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ABSTRACT. 

DEVELOPMENT AND DIFFERENTIATION OF THE EMBRYONIC 
CHICK GONAD: A MORPHOLOGICAL AND MOLECULAR STUDY. 

The testis and the ovary are two structurally distinct organs that can 

differentiate from the same tissue primordia. In avian species, the gene interactions 

that determine and maintain which developmental pathway is followed are poorly 

understood and/or unknown. In mammals, the timing of sex determination and a small 

number of the genes involved in gonadal development have been established. 

However, other so far unidentified genes are clearly involved in gonadal development, 

in avian and other species. Chick gonadal development was investigated by studying 

the morphology of the developing gonads and by attempting to gain a better 

understanding of the genes involved in the initial stages of this developmental process. 

The first approach was a histological analysis of chick gonadal development over the 

period from the indifferent gonad stage to the initial stages of ovary and testis 

differentiation. Secondly, we analyzed the expression of chick homologues to genes 

involved in mammalian gonadal development, in an attempt to compare gene regulation 

and timing of gonadal development between mammals and avians. Finally, we used 

the technique of differential display to both ascertain the feasability of this approach in 

the identification of transcripts in a complex developmental system and to isolate novel 

genes involved in chick gonadal development. As a result of this study we were able 

to predict that the sex determination event in chicks occurred earlier in embryogenesis 

than previously documented. We also established that genes involved in mammalian 

gonadal development were expressed with similar expression profiles in the 

developing chick gonads. Finally, twelve candidate clones were isolated by 

differential display, five of which represented novel sequences. Expression profiles, 

during chick gonadal development and differentiation, were analyzed by Northern 

analysis and whole mount in situ hybridization to confirm differential expression. 
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Chapter 1 

Introduction. 



1.1 General Introduction. 

Sexual development can be considered as three separate processes. Firstly 

there is the establishment of genotypic sex at fertilisation. This is followed by gonadal 

development which includes a sex determination event directing the indifferent gonads 

down either a testicular or ovarian developmental pathway. Finally, differentiation of 

the accessory ducts and male and female phenotype by endocrine function of the testis 

or ovary. Ultimately, sex chromosome content determines the sexual phenotype of an 

embryo in mammals and birds. If a Y chromosome is present in mammals, a testis 

will form ultimately leading to a mature male sexual phenotype. It is the presence of a 

testis that ensures (under the influence of hormone action) that the internal and external 

male genitalia develop correctly. If a testis is not present, female internal genitalia will 

form regardless of whether an ovary has developed or not. Although, in mammals, a 

gene on the Y chromosome acts as a dominant genetic switch resulting in testicular 

development, there is evidence that genes on the X chromosome and the autosomes 

are required for correct gonadal development. 

In avian species the female is the heterogametic sex (ZW) and the mechanism 

of sex determination is unknown. Not only is the nature of the switch that causes 

testicular or ovarian development unknown, but regulatory genes involved in 

indifferent gonad formation, and downstream genes that influence and control ovarian 

or testicular differentiation are also unknown. 

The mechanisms responsible for sex determination are not conserved between 

different classes. For example the gonadal development system in Drosophila and C. 

elegans, relies upon the X chromosome to autosome ratio as the master sex 

determination switch (Parkhurst and Meenely, 1994), and in some species of reptile 

the sex determining mechanism is based on the incubation temperature of the eggs. 

Although a few genes have been assigned putative roles in mammalian gonadal 

development, it remains a complex process which is still poorly understood with 

regard to origin of cell precursors and gene regulation of cell differentiation, in both 

mammalian and avian species. 

1.2 Gross morphology of vertebrate gonadal development. 
1.2.1. Initial development 

The urogenital ridge arises from the intermediate mesoderm in mammals and 

birds. The intermediate mesoderm gives rise to three kidney systems in mammals and 

birds: the pronephros, mesonephros and metanephros (Kaufman, 1992; Capel and 

Lovell-Badge, 1993; Capel, 1996). This urogenital ridge system arises in mice at 9 

days post coitum (dpc) (Kaufman, 1992; Capel, 1996) and between 3.5 to 4 days of 

incubation (d) in the chick (Romanoff, 1960; Swift, 1915; Venzke, 1954a). On the 
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ventral side of the pronephros, segmented mesoderm fuses to form the mesonephric 

(Woiffian) duct (Capel and Lovell-Badge, 1993), and the mesonephros forms 

posterior to the pronephros. Invagination of the epithelium covering the urogenital 

ridge gives rise to the Mullerian duct, and runs parallel with the mesonephric duct 

(Capel and Lovell-Badge, 1993; Langman, 1975). The genital ridge develops on the 

surface of the mesonephros, and is visible in mice at lO.Sdpc (Capel, 1996; Capel and 

Lovell-Badge, 1993) (fig 1). At this stage of development there is no difference 

between the male and female genital ridge and it is referred to as the indifferent or 

bipotential gonad. Posterior to the mesonephros, the metanephros forms the definitive 

kidney (Nelsen, 1953; Capel, 1996). 

1.2.2. Development through the indifferent stage. 

1.2.2.1. General morphology. 

Mice have a gestation period of 21 days while the chick incubates for 21 days 

before hatching. Development of the indifferent gonad proceeds from 10.5dpc 

through to 12.5dpc in the mammal (Capel and Lovell-Badge, 1993). In the chick there 

is contention regarding the length of time of indifferent gonad development; ranging 

from 3.5d to 5d through to 3.5d to 8d (Romanoff, 1960). In chicks and mammals, 

the indifferent gonad initially consists of one layer of cells, called the germinal 

epithelium, covering mesenchymal connective tissue (Venzke, 1954a). During 

development, the germinal epithelium becomes composed of several cell layers and the 

mesenchyme condenses to form the stroma of the gonad (gonadal blastema) (Nelsen, 

1953; Venzke, 1954a; Romanoff, 1960; Torrey, 1966; Byskov, 1986). 

At the indifferent stage of gonadal development in mammals and birds the 

majority of primordial germ cells (PGCs) migrate into the germinal epithelium of the 

gonads (Venzke, 1954a, Romanoff, 1960; Nelsen, 1953; Kaufman, 1992; McLaren, 

1995) (fig 113). PGCs are distributed evenly in the germinal epithelium of the 

indifferent gonad before 4d (Romanoff, 1960). After 4d, the PGCs are 

asymmetrically distributed between the left and right gonad, with approximately 70% 

PUCs in the left gonad and 30% in the right gonad in both sexes (Swift, 1915; 

Witschi, 1935; Venzke, 1954a; Romanoff, 1960). Active migration of PUCs from 

the right to the left gonad has been observed (Witschi, 1935; Thorne, 1995). 

During the period of PUC invasion, induction of the primary sex cords begins 

in mammals followed by or simultaneous with rete tissue formation (figure lB and 2A 

&B). In birds primary sex cords develop after the rete cords (Romanoff, 1960; 

Byskov, 1966; Thorne, 1995), and are derived from the germinal epithelium and 

appear as protrusions migrating into the mesenchymal region of the gonad. Primary 
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Figure 1: A, Schematic representation of the development of the mammalian genital ridge and its 
position in relation to the mesonephros. 	B, Schematic representation of the mammalian 
indifferent gonad, illustrating the development of the primary sex cords and the migration of the 
primordial germ cells. Figure from Langman, 1975. 
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sex cords arise between 5d and 5.5d (Lillie, 1908; Venzke, 1954a; Romanoff, 1960). 

Rete cords arise in the indifferent gonad of the mammal through cell migration from 

the mesonephric tubules, followed by condensation of these cells to form connections 

between the primary sex cords and the mesonephric duct (Byskov, 1978; Torrey, 

1966). In the chick, rete cords may arise directly from the mesonephric tubules 

(Byskov, 1978) or by condensation of the mesenchyme to form a branching network 

in the anterior of the gonad (Romanoff, 1960; Witschi, 1935). 

1.2.3. Development after sex determination. 

Testis determination in mammals is dependent on the expression of a gene on 

the Y chromosome between 10.5 and 12.5 dpc (Hacker et al., 1995), which results in 

the indifferent gonad following a testicular pathway of development. In the chick, the 

timing of sex determination and the switch causing male or female differentiation is 

unknown, and reports on the timing of the sex determination switch range from 5d to 

8d (Romanoff, 1960; Hutson et at, 1983). 

1.2.3.1. Differentiation of the Testis. 

Differentiation of the testis is characterised by the continued proliferation of the 

primary sex cords into seminiferous tubules (testicular cords) (figure 2C) (Nelsen, 

1953; Romanoff, 1960; Langman, 1975; Satoh, 1985; Thome, 1995). Testicular cord 

formation is discernible in the chick from 7.5d (Venzke, 1954b) and apparent by 13 dpc 

in the mammal (Kaufman, 1992). The developing seminiferous cords consist of an 

outer layer of Sertoli (supporting) cells surrounding the PGCs (Venzke, 1954b; 

Romanoff, 1960; Torrey, 1966; McCarrey and Abbott, 1979; Byskov, 1986). 

The germinal epithelium of the developing testis becomes a flattened membrane 

of one cell thickness (Nelsen, 1953; Venzke, 1954a; Venzke, 1954b). The testicular 

cords initially remain attached to the germinal epithelium, however, an intact basal 

lamina forms along this germinal epithelium and the cords detach and become separated 

from this epithelium by a layer of fibrous connective tissue called the tunica albuginea; a 

characteristic structure of the testis (Nelsen, 1953; Venzke, 1954b) (fig 2C). 

The testicular rete cords develop and differentiate into rete tubules (Romanoff, 

1960; Langman, 1975). The rete tubule is composed of a central lumen surrounded by 

a layer of flattened epithelial cells (Romanoff, 1960). Rete tubules become continuous 

with the semniferous tubules and connect these tubules to the Woiffian duct. These 

tubules ultimately become the efferent ductules of the epididymis (Nelsen, 1953; 

Romanoff, 1960; Langman, 1975; McCarrey and Abbott, 1979). 
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After initial testicular cord development, the connective and interstitial tissue of 

the stroma begins to proliferate to form Leydig cells and blood vessels, developing 

between these seminiferous tubules. It is the proliferation of the stroma that causes an 

increase in the size of the testis (Venzke, 1954b), and forms the basement membrane of 

the seminiferous tubules (Nelsen, 1953; Venzke, 1954b; Langman, 1975). The Leydig 

cells are the steriod producing cells of the testis and produce testosterone, the hormone 

essential for the development of the Wolffian duct into male accessory structures 

(Romanoff, 1960; Byskov, 1986). Leydig cells have been identified in the testis of the 

chick from lOd (Carl on and Erickson, 1978). 

By 13d in the chick, the PGCs begin to actively divide (Romanoff, 1960b). In 

the mouse, germ cells continue to proliferate for a few days after they have entered the 

genital ridge (McLaren, 1991; McLaren, 1995). This proliferation continues for 

approximately 4 days, after which time the cells are arrested in the G 1 phase of the cell 

cycle (13.5 dpc in the mouse), and are designated spermatogonia (Venzke, 1954b; 

Romanoff, 1960a; McLaren, 1995). Once a lumen has formed in the seminiferous 

tubules they have a characteristc appearance whereby successive stages of 

spermatogenesis can be observed; with the spermatogonia at the periphery of the tubule 

and spermatids in the lumen of the tubule (Romanoff, 1960). 

Initially there are two sets of ducts, the Wolffian (mesonephric) and MUllerian 

ducts. In male reptiles, amphibia, birds and mammals it is the Wolffian ducts that 

develop, while the Mullenian ducts regress (Nelsen, 1953; Romanoff, 1960). This 

regression in the chick begins on 8d and is complete by 12d (Romanoff, 1960). The 

Wolffian duct develops into the vas deferens and the mesonephric tubules linking it to 

the testis are called the vasa efferentia (Nelsen, 1953; Torrey, 1966; Langman, 1975). 

1.2.3.2. Differentiation of the ovary. 

During initial ovarian development, the germinal epithelium continues to 

proliferate (fig 2D) (Swift, 1915; Nelsen, 1953; Venzke, 1954a; Romanoff, 1960; 

Torrey, 1966). This thickening begins at approximately 7d in the chick, a similar time 

to documented testicular cord development (Venzke, 1954a). In mammalian species, 

ovarian development is reported to begin after testicular development (Nelsen, 1953). 

POCs in birds are evenly distributed within this proliferating germinal epithelium 

(Romanoff, 1960), and begin dividing by 8d to form oogonia (Swift, 1915; Romanoff, 

1960). In the female mice, germ cells enter meiotic prophase at 12.5 dpc (McLaren, 

1995). 
Characteristic to the female, there is a second proliferation of sex cords (fig 2D). 
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Figure 2: Schematic representation of the developing mammalian gonads. A & B, Development of 
the indifferent gonad, showing the medullary and cortical components. C, Developing embryonic 
testis. 	D, Developing embryonic ovary. Figure from Toney, 1966. 
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Several oogonia and a small number of germinal epithelial cells cluster together and form 

cortical cords, which penetrate inwards to the medulla and eventually become ovarian 

follicles (Nelsen, 1953; Romanoff, 1960; Langman, 1975; Thorne, 1995). Initially, 

the medulla and the cortex of the ovary are separated by a thin layer of the tunica 

albuginea. However, after cortical cord formation, a connective tissue stroma develops 

between the cortical cords; called the ovarian albuginea, separating cords from one 

another and from the medulla (Nelsen, 1953; Romanoff, 1960; Langman, 1975). 

The medullary (primary) cords enlarge and distend, causing an increase in 

ovarian size in the chick (Romanoff, 1960; Swift, 1915). These cords can contain 

isolated PGCs or consist of clear or fat-laden cells (Romanoff, 1960). In the mammal, 

the medullary cords degenerate and become pressed inwards, due to the invasion of the 

cortical cords, and form the primary medulla. Later in development, a secondary 

medulla forms composed of connective tissue and blood vessels (Nelsen, 1953). 

Interstitial cells, involved in steroid production, are present in human ovaries 

during foetal development (Byskov, 1986) and are thought to differentiate at the 

beginning of follicular development. In the chick these cells have been reported to 

populate the ovary after hatching (Romanoff, 1960). However, Narbaitz and Adler 

(1966) detected cells in the medulla with large vesicles containing lipid deposits, 

characteristic of steroid-producing cells, after 8d. 

Asymmetrical ovarian development is a feature in the chick that is not present in 

the mammal (Witschi, 1935; Nelsen, 1953). The right gonad in the female does not 

develop as extensively as the left gonad, and is considered a rudimentary structure 

(Romanoff, 1960). The medulla does distend, but is much thinner and the cortex 

consists of a few cell layers that eventually degenerate (Romanoff, 1960; Thorne, 

1995). Witschi (1935) suggested that the right ovary does not develop because of 

limited space within the body cavity. The oviduct size is dependent on the type of egg 

produced and considering the size of the large avian egg, the oviduct can easily fill the 

whole of the body cavity (Witschi, 1935; McCarrey and Abbott, 1979). 

The ductal system in female avian species is also asymmetric. The right 

MUllerian duct in the female chick does not develop after 8d and degenerates between 9d 

and 16d. The left Mullerian duct develops to form the oviduct (Romanoff, 1960). The 

Woiffian ducts regress as it requires the production of testosterone for its maintenance 

(Cape! and Lovell-Badge, 1993). 
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1.2.4. 	Cell contribution to the somatic cell component of the 

indifferent gonad. 

Contributions to the somatic cell component of the indifferent gonad are not 

fully understood. It is thought that cells from the coelomic epithelium, the tubules of 

the mesonephros and the mesenchyne of the mesonephros could all contribute, 

although these contributions are not thought to be sex specific at the indifferent stage 

of development (Capel, 1996). The mesenchyme of the gonad is continuous with the 

mesenchyme of the mesonephros (Venzke, 1954a), suggesting cells from the 

mesonephros could migrate and populate the indifferent gonad. 

Rodemer-Lenz (1989) carried out dye labelling and quail-chick chimera 

experiments which showed that the surface epithelium contributes cells to the 

indifferent gonad. The mesonephros does not contribute cells until between 6d and 7d 

(Rodemer-Lenz, 1989), suggesting the mesonephros is important, but not before the 

point of sex determination. Studies carried out in mice by Karl and Capel (1995) and 

Martineau et al. (1997), support the theory that the mesonephric contribution occurs at 

the time of and after sex determination. However, these experiments study a narrow 

window of development, so earlier cell migration from the mesonephros cannot be 

discounted. Popova and Scheib (1981), using similar experimental methods, have 

shown gonadal development occurs in the absence of the mesonephros, although 

development is abnormal. The experiments carried out by these different groups all 

show abnormal gonadal development occurs, but the conclusions drawn do not 

confirm the mesonephros is essential in this process. 

Other evidence suggests the coelomic epithelium invaginates and cells enter to 

populate the somatic component of the gonad (Smith and MacKay, 1991; Cape] and 

Lovell-Badge, 1993) and form the medulla of the indifferent gonad (Jordanov ci' al., 

1978; Byskov, 1986). However, some researchers define the somatic supporting 

cells of the indifferent gonad as originating from both the mesonephros and coelomic 

epithelium (Wartenberg, 1983; Smith and McKay, 1991; Kanai et al., 1989). 

1.2.5. Cell Contribution to the developing gonads. 

The majority of work carried out to study the cell contribution to the developing 

gonads has been performed in mammals. Karl and Capel (1995) have shown by 

electron microscopy that cellular bridges extend from the mesonephric tubules to the 

gonad in both male and female mice. Initial development of these bridges is unknown 

but they disappear by 12dpc in the mouse, suggesting mesonephric cells contribute to 

male and female gonads (Karl and Capel, 1995). Gonads from 11.5 dpc, cultured 

separately from the mesonephros failed to develop testicular cords, indicating the 



importance of the mesonephros (Buehr et al., 1993; Merchant-Larios et al., 1993). In 

females, contribution to the gonad after the sex determination event is poorly 

documented. McLaren and Buehr (1990) reported normal, but small ovaries when the 

11.5 dpc female genital ridge was separated from the mesonephros. It is possible the 

mesonephros is not required in mammalian female sexual development because an 

efferent duct system is not required to transport the germ cells to the outside. 

Recent experiments have been carried out where an 11.5 dpc XX or XY genital 

ridge is grafted onto a mesonephros (either XX or XY) that constitutively expressed fi- 

galactosidase. Blue cells migrated into the XY genital ridge but not the XX genital 

ridge, suggesting male-specific cell migration from the mesonephros contributing to the 

XY gonad. Cells from the mesonephros gave rise to three types of cells. Firstly, the 

myoid cells that partition the seminiferous cords from the interstitial cells, the 

myoepithelial cells and endothelial cells which are involved in blood vessel formation 

(Martineau et al., 1997). A piece of an XY genital ridge was grafted on top of an XX 

genital ridge (both 11.5 dpc), and this was grafted onto a constitutively expressing - 

galactosidase mesonephros. Blue cells migrated through the XX genital ridge into the 

XY genital ridge, suggesting a diffusible factor from the XY genital ridge induces this 

migration from either an XX or XY mesonephros (Martineau et at., 1997). In contrast, 

in chick embryos from 7d to lOd in which a quail-chick chimeric mesonephros had been 

grafted onto a chick gonad (Rodemer et at., 1986), quail cells were observed in the 

stroma of the ovarian medulla. In male embryos, only a few groups of quail cells were 

reported to colonize the gonad. 

1.3. Mechanisms of sex determination. 

The mechanism for sex determination, employed by different species, can be 

extremely varied. They include: behavioural, environmental and chromosomal sex 

determination mechanisms. Behavioural sex determination is dependent upon social 

structure and interactions in a population to induce sex reversal in an adult. Certain 

species of fish exhibit behavioural sex determination and it is thought changes along the 

hypothalamo-pituitary-gonadal axis are required for structural reorganisation of the 

gonad (Larson, 1997). 

1.3.1. Temperature dependent sex determination. 

Temperature dependent sex determination (TSD) results in gonadal sexual 

differentiation being sensitive to the incubation temperature of eggs at a certain time 
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period during embryonic development (Bull, 1980), and is associated with species 

lacking heteromorphic sex chromosomes e.g. crocodile (Johnston et al., 1995). 

Three different patterns of TSD have been documented (Ewert et al., 1994; 

Pieau, 1996). The first pattern shows that a low temperature yields 100% or 

predominantly males and a high temperature produces 100% or predominantly females. 

The second pattern is the reverse situation of the first. Both of the first two patterns 

have intermediate temperatures resulting in both sexes and sometimes intersexes 

developing. The third pattern shows both low and high temperatures yielding 100% or 

predominantly females. Intermediate temperatures produce various ratios of males 

(Pieau, 1996). 

During embryonic development of species with TSD, there is a thermosensitive 

period (TSP), at which point temperature determines which sexual phenotype will 

develop (Johnston et al., 1995). Shifting embryos from male producing to female 

producing temperatures, and vice versa, has defined the TSP in different species 

(Deeming and Ferguson, 1989). The TSP generally encompasses the middle one third 

to one half of embryonic development (Wibbels et al., 1994). The TSP is not sufficient 

in itself for determining sex, but requires the accumulation of a factor or factors over a 

period of time (Deeming and Ferguson, 1989). It indicates the earliest and latest limes 

the sex of an embryo can be altered (Deeming and Ferguson, 1989). Due to 

intermediate temperatures producing a mixed ratio of males and females, it supports the 

theory that temperature does not act as a primary switch. However, it is possible 

temperature could effect a variety of factors involved in sex determination, such as 

growth factors and hormones (Wibbels et at, 1994; Johnston ci' al., 1995). 

Recent studies have focused on the activity of aromatase at male and female 

producing temperatures (Wibbels et at, 1994). Initially, aromatase levels are low at the 

beginning of the TSP. However, there is an increase in aromatase activity at the end of 

the TSP, at female producing temperatures (Desvages and Pieau, 1992; Pieau et al., 

1994). This increase was due to increased synthesis as opposed to an increase in 

activity (Desvages and Pieau, 1992). This suggested temperature could affect aromatase 

synthesis which in turn would affect the levels of estrogen concentration. Overall, it 

appears estrogens are required for ovarian development, but androgens do not play a 

major role in testis development (Pieau, 1996). This theory was supported by treatment 

of embryos with aromatase inhibitors at female producing temperatures, which resulted 

in varying degrees of masculinization (Pieau et al., 1994). 
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1.3.2. Dosage mechanism for sex determination. 

In Drosophila and C. elegans, the primary sex determinant is the ratio of X 

chromosomes to the number of sets of autosomes (XIA ratio) (Parkhurst and Meneely, 

1994; Charlesworth, 1996). Normally, Drosphila females have an XJA ratio of 1.0, 

because they have two X chromosomes and two sets of autosomes. This ratio results in 

hermaphrodites in C. elegans. Males have an XIA ratio of 0.5, in both Drosphila and C. 

elegans, as they only have one X chromosome. If there is an intermediate sex ratio of 

0.67 (e.g. XX AAA), then flies develop as intersexes and worms develop as males 

(McCarrey and Abbott, 1979; Parkhurst and Meneely, 1994; Marx, 1995; Cline and 

Meyer, 1996). 

The primary sex determining mechanism depends upon "counter" loci on the X 

chromosome and the autosomes to determine the sexual fate of the embryo (Cline and 

Meyer, 1996; Charlesworth, 1996). In Drosphila, the gene that is the immediate target 

of the XIA ratio and the master sex determination switch is called sex-lethal (sxl) (Cline, 

1984; Parkhurst and Meneely, 1994; dine and Meyer, 1996). Drosophila female 

sexual development requires continuous activity of Sxl while male sexual development 

does not require Sxl activity (Parkhurst and Meneely, 1994). 

Initial expression of full-length, active Sxl in females is activated from an 

establishment promoter Sxlpe  and is maintained from a maintenance promoter Sxlp m  
(Parkhurst and Meneely, 1994; Cline and Meyer, 1996). Transcripts from this 

promoter contain an exon with an in-frame stop codon. In the female, full length Sxl 

that has already accumulated is able to splice out this exon, so active Sxl protein is 

continuously produced. In the male, where no Sxl has accumulated, the transcript 

retains this exon resulting in a truncated, inactive Sxl protein (Parkhurst and Meneely, 

1994; dine and Meyer, 1996). Sxl encodes an RNA binding protein, which regulates 

downstream expression of transfonner (tra), by RNA splicing (Parkhurst and Meneely, 

1994). This results in two different Dsx (doublesex) proteins being produced, 

dependent upon the presence or absence of a functional Tra protein. Different Dsx 

proteins determine which sexual development pathway is followed (fig 3) (Marx, 1995; 

Ryner and Swain, 1995; Cline and Meyer, 1996). 

A different sex chromosome complement in male and female results in one or 

two copies of X chromosome genes present in the somatic cells of flies and worms 

respectively. This problem is overcome by a dosage compensation mechanism. Sxl 

protein regulates dosage compensation by regulating splicing of the insl2 (male-specific-

lethal) gene (Ryner and Swain, 1995; Cline and Meyer, 1996). If Sxl is present 

(female), a splice event is blocked in the msl2 gene (Kelley et al., 1995). In the male, 

the splice event occurs, removing a 5' untranslated region which normally interferes 
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with translation. This results in a functional protein being produced which interacts with 

other proteins and forms an Msl complex, which assembles on the male X chromosome 

and induces hyperactivation of gene expression, to compensate for two X chromosomes 

in the female (dine and Meyer, 1996). 

In C. elegans, the primary mechanism for sex determination is the X/A ratio, and 

the earliest gene in the cascade is XO lethal (xol-1) (Parkhurst and Meneely, 1994; 

Cline and Meyer, 1996). The xol-J gene is similar to Lxi in that it controls sex 

determination and dosage compensation via the X/A ratio signal (Cline and Meyer, 

1996). Two X chromosomes (hermaphrodites) resulted in inactivation or low levels of 

xol-1 and one X chromosome (male) activated xol-1 (dine and Meyer, 1996). In the 

XO male, signal transducers for the high xol-1 activity, ultimately leads to negative 

regulation or inactivation of the tra-] gene, resulting in male sexual development 

(Parkhurst and Meenely, 1994; Ryner and Swain, 1995). If tra-1 is active, 

hermaphrodites develop (fig 3). 

The xol-1 gene controls dosage compensation, by regulating expression of the 

sdc2 (sex  and Dosage compensation) gene. In XO males, xol-J inactivates sdc2 

resulting in full expression from the one X chromosome in the male. In 

hermaphrodites, xol-1 levels are low, resulting in the sdc2 gene being active. This 

results in a heterodimeric protein complex forming and reducing expression from both X 

chromosomes to compensate for the one X chromosome in the male (Cline and Meyer, 

1996). 

1.3.3. Dominant genetic switch mechanism. 

The chromosomal sex determination mechanism utilised by mammals is a 

dominant genetic switch on the Y chromosome. Eutherian mammals with a Y 

chromosome develop a testis, regardless of the number of X chromosomes present 

(Graves and Reed, 1993). On the Y chromosome of eutherian mammals, it was 

assumed there was a gene that acted as a master switch, causing development along a 

testis determining pathway. The gene was called the testis-determining factor (TDF) in 

humans and the testis-determining Y gene (Tdy) in mice (Goodfellow and Lovell-

Badge, 1993). 
The Y chromosome is small (-2% of the haploid genome), is constitutively 

heterochromatic and mainly consists of repetitive sequences (Watson et al., 1993; 

Graves, 1995). The Y chromosome consists of a pseudoautosomal region (PAR) and a 

Y-specific region. The PAR is homologous to a region on the X chromosome and is 

where X and Y pair. The TDF is located in the Y-specific region and does not normally 

recombine with the X chromosome. However, the majority of XX males have inherited 
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Y-specific sequences and so an abnormal recombination event must have occurred 

(Goodfellow and Lovell-Badge, 1993; Fechner, 1996). 

Various candidate TDF genes have been proposed e.g. male specific H-Y 

histocompatibility antigen, banded krait minor (Bkm) (Wachtel and Tiersch, 1994) and 

ZFY (Zinc Finger containing region on Y) (Wachtel et al., 1975; Page et al., 1987). H-

Y antigen was originally identified as a transplantation antigen that caused females from 

a particular strain to reject skin transplantations from males of the same strain (Simpson, 

1986). Its role as a candidate in sex determination was rejected after mice without H-Y 

antigen developed as males (Wiener et al., 1996). Banded bait minor (Bkm) satellite 

repeat sequence was isolated from the W chromosome of snakes (Singh et al., 1980) 

and correlated with the amount of heterochromatin on the W chromosome (Wachtel and 

Tiersch, 1994). Bkm was identified in mammals, birds, reptiles and insects (Wachtel 

and Tiersch, 1994). In mice, the high concentration of Bkm on the Y chromosome lead 

to the hypothesis that Bkm was involved in sex determiation (Jones and Singh, 1981). 

However, the presence of Bkm throughout the genome argued against a major role in 

sex determination (Wachtel and Tiersch, 1994). 

Initially, the TDF gene was isolated to a 140kb region on the short arm of the Y 

chromosome (Page et al., 1987). A gene isolated from this region was called ZFY. 

However, a homologue to ZFY was isolated on the X chromosome (Scheinder-Gadicke 

et al., 1989). Palmer et cii. (1989) identified four XX males that had 60kb of Y 

chromosome sequence adjacent to the PAR boundary, but ZFY was not contained in this 

region, indicating ZFY was not the sex determining gene. Finally, from a region of 

35kb, the SRY/Sry (S.ex  determining Region D gene was isolated in humans and mice 

and shown to be the TDF (Sinclair et al., 1990; Gubbay et al., 1990). 

1.3.4. Avian sex determination. 

1.3.4.1. The avian sex chromosomes. 
As the female chick possesses a heteromorphic pair of sex chromosomes (ZW), 

it was assumed that chicks employed a chromosomally based sex determination 

mechanism (Thorne, 1995). Graves (1995b) and Stevens (1997) reported no obvious 

homology between the mammalian X chromosome and the avian Z chromosome. This 

indicated the chromosomal sex determination mechanism employed by the XX:XY 

system and the ZZ:ZW system evolved separately and resulted in different sex 

determining genes in birds and mammals (Graves, 1995b). A difference in the sex 

determination mechanism is supported by the failure to isolate a SRY homologue in 

birds (Griffiths, 1991; Tiersch et al., 1991; McBride et al., 1997). 
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The Z chromosome is a macrochromosome, euchromatic and contributes 

approximately 7% of the haploid genome (Schmid et al., 1989; Thorne, 1995; Stevens, 

1997). The W chromosome is much smaller, the size of a microchromosome and 

contributes approximately 1.4% of the haploid genome (Thorne, 1995). The Z 

chromosome consists of three regions. There is a pseudoautosomal region (PAR) at the 

terminal end of the short arm. No crossing-over occurs in this region between the Z and 

the W chromosome, unlike the X and Y chromosomes (Solari et al., 1988). The second 

region is approximately four times as large as the PAR (Solari et al., 1988), and 

contains a single recombination nodule which is localized near the pairing end of the ZW 

bivalent (Rahn and Solari, 1986). This region is said to be partially sex-linked because 

the genes will remain on the Z or the W chromosome unless recombination occurs 

(Thorne, 1995). Finally, a region specific to the Z chromosome is contained within the 

long arm of the chromosome and the majority of the short arm of the chromosome 

(Thorne, 1995). Genes in this region are sex-linked because no homologous 

recombination occurs between the Z and W chromosomes (Thome, 1995). 

The W chromosome is highly heterochromatic, with approximately 75% of the 

chromosome made up of two repetitive DNA sequences called the EcoRI family and the 

XhoI family (Saitoh et al., 1991; Thorne, 1995; Stevens, 1997). Only a few genes 

have been located on the W chromosome. The first gene isolated from this chromosome 

was the CHD 1 (chromo-helicase DNA binding domain 1) gene (Griffiths and Tiwari, 

1995). This gene is considered to have a regulatory role in chromatin architecture 

(Griffiths and Korn, 1997; Stevens, 1997). A homologue to this gene has been located 

on the Z chromosome but it contains an extra 88 amino acid hydrophilic domain 

(Griffiths and Korn, 1997). A second gene has been identified (DZWM1) and shown to 

be located at different loci on the Z and the W chromosomes. At present no function has 

been assigned to this gene (Dvorak et al., 1992). A third gene has also been identified 

which is specific to the W chromosome. This gene is called ASW and is expressed only 

in females (Sinclair, 1997). 

Only a small number of genes have been mapped to the Z chromosome (for a 

review of these genes see Thorne, 1995; Stevens, 1997). Genes located on the Z 

chromosome are generally not located on the W chromosome (Stevens, 1997). This 

leads to sex-linked patterns of gene expression. A mammal overcomes this problem by 

inactivating one of these X chromosomes, thus regulating gene dosage (Migeon, 1994). 

In birds, neither asynchronous replication between the euchromatic bands on the Z 

chromosomes (Schmid ci' al., 1989), nor Barr bodies, characteristic of a cell containing 

an inactivated X chromosome (Migeon, 1994), were observed in males (ZZ). Also, a 

two-fold increase of transcription from the one Z chromosome in the female has not 
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been observed (Baverstock et al., 1982). The apparent lack of Z chromosome 

inactivation and the lack of increased transcription indicated that the Z chromosomes in 

birds do not have a dosage compensation mechanism (Bloom, 1974; Thorne, 1995; 

Stevens, 1997). 

1.3.4.2. Mechanisms of sex determination in asians. 

Due to the heteromorphic sex chromosomes in birds, it has been suggested that 

the sex determination mechanism is either a dominant genetic switch as employed by the 

Y chromosome in mammals (Bitgood and Shoffner, 1990), or a dosage mechanism as 

typified by Drosophila and C. elegans (McCarrey and Abbott, 1979; Halverson and 

Dvorak, 1993). In birds the female is the heterogametic sex (ZW), therefore, the 

dominant genetic switch mechanism would result in a dominant gene on the W 

chromosome initiating ovary development (Bitgood and Shoffner, 1990; Thorne, 1995). 

Triploid and aneuploid birds have been studied in an attempt to elucidate which 

mechanism is used to determine sex (reviewed in McCarrey, 1979; Halverson and 

Dvorak, 1993; Thorne, 1995; Stevens, 1997) (table 1). The two genotypes that would 

provide the most information for the sex determination mechanism in birds would be 2A 

ZO and 2A ZZW (McCarrey and Abbott, 1979; Halverson and Dvorak, 1993; Thorne, 

1995; Stevens, 1997). No ZO aneuploids have been reported (Kagami et al., 1995), 

but they would be female if the genic balance mechanism is correct and male if the 

dominant W chromosome theory is correct. Only one ZZW aneuploid has been reported 

(Crew, 1933). If the genic balance mechanism is correct the ZZW aneuploid would be 

male, but female if the dominant W chromosome mechanism is correct. The ZZW 

aneuploid was male but exhibited female sex-linked plummage. Crew (193 3) concluded 

the male chick had the sex chromosome constitution of ZZW on the basis of phenotype 

and cytology of its progeny, and thus favoured the genic balance sex determination 

mechanism. Thorne (1995) argued that at the time this ZZW aneuploid was identified, 

cytological techniques were poor and could not always resolve the presence of a W 

chromosome. In addition, it was claimed Crew incorrectly identified the Z chromosome 

as being the largest macrochromosme as opposed to the fifth largest macrochromosome 

in size (Thorne, 1995). Overall, as there has only been one observation reported and 

this observation is unreliable, it is impossible to confirm that the male phenotype 

assigned to this chicken had a ZZW genotype. 

Triploid studies have been more successful, but less informative. The triploid 

ZZW chickens are classed as intersexes, with two developing gonads, the left being an 

ovotestis and the right a testis (Thorne a al., 1988; Thorne and Sheldon, 1993; 
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Genotype Mammals Drosophila Birds Ratio X(Z): autosome 
sets 

2A: XY (ZW) Male Male Female 1:2 
2A: XX (ZZ) Female Female Male 1:1 
2A: XO (ZO) Female Male ? 1:2 

2A: XXY (ZZW) Male Female Male?? 1:1 
2A: XXX (ZZZ) Female Female Male 3:2 
3A: XXX (ZZZ) Female Female Male 1:1 
3A: XXY (ZZW) Male Intersex Intersex 2:3 
3A: XYY (ZWW) - Male Female? (not normally 

viable)  
1:3 

Table 1: A comparison of the diploid, triploid and aneuploid genotypes in relation to their phenotypes in mammals, Drosophila and 
birds. Table modified from Stevens, 1997. 



Thorne, 1995. At hatching, the left gonad resembled a normal ovary (Thorne et al., 

1988) or an ovotestis (Lin et al., 1995). However, the gonads gradually became 

masculinized; abnormal spermatozoa being produced from both gonads (Lin et al., 

1995; Thorne et al., 1988; Lin et at, 1995). McCarrey and Abbott (1979) suggested 

that the genic balance mechanism was favoured because a 1:1 ratio of Z chromosomes to 

autosomes resulted in a male phenotype (e.g. 2A:ZZ and 3A:ZZZ). A female 

phenotype results if the Z:A ratio is 1:2 (e.g. 2A:ZW). Finally, an intermediate Z:A 

ratio results in an intersex developing (e.g. 3A:ZZW). These observations do not take 

into account the 3:2 ratio in 2A:ZZZ male embryos or the 1:3 ratio in 3A:ZWW 

embryos, which have tentatively been classed as females (Bonaminio and Fechheimer, 

1993). 
Halverson and Dvorak (1993) favour the genic balance mechanism on the basis 

of gynandromorph data. Gynandromorphs are chimeric with one half of the body being 

male and the other being female. One gynandromorph was a parrot, which had male 

green plumage on the on the left side and female red plumage on the right side 

(Halverson and Dvorak, 1993). The gonads of this gynandromorph had testes on both 

sides of the embryo. It was assumed that plumage colour was determined cell 

autonomously and gonadal development was determined by hormones or factors 

secreted from the male side of the embryo (Halverson and Dvorak, 1993). With the 

female side of the gynandromorph parrot being on the right; the gonad normally 

regresses in females on this side and so testicular hormones might initiate testicular 

development on this side by default. Thome (1995) studied a chicken with female 

plumage on the left side and the male plumage on the right side. The chromosomes 

were analyzed cytogenetically and found to be ZZ/ZW. When the gonads were studied, 

there was a right testis and an atretic left ovary and left and right oviducts. Therefore, 

the effect of a dominant W chromosome can not be discounted (Thorne, 1995). 

1.4. Mammalian gonadal development and genetic regulation. 

1.4.1. SRY (Sex-determining Region Y). 

The gene responsible for testis determination on the Y chromosome is called the 

testis-determining factor (TDF) in humans or testis determining Y gene in mice (Tdy) 

(Goodfellow and Lovell-Badge, 1993). The TDF has been isolated and called SR Y 

(Sex-determining Region Y) (Sinclair et al., 1990). The gene has also been isolated in 

mice and termed Sry (Gubbay et al., 1990). This gene was shown to encode the 

transcript responsible for testis determination through mutational studies (Berta et al., 

1990; Jäger et al., 1990) and transgenic studies, which involved the insertion of a 14kb 
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genomic fragment containing Sry into female fertilised eggs resulting in normal testis 

development (Koopman et al., 1991). 

The human SRY gene consists of 1 exon encoding a protein which contains a 79 

amino acid motif called the HMG (high mobility group) domain; a conserved region 

identified in other proteins such as HMGI (Sinclair et al., 1990; Clépet a al., 1993) 

(fig 4), that mediates DNA binding in a sequence-specific manner (Koopman, 1995). 

The human SRY gene also has a 56 amino acid N-terminal and a 68 amino acid C-

terminal region (Lovell-Badge and Hacker, 1995; Koopman, 1995). If the human 

gene is compared with the mouse Sty gene, the HMG domain is the only region of 

homology (Lovell-Badge and Hacker, 1995; Koopman, 1995). The mouse protein 

consists of a 2 amino acid N-terminal and a 314 amino acid C-terminal domain; the C-

terminal domain being composed of a repetitive glutamine/histidine-rich region which 

could potentially function as a transactivator (Lovell-Badge and Hacker, 1995; 

Koopman, 1995). 

In the mouse and human Sry/SRY transcripts are expressed at a very low level in 

the genital ridge, and have only been detected by RT-PCR, RNase protection assay and 

in situ hybridization (Hacker et al., 1995; Koopman et al., 1990; Lovell-Badge and 

Hacker, 1995). In mouse, Sry is first detected at 10.5dpc (Koopman ci' al., 1990; 

Hacker a al., 1995). Levels peak at 1 1.Sdpc and decline rapidly so that Sry cannot be 

detected at 12.5dpc (Hacker ci' al., 1995) (fig 5). This short window of expression 

suggests the gene acts as a switch directing development down a certain pathway and is 

not required for maintenance of this pathway. 

In situ hybridization of Sry in embryos lacking germ cells, showed that the 

transcript is located in the somatic component of the genital ridge (Koopman ci' al., 

1990), assumed to be the Sertoli cells, as these are the first cells to differentiate in the 

male genital ridge (Koopman, 1995). This hypothesis was supported by experiments 

involving chimaeric mouse embryos. If 25% of cells in an XX-XY chimaera are XY, 

male development occurs. The only cell type to exhibit bias are the Sertoli cells, where 

the majority are XY (Burgoyne ci' al., 1988), suggesting Sry is required for initial 

Sertoli cell differentiation and this allows signalling pathways to be activated and 

differentiation of other testicular cell types to occur. 

As the HMG box is the only domain that is conserved between different species 

and no mutations outside the HMG box have been detected in sex reversal patients, it is 

assumed this region is of functional importance (Koopman, 1995; Goodfellow and 

Lovell-Badge, 1993). The HMG box of SRY is known to bind DNA sequence 

specifically and induce a bend in linear DNA of approximately 76 °  (Rimini et al., 1995; 

Greenfield and Koopman, 1996). This enables SRY to bind DNA directly and activate 
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or repress transcription either by competing with a transcription factor for a binding site 

or possibly bringing transcription factors together via the bending of DNA (Koopman, 

1995; Cape!, 1996). One theory is that SRY negatively regulates a gene that normally 

inhibits a cascade of genes involved in testis differentiation (McElreavey ci at., 1993). 

The actual mechanism of how SRY protein switches development along the testis 

determining pathway is unknown. Also, genes that regulate or are regulated by SRY are 

yet to be identified. 

Numerous groups have attempted to isolate SR Y from non-mammalian species 

(Tiersch ci al., 1991; Griffiths, 1991; McBride et at., 1997). SR  has never been 

isolated from birds, reptiles and lower vertebrates (Koopman, 1995), suggesting a 

different mechanism is used as the switch to initiate testis development in these species. 

1.4.2. WTI (Wilms' Tumour 1). 

WTI encodes a putative transcription factor, that localizes to the nucleus (Ca!l 

ci at., 1990; Gessler ci at., 1990). Mutations in the tumour suppressor gene WTI 

predisposes individuals to Wilms' tumour, an embryonal malignancy affecting the 

kidney (Matsunaga, 1981). The WT1 protein has four zinc finger domains, of the 

Kruppel Cys2  - Hys 2  class, at its carboxy-terminus. At its amino-terminus there is a 

proline and glutamine rich transregulatory region (Kent ci at., 1995; Rauscher, 1993; 

Call ci at., 1990; Gessler ci at., 1990; Van Heyningen and Hastie, 1992; Hastie 

1994). Comparison of the WTI protein with other species indicates a high level of 

similarity at the nucleotide and amino acid level; although the zinc finger domain is 

more conserved than the transregulatory region (Kent ci at., 1995) (fig 4). 

The mammalian WTI gene is able to produce four different isoforms through 

alternative splicing (Haber ci at., 1991). One splicing difference can result in the 

insertion of 17 amino acids downstream of the proline - glutamine region. The other 

leads to the insertion of three amino acids KTS (lysine, threonine and serine) between 

zinc fingers III and IV. The mRNA containing both insertions is the most common 

form in mammals (Hastie, 1992; Hastie, 1993). In other species, only the KTS 

alternative splice is conserved (Kent ci at, 1995). WTI is considered to be a 

transcriptional repressor which is mediated through the proline - g!utamine region 

(Madden ci at., 1991; Lee and Kim, 1996). WTI also binds to TCC nucleotide 

repeats, leading to transcriptional activation (Wang ci at., 1993a; Wang ci at., 1993b). 

Therefore, interactions with other proteins in addition to alternative binding sites and 

different isoforms may determine whether WTI activates or represses transcription. 

Expression profiles of WTI indicate that it has an important role in normal 

urogenita! development (fig 5). WTI is initially expressed in the mouse at 9 dpc in the 
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intermediate mesoderm and at 9.5 dpc in the urogenital ridge (Armstrong et at., 1992). 

By 10 dpc, just prior to sex determination, WTI expression is observed in the genital 

ridge, mesonephros and mesothelium (a layer of cells that surround the body cavity 

and thoracic organs). By 12 dpc, there is strong expression in the mesothelium, the 

developing podocytes of the glomerulus in the metanephros and the developing 

gonads. Expression of WTI in the gonads is restricted to the Sertoli cells in the testis 

and the granulosa cells in the ovary, in addition to the mesenchymal cells which will 

differentiate into these epithelial cells. The Wolffian duct, Mullerian duct and germ 

cells are all negative for WTI expression (Armstrong et at., 1992; Kent et at., 1995; 

Pelletier et al., 1991a; Rackley et al., 1993; Rauscher, 1993; Hastie, 1992; 

Pritchard-Jones et at., 1990). 

In the chick and alligator, WTI is expressed from the earliest stages of 

urogenital ridge development (Kent et al., 1995). Expression is also observed in the 

mesothelium and somites. These studies concentrated on mesonephros expression, 

which is functional in the embryonic chick and alligator and its expression profile 

closely resembles the mammalian metanephros profile (Kent et al., 1995; Armstrong 

et al., 1992). 

In an attempt to elucidate the function of WTI during development, mice 

homozygous for a mutated wt-J allele were generated (Kreidberg et al., 1993). These 

mice died at mid-gestation, and gonadal and metanephric development was arrested at 

a very early stage. The blastemal cells of the metanephros underwent apoptosis and 

the mesenchymal cells failed to differentiate. These findings suggested WTI had an 

important role in urogenital development (Kreidberg et at., 1993; Hastie, 1994). 

The role of WTI in urogenital development has also been studied by examining 

mutations in the WTI gene in children with Denys-Drash Syndrome (DSS) (Pelletier et 

al., 1991b). The gonadal phenotype can range from streak gonads (undifferentiated 

mesenchyme) to mild pseudohermaphroditism. The tissues that are affected by 

abnormal development correspond to those tissues that express WTI during 

development (Hastie, 1993; Hastie, 1994). 

There are two proposed functions for WTI. 	The first is regulating 

transcription of genes required in urogenital development by repressing genes that 

maintain cellular proliferation, or by activation of genes involved in terminal 

differentiation (Hastie, 1992; Madden et al., 1991; Lee and Kim, 1996; Wang et at., 

1993a). At present no target genes of WTI have been identified (Lamond, 1995). 

However, WTI protein has been shown to repress, in vitro, the IGFII (insulin growth 

factor II) promoter (Lee and Kim, 1996; Drummond et al., 1992; Ward et al., 1995). 
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The second proposed function for WTI is RNA processing (Lamond, 1995; 

Larsson a al., 1995). Larsson and collegues (1995) have shown that WTI co-

localizes with splicing factors in the embryonic kidney, gonads and cell lines 

expressing WTI. Localisation of WTI with splicing factors or transcription domains 

appears to be dependent upon the alternative splice forms generated in the zinc finger 

domain (+KTS or -KTS). 

1.4.3. SF-1 (Steroidogenic factor 1). 

SF-i (steroidogenic factor 1) or Ad4BP (adrenal 4 binding protein) was 

identified as a mammalian homologue of the Drosophila Ftz-F1 gene, which regulates 

the expression of the ftz (fushi tarazu) gene during development (Lala a al., 1992; 

Honda et al., 1993). The SF-1 protein is a member of the nuclear hormone receptor 

family, which mediates transcriptional activation by various steroid hormones (Parker 

and Schimmer, 1997). This protein, which was only present in steroidogenic cells, 

bound to a regulatory element (Ad4) in P450 steroid hydroxylases and was thought to 

be responsible for the tissue-specific and developmentally regulated expression of the 

enzymes (Omura and Morohashi, 1995; Parker and Schimmer, 1997). 

Ftz-F1 encodes two isoforms that are differentially regulated during Drosophila 

development (Ikeda et al., 1993; Parker and Schimmer, 1994; Parker and Schimmer, 

1997). In comparison, the gene encoding SF-1 also encodes an additional three 

transcripts called embryonal long terminal repeat-binding protein (ELP 1-3), which 

bind a negative regulatory element in retroviral long terminal repeats (Parker and 

Schimmer, 1997). The three ELP transcript and SF-1 differ from one another due to 

different promoter usage and alternative 3' splicing (Omura and Morohashi, 1995; 

Parker and Schimmer, 1997). 

SF-1 has, at the amino-terminus, two zinc fingers (region 1) that mediate 

binding to DNA hormone response elements (Honda a al., 1993) (fig 4). Immediately 

adjacent to region I is the FTZ-Fl or A box, which recognise bases 5' of the Ad4 

binding site and stabilises binding of SF-1 (Wong et al., 1996; Parker and Schimmer, 

1997). The hinge region is 3' to the A box and is putatively involved in transcriptional 

activation (Wong et al., 1996; Parker and Schimmer, 1997). Region II and III, in the 

carboxy-terminus, comprise the ligand-binding and dimerization domains (Honda et 

at, 1993; Wong et at, 1996). Next to these domains is a potential motif for 

phosphorylation by cAMP-dependent protein kinase (Honda et al., 1993; Wong a al., 

1996). Finally, at the most 3' terminus of the protein there is an AF-2 domain 

essential for transcriptional activation (Wong et al., 1996; Parker and Schimmer, 

1997). 
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SF-i expression has been detected in primary steroidogenic tissues: testis, 

ovary and adrenal in addition to certain areas of the brain, placenta and spleen 

(Morohashi and Omura, 1996). SF-i is detectable in the urogenital ridge when it first 

arises at 9 dpc in the mouse (fig 5) (Ikeda et al., 1994). By 9.5 to 10.5 dpc, in the 

mouse, there are two discrete cell populations expressing SF-J, the adrenocortical 

precursors and the gonadal precursors (Ikeda et al., 1994; Ikeda, 1996; Parker and 

Schimmer, 1997). By 12.5 dpc, SF-1 is dectected in the Leydig cells and the Sertoli 

cells (Ikeda et al., 1994; Hatano et al., 1994). This expression is maintained in the 

male throughout fetal and adult life in Leydig cells, but is down-regulated in adult 

Sertoli cells (Morohashi and Omura, 1996; Parker and Schimmer, 1997). In contrast, 

at the time of ovarian differentiation there is a down-regulation in SF-i transcripts and 

protein (Ikeda et al., 1994; Hatano ci al., 1994). This low or undetectable level of 

SF-I expression in the ovary is maintained until follicular development begins after 

birth, when SF-1 is expressed in granulosa and theca cells (Ikeda et al., 1994; Hatano 

ci at., 1994). SF-i expression was also detected in the ventromedial hypothalamic 

nucleus (VMH) and the anterior pituitary gland in the brain (Ikeda et al., 1995; Parker 

and Schimmer, 1997). VMH and the pituitary gland do not express steroid P450 

genes, therefore SF-1 must interact with other target genes (Morohashi and Omura, 

1996). 

In order to elucidate the function of SF- 1, targeted disruption of the mouse Ftz-

F] gene was carried out. Ftz-F] knockout mice died by 8 days after birth, due to 

adrenocortical insufficiency (Luo et al., 1994; Luo ci at., 1995). Externally all 

knockout mice had female genitalia, but internally lacked adrenal glands and gonads 

(Luo et al., 1995). At 10.5 dpc mesenchymal thickening is observed, where the 

genital ridge normally forms, suggesting SF-1 is not required for initiation of 

urogenital ridge development (Luo ci al., 1994). By 12 dpc, cells in the genital ridge 

region of knockout mice exhibited features of apoptosis. By 12.5 dpc, the gonads 

were almost absent. This abnormal development of the adrenal glands and gonads 

coincides with the stage of sexual differentiation (Luo et al., 1994). The pituitaries of 

Ftz-F1 knockout mice also lacked specific gonadotrope proteins, such as: a- 

glycoprotein hormone subunit ((x-GSU) (Ingraham et al., 1994). VMH structure had 

decreased cellular organisation and was almost ablated in knockout mice, by postnatal 

(P) day 1 (Ikeda ci al., 1995). 

Another approach to elucidate the function of SF-i is to identify target genes. 

One potential downstream target of SF-1 is Steroidogenic Acute Regulatory protein 

(StAR) (Caron et al., 1997). StAR is required for acute induction of steroid hormones 
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(Clark et al., 1995; Parker and Schimmer, 1997). The StAR 5' flanking region 

contains a binding site for SF-i (Caron et al., 1997). StAR is located in the 

steroidogenic cells of the ovary, testis and adrenal, and is not detectable until after the 

onset of SF-i expression (Clark et al., 1995). 

Anti-Mullerian hormone (AMIH) is another potential downstream target of SF-

1. The 5' flanking region of AMIR contains a motif matching the sequence that SF-i 

binds, called MIS-RE-I (Shen et al., 1994). Disruption of this motif reduced the 

activity of AMH. However, when transactivation experiments were carried out AIv1H 

activation by SF-1 required the removal of the SF-i ligand binding domain, 

suggesting a Sertoli cell specific co-factor was required for activation (Shen a al., 

1994). Giuili et cii. (1997a) have studied the 180bp 5' flanking region of AM11 in 

transgenic mice. An SF-1 point-mutated 180bp proximal AMII promoter was fused to 

the human growth hormone gene (hGH) and expression of the transgene was 

abolished, suggesting the SF-i binding site is essential for ATv1H expression (Giuili et 

al., 1997a). Other potential targets of SF-i include: aromatase (Carlone and Richards, 

1997); a-GSU (Parker and Schimmer, 1997) and LHI3  (Halvorson a al., 1996; Ken 

and Nilson, 1996). Two other genes that were putative targets or regulators of SF-i 

are SRY and WTI (Parker and Schimmer, 1997; Ikeda, 1996). Dcix-] is another 

gene that could potentially interact with SF-1. 

Regulation of SF-1 has also been studied. Three motifs in the promoter of SF-

1 have been identified: an E box, a CAAT binding factor and a GA-rich element 

(Woodson et al., 1997; Nomura et al., 1995). The E box is the binding site for basic 

helix-loop-helix (BHLH) proteins (Woodson et al., 1997; Nomura et al., 1995). The 

CAAT binding site binds the CAAT binding factor (CBF) and the GA-rich element 

binds the Spi transcription factor (Woodson et al., 1997). Deletion analysis of the 

promoter has shown that all three elements are required for SF-1 expression, but the E 

box is essential (Woodson et ciL, 1997). 

Until recently no potential ligands for SF-1 had been identified. Lala et cii. 

(1997) have implicated oxysterols as ligand activators of SF-I. Oxysterols inhibit 

cholesterol biosynthesis but are thought to enhance SF-1 activity. Activation of SF-i 

is dependent on the presence of the AF-2 transactivation domain at the C-terminus of 

the protein. Oxysterols for SF-i are unable to activate other members of the nuclear 

hormone receptor family. At present it is unknown whether oxysterols bind directly to 

SF-1 or if an oxysterol metabolite is the ligand. Alternatively, oxysterols may recruit 

other proteins that specifically interact with SF-1 (Lala a al., 1997). 
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1.4.4. DSS (Dosage Sensitive Sex reversal) locus. 

It is well documented that partial duplications on the short arm of the X 

chromosome (Xp) in males with a functional copy of SRY leads to variable 

phenotypes of gonadal dysgenesis (Ogata and Matsuo, 1996; Zanaria et at., 1995)., 

The sex reversal phenotype is observed if part of Xp is duplicated in males which is 

not subject to X-inactivation. This suggested that there were gene(s) on the X 

chromosome important for the determination of gonadal sex (Zanaria et at., 1995). 

The region critical for this sex reversal termed DSS (Dosage Sensitive Sex reversal), 

and shown to partially overlap the AHC (Adrenal Hypoplasia Congenita) locus 

(Bardoni et at., 1994), suggesting that the gene responsible for AHC could also be 

responsible for DSS. 

XY individuals that are deleted for the DSS critical region develop normal male 

genitalia , indicating the DSS locus does not have an important role in testis 

differentiation (Bardoni et at., 1994). Two active copies of DSS in combination with 

SR Y prevents testis differentiation. However, one copy of DSS in the presence of 

SR V results in normal male development. One hypothesis states there could be an 

interaction between SRY and DSS which determines if testicular or ovarian 

development occurs. In normal males SRY could represses DSS, which in turn leads 

to testis differentiating genes being released from suppression by DSS. In females, 

lack of SRY means that DSS continues to repress testis determining genes, allowing 

ovarian development to proceed (fig 5). In males with a duplication of DSS, SR V 

may not sufficiently repress DSS. Testis determining genes would, therefore, be 

suppressed leading to gonadal dysgenesis (Zanaria et al., 1995; Ogata and Matsuo, 

1996). 
Candidate genes have been isolated within the DSS critical region. These are: 

DAM 6, DAM 10, MAGE-Xp and Dax-J. Dam genes (DSS/AHC critical interval 

belonging to the MAGE superfamily) and MAGE-Xp (melanoma antigen gene) belong 

to the MAGE superfamily, which have so far been located on the long arm of the X 

chromosome (Xq27-qter). The biological function of the MAGE or DAM genes is 

unknown and there is no evidence, at present, to support MAGE-Xp or either DAM 

gene as the critical gene in the DSS locus (Muscatelli et at., 1995; Dabovic et at., 

1995; Zanaria et al., 1995). 

Deletions and mutations in Dcix-] (DSS-AHC critical region on the X, gene 1) 

enabled it to be isolated as the gene responsible for the X-linked form of adrenal 

hypoplasia congenita (AHC) (Zanaria et at., 1994; Muscatelli et at., 1994). AHC is 

characterised by a general structural disorganisation of the adrenal cortex, resulting in 

glucocorticoid and mineralocorticoid insufficiency (Burns et at., 1996). The AHC 
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locus partially overlaps the DSS critical region and males with X-linked AHC often 

exhibit abnormalities of the genitourinary system, suggesting that Dcix-] may also be 

the critical gene in the DSS locus (Burns et al., 1996). 

Human Dcix-] encodes a member of the nuclear hormone receptor superfamily 

(Zanania et al., 1994; Swain et al., 1996). The highest homology is to the E box 

domain of the retinoid X receptor (RXR) subfamily (Zanaria et al., 1994). The ligand 

binding domain, in the C-terminus, is important for hormone binding, dimerization 

and transactivation (Zanaria et al., 1994; Burns et ciL, 1996). The N-terminal portion 

of the protein consists of three and a half repeats of an alanine- and glycine-nich 65 - 

67 aa motif (Zanaria et al., 1994; Swain et ciL, 1996; Burns et al., 1996) and is 

thought to encode a novel DNA binding domain, consisting of two zinc fingers 

(Zanaria et al., 1994) (fig 4). 

Dcix-] is first expressed at 10.5 to 11 dpc in mouse, in the somatic cells of the 

genital ridge of both sexes (fig 5). Expression of Dcix-] is down-regulated in males at 

12 dpc. Expression is maintained in the female gonad up to 14.5 dpc, when it 

becomes restricted to a region of the ovary proximal to the mesonephros (Swain et al., 

1996). Dax-] expression is not restricted to the steroidogenic cells in the gonads 

(Ikeda et al., 1996; Tamai et al., 1996). If Dcix-] is DSS, it is unlikely SR  would 

repress it directly because Dcix-] expression is observed in males and females at 11.5 

dpc, when SRY is being maximally expressed. However, Dcix-] activity could be 

repressed by genes downstream of SRY in the testis-determining pathway (Swain et 

al., 1996). Expression of Dcix-] is also observed in the hypothalamus and anterior 

pituitary, adrenal, heart, thymus, spleen and lung (Zanaria et al., 1994; Swain et al., 

1996; Bae et ciL, 1996; Goo et ciL, 1995). 

Due to a similar tissue type and developmental pattern of expression between 

SF-1 and Dcix-] and the identification of an SF-1 site in the Dcix-] promoter; the 

possibility of an interaction or transcriptional regulation which might affect a common 

developmental pathway was studied (Burns et al., 1995; Ikeda et al., 1996). Parker 

and colleagues studied the co-localization of Dcix-] and SF-1 transcripts. SF-1 initially 

precedes expression of Dcix-] in the genital ridge by 1 - 14 days of development; but 

co-localization of the transcripts is detected in the adrenal gland and the gonads from 

ii dpc to 12.5 dpc (Ikeda et al., 1996). In the ovary, SF-1 and Dcix-] can be detected 

at 12.5 dpc, but are down-regulated by 14.5 dpc (Ikeda et ciL, 1996). Majdic and 

Saunders (1996) studied the localisation of SF-1 and Dcix-] proteins in rat fetal testis. 

They found that Dcix-] protein did not exclusively immunolocalize with cells 

expressing the SF-1 protein, indicating Dcix-] does not require SF-1 for expression. 
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If Dcix-] is regulated by SF-1, its expression should be affected in Ftz-F] 

knockout mice. However, Dcix-] was detected in the gonad at 11.5 dpc and in the 

VMH in the developing hypothalamus, which degenerate, in the knockout mouse 

(Ikeda et al., 1996). Finally, one other possibility is that Dax-] and SF-i interact 

directly as heterodimers, as the proteins do co-localize in some cells (Vilain et al., 

1997; Majdic and Saunders, 1996) and Dcix-] has been shown to inhibit SF-i 

mediated transactivation in vitro (Ito et al., 1997). 

Dcix-] expression profile correlates well with the potential DSS location and its 

role in sex determination and sex reversal. At present, however, there is no conclusive 

evidence that Dcix-] is DSS. 

1.4.5. Sox-9 (SRY-related HMG box containing gene ) - 

The discovery that there is male to female sex reversal in 46 XY individuals, 

with an intact SR Y gene, and there are XX males not resulting from the presence of 

SR Y lead to the conclusion that other genes on the X chromosome and autosomes 

were required for sex determination regulation (Schafer et al., 1995; Foster, 1996; 

Wagner et al., 1994). One such locus is the autosomal sex reversal locus (SRA1) 

located on chromosome 17q. Sex reversal phenotypes range from partial testis 

development to gonads with some ovarian development. This sex reversing locus is 

associated with campomelic dysplasia (CD); a skeletal malformation syndrome 

(Sinclair, 1997; Foster, 1996; Schafer et at, 1995). As XX CD patients did not 

express any ovarian degeneration, it was assumed the gene at this locus was required 

for correct testis differentiation (Capel, 1995). 

50X9 belongs to the SOX (aRY-like  HMG box containing) family. These 

genes exhibit at least 60% similarity to the SR Y HMG domain (Goodfellow and 

Lovell-Badge, 1993). 50X9 exhibits 71% homology at the amino acid level to this 

potential DNA binding domain (Foster et al., 1994). The other characteristic of 50X9 

is the proline/glutamine rich region in the carboxy-terminus of the protein (Foster et 

at, 1994; Wagner et al., 1994; Wright et at, 1995) (fig 4). 

Mutational studies were carried out on patients with CD and XY sex reversal to 

elucidate whether 50X9 caused this phenotype. Mutations were identified that 

resulted in premature stop codons, amino acid substitutions and frameshift mutations, 

all affecting a single allele (Foster et al., 1994; Wagner et al., 1994; Kwok et al., 

1995; Meyer et al., 1997). In fact, as mutations appeared to affect one allele, 

haploinsufficiency was proposed as the cause of this phenotype and 50X9 was 

considered to play a role in skeletal and testis development (Foster et al., 1994; 

Wagner et al., 1994; Foster, 1996; Schafer et al., 1995). Mutations in the gene have 
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a more severe phenotype than translocation breakpoints upstream of the gene (Wagner 

et al., 1994). The relationship between SOX9 and the translocation breakpoints, 

which can be upto 100kb upstream of the gene, is unknown. The composite transcript 

of SOX9 was found to be 3934bp in length. However, by Northern analysis a 

transcript of —4.3kb is detected (Foster et al., 1994; Wagner et al., 1994). One 

explanation would be that there are exons 5' to the already existing exons and this 5' 

exon is disrupted by the translocation (Foster, 1996; Schafer et al., 1995). 

Expression profiles of Sox9 in mouse and chicken were studied. Wright et al. 

(1995) demonstrated that Sox9 in mouse is expressed throughout chondrogenesis. 

Chondrogenesis is the process whereby mesenchymal cells condense to the shape of 

bone, resulting in hyaline cartilage differentiation and subsequent skeletal development 

(Wright cit at, 1995). 

Due to the sex reversal phenotype, expression of Sox9 was also analyzed by in 

situ hybridization in the gonads of mouse and chick. Sox9 transcripts are detectable at 

low levels in mouse in both sexes (10.5 dpc) (Kent et at, 1996; da Silva et at, 1996) 

(fig 5) and in the male and female chick (5.5d) (da Silva et at, 1996). By 11.5 dpc in 

the mouse and 6.5d to 7.5d in the chick Sox9 expression is detected at higher levels in 

the gonads of male embryos. Low levels (da Silva et al., 1996) to undetectable levels 

of Sox9 expression (Kent et al., 1996) were reported in female chick gonads. No 

Sox9 transcripts are detectable in female mouse gonads at this stage (Kent et al., 1996; 

da Silva et at, 1996). 

By 12.5 to 13.5 dpc in the mouse, Sox9 is localized to the Sertoli cells of the 

sex cords (da Silva cit at, 1996; Kent cit at, 1996). Localisation of SOX9 protein is 

initially cytoplasmic, before 11.5 dpc. It is only detected in the nucleus after 11.5 dpc 

(da Silva et al., 1996), coincident with high levels of SR  expression (Harley et al., 

1997), indicating a possible interaction between SRY and SOX9. Recently, two 

nuclear localisation signals have been identified, located in the HMG domain of Sry 

and SOX9 proteins (SUdbeck and Scherer, 1997). The timing of SOX9 expression in 

relation to SR V expression suggests there could be an interaction between the two 

genes. However, the postulated role for SRY is as an inhibitor, and as SOX9 and 

SRY are both involved in testis determination it is unlikely SRY would directly 

regulate SOX9 (Graves, 1997a). It is possible that SRY could regulate the sexually 

dimorphic expression of SOX9 by inhibiting a repressor of SOX9 allowing testis 

development to occur (Graves, 1997b; Swain cit al., 1998). 
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1.5. Hormonal regulation of gonadal development. 

1.5.1. Background to hormonal studies. 

Chick embryos were castrated between day 3 and day 4 of incubation by 

localized X-irradiation and characterised on the basis of the development of three 

structures: the syrinx, genital tubercle and Mullerian ducts. Castrated male and female 

embryos developed as neutral types. The neutral type has a syrinx and genital tubercle 

identical to the male. However, the Mullerian ducts developed equally on both the left 

and right side, unlike males or females (Wolff and Wolff, 1951), which suggested the 

male phenotype was the default pathway. In mammals, early castration of mammalian 

embryos (e.g. rabbit) resulted in feminization of the genital tract occurred (Jost, 1953; 

Jost, 1960; Jost 1965). This lead to the theory that mammalian ovarian development 

is the default pathway (Jost, 1953). Together these observations lead to the 

hypothesis that in the mammalian embryo, during gonadal development, a 

masculinizing hormone is predominant whereas during gonadal development in the 

avian embryo a feminizing hormone is predominant (Jost, 1965; Wolff and Wolff, 

1951). 

The dominance of the male phenotype over the female phenotype was observed 

in "freemartins" of cattle (Lillie 1917; Jost, 1965). The term "freemartin" applies to 

the female masculinized in the presence of a male co-twin. The cortical development 

of the ovary is inhibited, tubules resembling seminiferous tubules are observed in the 

medulla, the Mullerian ducts are inhibited and the Wolffian ducts may persist (Jost, 

1965; Willier, 1921). However, masculinization is not complete especially as 

development of external structures is slight, if at all (Hunter, 1995). It was suggested 

the hormone essential for masculinizing the embryo reached the "freemartin" in limited 

amounts, that the hormone acted locally, or that other factors were involved (Jost, 

1960; Jost, 1965). The mammalian testis is essential for inhibiting development of 

female structures derived from the MUllerian ducts, and inducing differentiation of 

male structures from the Wolffian ducts (Jost, 1953). 

An experiment was carried out in rabbits, where a crystal of testosterone was 

placed near one ovary, or a foetal testis was grafted onto an ovary. Both the foetal 

testis and the crystal of testosterone stimulated Wolffian duct differentiation . The 

foetal testis, however, also inhibited Mullerian duct development locally, whereas the 

crystal containing testosterone did not (Jost , 1953). Therefore, it appeared one 

hormone did not possess both activities and so two different hormones were proposed 

to be required for development of the complete masculine phenotype. One hormone to 

inhibit Mullerian duct development and an androgen type hormone to stimulate male 

organogenesis (Jost, 1960). 
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1.5.2. AMH (anti-Mullerian hormone). 

AIvll-1 is a hormone secreted by the testis, and causes regression of the 

Mullerian ducts (Vigier a al., 1984; Jost, 1960). This hormone has a variety of other 

names: MUllerian-inhibiting factor (MW), Mullerian-inhibiting substance (MIS) or 

Mullerian inhibitor (Josso and Picard, 1986). 

The bovine, murine, rat and human genes for AMH have been isolated (Cate et 

at, 1986; Mtinsterberg and Lovell-Badge, 1991; Haqq et at., 1992) and have 

homology to the transforming growth factor-13 family of genes (TGF-13) (Cate a at., 

1986). The mature AIVIH protein is 140W glycoprotein dimer that is linked by 

disulphide bonds (Picard a al., 1978; Lee and Donahoe, 1993). The role of the N-

terminus is unknown, but it has been proposed to be required for folding and secretion 

of the C-terminal region (Wilson et at., 1993). The regression and antiproliferative 

activity of the protein is located in the C-terminus of the protein (Lee and Donahoe, 

1993; Josso, 1992). Wilson a at. (1993) utilised a C-terminal fragment of AIvIH to 

cause regression of the Mullerian ducts, indicating the receptor binding domain is 

present in this region. However, addition of the N-terminal region increased the 

activity of the C-terminal region. The chick AIVIH gene has also been isolated and 

cloned (Eusèbe a al., 1996; Neeper ci' at., 1996). Homology between human and 

chick AMH is reported to be 27% identity (Eusebe ci' at., 1996) or 42% identity along 

its length (Neeper et at, 1996). 

AMH is the earliest Sertoli cell specific marker in the mammal (Munsterberg 

and Lovell-Badge, 1991). In the mouse, AMH is first detected in the male at 11.5 

dpc, coincident with the highest levels of expression of Sry (Hacker et at., 1995) and 

is expressed as a result of sex determination. Expression of AMH, in the mouse, 

peaks at 13 dpc and levels out thereafter (Hacker et at., 1995). Suppression of 

testicular expression of AMH coincides with the beginning of meiosis in spermatids 

(MUnsterberg and Lovell-Badge, 1991). AIVIH expression is also detected in the 

female postnatally, from day 6 onwards. Expression is only observed in the granulosa 

cells, and is possibly involved in oocyte maturation and follicle development 

(Munsterberg and Lovell-Badge, 1991). These results suggest LAMH expression 

prevents germ cell development through meiosis. 

In contrast to mammalian AMH expression, AMH in the chick is expressed in 

male and female gonads, although at much higher levels in the male (Teng, 1987; 

Eusèbe a at., 1996). Expression was detected at 8d and peaked at lOd in the male 

(Busébe ci' at., 1996). This contradicts work carried out by Teng (1987), who 

identified three stages when AMT-I content is high in the testis. These are 6d to 8d, 
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14d to 20d and 5 to 8 weeks after hatching. Expression was high in the left and right 

ovary at 8d, but after lOd higher expression was detected in the left ovary compared 

to the right ovary (Eusèbe et al., 1996). In contrast, Teng (1987) detected low levels 

of AMH protein in left and right gonads from 6d to 12d. Highest AMH levels, in the 

combined left and right ovaries, was detected between 9d and 14d. AIvll-I was 

detected in the future and definitive Sertoli cells of the testis and in the region between 

the cortex and the medulla of the left ovary (Eusèbe et al., 1996). 

The Mullerian ducts are responsive to AMH for only a short time during 

embryonic development in all species studied (Josso et al., 1977; Rey and Josso, 

1996). Chronic overexpression of AMI-I in females, resulted in the Mullerian ducts 

and ovaries degenerating, with few germ cells that were eventually lost. The somatic 

cell organisation of the degenerating ovary resembled seminiferous tubules (Behringer 

et al., 1990). This phenotype correlated with the female bovine freemartin (Behringer, 

1995). The majority of males chronically expressing A?vIH exhibited normal 

development. However, those males expressing the highest levels of AMH exhibited 

feminization of external genitalia, incomplete Wolffian duct development and 

undescended testes (Behringer et al., 1990). This indicates the potential 

developmental processes in which Atvll-I is involved and the possibility of very high 

levels of AMH leading to incorrect interactions with its receptor (Behringer, 1995). 

Interestingly, overexpression of AMH in rat, turtle and chick females leads to 

increased levels of testosterone. This is due to AMH reducing the activity of 

aromatase (di Clemente et al., 1992; Vigier et al., 1989), the enzyme essential for 

conversion of androgens to oestrogens (Josso, 1992). 

The specificity of AMH between different species has also been examined. 

Chick MUllerian ducts regressed only in the presence of chick AIvIH (Weniger et al., 

1991; Tran and Josso, 1977). However, rat Mullerian ducts regressed in the presence 

of rat or chick AMH (Tran and Josso, 1977). As chick AMH is active in the rat but rat 

AMH is not active in the chick, it is possible the rat receptor does not have specific 

binding requirements compared with the chick receptor (di Clemente et al., 1992; 

Weniger et al., 1991). Alternatively, as cleavage of mammalian AMH is required for 

an active molecule, it is possible the chick embryo does not produce the correct 

protease for this cleavage (di Clemente et al., 1992; Weniger et al., 1991). 

AMH loss-of-function studies were also carried out in order to better study the 

function of AMH during development (Behringer et al., 1994). Male mice lacking 

functional AMIH have fully descended, normal-sized testes and produced functional 

sperm. However, female reproductive organs also developed, which interfered with 

sperm transfer, and the mice were infertile (Behringer et al., 1994; Behringer, 1995). 
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In addition, Leydig cell hyperplasia was observed in some cases, indicating the 

potential role of AMH in regulation of Leydig cell proliferation (Bebringer et al., 1994; 

Behringer, 1995). 

The AMH gene must be tightly regulated to ensure expression begins at the 

correct developmental stage and in the correct tissue type to ensure Mullerian duct 

regression and potentially regulate spermatogenesis, oogenesis and other 

developmental processes. Guerrier et al. (1990) identified multiple transcription 

initiation sites in the AMH promoter, with one major start site and at least three minor 

start sites. In the rat ATvIH promoter, a sequence corresponding to the binding site for 

SF-1 was identified (Lee and Donahoe, 1993). Finally, a 13bp palindromic sequence, 

with identity to the oestrogen response element (ERE) has been identified in the 

promoter region of the human APvIH gene, suggesting estrogen could regulate AMH 

expression (Guerrier et at., 1990; Lee and Donahoe, 1993). 

The receptor for AMH has been isolated in rabbit, rat and human (di Clemente 

a al., 1994; Baarends et at, 1994; Imbeaud et at, 1995). The receptor for AMH 

shows homology to the type II membrane-bound serine/threonine kinase receptor of 

the TGF-13 receptor family (Behringer, 1995; di Clemente et al., 1994). Two 

transcripts of the AM}I type II receptor were identified, generated by alternative 

splicing (di Clemente et at, 1994). Both isoforms are expressed in AMH target 

tissues, although there are slightly higher levels of the longer isoform (di Clemente et 

al., 1994). Binding studies carried out using these two different isoforms indicated 

the long receptor isoform allowed AMI-I binding, whereas the shorter isoform did not 

(di Clemente et at., 1994). 

Expression of the AIVIH receptor was detected in the Sertoli cells of the foetal 

testis and in the foetal ovary. It is also detected in the granulosa cells of small and 

medium follicles. In addition, the AMH receptor is detected in the mesenchymal cells 

surrounding the Mullerian ducts (di Clemente et al., 1994; Baarends et at., 1994). 

In an attempt to establish that signalling through the AMH receptor is essential 

for Mullerian duct regression, receptor mutant mice were generated by gene targeting 

(Mishina et at, 1996). Female mice homozygous for the receptor mutation developed 

normally and were fertile (Mishina et al., 1996), corresponding to the phenotype of 

AMH knockout female mice (Behringer et at., 1994). Male AMH receptor knockout 

mice developed as internal pseudohermaphrodites. They had fully descended, normal-

sized testes and the Woiffian ducts had developed normally. However, the Milllerian 

ducts had not degenerated and so female reproductive organs had also developed 

(Mishina ci' at., 1996), again showing the same phenotype observed with male AIvIH 

knockout mice (Behringer ci' al., 1994). The receptor deficient male mice exhibited 
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normal levels of AMH expression, indicating the reason the MUllerian ducts did not 

regress was caused by a lack of AMH signal transduction (Mishina a al., 1996). 

Double mutant mice for AMH and the AMH receptor were also generated. The 

double mutant phenotype was the same as for each of the signal mutant phenotypes 

(Mishina et al., 1996). These results suggest no other ligands signal through the 

A?vlH receptor and AMH does not utilize any other receptor for signal transduction 

(Mishina a al., 1996; Josso and di Clemente, 1997). 

1.5.3. 	Testosterone. 

Testosterone is required during gonadal development for maintenance of, and 

differentiation of, the Woiffian ducts into the epididymis, vas deferens, seminal 

vesicles and ejaculatory ducts and possibly has a role in regulating spermatogenesis 

(Siiteri and Wilson, 1974; Josso, 1981; Wilson et al., 1993). Testosterone is 

secreted by the Leydig cells of the foetal and adult testis (Josso, 1981; Josso, 1992; 

Wilson et al., 1993), and is the only androgen produced by the testis at the time of 

male sexual differentiation (Wilson and Siiteri, 1973). 

The rabbit has a gestation period of 30 to 32 days (McLaren, 1972). The 

sexual differentiation of the gonads in rabbit occurs from day 15 (Jost, 1953) and 

phenotypic differentiation of the gonads does not occur until approximately day 17 or 

day 18 (Wilson et al., 1980). In all mammalin species studied thus far, testosterone 

synthesis does not begin until just before the onset of male phenotypic differentiation 

(Wilson a al., 1980). Leydig cells are the steroid producing cells and differentiation 

of these cells occurs after the initial stages of sexual differentiation at day 18 (Wilson 

and Siiteri, 1973). 
Wilson and Siiteri (1973) reported negligible amounts of testosterone in the 

testis at day 17, but by day 19 testosterone levels had increased. Levels of 

testosterone continued to increase to day 23, after which point levels remained high in 

the testis. Testosterone production was not detected in the ovaries, between day 23 to 

3 days after birth. The results of testosterone synthesis appears to correlate with 

Leydig cell differentiation. 

Androgen synthesis by chick gonads has also been studied. Androgens were 

first detected in the genital ridge of both sexes at 3.5d, in interstitial cells (Woods and 

Podczaski, 1974). However, it is considered that interstitial cells differentiate after sex 

determination, which does not occur until later in development (Romanoff, 1960). 

The amount of androgens produced were similar in both testes and ovaries between 

3.5d and 4.5d. Initially, androgen levels increased slightly in the right ovary, up to 

day 6.5 of incubation, then levels decreased. In the left ovary, levels of androgen 
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synthesis only increased very slightly to 19.5d. In the testis, there was an overall 

steady increase in the levels of androgen production (Woods and Podczaski, 1974). 

However, these results are contradicted by recent work carried out by McBride et at 

(unpublished observations), in which testosterone levels remain low in both male and 

female genital ridges from 3.5d to 12.5d. 

Testosterone is secreted by the testis and enters its target tissues by a passive 

diffusion mechanism ( Wilson et al., 1980; Wilson et al., 1993). Once inside its 

target cell, testosterone can be converted to dihydrotestosterone (DHT) by the enzyme 

5a-reductase (Wilson et al., 1993; Josso, 1981), or it can interact with the androgen 

receptor protein (Wilson et at, 1980). The undifferentiated Wolffian ducts require 

testosterone for differentiation of these ducts (Josso, 1981). DHT is required for 

masculinization of the urogenital sinus and external genitalia during embryogenesis, 

and at puberty for male sexual maturation (Josso, 1981; Wilson et al., 1993). 

Testosterone and DHT bind to the same receptor, but with different affinities 

and different resulting functions in gonadal development. Conversion of testosterone 

to DHT amplifies the androgen signal in several ways. Firstly, DHT is unable to be 

aromatized to estrogen. Secondly, DHT binds the androgen receptor with greater 

affinity and with more stability compared to testosterone (Josso, 1992). Finally the 

DHT-receptor complex is more rapidly transformed into a DNA-binding state (Wilson 

et al., 1993). Testosterone and DHT bind to the androgen receptor (AR). Once bound 

to, an active androgen-AR complex is formed which is then located predominantly in 

the nucleus and can regulate transcription (Jenster et al., 1991; Batch et al., 1992; 

Pinsky et at, 1994). 
The androgen receptor is a member of the steroid hormone receptor family 

(Lubahn et al., 1988; Tilley et al., 1989). The receptor is composed of three distinct 

functional domains (Batch et al., 1992; Lubahn et al., 1988). The amino-terminal 

domain has a putative transcriptional activation function (Lubahn et al., 1988). The 

second domain is the central region which forms two zinc fingers and is involved in 

DNA binding (Lubahn et al., 1988; Batch et al., 1994). The carboxy-terminus is the 

domain responsible for androgen binding (Lubahn et al., 1988; Batch et al., 1992). 

In both mammals and birds, exogenous testosterone in a genetic female causes 

masculinization of the genital tract, although regression of the MillIerian duct does not 

occur (Grumbach and Ducharme,1959; Jordanov and Angelova, 1984). In 7.5d 

female chick gonads treated with testosterone, the cortex does not thicken 

significantly. However, it has been noted that there are varying effects on the cortex 

of the gonad by testosterone. The medulla enlarges with tubular structures forming, 
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similar to those observed in the testis. Interstitial cells also had an appearance similar 

to those observed in testes (Jordanov and Angelova, 1984). 

1.5.4. 	Oestrogens. 

Due to the fact that early castration of rabbits results in development of female 

characteristics (Jost, 1953), it was suggested steroid hormone synthesis was not 

essential for female development and differentiation. However, oestrogen production 

was first detected in the foetal ovaries of rabbits between day 17 and 17.5, and 

increased up to day 25 (Milewich et al., 1977; George et al., 1978; Wilson et al., 

1980). The onset of oestrogen production occurs at the same time as testosterone 

production in the testis, in both rabbits and humans (Wilson et al., 1980). Oestrogen 

synthesis was detected in testis at day 19, but at much lower levels compared with the 

foetal ovary (George et al., 1978). 

In the chick, if gonads were not present male characteristics developed. 

Therefore, it is possible oestrogen is the essential steroid hormone in chick gonadal 

development needed for feminization of the genital tract (Jost, 1965). Woods and 

Erton (1978) reported detection of oestrone and 17[3-oestradiol in the indifferent 

gonads at 3.5d. Estrogen synthesis was approximately equal between the left ovary, 

right ovary and the testes up to 5.5d. By 6.5d highest levels of oestrogen was in the 

left ovary compared to the right ovary and testes (Woods and Erton, 1978). Oestrogen 

synthesis increased to up to 13.5d and then plateaued, in the left ovary. Oestrogen 

was detected in the medullary interstitial cells between 3.5d and 12.5d, and from 

13.5d onwards, in the cortical cords (Woods and Erton, 1978). In the right ovary, 

oestrogen production decreased to almost undetectable levels by 13.5d. In the testis, 

oestrogen synthesis exhibited a gradual increase, but at much lower levels compared to 

the left ovary (Woods and Erton, 1978). This study was contradicted by recent 

radioimmunoassay studies carried out by McBride et al. (unpublished observations), 

which indicated oestrogen synthesis was not detectable in ovaries until 6.5d. 

As the rate-limiting enzyme for oestrogen production is aromatase (Josso, 

1992), it is possible the expression profile of aromatase might clarify which report on 

oestrogen production is correct. In rabbits, oestrogen synthesis via aromatase activity 

is detected in the ovaries between day 18 and 29, and there is low aromatase 

expression in the testis (Weniger, 1990). 

Aromatase expression has also been analyzed during chick gonadal 

development. Aromatase expression in the female gonad was detected from 6.5d 

(Yoshida et al., 1996; Smith et al., 1997), which corresponds to the initial detection 

of oestrogen at the same stage, as reported by McBride et al. (unpublished 
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observations). Aromatase was not detected in the male gonad at any stage examined 

(Yoshida et al., 1996; Smith et al., 1997), indicating only females are able to produce 

oestrogens. Aromatase expression was observed in the medullary cords of the female 

gonad (Yoshida et at., 1996). 

If chick embryos from preincubation to day 7 of incubation are treated with an 

aromatase inhibitor, varying degrees of male development are observed (Elbrecht and 

Smith, 1992; Wartenberg et at., 1992; Shimada, 1997). In the left (genetic female) 

chick gonad, the cortex can be reduced, a tunica albuginea may develop, reduced 

numbers of germ cells can be observed in the cortex and there can be an increase in the 

volume of the medulla (Wartenberg et at., 1992). Of the treated females that 

developed as phenotypic males at hatching, only 50% continued to develop to maturity 

as phenotypic males (Elbrecht and Smith, 1992). No effect was ever observed in the 

male. Sex reversed females were able to mate with hens, but had a low sperm count 

and were often infertile (Shimada, 1997). Addition of extra oestrogen was able to 

reverse the effects of the aromatase inhibitor, indicating the aromatase inhibitor was 

preventing oestrogen production (Elbrecht and Smith, 1992). This indicates the 

importance of oestrogen in feminization of the genital tract. 

A situation analagous to the bovine freemartin is the double yolk egg, where a 

female and male embryo develop in the same egg (Hutson et al., 1983). In the female 

there was partial regression of the Mullerian ducts and in the male there was partial 

feminization of the gonads (Hutson et al., 1983). This observation indicated the 

importance of oestrogen in the development of the gonads, although the presence of 

oestrogens did not fully feminize the male gonads. As addition of testosterone to the 

female chick gonad has a masculinizing effect and addition of oestrogens to the male 

gonad induces feminization of the genital tract (Jordanov and Angelova, 1984), it has 

been hypothesised that the ratio of androgens to oestrogens is critical for mediating 

gonadal development in the chick (MacLaughlin et al., 1983; Jordanov and Angelova, 

1984). 

Oestrogen receptor (cER) expression has been analyzed in the chick (Smith et 

al., 1997; Andrews et al., 1997). Expression of cER was detected at 3.5d in the 

female genital ridge, and by 4.5d it was detected in the indifferent gonads and the 

anterior tips of the Mullerian ducts of both sexes. By 7.5d, expression was detected in 

the gonads and Mullerian ducts of both sexes (Andrews et al., 1997, Smith et al., 

1997). However, the cER protein was only detected in the left and right ovaries at 

7.5d (Andrews et at., 1997), suggesting cER is not functional in the male. However, 

addition of exogenous oestrogens (at doses similar to physiological levels) to a 7.5d 

male chick embryo resulted in feminization of the genital tract, with formation of a 
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thicker cortex and some disorganisation of the seminiferous cords, although this 

feminization of the gonads was transitory (Scheib, 1983; Jordanov and Angelova, 

1984; Stoll et aL, 1993). 

It is documented that AMH may regulate gonadal steroids by decreasing 

aromatase biosynthesis (Vigier et al., 1989). In male mammals, AJvIH is secreted 

during embryonic development but only postnatally in females. It follows, therefore, 

that in female mammals delayed expression of AMH would allow aromatisation of 

androgens to occur. The oestrogens that are produced would be able to protect against 

the effects of AMH, as has been predicted (Hutson et al., 1982). Localisation of 

oestrogen receptors to the Mullerian ducts (Andrews et al., 1997) support this theory. 

Isolation of oestradiol-specific nuclear type II receptor, which exhibited higher 

expression levels in the left Mullerian ducts of chick embryos (MacLaughlin et al., 

1983), could be related to the preservation of the left MUllerian duct in female chicks. 

If a male (chick or mammal) gonad is treated with an oestrogen, it becomes 

feminized and Mullerian ducts are retained, although production of AMH still occurs. 

These studies supported the hypothesis that oestrogen does not cause retention of the 

Mullerian ducts by suppressing AMH production, but by interacting with AtvIH at the 

Mullerian ducts or by protecting the Mullerian ducts from AMH action (Hutson et al., 

1982; Newbold et al., 1984; Doi and Hutson, 1988). 

1.5.5. Summary of AMH, oestrogen and testosterone action. 

AJ'vIH is required for Mullerian duct regression in mammalian males and avian 

males. It is also required for regression of the female right Mtillerian duct in avians. 

Rat AMH is not active in chick embryos, but chick ArvIH is active in rat embryos, 

suggesting differences in specificity between AMII from different species. 

Chronic overexpression of AIvIH in a female mouse results in degeneration of the 

Mullerian ducts and the somatic component of the ovary resembles seminiferous 

tubules. This result correlated with the bovine fremartin phenotype. 

Loss-of-function studies of APvIH in male mice resulted in normal testis 

development with functional sperm, but female structures also developed because the 

Mullerian ducts did not regress, thus interfering with sperm transfer. The same 

phenotype was observed in genetic males if the AMI-1 receptor was knocked out. 

Female mice without functional AMH or AMH receptor were morphologically normal. 

Testosterone is secreted by the Leydig cells and is required for the maintenance and 

differentiation of the Woiffian ducts in male mammals. 

Testosterone was detected in the male rabbit testis just after sex determination. No 

testosterone was detected in the ovary at the same stage of development. 
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Woods and Podczaski (1978) detected testosterone in the urogenital ridge at day 

3.5 of incubation in male and female chick embryos. Testosterone levels were higher 

in the testes compared to either ovary, after day 4.5 of incubation. However, this is 

contradicted by McBride et cii. (unpublished observations), where testosterone levels 

remained low in males and females from day 3.5 to day 12.5 of incubation, indicating 

testosterone is not required for initial testis development in the chick. 

The androgen receptor (AR) has been isolated in mammals. A mutation in the AR 

results in androgen insensitivity, even if testosterone and DHT levels are normal. 

In mammals and birds, exogenous testosterone in a genetic female results in 

masculinization of the genital tract, but without regression of the Mullerian ducts. 

However, in birds, the effect of testosterone on the cortex, of the gonad can vary and 

can be transitory. 
Oestrogens are not considered essential for mammalian female sexual 

development, because castration of male and female rabbits resulted in the 

development of female characteristics. 

Castration of female chick embryos resulted in male characteristics developing, 

although the Mullerian ducts did not regress. This indicated oestrogens were required 

for chick female gonadal development. 

Oestrogen has been detected as early as day 3.5 of incubation in chick embryos 

(Woods and Erton, 1978). However, McBride et al. (unpublished observations) did 

not detect estrogen until day 6.5 of incubation in chick ovaries. Oestrogen was not 

detected above background levels in the testes. 

Aromatase is the rate limiting step for oestrogen production in mammals and 

birds. Aromatase biosynthesis can be regulated by AMH. 

Genetically female chick embryos treated with an aromatase inhibitor develop as 

phenotypic males or exhibit intermediate stages of sex reversal. However, this sex 

reversal is transitory for 50% of the embryos. 

The role of testosterone and oestrogen in mammals is fairly well understood. 

However, in chicks sex reversal is observed by addition of oestrogens or androgens 

(Thorne, 1995). The various range of effects on gonadal development, in the chick, 

by steroid hormones, and the fact that most of these effects are transitory suggest that 

hormonal control is not the primary factor determining sex. 
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Chapter 2 

Aims and Objectives. 
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Although structurally distinct, the vertebrate testis and ovary develop from the 

same tissue primordia during embryogenesis. The exact mechanism which allows two 

apparently different developmental outcomes is unknown. By far the best understood 

vertebrate gonadal development system is the mammalian system, where the exact 

timing and a number of the genes involved in this process have been described. 

However, even in the mammalian gonadal system, interactions between these genes 

have not been fully established. There are clearly other genes involved in this process 

that have not as yet been identified, also the origins of the cells contributing to the 

indifferent gonads and the developing ovary and testis remains controversial. 

This investigation is concerned specifically with gonadal development in the 

chick. At present the mechanism for determining whether the indifferent gonad 

follows the ovarian or testicular developmental pathway is unknown, although it is 

assumed to be unlike the mammalian mechanism as the female is the heterogametic sex 

(ZW) in birds, and the male is the heterogametic sex (XY) in mammals. A number of 

studies have failed to identify a homologue to the gene which acts as the sex 

determining switch in mammals (Sinclair et al., 1990; Griffiths, 1991; Tiersch et al., 

1991; McBride et al., 1997). Gonadal differentiation in birds is assumed to follow 

the same pattern as in mammals, with regard to morphology and genetic regulation. 

However, asymmetry in the female chick reproductive system and the fact that only 

piecemeal studies have been carried out on the expression of chick homologues to 

mammalian genes, means further work needs to be done before this assumption can be 

confirmed. The aims of this project are to document the morphology of chick gonadal 

development and analyse gene expression, of both novel and previously identified 

genes, during the entire period of chick gonadal development; i.e. from the stage of 

genital ridge formation and development through to the early stages of ovary and testis 

formation. This study will attempt to establish a) whether the gonadal development 

pathway between avians and mammals is conserved, b) the timing of sex 

determination in chicks more accurately than at present, and c) identify novel genes 

involved in gonadal development and study their expression profile. 

In the mammal, histological analysis of gonadal development is well 

documented (Kaufman, 1992). However, in the chick, despite numerous descriptive 

accounts of gonadal development (e.g. Romanoff, 1960; Venzke, 1954a; Venzke, 

1954b), a histological analysis detailing gonadal development has not been well 

documented. The descriptive accounts of chick gonadal development are detailed, but 

often conflicting observations are recorded regarding development and the timing of 
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this development. This results in an unclear pattern and timing of chick gonadal 

development. 

The fact that the sex determination mechanism and, therefore, the exact timing 

of sex determination are unknown in the chick, leads to difficulties in establishing 

whether certain genes are expressed prior to sex determination, are involved in the sex 

determination switch or are expressed as a consequence of sex determination. Studies 

that narrow the time period for the sex determining mechanism will lead to a better 

understanding of the genes involved in the various stages of chick gonadal 

development. 

A great deal of information can be gained by studying chick homologues to 

genes involved in mammalian gonadal development, to elucidate whether they are 

likely to have the same roles in chicks. Such a study of chick homologues, while 

informative is unlikely to provide complete details due to differences between 

mammalian and chick gonadogenesis. Therefore, identification of novel transcripts 

involved in the many aspects of gonadal differentiation and development in the chick is 

required. 
Three approaches were followed in order to gain a better understanding of 

chick gonadal development. These were: 

A histological study of chick gonadal morphology during development. 

A study of the expression of chick homologues to genes reported to be involved in 

mammalian gonadal development. 

The isolation of novel genes involved in chick gonadal development using the 

technique of differential display. 

2.1. Morphology of chick gonadal development. 

Both the gross morphology and the histological detail of gonadal development 

was studied. The developmental period chosen was from day 3.5 to day 8.5 of 

incubation (stage 21 to 35). This was based on the estimated time of sex determination 

in the chick as occurring at a stage between day 5 and day 8 of incubation (Romanoff, 

1960). The developmental time period chosen would, therefore, cover indifferent 

gonad formation through to the early stages of ovary and testis development. 

This study would provide an easily visualised profile of the morphology of 

chick gonadal development, possibly resolving the discrepancies recorded and more 

accurately show the developmental stage when initial differences are observed between 

males and females. It would also allow a direct comparison with mammalian gonadal 

development. 
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2.2. Expression of chick homologues to genes involved in mammalian 

gonadal development. 

Chick homologues to genes reported to be involved in mammalian gonadal 

development analyzed in this study were: WT-1, Sox-9, aromatase, AMH and SF-1. 

Expression of these genes was studied by Northern analysis and for three of the genes 

by whole mount in situ hybridization. A number of these genes are expressed as a 

consequence of sex determination and others are expressed throughout the indifferent 

period and into ovary and/or testis development, with differences in expression levels 

between the sexes due to sex determination. A study of these genes in the chick 

system would provide a comparison at the level of gene regulation between mammals 

and birds and establish whether chick gonadal development follows a similar gene 

pathway to mammalian gonadal development. Also, as gene expression can be a 

consequence of sex determination and alter expression levels, a profile of these genes 

might more accurately predict the sex determination period in chicks. 

2.3. Isolation of novel genes involved in chick gonadal development 

using the technique of differential display. 

In an attempt to identify novel genes involved in chick gonadal development, 

the technique of differential display was utilised (Liang and Pardee, 1992). This 

technique allows the comparison of transcripts at different developmental timepoints 

between different sexes. Each transcript is represented by a fragment of cDNA that 

can be visualised on a gel by autoradiography. Different sample populations can be 

visualised side by side, thus allowing differentially expressed transcripts to be 

identified and the DNA recovered for further analysis. 

Alternative techniques that could have been utilised for differential gene 

expression analysis are: subtractive hybridization and differential screening. Both of 

these techniques involve the construction of cDNA libraries, a time consuming and 

labour intensive procedure. Subtractive hybridization involves the enrichment of 

differentially expressed sequences by subtraction of commonly expressed sequences. 

As subtractive hybridization is a kinetic reaction (which results in the reaction never 

reaching completion), not all common transcripts will be removed. This would lead to 

a high rate of false positives. Differential screening has the disadvantage that duplicate 

lifts of the cDNA library need to be made; thus equal amounts of cDNA transferred to 

both filters would be difficult to achieve and lead to false differences in expression 

being detected. Another disadvantage of both techniques is the large amounts of 

starting material (poly A+ RNA) required, suggesting low abundance transcripts 

would be difficult to detect. Finally, the differences in expression are not easily 
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visualised compared to differential display, where products are separated on a 

polyacrylamide gel and can be compared in adjacent lanes (Liang and Pardee, 1992; 

Maser and Calvert, 1995; Watson and Margulies, 1993). 

The incubation period of a chick is 21 days. The development of the urogenital 

ridge through to the initial stages of ovary and testis development occurs from 

approximately 3.5 to 8 days of incubation (Romanoff, 1960). The differential display 

analysis was performed on male genital ridge/mesonephric tissue and female genital 

ridge/mesonephric tissue from day 3.5 to 9.5 of incubation (stage 21 to 36), 

encompassing these developmental time periods. 

The aim of this study was to assess the potential of using this technique in a 

complex system and if possible to isolate novel genes involved in chick gonadal 

development. 



Chapter 3 

Materials and Methods. 
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3.1. Materials. 

3.1.1. Chemicals, reagents and equipment. 

Chemicals and reagents were obtained from Sigma Chemical Co., Poole UK 

and were of analytical grade, with the following exceptions: 

Restriction enzymes were obtained from Boehringer Mannheim, UK; Promega, 

USA; or New England Biolabs, Cambridge UK. 

Radio-isotopes 32P and 355  were from Amersham International, Aylesbury, UK. 

Propan-2-ol, 	ethanol, 	paraformaldehyde, 	Tween-20, 	agarose, 	EDTA 

(diaminoethanetetra-acetic acid disodium salt), Tris (hydroxymethyl) methylaniine, 

sodium chloride, urea, lead (II) acetate, sodium dihydrogen orthophosphate 1-hydrate, 

di-sodium hydrogen orthophosphate anhydrous, acetone, chloroform, formaldehyde 

solution (40% w/v), hydrochloric acid sp. gr . 1.18, acid fuchsin, aniline blue and 

phosphotungstic acid were all obtained from BDH, Poole UK. 

40% (w/v) acrylamide/Bis-acrylamide stock solution (19:1) and ammonium 

persuiphate were obtained from Anachem, Beds UK. 

Long RangerTM Gel solution for DNA sequencing was obtained from Flowgen, Staffs 

UK 

TEMED ([N,N,N' ,N' -Tetramethylethylenediamine]), X-gal (5-bromo-4-chloro-3-

indoy1-3-D-galactopyranoside) and IPTG (isopropyl-fl-D-thio-galactopyranoside) 

were obtained from Promega Ltd, Southampton UK. 

Proteinase-K solution (RNA grade), phenol:chloroform:isoamyl alcohol (25:24:1 

(v/v)) and sonicated salmon sperm were obtained from GibcoBRL Life 

Technologies 1M, Scotland. 

Sodium acetate (anhydrous), Potassium chloride, D-glucose, Silica gel 4-7 mesh self 

indicating, magnesium chloride, magnesium sulphate, sucrose, tn-sodium citrate, 

sodium hydroxide, tetrahydronaphthalene, dimethylformamide, Optiphase "His afe" 2 



scintillation fluid, methanol and glacial acetic acid were from Fisher Scientific, 

Loughborough UK. 

Phosphate buffered saline tablets (PBS) (Ca" and Mg" free) were obtained from ICN 

Biomedicals Inc., Ohio USA. 

Deionized formamide was obtained from AMS Biotechnology, UK. 

Tryptone and yeast extract were obtained from Difco Laboratories, USA. 

Kodak EPY64 film was obtained from H.A. West, Edinburgh. 

Cronex X-ray film was obtained from Tech Photosystems, Cumbernauld UK. 

Kodak Biomax MS and Biomax MR film was obtained from Sigma-Aldrich 

Techware, UK. 

Picric acid (2, 4, 6 - Trinitrophenol) and Haematoxilyn were obtained from Hopkin 

and Williams, Essex UK. 

Orange G and Ponceau 2R Xylidine-Rd were obtained from George T Gurr Ltd., 

London UK. 

Eosin (yellowish - water/alcohol soluble) was obtained from Raymond A. Lamb, 

London UK. 

Equipment. 
All solutions, glassware and plastics were presterilized by autoclaving and 

those used in RNA procedures were autoclaved twice. Glassware used in RNA 

procedures was baked at 180°C for 12 hours before use. 

Centrifugation. 
Centrifugation of eppendorf tubes (3 000 to 13 000rpm) was performed using 

a Sorvall®  RIVIC 14 (Sorvall Ltd, UK) and a IEC Micromax ®  (Hybaid Ltd, Middlesex 

UK) bench top microfuge. Centrifugation of nalgene tubes (React Scientific, 

Ayrshire) (6 000g and 15 000g) was performed using a JA20 rotor in a J2-21MIE 

centrifuge (Beckman, UK). 



3.1.2. Chick Material. 

ISA-Brown and 101 eggs from commercial hens were incubated at 38°C ± 

0.5 °C on day of lay. Day of lay was considered day 0 of incubation and all embryos 

were staged according to Hamburger and Hamilton (1951). All embryos were 

harvested into a petri dish containing PBS (phosphate buffered saline). The genital 

ridge and a small portion of the mesonephros were dissected from chick embryos after 

3.5d, 4.5d, 5.5d, 6.5d, 7.5d, 8.5d and 9.5d, using standard dissection instruments. 

The genital ridge was frozen in liquid nitrogen and stored at -70°C. 

3.1.3. Bacterial Growth. 

Bacteria were grown at 37 ° C overnight in the following media containing the 

appropriate antibiotic: 

Luria-Bertani (LB) medium (11) 

Lagar (11) 

NZY medium (11) 

NZY agar 

NZY top agar 

lOg Difco Bacto Tryptone 

5g Difco Bacto Yeast extract 

5g sodium chloride 

pH 7.2 

lOg Difco Bacto Tryptone 

5g Difco Bacto Yeast extract 

lOg sodium chloride 

3.75g Difco agar 

pH 7.2 

5g Sodium chloride 

2g magnesium sulphate 

5g Difco Bacto Yeast extract 

lOg NZ amine (caesin hydrolysate) 

pH 7.5 

1 litre NZY medium + 15g Difco agar 

pH 7.5 

1 litre NZY medium + 0.7% (w/v) agarose 

The following bacterial strains were used: 

1NVaF TA cloning (Invitrogen, Netherlands). 

F endAl recAl hsdR17 (rk mk) supE44 thi-1 gyrA96 relAl 

1acZAM15A(IacZYA-argF) U169 deoR?J. 
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DH5(x (GibcoBRL Life Tecnologies, Scotland). 

F 480d 1acZAM15A(IacZYA-argF)U169 deoR recAl endAl hsdRl7 (rk, Mk') phoA 

supE44 A: thi-1 gyrA96 relAl. 

JM109 (Stratagene Ltd, Cambridge UK). 

F A: e14(mcrA) recAl endAl gyrA96 thi-1 hsdR17 (rk, Mk') supE44 relAiA(lac-

proAB) [F traD36 proAB lacP ZAM15]. 

XL1-Blue MRF (Stratagene Ltd, Cambridge UK). 

A:, A(mcrA)183A(mcrCB-hsdSMR-nirr)173 end Al supE44 thi-1 recAl gyrA96 

relAl lac[F' proAB lacI'ZAMI5 TnlO (Tetr)]. 

XLOLR (Stratagene Ltd, Cambridge UK). 

A(mcrA)183 A(mcrCB-hsdSMR-mrr)173 endAl thi-1 recAl gyrA96 relAl lac[F 

proAB IacPZAM15 TnlO (Tet')]Su AT. 

The following vectors were used: 

pCRTMII (Invitrogen, Netherlands) Kan' Amp' 

pBluescript MS(-) (Stratagene Ltd, Cambridge UK) Amp' 

pBK-CMV (Stratagene Ltd, Cambridge UK) Kanr  Neot 

3.2. Biochemical techniques. 

3.2.1. Phenol extraction 
Protein was removed from DNA by extraction with phenol:chloroform:isoamyl 

alcohol (25:24:1 (v/v)). An equal volume was added to the solution, vortexed and 

centrifuged at 13 000rpm for 4 mins. The upper aqueous phase was removed and 

combined with an equal volume of choloroform and mixed. The solution was 

centrifuged for 2 mins and the upper aqueous phase recovered. The DNA was 

recovered by precipitation with 2.5 volumes of 100% ethanol and 0.1 volumes of 3M 

Na OAc (Sambrook et al., 1989). 
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3.2.2. PCR purification. 

PCR products were purified away from primers, nucleotides and proteins 

using a QlAquick spin column, according to the manufacturers instructions (Qiagen, 

Germany). PCR product was eluted in 50R'  deionized distilled dH20 and stored at - 

20 ° C. 

3.2.3 Spectrophotometric analysis 
DNA and RNA were quantitated by measuring the optical density at 260nm 

using a GeneQuant (Pharmacia Biotech, UK) spectrophotometer. At 260nm 

wavelength, an absorbance reading of 1 is the equivalent of a concentration of 50jig/mJ 

and 40j.tg/ml for DNA and RNA respectively. Purity of the nucleic acid was calculated 

by measuring the absorbance ratio at 260/280nm. Pure DNA has a value of 1.8 and 

RNA a value of 2.0 (Sambrook et at, 1989). 

3.2.4. Storage of bacteria 
Colonies were stored on inverted L-agar plates containing the appropriate 

antibiotic and sealed with Paraffim M ®  (American National CanTM,  USA) for up to 6 

weeks at 4°C. Long term storage was in a 44% glycerol solution, snap frozen on dry 

ice/ethanol and stored at -70 ° C. Recovery of the bacteria was carried out by scraping 

the frozen culture with a toothpick and streaking out on a L-agar containing the 

appropriate antibiotic (Sambrook et al., 1989). 

3.3. Isolation of plasmid DNA. 

3.3.1. TENS Preparation. 
2m1 of plasmid bearing strain was grown at 37°C overnight in LB medium 

under the appropriate antibiotic conditions. Cells were harvested by centrifugation at 

13 000 rpm and resuspended in 50R1  supernatant. Cells were lysed by addition of 

300jil TENS solution (10mM Tris pH 7.5, 1mM EDTA, 0.1M Na OH, 0.5% SDS). 

Cell debris and chromosomal DNA were pelleted by centrifugation at 13 000 rpm for 4 

mins. Supernatant containing plasmid DNA was removed and recovered by 

precipitation with 2.5 volumes 100% ethanol and 0.1 volume 3M Na OAc. Plasmid 

DNA was washed in 70% ethanol and resuspended in 50R1  distilled deionized dH 20 

containing 20g/ml RNAse A and stored at -20°C. 
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3.3.2. "Mini" Preparation of plasmid DNA. 

The plasmid bearing bacterial strain was grown in 2m1 LB medium containing 

the appropriate antibiotic at 37°C overnight. The mini preparation of plasmid DNA 

was carried out following the manufacturers instructions and utilising spin columns 

provided with the kit (Qiagen, Germany; Hybaid Ltd, Middlesex UK). DNA was 

eluted in 50 R1  distilled deionized dH20 and stored at -20°C. 

3.3.3. "Midi" Preparation of plasmid DNA. 

The plasmid bearing bacterial strain was grown in 25m1 LB medium containing 

the appropriate antibiotic at 37°C overnight. The midi preparations were carried out 

according to the manufacturers instructions, using QJAGEN-tip 100 or Quick flow 

columns provided with the kit (Plasmid Midi kit, Qiagen, Germany; Quick Flow Midi 

kit, Hybaid Ltd, Middlesex UK). Plasmid DNA was eluted in imi aliquots of elution 

buffer and recovered by precipitation with propan-2-ol at 13 000 rpm at 4°C for 30 

mins. DNA was washed in 70% ethanol and resuspended in 200-400jil distilled 

deionized dH20 and stored at 4°C. 

3.4. Isolation of chick RNA 
Genital ridge tissue from 50 pooled males and 50 pooled females was used for 

RNA extraction each time. RNA extraction was carried out 7 times. Dissected chick 

gonadal ridge/mesonephros, was homogenized in 2m1 per 100mg of tissue of 

RNAz01TM B (AMS Biotechnology, Oxon U.K.) using a Polytron homogeniser. 

Between each homogenisation, the probe was washed 3 times in 0.2M Na OH and 3 

times in distilled, deionized water. Total RNA was extracted by addition of 

chloroform (0.2m1 per 2m1) to the homogenate. This was mixed vigorously and 

centrifuged for 15mins at 12 000g at 4°C. The upper aqueous phase containing total 

RNA was removed and the RNA recovered by precipitation with propan-2-ol at 4°C. 

Total RNA was washed in 70% ethanol and resuspended in a small volume of 

distilled, deionized water. Total RNA was stored as an ethanol precipitate at -70°C. 

3.5. Enzymatic reactions 

3.5.1. Restriction endonuclease digestion. 

DNA restriction digests were routinely carried out at 37 °C from 1 hour to 

overnight using restriction enzymes (see section 3.1.1. for manufacturers) and their 

recommended buffers. The majority of restriction enzymes were of the concentration 

10U/RI, therefore lOU (ijil) of enzyme and 2R'  of buffer were used to restrict 5ig of 
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DNA in a 20j11 volume. In larger volumes containing higher concentrations of DNA, 

the enzyme concentration was always less than 5% of the total reaction volume. 

Reactions that required digestion by two enzymes were carried out in the same 

buffer, if compatible. If two separate buffers were required, the first enzyme was 

added and incubated for 1 hour before recovering the DNA by phenol extraction and 

ethanol precipitation, then incubating in the buffer recommended for the second 

enzyme. Bovine serum albumin (BSA) was added to a final concentration of 1mg/nil. 

Digestion of genomic DNA required a longer incubation time and a higher 

concentration of enzyme. 

3.5.2. 	Ligation. 
Ligation into linearised and dephosphorylated pBluescript M13(-) (Stratagene) 

or pCRTMII (Invitrogen, Netherlands) was carried out in the presence of T4 DNA 

ligase at 14°C overnight. A 1:1 or a 1:3 ratio of vector to insert was used in the 

ligation reaction. The reaction was stored at -20°C. 

3.5.3. 5' dephosphorylation by alkaline phosphatase. 

Dephosphorylation of a linearised vector was carried out by addition of 1g/ml 

calf intestinal alkaline phosphatase (ClAP) and incubation at 37 ° C for 1 hour followed 

by addition of a further lg/ml CLAP and incubation at 37 ° C for 1 hour. Incubation at 

85°C for 10 mins removed residual phosphatase activity (Sambrook et aL, 1989). 

3.6. Transformation. 
Introduction of a vector into a bacterial strain was carried out by heat shock at 

42°C or 37 ° C according to the manufacturers instructions, except 25pJ aliquots of cells 

rather than 50R1 aliqouts were used (JM109, Stratagene, UK; One Shot INFczF', 

Invitrogen Netherlands: DHS(t, GibcoBRL Life TechnologiesTM, Scotland). Cells 

were allowed to recover at 37 °C for 1 hour by shaking at 225rpm in SOC (2% 

tryptone, 0.5% yeast extract, 10 mM Na Cl, 2.5mM K Cl, 10mM Mg SO 4 , 20mM 

glucose). 50R1  200R1 or all of the cells were spread on L-agar containing 50g/m1 

ampicillin, 5g/nil X-gal and 1mM IPTG. Plates were inverted and incubated at 37°C 

overnight. 
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3.7. Size fractionation of nucleic acids by electrophoresis. 

3.7.1. DNA. 

DNA was size fractionated on a 1% agarose gelJlxTBE (0.8M Tris, 0.8M H 3  

B03 , 0.002M EDTA) containing 0.2jtg/ml ethidium bromide in a 1xTBE buffer 

containing 0.2jxg/ml ethidium bromide. 24R1  sample contained 4il 6xTypeIII loading 

dye (0.25% bromophenol blue, 0.25% xylene cyanole FF in 30% glycerol). 

Elecrophoresis of DNA was routinely carried out at 95-100V/cm for 1 hour. DNA 

was visualised and photographed under U.V. light at a wavelength of 254nm. DNA 

gels were exposed to Polaroid black-and-white film type 55 (Sigma, UK) for 20-30 

secs, on a Polaroid MP.4 Land Camera (Polaroid, Mass USA). 

3.7.2. RNA. 

5 different pooled male and pooled female RNA samples were used in 

Northern analysis, with 15 RNA gels being carried out. 5-101g RNA in sample 

buffer (50% deionized formamide, 18% formaldehyde, 10% MOPS) and containing 

0.3pig/ml ethidium bromide and 4jiJ 6xTypeIII loading dye was size fractionated on a 

1% agarose/6.8% formaldehyde gel. The gel was electrophoresed at 80V for 15 - 4 

hrs in lx MOPS (0.2M 3n-Morpho1inojpropane sulphonic acid, 0.05M Na OAc, 

0.01M EDTA, pH7.0). RNA was visualised under U.V. light at a wavelength of 

254nm, and exposed for 10 - 15 secs using Polaroid black-and-white film type 55 on a 

Polaroid MP.4 Land Camera. 

3.8. Transfer of nucleic acid onto nylon membrane. 

3.8.1. Southern analysis. 
Genomic DNA (a gift from D. Morrice, Roslin Institute) and plasmid DNA 

size fractionated by electrophoresis in an agarose gel (without ethidium bromide) was 

stained for 30 nuns in ljig/ml ethidium bromide, 0.5xTBE. The gel was wrapped in 

Saran wrap (Dow Chemical Co.,) and U.V. irradiated at 60mJoulesfcm 2  using a U.V. 

stratalinker 2400 (Stratagene Ltd, Cambridge UK). The gel was visualised and 

photographed for 5 sec exposure under U.V. light. The gel was soaked in 0.4N Na 

OH, 1.5M Na Cl. The DNA was transferred onto Hybond-N nylon membrane 

(Amersham International, UK). Transfer was carried out for 16 - 20 hrs. Once 

transfer was complete, the membrane was orientated and neutralised in 0.5M Tris, pH 

7.0. DNA was fixed onto the nylon membrane by baking at 80°C for 2 hrs. 
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3.8.2. Northern analysis. 

The gel containing size fractionated RNA was soaked in 5xSSC (3M Na Cl, 

0.3M Na citrate). RNA was transferred onto Hybond-N nylon membrane (Amersham 

International). Transfer was allowed to take place for 20 - 24 hrs. Once transfer was 

complete, the membrane was baked at 80°C for 2 hrs. 

3.8.3. Dot Blot. 

DNA samples resuspended in 1OxSSC were denatured and 50pJ of each 

sample was drawn onto Hybond-N nylon membrane using a Hybri.DotTM 96 well 

filtration manifold (GibcoBRL Life TechnologiesTM, Scotland). The filter was washed 

in denaturing solution (1.5M Na Cl, 0.5M Na OH) and then neutralising solution 

(1.5M Na Cl, 0.5M Tris-HC1 pH 7.2, 0.001M EDTA). DNA was fixed to the 

membrane by baking at 80 ° C for 2 hrs. 

3.9. DNA extraction from agarose and polyacrylamide gels. 

3.9.1. Agarose gel. 
Extraction of DNA from agarose gels was carried out following the 

manufacturers instructions (Qiagen, Germany). DNA was eluted in 50R1  distilled, 

deionized H20. Alternatively, the DNA fragment was excised from the agarose gel. 

The gel slice was loaded into a lml syringe barrel (Terumo Corporation, Belgium) 

and reduced to a fine slurry by ejection into a Spin-X tube, containing a 0.22Rm 

cellulose acetate filter (Corning Costar Ltd, UK). The gel slurry was mixed with 

200j.d distilled dH 20 and centrifuged at 13 000rpm so that the DNA was expelled into 

the collection tube. DNA was concentrated by ethanol precipitation (Schwarz and 

Whitton, 1992). 

3.9.2. Polyacrylamide gel. 
DNA fragments excised from polyacrylamide gels were rehydrated in distilled 

dH20 and boiled at 99 ° C for 15 mins. DNA was recovered by ethanol precipitation in 

the presence of a carrier, 2.5 R'  of 20mg/mi glycogen. After centrifugation, DNA was 

resuspended in 10p1 deionized, distilled H 2O. 

3.10.1 Random prime labelling of DNA with 32P. 

25ng denatured DNA insert was added to a Rediprime labelling mix 

(Amersham International, Bucks UK) and incubated at 37 ° C in the presence of ct- 32P 
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dCTP. The reaction was stopped by addition of 5R1  0.02M EDTA. The labelled 

probe was purified on a 050 Sephadex column (Pharmacia Biotech Inc., Herts UK). 

1% of the probe was quantitated using a 1218 Rackbeta Liquid Scintillation Counter 

(LKB Instruments Ltd, Surrey UK). The probe was denatured at 95°C for 5 mins, 

cooled quickly on iced H 20 and pulse spun to collect the liquid at the bottom of the 

tube. 

3.10.2. Probes used in hybridisation. 

DNA fragments isolated by differential display analysis were used as probes in 

Northern analysis and were transcribed from T7, T3 or Spó in the vectors pCRII and 

pBK-CMV for wmISH. Sizes of inserts and sequence can be found in appendix 4. 

Probes used in the analysis of candidate genes by Northern analysis were as 

follows: 

WT- 1: a SOObp fragment of the chick WT-1 gene. 

AMH: a 1905bp fragment of the cAMH gene. 

SF-1: a SOObp fragment of the cSF- I gene. 

Aromatase: a 35 lbp fragment of the cAromatase gene. 

Sox-9: a 1200bp fragment of the cSOX-9 gene. 

Probes used in the analysis of candidate genes by wnilSH were as follows: 

WT-I: the plasmid was restricted with NsiI and transcribed with T7 to give a 

600bp riboprobe. 

AMH: the plasmid was restricted with NcoI and transcribed with T7 to give a 

459bp riboprobe. 

SF-1: the plasmid containing a 1.3kb fragment of the ZFSF-1 gene was restricted 

with DdeI and transcribed with T3 to give a sense riboprobe of 570bp; and it was 

restristed with BglI and transcribed with T7 to give an anti-sense riboprobe of 530bp. 

A schematic of these probes and from whom they were obtained are detailed in 

appendix 3 

3.11. Hybridization of 32P labelled DNA probes to nylon membranes. 

3.11.1. Southern analysis. 

Southern blots were pre-hybridized at 55 °C for 1 hr in 2xPIPES (1,4- 

piperazine-diethanesulfonic acid), 50% formamide, 0.5% SDS and 250g/ml 

denatured, sonicated salmon sperm DNA. The denatured probe was added at a 

maximum concentration of 1.5 x 106  cpm (counts per min)/ml. Hybridization was 

carried out at 60°C overnight. Southern blots were washed to a final stringency of 

0.2xSSC, 0.1% SDS at 65°C. 
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3.11.2. Northern analysis. 
Northern blots were pre-hybridized for a minimum of 1 hr at 60°C in 0.25M 

Na P041 7% SDS, 250g/ml denatured salmon sperm DNA; or at 42°C in 2xPIPES, 

50% formamide, 0.5% SDS, 250ig/ml denatured salmon sperm DNA. The denatured 

probe was added at a concentration of 2 million cpm/ml and hybridized at 60°C or 

42 °C overnight. Northern blots were washed to a final stringency of 10mM Na PO 4 , 

0.1% SDS at 65 ° C (Na PO4  hybridization solution) or 0.1xSSC, 0.1% SDS at 65°C 

(PIPES hybridization solution). 

3.11.3. Dot Blot analysis. 

Dot blot membranes were pre-hybridized in 0.25M Na PO 4, 7% SDS, 

250pxg/ml denatured salmon sperm DNA at 60°C for 1 hr. The denatured probe was 

added at a concentration of 1.5 million cpmlml. Hybridization was carried out at 60 ° C 

overnight. Dot blots were washed to a final stringency of 25mM Na PO 4, 1% SDS at 

65°C. 

3.12. Autoradiography. 

Gels containing ct- 35S dATP were exposed to Dupont Cronex film (Tech 

Photosystems,) or Kodak Biomax MR film (Sigma-Aldrich Techware, UK). 

Exposure time ranged from overnight to 3 days at room temperature. 

Gels or nylon membranes containing ct- 32P dCTP were exposed to Dupont 

Cronex film or Kodak Biomax MS film (Sigma-Aldrich Techware, UK). Exposure 

time was from lhr at room temperature to 2 weeks at -70'C. All films were developed 

using a X-OGraph Compact x2 (supplied by H.A. West, Edinburgh). 

3.13 Phosphorimager analysis. 

Gels and blots containing 32P were exposed to a phosphor screen from 1 hr to 

2 weeks. The image was visualised using a Molecular Dynamics phosphorimager. 

3.14. PCR for sexing embryos. 
Approximately 50mg of tissue from the remainder of the chick embryo (after 

dissection of mesonephroi and gonads) was taken and incubated in 501iJ digestion 

buffer (10mM Tris, 1mM EDTA, 1% SDS, pH8.0 containing 10mg/mi proteinase-K) 

at 45°C overnight. Samples were cooled to 4 ° C and centrifuged at 13 000rpm. The 

recovered supernatant was diluted to lml in 1xTE (10mM Tris-HC1, 1mM EDTA). 
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Diluted DNA (l.tl) was used in a PCR reaction using W-chromosome specific primers 

(Clinton, 1994) and chick GAPDH primers (sequence obtained from D.Burt, Roslin 

Institute) or chick 18S ribosomal primers (Clinton et at., unpublished data) as a control 

amplification (appendix 1). The W primer and GAPDH primer amplification was 

carried out as two separate reactions. The W and GAPDH reaction conditions were an 

initial denaturation at 94°C followed by 20 (W) or 30 (GAPDH) cycles of 94°C for 1 

mm, 60°C for 1 mm, 72°C for 1 min and a final extension step at 72°C for 5 mm. The 

W and 18S ribosomal reactions were performed in a single tube under the following 

conditions; an initial denaturation step at 94°C for 1 min followed by 25 cycles of 96 °C 

for 15 sec, 56°C for 15 sec, 72 ° C for 15 sec and a final extension step at 72°C for 5 

mm. 

3.15. Differential display analysis. 
Two different pooled male and pooled female RNA samples were used for 

differential display analysis. 5g of total RNA extracted from pooled male and pooled 

female genital ridge tissue was used to prepare cDNA using a first strand cDNA 

synthesis kit (Pharmacia Biotech Inc., UK). Synthesis of cDNA utilised modified 

oligo dT 12  MG or oligo dT 12  MC or oligo dT 12  MA primers (M = A, U or Q. A 

fraction of the cDNA (0.4%) was used as a template in the differential display PCR 

reaction. Differential display analysis was performed as described by Liang and 

Pardee (1992). The modified oligo dT J2MN primer used to prepare cDNA, was used 

in combination with a lOmer of arbitrary sequence (see appendix 2 for primer 

sequences) in PCR reactions. Each reaction was performed in 20R1  10mM Tris-HC1, 

1.5mM MgCl2, 50mM K Cl, 0.lmg/ml gelatine, pH 8.3 containing 2mM dNTPs, 

2.5j.iM modified oligo dT primer, 0.5RM primer of arbitrary sequence and 1 unit of 

Taq polymerase (Boehringer Mannheim, UK) in the presence of lOj.tCi a- 35SdATP. 

The reaction conditions for the differential display procedure were an initial 

denaturation step at 94 ° C for 30 sec followed by 94°C for 30 sec, 40°C for 2 mm, 

72°C for 30 sec for 40 cycles and a final extension step of 72 °c for 5 mm. PCR 

products (6p1) were separated on a 6% native polyacrylamide gel (Bauer et al., 1993) 

using a standard sequencing apparatus (Stratagene Ltd, UK). Gels were dried using a 

Model 583 gel dryer (Bio-rad Laboratories Ltd, Herts UK). 



3.16. Re-amplification. 

DNA eluted from gel bands excised from the display gel were re-amplified 

under similar reaction conditions and using the original combination of primers as the 

display PCR; except that the primer and dNTP concentration was 2.5j.tM and 1mM 

respectively. A fraction of the re-amplified product (25%) was analyzed by agarose 

gel electrophoresis. 

3.17. DNA sequencing. 

3.17.1. Chain termination sequencing. 

DNA was sequenced using the SequenaseTM Version 2.0 DNA sequencing kit 

(Amersham International, UK), using 17, T3 or M13 reverse primers in the presence 

of 5RCi a-35 S dATP. 

3.17.2. Cycle sequencing. 

DNA was sequenced using the fmoFTh  DNA sequencing system (Promega Ltd, 

Southampton UK), using direct incorporation of radio-isotope. T7, T3 or M13reverse 

primers were used and each reaction was performed in the presence of lOjiCi (X _31S 

dATP. Reactions were initially denatured at 95°C for 2 mm, followed by. 50 cycles of 

95 °C for 30 sec, 42°C for 30 sec, 70 ° C for 30 sec. 

Sequencing reactions carried out by both methods were separated on a 

denaturing 5% Long Ranger polyacrylamide gel, on standard sequencing apparatus 

(Stratagene Ltd, UK) and a GenomyxLRTM Programmable DNA Sequencer 

(Beckman, UK). 

3.18. Genomic library screening (chick). 
The chick genomic library, cloned into the Baml-H site of the lambda ZAP 

expressTM vector (Stratagene Ltd, UK) was obtained from Dr. B. Earnshaw. 

3.18.1. Preparation of host cells. 

Glycerol stocks of cells were streaked onto L-agar containing 12.5j.tg/ml  

tetracycline and incubated at 37 ° C overnight. Plates were sealed with Parafllm M ®  

(American National Can TM)  and stored at 4°C for up to 1 week. A single colony of 

XL 1-Blue MRF cells was grown overnight at 30°C in LB medium supplemented with 
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0.2% (w/v) maltose, 10mM Mg50 4. XLOLR cells were grown overnight at 30°C in 

NZY medium. 

3.18.2. Titering library. 

XL1-Blue MRF' cells grown overnight were diluted 1:100 and incubated at 

37 °C until they reached an OD of 1.0. Cells were diluted to an OD 6  of 0.5. Serial 

dilutions of the phage were prepared in SM buffer (100mM Na Cl, 8mIvI Mg SO 4 , 

50mM Tris-H Cl pH 7.5, 0.01% (w/v) gelatin). Host cells were inoculated with 

diluted phage and plated out on NZY top agar. Plates were inverted and incubated 

overnight at 37 ° C. Plaques were counted and the concentration of plaque forming 

units (pfu)/ml calculated. 

3.18.3. Primary screen. 

Host cells inoculated with phage were plated out at 50 000 pfu/plate on NZY 

agar and incubated overnight at 37°C. Plates were chilled at 4°C for 2 hrs before 

performing duplicate plaque lifts using Hybond-N nylon membrane (Amersham 

International, UK) (Benton and Davis, 1977). Transfer of DNA was allowed to take 

place for 2 mins and 4 mins for the first and second lifts respectively. Membranes 

were marked for orientation at this stage. DNA was denatured in 1.5M Na Cl, 0.5M 

Na OH, neutralised in 1.5M Na Cl, 0.5M Tris-H Cl, pH 8.0, and rinsed in 0.02M 

Tris-H Cl pH 7.5, 2x SSC. DNA was fixed to nylon membranes by baking at 80°C 

for 2 hrs. Pre-hybridization was performed in 2xPIPES, 50% deionized formamide, 

0.5% SDS, 100j.tg/m1 denatured, sonicated salmon sperm DNA at 42°C for 2 hrs. 

Denatured probes were added to the hybridization solution at a concentration of lx 10 6  

cpmlml. Hybridization was performed at 42°C overnight. Membranes were washed 

to a final stringency of 0.2xSSC, 0.1% SDS at 65°C. Filter hybridization was 

visualised by autoradiography. 

3.18.4. Secondary screen. 

Duplicate autoradiographs were orientated to line up putative positive clones 

with plaques on the plates. A Pasteur pipette (Fisher Scientific, UK) was used to core 

the plaques of interest. Cored plaques were stored in SM buffer containing a few 

drops of chloroform at 4°C. Each cored plaque was assumed to contain lxi o pfu/ml. 

Host cells were inoculated with diluted phage and plated out at a frequency of 50 - 

1000 pfu/plate. Plates were incubated at 37 ° C overnight. Plaque lifts, pre-

hybridization, hybridization and post-hybridization washes were performed as before 
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(see section 3.18.3). Isolated positive plaques were stored in SM buffer containing a 

few drops of chloroform. 

3.18.5. Recovery of insert. 

Excision rescue was carried out by combining XL1-Blue MRF' cells, at an 

0D600  of 1, with >1x10 5  phage particles and >1x10 6  pfu/ml ExAssist helper phage. 

XLOLR cells were inoculated with the excised phagemid and plated out on L-agar 

containing 50g/ml kanamycin and incubated at 37 ° C overnight. 

3.19. Whole mount in situ hybridization. 

3.19.1. Collection and processing of chick material. 

The whole mount in situ hybridization was based on the procedure by D. 

Wilkinson (1992) and its subsequent modification by D. Henrique and D. Ish-

Horowicz (protocol supplied by C. Stern). 

Chick mesonephroi and gonads were dissected out of embryos from d4.5, 5.5, 

6.5, 7.5, 8.5 of incubation and d3.5 chick embryos were partially dissected removing 

the head and removing the overlying viscera to expose the urogenital ridge. Dissected 

tissue was fixed in fresh 4% (w/v) paraformaldehyde, 2mM EGTA pH 7.5 at 4°C 

overnight. Dissected tissue was subsequently dehydrated through 25%, 50%, 75% 

and 100% methanol washes and stored in 100% methanol for up to 4 months at -20 ° C. 

Embryos from the same stage of development as dissected tissue were used to 

prepare embryo powder. Embryos were homogenized in PBS, washed in acetone and 

centrifuged at 10 000g. The pellet was ground into a powder on filter paper and air 

dried. Once dry, embryo powder was stored at 4°C. 

3.19.2. in vitro transcription. 

In vitro transcription of a sense and anti-sense probe using ijig linearised 

plasmid containing insert was performed following the manufacturers instructions for 

the Digoxygenin (DIG) RNA labelling kit (Boehringer Mannheim, UK), using 5p6, 

T7 or T3 RNA polymerase. A fraction (ijil) of the transcribed product was 

electrophoresed on an agarose gel, transferred to nylon membrane (Hybond-N) and 

incubated in a 1:2500 dilution of the DIG antibody (Boehringer Mannheim, UK) at 

4°C. The antibody was detected by a colour reaction (see section 3.20.4) to ensure the 

transcription reaction had worked. The remainder of the transcribed product was 

recovered by ethanol precipitation and diluted to 100ng/pl in hybridization solution 
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(50% formamide, 1.3xSSC pH 5.3, 5mM EDTA 50ig/m1 yeast RNA, 0.002% 

Tween-20, 0.005% Chaps ((3-[3-Cholamidopropyl)dimethylammonio]- 1-

propanesulfonate), 100tg/m1 Heparin (Falkirk Vet Drug Centre, Scotland) and stored 

at -20°C. 

3.19.3. Preabsorption of antibody. 

A certain amount (X) of embryo powder (X = 2x the number of ml of final 

antibody solution required) was weighed out and incubated in 1xTBST (1.4mM Na 

Cl, 0.03mM K Cl, 25M Tris-H Cl pH 7.5, 1% Tween-20) at 70°C. Embryo 

powder was washed in 1xTBST and incubated in blocking buffer (1xTBST, 5% heat 

inactivated sheep serum, lmg/ml BSA) and the DIG antibody at a 1:250 dilution. The 

preabsorbed antibody was removed by centrifugation. The supernatant containing the 

antibody was diluted to a final concentration of 1:2500 and stored at 4 ° C. 

3.19.4. In situ hybridization. 

Dissected tissue was rehydrated through a 75%, 50% and 25% methanol 

washes and rinsed twice in PTW (Ca 21,  Mg2  free PBS, 0.1% Tween-20). Tissue 

was incubated in lOj.tg/ml Proteinase-K (GibcoBRL Life TechnologiesTM, UK) and 

post-fixed in 4% (w/v) paraformaldehyde, 0.1% gluteraldehyde. Tissue was pre- 

hybridized in hybridization solution at 62 - 66°C for a minimum of 4 hrs. The probe 

was added to fresh hybridization solution at a concentration of l.tg/ml and incubated at 

62 - 66°C overnight. Tissue was washed in pre-hybridization solution, and 

1xTBST:pre-hybridization solution (1:1) at the hybridization temperature and in 

1xTBST at room temperature. Tissue samples were incubated in blocking buffer at 

room temperature. The DIG antibody, conjugated to alkaline phosphatase was added 

at a 1:2500 dilution and incubated overnight at 4°C. Post-antibody washes in IxTBST 

were performed at room temperature for 24 hrs. Detection of alkaline phosphatase 

was performed by incubating in 1.5m1 1xNTMT containing 4.51l 75mg/mi NBT 

and3 5R1  50mg/mi BCIP, protected from light at room temperature. The colour 

reaction was allowed to develop from 30 mins to 3 days. 

Tissue was photographed using Kodak EPY64 film on a Leitz Wild Heerbrugg 

zoom microscope. 
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3.19.5. Embedding, sectioning and counterstaining of DIG whole 

mounts. 

Tissue was rapidly dehydrated through 100% methanol, propan-2-ol and 

tetrahydronaphthalene. Tissue was incubated in wax at 60 °C for 18 - 24 hrs. Tissue 

was embedded using a Reichert Jung tissue embedding centre. Sections were 

counterstained in 0.5% eosin in 25% ethanol and visualised and photographed using a 

Nikon Microphot-SA microscope and Kodak EPY64 film. 

3.20. Histological staining of chick genital ridge tissue. 

Between 3-5 mesonephroi and genital ridge tissue was used per day of 

incubation for histological staining. Mesonephroi and genital ridge tissue from d 4.5, 

5.5, 6.5, 7.5 and 8.5 of incubation was collected and fixed in 4% (w/v) 

paraformaldehyde at room temperature overnight. Tissue was placed in 0.5M sucrose 

in PBS at room temperature overnight. Tissue samples were dehydrated through 

0.85% Na Cl (saline), saline:ethanol (1:1), 70%, 85%, 95%, 100% ethanol and 

chloroform. Tissue was incubated in wax at 60 °C for 3 hrs and embedded on a 

Reichert Jung tissue embedding centre and stored at 4°C. Tissue was sectioned on a 

microtome. The 6.tm sections were placed on poly-L-lysine coated slides and dried at 

37 °C overnight. Sections were stained using a trichrome method. Briefly, sections 

were rehydrated through xylene, 100%, 85% and 75% ethanol and rinsed in water. 

Sections were stained in Weigert's haematoxylin for 15 mins and differentiated in 

acid/alcohol and Li C04-  Sections were stained in picro-orange (0.25% Orange G in 

saturated picric acid in 80% ethanol) for 2 nuns and acid fuchsin (1:1 volume of 0.5% 

Ponceau 2R in 1% acetic acid and 0.5% acid fuchsin in 1% acetic acid) for 10 mins. 

Sections were rinsed in 1% acetic acid and differentiated in red differentiator (10% 

phosphotungstic acid, 1% picric acid in 76% ethanol). Finally, sections were stained 

in aniline blue (2.5% aniline blue in 2.5% acetic acid) for 8 mins and differentiated in 

blue differentiator (10% phosphotungstic acid, 1% picric acid in 38% ethanol). 

Sections were dehydrated through 75%, 85% and 100% ethanol and xylene and then 

mounted using DPX mountant. Stained sections were visualised and photographed 

using a Nikon Microphot-SA microscope and Kodak EPY64 film. 

3.21. Computing analysis. 
Raw sequence data was convened to a Fasta format and compared to 

nucleotide and protein databases using the BLAST and Wisconsin analysis packages 

(Altschul et at, 1990; Genetics Computer Group, 1994). Sequence data was analyzed 

using GCG packages (Pearson and Lipman, 1988). 
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Chapter 4. 

Results. 
Morphology of chick gonadal development. 



Gross morphological and histological analysis of chick genital ridge and 

mesonephros tissue from 4.5d to 8.5d (stage 25 to 35), was carried out in an attempt 

to better understand the morphological aspects of chick gonadal development and to 

identify the initial stages of morphological sex differentiation in the chick. These 

stages of development would encompass: the development of the indifferent gonad, 

the sex determination period and the initial stages of testis and ovary differentiation. It 

should be noted that not all eggs were incubated immediately after collection, thus an 

incubation time of 5.5d could result in a 6-12 hour developmental difference between 

embryos. Futhermore, not all embryos will develop simultaneously and thus reach the 

same stage at the same time throughout embryogenesis. Adult testis tissue was also 

histologically analyzed. However, a fully mature hen's ovary measures 40mm in 

diameter, and is considered too large to section onto slides (Rugh, 1977). In a 

trichrome stain, fibrin stains red, red blood cells stain orange, nuclei stain blue/black, 

collagen stains blue and connective tissue stains blue. After dissection of the genital 

ridge and mesonephric tissue, individual embryos were sexed using two W-PCR 

methods. For both W-PCR methods, presence of two bands of 415bp (V/-repeat 

amplified fragment) and 720bp (GAPDH amplified fragment) (data not shown) or two 

bands of 415bp (W-repeat) and 256bp (18S amplified fragment) (fig 6) indicated the 

sample is female (ZW). If only one band is obtained corresponding to 720bp 

(GAPDH) or 256bp (18S), the sample is male (ZZ). This method of sexing was 

confirmed by a dot blot method. A GAPDH probe was used as a loading control. 

Female samples were identified by hybridising a W-repeat probe, to a membrane 

containing DNA from each embryo. Hybridization was visualised by autoradiography 

and those samples showing a black dot were identified as female (data not shown). 

At 4.5d (stage 25 and 26) the urogenital ridge was observed with the 

indifferent gonads developing on the medial surface of the mesonephros (fig 7a, 7b). 

The gonads and mesonephroi are thin and elongated at this stage of development. At a 

higher magnification (xlO), the gonad was observed to be continuous with the 

mesonephros at various places along its length and continuous with the mesentery (fig 

7c). A germinal epithelium could also be observed on the outer edge of the gonads, 

exhibiting a compact cell structure. Below the germinal epithelium, a loose cell 

structure was observed. The indifferent gonad contained two basic cell types, the 

somatic cells and the PGCs (fig 7d). The PGCs were identified as being larger than 

the peritoneal cells with a large nucleus and clear cytoplasm (Dubois and Croisille, 

1970). At this stage of development, the indifferent gonads were narrow and extended 

along the majority of the length of the mesonephros No differences in morphology 

were observed between males and females. 



Figure 6: 	W-PCR showing the amplification of an 18S ribosomal band of 

256bp in all samples, and the amplification of a W-repeat band of 

415bp only in female samples. F = female. M = male. 
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Figure 7: 	Morphology of the indifferent gonad at day 4.5 of incubation (stage 25 

and 26). (a) Gross morphology of the indifferent gonad, dissected from 

a chick embryo at day 4.5 of incubation. Actual length of the 

mesonephros is 4.3mm. (b) Sagittal section of the gonads developing 

on the medial surface of the mesonephros. Scale bar represents 105Rm. 

c) Indifferent gonad is continuous with the mesonephros and mesentery. 

Scale bar represents 4Ojim. (d) High power magnification of the 

indifferent gonad showing the presence of somatic cell and primordial 

germ cell. Scale bar represents lOj.tm. Mesonephros (M), mesentery 

(Mes), gonad (G), germinal epithelium (GE), primordial germ cell 

(PGC). Staining was carried out on 3 separate genital 

ridge/mesonephric tissue. 
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Figure 8: 	Morphology of the male gonads and mesonephros at day 5.5 of 

incubation (stage 28). (a) Gross morphology. Actual length of the 

mesonephros is 3.3mm. (b) Sagittal section of the left male gonad. 

Scale bar represents 40j.tm. c) High power magnification of a sagittal 

section of the male left gonad. Scale bar represents 1OI.tm. (d) High 

magnification of a sagittal section of the left male gonad. Scale bar 

represents lOiim. Gonad (G), mesonephros (M), germinal epithelium 

(GE), primordial germ cell (PGC), primary sex cord (C). Box in 'b' 

represents the area that is seen in 'c' at a higher magnification. Staining 

was carried out on 4 separate genital ridge/mesonephric tissue. 



it, 9~ - -Il 

 

 

GE 
'4 

PGC 

GE 
PGC 

Ii 



Figure 9: 	Morphology of the female gonads at day 5.5 of incubation (stage 28). 

Gross morphology. Actual length of the meonephros is 3.5mm. 

Sagittal section of the left female gonad. Scale bar represents 40jim. 

c) High power magnification of a sagittal section of the left female 

gonad. Scale bar represents lOjtm. Primary sex cord (C), mesonephros 

(M), gonad (G), germinal epithelium (Ge), primordial germ cell (PGC). 

Staining was carried out on 3 separate genital ridge/mesonephric tissue. 
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Figure 10: 	Morphology of the thale gonads and mesonephros at day 6.5 of 

incubation (stage 30). (a) Gross morphology. Actual length of the 

mesonephros is 4mm. (b) Sagittal section of the male left gonad. Scale 

bar represents 40jim. (c and d) High power magnification of a sagittal 

section of the left male gonad. Scale bar represents lOj.tm. Gonad (G), 

mesonephros (M), primordial germ cell (PGC), primary sex cord (C), 

connective tissue (CT), germinal epithelium (GE). Staining was carried 

out on 3 separate genital ridge/meson&phric tissue. 
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Figure 11: 	Morphology of the female gonads and mesonephros at day 6.5 of 

incubation (stage 30). (a) Gross morphology. Actual length of the 

mesonephros is 3.9mm. (b and c) Sagittal section of the female left 

gonad. Scale bar represents 401.Lm. Gonad (G), mesonephros (M), 

primordial germ cell (PGC), germinal epithelium (GE), primary sex 

cord (C). Staining was carried out on 5 separate genital 

ridge/mesonephric tissue. 
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By 5.5d (stage 28), initial differences in the morphological development of the 

gonads was observed between male and female chick embryos, at the histological 

level. No differences were observed between male and females at the gross 

morphological level. The gonads and mesonephroi of both sexes were thicker and 

shorter compared with their morphology at 4.5d (fig 8a, 9a). In the male, a relatively 

thick germinal epithelium was observed with a connective tissue layer separating the 

germinal epithelium from the underlying medulla (fig 8b, c & d). Formation of cord 

structures was observed in the medulla of the male gonad. These tubules were located 

under the germinal epithelium layer towards the hilum of the gonad, and are the 

primary sex cords. PGCs were observed in the germinal epithelium and in the stroma 

of the medulla, near the edges of the tubules (fig 8c & d). In the female gonad at the 

same stage of development, cell structure appeared less organised and more 

homogeneous (fig 9b & c). The germinal epithelium was observed, but a connective 

tissue layer separating it from the medulla was not (fig 9b). A small number of cord-

like structures were observed in the female gonad at a high magnification (x40) (fig 

9c). It is, therefore, possible that by this stage of development, testicular cord 

formation has begun or the primary sex cords in the female have begun to partially 

degenerate. Degeneration of the primary sex cords in the female chick embryo does 

not occur in many instances, and instead the cords become distended (Romanoff, 

1960). 
At 6.5d (stage 30) at the gross morphological level, the mesonephroi and 

gonads had increased in width and length (fig lOa). The germinal epithelium had 

become much thinner in the male gonad (fig lOb & c). The testicular cord structure 

had begun to organise in the medulla of the gonad, and PGCs were observed inside or 

on the edge of these cords, in the stroma of the medulla, and in the germinal epithelium 

(fig lOb, c & d). The medulla had also increased in thickness, with more somatic cells 

observed between the cords. In the female at the gross morphological level, the right 

gonad was visibly smaller than the left gonad (fig 11 a).  The left gonad had increased 

significantly in size. It was thicker, but shorter than the male gonads at the same 

stage. Therefore, it was at this stage of development that gross morphological 

differences were first discernible between males and females. At the histological level, 

the germinal epithelium had increased significantly in thickness, with relatively 

compact cell structure (fig 1 lb). A connective tissue layer was observed in figure 11 c, 

but due to the slight differences in the stages of the 6.5d female embryos, no 

connective tissue layer was observed in figure 1 lb. PGCs were clearly located in the 

cortex of the female gonad at this stage of development (fig 1 lb, 12a). In the medulla, 

the cord structures were still present but far less organised compared to the male (fig 
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Figure 12: 	Histological analysis of the female left gonad at day 6.5 of incubation 

(stage 30). (a) High power magnification of a sagittal section of the 

female left gonad. Scale bar represents lOjim. (b) Sagittal section of 

the female left gonad. Scale bar represents 40Rm. Cortex (Co), gonad 

(G), primordial germ cell (PGC), primary sex cord (C), mesonephros 

(M), germinal epithelium (GE). Staining was carried out on 5 separate 

genital ridge/mesonephric tissue. 
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Figure 13: 	Morphology of the male gonads and mesonephros at day 7.5 of 

incubation (stage 32 and 33). (a) Gross morphology. Actual length of 

the mesonephros is 4.3mm). (b) Sagittal section of the left male gonad. 

Scale bar represents 40j.tm. c) High power magnification of a sagittal 

section of the left male gonad. Scale bar represents 1 Oitm. Gonad (G), 

primordial germ cell (PGC), testicular cord/primary sex cord (C), 

mesonephros (M), mesentery (Mes). Staining was carried out on 3 

separate genital ridge/mesonephric tissue. 
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Figure 14: 	Morphology of the male gonads and mesonephros at day 8.5 of 

incubation (stage 34 and 35). (a) Gross morphology. Actual length of 

the mesonephros is 4.6mm. (b) Sagittal section of the male gonad. 

Scale bar represents 40jim. c) High power magnification of a sagittal 

section of the male gonad. Scale bar represents lO.tm. Mesonephros 

(M), primordial germ cell (PGC), testicular cords/primary sex cords 

(C), gonad (G), mesentery (Mes). Staining was carried out on 3 

separate genital ridge/mesonephric tissue. 
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12b). In figure 1 ic, the cord structures had a distended appearance and fewer somatic 

cells were located between these cords compared with the male gonad. 

The gross morphology of the male gonad at 7.5d and 8.5d (stage 32 to 35) 

indicated an increase in size in both left and right gonads (fig 13a & b). At the 

histological level, a significantly more organised cord structure was observed in 

addition to an increase in the number of cords (fig 13b & c; 14b). The cord structure 

indicated an intricate connecting network and constituted a large majority of the 

developing testes. Due to the increase in cord number, the stromal cells between these 

cords had decreased compared with 6.5d. POCs could now be clearly identified in the 

testicular cords (fig 13b; 14c). 

At the gross morphological level in the female gonads at 7.5d and 8.5d, the 

difference in size between the left and the right ovary was clearly visible (fig 15a; 16a). 

The left ovary had increased in volume, whereas the right ovary remained a similar 

size to 6.5d. In the female gonad at the histological level, the germinal epithelium 

increased significantly in thickness in the left gonad (fig 15b & c; 16b & c). PGCs 

were observed in this thick germinal epithelium layer (fig 15c; 17a); and these are 

known to develop into the definitive germ cells (Lillie, 1908). In the cortex of the 

ovary, whorls of cells were identified, indicative of follicular formation (fig 1 7b & c). 

However, PUCs were also identified in the medulla region of the female gonad (fig 

15c; 17a), which contained the partially degenerated primary sex cords (fig 15c). 

Lacunae were also identified in the medulla, and were especially apparent by 8.5d (fig 

These lacunae developed from the primary sex cords, in which a large lumen 

was surrounded by the cord cells. This cord distension caused the medulla region of 

the female left gonad to increase in size. The right gonad also developed lacunae (fig 

Figure 15d indicated the close association of the left gonad with the 

mesonephros and the left gonad with the mesentery, at this stage of development. 

A histological analysis of the adult testis was also carried out. The cross 

section at low magnification (x4) indicated the majority of the adult testis consisted of 

many seminiferous tubules packed closely together (fig 18a). Located between these 

seminiferous tubules were Leydig cells, blood vessels and stroma. The seminiferous 

tubules were surrounded by a basement membrane and inside this basement membrane 

was a single cell thickness of Sertoli cells (fig 18b). The seminiferous tubules 

contained germ cells at various stages of spermatogenesis; with cells nearest the 

periphery in the earliest stages of spermatogenesis, the primary spermatocytes. 

Moving interiorly into the tubule, the cells progressively entered later stages of 

spermatogenesis; the secondary spermatocytes, spermatids and spermatozoa (fig 18c). 
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Figure 15: 	Morphology of the female gonads and mesonephros at day 7.5 of 

incubation (stage 32 and 33). (a) Gross morphology. Actual length of 

the mesonephros is 3.75mm. (b) High power magnification of a sagittal 

section of the female left gonad. Scale bar represents lOjim. © Sagittal 

section of the female left gonad. Scale bar represents 40Rm. (d) Low 

power magnification of a sagittal section of the female left gonad. Scale 

bar represents 105pxm. Gonad (G), germinal epithelium (GE), medulla 

(Me), mesentery (Mes), mesonephros (M), primordial germ cell (PGC), 

primary sex cord (C). Staining was carried out on 3 separate genital 

ridge/mesonephric tissue. 
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Figure 16: Morphology of the female gonads and mesonephros at day 8.5 of 

incubation (stage 34 and 35). (a) Gross morphology. Actual length of 

the mesonephros is 4.5mm. (b and c) Sagittal section of the female 

gonads. Scale bar represents 40jim. Gonad (G), lacunae (L), right 

gonad (RG), left gonad (LG), medulla (Me), cortex (Co). Staining was 

carried out on 3 separate genital ridge/mesonephric tissue. 
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Figure 17: 	Histological analysis of the female left gonad at day 8.5 of incubation 

(stage 34 and 35). (a and c) High power magnification of a sagittal 

section of the female left gonad. Scale bar represents 10Rm. (b) 

Sagittal section of the female left gonad. Scale bar represents 404m. 

Cortex (Co), primordial germ cells (PGC), medulla (Me), lacunae (L), 

germinal epithelium (GE), whorls of cells in cortex (W), box in 'b' 

• represents the area seen at higher magnification in V. Staining was 

carried out on 3 separate genital ridge/mesonephric tissue. 
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Figure 18: 	Histological analysis of the chicken adult testis. (a) Low magnification 

of a longitudinal section of the testis showing the close packing of the 

seminiferous tubules. Scale bar represents 105LLm. (b) Longitudinal 

section of the testis, indicating the basement membrane and Sertoli cells. 

Scale bar represents 40Rm. c) High power magnification of a 

logitudinal section of the testis. Scale bar represents lOj.tm. Basement 

membrane (BM), seminiferous tubules (ST), sertoli cells (SC), 

spermatozoa (S), interstitial cells (IC). Staining was carried out on 3 

separate adult testes. 
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Chapter 5. 

Discussion. 
Morphological analysis of chick gonadal development. 

me 



Histological analysis of chick gonadal development provided a comparison 

between development in the male and female, and with mammalian gonadal 

development. At 4.5d no differences were observed, between the sexes, in the 

morphological development of the chick gonads. The gonads are considered to be 

bipotential or in the indifferent stage of development. The indifferent gonads were thin 

and elongated, and closely associated with the mesonephros and mesentery. 

However, a germinal epithelium was distinguishable from the underlying loose 

mesenchyme. As the genital ridge is reported to arise by the mid to end of 3d 

(Venzke, 1954a); by 4.5d the indifferent gonads will have begun developing. From 

the initial genital ridge development, the gonads are referred to as in the indifferent 

stage of development (Venzke, 1954a). PGCs were also observed in the germinal 

epithelium of the gonads at this stage of gonadal development as previously 

documented (Venzke, 1954a; Romanoff, 1960). 

By 5.5d in the chick, slight differences in gonadal morphology between males 

and females were apparent. A distinct cord structure was visible in male gonads, 

however, in the females a disorganised tubule structure was visible. This observation 

indicated the unknown sex determination switch had occurred. Lillie (1908), Venzke 

(1954a) and Romanoff (1960) reported the development of the primary sex cords 

between 5d and 5.5d. It is possible that the results observed in this study indicate the 

cords had already formed and were either degenerating in the female or differentiating 

in the male, or both. It had previously been reported that testicular cord formation was 

apparent from 7.5d onwards (Venzke, 1954b). Histological analysis merely provides 

us with a "snapshot" of gonadal development at a particular stage. Therefore, due to 

the inability to determine the developmental state of the cords in the gonads, it is not 

possible to confirm from this study whether female or male differentiation begins first 

in chick gonadal development. However, with the obvious cord structure organising 

in the medulla of the male gonad and the formation of a connective tissue layer 

separating the germinal epithelium from the medulla compared to the female showing a 

more homogenous appeathnce, it is tempting to speculate that male differentiation 

occurs earlier than female differentiation. 

The differences in gonadal structure between males and females at 5.5d 

suggests the sex determining event occurred earlier in gonadal development than 

previously reported (Venzke, 1954a; Romanoff, 1960). In comparison, 

morphological differences in the mouse were not apparent until 12.5 dpc (Capel, 

1996). Chick gonadal development is analogous to mammalian gonadal development 

in that the indifferent period in the mouse begins at 10.5 dpc through to 12.5 dpc 
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(Cape! and Lovell-Badge, 1993), and in the chick the indifferent period begins at 3.5d 

up to 5.5d, when we report morphological differences are first observed. The 

indifferent stage of development in both mice and birds is approximately two days. In 

the mouse, Sry is expressed during this indifferent period, between 10.5 dpc and 12.5 

dpc, with a peak of expression at 11.5 dpc (Hacker et aL, 1995). If a similar genetic 

switch is utilised to determine sex in the chick, expression would occur between 3.5d 

and 5.5d. 
After these initial differences were observed, the cords in the male gonad 

continued to proliferate so eventually a highly organised cord structure was visible, 

which constituted a large proportion of the gonad. This confirmed previously 

described work by Romanoff (1960) and Venzke (1954a and 1954b). These cords 

will ultimately form the seminiferous tubules. 

There is also a cord structure in the medulla of the left ovary, but it is not as 

organised as the cord structure in the testis. The medullary cords in the female 

partially degenerate and often become distended, which is apparent by 8.5d. This 

corresponds to the observations of Romanoff (1960), although in this study the 

distension of the medullary cords is reported earlier in development than in previous 

reports. Cortical cords have also started to develop by 8.5d. This is 0.5 day of 

incubation earlier than reported by Swift (1915). Cortical cord proliferation is 

characterised by the grouping of germ cells by the inner edge of the germinal 

epithelium (Romanoff, 1960). 

A second characteristic of male mammalian and male chick gonadal 

development is that the germinal epithelium becomes thinner compared to the germinal 

epithelium in the female. Comparing 4.5d and 5.5d, the difference in germinal 

epithelium thickness is negligible. By 6.5d to 8.5d, the germinal epithelium became 

considerably thinner. This confirmed the report by Venzke (1954a and 1954b). 

Characteristic to female mammalian and female chick gonadal development, is 

the proliferation of the !cft germinal epithelium (Kaufman, 1992). A thickening of the 

germinal epithelium was first observed, in the female chick gonad, at 6.5d and is 

obvious by 8.5d. This is slightly earlier than the stage in development of germinal 

epithelium thickening reported by Romanoff (1960) and Venzke (1954a). This 

suggested ovarian differentiation began after the differentiation of the testis, thus 

supporting the theory that female chick gonadal development occurred later than male 

chick gonadal development. 

In this study, between 4.5d and 8.5d, PGCs were observed in the germinal 

epithelium (of the male gonad), the stroma of the medulla, the boundary between the 

stroma and the cords, and in the testicular cords. The number of PUCs located in the 
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cords increased with day of incubation in the chick. This study confirmed the 

observations reported by Lillie (1908), although accurate developmental stages were 

not recorded. Migration of these cells is possible because the testicular cords at this 

stage of development do not have a basement membrane, (Lillie, 1908). This study 

contradicts the description of chick gonadal development by Romanoff (1960) which 

suggested that PGCs moved into the medulla with the testicular cords, after the cords 

had differentiated from the germinal epithelium. However, at 6d Venzke (1954a) 

reported that the majority of germ cells were located in the germinal epithelium, with 

some being present in the primary sex cords and the stroma. This agrees with the 

observations reported in this study. 

PGCs in the female were also located in the germinal epithelium at 4.5d, 5.5d, 

6.5d, 7.5d and 8.5d. Whorls of cells were observed at the later stages of 

development, indicative of follicular formation around the germ cells. PGCs were also 

visible in cords and stromal tissue of the medulla. These observations confirm 

previous reports by Romanoff (1960), Venzke (1954a) and Lillie (1908). 

The histological analysis of the adult chick testis revealed a similarity in 

structure with the mammalian adult testis (Torrey, 1966). The seminiferous tubules 

constituted the majority of the testis, and were closely packed together. Contained 

within these seminiferous tubules were cells in various stages of spermatogenesis. 

Overall, chick gonadal development exhibited similarity with mammalian 

gonadal development. The urogenital ridge arises from the intermediate mesoderm in 

both mammals and birds (Kaufman, 1992; Romanoff, 1960). Initial morphological 

differences between the sexes in both species is observed by the differentiation of the 

primary sex cords in the male. In the male, in both mammals and birds, the germinal 

epithelium is characteristically thin and the testicular cords proliferate to constitute the 

majority of the testes. In the female, the germinal epithelium proliferates rapidly and it 

is here that the secondary sex cords develop. Differences that do exist; such as the 

asymmetry in the chick female, where the right gonad degenerates and the complete 

degeneration of the primary sex cords in the mammalian female, does not mean the 

structure and function of the ovary and testis is significantly different between these 

species. 
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Chapter 6. 

Results. 
Expression studies of chick homologues to genes involved in 

mammalian gonadal development. 
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6.1. Northern analysis data. 

In an attempt to compare the molecular control of gonadal development 

between mammals and avians, the expression of chick homologues to genes involved 

in mammalian gonadal development was examined by Northern analysis. This 

enabled a comparison between the expression profiles of the genes in mammals and 

avians. 

6.1.1. Wilms' Tumour 1 (WT1). 

A Northern blot containing male and female RNA from the genital 

ridge/mesonephros (which will be subsequently referred to as genital ridge), was used 

to study the expression of WT1 during early gonadal development. A transcript of 

approximately 3.1kb was identified in all samples examined on the Northern blot (fig 

19A). This corresponded to the transcript detected by Kent et al., (1995), which was 

described as 3kb in length. 

Northern analysis showed WT-1 message was present in male and female 

samples, with a potentially sexually dimorphic expression pattern in males at 4.5d and 

5.5d (fig 19A), however these expression levels might not be significantly higher. In 

both sexes, expression of the WT-1 transcript was low at 3.5d. Expression in female 

genital ridge tissue samples from 4.5d to 9.5d (stage 25 to 36) remained constant over 

this developmental period. Northern analysis using the WT- 1 probe was repeated and 

consistent results obtained. However, the phosphorimager analysis (fig 19B) does not 

accurately replicate the expression profile observed by Northern analysis, because it 

accentuates the potential up-regulation of WT-1 in male samples at 4.5d and 5.5d. 

Southern analysis of this clone resulted in no differences being detected 

between males and females, indicating the gene was not located on either of the sex 

chromosomes (data not shown). 

6.1.2. Steroidogenic Factor-1 (SF-1). 
Expression of SF-1 during early gonadal development, was analyzed by 

Northern analysis (fig 20A). After normalisation for loading, this transcript showed 

higher levels of expression in female samples at 4.5d (stage 25 and 26) (fig 20B). 

However, the level of SF-1 expression visualised by Northern analysis seemed lower 

in female genital ridge samples at 4.5d, compared to 5.5d and 6.5d in the same tissue 

type. The increase in female genital ridge tissue at 4.5d appears artificially high in 

phosphorimager analysis due to inconsistencies in loading. 

By Northern analysis, expression of SF-1 was detected in male and female 

genital ridge samples throughout the developmental stages studied, with no obvious 
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up- or down-regulation of the gene (fig 20). This is inconsistent with phosphorimager 

analysis which showed down-regulation in female samples and up-regulation in male 

samples 
The size of the SF-1 transcript detected by Northern analysis was 

approximately 1.85kb. This corresponds to the human SF-1 transcript which is 

1895bp in length (de Santa Barbara et al., 1996). 

6.1.3. Anti-Milllerian hormone (AMH). 
Analysis of AMH by Northern analysis exhibited a sexually dimorphic pattern 

of expression (fig 21A). After 20hr exposure, expression of the transcript was only 

detected in male genital ridge samples. Expression was first detected at 6.5d (stage 

30), and peaked at 7.5d (stage 32 and 33) (fig 21B). Only low levels of expression 

were detected in the adult testis, equivalent to the expression levels detected at 6.5d in 

the male (fig 21). 
A one week exposure resulted in low levels of expression being detected in the 

female samples (fig 21 A). Expression was first detected in the female genital ridge at 

6.5d, and peaked at 7.5d. Highest levels of female AIvIH expression was detected in 

the adult ovary. In male genital ridge samples, at this longer exposure time, AMH was 

first detected at 5.5d (stage 28). The AJvIH transcript size was approximately 2.7kb 

which roughly corresponded to the published sequence of 2.8kb (Eusèbe et al., 1996). 

Two other transcripts were also observed on the longer exposure. These transcripts 

were approximately 4.45kb and 6.35kb in size, which corresponded to two larger 

transcripts observed previously (4.5kb and 6.5kb) (Eusèbe et al., 1996). 

6.1.4. Aromatase. 
Expression of aromatase was analyzed during male and female chick gonadal 

development by Northern analysis. A transcript of approximately 4.0kb in size was 

detected, which corresponded to the published size (McPhaul et al., 1988). 

The aromatase transcript was never detected in male samples, at any 

developmental stage. in female samples, the transcript was first detected at 6.5d (stage 

30), with higher expression levels at 8.5d (stage 34 and 35), and 9.5d (fig 22A & B). 

The aromatase expression profile was also studied by Northern analysis, in 

various tissues from 4.5d to 8.5d (stage 25 to 35) (fig 23). Expression was only ever 

detected in the adult ovary. There was no expression of the aromatase transcript in the 

brain, where it had been detected in male and female reptiles (Jeyasuria and Place, 

1997). The size of the two transcripts in the adult ovary were a major transcript of 

approximately 4.0kb and a minor transcript of 1.43kb. 
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Figure 19: 	(A) Northern analysis of cWTI in the gonads of developing male 

and female chick embryos (top panel). Total RNA was isolated 

from pooled male and pooled femlae genital ridge/mesonephric 

tissue collected from day 3.5 to day 9.5 of incubation (stage 21 to 

36), and 10g of each sample was separated on a 1% 

agarose/formaldehyde gel. Northern hybridization was carried out 

at 60°C in 0.25M Na PO 4, 7% SDS. The blot was washed to a final 

stringency of 25mM Na PO4, 1% SDS at 68 °C and exposed to film. 

for 2 days at -70°C. The loading of RNA in each lane was 

standardized by hybridizing with a fragment of the chick 1 8S 

ribosomal gene (bottom panel). Northern analysis was carried out 

twice, using the same RNA pools each time, and consistent results 

were observed. 

(B) Graph showing the expression of cWTl, analyzed by Northern 

analysis. The amount of radioisotope bound in each lane was 

-. - ------------ -- quantitated using a phosphorimager andrelated to a loading, control. 

F =female. M =male. 
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Figure 20: 	(A) Northern analysis of cSF- 1 in the gonads of male and female 

developing chick embryos (top panel). Total RNA was isolated 

from pooled male and pooled female genital ridge/mesonephric 

tissue collected at day 4.5 to day 9.5 of incubation (stage 25 to 36) 

and from the adult ovary and testis. 54g of each sample was 

separated on a 1% agarose/formaldehyde gel. 	Northern 

hybridization was carried out at 60°C in 0.25M Na PO 4, 7% SDS. 

The blot was washed to a final stringency of 15mM Na PO 4 , 0.5% 

SDS at 65 ° C and exposed to film overnight at -70°C. The loading 

of RNA in each lane was standardized by hybridizing with a 

fragment of the chick -18 S ribosomal gene (bottom panel). A single 

observation was made by Northern analysis. 

(B) Graph of the expression profile of cSF-1 in the genital 

ridge/mesonephric tissue of male and female chick embryos, 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M = male. 



 

SEX 	 T 	e 
DAY OF 	45 	5.5 	6.5 	75 	85 	96 	*5 	.5 	8.5 	75 	85 95 

INCUBATION 

4.0kb 

1.8kb 	 I 	 — . 	 . 

lBS 

 

0.06 

0.05 

0.04 
Ii 

- 

O.ft 

0.01 

0.00 

u) 	(0 	N- 	00C) 
0 	U) C) W 

DAY OF INCUBATION 



Figure 21.: 	(A) Northern analysis of cAMH in the gonads of developing male 

and female chick embryos (top and middle panel). Total RNA was 

isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36) and from adult ovary and testis. 5ig of 

each sample was separated on a 1% agarose/formaldehyde gel. 

Northern hybridization was carried out at 60 °C in 0.25M Na PO4 , 

7% SDS. A low stringency wash was carried out at 25mM Na 

P041  1% SDS at 65°C and exposed to film overnight at -70°C (top 

panel). The Northern blot was washed to a final stringency of), 

25mM Na PO4, 1% SDS at 68°C and exposed to film for 3 days at - 

70°C (middle panel). The presence of approximately equal amounts 

of RNA in each lane was monitored by hybridizing with a fragment 

of the chick 18S ribosomal gene (bottom panel). Northern analysis 

was carried out three times, on different RNA samples each time, 

with consistent results. 

(B) Graph showing the expression profile of cAMH, analyzed by 

Northern analysis. The amount of radioisotope bound in each lane 

was quantitated using a phosphorimager and related to a loading 

control. F = female. M = male. 
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Figure 22: 	(A) Northern analysis of c-aromatase in the gonads of the 

developing male and female chick embryo (top panel). Total. RNA 

was isolated . from pooled male and pooled -  female genital 

ridge/mesonephric tissue collected at day 3.5 to day 9.5 of 

incubation (stage 21 to 36), and 10g of each sample was separated 

on a 1% agarose/formaldehyde gel. Northern hybridization was 

carried out at 60 °C in 0.25M Na PO 4, 7% SIDS. The blot was 

washed to a final stringency of 25mM Na PO 4, 1% SDS at 65 ° C and 

exposed to film for 3 days at -70°C. The loading of the RNA in 

each lane was standardized by hybridizing with a fragment of the 

chick 18S ribosomal gene (bottom panel). Northern analysis was 

carried out three times with consistent results. 

(B) Graph of the expression profile of c-aromatase in the genital 

ridge/mesonephric tissue of male and female chick embryos, 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M male. 
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Figure 23: 	Northern analysis of c-aromatase expression in tissues in the 

developing chick embryo and in the adult ovary and testis (top 

panel). Total RNA was isolated from different chick embryonic 

tissues at day 4.5 to day 8.5 of incubation (stage 25 to 35) and from 

adult ovary and testis. 8g of each sample was separated on a 1% 

agarose/formaldehyde gel. Northern hybridization was carried out 

at 60°C in 0.25M Na P041  7% SDS. The blot was washed to a final 

stringency of 25mM Na PO 4, 1% SDS at 65°C and exposed to film 

for 2 days at -70 °C. The RNA loading in each lane was 

standardized by hybridizing with a fragment of the chick 18S 

ribosomal gene (bottom panel). Northern analysis was carried out 

twice, using different RNA sample pools, with consistent results. 
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Figure 24: 	(A) Northern analysis of cSox-9 in the gonads of male and female 

developing chick embryos (top panel). Total RNA was isolated 

from pooled male and pooled female genital ridge/mesonephric 

tissue collected at day 4.5 to day 9.5 of incubation (stage 25 to 36) 

and from the adult ovary and testis. 5jkg of each sample was 

separated on a 1% agarose/formaldehyde gel. 	Northern 

hybridization was carried out at 42°C in 2x PIPES, 50% formamide, 

0.5% SDS. The blot was washed to a final stringency of 0.2xSSC, 

0.1% SDS at 65 ° C and exposed to film for two days. The loading 

of RNA in each lane was standardized by hybridizing with a 

fragment of the chick 18S ribosomal gene (bottom panel). Northern 

analysis was carried out twice, using different RNA sample pools, 

with consistent results. 

(B) Graph of the expression profile of cSox-9 in the genital 

ridge/mesonephric tissue of male and female chick embryos, 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M = male. 
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6.1.5. Sox-9 ($yy-related HMG box proteins). 
The expression profile of Sox-9 was analyzed by Northern analysis (fig24A). 

A transcript of approximately 3.9kb was detected in male and female samples in all 

developmental stages (fig 24A). This transcript size was more than twice the size of 

the published transcript, of 1640bp (Kamachi and Kondoh, 1998). However, it does 

correspond to the published transcript size for mouse (Wright et al., 1995). 

Expression levels on the Northern blot were similar between males and females 

at 4.5d to 9.5d (fig 24A). In the adult testis the expression levels of the 3.9kb 

transcript were significantly higher compared to the expression levels in the adult 

ovary. A second transcript was also detected, only in the adult testis. This transcript 

was approximately 1 .36kb in length (fig 24A). Phosphorimager analysis confirmed 

the profile observed by Northern analysis, indicating no significant changes in 

expression levels between male and female genital ridge tissue samples at the 

embryonic stages studied (fig 2413). 

6.2. Whole mount in situ hybridisation data. 

In order to identify the tissue and cellular location of expression, whole mount 

in situ hybridisation (wmISH) was carried out on selected transcripts. Due to the low 

levels of expression of some transcripts, extended colour development times were 

frequently required. In some instances this lead to the formation of a precipitate which 

collected on the surface of the tissue. Unless stated, colour development times were 

the same in males and females. 

6.2.1. WTI. 
An anti-sense WTI riboprobe of óOObp was used to carry out wmISH. No 

sense probe for WTI was generated because the expression of WTI had previously 

been reported (Kent et al., 1995), and this study was carried out to confirm this 

expression. WTI expression was studied at 4.5d and 5.5d (stage 25 to 28) (as this 

was the period of greatest expression by Northern), in order to identify those tissues 

expressing WTI in the urogenital ridge. 

In the female chick urogenital ridge, at 4.5d (stage 25 to 27), expression of 

V/Ti was observed from the anterior to the posterior end of the urogenital ridge (fig 

25a). WTI expression was observed on the medial surface of the mesonephroi, 

encompassing the region where the indifferent gonads would develop. WT-1 

expression was not confined to the gonads, but also in the mesonephros adjacent to the 

gonads. At 5.5d (stage 28), the area of WTI expression had retracted anteriorly, 

corresponding to the shortening of the gonads (fig 25b). 
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In the male chick embryo, at 4.5d, WTI expression was observed along the 

anterior two thirds of the urogenital ridge. This expression pattern was similar to that 

observed in the female, except that lower expression levels were detected in the male 

(fig 26a). This contrasted with the Northen analysis data, where expression levels of 

WT-1 appaered slightly higher in the male genital ridge tissue. At 5.5d, WT-1 

expression was restricted to the medulla of the mesonephros and in the gonads (fig 

26b,c & d). A longer colour development period (26hrs) resulted in expression being 

detected on the inner medial surface of the mesonephros, from the gonads to the 

posterior tip of the mesonephros (fig 26c & d). Expression was also observed along 

the edges of the Wolffian ducts (fig 26d). 

6.2.2. 	SF-1. 
An anti-sense SF-1 riboprobe of 530bp and a sense SF-1 riboprobe of 570bp 

were used to carry out wnIlSH. In partially dissected male and female chick embryos, 

at 3.5d (stage 21 and 22), expression of SF-1 was observed along the developing 

urogenital ridge on either side of the neural tube (fig 27a, 29a). At 5.5d (stage 28), 

very low levels of SF-i expression were detected in the gonads in male embryos (fig 

29b). In female gonads at this stage of development there appeared to be expression 

of SF-1, but levels were barely above background (fig 27b). In the mesonephric 

tissue, patches of colour development were observed indicating expression in clusters 

of cells. 
Expression was observed in male and female gonads at 6.5d (stage 30) (fig 

27c, 29c). There were no apparent differences in expression between the left and the 

right gonads, or in either sex. SF-1 expression, at 7.5d (stage 32 and 33), exhibited 

very low levels in male and female gonads (fig 28 & 29d). This does not agree with 

Northern analysis data, where expression levels remained fairly constant throughout 

4.5d to 9.5d in both sexes. Expression was also observed in the mesonephric tissue, 

with differing patterns between the sexes; although it was likely that this was an 

artifact. A line of SF-1 expression in the mesonephros underneath the developing 

MUllerian ducts was also observed (fig 28b). Tissue probed with the sense SF-1 

riboprobe was negative (fig 28c). Analysis by wmISH was carried out twice with 

consistent results. 
In an attempt to elucidate which cells were expressing SF-1, genital ridge 

tissue at 6.5d, analyzed by wmISH, was sectioned and counterstained. Expression 

was observed in the inner surface lining the collecting tubules (fig 30a & b). 

Expression was also detected in the gonads in the male embryo, although it was 
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difficult to establish exactly which cells were expressing SF-i (fig 30c). However, 

the more intense colour followed a pattern reminiscent of the seminiferous tubules. 

6.2.3. AMH. 
An anti-sense AIvIH transcript of 450bp was used to carry out wmISH. No 

sense probe was generated because analysis of chick AIvIH expression pattern had 

previously been reported (Euèsebe et al., 1996), and this study was carried out to 

confirm this expression. 
AMH expression was obvious in the gonadal portion of the male tissue sample 

at 7.5d and 8.5d (stage 32 to 35) (fig 31a,b & c). If the colour reaction was only 

allowed to develop for a short time period (45 mm), a speckled appearance was 

observed in the male gonads, indicating not all cells in the gonad expressed ATvIH at 

high levels (fig 31a). A colour development longer time period, showed a more intense 

staining of the gonads (fig 31b). At 5.5d (stage 28), no colour development was 

observed in the gonads of the male chick embryo after 24 Ins of colour development 

(fig 31d). 
AMIH expression was also analyzed in chick female genital ridge tissue. No 

signal could be detected at 7.5d (stage 32 and 33) in female samples, after the same 

colour development time as the male sample (fig 32a). However, after 2.5 days of 

colour development, ATvIH expression was detected in the female gonads at 7.5d. 

•Higher levels of expression were observed in the left ovary compared with the right 

ovary at this stage of development (fig 32b). AMII-I expression was also analyzed at 

5.5d, 6.5d and 8.5d (stage 28 to 35) in the female genital ridge tissue, but no signal 

was detected in this tissue (fig 32c). Analysis by wmISH was carried out 4 times with 

consistent results. 

In an attempt to more accurately elucidate in which cell type AMIH was being 

expressed, chick genital ridge tissue from males and females at 7.5d were sectioned 

and counterstained (fig 33a,b & c). No expression was observed in female sections 

(fig 33a). In male sections, expression of AMH was located in the medulla of the 

gonad, corresponding to the location and pattern of the seminiferous tubules (fig 33b). 

At a higher magnification (x40), AIVIM expression was observed as a ring of cells. 

This indicated that as ATvIR expression had located to the seminiferous tubules, these 

ring of cells corresponded to the Sertoli cells of the seminiferous tubules. However, it 

must be noted that expression was not confined to cells in the cords. 



Figure 25: 	Expression of WTI in the female chick embryonic gonads and 

mesonephric tissue by wmISH. Hybridization was performed using an 

anti-sense DIG labelled cWTl riboprobe at 65°C. (a) Day 4.5 (stage 25 

and 26) female genital ridge. Colour development proceeded for 9hr. 

actual length of the mesonephros is 3.4mm., (b) Day 5.5 (stage 28) 

female gonads and mesonephros. colour development proceeded for 

94hr. Actual length of the mesonephros is 3mm. Anterior (A), 

posterior (P), gonad (G), mesonephros (M). Analysis by wmlSH was 

carried out twice with consistent results. 
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Figure 26: 	Expression of WTI in the chick embryonic testes and mesonephric 

tissue by wmISH. Hybridization was performed using an anti-sense 

DIG labelled cWT1 riboprobe at 65°C. (a) Day 4.5 (stage 25 and 26) 

male urogenital ridge. Colour development proceeded for 94 hr. Actual 

length of the mesonephros is 3.4mm. (b) Day 5.5 (stage 28) male 

gonad and mesonephros. Colour development proceede for 4%hr. 

Actual length of the mesonephros is 4mm. (c and d) Day 5.5 male 

gonads and mesonephros. Colour development proceeded for 24hr. 

Actual length of the mesonephroi are 3.4mm and 3.2mm respectively. 

Gonad (G), mesonephros (M), Wolffian duct (WD), anterior (A), 

posterior (P). Analysis by wmISH was carried out twice with 

consistent results. 
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Figure 27: 	Expression of SF-i in the female chick urogenital ridge and embryonic 

gonads and mesonephros by wmISH. Hybridization was performed 

using an anti-sense DIG labelled zfSF-1 riboprobe at 64°C. (a) Day 3.5 

(stage 21 and 22) partially dissected female embryo, showing the 

expression of SF-1 in the urogenital ridge. Colour development 

proceeded for 20hr. Actual length of the embryo is 6mm. (b) Day 5.5 

(stage 28) female gonads and mesonephros. Colour development 

proceeded for 20hr. Actual length of the mesonephros is 4mm. (c) 

Day 6.5 (stage 30) female gonads and mesonephros. Colour 

development proceeded for 20hr. Actual length of the mesonephros is 

3.7mm. Anterior (A), posterior (P), urogenital ridge (UR), gonad (0), 

mesonephros (M). Analysis by wmlSH was carried out twice with 

consistent results. 
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Figure 28: 	Expression of SF-i in the chick embryonic ovaries and mesonepric 

tissue by wmISH. Hybridization was carried out using a sense and anti-

sense DIG labelled zfSF- 1 riboprobe at 64 °C. (a) Front view of day 

7.5 (stage 32 and 33) female gonads and mesonephros. Colour 

development proceeded for 20hr. Actual length of the mesonephros is 

4mm. (b) Reverse view of day 7.5 (stage 32 and 33) female 

mesonephros. Colour development proceeded for 20hr. Actual size of 

the mesonephros is 4mm. (c) Day 5.5 (stage 28) female gonads and 

mesonephros using the sense probe. Colour development proceeded for 

20hr. Actual length of the mesonephros is 4mm. Anterior (A), 

posterior (P), gonad (G), mesonephros (M), Mullerian ducts (MD). 

Analysis by wmISH was carried out twice with consistent results. 
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Figure 29: 	Expression of SF-1 in the male chick urogenital ridge and embryonic 

gonads and mesonephros by wmISH. Hybridization was performed 

using a sense and anti-sense DIG labelled zfSF-1 riboprobe at 64°C. (a) 

Day 3.5 (stage 21 and 22) partially dissected male embryo, showing 

expression in the urogenital ridge. Colour development proceeded for 

20hr. Actual length of the embryo is 6.2mm. (b) Day 5.5 (stage 28) 

male gonads and mesonephros. Colour development proceeded for 

20hr. Actual length of the mesonephros is 4mm. (c) Day 6.5 (stage 

30) Colour development proceeded for I lhr. Actual length of the 

mesonephros is 4mm. (d) Day 7.5 9stage 32 and 33). Colour 

development proceeded for 1 lhr. Actual length of the mesonephros is 

4.5mm. Anterior (A), posterior (P), urogenital ridge (UR), gonad (0), 

mesonephros (M). Analysis by wmISH was carried out twice with 

consistent results. 
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Figure 30: 	Expression of SF-i in the male chick gonad and mesonephros wmISH, 

which has been sectioned and counterstained. (a) Day 7.5 (stage 32 

and 33) male gonad. Scale bar represents 40j.tm. (b) Day 7.5 male 

mesonephros. Scale bar represents 40im. (c) Day 7.5 male 

mesonephros. Scale bar represents lORm. Gonad (0), mesonephros 

(M), collecting tubule (Ct), seminiferous cords (SC). 
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Figure 31: 	Expression of AIvll-I in the chick embryonic testis by wmISH. 

Hybridization was performed with an anti-sense DIG labelled cAJVIH 

riboprobe at 66 °C. (a) A day 7.5 of incubation (stage 32 and 33) testes 

and mesonephroi, showing the "speckled" appearance of the gonads 

after a colour development of 45mins. Actual length of the 

mesonephros is 3.75mm. (b) Day 7.5 testes and mesonephroi, showing 

a more intense staining of the gonads. Colour development proceeded 

for lShr. Actual length of the mesonephros is 3.8mm. (c) Day 8.5 

(stage 34 and 35) testes and mesonephroi, indicating the intense staining 

in the gonads. Colour development proceeded for lShr. Actual length 

of the mesonephros is 4.5mm. (d) Day 5.5 testes and mesonephroi 

which are negative. Colour development proceeded for 24hr. Actual 

length of the mesonephros is 3.2mm. Gonad (G), mesonephros (M), 

anterior (A), posterior (P). Analysis by wmISH was carried out 5 times 

with consistent results. 
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Figure 32: 	Expression of AMH in the chick embryonic ovaries by wmISH. 

Hybridization was performed with an anti-sense DIG labelled cAMH 

riboprobe at 66 °C. (a) Day 7.5 (stage 32 and 33) ovaries and 

mesonephroi, which show no colour development after Shr. Actual size 

of the mesonephros is 3.8mm. (b) Day 7.5 ovaries and mesonephroi, 

showing colour development in the gonads after 2 days. Actual length 

of the mesonephros is 3mm. (c) Day 6.5 (stage 30) ovaries and 

mesonephros, showing no colour development after 3 days. Actual 

length of the mesonephros is 3.2mm. Anterior (A), posterior (P), left 

gonad (LG), right gonad (RG), mesonephros (M). Analysis by wmISH 

was carried out S times with consistent results. 
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Figure 33: 	Expression of AMFI in male and female chick gonads at day 7.5 of 

incubation, by wmISH , which have been sectioned and counterstained. 

(a) Female left gonad, showing no expression could be detected. Scale 

bar represents 40.tm. (b) Male gonad, showing expression of AMH is 

confined to the medulla and locates to the testicular cords. Scale bar 

represent 40j.tm. (c) High power magnification of the male gonad 

showing expression of AMH in cells in the medulla. Scale bar 

represents lORm. Mesonephros (M), gonad (G), seminiferous cords 

(SC), medulla (Me). 
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Chapter 7. 

Discussion. 

Expression studies of chick homologues to genes involved in 

mammalian gonadal development. 
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This study was carried out to compare whether gene regulation of mammalian 

gonadal development was conserved in the chick, and thus followed a similar genetic 

pathway. In addition, as a number of the genes expressed during mammalian gonadal 

development are a consequence of the sex determination switch, a systematic study of 

these genes might refine the timing of sex determination in the chick. One gene 

potentially involved in female mammalian gonadal development and not included in 

this study is Dax-1 (Burns et al., 1996). Using primers based on mammalian 

sequences, attempts to amplify a chick homologue of Dax-1 were unsuccessful. 

Reports have suggested that conservation of this gene between different species is not 

very high (Zanaria et al., 1994) and, therefore, it was considered that a mammalian 

Dax- 1 probe would be unlikely to detect a chick transcript. 

The major transcript size of AIvIH was approximately 2.7kb and two larger 

transcripts were approximately 4.45kb and 6.35kb, which corresponded with the size 

of the transcripts previously reported (Eusebe et al., 1996). AMH was first detected in 

male genital ridge tissue at 5.5d and peaked at 7.5d. This does not correspond to 

expression studies carried out by Eusèbe et al. (1996) where the expression levels 

peaked at 10th However, in the study reported here, expression in male and female 

gonads at lOd was not analyzed and in the Eusébe et al. (1996) study expression was 

not analysed prior to 8d. The profile observed here agrees with the ELISA assay 

analysis (Teng, 1987), which reported highest levels of Alvill expression between 6d 

and 8d. Our study reports highest levels of expression between 7.5d and 9.5d. Slight 

differences in the developmental days of expression between these two reports might 

be due to differences in the timing of egg incubation. When analyzed by wmlSH, 

ATVIH transcripts were detected in the male gonads. This expression mainly 

corresponded to the location of the testicular cords and confirmed the in situ analysis 

by Eusèbe et at (1996). 

In the female gonads, expression was detected from 6.5d to 9.5d, but at much 

lower levels than in the male gonads (fig 34). Expression in the adult ovary was 

higher than in any of the embryological stages studied, but lower compared to the adult 

testis. Eusèbe et al. (1996) reported the expression levels of AMH being 

approximately 14 times higher in the male gonads compared to the female gonads. 

However, in this study, the expression levels of AMH is 57 times higher in male 

gonads compared to female gonads at 7.5d. 

Low levels of expression were detected by wmISH, in the female gonads at 

7.5d. This correlates with the study by Teng (1987), where low AMH expression 

levels were detected in both left and night ovaries between 6d and 12d. However, 

work carried out by Eusèbe et al. (1996) indicated expression was never detected in 
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the right ovary and only detected in the left ovary at 17d. Both in this study and in the 

study carried out by Eusèbe et al. (1996) higher AIvIH expression levels were 

observed in the left ovary compared to the right ovary. By 7.5d, the right gonad is 

reported to be regressing and non-functional (Romanoff, 1960). However, results 

from this study indicate the right gonad is producing AM}l at this stage of 

development and thus is functional. Due to AMH being expressed in the female chick, 

AMH is therefore not a marker of specifically Sertoli cell differentiation; as suggested 

for mammalian gonads (Munsterberg and Lovell-Badge, 1991). In males, expression 

of AMH may be confined to the Sertoli cells but that not all Sertoli cells have organised 

into testicular cords by 7.5d. 

In mammalian male gonads AMH is first detected at 11.5 dpc and peaks at 13 

dpc (Hacker et al., 1995; MUnsterberg and Lovell-Badge, 199 1) (fig 35). Expression 

at 11.5 dpc coincides with a peak of SRY expression in the male gonads (Hacker et 

al., 1995). If AIvH-I expression in the chick follows the same pattern as AIVIH 

expression in the mammal and there is conservation of gonadal development, then the 

sex determining gene in the chick would be expected to be expressed before 5.5d. In 

fact, to follow the same pattern of gonadal development as in the mammal, the sex 

determining gene in the chick would be expressed in the male gonads between 3.5d 

and 5.5d. If previous reports on the timing of sex determination are correct 

(Romanoff, 1960, Venzke, 1954a) then initial expression of AMH at 5.5d would be 

prior to the postulated sex determination event. 

It has previously been reported that female gonadal differentiation precedes 

male gonadal development in the chick (McCarrey and Abbott, 1979). The initial 

expression of ATvIH in the male chick is at 5.5d and in the female at 6.5d. These 

results disagree with the report by McCarrey and Abbott (1979) and instead suggest 

that male gonadal differentiation occurs prior to female gonadal development. 

Expression of WTI was detected in male and female genital ridge tissue from 

3.5d to 9.5d. A potentially sexually dimorphic pattern of WTI expression was 

observed in chick gonads at 4.5d and 5.5d, with slightly higher levels of expression in 

the male gonads (fig 34). Analysis by wnilSH detected expression in male and female 

gonads and mesonephric tissue immediately adjacent to the gonads, but it was difficult 

to identify exactly which cell types were expressing WTI. However, wmISH analysis 

(where expression levels appeared lower in the male) did not correlate with Northern 

analysis data. Further analysis to quantitate the expression levels of the WT-1 

transcript at 4.5d and 5.5d, in different pools of male and female genital ridge RNA, 

must be carried out to resolve this discrepancy. The expression in the mesonephros 

observed in this study correlates with the study by Kent et al. (1995), which reported 
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expression of WTI in the glomeruli of the chick mesonephros at 4.5d to 6.5d. 

Expression was also observed on the outer edge of the Woiffian duct in males at 5.5th 

Kent et al. (1995) have previously reported expression of WTI in the chick at 2.5d, 

where the urogenital ridge develops. 

In the mouse, WTI was first detected in the intermediate mesoderm at 9 dpc 

(Armstrong et al., 1995) (fig 35), and in the urogenital ridge at 9.5 dpc; analogous to 

WTI expression in the initial stages of urogenital ridge development in the chick. 

Expression of WTI was observed in the gonads from the earliest stages of gonadal 

development through to the adult (Armstrong et al., 1995). While expression in the 

mesonephros was detected only from 9.5 dpc to 12 dpc, after which point the 

mesonephros regresses. Expression was located to the glomerular structures in the 

mouse mesonephros (Armstrong et al., 1995), which correlates with the expression of 

WTI in the chick mesonephros (Kent et al., 1995; this study). 

The present study indicates that expression of WTI in the chick has a similar 

profile to that in the mammal. However, one potential difference we observed 

between mammals and chicks is the slightly higher levels of expression in the male 

chick genital ridge tissue at 4.5d and 5.5d. If we assume the sex determination period 

in the chick is prior to 5.5d, then the higher levels of expression at this stage might 

suggest an involvement for WTI in the sex determining mechanism in the chick. 

Southern analysis of DNA from males and females revealed that WTI was not located 

on either of the sex chromosomes in the chick, suggesting that if WTI has a role in sex 

determination, it is not a primary role analogous to SRY. 

Targeted knockout of the mouse wt] gene resulted in gonadal and metanephric 

development arresting at a very early stage (Kreidberg et al., 1993). This suggested 

WTI had an important role in the development and maintenance of the urogenital 

ridge. This theory is supported in the chick as expression of WTI was detected in 

both sexes from the earliest stage of urogenital ridge development through to the initial 

stages of ovary and testis differentiation. WTI has been proposed to be involved in 

the mesenchymal cell to epithelial cell transition (Armstrong et al., 1992; Rauscher, 

1993). It is possible, therefore, that WTI is required for the differentiation of the 

mesenchymal cells into epithelial cells of the future seminiferous cords. 

Expression of aromatase was first detected in the female genital ridge at 6.5d, 

and peaked at 8.5d. No expression was detected by Northern analysis in the male 

genital ridge from 3.5d to 9.5d (fig 34), agreeing with previous studies (Smith et al., 

1997; Yoshida et al., 1996). This suggested that male gonads could not synthesise 

oestrogens as they do not express aromatase. Detection of aromatase in both the left 

and the right female gonad at 9.5d and 7.5d was reported by Smith et al. (1996) and 
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Andrews et al. (1997) respectively, and indicates oestrogens are produced in both 

female gonads even though the right gonad has begun to regress by this stage. 

Analysis of aromatase in reptiles (with a temperature dependent sex 

determination mechanism) has shown expression in the female gonads, female brain 

and the male brain (Jeyasuria and Place, 1997), from which a brain-gonadal axis was 

proposed to be involved in sex determination. Aromatase expression was not detected 

in other chick embryonic tissues, suggesting a brain-gonadal axis was not involved in 

chick sex determination. The detection of aromatase transcripts in embryonic and adult 

ovary but not in embryonic or adult testis indicates oestrogens are required for female 

but not male sexual development. 

Expression of aromatase in the female genital ridge at 6.5d coincides with 

oestradiol production which is first detected by radioimmunoassay at 6.5d in female 

chick embryos (McBride et al., unpublished observations). This conflicts with earlier 

studies carried out by Woods and Erton (1978), in which oestrogens were initially 

detected at 3.5d in the indifferent gonads, using an immunofluoresence procedure. 

However, three different studies using three different procedures have not detected 

aromatase expression prior to 6.5d (this study; Yoshida et al., 1996; Smith et al., 

1997). As aromatase is the rate limiting step for oestrogen production, this suggests 

the study carried out by Woods and Erton (1978) was not sufficiently accurate and a 

more sensitive method (radioimmunoassay) has not detected oestrogens before 6.5d in 

female embryos (McBride et al., unpublished observations). 

Oestrogen receptor expression in the chick has also been studied (Smith et at, 

1996; Andrews et at, 1997). Differences in oestrogen receptor expression or 

oestrogen concentration between males and females was considered to be a mechanism 

by which chick sex determination could be regulated (Andrews et al., 1997; Woods 

and Erton, 1978). However, the initial detection of aromatase and oestrogens in 

female gonads at 6.5d suggests oestrogen production is a consequence of chick sex 

determination. Nevertheless, the reported differences in aromatase and oestrogen 

receptor expression between male and female do implicate oestrogens in an important 

role in chick female gonadal development. 

Expression of SF-1 was detected in male and female genital ridge from 4.5d to 

9.5d, and exhibited a fairly constant pattern of expression (fig 34). This did not 

correlate with phosphorimager analysis, which showed down-regulation in female 

samples and up-regulation in male samples. This may be due to inconsistencies in 

loading, the difficulties in relating expression of the probe of interest to that of 18S, or 

the mechanics of quantitating signal intensity on a background that is not uniform. 

Expression levels observed by wmlSH, where SF-1 levels appear to be down- 



regulated by 7.5d in the gonads of both sexes, were also inconsistent with Northern 

analysis data. Also, Northern analysis data and wmISH data obtained on the chick 

does not correspond with data reported for the mouse after the sex determination 

period (Parker and Schimmer, 1997). However, by wmlSH, SF-1 expression was 

detected in the urogenital ridge in 3.5d male and female embryos, corresponding with 

early SF-i expression in the urogenital ridge in the mouse (Ikeda et al., 1994). 

Expression of SF-1 was observed in the mesonephros with a different pattern 

in males and females. A closer analysis of the expression pattern in the mesonephros 

indicated SF-1 expression was detected in the inner surface of the cells lining the 

collecting tubules. However, not all tubules expressed this transcript, and thus could 

be an artifact due to trapping of the transcript or antibody in the tissue. 

One role for SF-i in the developing gonads is thought to involve the regulation 

of steroid biosynthesis (Parker and Schimmer, 1997). It is also proposed that it 

positively regulates AMH (Shen et al., 1994). As AMH is expressed in the male and 

female chick, it would be expected that SF-i would be detected in the gonads of both 

sexes. Relatively high levels of SF-i expression in male and female chick gonads at 

6.5d supports this hypothesis. However, there does not appear to be a direct 

correlation between SF-i expression and AMH expression at other developmental 

days. It is likely that other factors are involved in the activation of AMH. One 

possible factor is the unknown sex determining switch in chicks, as SR Y has been 

proposed as a potential regulator of SF-i in mammals (Parker and Schimmer, 1997). 

Another potential role for SF-i is the up-regulation of aromatase (Lynch et al., 

1993). In female chicks, estrogens are required for female development, therefore, 

SF-I and aromatase would be expressed in the gonads during chick embryological 

development. In this study, expression of SF-1 was observed in the female chick 

gonads, but expression levels remained the same in contrast with aromatase 

expression, which increased rapidly from 6.5d to 8.5d. Thus it is unlikely that just 

SF-i positively regulates aromatase expression in the female chick and that additional 

factors are involved. 
Finally, another putative target or regulator of SF-i is WTI (Parker and 

Schimmer, 1997). Both of these genes are expressed in the chick and mouse 

urogenital ridge prior to sex determination (Kent et al., 1995; this study). If wt] or 

SF-I knockout mice are generated, both have arrested development of or lack of 

gonads (Kreidberg et al., 1993; Luo et at, 1994; Luo et at, 1995). Both WTI and 

SF-1 are thought to have an important role in the development of the urogenital ridge 

after it has arisen, and might interact with one another. However, WTI knockout mice 

expressed normal levels of SF-1 and vice versa (Parker and Schimmer, 1997). The 
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expression of these two genes did not appear to colocalise in the chick mesonephros, 

and thus are unlikely to regulate one another. 

The expression of Sox-9 exhibited a relatively constant level in the female and 

male genital ridge from 4.5d to 9.5d (fig 34). The constant levels of expression of 

Sox-9 in the chick male disagrees with studies carried out by da Silva et al. (1996) and 

Kent et at (1996). The higher level of expression in the chick adult testis compared to 

the adult ovary, and the detection only in the testis of a 1.36kb transcript suggested 

Sox-9 had an important role in gonadal development in the adult, in addition to a role 

in male and female chick gonadal development. 

The expression profile of Sox-9 in the chick does not correspond to the 

expression profile observed in the mouse gonads, where expression is initially 

detected in the urogenital ridges of both males and females. Expression levels increase 

in the mouse male gonads but decrease to undetectable levels in the mouse female 

gonads (da Silva et at, 1996; Kent et at, 1996) (fig 35). 

Sox-9 is reported to be highly conserved between mammals and birds, 

indicating a conserved function. Studies on the structure of the protein indicated it 

might function as a transcription factor (Foster, 1996; Kent et al., 1996; Goodfellow 

and Lovell-Badge, 1993). Two of its proposed targets are SF-i and AMH, due to the 

up-regulation of these two genes during male gonadal development in the mammal 

(Kent et al., 1996). The expression profiles of SF-1 AMIH and Sox-9 in the male 

chick would support this theory. Sox-9 is proposed to enforce the male sex 

determining pathway, by activating genes in this pathway. Alternatively, Sox-9 could 

act to inhibit genes in the female determining pathway, thus leading to male gonadal 

development. However, in the chick, our results suggest the Sox-9 must also have a 

role in female gonadal development. Therefore, although the expression profile of 

Sox-9 has been well characterised in mammals, the actual function of this gene during 

gonadal development is unknown. 

Overall AMH, SF-I, aromatase, WTI and Sox-9 are all expressed during 

chick gonadal development and that AMH, WT-1 and aromatase exhibit similar 

expression profiles compared to mammals; indicating a conserved gonadal 

differentiation pathway between these classes (fig 34 & 35). Although SF-i and Sox-

9 in the chick, do not exactly follow the expression profile observed in the mammal, 

both are initially expressed at similar stages of gonadal development in both classes. If 

the regulation pathway and function of these genes are conserved, then the timing of 

expression of these genes indicates the sex determining switch in chicks occurs earlier 

in development than previously reported. 
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Figure 34: Schematic representation of gene expression during the early stages of chick gonadal development, based on the expression profiles 
observed by Northern analysis. Thicker black lines represent differences in increases in expression levels. ? represents a potential up-regulation of 
the transcript. 
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Figure 35: Schematic representation of gene expression during the early stages of mammalian (mouse) 
gonadal development. Thicker black lines represent increases in expression levels. 



The earliest detectable expression of both SF-i and W71 is prior to the sex 

determination event in mammals (fig 35), and here detection of SF-1 and WT1 

expression was prior to detectable morphological changes in the chick gonads (5.5d). 

In the mouse, Sox-9 is expressed from 10.5 dpc, prior to sex determination, and here 

Sox-9 expression was first detected at 4.5d, prior to morphological differences. 

In the mouse, ATvll-I was first detected in the male gonads at 11.5 dpc, at the 

peak of Sty expression (Hacker et al., 1995). This expression was a consequence of 

the sex determining switch resulting in the gonads developing along the male pathway. 

If it is assumed that AMH in the chick is also expressed as a consequence of a sex 

determining gene, then initial expression of AIvIH in the male chick gonads at 5.5d 

suggested that sex determination occurred prior to this developmental stage in the 

chick. Finally, aromatase expression in the female chick gonads was detected 

approximately one day after morphological changes were first apparent between male 

and female chick gonads and one day after AMT-I expression in the male. This 

corresponds with the detection of significant levels of oestrogen in the female chick 

gonads from 6.5d (McBride et al., unpublished observations). In the mouse low levels 

of aromatase expression are detectable from 13 dpc in both the ovary and the testis 

(Greco and Payne, 1994). This corresponds to approximately 1.5 days after AMH is 

first expressed in the testis and approximately 1 day after morphological changes are 

first observed in the mouse gonads. Therefore, the results of this study indicate sex 

determination in the chick occurs prior to 5.5d. This theory is supported by slight 

morphological differences being observed, at the histological level, from 5.5d. 
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Chapter 8. 

Results. 

Identification of novel transcripts by differential display. 
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8.1. Identification of novel transcripts by differential display. 

Differential display analysis was performed on pooled RNA from male genital 

ridge tissue and pooled female genital ridge tissue. Embryos from 3.5d to 9.5d (stage 

21 to 36) were used in the analysis. PCR products generated from the display analysis 

were separated on a native 6% acrylamide gel and visualised by autoradiography (fig 

36, 37, 38, 39 & 40). 
A total of 24 primer combinations were carried out. It was calculated that each 

primer combination displayed approximately 80 bands representing different 

transcripts. Therefore, the total primer combinations used in this study resulted in 

approximately 1920 different transcripts being examined. This represents only 9.6% 

to 19.2% of the postulated 10 000 to 20 000 different transcripts normally observed in 

a chick cell (Alberts et al., 1994). While a proportion of the primer combinations 

produced identical banding patterns in the RNA samples tested, the majority of primer 

combinations did exhibit differences in banding patterns. 

One of the aims of this study was to assess the application of differential 

display for isolating differentially expressed genes in complex developmental systems. 

Therefore, the expression profiles isolated in this study did not just focus on 

differences in gene expression between males and females. Expression differences 

that exhibited changes over a developmental time period in both males and females 

were also isolated. 
A total of twelve different bands were excised from the display gel and the 

DNA eluted for further analysis. DNA was re-amplified in a PCR reaction utilising the 

same primer combination as in the original display reaction (fig 41). In some cases, 

more than the expected one band was re-amplified, suggesting either contamination or 

more than one sequence was present in the DNA isolated from the display band. Each 

PCR product was sub-cloned and a minimum of six sequences were obtained for each 

band of DNA isolated. Sequences were analyzed using a multiple sequence alignment 

programme from the GCG package and consensus sequences are presented in 

appendix 4. The consensus sequence for each clone was compared to sequences in 

nucleotide and protein databases using BLAST and FASTA analysis packages 

(Altschul et al., 1991; Genetics Computer Group, 1994). Information concerning the 

clones isolated and their expression profiles on the display gels is summarised in table 

2. 
Clone 771 had 96% homology to human RhoA at the amino acid level 

(Yeramian et al., 1987) and exhibited stage-specific expression (fig 36). RhoA is a 

GTP-binding protein and a member of the Ras superfamily (Vojtek and Cooper, 
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Figure 36: 	Time course differential display analysis comparing a subset of male 

and female genital ridge/mesonephric transcripts from days 3.5, 4.5, 

5.5, 7.5 and 8.5 of incubation. Total RNA was isolated from 

pooled male and pooled female genital ridge/mesonephric tissue and 

5g used to prepare cDNA by reverse transcription. A fraction 

(0.4%) of the cDNA was used as template in each display reaction. 

Differential display products were separated on a 6% native 

acrylamide gel. MG = oligo dT J2MG primer used in the reverse 

transcription and display analysis. R5, R12 and Sox = the random 

lOmers used in the display analysis. Bands excised from the 

display gel are indicated by a clone number at the side of the figure. 
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Figure 37: 	Time course differential display analysis comparing a subset of male 

and female genital ridge/mesonephric transcripts from day 5.5 to day 

9.5 of incubation. Total RNA was isolated from pooled male and 

pooled female genital ridge/mesonephric tissue and 5j.ig used to 

prepare cDNA by reverse transcription. A fraction (0.4%) of the 

eDNA was used as a template in each display reaction. Differential 

display products were separated on a 6% native aciylamide gel and 

visualized by autoradiography. MC = oligo cIT 12MC primer used in 

the reverse transcription and display reaction. Sox, R5 and RI I  = 

random lOmers used in the display analysis. Bands excised from 

the display gel are indicated by clone numbers at the side of the 

figure. 
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Figure 38: 	Time course differential display analysis comparing a subset of male 

and female genital ridge/mesonephric transcripts from clay 5.5 to day 

9.5 of incubation. Total RNA was isolated from pooled male and 

pooled female genital riclge/mesonephric tissue and 5tg used to 

prepare cDNA by reverse transcription. A fraction (0.4%) of the 

cDNA was used in each display reaction. Differential display 

products were separated on a 6% native aciylarnide gel and 

visualized by autoradiography. MG oligo IT 1 MG primer used in 

the reverse transcription reaction and display analysis. R8, R14 and 

R19 = random lOmers used in the display analysis. Bands excised 

from the display gel are indicated by clone numbers at the side of the 

figure. 
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Figure 39: 	Time course differential display analysis comparing a subset of male 

and female genital ridge/mesonephric transcripts from day 5.5 to clay 

9.5 of incubation. Total RNA was isolated from pooled male and 

pooled female genital ridge/mesonephric tissue and 5tg used to 

prepare eDNA by reverse transcription. A fraction (0.4%) of the 

cDNA was used in each display reaction. Differential display 

products were separated on a 6% native aciylamide gel and 

visualized by autoradiography. MG = oligo dT J2MG primer used in 

the reverse transcription reaction and display analysis. R8, R14, 

R19 = random lOmers used in the display analysis. Bands excised 

from the display gel are identified by clone numbers at the side of 

the figure. 
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Figure 40: 	Time course differential display analysis comparing a subset of male 

and female genital ridge/rnesonephric transcripts from clay 5.5 to day 

9.5 of incubation. Total RNA was isolated from pooled male and 

pooled female genital ridge/mesonephric tissue and 5pg was LISCCI to 

prepare cDNA by reverse transcription. A fraction (0.4%) of cDNA 

was used in each display reaction. Differential display products 

were separated on a 6% native aciylamide gel and visualized by 

autoradiography. MC = oligo dT 12MC primer used in the reverse 

transcription and display analysis. R2, R13 and R16 = random 

lOmers primers used in the display analysis. The band excised from 

the display gel was identified by the clone number at the side of the 

figure. 
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Figure 41: 	An example of PCR products of a reamplification reaction, carried 

out on DNA recovered from bands excised from the differential 

display gel. The majority of reamplification products exhibited one 

band, but in some reactions more than one hand was observed. 

Sample numbers 1 to 8 indicates reamplified DNA from different 

bands excised from the display gel. 



E 
	 E 

1 	2 	3 	4 	5 	6 	7 	8 

SOObp 

300bp 

200bp 

1 00b 



Clone Size Identity Display pattern 
771 1 O6bp 96% to human RhoA at the amino acid Expression detected in all days with 

level highest levels of expression in 3.5d males 
and females 

772 132bp no homology to sequences in the databases Expression only detected in day 5.5 males 
774 140bp 99% to chick mitochondrial genome at the Higher expression in 7.5d males, but 

nucleotide level present in other samples of both sexes 
775 156bp 100% to chick rho-globin Expression detected in both sexes but 

highest expression levels in 4.5d males 
776 1 6Obp no homology to sequences in the databases Expression detected in all samples with 

highest expression levels in 8.5d males 
777 216bp no homology to sequences in the databases Expressed only in 3.5d male and female 

samples 
779 299bp no homology to sequences in the databases Expression detected only in 3.5d males 
1001 174bp 97% to chick mitochondrial genome at the Expression detected in all samples with 

nucleotide level higher expression levels in 9.5d males 
1007 289bp 73% to human mef-2A at the nucleotide Highest expression levels in day 5.5 

level males. No expression detected in females 
1111 176bp 92% to rat TBP-1 and rat Sata at the Expression detected in all samples with 

nucleotide level highest expression levels in 5.5d males 
1144 252bp 84% to rat TCP-1 at the nucleotide level Highest expression levels detected in 5.5d 

female samples 
1161 7lbp no homology to sequences in the databases Expression detected in all days with 

I highest expression levels in 5.5d females 

Table 2: A summary of the sequence and expression profile data obtained on the differential display candidates. 



1995). Clone 772 had a sex-specific expression profile on the display gel, with 

expression only being detected in male genital ridge samples at 5.5d. Clone 774 

exhibited sexually dimorphic expression with higher levels in the male sample at 7.5d 

(fig 36). This clone had 99% homology at the nucleotide level to a portion of the chick 

mitochondrial genorne, covering tRNAs; alanine, asparagine and cysteine (Desjardins 

and Morais, 1990). Clone 775 gave 100% homology at the nucleotide level to the 

chick rho-globin (p—globin) gene (Roninson and Ingram, 1981). The expression 

pattern on the display gel showed a transcript with highest levels of expression in 

males and females at 4.5d and 5.5d (fig 36). Clones 776, 777 and 779 exhibited no 

sequence homology to any of the sequences present in the nucleotide and protein 

databases. Clone 776 showed highest levels of expression at 8.5d in the male genital 

ridge sample (fig 36). Clone 777 exhibited a stage-specific profile, and clone 779 a 

sex-specific profile (fig 36). Clone 1001 gave 97% homology at the nucleotide level 

to the chick 16S rRNA gene (Morais, 1990), and showed highest expression levels in 

male samples at 9.5d. Clone 1007 had 73% homology at the nucleotide level to 

human mef2A (Suzuki et al., 1996), and exhibited a sex-specific profile (fig 37). 

Clone 1111 exhibited higher expression levels in male samples at 5.5d (fig 38). This 

clone gave 92% homology at the nucleotide level to rat TBP- 1 (tat binding protein 1) 

(Makino, 1996) and 92% homology to rat spermatogenic cell/sperm-associated Tat 

binding protein homologue (Sata) (Rivkin et al., 1996). Clone 1144 exhibited higher 

expression levels in female samples at 5.5d (fig 39). Clone 1144 gave 84% homology 

at the nucleotide level to rat Tcp- 1 (t complex polypeptide 1) (Morita et al., 1991), a 

subunit of a chaperone that assists in protein folding (Kubota ci' al., 1995). Clone 

1161 exhibited highest expression levels in female samples at 5.5d (fig 40), but gave 

no homology to sequences present in the databases. 

8.2. 	Isolation and characterisation of a clone exhibiting differential 

expression between males and females. 

8.2.1. Clone 774. 
In figure 42, the ethidium bromide gel exhibited relatively equal loading of 

RNA at day 4.5d, 5.5d and 7.5d, for male and female samples. However, the amount 

of RNA at 3.5d was not equal between males and females or other timepoints and so 

3.5d RNA samples were disregarded in this analysis. Two transcripts, approximately 

3.8kb and 1.1kb, were detected. The larger transcript exhibited the same expression 

profile as observed on the display gel, with higher levels of expression in male 

samples at 7.5d (stage 32 and 33) (fig 42). 
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Figure 42: 	Northern analysis of display clone 774 expression in the gonads of 

developing male and female chick embryos (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at days 3.5, 4.5, 5.5, 75 and 8.5 

Of incubation (stage 21 to 35). 	5ig of each sample was 

electrophoresed on a I % agarose/formaldehyde gel. 	Northern 

hybridization was carried out at 60°C in 0.25M Na PO 4 , 7% SDS. 

Northern blots were washed to a final stringency of 25mM Na PO 4 , 

1% SDS at 65°C and exposed to film for 2 days at -70°C. The 

presence of approximately equal amounts of RNA in each lane was 

monitored by staining the gel with ethidiurn bromide and visualizing 

under U.V. light (bottom panel). A single observation by Northern 

analysis was made. 
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Clone 774 was also used to probe a Northern tissue blot (data not shown) and 

revealed a number of hybridising transcripts, which indicated 774 was not gonadal 

specific. A transcript of approximately 2.5kb was detected in various embryonic tissue 

samples but not in the adult ovary or testis. Another transcript, of approximately 

1.1 kb, showed strong expression in adult testis with weak expression in the ovary. 

Two other transcripts, of approximately 0.48kb and 7.6kb were also detected (data not 

shown). 

An anti-sense 774 of 244bp and a sense probe of 274bp were used to perform 

wmISH. Expression was studied at 7.5d in male and female chick genital ridge and 

mesonephros tissue. Expression of 774 was observed in the male gonads at this stage 

of development (fig 43a), although expression was not observed at the anterior and 

posterior tips. There was also patchy expression in the medulla region of the 

mesonephros. In the female, expression was observed in the medulla of the 

mesonephros (fig 43b). Expression was not obvious in the gonads, which appeared 

as transparent tubes overlying expression in the mesonephros. The sense probe 

exhibited no colour development over the same time period. 

8.2.2. Library screen data. 
The clone chosen for further study was 774. Although this clone had 99% 

homology to the chick niitochondrial genome, there was clearly a higher level of 

expression in male genital ridge samples at 7.5d compared with female samples at the 

same stage. In addition, the transcript size of clone 774, observed by Northern 

analysis, did not correspond to the expected sizes of the mitochondrial genes which it 

matched. 
The entire genomic library was represented by plating out approximately 50 

000 p.f.u/plate on 20 large NZY plates, so that a total of lx 106  plagues were screened. 

The primary screen resulted in 118 positives being identified and cored. Of these, 20 

were chosen at random and plated out for a secondary screen, at approximately 400 

p.f.u./plate for each plaque plug. From these 20 plates, 138 positives were identified. 

At least one positive from each plate was chosen, so that a total of 21 positives were 

cored and the DNA insert and phagemid vector excised from the lambda vector. A 

tertiary screen was not required as the plating frequency of plaque forming units, 

allowed a single, well isolated plaque to be cored for each positive identified. In order 

to confirm which positive plaques picked contained the correct insert; each clone was 

studied by Southern analysis (fig 44). Of the 21 positives picked, 13 were positive for 

the display clone 774 by Southern analysis. 
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Figure 43: 	Expression of display clone 774 in the embryonic chick gonads ar 

rnesonephric tissue at day 7.5 of incubation (stage 32 and 33) 

wrnISH. Hybridization was performed using a sense and anti-sen 

DIG labelled 774 riboprobe at 66°C. Colour development proceeded fi 

3 days. (a) Male gonads and mesonephros. Actual length of ti 

mesonephros is 3.3mm. (b) Female gonads and rnesonephros. Actu 

length of the mesonephros is 3mm. (c) Female gonads hybridized wi 

the sense probe. Actual length of the mesonephros is 4.3mm. Anteri 

(A), posterior (P), left gonad (LO), right gonad (RG), mesonephii 

(M). Analysis by wrnlSH was carried out twice with consistent results 
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Figure 44: 	Southern analysis of clones isolated from a genomic library screen, 

using clone 774 as a probe. The top panel indicates the ethidiurn 

bromide gel of each clone, digested with EcoRI and separated on a 

1% agarose gel. The bottom panel indicates clones which contain a 

homologous sequence to the 774 probe, and are identified by the 

binding of radioactivity to the relevant band on the Southern 

membrane. Southern hybridization was carried out at 42°C in 2x 

PIPES, 50% formamide, 0.5% SDS. The blot was washed to a 

final stringency of 0.2xSSC, 0.1% SDS at 68°C and was exposed 

to film for four hours. No. I to 21 indicates different clones 

analyzed. 
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Figure 45: 	Schematic representation of the chick mitochondrial genorne. The 

chick mitochondrial genome is 16775bp in length. No.s 1 to 22 

represent the positions of the tRNA genes. CCO = cytochrome c 

oxidase. ND = NADH dehydrogenase. 
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All 13 positive clones were sequenced, and analyzed using a multiple sequence 

alignment programme from the GCG package. A consensus sequence for each clone 

was compared to the sequences in the databases using the BLAST and FASTA 

analysis packages (Altschul et al., 1990; Genetics Computer group, 1994). All clones 

showed homology to the chick mitochondrial genome. The extent of the fragment 

isolated was 5078bp, and was contained in two overlapping clones (19.2.1.5 and 

8.3.1.3.) (fig 45). Clone 19.2.1.5 was 1322bp in length and encoded the region 

from the 3' end of the cytochrorne c oxidase I (CCOI) gene through to the 3' end of 

the NADH dehydrogenase II gene. Clone 8.3.1.3 was 4.1kb in length. It exhibited 

homology from the midpoint of the cytochrome c oxidase HI (CCO III) gene through 

to the gene encoding the alanine tRNA. The position of the original display clone 

(774) is shown on figure 45. 

8.2.3. Northern analysis data on genomic clones. 

In an attempt to identify approximately which part of the isolated chick 

mitochondrial genome exhibited the same differentially expressed pattern as the display 

clone, Northern analysis was carried out. The full length of the insert 19.2.1.5 was 

utilised in the Northern analysis procedure. Clone 8.3.1.3 was cut with restriction 

enzyme into three fragments of: 496bp, 2301bp and 1309bp (fig 45). Clone 8.3.1.3 

(496) encoded the region from the 3' end of the cytochrome c oxidase I (CCO I) gene 

to the alanine tRNA gene. Clone 8.3.1.3 (2301) encoded the region from the 3' end 

of the ATPase 6 gene to the 3' end of the CCO I gene. Finally, clone 8.3.1.3 (1309) 

encoded the region from the middle of the CCO Ill gene to the 3' end of the ATPase 6 

gene. 

Clones 8.3.1.3 (496), 8.3.1.3 (1309) and 8.3.1.3 (2301) did not show the 

same differentially expressed pattern as observed with the display clone (fig 46, 47 & 

48). 

Northern analysis using clone 19.2.1.5. detected two major transcripts of 

approximately 1.5kb and 0.82kb and three minor transcripts of approximately 5.1kb, 

3.3kb and 2.8kb. Transcript 3.3kb exhibited an expression profile and transcript size 

similar, but not identical to, that observed with the display clone (774). After 

normalisation for loading, female expression levels were seen to be relatively constant 

for this transcript (fig 49), from 5.5d to 9.5d and in the adult ovary. In the male, 

expression of the 3.3kb transcript was relatively constant except for the peak of 

expression at 7.5d. This peak of expression corresponded to the peak of expression 

observed with the display clone (774), although expression levels were much lower by 

Northern analysis using the 19.2.1.5 clone. Another difference between 19.2.1.5 and 

93 



Figure 46: 	Northern analysis of clone 8.3.1.3 (496) in the gonads of the 

developing male and female chick embryo (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36), and 1Otg of each sample was separated 

on a 1% agarose/formaldehyde gel. Northern hybridization was 

carried out at 60°C in 0.25M Na P0 41  7% SDS. The blot was 

washed to a final stringency of 25mM Na PO 4, 1% SDS at 65°C and 

exposed to film for 2 days at -70°C. The loading of the RNA in 

each lane was standardized by hybridizing with a fragment of the 

chick 18S ribosomal gene (bottom panel). A single observation by 

Northern analysis was carried out. 
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Figure 47: 	Northern analysis of clone 8.3.1.3 (1309) in the gonads of the 

developing male and female chick embryo (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36), and l0.Lg of each sample was separated 

on a I % agarose/formaldehyde gel. Northern hybridization was 

carried out at 60°C in 0.25M Na PO 4 , 7% SIDS. The blot was 

washed to a final stringency of 10mM Na PO 4, 1% SIDS at 65°C 

and exposed to film overnight at -70°C. The loading of the RNA in 

each lane was standardized by hybridizing with a fragment of the 

chick 18S ribosomal gene (bottom panel). A single observation by 

Northern analysis was made. 
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Figure 48: 	Northern analysis of clone 8.3.1.3 (2301) in the gonads of the 

developing male and female chick embryo (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36) and adult ovary and testis. I0tg of each 

sample was separated on a I% agarose/formaldehyde gel. Northern 

hybridization was carried out at 60°C in 0.25M Na PO E , 7% SDS. 

The blot was washed to a final stringency of 25mM Na P0 41  1% 

SIDS at 68°C and exposed to film for 2 days at -70°C. The loading 

of the RNA in each lane was standardized by hybridizing with a 

fragment of the chick 18S ribosomal gene (bottom panel). A single 

observation by Northern analysis was made. 
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Figure 49: 	(A) Northern analysis of clone 19.2.1.5 in the gonads of the 

developing male and female chick embryo (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 5.5 to day 9.5 of 

incubation (stage 28 to 36) and adult ovary and testis. 5tg of each 

sample was separated on a 1% agarose/formaldehyde gel. Northern 

hybridisation was carried out at 60°C in 0.25M Na PO 4 , 7% SDS. 

The blot was washed to a final stringency of 10mM Na PO 4 , 1% 

SIDS at 65°C and exposed to film for 3 days at -70°C. The loading 

of the RNA in each lane was standardised by hybridising with a 

fragment of the chick 18S ribosomal gene (bottom panel). A single 

observation by Northern analysis was made. 

(B) Graph of the expression profile of the 3.3kb transcript of clone 

19.2.1.5 in the genital ridge/niesonephric tissue of male and female 

chick embryos, analyzed by Northern analysis. The amount of 

radioisotope bound in each lane was quantitated using a 

phosphorimager and related to a loading control. F = female. M = 

male. 
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the display clone (774) is the number of transcripts detected. However, the fact that 

clone 19.2.1.5 covers the area encoded by the display clone; its approximate size is 

within 300bp of the display clone and its expression peaks at day 7.5 of incubation 

suggests this part of the chick mitochondrial genome is comparable to the differential 

expression observed with the display clone 774. 

8.3. Confirmation of differential expression of display clones. 

The twelve clones isolated from the display gel and their expression profile by 

Northern analysis in comparison to their expression on the display gel is summarised 

in table 3. In an attempt to localise the expression of each display clone to a tissue 

type, wmISH was performed. 

8.3.1. Clone 771. 
By Northern analysis, 771 exhibited elevated levels of expression at 3.5d 

(stage 21 and 22) in both male and female samples (fig 50A). However, the band 

obtained was diffuse and gave a transcript size of approximately 0.9kb to 1.2kb. Two 

other transcript sizes were also detected. These were approximately 1 .8kb and 1 .5kb 

and were identified in 4.5d, 5.5d and 7.5d (stage 25 to 33) in male and female 

samples. These transcript sizes correspond to previously published sizes for RhoA 

(Moscow et al., 1994). A third transcript for RhoA has also been reported, however 

the size reported is over 1.2kb (Moscow et al., 1994). Expression of 771 was higher 

in female samples than males when compared at the same developmental day, with the 

exception of 3.5d. After normalisation, no differences were observed between male 

and female samples for the same developmental stages (fig 50B). Expression levels 

decreased after 3.5d and then increased in both sexes at 7.5d. The expression pattern 

for 771 detected by Northern analysis replicates exactly the expression profile 

observed on the display gel. 

The expression profile was also studied in different tissues at different 

developmental stages in the chick embryo (data not shown). Two main transcripts, of 

approximately 1.8kb and 1.5kb, were observed in all tissues studied. Minor 

transcripts of 0.85kb and 3.5kb were also detected in various tissues. 

An anti-sense 771 probe of 254bp and a sense probe of 224hp were used to 

perform wrnISH. Partially dissected male and female chick embryos at 3.5d showed 

fairly widespread expression of 771 throughout the developing embryo (data not 

shown). 

Expression of clone 771 was also analyzed in male and female genital ridge 

and mesonephric tissue, at 7.5d (fig 51a & b). In the male, expression of clone 771 
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lone Display Data Northern Data 

771 Highest levels of Highest expression of 
expression, d3.5 males and smallest transcript on d3.5 
females in males and females. Two 

larger transcripts present, 
higher in females. 

772 Expression only detected in Increase in expression at 
d5.5 males. d5.5 in males and females, 

followed by a decrease in 
expression. 

774 Higher expression in d7.5 Higher expression levels in 
males. males at d7.5. 

775 Expression levels peak at Expression levels peak at 
d4.5 in males and females. d4.5 in males and females. 

776 Higher expression levels in No transcript detected by 
males at day 8.5 of this method. 
incubation.  

777 Expression in males and No transcript detected. 
females only at day 3.5 of 
incubation.  

779 Expression only in males at No transcript detected. 
day 3.5 of incubation.  

1001 Higher expression in males Increasing levels of 
at d9.5 of incubation expression, which peaks at 

day 9.5 of incubation in 
both sexes. 

1007 Highest expression in Peak of expression in 
males at d5.5 of males and females at d5.5 
incubation. No expression of incubation. 
in females.  

1111 Higher levels of expression Higher levels of expression 
in males at d5.5 of in females compared to 
incubation, males, at all developmental 

stages analysed. 
1144 Higher expression levels in Higher levels of expression 

females at d5.5 of in males and females at 
incubation. d5.5, but expression 

detected at other 
developmental stages. 

1161 Higher expression levels at No transcript detected. 
d5.5 of incubation.  

Table 3: A summary of the expression profile of the display clones on the display gel 
and by Northern analysis. 



Figure 50: 	(A) Northern analysis of display clone 771 in the gonads of 

developing male and female chick embryos (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/rncsonephric tissue at days 3.5, 4.5, 5.5 and 7.5 of 

incubation, and 5ig of each sample elcctrophoresed on a I % 

agarose/formaldehyde gel. Northern hybridization was carried out 

at 42°C in 2xPIPES, 50% formamide and 0.5% SDS. Northern 

blots were washed to a final stringency of 0.5xSSC, 0.1% SDS at 

65°C and exposed to film overnight at -70°C. The presence of 

approximately equal amounts of RNA in each lane was monitored 

by hybridizing with a fragment for the chick 18S ribosomal gene 

(bottom panel). A single observation was made by Northern 

analysis. 

(B) Graphical representation of the expression profile of display 

clone 771 analyzed by Northern analysis. The amount of 

radioisotope bound in each lane was quantitated using a Molecular 

Dynamics phosphorimager and related to a loading control. F = 

female. M =male. 
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Figure 51: 	Expression of display clone 771 in the embryonic chick gonad ar 

meonephric tissue at day 7.5 (stage 32 and 33) by wrnlSI-

Hybridization was performed using a sense and anti-sense DIG labelle 

771 riboprobe at 63°C. Colour development proceeded for 1 5hr. ( 

Male gonads and mesonephros. Actual length of the mesonephros 

3.9mm. (b) Female gonads and mesonephros. Actual length of tF 

mesonephros is 3.6mm. (c) Male gonads and mesonephros hybridize 

with a sense probe. Actual length of the mesonephros is 4mm. Anteri 

(A), posterior (P), left gonad (LG), right gonad (RG), mesonephrc 

(M). Analysis by wmISH was carried out twice with consistent results 
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was detected in both gonads. Expression could also be detected in the mid-part of the 

mesonephros. In the female, expression of clone 771 was detected in the gonads. 

However, expression levels were significantly higher in the female left gonad 

compared to the right gonad. If the sense 771 probe was used, no specific expression 

was observed in the tissue (fig Slc). 

8.3.2. Clone 772. 

Northern analysis carried out on clone 772 showed two transcripts of 

approximately 1.6kb and 3.7kb, after a low stringency wash and a two day exposure 

(fig 52A). The 1.6kb transcript exhibited a gradual increase in levels of expression in 

both male and female samples over 4.5d to 9.5d (stage 25 to 36). After a high 

stringency wash and a one week exposure, only the 3.7kb transcript was detectable. 

The expression profile of this transcript was similar in both males and females. 

Expression levels peaked at 5.5d and then gradually decreased to 9.5d. After 

normalisation, the female samples showed a peak of expression at 5.5d followed by 

the gradual decrease in expression (fig 52B). The results of the male samples were 

less clear (fig 5213). The very low levels of expression at 4.5d followed by the rapid 

increase a day later were evident. There was another peak of expression at 7.5d, much 

greater than the expression levels observed in the female at the same stage, although 

phosphorimager data accentuates the level of expression of 77.2 in the male at this 

stage. Levels of expression in the remaining developmental stages were equivalent to 

those in the female at the same stages. Overall, both sexes followed the pattern of a 

rapid increase of expression levels at 5.5d, followed by a decrease in these levels. 

This pattern of expression did not correspond to that observed on the display gel, 

where expression was only detected in male samples at 5.5d. 

The expression profile of clone 772 was also analyzed on a Northern blot 

containing different embryonic tissues from different days. A transcript of 

approximately 3.75kb was detected in various embryonic tissues and in the adult ovary 

and testis, with higher levels of expression in the adult ovary compared to the adult 

testis (data not shown). In addition, a larger transcript of approximately 4.2kb was 

detected in various tissues at 5.5d and 6.5d. 

An anti-sense 772 probe of 269bp and a sense probe of 239bp were used to 

perform wmISH. Expression of clone 772 was studied in male and female chick 

genital ridge and mesonephros tissue at 4.5d to 6.5d. At all three days of incubation, 

high levels of expression, of clone 772, were observed in the male and female genital 

ridge and mesonephric tissue, which does not correlate with the low levels of 
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Figure 52: 	(A) Northern analysis of display clone 772 in the gonads of 

developing male and female chick embryos (top and middle panel). 

Total RNA was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36), and Sjig of each sample was 

electrophoresed on a 1% agarose/formaldehyde gel. Northern 

hybridization was carried out at 42°C in 2xPIPES, 50% formarnide, 

0.5% SDS. Northern blots were washed in 0.5xSSC, 0.1% SDS at 

60°C (low stringency) and exposed to film overnight at -70°C (top 

panel). Northern blots were washed to a final stringency of 

0.2xSSC, 0.1% SDS at 68°C and exposed to film for 1 week at - 

70°C (middle panel). The RNA loading in each lane was 

standardized by hybridizing with a fragment of the chick 18S 

ribosomal gene (bottom panel). Northern analysis was carried out 

twice, on different RNA samples, with consistent results. 

(B) Graphical representation of the expression profile of display 

clone 772 analyzed by Northern analysis. The amount of isotope 

bound in each lane was quantitated using a phosphorimager and 

related to a loading control. F = female. M = male. 
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Figure 53: 	Expression of display clone 772 in the chick embryonic gonads at 

mesonephric tissue by wmISH. Hybridization was performed using 

sense and anti-sense DIG labelled 772 riboprobe at 66 °C. (a) Day 6. 

(stage 30) male gonads and mesonephros. Colour developme 

proceeded for 14hr. Actual length of the mesonephros is 4mm. (1 

Day 6.5 female gonad and meonephros. Colour development proceed( 

for 3hr. Actual length of the mesonephros is 3.8mm. (c) Day 6. 

female gonads and mesonephros hybridized with the sense prob' 

Colour development proceeded for 34hr. 	Actual length of ti 

mesonephros is 3.6mm. Anterior (A), posterior (F), gonad (0 

mesonephros (M). Analysis by wmISH was carried out twice wil 

consistent results. 
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expression detected in male and female genital ridge tissue at 4.5d by Northern 

analysis (fig 53a & b). No specific expression was observed with the sense probe. 

8.3.3. Clone 775. 
A low stringency wash resulted in many different size transcripts being 

detected on the Northern blot (fig 54), due to binding to related transcripts. After a 

high stringency wash (10mM Na P0 41  0.1%SDS at 70°C), only a single transcript 

could be detected (fig 54). The size of this transcript was approximately 0.6kb, 

corresponding to the published size of 546bp for rho-globin (Roninson and Ingram, 

1981). The expression showed the highest levels of expression in male and female 

genital ridge tissue was at 4.5d (stage 25 and 26), matching the expression profile on 

the differential display gel. Expression levels decreased after this developmental day 

so that only very low levels could be detected at 7.5d. 

8.3.4. Clone 776. 
When clone 776 was used to probe a Northern blot, containing genital ridge 

tissue from different days, no transcript could be detected, precluding a comparison of 

the patterns obtained by Northern analysis and differential display. However, a 

transcript, approximately 4.0kb, was detected on a Northern tissue blot (data not 

shown), with expression in the brain at 5.5d, kidney tissue at 6.5d and adult testis. 

8.3.5. Clone 777. 

By Northern analysis, probes derived from clone 777 failed to detect 

expression in either the genital ridge or other embryonic tissue, between 3.5d and 

9.5d. No expression could be detected by wmlSH. 

8.3.6. Clone 779. 
By Northern analysis, probes derived form clone 779 failed to detect 

expression in the genital ridge, between 3.5d and 9,5d. 

This clone was also used to probe a Northern blot containing various 

embryonic tissues (data not shown). A transcript, approximately 9.2kb, was detected 

in the brain at 7.5d (stage 32 and 33). A second transcript of approximately 3.45kb 

was also detected in brain samples at 4.5d to 8.5d, and in the adult ovary and testis, 

with slightly higher levels of expression in the testis (data not shown). 

An anti-sense 779 transcript of 434bp and a sense transcript of 404bp were 

used to perform wniISH. In partially dissected male embryos at 3.5d, expression was 

detected along the main body of the embryo (fig 55a & b), with expression in the 



Figure 54: 	Northern analysis of display clone 775 in the gonads of developing 

male and female chick embryos. Total RNA was isolated from 

pooled male and pooled female genital ridge/mesonephric tissue 

collected at days 3.5, 4.5, 5.5, 7.5 and 8.5 of incubation (stage 21 

to 35), and 5tg of each sample was electrophoresed on a 1% 

agarose/formaldehyde gel. Northern hybridization was carried OLII 

at 65°C in 0.25M Na PO4 , 7% SDS.The top panel shows the 

Northern blot washed in 25mM Na P0 41  1% SIDS at 55°C and 

exposed to film overnight at -70°C. The middle panel shows blots 

washed to a final stringency of 10mM Na P0 41  0. 1% SDS at 70°C 

and exposed to film for 2 days at -70°C. The presence of 

approximately equal amounts of RNA in each lane was monitored 

by staining the gel with ethidiurn bromide and visualizing under 

U.V. light (bottom panel). A single observation by Northern 

analysis was made. 
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neural tube and the mesoderm. Expression was also detected in the proximal region 

of the fore and hind limb bud (fig 55a). In female partially dissected embryos, at 

3.5d, expression levels were much lower compared with those detected in the male 

(fig 55d), with a more restrictive pattern of expression. However, this figure is of 

poor quality and the length of time required (3 days) to detect a signal suggests the 

result observed is an artifact. No specific expression was observed with the sense 

probe. Also, no expression was detected in the genital ridge from males or females at 

4.5d to 6.5d (data not shown). 

8.3.7. Clone 1001. 
Northern analysis carried out on clone 1001 revealed one transcript of 

approximate size 2.3kb (fig 56A) detectable in every developmental day studied. 

Expression gradually increased from 4.5d to peak at 9.5d, in both male and female 

genital ridge. After normalisation, the overall trend was a gradual increase in the 

expression levels of this transcript in male samples over the initial developmental 

stages (fig 5613). While the expression pattern exhibited relatively constant levels in 

female samples from 5.5d to 9.5d, which does not accurately represent the increase in 

expression levels in female samples observed by Northern analysis. 

The expression profile of clone 1001 was examined in different embryonic 

tissues (data not shown). Three transcripts of approximate size: 2.3kb, 4.65kb and 

9.1kb were detected. The 2.3kb transcript showed the strongest expression and was 

detected in all tissues at all developmental stages studied. 

8.3.8. Clone 1007. 
Northern analysis, with clone 1007, revealed expression at all stages of 

gonadal development studied in both males and females, with very low levels at 4.5d 

(fig 57A). After normalisation for loading, expression levels were seen to peak at 

7.5d for males and thereafter decrease, while in females expression levels were 

relatively constant from 5.5d to 9.5d (fig 57B). No significant differences were 

observed between expression levels in adult ovary and adult testis. The transcript size 

of approximately 4.7kb, corresponds well to the documented size of human mef-2A 

(Suzuki et al., 1996). The expression profile was also studied in other tissues during 

certain stages in embryonic development (data not shown). A band, approximately 

4.7kb, was detected at 5.5d in the rest of the embryo (minus: heart, brain, genital 

ridge and mesonephros). A faint band was also detected in the heart at 8.5d. 

A 1007 anti-sense probe of 416bp and a sense probe of 446bp were used to 

perform wmlSH. Expression was detected in the gonads and the mesonephros of 
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Figure 33: 	Expression of AMIH in male and female chick gonads at day 7.5 of 

incubation, by wmISH , which have been sectioned and counterstained. 

(a) Female left gonad, showing no expression could be detected. Scale 

bar represents 40Rm. (b) Male gonad, showing expression of AMIH is 

confined to the medulla and locates to the testicular cords. Scale bar 

represent 40Rm. (c) High power magnification of the male gonad 

showing expression of AMH in cells in the medulla. Scale bar 

represents lORm. Mesonephros (M), gonad (U), seminiferous cords 

(SC), medulla (Me). 
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Figure 55: 	Expression of display clone 779 in male and female chick embryos 

day 3.5 of incubation (stage 21 and 22) by wmISH. Hybridization w 

performed using a sense and anti-sense DIG labelled 779 riboprobe 

65°C. Colour development proceeded for 3 days. (a) Lateral view ol 

partially dissected male embryo. Actual length of the embryo (minus t 

head) is 5mm. (b) Partially dissected male embrto. Actual length of t. 

embryo (minus the head) is 5.2mM. (c) Partially dissected fern 

embryo hybridized with the sense probe. Actual length of the embr 

(minus the head) is 5.5mm. (d) Lateral view of a partially dissect 

female embryo. Actual length of the embryo (minus the head) is Smi 

(a), (b) and (d) were hybridized with the anti-sense probe.. Anterior (A 

posterior (P), urogenital ridge (UR), hind limb (HL), forelimb (FL). 

single observation by wmISH was made. 



Figure 56: 	(A) Northern analysis of display clone 1001 in the gonads of 

developing male and female chick embryos (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at days 4.5 to 9.5 of incubation 

(stage 25 to 36), and 54g of each sample was electrophoresed on 

1% agarose/formaldehyde gel. Northern hybridization was carreid 

out at 42°C in 2xPIPES, 50% formamide, 0.5% SIDS. Blots were 

washed to a final stringency of 0.2xSSC, 0.1% SDS at 65°C and 

exposed overnight to film at -70°C. The RNA loading in each lane 

was standardized by probing with a fragment of the chick 18S 

ribosomal gene (bottom panel). Northern analysis was repeated 

twice, on different RNA samples, with consistent results. 

(B) Graph showing the expression profile of display clone 1001, 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M = male. 
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Figure 57: 	(A) Northern analysis of display clone 1007 expression in the 

gonads of developing male and female chick embryos (top panel). 

Total RNA was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at day 4.5 to day 9.5 of 

incubation (stage 25 to 36), and 5tg of each sample was 

electrophoresed on a 1% agarose/formaldehyde gel. Northern 

hybridization was carried out at 42°C in 2xPIPES, 50% formamide, 

0.5% SDS. The blot was washed to a final stringency of 0.2xSSC, 

0.1% SDS at 60°C and exposed to film for 2 days at -70 ° C. The 

RNA loading in each lane was standardized by hybridizing with a 

fragment of the chick 18S ribosomal gene (bottom panel). A single 

observation by Northern analysis was made. 

(B) Graph showing the expression profile of display clone 1007 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M = male. 
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Figure 58: 	Expression of dispaly clone 1007 in the chick embryonic gonads an 

mesonephric tissue at day 6.5 of incubation (stage 30) by wmISI-E 

Hybridization was performed using a sense and anti-sense DIG labelle 

1007 riboprobe at 66°C. Colour development proceeded for l½hr. ( 

Male gonads and mesonephros. Actual length of the mesonephros i 

3.8mm. (b) Female gonads and mesonephros. Actual length of th 

mesonephros is 3.3mm. (c) Male gonads and mesonephros hybridize 

with the sense probe. Actual length of the mesonephros is 4mm. (ci 

Female gonads and mesonephros hybridized with the sense probc 

Actual length of the mesonephros is 3.4mm. Anterior (A), posteric 

(P), gonad (G), mesonephros (M). A single observation by wmTSI 

was made. 
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both sexes at 6.5d (fig 58a & b). In the male, expression levels were highest in the 

gonads and the cortex of the mesonephros. In the female, 1007 expression levels 

were higher in the posterior of both gonads (fig 58b). No expression was observed in 

the female or male genital ridge or mesonephros when using the sense probe (fig 58d). 

8.3.9. 	Clone 1111. 

Northern analysis, using clone 1111 as a probe, detected a transcript of 

approximately 1.7kb which is greater than the reported size of rat TBP-1 cDNA 

(1459bp) (Makino, 1996) and the cDNA size of rat Saw cDNA (1627bp) (Rivkin a 
al., 1996). A transcript was detected in every male and female sample on the Northern 

blot; and in the adult ovary and adult testis. After normalisation and on the Northern 

blot, the female samples were seen to have higher levels of expression at all 

developmental stages compared with the male samples (fig 59A & B). This indicates a 

sexually dimorphic expression pattern for this transcript, at all developmental stages 

studied. This expression pattern, however, does not match the result obtained on the 

display gel. 
The expression of this clone was also analyzed in various embryonic tissues 

and showed a similar sized transcript (data not shown). Expression was detected in all 

tissues studied at 5.5d. Expression levels at 6.5d and 7.5d were much lower, with 

possibly highest levels in the kidney at 7.5d. A transcript was detected in the majority 

of tissues analyzed at 8.5d. 

8.3.10. 	Clone 1144. 
A major transcript of approximately 1.9kb and a minor transcript of 3.9kb 

were detected by Northern analysis. The smaller transcript corresponds to the size of 

the reported rat cDNA for TCP- 1 (183 lbp) (Morita et al., 1991). The major transcript 

was detected at 4.5d to 9.5d on the Northern blot (fig 60A). After normalisation, 

expression of the smaller transcript was seen to peak at 5.5d for both males and 

females (fig 6013). In female and male genital ridge samples, transcript expression 

levels then showed a gradual decrease to 9.5d. Although this decrease in expression 

levels does not appear significant by Northern analysis. 

Analysis of clone 1144 on a Northern tissue blot revealed the same two 

transcripts were present (data not shown). Highest levels of expression of the major 

transcript were observed at 5.5d and in the adult testis. A lower level of expression 

was seen at 6.5d, which increased at 7.5d and 8.5d in brain, heart, kidney and lung. 

Analysis of expression levels in the adult ovary and testis showed much higher levels 

W. 



Figure 59: 	(A) Northern analysis of display clone 1111 in the gonads of 

developing male and female chick embryos (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridgefmesonephric tissue collected from day 5.5 to day 9.5 of 

incubation (stage 28 to 36) and from adult ovary and testis. 5g of 

each sample was separated on a 1.% agarose/formaldehyde gel. 

Northern hybridization was carried out at 42°C in 2xPIPES, 50% 

formamide, 0.5% SDS. The blot was washed to a final stringency 

of 0.2xSSC, 0.1% SDS at 65°C and exposed to film for 2 days at - 

70 °C. The RNA loading in each lane was standardized by 

hybridizing with a fragment of a chick 18S ribosomal gene (bottom 

panel). A single observation by Northern analysis was made. 

(B) Graph showing the expression profile of display clone 1111, 

analyzed by Northern analysis. The amount of radioisotope bound 

in each lane was quantitated using a phosphorimager and related to a 

loading control. F = female. M = male. 
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Figure 60: 	(A) Northern analysis of display clone 1144 in the gonads of 

developing male and female chick embryos (top panel). Total RNA 

was isolated from pooled male and pooled female genital 

ridge/mesonephric tissue collected at days 4.5 to 9.5 of incubation 

(stage 25 to 36), and 5g of each sample was separated on a 1% 

agarose/formaldehyde gel. Northern hybridization was carried out 

at 42°C in 2x PIPES, 50% formamide, 0.5% SDS. The blot was 

washed to a final stringency of 0.2xSSC, 0.1% SDS at 65°C and 

exposed to film for 2 days at -70°C. The RNA loading in each lane 

was standardized by hybridizing with a fragment of the chick 18S 

ribosomal gene (bottom panel). Northern analysis was carried out 

twice, on the same RNA samples, with consistent results. 

(B) Graph showing the expression profile of display clone 1144, 

analyzed by Northern. The amount of radioisotope bound in each 

lane was quantitated using a phosphorimager and related to a loading 

control. F = female. M = male. 
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Figure 61: 	Expression of display clone 1144 in the female chick embryonic gonad 

and mesonephric tissue at day 5.5 and day 6.5 of incubation (stage 28 I 

30) by wmTSH. Hybridization was performed using an anti sense DI( 

labelled 1144 riboprobe at 66°C. Colour development proceeded ft 

20hr. (a) Front view of Day 5.5 female gonadal and mesonephri 

tissue. Actual length of the mesonephros is 3.5mm. (b) View of ft 

reverse side of day 5.5 female mesonephris tissue. Actual length of th 

mesonephros is 3.5mm. (c) Front view of day 6.5 female gonadal an 

mesonephric tissue. Actual length of the mesonephros is 4mm. (c 

View of the reverse side of day 6.5 female mesonephris tissue. Actw 

length of the mesonephros is 4mm. Anterior (A), posterior (P), gona 

(G), mesonephros (M), proposed tubule structure (T). Analysis b 

wmJSH was carried out twice with consistent results. 
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Figure 62: 	Expression of display clone 1144 in the male chick gonadal an 

mesonephric tissue at day 6.5 of incubation (stage 30) by wmISI-

Hybridization was performed using an anti-sense DIG labelled 114 

riboprobe at 66°C. Colour development proceeded for 20hr. (a) Frot 

view of the male gonads and mesonephric tissue. Actual length of ft 

mesonephros is 4mm. (b) View of the reverse side of the ma] 

mesonephric tissue. Actual length of the mesonephros is 4mn 

Anterior (A), posterior (P), gonad (G), mesonephros (M), propose 

tubule structure (T). Analysis by wmISH was carried out twice wit 

consistent results. 
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of expression were present in the testis. Lower levels of expression of the minor 

transcript were detected in all tissues except adult ovary and testis. 

To perform wmlSH, an anti-sense 1144 probe of 386bp and a sense probe of 

356bp were used. No specific signal was detected in any genital ridge and 

mesonephros tissue from male and female embryos, analyzed using a sense probe. 

At 5.5d, expression of clone 1144 was detected in the male gonads and the 

anterior two thirds of the mesonephric tissue (data not shown). In the female, 

expression was detected in both gonads. A dorsal view of both male and female 

mesonephric tissue showed low levels of expression in a tubule structure in the 

anterior of the mesonephros (fig 61a & b). 

At 6.5d, 1144 expression levels were low in the male gonads and the medulla 

of the mesonephros (fig 62a). On the dorsal side of the male mesonephros, 

expression of 1144 was detected in a tubule structure, beginning at the anterior end of 

the mesonephros and extending two thirds posteriorly before looping back (fig 62b). 

In the female, no expression was detected in the gonads or the mesonephros (fig 61c). 

The dorsal side of the female mesonephros also exhibited expression of 1144 in a 

tubule structure, but at lower levels and not as extensively as in the male (fig 61d). It 

was impossible to confirm whether expression could not be detected as a result of the 

tubule not developing or being lost or damaged during the dissection procedure. 

8.3.11. 	Clone 1161. 
By Northern analysis, probes derived from clone 1161 failed to detect 

expression in either the genital ridge or other embryonic tissue, between 4.5d and 

9.5 d. 



Chapter 9. 

Discussion. 
Isolation and characterisation of one clone that exhibits differential 

expression. 
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Transcript 774 was chosen for further study due to the interesting transient 

sexually dimorphic expression pattern observed on the display gel, which was 

replicated exactly by Northern analysis and wmISH, and indicated a possible role in 

the initial stages of testicular development. Higher levels of expression of the larger 

transcript (3.8kb) was observed in the male genital ridge/mesonephric tissue at 7.5d. 

By whole mount in situ hybridization, expression was detected in the male gonads and 

the medulla of the mesonephros at 7.5d. In the female, at the same stage of 

development, expression was detected only in the medulla of the mesonephros. No 

transcript of a similar size was detected in other embryonic tissues from 5.5d to 8.5d. 

Surprisingly, 774 exhibited 99% homology at the nucleotide level to a portion 

of the chick mitochondrial genome. However, the size of the sexually dimorphic 

transcript did not correspond to any of the known transcript sizes reported for the 

chick mitochondrial genome (Desjardins and Morais, 1990). It has been documented 

that transcription of the mammalian mitochondrial genome results in a polygenic 

transcript, which releases mRNAs and rRNAs after cleavage and folding of tRNAs 

(Clayton, 1991; Wallace, 1992; Ragnini and Frontali, 1994). Unlike mammalian 

mitochondrial transcription, initiation of both strands in the chick mitochondria begins 

from a bi-directional promoter (L'Abbé et aL, 1991). However, the proposed 

generation of a polygenic transcript is still likely to occur in birds. Therefore, it is 

possible that the 3.8kb transcript is made up of a number of chick mitochondrial 

transcripts that have not yet been completely processed. 

Prior to the display analysis it was decided that one transcript isolated by 

differential display would be analysed further. To cover all possibilities in terms of 

developmental day and sex, preparations for the isolation of a full length cDNA would 

require the construction of approximately 12 cDNA libraries prior to the display 

analysis. The construction of this many cDNA libraries was impractical, therefore, it 

was proposed that a genomic library be screened to isolate a longer transcript of any 

selected clone. 

Two clones were isolated that extended both 3' and 5' from the original 774 

transcript. These two clones overlapped and covered an area of 5078bp. Homology 

of these clones to regions of the chick mitochondrial genome are shown in the 

schematic figure 45. The 8.3.1.3 transcript was 4.1kb in length, and was digested 

into three fragments of: 496bp, 2301bp and 1309bp. The expression profile of 

transcripts encoded by these three fragments and the 19.2.1.5 clone (1 322bp) were 

analyzed by Northern analysis. 

Transcript 8.3.1.3 (496) did not exhibit the same expression profile as the 774 

transcript. This result was unexpected because clone 8.3.1.3 (496bp) included 
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homology to the original 774 probe. Transcript 8.3.1.3 (1309bp) detected three 

transcripts by Northern analysis, but none displayed an expression profile similar to 

that observed with clone 774. A probe derived from 8.3.1.3 (2301) detected two 

minor and two major transcripts, but none showed the same expression pattern as 

detected on the display gel. 

One transcript detected by 19.2.1.5 of 3.3kb, exhibited an expression profile 

similar to that observed with transcript 774. The transcript was of a similar size to the 

transcript size detected using clone 774. This suggested that a transcript containing 

sequences corresponding to: cytochrome c oxidase I (CCO I), NADH dehydrogenase 

II (ND II) and various tRNAs were up-regulated in male genital ridge/mesonephric 

tissue at 7.5d. Differential expression of cytochrome c oxidase subunits has been 

reported in different mouse tissues (Kim and Song, 1996), and between the sexes in 

rat adrenal cortex (El-Migdadi et al., 1995) indicating that differential expression of 

mitochondrial transcripts and tissue- and organ-specific regulation of ATP metabolism 

can occur. Alternatively, the increase of these transcripts could be due to an increase 

in mitochondrial number in this tissue, and not necessarily an up-regulation of 

transcription of existing mitochondria. 

Oxidative phosphorylation (OXPHOS) consists of five enzyme complexes, 

made up from mitochondrial and nuclear genes. ND II is a member of complex I and 

CCO I and CCO II are members of complex IV, both complexes are involved in the 

electron transport or respiratory chain (Wallace, 1992; Alberts et al., 1994). The 

potential up-regulation of these transcripts at 7.5d in male genital ridge samples 

indicates a higher requirement for ATP production at this point in testis differentiation 

and growth compared with ovarian differentiation. It has previously been reported that 

expression levels of both nuclear and mitochondrial OXPHOS genes can change 

during development, cell growth and neoplastic transformation (Torroni et al., 1990; 

Kurauchi etal., 1995). 

An increased requirethent of energy in the testis might result in a mechanism 

that co-ordinates the expression of mitochondrial- and nuclear-encoded respiratory 

enzyme genes. One possible means to achieve this could be via steroid and thyroid 

hormones (Sekeris, 1990; Demonacos et al., 1996; Lucas and Granner, 1992). 

Hormone response elements (HREs), which mediate hormonal regulation of gene 

transcription, have been identified in nuclear-encoded mitochondrial genes (Lucas and 

Granner, 1992). Partial homology to glucocorticoid and estrogen response elements 

(OREs and EREs) have been identified in the mouse and human mitochondrial 

genome, within the D-loop and in structural genes (Sekeris, 1990; Demonacos et al., 

1996). It has been previously shown that imperfect palindromic HREs are able to 
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confer hormone inducibility on a gene, even though it may weaken the affinity of the 

hormone receptor for the HRE (Berry et al., 1989). Studies carried out by Demonacos 

et al. (1996) suggest that steroid and thyroid hormones have a primary action on 

regulating mitochondrial gene transcription. This is based on: 1) the localisation of 

HREs to various regions of the human, mouse and bovine mitochondrial genome; 2) 

the detection of glucocorticoid receptor (GR) translocation into the mitochondria after 

injection of rat liver with dexamethasone; 3) the in vitro binding of GRs to the 

putative mitochondrial GREs, within CCO I and CCO III genes, and 4) the activation 

by glucocorticoids of a CAT reporter gene linked to the thymidine kinase promoter 

containing partially homologous OREs identified in the mitochondrial genome 

(Demonacos et al., 1996). The identification of regulatory regions in nuclear and 

mitochondrial oxidative phosphorylation genes and these regulatory elements being 

recognised by the same protein receptors, would support this theory (Suzuki et al., 

1991). 
It is possible, therefore, that different hormones regulate different 

mitochondrial genes via HREs. This would mean differential regulation of OXPHOS 

subunits, and this regulation could be specific to certain tissues depending upon 

hormone secretion. Therefore, mitochondrial genes in the male developing chick 

gonad could be responding • to different hormone levels compared to the female, 

resulting in an up-regulation of certain transcripts. Also, as mitochondrial initiation 

occurs within the D-loop, HREs identified in structural genes could act as enhancers 

for transcription or the termination of mitochondrial transcription could be hormonally 

regulated (Demonacos et al., 1996). 

Clone 19.2.1.5 hybridised to five transcripts. This is more than was detected 

by Northern analysis using the clone 774 as a probe. These additional transcripts are 

most likely partially processed polygenic transcripts from the chick mitochondrial 

genome and are detected because of the longer length probes, which have homology to 

more than one chick mitochondrial gene. It is interesting to note that although 

mitochondrial genes are proposed to give rise to polygenic transcripts, this study has 

shown that a probe (encompassing a small portion of the chick mitochondrial genome) 

can detect different transcripts with differing expression profiles. This would not be 

expected if the polygenic transcript encompassed the entire or the majority of the 

genome. However, Lonergan and Gray (1996) have reported detection of an open 

reading frame (ORF) encoding CCO I and CCO II, which gives rise to a single 

transcript. The mature CCO I and CCO II proteins are then proposed to be translated 

from this single transcript. 
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Alternatively, identification of novel transcripts in the ATPase 8, ATPase 6 and 

CCO ifi region of the human mitochondrial genome, which do not correspond to the 

existing mitochondrial transcripts (Nardelli et al., 1994), suggests that some of the 

transcripts observed in this study by Northern analysis might not be the previously 

documented genes of the chick mitochondrial genome. Identification of novel 

transcripts from human and rat mitochondria has also been reported by Sbisà et at 

(1992) and Koga et at. (1993). The presence of an alternative transcript is possible 

because clone 774 exhibited expression in both testes, but not in the ovaries at 7.5d. 

And it would be expected that both ovaries and testes require ATP during their 

development and differentiation. 

A final possibility is that the display clone 774 isolated a mitochondrially-

derived sequence that has become inserted into genomic DNA. This has previously 

been reported by Hirano et at. (1997), Wallace et at (1997) and Davis H and Parker Jr 

(1998). Therefore, the sexually dimorphic difference detected on the display and by 

Northern analysis might not represent mitochondrial transcripts, but a nuclear 

transcript containing a portion of a mitochondrial sequence. The attempt to isolate a 

full-length genomic clone resulted in the incorrect isolation of additional mitochondrial 

genes, due to the high proportion of mitochondrial sequences in this genomic library. 

This theory is supported by 19.2.1.5 not exactly replicating the expression profile of 

clone 774, as observed by Northern analysis. 
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Chapter 10. 

Discussion. 
Expression profiles of transcripts isolated by differential display from 

he developing chick genital ridge. 

105 



This study was carried out with two main aims: 1) an attempt to isolate novel 

transcripts involved in chick gonadal development using the technique of differential 

display and 2) to assess the suitability of using differential display in the isolation of 

developmentally regulated genes from such a complex developmental system. Clones 

were isolated for transcripts that displayed developmental regulation, and transcripts 

which displayed sexually dimorphic or sex specific expression. Of the twelve clones 

isolated: four failed to detect expression by Northern analysis or wniISfl and so 

differential expression could not be confirmed. Four of the display clones replicated 

the expression pattern observed on the display gel, by Northern analysis or wmISH. 

The remaining four clones exhibited differential expression by Northern analysis, but 

did not confirm the differential expression detected on the display gel. 

No confirmation of differential expression. 

For four of the clones (776, 777, 779, 1161), no transcripts could be detected 

in the genital ridge tissue by Northern analysis or by wmISH. This suggests that these 

transcripts are of low abundance and are unable to be detected by either of these two 

techniques. The display profile of transcript 776 in the male genital ridge/mesonephric 

tissue showed an increase in expression levels as developmental time increased. This 

contrasted with expression detected in female samples, where expression levels 

decreased as development proceeded. The expression of this transcript was not 

gonadal specific and was detected in various other tissues. Differences in expression 

of this transcript suggest gene regulation differences in male gonadal tissue compared 

with female gonadal tissue and other embryonic tissues. 

The display expression profile of transcript 777 was only detected in the genital 

ridge tissue at 3.5d in males and females. This transcript did not exhibit homology to 

any sequences present in the databases. Therefore, studies carried out at present 

indicate this transcript is transiently expressed in males and females and has a potential 

role in indifferent gonad or mesonephric development. 

Transcript 779 did not exhibit homology to sequences present in the databases. 

Expression was detected in male genital ridge sample at 3.5d on the display gel. A 

transcript was also detected in the brain at 4.5d to 8.5d and in the adult ovary and 

testis. By wmISH at 3.5d, expression was detected at significantly higher levels and 

with a less restricted pattern of expression in the male compared to the female. 

However, the result observed is probably an artifact due to the time length required for 

colour development (3 days). As the identity of this transcript is unknown, it is 

difficult to theorise as to the function of this transcript in chick gonadal development. 

By 3.5d, the urogenital ridge will begin to arise. Transient expression of this 

transcript with higher expression levels in male embryos prior to morphological 
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differences suggests a potential role in chick gonadal development and possibly the sex 

determination mechanism. However, Southern analysis indicated transcript 779 was 

not located on either of the sex chromosomes, which argued against a role as the 

primary sex determining switch. However, from the display analysis, it suggests the 

779 transcript has an important male-biased function, due to the higher levels of 

expression at 3.5d and in the adult testis. It is interesting to note that at this early stage 

of development differences in transcript expression are already apparent between males 

and females. 
Expression levels of the display transcript 1161 were highest in female genital 

ridge samples at 5.5d. The 1161 transcript was only 75bp in length, possibly too 

short to make a probe that can be detected by Northern analysis or wmISH. Also, the 

short length of the isolated transcript resulted in no significant match to any of the 

sequences present in the databases. As this expression profile can not be confirmed, it 

can only be speculated that this transcript is expressed as a consequence of the sex 

determination event and may have a role in ovarian differentiation. 

Transcripts that confirm differential expression. 

Four of the transcripts isolated by differential display replicated the display 

pattern by Northern analysis and/or wmlSH. One of these transcripts (775) had 100% 

homology at the nucleotide level to chick rho-globin (Roninson and Ingram, 1982), an 

embryonic form of 3-globin. The expression pattern observed by Northern analysis 

corresponds to the well documented developmentally regulated profile of this gene 

(Bruns and Ingram, 1973; Lois and Martinson, 1989; Minie et al., 1992; Roninson 

et al., 1982). Rho-globin is expressed in the primitive erythrocytes, produced in the 

chick embryo between 3d and 6d. By 6d the definitive erythrocytes begin to be 

produced, expressing the adult form of 3-globin but not the embryonic rho-globin. 

The expression levels of rho-globin, in our analysis, are coincident with the maximal 

production of primitive erythrocytes, which is followed by the progressive 

replacement by definitive erythrocytes. Expression of rho-globin after 6d is due to 

some primitive erythrocytes remaining in the foetal circulation. The isolation of a well 

documented transcript which exhibits differential expression during chick 

embryogenesis demonstrates the effectiveness of differential display in the isolation of 

differentially regulated transcripts from a complex developmental system. This 

effectiveness is supported by the isolation of other transcripts, some known and some 

novel transcripts, by differential display which have confirmed their differential 

expression profile by Northern analysis or wmISH. Other transcripts with an 

expression profile confirming the differential display profile were: 771, 774 and 1001. 
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Transcript 771 exhibited 96% homology to human RhoA at the amino acid 

level (Yeraniin et al., 1987). Expression of this transcript by Northern analysis 

replicated exactly the expression profile observed on the display gel. By Northern 

analysis three different transcripts were detected. Two of the transcripts corresponded 

to previously published transcripts sizes for RhoA (Moscow et al., 1994). These 

different transcripts exist due to the presence of multiple polyadenylation signals in the 

3' untranslated region of RhoA. A third transcript size has been reported of 1.2kb 

(Moscow et al., 1994) and the transcript size in genital ridge samples corresponds to 

approximately 0.9 kb to 1.2kb. The different isoforms of RhoA, detected by Northern 

analysis, could have different functions at different stages of gonadal development. 

Expression of 771 is not gonadal specific as transcripts were detected in various other 

embryonic tissues. 
By wmISH, 771 was detected in the developing intermediate mesoderm at 

3.5d. At later stages of development, expression was detected in the testes and 

ovaries, with slightly lower levels of expression being detected in the right ovary and 

right testis, indicating a potential role for RhoA in the asymmetric growth and 

differentiation of the female chick left ovary and the male left testis. At this stage of 

development in the chick, the testes and left ovary will be entering a period of rapid 

growth and differentiation, involving cell shape changes and migration. However, in 

the chick right ovary development does not occur and the structure has begun to 

regress by this stage; which corresponds to the lower levels of RhoA expression. 

Also, in the male chick, the left testis is always slightly larger than the right, indicating 

the asymmetry in chick gonadal development. It is possible there is a down-regulation 

of RhoA in the right gonad or an up-regulation in the left gonad, because expression 

levels on both the left and right side of the 3.5d embryo were similar. 

RhoA is a member of the Ras superfamily of GTP-binding proteins (Ridley, 

1997), which are able to transduce signals to effector proteins and regulate cell growth 

and differentiation under the influence of growth factors (Vojtek and Cooper, 1995). 

It is, therefore, possible that RhoA has a role in chick urogenital ridge and gonadal 

development involving regulation of transcription via growth factors. 

Members of the Rho family have been implicated in the regulation of the actin 

cytoskeleton and actin polymerisation (Vojtek and Cooper, 1995; Tanaka and Takai, 

1998; Ridley, 1997; Symons, 1996; Hotchin and Hall, 1995; Hall, 1998; Van Aelst 

and D'Souza-Schorey, 1997). In particular RhoA is proposed to be involved in the 

regulation of actin stress fibres and focal adhesion complexes (Hotchin and Hall, 

1995; Hall, 1998). Regulation of the actin cytoskeleton is essential for cell motility, 

migration, polarisation and differentiation and may possibly indirectly affect gene 



transcription (Hotchin and Hall, 1995; Symons, 1996; Barrett et al., 1997; Van Aelst 

and D'Souza-Schorey, 1997; Hall, 1998). 

Embryonic development requires changes in cell polarity, cell shape, cell 

migration and gene expression. Therefore, it is pertinent to consider the occurrence of 

co-ordinated changes in gene transcription and actin cytoskeleton. An example of this 

is cell polarity in the Drosophila eye, controlled by the Frizzled (Fz) receptor (Strutt et 

al., 1997). RhoA is proposed to act downstream of the Fz receptor and mediate tissue 

polarity changes necessary for correct ommatidia arrangement in the eye (Strutt et al., 

1997). A second example of co-ordinated gene expression, cell polarity changes and 

actin cytoskeleton changes in Drosophila and yeast via RhoA have also been 

documented (Barrett et al., 1997; Drgonová et al., 1996; Qadota et al., 1996). In the 

mammalian testis, cell morphological changes in co-ordination with changes in gene 

expression are suggested to occur during the formation of the testicular cords. In this 

instance, morphological and structural changes in the testis and the formation of the 

basement membrane around the testicular cords could affect or be affected by gene 

expression (Capel, 1996). If RhoA is involved in cell shape changes, it would be 

logical for RhoA to be expressed in the developing gonads due to: 1) differences in cell 

migration and cell morphology that probably occur as general development and 

differentiation take place and 2) differences in cell shape due to different morphology 

and function of the tissue between male and female gonads. 

Transcript 1001 exhibited 97% homology at the nucleotide level to the 16S 

transcript of the chick mitochondrial genome. The 165 rRNA subunit complexes with 

the 12S subunit to form a mitochondrial ribosome required for translation of 

mitochondrial genes involved in oxidative phosphorylation (OXPFIOS) (Wallace, 

1992; Alberts et al., 1994). Expression of this transcript by Northern analysis 

reproduced the expression profile observed on the display gel in the male, where 

expression levels exhibited a general increase to 9.5d in male genital ridge tissue, but 

was also detected at other developmental days in both sexes. However, in the female 

by Northern analysis, there was also a general increase in 1001 expression levels 

which was not observed on the display gel. Expression of 1001 was also detected in 

other embryonic tissues, with increasing expression levels coincident with increasing 

developmental age. This indicates the embryo in general requires more of the 16S 

rRNA subunit transcript as it develops, possibly due to an increase in energy 

requirement which is generated by the oxidative phosphorylation pathway. As 

differentiation proceeds, and structural changes and cell morphogenesis continue in the 

embryonic gonads, an increase in energy requirement is a reasonable assumption. 
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Figure 63: Schematic representation for the rationale for introducing the SSCP step into the differential display procedure. 
Reamplification using 40 cycles may result in equivalent concentrations of the band of interest and the co-migrating 
sequence. If cloning efficiency is better for the co-migrating sequence, it may indicate that this is the only sequence 
present, but confirmation of differential expression will not be observed. If SSCF is introduced into the procedure, 
identification of the correct sequence can be made and thus confirm differential expression by Northern analysis (or other 

methods). Figure from Miele etal. 1998. 
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Transcripts that do not confirm differential expression. 

Four of the transcripts isolated and which exhibited differential expression on 

the display gel, did not exhibit the same expression pattern by Northern analysis. 

These transcripts were: 772, 1007, 1111, 1144. There are a number of reasons as to 

why Northern or whole mount in situ analysis did not confirm the differential 

expression pattern observed on the display gel. Firstly, there could be differences 

created in the RNA extraction procedures. This could lead to a false positive being 

generated, where differences in expression levels are observed that are not real. 

Secondly, a co-migrating transcript might have been isolated from the display gel. The 

reamplification procedure carried out using our differential display method has 40 

cycles. Therefore, any DNA excised from the display gel will be amplified to the same 

extent as the band of interest. The wrong transcript will be analyzed to confirm 

differential expression if the cloning efficiency of the co-migrating transcript is higher 

than the cloning efficiency of the band of interest, so that the wrong transcript is over-

represented in the sub-clone population (fig 63). Thirdly, DNA contamination in the 

reamplification PCR procedure could result in the wrong candidate being cloned, in the 

same way as described above. In fact, the reamplification procedure carried out in this 

study did not always result in one band being observed, indicating more than one 

sequence was present. 

The actual RNA fingerprint obtained by DDRT-PCR was probably an accurate 

representation of gene expression in the developing chick gonads. Unfortunately, the 

subsequent analysis of these clones of interest was hampered by the difficulties 

encountered in the isolation procedure. These isolation difficulties resulted in a 

number of "wrong" clones being analysed, even though the expression profile of these 

"wrong" clones was potentially interesting with regard to chick gonadal development. 

The main problem with the differential display procedure occurs with the co-

migratory sequences which can be reamplified with the band of interest, and thus 

produce multiple products of similar or identical size. Recently the technique of 

single-stranded conformation polymorphism (SSCP) has been modified to aid in the 

isolation of the band of interest from a display gel (Mathieu-Daudé et al., 1996; Miele 

et al., 1998). SSCP was first developed to distinguish between point mutations in 

molecules that were otherwise identical (Hayashi , 1991). It was based on the fact that 

single stranded DNAs are able to fold into a relatively stable secondary structure which 

affects their mobility on polyacrylamide gel. The secondary structure they form 

depends upon the sequence of the molecule (Mathieu-Daudé et al., 1996). Therefore, 

if the reamplification products contain multiple sequences of the same length, they can 

be separated by SSCP. Miele et al., (1998) have also introduced a 5 cycle 
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reamplification step after the SSCP procedure, to minimalise the DNA contamination 

in the reamplification step and to maintain the relative levels of different cDNA species. 

These improvements to the differential display technique should enable the isolation 

and analysis of future bands of interest to be less time consuming and less labour 

intensive. 

Transcript 772 was isolated from a display gel where expression was limited to 

the male genital ridge at 5.5d. This transcript did not exhibit homology to any 

sequences in the databases. By Northern analysis, the 772 transcript was 

approximately 3.7kb in length, and it showed a dramatic increase in expression after 

4.5d in both male and female samples. The 772 transcript is not gonadal-specific 

because it was detected in other embryonic tissues. By wmISH, the 72 transcript 

was detected in the gonads and the mesonephric tissue of both sexes from 4.5d to 

6.5d. This did not correlate with the display or Northern analysis expression profiles 

Transcript 1007 exhibited highest expression levels at 5.5 d in male genital 

ridge on the display gel, but could also be detected in male samples at the other 

developmental days studied. Expression was never detected in female samples over 

the same developmental period by differential display analysis. However, by 

Northern analysis expression of 1007 was detected in both male and female samples at 

all stages analysed. By wmISH, expression of 1007 was located in the gonads and 

mesonephros of both sexes. Transcript 1007 exhibited 73% homology at the 

nucleotide level to human mef-2A (Suzuki et al., 1996). MEF-2A is a member of the 

myocyte enhancer factor 2 (MEF2) family of transcription factors, which have been 

shown to play a role in the activation of muscle-specific and growth-factor regulated 

gene transcription (Olson et al., 1995; Pollock and Triesman, 1991; Shore and 

Sharrocks, 1995). MEF-2A transcript is reported to be widely expressed, but were 

most abundant in myotubes, skeletal muscle, heart and brain (Pollock and Triesman, 

1991; Yu et al., 1992). This does not correlate with the expression pattern observed 

in chick embryonic tissues from this study. In contrast, high levels of expression of 

the transcript were detected in the embryonic and adult ovary and testis tissue. 

Yu et al. (1992) reported the MEF-2A protein to be restricted to mainly skeletal 

muscle, smooth muscle, cardiac muscle and the brain. However, Dodou et cii. (1995) 

reported expression of the MEF-2A protein in non-muscle and muscle cell lines. This 

suggests other functions for MEF-2A not specific to muscle cell lineages. This is 

bourne out in these studies by the up-regulation of 1007 at 5.5d in male and female 

chick genital ridge/mesonephric tissue. 

The actual role of MEF-2A in the gonadal and mesonephric tissue is unknown. 

However, MEF-2A and MEF-21) have been reported to be up-regulated during the 
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differentiation of a P19 cell line (which differentiates into endoderm or mesoderm 

lineages) (Hidaka et al., 1995). It is possible that the initial up-regulation of 1007 at 

5.5d in male and female genital ridge tissue could be due to the beginning of 

differentiation in the gonads. Expression studies by Northern analysis indicates high 

levels of this transcript are required transiently in the male genital ridge up to 7.5d, 

after which expression levels decrease. In the female, expression levels remain 

relatively constant from 5.5d to 9.5d, indicating differential regulation of this transcript 

during male and female chick gonadal development. Although it is unknown if these 

differences in expression are significant. 

Transcript 1111 exhibited 92% homology at the nucleotide level to rat TBP- 1 

(Makino, 1996) and rat Saw (Rivkin etal., 1996). TBP-1 is an ATPase and a subunit 

of the 26S proteasome, which is involved in ubiquitin-conjugated protein degradation 

(Tanaka, 1995; Gottesman et al., 1997). The proteasome consists of a central 

cylindrical region made up of proteases. At each end of this region are different 

regulatory subunits (approximately 10 polypeptides, including ATPases) which 

regulate and specify proteolysis (Alberts etal., 1994; Gottesman et al., 1997). Saw is 

99% homologous at the amino acid level to human TBP-1. 

Transcript 1111 expression profile by display analysis was highest at 5.5d in 

males. However, by Northern analysis, expression levels were clearly higher in 

female samples at all embryonic developmental stages studied, and was higher in the 

adult ovary compared to the adult testis. Expression was also detected in other 

embryonic tissues, indicating 1111 is not gonadal specific. 

From the Northern analysis studies, higher levels of expression of TBP-1 are 

required in the developing chick ovary compared with the developing testis. It has 

been proposed that different regulatory subunits of the 26S proteasome are required 

for selection and initial interactions with the protein substrate that is to be degraded 

(Gottesman et al., 1997), thus indicating combinations of different regulatory subunits 

specify for different protein substrates (Gottesman et al., 1997). Tanaka (1995) 

reported that ATPase subunits are developmentally regulated during programmed cell 

death in abdominal intersegmental muscle of Manducta sexta. Therefore, it is possible 

that a higher turnover of certain proteins is required during ovarian differentiation 

compared with testicular differentiation. For example, proteasomes are proposed to 

regulate the cell cycle via the degradation of mitotic cyclins (Hilt et al., 1993). A 

human TBP-1 related gene (Saw or rtTBP-1) has been isolated from a rat pachytene 

spermatocyte cDNA library (Rivkin et al., 1997). It was shown to be associated with 

elongating spermatids, spermatocytes and spermatids in the epithelial region of the 
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seminiferous tubules, indicating a role in spermatogenesis. However, a role for this 

gene in the ovary has not been documented. 

Transcript 1144 exhibited 84% homology at the nucleotide level to rat TCP-1 

(Morita et al., 1991), a subunit of a chaperone, CCT (chaperone containing TCP-1) 

(Kubota et al., 1995). Chaperones are involved in regulating protein folding 

pathways, thus preventing misfolding or promoting refolding (Ellis, 1990; Kubota et 

at., 1995). Transcript 1144 expression profile by differential display analysis 

exhibited higher levels of expression at 5.5d in female genital ridge, although a 

transcript could be detected in males and females at other developmental stages. By 

Northern analysis, two transcripts were detected. The smaller transcript corresponded 

to the published length of the rat TCP-1 transcript (Morita et at., 1991) and exhibited a 

dramatic increase in expression levels at 5.5d in both sexes. Expression levels 

remained fairly high through to 9.5d in both sexes, even though phosphorimager data 

suggested the transcript was down-regulated. Studies of mouse Tcp-J expression has 

indicated it is up-regulated in the testis, post-implantation embryos, early- to mid-

gestation embryos and certain cell lines, where cells are rapidly proliferating (Willison 

et al., 1986; Kubota et al., 1992). Another proposed function for chaperones is that 

they complex with steroid receptors via their hormone-binding domains (Pratt, 1993) 

and promote binding of the steroid to its receptor (Caplan, 1997). 

The larger transcript (3.9kb) could be due to the utilisation of different 

polyadenylation sites, or it might encode a TCP-1 related gene. Additional and larger 

transcript sizes have been reported for the mouse Tcp- 1 mRNA (Kubota et al., 1992). 

Transcript 1144 was not gonadal specific. 

As TCP-1 is a subunit of a chaperone, it is possible that the increase in 

expression at 5.5d in male and female genital ridge is due to an increase in new protein 

translation required for differentiation of the ovary and testis. By wmISH expression 

of the 1144 transcript was detected in the gonads and mesonephros of male and female 

chick embryos. Although expression levels were fairly low by wnilSH in comparison 

to Northern analysis data. On the dorsal side of the mesonephros, the transcript was 

detected in two tubule structures. These tubule structures are unknown and have not 

been described previously, but are in the correct location to be nephric tubules. 

Expression of transcript 1144 was also analyzed in the adult gonads, with 

higher levels being detected in the testis. It is possible that the adult testis is a more 

dynamic structure than the adult ovary, due to spermatogenesis and the continued 

meiotic division. Therefore, production and turnover of proteins might be greater in 

the testis at this stage. 
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TCP-1 is located in the t-complex on chromosome 17 in the mouse (Willison et 

al., 1986; Kubota et al., 1992). The t-complex is a naturally occurring variation in 

wild type mouse populations and persists in the mouse genome due to 1) four 

inversions relative to the wild type chromosome, which suppress recombination and 2) 

due to transmission ratio distortion (TRD) (Willison et al., 1990). TCP-1 has been 

implicated in TRD. In this instance, t-complex sperm from a heterozygous mouse 

preferentially fertilise an egg (Willison et al., 1990). Other genes involved in 

spermatogenesis are also located in or near the t-complex, such as Dazia (Elliott and 

Cooke, 1997). Analysis of expression of TCP-1 in the mouse testis has identified 

transcript in the pachytene primary spermatocytes and in the haploid spermatid 

(Willison et al., 1990), supporting a role for TCP-1 function in the chick testis other 

than assisting in protein folding. 
Overall, the approach to isolate differentially expressed genes from a complex 

developmental system such as the developing gonads in the chick, by differential 

display was rational. A number of transcripts exhibiting differential expression on the 

display gel were isolated and the expression profile successfully confirmed by 

Northern analysis or wmlSH. The fact that different developmental timepoints could 

be visualised at the same time, enabled a comparison of sexually dimorphic and 

developmentally regulated genes, and made this comparison easier. 

The importance of carrying out longer runs of the display PCR products was 

indicated by the fact that it was able to resolve higher molecular weight PCR products. 

This is important for providing more accurate matches to sequence databases and 

generating more reliable probes with higher specific activity, to confirm differential 

expression by Northern analysis or other methods. Secondly, a longer run enabled 

bands of similar size, that migrated closely together on a display gel, to be resolved; 

thus reducing the number of false positives generated. A new development is the use 

of a GenomyxLRTM Programmable DNA Sequencer (Beckman, UK), enabling a 

significantly longer run of display PCR reactions, facilitating the isolation of higher 

molecular weight PCR products. 
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Chapter 11. 

General Discussion and Future Research. 
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The overall objective of these studies was to investigate the molecular 

regulation of chick gonadal development and relate it to the morphological 

differentiation of the gonads. These studies would be allow an assessment of the 

level of conservation of early gonadal development between mammals and chicks. 

Firstly, the morphology of the developing chick gonads was studied, from the 

indifferent gonad stage through to the beginning of ovarian and testicular 

differentiation. This study has shown that slight differences between the male and 

female chick gonad are first apparent, at the histological level, at 5.5d. This is 2.5 

days earlier in development than the sex determination event has been previously 

documented (Romanoff, 1960). This observation is supported by the detection of 

AMH in the male gonads by 5.5d, assuming AIVIIH is expressed as a result of the sex 

determining switch as is the case with mammals. Therefore, by 5.5d in the chick, the 

fate of the gonad has been decided. This means that future gene isolation and gene 

expression studies can be more easily categorised for a role in indifferent gonad 

development, the sex determination process or in ovarian or testicular differentiation. 

These histological studies have also shown that, morphologically, gonadal 

development is essentially similar between mammals and chicks. Expression studies 

carried out on homologues to genes involved in mammalian gonadal development, 

indicated similar expression pattern of these transcripts between mammals and chicks. 

The failure to isolate a SRY homologue in birds (Griffiths, 1991; Tiersch et al., 1991; 

McBride et al., 1997) implies a conserved gonadal differentiation pathway exists 

between mammals and birds, differing primarily in the sex determining switch. 

Histological analysis of the chick embryonic gonads indicated characteristic 

signs of testicular differentiation were evident prior to those characteristics of ovarian 

differentiation. The testicular characteristics include cord formation in the medulla and 

the thinning of the germinal epithelium. This evidence is further supported by the 

initial detection of A?vlH at 5.5d in male gonads compared to 6.5d in female gonads. 

ATvIH is proposed to be the first marker of Sertoli cell differentiation in mammals 

(MUnsterberg and Lovell-Badge, 1991). This is not the case in chicks as AMU is 

expressed in both male and female gonads. However, with differences in expression 

levels and the initial stage of detection, it acts as a marker for gonadal differentiation in 

chicks. 
A difference between mammals and birds is the expression of AMH in the 

female chick during embryonic development. This is necessary for the regression of 

the right MUllerian duct, resulting in the asymmetry observed in the female chick 

reproductive tract. AIVIH was expressed at 7.5d in the left and the right ovaries, but 

with lower levels in the right ovary. Unfortunately, histological analysis of the right 
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ovary, in this study, was inconclusive. Therefore, we infer from previously 

documented work (Romanoff, 1960) that although the right ovary never develops to 

the same extent as the left ovary, it is still functional at the early stages of gonadal 

development. 

Although examination of the histology of the gonads and of the gene 

expression of homologues to mammalian genes involved in gonadal development 

indicated that overall a similar gonadal development pathway between mammals and 

chicks existed; the gene expression data revealed some differences. Most notably was 

the constant levels of expression of SF-1 and Sox-9 from 3.5d to 9.5d in the genital 

ridge tissue of both sexes. Also there were slightly higher levels of expression of 

WTI in the male chick genital ridge tissue at 4.5d and 5.5d, prior to and during the 

first signs of morphological differentiation in the chick gonads. WT1 is not located on 

either of the sex chromosomes, which 1) argued against a role as the sex determining 

gene and 2) suggests the higher levels of WTI expression are not due to lack of 

dosage compensation of the Z chromosomes. Therefore, there is a potential, 

additional role for WTI in male chick gonadal development if this difference in 

expression is significant. It would be prudent to further investigate the expression 

pattern of WTI in the chick gonads, by repeating Northern analysis on different pools 

of male and female genital ridge RNA to confirm this difference; and by in situ 

hybridization in an attempt to identify the cell types expressing this gene and to 

investigate if any differences in transcript localisation exist between male and female 

chick gonads. In addition, further characterisation of the SF-1 cellular localisation in 

the gonads and mesonephros would contribute to a greater understanding of its role 

during chick gonadal development and elucidate if WTI and SF-1 colocalise in the 

gonads or mesonephros. Finally, protein analysis of these homologues would indicate 

that these genes have a role and are functional in the tissue types in which their 

transcripts have been detected. 
The application of differential display to identify transcripts involved in chick 

gonadal development was logical and feasible. The problems encountered with this 

procedure during this study, and by many others, have largely been overcome with the 

utilisation of SSCP, which aids in the separation of multiple sequences of the same 

length generated during the differential display technique. Secondly, the use of a 

GenomyxLRTM Programmable DNA Sequencer (Beckman, UK), has enabled 

significantly larger display PCR products to be separated. This results in longer 

sequence data for comparison with the databases and more reliable probes for 

confirming differential expression. 
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However, even without these recent refinements to the technique, this study 

showed that differentially expressed transcripts could be successfully isolated by 

differential display from the genital ridge/mesonephric tissue of male and female chick 

embryos. This strengthened the rationale for utilising differential display for isolation 

of novel transcripts from complex developmental systems. A significant number of 

these clones were confirmed as differentially expressed by Northern analysis or whole 

mount in situ hybridization. Due to the close association of the genital ridge to the 

mesonephros at the early stages of chick gonadal development, it was necessary to 

include a small portion of mesonephric tissue in with the gonadal tissue at each day 

analysed. Therefore, it was possible that the display analysis was isolating transcripts 

only from the mesonephric tissue, due to the empirical amount of mesonephric tissue 

included. Analysis by whole mount in situ hybridization showed that many of the 

transcripts isolated were expressed in the developing chick gonads, therefore, the 

display analysis was not isolating transcripts solely from the mesonephric tissue. 

Only a small proportion of the potential transcripts expressed in the developing 

chick gonads have been analysed in this study. Therefore, it is important to continue 

the differential display analysis with new primer combinations, while incorporating the 

new refinements into the procedure. This will hopefully enable isolation of other 

genes with an important role in gonadal development. The application of other gene 

isolation techniques, such as Representational Difference Analysis (RDA) (Lisitsyn et 

al., 1993) would also be a method for identifying differentially expressed transcripts 

and further increase our understanding of the gene regulation that occurs in this 

complex developmental system. 

Another possibility would be to repeat the primer combinations for those 

clones that exhibited differences on the display gel, but did not show the same 

expression pattern by Northern analysis or whole mount in situ hybridization. In this 

instance, incorporation of the new refinements to the procedure should result in the 

isolation of the correct clone from the display gel, which can then be analysed for a 

role in chick gonadal development. Also, those clones that could not be confirmed as 

being differentially expressed, due to low expression levels, could be analysed by 

more sensitive detection methods such as ribonuclese protection assay (RPA) or RT-

PCR. 
Of the detectable transcripts, 50% replicated the expression profile observed on 

the display gel. Of these, clone 771 exhibited homology to RhoA, a GTP binding 

protein. The expression of this clone in the male and female urogenital ridge and in the 

developing testes and left ovary suggests a possible role in the general development of 

the gonads. From our data, it seems likely that different isoforms of this protein are 
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expressed at different levels at different stages during gonadal development. A future 

possibility would be to isolate transcripts for these different forms and identify 

differences between these developmentally regulated isoforms. As RhoA appears to 

signal via a number of different pathways, it would be of interest to establish which 

other genes in these pathways alter their expression during chick gonadal 

development. 
Another clone that exhibited differential expression by display and Northern 

analysis was clone 774. The isolation of a genomic clone did not sufficiently elucidate 

the portion of the chick mitochondrial genome that was up-regulated in the male genital 

ridge at 7.5d. Also, the identification of mitochondrially-derived sequences in the 

genome (Hirano et al., 1997; Wallace et al., 1997; Davis II and Parker Jr., 1998) 

indicate that the mitochondrial transcripts might not be the transcripts of interest that 

are up-regulated in chick male gonads at 7.5d. Isolation of a full-length cDNA clone 

might result in the identification of the 3.8kb transcript up-regulated in males at 7.5d. 

Regardless of the outcome of its identity, the transcript is differentially expressed as a 

consequence of the sex determination process and obviously has an important role in 

chick testicular development. 
While clone 1144 did not exhibit the same expression profile by Northern as 

observed on the display gel, it did exhibit an up-regulation of the transcript after 4.5d 

in both sexes and the transcript was detected in the gonads of male and female 

embryos. The fact that clone 1144 exhibited homology to TCP- 1, which is located in 

the t-complex involved in fertility, raises the possibility that this clone may have a role 

in gametogenesis in the chick. Detection of this transcript in other tissues suggests it 

has a more diverse role in embryonic development. Localisation of the transcript to 

particular cell types within the gonads and mesonephios might help to elucidate its role 

in these tissues. 
In summary these results have indicated a certain degree of conservation of 

morphology and gene regulation between the mammalian and chick gonadal 

development pathway. Figure 64 is a schematic representation of the potential genetic 

regulation of chick gonadal development by chick homologues to transcripts involved 

in mammalian gonadal development and by a number of the differential display 

candidates. The role of these transcripts in chick gonadal development is merely 

speculative being based on their localisation to the embryonic gonads (in addition to 

other tissues) and their expression profiles on the display gel. These studies also 

suggest that sex determination occurs at an earlier time in development than previously 

reported. This information will facilitate the future assignment of the role of novel 

transcripts in chick gonadal development. While the isolation of the sex determination 
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Figure 64: Diagram representing the potential gene expression during chick gonadal development. Chick homologues to genes involved in 
mammalian gonadal development and display candidates have been given a putative position in the developmental pathway. Some of the 
clones isolated by differential display analysis have been given a putative position based on their expression profile on the display gel. 
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gene in chicks is of prime importance, the uncertainty regarding the sex determination 

mechanism, plus the paucity of genetic resources makes it unlikely that this gene will 

be identified by the approach used to identify SRY in mammals. Therefore, the 

isolation of novel genes by alternative methods such as differential display is a 

possible means to the identification of the chick sex determination gene, and should 

provide valuable information on the regulation of the chick gonadal development 

process as a whole. These studies have provided an insight into a small proportion of 

gene expression in the chick gonads and have shown that the differential display 

technique is a useful tool to isolate developmentally regulated genes, with both a low 

and high abundance. Extension of these studies to further characterise transcripts 

already isolated and to isolate additional transcripts will provide additional information 

on gonadal development in chicks and possibly other species. 
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APPENDIX 1. 

Sequences for the primers used in the W-PCR procedure. 

MT primers: 

From W-chromosome specific repetitive DNA (XhoI family). 

W-5 5' - CCC AAA TAT AAC ACG CTT CAC T -3' (127-148) 

W-3 5' - GAA ATG AAT TAT TTT CTG GCG AC -3' (542-520) 

GAPDH primers: 

GAPDH 5' primer 5' -  TOT GAC TTC AAT GOT GAC A -3' 

(exon 10: 3862-3880) 

GAPDH 3' primer 5' - CAG ATC AGT flC TAT CAG C -3' 

(exon 11:4563-4547) 

18S primers: 

R18S1 5'- AGC TCT TTC CTC OAT TCC GTG -3' (1267 - 1287) 

R1852 5' -000 TAG ACA CAA OCT GAG CC -3' (1522- 1503) 

124 



APPENDIX 2. 

Sequences for the random lOmer primers used in the differential display RT-PCR. 

RI 5'-GGA ACT CCGT-3' 

R2 5'-GGCAAGTCAC-3' 

R3 5'-CCTCCGTAAG-3' 

R5 5'-CGG ACC CCGG-3' 

R7 5'-TACAAC GAG G-3' 

R8 5'-TGGAflGGTC-3' 

R9 5'-TGGTAAAGGG-•3' 

RIO 5'-TCGGTCATAG-3' 

Ru 5'-TACCTAAGCG-3' 

R12 5'-CTGCTT GAT G-3' 

R13 5'- GAT CTG ACA C-3' 

R14 5'- GAT CGCATTG-3' 

R15 5'- GAT CTG ACT G-3' 

R16 5'- GAT CTAAGGC-3' 

RiS 5'-GGA ACC AATC-3' 

R19 5'-CflTCT ACC C-3' 

MAX25' - CAC AGTTTGC-3' 

MAX35'-CCACAGAGTA-3' 

SOX 5'-GCGACCCATG-3' 

TK2 5'-CTT GAT TGCC-3' 
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APPENDIX 3. 
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Schematic diagram of the two vectors used to clone the chick homologues to 
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cAMH: cloned into Ecofli site of pBS 1<511 (+). lgOSbp insert (not to scale) (Eusébe at at, 1996). 

direction of insert 
'4 
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cWT-1 cloned into Hindill and NsiI sites of pBS SK ll(+), SOObp insert (not to scale). 
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cSF-1 cloned into PstI site of pBS 51<11 (-). SOObp insert (not to scale). 
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Ecofli 	499bp 	
B9ll 	

01 	552bp 	EcoRl 

17 	0- 	 •4 	 4 	T3 

direction of insert 

cAromatase cloned into BaniHi and EcoRl sites in pBS KS II (+). 351 bp insert (not to scale). 

BanHI 
	

EcoRl 

	

T7 	0- 

cSox-9 clones into [coAl site of pBS M13(-). 1200bp insert (not to scale). 

directionofinsert 
HindlIl EcoRl 	 EcoRl B

I
amHl 

I 	I 	 I  

	

17 	0 	 4 	T3 

127 



Available clones were chick homologues of AMH (gift from D. Eusèbe, 

INSERM Montrouge France), WT-1 (gift from V. van Heyningen, Human Genetics 

Unit Edinburgh), Sox-9 (gift from P. Sharpe, UMDS Guy's Hospital London) and 

aromatase (gift from D. Armstrong, Roslin Institute Edinburgh). There were chick 

and zebrafinch homologues to mouse SF- 1 (zebrafinch homologue was a gift from A. 

Arnold, UCLA). 
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APPENDIX 4. 

pCR91 Vector 
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1.113 Ryan. Priw 	 5r6 P,tnttat 
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3.9 .kb 

Schematic diagram of the vector used to clone the sequences obtained by differential 
display. Diagram taken from the Invitrogen catalogue. 
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A list of the sequences obtained by differential display analysis. 

Clone 771: 

CGG ACC CCG GAA GTG AAG CAT FtC TGT CCC ACC GTG CCT ATC ATC 

TTG GTA GGA AAC AAG AAG GAC CTG AGG AAT GAC GAG CAC ACA 

AGA CGA GAG CTG GCC AAA A 

Clone 772: 
GCG ACC CAT GGC AAC ACA GAG AAA TCC CAG CTT TCC CTG GAG AAG 
ACA FtC AGA ATG TAC ATA ATG ATG TGT TGA TGA TGA FtC TCT ATA 

CAC TGA CAT TAC TGT GAC AGA CGT CCC FIT CCC CCC CCC AAA 

Clone 774: 
TTT COG ATG GCT GAG TGT TGA AGC GTT AGG CTG TAG TCC FiT flA 

CAG AGG TTC AAT TCC TCT TCT TAT CGA CTC TGT AGT GAA GTT CAT 
AAT GAG TTG CAA ACT CGT TGA TGT ACA CTA AAG TGT GCC GGG GTC 

GAA GC 

Clone 775: 

FiT TCG GGC PAT GTG CTT FIT TAT TGA Cfl flA CAC TOT GTC CTG 
CTC TGG GAG CTC AGT GGT ACT TGT AGG CCA GGG CAT GOG CCA CCA 
CGC TGA CCA GCT TCT GCC AGA CAG CCT GGC AGG TCG TCT ACG AAT 

GAT TTA GCA CCG GGG TCC GAA 

Clone 776: 
GGC AFt AAG ATA ACT OFt GTC ACT GTT TGA ACT GCA CTG TTC iTt 

GTT GAC TTC TCA AGT TCT TGA ACA ATG fiG iTt AGG flA CTG TGA 

AAT GAA CTG TAT GGC TTG FIT GCA GTA iTt flA ATG CAT AAT AAA 

TGT fiG GAA TAT TCT fiG CGA AAA A 

Clone 777: 
CTG CTT GAT GTG CCA GAA TAG FIT GGT OCT TGA TAA AGA AGT GAG 
ATC CiT TAA AAC ACT GTA ATO FIT CTG TCT iTt GAA GGA CCT AFt 
AGO AGA AAA CTC GAT TTG TGC AFt GTA TCC AGA AAT ACT CCC CAG 

GCA GAG CAC GTT TAG TTC FIT GTA AAT OTT GAA GCC CAC AGA CAG 

TGT TTG TGC TAA COG GAA TCC TGA OFt CTG CCA AAA 
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Clone 779: 

TTT GGG GAG ATA CAG CTG GAA TGG Cfl TAT GCA TTC ACA GGC TGC 

AAA TCA GCT CTG TAT AGT AAT CAT TCC TTG AAT CAT CTA ATG CCT 

GAA GAT GAT CTG Cfl CCC CCC CAC Cfl ATG TGT Gfl ACT TGT GTA 

CAG GAG AGA GCT GTT CCC ATG TGC TCT GCA GTA AGC AGC AAA GGA 

GGA TGT TGA TOT GTA CCA TGG CAG Cfl GCT CTG GYP GTT TTG TCT 

GCC CCG TGC TGA TGG AAG CTA GCA CCC TGC TCT GGT AAT GGG AAG 

GAT GAG GAG GAA TCC TGT AAT TTG CGA AA 

Clone 1001: 
ACC CAT GTA CAT ACA GCC GCC AGT ATA CTG TGA GCG TAT Yfl flC 

flA TGT Afl GTC GAG AAT GAA m TAT GGA AGG GTT TAT Yfl m 
GGG GTT TGG GAA ACA GTC GGG TCT fiG GTT TGC CGA GTT CCT TCT 

GTA GGT TTT AAT CAT CCT GTG GGC GCT CAT GGG TCG CAA 

Clone 1007: 

CCC ATG CCA GGT GGG GTA ATA TAA AGG TCA m TAT GTA CAG TAT 

TGC nr Cfl CTT CCI GCT m CTA CTG CTC TGC TGC TAC AAA GCA 

flA m Cfl AAC TAC AAG TAA CCA TAC AGC m AAT AAA ACA CAC 

AGG GAC GYP ACT ACA GGC GAG CCC TCT TGG iTt CTG CAA TCT AGT 

GTG GTA GGA TTA TAA TAC GGG ACA ATG TIVf Cfl TGC AAA ACA GGT 

TAT Afl Afl AAA ACA ACA ACT CCA GGT AAG TGC CAG ACT AGA TCA 

ATA CCT ATA CiliA TTG flC T 

Clone 1111: 
GCA TTG CCC AGG GGA GCC ACG GAA CTC ACT CAT GAG GAC TAC ATG 

GAG GGC ATC CTG GAG GTT CAG GCC AAG AAG AAA 0CC AAC CTA CAA 

TAC TAT GCC TAG GGG ACA CCI CTA GTC IGI CCG CTG GTC TCA GGG 

CTA AAG fiG ATA ATA AAA GOT GYP TTC TGT TCT TCG CCA AA 

Clone 1144: 
GGA TTG GTC TCG ACT TGG TCA ACG GGA AGC CTC GTG ATA ATA AGC 

AAG CCC GTG TCT fiG AAC CAA CCA TGG TCA AAA CIA AGA CCC TGA 

AGT fiG CAA CAG AAG CTG CAA flA CTA fiC flC GAA fiG ATG AAT 

Cfl ATC AAA CTG CAC CCT GAA CCT AAA GAG GAT AGA GGG TGC TAT 

GAA OAT TGA CGG fiC ACT CTG GAG CAC TTG AAG AAT AAT TAG GCT 

flA fiT ATG Tfl ATC TGA CTA CAC fiC 
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Clone 1161: 

FIT CCC AGA CAG TAA GGC CAA ATG GTA FIT GGC ACA CAT TCA m 
TAG AGT ATA GGG TGA CTT GCC AAG CC 
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