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1 INTRODUCTION 

According to Koros et al. [1] fouling is “the process resulting in loss of performance of a membrane due to deposition 

of suspended or dissolved substances on its external surfaces, at its pore openings, or within its pores”. Fouling is also 

decribed as flux decline which is irreversible and can only be removed by, for example, chemical 

cleaning [2]. This is different to flux decline due to solution chemistry effects or concentration 

polarisation which is described in more detail later in this chapter. Those flux declines can be reversed 

with clean water and are hence not considered as fouling.  

Fouling of membranes is important as it limits the competitiveness of the process due to an increase in 

costs due to an increased energy demand, additional labour for maintenance and chemical costs for 

cleaning as well as a shorter lifetime of the membranes. Essential for effective fouling control is a 

proactive operation of a nanofiltration (NF) or reverse osmosis (RO) plant where an early indication of 

fouling is acted upon and a good identification of the type of fouling is carried out. Staude [3] 

summarised the possible origins of fouling as follows 

� Precipitation of substances that have exceeded their solubility product (scaling) 

� Deposition of dispersed fines or colloidal matter 

� Chemical reaction of solutes at the membrane boundary layer (e.g. formation of 

ferric hydroxides from soluble forms of iron) 

� Chemical reaction of solutes with the membrane polymer 

� Adsorption of low molecular mass compounds at the membrane polymer 

� Irreversible gel formation of macromolecular substances 

� Colonisation by bacteria (mostly hydrophobic interactions).  

This gives an indication of the complexity of fouling and an example of such complexity is illustrated in 

Figure 1 with electron micrographs of a membrane fouled with surface water without pretreatment. 

The pictures show colloids and organic matter embedded in a gel like cake layer on top of the 

membrane. In Figure 2 another surface water deposit on a NF membrane is shown, except that in this 

case the surface water is pretreated with ultrafiltration and fouling is dominated by inorganic 

precipitates. 

Figure 1 Complex 

deposit of surface water 

on a membrane 

(adapted from Schäfer 

[4]).  

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239.
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Figure 2 Scanning electron micrographs (SEM) of membranes fouled during the filtration of 

ultrafiltration pretreated surface water and examined in an autopsy (bar length 200 µm for all 

pictures; photos courtesy of Paul Buijs, GEBetz, Belgium) 

A number of factors contribute to fouling and are strongly interlinked. The main fouling categories are 

organic, inorganic, particulate and biological fouling. Metal complexes (for example Fe, Al, Si) are also 

important. While research traditionally focuses on one category or fouling mechanism at a time, it is 

well accepted that in most cases it is not one single category that can be identified. In most real life 

applications all four types of fouling go hand in hand. The types of foulants and where they usually 

occur in NF/RO systems is summarised in Table 1. 

Scaling and silica fouling originates in general from the concentration of inorganics exceeding the 

solubility limit (see Section 5 Scaling). This most often occurs in the latter membrane stages. Metal 

oxides and colloids deposit early in the process as drag forces are relatively high (see Section 6 

Particulate and Colloidal Fouling). Organic fouling remains poorly understood and very specific to the 

characteristics of the foulant molecules (see Section 4 Organic Fouling). Organic fouling may occur at 

the beginning as well as the end stages of the modules depending on the dominating mechanism. 

Biofouling also can be found throughout all filtration stages (see Section 7 Biofouling). Rapid 

biofouling can be related to particle attachment which is found mostly in the first stage, whereas the 

slow biofouling can occur throughout all stages [5]. While in the past bacterial deposition and fouling 

have often been studied by using latex particles, the adhesive nature of extra-cellular polymeric 

substances (EPS) makes bacteria more adhesive and their deposition mechanism more complex [6]. 
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Table 1 Fouling - Where does it occur first (adapted from Hydranautics Technical Service 

Bulletin TSB107 in Huiting et al. [5]) 

Type of Foulant Most susceptible stage of NF/RO 
Scaling/silica  Last membranes in last stage 
Metal oxides First membranes of first stage 
Colloids First membranes of first stage 
Organic First membranes of first stage 
Biofouling (rapid) First membranes of first stage 
Biofouling (slow)  Throughout the whole installation 

 

In order to reduce or eliminate fouling it is necessary to identify the foulants. This can be achieved by a 

characterisation of the fouled membrane (membrane autopsy in Section 2.4) or by fouling studies in the 

laboratory. Once the foulants are identified suitable control strategies can be adapted. An overview of 

foulants and appropriate control strategies are summarised in Table 2. The strategies encompass a 

number of categories [6] namely 

� Feed pre-treatment 

� Membrane selection (non-fouling materials/coatings, suitable surface charge, 

chlorine compatibility, porosity, hydrophilicity, surface roughness etc.) 

� Module design & operation mode 

� Cleaning. 

Feed pre-treatment is addressed in Chapter 9, Membrane materials in Chapter 3, module design and 

operation in Chapter 4 and cleaning at the end of this chapter. 

Table 2 Foulants and their control strategies in nanofiltration and reverse osmosis processes 

(adapted and modified from Fane et al. [6]) 

Foulant Fouling Control 
General Hydrodynamics/shear, operation below critical flux, 

chemical cleaning 
Inorganic (Scaling) Operate below solubility limit, pre-treatment, reduce pH to 

4-6 (acid addition), low recovery, additives (antiscalants) 
Some metals can be oxidised with oxygen 

Organics Pretreatment using biological processes, activated carbon, ion 
exchange (e.g. MIEX), ozone, enhanced coagulation 

Colloids (<0.5 µm) Pre-treatment using coagulation & filtration, microfiltration, 
ultrafiltration 

Biological solids Pretreatment using disinfection (e.g. chlorination/ 
dechlorination), filtration, coagulation, microfiltration, 
ultrafiltration 

 

Membrane fouling is the worst enemy of membrane process applications and yet fouling goes hand in 

hand with successful filtration. The search to understand fouling has dominated membrane research for 

some time, yet models fail to predict and adequately describe this complex process. Fouling often 

requires frequent cleaning of membranes and consequently reduces the membrane life span. In some 

cases fouling causes membrane biodegradation and a loss of integrity [7]. Cleaning also requires 

chemicals, possibly an increased cleaning temperature and hence renders membrane processes less 

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239.
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sustainable. Further, it decreases process efficiency due to the reduced flux, requiring either higher 

transmembrane pressures (and hence more energy) or larger membrane areas. Therefore, fouling is a 

critical parameter to be considered in NF process design.  

This chapter will offer a summary of the components of fouling, most common fouling mechanisms 

and some control strategies. 

2 FOULING CHARACTERISATION 

2.1 Flux Measurement and Fouling Protocols 

An important parameter when estimating fouling is to determine clean water flux (JO) which serves as 

the basis for comparison with the unfouled membrane. JO is defined as  

  )/( 2

200

hmL
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J

C

T
O ⋅

∆⋅
=

η
η

 (1) 

where ηT is the viscosity of water at temperature T and η200C the viscosity of water at 200C, Q is the 

clean water flow at temperature T, A the membrane surface area and ∆P the transmembrane pressure 

difference [8].  . This equation is valid for dilute solutions. The relationship between viscosity and 

temperature is described, for example, by Roorda and van der Graaf [9] and is strictly speaking feed 

dependent, although dilute feeds can be described by water. 

A number of parameters impact on this JO as the filtration commences (see compaction below) and is 

maintained (reversible & irreversible flux decline). Cleaning then aims to restore as much as possible of 

this initial (or post-compaction) JO. 

Flux reduction (FR) with regards to clean water flux can be determined as a percentage of JO by 

comparing the JO before and after membrane operation as described by Mänttäri and Nyström [10] 

  (%)100⋅−=
Ob

OaOb
CWF J

JJ
FR  (2) 

where the indices a and b reflect before and after filtration of feed, respectively. Alternatively flux 

reduction can also be described as the difference between permeate and clean water fluxes as follows 

  (%)100⋅−=
Ob

Ob
PF J

JJ
FR  (3) 

where PF is subscript for permeate flux.  To use this equation a set pressure for clean water flux and 

permeate flux has to be selected and filtration should have reached steady state. 

2.1.1 Membrane Compaction 

It should be noted here that membrane compaction, which is commonly observed with NF and RO 

membranes is not classified as fouling. Compaction is caused by the applied pressure and can be both 

reversible and irreversible. The compaction may change both the active layer and the support [3]. To 

overcome the impact of compaction in fouling studies, membranes are often compacted at a higher 

pressure than the operation pressure to ensure flux stability during experiments (see Figure 3) before 

pure water flux is determined. 
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2.1.2 Variation of Membrane Permeability with Solution Chemistry 

Braghetta et al. [11]have investigated the im pact of variation in solution chemistry, namely pH and 

ionic strength on membrane permeability. At low pH and high ionic strength this permeability 

decreased which was linked to a compaction of the membrane matrix due to charge neutralisation and 

double layer compression. The authors used the parameter of Debye length to quantify such changes in 

membrane structure or more precisely the double layer thickness.  A reduced Debye length effectively 

increases the cross-sectional area available for solvent transport. 

2.1.3 Fouling Study Protocols 

Figure 3 shows a typical fouling study protocol where a new membrane is firstly compacted and clean 

water flux is measured. Subsequently the feed solution (in the case of this figure a natural organic 

matter (NOM) solution) and flux measured. Depending on the feed water a more or less significant 

flux decline is observed. This flux decline has a number of components (i) concentration polarisation or 

the loose accumulation of solutes, (ii) fouling that can be reversed chemically, and (iii) irreversible 

fouling. Concentration polarisation or loose accumulation can be reversed by a water flush, reversible 

fouling can be removed with an appropriate chemical cleaning protocol and irreversible fouling, which 

can be due to the irreversible binding of foulants to the membrane or a membrane compaction cannot 

be reversed and will ultimately determine the lifetime of a membrane. It should be noted here that 

some researchers classify all fouling that cannot be reversed with a water flush as irreversible. 

Figure 3 Typical protocol used in fouling 

studies (adapted from Kilduff et al. [12]). 

 

 

 

 

 

 

 

 

 

For constant flux operation a protocol would measure the variation of transmembrane pressure in a 

similar protocol, where transmembrane pressure increases with fouling. 

DiGiano et al. [13, 14]have developed a range of useful filtration tests that correspond to flux decline 

and recovery patterns of full scale plants. Such tests are bench scale crossflow filtration tests that can be 

used for fouling evaluation. As the authors emphasise- such tests should not be used to replace pilot 

testing. 

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239.
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2.2 Normalisation of Membrane Performance 

According to Huiting et al. [5] variable system parameters need to be normalised in order to compare 

system performance and correctly evaluate fouling. Those varying parameters are pressure, temperature 

and feed water quality. The normalised parameters are 

� Normalized Water Flow or productivity (expressed as Mass Transfer Coefficient (MTC); 

� Normalized Pressure Drop (NPD) 

� Normalized Salt Passage (NSP) [5]. 

Changes in those normalized parameters may indicate a problem. Fouling related changes are in the 

order of magnitude of 10-15% decrease in MTC, 10-15% increase in NPD, and a “significant” increase 

of NSP over time [5]. To use this methodology additional monitoring measures are required. Those are, 

for example, conductivity, flow and pressure indicators in the different membrane stages. 

2.3 Feed Water Fouling Potential 

Feed water analysis can give some indication of likelihood of fouling. While chemical analysis gives very 

detailed information that then needs to be analysed, indices have also been widely used to determine 

fouling potential of feedwaters. As described by Huiting et al. [5] fouling indices give an indication of 

particulate fouling. The most commonly used indices (especially in industry) are the silt density index 

(SDI) and the modified fouling index (MFI) and these are described below.  

2.3.1 Feed Water Analysis 

Feed water analysis plays an important role in the determination of fouling potential. For example, 

turbidity is a commonly used parameter for the determination of fouling potential in RO [3]. However, 

as the pre-treatment with membrane processes such as MF and UF becomes more common, this value 

will not be very meaningful due to the very high removal of turbidity and hence very low turbidity 

values. The method is not necessarily sensitive enough to determine problems related to small colloids 

such as silica. 

Membrane design software usually requires entering a feed analysis to predict fouling potential, 

although this is usually limited to scaling. Sparingly soluble salts that are prone to precipitation and 

scale formation are important to be quantified. The section on scaling in this book gives a detailed 

overview of common scalants. Metals such as magnesium and iron are also very important. Magnesium 

has been reported to play an important role in the precipitation of silica [15].  

Organics are known to play a substantial part in NF fouling. Dissolved organic carbon (DOC) 

contributes to fouling by adsorption, gel formations, pore plugging and as a nutrient for 

microorganisms. Research investigating the fouling of NF by DOC, its fractions natural organic matter 

(NOM), humic acids (HA), fulvic acids (FA), and hydrophilic acids is very active and will be 

summarised in the organic fouling section of this chapter. NOM, as most of the above fractions, 

consists of biodegradable and refractory organics with varying characteristics such as aromaticity, 

molecular mass, charge, functional groups and affinity towards membrane materials. As a parameter to 

investigate the characteristics of such bulk organics and their fractions as a means to predict fouling the 

specific UV absorbance (SUVA) has been introduced.  

  
DOC

UVA
SUVA nm254=  (4) 
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where UVA254 nm is the UV absorbance of a water sample at 254 nm. SUVA describes the relative 

aromatic content of organic carbon and is used predominantly in water and wastewater treatment. 

Nutrients such as nitrogen and phosphate are also an important measure for fouling potential. The 

presence of bacterial cells indicates biofouling potential in combination with such nutrients [16]. To 

link water characteristics and biological growth potential Escobar and Randall [17] have compared two 

commonly used indicators of bacterial regrowth potential: assimilable organic carbon (AOC) and 

biodegradable organic carbon (BDOC). It was found that measuring AOC, although only representing 

0.1-9% of influent DOC in NF underestimated regrowth potential, while BDOC which represents 

about 10-30% of DOC overestimates it. AOC was found to be composed of compounds like actetate 

that are poorly retained by NF and hence can act as a nutrient on the feed and permeate side. In 

consequence, Escobar and Randall suggested measuring both parameters for a more realistic indication 

of fouling potential. In terms of methodology, AOC determines the availability of organic matter to 

increase biomass concentration using a bioassay, counting colonies in water samples to monitor 

bacterial growth, which is relatively time consuming and complex. BDOC measures the degradation of 

organic carbon by suspended or fixed bacteria over a certain amount of time. 

In response to the need t be able to predict fouling potential Shaalan [18] has attempted to develop a 

fouling and retention prediction model based on feed water analysis for surface water applications. The 

model in empirical and based on the performance of a number of treatment plants, but as expected for 

such complex phenomena the deviation between model and test data is significant. The temptation to 

develop such models is large and advanced in fouling research may help in the development of 

adequate relationships. 

2.3.2 Silt Density Index (SDI) 

The silt density index (SDI) is also referred to as colloid index or fouling index. The motivation of this 

index is to describe a linear relationship between feed particle content and flux decline. The linear 

relationship however is usually not achievable. The SDI is determined by the repeated filtering of a 

certain volume of feed through a 0.45µm filter in dead-end and constant pressure mode [3, 19]. 

 )(min
/1

121 −−
=

T

tt
SDI  (5) 

where t1 is the time required to filter volume V at time zero, t2 is the time required to filter volume V at 

time T (in min). The SDI is commonly used to estimate the interval length between membrane cleaning 

and if the module can be used without additional pre-treatment [3]. However, the use of SDI has been 

criticized and its use as an important monitoring parameter described as a ‘dangerous mistake’ [15]. 

2.3.3 Modified fouling index (MFI0.45) 

The modified fouling index (MFI) can achieve the linear relationship between concentration and flux 

decline, but still cannot accurately predict flux decline [3, 8]. Boerlage et al. [8] confirmed that this is due 

to the fact that in RO fouling is caused by smaller colloids that are not retained by the microfiltration 

membranes used in the MFI. Seeing the above complexities of fouling mechanisms, this is not 

unexpected. To determine the MFI, the same equipment as for the SDI is used. The protocol suggests 

the measurement of the filtrate volume at a pressure of 210 kPa every 20 mins for a duration of 20s. 

The data is presented as t/V over V and the tan α is determined from the slope [3]. MFI can then be 

calculated as 

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239.
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P
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T
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η
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where ηT is the viscosity of water at temperature T and η200C the viscosity of water at 200C. The 

equation is based on the Karman-Kozeny relationship and the assumption of an incompressible cake 

[19]. This value is also referred to as MFI0.45 seeing that the same membrane is used as for the SDI. 

Some applications also describe the use of a MFI0.05, hence using a membrane with a 0.05 µm pore size. 

Both MFI and SDI underestimate the fouling observed in practice [19]. 

2.3.4 Modified fouling index UF (MFI-UF) 

As the SDI and the MFI do not include smaller colloid sizes, a new index using an ultrafiltration (UF) 

membrane has been developed [5]. Boerlage et al. [8] tested this MFI-UF as a function of molecular 

weight cut-off (MWCO, 1-100 kDa) of the UF membranes and obtained values ranging from 2000-

13000 s/L2 (as compared to MFI values of 1-5 s/L2). Higher values were linked to the retention of 

smaller colloids as well as cake filtration of the retained particles, although a correlation with the 

MWCO was not apparent. While other membrane characteristics may be partly responsible for those 

varied results, it is also important to note that fouling at such MWCOs is complex and cannot be solely 

attributed to particulates. A 13 kDa membrane was established to be the best membrane for such tests. 

Boerlage et al. [19] used a 13 kDa UF membrane (estimated pore dimension 9 nm) to measure fouling 

potential and effectiveness of pre-treatment and compare the results with the SDI and the MFI0.45. 

MFI-UF can be operated in constant flow or pressure mode. The MFI-UF values were in fact 400-1400 

times higher than the MFI0.45 due to the smaller particles captured. The MFI-UF can also be used to 

determine the effectiveness of pre-treatment with regard to reduction of fouling potential. Roorda and 

van der Graaf [9] used the MFI-UF to determine the fouling potential of UF membranes and 

confirmed the dependence on membrane type. 

As a general evaluation Reiss and Taylor [20] compared three parameters used to investigate fouling – 

the silt density index (SDI), the modified fouling index (MFI), and the linear correlation of the water 

mass transfer coefficient (MTC).  Three different NF pilot systems were used with different 

pretreatments including activated carbon and MF.  No correlation between the different parameters 

was obtained, indicating that the filtration laws on which the models are based might not be valid for 

NF. Hence, these parameters need to be used with caution. 

It is clear that the possibility of a rapid fouling prevention is tempting. How well such indices work in 

determining fouling in a holistic sense is not clear- it would certainly be useful to establish a method 

that can combine particulate fouling with other types such as organic, inorganic and biofouling. To do 

this one would require the membrane to be used and an option to perform such tests are stirred cell 

experiments combined with BFR under filtration conditions. A suitable test protocol is yet to be 

developed and may depend on the foreseen operating conditions as in general it is difficult to simulate 

realistic fouling under laboratory conditions. 

2.3.5 Biofilm Formation Rate (BFR) 

Biofilm formation depends on favourable conditions for microorganisms in the system. Details on 

Biofouling are presented in Section 7. A number of methods to assess such growth have been 

summarised by van der Kooij et al. [21] as follows 
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� Determination of the concentration of assimilable organic carbon (AOC) using 

growth measurements 

� Quantification of the biodegradable dissolved organic carbon (BDOC) using 

suspended or immobilised bacteria 

� Measurement of bacterial growth curves using turbidity as an indicator [22] 

� Biofilm formation rate (BFR) measurement by exposing a surface to the water in 

question. 

The biofilm formation rate is the most direct measure of biofilm formation as it accounts for all 

chemicals contributing to the biofilm formation and also accounts for concentration fluctuations [21]. 

BFR can be measured using an online operated biofilm monitor where the accumulation of active 

biomass (by means of ATP measurement) is determined as a function of time on glass rings [21]. The 

BFR value allows the prediction of cleaning intervals and a value of < 1 pg ATP/cm2.d allows long 

term stable operation, but such values generally require extensive pretreatment [16]. Temporary BFR 

values of > 120 pg ATP/cm2.d indicate severe biofouling potential [23], while for values in between 

those extremes biofouling is dependent on many other parameters as well and to date not well 

understood. It is interesting to note that van der Kooij et al. [21] found that the material type (in their 

investigation glass & Teflon) had only minor effects on biofilm formation. This is an important 

investigation to be repeated for different membrane materials. BFR was enhanced by low 

concentrations of easily degradable substrates which confirms that the measurement of the chemical 

composition of feed waters, including low concentration organic compounds, is important. Sadr 

Ghayeni et al. [24] in fact investigated the adhesion of bacteria to RO membranes as a function of 

solution chemistry and obtained differences in attachment with varying membrane types, ionic strength 

(increased attachment at higher ionic strength) but not pH. The important issue of conditioning films 

was also investigated and attachment may vary due to such films. Conditioning films are most likely 

formed by adsorption of organic compounds as covered in Sections 3.3 and 4.3. This sorption 

continues with sorption of organic compounds into biofilms as studied by Carlson and Silverstein, 

where the sorption depends strongly on the characteristics of the organic molecules [25]. 

2.4 Membrane Autopsy 

Membrane autopsy is the destructive method to characterise the nature and location of foulants using 

predominantly surface characterisation techniques. To perform membrane autopsy, the membranes 

need to be sealed by covering the end caps after the elements are removed from the installation, stored 

and transported in a cool environment and preferably all analysis performed within 24 hours [23]. 

Gwon et al. [26] used membrane autopsy to investigate the difference of fouling along the length of a 

membrane by dividing the module into five length sections. 

As an example, Vrouwenvelder and van der Kooij [16]  used membrane autopsy for the investigation of 

biofouling. The autopsy comprised the following steps 

� Visual inspection of the elements (colour, odour, particle deposits, faults, etc) & 

lengthways opening of elements 

� Selection of samples (adequate special distribution) 

� Analysis (adenosinetriphosphate (ATP) concentration to determine active biomass, 

total direct cell count (TDC), heterotropic plate counts (HPC) to determine colony 

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239.
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forming units (CFU), inductively coupled mass spectrometry (ICP-MS) for 

quantification of inorganic compounds. 

Foulant deposits can be removed from the surface if the fouling layer is sufficiently thick. Such deposits 

can then be analysed and their composition determined as mass fractions using various analytical 

techniques. For example, Sayed Razavi et al. [27] scraped membrane deposits composed of proteins, 

lipids and carbohydrates off for rheological measurements to determine which compounds deposited 

preferentially. The deposits can also be removed by chemical means, for example Cho and Fane [28] 

dissolved EPS deposits using a phenol solution for further analysis and Lee et al. [29] used NaOH to 

remove NOM deposits for further fractionation onto hydrophobic, transphilic, and hydrophilic 

fractions. Luo and Wang [15] used FTIR-GC/MS following desorption with NaOH and fractionation 

with XAD resins to characterise the organic deposits. Organics originating from a desalination system 

were identified to be fatty acids, carbonyl esters, as well as aromatic species and silicates. Nghiem and 

Schäfer [30] used acetone to desorb organic trace contaminants for subsequent quantification. Belfer et 

al. [31] used nitric acid (HNO3) assisted with sonication to dissolve deposits that were subsequently 

analysed for inorganic constituents and identified as calcium phosphate scale due to the abundance of 

substantial amounts of calcium and phosphate, besides silica. Such analysis is usually combined with 

surface characterisation techniques. 

Surface characterisation techniques used for membrane autopsies are energy dispersion of X-Ray 

spectroscopy (EDX) mapping or scanning electron microscopy (SEM) [6]. Using EDX, Farooque et al. 

[32] have determined that the main foulants on a NF pre-treatment membrane used in seawater 

desalination by RO were O, Fe, Cl, Na, S and Cr. SEM also revealed the presence of diatoms 

(confirmed by the presence of an SI peak). Butt et al. [33] used also X-ray diffractometry (XRD) to 

determine the type of species or phases in which scales are present. This method also allows to 

establish relative amounts. This study determined that most scales were of amorphous nature which 

was attributed to the presence of anti-scalants and that the bulk of the deposits was biomass. Kim et al. 

[34, 35] have developed well adapted protocols for SEM and transmission electron microscopy (TEM) 

for membranes. A drawback of such methods is the requirement of high vacuums and hence the 

limitation to dry samples which may not always give a true picture of the fouling layer. EDX and SEM 

are used to determine the atomic composition of a membrane deposit [36] and an example of a typical 

result is shown in Figure 4 for a TFC membrane used in the treatment of tertiary municipal effluent. 

The fouling in this case was established to be a combination of biofouling and calcium phosphate 

precipitate as described above [31]. The problem of restrictions to dry samples has recently been 

overcome by new techniques such as atomic force microscopy (AFM) where wet samples can be 

analysed or samples can even be immersed in water. The resolution of this technique is extremely high 

with the possibility of individual NF pores being identified (see cover page of this Book) and surface 

roughness calculations or force measurements including the interactive forces between foulants and 

membranes allowing conclusions about mechanisms [37-39]. Such characterisation techniques are 

described in more detail in Chapter 5. 
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Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy can be used to show 

the functional groups of foulants and the modification of membrane functional groups due to fouling 

[36]. Jarusutthirak et al. [40] used FTIR to identify fractions of effluent organic matter (EfOM) with 

deposits found on membranes by comparing FTIR spectra of clean and fouled membranes. Infrared 

internal reflection spectroscopy (IR-IRS) is a similar technique that can be used to characterise the 

nature of the deposited layer on the membrane [41]. 

Figure 4 SEM and EDX scans of a NF270 membrane fouled by tertiary municipal effluent a) 

SEM micrograph, b) calcium, c) phosphorous, and d) sulphur element scans (pictures 

reprinted from Belfer et al. [31]). 

3 FOULING MECHANISMS 

Nanofiltration membranes have individual fouling characteristics and in general tighter membranes are 

known to foul to a lesser extent [42]. If a foulant is able to permeate through a membrane the fouling 

potential is higher as the penetration into pores is possible [42]. Hence, membrane and foulant 

characteristics play an important role in fouling (see Chapter 3 and 5). For example, membrane surface 

charge plays an important role in fouling. It is desirable that the solute and the membrane surface are of 

identical charge to enhance repulsion, and hence, reduce the likelihood of deposition. However, 

a b

c d
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Nanofiltration - Principles and Applications 

13 

hydrophobic interactions between foulants and membranes may overcome electrostatic repulsion [43]. 

Besides membrane material properties, the operation mode and module design are important, modules 

are described in Chapter 4. 

Fouling has been described in literature using the osmotic pressure and resistance in series models. 

While the equations are given here, the quantitative description of the contributing mechanisms is given 

in the subsequent sections. Pure water flux under laminar conditions through a tortuous porous barrier 

may be described, according to Carman [44] and Bowen and Jenner [45], by equation (7).  

  
MR

P
J

η
∆=     (7)  

where ∆P is the transmembrane pressure difference, η the dynamic solvent viscosity, and RM the clean 

membrane resistance (i.e. the porous barrier).  

The Resistance in Series Model describes the flux of a fouled membrane. This is given in equation (8). 

The resistances RCP, RA, RG, RP and RC denote the additional resistances which result from the 

exposure of the membrane to a solution containing foulants. RCP is the resistance due to concentration 

polarisation, RA the resistance due to adsorption, RG the resistance due to gel formation, RP the internal 

pore fouling resistance, and RC the resistance due to external deposition or cake formation. It should be 

noted here that the selection of resistances varies in literature and is somewhat ambiguous. 

  )( CPGACPM RRRRRR

P
J

+++++
∆=

η    (8)  

The Osmotic Pressure Model, as shown in Eqn (9), is an equivalent description for macromolecules 

according to Wijmans et al. [46]. This equation includes reversible fouling also. ∆Π is the osmotic 

pressure difference across the membrane. The osmotic pressure difference can usually be neglected in 

MF and UF, since the rejected solutes are large and their osmotic pressure small. However, even 

polymeric solutes (macromolecules) can develop a significant osmotic pressure at boundary layer 

concentrations [47]. The osmotic pressure can also be incorporated into RCP. 

  
MR

P
J

η
∆Π−∆=    (9) 

Reversible flux decline can be reversed by a change in operation conditions, and is referred to as 

concentration polarisation. Irreversible fouling can only be removed by cleaning, or not at all.  

Irreversible fouling is caused by chemical or physical adsorption, pore plugging, or solute gelation on 

the membrane. 

3.1 Concentration Polarisation (CP) 

Concentration polarisation (CP) is the process of accumulation of retained solutes in the membrane 

boundary layer and was first documented by Sherwood [48]. Concentration polarisation creates a high 

solute concentration at the membrane surface compared to the bulk solution. The retained solutes are 

brought into the boundary layer by convection and removed by a generally slower back diffusion. This 

back diffusion of solute from the membrane is assumed to be in equilibrium with the convective 

transport.  The concentration in the boundary layer is critical for both, fouling and retention [49]. The 

schematic of CP is shown in Figure 5 and with regard to scaling in Figure 19. CP is normally assumed 
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to form rapidly at the beginning of filtration [10]. CP in NF causes a reduction in flux predominantly 

due to the increased osmotic pressure of retained ions and the formation of gels by retained organic 

molecules. Colloidal deposits can further increase CP by forming an unstirred layer that increases the 

boundary layer concentration.  

At the membrane, a laminar boundary layer exists (Nernst type layer), with mass conservation through 

this layer described by the Film Theory Model in equation (10) [3].  

  0=++−
dx

dc
DcJcJ BL

SFP   (10)  

where cF is the feed concentration, DS the solute diffusivity, cBL the solute concentration in the 

boundary layer and x the distance from the membrane. 

. 

Figure 5 Concentration 

polarisation (adapted 

from Sablani et al. [49]). 

 

 

 

 

 

 

 

 

 

 

After integrating with the boundary conditions c = cW for x = 0 and c = cb for x = δ (where δ is the 
boundary layer thickness) for similar solute and solvent densities, constant diffusion coefficient, and 

constant concentration along the membrane, equation (10) can be derived. cW is the wall concentration 

which determines adsorption, gel formation or precipitation, and kS the solute mass transfer coefficient. 

  J k
c c

c cS
W P

B P

=
−
−ln

( )

( )
 with k

D
S

S= δ . (11)   

Concentration polarisation can be minimised with turbulence promoters on the feed side of the 

membrane, such as spacers or introduction of crossflow.   

 

A typical flux versus time diagram for a cyclic operation of a UF system is shown in Figure 6, where 

cyclic operation means the alternating cycle of filtration or permeate production followed by cleaning. 

The diagram shows flux for cycles i=1 to i=n and a very rapid flux decline due to concentration 

polarisation followed by operation at average flux until cleaning. From cycle to cycle the pure water 
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permeability as well as the average steady state flux decrease indicating a loss in productivity that 

cannot be recovered by cleaning until the membrane lifetime is reached. Nikolova and Islam [50] 

consider concentration polarisation as a more gradual process. 

 

Figure 6 Illustration 

of flux decline over 

time due to fouling 

and concentration 

polarisation (adapted 

from Sablani et al. 

[49]). 

 

 

 

 

 

 

 

The effect of concentration polarisation introduces complexity and confusion into the core membrane 

performance parameter retention. It should be distinguished here between the terms observed (ROBS) 

and real retention (R0). The observed retention is usually measured in membrane applications and 

calculated as 

  %1001 ⋅








−=

b

P
OBS

c

c
R  (12) 

where cp and cb are the permeate and bulk solute concentration as illustrated in Figure 5, respectively. 

The bulk concentration is often approximated with either the feed concentration or the average of feed 

and retentate concentration. Considering concentration polarisation, this observed retention does not 

reflect membrane characteristics, as the retention by the membrane is higher due to the increased wall 

concentration cw at the membrane surface. Hence the real retention is 

  %10010 ⋅
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R . (13) 

To determine the real retention requires knowledge of the solute concentration at the membrane 

surface which cannot be directly measured. To estimate this wall concentration one requires the 

velocity dependent mass transfer coefficient which can be determined using mass transfer correlations 

[51]. The relationship between real and observed retention was published by Koyuncu and Topacik [51] 

as follows  
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where J is the water flux. Hence an increased concentration polarisation at constant intrinsic membrane 

retention will lead to an increased permeate concentration, and hence, a decreased observed retention. 

CP is generally considered as a reversible process that can be controlled by increasing crossflow 

velocity, permeate pulsing, ultrasound, or an electric field [49]. All those processes aim at the reduction 

of the solute concentration at the membrane wall (cW), which can only be calculated if the mass transfer 

coefficient is known. Despite the reversible nature of CP, it contributes to the more problematic 

fouling mechanisms listed below [49]. 

� Adsorption of solute 

� Precipitation of solute 

� Gel layer formation 

To reduce CP and fouling, operation below a so-called critical flux [49] is important, which is discussed 

conceptually in section 3.6. 

3.2 Osmotic Pressure 

Osmotic pressure is closely linked to concentration polarisation. Increased concentration of inorganic 

or organic solutes causes an increase in osmotic pressure. This osmotic pressure reduces the effective 

transmembrane pressure and the solvent flux. The osmotic pressure of an inorganic solute can be 

calculated as 

  TR
V

n
j

i

i
iINORG ∑=∆Π  (15) 

where j is the factor for mole increase due to dissociation for solute i, n the number of moles, R the 

ideal gas constant and T the absolute temperature. For high salt concentrations this equation is 

inadequate and the Pfitzer equation can be applied. This approach has been used for a nanofiltration 

application by van der Bruggen et al. [52]. 

The osmotic pressure of an organic solute can be calculated as 

  3
3

2
21 cAcAcAORG ++=∆Π  with  

M

TR
A

⋅=1  (16) 

where Ai are the viral coefficients with A2 and A3 considered as negligible for concentrations up to 100 

g/L. R is the universal gas constant, M the average molecular mass of the organic/polymer and T the 

absolute temperature of the solution [50]. 

3.3 Adsorption 

Adsorption can be defined as  the specific interaction between the membrane and a solute even in the 

absence of a convective flow through the membrane [50]. The static adsorption (in the absence of flux) 

is generally lower than in dynamic adsorption due to the increased hydraulic resistance [30].  

Adsorption may occur on the membrane surface or in pores, essentially at any point of contact between 

the solute and the membrane. This is shown in simplified terms in Figure 7. 
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Solute < Pore size: Pore penetration is possible and adsorption of a solute 

occurs on the membrane surface, in the pores and the back of the membrane 

 
Solute > Pore size: Pore penetration is not possible and adsorption sites are 

only available on the membrane surface 

Figure 7 Simplified diagram of adsorption for different solute to pore size proportions. 

Adsorption can be measured using the partitioning coefficient between membrane and bulk phase 

which is defined in Eq (17). 

  CM
K

⋅
Γ=       [L m-2] (17) 

where  Γ:  adsorbed quantity of organic (µg m-2) 

  M: molar mass of the adsorbing compound (g/mol) 

  C: equilibrium concentration of the solute in the solution (mmol L-1) 

Van der Bruggen et al. [2] observed flux declines of up to 59% with organics in solutions with 

concentrations of about 1 g/L. Combe et al. [53] also determined foulant – membrane partitioning 

coefficients and those researchers also considered the solution volume.  

Van der Bruggen and Vandecasteele [54] have used an adapted Freundlich equation for the direct 

description of adsorption from flux decline measurements.  

  n
f CKJ ⋅=   (18) 

where  J: water flux (L m-2 h-1) 

  Kf; n: parameters 

In filtration the adsorbed amount can determined by mass balance using the following equation 

  cc

n

piPFF VCCVAVC ++Γ= ∑
1

 (19) 

where A is the membrane area (cm2); Г is the amount of solute adsorbed per surface area (ng cm-2) and 

n is the number of permeate samples; CF, CP, CC and VF, VP, VC are concentration and volume of feed, 

permeate and concentrate respectively. Using this equation for the determination of adsorption 

assumes that all solute is adsorbed. For higher concentrations this is more correctly expressed as the 

amount of deposit. 

3.4 Gel Layer Formation 

Gel formation is considered as the precipitation of organic solutes on the membrane surface. This 

process usually occurs when the wall concentration due to concentration polarisation exceeds the 

solubility of the organic. Gel formation does not necessarily mean irreversible flux decline. 

The Gel Polarisation Model is based on the fact that at steady state flux reaches a limiting value, where 

an increase in pressure no longer increases the flux. According to the Gel Polarisation model, at this 

limiting value, the solubility limit of the solute in the boundary layer is reached and a gel formed. For 

100% retention, the expression for this limiting flux (Jlim) is described by Eq (20). cG is the gel 

concentration, beyond which the concentration in the boundary layer cannot increase. 
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B

G
S c

c
kJ lnlim =    (20) 

The model does not include membrane characteristics, and tends to predict a lower flux than observed.  

An improvement can be achieved in using DS for the gel layer rather than the bulk solution [45].  

 

 

Solute < Pore size: Pore penetration is possible and gel formation of a solute 

occurs on the membrane surface and in the pores 

 

Solute > Pore size: Pore penetration is not possible and gel formation occurs 

only on the membrane surface 

Figure 8 Simplified diagram of gel layer formation following adsorption. 

3.5 Cake Formation and Pore Blocking 

Belfort et al. [55] proposed five stages of fouling in microfiltration of macromolecules that are 

somewhat applicable to NF. These are,  

(1)  fast internal sorption of macromolecules,  

(2)  build-up of a first sublayer,  

(3)  build-up of multisublayers,  

(4)  densification of sublayers, and  

(5)  increase in bulk viscosity.  

The fifth stage can be neglected for dilute suspensions like surface water. The dependence on particle 

size can be described as 

  dsolute < dpore:  deposit on pore walls, restricting pore size 

  dsolute ≈  dpore:  pore plugging or blockage  

  dsolute > dpore:  cake deposition, compaction over time. 

Those principles are illustrated in Figure 9. For solutes much smaller than the membrane pores, internal 

deposition eventually leads to the loss of pores.  Solutes of similar size to the membrane pore will cause 

immediate pore blockage. Particles larger than the pores will deposit as a cake, with the porosity 

depending on a variety of factors including particle size distribution, aggregate structure and 

compaction effects. The process of small particles adsorbing in the pores may be a slow process 

compared to pore plugging, where a single particle can completely block a pore and therefore flux 

decline should be more severe for the latter case. If the membrane is non porous then the deposition of 

solutes takes place on the membrane surface with smaller solutes generally forming less permeable 

deposits. 
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A Pore versus Surface Fouling 

Pore Adsorption (dsolute<<dpore): Colloids or solutes adsorb on the membrane 

walls, effective pore size is restricted and flux declines 

Pore Plugging (dsolute ≈ dpore): Colloid or solutes of a similar size to pore diameter 

block pores completely, reduction in membrane porosity and severe flux decline 

 

Cake Formation (dsolute>>dpore): Colloid or solutes larger than the pores are 

retained due to sieving effects and form a cake on the membrane surface, 

depending on pore to particle size ratio flux decline occurs (permeability of the cake 

layer as well as the cake thickness are important)  

B Impact of Colloid or Solute Stability 

Stable Colloids smaller than the pore size are not retained by membrane, unless 

adsorbed by the membrane material  

Tight Aggregates are formed by slow coagulation, are retained and form a cake on 

the membrane. The aggregate structure may collapse depending on forces on the 

aggregate and the aggregate stability. Flux through the tight aggregates is usually 

low unless the aggregates deposit as a porous cake of large particles.  

Loose Aggregates are formed by rapid coagulation and are also retained. Such 

aggregates form a cake on the membrane. The aggregate structure may collapse 

depending on forces on the aggregate and the stability of the aggregate. Flux 

through the open aggregates is high if the structure is maintained during filtration. 

C Solute-Solute Interaction 

Colloids < pores and stabilised with organics (for example) are not retained by 

the membrane, unless adsorbed by the membrane material or destabilised with high 

salt concentrations.  

Aggregates with organics adsorbed after aggregation (for example) are fully 

retained by the membrane, but may penetrate into the upper layer of the membrane. 

This could also be organics destabilised with multivalent cations. 

 

Colloids which are partially aggregated and destabilised such as a variety of 

solutes that interact with each other in heterogeneous ways in the presence of salts, 

colloids and dissolved organics, form small and diverse aggregates which may block 

pores. 
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Figure 9 Colloid – organic fouling mechanisms 

Chang and Benjamin [56] pointed out that the mechanisms of organic colloid deposition and gel layer 

formation require the application of different models, although many authors fail to differentiate 

between gel and cake formation. Some authors refer to those mechanisms as deposit formation to 

simplify the issue. The differentiation is not always simple, especially when considering that aggregation 

of the gel composites may in fact form a more particulate or colloidal deposit. 

3.6 Critical Flux and Operating Conditions 

Critical flux stems from the concept that the higher the flux the stronger is the drag force towards the 

membrane (and hence deposition of colloids), the stronger concentration polarisation (and hence the 

boundary layer thickness and solute concentration) and the higher the compaction of a deposit. The 

stronger the flux the less dispersible the deposit will be.  

Critical flux is defined as the limiting flux value below which a flux decline over time does not occur 

[57]. Traditionally critical flux derives from the filtration of particulate matter using porous membranes. 

Mänttäri and Nyström [10] describe a strong and weak form of critical flux where the strong form 

describes the flux where the actual flux starts deviating from the clean water flux, whereas the weak 

critical flux is the point where flux increase with pressure is no longer linear. This is illustrated in Figure 

10 where the solid line is the linear dependence of CWF of pressure, while the dashed line the liner 

dependence of permeate flux of pressure. The hollow and solid circles show the permeate flux after a 

stepwise increase and decrease of pressure, respectively. The squares are flux values after filtration at 

the highest pressure (and hence with significant irreversible fouling). 

Figure 10 Critical flux in 

nanofiltration (reproduced from 

Mänttäri and Nyström [10]). Note 

that lines represent different 

experiments. 

 

 

 

 

 

 

 

A number of parameters influence this critical flux. Crossflow velocity increases the critical flux while 

solute concentration decreases it. Repulsion between solute and membrane also increase critical flux in 

the case of high molar mass polysaccharides, while in paper industry effluents only weak forms of 

critical flux were found [10]. Some authors have noted that the thickness of the fouling layer is 

primarily dependent on the initial flux [27]. Gwon et al. [26] compared NF and RO fouling and found 

that the fouling layer in NF was mostly organic and could be fully recovered while in RO the fouling 

was inorganic and organic and could not be recovered. The fouling at the end of the RO modules was 
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most severe which indicates the importance of reduced crossflow and increased concentration. 

However the flux at the end of modules would normally be lower than at the module entrance. 

3.7 Additional Fouling Mechanisms 

In nanofiltration processes, the retention of ionic species results in a concentrated layer of ions at the 

membrane surface (known as salt concentration polarisation), which creates an osmotic pressure drop across 

the membrane.  Sub-micrometer colloids are highly Brownian, which means that they are influenced by 

diffusive, as well as convective transport mechanisms.  Also, aggregation and deposition of small 

colloids are strongly influenced by colloidal forces [58].  The polarized layer of rejected ionic solutes 

exacerbates colloidal fouling of NF membranes by greatly reducing repulsive electrostatic interactions.  

Moreover, aggregation of organic macromolecules and precipitated salts may occur in the bulk solution 

near the membrane surface where rejected ionic solute concentration is higher than in the bulk.  These 

aggregates may act as like very small colloids (typ. < 500 nm) and cause severe fouling because they are 

not removed in dissolved form by pre-treatment.  Therefore, the feed solution chemistry and 

membrane ion retention are critical to the formation of colloidal-cake layers.   

Accumulation of rejected dissolved and (organic, inorganic, or biological) colloidal matter at the 

membrane surface presents the opportunity for additional fouling mechanisms. These mechanisms 

arise from interactions between rejected ions and colloids passing through the concentration 

polarisation layer and at the membrane surface.  The classic picture of this situation is presented in 

Figure 11 where it is assumed that a stagnant cake layer develops with a salt and colloid polarisation 

layer flowing above the cake layer. In addition, analysis of the factors affecting dissolved solute mass 

transfer reveals one potential interaction between a colloidal cake layer and the salt CP layer.  

Increasing the bulk flow rate increases the shear rate, which enhances mass transfer.  However, the 

most influential variable on mass transfer is the solute diffusivity (ks ∝ D2/3).   

 

 

 

Figure 11 A schematic of a crossflow nanofiltration process showing the development of the 

cake and concentration polarisation layers, and the corresponding permeate flux decline along 

the axial direction. 
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Figure 12 Conceptual illustration of hindered mass transfer in crossflow membrane filtration.  

The tangential flow velocity, U0 and the salt ion diffusion coefficient are critical parameters in 

determining mass transfer in the salt concentration polarisation layer.  Tangential flow and salt 

ion back-diffusion may be locally hindered in the presence of a colloid deposit layer, thus 

enhancing the membrane surface salt concentration and the resulting trans-membrane osmotic 

pressure. 

It was recently proposed that the mutual diffusion coefficient of rejected salt ions may be hindered 

within the colloid deposit layers [59-61].  A hindered salt diffusion coefficient was recently used to 

describe colloid cake-CP layer interactions in crossflow RO/NF membrane filtration [60-62].  The 

result was elucidation of a single mechanism – “cake-enhanced concentration polarisation” – capable of 

describing the majority of observed flux decline, as well as the observed decline in salt retention due to 

colloidal fouling of NF (and RO) membranes.  The overall mass transfer coefficient was considered the 

sum of two mass transfer coefficients, one describing salt back-diffusion from the membrane surface 

through the cake layer, and one through the remainder of the salt CP layer.   

Incorporating the hindered mass transfer coefficient into Eq (11) and solving for the transmembrane 

osmotic pressure yields 
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where ∆πm
* is termed the “cake-enhanced osmotic pressure.”  The term in brackets in Eq (21) comes 

from considering a thin cake layer, in which the tangential flow field is assumed unchanged by the 

presence of the cake, and hindered diffusion alone reduces mass transfer [59, 61].  The reduced salt 

diffusivity in the cake layer is expressed as εD∞/τ, with the tortuosity, τ, being approximated as 
)ln(1 2ε−  [59-61, 63].  The only term on the right hand side of Eq (21) that is not a known constant or 

experimentally measurable parameter is ε, the cake layer porosity. 

Hc
* = Hc – δc 

du/dy = γ0 = 6U0/Hc 
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Figure 13 Conceptual illustration of the effect of cake-enhanced concentration polarisation on 

flux when operating at constant pressure based on laboratory experiments of Hoek et al. [61, 

64].  Initially, the applied pressure and membrane (hydraulic) resistance control pure water 

flux (a).  For a simple electrolyte feed solution (b), an osmotic pressure drop (∆∆∆∆ππππm) across the 

membrane develops nearly instantaneously due to the accumulation of rejected salt ions at the 

membrane surface.  Trans-membrane pressure is the difference between applied pressure and 

the trans-membrane osmotic pressure.  Immediately after colloidal particles are added to the 

feed (c) they begin to accumulate on the surface of the membrane and form a “cake” layer.  A 

hydraulic pressure drop forms across the stationary colloid cake layer, which increases as the 

cake layer thickness increases.  More importantly, the concentration of rejected salt ions builds 

up within in the cake layer because mass transfer (back-transport of salt ions) through the cake 

layer is hindered.  The resulting “cake-enhanced osmotic pressure” (∆∆∆∆ππππm
�*) can be an order of 

magnitude greater than the trans-cake hydraulic pressure when membrane salt retention is 

high. 

The greater implication of this finding is that any accumulated mass on the surface of a salt rejecting 

(NF/RO) membrane may entrap ions, enhancing the trans-membrane osmotic pressure. Therefore, 

cake-enhanced osmotic pressure may play a role in fouling due to the most ubiquitous and recalcitrant 

foulants in NF processes, namely biofilms, scale, and organic matter, but this has yet to be proven.  

Further, the mechanism of salt entrapment within foulant deposit layers helps to explain the commonly 
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observed decline in salt retention associated with NF membrane fouling.  The entrapment of salt ions 

within the cake layer enhances the membrane surface salt concentration, and therefore, the chemical 

potential gradient responsible for solute transport through nanofiltration membranes. It is possible that 

fouling by macromolecules with high charge density (e.g., proteins, humic and fulvic acids, etc.) may 

actually reject salt ions and other dissolved species if they form densely packed cake or gel layer. In 

such cases enhanced concentration polarisation phenomena may be suppressed. These interactions are 

discussed in more detail in the following sections. 

 

4 ORGANIC FOULING 

Organics interact with membranes in a number of ways. It is difficult to single out individual 

interaction mechanisms. The mechanism is strongly dependent on the organic type and the chemical 

characteristics of the molecules as well as their affinity towards the membrane material. Some of those 

solute-membrane interaction mechanisms are described in Chapter 20. 

4.1 Introduction and Definition of Organic Fouling 

Organic fouling is the irreversible flux decline due to the adsorption or deposition of dissolved or 

colloidal organic material. This can be the adsorption at a molecular level or as a monolayer, the 

formation of a gel on the membrane surface, the deposition or cake formation by organic colloids or 

the pore restriction and blocking by molecules that can penetrate into the membrane. Such organic 

fouling can be severe and persistent, for example Roudman and DiGiano [65] reported that even 

rigorous chemical cleaning failed to remove NOM from nanofiltration membranes. 

4.2 Common Organic Foulants 

Organics play an important role in fouling and act in a number of ways. Firstly, organics may adsorb to 

or deposit on membranes resulting in a variation of the surface characteristics and hence flux and 

fouling behaviour. Secondly, organics may act as a nutrient source for microorganisms and hence 

facilitate biofouling. Thirdly, organics may adsorb onto colloids, stabilise small colloids and hence make 

it more difficult for those colloids to be removed in pre-treatment.  In fact, in the natural environment 

colloids commonly have a negative surface charge due to an adsorbed layer of NOM, which can lead to 

stabilisation of the colloids [66, 67]. The degree of stability depends on the amount of organics 

adsorbed. Lastly, some also describe the organics themselves as “colloids” and hence organic and 

colloidal fouling overlap. 

In the water and wastewater industry, natural and effluent organic matter are well known and well 

studied foulants. The natural organic matter (NOM) is predominantly composed of so-called humic 

substances [4]. Effluent organic matter (EfOM) is the wastewater equivalent of NOM and contributes 

to membrane fouling by adsorption, surface accumulation or pore blocking, mostly by the humic 

fractions and polysaccharides [68]. Wiesner et al. [69] identified four NOM categories which are strong 

foulants - proteins, aminosugars, polysaccharides, and polyhydroxyaromatics. Polysaccharides were also 

confirmed compounds of relevance to fouling in the field of wastewater treatment [43]. Jarusutthirak et 

al. [40] further fractionated and characterised EfOM. The following fractions were separated 

� Colloidal EfOM with hydrophilic character composed of polysaccharides, proteins, 

aminosugars 
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� Hydrophobic EfOM with humic substance characteristics (high aromaticity and 

carboxylic functional groups)  

� Transphilic EfOM also with humic substance characteristics 

� Hydrophilic EfOM containing low molecular mass acids. 

Lee et al. [29] determined that both the hydrophilic as well as the hydrophobic fractions adsorbed 

significantly to UF membranes, whereas transphilic NOM, mostly composed of hydrophilic acids, 

adsorbed very little. 

The humification diagram for a number of NOM samples from surface waters is presented in Figure 

14. The relationship to effluent organic matter is visible in the bottom left corner where the 

approximate location of fulvic acids from sewage treatment plants is indicated. The different 

characteristics of EfOM and NOM as well as their fractions reflect in different fouling characteristics.  

Nyström et al. [42] have investigated a number of organic molecules towards their fouling 

characteristics. A type of starch that had a higher protein content fouled the membranes very strongly. 

Fouling of polysaccharides and humic substances showed that when the organics were charged fouling 

was pH dependent with the highest amount of fouling occurring when the charge repulsion was lowest 

[43]. Further, solute-solute interactions also influence fouling [43]. However, those interactions are to 

date very poorly understood. 
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Figure 14 Humification diagram showing the molecular mass and aromaticity for a number of 

surface waters as reported by Huber [70] and organic compounds used in water research 

(adapted from Schäfer et al. [71]. 

Extracellular polymeric substances (EPS) which surround microorganisms and may be produced by a 

biofilm tend to attach well to surfaces and may also cause pore blockage when removed from the 

bacterial cells as is described in the biofouling section of this chapter. Chang and Lee [72] have linked 

fouling and EPS content in a membrane bioreactor (MBR) application and suggested EPS content as a 
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possible feedwater fouling index for wastewater applications. The importance of EPS in MBR fouling 

was confirmed by Cho and Fane who determined that fouling occurred in two stages; a gradual 

deposition of EPS on the (MF) membranes followed by a rapid and sudden stage of biomass growth 

that required membrane cleaning [28]. Amy and Cho [73] identified polysaccharides as dominant 

foulants in UF and NF of surface water, although polysaccharide concentration in surface waters would 

be comparatively low. 

The behaviour of foulants in mixtures is a further issue - Mackey [74] for example studied the fouling 

of UF and NF membranes (cellulose ester and TFC-SR) by various model compounds, such as 

polysaccharides, polyhydroxyaromatics, and proteins. The larger compounds (polysaccharides and 

proteins) caused more fouling, and in mixtures the fouling increased. 

4.3 Adsorption 

Adsorption plays an important role in the fouling of NF membranes by organic compounds. In fact, 

adsorption is often regarded as the first step in membrane fouling. Adsorption of organic compounds 

can be considered as the formation of a conditioning film which allows the attachment of bacteria and 

hence biofouling, as an example. Adsorption can also cause pore narrowing and may hence be a 

precursor to pore plugging. Adsorption of humics has, for example, been shown to occur in pores and 

on the membrane surface [53]. Adsorption of organic molecules into the membrane matrix changes the 

free volume in the membrane. Depending on the molecule the interaction can either increase or 

decrease this free volume and hence flux [42]. Nyström et al. [42] showed for example that small 

vanillin molecules caused an increase in flux, if charged. Longer chained molecules with a charge did 

not cause fouling due to the lack of interaction with the membrane due to charge repulsion, while 

proteins cause very strong fouling. The adsorption of NOM renders membranes more hydrophilic and 

hence facilitates water permeation [65]. 

Nikolova and Islam [50] showed that in UF of dextran the adsorbed layer is causing most of the flux 

decline as opposed to osmotic pressure effects, although the adsorption was, in this case, reversible. 

Adsorption is an equilibrium process between the wall concentration determined by concentration 

polarisation and the adsorbed organics. According to Nikolova and Islam [50] this relationship between 

adsorption and concentration is linear. Other authors describe the adhesion more mechanistically in 

that adhesion occurs due to double layer interactions or hydration forces when adsorbing molecules 

and the membrane reach close enough contact to interact [27]. 

Carlsson et al. [41] performed a study using pulp mill effluent and UF and found that hydrated lignin 

sulfonates adsorbed to the membrane surface followed by later deposits of cellulosic oligomers. 

Champlin [75] investigated the impact of NOM adsorption on NF membranes in the presence of 

particulate matter. NOM adsorption was as high as 12.6% of the available NOM, but interestingly this 

adsorption is reduced in the presence of particulate matter. The postulated mechanisms were particles 

acting as abrasive scouring or an adsorbent that competes with the membrane surface for NOM. 

Adsorption itself can either be the precursor to a more severe fouling layer or cause significant fouling 

by itself [2]. Adsorption of organic compounds can also alter the membrane surface characteristics 

(such as increasing hydrophobicity or membrane charge) and hence lead to flux variations. The effect 

of humic acid on membrane surface charge has been investigated by a number of researchers [76-78] 

and showed that humic substances influence the surface charge (in general a more negative charge) is 
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observed) and the adsorbed organics in fact dominate the surface charge with their functional groups. 

The uptake of organics by hydrophobic membranes is stronger [53]. The deposition of the more 

aromatic compounds appears stronger and can also be facilitated by the presence of calcium [79]. The 

multivalent ions act in various ways [80]. Firstly the charge repulsion can be reduced in the presence of 

the electrolyte, secondly the cations may form bridges between identically charged foulants and 

membranes and thirdly it may vary the configuration of the foulant molecules. The adsorption of 

humic substances has also been shown to alter the hydrophobicity of the membrane [81]. The authors 

anticipated that fouling is more severe when non-polar bonds are formed between the foulant and the 

membranes as opposed to polar bonds. 

A number of compound and membrane characteristics are important in adsorption; those are water 

solubility, dipole moment, octanol water partitioning coefficient, surface charge, hydrophobicity, 

molecular size/mass and membrane cut off or pore size [2]. Methods to characterise membranes were 

described in detail in Chapter 5. Adsorptive fouling of organics not always decreases as the negative 

charge and hydrophilicity of a membrane increases. In fact, oxidation of the membrane increases 

negative charge, hydrophilicity and humic acid adsorption [53]. Jarusutthirak and Amy [68] found that 

negatively charged membranes adsorbed the hydrophobic fraction of EfOM.  

Freundlich isotherms were in fact confirmed by other authors for the adsorption of NOM [75]. 

Nghiem and Schäfer [30] have determined a breakthrough phenomenon for some NF membranes that 

can be attributed to the adsorption of contaminants at very low (ng/L) concentrations. The amount 

adsorbed was dependent if a penetration into the active layer by the contaminants was possible. 

Adsorption was dependent on the pKa of the contaminants with higher adsorption when the 

compounds are undissociated. Similar trends were observed by Jones and O’Melia [82] when 

hydrophobic interaction of bovine serum albumin (BSA) with membranes decreased as the isolelectric 

point (IEP) was exceeded. A summary of adsorbed quantities of trace contaminants in membrane 

modules is given in Chapter 20.  

The actual interaction mechanisms that govern adsorption are not well understood. Roudman and 

DiGiano [65] suggested the predominance of acid-base interactions and hydrogen bond formation 

between NOM and membranes. Hydrogen bond formation was also suggested as a predominant 

mechanism in the adsorption of trace organic contaminants by thin film composite membranes in 

Chapter 20. To date it is not easily possible to distinguish between hydrogen bond formation and 

hydrophobic interactions. 

The stronger a compound adsorbs to the membrane, the higher the flux decline [2]. Partitioning 

coefficient appears to increase with dipole moment indicating a possible charge interaction. The 

partitioning coefficient also increases with the octanol water partitioning coefficient (Kow; Log P) and 

hence hydrophobicity. In other words hydrophobic interactions between membranes and organics 

cause flux decline. Water solubility describes the polar character of a molecule, but was not identified to 

have a correlation with adsorption. Seeing the importance of hydrophobic interactions it is not 

surprising that it is repeatedly reported that hydrophobic membranes foul more [41]. 

Adsorption can occur on the membrane surface and in the pores [53].  This depends on the pore size, 

the molecular size and shape as well as the solution chemistry which can change the structure and 

shape of organics [83]. Chang and Benjamin have estimated the thickness of an adsorbed monolayer of 
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NOM to have a thickness of about 1.6nm, which is larger than the typical NF pore dimensions. Hence, 

if pores exist, such adsorption leads to pore restriction or blockage. 

4.4 Gel Layer Formation  

Gel formation occurs when the solubility of a non-crystalline solute is exceeded. This is often the case 

when organic molecules flocculate in the presence of salts and at neutral charge conditions [42] such as 

when the surface concentration increases due to concentration polarisation [84]. More details on 

coagulation are given below (Section 4.7). Deposits formed on the membrane surface by materials that 

are too large to penetrate into or through the membrane eventually reach a steady state thickness. 

Given the importance of concentration polarisation, crossflow velocity can be expected to reduce such 

phenomena [84]. Chang and Benjamin [56] estimated that such a film could grow at a rate of about 0.3 

µm a day in full scale systems that remove NOM in water treatment. Those authors assumed a density 

of a NOM gel layer to be 1 g/cm3, a water content of 50% and NOM of 50% carbon by mass to 

calculate such a 0.3 µm thick layer to require 75 mg of DOC per m2, which was estimated to be about 

1% of the organic carbon a typical water treatment system would be exposed to. 

Gel formation was observed by Jarusutthirak et al. [40] in the filtration of EfOM due to the large 

molecular mass of the colloidal EfOM fraction and the small MWCO of NF. The hydrophobic and 

transphilic fractions were assumed to cause a gel layer also, initiated by hydrophobic interactions, while 

charge repulsion reduced fouling by charged molecules. 

4.5 Cake Formation 

Seidel and Elimelech [84]described fouling of NOM as a combination of permeation drag and calcium 

binding, hence a coupled process between hydrodynamics and chemical interactions. Very importantly 

those authors have pointed out that permeation drag can overcome repulsive forces of double layers 

and cause foulant deposition at typical operating conditions. This observation strongly supports the 

critical flux phenomena from Section 3.6. At low flux, below such a critical flux, the repulsion between 

foulant and membrane may be strong enough to prevent deposition. Calcium can adversely affect some 

fouling prevention strategies such as crossflow velocity. Hong and Elimelech [80] related solution 

chemistry with the formation of a membrane deposit with varying characteristics (see Figure 15).  This 

illustrates also the change in foulant conformation due to solution chemistry. When the charge of the 

foulants is low, which for NOM is at high ionic strength, low pH and in the presence of multivalent 

ions, the NOM is coiled and deposits as a firm cake. If the repulsive forces between the NOM 

functional groups are enhanced then the cake layer is less sticky and more porous. It should be noted 

here that the ‘solution chemistry’ refers not only to the feed characteristics, but also to the conditions in 

the boundary layer. 
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Figure 15 Effect of solution chemistry on the deposit of NOM on a membrane surface 

(reprinted from Hong and Elimelech [80]). 

Such cake deposits will form where space is available- if pores are large enough then this process is 

accompanied by pore penetration, restriction and plugging. 

4.6 Pore Blocking/Plugging 

Pore blocking is determined mostly by the size of the organic molecules and the pore size of the 

membranes. Adsorption can play an important role in pore blocking, where pores are initially restricted 

due to adsorption of molecules which penetrate into the pores. This is also referred to as pore 

narrowing [85]. Naturally, pore plugging may occur when the retention of solutes is incomplete [50]. 

Chang and Benjamin [56] stipulated that pore constriction by trapped molecules is the predominant 

mechanism with nanofiltration and tight ultrafiltration membranes, while surface gel is a more 

important process for looser membranes. This was confirmed by Cho et al. [86] who described a 

process of quick flux decline due to pore blockage followed by a gradual narrowing and closing of the 

remaining pores in UF. Hong and Elimelech [80] observed strong adsorption and pore blocking at low 

pH for NOM. 

Jarusutthirak et al. [40] found that the colloidal EfOM fraction was primarily responsible for pore 

blocking and this mechanism dominated fouling. 

Pore blocking would be expected to occur for compounds which are small enough to penetrate into 

the membrane structure and yet large enough to experience hindrance within this structure [2]. This 

effect can be achieved due to the size of the molecule itself or due to solute-solute interactions. 

4.7 Impact of Solute-Solute Interactions and Salts 

Salts in feed solutions or cations in particular can have various effects on fouling. Firstly, such cations 

may cause intermolecular bridging between the organic foulants and the membranes [84]. Secondly, the 

cations may form complexes with the organics and at higher salt concentrations cause coagulation or 

precipitation and gel formation. Such interactions are complex and are to date not well understood. 

Organics can also act as ligands for multivalent cations (for more details see Chapter 7), form 
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complexes with specific interactions and affect the retention and scaling of inorganics. This is shown at 

the example of humic acid and calcium (calcite scale) in Figure 16.  

 

Figure 16 Interaction of calcium and humic substances in fouling A: Calcium Carbonate (pH 

10), B: Calcium Carbonate and NOM (pH 10), C: Calcium and NOM (pH 8) (adapted from 

Schäfer [4]). 

Calcium and other multivalent cations are well known to increase organic fouling. Li and Elimelech 

[87] confirmed the previously suggested mechanism of intermolecular bridge formation of calcium 

between organic foulants and membrane functional group using atomic force microscopy (AFM). 

Seidel and Elimelech [84] stated that NOM- calcium complexation and aggregation also causes fouling. 

Salts also influence solute solute interactions and may enhance coagulation or aggregation of organics.  

Wall and Choppin [88] carried out a comprehensive study of humic acids coagulation due to Ca2+ and 

Mg2+ and established that the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory applies to such 

organics, in fact even their size distribution changes with time following fractionation. Such a humic 

colloidal system destabilises when double layer of individual colloids interact and hence precipitation or 

coagulation occurs. The critical coagulation concentration (CCC) for HA was 0.1-1 M (NaCl), 1-5 mM 

(Ca2+), 10-50 mM (Mg2+) which is a realistic range for the boundary layer conditions of some 

membranes. At very high ionic strength (NaCl) the molecular colloids are restabilised and coagulation is 

prevented. Coagulation also decreased with pH in the range 4-8 rendering the CCC pH dependent 

(pH2.5, 4, 7 resulting in CCCs of 1 mM, 100mM and 3M, respectively. Mg2+ was significantly less 

efficient in coagulating HA than Ca2+. Such studies on solute-solute interactions shed light on the 

possible mechanisms observed in nanofiltration. Hong and Elimelech [80] confirmed this for NOM 

fouling in the presence of calcium- where the interaction of those compounds caused the formation of 

small and coiled macromolecules that deposited at a higher rate. 

For example, in the filtration of dye, Koyuncu and Topacik [51] have found that an increase in ionic 

strength (NaCl) the aggregation of dye reduced flux decline. Similar results were reported by Schäfer et 

al. [89] who use ferric chloride (FeCl3) as direct pre-treatment to NF and fouling of calcium and HA 

was reduced. This was attributed to the binding of the foulant HA to FeCl3 flocs as well as iron 
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hydroxides and hence the formation of more porous deposits, unavailability of the HA to form a gel 

layer and the removal of larger particulates due to shear forces. 

4.8 Impact of Fouling on Retention  

Fouling can affect the retention of a membrane. For example, Nyström et al. [42] have demonstrated 

that the retention of humic acid decreased in the presence of FeCl3. This was explained with the 

deposition of a gel layer on the membrane. Seidel and Elimelech [84] confirmed a decreased retention 

of TDS due to fouling, in particular at increased calcium concentrations. This was explained with a 

reduced Donnan charge exclusion. The Donnan effect was described in detail in Chapter 6. The 

apparent pore plugging of NF membranes by NOM at low pH was reported to cause a decrease in 

retention [80]. Schäfer et al. [89]established a strong impact of ferric chloride flocs on the retention 

behaviour of NF membranes. The variations were attributed to the charge of the deposits. 

Koyuncu and Topacik [51] studied the effect of reactive black dye (991 g/mol) on the retention of 

inorganic ions by NF. There the dye deposit was also regarded as a porous gel layer that increased the 

concentration polarisation effect and acted like a dynamic membrane. Salt retention decreased with 

increasing dye concentration, reaching negative retention in some cases. This effect of gel layer on 

retention can potentially be explained via the enhanced concentration polarisation model described in 

section 3.7 above, especially because these authors reported real rather than observed retention values. 

Figure 17 Schematic of the formation of an idealised fouling 

layer which increased retention of compounds smaller than the 

membrane pore (above) and that decreases retention (below). 

 

 

 

Figure 18 Reduction of the effective 

pore diameter of membranes and 

retention of organic compounds due 

to a fouling layer (calcium and humic 

substances) [4]. 
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Membrane fouling can modify membrane characteristics and subsequently vary retention behaviour in 

both directions.  For example, Jarusutthirak and Amy [68] observed an increase in retention in 

consequence of adsorption of EfOM to membranes.  

5 SCALING 

5.1 Introduction and Definition of Scaling 

A serious problem in NF (and RO) systems and a limiting factor for its proper operation is membrane 

scaling, resulting from the increased concentration of one or more species beyond their solubility limits 

and their precipitation onto the membranes [69]. Thus, it is essential to operate NF systems at 

recoveries lower than a “critical value” in order to avoid scaling, unless the water chemistry is adjusted 

to prevent precipitation. At present, it is not possible to predict with sufficient reliability the limiting 

concentration level at which there is a risk of scale formation with a given membrane system and a 

specific antiscalant treatment [90]. 

Scaling, also scale formation or precipitation fouling, occurs in a membrane process whenever the ionic 

product of a sparingly soluble salt in the concentrate stream exceeds its equilibrium solubility product. 

The term “membrane scaling” is commonly used when the precipitate formed is a hard scale. Scaling 

usually refers to the formation of deposits of inverse-solubility salts (CaCO3, CaSO4· xH2O, calcium 

phosphate etc.), although this term in general denotes hard, adherent deposits of inorganic constituents 

of water that formed in situ [91].  As with the other types of fouling, precipitation fouling reduces the 

quality and the flux of NF permeate and shortens the life of the membrane system. The problem is 

usually aggravated in attempts to increase the water (permeate) recovery; then the increasing retentate 

salt concentration leads to supersaturation, in particular very close to the membrane surface. Inorganic 

scale formation on the membrane may also lead to physical damage of the membranes due to the 

difficulty of scale removal and to irreversible membrane pore plugging. 

Inorganic foulants found in NF applications include carbonate, sulphate and phosphate salts of divalent 

ions, metal hydroxides, sulphides and silica. More specifically, the most common constituents of scale 

are CaCO3, CaSO4 � 2H2O, and silica, while other potential scaling species are BaSO4, SrSO4, Ca3(PO4)2 

and ferric and aluminium hydroxides [69, 92, 93]. Reliable prediction of the scaling propensity of a feed 

is essential in NF systems in order to maximise recovery and to determine the most efficient scale 

control method. The main parameters affecting scaling are salt concentration in the concentrate, 

temperature, fluid velocity, pH and time. These parameters may also include the type and the material 

of the membrane. 

The precipitation or crystallization of a salt onto a membrane surface involves the nucleation and 

growth from a supersaturated solution. Supersaturation is the thermodynamic driving force for 

precipitation (or more specifically for the two basic stages of precipitation, nucleation and growth) and 

it is subsequently discussed in more detail. However, for the sparingly soluble salts precipitation seems 

to be controlled by the kinetics of the process.  It is widely accepted that precipitation kinetics is 

comprised of two main steps [94] either of which may control the process: 

(1) Nucleation stage: nuclei (or tiny particles or embryos) are formed at specific sites in pores and at the 

surface of the membrane. This type of nucleation can be characterised as heterogeneous nucleation, as 

opposed to homogeneous nucleation, which occurs in the absence of a solid interface. A third form of 

nucleation is the secondary or surface nucleation, resulting from the presence of a crystallisation phase 
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in solution (e.g. introduction of seed crystals). The critical value of the supersaturation ratio for the 

different nucleation processes can be expressed as Sc,homog.>Sc,heterog.>Sc,surface>1 [95] In general, 

nucleation is the most poorly understood step. The rate of nucleation plays an important role in the 

final scale formation and antiscalants are usually employed to suppress it.  

(2) Crystal growth: in the case of surface nucleation, the initial nuclei grow in time to form a thin, 

sometimes porous, layer. In a simplistic way, “growth units” or scale-forming ions diffuse to the crystal 

surface and attach themselves to that surface. Often, a delay or induction period exists before 

detectable deposits are formed. The crystal growth process proceeds also in various steps, any of which 

may control the whole growth process. In the case where nucleation in the bulk dominates, crystal 

growth takes place in the bulk and the crystalline particles can be deposited onto the membrane 

surfaces.  

In an NF process, the highest risk of scaling exists in the concentrate stream at the last section of the 

membrane system. The withdrawal of the permeate results in an increase of the concentration level of 

all dissolved species in the concentrate stream and in the establishment of supersaturation of one or 

more sparingly soluble salts, which subsequently may precipitate. Therefore, it is necessary to estimate 

the saturation conditions of the concentrate stream throughout a membrane element. These 

calculations are based on the knowledge of the feed water composition and of the concentration (or 

recovery) factor or ratio, CF. For each species i, the latter is defined as 

  CFi=  
y1

)R1(1 i

−
−−

 (22) 

where y is the permeate recovery fraction and Ri the ion retention factor. For most divalent species in 

NF systems Ri ranges between 0.9 and 1.0, but for monovalent species a significant fraction passes the 

membrane. The concentration of most ions (Ca2+, Sr2+, SO42-, Cl- etc.) may be estimated as the CF 

times the feed water concentration. This cannot be applied to all species present in water (e.g. HCO3-, 

CO2), while for SiO2 a correction for the pH change is required. 

In fact, Eq (22) underestimates the concentrations next to the membrane, since it does not account for 

the concentration polarisation effect [93, 96]. As water permeates through the membrane, the rejected ions 

accumulate in a boundary layer near the membrane at concentrations higher that those prevailing in the 

bulk, as illustrated schematically in Figure 19. This means that the supersaturation ratio, and 

consequently the scaling risk, is higher at the membrane boundary layer. This effect increases with 

higher permeate fluxes and is higher at low flow velocities.  
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Figure 19 Schematic of concentration polarisation layer at the membrane surface. 

The ratio of concentration at the boundary layer to that in the bulk of the concentrate is called the 

concentration polarisation factor, PF. Typically, PF is estimated as an exponential function of the 

recovery  

  PF=exp(K � y)   (23) 

where K is a semi-empirical constant, which depends upon permeate flux and ion diffusivity. 

Discussion on the subject can be found in a following chapter, while a simple technique for 

determining the concentration polarisation level in a membrane system is described by Sutzkover et al. 

[96]. Because of the pivotal importance of the supersaturation concept, a more detailed description is 

presented. 

5.2 Solubility and supersaturation of salts 

The phase change associated with precipitation processes can be explained by thermodynamic 

principles. When a substance is transformed from one phase to another, the change of the Gibbs free 

energy of the transformation is given by 

  ∆G=(µ2 - µ1) (24) 
where µ1 and µ2 are the chemical potentials of phase 1 and phase 2, respectively. For ∆G<0, the 

transition is spontaneous. The molar Gibbs free energy can be also expressed in terms of activity as 
  ∆G= RT ln(α/αo) (25) 

where R is the gas constant, T is the absolute temperature, α is the activity of the solute and αo is the 

activity of the solute in equilibrium with a macroscopic crystal. More specifically, for an ionic substance 

MnXm, which crystallizes according to the reaction 

  nΜa+ + mXb-  ↔ MnXm (solid), (26) 

the thermodynamic driving force for the crystallization either in the bulk or at the membrane surface is 

defined as the change of the Gibbs free energy of transfer from  the supersaturated state to equilibrium: 

  ∆G= RT ln 
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In the above equation, Ksp is the thermodynamic solubility product of the phase forming compound 

and (IAP) is the ion activity product. Quantities in parentheses denote activities of the corresponding 

ions. The quantity 
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m)1/(n

sp

mbna

K

)X()M(
+−+












= 

m)1/(n

spK

IAP
+












 (28) 

is defined as the supersaturation ratio of the crystalline precipitate. Often in the literature S is written 

without the exponent. The activity coefficients can be estimated using various equations applicable to 

low or high ionic strength. The development of supersaturation is the driving force for both nucleation 

and crystal growth. Provided that there is sufficient contact time with a foreign substrate, scale 

formation may take place. Supersaturation in a membrane system is mainly caused by permeate 

withdrawal and concentration polarisation and, to a lesser extent, by temperature and pH changes. 

Nowadays, the solution speciation and the supersaturation ratios of various salts in water are readily 

computed by various computer codes taking into account all possible ion-pairs and the most reliable 

values for the solubility products and the dissociation constants. This is covered in more detail in 

Chapter 7 on solute speciation. 

In Figure 20 a typical solubility diagram for a sparingly soluble salt of inverse solubility (such as calcium 

carbonate, sulphate and phosphate) is shown. The solid line corresponds to the equilibrium. At a point 

A the solute is in equilibrium with the corresponding solid phase. Any deviation from this equilibrium 

position may occur with the increase of solute concentration (isothermally, line AB), with the increase 

of solution temperature due to solubility reduction (at constant solute concentration, line AC), or with 

varying both concentration and temperature (line AD). A solution departing from equilibrium is bound 

to return to this state through precipitation of the excess solute. For most of the scale forming sparingly 

soluble salts, supersaturated solutions may be stable for practically infinite time periods. These solutions 

are referred to as metastable.  
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Figure 20 Solubility-supersaturation diagram of a sparingly soluble salt of inverse solubility. 
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There is, however, a threshold in the extent of deviation from equilibrium marked by the dashed line in 

Figure 21, which if reached, wall crystallization (scaling) usually occurs first. Spontaneous bulk 

precipitation may also occur with or without a preceding induction period. This range of 

supersaturations defines the labile region and the dashed line is known as the supersolubility curve. It 

should be noted that the supersolubility curve is not well defined and depends on several factors such 

as concentration level of the scale-forming ions, presence of other ions and ionic strength, presence of 

suspended matter, wall material and roughness, temperature, pH etc. The formation and subsequent 

deposition of solids occurs only if the solution conditions correspond to the metastable or to the labile 

region. Below the solubility curve scaling cannot take place. 

Most membrane suppliers and literature sources set S>1 as criterion for the onset of scaling. Often this 

criterion is modified, a little below or a little above unity. The argument that for S>1 precipitation is 

expected is true for the readily soluble salts, where even a small deviation from equilibrium can induce 

crystallization. However, for most of the sparingly soluble salts responsible for the scaling problems in 

the NF/RO systems, a significantly higher value of supersaturation ratio (“critical” supersaturation 

ratio) in the bulk must be exceeded to result in scaling. This effect is observed in membrane as well as 

in non-membrane scaling systems. For example, it has been reported that an RO system exceeded 14 

times the BaSO4 equilibrium conditions without scaling problems [97]. A major concern about this 

“critical” supersaturation ratio is that it is not the same for all scale-forming compounds and that it 

increases as the solubility of the salts decreases. Consequently, one may expect that this value is higher 

for the CaCO3 and BaSO4 scaling systems than for the CaSO4 system. 
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Figure 21 Flux decline curve (a) and SEM images at various times of scaled TCF-S membranes 

at pH=8.1. 
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5.3 Common Scalants 

The following is a brief discussion of the common types of scale found in membrane processes. It is 

stressed, however, that deposits forming in membrane modules, as well as in other scaling systems, are 

rarely homogeneous, and in most cases, as seen also in membrane autopsy studies, they consist of a 

mixture of various sparingly soluble salts and of other foulants (e.g. organics, colloids, biofoulants). In 

brackish and hard waters, CaCO3 and gypsum are the most common scalants for which pre-treatment 

is required.  

Calcium Sulphate (CaSO4) Scale 

The most common form of calcium sulphate scales and the polymorph that precipitates at room 

temperature is gypsum (CaSO4·2H2O). Gypsum is approximately 50 times more soluble than CaCO3 at 

30ºC. Calcium sulphate also exists in two other crystalline forms: hemihydrate (CaSO4·½H2O) and 

anhydrite (CaSO4). The effect of temperature (in the range of 10-40ºC) and of pH on gypsum solubility 

is marginal. 

One source of sulphate ions in some treated waters is the addition of sulphuric acid to the feed in order 

to control CaCO3 precipitation. This method of scale control can lead to calcium (or barium and 

strontium) sulphate deposition, if excessive amounts of sulphuric acid are used for pH control. For this 

reason, calculations for assessing the potential for sulphate scaling must be carried out using the 

analysis of feed water after acid addition or other pretreatment methods.  

Calcium Carbonate (CaCO3) Scale 

Almost all naturally occurring waters contain bicarbonate alkalinity and are rich in calcium, making 

them prone to scaling problems. The potential for CaCO3 scaling exists for almost all well, surface and 

brackish waters. Calcium carbonate forms a dense, extremely adherent deposit and its precipitation in 

an NF plant must be avoided. It is by far the most common scale problem in several scaling systems, 

including cooling water and oil or gas production systems. 

Calcium carbonate can exist in three different polymorphs, namely calcite, aragonite and vaterite, in 

order of increasing solubility. All three polymorphs have been identified in scales, although vaterite is 

rather rare. Thermodynamics predicts that calcite, the least soluble and more stable polymorph, should 

be the phase favoured in the precipitation process. Aragonite is also encountered in certain systems. It 

has been shown that formation of a particular polymorph depends upon water temperature and 

chemistry (e.g. pH, ionic strength, presence of other ions/impurities/inhibitors). It is also well known 

that the presence of magnesium ions, in solutions supersaturated with respect to CaCO3, favours the 

precipitation of aragonite and appears to hinder the formation of vaterite. The tendency to form 

calcium carbonate can be predicted qualitatively by a plethora of indices derived theoretically or 

empirically over the past 70 years. The most common indices are the Langelier Index, the Ryznar 

Index, and the Stiff and Davis Index. 

Barium Sulphate (BaSO4) and Strontium Sulphate (SrSO4) Scale 

The solubility of BaSO4 is much smaller than that of gypsum (Ksp=1.05×10-10 mol2/L2 at 25ºC [98] and 

can cause a potential scaling problem in the back-end of the NF/RO systems. Its solubility decreases 

with decreasing temperature. BaSO4 scale can only be dissolved by crown ethers and concentrated 

sulphuric acid, which indicates the severity of the problem. Barium ions are seldom reported in analyses 

of natural waters, and if found, their concentration does not exceed 200 ppb. BaSO4 scale formation is 

Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ;  Hoek, E.M.V. ;  Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, 
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very rare in membrane scaling systems. Out of 150 elements for which autopsy  was performed, no 

instances of barium sulphate were found [99].  

The presence of strontium in many natural waters is more common than that of barium ions. As little 

as 10-15 mg/L of strontium ions in the concentrate may induce SrSO4 scale formation. Barium and 

strontium sulphates are in general more commonly encountered in surface waters. 

Silica Scale 

Amorphous silica is one of the major fouling problems in NF/RO systems and in most processes 

involving water [100]. The silica content in most natural waters can reach 100 mg/L, since silica is one 

of the primary components of the earth crust. Much has been written about the solubility of 

amorphous silica in water. Its solubility at room conditions is 100-150 mg/L in the pH range 5-8 and 

increases significantly with pH at values higher than 9.5. Furthermore, silica solubility increases 

significantly with temperature. Thus, in usual water treatment operations silica concentration is limited 

to approx. 120-150 mg/L, the excess precipitates as amorphous silica and silicates. In membrane 

systems silica scaling has serious consequences: the cleaning of fouled membranes is costly and not 

without problems. 

The solubility of silica minerals generally decreases with increasing ionic strength, in contrast to the 

solubility of CaCO3 and sulphate salts. It has been shown [101] that at 25ºC and pH 5.0-7.5 the 

solubility of amorphous silica decreases with the addition of several salts due to the “salting-out” effect 

of inorganic electrolytes on aqueous silica. This effect is essentially cation dependent and disappears (or 

better it is reversed) at higher temperatures. Silica scale was found in 66% of about 100 membrane 

elements investigated recently with membrane autopsy [99]. Iron and aluminium were present in 88% 

and 75% of the membranes scaled with silica, respectively. 

Calcium Phosphate Scale 

In recent years calcium phosphate scale has become more common in membrane systems as autopsies 

on membrane elements have shown [99, 102]. This can be attributed to the tendency to treat 

wastewaters, which are rich in phosphates, and to the use of phosphorous containing antiscalants, 

injected in the form of phosphonates and other organic phosphorous compounds.  

The concentrate may become supersaturated with respect to at least four calcium phosphate phases (as 

in calcium phosphate scale formation in other systems), although no single phase has been identified in 

autopsy studies. It is often assumed that these phases are amorphous calcium phosphate (ACP, 

stoichiometry corresponding to Ca3(PO4)2·xH2O), dicalcium phosphate dihydrate (DCPD, 

CaHPO4·2H2O), octacalcium phosphate OCP, (Ca8H2(PO4)6·5H2O), and hydroxyapatite (HAP, 

Ca5(PO4)3OH), the least soluble phase. It is generally agreed that the formation of HAP from a highly 

supersaturated solution at neutral pH is usually preceded by ACP or other precursor phases, while the 

presence of ions may affect the polymorph precipitated. Due to the presence of other ions in the feed 

water, defect apatite can be formed also. The solubility of calcium phosphates strongly depends on 

solution pH and, consequently, acid addition alleviates the calcium phosphate scaling problem. Other 

parameters affecting the scaling tendency of calcium phosphates include the supersaturation ratio, 

temperature and ionic strength. 

5.4 Characterisation of Scales 

The techniques for analysis of the crystalline deposits (as in the case with other types of deposits) are 
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not simple and not standardized. Unfortunately, the interior of membrane elements is not accessible for 

examination by naked eye or even by an optical microprobe. Direct scale characterisation can only be 

accomplished by membrane destruction and hence ex-situ. Deposit characterization is an important step 

in the autopsy study of a degraded membrane module. The membrane scales can be characterised by a 

variety of techniques, the most common of which are briefly mentioned here. Visual and microscopic 

inspection (SEM) of the scaled surface may comprise the first step of characterisation. Energy 

dispersive spectroscopy (EDS) is usually employed in conjunction with the SEM system to determine 

elemental composition, while nuclear magnetic resonance spectroscopy may determine the chemical 

structure of the scales. The spectroscopic techniques of FT-IR, FT-Raman and XRD can be used to 

yield quantitative and qualitative results of the scale composition and the dominant crystalline phases. 

Finally, X-ray photoelectron spectroscopy (XPS) analysis can be used in order to determine the 

properties of the surface layers of scales. Some of those techniques were described in Chapter 5 and 

indeed some characterisation techniques for clean and fouled membranes are identical. 

An experimental membrane system can also be used to determine how the scales form and the 

effectiveness of the various antiscalants; several such setups have been employed in recent years (e.g. 

[103-105].  

5.5 Mechanisms of Scale Formation 

The great complexity of the scale formation process is a direct consequence of the large number of 

species usually present in a real system and of the plethora of possible physical mechanisms. The latter 

may include mass, momentum and heat transfer, as well as chemical reactions at the equipment 

surfaces. Furthermore, the diversity of fluid composition of the various waters treated in membrane 

systems and the variation of processes taking place along the flow path make difficult the generalization 

of both the mechanisms responsible for the scale formation and the preventive measures. 

There are two main mechanisms to explain flux decline in a membrane system due to the formation of 

crystalline matter are filter cake formation and surface blockage (e.g. [104, 106]). The former involves 

crystalline particles formed in the bulk of the solution that are deposited onto the membrane to create 

usually a porous, not very coherent, soft layer. According to the cake formation model, the deposit 

layer has a constant porosity, its thickness increases with time and flux decline is due to growth of the 

layer. 

In the mechanism of surface blockage, isolated “islands” of crystals or deposits are initially formed on 

the exposed membrane surface, which further grow with time, laterally and normally to the surface, to 

form a continuous and coherent layer. Consequently, the flux would steadily decline as the sections 

covered by these “islands” would be inaccessible for water permeation. The two main mechanisms of 

flux decline stem from the different forms of nucleation occurring in the membrane system. As 

discussed in section 5.2, wall or surface nucleation takes place (for most precipitating species) at lower 

supersaturation ratios than those needed for nucleation in the bulk (homogeneous, secondary). 

Consequently, at relatively high supersaturation with respect to a certain salt, bulk nucleation would 

dominate, resulting in cake formation. On the other hand, at lower supersaturation ratios, membrane 

fouling would proceed via the growth of crystalline islands. In both mechanisms, an induction period 

may precede the scale formation process. 

The rate of scale formation is determined by several factors, such as the level of supersaturation, the 

water temperature, the flow conditions and the surface roughness and material of the substrate. A 
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critical factor in the whole process is the adherence of the deposits to the surface. If the adherence is 

poor, the deposits might be removed by the fluid flow. If the adherence is strong, the initial crystals 

grow laterally and perpendicularly to form a coherent scale layer [107]. Sometimes a third step, the stage 

of recrystallization or aging, is recognized in the scaling process. Gilron and Hasson [106] and 

Brusilovsky et al. [103] demonstrated that the flux decline in an RO unit was due to blockage of the 

membrane surface by lateral growth of the deposit (surface or heterogeneous crystallization) when 

investigating the CaSO4 scaling system. The CaSO4 scale crystals rested at the edges against the 

membrane, they were tightly packed with a tendency to grow outwards (“radiate”) from various growth 

sites. The morphology of these scales strongly supports the assumption of a surface crystallization 

mechanism. In addition, Hasson and coworkers developed a flux decline model based on the surface 

blockage and involving the lateral spread of a single crystal layer.  

Lee and Lee [104] examined the effect of operating conditions on scale formation in a NF unit. These 

investigators found that both mechanisms are operative and that the operating conditions (i.e. pressure 

and crossflow rate) play an important role. Surface crystallization is favoured at a low crossflow velocity 

and a high operating pressure. Recently, Le Gouellec and Elimelech [105, 108] investigated the 

presence of several species and of antiscalants to combat gypsum scale formation in a small 

recirculating unit. No definite conclusions could be drawn on the scaling mechanisms, but the presence 

of bicarbonate, magnesium ions and humic acid showed a tendency to retard the formation of gypsum 

nuclei. Moreover, a model was developed for predicting the required antiscalant dosage to control 

gypsum scale in NF systems.  

A similar mechanism as that described for the CaSO4 by Hasson and coworkers has also been found 

for the CaCO3 system in a once-through laboratory NF/RO unit [109]. Figure 21a presents a typical 

flux decline curve due to calcium carbonate scale formation on a NF membrane. In the same figure, 

SEM images of scaled membranes are presented (Figure 21cb-d), at different run times, depicting the 

growth of the scale layer with time. In this particular run (and almost in all runs) the permeate flux was 

rather constant for an initial period of 4 to 8 hours before declining mainly due to scaling. In the rather 

limited number of these tests (of maximum duration 15 h), membrane scaling was observed to occur at 

Sc>3 (subscript c refers to calcite) or at LSI>0.9. Comparing these results with scaling experiments in 

tubes [110] it may be observed that scaling on membranes occurs at lower supersaturation, obviously 

due to the concentration polarisation effect. SEM micrographs at various run times reveal that even 

when the CaCO3 crystals apparently cover about 40% of the membrane (Figure 21c), no detectable flux 

decline is recorded. This observation somehow contradicts the notion that surface blockage is 

eventually the main mechanism of membrane flux decline. 

 

6 COLLOIDAL AND PARTICULATE FOULING 

6.1 Introduction and Definition of Colloidal and Particulate Fouling 

The term, colloidal and particulate fouling refers to loss of both flux and salt retention due to accumulation 

of retained colloidal and particulate matter on the membrane surface.  Colloids are defined as fine 

suspended particles in the size range of a few nanometers up to a few micrometers [111].  Colloidal 

matter is ubiquitous in natural waters, as well as many industrial, process, and waste waters [112].  

Examples of common colloidal sized foulants include inorganic (clays, silica, salt precipitates, and metal-
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oxides), organic (aggregated natural and synthetic organics), and biological (bacteria and other 

microorganisms, viruses, lipopolysaccharides, and proteins) matter.  A review of colloidal and particulate 

fouling studies reveals the foulants of greatest concern for nanofiltration (NF) separations are colloidal 

sized substances consisting of silica, organics, metal oxides (specifically iron and manganese), and 

microorganisms [113-122]. 

Champlin [75] recommended to remove particles down to 1 µm in size, although this may not be 

sufficient to avoid fouling.  Conventional processes used to pre-treat NF feed waters fail to remove sub-

micron colloids, and even MF/UF processes sometimes fail to remove all colloids below a few hundred 

nm in diameter.  Further, the elevated concentration of rejected ionic constituents in the vicinity of the 

membrane screens electrostatic interactions, which may encourage aggregation of dissolved (organic) 

matter into colloidal sized particles.  The importance of particle-membrane and particle-particle 

interactions during colloidal fouling are realized when considering the influence of salt retention and 

concentration polarisation on the solution chemistry in the vicinity of the membrane surface.  

Electrokinetic properties of colloids and membranes are strongly dependent on pH, ionic strength, and 

the presence of multi-valent ions [58].  Therefore, distinguishing the fundamental physico-chemical 

properties of colloids and membranes is critical to understanding colloidal fouling.  The summary that 

follows provides brief descriptions of key colloid and membrane properties, transport and deposition, 

formation of colloid deposit layers, and mechanisms of colloidal fouling in nanofiltration. 

6.2 Colloid Properties 

Colloid Properties. Colloidal matter is typically charged in aqueous electrolyte solutions .  The surface 

charge on colloids arises from a variety of mechanisms including: differential ion solubility (e.g., silver 

salts), direct ionization of surface groups (typ., -COOH, -NH3, or -SO3H), isomorphous substitution of 

surface ions from solution (e.g., clays, minerals, oxides), anisotropic crystal lattice structures (esp. in 

clays), and specific ion adsorption [111, 112, 123, 124].  The surface charges contribute to electrostatic 

double layer (EDL) interactions, which typically determine colloid aggregation and deposition 

phenomena [58, 125, 126].  The specific property of colloids used to quantify the relative magnitude of 

EDL interactions is the surface (zeta) potential, ζ, which is commonly determined by measuring the 
electrophoretic mobility of colloids in a suspension and computing ζ from an appropriate theory [127].  
It is well known that solution pH and ionic strength directly influence the zeta potential, and thus 

greatly influence colloidal interactions.  It has been shown that the surface charge properties of colloids 

can dramatically influence colloid-cake layer structure (porosity) and hydraulic resistance [128-134].   

Colloid size and shape also contribute to the hydraulic resistance to permeation they impose when 

accumulated in a cake layer [131, 132, 135].  While colloids are often modeled as spherical, they may be 

spheroidal (microbes), crystalline (metal salt precipitates), plate-like (clays), or macromolecular (organic 

aggregates, proteins).  In many natural waters the range of polydispersity in colloid and particle size, 

shape, and electrokinetic character make it quite difficult to accurately describe with any tractable 

modelling approach. Therefore, an average, “spherical” hydrodynamic diameter is determined from 

dynamic light scattering or potentiometric methods and used in conjunction with a measured average 

particle zeta potential to predict the influence of colloidal interactions. A unique size fractionation 

water quality analysis for a real agricultural drainage water sampled from the Alamo River in Imperial 

Valley, California is provided in Table 3. Agricultural drainage water is a valuable alternative water 
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source being considered for reuse if many parts of the world; however, desalination is typically required 

since it maybe brackish [136-138]. Depending on the intended reuse application reverse osmosis or 

nanofiltration are being considered for performing the desalination process. 

Table 3 Size fractionation water quality determination for agricultural drainage water. Data 

provided by E.M.V. Hoek, University of California, Riverside are unpublished. 

Filter pH EC TDS Turb TOC Solids Size ZP
Size  - mS/cm mg/L NTU mg/L mg/L µµµµm mV

Raw 8.17 3.322 2256 108.0 21.0 2750 9.89 -11.6

8.0 µµµµm 8.48 3.232 2198 7.540 18.4 2326 2.01 -14.4

1.0 µµµµm 8.51 3.303 2254 1.380 13.4 2268 1.74 -14.5

0.4 µµµµm 8.51 3.158 2148 0.321 12.3 2151 0.29 -11.5

0.1 µµµµm 8.59 3.140 2106 0.175 9.11 2107 0.00 -7.47

Notes:

Bacteria Count = 160 to 420; Enterococcus = 0 to 30 cfu/ml
DOC (after 0.22µm filter) = 11.04 ppm

 

 

The data shown in Table 3 was obtained following standard methods for all analyses. In the table 

column headings are EC = electrical conductivity, TDS = total dissolved solids, Turb = turbidity, TOC 

= total organic carbon, Solids = total solids by gravimetric analysis, Size = hydrodynamic diameter, and 

ZP = zeta potential. The raw water was allowed to settle for 24 hours in a cold room (5ºC) and then 

sequentially filtered under vacuum through 8.0, 1.0, 0.4, and 0.1 µm polycarbonate, track-etched 
membranes. The size was determined by dynamic light scattering and confirmed with a Coulter 

Counter (only for raw, 8 µm, and 1 µm fractions). Measured electrophoretic mobilities were converted 
to zeta potential via the Smoluchoski equation [124]. The results shown are unpublished and are 

intended only to qualitatively illustrate the physical and chemical properties of natural colloidal matter. 

In addition, an analysis such as this could be used to justify the selection of a pre-treatment process to 

remove colloidal foulants prior to desalination by nanofiltration (or reverse osmosis). 

6.3 NF Membrane Properties 

Physical and chemical properties of NF membranes (i.e., permeability, salt retention, “pore” size, etc.) 

also contribute to the rate and extent of colloidal fouling [60-62, 139].  The high hydraulic resistance of 

NF membranes enables substantial colloid cake layers to form before fouling is detected, and retention 

of ionic solutes exacerbates colloidal fouling by screening electrostatic interactions.  It has recently been 

demonstrated that nanofiltration membrane surface properties (i.e., zeta potential, roughness, 

hydrophobicity) are strongly correlated to the initial rate of colloidal fouling [139-148].  Figure 22 

illustrates the range of surface morphologies that may exist for commercially available thin-film 

composite NF membranes.  Nanofiltration membrane properties are discussed in Chapter 3, while their 

individual contributions to NF colloidal fouling are described below. 
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Figure 22 Field-emission scanning electron microscopy (FESEM) images of two commercially 

available nanofiltration membranes with RMS roughness values of (HL) 12.8 and (NF70) 56.5 

nm (taken from [60]).  Additional (HL) and (NF70) membrane properties include zeta 

potentials of -18 and -25 mV (at 10 mM and pH 7), contact angles of 51.9 and 51.7, hydraulic 

resistances of 3.26××××1010 and 3.13××××1010 Pa.s/m, and salt retentions of 35 and 83% (at 50 L/m2.h 

and 10 mM NaCl), respectively. 

Analyses of numerous additional polyamide thin-film composite membranes reveals a consistent set of 

physical and chemical properties. Table 4 presents atomic force microscope roughness analyses of nine 

different membranes, along with experimentally determined surface (zeta) potentials and pure water 

contact angles. The zeta potential was determined from a streaming potential analyzer (EKA, 

Brookhaven Instruments) following methods described elsewhere [149]. The data indicate a range of 

surface roughness that varies (on average) between a few nanometers to 50 nm and with some features 

on the order of half a micron. Surface area difference (SAD) is an indication of the increase in surface 

area (over a flat plane of equal projected area) due to the roughness of the surface. SAD is a standard 

AFM roughness analysis statistic and is also known as Wenzel’s roughness ratio [150]. 

Membrane surface (zeta) potentials range between -20 and -35 mV at neutral pH in a 10 mM NaCl 

electrolyte. One membrane has a significantly lower zeta potential (LFC1), ostensibly to lower the 

fouling potential of the membrane as it is often referred to as a “low fouling composite” by the 

manufacturer (Hydranautics, San Diego, CA). The nine membranes samples exhibit a range of 

“wettabilities” as depicted by the pure water contact angles. These contact angles were determined by 

the sessile drop technique at room temperature with low relative humidity. 

Table 4 Surface properties of typical polyamide thin-film composite membranes. Data 

provided by E.M.V. Hoek, University of California, Riverside are unpublished. 
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Membrane Ra Rq Rm SAD ZP1 θθθθw

(name) (nm) (nm) (nm) (%) (mv) ( º )
NF270 5.2 6.0 63 0.3 -29 69

SG 9.1 13.1 161 2.3 -21 63
HL 10.5 15.9 200 5.3 -10 40

ESPA 31.8 40.0 469 58 -34 41
AK 33.3 42.2 403 40 -23 66

CPA3 33.5 45.8 482 31 -22 69
LFC1 34.7 44.9 368 27 -7 60
NF90 37.9 48.7 415 17 -32 38
XLE 43.4 56.7 560 30 -25 58

1 at pH 7, 10 mM NaCl
Ra = average roughness, Rq = RMS roughness, Rm = max roughness, SAD = surface area 
difference, ZP = surface (zeta) potential, θw = pure water contact angle  

 

6.4 Colloid Transport and Deposition 

The key to understanding colloidal fouling is to understand the fundamental transport processes by 

which particles are brought to the surface of the membrane, how they deposit or attach, and why they 

accumulate in the form of a cake.  Particle transport and deposition in fluids can be described by the 

convective diffusion equation [151], which in its general form is given by 

 Q
t

c =⋅∇+
∂
∂

J   (29) 

where c is the particle concentration, t is the time, J is the particle flux vector, and Q is a source or sink 

term.  The particle flux vector J is given by 

 c
kT

cc
FD

uDJ
⋅++∇⋅−=   (30) 

where D is the particle diffusion tensor, u is the particle velocity induced by the fluid flow, k is 

Boltzmann's constant, T is absolute temperature, and F is the external force vector. The terms on the 

right hand side of Equation (30) describe the transport of particles induced by diffusion, convection, 

and external forces, respectively.   

In colloidal fouling of membranes, the relevant external forces are colloidal and gravitational, that is 

 colG FFF +=   (31) 

where FG is the gravitational force and Fcol represents the colloidal forces acting between the 

suspended particles and the collector surface.  The gravitational force is usually negligible for the sub-

micron colloidal systems encountered in NF operations.  The colloidal force can be derived from the 

gradient of the total interaction potential, φT, as follows: 

 TCol φ−∇=F   (32) 

Within the framework of the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [125, 

126], φT is the sum of van der Waals and electrical double layer (EDL) interactions. A theoretical study 

by Song and Elimelech [152] utilized the general form of the confection-diffusion equation to 

investigate colloidal deposition onto permeable (membrane) surfaces.  Numerical simulations 
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demonstrated that the initial rate of particle deposition was mainly controlled by the interplay between 

permeation drag and EDL repulsion. Subsequent experimental studies have confirmed the role of 

permeation drag and EDL repulsion on the initial rate of colloid deposition [131, 132].   

While the above formulation is fundamentally correct, direct solution of such equations is impractical 

for all but academic purposes. Cohen and Probstein [153] provided a facile, but approximate, approach 

towards quantifying the impact of the physicochemical properties of stable colloids (described via the 

DLVO approach) on colloid cake layer formation. In this classic paper, the authors studied the rate of 

flux decline of reverse osmosis membranes due to iron oxide nano-particles.  They assumed that at 

least a monolayer of coverage by the positively charged colloidal foulants would coat the negatively 

charged membrane surface, but the similar charge of subsequently depositing foulants and the foulant-

coated membrane surface would result in repulsive (electrostatic) interactions. The authors provided 

“order-of-magnitude” approximations for the particle fluxes resulting from permeate convection, 

Brownian diffusion, lateral (inertial) lift, shear induced diffusivity, and repulsive interfacial forces. The 

conclusion was that the net deposition rate must be determined by a balance between permeate 

convection and the interfacial flux due to repulsive electrostatic interactions, all other diffusive or 

convective fluxes being negligible. 

Goren [154] performed a detailed theoretical analysis of hydrodynamic interactions between colloidal 

particles and membrane surfaces occurring as particles are convected towards the membrane under 

force of permeation drag. The net effect of these hydrodynamic interactions is to increase the effective 

drag force on a particle as it approaches the membrane surface over that predicted by the Stokes 

equation. Goren’s analysis yields a correction factor that increases dramatically as a particle approaches 

a membrane surface and is a complex function of the particle size, membrane resistance, and 

separations distance. So, in addition to bulk convective and diffusive interactions and interfacial 

physicochemical interactions, it is (theoretically) important to consider the impact of interfacial micro-

hydrodynamic interactions on colloidal fouling. Following the approach of Cohen and Probstein [153] 

described above an order of magnitude analysis can be performed employing the following 

representative operating conditions and membrane surface properties and water quality data from 

Table XX: flux of 11 gfd (~5×10-6 m/s), cross-flow velocity of 0.5 m/s (Re = 1000), membrane 

resistance of 3×1013 m-1, membrane surface zeta potential of -20 mV, foulant zeta potentials and sizes 

from Table 3.  

Figure 23 plots the theoretical foulant fluxes due to permeate convection (bulk value – dashed line with 

open blue diamonds, and Goren corrected value – solid line with solid blue diamonds) and the various 

back-transport mechanisms of shear induced diffusion, lateral (inertial) lift, Brownian diffusion, and 

interfacial (DLVO) forces. The conclusion is that without accounting for the correction to permeation 

drag, the back-transport of colloidal sized foulants by both shear induced diffusion and interfacial 

forces is estimated to be orders of magnitude larger than the flux due to permeation and no foulant 

deposition would be anticipated. By applying the hydrodynamic correction provided by Goren the 

permeate convection flux is increased by several orders of magnitude and prevails over the back-

transport fluxes. Analyses of this nature are at best order of magnitude approximations and have not 

been systematically tested at any scale, but by considering all known transport mechanisms a better 

understanding of colloidal fouling may be accessible. 
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Figure 23 Plot of various colloidal foulant fluxes assuming representative NF membrane 

properties, operating conditions, and foulant properties (size and zeta potential take from 

Table 3). The data labels “Perm-Bulk” and “Perm-Goren” indicate fluxes of foulant particles 

towards the membrane surface due to permeate convection – using Stokes’ drag (bulk) and 

Goren’s drag (described above), respectively. Back transport mechanisms of Brownian 

diffusion (“Brownian”), shear induced diffusion (“Shear”), lateral inertial lift (“Inertial Lift”), 

and DLVO (“Interfacial”) are plotted for comparison. 

 

The extent to which membrane surface properties influence long term fouling (i.e., through cake 

formation) is unknown because it is unclear how membrane properties might affect subsequent particle 

deposition once the membrane is covered with a thin layer of particles.  Wiesner et al. [155] provided 

one of the earliest known studies on membrane filtration of coagulated colloidal suspensions. They 

compared the effect of colloid stability on cake layer structure (porosity) and permeate flux decline for 

both stable and unstable colloids experimentally and theoretically. Subsequent studies, both theoretical 

and experimental have confirmed the importance of colloid stability, colloid and membrane surface 

properties, and colloidal hydrodynamics on cake formation and permeate flux decline in various 

membrane filtration processes [55, 130, 132, 133, 156, 157]. 

Although DLVO interactions enable a large amount of experimental aggregation and deposition data to 

be explained, additional short-range colloidal interactions must also be considered.  Such non-DLVO 

forces include repulsive hydration interactions (due to oriented water molecules adsorbed at each 

interface), attractive hydrophobic interactions (because of the relatively strong affinity of water to itself 

compared to that between water and most solid matter), and repulsive steric interactions (from 

deformation or penetration of adsorbed polymers) [158].  The existence of these non-DLVO forces has 
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long been recognized, but it has only recently been demonstrated experimentally that non-DLVO 

interactions significantly colloidal fouling of polymeric membranes [147]. 

Other experimental studies suggest that surface roughness  [130, 133, 148, 159] influences the initial 

rate of colloid deposition onto membrane surfaces.  Figure 24 shows AFM images of the NF 

membranes from Figure 22 after filtering a colloidal suspension under the same physico-chemical 

conditions.  The membrane on the right had significantly more particles deposit on the surface and the 

colloids appear to have deposited preferentially in the valleys of the rough surface.  Additional, model 

calculations supported the preferential deposition of colloids in the valleys of rough membranes [60]. 

 

 

Figure 24 Atomic force microscope images of nanofiltration membranes challenged with a 

0.0002% (v/v) suspension of 100 nm spherical silica colloids at 10 mM NaCl, 1x10-5 m/s (20 

gfd) flux, 19.2 cm/s crossflow velocity, 25°C, and pH 7.  The filtration experiment lasted only 

30 seconds.  After filtration, the membranes were removed, rinsed in a particle free electrolyte 

and allowed to dry before Tapping Mode™ AFM imaging in air with a silicone nitride 

cantilever tip [60].  The circled area indicates a large cluster of colloids deposited in the valley 

of the rough NF membrane. 

 

7 BIOFOULING 

7.1 Introduction and Definition of Biofouling 

Biofouling is a term used to describe all instances of fouling where biologically active organisms are 

involved [160]. Membrane biofouling is caused by bacteria and, to a lesser degree, fungi [161]. The 

fundamental difference between biofouling and other types of fouling discussed in this chapter is the 

dynamic nature of the biofouling process. Whilst the different forms of chemical fouling reflect largely 

passive deposition of organic or inorganic materials on membrane surfaces, biofouling is a dynamic 

process of microbial colonization and growth, which results in the formation of microbial biofilms. 
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Biofilms are microbial communities that grow attached to surfaces. Biofilm formation invariably 

precedes biofouling, which becomes an issue only when biofilms reach thicknesses and surface 

coverages that reduce permeability. In serious cases, biofilms may cause total blockage of feedwater 

channels and mechanical collapse of modules by telescoping [162, 163]. Biodegradation of cellulose 

acetate NF membranes has also been reported [7]. 

7.2 Biofilms 

Microorganisms accumulate on membrane surfaces by two processes, attachment and growth. 

Attachment is preceded by the transport of microbes to the membrane surface either by passive 

diffusion, gravitational settling or active movement (motility). The rate of microbial deposition depends 

on the rheological properties of fluid flow. Biofilm formation is initiated by adhesion of primary 

colonizing organisms to a membrane surface. This membrane surface is usually a conditioned surface, 

e.g. a surface physicochemically modified by adsorption of organic and inorganic molecular or ionic 

components of the feedwater [164, 165]. Microbial adhesion is a physicochemical process controlled 

initially by long-range forces (attractive van der Waals forces and repulsive electrostatic forces, [166, 

167]. Once the cell approaches the substratum surface to a distance of 3-5nm, the adhesion process 

becomes dependent on short-range interaction forces. Adhesion itself ends with the formation of 

strong adhesive bonds between the adhering cell and the conditioned membrane surface.  

Once cells are firmly attached to a membrane, they may begin to grow by conversion of organic matter 

and other nutrients supplied in the liquid phase (e.g. the feedwater or the permeate) into cell mass and 

extracellular materials. Microorganisms utilize a wide range of strategies to grow on surfaces, including 

the production and release of daughter cells [168], the movement of daughter cells away from each 

other [169] and, most relevant for biofilm buildup, the formation of microcolonies where 

microrganisms are held together by a cohesive layer of glycocalyx. Eventually the membrane surface 

becomes covered with a large number of microcolonies. These microcolonies will grow further, 

incorporating new types of bacteria, which colonize newly formed ecological niches inside the biofilm, 

including anaerobic pockets at the base of the microcosm. Microcolonies, each one initially a pure 

culture of a primary colonizer, coalesce and form columns and other types of biofilm structures 

composed of different microbial species, which may incorporate algae, fungi and protozoa. The 

coalescence of individual microcolonies or columns does usually not result in the coverage of the 

substratum surface by a compact gel-like biofilm, since even mature biofilms are crisscrossed by a 

network of channels, which allow access of nutrients and removal of waste products from within the 

slime layer [170, 171]. Biofilms therefore produce a self-replicating fouling layer. Biofilms in water 

channels will grow to a thickness where the shear force of the moving water tears away the upper parts 

of the biofilm structure. Biofilms will block water channels if shear forces are not strong enough to 

disrupt them. An example of a fouled spiral wound membrane module is shown in Figure 25 and the 

fouling of spacers is depicted in Figure 26. More details on modules, spacers and their configurations 

were given in Chapter 4. 

 

Chapter 8 – Fouling in Nanofiltration 

50 

 

Figure 25 Membrane biofouling. A: relatively clean membrane (opened spiral wound module). 

B: heavily fouled membrane. C: macroscopically visible fouling layers on heavily fouled 

membrane. D: clean permeate side appears white, whilst fouled feedwater side has a brownish 

colour. 

Biofilm bacteria obtain carbon and energy for growth from dissolved feedwater organics. The growth 

rate of microbes in biofilms depends on the rate of supply of essential nutrients and organic substrates 

(food sources for microbes within the biofilm). Part of the organic carbon metabolised by the cells is 

converted into extracellular matrix polymers, growth yields therefore tend to be lower inside biofilms 

than in the planktonic (suspended) phase. Growth rates of microbes within biofilms are nowhere near 

the maximum growth rates achievable in well mixed media with balanced nutrient composition, except 

for growth of initial colonizers directly exposed to liquid. Microbial growth inside the biofilm occurs 

under diffusion-limited conditions. The pores of the glycocalyx limit the access of large molecules to 

cells inside the biofilm and create a tortuous diffusion path for small molecules between the biofilm-

liquid interface and the cells embedded in the biofilm matrix [172, 173].  

Biofilms established on the surfaces of porous supports such as membranes, however, may grow faster 

than biofilms established on non-porous supports such as piping, because, in a membrane module, a 

significant proportion of fluid (up to 15% in the case of RO or NF spiral wound elements) flows across 

the biofilm thus carrying nutrients into the biofilm and washing waste metabolic byproducts out of the 

structure. This positive effect of higher water fluxes across biofilms is, however, counteracted by a 

greater compression of biofilms on membrane surfaces, which operate under high pressure 

differentials. This compression may result in denser, less porous biofilms and hence greater flux 

decline. 
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Figure 26 Biofouling on feedwater spacers. A: lightly fouled spacer. Most bacteria appear as 

individual organisms, no indication of extracellular matrix. B: macroscopic view of heavily 

fouled spacer. C: fouling layer on heavily fouled spacer. D: transition zone between relatively 

clean spacer surface, colonized by a few clusters of microbes, and biofilm embedded in thick 

glycolalyx on fouled spacer surface. 

Microbial populations inside biofilms are often stratified. Aerobes colonize the surfaces of biofilms and 

of channels inside the microcosms, but high oxygen consumption and diffusion-limited supply of this 

electron-acceptor usually limits the depth to which aerobes can grow to about 100-200 µm from the 
biofilm surface [173]. Deeper layers inside biofilms are colonized by anaerobic organisms, including 

denitrifiers, sulfate-reducers and methanogens [173]. The glycocalyx acts as an immobilisation agent 

and assures that neighbouring organisms remain locked in their positions for prolonged periods of 

time. This facilitates the establishment of consortia that degrade complex organic matter by metabolic 

complementation, whereby each member of the community catalyses one or several steps in the 

biodegradation pathway of a structurally complex compound. The glycocalyx may function as a sponge 

and adsorb nutrients present in very small concentrations in the aquatic phase. Microbial biofilms will 

therefore grow in very low nutrient environments such as ultrapure water systems.  

 

7.3 Detection of Biofilms in Membrane Systems 

Detecting biofilms in a non-destructive manner inside membrane modules is possible only by indirect 

methods such as comparison of cell counts at inlets and outlets to detect whether microbial growth 

occurred inside the module. Direct microscopic comparison of samples of feedwater and of retentate 

Chapter 8 – Fouling in Nanofiltration 

52 

may reveal the existence of biofilms if one detects clusters of microorganisms sloughed from biofilms 

in the outlet and not in the inlet stream.  

Membrane autopsies permit the direct detection of microbial biofilms by analysis of membrane or 

spacer surfaces using fluorescence microscopy or scanning electron microscopy (SEM). An example of 

such a SEM picture is shown in Figure 26. Confocal laser scanning microscopy allows the non-

destructive analysis of biofilms on membrane surfaces by producing optical slices through the biofilm 

structure, which are reconstructed digitally to obtain a three-dimensional image of the biofilm [174].  

Bacteria may be removed from membrane surfaces and analysed either by simple direct count methods 

using dyes that stain DNA (DAPI, acridine orange, [175]), or by more sophisticated gene probing 

techniques such as fluorescent in situ hybridisation [176]. Microbial community structure of membrane 

surfaces may be analysed after extraction of DNA [177] or phospholipid fatty acids (PLFA, [178]). The 

physiological activity of cells within biofilms can be assessed with fluorescent dyes such as CTC [179]. 

7.4 Microbial Composition of Membrane Biofilms 

A large diversity of fungi and bacteria have been isolated from membrane biofilms [162]. Fungal genera 

recovered from fouled cellulose acetate membranes include Acremonium, Candida, Cladosporium, 

Rhodotorula, Trichoderma, Penicillium, Phialophora, Fusarium, Geotrichum, Mucorales, and others. Bacterial 

genera isolated from membrane biofilms include Acinetobacter, Arthrobacter, Pseudomonas, Bacillus, 

Flavobacterium, Micrococcus, Micromonospora, Staphylococcus, Chromobacterium, Moraxella, Alcaligenes, 

Mycobacterium, Lactobacillus, etc. It is not known whether these organisms colonize membranes in a 

random sequence, or whether particular microbial species are always involved in primary colonization.  

Ridgway [180] reported that Mycobacterium sp. were the initial colonizers of TFC RO membranes 

installed at Water Factory 21 in Orange County. The range of organisms identified in biofouling studies 

of RO and NF membranes differs between studies, suggesting that the species composition on 

membrane biofilms varies between sites. 

There are very few studies about the origin of the organisms that form biofilms on membranes. These 

cells arrive at their location by transport in the feed water. Most nanofiltration and reverse osmosis 

systems require some form of pre-treatment of the feed water. Incorrectly operating or planned pre-

treatment stages may represent a significant source of biofilm bacteria in membrane installations. 

Surfaces in pretreatment systems such as ion exchangers, sand filters, granulated activated carbon 

filters, degasifiers, cartridge filters, holding tanks and piping are all excellent sources of biofilm-forming 

organisms on the feed side of membranes in RO or NF systems. Biofilms on permeate spacers 

originate from bacteria introduced into those locations during manufacturing or from microbes which 

reach the permeate through holes in the membrane.   
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Figure 27 Electron microscope analysis of fouled membrane surfaces. A: lightly fouled 

membrane, covered with a few microbes (individual particles) and an aggregate consisting of 

microbes mixed with predominantly colloidal matter. B: amplified view of colloidal matter in 

A. C: heavily fouled membrane with inclusion body consisting primarily of sulfur. D: Bacteria 

embedded in the biofilm covering the heavily fouled membrane (arrows). Note very thick layer 

of slime and other organic material covering heavily fouled membrane. 

 

Consequences of biofilm formation in membrane systems 

Biofilm formation on membrane surfaces leads to the typical symptoms of fouling, flux decline. Flux 

decline caused by biofouling usually occurs in two stages. Colonization and growth of a microbial 

biofilm on a clean membrane causes an initial strong flux decline which is followed by a second slower 

phase, where flux declines in an almost asymptotic manner, probably because of the equilibrium 

between biofilm growth and removal. The molecular basis of flux decline caused by biofouling is 

poorly understood. Biofilm growth on a membrane surface leads to the establishment of a second 

filtration layer. In biofilms established on the surface of filtration media such as membranes, water flux 

occurs in a direction transversal to the substratum surface, as opposed to biofilms established on solid 

surfaces, where water may penetrate only in a tangential direction relative to the substratum surface. 

Although mature biofilms exhibit channel structures which link the biofilm surface to the substratum 

surface, these channels are probably not sufficiently large and numerous to absorb the bulk of permeate 

flow. Water that enters the channels leaves the biofilm across the membranes. Any debris or particles 

carried by this water stream will therefore be retained on the membrane surface and probably block the 

channels over time. Most permeate probably originates from water that crosses the biofilm through the 

matrix and matrix porosity is therefore the major controlling element for membrane flux across 
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biofouled membranes. Leslie et al [181] and Hodgson et al. [182] demonstrated that treatments which 

enhance glycocalix permeability result in increased fluxes and passages of macromolecules, whilst 

treatments such as EDTA, which remove the glycocalix from cell surfaces, result in pore blockage by 

extracellular polymeric substances (EPS) of the glycocalyx. Flemming et al. [183] demonstrated that 

chemical modifications of the EPS structure can increase its water and solute permeability.  

Biofilms form on all surfaces within a membrane system in contact with the water phase, including the 

surfaces of spacers and tubing. The establishment of a biofilm reduces turbulent mixing on the 

membrane surface, thus increasing concentration-polarisation. The association of high concentrations 

of rejected salts with a large diversity of biological organic molecules may lead to enhanced 

precipitation of salts within the biofilm glycocalix. The increase of fluid frictional resistance due to 

biofilm development in feed channels may increase module differential pressure to the point where 

adjacent membrane leaves within the module may shift and cause a telescopic failure of the module. 

Biofilms in permeate channels or spacers are a potential source of bacterial contamination of the 

filtrate, an issue of serious concern in industries which require high purity water, such as the electronic 

industry and the pharmaceutical industry.  Filamentous fungi belonging to the genera Penicillium and 

Aspergillus often degrade glue lines that separate feed from permeate channels and thus disrupt the 

integrity of membrane modules. Microbial products produced by biofilm bacteria may deteriorate 

membrane polymers either by direct attack of biodegradative enzymes (cellulose esters) or indirect 

attack via metabolic byproducts. 

7.5 Biofilm Matrix and Biofilm Control 

A characteristic feature which distinguishes microbial biofilms from planktonic organisms (organisms 

suspended as single cells in the water column) is the capability of self-immobilisation of biofilm cells on 

surfaces by production of a thick extracellular slime or glycocalyx [184]. This glycocalyx contains 

between 50% to 90% of the organic carbon of biofilms and is composed primarily of 

exopolysaccharides, but it includes other materials of biological origin such as proteins, DNA, RNA, 

lipids, etc. The glycocalyx that surrounds the cells in biofilms has important implications for the 

treatment of biofouling. The glycolcalyx is a porous structure, which does not significantly restrict the 

access of small, uncharged molecules such as oxygen, nitrates, sulfates, etc., to the cells. The glycocalyx, 

however, retains very effectively molecules with affinity for its constituents, which become adsorbed 

and thus immobilized within the structure and it does exclude any compound whose molecular 

dimensions are larger than the average pore size. The polysaccharides within the glycocalyx are very 

hygroscopic, e.g. they remain hydrated even in low water activity environments.  

The glycocalix remains a major challenge for biofilm control. Effective control of biofilms requires 

disruption of the glycocalyx to allow access of biocides to cells inside the biofilm. Oxidizing agents 

have a low efficiency in biofilm control, since these substances are largely consumed in the oxidation of 

glycocalyx compounds and do not reach the cells. Biocides have to be used together with compounds 

such as detergents, chaotropic agents and chelating agents, which effectively disrupt the glycocalix 

structure and allow the biocides to act upon the cells directly [185]. An increase in transmembrane flux 

after chemical cleaning may not necessarily reflect good removal of biofilm bacteria from membrane 

surfaces, it may be due solely to a disruption of biofilm structure [186]. Repeated use of the same 

cleaning solution against a particular biofilm may result in the selection of resistant strains and thus 

decrease the biofilm´s susceptibility to the cleaning agent. Effective biofilm control therefore depends 
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on the periodic change of the cleaning and sanitizing solutions. Care must also be applied in the 

selection of antiscalants used for chemical fouling control. Some organic antiscalants are good 

substrates for microbial growth, and worsen considerably biofouling problems [187]. 

Membrane systems should be designed and operated in ways to minimize biofilm buildup on 

membranes. The most effective means for pre-treatment are filtration systems such as ultra- and 

microfiltration which remove bacteria effectively from feedwaters. An outline of pre-treatment 

technologies for nanofiltration was given in Chapter 9. These advanced pre-treatment technologies, 

however, do not remove or destroy organic carbon sources for microbial growth. Pretreatment systems 

which combine filtration with bioreactors designed for removal of bioavailable organic carbon in 

feedwaters to minimal levels are probably the most effective combination for biofouling control since 

low numbers of organisms and low concentrations of organics will limit the growth of biofilms on 

membrane surfaces [188, 189]. Continuous dosing of oxidizing biocides such as chlorine at low 

concentrations has proven effective in many membrane operations, but it is important to stress that 

such measures need to be adopted from the very start of membrane operation, before a biofilm is 

formed. Biofilm formation may also be minimized by appropriate choice of membrane polymers. In 

recent years manufacturers have introduced several types of low-fouling polymers on the membrane 

market [190, 191]. Once formed, only periodic cleaning with chemical cocktails containing a 

combination of detergents, chaotropic agents, chelating agents and biocides will be capable of 

effectively controlling biofilm growth. Further details on cleaning options will be given in the following 

section. 

 

8 FOULING PREVENTION & CLEANING 

8.1 Pretreatment as Fouling Prevention 

In NF normally frequent cleaning is avoided by using different types of pretreatment. For example, 

particulate matter is aggregated and settled until an almost particle free feed is achieved. As described in 

the previous sections, MF and UF may be more effective in removing such particulates than 

conventional treatment, but small colloidal matter may still permeate. Such pre-treatment results in a 

very low (less than 3) silt density index (SDI). A success story was reported by Gwon et al. [26] who 

attributed the absence of biofouling to pre-treatment with UF. In pretreatment also biocides and 

chlorine pretreatment can be used to avoid biofouling. More details on pretreatment in NF can be 

found in Chapter 9 and in an article of pretreatment for RO included by Shahalam [192].  

8.2 Membrane Modification for Fouling Prevention 

Another option to avoid fouling and subsequent cleaning, beside pretreatment, is to modify the 

membrane or the membrane surface in particular. Normally the modification aims to produce a more 

hydrophilic membrane [193], a more resistant membrane or sometimes to a more charged membrane. 

The problem with modification is that the modification material takes up space in the membrane 

polymer, and thus the flux decreases. The modification is, therefore, a compromise between fouling 

and pure water flux. Lee et al. [29] have studied the effects of anionic and cationic surfactants on UF 

membranes used for NOM filtration. While anionic surfactants had no effect on flux or retention, 

cationic surfactants decreased flux which was accompanied by an increase in NOM retention. In 
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contrast, Combe et al. [53] determined that anionic surfactants reduced adsorption of humic acids 

considerably. 

An attempt to make modifications of NF membranes (NF 270) has been performed by Belfer and 

Gilron [194], see Table 5. The membranes have been modified in situ (also spiral elements) with 

acrylates or other similar monomers. The crosslinking agent was Ethylene Glycol Dimethacrylate 

(EGDMA) and the reaction time 15-60 minutes. It can be seen that the flux has decreased somewhat 

due to the modification, but also the fouling has decreased (measured as the difference of the pure 

water flux before (PWFb) and after the experiment) especially with the HEMA-modified membranes. A 

similar procedure for RO membranes has been reported by Gilron et al. [195]. Coating membranes with 

a layer of pre-adsorbed polymer may sterically prevent the foulants from entering into the membrane 

matrix. The effectiveness of such a treatment depends on the membrane characteristics. Hydrophobic 

membranes generally are more susceptible to adsorption and fouling and hence making such a 

membrane more hydrophilic is likely to improve performance [85].  

Kilduff et al. [12] have developed a technique to modify the surface of NF membranes using UV 

irradiation and UV-assisted graft polymerisation. Such treatment resulted in increased hydrophilicity of 

the membranes possibly due to the formation of surface hydroxyl groups. Less fouling however, came 

at the cost of decreased retention. 

Table 5 NF270 membranes modified in situ by redox-initiated graft polymerisation with 

potassium persulfate/potassium metabisulfate as the initiator (0.005-0.03 M). Retention (R) of 

UV-absorbing compounds (UV) and of Total Organic Carbon (TOC) and fouling in NF of 

paper machine clear filtrate. Modification agents used: Acrylic acid (AA), Methacrylic Acid 

(MA), Polyethylene Glycol ester of Methacrylic Acid (PEGMA), Hydroxymethyl ester of 

Methacrylic Acid (HEMA), (Belfer and Gilron [194]).  

Modification Pure Water Flux 

(L/m2h) 

Permeate flux 

(L/m2h)  (0-3 h) 

R, UV 

   (%) 

R, TOC 

    (%) 

Fouling  

    (%)  

Original 205 132 51 80 21.6 

MA- 1M 30%PEGMA 65 40 92.7 80 - 

AA-1M 226- 

183 

130 97 83 13 

MA-0.5M PEGMA-0.002M 232 148 90.2 69 22.5 

HEMA-1M 156 123 98 80 4.9 

HEMA-0.5M 173 120 96.8 72 1.4 

HEMA-0.2M 204 118 96.6 72 

74 

1.4 

HEMA-0.2M (circulated cell) 175 125 97.7 82 0.6 
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8.3 Cleaning Methods 

8.3.1 Physical Cleaning Methods 

While the main focus in this section is on chemical cleaning, some form of physical cleaning is generally 

part of a cleaning protocol and hence a brief overview is provided. Physical cleaning generally uses 

mechanical forces to remove foulants [196] and such methods include 

� Backflush/Forward Flush/Reverse Flush 

� Scrubbing (e.g. using foam balls for tubular modules) 

� Air Sparge 

� CO2 Back Permeation 

� Vibrations 

� Sonication 

While a number of researchers have used permeate backwash for TFC membranes, this is somewhat 

surprising as the risk of damage to the thin active layer in backwash operation is considerable. 

However, Chen et al. [196] have reported beneficial effects of such backflushes presumably due to the 

disruption of the foulant layer which was subsequently removed by a forward flush. 

Sonication is a relatively novel method for membrane cleaning, although ultrasound is commonly used 

in membrane autopsies to remove the fouling deposits from the membranes for chemical analysis. Lim 

and Bai [197] have used sonication in microfiltration (MF) and found that the technique was very 

efficient in removing cake deposits, but not effective in removing pore blockages. This resulted in a 

decrease of cleaning efficiency over time as mechanisms like pore plugging became more predominant. 

Hence it was required to combine sonication with backwashing as well as a chemical cleaning protocol. 

8.3.2 Chemical Cleaning Agents and Processes 

Chemical cleaning relies on chemical reactions to break bonds and cohesion forces between 

membranes and foulants [196]. Such chemical reactions include 

� Hydrolysis 

� Saponification 

� Solubilisation 

� Dispersion 

� Chelation 

� Peptization [198]. 

In many cases NF membrane manufacturers are co-operating with a cleaning agent manufacturer to 

establish the most suitable cleaning process for the membranes produced by the membrane 

manufacturer. However, as described above, the cleaning protocol not only is membrane specific, but 

also foulant dependent. Some typical producers of formulated cleaning agents are Diversey-Lever A/S, 

Henkel-Ecolab GmbH & CO, Ondeo Nalco Ltd. and Novadan A/S. [199, 200] and several authors 

have listed cleaning mixtures or protocols [15, 26, 27, 196, 201, 202].  Li and Elimelech [203] 

established in a very fundamental study that cleaning can only be effective when calcium ion bridging 
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could be removed by the chemical cleaning agent. The authors used SDS and EDTA for those studies 

with organic foulants and multivalent ions. 

Alkaline Cleaning: The alkaline cleaning is often the most important as many foulants, especially in 

natural waters or wastewaters are of organic nature or inorganic colloids may be coated by organics. 

The alkaline cleaning is aiming to remove organic foulants from the surface of the membrane and from 

the pores of the membrane. The high pH is usually a result of using sodium hydroxide and sodium 

carbonate containing cleaning solution. In most cases then a surfactant is included in the formulated 

cleaning agent. This surfactant emulsifies fat containing particles and prevents the foulant from 

adhering back on the surface. The surfactant is mostly anionic or non-ionic and acts together with the 

alkaline agent (caustic) to remove the foulant. In many cases some sequestering agent like EDTA is 

added to the formulation to remove multivalent ions like calcium and magnesium. It appears that 

alkaline cleaning is often the most effective cleaning step [26]. 

Acid Cleaning: The acid cleaning aims at removing precipitated salts (scaling) from the surface of the 

membrane and from the “pores”. The acid procedure can be the most important cleaning step in RO 

as the scaling problem occurs in connection with salt retention. Often the acid used is nitric acid at a 

pH of 1-2. In many cleaner formulations citric acid has been used as well as phosphonic and 

phosphoric acid. The large use of nitric acid depends on its fairly mild oxidising ability. In the acid 

cleaner formulations also detergents, cationic or non-ionic, as well as some sequestering agents can be 

present. 

Enzymatic cleaning: Enzymes are used on a larger scale today than earlier. There are enzymes that 

can take very high temperatures (70-90oC) even though in most cases their optimal temperature is 

much lower. Enzymes can often be used when a more neutral pH for cleaning is considered, when 

biofouling is expected or when polysaccharides are the typical foulants. Because, often the extra-cellular 

substance secreted by the biofouling microbes is polysaccharide in nature enzymatic cleaning is 

important. The enzymes are mostly very specific in their action and are, therefore, selected for specific 

foulants or when other cleaning agents do not help. Special caution has to be taken so that the enzyme 

cannot attack the membrane itself [204].  

Biocides for control of microorganisms and biofouling: Zeiher and Yu [205] describe three terms 

of importance in the control of biological fouling, namely sanitization which describes a cleaning process 

with antimicrobial characteristics. In a “3 log” or 1,000 fold reduction in microbial counts in achieved. 

Disinfecting is the process in which microorganisms are destroyed, inactivated or removed in the order of 

magnitude of a “6 log” or 1,000,000 fold reduction in counts. Lastly, Sterilizing means making a system 

free of all living cells, viable spores, viruses and sub-viral agents capable of replication. According to 

Zeiher and Yu [205] it is sterilizing that is desired in membrane systems. The use of biozides and their 

common concentrations are summarised in Table 6. It should be noted here that many NF membranes 

are not chlorine resistant and application of biocides should be in consultation with the membrane 

manufacturer to avoid membrane damage. For example, Staude indicates that ozone destroys some 

polymeric membranes, while the resistance to various disinfectants is membrane dependent [3]. Some 

of those biocides have been reported to cause membrane swelling which loosens foulants attached to 

the membranes and hence increases cleaning efficiency [196]. 
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Table 6 Typical Biocide Concentrations for RO Sanitizing (adapted from Zeiher and Yu [205]) 

Biocide Dosage Comments 

Chlorine 0.1 - 1.0 ppm CA membranes and other  

chlorine resistant only 

Peracetic acid 0.02 - 1.0 % pH of neat product is  3 - 4 

Formaldehyde 0.5 - 3.0 % carcinogen 

Glutaraldehyde 0.5 – 5 % not recommended 

Isothiazolone 0.01 - 0.15 % slow 

Quaternary 
amines 

0.01 – 1 % not recommended 

DBNPA up to 200 ppm fast, easy disposal 

Bisulfite 1.5 % (preservative) or as 
needed for Cl2  removal 

preservative, biostatic,  

Cl2 scavenger 

 

8.3.3 Choice of Cleaning Method 

According to Chen et al. [196] the selection of appropriate cleaning protocols is usually based on a trial 

and error approach. This means testing various cleaning protocols that have been selected by rule of 

thumb and experience for presumed foulants. If foulants have not been identified, assumptions based 

on feedwater characteristics need to be made. The different categories of foulants have been described 

in detail in previous sections. In terms of their contributions to fouling, van Hoof et al. [99] have 

concluded from extensive membranes autopsy surveys that worldwide about 50% of the foulants are of 

organic nature. This organic foulant fraction is higher in Europe than it is in the USA. Ferric oxide and 

silica are the next most common foulants followed by alumina, calcium phosphate, calcium carbonate 

and calcium sulphate. Silica is apparently more abundant in the USA and calcium phosphate in the UK. 

The effective selection of a cleaning agent is usually preceded by a determination of the foulant using 

feed analysis or membrane autopsy. However, this procedure has limitations in that if several foulants 

are identified cleaning protocols may become extensive. For this reason Luo and Wang [15] have 

optimised a CIP method and established that it is sufficient to remove selected essential foulants as 

subsidiary foulants may be removed simultaneously. No doubt the nature and complexity of fouling 

can make it very difficult to find the ideal cleaning agent. For this reason Chen et al. [196] have 

developed a methodology that applies a statistically designed approach (factorial design) to cleaning 

optimisation. The impact of this optimisation at the example of a UF membrane is shown in Figure 28 

with a significantly increased productivity. Weis et al. [206] have trialled various cleaning protocols as a 

function of membrane characteristics and established that the choice of cleaning agent was 

instrumental in achieving a steady state flux value. 
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Figure 28 Impact of 

cleaning procedure 

optimisation on flux 

(reprinted from Chen 

et al. [196]). 

 

 

 

 

 

 

 

 

The cleaning process to be adapted depends on the type of foulant, the tolerance of the membrane 

towards the suggested cleaning agent and the regulations applying to cleaning agents for a particular 

application. For instance directives exist dealing with issues such as what formulations are acceptable 

and those certainly differ from country to country (e.g. EU and the USA have different norms).  

Cleaning is in most cases performed using caustic, acid or enzymes solutions, mixtures of those, 

combinations of additives or proprietary commercial cocktails. For sanitation often chlorine gas is 

required in some of the treatment steps, although formaldehyde has also been reported.  

The effectiveness of such cleaners is usually offset by the damage caused to the membrane materials 

and hence membrane durability is an important consideration in order not to adversely affect 

membrane lifetime. 

8.3.4 Determination of Cleaning Requirement and Frequency 

Generally in industry the cleaning interval is designed in such a way that the cleaning is taking place 

when a certain amount of flux is lost, although there is evidence that cleaning at an early fouling stage is 

more efficient than when the fouling is well established and the fouling layer compacted [207]. A flux 

loss of 10-30 % is usually the highest allowable decrease in flux. Another option is to clean on a regular 

basis for instance once a week or less frequently depending on the fouling situation of the process. In 

some cases NF can be used almost without cleaning if the operating conditions are such that only sub-

critical fluxes are used. An example of that is NF in humic water treatment in Norway at low flux and 

low temperature [208]. 

In most cases NF processes need less cleaning than UF and MF processes. The reason for this is that 

the common and usually detrimental pore plugging in UF and MF is less important in NF. However, 

on the other hand, cleaning is needed more often than in RO due to the more open structure of NF 

membranes.  

Due to the similarities of RO and NF often the same types of cleaning agents and cleaning processes 

are used. In most cases the cleaning protocols are dependent on the fluids to be processed by using NF 

(foulant types).  
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The cleaning interval depends both on the foulant amounts on the membranes (mostly measured as 

increased pressure to keep up constant flux) or on the fact that the membranes need to be cleaned and 

disinfected at regular times (daily in the dairy industry). Very few papers on cleaning of NF membranes 

have been published up-to-date. In the dairy industry fouling and cleaning of MF and UF membranes 

and visualisation of fouling and cleaning efficiency have been reported. Most of the principles are thus 

reviewed.  

8.4 Determination of Cleaning Effectiveness 

8.4.1 Water Productivity and Membrane Resistance 

There are different ways to establish how effective a particular cleaning protocol is. Firstly, the clean 

water flux can be measured and compared to the CWF before and immediately after filtration to 

determine if flux has recovered due to cleaning. This can be done in situ in the process. The recovery 

of the original steady state process flux is, of course, the most natural way to see that cleaning has been 

successful [201]. Flux recovery can be calculated as  

  
0J

J
FR C=   (33) 

where JC is the flux after cleaning and J0 the flux of the virgin, unfouled membrane [201]. Alternatively 

the effectiveness can also be represented by clean water flux recovery [196] as 

  
C

O

J

J
eryJ =covRe   (34) 

The variation of flux has been illustrated in Figure 3 showing the impact of fouling and cleaning on flux 

and the impact of several successive cleaning steps to fill recovery is shown in  Figure 29 at the example 

of an UF membrane fouled with proteins, lipids and carbohydrates and cleaned with a rinse wash 

(water), an alkaline clean (NaOH 0.5 w%), followed by a protease detergent (0.75 w%), followed by 

sodium hypochlorite (150 mg/L). The sodium hypochlorite is used as a sanitising agent and its cleaning 

effectiveness was attributed to its ability to cause swelling of the membrane [27]. 

 Figure 29 Flux recovery in the case of 

successive cleaning steps (figure 

reprinted from Sayed Razavi et al. [27]). 

 

 

 

 

 

 

 

In accordance with the resistance in series model, this can also be depicted as a variation of membrane 

resistance as shown in Figure 30. From this graph conclusions can be drawn regarding the nature of the 

foulants and the effectiveness of cleaning. A reduction of resistance by rinsing indicates a loosely 
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associated deposit such as a concentration polarisation or a loose gel layer or cake. The resistances are; 

the intrinsic hydraulic membrane resistance (RM), residual resistance after cleaning (RRES), resistance 

after filtration (in this case UF; RUF), reversible fouling resistant (RRF), irreversible fouling resistance 

(RIF), the total fouling resistance (RF), hydraulic resistance of the cleaned membrane (RCW). Cleaning 

can be assumed to be complete when RCW ≈ RM allowing for experimental error [202].  

Figure 30 Resistances 

in filtration, rinsing 

and cleaning (adapted 

from Argüllo et al. 

[202]). 

 

 

 

 

 

 

 

 

 

In this case of presentation as resistances, cleaning efficiency can be determined as 

  100⋅−=
IF

RESIF
RW R

RR
E  (35) 

8.4.2 Foulant Content of Cleaning Solutions 

Secondly, the variation of the composition of the cleaning solution can be investigated. Often changes 

are visible, such as precipitates when scaling is removed or a dark yellow or brown colour when NOM 

is removed. Chemical analysis of cleaning solutions can quantify such observations. For example 

Liikanen et al. [201] measured pH, turbidity, colour, total solids (TS) and cations in the cleaning 

solutions. Conducting a mass balance and comparing the amounts removed in the cleaning solution to 

the amount remaining on the membranes gives further information not only on cleaning efficiency but 

on the reversibility of certain foulants. Gwon et al. [26] found that calcium and iron were found 

predominantly in acid cleans and silica in alkaline cleans. Further, iron was most resistant to removal 

and adhered strongly to the membranes throughout the cleaning process. This was established with a 

sonication technique as described in the autopsy section. 

8.4.3 Membrane Surface Investigation 

Thirdly, the membrane surface can be examined after cleaning to determine if all contaminants have 

been removed. It has, however, been observed that despite complete flux recovery, not all foulants are 

taken off. Available methods are similar to those used for membrane autopsies like streaming potential 

measurements, contact angle methods, FTIR or SEM. These characterisation methods are mostly 
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destructive methds. A combination of several methods is the best way to analyse the cleaning efficiency 

[209, 210].  

8.4.4 Membrane Retention  

Retention is affected by fouling as summarised in Section 4.8. As a consequence cleaning results in 

either a restoration or decrease in retention. For example, Chen et al. [196] reported a 10% increase in 

TDS retention after cleaning. 

Other important parameters in membrane cleaning are the wash water usage and loss of production. 

The wash water usage can be represented as the volume of wash water used per total volume of water 

produced (taking into account that wash water is often membrane permeate and hence product) [196] 

and loss of production is calculated by multiplying the time for cleaning with the average water flux 

during operation. For the calculation of environmental impact both water consumption and the 

generation of a potentially hazardous waste stream need to be considered. 

8.4.5 Influence of Operating Parameters on Cleaning Efficiency 

Duration: It appears from the literature that shorter filtration cycles (and hence more frequent but 

shorter cleaning procedures) are beneficial as the fouling layers compact with time and become more 

difficult to remove. Further, the degree of fouling is an important parameter in recovery during 

cleaning which supports the argument for more frequent cleaning (see also Figure 28) [196].  

Temperature: In general cleaning efficiency increased with temperature but increases are limited by 

the heat tolerance of the membranes [201]. It is a rule in cleaning processes to clean at the same or 

higher temperature as the NF process has been operating. If cleaning is undertaken at a lower 

temperature there is a risk that the foulants will re-adsorb on the membrane once normal processing is 

continued.  

Optimal cleaning results have been obtained repeatedly in literature (for UF) at a temperature of 50oC 

[211-213], and also in NF this temperature has seemed to be quite good to use if the membranes are 

tolerant to such elevated temperature. A higher temperature could give even better cleaning results, but 

membranes that can endure temperatures between 70 and 90oC remain scarce. The importance of a 

high enough temperature in cleaning has two reasons, firstly the enhanced removal of foulants and 

secondly the removal of heat sensitive microbes. Another possibility to circumvent this problem is to 

give the membranes a short heat shock. Inorganic membranes can endure this type of heat treatment, 

but their applications are to date limited. 

Pressure and Air/Water Backwashing: In most cases it has been shown that a high pressure is not 

beneficial when cleaning. Especially with porous membranes the pressure pushes the foulants deeper 

into the membrane, which is also true with open NF membranes. The applied pressure also causes 

compaction of the fouling layer [27]. 

It appears most beneficial to just let the membranes soak in the cleaning solution and then transport it 

out of the module using as little pressure as possible. However, usually a compromise between pressure 

and flow velocity has to be made in order to get the best fouling removal efficiency.  

In UF and MF, cleaning is often enhanced by back pulsation, but this is not a possibility in NF due to 

the membrane and module structures used. For example, with TFC membranes the active layer would 

be damaged during backwash due to the lack of the support layer, and air backwash is not possible as 

air cannot penetrate through the small pores in NF. 
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8.4.6 Impact of Cleaning on Permeate Quality 

According to Liikanen et al. [201] who performed permeate analysis for TOC, UV absorbance (254 

nm), pH, alakalinity, hardness and conductivity, the permeate conductivity generally increased after 

cleaning. Acidic cleaning assisted in restoring the ion retention of membranes.  

8.4.7 Impact of Cleaning on Membrane Durability 

NF membranes are generally somewhat less durable than other types of membranes used today. UF 

and MF membranes can be made of PVDF, Teflon, polypropylene, polysulphone and other very strong 

and resistant materials. In most cases it has not been possible to make NF membranes of these 

materials. Such materials however are commonly used as supports for the active layer. NF membranes 

are most often made of aromatic amides, e.g. poly-(piperazine amide) (See Chapter 3). Generally 

membranes used in NF have different resistance to chemicals, heat and pH. Hence cleaning processes 

need to be substantially different [214]. Membrane durability can be examined by measuring pure water 

flux and salt retention. A combined increase in flux and decrease in salt retention after cleaning as 

compared to the virgin state of the membrane most likely indicates a reduced membrane integrity. 

Acid/Alkali Resistance: The alkaline resistance of normal NF membranes goes to about pH 11 and 

the acid resistance to around pH 1 for the best membranes, depending on the material. In many cases 

the NF membranes can withstand higher or lower pH values for shorter times especially if their 

temperature limits are not exceeded. In fact, a high pH cleaning can often increase the membrane 

capacity because the high pH modifies the membrane to give a higher flux without a decrease in 

retention [215]. 

Many industries use NF membranes for fractionation of their process or effluent streams. The obstacle 

has been the high or the low pH that the membranes cannot tolerate. For this reason there is a lot of 

EU research directed to manufacture NF membranes that can operate in a broader pH range, aiming at 

an increase in 1-2 units in each direction [216]. The durability of the membranes is checked by 

characterisation of retention of glucose/sucrose and salts and by inspection of the surfaces for cracks 

by using SEM. 

Temperature Resistance: NF membranes are not normally very tolerant to heat – up to a limit. Most 

NF membranes can endure around 40oC and according to some reports their stability extends to 50-

60oC. It is of great importance that the membranes can tolerate at least 50-70oC in processes, which 

demand elevated temperatures, and also in cleaning which would allow them being sanitised.  

Some studies have been carried out on the heat stability of typical NF membranes, as summarised in 

Figure 31 [217]. Generally, with increasing temperature flux increases while retention decreases 

(retention not shown in the Figure). In some cases, decreasing temperature causes the membranes to 

become tighter (even after a short heat treatment at 65oC), hence the flux of such membranes decreases 

and retention increases (see e.g. membrane XN-40 in Figure 31). Alkaline cleaning then again increases 

flux. 
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Figure 31 Influence of temperature on fluxes during the filtration of 250 ppm glucose solution. 

1: Temperature was increased from 24 to 65oC, 2: Temperature was decreased from 65 to 37oC, 

3: change in flux after alkaline cleaning (adapted from Mänttäri et al. [217]). 

8.5 Examples of Cleaning Applications and Cleaning Process Protocols 

It is best to divide the cleaning procedures according to what foulants are to be removed or the types 

of process streams that are filtered. Hence the cleaning protocols used by a number of example 

applications is described in the following subsections. In industrial processes cleaning is generally 

performed as a cleaning in place (CIP) procedure which commences automatically either at set time 

intervals, when transmembrane pressure in constant flux applications reaches a critical limit or when 

flux has decreased below the tolerance level in constant pressure filtration. 

8.5.1 Food Industry 

In the food industry, especially in the dairy industry, there are regulations that membranes should be 

cleaned and sanitised daily. This requirement comes from the fact that these food products are very 

sensitive to microbial growth. Due to this cleaning requirement, membranes in such applications are 

operated at higher fluxes as fouling prevention is not a priority. In the dairy industry the foulants are 

mainly proteins, salts and sugar or their degradation products. For removal foulants an alkaline cleaning 

cycle is needed and for salt removal (calcium salts) an acid cleaning step. Normally this is carried out in 

three steps: alkaline, acid and alkaline. The protocol varies from process to process but it is often more 

or less standardised also including sanitation. An example of such a cleaning procedure in the food 

industry (soy flour extract) was given in  Figure 29 [27]. Most membranes are cleaned according to a 

Cleaning in Place (CIP) procedure [218-221]. Alternatively enzymatic cleaning has been trialled, but was 

described as having a low cleaning efficiency and long cleaning times. Some proteins are not removed 

with enzymes [202]. 
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8.5.2 Water and Wastewater Treatment 

In most water and wastewater applications cleaning is not carried out on a daily basis and the NF 

process is aiming at as few cleanings as possible, which means that the processes are run at lower 

average fluxes.  

In cases where the waters contain some organics like NOM or humic acids usually an alkaline cleaning 

is required. For example, Li and Elimelech [87] have investigated a number of cleaning agents to 

remove deposits of HA and calcium. It was found that EDTA was most effective and recovered 100% 

of the flux when applied at pH 11, while NaOH was ineffective. Sodium dodecyl sulphate (SDS) was 

effective independent of pH when applied above its critical micelle concentration (CMS). In contrast, 

Lee et al. [29] found that SDS was ineffective for NOM foulants whereas 0.1 M NaCl was relatively 

effective compared to more common cleaning agents such as surfactants. Caustic solutions were 

effective at removing hydrophobic foulants, while hydrophilic NOM fractions were more difficult to 

remove. In an extensive study determining the efficiency of 13 cleaning schemes, Liikanen et al. [201] 

determined that Na4EDTA was very effective, although it was pointed out that this may be dependent 

on the membrane type, which implies that every membrane may require a cleaning optimisation for a 

particular feedwater. Hong and Elimelech [80] who confrmed the effectiveness of EDTA postulated 

that EDTA removes the calcium from a solution and in this way reduces (or in the specific case 

reverses) fouling. This makes EDTA an effective agent not only for cleaning but also for pre-treatment. 

Roudman and DiGiano [65] used a commercial inorganic caustic detergent (MC-3) at pH 10.3 and 

ultrapure water rinses which could not remove NOM deposits. 

8.5.3 Desalination and other Industries 

In desalination the acid cleaning is the most important. Often the alkaline and the acid cycles are not 

run directly after each other, but maybe one more often than the other, the frequency usually depends 

on pretreatment and local demands. The cleaning interval is at least one week and in some cases the 

process can be run without cleaning for several months [201, 207, 208, 222]. 

8.6 Regeneration of Cleaning Solutions 

Regeneration of cleaning solutions is an important issue, not only because of economic concerns, but 

also for environmental reasons. Unfortunately, Argüllo et al. [202] have determined that independent of 

the initial concentration, about 30% of activity is lost in each cleaning cycle for enzyme cleaners used 

for whey fractionation in UF.  

In fact, NF was trialled to treat the cleaning solutions to recover and reuse the acid or caustic fractions 

in the process. The concentrate would contain the foulants (which for example could be regenerated in 

the dairy industry as animal food) and the permeate would contain e.g. the alkali/acid and the other 

parts of the formulated cleaning agent. This permeate would then be concentrated by using RO [223-

225].  

9 CONCLUSIONS 

This chapter has provided a comprehensive overview of fouling characteristics, common foulants, 

fouling characterisation and membrane autopsy as well as a review of current models. A detailed 

description of the main fouling categories, namely organic fouling, scaling, colloidal and particulate 

fouling, and biofouling was followed by a brief description of cleaning methodologies.  
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While fouling has always been a primary part of membrane research and almost always found in 

company of effective membrane filtration, it is clearly membrane cleaning where substantial progress 

will be made in future research. 
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11 GLOSSARY & SYMBOLS 

11.1 Glossary 

CWF Clean Water Flux 

FR  Flux Reduction 

PF Permeate Flux 

NOM Natural Organic Matter 

CA Cellulose Acetate 

DOC Dissolved Organic Carbon 

DOM Dissolved Organic Matter 

EDS Electron Dispersive Spectra 

EDTA Ethylene Diamine Tetra Acetic Acid 

FA Fulvic Acid 

FESEM Field Emission Scanning Electron 
 Microscopy

 

11.2 Greek symbols 

α activity of the solute 

αΟ activity of the solute in its crystal stage 

δ boundary layer thickness 

∆πm
*  cake enhanced osmotic pressure 

ε cake layer porosity 

φΤ total interaction potential 

Γ quantity of organic adsorbed onto the 

membrane surface 

ηΤ  viscosity of water at temperature T 

µ chemical potential of the solute 

ν velocity of water (normal to the 

membrane surface) 

τ membrane tortuosity 

 

11.3 Alphabetical symbols 

A membrane surface area 

C equilibrium concentration of the solute in 

the solution 

CB solute concentration in the bulk solution 

CBL solute concentration in the boundary 

layer 

CF solute concentration in the feed 

CF concentration factor or ratio 

CP solute concentration in the permeate 

CW solute concentration at the 

membrane/water interface 

D particle diffusion tensor 

∆G Gibb free energy 

∆Π osmotic pressure difference across the 
membrane 

∆P  transmembrane pressure 

∆πm
*  cake enhance osmotic pressure 

Ds solute diffusion coefficient 
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F external force vector 

IAP ion activity product 

J water flux 

JC water flux after cleaning 

JO initial water flux 

k Boltzmann’s constant 

K partitioning coefficient between 

membrane and solution phase 

ks mass transfer coefficient of the solute 

ksp thermodynamic solubility product of the 

phase forming compound 

M molecular mass of the solute 

PF concentration polarisation factor 

Q volume flowrate 

R gas constant 

RA resistance due to adsorption 

RC resistance due to cake formation 

RCP resistance due to concentration 

polarisation  

RCW resistance of the membrane after cleaning 

Re Reynolds number 

RF total fouling resistance 

RG resistance due to gel formation 

RIF irreversible fouling resistance 

RM  intrinsic membrane resistance 

RO real retention 

ROBS observed retention  

RP resistance due to internal pore fouling 

RRES residual resistance after cleaning 

RRF reversible fouling resistance 

S supersaturation ratio 

t time duration 

u particle velocity induced by the fluid flow 

V volume 

x distance from the membrane surface 

y permeate recovery fraction 
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