this case, the reference signal is reassigned every 32 surveys. This ensures

that the velocity changes remain within the working range of CWI.
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A.4.4 Combining estimates of velocity change using the moving

reference trace function

The final example is for implementing the moving reference trace method. The function

mov−ref−trace.m requires an N×N matrix of estimates of velocity change. Where the

row index indicates the reference trace used for CWI, and the column index indicates

the index of the perturbed signal for CWI. This matrix can be generated from the

following script:

% Take the output of cwi_stretch_vel in a nested for loop

% signals:Nxl matrix, where N is the number of signals and l is the signal length

for i = 1:N

for j = i:N % only cells where j>i are required, as matrix is symmetric

% estimate velocity change using CWI

epsilon=cwi_stretch_vel(signals(i,:),signals(j,:));

% write into an NxN matrix

epsilon_matrix(i,j)=epsilon;

end

end

An example matrix can be loaded from mrt−example−data.mat, which is laboratory

data collected during the deformation of a laminated carbonate core sample. The step

size k indicates the step size of the moving reference trace, and depends on the rate

of change between the signals. Example data is loaded, and moving reference trace

function is executed with the following script:
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% Load epsilon matrix: Experimental deformation of a laminated carbonate

load(’example_data/mrt_example_data.mat’)

% Step size for moving reference trace

k = 32;

% Use mov_ref_trace.m function

[dv_mrt] = mov_ref_trace(epsilon_matrix,k);

The output vector dv−mrt is the cumulative velocity change ∆V/V , shown in Figure

A.10. To apply this method to a different data set, edit the signals variable, to be a

N × l matrix, where N is the number if signals, and l is the length of the signals.
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Conference Proceedings

B.1 SEG 2018 Annual Meeting Technical Program Ex-

panded Abstract

Title: Accurate estimates of simultaneous seismic velocity changes and interfracture-

source distances from coda wave interferometry

Authors: Jonathan Singh, Andrew Curtis, Ian Main

Abstract: Coda Wave Interferometry (CWI) is a potential source of new information

on simultaneous changes in seismic velocity and the locations of earthquakes induced

by subsurface engineering projects. Here we investigate the sensitivity of CWI to

the contamination of recorded signals by measurement noise, and the robustness of

estimates of simultaneous changes in the mediums velocity and the locations of induced

acoustic emissions, as analogues of larger scale earthquakes. We conduct numerical

experiments with finite-difference modelling in media constructed using real-rock x-ray

micro-tomography volumes, and generate realistic synthetic ambient noise based on

the frequency-domain characteristics of laboratory-measured noise. CWI is shown to

be more accurate and reliable in estimating changes in velocity and source location
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compared to conventional phase picking methods in heterogeneous media, particularly

in the presence of noise. When simultaneous perturbations of velocity and source

locations occur, CWI estimates of source perturbation remain accurate in the presence

of a velocity perturbation. However, estimates of velocity perturbation exhibit errors

of up to 0.5% in the presence of source perturbations of around one wavelength. These

results demonstrate the potential of CWI to be used to characterize the response of

rocks to stress during laboratory deformation experiments, and with suitable scaling

to field-scale applications.

Full extended abstract: https://doi.org/10.1190/segam2018-2995402.1

B.2 American Geophysical Union, Fall Meeting 2018

Title: Digital Rock Physics in Four Dimensions: Simulating Geological Processes and

Estimating the Response of Geophysical Properties

Authors: Jonathan Singh, Phil Cilli, Ian Main

Abstract: Understanding the relationship between geophysical properties (e.g., seismic

velocity and electrical resistivity) and porosity is fundamental to many rock physics

models. However, the geological processes that dominate the formation of porosity,

such as cementation and dissolution, will often occur over very long timescales, making

the experimental calibration of velocity-porosity trends challenging. Simulating such

geological processes in 3D digital rocks and estimating elastic properties from the 3D

volumes allows for velocity-porosity trends to be characterized without the long times

required for laboratory experiments. Here we simulate deposition of two carbonate

clastic rocks, grainstone (near spherical grains) and coquina (shelly fragments), then

simulate both cementation and dissolution. These simulations output a set of 3D

volumes representing rocks of varying porosity with known mineral and grain phases.

Using the spatial phase information, combined with known velocity and densities of the

relevant phase properties (we assume all mineral grains to be calcite, and porosity is

fully saturated with fresh water) we create velocity and density models corresponding
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to each stage of cementation and dissolution. We then estimate seismic velocity from

simulated wavefield propagation through each medium using the 3D staggered-grid

finite difference method.

We use these estimated velocity-porosity trends to test the elastic model of Cilli and

Chapman (2018), which extends differential effective medium theory with the claim

that a rock’s effective pore aspect ratio changes by power law with porosity. Inverting

our digital elastic measurements for effective pore aspect ratio, we find our modelled

rocks do follow this power-law relationship. This validates the new rock physics model.

Moreover, we see different effective pore aspect ratio-porosity trends for different rock

types. This discovery paves the way to use the new rock physics model to link observed

changes in effective pore aspect ratio to changes in porosity due to a wider range of

geological processes, for example fracturing or compaction.

Cilli, P. and Chapman, M. (2018, June). Modelling the Elastic and Electrical Properties

of Rocks with Complex Pore Geometries. Paper presented at 80th EAGE Conference

and Exhibition, Copenhagen, Denmark

B.3 European Geosciences Union General Assembly 2019

Title: Estimating seismic velocity changes and relative source locations simultaneously

from coda wave interferometry

Authors: Jonathan Singh, Andrew Curtis, Ian Main

Abstract: Coda Wave Interferometry (CWI) is a method for observing and quantifying

changes in a medium, which uses the diffuse, multiply-scattered waves, found in the

tail of the seismogram. These later arriving waves are very sensitive to small changes

in a medium. CWI is a potential source of new information on simultaneous changes

in seismic velocity and the relative locations of earthquakes induced by subsurface

engineering projects, regional stress changes, or by the earthquakes themselves. When

compared against conventional methods, CWI provides significant improvements in
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the accuracy and precision of estimates of both changes in velocity and relative source

locations. When simultaneous perturbations of velocity and source locations occur,

CWI estimates remain accurate. As CWI provides an estimate for the separation

between two sources, we use CWI on a cluster of sources to estimate their relative

locations, all using a single seismic receiver.

CWI estimates for velocity change represent an average between changes in P and S

wave velocities (VP and VS). We present a method to unravel the changes in VP and

VS individually, using CWI estimates made at multiple time windows in the coda and

prior knowledge of the medium. We demonstrate the method and results in rock physics

data from a laboratory experiment.

These results are significant as they represent a major improvement in characterizing

the evolution of subsurface properties and microseismicity for a variety of applications

including a range of problems in subsurface engineering and time lapse-monitoring.
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Rig Operating Procedure

Experimental Protocol

As part of the work carried out within this thesis, I assisted in the setting up of

Edinburgh rock physics laboratory, including the formation of the experimenal protocol

described below.

The Figures C.1 and C.2 illustrate the configureation of all valves for the rock physics

rig and fluid board. The experimental protocol is as follows:

1. Remove fluid flow board:

(a) Remove connectors for Omega pore fluid pressure sensors

(b) Undo two cap screws at top of board with allen key attached to rig

(c) Place board safely on ISCO trolley

(d) Coil sensor cables and store on DAQ trolley hook

2. Return ram to top of its stroke with hand pump (to ensure that as little oil as

possible is used to deform the rock to avoid large displacement of ram due to oil

expansion on failure):
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(a) Check all valves are closed

(b) Open required valves - the only valves that should be open for this are: Hand

pump, A3, B3, B2, B1, Ram top

(c) Pump the hand pump slowly (handle is on floor below hand pump) until

ram is at top of stroke (this may take a while as the top of the ram may be

full of air!). N.B. If air comes out of header tank then it is nearly empty and

needs refilling; take it off the top and fill from big barrel using large syringe

or funnel

(d) Close all the valves!

3. Assemble sample

(a) Ensure sample preparation procedure is complete (e.g., sonicate, measure

length, porosity, density, benchtop velocity etc.)

(b) Put the fritt filter into the hole in the top of both mushroom platens

(c) Put a melinex disk on top (with ultrasonic gel)

(d) Put the fluid distribution disk on top of that (with ultrasonic gel)

(e) Put the grey semi-circular spacer disks on top of mushroom part of base

platen

(f) Carefully slide the vessel over the top of the platen and rest it on the grey

spacers

(g) Smear ultrasonic gel or shear wave couplant on ends of sample

(h) Slide the rock sample into the vessel

(i) Pop the other melinex disk on top of the rock (with gel)

(j) Slide the top platen into the top of the vessel

4. Inside the frame:

(a) Ensure that the metal spacer on the base is centred inside the inner o-ring

(b) Place the LVDT bottom plate on top of the metal spacer and ensure it is

centred

(c) Prepare AE/Velocity Transducer
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i. Apply ultrasonic gel to the transducer contacts

ii. Pop the transducers into the transducer platens secured with an o-ring

iii. Put the cushion on the back of the transducers and secure with sellotape

to ensure good contact

(d) Put the bottom AE transducer platen onto the bottom LVDT plate (which

should be on top of a small aluminum spacer in the middle of the rig) - make

sure that the cable is pointing towards the AE kit out the back of the frame

(so there is space to connect the fluid flow board)

(e) Lift the vessel into the frame and align with bottom spacer ensure stack is

centred and both pore fluid pipes point out the front of the frame

(f) Place the top AE transducer platen on top of the top mushroom platen

(g) Lift the top LVDT plate onto the stack

(h) Ensure the LVDTs nestle in the brass dips well in to their movement range

(approx. 1/4 to 1/2 way)

(i) Place two metal spacers on top of the LVDT plate ensure whole stack is

fully centred! (N.B. If sample >95mm then only one spacer will fit)

5. Using hand pump, drive ram down to just touch top of stack (this stops the

pistons rising up when confining pressure is applied):

(a) Make sure all valves are closed

(b) Open the following valves: Hand pump, A3, B3, B2, A2, Ram, bottom

(c) Pump with handle slowly and gently, watching gap close and stop pumping

as soon as there is no light visible through the gap

(d) Close ram bottom valve

(e) Equalise pressure in hand pump by cracking open the wheel on the side of

the hand pump and then closing it again

(f) Close all the valves

6. Connect the AE sensors to the PAD amplifiers make sure bottom sensor is

connected to channel 1 and top sensor is connected to channel 2
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7. Synchronise the two acquisition computers with time server 129.215.7.254: Go to

PC time and date settings > select internet time tab > change settings > input

server info > update now (may need to press it twice) > ok

8. Acoustic acquisition set-up (record AEs and velocities while confining the sample):

(a) Switch on Richter unit and open CecchiLeach

(b) Change BSF storage directory to required path

(c) Initialise communications

(d) Check settings

(e) START acquisition

9. Mechanical data acquisition set-up:

(a) Open LabVIEW > open multi graphs shared variable project

(b) Open VI multi graphs draft 9 DAQ correct units

(c) Start program by clicking on white arrow in top left corner

(d) Press start DAQ is running

(e) Check signals look reasonable

10. Apply small confining pressure for centring (< 200 psi limit of low pressure

release valve):

(a) Check the confining fluid vessel connection to the confining pressure piping

(b) Make sure black refill valve on pump is closed

(c) Double check that A3 is closed

(d) Open the following valves: High pressure, Low pressure (labelled always off),

Centre, B5, B4, D4

(e) On ISCO pump control:

i. Press CONST PRESS key

ii. Set pressure at 200psi with number pad

iii. Press ENTER
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iv. Press RUN

v. Watch the LP gauge

vi. Pressure will take time to build as there will be air in the vessel due to

making and breaking the confining fluid pipe connection check for leaks

when pressure shoulders off, but may just be compressing the air inside

the vessel.

vii. When LP gauge reads c.200 psi (confining/effective pressures read 1.3

MPa on Labview), close Centre valve and stop pump (same switch as

Run)

viii. Close HP and LP valves

ix. Monitor Pc relaxation due to oil cooling allow to equilibrate while

continuing with rest of setup

x. Remove grey spacers from the bottom of the stack

11. Flush sample through using only pump not whole fluid flow system! (May not

always be necessary)

12. Connect fluid flow board to rig:

(a) Attach board to steel frame with cap screws and allen key attached to rig

(b) Connect the white cables to the pressure gauges - green to green and red to

red!

(c) Connect grey cable with bayonet connector to differential pressure gauge

(DPG)

(d) Put back pressure regulator (BPR) on top of front panel

(e) Connect PEEK flexible connections:

i. From output filter with label saying to BPR to the BPR

ii. From top connection that says to rock to top piston connection

iii. From bottom connection that says to rock to bottom piston connection

iv. From connection that says to ISCO to the ISCO pump needle valve

connection
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(f) Ensure that all 11 valves on board and 2 ISCO valves are all closed

13. Fluid flow data acquisition set-up:

(a) N.B. Ensure mechanical DAQ has already been started

(b) Open VI fluid flow DAQ

(c) Start program by clicking on white arrow in top left corner

(d) Press start DAQ is running

(e) Check signals seem reasonable if not shut down labview completely and try

again! Otherwise, check cables and DAQ connections and sensor connections

14. At this stage, a small confining pressure should be first applied without using the

intensifier (i.e., less than the desired effective pressure (Pc minus Pp) but at least

5 MPa more than the desired Pp. Then apply the required pore fluid pressure.

Then, using the intensifier, increase the confining pressure to achieve the desired

Peff.

15. Apply confining pressure without using bladder accumulator or intensifier (<25

MPa):

(a) Make sure black refill valve on pump is closed

(b) Double check that A3, HP and LP are closed

(c) Open HP valve and run pump at 30% of 400 ml/hr until pressure in pipes

before Centre valve (as seen on LP gauge on rig) reaches same as pressure

on 1241 (remember that labview DAQ is in MPa and LP gauge is in psi and

bar!)

(d) Close LP valve and open Centre

(e) Continue pumping at 30% of 400 ml/hr until desired confining pressure is

reached

(f) Once pressure is reached close D4, stop pump, and monitor pressure on

GEMS

(g) Close HP and Centre
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16. Apply confining pressure with bladder accumulator but without intensifier (<25

MPa):

(a) Make sure black refill valve on pump is closed

(b) Double check that A3, HP and LP are closed

(c) Open HP valve and run pump at 30% of 400 ml/hr until pressure in pipes

before Centre valve (as seen on LP gauge on rig) reaches same as pressure

on 1241 (remember that labview DAQ is in MPa and LP gauge is in psi and

bar!)

(d) Close LP valve and open Centre

(e) Continue pumping at 30% of 400 ml/hr until confining pressure reaches

bladder accumulator gas pressure

(f) Once pressure is reached:

i. Stop pump

ii. Close HP and Centre

iii. Open D5

iv. Monitor pressure on GEMS and 1241

v. If the pressure drops, re-pump to point where p1241 pressure-time graph

starts to roll over and then increases linearly at a slower rate this is the

pressure inside the BA and the oil and gas pressures are now equal

17. Apply pore fluid pressure (sample should have been fully vacuum-saturated prior

to assembly):

(a) Check that the PEEK connections are connected as per instructions above

on fluid flow system

(b) Make sure drain from BPR goes into beaker next to drain bottle

(c) Open round black Swagelok valve on ISCO pump

(d) Then, on fluid flow board, open the following valves to allow fluid to enter

the rock at both ends: A, C, D, E, F, G, H, I, J,

(e) Wind down BPR almost completely so doesnt crack while applying pressure
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(f) On ISCO control, set pump rate to 60% of 150 ml/hr

(g) Run ISCO pump (switches from right to left: operate - deliver - pump - run)

(h) Fluid pipes will fill with water

(i) Once pressure on both pressure sensors start to rise, monitor pressure until

desired pressure is reached, slowing the flow rate on ISCO pump as necessary

to ensure that the fluid pressure entering the rock never approaches or

overtakes the confining pressure

(j) Once desired pressure is reached, switch off pump and monitor whether

pressure is dropping there are two main reasons it will drop - i) there are

leaks, and ii) fluid is flowing into the rock

(k) Fix any leaks and wait for pressure to equilibrate

(l) Run pump again until desired pressure is reached

(m) Repeat above three points until fluid pressure remains steady at desired level

(n) Once at desired level set maximum pressure (press red maximum button and

turn dial above it) to 40 psi above the run pressure and leave the pump in

run mode it will automatically run and stop to maintain that pressure

(o) For undrained test (constant pore fluid volume), close valves A and J

(p) For drained test (constant pore fluid pressure): and set BPR such that it

cracks at just over desired pressure

(q) Check confining pressure (NB need to use BA and intensifier to maintain

constant confining pressure during tests thus ensuring constant effective

pressure)

18. Apply confining pressure using bladder accumulator with intensifier (required for

>25 MPa):

(a) Ensure all valves are closed, except D4 and D5 they must remain OPEN.

(b) Open the following valves: High pressure, Centre, B5, Int 2 LP

(c) Ensure both C4 and B4 are closed otherwise intensifier wont work
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(d) Run the pump for a short time, pumping oil into the LP end of the intensifier

and monitoring the intensifier LVDT this should rise, showing that pressure

is building in the HP side of the intensifier.

(e) After about 30 seconds of pumping, stop the pump.

(f) Open Int 2 HP monitor the pressure on the GEMS, it should be about 3

times the pressure on the 1241.

(g) Pressurise the LP end of the intensifier to the pressure at which bladder

accumulator is maintained

i. On main ISCO pump control start on 20% of 400 ml/hr

ii. Check switch positions from right to left - operate - deliver - pump - run

iii. Check for pressure increase on p1241 and if all looks good then increase

pump rate a little to about 50% of 400 ml/hr

iv. Monitor p1241 until pressure gets to BA2 charge value

v. Open D5

vi. If the pressure drops, re-pump to point where p1241 pressure-time graph

starts to roll over and then increases linearly at a slower rate this is the

pressure inside the BA and the oil and gas pressures are now equal

(h) Bleed BA to 75-80% of required run pressure (low pressure side required

Pc/3):

i. Connect BA bleed valve to gas inlet with all valves and stoppers on the

bleed valve closed

ii. Check gas loader valve is closed

iii. Gently crack valve A1 on front panel

iv. Crack gas loader valve very gently until pressure starts to appear on the

gauge of the bleed valve

v. Once that pressure is stable, with care open knurled knob

vi. allow pressure to reduce to the desired value monitored on both gauge

and p1241 sensor

vii. Shut the knurled knob and shut A1
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viii. Bleed any excess gas from bleed valve and disconnect it from the gas

inlet

ix. N.B. if BA pressure is lower than required pressure you will need to

re-pressurise the BA

(i) Check the following valves are open: High pressure, Centre, B5, Int 2 LP,

Int 2 HP, D4, D5,

(j) Ensure B4 and C4 are closed otherwise intensifier wont work

(k) Run the pump, slowly at first and then faster

(l) N.B. if the p1241 pressure increases but the GEMS pressure doesnt, then

the intensifier is likely at the end of its stroke.

(m) Monitor pressure on GEMS and p1241 until desired Pc is reached

(n) Close centre valve and HP valve

(o) Stop pump

19. Ensure BPR valve and pipe are pressurised during loading:

(a) Open BPR valve at top of ram

(b) Set the BPR pressure control to something really high

20. Load sample:

(a) Stop set-up acquisition programs, write to excel and save files with appro-

priate names

(b) Re-start LabView and then acquisition programs for loading/unloading

experiment

(c) Ensure Centre valve is closed

(d) Open: High Pressure, A3, B3, B2, A2, Ram Bottom, BRP valve,

(e) Run pump at 20% of 400 ml/h and gently turn to up desired flow rate (100%

of 400 ml/hr is approx. 10-5 s-1 strain rate but need to check actual stress

rate), 35% of 150 ml/hour = 1e-5

(f) Stop set-up acquisition programs, write to excel and save files with appro-

priate names (see next step)
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21. Run permeability test

(a) Pause loading

(b) Close BPR valve

(c) Close F

(d) Open J (if undrained test)

(e) Run fluid flow pump at 60% of 150 ml/hour with max fluid pressure setting

about 5% above run pressure

(f) Adjust BPR in decrease direction so top pressure is less than bottom pressure

by about 5%. This ensures that dP is within 10% of confining pressure and

average Pp remains at the run pressure.

(g) Leave to run for full LVDT extension

(h) Close J (for undrained test)

(i) Open F

(j) Pump should remain in run mode the whole time - if pressure drops, the

pump will run to return fluid pressure to original run pressure

(k) Screw LVDT back to starting position

(l) Open BPR valve

22. Controlled unload

(a) Leave Pp pump running to maintain fluid pressure

(b) Close A2, B2, A3, B3, ram bottom

(c) Make sure ram top is closed

(d) Make sure BPR valve is open

(e) Set the BPR controller to match pressure in top of ram

(f) Turn BPR controller down at slow rate to approximately match the loading

rate

23. At the end of test:
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(a) Press stop on fluid flow VI

(b) Press write to excel

(c) Excel file will pop up in task bar

(d) Click on it - save as

(e) Save it to your personal data directory with a suitable name

(f) Press stop on mechanical data VI

(g) Press write to excel

(h) Excel file will pop up in task bar

(i) Click on it - save as

(j) Save it to your personal data directory with a suitable name

(k) Press STOP acquisition on CecchiLeach

(l) Close communications

24. Dismantle sample:

(a) Re-start acquisition programs for dismantling

(b) Release the pore fluid pressure by winding out the BPR (if both valves A

and J are shut for undrained test, open valve J first)

(c) Check status of confining pressure valve system: Centre valve should be

closed , D4 should be open, D5 should be open, B4 and B5 should be open,

unless intensifier was used, in which case B4 should be closed

(d) Put the grey spacers back under the vessel

(e) Drain the pore fluid pressure by cracking the BPR until all pressure released

(f) Close D5

(g) Close Int2 HP and Int2 LP

(h) Open C4 to drain very slowly (mm at a time)

(i) Open C5 to drain

(j) Monitor pressure on LabView
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(k) While confining pressure is slowly decreasing, ram pressure should also

decrease slowly if not, crack open RAM top (mm at a time) and monitor

slow pressure drop on LabView

(l) Once the pressure has dropped, close all of the valves apart from C4 and D4

(to allow confining oil to completely drain)

(m) Close all valves on the fluid flow board

(n) If necessary release pressure in the ISCO pump by cracking the big black

valve at the back of the pump

(o) Disconnect fluid pipes from to BPR, to ISCO and to rock connections

(p) Disconnect cables from pressure sensors and DPG

(q) Remove fluid flow board

25. Drive the RAM back upwards by opening the following: HP, A3, B3, B2, B1,

RAM top,

(a) Drive the pump forward

(b) Make sure the black valve to the pump is closed

(c) Ensure pump control is set to 20% full range to start

(d) The switches on the control should be set to Operate Deliver Pump and Run

(e) Ramp the pump up to 100% full range

26. Once ram has returned, stop pump if necessary and close all the valves!

27. Remove fluid flow board from side of the rig and unplug the fluid flow pump

28. Disconnect the fluid flow pipes from mushroom platens

29. Remove the metal spacer and the top LDVT plate from the stack

30. Remove the top AE sensor from the stack

31. Disconnect the confining pressure connection at the back of the vessel

32. Slide the vessel onto the top of the front panel

33. Wipe down the AE sensors to remove the remaining gel
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34. Pull out the top piston from the vessel and wipe it down

35. Lift the vessel off the bottom piston and rest the vessel on the steel block so as

not to stress the confining pressure connections

36. Remove and wipe down the melinex disks (one may still be on top the sample)

and wash the rock dust off the fluid distribution plate

37. Put all components back in the red box

38. Push the sample out with the grey tube NB, may need to core slightly smaller

samples and heat shrink them to preserve deformation features. May also need

to suck oil out of the vessel to allow sample to slide out easily

39. Tidy everything up, clean out pressure vessel and wipe surfaces

40. N.B. never exceed the desired Peff (Peff = Pc Pp); i.e., if want Pp = 10 MPa

and Pc = 40 MPa, desired Peff = 30 MPa. So, take Pc to max 30 MPa first, then

flood with fluid and raise Pp to 10 MPa, then raise Pc to 40 MPa to ensure that

Peff never exceeds 30 MPa

41. N.B. never overpressure the system make sure Pp << Pc (max 90%) in case of

locally high Pp
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Appendix D

Sample preparation procedure

1. Core, grind, sonicate and dry

2. Mark orientations (red for X-dir, black for Z-dir and blue for Y-dir)

3. Measure dry mass and volume

4. Dab silver paint marks on rock to ensure can match up for CT scan registration

5. Coat with heat shrink

6. Measure dry mass and dimensions with heat shrink

7. CT scan with red line 90 deg to camera

8. Measure dry bench top velocities (ensure S1 = X-dir)

9. Saturate

10. Measure saturated mass and submerged mass

11. Measure saturated benchtop velocities

12. Re-saturate and run experiments with fully saturated samples

13. Compare bench top bulk and shear moduli with bench top porosity and density

237



238



References

Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving
average models. Biometrika, 60, 255–265.

Ake, J., Mahrer, K., OConnell, D. and Block, L. (2005). Deep-injection and closely
monitored induced seismicity at Paradox Valley, Colorado. Bulletin of the Seismo-
logical Society of America, 95, 664–683.

Aki, K. and Chouet, B. (1975). Origin of coda waves: source, attenuation, and
scattering effects. Journal of Geophysical Research, 80, 3322–3342.

Alkhalifah, T. and Tsvankin, I. (1995). Velocity analysis for transversely isotropic
media. Geophysics, 60, 1550–1566.

Allstadt, K. and Malone, S.D. (2014). Swarms of repeating stick-slip icequakes triggered
by snow loading at Mount Rainier volcano. Journal of Geophysical Research: Earth
Surface, 119, 1180–1203.
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Toksöz, M., Johnston, D.H. and Timur, A. (1979). Attenuation of seismic waves in dry
and saturated rocks: I. laboratory measurements. Geophysics, 44, 681–690.

Tosaya, C. and Nur, A. (1982). Effects of diagenesis and clays on compressional
velocities in rocks. Geophysical Research Letters, 9, 5–8.

Tucker, M.E. and Wright, V.P. (2009). Carbonate sedimentology . John Wiley & Sons.

Twiss, R.J. and Moores, E.M. (1992). Structural geology . Macmillan.

Vasseur, J., Wadsworth, F.B., Heap, M.J., Main, I.G., Lavallée, Y. and Dingwell,
D.B. (2017). Does an inter-flaw length control the accuracy of rupture forecasting in
geological materials? Earth and Planetary Science Letters, 475, 181–189.

Versteeg, R. (1994). The marmousi experience: Velocity model determination on a
synthetic complex data set. The Leading Edge, 13, 927–936.

Versteeg, R.J. (1993). Sensitivity of prestack depth migration to the velocity model.
Geophysics, 58, 873–882.

Verwer, K., Braaksma, H. and Kenter, J.A. (2008). Acoustic properties of carbonates:
Effects of rock texture and implications for fluid substitution. Geophysics, 73, B51–
B65.

Vlastos, S., Liu, E., Main, I., Schoenberg, M., Narteau, C., Li, X. and Maillot, B. (2006).
Dual simulations of fluid flow and seismic wave propagation in a fractured network:
effects of pore pressure on seismic signature. Geophysical Journal International , 166,
825–838.

Vlastos, S., Liu, E., Main, I.G. and Narteau, C. (2007). Numerical simulation of wave
propagation in 2-D fractured media: scattering attenuation at different stages of the
growth of a fracture population. Geophysical Journal International , 171, 865–880.

Voigt, W. (1889). Ueber die beziehung zwischen den beiden elasticitätsconstanten
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