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Abstract
This thesis proposes to improve and enrich the expressiveness of English Text-

to-Speech (TTS) synthesis by identifying and generating natural patterns of prosodic

prominence.

In most state-of-the-art TTS systems the prediction from text of prosodic promi-

nence relations between words in an utterance relies on features that very loosely ac-

count for the combined effects of syntax, semantics, word informativeness and salience,

on prosodic prominence.

To improve prosodic prominence prediction we first follow up the classic approach

in which prosodic prominence patterns are flattened into binary sequences of pitch ac-

cented and pitch unaccented words. We propose and motivate statistic and syntactic

dependency based features that are complementary to the most predictive features pro-

posed in previous works on automatic pitch accent prediction and show their utility on

both read and spontaneous speech.

Different accentuation patterns can be associated to the same sentence. Such vari-

ability rises the question on how evaluating pitch accent predictors when more patterns

are allowed. We carry out a study on prosodic symbols variability on a speech corpus

where different speakers read the same text and propose an information-theoretic defi-

nition of optionality of symbolic prosodic events that leads to a novel evaluation metric

in which prosodic variability is incorporated as a factor affecting prediction accuracy.

We additionally propose a method to take advantage of the optionality of prosodic

events in unit-selection speech synthesis.

To better account for the tight links between the prosodic prominence of a word and

the discourse/sentence context, part of this thesis goes beyond the accent/no-accent di-

chotomy and is devoted to a novel task, the automatic detection of contrast, where

contrast is meant as a (Information Structure’s) relation that ties two words that explic-

itly contrast with each other. This task is mainly motivated by the fact that contrastive

words tend to be prosodically marked with particularly prominent pitch accents.

The identification of contrastive word pairs is achieved by combining lexical infor-

mation, syntactic information (which mainly aims to identify the syntactic parallelism

that often activates contrast) and semantic information (mainly drawn from the Word-

Net semantic lexicon), within a Support Vector Machines classifier.

Once we have identified patterns of prosodic prominence we propose methods to

incorporate such information in TTS synthesis and test its impact on synthetic speech

naturalness trough some large scale perceptual experiments.
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The results of these experiments cast some doubts on the utility of a simple accent/no-

accent distinction in Hidden Markov Model based speech synthesis while highlight the

importance of contrastive accents.
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Chapter 1. Introduction 2

This thesis addresses the problem of the identification of natural patterns of prosodic

prominence and their generation in Text-to-Speech (TTS) synthesis.

In state-of-the-art TTS systems prosodic prominence patterns are predicted from

text by relying on features that very loosely account for the combined effects of syntax,

semantics, word informativeness and salience on prosodic prominence.

Such a simplification can lead to a mismatch between the semantic, pragmatic and

syntactic content of an utterance and its prosodic realization. As a consequence it may

not only affect the naturalness of the synthetic speech but also cause misunderstandings

in human-computer spoken communication. Consider the following possible dialogue

excerpt from a flight-planning application:

(1.1) User: I’d like a flight tomorrow morning to Edinburgh.

System: I have two flights tomorrow evening with British Airways.

Without an appropriate prosodic pattern emphasizing the word “evening” the user in-

fers that “morning” has been misrecognized as “evening” and (in the most optimistic

case) will try to repair the misunderstanding by rephrasing her request.

It is commonly held within the speech synthesis community that the synthetic gen-

eration of prosodic prominence (and more in general of prosody) tends to sound inad-

equate in long utterances and/or when utterances are in context, making TTS synthesis

not yet satisfactory in some applications like book reading and automated spoken dia-

logues.

Despite that this problem has received little attention, attention that has been fo-

cused on only one aspect of the problem. In fact TTS researchers addressing this prob-

lem are concerned about the prosodic rendering of the pragmatic and semantic content

of an utterance but do not address the problem of processing that content, delegating

such task to the developer of an application using the TTS system (for example through

a markup language) or to an “artificial mind” of which the TTS system is relegated to

a tool to communicate with the external world.

The main goal of this thesis is to improve the prediction from text of prosodic

prominence patterns. According to phonological accounts on prosody, the prediction

of prosodic prominence patterns is approximated to the prediction of sequences of

pitch accents, i.e. symbolic events associated to pitch movements over the most promi-

nent (actually perceived as most prominent) syllables in an utterance and correlated

with increased phone duration and intensity, better voice quality and other spectral

effects.

In English (and some other languages) pitch accenting is mainly determined by the
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degree of informativeness and salience of words which in turns is affected by the con-

text (both discourse context and sentence-internal context) and by intrinsic properties

of words (e.g., properties indicating if a word is a content or a function word).

The main context related mechanism that controls the distribution of the salience of

information in an utterance is generally known as focus marking. Focus marking dis-

tinguishes the words of the utterance that are presupposed (usually called background)

from the words that “contribute distinguishing the actual content of the utterance from

the alternatives the context makes available” usually referred to as focus or kontrast1.

Typical examples used to illustrate focus marking are question-answer pair exam-

ples like the following:

(1.2) Q: Which football team does Paul support?

A: Paul supports Arsenal.

where “Paul supports” is the presupposed part of the utterance whereas “Arsenal” is

the focused item.

The focused item of a sentence can be seen as an item evoking (i.e., bringing to

attention) a set of alternatives (to the focused item) made available by the context. So

in example (1.2) the word “Arsenal” evokes the set of football teams2.

When the set of evoked alternatives is limited to few words or just one word the

focused item often appears to be clearly contrastive3). For example in (1.1) the word

“evening” evokes and contrasts with the word “morning”.

Although it is under debate whether this specific case of focus (which may be

referred to as restricted or closed focus) deserves its own semantic category several

empirical studies have shown phonological and acoustic differences (depending on the

perspective one looks at such distinction) between its prosodic marking and that of

accented but not contrastive items. In general a contrastive accent is usually more

prominent than a “standard” accent and it is occasionally referred to as “emphatic

accent”.

The phonetic properties of contrastive accents make the identification of contrastive

items very attractive for TTS applications. Such task would allow to go beyond a

simple distinction between accented and unaccented words and move towards more

1Here the term kontrast has the same meaning of focus and should not be confused with the concept
of contrast (although we will see in chapter 2 that focus and contrast may be seen as two very similar if
not identical concepts.)

2Or British football teams or London’s football teams. The set evoked need not to be well delimited
3We will see in chapter 2 that actually focus and contrast may be seen as one single concept even

when the set of alternatives evoked by the focused item is not limited to a close small set (like in example
(1.2).
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expressive TTS systems.

Under this perspective, part of this thesis (chapter 5) is devoted to the automatic

labelling of contrast, where contrast is meant as a relation that ties two words that

explicitly contrast with each other or two words where when one word contrasts with

the other (as in example 1.1).

The approach proposed to accomplish this novel task is mainly based on the obser-

vation that contrastive elements are “similar in a way but different in another”, where

similarity is not only semantic similarity but also syntactic similarity (e.g. words shar-

ing the same syntactic function or/and modifying the same syntactic head). A combi-

nation of simple lexical features, syntactic features (mainly in the form of syntactic de-

pendencies) and semantic information (mainly in the form of semantic relations drawn

from the WordNet semantic lexicon, e.g., hypernym, antonym, etc...) are combined

into a Support Vector Machines (SVM) based contrast tagger.

Focus marking is not the only mechanism that controls the salience and organi-

zation of information and affects pitch accenting. Usually when only one word is

focused (narrow focus) that word carries the most prominent accent, but that does not

mean that words in the background can not be accented. Moreover when the focused

item is a phrase or a sentence (broad focus) then pitch accentuation is determined by

other factors.

One of these factors, another discourse related factor which is actually somehow

intertwined with focus marking, is the new/given dichotomy with new words tending to

be accented and given words (i.e., words that have already been, explicitly or implicitly,

mentioned in the discourse) tending to be deaccented.

Non-discourse related factors that affect pitch accenting are mainly features that

indicate the intrinsic informativeness of words. Content words are usually more in-

formative (i.e., convey more unexpected information) than function words and so are

more likely to be accented. Similarly, rare words are more likely to be accented than

frequent words.

In automatic pitch accent prediction the use of discourse related features have been

very limited, perhaps because an accurate extraction of these features seems impracti-

cable and when approximated solutions to extract them have been used the impact of

these features on accent prediction has been marginal.

In chapter 3, where (“standard”) pitch accent prediction is addressed, there is no

ambition to accurately extract discourse related features and the attempt of outperform-



Chapter 1. Introduction 5

ing state-of-the-art accent prediction is mainly based on the extraction of new features

that aim to: 1) be complementary to the statistical features proposed in previous work

to estimate the informativeness of words (i.e., probability of seeing a word), of the

informativeness of the concepts conveyed by the words, and 2) better account for the

effects of syntax on pitch accenting.

Another factor affecting the accentuation value of a word (i.e., ±accent) is the

“accentuation history”, i.e., the accentuation values of the preceding words. To account

for the “accentuation history” some previous studies have proposed machine learning

techniques such as Hidden Markov Models (HMMs) and Conditional Random Fields

(CRFs) as opposed to more traditional (in the literature on pitch accent prediction)

techniques like Classification Trees in which the placement of a pitch accent is assumed

to be independent of the accentuation history. Since the literature seems to lack of

a fair comparison between the two approaches part of chapter 3 is devoted to such

comparison.

All factors affecting pitch accentuation act in a non-deterministic way, meaning

that, given a sentence, different accentuation patterns are equally acceptable and all

convey the same meaning. Such variability, which is evident when comparing the

accentuation patterns of different speakers that read the same text or even when com-

paring the patterns of a single speaker that reads the same text at different times, is due

to the optionality of (some) accents. Consider the example:

(1.3) Q: What did Arun’s mother think?

A: Arun’s mother disapproved.

an accent on “disapproved” is compulsory (in a natural-sounding utterance) because

“disapproved” is focused. However, because of rhythmic effects, an accent on “mother”

would be perfectly acceptable (as a non-accent would be), provided that the accent

“mother” sounds less prominent than the accent on “disapproved”. So the accent on

“mother” is optional while the accent on “disapproved” is compulsory (and “meaning-

ful”).

Prosodic variability raises issues on the correct evaluation of pitch accent predic-

tors. Simply marking as correct a predicted accent value when it matches the accen-

tuation value in the test data becomes an incorrect evaluation since a predicted accent

sequence that is different from the test sequence may be as correct as the test sequence.

An alternative evaluation metric that accounts for variability in pitch accent place-

ment is proposed in chapter 4. The metric is based on an information-theoretic defini-

tion of optionality that sees optionality as a continuous-valued variable. This definition
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of optionality leads to a more correct evaluation of accent prediction with respect to

evaluation metrics proposed in previous work and based on a binary definition of op-

tionality (i.e., ±optional).

Once we have worked on the identification of prosodic prominence patterns (both

in form of standard and contrastive pitch accent sequences) the next natural step is that

of validating the utility of such work in the generation of prosodic prominence in TTS

synthesis. That is the goal of chapter 6, where, through large scale perceptual tests

several questions on the utility of accent prediction in TTS synthesis are addressed.

The main questions are: is a substantial improved pitch accent prediction reflected in

better prosody generation? Can a TTS system benefit from the knowledge of the degree

of optionality of accents? Can we generate accurate contrastive accents in HMM-based

speech synthesis?

1.1 Scope of the thesis

Since the target of improving the identification and generation of natural patterns

of prosodic prominence for TTS synthesis requires several different issues to be ad-

dressed, ranging from text analysis to acoustic modeling of prosody, which we do not

think can be all equally covered in a PhD thesis work, this thesis addresses the issues

related to text analysis more deeply than those related to speech synthesis and conse-

quently is more focused on the linguistic features that affect prosodic prominence than

on issues related to the acoustic correlates of prosody.

The motivation behind this bias stems from the need to counterbalance the bias

of previous work on the speech synthesis part. In fact almost all previous studies on

prosodic prominence modeling (and more in general on prosody modeling) for TTS

propose solutions to improve the prosodic quality of synthetic speech that “only” con-

cern speech signal and data. For example solutions to collect more expressive speech

data, or solutions to generate more natural F0 curves given linguistic specifications.

The linguistic information used is usually very simple (e.g. Part-of-Speech, position

of the word in the sentence, position of the syllable in the word, etc...) and indepen-

dent of the syntactic and semantic context, or, when it is more complex and context-

dependent (usually represented through prosodic symbols from the ToBI symbols set),

its identification is left to an “artificial mind” or to the TTS user. This lack of a deep

text analysis is acceptable when the TTS system is required to read out-of-context sen-
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tences or when it is integrated within a dialogue system (usually working on limited

domains, e.g. flight booking) that provides all the necessary contextual information to

the TTS system.

However there are still several applications, usually more challenging open-domain

applications, where a TTS system can only rely on itself, applications where there are

no external agents or, where there is an external agent but it does not provide to the

TTS systems all the information it needs to generate an appropriate prosodic pattern.

1.2 Thesis Outline

The following is a chapter by chapter outline of this thesis.

Chapter 2: this is the background chapter where we will have a closer look to

the concepts of prosodic prominence, pitch accenting, focus and contrast, to the main

factors affecting pitch accenting and to the previous work on (both “standard” and

“contrastive”) pitch accent labeling. A description of the two main speech synthesis

techniques (unit selection and Hidden Markov Model (HMM) based speech synthesis)

and a review of previous work on prosodic prominence generation for TTS synthesis

conclude the chapter.

Chapter 3: this chapter concerns the automatic labeling of pitch accents. New

statistical and syntactic features are proposed as features complementary to the most

predictive features from previous work and their utility is tested on both read and spon-

taneous speech. Different machine learning techniques are compared both theoreti-

cally and empirically to investigate which techniques (and which of their properties)

are most suitable for pitch accent prediction.

Chapter 4: the first part of this chapter presents a study on the variability of

pitch accent placement in read speech. The following part introduces and motivates

an information-theoretic measure of the optionality of prosodic symbols. The chapter

concludes with the description of a novel method that takes advantage of the option-

ality of pitch accents (and potentially of other prosodic categorical events) to improve

the speech quality of unit selection synthesis.

Chapter 5: this chapter concerns the automatic labeling of contrast. Examples of

contrast from a corpus of spontaneous spoken English are shown in order to give a

better definition of the task and the difficulties involved, and to introduce and motivate

a novel Support Vector Machine (SVM) based contrast tagger. After an analysis of

error of the tagger, new methods are proposed to improve the tagger accuracy. One of
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the main problem in contrast tagging is the lack of training data. The chapter concludes

with the description of the implementation of an algorithm of Active Learning SVM

for contrast labelling whose goal is a fast creation of manually labelled training data

sets.

Chapter 6: in this chapter the impact of most of the work discussed in chapter 3, 4

and 5 on TTS synthesis (both unit selection and HMM based) is investigated through a

series of large scale perceptual tests. All the test results are preceded by a description

of how the information provided by the pitch accent predictor and contrast tagger are

integrated in a TTS system and what solutions increase the utility of such information.

Chapter 7: this chapter concludes the thesis with a summary of the main results

achieved in this thesis, the main problems encountered, the problems that came up

from the findings of this thesis, possible solutions and future directions.



Chapter 2

Background

9
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2.1 Prosodic Prominence and Pitch Accents

Although this thesis is not firmly anchored to any linguistic theory of intonation, it

is however based on some fundamental assumptions of the Autosegmental-Metrical

(AM) theory of Intonation1 (based on Liberman (1975), Bruce (1997) and Pierrehum-

bert (1980)), the first (i.e., most fundamental one) of which says that the pitch2 contour

consists of a string of phonological pitch events interspersed with phonologically un-

derspecified transitions. Pitch events are divided in pitch accents, which are variations

of pitch associated with prominent syllables, and edge tones, which are segments of

pitch associated with prosodic boundaries.

Another basic assumption of the AM theory is that pitch accents are “post-lexical”

events, meaning that their placement and type is not determined at the lexical level

(like lexical stress) but at a higher level.

Further, AM theory makes a clear distinction between pitch accents and stress,

where stress is not simply lexical stress but a more “abstract” concept. According

to AM theory every utterance has a stress pattern that “reflects a set of prominence

relations between the elements of the utterance” (Ladd (1996)). The stress pattern is

organised in a binary tree structure where two siblings are always tied by a weak-strong

relation that states which of the two is most prominent. Figure 2.1 shows an example

of relative prominence tree for the noun phrase “labor union” where the lexical stress

on “labor” is stronger (i.e., perceived as more prominent) than the lexical stress on

“union”3. The same kind of tree can be built for a whole intonational phrase (i.e., a

part of the utterance delimited by “strong” prosodic breaks).

This hierarchical representation of prosodic prominence assumes that in English

several degrees of prominence can be perceived.

However it is not clear whether different levels in the hierarchy have different pho-

netic correlates. What is clear is that, save some exceptions, in spoken English promi-

nent syllables (i.e., the “strong” siblings, at any level of the tree) can be marked by a

1Throughout this thesis we will consider intonation as the linguistic component of prosody dealing
with F0 (or pitch, see next footnote), which is an acoustic attribute of prosody. Other acoustic attributes
of prosody are duration and intensity.

2Actually we should say F0 instead of pitch, being the former an acoustic property of speech and the
latter its psycho-physical correlate, i.e., the perceived (by humans) F0. However, throughout this thesis
we will use the two terms interchangeably in accord with most of the literature.

3Note that the weak-strong relation is not defined for any couple of items. For instance in the example
in figure 2.1 the prominence relation between the last syllables of the two words is not defined, both are
subordinated to the strong branch but neither of the two is subordinate to the other. When uttering
“labor union” the last syllable of “labor” could be more salient than the last last syllable of “union”, or
vice-versa, without violating the prominence tree which can not account for such difference.
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Figure 2.1: Prominence tree of “labor union”. The letter ’s’ and ’w’ stand

for relatively strong and relatively weak sibling respectively. The promi-

nence tree can be mapped into a prominence grid in which the number of

’x’ indicates the level of prominence of a syllable. For example, the first syl-

lable of labor has the higher number of ’x’ meaning that it is the strongest

syllable. Note that the prominence tree is always a binary tree independently

of the number of items in the intonational phrase.

pitch accent while “weak” syllables can not. At least in English the most prominent

syllable in a phrase must be accented, so citing Beckman and Pierrehumbert (1986)

“[accents] are some sort of culmination of prominence”. As a consequence pitch ac-

cents serve as cues of prominence, and can be see as the strongest cue of prominence,

but are not necessarily the only cue of prominence (at the post-lexical level).

The prominence tree also implies a hierarchy of pitch accents that goes beyond the

binary ±accent value, with pitch accents occurring on the strongest words being more

prominent than those on weaker words.

The default weak-strong relation of the minimum sub-tree (i.e., the tree only hav-

ing one parent node and two children), which biases a stronger prominence on the

right branches, also accounts for the fact that in English the rightmost accent (usually

referred to as nuclear accent or primary accent) in an prosodic phrase is usually the

accent perceived as most prominent. As we will see in section 2.2.1 the nuclear accent

is on the pragmatics side the most important accent since it marks focused words, i.e.,

the most salient words given the discourse context.
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H* simple high (canonical declarative)

L* simple low (yes-no question)

L+H* rising to high from low (contrastive focus)

L*+H “scooped” late rise (pragmatic uncertainty)

H+!H* fall onto stress (pragmatic inference)

Figure 2.2: ToBI pitch accents. (from Pitrelli et al. (1994))

In the AM theory a taxonomy of pitch accents, and of edge tones (divided into

boundary and phrase tones), is defined according to the primitive level tones that com-

pose them. The primitive level tones (also referred to as pitch targets) are High(H) and

Low(L).

The most up-to-date taxonomy of pitch accents stemming from the AM theory is

described in the ToBI (TOnes and Break Indices) annotation system (Silverman et al.

(1992) and Pitrelli et al. (1994)). In ToBI five types of accent are defined: H*, L*,

L+H*, L*+H and H+!H* (see figure 2.2). The ’*’ symbol after a level tone means that

the tone (starred tone) is the central tone of the accent. In some accent types, starred

tones can be preceded or followed by a “leading” or a “trailing” tone respectively.

The diacritic “!” indicates that the following tone is down-stepped, that is the tone is

lowered because of a compression of the pitch range.

No use of the ToBI pitch accent taxonomy will be made in this thesis and ToBI

accent types will be only mentioned when describing previous work in which such

taxonomy is used. The work described in the following chapters is mainly concerned

with the placements of pitch accents (whatever the ToBI type) and only distinguishes

between “standard” pitch accents (which can be roughly associated to H* accents) and

“contrastive” pitch accents (which are usually associated to L+H* accents, see Pitrelli

et al. (1994)).

The main motivation behind this simplification is that one of the main goals of this

thesis is to identify sequences of pitch accents from text and we do not believe that an

accurate prediction of all the accent types in a sentence can be achieved by looking at

text only and, above all, “simpler” problems, like the prediction of ± accents or the

distinction between nuclear and non-nuclear accents, have not been completely solved

yet or have still to be solved.

Moreover, note that H* and L+H* are usually by far the most frequent accent types.

For example in the Boston University Radio News corpus (BURNC, Ostendorf et al.
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(1995)), which is annotated according to ToBI conventions, H* and L+H* accents

make up 94% of all accents (reported by Taylor (2000)).

Since looking at pitch accent placements only is equivalent to collapsing all accent

types in one unspecified accent type we may wonder what kind of useful (for TTS pur-

poses, at least) information we can still obtain from such unspecified accents. If all the

information we can extract from accents were contained in their intonational “shape”

(i.e., type) the answer will be “no information”. Luckily some information is still left

since the phonetic correlates do not reside in F0 only. Indeed experimental evidence

shows that syllables (independently of the accent type) are usually marked with greater

duration (see Turk (1999) for example, where also the “scope” of (contrastive) accents

is investigated). Also other phonetic cues have been associated with accents, e.g., in-

creased intensity, better vowel quality and effects on the spectral tilt (with more energy

at high frequencies, Campbell and Beckman (1997)). What seems to emerge from ex-

perimental work is that increased duration, intensity, and other acoustic correlates of

pitch accents are not exclusive correlates of pitch accents but are all cues of different

levels of prominence4(i.e., the levels defined in the prominence tree mentioned above).

A further reason that justifies the importance of locating pitch accent placement is

that, as we will see in section 2.6.2, in HMM-based speech synthesis it is crucial to

know which linguistic items affect the velocity of change of the acoustic parameters

(including F0), and accents definitely affect the velocity of change of F0 in that they

are by definition associated with (phonological) pitch movements.

2.2 Pitch Accents in Context

Since a goal of this thesis is that of predicting pitch accent (both “standard” and “con-

trastive” ) placements, the main question we address is: what are the factors that affect

pitch accent placement and the placement of the most prominent accents?

In several languages, including English and Dutch, there is a generally accepted

direct relation between prosodic prominence and salient and informative information

in an utterance, being salient and informative words usually marked with pitch ac-

cents. Note that here we make a distinction between salient and informative infor-

mation where salient information is information that is relevant for the listener while

informative information is information that adds new and unexpected content to the

4Levels that in a ±accent discrimination are roughly collapsed to one of the two groups (+accent or
-accent)
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discourse but is not necessarily relevant for the listener.

The parts in an utterance that carry salient and informative information are deter-

mined by the discourse context, and (as we will see in section 2.3), especially when

the utterance is out-of-context, by intrinsic properties of words and utterance-internal

relations among words.

This section concerns the effects of discourse context on pitch accenting by looking

at the relationship between pitch accenting and Information Structure. Information

Structure is meant here as describing the distribution of salience and organization of

information of the semantic content of an utterance in relation to the discourse context.

2.2.1 Focus and Pitch Accents

The main mechanism controlling for the organization of salience and informativeness

in a sentence is the focus/background distinction (see section 2.2.3.1 for a formal

definition). The best way to illustrate the focus/background is showing examples of

question-answer pairs like the following:

(2.1) Q: What did Sam have for lunch?

A: Sam had RAVIOLI.

(2.2) Q: Who had ravioli for lunch?

A: SAM had ravioli.

where “ravioli” in (2.1) and “Sam” in (2.2) are focused as they are clearly the salient

and informative words in the answer (i.e., they are the “actual answer within the an-

swer”), given the question. And since they are focused then they are also accented5.

The intuition that pitch accents are used to mark focused words (as well as new words)

dates back to the 1950s (e.g., Bolinger (1958)).

The non-focused part of the answer is referred to as background. A more formal

definition of focus and background (although we will see that there is not an unani-

mously agreed definition of focus) will be given in section 2.2.3.1, for the time being

we will use an intuitive definition of focus in which focus is the most salient part of an

utterance given the discourse context.

Focus does not imply that the focused word is the only accented word in the sen-

tence, but implies that the accent on the focused word is the one perceived as most

5The implication “focused → accented” is, however, not always true. Ladd (1996) shows examples
of focus without accents when focus is on a word of a prepositional phrase with pronoun or adverb
objects, such as “for him” and “in there”.
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prominent and whose presence is the most necessary (see Ladd (2009), section 7.2.1),

i.e.,the accent on a focused word is the primary accent6.

Pitch accents on the background words may be required by rhythmic constraints.

If we slightly modify example (2.1) into the following example:

(2.3) Q: What did Sam’s mother-in-law have for lunch?

A: Sam’s mother-in-law had RAVIOLI.

the subject “Sam’s mother-in-law” is long enough to require at least an accent on

“mother”, although “mother” is neither informative nor salient. However the accent on

“mother” has to be less prominent than the accent on “ravioli”. If the prominence re-

lation between “mother” and “ravioli” were reversed the interpretation of focus would

be no more consistent with the question as the greatest prominence on “mother” would

imply that the issue under discussion is who had ravioli for lunch (i.e., “Sam’s mother”,

contrasting with some other relative or friend of Sam) instead of what “Sam’s mother-

in-law” had for lunch.

All previous examples are examples of narrow focus in that one single word (“ravi-

oli” and “Sam” respectively) is marked by focus. When focus marks a phrase or a

whole sentence the focus is generally referred to as broad focus. In the following ex-

ample:

(2.4) Q: What happened?

A: Sam ate ravioli.

the whole answer is focused. In the presence of broad focus discourse context is no

longer sufficient to determine which word carries the most prominent accent and other

factors must be taken into account.

2.2.2 New/Given and Pitch Accents

The given/new dichotomy is another factor controlling the organization of informa-

tion in relation to discourse context (see Chafe (1994), for example). In all previous

examples of narrow focus ((2.1),(2.2) and (2.3)), narrow focus coincides with new in-

formation. In fact what is new in the discourse is often focused (and consequently

6When two or more single words are focused in the same utterance each focused word should still
bear a primary accent if each of them belongs to a separate intonational phrase, which is often the case.
We are not aware on any study in which the prominence relations among focused words belonging to
the same utterance are investigated. However the focused words can be marked by different types of
pitch accents if they are focused by different “types” of focus (e.g., thematic vs. rhematic focus, see
section 2.2.3)
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accented) and what is given (i.e., previously mentioned in the discourse) is often part

of the background.

However focus and new information can not be collapsed to one single concept, but

have to be kept separated to account for cases of focus on given information, and of new

information without focus. The same applies to background and given information. In

the following example:

(2.5) S1: Yesterday, Sam and Paul went to the restaurant for lunch

S2 : What did they eat?

S3: Sam had ravioli,...

S4: ...while Paul had risotto.

in clause S3 given information (“Sam”) is focused. In fact both “ravioli” and “Sam”

are focused (as well as “Paul” and “risotto” in S4). “Ravioli” is focused as it is new

and relevant (i.e., it is a “part of the answer” that answers the question) information,

while “Sam” is focused as it is relevant, i.e., it is “a part of the answer” that answers the

question (it’s “Sam” who had ravioli, not “Paul”), despite the fact that it is has already

been mentioned in the dialogue7.

On the other hand new information may not be focused as in the example below

where the answer is “over-informative”:

(2.6) S1: Yesterday, Sam went to the restaurant for lunch

S2 : What did he eat?

S3: Sam was tempted by the deluxe double cheeseburger but in the end

he had ravioli.

“Ravioli” is again new and focused, while the verb phrase “deluxe double cheese-

burger” is new but not focused. It can be argued that “deluxe double cheeseburger” is

actually focused but the higher relevance of “ravioli” must be acknowledged.

Even agreeing with the theory of the existence of nested foci (Neeleman and Szen-

droi (2004) and Fery and Samek-Lodovici (2006)), that would assume “was tempted

by the deluxe double cheeseburger but in the end he had ravioli” to be focused and

“ravioli” to be nested focus within it, the highest relevance on the focus on “ravioli”

must be acknowledged since “ravioli” is the actual “answer within the answer”.

The information status , i.e., the status indicating if a word is new or given, has

7In section 2.2.3.1 we will see that in the two-dimensional approach to Information Structure (Vall-
duvı́ and Vilkuna (1998) and Steedman (2000)) which maps Information Structure on a space defined
by the two variables “theme/rheme” and “focus/background”, the foci on “Sam” and “ravioli” are dis-
tinguished so that the focus on “Sam” is a thematic focus while the focus on “ravioli” is a rhematic
focus.
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been claimed to be prosodically marked, with new entities tending to be accented and

given entities tending to be deaccented.

However the relation between information status and pitch accenting seems to

closely depend on what is meant with given and new. If information status is defined in

terms of word occurrences, where the first occurrence of a word is assumed to convey

new information, while the following occurrences convey given information, the re-

lation with accenting is weak (Ross and Ostendorf (1996) and Terken and Hirschberg

(1994)). Terken and Hirschberg (1994) shows that simple prior mention of a word may

not suffice to motivate deaccentuation and that deaccentuation is more frequent when

the syntactic role (e.g., subject, object, etc...) and the surface position of the entity are

both repeated. Needham (1990) shows that a word that refers to a part of a previously

mentioned entity can be deaccented but only if that part is central to the object.

These studies suggest that a simple dichotomy given/new does not suffice to ex-

plain accentuation and deaccentuation, and in reality different degrees of givenness

exist. For example Chafe (1994) defines a third information state which indicates

whether an entity is accessible/predictable from the discourse context. This accessible

state is located in between new and given. An accessible entity is not given because it

has not been previously mentioned, but is not new either because it is accessible from

the discourse context. Following Chafe’s definition of information status Baumann and

Grice (2006) looked at the accentuation of accessibility activated by different semantic

relations (e.g synonymy, hypernym-hyponym, hyponym-hypernym, meronymy, etc...)

and found that the disposition to deaccentuation (and the type of ToBI accent) depends

on the semantic relation activating accessibility. So, for example, accessibility acti-

vated by antonymy (i.e., an antonym of the current word previously occurred in the

discourse) or by part-whole tends to be more deaccented than that activated by whole-

part or hypernym-hyponym.

We have seen that givenness (and accessibility) of an entity can be determined by

a previous occurrence of an entity closely related (in a semantic sense) to it. Thus

givenness could be seen as statically determined in the sense that the relation between

the current entity and the previous entities always holds independently of the discourse

context. However the givenness of an entity and its relation to closely related semantic

entities can be “altered” by the discourse context. In the example below (taken from

Calhoun (2006)):
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(2.7) S1: Arun looked around all the fancy car shops - Mercedes,

Porsche, BMW, Lamborghini ...

S2: So what did he buy?

S3: Arun bought a PORSCHE

S4: What colour did he get?

S5: Arun bought a RED Porsche

S6: What did Joel buy?

S7a: Joel bought a GREEN Porsche

S7b (wrong): Joel bought a green PORSCHE

S7c: Joel bought a green MERCEDES

S7d(wrong): Joel bought a GREEN Mercedes

both “Porsche” and “Mercedes” have been mentioned in S1, so in the possible answers

to S6 they are both given. However “Mercedes” has to be accented while “Porsche”

can not (as shown in S7b). This difference in accentuation of the two words is due to

the fact that “Porsche” is given in relation to an item of the discourse, i.e., the predicate

“bought”, which restricts the “Porsche” entity to the “bought Porsche” entity , which

is given in S7, while there is not mention of “bought Mercedes” in S1-S6.

2.2.3 Beyond ±accents

The relation between Information Structure and prosodic prominence, and more in

general between Information Structure and prosody, is not limited to pitch accent lo-

cation and to the location of the main accent in an utterance. Information Structure

concepts such as thematic and rhematic foci have been claimed to be signalled by dif-

ferent accent types. Contrast has been claimed to be marked by particularly prominent

accents. Moreover Information Structure also affects prosodic structure.

The following section 2.2.3.1 concerns with the definition of the concepts

of focus/background, theme/rheme, contrast. The relationship between these concepts

and prosody is discussed in 2.2.3.2.

Concepts like theme/rheme are not directly relevant in this thesis as there is no

attempt here to identify and use them in TTS synthesis but are mentioned to give a

complete picture of the relation between prosodic prominence and information struc-

ture. On the other hand the concept of contrast is much more relevant for this thesis.
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2.2.3.1 Focus/Background, Contrast and Theme/Rheme

In section 2.2.1 we have seen examples of focus but we have not given any definition

of it. An attempt to give a definition of focus arises the question of whether there is

one unique type of focus or multiple types. It has long been debated whether there is

a unique ordinary focus, or whether there is also a contrastive focus separate from it.

There are two main divergent accounts on focus: a semantic account and a syntactic

account.

According to the semantic account, whose origins date back to Bolinger’s work

(Bolinger (1961)), there is no distinction between ordinary and contrastive focus be-

cause any focus is ultimately contrastive. In fact focus always evokes a set of alterna-

tives and when this set “is narrowed down we get closer to what we think of contrastive

accent”8 Bolinger (1961). Bolinger’s insight has been formalized by Rooth (Rooth

(1992)) in his Alternative Semantics theory. According to Rooth the set of evoked al-

ternatives must be constrained by context and its size can obviously range from large

to small. However, a small (restricted) set does not require a semantic definition of

a different type of focus and so there is no need for a categorical distinction between

ordinary and contrastive focus.

The only dichotomy focus/background does not allow to capture all the concepts

that determine the structure of information, like, for example, the new/given distinc-

tion, so that new dichotomies (often referred to as dimensions) have been proposed.

Probably the most popular account on Information Structure’s dimensions (and the

most studied in term of prosodic correlates) is the one initially proposed by Hal-

liday (1967) and subsequently refined by Vallduvı́ and Vilkuna (1998) and Steed-

man (2000). They propose two dimensions of Information Structure consisting of

kontrast/background, which is the equivalent of focus/background, and theme/rheme,

which distinguishes between ”the part of the utterance that relates it to the discourse

purpose” and the part that ”advances the discourse”(Kruijff-Korbayova and Steedman

(2003)). Kontrast and background act within theme and rheme as shown in the follow-

ing example from Kruijff-Korbayova and Steedman (2003):

(2.8) Q: I know that this car is a Porsche

But what is the make of your other car?

8Following this definition, in this thesis we use the term “contrastive focus” to refer to a focus that
evokes a restricted set of alternatives. That does not imply we are assuming that contrastive focus
deserves its own semantic category.
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A : My other car is also a Porsche

background kontrast background kontrast background

theme rheme

Thematic kontrast might be seen as contrastive focus (meant as focus evoking a

restricted set of given alternatives). However it is easy to find examples where also

rhematic kontrast is contrastive like in the following question-answer pair:

(2.9) Q: What did Paul and Mark buy?

A: Paul bought a Porsche while Mark bought a Maserati

Moving from the semantic to the syntactic account of focus, according to the syntactic

account which dates back to Chomsky (1971), ordinary focus and contrastive focus

are two different types of focus. Kiss (1998), for example, claims that contrastive and

ordinary focus, in her terminology, exhaustive and informational focus respectively,

have different semantic and syntactic properties and so they must be kept separated.

An element focused by exhaustive focus is the only element picked from a set of al-

ternatives which “achieves a true proposition when combined with the background”

(Umbach (2004)). In English exhaustive focus may require word order movement as

in it-cleft clauses. For example in “It was PAUL who did it”, the exhaustive focus is

on “Paul”, since “Paul” and nobody else makes the proposition true (so, for instance,

“It was PAUL who did it” can not be followed by “... and it was KARL who did it” ).

On the other hand, informational focus introduces new information, it does not involve

movement and it does not evoke a set of given alternatives.

2.2.3.2 Prosodic Correlates of Focus/Background, Contrast

and Theme/Rheme

The theme/rheme distinction has been claimed to strongly affect prosodic phrasing,

with prosodic breaks aligned with theme/rheme boundaries (Steedman (2000)). So

in the example above (2.8) the theme/rheme boundary occurring after “car” can be

signalled with a prosodic break9. It is however difficult if not impossible, to iden-

tify theme/rheme boundaries looking at text only. In fact, again in example (2.8), the

verb “is” could be removed from rheme and attached to theme without violating the

definition of theme/rheme, but in that case a break after “is” would sound much less

appropriate.
9Note that here we are only considering the case where the theme contains kontrast. When the theme

is unambiguously established in the context and so all its items are background then the theme boundary
is less prone to be marked by a prosodic break
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Thematic and rhematic kontrasts have also been claimed (see Prevost and Steedman

(1994) and Steedman (2000)) to be prosodically signalled by different accent types as

shown below

(2.10) Q: I know that this car is a Porsche

But what is the make of your other car?

A : My other car is also a Porsche

background kontrast background kontrast background

L+H* LH% H* LL%

theme rheme

with thematic kontrast signalled by a L+H* accent followed by a “fall-rise” tune

(LH%), and rhematic kontrast marked by H* accent followed by “fall” tune (LL%).

Also contrastive focus has been claimed to be prosodically signalled with increased

prominence or even emphasis, so that accents marking contrast has been referred to as

contrastive accents to distinguish them from weaker “standard” accents. Obviously

the prosodic correlates one associates to contrastive focus strongly depend on what

one means with contrastive focus, and we have just seen that there is not a standard

definition of contrastive focus. In most of the studies on the prosodic correlates of con-

trastive focus, contrastive focus is a “very restricted” focus where the set of alternatives

is limited to two elements, that is two words (or phrases) that explicitly contrast with

each other as in the examples below:

(2.11) S1: ... So SAM had ravioli

S2: No, KEN had ravioli.

(2.12) S: John only paid for the BEER, not for the PORT

As already stated in Chapter 1 we refer to contrast as the relation that links two

items that explicitly contrast with (evoke) each other (as in example 2.12) or two items

where one item contrasts with(evokes) the other (as in example 1.1). In order to avoid

phrases like “focus activated by contrast”, we will also use the term contrast to indicate

the focus on the contrastive word (i.e., the word that evokes the other word).

Concerning the prosodic correlates of contrast, as we have mentioned above the ac-

cent on contrast (i.e., contrastive accent on contrastive words) is usually more promi-

nent than the “standard” accent. It is however not clear how this increased prominence

is realized, whether the distinction “standard” vs. contrastive accent is categorical (i.e.,

the two accents are phonologically separated with contrastive accent being represented
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by L+H*), or whether it is not categorical and the perceived increased prominence is

only due to the prosodic context (see Krahmer and Swerts (2001), for example).

Compared to other “types” of focus (and to other Information Structure’s concepts),

contrast seems to be easier to identify in that the alternatives evoked by the contrastive

words are explicitly given.

Both phonetic correlates of contrast and its “explicit” nature make contrast a very

interesting concept for TTS applications. For this reason a whole chapter of this thesis

(chapter 5) is devoted to the automatic detection of contrast from text (actually to the

detection of the “symmetric” contrast, i.e., contrast where the two words are both

focused in that they contrast with each other).

2.3 Broad Focus and Pitch Accents

In sections 2.2.1 and 2.2.2 we have seen the main mechanisms through which discourse

context affects the placement of pitch accents (and the placement of the primary ac-

cent). Discourse context is not the only factor affecting pitch accents distribution and

the placement of the primary accent. Other factors affect accent placement, and are

necessary when the influence of discourse context on pitch accenting is weak, as in

the presence of broad focus10. Some of the factors we will review have been claimed

to mainly determine the placement of the primary accents, some others to affect word

accentability (without a distinction between primary and secondary accent). The rela-

tion of some of these factors to pitch accenting have been claimed on the basis of some

“linguistic insights” supported by weak experimental evidence (i.e., observations from

carefully selected utterances), some others are supported by stronger experimental ev-

idence (i.e., statistical analysis from prosodically annotated speech corpora).

Most of the discourse-independent factors affecting pitch accent placement account

for the degree of informativeness of words where the degree of informativeness (i.e.,

“the amount of unpredictable information”) is intrinsic (defined regardless of any con-

text) or dependent on sentence-internal words. For example, high-frequency words,

which usually convey a large amount of predictable information, are much less prone

to accentuation than low-frequency words.

Similarly, semantically empty content words, such as person, man, thing, place,

10As Ladd points out in Ladd (1996) the accent pattern within a broad focus is not “contextless’,
but only ’unmarked’, that is the pattern that is chosen when there is no compelling grammatical or
contextual reason to choose some other’.
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and so on, are often not accented. Semantic weight is an intrinsic property of some

nouns that, according to Bolinger (1972) can be illustrated comparing empty nouns

with rich nouns as in the following example (with capitalized words indicating the last

nuclear accent in the sentence):

(2.13) S1: He was arrested because he KILLED a man

(2.14) S2 : He was arrested because he killed a POLICEMAN

The degree of informativeness of a word can also be relative, i.e., affected by the

words surrounding it. As Bolinger (1972) notes, in the following example:

(2.15) S1: They STRANGLED him to death

(2.16) S2 : They hounded him to DEATH

in S1 “death” is deaccented because “strangulation” implies “death” and so makes

“death” more predictable and consequently less informative, i.e., “death” adds very

little information to the sentence. In S2 “hounded” does not necessarily imply death

so “death” is more informative (than in S1) and is not deaccented (and so it bears the

nuclear accent).

Pan and McKeown (1999) and Pan and Hirschberg (2000) propose an information-

theoretic measure of intrinsic informativeness and relative informativeness respec-

tively. The intrinsic informativeness of a word is defined in Pan and McKeown (1999)

as:

IC(w) =− log(p(w)) (2.1)

where p(w) is the probability of a word w of appearing in a corpus. The lower the

probability of a word, the higher its Information Content (IC).

Note that, as we will point out in chapter 3, this information-theoretic definition of

informativeness does not entirely account for the concept of semantic weight (in fact a

high IC word can be semantically empty). For such reason in chapter 3 we propose an

information-theoretic definition of semantic-weight that is complementary to IC in the

measuring of intrinsic informativeness.

A measure of relative informativeness is proposed in Pan and Hirschberg (2000),

where the relative informativeness of a word is expressed as :

RIC(wi) =− log(p(wi|wi−1)) (2.2)

where p(wi|wi−1) is the probability of observing a word given the occurrence of the

previous word (RIC stands for Relative Information Content). This is obviously a
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a. General schemata:

Furniture + Room → RIGHT

(e.g., kitchen table)

b. Schemata with particular head nouns:

Proper-name + Street → LEFT

(e.g., Park Street)

c. List of particular Complex Noun Phrases:

White + House → LEFT

Figure 2.3: Sproat’s types of accent placement rule, from Sproat (1994)

measure of a simplified version of relative informativeness that, for example, does not

apply in cases like example (2.15).

Both IC and RIC have been shown to have a positive correlation with pitch accent

assignment to a word and to be useful features for pitch accent prediction.

Nevertheless there are cases where the relation between informativeness and ac-

centuation does not hold. For example informativeness does not explain why while in

the noun phrase “apple cake” the accent is on “apple”, in the noun phrase “apple pie”

the accent is on “pie”.

Sproat (1994) proposes a set of rules to assign pitch accents in two-word noun

phrases to handle cases where accenting is determined by lexical effects. The rules can

be roughly divided into three different types as shown in figure 2.3.

Also syntax has been claimed to affect accenting. Predicates have been claimed

to be less accentable than their arguments. For example in short sentences describing

single events, the accent (or the main accent) tends to be on the subject as it is shown

in the examples below (from Ladd (1996)):

(2.17) My UMBRELLA broke

(2.18) S1: The SUN came out

(2.19) S1: His MOTHER died

By contrast, “if the subject denotes a human and the predicate denotes an action over

which the subject is likely to have some control the accent on the verb is more likely”

(Ladd (1996)):

(2.20) My brothers are WRESTLING
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(2.21) S1: Jesus WEPT

(2.22) S1: The professor SWORE

Finally, as we have already briefly mentioned above, rhythm affects pitch accent place-

ment by forcing the occurrence of pitch accents on long phrases that otherwise could

be entirely deaccented. Rhythm also indirectly may affect the location of nuclear ac-

cents by requiring utterances to be split into prosodic phrases (delimited by prosodic

breaks), that in turn have to have their own nuclear accent. Obviously rhythm is not

the only factor affecting prosodic phrasing, also other factors, such as Information

Structure and syntax affect it, and so through prosodic phrasing they affect, again, the

placement of nuclear accents.

Experimental evidence from previous work on automatic pitch accent prediction

(see section 2.4) shows that all the factors affecting accenting we have just seen do

not affect accenting deterministically. There are not deterministic IF-THEN rules de-

termining where accents have to be placed. In fact so far we have often used the ex-

pression “words with this property tend to be deaccented/accented”. As we will see in

much more detail in Chapter 4 uncertainty plays a considerable role in the placement

of accents and it is what allows a sentence to be uttered using different (but equally

acceptable and conveying the same meaning) accentuation patterns.

Such uncertainty is mainly due to effects that go beyond what can be inferred by

only looking at text. Part of such uncertainty is “explained” by the fact that each

human speaker has her own free will and that her speech is subject to peculiar physical

constraints of her production system.

Another part of such uncertainty is due to disagreement among transcribers on the

location of pitch accents. Studies on inter-transcriber agreement on accent location

using ToBI conventions report reasonably high agreement rates ranging from 80% to

90%. However as Ladd points out in Ladd (2009) there are types of situations where

disagreement is not uncommon. In those cases the ToBI conventions seem to be un-

derspecified (and the annotation examples provided to the transcribers seem contradic-

tory) so that the annotation mainly relies on the intuitive judgments of the transcribers

that can be biased by different types of cues (e.g., acoustic vs. metrical, i.e., based on

the prominence tree mentioned in section 2.1). Being left to subjective judgment, the

annotation process becomes prone to variability, which in turn leads to uncertainty.

Additionally, even if all transcribers used the same type of cues, variability could

still occur since the annotation of prosodic symbols is a process of abstraction and dis-
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cretization of prosody that relies on the perceptual apparatus of the human annotators

which is not identical for all annotators.

Since prosodic prominence is not just about ± accent we believe that all factors

that have been claimed to affect accenting, actually do not directly affect accenting,

but affect the relation of relative prominence among words in an utterance. That is

another reason that partially explains why there are not deterministic rules in pitch

accent placement.

If we accept the notion of prominence tree discussed in section 2.1, then we can

accept the fact that some factors, e.g., focus, rather than affecting accenting actually

affect the weak-strong relations in the prominence tree making some syllables stronger

than they would be in a “default tree”. The resulting strong syllables then can be

accented or not and some accents can be stronger than others. The weakest accents

can be perceived or not.

On the other hand, some factors, mainly intrinsic properties of words like intrinsic

informativeness, seem to determine the accentability of a word regardless of the weak-

strong relations of that word with the other words. These are the factors that are mainly

taken into account in automatic pitch accent prediction.

2.4 Automatic Pitch Accents Prediction and Detection

Most fully automatic pitch accent predictors (i.e., predictors in which both accent pre-

diction and feature extraction are automatically carried out) relies on training features

that are easily computable and are not related to discourse context. The most used and

effective features are Part-of-Speech, Information Content, and Relative Information

Content. Yuan et al. (2005) show the effectiveness of what they call the accent-ratio

feature, a feature that gives a measure of how a word is prone to be accented simply by

counting (and using a bit of smoothing in Brenier et al. (2006)) how many times that

word has been accented in a prosodically labelled corpus. Other non-discourse-related

but less effective features are “phonological” features such as (from Gregory and Altun

(2004)): number of canonical features in the word, number of canonical/transcribed

phones in the word, length of the utterance containing the word, position of a word

within the utterance.

The studies mentioned above are concerned with the prediction/detection of ac-

cented words, but there are also studies concerned with the prediction/detection of

accented syllables (Ross and Ostendorf (1996), Sun (2002), and Levow (2008) for
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example).

Here we refer to accent prediction when accents are predicted from text (and so

only textual features can be used), while we refer to accent detection when accents are

identified in speech (and both acoustic and textual features can be used). In accent

detection, textual features usually turn out to be more predictive than acoustic features

(in Chen and Hasegawa-Johnson (2004) and Levow (2008), for example) although it is

difficult to make a fair comparison since that depends on the set of textual and acoustic

features one uses. Usually the combined use of acoustic and textual features leads to

a very small increase in detection accuracy with respect to detection based on textual

features only (see Levow (2008) and Sridhar and Bangalore (2008), for example)

Pan et al. (2002), which probably is the study using the most complete set of fea-

tures, show that semantic (e.g., semantic role) and rich syntactic (e.g., info extracted

from syntactic constituents, e.g., noun phrases, verb phrases, etc...) information pro-

vided by a Natural Language Generator are significantly correlated to pitch accent

placement but they are useless when used in combination with the whole set of fea-

tures to predict pitch accent placement. IC and RIC are the most predictive features

while surprisingly POS is superfluous. The information status of a concept (and of the

words conveying that concept), is, after IC and RIC, the most predictive feature.

On the other hand Sridhar and Bangalore (2008) show that the use of syntactic

supertags, i.e., word-level syntactic tags embodying predicate-argument information,

improves accuracy in pitch accent prediction.

To the best of our knowledge Hirschberg (1993) is the most serious attempt and

the only entirely automatic work taking into account context to predict accent place-

ments. Making use of Grosz and Sidner (1996)’s model of discourse which divides the

discourse structures into Linguistic, Attentional and Intonational structure, Hirschberg

models the Attentional structure (whose definition is very close to the definition of

Information Structure used in this thesis) as the union of a global focus space and a

local focus space11. Global focus space, which should contain central concepts of the

discourse which are relevant throughout the whole discourse, is modeled as a static set

of all content words in the first sentence of the text (i.e., discourse), while local focus

space, which contains concepts that are currently relevant in the discourse, is mod-

eled as a stack of words that contains the roots of words that are currently processed

and it is popped in presence of cue phrases (e.g., now, well, by the way) or paragraph

11Note that the term focus in Grosz and Sidner (1996) and the term we have used so far and use
throughout this thesis have two different meanings.
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boundaries. If the root of the current content word is already present in the local focus

then the word is given, otherwise is new. If a new word is in the global focus then is

tagged as contrastive. Hirschberg shows that the contribution of these discourse con-

text related features to pitch accent prediction on BURNC is, on the author’s account,

disappointingly smaller than expected.

Brenier et al. (2006) show that the contribution of hand-labelled information status

and focus in spontaneous spoken dialogues (in section 2.5 we will see details of the

annotation of focus used by Brenier et al. (2006)) is small compared to features like

accent ratio, IC and POS.

This result certainly “resizes” the actual impact of Information Structure on pitch

accenting and, at a first glance, it might seem to contradict some of the claims about

the relationship between Information Structure and prosodic prominence. However a

couple of considerations have to be made. First, as we have already discussed, narrow

focus has been claimed to determine the placement of the primary accent in a prosodic

phrase rather than determining word accentability. Second, in sections 2.2.3.1 and

2.2.3.2 we have seen examples of carefully designed sentences where the distinction

focus/background and new/given can be easily carried out, while when utterances are

not preceded by questions (which is often the case in spontaneous spoken dialogues)

these distinctions are much harder to identify in that the answer (i.e., focus) within each

utterance is no longer triggered by an explicit question (but by an implicit question

that summarizes the discourse history). Thus since Information Structure becomes

more “blurred” we expect its influence on prosodic prominence to become weaker.

Perhaps in more “controlled” dialogues (e.g., Wizard-of-Oz dialogues, where a human

user believes is talking to dialogue system that is actually a human) where most of the

utterances are questions or answers to those questions, and answers are generally not

over-informative, the benefits of taking into account Information Structure to predict

pitch accent placement are more substantial.

Interestingly none of the cited studies, apart from Ross and Ostendorf (1996), Cal-

houn (2006) and Calhoun (2008), goes beyond the prediction of ±accent and/or ToBI

accent type. However we have seen in section 2.2.1 that a rough ±accent distinction

does not entirely account for the relation of prosodic prominence between words.

Ross and Ostendorf (1996) reported that prediction of more than two categorical

levels of accentual prominence (i.e., ±accent) is not feasible since human annotators

can not consistently annotate more than two categorical levels of accentual promi-

nence. So they tried to predict prominence as “a continuous-valued normalized F0
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peak for each accented syllable” by using linguistic features. The ToBI accent type

turned out to be the most predictive feature followed by other phonological features.

Calhoun (Calhoun (2006) and Calhoun (2008)) shows a good agreement between

annotators in the labeling of nuclear accents and shows that focus and the location

of prosodic breaks are the best predictive features to distinguish between nuclear and

non-nuclear accents while they are of little utility in the ±accent detection task.

In chapter 3, where ±accent prediction is addressed, we propose new predictive

features that are complementary to the best features proposed in the literature in the

representation of the intrinsic and sentence-internal factors affecting pitch accenting.

The focus on these features rather than on discourse-related features is justified by the

primacy of intrinsic and sentence-internal factors over discourse-related factors in the

influence on pitch accenting.

Finally, previous work on pitch accent prediction/detection has not only focused

on the extraction of the best features to improve prediction/detection accuracy but has

also addressed the issue on the most suitable machine learning techniques for accent

prediction/detection.

Classification trees are by far the most used ones. Sun (2002) uses two ensem-

ble machine learning methods, bagging and boosting, and Classification trees as basic

learning algorithm within the two methods. Classification trees within ensemble meth-

ods outperform the Classification tree alone.

The use of classifiers such as Classification Trees, Neural Networks, Logistic Re-

gression and so on, implies the assumption that the probability of the placement of a

pitch accent is independent of the placement of the surrounding pitch accents. This

independence assumption could actually result in an oversimplification of this classifi-

cation task. In fact if we suppose to have a prosodic phrase containing more than 4/5

words all of them having a high probability of being accented, it is quite unlikely that

all of them will be accented.

Classifiers based on Hidden Markov Models (HMM) (Baum and Petrie (1966))and

Conditional Random Fields (CRF) (Laffeerty et al. (2001)) allow to relax such inde-

pendence hypothesis. Pan and McKeown (1999) show that first-order HMM classifier

achieves better results than RIPPER (Cohen (1995)), a rules-learner classifier whose

performance is comparable with that of Classification Trees. Gregory and Altun (2004)

show that CRF outperform HMM on the Switchboard corpus.

However previous work lacks of a in-depth investigation of the impact of the depen-

dence/independence assumptions which is one of the main issues addressed in chapter
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3, the chapter devoted to ± accent prediction where accent predictors based on Classi-

fication Trees, ensemble methods, HMM and CRF are compared.

2.5 Automatic Detection of Contrast and Other Infor-

mation Structure Concepts

The main obstacle one has to face when trying to work on the the automatic detection

of Information Structure concepts is the very limited number of annotated corpora

available. Moreover all these few corpora differ in terms of language (e.g., English vs.

German), dimensions of Information Structure adopted, annotation conventions, etc...

Postolache et al. (2005) automatically detect Topic and Focus (which respectively

corresponds to the theme and rheme defined in section 2.2.3.1) from the Prague De-

pendency Treebank (PDT), which consists of Czech newspaper articles. They use

manually labeled training features from PDT which consists of 1) syntactic functions,

like subject, object, predicate, and so on; 2) attribute of the nodes of tectogrammatic

trees, where tectogrammatic trees are comparable to syntactic dependency trees (see

section 3.2.2) that only contain “autosemantic” words, i.e., content words, and node

attributes are semantic roles such as actor, patient, addressee. In addition they also use

features derived from the Topic/Focus annotation guidelines. The accuracy achieved

using a Classification Tree is very high, 90.7% .

Zhang et al. (2006) automatically label what they call kernel focus and symmetric

contrast by training their labeler on a Wizard-of-Oz corpus collected in a tutoring dia-

logue scenario. This is an “ideal” corpus for focus detection since it mainly consists of

question-answer pairs in a limited-domain scenario. Their kernel focus is very similar

to narrow focus (both thematic and rhematic) while symmetric contrast corresponds to

a subtype of our contrast, that is a contrast activated by syntactic parallelism. They

achieve high accuracy by using a combination of acoustic features (F0, duration, en-

ergy and spectral balance cepstral coefficients), Part-Of-Speech, and a semantic simi-

larity measure computed by using the WordNet semantic lexicon and corpora statistics.

The very high accuracy, especially in the symmetric-contrast detection task, is largely

explained by the very small size of the dialogues domain.

In Nenkova et al. (2007) a subsection of the Switchboard corpus annotated by Cal-

houn et al. (2005) is used to detect all the annotated “categories” of focus (referred

to as kontrast in Calhoun et al. (2005)). Word and phrases were marked as focused
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if they sounded salient to the annotators (that could listen to the utterances). Focus

categories are not meant as actual categories but scenarios in which focus can occur.

These categories are:

• correction. the focused word/noun-phrase corrects a previous word/noun-phrase.

• contrastive. The focused word/noun-phrase explicitly contrast with another word/noun-

phrase.

• subset. “The [focused] word/noun-phrase is (a) a current topic, and (b) a member

of a more general set mentioned in the context”Calhoun (2006).

• adverbial “The speaker used a focus-sensitive adverb (i.e., “only”, “even”, “al-

ways”, “especially”, “just”, “also” and “too”) to highlight the focused word/noun-

phrase and no another words/noun-phrases from a plausible set (which does not

need to be explicit)” Calhoun (2006)

• answer “The [focused] word/noun-phrase is an answer if it, and no other, filled

an open proposition set up in the context by either speaker”Calhoun (2006).

• other the word/noun-phrase is clearly focused but the type of focus does not fall

in any of the previous categories

Note that focus items may belong to more than a category. The union of correction

and contrastive corresponds to what so far we have referred to as contrast.

The focus tagger proposed by Nenkova et al. (2007) distinguishes between kontrast

and background, where kontrast gathers all the focus categories mentioned above (e.g.,

adverbial, answer, etc...). It looks at the acoustic properties, POS and accent ratio.

The tagger outperforms a majority class (background) baseline. This surprising result

(given the simple syntactic feature used and the absence of semantic features) is due to

the fact that some POS, i.e., nouns and adjectives, are mainly kontrastive. No attempt

to distinguish the different categories is made.

Using the same corpus, Sridhar et al. (2008) attempt to detect each single category

of focus (vs. background). They use the same features proposed in Nenkova et al.

(2007). They report a 71.10% accuracy in classification accuracy between background

and the contrastive category achieved by only using POS. Again, this result is due to

the fact that some POS are mainly contrastive. However such an approach to contrast

detection does not seem useful, at least for TTS purposes, since it does not guarantee

an acceptable precision on the POS that are mainly contrastive, and it cannot detect
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the contrast relation (i.e., which word contrasts with which word?), which we believe

is essential for a correct and consistent prosodic realization of contrast in speech.

2.6 Text-to-Speech Synthesis

A Text-to-Speech (TTS) system, a system that converts raw text into speech, consists

of two main components: a Text Analysis module, and a Speech Synthesis module.

The Text Analysis module first normalizes the raw text by expanding acronyms,

numbers, abbreviations into “well-formed” words (e.g., “11” would be expanded in

“eleven”), and subsequently converts words into “streams” of linguistic information

that will then be input to the Speech Synthesis module. The most important stream is

the phonemic stream containing the sequence of phonemes generated by a Grapheme-

to-Phoneme (G2P) function 12. Other common linguistic information streams are

streams indicating the presence of stress (lexical stress), the position of phonemes in

their respective syllables, words, intonational phrases, distances of phonemes to sylla-

ble boundaries, distances of syllables to word boundaries and so on.

The Speech Synthesis module uses the linguistic information to generate appropri-

ate speech. There are different techniques to synthesise speech, most of them can be

roughly grouped into two approaches. One approach can be regarded as a memory-

based approach (as suggested by Taylor (2009)) in which speech is generated by se-

lecting and joining units of recorded natural speech. Signal processing techniques may

be applied to smooth discontinuities at the joint points.

In the alternative approach (referred to as “learning-based” approach in Taylor

(2009) as opposed to the memory-based approach13) recorded natural speech is used

to extract acoustic properties of speech (that could be formants, or Mel cepstral co-

efficients, or something else depending on the type of representation of speech one

chooses) and then to learn (manually or by machine learning techniques) their be-

haviour with respect to the linguistic information. During synthesis, the reverse pro-

cess is applied so the predicted acoustic properties are converted into speech by mean

of synthesis filters.

In sections 2.6.1 and 2.6.2 we will briefly describe the two most successful realiza-

12Although the G2P process could theoretically by-passed and graphemes could be directly used as a
stream of linguistic information

13A more accurate name for this approach could be ”acoustic properties learning-based approach”,
since also in articulatory synthesis, a technique that does not fall in neither of the two approaches
mentioned here, a mapping between articulatory features and speech is learnt.
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tions of the “memory-based” and the “learning-based” approach respectively.

Most of the people working on TTS are mainly concerned with the improvement

of the Speech Synthesis module, while comparably little research work has been done

on the Text Analysis side and it mainly concerns G2P issues. Very little work has been

done to find out the impact of prosody related linguistic information (ranging from

pitch accents to syntactic categories) on TTS quality. One of the aims of this thesis

is that of investigating the utility for TTS synthesis of linguistic information, mainly

syntactic and semantic information, related to prosodic prominence.

2.6.1 Unit Selection Speech Synthesis

The unit-selection technique is the last generation technique of the “memory-based”

approach. It differs from previous generation “memory-based” techniques, such as the

so called diphone synthesis, in that the speech database is much larger and usually con-

tains several units (e.g., diphones) having the same phonemic specification (e.g., sev-

eral occurrences of the diphone /k-a/). This abundance of “replicas” allows to greatly

reduce the need of signal processing which usually heavily degrades the naturalness of

synthetic speech.

Depending on the speech synthesis system used, the basic unit type, i.e., the short-

est unit type available, can be half-phone, phone, diphone, syllable, etc...

The critical issue in unit selection is finding out the best way to select the best

sequence of speech units.

Almost all unit-selection systems are based on the algorithm proposed by Hunt

and Black (1996). In this algorithm each speech unit (diphones in Hunt & Black,

but that is not a constraint) of the speech database is represented (and so identifiable)

as a vector of linguistic features (ut). During synthesis, the sentence to synthesise is

transformed in a sequence of vectors of linguistic features (st). These vectors contain

exactly the same features contained in the vectors representing the speech units so that

the sentence is “uttered” by selecting speech units that have same (or similar) vectors as

those specified for the sentence (target vectors). A cost, called target cost (T (st ,ut)), is

computed to quantify how close the target vector and the speech unit vector (candidate

vector) are. An additional constraint is that adjacent selected speech units should join

well, that is they should not generate perceivable distortion when joint together to

generate the utterance. As a consequence another cost, called joint cost (J(ũt+1, ũt)),

is computed to measure how well two speech units join. Note that ut and ũt refer to the
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same speech unit but to different feature vectors because the features used to compute

the joint cost are different from those used to compute the target cost.

The target cost function T (st ,ut) is usually defined as a weighted sum of distances

between the two units with respect to the linguistic specifications (i.e., the values of

the linguistic features):

T (st ,ut) =
F

∑
f =1

w f (Tf (st [ f ],ut [ f ])) (2.3)

where st [ f ] and ut [ f ] are the values for the feature f of the target unit and the speech

unit respectively, Tf is the function evaluating the distance between st [ f ] and ut [ f ], and

w f is the weight of the feature f . Usually Tf is defined as follows:

Tf =

{
0 if st [ f ] and ut [ f ] are equal

1 otherwise
(2.4)

The weights account for the fact that some features are more important than others

in the evaluation of the perceptual similarity of two speech units.

The definition of T (st ,ut) given in section 2.3 is a “classic” definition that assumes

the contribution of each feature is independent of the others. An alternative formula-

tion, the acoustic space formulation, in which no independence assumption is made,

can be alternatively used.

The total cost (i.e., target + joint cost) of a sequence of candidate speech units is

defined as:

C(S,U) = λ

t=OT

∑
t=1

T (st ,ut)+(1−λ)
t=OT−1

∑
t=1

J(ũt+1, ũt) (2.5)

where OT is the length, in number of units, of the utterance and λ is used to give a

different weight to the target and the joint cost.

The goal of the unit selection algorithm is finding the sequence of speech units Û

that minimizes C(S,U) that is:

Û = argmin
U

C(S,U) (2.6)

This is usually achieved by using the Viterbi algorithm integrated with a pruning

technique (usually the beam pruning) to reduce the, otherwise huge, search space.

An important issue in unit selection systems is the creation of an appropriate speech

database, which has to comply with the constraint of being phonetically rich, i.e., it has

to contains all the phones of the phonological system of the language of the speaker
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and at least the most frequent sub-sequences of those phones (e.g., the most frequent

sequences of two phones).

While the constraint of having a phonetically rich database is feasible, the require-

ment on the database of also being prosodically rich would lead to an enormous and

so intractable database. Unfortunately the use of signal processing techniques to make

up for the lack of prosodic richness of the database does not produce the desired ef-

fect. For that reason, perhaps the main limit of unit-selection speech synthesis is the

inability to scale up to prosodic styles other than the “neutral” style in read speech.

2.6.2 HMM-based Speech Synthesis

Instead of storing several realizations of a unit (e.g., hundreds of realizations of the

phoneme /a/) in the speech database we can use a model of it expressed as a proba-

bility density distribution of some acoustic properties (usually referred to as acoustic

coefficients), for example a mixture of multivariate Gaussians with 13 mel-cepstral

coefficients as variables.

However a mixture of multivariate Gaussians is usually not enough to model all the

variability in the realisation of a phoneme, so more complex models are necessary.

In HMM-based speech synthesis (Tokuda et al. (2000)) phones are modelled using

phone HMM-models as the one shown in figure 2.4. A HMM phone model usually

consists of three or five hidden states to account for the fact that the values of the

acoustic coefficients at the beginning and end of a phone are quite different from those

in the middle of a phone, due to co-articulation effects. An output probability density

distribution (usually a mixture of multivariate Gaussians) of the vector of acoustic

coefficients o (observation vector/state) is associated to each state. The probability

of moving from one state to another depends on the transition and the self-transition

probabilities.

A single HMM-model for a phoneme does not account for the fact that realiza-

tions of the same phoneme can be very different because of co-articulation effects and

different linguistic properties (e.g., one phone is stressed and the other is unstressed).

However having a HMM model for each phonemic context plus linguistic properties

is unfeasible because of data sparsity problems (i.e., there would be too few or zero

examples for each model). To solve this problem tree-clustering is applied in order to

cluster speech units (e.g., the phone onsets if we use a three-state phoneme model) in

the acoustic space. The clustering, usually referred to as context-sensitive clustering,
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Figure 2.4: A 3-state HMM phone model. a12, a23,... are transition probabil-

ities. a11, a22,... are self-transition probabilities and b1(o), b2(o) are density

probability distributions of the acoustic coefficients.

is carried out searching for the “questions” on the linguistic properties (e.g., “is the

previous phone a nasal?”) that mostly determine the acoustic similarities/differences

among speech units. As a consequence a system using three-state models will have

three trees, whose leaves will have their own probability density distribution of the

acoustic coefficients.

In a HMM-based speech synthesis system the acoustic space is represented both

by static acoustic coefficients (e.g., mel-cepstral coefficients, logF0,...) and dynamic

coefficients that indicates how the static coefficients evolve over the time. The use of

dynamic coefficients is necessary to avoid unnatural discontinuities when generating

the values of the acoustic coefficients during synthesis.

Once the HMM-models have been trained they can be used for speech synthesis.

The main task consists in finding the optimal sequence of vectors of acoustic coeffi-

cients O = (o1,o2, ...,oT ). The optimal sequence can be defined as:

O∗ = argmax
O

∑
allq

P(O,q|λ,T ) (2.7)

where q is a sequence of states, λ is the set of the parameters of the HMM-models (it

contains state-transition probabilities and output probability distributions), and T is the

duration (in number of frames) of the utterance to be synthesised.

Since there is not known analytical close solution for equation 2.7, an approximated
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solution is computed by first computing the best sequence state q, that is the sequence:

q∗ = argmax
q

P(q|λ,T ) (2.8)

and then computing the best sequence of vectors of acoustic coefficients:

O∗ = argmax
O

P(O|q∗,λ,T ) (2.9)

The resulting O∗ is then passed to the synthesis filters (source and vocal tract filters)

to generate speech.

2.7 Modelling Prosody in (TEXT-to-) speech synthesis

The modelling of prosody in unit-selection speech synthesis can be either implicit or

explicit while in HMM-based speech synthesis is exclusively explicit.

In several unit-selection systems there is not explicit modelling of the acoustic

correlates of prosody (i.e., F0, duration and energy), so prosody is implicitly modelled

by adding in the target cost function linguistic features (e.g., pitch accents) that are

correlated with duration, intonation and energy. The cost weights to these features

determine the weight prosody has in the selection of speech units. Alternatively F0,

duration and energy values can be predicted from the linguistic information and then

used as target cost specifications (in place of the linguistic information from which

they have been predicted).

In HMM-based speech synthesis state durations may be implicitly modelled by

state transition and self-transition probabilities. However this solution would lead to

unrealistic models of duration and so state durations are explicitly modelled by Gaus-

sians (and clustering is applied as for spectral features).

To model F0, HMM-based speech synthesis uses the concept of streams. The ob-

servation vector is divided into streams to account for the fact that spectral features

and F0 have to be treated separately (and so have to belong to different streams) since

F0 behaviour is described by density distributions that drastically change depending

on whether the state is in a voiced region or an unvoiced region. The use of streams

separating spectral features from F0 implies that separated context-sensitive clustering

is applied for F0 only (dynamic F0 coefficients included).

Most of the (relatively little) research on prosodic modelling for speech synthesis

is concerned with finding out successful methods to improve the prosodic quality of
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synthetic speech given a set of linguistic features that are related to prosody, like POS,

positional features (e.g., syllable position in the phrase), prosodic break placements,

etc...

Very few studies are concerned with the use of new linguistic features and the

analysis of their impact on the realisation of prosody in synthetic speech.

Pitrelli and Eide (2003) define the intonation contour of contrast in terms of ToBI

labels, and then use these ToBI labels to predict F0 and duration (which in turn are used

as features in the target cost function of the IBM unit-selection system) to generate

manually identified contrast. Their approach slightly outperforms a default intonation

baseline (where contrast is not prosodically signalled with specific accents).

Baker et al. (2004) directly use ToBI labels as target cost features to model thematic

and rhematic focus and theme and rheme boundaries according to Steedman’s theory

(Steedman (2000)) in a limited-domain unit-selection speech synthesis system. Their

approach outperforms a default intonation baseline only for some configurations of

theme-rheme (for instance, theme followed by two rhemes).

Strom et al. (2007) use automatically predicted ±accent and manually annotated

“emphatic” accents as features in the target cost function. They report that the com-

bined use of ±accent and emphatic accents outperforms a default speech synthesis

system that does not use them as features in the target cost function.

To the best of our knowledge no work, using either unit-selection or HMM based

speech synthesis, is concerned with the automatic identification and use of linguistic

features (such as contrast) that account for the effects of discourse/sentence context on

the generation of prosody.
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This chapter has two main goals. One is that of pushing a bit further the accuracy

of state-of-the-art pitch accent prediction by using new predictive features that cover

effects on pitch accenting not covered (or only partially covered) by features proposed

in previous work. The second goal is that of investigating which machine learning

techniques are most suitable for accent prediction, in particular whether techniques

used for sequential data (e.g., HMM-based or CRF-based predictors) are more suitable

than techniques implying independence between the placement of one accent and the

previous accent placements.

3.1 Predictive Features from Previous Work

From previous work on pitch accent prediction and detection it is hard to say what

training features are most predictive. Almost all proposed accent predictor/detectors

use different sets of features, so features that turned out to be predictive in one study

may not be good features when combined with other features since the useful informa-

tion they contain may already be encapsulated in other more predictive features. The

comparison of features is also complicated by the fact that there are also differences

in the training data used, features that are useful on one corpus might not be equally

predictive on another corpus.

In spite of these difficulties it is still possible to draw some useful conclusions es-

pecially by looking at work that use sets of features accounting for different effects on

accent placing (e.g., syntactic effects, discourse-context effects, etc...). For example,

in Pan et al. (2002) and Brenier et al. (2006), it emerges that features that account for

the intrinsic informativeness of words (e.g., Information Content) are among the best

training features for pitch accent prediction.

These findings do not necessarily imply that other effects on accent placing are

very minor compared to effects due to intrinsic properties of words but might imply

that the modelling of other effects (e.g., discourse-context effects) is too gross.

3.2 New Proposed Features

In chapter 2 we saw all the main effects on pitch accenting. Here we just recall and

categorize them.

• Discourse-context effects (see section 2.2)
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– focus/background dichotomy

– given/new dichotomy

• Sentence-level effects (see section 2.3)

– relative informativeness (e.g., probability of seeing a word given the words

preceding it)

– syntactic effects (e.g., predicate vs. arguments)

• “Intrinsic informativeness” effects (see section 2.3)

– word informativeness

• Lexical effects (i.e., words may be accented or not depending on whether they

are in compounds or not) (see section 2.3)

• “Phonological” effects, that is effects due to length of a word, its phonemic con-

stituents, accent ratio, etc... (see section 2.4)

Note that this classification is not rigid in that some effects can be associated to more

than a category. For instance the dichotomy content/function word (with content words

much more prone to accentuation than function words) can be both considered as a

syntactic effect and as an “intrinsic informativeness” effect.

In our search for new and predictive features we try to cover all the main effects

on accent placing with a special focus on sentence-level effects and effects related to

intrinsic properties of words as they have turned out to be the main effects on pitch

accenting (see Brenier et al. (2006) for example, and discussion at the end of section

2.3).

The full set of training features used in this work consists of a set of features already

proposed in the literature plus a set of new features. Most of these new features are

new in the sense that they have never been used in accent prediction but have been

already used in tasks very different from accent prediction.

The “old” features are:

• Information Content. IC(wi) =− log(p(wi)) (where wi is the word in position i

and p(wi) is its probability computed off-line in a corpus)

• Relative Information Content. RIC(wi) =− log(p(wi|wi−1))

• Inverse Relative Information Content. IRIC(wi) =− log(p(wi|wi+1))
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• Part-Of-Speech (POS)

• Word’s Length (WL) (in number of characters)

IC, RIC and IRIC where computed on a corpus of 9 million words (from The Herald

news) and using the CMU Language Model toolkit (Clarkson and Rosenfeld (1997)).

We also used a bigger corpus (17 million words from The Herald news) but that did not

improve the accuracy of the accent predictor (actually the accuracy slightly worsened).

POS were obtained using the MXPOST tagger (Ratnaparkhi (1996)).

The new features are described and motivated in the following sections.

3.2.1 Information Content of Concepts (ICC)

To account for the degree of informativeness of words, a simple distinction between

function vs. content words can be used. Function words like determiners, conjunctions

and so on are essential for the syntactic well-formedness of a sentence but do not

convey as much new (unexpected) information as content words do.

POS partially serve for the same purpose of distinguishing informative from non-

informative words.

The information-theoretic definition of informativeness proposed by Pan and McK-

eown (1999), called Information Content (IC(w) = − log(p(w))), is the most predic-

tive feature among those accounting for word informativeness (see Pan et al. (2002),

Brenier et al. (2006)).

However this definition of informativeness, by assuming that the informativeness

of a word is only determined by the frequency of that word in a large corpus, fails to

completely encode the degree of generality (or alternatively, specificity) of concepts

associated to words, which is another factor related to our intuitive idea of informa-

tiveness. The more a concept is generic (or semantically empty, see section 2.3) , the

more probable it is to occur (since it also occurs when concepts subsumed by it occur)

and so the less informative it is. This is not necessarily encoded in IC. The words “cat”,

“feline” and “animal” might have similar frequency counts on a large corpus (for ex-

ample, in the newspaper corpus used to compute the language model, the frequency of

“cat” and “animal” are very close whereas “feline” never occurs in the corpus) but their

degree of specificity is not similar. The concept of animal (expressed by the word “an-

imal”) is the most generic as it subsumes the concept of feline which in turn subsumes

the concept of cat.
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To measure the degree of specificity of a concept, we have to apply the information-

theoretic definition of informativeness to the concepts conveyed by the words, rather

than to the frequencies of the word tokens. In other words we need a measure that is

related to the probability of seeing a concept rather than to the probability of seeing a

word. Such a measure was proposed by Resnick (1995)1:

ICC(ci) =− log(p(ci)) =− log(
f req(ci)

N
) =−log(∑k count(sik)

N
) (3.1)

where ci is the concept conveyed by word wi, sik are all the words subsumed by

ci and N is the overall number of noun or verb or adjective/adverb tokens depending

on whether wi is a noun or a verb or a adjective/adverb respectively. ICC stands for

Information Content of Concepts.

To compute ICC, a corpus and a taxonomy of concepts are necessary, Resnick uses

WordNet (Fellbaum (1998), see section 5.1.2 for more details). Figure 3.1 shows a

fragment of WordNet where the concepts of “dime” and “nickel” are subsumed by the

more generic concepts of “coin” and “cash” so when computing ICC any occurrence

in the corpus of the noun “dime” is counted for the ICC of “dime”, “cash” and “coin”.

Note that no word sense disambiguation is applied when counting.

Figure 3.1: A fragment of the WordNet taxonomy (from Resnick (1995)).

“Dime”, “nickel” and “credit card” are the most specific concepts in the frag-

ment while “medium of exchange” is the most general.

1In Resnick (1995) this measure is called Information Content, but in order to distinguish it from
Pan and McKeown (1999)’s Information Content we call it Information Content on Concepts (ICC).
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Because of semantic ambiguity a word can be associated to different concepts (i.e.,

senses) and so to different ICC’s. As a consequence, we heuristically chose the mini-

mum ICC (which is the ICC of the most frequent sense of a given word).

Finally, since ICC is a measure of informativeness complementary to IC, both mea-

sures have been used as predictive features2.

ICC was extracted using the WordNet::Similarity Perl module (Pedersen et al.

(2004)).

3.2.2 Syntactic Dependencies (SD)

Along with POS other deeper syntactic features have been proposed to account for

syntactic effects on pitch accenting. Their utility in accent prediction is not clear. Pan

et al. (2002) report that the use of syntactic constituents and functions (e.g., subject,

object, etc...) do not help improving accent prediction, while Sridhar and Bangalore

(2008) show the utility of supertags, syntactic tags that encode predicate-argument

information. The two works use different corpora.

Here we propose the use of dependency grammars to account for some possible

syntactic effects and effects of relative informativeness on pitch accenting.

In a syntactic dependency grammar the syntax is described by binary relations (i.e.,

dependencies). Figure 3.2 shows a dependency tree for the sentence “The musician in

red shirt only plays Scarlatti” where relations are graphically represented by edges

(including direction). In the example the words “musician” and “plays” are linked

by the relation subject-of (i.e., Sbj-of(musician,plays)), “red” and “shirt” by noun-

modifier-of, etc... In each relation one word is the head and the other is the dependent.

For example in Sbj-of(musician,plays) “musician” and “plays” are dependent and head

respectively.

To identify syntactic dependencies in text we used the Malt syntactic dependency

parser (Nivre et al. (2007)) and then extracted the following features for any word of

the parsed sentence:

1. Relation’s name of the relation of which the current word is a dependent (e.g.,

Sbj-of for word “musician”). Note that a word can be a dependent at most once.

2. Path in terms of edges (and their directions) between the current word and the

next word (e.g., Obj-of↓ for word play, with the up-down arrow indicating that a

2An alternative solution could be that of interpolating them, i.e., using a new feature that would be a
weighted sum of ICC and IC.
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Figure 3.2: An example of dependency tree. Dependency tree of the sen-

tence “The musician in red shirt only plays Scarlatti”

step down in the dependency tree is made when moving from plays to Scarlatti).

3. Path in terms of directions of relations between the current word and the next

word (e.g., Relation↓-Relation↓ for word “in”, the names of the relations are not

specified).

4. Path length between the current word and the next word in number of edges.

In feature 2 if the path is not a one-edge only (e.g., Sbj-of↑) or a 2-edge “up-and-

down” path (e.g., Relation↑-Relation↓), the path value is collapsed to a “Long” value.

That is a heuristic to avoid data sparsity. It is motivated by the fact that the 1-edge and

the 2-edge “up-and-down” paths only occur between siblings (2-edge “up-and-down”)

and parent-children (1-edge). All other paths only occur for more distant relationships.

In feature 3 when a path is longer than 2 edges it is mapped into a “Long” value.

Feature 1 is mainly intended to account for a possible correlation between accent-

ing and syntactic function. Features 2 and 3 are intended to account for a possible map-

ping between the syntactic relation linking two consecutive words and their prosodic

prominence relation (which in turn might affect the accenting of the words). Finally
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features 2, 3 and 4 are also intended to implicitly convey information about prosodic

structure, which is highly correlated with syntactic structure and which in turn might

affect accent placing.

3.2.3 Dependency-based Relative Informativeness (DRI)

Syntactic dependencies are also used to build a “Relational” Language Model. The

“Relational” Language Model is intended to be complementary to the probability of

bigrams in the quantification of relative informativeness.

We define a “Relational” Language Model as a bigram model in which the proba-

bility of a word wi is conditioned on the closest single-linked (to wi) word preceding

wi. Formally:

p(wi|wk,D(wi,wk) = 1) (3.2)

where D(wi,wk) = 1 when there is a dependency linking the two words and wk is the

closest single-linked (to wi) word preceding wi (k < i).

To train the “Relational” Language Model we first ran the Minipar syntactic de-

pendency parser Lin (1998a) on the same corpus used to estimate probability of uni-

grams and of bigrams, and for each word wi we extracted the (wi,wk) pair satisfying

D(wi,wk) = 1 AND k < i. Each word pairs was put on a single line as it were a whole

sentence. The resulting corpus was then used to train a 2-gram language model using

the SRI Language Model Toolkit (Stolcke (2002)).

In order to have an information-theoretic measure we used the negative of the log-

arithm of the conditional probability:

DRI(wi) =− log(p(wi|wk,D(wi,wk) = 1)) (3.3)

where DRI stands for Dependency-based Relative Informativeness.

3.2.4 Cache Information Content (CIC)

We have seen in section 2.4 that features accounting for the effect of the new/given di-

chotomy on pitch accenting do not seem to be very effective. Only Hirschberg (1993)

shows some accuracy improvement when using this kind of features, although disap-

pointingly smaller than that expected by the author.

Contrary to previous work in which new/given features are binary or at most a

three-value feature indicating the information status independently of their intrinsic
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informativeness, we look at information status as at a discourse-context effect on the

(information-theoretic) informativeness of words. To do that we use a Cache Language

Model (Kuhn and De Mori (1990)).

In a Cache Language Model the probability of a word is raised if the word previ-

ously occurred in a segment of text (e.g., if it occurred in the previous 200 words). This

dynamic word probability is computed by statically interpolating the word probability

from the standard Language Model (e.g., the 9 million tokens corpus from The Herald

news) and the word probability in a cache containing the last N seen words (Cache

Language Model). Formally:

p(wi) = µp(wi|LM)+(1−µ)p(wi|CLM) (3.4)

where LM is the standard Language Model, CLM is the Cache Language Model, and

µ is a constant. In all experiments µ was manually set to 0.1 and the cache size to 100

words3. The cache is never flushed.

The Cache Information Content is simply the negative logarithm of this dynami-

cally updated unigram probability. It can be seen as another measure of relative infor-

mativeness where the word informativeness is not (or not only) affected by sentence-

context but by the wider discourse context.

CIC was estimated using the SRI Language Model toolkit (Stolcke (2002)) (see

Weintraub (1995) for details on the computation of a Cache Language Model).

3.2.5 Normalisation (NZ)

When looking at the errors made by a first implementation of our accent predictor it

was immediately clear that contractions (e.g., don’t, it’s, etc...) were over accented

either because the POS tagger did not always correctly tag them or because they had

high IC. The high IC was due to the fact that there are no contractions in the (The

Herald news) corpus used to train the language models.

To solve this problem, contractions were expanded in their non-contracted coun-

terpart (e.g., don’t → do not) and features were extracted on the resulting normalised

text. A feature was used to indicate those words that were originally in a contracted

form. After prediction, originally contracted words were contracted again and the ac-

cent value was assigned to the contracted word according to some lexical rules. Also

other minor normalisations were done.
3The low value of µ aims to differentiate CIC and IC as much as possible



Chapter 3. Automatic Pitch Accent Prediction 48

We mention these technical details here as they turned out to be very effective ,

more than some of the “fancier” features described above. The normalisation has been

done for all the predictors evaluated (see section 3.5).

3.3 Machine Learning Techniques

The choice of the machine learning technique certainly has an impact on the accuracy

of the pitch accent predictor. However a grid search for the most suitable technique

among a very large set of available techniques is not a good idea. The comparison

of predictors based on so many techniques would be dependent on so many variables

(e.g., the training and testing data used, the parameters of each technique, the imple-

mentation of each technique) that its results may be either unfeasible or unreliable.

In previous work two different families of machine techniques have been used for

pitch accent prediction: one implies that the accenting of the current word does not

depend on the accenting of the previous words (see Yuan et al. (2005) for example),

while the other does not imply this independence (see Gregory and Altun (2004) and

Levow (2008) for example).

Formally, in the first family the conditional probability p(y1, · · · ,yn, |x1, · · · ,xn),

where yi is the accent value (i.e., ±accent) on word wi and xi is the vector of training

features on word wi, is:

p(y1, ...,yn, |x1, ...,xn) ∝

N

∏
i

Φ(yi,xi+M
i−M) (3.5)

where xi+M
i−M consists of xi and all the M x vectors preceding and following it (xi is usu-

ally called the observation window, if xi is observable), while Φ is a generic function.

In the the second family:

p(y1, ...,yn, |x1, ...,xn) ∝

N

∏
i

Φ(yi,xi+M
i−M,yi−1

i−L) (3.6)

where yi−1
i−L is the vector of the L accent values preceding yi.

Although classifiers from both families have been proposed there is surprisingly

practically no experimental work investigating which of the two families is most ap-

propriate for pitch accent prediction. Such a comparison would spread some light on

to which extent the knowledge of the accentuation history can improve the modelling

of sequences of pitch accents.
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In order to carry out such comparison we used four different machine learning tech-

niques: Classification And Regression Trees (Breiman et al. (1984),Quinlan (1993)),

Bagging (Breiman (1996)), Hidden Markov Models, and Conditional Random Fields

(Laffeerty et al. (2001)). The first two techniques imply an independence assumption,

the last two do not.

In all these methods the predicted sequence y1, ...,yn is the one that maximises

p(y1, ...,yn, |x1, ...,xn).

The following sections briefly describe these four techniques. Since the accent

prediction is a classification task we only look at these techniques as classifiers.

3.3.1 Classification And Regression Tree (CART)

The Classification And Regression Tree technique classifies data points by searching

for a “good” decision tree. A decision tree is a binary tree that groups the training data

points at its leaf nodes, each of them associated to a classification value. A leaf node

can contain data points having different classification value, the classification value

associated to a leaf node is the the majority classification values. Each non-terminal

node of the tree is a test on the value of some training feature of the data points. During

prediction a new data point is associated to a leaf node (and so classified) by starting

from the root node, doing the test associated to that node and then moving down the

branch specified by the result of the test, doing the test at the node at the end of the

branch, and so on until a leaf node is reached. Figure 3.3 shows an example of a

decision tree.

A “good” decision tree is a tree that both fits the training data points well and

generalises well. To fit the training data points well its leaf nodes should be as much

uniform as possible, i.e., they should contain a large majority of data points having

the same class (in information-theoretic terms they should have a low entropy on the

classification variable). However trying to fit the training data as best as possible would

lead to overfitting (in which in the extreme case each leaf node would contain a single

data point), i.e., the predictor would have a very high accuracy on the training data

but a poor performance on the testing data as a consequence of its poor generalisation

capability.

A decision tree is built4 by first searching for the test (node) that best splits the

training data set into two subsets, then, for each subset, the test (node) that best splits

4The creation of a decision tree can also be seen as a search in the space of all decision trees available.
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Figure 3.3: Fragment of a decision tree. Each non-terminal node is associ-

ated with a question on some feature’s value. The only terminal node (the

third from the left on the bottom) groups some data points. It is associated

with the classification value A as it contains more A’s than N’s. A and N stand

for accent and no-accent respectively

it into two further subsets is selected, and so on until the “good” tree is completed.

Intuitively a node splits well a set into two new subsets if the distributions of the clas-

sification value in the two subsets is more uniform (i.e., has a lower entropy) than in

the original subset. Information-theoretic measures are used to compute the goodness

of a split. Note that each optimal split is selected at a local level, i.e., node level, so

there is no guarantee that the sequence of splits, and so the resulting tree, is globally

optimal (i.e., creates the most uniform possible subsets).

When predicting the class yi (i.e., finding the leaf node) of a new data point also

the probability pT (yi|xi) of the prediction is given (where xi is the vector of training

features for data point i). Such probability is given by the number of training data

points in the leaf node having the majority class divided by the overall number of

training data points in the leaf node.

Going back to the pitch accent prediction task and equations 3.5 and 3.6 when using

CART the conditional probability p(y1, ...,yn, |x1, ...,xn) is approximated as follows:
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p(y1, ...,yn, |x1, ...,xn) =
N

∏
i

pT (yi|xi+M
i−M) (3.7)

Finding the y1, ...,yn that maximises p(y1, ...,yn, |x1, ...,xn) simply means finding

at each word wi the yi that maximises pT (yi|xi+M
i−M).

Note that pT (y|x) is different from p(y|x), that is the probability computed by

simply counting for each value of x the frequency of the values of y. However pT (y|x)

can be seen as a smoothed estimation of p(y|x) in that the number of 0-counts is largely

reduced as different vectors (i.e., different values of x) are grouped in the same leaf

node and share the same conditional probability.

We used two different implementations of CART: Wagon from the Edinburgh

Speech Tools (Taylor et al. (1999)) and J48 from Weka (Hall et al. (2009)).

3.3.2 Bagging

Bagging (which stands for bootstrap aggregating) is a method that uses a committee of

predictors (e.g., a committee of CART’s) to generate an aggregate prediction. Given a

training data set T consisting of N data points, Bagging first creates L bootstrap data

sets. A bootstrap data set TB is created by randomly drawing N data points from T
with replacement so that some data points of T may replicate in TB and some other

may not occur.

Once the bootstrap data sets have been created a predictor (e.g., a CART) is trained

on each of them so that a committee of L predictors is created. When Bagging classifies

new data points, it classifies by (majority) voting.

Bagging could be potentially used with any machine learning algorithm. However

it has been shown, both theoretically and empirically in Breiman (1996), to be able to

improve the prediction accuracy (with respect to a single predictor trained on T ) only

when the algorithm is unstable. An algorithm is unstable when small changes in the

training data set (in terms of replacement, not of training features) cause large changes

in the prediction5.

CART is an unstable predictor and so one obvious way to improve its accuracy

in the pitch accent prediction task is to use it within Bagging. Another motivation to

use Bagging with CART is that, because CART instability, the error analysis at the

5Somehow the instability of a predictor can also be seen has a tendency to overfit since its prediction
is “stuck” to the training data set
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sentence level of a CART pitch accent predictor may not be reliable6.

The Bagging implementation we used is a Weka implementation using the j48

CART.

3.3.3 Hidden Markov Models with “CART estimation of emission

probabilities” (CART-HMMs)

In a HMM approach to accent prediction we can look at each yi as a hidden state

which emits the observation state (which is an observation vector) xi with probability

p(xi|yi)7. The probability of moving from state yi−1 to state yi after having moved

from state yi−L to state yi−1 is given by the transition probability p(yi|yi−1
i−L).

Figure 3.4: Graphic representation of a 1st order HMM. The filled nodes are

the observed variables while the other nodes are the hidden variables. The

edges from the hidden nodes to the observed nodes represent the emission

probabilities, while the edges between hidden nodes represent the transition

probabilities.

In HMMs the joint probability p(y1, ...,yn,x1, ...,xn) can be approximated as fol-

lows:

p(y1, ...,yn,x1, ...,xn) =
n

∏
i=1

p(xi|yi)p(yi|yi−1
i−L) (3.8)

6For example if during training we want to change the size of the held-out set used for CART pruning
(which serves to limit overfitting) we may have quite different predictions.

7Note that here we are considering the vector xi instead of xi+M
i−M. However the observation vector at

state i could also include features of the preceding and following words.
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where L is the order of the HMMs (e.g., a first order Hidden Markov model has L = 1,

which means p(yi|yi−1
i−L) = p(yi|yi−1)). A graphic representation of a first order HMM

is shown in figure 3.4. Note that when using HMMs for pitch accent prediction there

is actually no hidden variable. That simplifies the estimation of both emission and

transition probabilities.

HMM decoding, i.e., looking for the sequence (y1, ...,yn) that maximises

p(y1, ...,yn|x1, ...,xn) is equivalent to look for the sequence that maximises the joint

probability p(y1, ...,yn,x1, ...,xn):

argmax
y1,...,yn

p(y1, ...,yn|x1, ...,xn)= argmax
y1,...,yn

p(y1, ...,yn,x1, ...,xn)
p(x1, ...,xn)

= argmax
y1,...,yn

= p(y1, ...,yn,x1, ...,xn)

(3.9)

where p(x1, ...,xn) does not affect the maximization.

The transition probabilities are simply estimated by frequency counting on the

training data. Concerning the emission probabilities, by using the Bayesian rule prob-

ability p(xi|yi) can be expressed as follows:

p(xi|yi) =
p(yi|xi)p(xi)

p(yi)
(3.10)

Again p(xi) can be ignored as we are only interested in argmaxy1,...,yn
p(y1, ...,yn|x1, ...,xn).

p(yi) is again estimated by frequency counting while for p(yi|xi) we used the

“CART estimation” proposed by Sun and Applebaum (2001).

The implementation of CART we used is Wagon (with a 3-word observation win-

dow), while for the HMM part we wrote our own implementation that includes both

first order (i.e., L = 1) and second order (i.e., L = 2) Markov models. In our imple-

mentation we introduced a new parameter λ (with 0 ≤ λ ≤ 1) that modifies equation

3.8 as follows:

p(y1, ...,yn,x1, ...,xn) =
n

∏
i=1

(p(xi|yi))λ(p(yi|yi−1
i−L))

(1−λ) (3.11)

The λ parameter allows to assign different weights to the emission and the transi-

tion probabilities respectively. Its use is motivated by the fact that one of the two prob-

abilities may be less important than the other in the modelling of the joint probability.

For example if the accenting of a word is only weakly influenced by the placement of

the previous accents then we can set λ to a high value to account for that.

Note that when y = accent and y = noaccent are equiprobable, setting λ = 1 is

equivalent to using CART.
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To decode the HMM, i.e., to find argmaxy1,...,yn
p(y1, ...,yn|x1, ...,xn), we used

Viterbi decoding for the first-order HMM and A∗ decoding for the second order HMM8.

3.3.4 Conditional Random Fields (CRFs)

Instead of modelling the joint probability p(y1, ...,yn,x1, ...,xn) to find the sequence

that maximises the conditional probability p(y1, ...,yn|x1...,xn) we can directly model

the conditional probability. This is the main difference between HMMs and Condi-

tional Random Fields and that makes the former belong to the family of the generative

methods and the latter to the family of the probabilistic discriminative approaches9.

“A Conditional Random Field is simply a conditional distribution

p(y1, ...,yn|x1...,xn) with an associated graphical structure” (Sutton and McCallum

(2007)). For sake of simplicity here we only take into account a special case of CRFs,

the linear chain CRF.

In a linear chain CRF the conditional probability is approximated as follows:

p(y1, ...,yn|x1, ...,xn) =
1

Z(x1, · · · ,xn)
exp{

n

∑
i=1

K

∑
k=1

λk fk(yi,yi−1,xi)} (3.12)

where Z(x1, · · · ,xn) is an instance-specific normalisation function, λk are weights

(whose values are computed during training) and fk are indicator functions. For exam-

ple a possible fk for a CRF-based pitch accent predictor could be:

fk =

{
1 if yi = accent and xik = POS(wi) = verb

0 otherwise
(3.13)

where xik is the value of the feature xk of the feature vector xi. This set of fk of this

type serves the same function of the emission probability in HMMs.

While the set of functions of this type:

fk =

{
1 if yi = accent and yi−1 = no−accent

0 otherwise
(3.14)

is comparable to the transition probability of HMMs. Note that in a CRF we can addi-

tionally use functions of the following type (as we actually did in our implementation):

fk =

{
1 if yi = accent and yi−1 = no−accent and xi = POS(wii) = noun

0 otherwise
(3.15)

8When using a second order HMM the Viterbi decoding can not be used as the Viterbi search (of
the best sequence of hidden states among all the possible sequences) requires that the probability of a
hidden state only depends on the previous state. The A∗ search, which is a kind of best-first search,
allows to decode HMMs of second or higher order.

9Making an analogy to methods for non-sequential data HMM is the equivalent to Naive Bayes for
sequential data while CRF is the equivalent of logistic regression
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The implementation used is FlexCRFs (Phan et al. (2005)) which allows the use

of first order and second order (in which fk(yi
i−2,xi)) CRFs. Since this implementa-

tion, like almost all the other implementations of CRFs, does not deal with continuous

valued features, we discretized the training features into N bins where N was predeter-

mined. The set of features used (i.e., x) in the CRF-based accent predictor is the same

of that used in CART and HMM-based predictors. The set of fk indicator functions is

obtained by combining all possible values of yi, yi−1 and xi.

3.4 Data

3.4.1 The Boston University Radio News Corpus

The Boston University Radio News Corpus (BURNC) (Ostendorf et al. (1995)) is a

corpus of American English read speech. It consists of seven hours of speech recorded

from seven speakers (f1a,f2b,f3a,m1b,m2b,m3b,mb4) while reading radio news. The

speech of six speakers (mb4 is excluded) is annotated according to ToBI conventions.

One part of the corpus consists of the recorded speech of only one speaker (f2b)

and contains 9473 words (tokens). This part was used for the training and testing of

the pitch accent predictors presented here.

The other part of the corpus consists of speech from all the six speakers reading the

same text. We used this part to analyse the variability in pitch accent placements which

is addressed in the next chapter. This part was also used to evaluate the accent predictor

on a “multi-speaker” data set. Results of this evaluation are shown and discussed in

the next chapter.

3.4.2 The Switchboard Corpus

The Switchboard Corpus (SWBDC) (Godfrey et al. (1992)) is a corpus of America En-

glish spontaneous speech. It consists of 2430 telephonic conversations. Subsets of the

Switchboard have been prosodically annotated using (simplified) ToBI conventions by

Ostendorf et al. (2001) and Calhoun (2006). We used a subset of the subset annotated

by Calhoun (2006) that consists of 19231 tokens.



Chapter 3. Automatic Pitch Accent Prediction 56

3.5 Results

The accuracy predictions shown in this section have been computed using a 10-fold

cross validation in the training data set. For both BURNC and SWBDC we have used

two different types of data set, one including punctuation marks and one without punc-

tuation marks. Most of the results shown here have been computed on the version with

punctuation marks. However for a fair comparison with predictors from previous work

in which punctuation marks are usually not included we also show the accuracy of our

best predictor on the version without punctuation marks.

In BURNC the punctuation marks were already available (as the speech is read

speech) while in SWBDC we inserted a full stop at each change of turn (i.e., at the

point where a speaker stops speaking and the other starts speaking). The BURNC

version with punctuation marks consists of 10457 tokens (9473 words + 984 punctua-

tion marks), while SWBDC version with punctuation marks consists of 20000 tokens

(19231 words + 769 punctuation marks).

3.5.1 Results on the Boston University Radio News Corpus

Table 3.1 compares the prediction accuracy of predictors based on the four machine

learning techniques. The set of training features used for this comparison does not

contain all the training features but only IC, RIC, POS (and “normalisation features”

(section 3.2.5), as for all the predictors in this section). We only used these features

as the comparison between machine learning techniques was carried out before the

extraction of the new features (and once the best technique was identified we used it

to compare the training features). We do not expect the use of the full feature set to

produce different results.

All the predictors used for evaluation used a 3-word observation window. The

Bagging-based predictor turned out to be the best predictor, immediately followed by

CART in the Weka implementation. The large difference between the two different

implementations of CART is primarily due to different default settings for tree pruning

(there is actually no pruning by default in Wagon).

Surprisingly both HMM (with λ = 0.5) and CRF-based predictors performed worse

than CART and Bagging-based predictors. Such result would suggest that, at least on

this speaker-dependent corpus, the independence assumption leads to better results.

However to further investigate whether the knowledge of previous accent values

has some utility in the prediction of accent patterns the first order HMM-based pre-
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Method Accuracy

CART (Wagon) 84.93%

CART (Weka) 85.96%

Bagging 86.02%

1st order CART-HMM 84.43%

2nd order CART-HMM 83.48%

2nd order CRF 83.01%

Table 3.1: Machine learning techniques and accent prediction accuracy.

The predictors are evaluated on the BURN corpus. The training features

used are IC, RIC, POS and “normalisation features”.

dictor was evaluated using different values of λ (see equation 3.11). Note that in f2b

the number of accented words is almost identical to that of non-accented words so the

HMM-CART having λ = 1 is equivalent to CART. The results are shown in table 3.2

As expected a small value of λ, which corresponds to a higher weight on p(yi|yi1)

than on p(yi|xi), causes a decrease of accuracy. On the other hand a high value of λ im-

proves the accuracy with respect to a “standard” HMM-based predictor. The accuracy

is even higher than that of the CART(Wagon)-based predictor (85.15% vs. 84.93%,

remember that the CART-HMM predictor is based on the Wagon implementation of

CART) although the difference is very small. This result suggests that, for the pur-

pose of accent prediction, the information coming from emission probabilities is more

relevant than that coming from transition probabilities.

It is possible that if p(yi|xi) is estimated using Bagging (of CARTs) the perfor-

mance of the HMM based predictor is slightly better than that of a Bagging predictor

(although with an improved estimation of p(yi|xi) from Bagging the importance of

p(yi|yi−1) may decrease).

Finally, note that the λ value is not estimated on the training data by maximum like-

lihood but it is manually set, so a “fair” use of λ would require a maximum likelihood

estimation or a search for the best value of λ on a validation set10.

In order to investigate the importance of the new training features proposed here,

a Bagging-based predictor was trained and evaluated using different sets of features.

10Actually the validation data should be used anytime we need to set the parameters of the machine
learning methods. To avoid that we have used the default values of the parameters
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λ value Accuracy

0.2 79.5%

0.5 84.43%

0.8 85.15%

Table 3.2: Changing λ in the HMM predictor. The impact of λ on prediction

accuracy.

Feature Set Accuracy

Old 86.25%

Old + ICC 86.79%

Old + SD 86.57%

Old + DRI 86.17%

Old + CIC 86.17%

All 86.85%

Table 3.3: Using different features set in accent prediction. Evaluation on

the BURN corpus.

The accuracy of these predictors is shown in table 3.311. Note again that normalisation

is included in each predictor.

The ICC feature is the most predictive among the new features. The features ex-

tracted from the dependency syntactic parser increase accuracy, although the accuracy

increase is less the those due to ICC.

On the other hand features DRI and CIC do not improve accuracy. However the

best combination of new features is the combination including all the new features.

The predictor using all (new + old) features gives a 86.85% accuracy.

In order to see the correlation of each feature (both new and old features) to pitch

accenting, the symmetric uncertainty (Witten and Eibe (2005)) between each feature

and the accent value is computed. The symmetric uncertainty is a normalised version

11Note that the prediction accuracy of the Bagging-predictor using old features only is different from
the one shown in table 3.1. That is due to the use of the stratified cross-validation provided by Weka (it
is the default cross-validation). The stratified cross-validation preserves in both training and testing set
the ratio of accents/no-accents in the whole data set. It can not be used when testing the HMM and CRF
predictor because it does not necessarily preserve the order of the accents.
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Rank Symmetrical Uncertainty Feature

1 0.266 ICC

2 0.238 IRIC

3 0.238 IC

4 0.215 CIC

5 0.184 WL

Table 3.4: Features correlation with the accent class. The table shows the

five most correlated features on the BURN corpus

Punctuation Window Size Accuracy

YES 1 86.26%

YES 3 86.85%

YES 5 86.85%

NO 3 85.2%

Table 3.5: Effect of observation window size and punctuation on prediction

accuracy of the best predictor (i.e., Bagging-based predictor). Evaluation

on the BURN corpus.

of the mutual information between two variables12. The symmetric uncertainty values

for the five most correlated features are shown in table 3.4. Note that the correlation

between a feature and pitch accenting does not say how much useful a feature actually

is when combined with the other features but only how much useful it is when used

alone.

Finally table 3.5 shows the accuracy of the best predictor (Bagging-based) on the

data set with and without punctuation marks and with different observation window

sizes. The 3-word window gives the best result.

12The symmetric uncertainty is defined as 2 I(x;y)
H(x)+H(y) , where x and y are two random variables, I(x;y)

is the mutual information between the two variables, H(x) and H(y) are the entropies of the two vari-
ables.
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3.5.2 Results on the Switchboard Corpus

The features extracted to train the different predictors on SWBDC have been extracted

in the same way they have been extracted from BURNC except for a difference in the

computation of CIC. While for the prediction on BURNC CIC was computed interpo-

lating the cache language model with the “standard” language model (i.e., the language

model trained on 9 million words of the Herald News), for the prediction on SWBDC

the CIC was computed interpolating the cache language model with a language model

resulting from the dynamic interpolation of the “standard” language model with a lan-

guage model trained on the whole SWBD corpus13. In the dynamic interpolation the

probability of the unigram is computed as follows:

p(wi) = µ(wi)p(wi|LM1)+(1−µ(wi))p(wi|LM2) (3.16)

where µ(w) is the posterior probability of “being” in LM1 given word wi
14(see Wein-

traub (1995) for more details).

The dynamic interpolation of the “standard” language model with the language

model trained on SWBDC was carried out to: 1) better model spoken language; and

2) to compensate for the fact that a language model only trained on a small corpus like

SWBDC has too many zero-count bigrams.

Table 3.6 shows the prediction accuracy of predictors based on different machine

learning techniques. As for the evaluation on BURNC the only features used are IC,

RIC, and POS.

On this corpus the prediction accuracies are very close to each other. CART in the

Weka implementation turned out to be the best predictor. However, since the second

order HMM-CART uses Wagon CART for the estimation of p(yi|xi) and it performs

better than Wagon CART we expect a HMM-CART using Weka CART to perform

better than the Weka CART. In other words, on SWBDC the information about the

previous accent values seems to be more important than on BURNC. Concerning the λ

parameter in CART-HMM the 0.5 value in the second order HMM gives the best result.

The impact of each new feature on accent prediction accuracy is shown in table 3.7. A

13The interpolation could also be done to compute IC but at the moment IC is computed using the
CMU Language Model Toolkit which does not allow dynamic interpolation. However we also wanted
to compute IC as in previous work, that is with no dynamic interpolation of any kind.

14In the SRI Language Model Toolkit this posterior probability is actually a weighted posterior prob-
ability in which one Language Model can have more weight than the other one. For the pitch accent
predictor the Language Model trained on SWBD was given a much higher weight (0.9) than the standard
Language Model
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Method Accuracy

CART (Wagon) 74.79%

CART (Weka) 75.17%

Bagging 74.73%

1st ord. CART-HMM 74.69%

2nd ord. CART-HMM 75.01%

2nd ord. CRF 74.51%

Table 3.6: Machine learning techniques and accent prediction accuracy on

SWBDC. The predictors are evaluated on the Switchboard corpus. The train-

ing features used are IC, RIC, POS and “normalisation features”.

Feature Set Accuracy

Old 77.27%

Old + ICC 77.53%

Old + SD 77.01%

Old + DRI 77.25%

Old + CIC 77.72

All 77.7%

Table 3.7: Using different features set in accent prediction Evaluation on the

SWDBC corpus.

Bagging-based predictor was used15. The ICC feature increases accuracy, consistently

with results on BURNC. The CIC features turned out to be the most predictive and

when combined with the old features produces better results than the whole set of

features.

The symmetrical uncertainty was used again to have a measure of the correlation

of each feature with pitch accenting. Table 3.8 shows the five most correlated features.

The top-five features on SWBDC and on BURNC are the same, although not in the

same order.

Finally table 3.9 shows the accuracy of the best predictor (Bagging-based) on the

15We used Bagging instead of CART as on the Weka stratified cross validation Bagging has a slightly
better accuracy.



Chapter 3. Automatic Pitch Accent Prediction 62

Rank Symmetrical Uncertainty Feature

1 0.09 ICC

2 0.079 IC

3 0.071 IRIC

4 0.071 WL

5 0.066 CIC

Table 3.8: Features correlation with the accent class. The table shows the

five most correlated features on the Switchboard corpus

Punctuation Window Size Accuracy

YES 1 76.76%

YES 3 77.7%

YES 5 77.7%

NO 3 75.84%

Table 3.9: Effect of observation window size and punctuation on accuracy

of the Bagging-based predictor. Evaluation on the Switchboard corpus

data set with and without punctuation mark and with different observation window

sizes.

The 3-word window and the 5-word window give the best results.

3.6 Discussion

In this chapter two issues have been addressed. The first issue concerns the interdepen-

dence of pitch accent placements. Two different types of machine learning techniques

were compared to investigate whether assuming accent placements interdependence

leads to a better modelling of pitch accent patterns. Results show that the knowledge

of the previous accent values has a small (especially in read speech, see table 3.2)

impact on the accuracy of accent predictors.

Note that such results do not mean that the accent values of preceding words has

a very small effect on the accenting of the current word but they only imply that the

machine learning algorithms that model accent placements interdependence are not
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good enough in modelling such interdependence16.

To improve such modelling in the HMM-based predictor we have introduced a new

parameter (λ) to weight the relative importance of emission and transition probabilities.

This produced (in read speech only) an improvement over the “standard” HMM-based

predictor (i.e., HMM with equal weights on transition and emission probabilities) from

84.43% to 85.15% but only a very small improvement (from 84.93% to 85.15%) over

the 0-order HMM-based predictor, i.e., the CART-based predictor.

Comparing the two algorithms that assume accent interdependence the HMM-

based predictors always outperformed the CRF-based predictor. This result contrasts

with the results shown in Gregory and Altun (2004) where a CRF-based predictor out-

performed an HMM-based predictor. The CRF predictor used here and that used in

Gregory and Altun (2004) seem to be very similar so the difference of results should

reside in a difference in the HMM-based predictors, with the main (and perhaps only)

difference being in the estimation of p(yi|xi), with the CART-based estimation being a

better estimation than that used in Gregory and Altun (2004) (which is not described in

the paper). Finally a partial justification for the CRF predictor poor performance might

reside in the fact that in the CRF predictor the continuous-valued features have been

binned into equal categories (as in Gregory and Altun (2004) with the same number of

bins). When increasing the number of bins the accuracy slightly improved, so perhaps

a smarter discretization of the continuous-valued features (e.g., the discretization pro-

posed by Fayyad and Irani (1993), which is the same used in Weka-CART) could lead

to better results.

The second issue addressed in this chapter concerns the utility of the training

features proposed here. Results show that the proposed features increase the pre-

dictor’s accuracy from 86.25% to 86.85% on BURNC and from 77.2% to 77.7% on

SWBDC. The ICC (Information Content of Concept) feature is the most useful feature

on BURNC while CIC (Cache Information Content) is the most useful on SWBDC.

The features extracted from the syntactic dependency parser have some utility on

BURNC but not on SWBDC. A possible explanation is that the dependency parser

is much less accurate on SWBDC than on the BURNC as SWBDC is more “ungram-

matical”.
16This claim is supported by the results shown by Brenier et al. (2006) where the knowledge of the

real accent-values of the surrounding words is shown to significantly improve prediction. Note that the
CART-based predictor used in Brenier et al. (2006) (named “FS.CONTEXT+ORACLE”) uses oracle
features, that is the real accent-values of the previous and next word as features, in both the training and
testing phase. As a consequence it can not be used for a real prediction task in that in a real prediction
task the values of the oracle features are unknown (they are the values the predictor has to find out).
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In general the information-theoretic features measuring the informativeness of words

(especially intrinsic informativeness but also relative) are the most predictive features.

A comparison of the prediction accuracy of the best predictor presented here with

the accuracy of predictors from previous work could be useful to find out whether some

important features are missing from the feature set used here. A fair comparison is not

easy as the data sets are almost always different. Hirschberg (1993) and Yuan et al.

(2005) use a f2b data set that differs from the one we use in that it also includes the

the f2b data in the multi-speaker session. The accuracy on a 10-fold cross validation is

82.4% and 83.9% which is lower than the 85.2% accuracy of our best predictor.

Others (Ross and Ostendorf (1996) and Sun (2002) use the same f2b data sets but

to predict accented syllables instead of accented words. Chen and Hasegawa-Johnson

(2004) and Levow (2008) use the whole BURNC using a “leave one speaker out”

training and testing procedure and achieve 82.67 and 84.44% accuracy (when using

textual features only). A problem of this “leave one speaker out” procedure in which

the predictor is trained on all but one speaker and tested on the left-out speaker is that

all the test data (more precisely the textual part of the test data) is included in the

training data, so there is a bias that most probably increases the predictor’s accuracy.

In general all the prediction accuracies on BURNC reported in previous work are

lower than the accuracy of our best predictor.

Concerning the prediction accuracy on SWBDC, the data sets from previous work

are different from the corpus used here (the annotation version and the conversations

are different). Gregory and Altun (2004) report a 75.67% accuracy while Brenier et al.

(2006) achieve a 76.17% when using automatically extracted features. Note that the

most predictive features used in Brenier et al. (2006) are the same used in Yuan et al.

(2005) to predict accents on BURNC. The accuracy of the best predictor proposed here

is 75.84%.

Consistently with the prediction accuracies reported on previous work the accu-

racy of our predictor on BURNC is definitely better (85.5% vs. 75.84%) than that on

SWBDC. Possible causes of such difference are: 1) SWBDC data is less “consistent”

than our BURNC data in that BURNC contains the speech of one single speaker while

SWBDC contains the speech of tens of speakers; 2) the feature extraction (especially

extraction of syntactic features) on BURNC is more accurate that that on SWBDC ; 3)

the manual labeling guidelines of the two corpora are slightly different; 4) the main ef-

fects on pitch accenting on read speech are different from those on spontaneous speech.

Although we can not draw a definitive conclusion on whether our best predictor
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outperforms predictors from previous work we can certainly say that it does not miss

any relevant textual information for accent prediction and that a set of features in-

cluding the best features from previous work and the features proposed here increases

accent prediction accuracy.

What emerges when observing the results in the work presented here and in the

most recent previous work is that the use of new features and machine learning meth-

ods has not drastically increased prediction accuracy. All predictors using automati-

cally extracted features lack of features accounting for a satisfactory description of the

discourse context so we might think that this kind of features is what we need to make

a leap in accuracy. However studies like Brenier et al. (2006) in which this kind of

information was manually annotated indicate that these features lead to a very small

increase in accuracy.

This experimental evidence raises the question on whether a natural ceiling on

accent prediction accuracy has been reached. The analysis of error at the sentence

level of the predictors presented here may provide a partial answer to such question.

For example our best predictor sometimes deaccents function or very-frequent words

that should instead be accented because the discourse context focuses (or contrasts)

them. Brenier et al. (2006) reported having the same type of error when predicting on

SWBDC and despite using a rich set of features describing Information Structure (e.g.,

information status,contrast, etc...).

Both accuracy measure and error analysis give an idea of the goodness of a pre-

dictor and of its main limits but they do not take into account the variability of pitch

accent placement. Several patterns of accenting conveying the same meaning are al-

lowed on the same sentence and a correct evaluation of pitch accent prediction should

take that into account. When we compute the predictor accuracy we count as an error

the accenting of a word because it is not accented in the test data but that same word

in the same text may be accented by another speaker (reading the same text) or by the

same speaker if asked to read the text again. As a consequence the gap between our

predictor’s accuracy and a 100% accuracy is not the real gap17.

The issue on of variability in pitch accent placements and on the use of accuracy

measures that take into account such variability are addressed in the next chapter.

17Note that it is accent prediction and not accent detection that is addressed. In the case of accent
detection we should aim for a higher accuracy in that variability on pitch accent placement is not an issue
anymore. However it may be erroneous to aim for a 100% detection accuracy because of annotation
variability (i.e., different annotators can annotate different accent sequences on the same utterances, see
section 4.1).
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This chapter is devoted to the analysis of the phenomenon of variability, and con-

sequent optionality, of pitch accent placement, to the investigation of prediction evalu-

ation metrics that take into account such variability, and to the search of novel methods

that take advantage of such variability to improve both segmental and prosodic quality

of synthetic speech in unit selection speech synthesis.

Most of the ideas discussed here are actually not specific to variability of pitch

accent placement and can be easily applied to other symbolic prosodic events (e.g.,

prosodic breaks).

In natural speech, alternative prosodic realizations of a given sentence can convey

the same meaning. Even when a speaker is required to utter a sentence in a specific

standard speech style (that of radio news, for example) she will be free to choose

amongst different prosodic patterns all conveying the same meaning. This freedom

of choice affects different aspects of prosody, ranging from prosodic phrasing to pitch

accent placement. Obviously this freedom has some limits in that not all the accept-

able prosodic patterns convey the same meaning. For example the placement of a

prosodic break helps to disambiguate the semantic meaning of syntactically ambigu-

ous sentences like “He ate the cookies on the couch”. Similarly the placement of pitch

accents (and of primary accents) can determine the semantic meaning of ambiguous

sentences (e.g., SHE visited me before Sue = “before Sue visited me” vs. she visited

ME before Sue = “before she visited Sue“, from Rooth (1992)) or can imply different

additional (pragmatic) meaning (other than the unambiguous semantic meaning of the

sentence) like in LUKE killed that man (= Luke, not someone else, killed that man”)

vs. Luke killed THAT man (= “Luke killed that man, he did not kill someone else”)

(where capitalized words bear the most primary accent in the utterance).

A possible way to study pitch accent variability is that of comparing speech of

different speakers reading the same text (and assuming that all speakers convey the

same semantic/pragmatic meaning). The first part of this chapter is devoted to a study

on variability in accent placements on the section of the BURN corpus (see section

3.4.1) containing speech from different speakers reading the same sentences

Given a sequence of accent values (i.e., a sequence of ±accents) on a utterance

not all the accent values are equally subject to variability. Some accent values are

strongly constrained by all the main factors affecting accenting (e.g., informativeness,

salience) and so are “compulsory” values, while other values are less constrained and

so can be seen as “optional”. These “optional” accents account for variability in accent

placement.
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A distinction between “compulsory” and “optional” accents1 is crucial in the pre-

diction of natural accent patterns. Errors on “compulsory” accent values are much less

acceptable than errors on “optional” accent values. To take that into account when

evaluating a prediction, we can tune the cost of a prediction error depending on the

degree of optionality of the accent value to be predicted. A prediction error on a “com-

pulsory” accent will have a higher cost than an error on an optional accent.

After pointing out the limits of evaluation metrics that consider optionality as a

binary variable (i.e., that rigidly distinguish between compulsory and optional accents)

we propose an evaluation metric that incorporates an information-theoretic definition

of optionality (in which optionality is a continuous-valued variable) and that over-

comes some of the limits of previous metrics.

A pitch accent predictor for a TTS voice should be consistent in its predictions, i.e.,

the accent sequences it generates must be generated as if they were always generated by

the same person. A lack of consistency might result in accent sequences that confuse

the listener or even cause misunderstandings. Under this perspective the evaluation

of pitch accent predictors on multi-speaker data raises a crucial question. Are the

accent placements that result to be optional when comparing the speech of different

speakers reading the same text also optional in a single speaker’s speech? In other

words, if a single speaker read the same text several times, would the accent placements

resulting optional from a comparison of the different realizations also be optional when

comparing the speech of different speakers reading the same text?

Using the information-theoretic formulation of optionality we show some empir-

ical facts suggesting that in general the value of optionality of an accent value (on a

given word token) observed when comparing the prosodic patterns of different speak-

ers (henceforth intra-speaker optionality) is very similar to the value of optionality that

would be observed on a single speaker (henceforth inter-speaker optionality) if the

speaker read the same text several times. That justifies the evaluation of pitch accent

predictors on multi-speaker data.

Pitch accent optionality is not necessarily only an obstacle hampering the evalua-

tion of pitch accent predictors but can be turned into something helpful to take advan-

tage of. In section 4.5 we propose a simple method that takes advantage of optionality

in order to improve the prosodic realization of a unit selection TTS system that uses

pitch accent prediction to model prosody.

1We will see later that actually a rigid distinction between “compulsory” and “optional” is not cor-
rect, that is why the two terms are in inverted commas.
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f1a f2b f3a m1b m2b m3b

the N N N N N N

surveillance A A A A A A

system A N N N A N

is A N N N N N

not A A A A A A

that A A N A N N

sinister A A A A A A

Figure 4.1: A fragment from the “multi-speaker” section of the BURN cor-

pus. A and N stand for accent (+accent) and no-accent (-accent) respec-

tively. f1a, f2b, f3a, m1b, m2b and m3b are the speaker id’s.

The chapter concludes with a discussion on some issues: the possible extensions

of our approach on dealing with optionality to other prosodic events, the working as-

sumption beneath our definition of optionality, its consequent limitations and possible

improvements.

4.1 Intra-speaker disagreement

Figure 4.1 shows an excerpt of the “multi-speaker” corpus in which the speech of six

speakers reading the same text is prosodically annotated with ToBI conventions (pitch

accent ToBI types are collapsed into ±accent). This part of the BURNC was already

analysed in Yuan et al. (2005) to investigate the intra-speaker disagreement in pitch

accent placement. Here we carry out a more detailed analysis as that is necessary to

introduce some of the issues addressed in the next sections.

Figure 4.2 shows the percentages of intra-speaker agreement for each combination

of speakers and the agreement mean, with respect to the number of speakers in the

combinations, on a text of 1662 words (punctuation marks are not included). The ver-

tical segments range from the lowest to the highest agreement rate for a given number

of speakers in the combinations. For example, there are 15 possible combinations of

two speakers. Among them the pair with the lowest agreement (79.19%) is f1a-m2b,

whereas the highest agreement (85.86%) occurs in pair m1b-m3b. These two percent-

ages may suggest a correlation between degree of agreement and speaker gender, but
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Figure 4.2: Intra-speaker agreement in pitch accent placement. Each verti-

cal segment represents the agreement rate for a given number of speakers in

the combinations. For example the leftmost segment represents the agree-

ment range for all combinations of 2 speakers. The mean line represents the

mean disagreement value. The rsequence line shows the disagreement re-

sulting when adding a speakers in the order f1a,f2b,f3a,m1b,m2b,m3b. The

model line (the line on the top) is explained in 4.2.1.

if we look at all the 20 possible triplets of the six speakers we see that the combination

with the highest agreement (77.61%) is f2b-m1b-m3b, which consists of one female

and two males. We did not carry out any study to investigate the factors that correlate to

intra-speaker agreement, but from an informal analysis it seems that speaker profession

(is she/he a professional speaker?) is at least as significant as speaker gender. When

comparing the agreement among speakers in pitch accent placement we can compute

the proportion of agreement that is not due to chance by using the Kappa statistic:

κ =
P(A)−P(E)

1−P(E)

where P(A) is the proportion of times speakers agree and P(E) the proportion we

would expect them to agree by chance. In our case, assuming that accent and non-

accent are equi-probable (the percentage of accented words in this corpus ranges from

45% to 55% depending on the speaker) the κ value for the six speakers (the κ value for

“number of speakers = 6” in figure 4.2) is 0.57.

It must be pointed out that part of the computed disagreement in accent placing

is due to disagreement between annotators on the presence or absence of a pitch ac-

cent. On a study on labeler reliability on a subset of the BURN corpus, Ostendorf
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et al. (1995) found an agreement of 91%. The agreement rate was computed on all

annotator-pair-words so it is equivalent to the average agreement of all combinations

of two annotators. This agreement may “explain” part of speaker-pair-words agree-

ment which is around 83% (see figure 4.2), although we actually do not know how the

data to label was distributed between the annotators.

The fact that part of intra-speaker disagreement may be due to annotator disagree-

ment would imply that the optionality of an accent value is not only due to variability

in prosody production but also to the variability initrinsic to the annotation process (see

discussion at the end of section 2.3).

Since we cannot quantify the effect of annotation variability on the optionality of

an accent value we will assume that annotators mainly disagree on accent values on

which speakers usually disagree.

4.2 Pitch accent optionality and pitch accent predictors

evaluation

Starting from previous studies that first addressed the issue of evaluating the prediction

of prosodic symbols taking into account prosodic variability (section 4.2.1) we point

out the limits of evaluation metrics based on a binary formulation of optionality and

put the basis for the evaluation functions introduced in section 4.2.2.

4.2.1 Previous Work

There is little previous work on the evaluation on multi-speaker data of the prediction

of prosodic symbols. Ross and Ostendorf (1996) propose a best match evaluation

metric in which for each sentence the predicted sequence of accents is tested on the

test sequence that is closest to it. The main limit of this evaluation metric is that at

each sentence the evaluation is on one single speaker test accent sequence (the most

similar to the predicted sequence) and so it does not capture the relative importance of

the different accent values in that it does not distinguish between “compulsory” accent

values from “optional” ones.

Ross and Ostendorf (1996) again, Marsi (2004) and Yuan et al. (2005) propose a

compulsory/optional evaluation in which prediction errors are only marked when the

speakers are unanimous in the placement or absence of a pitch accent (i.e., when the

accent value is compulsory according to the test data). If the predicted accent value
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has been annotated on at least one speaker then the prediction is always correct, since

the symbol is optional.

Yuan et al. (2005) show that when their predictor is evaluated with compulsory/optional

evaluation on the multi-speaker section of BURNC its accuracy is very close to 100%

and so conclude that the room for improvement on automatic pitch accent prediction

is very little.

Such a conclusion may be right but it is drawn assuming that if a pitch accent turns

out to be optional when comparing the speech of different speakers then it will be

optional in a single speaker’s speech as well. As a consequence the optional accent

values of a speaker can be swapped with the optional values of (an)other speaker(s)

without altering the naturalness of the whole accent pattern.

There are however possible side-effects in this assumption. First, even if all the

speakers are unanimous on an accent value that accent value can actually turn out

to be optional if more speakers are added in the testing pool. Second, the compul-

sory/optional evaluation ignores the (possible) interdependence (discussed in previous

chapter) between pitch accents, i.e., it ignores that switching optional accent values

independently of preceding accent values may result in an unnatural and “distorted”

accentuation pattern.

In spite of these (theoretically) possible side-effects, the evaluation function we

propose here is based on the same working assumptions of the compulsory/optional

evaluation. In the next sections we propose arguments and show empirical facts sug-

gesting that part of these side-effects are not so significant as it may seem at a first

glance and can probably be ignored.

Nevertheless, even assuming that such side-effects are irrelevant, the

compulsory/optional evaluation metric has still some significant drawbacks. Figure

4.2 shows the steep drop of intra-speaker agreement when the number of speakers

increases. As a consequence it is easy to see that the compulsory/optional evaluation

metric is strongly dependent on the number of speakers involved.

Figure 4.3 shows this fact by comparing three different predictors: an all-accented

predictor (predictor A), an automatic predictor trained on multi-speaker training data

(predictor B) (see section 4.3 for more details) and speaker m3b (predictor C)2. The

three predictors are tested on one of the four parts (which is approximately a quarter)

of the multi-speaker BURNC data. Predictor B was trained on the remaining three

parts. The accuracy is computed varying the number of speakers involved in the test.

2Throughout this chapter punctuation marks are excluded from the evaluations.
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Figure 4.3: Three predictors tested over combinations of an increasing num-

ber of speakers. The sequence of speakers combinations is f1a, f1a-f2b, f1a-

f2b-f3a, f1a-f2b-f3a-m1b, f1a-f2b-f3a-m1b-m2b, f1a-f2b-f3a-m1b-m2b-m3b.

Predictor A is an all-accented predictor. Predictor B is the predictor MSP

described in section 4.3. Predictor C is the speaker m3b.

The more the speakers in the test data set are, the lower the intra-speaker agreement is

and consequently the better the predictor results are.

Consider predictor A, which accents all words. If it is evaluated on six speakers,

its accuracy rate is 73%, that means that we could build a predictor that accents the

73% of words, and achieves a 100% accuracy rate. However, since the percentage of

pitch accent in read speech ranges from 45% to 55% such a predictor is by far not

appropriate to model pitch patterns of real speech.

When looking at intra-speaker disagreement it should be taken into account that

the steep decrease is partially due to the simple fact of adding new speakers in the test

data, even when the disagreement in each pair of speakers is low. In order to better un-

derstand the relationship between number of speakers and intra-speaker disagreement

we could try to model it by defining the agreement rate as a function of the number of

speakers. By doing that we might have an idea of what the agreement rate is going to

be when more than six speakers are compared.

To build the model we could suppose that each word token in the test data has a

non-zero probability of being optional, that is of being assigned both accent values and

that an accent value is independent of the others. If we assume p being the average

probability of the most probable accent value (i.e., N or A) of the word tokens, the

agreement percentage can be modelled as:
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(m1) A(n) = 100[pn +(1− p)n]

where n is the number of speakers involved. pn is the probability of having all

n speakers agreeing on the most probable accent value on a given word token wc

(e.g.,probability of “YYY”, if n = 3 and “Y” is the most probable accent value for

wc). (1− p)n is the probability of having all n speakers agreeing on the less probable

accent value on wc (e.g., probability of “NNN”, if n = 3 and “Y” is the most probable

accent value for wc). So the sum of the two terms (pn +(1− p)n) is the probability of

having intra-speaker agreement on wc. We are supposing that this value is identical for

any wc (although any wc has its own most probable accent value). In Figure 4.2 the

model was plotted setting p to 0.9157. This value was obtained by imposing p6 (the

term (1− p)6 was ignored) as it is equal to the real agreement of six speakers (0.59)3.

Even if the model is certainly a gross model it clearly shows that even for high

values of p the agreement percentage rapidly decreases when new speakers are added

in the testing data and gives an idea of what might happen if more than six speakers

are compared.

The number of speakers is not the only parameter that can affect evaluation. The

evaluation function used to evaluate the predictors of figure 4.3 considers correct a

pitch event if it is realized by at least one speaker, but, as proposed by Marsi (2004), a

“stricter” evaluation function can be chosen by setting a minimum number of speakers

agreeing with the prediction. Considering n the number of speakers involved in the

test and m (with m < n) the minimum acceptable number of speakers that agree with

the predictor, than the evaluation function for each word token wi is4:

OE(wi) =


1 if at least m speakers realized

the predicted event

0 otherwise

(4.1)

Table 4.1 shows the evaluation of the predictors A and B already used in figure 4.3,

this time using all the six speakers (n = 6) in the test data but varying m.

The high dependency of the evaluation function on m is again explained by the

intra-speaker disagreement. When m increases, the number of cases in which the pre-

diction is considered correct independently of its predicted value decreases. For exam-

ple, if m = 1, the prediction is always correct in all the cases where at least one speaker

3Note that p was not set to find the best model for the “real” agreement (in terms of maximum
likelihood, for example).

4Where OE stands for Optional/compulsory Evaluation.
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m = 1 m = 2 m = 3

Predictor A 73.17 65.04 60.16

Predictor B 97.29 92.68 87.80

Table 4.1: Accuracy rates of two predictors for different values of m (n = 6).

Predictor A is an all-accented predictor. Predictor B is the MSP predictor.
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Figure 4.4: Intra-speaker agreement (real and modelled) for different values

of m and fixed n (n=6). n−m + 1 is the number of speakers (out of n

speakers) that agree. Note that the combination of agreeing speakers need

not be always the same and can change at each word token. Also, note that

for n−m + 1 ≤ n
2 there will always be a combination of n−m + 1 agreeing

speakers.

disagrees whereas it can be wrong only when all speakers are unanimous and disagree

with the prediction. For m = 2 the prediction is always correct in all the cases where

at least two speakers disagree. In general a prediction is wrong only when n−m + 1

speakers unanimously disagree with it.

Figure 4.4 shows the percentage of accent values that are identical for: all the

six speakers (bottom right), at least five out of six speakers and so on, together with a

model of agreement (m2) based on the same hypotheses made for (m1). Since the num-

ber of combinations of k speakers taken from a set of n speakers is given by

(
n

k

)
, in

this case the agreement function is:

(m2) A(n,m) = 100∑
n
k=n−m−1

(
n

k

)
[(1− p)n−k pk +(1− p)k pn−k]
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Figure 4.5: The Binary Entropy function. p is the probability of one of the

symbols (with the other symbol having probability 1− p).

where 0 < m ≤ n
2 + 1,and the p value is again set to 0.9157. When m ≥ n

2 there will

always be n−m+1 speakers that agree. k = n−m+1 is the number of speakers (out

of n speakers) that agree. (1− p)n−k pk is the probability of having all k = n−m + 1

speakers agreeing on the most probable accent value on a given word token wc, and

(1− p)k pn−k is the probability of having all k = n−m + 1 speakers agreeing on the

less probable accent value on wc. As for model (m1) we are supposing that the sum

of these two values is identical for any wc (although any wc has its own most probable

accent value).

4.2.2 Alternative evaluation functions

The considerations and analysis made above point out the necessity of evaluation met-

rics that are less dependent on n and m. To be less dependant on n and m an evaluation

function must also be less dependent on outliers, which means that when only one

speaker (the outlier) disagrees with the majority (on an accent value) the evaluation

metric should not drastically change compared to the unanimous case. Such a metric

would award predictors able to match the average accent pattern of human speakers.

Here we propose two evaluation functions that satisfy these specifications. Both

functions assign a prediction accuracy value at each word wi of the test data-set that is

real-valued (and not discrete as in function OE) and ranges from 0 to 1. The first func-
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tion we present assumes that when an accent value has a maximum value of optionality

on a word wi (i.e., when n
2 speakers accent a word wi and the remaining n

2 do not) then

the prediction accuracy value will be always 1, independently of the prediction, i.e.,

when an accent value is completely optional it does not matter what the prediction is.

In the second evaluation function, the accuracy prediction is linearly dependent on the

number of speakers that agree with the prediction and it always increases when the

number of speakers that agree with the prediction increases.

To introduce the first evaluation function we reformulate the definition of option-

ality within the Information Theory framework (Shannon (1948)). First we associate

a source emitting pitch accent values to each word token so that each source can emit

two symbols, one representing +accent and the other −accent. The overall number of

emissions is equal to the number of speakers and each emission is independent of the

others. From Information Theory we know that the entropy of such a source is:

H =−p log(p)− (1− p) log(1− p) (4.2)

where p is the probability that the source emits an accent (i.e., symbol +accent)

and (1− p) that it does not (i.e., the probability the it emits symbol −accent).

The entropy quantifies how much information we need to correctly predict the next

symbol that will be emitted by the source. In the case of a source emitting two symbols,

if the source has always emitted the same symbol then its entropy will be 0, whereas

if the number of emissions of the two symbols is equal then the entropy value will be

1. In all the other cases (and if the number of emissions is higher than 2) the entropy

value will be less than 1 and more than 0 (see figure 4.5).

Having associated a word token to a source emitting ±accent, the entropy of the

source (H) has the properties that a real-valued measure of the optionality of the accent

value for that word should have, that is a maximum value (i.e., 1) when the two accent

values are equally probable, a minimum value (i.e., 0) when one of the two accent

values has probability 1, and values in-between for all the other cases.

Once optionality has been defined as entropy the next step consists in searching for

an evaluation function where the accuracy prediction value depends on entropy. Such

specification is satisfied by the following function:

tEE(wi) = 1− [(1−Pt(yi))(1−Ht(wi))] (4.3)

where Pt(yi) is the probability of the predicted accent value yi of occurring at word
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wi and Ht(wi) (= −Pt(yi) log(Pt(yi))− (1−Pt(yi)) log(1−Pt(yi))) is the optionality

of the accent value for word wi computed on the testing data. EE stands for Entropy

Evaluation.

The term 1−Pt(yi) computes the error of the predictor while term (1−Ht(wi))

represents a cost of the error that depends on the optionality value, the more optional

the accent value on word w1 the smaller the cost. For example if word w1 has been

accented by 2 speakers out of 6 in the testing data and the predictor predicts an accent

on wi than the error 1−2/6 = 0.67 will be reduced by 1− (1−Ht(wi)) = 1−0.92 =

0.18. tEE(wi) is 1 when all the speakers agree with the predictor or when half of the

speaker (maximum entropy) agree with the predictor.

The overall tEE is simply the sum of each tEE(wi) divided by the total number of

words.

tEE(wi) is plotted in figure 4.6 as a function of Pt(y). It satisfies two desiderata: it

has a global maximum when the accent values in wi are totally optional (Pt(yi) = 0.5)

and when Pt(yi) = 1. However when 0.5 < Pt(yi) < 1 the values of tEE are below 1

because the function is not monotonic and that leads to the paradoxical situation where

tEE decreases although the probability of the predicted value, i.e., Pt(yi), increases.

In order to have a monotonic function we need to modify tEE. A modified version

of tEE that preserves the two desiderata mentioned above is the following:

EE(wi) =

{
tEE(wi) if Pt(yi)≤ 0.5

1 Pt(yi) > 0.5
(4.4)

This is the entropy-based evaluation function we propose.

A potential drawback of EE is that when Pt(yi)≥ 0.5 the prediction accuracy value

is always the same independently of Pt(yi). An alternative evaluation function that

avoids that, but at the cost of loosing the important property of having a maximum

accuarcy value when optionality is at its maximum (i.e., Pt(yi) = 0.5) is the following:

nwEE = 1− (1−Pt(yi)) = Pt(yi) (4.5)

In nwEE the prediction error 1−Pt(yi) is no more weigthed by the entropy value

and nwEE has the disadvantage of not being positively correlated to the optionality

the accent value . The function is a strictly increasing function of Pt(yi), so the higher

the proportion of speakers that agree with the prediction, the higher the prediction

accuracy.
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Figure 4.6: Plots of the evaluation functions OE, tEE, EE, nwEE. p is Pt(yi).

OE was plotted setting m = 1.

Henceforth we will consider EE as the evaluation function based on a information-

theoretic definition of optionality, and nwEE as the evaluation function that is equiva-

lent to Pt(yi). Both are plotted in figure 4.6.

One of the practical advantages of EE and nwEE is that there is no m value to be

set anymore, while regarding n it is easy to see that they are more stable than OE when

n changes. In fact for very large n, it is acceptable to assume a non-zero probability for

each token of being assigned both pitch events, especially if we think that annotation

errors can be made. Both an all-accented and an all-not-accented predictor would

score OE(wi) = 1 (if m = 1) per each token though neither of them would match the

average accentual pattern of the speakers. When using EE or nwEE both predictors
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Figure 4.7: Comparison of OE, EE and nwEE on predictor B. The m value

of OE is 1.

would never reach the 100% accuracy. This is an interesting property of since usually

all-accented or all-non-accented predictors can be used as baselines.

In order to provide some empirical evidence of the reduced dependency of EE and

nwEE on n, all the evaluations metrics were compared on some predictor. In figure

4.7 predictor B is evaluated on different values of n. When n > 2, EE increases slower

than OE, while nwEE seems to reach an asymptotic value when n > 2. Figure 4.7

shows the results of predictor B evaluated over only one out of 720 possible sequences

of speakers. We carried out the same type of comparison using different predictors and

different speaker sequences finding always the same trend. An evaluation function that

is “stable” with respect to n has also the advantage of guaranteeing that differences in
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accuracy between predictors are independent of n.

4.3 Intra-Speaker and Inter-Speaker Optionality

The basic hypothesis justifying the use of metrics that rely on multi-speaker testing

data consists in assuming that what turns out to be optional when comparing the

speech of different speakers data is also optional within a single speaker’s speechIn

other words the basic hypothesis is that pitch accent optionality is a speaker indepen-

dent phenomenon. The fact that, as we have seen in chapters 2 and 3, the main factors

affecting accent placement are speaker independent seems to imply that such hypothe-

sis often holds. However this section shows some empirical facts that tend to confirm

that5.

Perhaps the best way to see to which extent such working hypothesis holds would

be that of comparing the optionality values (i.e., the entropy values) computed on

multi-speaker data and see if they correlate with the optionality values computed on a

single speaker data that consists of speech of a single speaker that read several times

the same text of the multi-speaker data6.

Unfortunately when recording the BURN corpus each speaker read the news only

once so alternative ways to compute the correlation of intra-speaker optionality and

inter-speaker optionality have to be explored.

An alternative approach consists in comparing two different predictors, a predic-

tor trained on single speaker data (henceforth SSP) and a predictor trained on multi-

speaker data (MSP, the predictor B seen in previous sections). The motivation of this

approach is that the two predictors are representations of the single speaker and of

“multiple-speaker” in term of pitch accenting.

SSP is the CART(Wagon)-based predictor described in chapter 3. It is trained

on f2b (excluding the f2b part in the multi-speaker data set) and uses three training

features: Information Content, Relative Information Content and POS. The MSP uses

exactly the same machine learning algorithm and training features used by SSP. It only

differs in the training data set which was built by grouping together all the six speakers

data of section p, r and t of the multi-speaker data, so the text read by the speakers

(1293 words) and the values of the training features were repeated six times (one for

5However they are not intended as rigorous proofs of the absolute validity of the hypothesis!
6Assuming that in a recording session all text is read by the speaker, at least a few weeks should

intervene between a recording session and the following section, as proposed by Chu et al. (2006), for
example.
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each speakers). As a consequence only the pitch accent values vary. The remaining

section, section j (369 words), was held out for testing both predictors.

e.o. f1a e.o. f2b e.o. f3a e.o. m1b e.o. m2b e.o. m3b e.o. all

SSP 76.15 83.2 82.93 87.26 82.93 84.01 95.21

MSP 75.6 82.11 81.84 87.26 81.3 85.1 95.68

Table 4.2: Accuracy of a predictor trained on single speaker data (SSP)

and of a predictor trained on multi-speaker data (MSP). e.o. stands for

“evaluation on”. The evaluation on all speakers was carried out using the

EE evaluation metric. Punctuation marks are excluded.

Both SSP and MSP were compared by testing their predictions on each of the six

speakers, and on all the six speakers at the same time using the EE evaluation function.

Looking at table 4.2, the most evident fact, when comparing the two predictors, is that

their performances are very close.

These results can be interpreted looking at a classification tree as a list of prediction

rules. We can say, with a certain degree of approximation, that during the MSP training

those rules that were sensitive to speakers, that is, appropriate for describing the pitch

patterns of some speakers but not for those of the other speakers, were filtered out, so

only the rules that assign the non-optional pitch events were successful. If the SSP

performances are very close to the MSP ones we can conclude that, at least in our

prediction model, the SSP has the same ability of the MSP to distinguish between

intra-speaker optional and compulsory pitch events, but this is possible if the inter-

speaker optionality “seen” by the SSP during its training phase is very similar to the

intra-speaker optionality seen by the MSP.

An alternative way to assess whether the two predictors have “seen” the same op-

tionality (within the prediction model we used) is to compute the correlation of the

uncertainties of their predictions. In other words, given a word token, if both predic-

tors are “uncertain” about their prediction for that word token that should mean that the

pitch event for that word token is highly optional (the implication “uncertain prediction

→ optional pitch event” is discussed in more detail in section 4.5).

Using again the information-theoretic formulation of entropy, the uncertainty of a
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prediction is defined as:

Hp(wi) = − log(P(yi|xi))P(yi|xi)

− log(1−P(yi|xi))(1−P(yi|xi))
(4.6)

where yi is the predicted accent value and xi is the vector of training features. Hp is

computable as the Wagon CART provides, along with the predicted value, the proba-

bility of all the possible values (two in our case) of the predicted variable.

The Pearson correlation value of the prediction uncertainties of the two predictors

is 0.87. Such a high correlation value (statically significant with p < 0.01), suggests

again the independence of pitch accent optionality on speakers.

4.4 Human vs. Automatic Prediction Accuracy

The main motivation behind the search for an evaluation metric that incorporates

prosodic variability is that of estimating the real gap between natural and automatically-

generated accentual patterns.

Because of the requirements on EE and nwEE of being “stable” metrics (i.e., met-

rics where the optionality value does not suddenly switch from 0 to 1 when a speaker

is added to the testing data) the predictor accuracy computed with EE and nwEE will

never be a 100% accuracy even when the prediction is identical to the accent sequences

generated by one of the speakers (unless the intra-speaker agreement is unrealistically

100%). As a consequence the difference between 100% accuracy and the predictor

accuracy (computed using EE and nwEE) is not indicative of the gap between natural

and automatically-generated accentual sequences.

To estimate the real gap we used the Bagging-based automatic predictor trained on

f2b data (excluding the f2b part in the multi-speaker data set) that in 3.5.1 resulted to

be the best predictor on a 10-folds cross validation with 85.2% accuracy (punctuation

marks excluded). It uses all the training features described in chapter 3. The EE and

nwEE accuracies were computed on the BURN multi-speaker data with the f2b part

held out and were compared with the EE and nwEE accuracies of the held-out f2b

part on the same testing data. The f2b is not actually a prediction but can be fairly

considered as it were the prediction of f2b on her own actual generation of accent

sequences.

Table 4.3 shows the results of the comparison. The accuracy of the automatic

predictor is even slightly higher than the accuracy of the f2b part for any evaluation

function (although the difference is very small)
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EE on all-but-f2b nwEE on all-but-f2b OE on all-but-f2b EE on f2b

BAPf2b 96.15% 84.25% 97.2% 84.32%

f2b 96.11% 84.17% 97.15% 100%

Table 4.3: Human vs. Automatic Prediction Accuracy. BAPf2b is the Best

Accent Predictor trained on f2b and described in chapter 3. f2b is the f2b part

in the multi-speaker section of BURNC. The accuracy rates in the second,

third and fourth column were computed on BURNC multi-speaker data with

the f2b part held out. The last accuracy rate is the classic accuracy rate

computed on a single-speaker testing data (the f2b part held out from the

multi-speaker data).

These surprising results, although can not be considered as a definitive proof of the

full accomplishment of a “perfect” prediction of the accentual patterns can however be

regarded as a further proof that the margin for improvement in pitch accent prediction

is very little.

From an analysis of error on multispeaker data it emerges that the predictor only

fails in few cases, mainly when (in the test data) function words are accented because

they convey contrast, when the typical accentuation value of a word is inverted be-

cause of some lexical effects, and when content words are deaccented because the

concept they convey is redundant. The predictor overaccents (around 60% of words

are accented by the predictor while around 50% of words are accented by voice f2b),

however that does not seem to be a real problem since the predictor often predicts

long sequences of +accent that, although not generated by most of the speakers, are

generated by at least one speaker.

4.5 Including Pitch Accent Optionality in Unit Selection

Text-to-Speech Synthesis

The ultimate goal of this thesis is that of identifying patterns of prosodic prominence

for TTS synthesis. In this section we propose a method that aims to improve the

prosodic and segmental speech quality of a unit-selection TTS system by taking ad-

vantage of pitch accent optionality.

The core idea is that of associating to each accent (and to each no-accent) place-
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ment prediction its supposed degree of optionality, expressed, as we show and motivate

later, as the ”uncertainty” of the accent predictor. The working hypothesis is that by

incorporating the optionality of the accent value we enlarge the set of prosodically

acceptable speech units, and so increase the chances of selecting a good quality se-

quence of units, both in prosodic and segmental terms. For example, let us suppose

that a ”highly optional” accent label has been predicted for a given syllable (of an

input sentence to a TTS system). Because of the high optionality of that accent, an un-

accented syllable would be probably equally acceptable and so we can allow the unit

selection module to select either accent-bearing or no-accent bearing speech units. Do-

ing so we loosen the prosodic constraints without worsening the prosodic model and

consequently increase the number of available candidate units.

The advantages of incorporating prosodic variability to improve the quality of unit

selection speech synthesis have already been shown in some recent studies (Bulyko

and M. Ostendorf (2001), Chu et al. (2006), Campillo and Banga (2006) and Clark

and King (2006) among them). For example in Campillo and Banga (2006) different

intonation contours are generated via unit selection using prosodic target cost features

such as position of the syllable in the intonational group (i.e., prosodic phrase), pitch

accent (but without taking into account optionality), etc...7 The generated contours

become then target contours for the standard unit selection phase and the sequence of

speech units having the lowest overall (prosodic plus segmental) cost is chosen. Both

objective and perceptual tests show the clear benefits of using more than one target

intonation contours.

Although exploiting prosodic variability is not a novel idea, the novelty of our ap-

proach consists in taking into account the optionality of phonological prosodic events

in a way that the automatic prediction of such events is no longer a stand-alone step

preceding the unit selection phase, but becomes an integral part of the unit selection

process itself.

In order to incorporate pitch accent optionality in a unit-selection TTS system using

pitch accent as a feature in its target cost function it could be possible to build an accent

optionality predictor trained on the multi-speaker part of the BURN corpus, having the

task of correctly predicting the H value per each word token. Then we could associate

the predicted optionality value to the accent value predicted by the accent predictor

and use it to tune the cost associated to the pitch accent target cost feature.

7The different contours are generated by selecting the N-best (with N set to some value) sequences
from the Viterbi search algorithm.
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Let us consider the standard target cost function for a unit selection speech synthe-

sis system on a target-speech unit pair:

T (st ,ut) =
F

∑
f =1

w f (Tf (st [ f ],ut [ f ])) (4.7)

where st [ f ] and ut [ f ] are the values for the feature f of the target unit and the speech

unit respectively, Tf is the function evaluating the distance between st [ f ] and ut [ f ], and

w f is the weight of the feature f .

Instead of using a standard Tf for the pitch accent feature, that is a Tf that returns

0 when st [ f ] and ut [ f ] have the same value and 1 when they have two opposite values,

we could introduce the following Tf :

Tf =

{
0 if st [ f ] and ut [ f ] are equal

1−H(wi) otherwise
(4.8)

where H(wi) is the accent optionality associated to the word containing the target unit

st .

When st [ f ] and ut [ f ] are different and H(wi) is close to 0, i.e., the accent value is

“highly compulsory”, then Tf returns a value very similar to the standard Tf , whereas

when the accent value is highly optional, i.e., H(wi) is close to 1, then the cost associ-

ated to the pitch accent feature is very low, i.e., it does not really matter if the speech

unit comes from an accented syllable or not.

Instead of explicitly using H(wi) we implicitly incorporated it by weighting the

difference between st [ f ] and ut [ f ] using the value of uncertainty of the pitch accent

prediction on wi.

Using a probabilistic pitch accent predictor that for each predicted accent value yi

gives the conditional probability P(yi|xi)8 the uncertainty of the prediction Hp(wi) is

defined as in equation 4.6.

The main motivation to use Hp(wi) instead of H(wi) is that what we actually need

to know is how “sure” is the accent predictor about the information it passes to the

target cost function. For example, since we deal with not perfect predictors, if we have

two separate predictors, one to predict pitch accents and one to predict their optionality,

it may happen that the accent predictor assigns a pitch accent to a word with P(ei) =

0.55 and the optionality predictor says the accent is compulsory (H(wi) = 0). In that

8A necessary condition on the predictor is that it has to be a predictor in which the probability
of yi does not depend on the preceding accent values yi−1, yi−2, etc... So a CART-based predictor is
appropriate while and CRF-based predictor is not.
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case what it is important for the unit selection module is that the accent predictor

is quite unsure about its prediction and so it does not make a lot of sense forcing the

selection module to select accented units, independently from the optionality predictor.

Looking from another perspective, the advantage of using Hp(wi) is that it is cor-

relates with both the optionality of a pitch accent and the inaccuracy of the accent

predictor. In fact our accent predictor does not achieve a 100% accuracy rate because:

1) the set of explanatory features we use is not enough (inaccuracy of the prediction

model); 2) prosodic variability occurring within a single speaker’s speech. As a con-

sequence P(yi|xi) is affected by both factors.

However, the assumption that the Hp of an accent predictor is correlated to pitch

accent optionality is not necessarily true and depends on the accent predictor. Making

an extreme example, suppose we have an accent predictor trained on a single explana-

tory feature having two different values: true if the first letter of a word is a d, and

f alse otherwise. In that case it is easy to see that Hp is only due to the inaccuracy

of the prediction model. Instead, if the explanatory features are ”good enough”, i.e.,

closely correlated to pitch accenting, the optionality observed with respect to those

features should be strongly correlated to the real optionality.

In the implementation of this method including Hp in the target cost function, the

SSP predictor of section 4.3 was used9. Proofs that its Hp is closely correlated to pitch

accent optionality are: 1) the features it uses (IC, RIC and POS) have been shown to

have a close correlation with pitch accenting; 2) in Badino and Clark (2007) we show

that its Hp is by far the best explanatory features of an accent optionality predictor (i.e.,

a predictor predicting the H(wi) computed on the BURNC multi-speaker data). The

larger Hp is the more optional the accent is.

The efficacy of this method is tested in chapter 6 (experiment 1) where a TTS in-

cluding Hp is compared on a large scale perceptual test with a TTS having the standard

Tf for pitch accents.

9We did not use the Bagging-based best predictor described in chapter 3 as the work presented in
this chapter was actually carried out before most of the work presented in chapter 3.
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4.6 Discussion

4.6.1 Extendability to other prosodic symbolic events

The analysis of variability, the definition of optionality and the use of optionality in the

target cost function of a unit selection TTS discussed above can be extended to other

categorical prosodic events such as prosodic breaks, ToBI pitch accent types and so on,

which being prosodic events are subjected to variability. The definition of optionality

we gave is not tied to the concept of pitch accent, it can also be used when the number

of symbols is greater than two and it always reaches its maximum when all the symbols

are equiprobable.

Figure 4.8: Intra-speaker agreement in phrase breaks placement. The

mean line represents the mean disagreement value. The rsequence

line shows the disagreement resulting when adding a speakers in order

f1a,f2b,f3a,m1b,m2b,m3b. The model line (top line) is computed as the

model line of figure 4.2.

Suppose we deal with phrase breaks instead of pitch accents. If, as it is often

done in phrase break prediction, we collapse the five ToBI levels of prosodic breaks

to only two different types, i.e., type “break” and type “no-break”, by grouping the

phrase breaks of ToBI level 3 and 4 in the “break” type and phrase breaks of ToBI

level 2, 1 and 0 in the “no-break” type, the extent of variability observed in BURNC is
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comparable with that of pitch accent placements as it is shown in figure 4.8.

The method we propose to exploit pitch accent optionality in unit selection speech

synthesis can be applied to prosodic breaks as well. Since the presence of a phrase

break in a utterance is usually more perceivable than a pitch accent, and the set of

phrase final (and phrase initial) syllables is more sparse than that of accented sylla-

bles, our expectation is that improvements obtained using our method (which reduces

units sparsity by enlarging the search space) on phrase breaks should be even more

significant than when used on pitch accents.

4.6.2 Limits

Throughout this chapter the independence between pitch accents have been assumed.

This is a simplification and there may be cases in natural speech where it fails. For

example there could be cases where there are two consecutive words whose accenting

is optional (when looking at each word independently of the others) but for which a

concurrent deaccenting is unacceptable. In such cases we have to remove the assump-

tion of independence in order to allow the configurations AA,AN,NA, but to forbid

NN 10.

Even removing the independence assumption is still possible to reuse and refor-

mulate the definition of optionality and the optionality-dependent evaluation metric

we proposed by switching from the concept of optionality of a single pitch event to

the concept of optionality of a sub-sequence of pitch events delimited by compulsory

(or “highly compulsory”) pitch events. For example, given the sequences of pitch

accents of figure 4.1, instead of looking at the two separate values of optionality of

words system and is, one can look at the bigram system-is which is delimited by words

accented by compulsory accents, surveillance and not, and whose alternative accent

configurations are AA, NN, AN, which can be seen as 3 out 4 symbols emitted by the

bigram-source11.

The main problem of this reformulation of pitch accent optionality is that by con-

sidering sequences of words instead of single words as sources emitting symbols, the

number of emitted symbols increases, and so a higher number of speakers in the test

data set may be required to avoid data sparsity.

10However the number of cases seems to be quite limited since we have seen in the previous chapter
that for pitch accent prediction the independence assumption is acceptable as the accuracy of predictors
based on this assumption is comparable, if not better, than that of predictors assume accent interdepen-
dence.

11The fourth symbol NA has probability 0.
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Regarding the method proposed to incorporate accent optionality in the target cost

function of a unit selection TTS, a reformulation of such method accounting for ac-

cents interdependence is not applicable as it would violate the dynamic programming

invariant (see D. Jurafsky and Martin (2000) for a definition) on which it is based

the algorithm that searches for the best sequence (i.e., lowest cost sequence) of can-

didate units. As a consequence other methods incorporating pitch accent optionality

and assuming accent interdependence can be explored in order to see if the indepen-

dence assumption of our method might somehow worsen the prosodic realization of

the synthetic speech.
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This chapter concerns the automatic detection of contrast based on textual features

only. We have defined contrast as the relation that links two items that explicitly con-

trast with (evoke) each other (i.e., “symmetric” contrast) or two items where one item

contrasts (evokes) the other (i.e., “asymmetric” contrast). Because of limits imposed

by the data set collected to train the contrast tagger described here, the tagger is actu-

ally built to identify the instances of contrast where the two words linked by contrast

explicitly contrast with each other and their contrastiveness is prosodically marked.

The goal of identifying contrast is motivated by the fact that accents on contrastive

words are usually more prominent than “standard” accents (e.g., accents on new infor-

mation) so that a contrast tagger combined with a standard ±accent predictor would

allow to go beyond the usual ±accent distinction and consequently would allow to

make TTS more expressive and able to generate a context appropriate prosody.

As discussed in section 2.2.3.1, according to the semantic account on focus (Bolinger

(1961), Rooth (1992) among others) contrast is only one of several scenarios of focus

(i.e., kontrast). The annotated corpus we used to train and test the contrast tagger is a

section of SWBDC whose annotation of Information Structure is described in Calhoun

et al. (2005). In the corpus also other scenarios of kontrast are annotated: correction,

subset, adverbial, answer and other. A definition of these categories has been given

in section 2.5. In the corpus the contrast scenario is actually referred to as contrastive

but throughout the chapter we will use the word contrast. In the contrast(ive) scenario

there are both “symmetric” and “asymmetric” examples and the contrastive word has

to be prosodically marked. The identification of all the categories annotated in the

corpus, in addition to the identification of contrast, might be useful to model prosody

in context. However the contrast scenario is the closest one to our intuitive idea of

contrast, the most studied in terms of prosodic correlates and the most associated to

what is generally called contrastive accent that is an accent more prominent than the

“standard” accent. There are also some practical and “theoretical” reasons to privilege

contrast over the other categories.

The correction category is actually a type of contrast (i.e., it is activated by a

word/phrase that explicitly contrasts with another), however in the annotated corpus

it almost always signals corrections that a speaker makes to her own speech (e.g., “I

like a lot, uhm, I like a little bit of a lot”, where “little” contrasts with “a lot”1) and

so does not seem very useful for TTS applications (unless the TTS system has to read

spontaneous speech, which is not common and requires many other unsolved problems

1The reader will note that a few examples from SWBDC shown in this thesis are ungrammatical.
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to be solved first).

The subset category, which refers to a focused item that is a member of a previously

mentioned set (which is evoked by the focused item), seems to us too difficult to be

accurately automatically detected since in a lot of cases the “previously mentioned set”

is too “abstract” and needs to be inferred from the discourse context while in contrast

the evoked words are explicitly given.

The other category is a “vague” category for which it is very difficult if not impos-

sible to identify which lexical/syntactic/semantic/ factors activate it 2.

Examples of answer are too few to build an answer tagger, although the category

itself, could be very useful. Finally the adverbial category simply marks the first func-

tion word that follows some adverbs like “only” and ”just” so its detection is trivial.

As we have seen in 2.5 this corpus has already been used in Sridhar et al. (2008) to

train classifiers able to identify the above kontrast categories. Concerning the detection

of contrast the weak point of the classifier proposed by Sridhar et al. (2008) is that it

tries to identify contrastive items without trying to identify the contrast relation which

says which word contrasts with which word. An approach that ignores the contrast

relation cannot identify the mechanisms that make two items contrast with each other

and so it will never guarantee a satisfactory precision in contrast classification. More-

over if we simply know that a word contrasts with some other word without knowing

which word it contrasts we might not have enough information to prosodically mark

contrast in the right way. In other words it might be be possible that it is the contrast

relation, rather than each single contrastive word, that needs to be prosodically marked.

This last aspect will be more clear in the next chapter where the generation of prosodic

patterns for contrastive words is discussed.

So far we have referred to the contrast identification task as a detection (or la-

belling, or tagging) task. Following the discussion in section 2.4 on the distinction

between detection and prediction of pitch accents the task seems a prediction task

rather than a detection task as only textual features are used to predict an event that

is also prosodic (as in Calhoun et al. (2005)’s annotation contrast is only labelled if

the contrastive words are prosodically prominent). However since in TTS applications

textual information is the only available information to identify contrast we rather look

at contrast as a relation that is activated by “textual” factors (e.g., semantics, syntax)

and that may or may not be prosodically marked according to the speaker’s intention.

In the next section we describe the resources and tools used to build a contrast
2In fact subset and other are the two categories with the lowest annotation agreement
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tagger: the machine learning technique, Support Vector Machine (SVM), on which the

tagger is based, and WordNet, the semantic lexicon from which all semantic features

have been extracted. Another very important resource for feature extraction is the

dependency parser. A description of dependency grammars is given in 3.2.2.

Subsequently we describe the training data and then the contrast tagger and the

first results achieved. Finally we show various attempts aiming to improve the initial

results.

5.1 Resources and Tools

5.1.1 Support Vector Machines

This section does not have the ambition to exhaustively explain what Support Vector

Machines (SVMs) are and only aims to highlight the basic concepts, some of which are

necessary to introduce the work described in section 5.4. We used SVMs for contrast

tagging because of their capability of handling a large number of features (which is

our case) and of handling structured features like syntactic trees (although we have

not exploited this capability) and because they have been largely studied in the field of

Active Learning (see section 5.4.4).

SVM (Vapnik (1982),Vapnik (1995)) is a linear discriminative method where the

predicted variable y(x) is a linear weighted (by vector w) combination of non linear

transformation φi(x) of the feature vector x (plus a constant):

y(x) = wT
φ(x)+b (5.1)

where φ(x) is a vector consisting of φi(x) elements and b is a constant.

When using SVM for classification the values of the classes must be numeric. In

a binary classification setting the values of the two classes are mapped to +1 and -1

respectively (so in the contrast classification +contrast and −contrast are associated

to +1 and -1 respectively).

Let us assume for the moment that the training data space is linearly separable, that

means that in the transformed feature space it is always possible to find a hyperplane

separating all points associated to one class (i.e., all points with target value tn = +1)

to those associated to the other class (tn =−1).

In such a case training a SVM consists in finding the values of w and b such that the

hyperplane y(x) = 0 maximizes the margin, where the margin is the smallest distance
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Figure 5.1: Support Vector Machine - Linearly separable case. Positive and

negative examples are linearly separable by the hyperplane y = 0 (i.e., deci-

sion boundary). The margin is the maximum distance between the decision

boundary and the closest data points.

between the the hyperplane y(x) = 0 and the closest data points. Figure 5.1 shows an

example of an hyperplane maximizing the margin. The hyperplane y(x) = 0 is called

decision boundary in that all data points xn satisfying y(xn) > 0 are assigned the class

value tn = +1, while all data points satisfying y(xn) < 0 are assigned the class value

tn =−1.

Contrary to methods like CART, all features xi must be numeric. As a consequence

symbolic features are mapped into numeric features by mapping each of their symbolic

values into a binary feature. For example, considering the POS feature, the value verb

is mapped into a binary feature which is equal to 1 when the POS is a verb and 0

otherwise.

Intuitively, looking at figure 5.1, given a set of linearly separable data points (with

at least 3 data points), there is only one possible hyperplane satisfying the maximum

margin requirement. The optimal values of w and b are the values that solve:

argmin
w,b

1
2
‖w‖2 (5.2)

and satisfy the constraints:

tn(wT
φ(x)+b)≥ 1, n = 1, . . . ,N. (5.3)
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Solving equation 5.2 means finding the value of w that maximizes the distance between

hyperplane y(xn) = +1 and hyperplane y(xn) =−1 which is 2
‖w‖ , while the constraints

of equation 5.3 impose that all data points lie on y(xn) = +1 or y(xn) = −1 (in the

equality case) or on the outside to the margin.

The solution to this quadratic programming problem is optimal and is obtained

using Lagrange multipliers.

SVM is a kernel method since the classification of the testing data points is carried

out using the following equation which is a reformulation of equation 5.1:

y(x) =
S

∑
s=1

astsk(x,xs)+b (5.4)

where k(x,xs) is a kernel function defined as the dot product:

k(x,xs) = φ(x)φ(xs) (5.5)

The xs are the support vectors, that is all the training data points lying on the margin

hyperplanes y(xn) = +1 and y(xn) = −1. The as are Lagrange multipliers associated

to the support vectors and computed during training.

Popular examples of kernel functions are the linear kernel k(x,x′) = xx′ where

xx′ is a dot product, the polynomial kernel k(x,x′) = (xx′ + c)d where c is a posi-

tive constant and d is the order of the polynomial, and the Gaussian kernel k(x,x′ =
exp(−‖x−x′‖2

2σ2 ).

With respect to many other kernel methods SVM has the important advantage of

being a sparse kernel method, which means that when a new data point xnew has to be

classified using equation 5.4 the kernel function is only evaluated for all pairs consist-

ing of the new data point and the support vectors (i.e., for all pairs k(xnew,xs)). All the

remaining training data points are excluded from the evaluation.

When the transformed training data is not linearly separable as shown in figure

5.2, slack variables are introduced. A slack variable ξn is a positive variable defined

as ξn = |tn− y(xn)|. Points lying on the correct side (i.e., points where tnyn > 0) have

0 ≤ ξn ≤ 1, while points lying on the wrong side have ξn > 1.

Equation 5.2 is reformulated as follows:

argmin
w,b

C
N

∑
n=1

ξn +
1
2
‖w‖2 (5.6)

subject to the new constraints:

tnyn ≥ 1−ξn, n = 1, . . . ,N. (5.7)
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Figure 5.2: Support Vector Machine - Non separable case. Positive and

negative examples are not linearly separable by any linear hyperplane. The

slack variable ξ associated to each data point is > 1 if the data point is

misclassified, and 0 < ξ < 1 if the data point is correctly classified and lies

in the margin.
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The parameter C in equation 5.6 controls the trade-off between generalization (i.e.,

accuracy on the testing data) and capability (i.e., accuracy on the training data). A

high value of C forces the SVM to have a high accuracy on the training data and, as a

consequence, could cause overfitting. If C → ∞ the position of the decision boundary

could be heavily affected by just few outliers in the data set, even in a data set of

thousand of data points. On the other hand a near-to-zero value of C could cause lack

of learning.

5.1.2 The WordNet semantic lexicon

WordNet (Fellbaum (1998)) is an English lexical database. It consists of three separate

lexicons: one for nouns, one for verbs and one for adverbs and adjectives. For each

lexicon entry (i.e., an orthographic word) all its senses are listed. Each sense is ex-

pressed by a group of synonyms (synset), a gloss and some example uses. For example

the noun flash has the following WordNet entry (ten senses):

1. flash - (a sudden intense burst of radiant energy)

2. flash - (a momentary brightness)

3. flash, flashing - (a short vivid experience) ”a flash of emotion swept over him”; ”the

flashings of pain were a warning”

4. flash - (a sudden brilliant understanding) ”he had a flash of intuition”

5. blink of an eye, flash, heartbeat, instant, jiffy, split second, trice, twinkling, wink, New

York minute - (a very short time (as the time it takes the eye to blink or the heart to beat))

”if I had the chance I’d do it in a flash”

6. ostentation, fanfare, flash - (a gaudy outward display)

7. flare, flash - (a burst of light used to communicate or illuminate)

8. news bulletin, newsflash, flash, newsbreak - (a short news announcement concerning

some on-going news story)

9. flash - (a bright patch of color used for decoration or identification) ”red flashes adorned

the airplane”; ”a flash sewn on his sleeve indicated the unit he belonged to”

10. flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb - (a lamp for providing

momentary light to take a photograph)
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WordNet provides semantic relations for each sense, that is for each synset. The

three sub-lexicons have different sets of is-a relations as shown in tables 5.1, 5.2 and

5.3 (from D. Jurafsky and Martin (2000)).

Relation Definition Example

Hypernym From concepts to superordinates break f ast → meal

Hyponym From concepts to subtypes meal → lunch

Has-Member to their members f aculty → pro f essor

Member-Of From members to their groups copilot → crew

Has-Part From wholes to parts table → leg

Part-Of From parts to wholes course → meal

Antonym Opposites leader → f ollower

Table 5.1: Noun relations in WordNet

WordNet can be seen as a hierarchy of concepts (i.e., synsets) regulated by these

is-a relations.

Several tools have been provided to browse WordNet. It can be browsed using a

Web browser or by using packages or libraries such as the WordNet::QueryData Perl

package (Pedersen et al. (2004)).

5.2 Experiment 1 - Semi-automatic contrast labeling

This section describes how the training data for contrast classification was collected

and describes a first contrast classifier that uses a combination of automatically and

manually extracted features.

Relation Definition Example

Hypernym From events to superordinate events f ly → travel

Hyponym From events to their subtypes walk → stroll

Entails From events to the events they entail snore → sleep

Antonym Opposites increase ↔ decrease

Table 5.2: Verb relations in WordNet
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Relation Definition Example

Antonym Opposites heavy ↔ light

Table 5.3: Adjective and adverb relations in WordNet

5.2.1 Data preparation

This section and the next two sections (5.2.2 and 5.2.3) describe how the training data

were collected and what kinds of restrictions were imposed on the examples of con-

trast. All the syntactic information we used to train the tagger comes from the Pen-

nTreebank (Marcus et al. (1993)) manual annotation of the Switchboard corpus. This

choice was made in order to explore the potential of the tagger as much as possible

independently of the errors of the modules it receives information from.

5.2.2 Data collection

Before merging the syntactic and the information structure annotations the syntactic

constituent format was converted into dependency trees using the Penn2Malt converter

(Nivre (2006)). Since the PennTreebank constituent annotation for Switchboard uses

slightly different (and not yet standardly held) conventions from those presupposed by

the Penn2Malt converter we had to support the converter with some additional scripts.

However, because of problems encountered in the conversion process we had to re-

move 54 (out of 146) dialogues. The use of syntactic dependencies that were derived

from manually annotated constituents makes this first experiment semi-automatic, i.e.,

not fully automatic3. In a second experiment (section 5.3) syntactic dependencies pro-

vided by a dependency parser are used instead of gold standard dependencies in order

to make the contrast tagger entirely automatic.

For each remaining dialogue all the word senses (according to the WordNet senses

set) were disambiguated using the WordNet::SenseRelate Perl module (Patwardhan

et al. (2005)).

5.2.3 Data pruning

Not all the sentences of the 92 dialogues and not all the examples of contrast were

used to train and evaluate the tagger. First, for reasons of computational efficiency we

3In the fully automatic setting all features are automatically extracted.
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decided to only consider contrast relations that occurred within a single dependency

tree (i.e., within a single sentence, whose boundaries were given by the PennTreebank

constituent annotation).

Then, we removed all the sentences that did not contain contrast within a single

dependency tree. As a consequence all the positive and negative examples that were

subsequently generated were only extracted from sentences containing at least one

contrast.

Subsequently, we decided to consider contrast relations linking single words only,

so sentences only containing contrast linking phrases of more than one word were re-

moved. This decision was dictated by the need of approaching the problem of the iden-

tification of contrastive items starting from its simplest instance, i.e., the case where the

two contrastive items are single words. We also decided, in order to make the tagger

task a bit simpler, to only look at contrast that links words having the same broad POS

where the broad POS are: noun, verb, adjective, adverb, pronoun, cardinal number,

other. This pruning regarded a very small number of contrastive word pairs.

After these pruning steps all examples of contrast were examples of the “symmet-

ric scenario” of contrast in which the two words explicitly contrast with each other

while there were no cases of “asymmetric” contrast in which only one word contrasts

(backward) with the other (and the other way around is not true). Thus, since our

tagger is only trained on the symmetric scenario, one might assume that the tagger

does not scale up to both scenarios. However, at least when only looking at contrast

in text (i.e., contrast is only activated by textual factors), the main difference between

the two scenarios only resides in the fact that one scenario (the symmetric scenario)

almost always occurs within the utterance(s) of the same speaker while the other sce-

nario occurs when one speaker intends to contrast something that has been said by the

other speaker4. However the main factors activating the two scenarios (e.g., syntactic

parallelism, antonymy, etc ...) are the same so a tagger that accurately identifies the

symmetric examples should be as much good in identifying the asymmetric examples.

Since the contrast tagger has to rely on textual features only and does not look at the

discourse context outside the sentence containing contrast, we additionally removed:

1) all contrast relations that we could not identify by simply looking at text, and that

had been labeled only because they were prosodically signaled; 2) all contrasts acti-

4In order to be symmetric a contrast must contain two words that explicitly contrast with each other
so that when a speaker utters the first occurring contrastive words already must already know which the
second occurring contrastive word is. That is much more probable when it is the speaker herself that
utters the second occurring contrastive word
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vated by discourse items outside the sentence. In this last pruning step some decisions

were hard to make, since contrast resulted in a combination of prosodic, syntactic, se-

mantic and pragmatic clues. When we were not sure about keeping or removing the

sentence containing the problematic contrast we did not remove it.

Note that we did not remove cases where contrast was neither syntactically or

semantically determined but only determined by pragmatic factors that go beyond the

linguistic content of the discourse like in the following example:

(1) as a westerner in India ... I was often surprised ...

The final data used to generate positive and negative examples of contrastive word

pairs consists of 254 sentences containing at least one contrast, i.e., positive example,

that was not pruned out.

Note that, according with the selection and pruning rules we applied, some of the

254 sentences may contain examples of contrastive word pairs that are identifiable by

looking at text only but were not labelled as contrastive since they were not prosodi-

cally signaled and so are labeled as negative examples. For example in the following

sentence:

(2) My impression of it is that it has doubled in the last ten years and tripled in the

last twenty.

“doubled- tripled” are a positive example of contrastive pair in the training data

but also “ten” and “twenty” can be regarded as a contrastive pair depending on the

discourse context. Nevertheless “ten” and “twenty” are labeled as negative example in

the training data5.

5.2.4 Examples extraction

For each sentence both positive and negative examples were extracted as shown in

Fig.5.3. All word pairs having the same broad POS were extracted as and then assigned

a +1 if the two words were linked by contrast or a -1 otherwise. An example consists

of its positive or negative value and a sequence of training feature values.

The fact that the computation of some features requires a considerable computa-

tional effort (but still reasonable for real time applications) and sentences can be 80

5No modification on the manual labeling was carried out to avoid potential “subjective” biases in the
training data
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W1 W2 Example value

we they +1

seemed be -1

seemed doing -1

seemed cooking -1

. . .

cooking enjoying +1

. . .

Figure 5.3: Example values generation for contrast labelling. Example val-

ues generation from the sentence: We seemed to be unfairly doing all the

cooking they were doing all the enjoying. The example value is defined

only when the two words (W1,W2) have the same gross POS. The example

value is positive (+1) if W1 and W2 are linked by a contrast and negative (-1)

otherwise. The figure only shows some defined example values.

words long or more explains the decision of limiting the contrast relations to those

occurring within a single sentence.

The overall set of examples consists of 8602 examples: 275 positives and 8327

negatives.

5.2.5 Feature Extraction

The features extracted can be grouped into three categories: lexical features, syntactic

features and semantic features. For sake of simplicity hereafter we will refer to the two

words of each word pair as W1 and W2, where W1 precedes W2 in the sentence.

Several features describe shared properties/items of the clauses containing W1 and

W2, when W1 and W2 belong to two different clauses. For such reason each sentence

is segmented into clauses where each clause is a part of a sentence that refers to “verb-

dominated” sub-trees. “Verb-dominated” sub-trees are parts of the dependency tree

that have a verb (either finite or non-finite) as a root. For example, in the sentence:

(3) So well... you take this subject much more personally than I do, I suppose.

“So well... you take this subject much more personally than”, “I do” and “I suppose”

are all clauses dominated by the verbs “take”, “do” and “suppose” respectively.
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5.2.5.1 Lexical features

Examples of lexical features are: all CAP words between W1 and W2, first CAP word

preceding W1, first CAP word preceding W2, first two CAP words preceding W1, first

two CAP words preceding W2. CAP words are Conjunctions, Adverbs and Preposi-

tions.

These features are intended to capture single words or bigrams that activate con-

trast, like, for example, the bigram “rather than” in the sentence:

(4) So she’s going to sell it rather than trade it in.

A feature to measure the degree of textual parallelism between the two clauses

containing W1 and W2 (when W1 and W2 belonged to two different clauses) was also

used since textual parallelism can be a clue of contrast like in the following example:

(5) ... let’s do this way, let’s do that way ...

The parallelism score (normalized) is computed using the Wagner & Fischer edit dis-

tance to compare strings of text as proposed by Guegan and Hernandez (2006).

5.2.5.2 Syntactic features

All syntactic features are POS, syntactic dependencies and features derived from both

of them. Examples of features derived from POS are the features indicating if W1

is the only word in the sentence having the same broad POS of W2, and the feature

indicating if W1 is the closest leftward word preceding W2 and having the same broad

POS.

The use of syntactic dependencies (and information related to them), is motivated

by the need of identifying syntactic patterns of contrastiveness that can not be identified

using POS and lexical features alone. For example knowing that W1 and W2 have the

same type of dependency with their heads as in example (3) (both “you” and the first

“I” have a “subject of” dependency with “take” and “do” respectively) or that their

heads refer to the same item as in example (6), seems to be a necessary (although often

not sufficient) information to identify contrast.

(6) and, you know, even the public schools are behind the parochial schools.

In order to improve the detection of parallelism for two words belonging to two differ-

ent clauses, the feature set contains features indicating if the two clauses have subjects
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referring to the same item. The same type of feature is used for syntactic objects,

dominant verbs and predicates.

The Wagner & Fischer edit distance based parallelism score mentioned above is

also also used to compute the similarity of the sequences of POS (instead of sequences

of words as in section 5.2.5.1) of the two clauses containing W1 and W2.

5.2.5.3 Semantic features

Semantic features are often a necessary information to detect contrast, since con-

trastive words are usually semantically similar as in:

(7) and you see women going off to work as well as men.

and/or are often linked by a particular semantic relation as in

(8) Every time we’d get a real good player they’d treat him bad.

where “good” and “bad” are antonyms.

On the other hand if a word is the hypernym of another word (e.g., “cat” and

“animal”) a contrast between the two words is very unlikely.

The semantic features consist of a semantic similarity score and a set of semantic

relations all computed using the WordNet::QueryData and WordNet::Similarity (Ped-

ersen et al. (2004)) Perl modules.

The semantic relations indicate if W1 and W2 are (or are not): hypernyms, antonyms,

entails, member-of, part-of, sisters (i.e., two words having the same hypernym).

The semantic similarity score is the Lin’s semantic similarity measure (Lin (1998b))

applied to WordNet. The semantic similarity of two senses is given by the semantic

concepts (i.e., senses) the two senses share. The Lin’s semantic measure, like other

measures of semantic similarity on taxonomies like WordNet, searches for the Least

Common Subsumer (LCS) which is the most specific ancestor of the two senses, i.e.,

the most specific sense that subsumes them. The Lin’s similarity measure is given by

the Information Content of Concept(ICC) (see 3.2.1) of the LCS scaled by the sum

of the Information Content of Concept of the two senses. So the more specific the

LCS the highest the score. The similarity of two senses also depends on how close in

the taxonomy the two senses are with respect to the LCS, which is why in the Lin’s

measure the ICC of the LCS is scaled by the sum of the two senses.

Since WordNet relations and similarity measures relate to word senses, they were

computed in two different way:
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1. on the senses (one per word) provided by the word sense disambiguator (see

section 5.2.2);

2. on the first 3 most frequent senses (or less if the word had less than 3 senses) of

each word, so a maximum of 9 sense pairs are compared.

In the latter case, the selected similarity score is the highest of nine scores, while the

selected semantic relation is (if any relation is found) the one linking the most frequent

senses.

5.2.5.4 Full feature set

The following is the complete list of all training features:

• is W2 the leftward closest word to W1 with POS(W2) = POS(W1)?

• is W2 the only word with POS(W2) = POS(W1)?

• is W1(W2) a generic word (e.g., something,elsewhere,...)?

• CAP word between W1 and W2

• first CAP word preceding W1

• first CAP word preceding W2

• first two CAP words preceding W1

• first two CAP words preceding W2

• prefixW1 where length(prefixW1) > 1 AND W1 = “prefixW1+W2” (only in

exeperiment 2, sectio 5.3)

• prefixW2 where length(prefixW2) > 1 AND W2 = “prefixW2+W1” (only in

exeperiment 2)

• suffixW1 where length(suffixW1) > 1 AND W1 = “W2+suffixW1” (only in ex-

eperiment 2)

• suffixW2 where length(suffixW2) > 1 AND W2 = “W1+suffixW2” (only in ex-

eperiment 2)

• is W1 = W2?
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• LinSimilarity(S1,S2) where S1 and S2 are respectively the “disambiguated” senses

of W1 and W2

• Max LinSimilarity(W1,W2)

• SemanticRelation(S1,S2)

• SemanticRelation(W1,W2)

• GrossPOS(W1) (which is identical to GrossPOS(W2))

• POS(W1)

• POS(W2)

• POS(W1)-POS(W2) (this is a POS bigram)

• POS(W1−1)-POS(W1) (W1−1 is the the word preceding POS(W1))

• POS(W2−1)-POS(W2)

• POS(W1+1)-POS(W1)

• POS(W2+1)-POS(W2)

• POS(W1−1)-POS(W1)-POS(W1+1)

• POS(W2−1)-POS(W2)-POS(W2+1)

• DSD(W1) (i.e., name of the syntactic dependency in which W1 is the dependent)

• DSD(W2)

• DSD(W1)-DSD(W2)

• is DSD(W1) = DSD(W2)?

• Path in the dependency tree between W1 and W2

• Do W1(W2) dominate W2(W1) in the dependency tree?

• is W2(W1) the closest ancestor to W1(W2) in the dependency tree with Gross-

POS(W2) = GrossPOS(W1)?

• are W1 and W2 “or disjointed” (e.g., a CAR or a good BIKE is what I need)?
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• is W1(W2) negated?

• W1 = W2 AND W1 OR W2 is negated?

• do W1 and W2 belong to two different clauses that have the same subject?

• do W1 and W2 belong to two different clauses that have the same main verb?

• do W1 and W2 belong to two different clauses that have the same object?

• do W1 and W2 belong to two different clauses that have the same predicate?

• is DSD(W1) = DSD(W2) AND Parent(W1) and Parent(W2) two different tokens

but same word type?

• name of DSD(W1) when DSD(W1) = DSD(W2) AND Parent(W1) and Par-

ent(W2) two different tokens but same word type

• name of syntactic dependency when W1 and W2 are parent of the same children

to which are linked with the same dependency

• conjunctions (if any) that link the two clauses containing W1 and W2

• lexical parallelism score of the two clauses containing W1 and W2

• syntactic parallelism score of the two clauses containing W1 and W2

• are the two clauses containing W1 and W2 “adjacent”, i.e., does the clause con-

taining W2(W1) immediately follow and is not dominated by the clause contain-

ing W1(W2)?

5.2.6 Evaluation

As mentioned above the contrast tagger is a SVM based predictor. We used the SVM-

light implementation (Joachims (1999a)) which allows to use different types of kernel:

linear, polynomial, radial basis function (of which the Gaussian kernel is a special

case), sigmoid tanh.

The tagger was evaluated using the leave-one-out estimation of accuracy to make

up for the small number of examples of contrast.

The polynomial kernel turned out to be the most effective one. Table 5.4 shows

the values of accuracy, and precision and recall on the positive examples, for different
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orders of the polynomial kernel. The quadratic polynomial gave the best result. A

possible explanation for the supremacy of the quadratic polynomial is that the non-

linear transformation of the data allows to identify “combinations” of training features

that are correlate with contrast, whereas the linear polynomial is not able to identify

such combinations. However polynomials with higher order seem to overfit the data.

This finding motivates the experiment described in sections 5.4.1 and 5.4.2.

The very unbalanced numbers of positive and negative examples induced us to try

different values of the SVM-light training parameter j which is the ratio between the

cost on false negatives and the cost on false positives. The cost on false negatives (i.e.,

the cost on examples that actually are positive) and the cost on false positives (i.e., the

cost on examples that actually are negative) are obtained by splitting the C parameter

of equation 5.6 into two components, one that penalizes false negatives and one that

penalizes false positives (see Morik et al. (1999)). The ratio j = 2 gave the best results.

Trying values of j higher than 1 was also motivated by the presence in the data set of

examples that can be regarded as “false negatives”.

“False negatives” in the data were mainly due to two reasons. First in a few sen-

tences containing contrast between two words also contrast between phrases occurred,

but the training examples extracted from them were labeled as negatives. For example

in the following example:

(9) ... I ’m Debbie More, you know, may I ask you who you are and ..

“Debbie More” actually contrasts with the second “you” but “Debbie More” consists of

more than one word (although it is one single entity). As a consequence in the training

data set we have Debbie - who → -1 and More - who → -1. Limiting the sentences

to those only containing contrast between two words would have been preferable but

such a constraint would have drastically reduced the number of positive examples.

Second, prosodically unmarked contrast was not manually annotated as it is shown

in example (2). With respect to the task which consists in finding prosodically promi-

nent contrastive word pairs, non-prominent contrastive word pairs are actually “true

negatives” but since the prosodic dimension is hidden to the tagger as it only uses

textual features, the non-prominent contrastive word pairs are “false negatives” in the

textual dimension.

The analysis of error of the contrast tagger is postponed to the next session where

a fully automatic tagger is evaluated.
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d j Accuracy Precision Recall

Baseline 96.80% 0% 0%

1 2 97.02% 70.21% 12.00%

2 1 96.88% 65.22% 5.54%

2 2 97.19% 76.19% 17.45%

2 3 97.17% 65.59% 22.18%

3 2 97.00% 68.09% 11.64%

Table 5.4: Leave-one-out evaluation of the semi-automatic contrast tagger.

d is the order of the polynomial kernel. j is the ratio between the cost on false

negatives and the cost on false positives. Precision and recall are relative to

positive examples. The baseline is a majority baseline always assigning -1.

5.3 Experiment 2 - Automatic contrast labeling

In this second experiment, automatically extracted (by the dependency parser Malt-

Parser (Nivre et al. (2007))) syntactic dependencies were used, instead of gold standard

dependencies. With respect to the previous experiment some sentences containing con-

trastive word pairs were removed because: 1) MaltParser split the sentences in two or

more sentences so that the contrastive words did not belong to the same sentence any-

more; 2) we removed a couple of sentences where we actually did not identify any

contrast (and that we mistakenly kept in the training data set of experiment 1). All

sentences used for experiment 2 are shown in appendix A. In this new data set, there

are 246 positive examples and 7405 negative examples.

Concerning training features, apart from switching from manually to automatically

extracted syntactic dependencies, small changes were made, mainly consisting of a

couple of small bug fixings, and the introduction of morphological features that say if

one of the two words in the pair is contained by the other one (e.g., formal vs. informal)

and, in case that is true, indicate the morpheme that differentiates the two words (e.g.,

in). No semantic disambiguation was carried out.

Table 5.5 shows results using second order and third order polynomial kernels.

Other machine learning methods were used, but they performed either slightly worse

(C.5 classification tree, and RIPPER from Weka (Hall et al. (2009)) or much worse

(Bayesian Logistic regression from Weka). Note that results are improved with respect

to semi-automatic tagger. The second-order polynomial is still the better kernel.
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d j Accuracy Precision Recall

Baseline 96.78% 0% 0%

1 2 97.05% 64.71% 17.89%

2 2 97.28% 76.39% 22.36%

3 2 97.24% 75.36% 21.14%

Table 5.5: Leave-one-out evaluation of the fully automatic contrast tagger.

Best results are obtained with the 2nd-order polynomial kernel

Evaluation Precision Recall

Leave-one-out 76.39 22.36%

Leave-one(sentence)-out 74.08 24.4%

Table 5.6: Leave-one-out vs. leave-one(sentence)-out evaluation.

A fairer evaluation of the tagger is a leave-one(sentence)-out evaluation in which

the testing data set consists of all the examples from one held-out sentence instead

of consisting of just one example. It is fairer than the standard leave-one-out in that

it tends to have the same ratio of positive and negative examples in both testing and

training data. Table 5.6 shows the tagger accuracy computed with the two types of

evaluation.

Unfortunately there are no tools, when using SVM, to see what the most significant

features are. We could compute the correlation of each feature with the target value

(i.e., ±contrast) but that would not be very informative. In fact some features could be

highly correlated to the target value but be redundant once combined with all the other

features. So we used the RIPPER classifier which performs slightly worse than SVM

but generates human-readable rules. RIPPER extracts IF-THEN rules in the following

way: it first searches for the atomic rule, i.e., a rule looking at a single feature value

in the IF part (e.g., “IF POS = verb THEN contrast), that has the best score, where

the score is computed using some metric which is a function of the number of times

the rule is correct and the number of times it is wrong. Then the rule is grown if its

score increases by adding a new element in the IF part. If the rule can not be grown

anymore, all the examples covered by that rule are removed from the training set and

a new rule is searched for in the reduced training set. The final set of rules is pruned to
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avoid overfitting.

The rules extracted by RIPPER on our training set, together with the number of

times the rule is correct and the number of times it is wrong, are shown below:

1. if (W1,W2) are antonyms → contrast (40, 9)

2. if (W1,W2) have a common dependent to which they are related with a “Noun-

Modifier” relation AND W2 is the closest word on the left side of W1 having its

same POS AND the Lin similarity in terms of POS of the two clauses containing

W1 and W2 respectively is > 0.5 → contrast (11, 4)

3. if common POS is CardinalNumber AND W2 is not a depend-ant in the depen-

dency PrepositionModifier AND (W1,W2) are not “OR disjointed” → contrast

(11, 4)

4. if common POS is Noun AND (W1,W2) are depend-ant of the same type of

dependency AND have the same head in the PrepositionModifier dependency

contrast (9, 2)

5. if W2 is a subject (i.e., the depend-ant in the Subject dependency) AND “than”is

the first closest CAP word on the left side of W2 AND W2 is the closest word

on the left side of W1 having its same POS contrast (9, 1)

6. otherwise no-contrast (7654, 181)

Knowing if two words are antonyms certainly helps. But when the contrastive

words are not antonyms then combinations of syntactic and lexical features are neces-

sary to improve accuracy.

5.3.1 Analysis of Error

The main problem of the contrast tagger is its poor recall which is due to different

causes. One of these causes is that the feature set lacks of pragmatic knowledge which

is sometimes necessary to identify contrast. Consider the following two examples:

(a) As a westerner in India, I was often surprised, and felt my sense of privacy there

was quite invaded.

(b) They’ve quoted statistics that my throat just about fell into my toes.
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where clearly contrast is not identifiable if one does not know that the Western and

the Indian culture are quite different (a) or does not know that in the human body the

throat and the toes are at its two extremes (b).

Contrast can also be activated by the semantic meaning of the sentence containing

the two contrastive words rather than by more “superficial” syntactic parallelism or

phrases like “rather than”, “instead of”, etc... In the example:

(c) The parents might have hostilities towards them , like you’re judging us ,

contrast is activated by the clause preceding the two contrastive words and also by the

verb “to judge” which in some contexts can imply confrontation between the subject

and the object.

As for the case of “rather than”, “more than”, and so on, single or bigrams of words

are sufficient to activate contrast like in the sentence:

(d) Their attitude and philosophy was just completely , opposite from mine...

where “opposite from” is a clear clue of contrast.

The very limited number of positive examples does not allow the tagger to identify

these clues as they only occur once in the training data. In general, the small set of

positive examples often includes just one example of a scenario of contrast, too few

to identify the relevance of the feature values associated to that scenario. To make up

for this limited number of examples Transductive SVM (TSVM) and Active Learning

SVM (AL-SVM) are applied to contrast tagging as described in sections 5.4.3 and

5.4.4 respectively.

A factor affecting both precision and recall that we have already mentioned is that

the training data set contains word pairs that are clearly contrastive when looking at

text only but were not prosodically prominent in the conversation and so were not

labelled as contrastive. Here is an example:

(e) I think that the judges should be left to do most of the sentencing, simply because,

there is always a jury that might be swayed, by the moment, either to be too

lenient or too vengeful, I guess.

where “lenient” and “vengeful” are contrastive but are labelled as a negative example

in the data.

The presence of such examples in the training data makes the training data ambigu-

ous (in the textual dimension) as it contains contradicting examples and so it affects
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recall. It also affects precision because when the tagger classifies such examples as

positive that classification is considered wrong. Switching the labels of all those ex-

amples would lead to better results and make the contrast labelling a proper detection

task rather than a prediction task6.

Perhaps the main problem for the identification of contrastive word pairs is the

“wrong” scope of contrast. The training data contains several examples where two

words were annotated as contrastive while actually the items related by the contrast

relation are more than the two words as in the following examples:

(f) It seemed like the further I got away from Dallas, center, the more lot came with

the house and the lower the price, at the same time.

(g) After wasting the first six years, partying and everything else, I decided, uh-huh,

time to settle down and do something .

(h) Gosh, we’re keeping these men in prison for fifteen or twenty years on death row,

and not doing anything with them.

(i) Until we have to learn to think that way, we won’t.

The annotated contrastive words are the two words mostly involved in the contrast but

not the only ones.

This problem often occurs when the two annotated contrastive words are verbs,

especially auxiliary verbs. Removing verbs from the training data reduces this problem

and increases the accuracy of the tagger as shown in table 5.7.

Another negative factor affecting the tagger accuracy could reside in the correct-

ness of the extracted features. For instance the extracted semantic features work on

word senses but no word sense disambiguation is applied before extracting the se-

mantic features so that the semantic features may refer to the wrong senses and con-

sequently be wrong. Actually in experiment 1 (section 5.2) we used a word sense

disambiguator but it turned out to be very time consuming and completely useless for

the contrast labelling task.

6This problem may be seen as one of the aspects of prosodic variability, and thus as a problem that
is intrinsic to the task of predicting prosodic marking of contrastive words and cannot be separated from
it. However what we are claiming here and in more detail in the next sections and in the concluding
chapter is that, in order to improve the tagger accuracy, we need to separate the pragmatic and “textual”
component of the task from its phonetic part by first identifying the “textual” contrast, i.e., the pragmatic
relation of contrast identifiable from text only, and then trying to predict whether the contrastive words
(on text) will be prosodically marked or not.
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Examples d j Precision Recall

All 2 2 74.08 24.4%

No verbs 2 2 77.27% 28.1%

Table 5.7: Verbs and scope of contrast. Leave-one(sentence)-out evaluation

of the fully automatic contrast tagger on all examples (All) and all examples

except those in which the word pairs are verb pairs (No verbs).

Other features like the features related to the syntactic dependencies may be not

always correct because of the dependency parser can fail, especially on a type of text

like the transcription of conversational speech which is usually much more “ungram-

matical” than written text and so more prone to contain unusual syntactic structures

never seen in the training data of the dependency parser.

Moreover, even if syntactic dependencies were always correct, the set of syntactic

dependencies used, although it is the “standard” set of dependencies, would not be the

most suitable for the contrast tagging task. For example a dependency that explic-

itly indicates that two words are related by a conjunction like the words “happy” and

“calm” in “Are you happy or just calm?” would be more informative than knowing

that “happy” and “or” are noun modifiers of “calm” as it happens when that sentence

is parsed with MaltParser7. The dependency set proposed by Johansson and Nugues

(2007), which contains dependency more directly linked to the concept of contrast and

more specifically to the concept of syntactic parallelism, could be a more suitable set

for contrast tagging.

The feature set of the contrast tagger seems to contain all the necessary information

to detect examples of contrast where actually the tagger fails to recognize them. An

example is:

(l) We threatened to make the other two make us dinner one time just to even it out

since we seemed to be unfairly doing all the cooking they were doing all the

enjoying

where contrast is mainly activated by syntactic parallelism which is largely covered by

the feature set.
7The use of a specific dependency between two (or more) words linked by a conjunction has always

been problematic for dependency parsing and for that reason it has been almost always avoided. As
a consequence such syntactic link has been almost always represented by a non-specific and perhaps
counter-intuitive dependency.
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Again one possible explanation is the limited number of examples of some sce-

narios of contrast. An alternative or complementary explanation is that the feature

set contains all the necessary information but, for some examples, the combinations

of some features rather than the independent contribution of each single feature are

determinant to identify contrast but the classifier fails to “recognize” these relevant

combinations. This issue is discussed in more details in sections 5.4.1 and 5.4.2 where

attempts to identify useful combinations of features are described.

Finally the approach to contrast labelling described so far assumes that the±contrast

relation between two words does not depend on the±contrast relation of the two words

with other words. This independence assumption can cause errors as in the sentence:

(m) I did a Sunday school lesson one time on the difference between the Old Testa-

ment and the New Testament where there ’s a vengeful Lord in the Old Testament

and there ’s a loving Lord in the New Testament.

where in the leave-one(sentence)-out evaluation the classifier wrongly classifies as con-

trastive the pair consisting of the first “Old and the last “New” while the contrastive

pairs containing the two words consist of the first “Old” and the first “New”, and the

last “Old” and the last “New”.

The independence assumption can be relaxed by using a Conditional Random Field

(see section 3.3.4) or a Markov Logic Network (Richardson and Domingos (2006))

based contrast classifier instead of the SVM based classifier proposed here. Relaxing

the independence assumption might lead to better results but that is not guarantee as

Conditional Random Field and Markov Logic Netweork may not be as good as SVM

when dealing with large numbers of features as in our case.

5.4 Improving tagger accuracy

As we have seen in the previous section there are several problems affecting the accu-

racy of the contrast tagger. Some of these problems (e.g., lack of pragmatic “knowl-

edge of the world”) do not seem to have an immediate solution, given the NLP tools

available at the moment, while other problems should be addressed by modifying the

feature set (e.g., by modifying the set of dependency features) or modifying the ap-

proach to the task (e.g., to account for the problem of the scope of contrast).

Our attempts to improve the tagger accuracy are conservative in the sense that no

further features are extracted but only the already available features and data (both
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labelled and unlabelled data) are used.

The methods described in sections 5.4.1 and 5.4.2 aim to increase the capacity

of the tagger, possibly without decreasing its generalization, by searching for predic-

tive “combinations” of features that may be ignored in the “standard” SVM-based

tagger. In several NLP tasks, new features are extracted by simply conjoining sym-

bolic features. So, for example, the two features POS(wi) (POS of the current word)

and POS(wi−1) (POS of the preceding word) are combined in the new additional fea-

ture POS(wi−1)−POS(wi). Usually the feature combinations are manually chosen.

However, since we have used hundreds of features for contrast labelling, trying to

manually select the most predictive feature combinations may be unfeasible or very

time-consuming. To avoid such problem we use methods to automatically select pre-

dictive feature combinations.

The methods described in sections 5.4.3 and 5.4.4 aim to make up for the limited

amount of training data. In section 5.4.3 Transductive SVM (Vapnik (1995)) is ap-

plied to make use of unlabeled data (i.e., unlabeled conversations), while in section

5.4.4 the labelled training data is slightly increased by applying Active Learning SVM

(AL-SVM). AL-SVM is used to select and manually label a restricted number of par-

ticularly “useful” examples from the unlabeled data set.

5.4.1 Feature selection and combination

Adding (either manually or automatically) new features that are functions of features

already present in the feature set can increase the capacity of a SVM-based classifier. In

order to see that, suppose we have a training data set consisting of two binary features

x1 and x2 and four points in the training data set as shown on the left side of figure 5.4,

where the four points are not linearly separable in the 2-dimensional space (see the left

side of figure 5.4).

However if a new feature x3 where x3 = x1x2 is added to the feature set then the

training data set becomes linearly separable as an additional degree of freedom which

“frees” new hyperplanes (in a higher dimensional space) is added (see the right side

of figure 5.4). Making the training data set linearly separable means increasing the

capacity of the classifier because the accuracy of the classifier on the training data set

increases (in the example of figure 5.4 from 50% to 100%).

When using polynomial kernels, increasing the order of the polynomial kernel cor-

responds to creating new features that are products of features from the original feature

set. For example, switching from a linear kernel k(x,z) = xz to the following second-
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Figure 5.4: Feature combination and SVM capability. On the left side

of the figure the four data points are not linearly separable in the two-

dimensional space defined by features x1 and x2. If a new feature x3 = x1x2

is added in the feature set the four points become separable in the new

three-dimensional space (right side)
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order polynomial kernel:

k(1+xz)2 = (1+ x1z1 + x2z2)2 (5.8)

= 1+2x1z1 +2x2z2 + x2
1z2

1 +2x1z1x2z2 + x2
2z2

2 (5.9)

= (1,
√

2x1,
√

2x2,x2
1,
√

2x1x2,x2
2)(1,

√
2z1,

√
2z2,z2

1,
√

2z1z2,z2
2) (5.10)

= φ(x)T
φ(z) (5.11)

where the fifth feature in the new 6-dimensional space,
√

2x1x2, is a “combination” of

the two original features. The “combination” is a product if at least one of the features

involved is continuous-valued, while it is a conjunction if both features are binary.

Results in tables 5.5 show that the 2nd-order polynomial kernel is the best trade-

off between generalization and capacity, while the first order polynomial has too little

capacity and the 3rd-order has too much capacity.

The 3rd-order polynomial kernel creates more and longer (with 3 instead of 2 fea-

tures combined) combinations of features that increase the accuracy on the training

data but worsen the accuracy on the leave-one-out evaluation. Some of the combina-

tions it creates may be good, i.e., combinations that increase capability without causing

overfitting, while other combinations cause overfitting.

The method proposed here is based on the hypothesis that bad combinations are

combinations that include “useless” original features, i.e., non-predictive features. If

useless original features are removed than it could be possible to have “long” feature

combinations (i.e., high order polynomial kernels) that increase the classifier capability

without worsening its generalization.

In order to verify such hypothesis, first the feature set is reduced by means of a

feature selection algorithm and subsequently polynomial kernels with order greater

than 2 are used. The feature selection algorithm is a filter, that is a ranking algorithm

that sorts by descending order all the features according to their value of symmetric

uncertainty with the ±contrast class (see section 3.5) and then reduces the feature set

to the first N features, where N is manually set.

Table 5.8 shows the tagger accuracy for different values of N. The original feature

set consists of 1645 features. For values of N ranging from 750 to 1250, results confirm

the hypothesis that the use of polynomials with order greater than 2 on a reduced

feature set outperforms the classifier trained on the original feature set. However the

improvement in accuracy is disappointingly small.

Note that the selection of the feature subset described here does not take into ac-

count the machine learning method used. Alternatively or complementary to a filter, a
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No. of Features d Accuracy Precision Recall

1645 (all) 2 97.23 75.00 20.73

50 2 96.80% 50.46% 22.36%

50 3 96.94% 55.89% 23.17%

250 2 97.06% 61.8% 22.36%

250 3 97.0% 59.53% 20.36%

500 2 97.13% 70.04% 20.32%

500 3 97.21% 73.24% 21.14%

750 2 97.18% 71.43% 20.32%

750 3 97.28% 76.39% 22.36%

1000 2 97.19% 71.84% 20.73%

1000 3 97.29% 76.71% 22.76%

1250 2 97.23% 75.0% 20.73%

1250 3 97.27% 76.8% 21.54%

Table 5.8: Feature selection for contrast labelling. 10-fold cross validation.

Results of classifiers using a forth order polynomial kernel are not shown as

their accuracy is always worse than that of classifiers based on 2nd and 3rd

order polynomial kernels.

wrapper could be used. Wrappers are feature selection methods that consider the util-

ity of a feature subset (and not a single feature) in terms of its impact on the classifier

accuracy (on a validation data set). We have not used wrappers as they are computa-

tionally far more expensive than filters, but their use could further improve the contrast

tagger accuracy.

5.4.2 Feature combination and selection

The filter method mentioned in the previous section is based on a correlation mea-

sure that considers the relevance, i.e., correlation to the class to predict, of a feature

independently of all other features. As a consequence many selected features may be

redundant while some excluded features can be actually relevant when “combined”

with others. The method proposed in this next section tries to find useful conjunc-

tions of features that may contain features that are poorly correlated with the contrast
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variable and so no a-priori feature selection is applied.

In order to find conjunctions of features, all non-binary features must be trans-

formed into binary features. The original feature set only contains a couple of non-

binary features (that are in this case real-valued and ∈ [0,1]) so the binarization process

is very limited. Then the feature combination and selection works as follows:

1. At each positive example search for all conjunctions of 2, 3, 4 and 5 features

where all the features have value 1 (i.e., all features in the conjunction have

value 1). These are the candidate conjunctions.

2. Compute the utility of each candidate conjunction, where the utility value is

the difference between the number of times the conjunction occurs in a positive

example and the number of times it occurs in a negative example

3. Remove all conjunctions with an utility value less a predefined threshold (set to

2 in the experiments) and sort all the remaining conjunctions in descending order

of utility.

4. Add to the set of selected conjunctions the conjunction with the highest utility

value

5. Remove all positive examples where the selected conjunction occurs and recom-

pute the utility score of the candidate conjunctions on the new training data

6. If the set of candidate features is empty then stop, otherwise go back to step 3.

The set of candidate conjunctions extracted at step 1 might have included conjunc-

tions of features that have value 0 (e.g., con ji = 1 if f eat1 = 1 AND f eat34 = 0 AND

f eat106 = 1) but that would lead to an intractably huge set of conjunctions8.

When the set of conjunctions extracted with this feature combination and selection

method are added to the original features set the classifier based on a linear kernel out-

performs a classifier using the same kernel but the original feature set. However adding

the set of conjunctions increases the capability of the tagger (accuracy on the training

data is always higher than when the original feature set is used) but unfortunately it

8An alternative would be that of extracting conjunctions in the same way RIPPER extracts rules (and
with rule validation and pruning deactivated). However, because of the way RIPPER extracts the rules,
in that way the most correlated features would have more chances of being part of a conjunction than
not relevant features, while the aim of the method proposed in this section is that of removing any bias
that favors the most relevant (i.e., correlated) features.



Chapter 5. Automatic labeling of contrast 122

y = 0

+
+

+

+

+

+

+

­­­
­

­

­

­ ­

­

O

O

O

O

O

O

OO

O

O

O

O
O

+

Figure 5.5: Transductive SVM. The testing data points are added in the

training data set as unlabeled data points (0).

never outperforms the best original tagger (i.e., tagger with 2nd-order polynomial ker-

nel and using the original feature set). Moreover, changing the threshold value and

using different metrics to compute the utility score has not led to any improvement.

5.4.3 Transductive SVM for contrast labelling

The basic idea of Transductive Support Vector Machine (TSVM) (Vapnik (1998)) is

that including unlabeled test data in the training data set makes the training data set

a more accurate approximation of the real distribution of data points (i.e., that corre-

sponding to an infinite training data set) around the testing data. If the testing data

points are close to the decision boundary a consequently more accurate approximation

of the distribution around the decision boundary can lead to a better classifier. In fact

unlabeled data may be useful if they fall within the margin, where the margin is the

margin found when only labelled examples are taken into account. As it is shown

in figure 5.5, knowing where unlabeled data points are may lead to a better decision

boundary. The TSVM implementation proposed by Joachims (1999b) was evaluated

for contrast classification again in a leave-one(sentence)-out setting. As it is shown

in table 5.9, TSVM produced poor results, with a substantial improving in recall but

a drastic drop in precision which we find hard to interpret. A possible explanation is
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TSVM Type Accuracy Precision Recall

No TSVM 97.30% 76.62% 23.89%

TSVM 95.61% 31.53% 30.77%

Pseudo-TSVM (+1 conversation) 97.32% 77.63% 23.89%

Pseudo-TSVM (+2 conversation) 97.22% 66.67% 28.34%

Pseudo-TSVM (+3 conversation) 97.10% 64.37% 22.67%

Table 5.9: Evaluation of the TSVM contrast tagger. Leave-one(sentence)-

out evaluation. The No TSVM is the original SVM based predictor which

does not use unlabelled examples. The TSVM is the TSVM based tagger

in which the unlabeled data set only consists of the unlabeled testing data

points. In the Pseudo-TSVM taggers the the unlabeled data points are not

from the testing data set.

that in the TSVM algorithm used (see Joachims (1999b)) the unlabeled data points

are assigned a class within the constraint of having in the unlabeled data set the same

ratio of positive and negative examples of the (original labelled) training data. Since

the TSVM tagger has better recall but lower precision than the normal SVM tagger

it might be possible that this constraint forces some of the testing data set consisting

of examples from the longest sentences (in the leave-one(sentence)-out evaluation) to

have too many positive examples.

Note that transductive learning contrary to inductive learning “adapts” the place-

ment of the decision boundary to accommodate the distribution of the testing data and

so it searches for a local solution, which changes when the testing data change, instead

of a global solution, which is independent of the testing data used.

It is possible to slightly change the TSVM approach by including in the training

data set unlabeled data that do not belong to the testing data set. Doing that we still get

some useful information from the unlabeled data about the real data distribution but

instead of searching for the best local solution we try to improve the global solution.

Table 5.99 shows the tagger accuracy with TSVM when unlabeled examples from

one, two and three unlabeled conversations are added to the training data. The three

9Note that in this table the reported accuracy of the standard SVM tagger is slightly different from
that reported in 5.5 for the same tagger. The little difference is due the fact that after a small bug fixing,
it turned out that the training data set contains 247 positive examples instead of 246. This new training
data set was used to evaluate the TSVM and the Active Learning SVM tagger but not the taggers of the
previous sections
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conversations contain a number of examples which is comparable with that of the

original training data set but have a much lower ratio between positive and negative

examples.

5.4.4 Active Learning SVM for contrast labelling

Active Learning may allow to save a lot of annotation time. Instead of manually la-

belling a large set of unlabeled examples and training a classifier on it, through Active

Learning it is possible to build an almost equally good classifier trained on a much

smaller subset of training data points. Active Learning SVM for binary classification

works as follows:

1. The classifier is trained on an initial training data set consisting of few labelled

examples (usually just one positive and one negative)

2. A query function uses the classifier to find in the unlabeled data the “best” ex-

ample(s)

3. The selected example(s) is manually labelled and added to the training data set

(the example(s) selected are presented to the annotator in the form of the sen-

tence containing the two words and with the two words highlighted)

4. The classifier is re-trained on the new training data set

5. If the stopping criterion is met the AL-SVM process stops, otherwise it continues

from step 2.

In our implementation of AL-SVM for contrast labelling the initial labelled train-

ing data is the original training data set used in section 5.3 while the query function

consists in selecting the examples that are closest to the decision boundary. As a con-

sequence such a query function selects the most informative examples, that is the ex-

amples for which the classifier is less confident.

That can be shown graphically (figure 5.6). Once labelled and added to the old

previous training data set, examples close to the decision boundary are more likely to

displace the decision boundary after re-training than examples far from the decision

boundary. Other query functions have been proposed in the literature (most notably

by Tong and Koller (2002)) but they are generally much more time consuming and in

most of the cases do not lead to significantly better results.
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Figure 5.6: Active Learning SVM. The closer the queried data point (0) is

to the initial decision boundary (dotted line) the biggest the displacement of

the decision boundary. The continuous line is the decision boundary after

retraining (if the queries data point is labelled as positive). The figure shows

two distinct examples, in the bottom example the displacement of the hyper-

plane is larger than on the top example.
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The number of examples selected at each training round was fixed to 25. Selecting

more than one example at each loop raises the issue of the redundancy of the selected

examples. Two or more examples can be both very close to the decision boundary

and also be very similar (i.e., close) to each other and so redundant for classification

purposes. To avoid such redundancy the metric function should include a measure

of the independence of the feature vectors associated to the example, however, as in

most of previous work on AL-SVM, such measure has not been included in the query

function.

An important issue in AL-SVM concerns the stopping criterion. Vlachos (2008)

proposes to compute after each re-training on some held-out data the average distance

of the examples from the decision boundary. The average distance is a measure of the

confidence of the classifier. The smaller the distance the less confident the classifier

is. At the beginning of the Active Learning process the average distance (i.e., the

confidence) increases as informative data points are added to the training data set. At

some point the confidence will reach an asymptotic value or a maximum peak followed

by a decrease depending on whether the last data points added to the training set have

non influence on the classifier or are noise that confuses the classifier.

We have used the confidence measure to track the evolution of confidence of the

contrast classifier at each learning loop, but it has not been used for the stopping crite-

rion. Instead the trend of the classifier accuracy on the testing data is monitored after

each training loop and AL-SVM stops when accuracy constantly decreases.

Finally note that the queried data points were labelled without listening to the cor-

respondent speech. As a consequence the additional training data is different from the

original in that it contains example of contrastive word pairs (in the “textual” dimen-

sion) not necessarily prosodically marked. All queried data points were labelled by

us.

To evaluate the potential advantage of adding new training data through AL-SVM

a leave-one(sentence)-out evaluation is carried out as in section 5.4.3 for the Pseudo-

TSVM. The new data points queried by the AL-SVM module are only used in the

training data and never used as testing data, so the number of left out sentences is

the same as in the leave-one(sentence)-out evaluation in experiment 2 (section 5.3).

Results are shown in table 5.10.

Unfortunately the use of AL-SVM does not produce any improvement and even

produces a small decrease in accuracy although the tagger confidence increases. The

small decrease in accuracy is due to a decrease in recall, while the precision increases
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No. of loops Accuracy Precision Recall Confidence

0 97.30% 76.62% 23.89% 1.273

1 97.28% 78.26% 21.86% 1.275

2 97.27% 78.79% 21.05% 1.274

3 97.26% 78.46% 20.65% 1.273

4 97.24% 78.13% 20.25% 1.286

5 97.22% 75.76% 20.25% 1.287

6 97.20% 73.91% 20.65% 1.292

7 97.26% 80.32% 19.84% 1.294

8 97.22% 79.31% 18.62% 1.295

Table 5.10: Evaluation of the AL-SVM based contrast tagger. Leave-

one(sentence)-out evaluation in which only the data points from the sen-

tences of the original training data set (loop 0) are tested. At each loop, 25

new data points are queried from the AL-algorithm, then labelled and added

to the training data set. The confidence is the average distance from the de-

cision boundary of a set of data points (which belong neither to the training

data set nor the testing data set).

(with the exception of loop 5 and 6) with respect to the standard SVM tagger. We

believe that the main reason of a decrease in recall and an increase in precision is a

consequence of our choice of being very conservative when labelling the queried data

examples. In a lot of the queried examples classified as positive the two words were

only part of two contrastive phrases. We labelled all those cases as negative apart from

few exceptions (where actually the scope of contrast was not very clear to us).

One of the possible reasons why AL-SVM fails to increase recall is that, an AL-

SVM algorithm like the one we used searches for data points that are problematic for

the SVM classifier but ignore the real distribution of the data points. As Dasgupta and

Hsu (2008) point out, if an Active Learning method ignores the data distribution it may

miss data points that are very important for classification. For instance in the contrast

classification task, if the unlabeled example “your-mine” from sentence:

(a) Your attitude is opposite from mine

had no feature values indicating the possible presence of contrast because the acti-

vation of contrast is almost entirely due to the bigram “opposite from” which never
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occurs in the training data, then the example would be classified with high confidence

as negative since most of the training data points are negative.

We expect that such a problem would be reduced if the new training data set for

contrast tagging, created using AL-SVM, were built from an initial training data set

consisting of one positive and one negative example. A balanced initial data set would

not bias the tagging to a strong “preference” for negative examples and so for examples

like “your-mine” in sentence (a) the classifier would have a very low classification

confidence.

Although AL-SVM has brought no improvements in contrast tagging still some

advantages come from Active Learning. One advantage is that also examples not oc-

curring within sentences containing contrast are included in the training data set. In

section 5.3 the training and testing examples only came from sentences containing at

least one contrastive pair, all sentences not including contrastive pairs are not “repre-

sented” by any example. As a consequence the ratio of positive and negative examples

does not reflect the real ratio which should count many more negative examples. A

valid justification for only including negative examples from sentences including con-

trastive pairs is that those negative examples are generally closer (in the feature space)

to the positive examples than all other negative examples, in that they generally share

many more feature values with the positive examples and so are more useful for finding

the best decision boundary. Including all negative examples from sentences that do not

contain any contrast pair (either word or phrase pairs) may produce a very noisy data

with a lot of word pairs that are actually contrastive when looking at text only but were

not prosodically marked. However the use of AL-SVM should help including useful

negative examples and produce a more realistic ratio.

Finally a further very important benefit from AL-SVM is that AL-SVM can be

used to quickly build annotated training data sets from other types of corpus.

5.5 Other Data?

Being a novel task the automatic labelling of contrast presents several challenges. In

section 5.3.1 we have seen all the main problems and their possible solutions that have

to be addressed in order to improve the accuracy in contrast tagging.

Some of the problems are due to the fact that the corpus used is a corpus of con-

versational speech, which by nature is rich in ungrammatical constructions that make

feature extraction problematic (especially the extraction of syntactic features) and, with
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respect to corpora of written text, patterns of contrast harder to identify.

Obviously a corpus of conversational speech is not a problem per se but it would be

very interesting training and testing the contrast tagger on different corpora with dif-

ferent registers. To the best of our knowledge the corpus we used is the only available

corpus in which contrast is annotated, but it may be possible to quickly annotate con-

trast on a different corpus, like the Wall Street Journal on the Penn Treebank (Marcus

et al. (1993)), by using the AL-SVM implementation for contrast classification.

In a corpus like the Penn Treebank we should remove the constraints on the con-

trastive words on being prosodically marked as the corpus is a collection of newspaper

articles. As consequence the task would slightly change in the labelling of contrast

that is identifiable from text and that may or may not be prosodically marked. In this

new task the annotated training data would not contain the contradicting examples (on

the “textual” dimension) of the training data we have used. Moreover we expect that

in a more “grammatical” corpus those scenarios of contrast that are mainly activated

by syntax are easier to identify as they repeat more regularly and without the “inter-

ference” of ungrammatical phrases. In such a context the use of new features like,

for instance, dependency tree kernels (Culotta and Sorensen (2004)) may improve the

tagger accuracy since they allow to compute the similarity of two examples where the

similarity is mainly similarity of the syntactic structures (i.e., trees) of the two clauses

containing the two examples10.

5.6 Summary

In this chapter we have addressed the problem of the automatic labeling of contrast

where contrast is meant as the relation linking two words that contrast with each

other or two words in which one contrasts with the other. We have shown how the

training data were collected and described and motivated the training feature set. We

have shown the accuracy in contrast tagging when using a SVM-based contrast classi-

fier. Results show that our novel approach to contrast tagging allows a good precision

(around 80%) in contrast identification, although the recall (just below 25%) is not as

much satisfactory.

Results also show that only an approach that combines semantic and syntactic fea-

10Actually one of the main reasons we decided to build a SVM-based tagger is the possibility of using
tree kernels. Tree kernels would allow to “memorize” the syntactic structures in which contrast usually
occurs. However in our view the use of such kernels would not make that much sense in the Switchboard
corpus
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tures allows to identify contrastive words with high precision , a high precision that

is essential for TTS applications (and makes our classifier a suitable contrast tagger

for TTS applications) and cannot be achieved by using the textual features proposed in

previous work on the identification of contrastive words.

In the analysis of error of our contrast tagger we have identified several factors

affecting the tagger accuracy. In order to tackle some of them we have proposed meth-

ods that range from feature selection and “combination” to Active Learning SVM.

Unfortunately such “enhancing” methods have failed to significantly improve tagging

accuracy in the Switchboard corpus. One of the main obstacles to a very accurate con-

trast tagging in the Switchboard corpus is the widespread “ungrammaticality” of the

corpus. We expect our tagger and its “enhancing” methods to be more successful on

more “grammatical” corpora. Since at the moment there is no contrast annotation in

corpora other than Switchboard, the manual annotation of contrast in other corpora

could greatly benefit from our implementation of Active Learning SVM for contrast.
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The previous chapters concerned the prediction of prosodic prominence events

from text. The next step consists in assessing the utility of such predictions in TTS

synthesis through large scale perceptual tests.

The experiment described in section 6.2 investigates the utility of accurate pitch

accent prediction in HMM-based TTS synthesis while section 6.3 describes and eval-

uates a method to generate contrastive accents on automatically detected contrastive

word pairs.

As discussed in section 4.5 not only the predictions of a predictor but also its confi-

dence (uncertainty) in prediction could be useful information to be integrated in a TTS

system. This is the issue addressed in next section.

6.1 Experiment 1: Including Pitch Accent Optionality in

Unit-Selection Text-to-Speech Synthesis

Goal of the experiment described in this section1 is testing the hypothesis claimed in

section 4.5. That hypothesis says that including the “uncertainty” of a pitch accent

predictor, which is strongly correlated with pitch accent optionality, in a target cost

function including pitch accent in the linguistic feature set, can improve both segmental

and prosodic quality of the synthetic speech.

Integrating the predictor’s confidence in the target cost makes the constraints on

the accenting value of the candidate speech units dependent on the actual necessity

of having a syllable accented or not. Thus when the predictor is very uncertain of its

output the constraints on the candidate units are relaxed so that the search space of

the unit selection module is enlarged and higher are the chances of selecting a good

sequence of units without worsening the generation of prosodic prominence.

In order to test our hypothesis we compared a TTS system having the modified

target cost function of equation 6.1 with one having the standard target cost function

(i.e., a function where the uncertainty of the accent predictor is always zero, Hp(wi) = 0

for any wi). We call the former system EWC (which stands for Entropy Weighted Cost)

and the latter SC (standard cost).

The target cost function Tf for the pitch accent feature in the EWC system is defined

as:
1Joint work with Rob Clark and Volker Strom. Rob helped to design the perceptual test (other than

actively supervising my work as for the rest of this thesis work) and Volker to implement the new target
cost function
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Tf =

{
0 if st [ f ] and ut [ f ] are equal

1−Hp(wi) otherwise
(6.1)

where st [ f ] and ut [ f ] are the accent values (±accent) of the target unit and the

speech unit respectively, wi is the word of the two units, and Hp, the predictor uncer-

tainty, is defined as follows:

Hp(wi) = − log(P(yi|xi))P(yi|xi)

− log(1−P(yi|xi))(1−P(yi|xi))
(6.2)

where P(yi|xi) is the probability of the predicted accent value yi and xi is the vector

of training features.

The target cost function for the pitch accent feature (Tf ) of system SC can only

have value 0 (if st [ f ] and ut [ f ] are equal) or 1 (if st [ f ] and ut [ f ] are different).

We expected system EWC to outperform system SC in a large scale listening test.

Again note that our expectations were based on the assumption of the independence of

pitch accent placement discussed in chapter 3 and 4.

6.1.1 Implementation details

The unit selection TTS system we used is the version of Multisyn Festival (Clark et al.

(2007)) described in Strom et al. (2007), where “standard” and “emphatic” pitch ac-

cents are linguistic features of the target cost function. We only made two modifica-

tions to that version, one concerning the target cost function and one concerning the

pitch accent predictor used for the prediction of pitch accent placements in the test

sentences. Note that we did not modify the pitch annotation of the speech database.

The pitch accent predictor used to annotate the speech database is described in Strom

et al. (2007). It does not use acoustic features.

In the EWC system the Tf function for the pitch accent feature was modified ac-

cording to equation 6.1. In both EWC and SC the pitch accent predictor was substituted

with the CART(Wagon) predictor described in 3.3.1 using POS, Information Content

and Relative Information Content as training features. We did not use the whole train-

ing feature set as this experiment was carried out before creating the final pitch accent

predictor of chapter 3.

A unit (which is a diphone in Multisyn Festival) is considered accented if it belongs

to a vowel of a stressed syllable in an accented word or if it precedes a vowel of a

stressed syllable in an accented word (like in Strom et al. (2007)). The choice of this
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context assumes that accenting has a phonetic effect on the nucleus of the stressed

syllable of the accented word and on the phone preceding it.

The target cost associated to the pitch accent feature is considerably higher than

those associated to the remaining features in order to give high importance to prosodic

prominence during the unit selection process. This choice allowed to obtain an im-

provement in speech quality with respect to a TTS system not including the pitch

accent feature (Strom et al. (2007)).

Among all the other target cost features the only feature somehow correlated to

pitch accenting is the POS feature.

The speech database used is the same used in Strom et al. (2007).

6.1.2 Test design

To create a set of utterances for evaluation we ran our pitch accent predictor on a

subsection of the BURN corpus and of the Herald news (which is the same corpus

used for language modelling in chapter 3) on sentences no longer than 20 words. The

predicted accent value and its associated Hp value were assigned to each word and

the sentences were ranked according to the average value of Hp per each word from

the highest to the lowest. Since the “standard” system assumes Hp to be always zero

(i.e., prediction uncertainty is not taken into account) and since we wanted to select the

sentences where the target costs of the two systems were most different we selected for

the listening test the first 15 sentences having the highest rank (and producing audible

differences between the two systems).

Each sentence was synthesized using both TTS systems so 15 pairs of utterances

were generated. Each pair was presented to each participant twice but in reversed

versions (i.e., EWC-SC and SC-EWC) so each participant listened to a total of 30

pairs whose order was randomized per each participant.

The listening tests were carried out through a web browser and, for each utterance

pair, the participants could either express a preference for one of the two utterances or

no preference.

46 subjects were recruited, all of them are native English speakers. All partici-

pants were paid. All participants used headphones. The tests lasted approximately 15

minutes each.
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EWC SC No-preference p-value 1 p-value 2

All pairs 587 439 354 p < 0.00001 p = 0.00007

Consistent preferences only 382 206 156 p < 0.00001 p < 0.00001

Table 6.1: EWC vs. SC. In the All pairs row the comparison is made on all the

pairs (30 ∗ 46) presented in the experiments. In the Consistent preferences

only row, the comparison is made only on the pairs where the preferences

of the subjects where consistent, i.e., when subjects expressed the same

preference in the two pairs having the same utterances but in reversed order.

Columns 2, 3 and 4 report the number of preferences for the three options.

The p-values are from two-sided Binomial tests. The p-value 1 is computed

by excluding the No preference choices from the overall set of choices, while

the p-value 2 is computed by splitting the No preference set into two halves

and summing one half to the EWC preferences and the other half to the SC

preferences.

Sentence ID EWC SC No-preference

Sentence 2 23 53 16

Sentence 3 78 8 6

Table 6.2: Best cases for EWC and SC. Sentences with highest number of

preferences for EWC and for SC respectively.

6.1.3 Results and discussion

The overall results are shown in Table 6.1. We computed the number of preferences

for the three options (EWC, SC and No preference) on the overall set of pairs, and

on the set only containing pairs where the subject’s choices were consistent, that is

were the subject chose the same option in the two pairs having the same utterances

(but in reversed order). We then ran two different kinds of two-sided Binomial tests:

one where all the preferences for the ”No preference” option were excluded and one

where they were split into two equal halves and one half was summed to the EWC

preferences and the other one to the SC preferences.

All conditions and tests show a statistically significant preference for EWC, with

p-values far below 0.001.
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Looking at each single sentence the difference between the two systems is less

evident since for only 5 out of 15 sentences there is a significant (p-value 2 < 0.01)

preference for EWC, whereas for 4 sentences the significant preference is for system

SC, and for the remaining 6 sentences there is no significant preference for either of

the two systems.

Despite this small difference between EWC and SC at the utterance level the overall

results show a significant preference for EWC because, when significant, the prefer-

ences for EWC are more definite than the preferences for SC (see Table 6.2).

This behavior is also observable when looking at the “consistent” results (last row

of table 6.1). The proportion of consistent evaluations is quite low (54%) indicating

that the subjects in general found it hard to hear clear differences between the two utter-

ances (or that the subjects were not capable of expressing a preference), however when

the subject’s choices are consistent (which is a consequence of a clearer difference

between the two utterances) the preference for system EWC is more evident.

This fact might imply that it is in the critical cases, where unnecessary strict con-

straints on prosodic prominence heavily damage the synthetic speech quality, that in-

cluding the accent predictor uncertainty helps and produces a clearly perceivable im-

provement. When there are not critical cases the contribution of the prediction uncer-

tainty becomes almost irrelevant.

Listening to the test utterances we noticed that in a couple of cases what we per-

ceived was the opposite of what we would have expected: where the value of Hp for

a given word was high, that word was strongly accented by the EWC system and not

accented or slightly accented by the SC system. We believe this behavior is mainly

due to: 1) the intrinsic ”instability” of the unit selection technique; 2) the inaccuracy

of the pitch accent annotation in the speech database.

We did not compute the annotation accuracy but we know that at most a pitch ac-

cent detector has an accuracy around 85%, an accuracy that may be not good enough

for this task and that may have significantly affected our results. We know that because

of the intrinsic variability in accent annotation (see discussions at the end of sections

2.3 and 4.1), which causes a certain degree of disagreement between annotators, aim-

ing for a 100% accuracy in accent detection does not make sense, so we do not know

exactely the gap that still exists between automatic and human accent detection2.

However, even if a 85% accuracy were a human-like accuracy, the accuracy of the

2Actually we may want automatic annotation to be better that human annotation, i.e., to be more
consistent
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accent automatic detection on the speech database used in this experiment is certainly

below that value since the voice of the speech database and that on which the pitch

accent predictor was trained are different (the predictor was not trained on one single

voice but on SWBDC and BURNC voices). Perhaps only a manual annotation of the

speech database would significantly reduce the number of unexpected outputs.

6.2 Experiment 2: Pitch accents in HMM based Text-to-

Speech synthesis

Goal of the experiment described in this section3 is investigating whether accurate

information about pitch accent placement gives any benefit to HMM-based TTS syn-

thesis.

Instead of comparing two HMM based systems, one having pitch accent as one of

the linguistic features and the other one having the same feature set but no pitch accent

feature, we compared a system (henceforth system HTS05) using a poor performance

predictor with a system (henceforth HTS05-PP) using a much better predictor and

additional features related to prosodic prominence.

Such comparison aims to find out whether improvements in pitch accent prediction

leads to a better prosodic prominence modelling in HMM speech synthesis or this

effort to improve pitch accent prediction brings no actual advantages.

Note that the accent prediction does not only concern the prediction of accent place-

ments in the test sentences but also the prediction (actually detection) of the accents in

the training speech data.

6.2.1 Implementation

System HTS05 is the HMM based TTS system described in Zen and Toda (2005).

It uses the pitch accent predictor integrated in Festival (which is not the one used in

Strom et al. (2007)) whose accuracy on the BURN corpus is very poor (below 70%) as

reported in Sridhar and Bangalore (2008).

System HTS05-PP uses the state-of-the-art pitch accent predictor described in chap-

ter 3, i.e., bagging-based predictor with full feature set. The predictor tested on the

BURN corpus has a much higher accuracy (above 85%).

3Joint work with Sebastian Andersson and Junichi Yamagishi. Sebastian and Junichi helped to build
the TTS systems
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Both accent predictors were used to labelled the training data and the test sentences.

The two systems not only differ in the accent predictor used but also in the linguistic

features that are correlated to prosodic prominence. In HTS05 those features are:

• (stress-dependent) name of current syllable

• {previous,current,next} syllable stressed/not-stressed

• {previous,current,next} syllable accented/not-accented

• distance (in number of syllables) to {previous,next} stressed syllable

• distance (in number of syllables) to previous,next accented syllable

• POS of previous,current,next word (“content word” is one of the values)

• distance (in number words) from {previous, next} content word

• length (in syllables) of {previous,current,next} word

All other features are mainly positional features (e.g., “position of syllable in the word

containing it”, “position of word in the prosodic phrase containing it”) and “length”

features (e.g., “length (in number of words) of the sentence”). As some of them convey

information on the (possible) prosodic structure of the utterance they might also convey

some information on the prosodic prominence pattern of the utterance.

In HTS05-PP the features related to prosodic prominence are:

• {previous,current,next} phoneme accented/not-accented

• {previous,current,next} syllable accented/not-accented

• current word accented/not-accented

• uncertainty of the pitch accent predictor (only at the word level)

• most of the training features extracted for the pitch accent predictor (see chapter

3):

– POS of {previous,current,next} word (extracted with a more accurate POS

tagger than that used in system HTS05)

– Information Content of {previous,current,next} word

– Relative Information Content of {previous,current,next} word
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– Inverse Relative Information Content of {previous,current,next} word

– Length (in number of characters) of {previous,current,next} word

– Information Content of Concepts of {previous,current,next} word

– Syntactic Dependencies of {previous,current,next} word

– Cached Information Content of {previous,current,next} word

The Dependencies-based Relative Informativeness (DRI) feature was not included as

it turned out to be not useful for pitch accent prediction.

The training features of the pitch accent predictor were included to take into ac-

count intra-speaker variability in pitch accent placement. In fact the pitch accent pre-

dictor was trained on an American English voice, the f2b voice in the BURN corpus,

while the voice on which the HMM-based system was trained is a British English

voice, the voice Roger from the Blizzard 2008 speech data set (Karaiskos et al. (2008)).

The best accent predictor for f2b may not be the best accent predictor for Roger. In-

cluding the training features of the predictor in the linguistic feature set of the TTS

system partially makes up for this discrepancy as they are the features most correlated

to pitch accenting but are speaker-independent.

Some of the training features of the pitch accent predictor were included also with

the aim of “capturing” weak-strong prominence relations between two adjacent words

that cannot be captured using the accent feature only.

The “uncertainty of the pitch accent predictor” is included because it is correlated

with accent optionality which can be in turn correlated with the acoustic realization of

a pitch accent (i.e., “highly optional” accents might have a different distribution of the

acoustic coefficients with respect to “compulsory” accents)

The “phoneme accented/not-accented” is a feature that is not included in the feature

set of system HTS05. A phoneme is accented if it is the nucleus of an accented syllable.

Since accenting has no or very weak phonetic effect on non-accented words sur-

rounding accented words (see Turk (1999)), in system HTS05-PP the next (or previous)

syllable (and phoneme) is accented only if it belongs to the same word of the current

syllable (phoneme). There is no such constraint in system HTS05.

According to this choice, in system HTS05-PP there are no features indicating the

distance to {previous,next} accented syllable and to {previous,next} content word.

Both systems have the syllable-level feature “name of syllable nucleus” (and “name

of phoneme”). However in system HTS05-PP the same syllable nucleus has two differ-

ent names depending on whether it is accented or not (so the feature actually becomes
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“accent dependent name of syllable nucleus”). This distinction is intended to capture

possible specific phonetic effects of accenting since accenting might have different

phonetic correlates depending on the syllable nucleus that is accented. This choice is

consistent with the “stress-dependent name of syllable” used in both systems.

The speech data consists of all utterance from the whole Arctic section and part of

the newspaper section of the Blizzard 2008 speech data (Karaiskos et al. (2008)). The

speech data was split in 2025 utterances for training and 30 for testing.

Both systems were trained using the Eddie grid engine (Richards and Baker (2008)).

6.2.2 Test design

Two types of listening tests were carried out. One is the same preference test of ex-

periment 1 where participants were presented utterance pairs and could express a pref-

erence for one of the utterance or no preference. We synthesized all 30 test sentences

using both systems but only 12 utterance pairs were used in the listening test. Since,

from a first listening, the differences between the two systems turned out to be on av-

erage very small we selected the utterance pairs where the differences between the two

utterances were most perceivable. We could not use all 30 utterance pairs because the

participants had also to carry out the listening test described in section 6.3 and so we

needed the listening tests to be not too long (and not too expensive).

The other test is a similarity test in which participants listened to each of the 15

utterance pairs of the preference test plus a corresponding natural voice utterance and

had to indicate which of the two synthesized utterances sounded most similar to the

natural utterance. If the two synthesized utterances sounded equally similar to the

natural utterance the participants chose the “both” option.

While in the preference test each utterance pair was presented in both orders (e.g.,

A-B and B-A) in the similarity test it was presented only once (the order was randomly

chosen).

The motivaton behind the similarity test is that it allows to see if a more detailed

model of prosodic prominence (like that of system HTS05-PP with respect to system

HTS05) allows to better capture specific traits of the training voice. A preference test

does not necessarly allow to observe that.

30 British English native speakers were paid to participate to the (preference and

similarity) listening test which lasted approximately 15 minutes. All participants used

headphones.
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6.2.3 Results and discussion

The overall results of the preference test are shown in table 6.3. There is no statisti-

cally significant preference for either of the two systems. Contrary to our expectations

the HTS05 system even slightly outperforms system HTS05-PP. Surprisingly, using

a much better pitch accent predictor and some speaker-independent features highly

correlated to accenting does not improve the speech quality of HMM based speech

synthesis.

This results contradict what we see when observing the clustering trees for dura-

tion and F0 of the two systems. In system HTS05-PP the feature ”current phoneme

accented” is on top of the clustering trees meaning that this feature is very important

to cluster speech segments in the acoustic space. Also other features related to pitch

accenting are in high positions of the trees. On the contrary, in the clustering trees of

system HTS05, features related (directly and indirectly) to pitch accenting are far from

the top nodes.

We might assume that although system HTS05-PP fails to outperform HTS05 in

the preference test, it still might be possible that its more accurate accent prediction and

its linguistic feature set allows a more detailed linguistic/symbolic prosodic modelling

of the original natural voice and so leads to the generation of patterns of prosodic

prominence that are closer to those of the original natural voice but not perceived as

better than those generated by system HTS05.

Nevertheless results from the similarity test (table 6.4) show that HTS05-PP does

not generate utterance that sound more similar to the natural utterance than those gen-

erated by HTS05.

In conclusion this experiment has shown that improving pitch accent prediction

does not give any benefit to a HMM based TTS system and that a “bad” pitch accent

predictor and a gross distinction between function and content work as well as a state-

of-the-art pitch accent predictor.

As we will discuss in more detail in the concluding chapter of this thesis, our

hypothesis is that HTS05-PP failed to improve the prosodic prominence realization of

the HMM-based TTS system because its prosodic prominence model, which mainly

relies on the simple distinction between accents and non-accents, is an oversimplistic

model of prosodic prominence that “over-flattens” the complex hierarchical structure

of prosodic prominence.

Obviously such hypothesis needs further investigations before being validated. At
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HTS05-PP HTS05 No-preference p-value 1 p-value 2

All pairs 212 227 281 p = 0.85 p = 0.63

Consistent preferences only 84 98 158 p = 0.41 p = 0.55

Table 6.3: HTS05-PP vs. HTS05 - preference test. In the All pairs row

the comparison is made on all the pairs (24 ∗ 46) presented in the experi-

ments. In the Consistent preferences only row the comparison is made only

on the pairs where the preferences of the subjects where consistent, i.e.,

when subjects expressed the same preference in the two pairs having the

same utterances but in reversed order. Columns 2, 3 and 4 report the num-

ber of preferences for the three options. The p-values are from two-sided

Binomial tests. The p-value 1 is computed by excluding the No preference

choices from the overall set of choices, while the p-value 2 is computed by

splitting the No preference set into two halves and summing one half to the

HTS05-PP preferences and one half to the HTS05 preferences.

the moment it is based on an experiment carried out on one voice only. Most impor-

tantly, because of prosodic variability and since the predictor was trained on a voice

different from that on which the TTS system was trained, the state-of-the-art predictor

may still be not good enough in detecting the actual pitch accent placements in the

training speech data. We might include acoustic feature in the feature set of the pitch

accent predictor (which in that case would become a pitch accent detector) but as we

have seen in section 2.4 that probably would not produce any significant improvement.

Perhaps more definitive conclusions on the utility of pitch accents could be drawn if

pitch accents were manually annotated in the training speech data.

HTS05-PP HTS05 Both p-value 1 p-value 2

120 122 118 p = 0.95 p = 0.96

Table 6.4: HTS05-PP vs. HTS05 - similarity test. The first two columns

show the number of cases in which one of the two utterances was judged

most similar to the natural-voice utterance. The third columns shows the

number of cases were the two utterances were judged equally similar to the

natural-voice utterance
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6.3 Experiment 3: Generating Emphatic Contrast in HMM

based Text-to-Speech Synthesis

From the previous experiment it turned out that an accurate pitch accent prediction/detection

is not essential for prosodic prominence generation in HMM-based speech synthesis.

We now want to investigate whether going beyond the usual ±accent distinction leads

to any benefit in the generation of HMM-based speech synthesis. Goal of the work4

presented in this section is generating an appropriate prosodic marking of contrastive

words in a HMM-based TTS system.

This work follows a previous attempt we made to generate contrastive accents

(Badino et al. (2009)). In that attempt the contrastive accents turned out to be too

emphatic so that a “standard” pitch accent on contrastive words (i.e., contrastive when

looking at text only) was generally preferred to the contrastive accent.

An interesting result that came up from Badino et al. (2009) is that emphatic con-

trastive accents on non-contrastive (but having same POS) word pairs are much less ac-

ceptable than emphatic contrastive accents on contrastive words. Although this could

look as a pretty obvious result it empirically justifies a contrast tagger that detects the

contrast relation rather than a tagger of contrastive words that ignores which word

contrasts which word.

To the best of our knowledge the work presented here and in Badino et al. (2009)

are the first attempts of generation of contrastive accents in HMM-based speech syn-

thesis.

6.3.1 Implementation

The contrast tagger described in chapter 5 can be used either to detect contrast during

synthesis time (i.e., when the TTS system generates speech) and off-line to collect

examples of contrast in speech. The examples could be added to the speech database

of the TTS system or/and used to analyze the prosodic realization of contrast in several

different “scenarios” of contrast.

In both unit-selection and HMM-based speech synthesis we need examples of con-

trast to store contrast (in unit-selection speech synthesis) or “learn” contrast (in HMM-

based speech synthesis).

4Joint work with Sebastian Andersson, Rob Clark and Junichi Yamagishi. Sebastian and Junichi
helped to build the TTS system while Rob helped to design the perceptual test.
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Collection of contrast in speech may be a necessary step to generate contrastive

accents in speech synthesis (although it does not guarantee a good modelling of con-

trast because of limits of the current speech synthesis techniques, see section 7.2) but

it could be very expensive both in terms of time and money, so it is always a good rule

of the thumb to look what we can get from speech data already available for speech

synthesis.

Strom et al. (2006) and Strom et al. (2007) designed and built several speech cor-

pora whose main aim is that of providing a phonetic coverage of the emphatic accents.

One of these corpora, the “carrier sentences” corpus, consists of hundreds of emphatic

words recorded in three different templates as in the following example:

S1: It was JAMES who did it.

S2 No, it was JOHN who did it!

S3 It was JOHN, not JAMES

The templates were repeated tens of times using different proper names. The speaker

was asked to emphasize the names so the contrastive accents are not “spontaneous”

contrastive accents and are often particularly strong.

The training speech data consists of all the 1683 utterances from the “carrier sen-

tences” set and the 2025 “neutral style” utterances used to train the TTS systems of

experiment 2. Compared to the training data used in Badino et al. (2009) the training

data used in this experiment contains about 900 “neutral” utterances more as we found

out that adding more neutral data helps smoothing the realization of the emphatic ac-

cents.

We built one new HMM based system (henceforth HTS05-PP-E) having the same

linguistic feature set of system HTS05-PP of experiment 2 plus additional features

dedicated to emphasis generation:

• {previous,current,next} phoneme emphasis value

• {previous,current,next} syllable emphasis value

• emphasis dependent name of the {previous,current,next} phoneme

• emphasis dependent name of the syllable nucleus

There are three possible emphasis values: 0 if the word is not emphatic, A if the

word is the first or the only emphatic word in the utterance, and B if the word is the

second emphatic word in the utterance. In the system described in Badino et al. (2009)
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only two emphasis values were used, emphatic and not-emphatic. We increased the

number of emphasis values as it emerged from an informal analysis that in the previous

system the two contrastive accents were perceived as too similar and a differentiation

seemed preferable.

Note that the test sentences only contain one contrastive pair each, so the first

contrastive word has a A value while the the second has a B value.

The “emphasis dependent name of the {previous,current,next} phoneme” has dif-

ferent values on two identical phonemes if the emphasis values of the two phonemes

are different. Again, as for pitch accents in experiment 2, we used this kind of feature

to capture some possible specific phonetic effect of emphasis.

6.3.2 Test design

We designed two different listening tests. In one test, a preference test, we selected 20

sentences from the whole set of sentences where the contrast tagger correctly identified

contrastive word pairs in the leave-one-out evaluation (see Appendix A for the whole

set of sentence on which the contrast tagger was trained and tested). The selection

criterion consisted in trying to have as many scenarios of contrast as possible in the

test utterances. So, for example, we included contrast triggered by comparison (e.g.,

“They have probably had more time than you had to think about this subject”) and by

antonymy (e.g., “Every time we get a real good player they treat him bad).

Using system HTS05-PP-E we synthesized two different versions of the same sen-

tence. In one version, contrastive words were accented with a standard pitch accent

(version StdC) while in the other version the contrastive words were accented with

an emphatic contrastive accent (version EmphC). The test participants were asked to

indicate which version sounded best (the “no-preference” option was also available).

In addition to listening to the utterances the subjects had to read dialogue excerpts

containing the test sentences. As already mentioned in chapter 5 the sentences on

which the contrast tagger was trained and tested are sentences from the Switchboard

corpus so that the dialogue excerpts are not fictional but excerpts from the Switchboard

corpus (although some of them were slightly modified to avoid otherwise too long

excerpts).

In the other test, an emphasis detection test, we selected 10 sentences containing

at least one contrastive word pair and synthesized them with an emphatic contrastive

accent on only one word (that could be a word of the contrastive pair if the sentence
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contained more than one contrastive word pair). The remaining words were normally

accented by the accent predictor. The subjects were asked to indicate the word they

perceived as most prominent.

The presence of contrast (identifiable from text) in the test sentences had the aim

of making the emphasis recognition task more difficult by giving to the listeners no

textual cues or misleading textual cues about the placement of the emphatic accent.

In fact the presence of contrast could lead the partipants to expect emphasis on the

contrastive words while the emphatic accent was actually on none of the contrastive

words or only on one of them (when the sentence contained more than one contrastive

word pair).

The participants were exactly the same participants of experiment 2, they carried

out the two tests soon after having carried out the two tests of experiment 2.

6.3.3 Results and discussion

EmphC StdC No preference p-value 1 p-value 2

221 180 199 p < 0.05 p = 0.094

Table 6.5: EmphC vs. StdC. In EmphC the contrastive words are marked with

an emphatic contrastive accent while in StdC the same contrastive words

are marked with a standard pitch accent. The first two columns show the

number of preferences for one of the two versions and the third columns the

number of cases in which subjects expressed no preference. The p-values

are computed as in the previous experiments.

The results of the preference test are shown in table 6.5. The preference for the

emphatic accentuation of contrastive words is significant when removing the “No pref-

erences” (with p-value < 0.05).

This results are much more positive than those achieved in Badino et al. (2009)

although it is hard to say which factors mostly contributed to this improvement as

several changes have been made to the training data (in the new system we added more

“neutral” training data) and the feature set (e.g., in the new system there are three

values of emphasis instead of just two (emphatic/non-emphatic)).

Comparing version EmphC and StdC at the sentence level, there is only one utter-

ance pair where there is a significant preference for the EmphC version (both p-values
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< 0.01). Concerning all other pairs there is no significant preference for either of the

two systems: in 11 pairs there is a minimal preference for version EmphC, in 7 pairs

there is a minimal preference for version StdC while in 1 pair the two versions have

exactly the same number of preferences.

Looking at these results at the sentence level one might infer that in most of the

cases the two versions EmphC and StdC are very similar because the emphatic con-

trastive accent is neither emphatic nor contrastive and is not distinguishable from the

standard accent.

However this is not the case because the emphasis detection test shows that the em-

phatic accent is often clearly identifiable. In fact in 6 out of 10 utterances the number

of speakers able to identify the emphatic word is significantly (with p� 0.01 in a bino-

mial two-sided test) greater than the chance level (where the chance level is computed

taking into account the emphatic word and all the accented words in the utterance).

In conclusion, results from both tests show that system HTS05-PP-E is the first

HMM based TTS system able to identify contrastive words from text and to prosodi-

cally mark them with appropriate contrastive accents. An appropriate prosodic mark-

ing of contrast significantly increases the quality of the synthetic speech.

Nevertheless we believe that there is still a large margin of improvement in the

generation of contrastive accents. For example, a quick improvement may be achieved

by applying simple rules that replace the standard pitch accents once the contrastive

accents have been placed and/or rules like “do not mark with an emphatic accent a

contrastive word if that word is the last word in the utterance”. Such a rule would

have guaranteed more preferences for version EmphC in a couple of cases as the last

accented word of a utterance is usually already perceived as the most prominent (i.e., it

carries a nuclear accent) making an emphatic accent on it unnecessary and too strong.

6.4 Summary

In this chapter we have described three experiments in the generation of “standard”

and contrastive accents in speech synthesis.

In the first experiment we have compared two unit selection systems, one having a

target cost function that (indirectly) includes the information about the optionality of

the pitch accent placements and one whose target cost function does not include such

information. We hypothesized that the knowledge of the optionality of pitch accents

allows to increase the number of acceptable candidate speech unit and so increases the
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chances of selecting a good sequence of speech units. Results on a large scale listening

test confirmed such hypothesis. We expect similar results when applying this approach

to other prosodic events (e.g., prosodic breaks).

In the second experiment we have investigated the actual utility of accurate pitch

accent prediction/detection in HMM based speech synthesis. Results from a large

scale listening test show that a large improvement on accent prediction has no effect

on the naturalness of the speech generated by the TTS system and so cast doubts on the

actual utility of the ±accent distinction for prosodic modeling in HMM-based speech

synthesis.

In the last experiment we have described a method to generate contrastive accents

in HMM based speech synthesis. We have then shown, through a large scale listening

test, that (in HMM based TTS synthesis) marking contrastive words (i.e., words that re-

sult to be contrastive when looking at text only) with contrastive accents sounds better

than marking contrastive words with “standard” pitch accents. This result stresses the

necessity to go beyond a simple ±accent distinction in order to improve the generation

of prosodic prominence patterns in TTS synthesis.
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This concluding chapter goes through the main contributions of this thesis, the

problems encountered and not yet solved, and some discussions for future work in the

identification and generation of prosodic prominence patterns in TTS synthesis.

Concerning the identification from text of accentuation patterns, the main contri-

butions of this thesis are:

• an increased accuracy in ±accent prediction (chapter 3);

• a study on pitch accent optionality and its role on the evaluation of pitch accent

prediction (chapter 4);

• a new approach for the identification of contrast (chapter 5);

On the generation side the main contributions are:

• an approach that integrates the optionality of prosodic symbols in the unit selec-

tion process in unit selection TTS synthesis (chapter 4 and 6);

• an investigation on the actual utility of pitch accent prediction in HMM based

TTS synthesis that points out the limits of a prosodic model in which prosodic

prominence patterns are “flattened” into sequences of ± accents (chapter 6);

• the generation of appropriate contrastive accents in HMM based TTS synthesis

(chapter 6);

Like perhaps any research work this thesis has raised at least as many new questions

as it has answered.

7.1 Pitch accent prediction

In chapter 3 we proposed a set of statistical and syntactic features that led to a 85.2%

accent prediction accuracy in read speech and a 75.8% accuracy in conversational

speech. After observing these results the question we posed was: how far is automatic

accent prediction from perfect (i.e., manual) prediction?

When we take into account variability in pitch accent placement the answer can not

be naively the difference between the 100% accuracy and our predictor accuracy.

From the evaluation of accent prediction presented in chapter 4 where the accent

predictor was tested on multi-speaker data (i.e., test data in which six speakers read

the same text) our accent predictor seems to have achieved a “perfect” accuracy, i.e.,



Chapter 7. Discussion 151

an accuracy that equals the accuracy of human prediction. An analysis of error, again

carried out comparing the automatically predicted accents with accents labeled in the

multi-speaker data, shows that there is very little margin left for improvement. The

predictor only fails in few cases, mainly when function words are accented because

they convey contrast, when the typical accentuation value of a word is inverted because

of some lexical effects, and when content words are deaccented because the concept

they convey is redundant.

Since the prediction evaluation and analysis of error on multi-speaker data has been

carried out on the Boston University Radio News corpus the conclusion that pitch ac-

cent prediction has reached a perfect prediction applies to read speech in radio news

style but may not apply to other speech styles such as spontaneous speech, “confer-

ence” speech, “tutorial” speech and so on. Radio news speech is over-accented (on

average 50% of words are accented) with respect to other speech styles, and word

accentuation is mainly due to the intrinsic informativeness of a word, while in other

speech styles accentuation may be more dependent on context-dependent factors. For

such reason it would be very useful having more prosodically labeled data in other

speech styles. Multi-speaker data would be very useful to carry out the same predic-

tion evaluation and analysis of error we carried out on the radio news style.

Achieving a perfect ±accent prediction does not solve the problem of predicting

prosodic prominence. Prosodic prominence is a relative property in that the promi-

nence of a word is not absolute but relative to the prominence of the other words. As we

have seen in section 2.1, according to the Autosegmental-Metrical Theory, the promi-

nence pattern of an utterance is structured in a binary tree of weak-strong relations

between words of which a ±accent sequence is only a flattening, an approximation.

If parsing prominence trees seems very difficult to accomplish and/or of debatable

utility in a TTS application (at least using the current speech synthesis techniques, see

discussion in section 7.2), a probably more feasible and useful approach (for TTS pur-

poses) consists in increasing the levels of prominence and so moving from the±accent

distinction to the distinction between no-accents, primary accent (i.e., nuclear accent)

and secondary (i.e., non-nuclear) accents in a prosodic phrase (and/or in a utterance),

where a primary accent is the accent perceived as most prominent in a prosodic phrase.

An automatic discrimination between nuclear and non-nuclear accents has already

been proposed by Calhoun (Calhoun (2006) and Calhoun (2008)) where part of the

Switchboard corpus was annotated distinguishing between the three categories of ac-

centuation “no-accent”, “non-nuclear accent”, “nuclear accent”. Calhoun (2008) shows
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that, according to our findings and previous findings, word accentability (i.e., the prob-

ability of a word of being accented with either a nuclear or a non-nuclear accent)

mainly depends on the intrinsic informativeness of words while the probability of a

word of bearing a nuclear accent (as opposed to a non-nuclear accent) mainly depends

on its position in the prosodic phrase (which is expected because of the right-branching

bias of the prosodic tree that makes sound the last accent in the phrase as the most

prominent) and on whether the word is focused or not.

In Calhoun (2008) all context-dependent linguistic features, including focus (where

focus is divided in the six categories mentioned in section 2.5), are manually extracted.

In order to achieve a fully automatic ±nuclear accent classification (and then test its

utility in TTS synthesis) we need to reliably identify focus first (and to have a good

prosodic phrase predictor). The work on contrast tagging we presented in chapter 5

goes in this direction since contrast is (according to the semantic account on focus

discussed in section 2.2.3.1) a special case of focus.

7.2 Pitch accents in TTS synthesis

In almost any study on automatic pitch accent prediction/detection TTS synthesis is

mentioned as one of the applications that needs to model prosodic prominence and that

would benefit from an accurate identification of accentual patterns. However the main

concern of such studies is that of improving state-of-the-art accent prediction/detection

accuracy and no questions are posed on the impact an improvement in accuracy would

have on TTS synthesis (and/or on other applications).

We addressed this issue in experiment 2 in chapter 6 (section 6.2) where we tested

the actual utility of accurate ±accent labeling in HMM based TTS synthesis. We

compared a TTS system (system HTS05) that uses a poor-accuracy accent predictor

with a TTS system (system HTS05-PP) that uses a state-of-the-art accent predictor.

Both predictors are used to label both training data and test sentences. Results from

a large-scale listening test do not show any statistically significant difference between

the two systems.

Such result casts doubts on the actual utility of accurate pitch accent prediction,

and, more in general, of ±accents, suggesting that, at least when synthesizing out-

of-context test sentences, high-accuracy accent prediction is not needed and a simple

function/content word distinction may be sufficient to account for accentual patterns

in HMM based TTS synthesis.
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The non-utility of pitch accents may point out the limits of an oversimplified prosodic

prominence model which flattens the hierarchical prosodic prominence structure (i.e.,

the prominence tree) into sequences of ±accents and so can not properly capture the

weak-strong prominence relations between items of an utterance. Making an analogy

with syntax, the loss of information we get when we map the prosodic prominence

structure into a sequence of pitch accents may be comparable to the loss of informa-

tion (about the syntactic structure) we would have if we mapped syntactic dependency

trees onto sequences of POS’.

However such conclusions, although significant, cannot be regarded as conclusive

yet. One of the reason is that the accent labeling of the training data is not a prediction

task but a detection task and, and the accent detection accuracy might be far from the

“perfect”,i.e., human-like, accuracy, as opposed to the accuracy of our accent predictor

(see section 4.4 and discussion at the end of section 6.1.3).

Additionally, since our predictor was tested (and trained) on a speaker different

from the one used to train the HMM based system, we do not know the detection

accuracy on the TTS system’s training speech but we have reasons to believe it is

not close to the “perfect” detection accuracy and we guess (testing the predictor on

different voices of the Boston University Radio New corpus) it is around 75%-85%.

We might have integrated acoustic features in our predictor (transforming it into

an accent detector) but as we have seen in section 2.4 we expect the benefit arising

from the use of acoustic features to be very small. An effective but time consuming

solution would be that of manually labelling the training data, while other perhaps less

effective but also less time consuming solutions would require speaker adaptation tech-

niques. Following up the considerations made in the previous section and considering

(so far) the uselessness of ±accent, a future direction in the generation of prosodic

prominence could be that of going beyond a binary categorization of prominence, for

example by differentiating between nuclear and non-nuclear accents and/or by includ-

ing in the training feature set of the TTS system features that incorporate strong-weak

prominence relations (even between two accented words).

Actually in system HTS05-PP the predictive features of the accent predictor were

added to the TTS system training feature set with the aim of capturing weak-strong

prominence relations between adjacent words that can not be captured by a gross

±accent distinction. Moreover, since the placement of a nuclear accent is strongly

affected by prosodic structure (as it is often the last accent in the prosodic phrase)

which in turn is strongly constrained by the syntactic structure, the use of the syntactic
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features (extracted from a dependency parser) was also intended to indirectly incorpo-

rate a distinction between nuclear and non-nuclear accents. These features failed to

bring any improvement, but contrary to the accent feature they were only present at the

“word” level (i.e., the features referred to word properties and not syllable or phone

properties). It would be of interest (and of easy implementation) to take such features

at the phone level and test again their utility.

Suppose we have an accurate prediction and detection of nuclear accents, our ex-

pectation is that the ±nuclear discrimination will be particularly important when the

utterance to synthesize is in context and the context, through focus marking, will force

the nuclear accent to be in a position different from the “default” position (i.e., the

position that the nuclear accent would have if the utterance were “out-of-context”).

Nevertheless having a perfect identification of the nuclear accent may not be suffi-

cient to make sound the nuclear accents as the most prominent. The fact that nuclear

accentuation is a relative property determined by weak-strong relations between words

(i.e., an accent is nuclear because it is perceived as stronger than all other accents in

the phrase and not, or at least not necessarily, because it has some distinctive phonetic

properties) might be problematic with the two current state-of-the-art speech synthesis

techniques. In general any prosodic category that is relative and has no clear distinc-

tive phonetic correlates may not be modeled in unit selection and HMM-based speech

synthesis.

Consider the example:

(1) Q: Who went to Madison Square Garden?

A: My mother-in-law went to Madison Square Garden.

in which (if the utterance is a single whole prosodic phrase) the accent on “mother”

has to be the most prominent accent (more than the accent on “Garden”, which would

be the nuclear accent in the “out-of-context” case).

In HMM based speech synthesis the strong-weak relation between “mother” and

“Garden” might not be reproduced as the phonetic realization of an accent depends on

a restricted linguistic context that cannot represents relations between far apart words.

Figure 7.1 (top) shows a standard HMM where the probability of an acoustic vector at

time t only depends on the hidden state occurring at time t. Suppose that the hidden

state at time t is the stressed syllable of word “Garden”. If nuclear accents do not have

distinctive phonetic correlates then the linguistic information contained (and which

defines) the hidden state at time t cannot guarantee that the generated acoustic vector

at time t will result in a less prosodically prominent syllable than the stressed syllable
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of word “mother”.

In order to generate this relative prominence relation more information at time t is

needed: we need to know how the stressed syllable of “mother” was prosodically real-

ized, i.e., we need to know the values of the hidden and the observation state associate

to it. That is possible by adding new statistical dependencies between an observation

node and a fixed number of previous hidden and observation states as it is shown at

the bottom of figure 7.1. Such a model presents several problems, the most severe of

which is that a much larger number of statistical dependencies implies a much larger

number of statistical parameters to be learnt, which in turns implies a massive problem

of data sparsity.

A similar reasoning applies to unit-selection.

For the same reasons, parsing prosodic prominence trees does not seem to guaran-

tee a good generation of prosodic prominence. We could map any parsed prominence

tree into a prominence grid (see bottom of figure 2.1 in chapter 2) where the degree of

prominence of any syllable is specified. We could then use the degree of prominence

as one of the linguistic features of our TTS system.

However if these degrees of prominence do not have clear distinctive phonetic

properties then we end up with the same problem described above.

Because of the limit of the current speech synthesis techniques we may still im-

prove the generation of prosodic prominence by applying some approximate solutions,

i.e. solutions that make strong assumption about the prosodic prominence model. For

example an approximate solution for cases in which the primary accent is not in the

default position as in example (1) consists in: 1) assuming that primary accents are

stronger than any other type of accent (which implies that they have clear phonetic

correlates); 2) including in the training data (or in the speech database) particularly

prominent accents that would sound as the most prominent in any context; and 3) learn-

ing (or “selecting”) those accents to generate primary accents. We have successfully

applied this solution in the TTS system described in section 6.3 in order to generate

contrastive accents.

7.3 Contrast labeling

Chapter 5 addressed the problem of the automatic identification of contrast where

contrast is a particular scenario of focus in which the focused word is a word that

explicitly contrast with another.
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Working on the identification of contrast stems from the necessity of going be-

yond the ±accent distinction and taking into account the effect of focus on prosodic

prominence.

The small number of (positive) examples of contrast extracted at each conversation

and used to train and test our contrast tagger might lead to think of contrast as a very

rare event and to doubt of its actual utility in TTS synthesis. However this is not the

case as the conversations contain many more examples of contrast (not only on words

but also on phrases) and the limited number of examples we used is due to the need

of tackling a complex and novel problem starting from a simplification of it. In fact

in order to simplify the task we had to remove all examples of contrast spanning over

two sentences or more and all the examples of contrast on syntactic phrases (instead

of on single words).

As discussed in section 5.3.1, extending the identification of contrast to contrast

on phrases, not only would drastically increase the number of examples of contrast but

could also improve the accuracy in the identification of contrast on words. The iden-

tification of contrastive syntactic phrases could be addressed again by first simplifying

the problem, for example by only trying to identify “short” noun phrases. Obviously

the task would require the identification of all noun phrases first.

Whether the contrast is on words or phrases we believe that the identification of

contrast intended as a pragmatic relation identifiable from text should be neatly sepa-

rated from the prediction of its prosodic realization, in other words contrast identifiable

from text and contrastive accents on contrastive items should be kept as two distinct

concepts. Such separation was not entirely applied in our approach to contrast identi-

fication, since only prosodically marked contrast was annotated in the corpus we used,

and that hampered the accuracy of our contrast tagger.

The separation of the two concepts would first allow to achieve a better identifica-

tion of contrast and then to identify the factors that make an instance of contrast most

prone to a strong prosodic marking than other instances. Among these factors, “sub-

jective language” (i.e., language denoting subjectivity, see Wiebe et al. (2004)) seems

to be an important one. Consider the two sentences:

(a) John was doing all the cooking and Kate was doing all the enjoying

(b) I was unfairly doing all the cooking and Kate was doing all the enjoying

In both sentences there are two contrastive word pairs but in sentence (b) the proba-

bility that the contrastive words will be marked by contrastive (or emphatic) accents
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seems to be much higher than in (a) because of the presence in (b) of the “subjective”

items “I” (in place of John) and “unfairly”. The presence of items from subjective

language denotes a personal involvement of the speaker that we expect to be (usually)

prosodically marked with increased emphasis (not necessarily only on the contrastive

words).

The separation of contrast from its prosodic realization offers some advantages

but also poses a problem that is mainly due to its loose definition, which, lacking

of an algorithmic nature, leaves space to several ambiguous cases. In fact defining

(symmetric) contrast as the relation linking to words that explicitly contrast with each

other , does not explain what contrasting means. In the sentence:

(c) John went to London but Kate went to Paris.

the contrast between “John” and ”Kate”, and “London” and “Paris” is evident, while

in:

(d) John went to London and Kate went to Paris.

contrast seems less evident since the two clauses “John went to London” and “Kate

went to Paris” are linked by a sequential discourse relation instead of a contrast dis-

course relation.

However if, according to the semantic account on contrast/focus (see section 2.2.3.1),

we define two contrastive words as words that evoke each other and agree that the

“evoking” is activated by the symmetry of the two clauses ‘John went to London”

and ”Kate went to Paris”, then “John-Kate” and “London-Paris” have to be considered

contrastive. Yet, in a sentence containing symmetric clauses like the following:

(e) John had a sandwich and then he had a salad.

we can hardly see any cue of contrast between “sandwich” and “salad” despite of the

symmetry between the two clauses.

On the other hand if we had access to a prosodic realization of (d) in which “John”,

“Kate”, “London” and “Paris” carry a contrastive accent than we could affirm without

doubt that the four words are contrastive as the “evoking” is triggered by the prosodic

signal (i.e., the strong accent on “Paris” would imply that is “Paris” where “Kate” went

and not “London”).

Perhaps examples (c), (d) and (e) all contain contrast but at different degrees. What

we need is a formal definition of contrast that states the procedure to manually label

contrast (from text only).
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7.4 Generation of contrastive accents

In the experiment of section 6.3 we described an approach to generating contrastive

accents in HMM based TTS system and showed that when the TTS system prosodi-

cally marks contrastive words (i.e., words that are contrastive on “textual” basis) with

contrastive accents, the naturalness of the synthetic utterances increases with respect

to utterances where contrastive words bear “standard” accents.

In order to generate contrastive accents we trained the TTS system on data contain-

ing emphatic contrastive data (i.e., it-cleft utterances where the speaker was required

to emphasize the contrastive words) and neutral data. From an (informal) comparison

with some previous attempts we made, it emerged that a balanced trade-off between

the two types of training data is crucial for a successful generation of contrastive ac-

cents. Given a fixed amount of contrastive speech, adding neutral speech serves two

purposes: 1) it smoothes the excessive prominence of the emphatic (contrastive) ac-

cents, 2) it improves the general quality of the synthetic speech. However an excess

of neutral data may cause the contrastive accents to lose their peculiar prominence and

conflate into standard accents.

Further improvements in the generation of contrastive accents might be made by

searching for a better trade-off of the two data types (in fact there is no guarantee that

the ratio we chose is optimal) and/or by adding new training data containing several

scenarios of contrast. The emphatic speech we used consists of hundreds of utterances

presented in only three templates, of which one is a scenario of symmetric contrast.

A training set containing many more scenarios of contrast may allow to better model

the prosody of the contrastive words and of their neighbour words. Such a training set

could be built by using our contrast tagger to collect sentences containing contrast.

In the hypothesis that contrastive accents only differ from standard accents in that

they are simply perceived as more prominent we may use contrastive accents to gen-

erate nuclear accents (whether the word carrying the nuclear accent be contrastive or

not), especially when the last (predicted) accent is not the last accent in the prosodic

phrase.

We have carried out some preliminary experiments (see Andersson et al. (2009)) in

which all focused words in automatically generated answers (to questions from users of

a dialogue system for restaurant booking) were accented with a contrastive (emphatic)

accent. The accents were often perceived as too strong as we used our first TTS system

for contrast generation (Badino et al. (2009)) but the emphasis on focused words led to
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a largely increased prosodic appropriateness with respect to utterances where focused

words were not distinguished from all other words. We expect that using our last TTS

system (i.e., the one described in section 6.3) to mark the focused words will further

increase appropriateness, intelligibility and naturalness.
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Figure 7.1: From 1st order HMMs to “fully connected” HMMs. The shaded

nodes represent the observation nodes, i.e., the vectors of acoustic param-

eters, while the clear nodes are the hidden nodes, i.e., nodes defined by the

value of the basic speech unit (e.g., phoneme, triphone, syllable, etc...) plus

linguistic properties of that value. The top figure depicts a standard HMM

where the probability of an acoustic vector at time t only depends on the

hidden state occurring at time t. On the bottom a “fully connected” HMM is

shown, where the probability of an acoustic vector at time t not only depends

on the hidden state at time t, but also on the previous k hidden states and

on the previous k observation states.
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The following is the list of all example of contrast used to train and test the fully

automatic contrast tagger of chapter 5 (section 5.3). The capitalized words are the

contrastive words.

1) there ’s, , things that invade that second type of privacy where you do KNOW

about them and possibly things that invade that second type of privacy without you

KNOWING about it,

2) I finally just got to where I go, okay, I ’m Debbie Moore, may I ask who YOU

are and what you are in my classroom for,

3) anything that Tom Landry WANTED or had, he was going to CHANGE it.

4) every time we ’d get a real GOOD player they ’d treat him BAD.

5) they had to kick. to know whether we were going to WIN the game or LOSE a

game because they got one point ahead of us.

6) There ’s no question about it, because EVERYBODY was playing good together

except the QUARTERBACKS.

7) The one that was in for the SEVENTEEN years, actually served SEVEN,

8) the REASONS that they ’re doing it compared to the REASON someone else is

in jail for it, it ’s like two different things.

9) you take Asian countries, or, the Eastern countries where WOMEN are in the

background and the MEN are in the foreground,

10) you take Asian countries, or, the Eastern countries where women are in the

BACKGROUND and the men are in the FOREGROUND,

11) it ’s like, THEY live back in where WE came from two hundred years ago.

12) I ’m not saying that they ’re all good either, because there ’s GOOD and BAD

in everything,

13) he TRADED the other one in and GOT this one,

14) you see WOMEN going off to wars as well as MEN.

161
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15) after that, if you asked me that I would n’t have been able to tell you if that was

FOOTBALL or BASEBALL.

16) when it HAPPENED he MISSED it, and did n’t understand it

17) he was sort of in between STRASBOURG, and PARIS.

18) I could go along with that, if I could be assured that it would be their natural

life in JAIL and not PAROLE after ten, or twelve years.

19) the difficulty would be in whether it ’s VOLUNTARY or INVOLUNTARY.

20) there has to be some sort of punishment. Short of physically ISOLATING the

child, and short of physically HITTING the child.

21) they ’d much rather go in the store and BUY something than be SPANKED.

22) they ’re definitely going to WORK towards being good, rather than trying to

ACT up and be bad,

23) they ’re definitely going to work towards being GOOD, rather than trying to

act up and be BAD,

24) over in the Mid East, especially Israel, it ’s just like ISRAELIS have a totali-

tarian system, when it comes to the PALESTINIANS.

25) HE knew what was going to happen, more than any of US.

26) I guess we ’ll have to see another generation to see what differences a child

being brought up, in kind of a, COMMUNITY, rather than a HOME.

27) I guess I see that as not so much a DEMAND but a PRIVILEGE.

28) I guess, I do n’t see, this being that DIFFERENT. But even more BENEFICIAL

because it would be something that everybody participated in, and would take a turn

in.

29) that ’s why THEY ’re there and not ME.

30) those who DO n’t vote WOULD have voted exactly the same way, in other

words if forty percent had voted for that person and sixty percent for the other, just like

everyone who did vote, it ’s not clear to me that it is really a problem,

31) those who do n’t vote would have voted exactly the same way, in other words

if FORTY percent had voted for that person and SIXTY percent for the other, just like

everyone who did vote, it ’s not clear to me that it is really a problem,

32) Anyone who does n’t vote, it ’s fine with me as long as I can have THEIR vote.

33) I sort of feel that way. especially when, they do n’t vote for someone because

they do n’t like any of them and then the person gets in and they do n’t like him and HE

turns out to have been worse than HER that they might have voted for, or something

like that.
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34) I think it was Hamilton who wrote number ten or something, where he was

arguing for a REPUBLICAN, not in the sense of the Republican party now, versus a

DEMOCRATIC, government and, arguing successfully, why, the United States should

be a republic, not a democracy. Which indeed it really is, a republic, not a democracy.

35) I think it was Hamilton who wrote number ten or something, where he was

arguing for a republican, not in the sense of the Republican party now, versus a demo-

cratic, government and, arguing successfully, why, the United States should be a RE-

PUBLIC, not a DEMOCRACY. Which indeed it really is, a republic, not a democracy.

36) I think it was Hamilton who wrote number ten or something, where he was

arguing for a republican, not in the sense of the Republican party now, versus a demo-

cratic, government and, arguing successfully, why, the United States should be a repub-

lic, not a democracy. Which indeed it really is, a REPUBLIC, not a DEMOCRACY.

37) Where he defines DEMOCRACY as everyone votes for the issues and REPUB-

LIC is people who vote for someone who then in turn votes for the issues.

38) Where he defines democracy as everyone votes for the ISSUES and republic is

people who vote for SOMEONE who then in turn votes for the issues.

39) if there ’s some MINORITY that people do n’t like because of, racial hatred or

something like that, the MAJORITY can just simply vote against them.

40) I think they ’re looking after their own self PRESERVATION more than they

’re actually looking after the GOOD of the country.

41) I understand the void that, comes naturally with both RADIO presentations and

TELEVISION presentations

42) on Friday most everybody wears jeans and SWEATSHIRTS, or, jeans and

BLOUSES or something like that.

43) he did n’t carry any ties or anything because he just went over there with that

attitude, if I do n’t TAKE it then they wo n’t make me WEAR it.

44) I ’m convinced that, Detroit or whoever it is made a major mistake, years ago

when they stopped putting the small V EIGHTS in and went to the FOURS and some

of the sixes.

45) I ’m convinced that, Detroit or whoever it is made a major mistake, years ago

when they stopped putting the small V EIGHTS in and went to the fours and some of

the SIXES.

46) looking BACK, maybe some of the things that I know NOW, I ’m not sure I do

believe it was worth the cost in dollars and lives.

47) I feel like maybe they felt like we were doing the right thing to try and help
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maintain the DEMOCRACY over there and beat the COMMUNISM,

48) nobody says because you ’re supporting the TROOPS that you ’re supporting

the WAR.

49) if you do n’t WANT the kids, then it ’s not the time to HAVE,

50) I think it would be neat if they could incorporate into small and large busi-

nesses both a built in day cares where the children were THERE in the facility but not

necessarily RIGHT there with you.

51) I favor DOGS over CATS actually

52) if you get them YOUNG and everything before they go, kind of NUTS,

53) like you said, save the COMMENTARIES because I ’m going to listen to the

NEWS and draw my own opinions.

54) the ground will filter SOME of it but not ALL of it.

55) for what ’s cut down HERE, more will be cut down someplace ELSE

56) they do because, what is it, carbon dioxide, THEY use that where WE ca n’t

synthesize it

57) they do because, what is it, carbon dioxide, they USE that where we ca n’t

SYNTHESIZE it

58) we could talk a bit about, just quality of products in general, if they ’re BETTER

or WORSE like if they last longer or something like that.

59) the problem is that you CA n’t put the type of card that we need to put in it, in

it. even though they told us in advance that you COULD,

60) WE do n’t want YOU to go through the work and then find out that this does

n’t really work anyway, and et cetera,

61) second thing, we still CA n’t put the boards in, because they have other things

blocking where we need to DO it.

62) I just tell the credit card company, do n’t PAY the charge, even though they ’ve

already PAID it.

63) they ’ll just, UNDO the credit that they DID to them.

64) THEY will put the kind of clout on them that YOU ca n’t really do.

65) pretty much spent most of my time either in the YARD or at NURSERIES

buying stuff for the yard.

66) cars I think are not MADE, as well as they COULD be.

67) WE do n’t really care about YOU, as an individual.

68) I do n’t DO it as much as I SHOULD.

69) I ’m not DOING it as much as I NEED to,
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70) I think another thing is that my friend that was TAKING with me the first two

months WAS n’t the second two months.

71) I think another thing is that my friend that was taking with me the FIRST two

months was n’t the SECOND two months.

72) I just do n’t TAKE as much advantage of it as I SHOULD.

73) I guess, they tried what ’d call it, SOFT conversion and HARD conversion

74) I think they just go all the way on new products introduced or whatever, start

your packaging, go to LITERS instead of QUARTS,

75) the differences between SEVENTY and SEVENTY-TWO or seventy-five de-

grees is n’t much,

76) the differences between SEVENTY and seventy-two or SEVENTY-FIVE de-

grees is n’t much,

77) the difference THIRTY and THIRTY-FIVE degrees is, quite a bit.

78) It was made to placate some of the NORTHERN support but not completely

alienate all the SOUTHERN support because, if you read it, it only emancipated those

who were in areas, in rebellion against the United States.

79) until we HAVE to learn to think that way, we WO n’t.

80) we have to separate our PAPERS, and our GLASS,

81) I noticed at the library or someplace this past, month, month and a half ago,

they were having a speaker, talk about doing lawn work and, how important it is to cut

your lawn without a bag. Just to kind of MULCH it, rather than BAG it up, because

of all the grass that ’s being bagged and being hauled away by the garbage trucks and

stuff,

82) they do n’t EXPAND or CONTRACT when the weather changes,

83) when I READ it, I should have REALIZED that because, it had Foster ’s style

written all over it.

84) sometimes the more you GET the more you WANT too,

85) it takes me almost the same amount of time to go to Frederick, as it does to go

to the ballpark in, BALTIMORE. Because, to go out to FREDERICK, I just jump on

the Interstate

86) put them to WORK rather than SITTING there.

87) that again would CUT some of our budget down for education but BUILD up

our education with the people. at high school level, which I would like to see. Rather

than so many kids getting out of school.

88) the MONEY being spent and the GOODS flow in and we do n’t, sell products
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abroad as much as we bring in.

89) the money being SPENT and the goods FLOW in and we do n’t, sell products

abroad as much as we bring in.

90) I got about a HUNDRED pages through it and realized I had a THOUSAND

more,

91) one of the news stations. they had on there, where the output from the United

States was basically from SMALLER businesses rather than the LARGER ones are

exporting.

92) they were n’t supposed to PROCESS it until they DELIVERED it.

93) they ’re CONVICTING them faster than they ’re EXECUTING them

94) of course, they ’re playing it up real BIG that it looked like it was a very, very

SMALL ring

95) we are there by going to remove them from society, not TEMPORARILY, but

PERMANENTLY.

96) also, the thing I do n’t like about a lot of these court trials and a lot of these

appeals is that it ’s not based on what is TRUE and what is FALSE

97) rather it ’s on the rules of evidence, what can I HIDE and what do I have to

TELL.

98) when the guy came out with the bag they thought was MONEY, it turned out

to be a couple jumbo COOKIES

99) they ’ve, decide the PENALTY separately from the VERDICT.

100) these are the kind of people I would like to get out of here and get out of

circulation and say we do n’t accept YOUR kind in OUR society.

101) if the parents are n’t SUPPLYING it, they ’ve got to GET it from someone

else from the schools,

102) I felt probably worse for THEM than for ME

103) gosh this fellow ’s wife who was, watching the dog, I think SHE loved that

dog more than I did

104) this dog, Dennis jumped in and got this look on his face like what do I do now,

as he ’s FLOATING down the river then finally discovered that he could SWIM and,

actually paddled up against the current and, made it back to the shore and climbed up

105) every time I WANTED one I have to go outside and just TAKE one. One at a

time.

106) then YOU must know a lot more about this than I do.



Appendix A. 167

107) the problem is I ca n’t guarantee that a JUDGE would necessarily be much

better than a JURY,

108) they pay those JURY members very little money compared to that JUDGE.

109) I PAY a good deal of taxes I guess, because I MAKE a fair amount of money,

110) I pay a good deal of TAXES I guess, because I make a fair amount of MONEY,

111) now, even the money that been RAISED for the local districts is going to be

SIPHONED off and sent to other parts of the state.

112) They went from ELEVEN to FIFTEEN hundred,

113) the parents might have hostilities towards them, Like YOU ’re judging US,

114) I grew up about the same time YOU did,

115) Do youself have children who ARE or have BEEN through the public school

system ?

116) I would use the money that we ’ve paying them to, provide some special help

in training and particularly, mentor teachers to work with the beginning teachers and

the teachers who may have been at it a long time but have been making the SAME

mistakes for a LONG time.

117) more you see these commercials that have Jimmy walking into class late and

it happens that the TEACHER is an instructor who is in New York while JIMMY ’s in

Rome.

118) more you see these commercials that have Jimmy walking into class late and

it happens that the teacher is an instructor who is in New YORK while Jimmy ’s in

ROME.

119) there ’s a difference too, between EAST and WEST, in the south. the way in

which people speak.

120) Where you ’ve got to LEAVE the furniture just one certain way, you ca n’t

REARRANGE it at all.

121) it runs about ten minutes FAST, except for about a month the clock ran NOR-

MAL.

122) we completely stripped all the old WOOD shingles off, put DECKING up,

put the paper down, and just started from scratch.

123) crimes against PROPERTY seem to outnumber crimes against LIFE,

124) Do you live in a real small TOWN or out in the COUNTRY ?

125) the other side of that might be if someone FOUND out something or SUR-

MISED something that were n’t true then I would feel probably more invaded in the

gossipy sort of sense.
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126) I really agree with the, INNOCENT until proved GUILTY theory.

127) I think what they need to do is STOP building more jails and START giving

stiffer sentences,

128) I think what they need to do is stop building more JAILS and start giving

stiffer SENTENCES,

129) you ca n’t expect in a CLASSROOM for a particular course an hour a day to

counteract, sixteen or seventeen years of influence at HOME.

130) I remember I had a college professor who once said that genius is one percent

INSPIRATION, and ninety-nine percent PERSPIRATION.

131) We usually watch the LOCAL news and the, NATIONAL news both.

132) there ’s a big difference between BALTIMORE and WASHINGTON, even

though they ’re so close.

133) WASHINGTON, it really is an international city, where BALTIMORE is

hometown Baltimore.

134) I ’m more accustomed to a ONE acre lot being a standard and the TWO acre

being what most people have.

135) it seemed like the FURTHER I got away from Dallas, center, the more lot

came with the house and the LOWER the price, at the same time.

136) you know what they ’ve started doing is instead of the tail pipes being at the

BOTTOM of those buses they ’ve started putting them up at the TOP,

137) I have probably had more time than YOU have to think about this subject,

138) during that week you ’re kind of an ad hoc, group of, I do n’t know, TWENTY-

FIVE instead of TWELVE

139) the public would rather hear something NEGATIVE about the other guy than

a POSITIVE factor.

140) I feel like,, if we did that people would have a lot higher confidence that their

VOTE was counting rather than their CONTRIBUTIONS would count.

141) I think, you still have a view that the AMERICAN voter is different from

OTHER voters.

142) I think that the JUDGES should be left to do most of the sentencing, simply

because, there is always a JURY that might be swayed, by the moment, either to be too

lenient or too vengeful, I guess.

143) my impression of it is that it has DOUBLED in the last ten years and TRIPLED

in the last twenty.

144) I have got some in the BACKYARD that bloomed blue. Which I would have
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liked those in the FRONT because they match my porch and stuff better. And then

some on the side of the house with the dusty purple color. With little purple spots that

it will fade into a solid purple.

145) I have got some in the BACKYARD that bloomed blue. Which I would have

liked those in the front because they match my PORCH and stuff better. And then

some on the side of the house with the dusty purple color. With little purple spots that

it will fade into a solid purple.

146) I just threw them on the side, intending to TRANSPLANT them or throw

them away or something. And FORGOT about them through the whole Winter.

147) I think sometimes it is just, HE and I are very different in terms of that.

148) most people talk about the NOISE pollution from airplanes rather than the

AIR pollution.

149) I was reading the other day not to go on with this but that, DIESEL fumes

actually have less pollutants in them than GASOLINE fumes.

150) if you want to, your LAWYER or your OPPONENT need to go face this group

of twenty-five or a judge like they have on T V

151) I guess you ’re better off sitting behind a BUS than a CAR although I could

never, really rationalize that while I was sitting there.

152) we just feel that when we leave, this area, we ’re going NORTH, not SOUTH.

153) I did a Sunday school lesson one time on the difference between the OLD

Testament and the NEW Testament where there ’s a vengeful Lord in the Old Testament

and there ’s a loving Lord in the New Testament.

154) I did a Sunday school lesson one time on the difference between the Old Testa-

ment and the New Testament where there ’s a VENGEFUL Lord in the Old Testament

and there ’s a LOVING Lord in the New Testament.

155) I did a Sunday school lesson one time on the difference between the Old Tes-

tament and the New Testament where there ’s a vengeful Lord in the OLD Testament

and there ’s a loving Lord in the NEW Testament.

156) is it doing a GOOD job or a BAD job

157) even a BAD school is a GOOD school up here, where, if I lived in New York

City or Washington, D C, I would seriously consider moving if I had a child.

158) having been through grade school up THERE and coming down HERE to

high school I can understand why.

159) even the PUBLIC schools are behind the PAROCHIAL schools.

160) there ’s too many KIDS and not enough TEACHERS
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161) if the teachers are getting six percent raises every YEAR when people in in-

dustry have been getting cut back, and you ’re getting raises every eighteen MONTHS

you got to go now, hey, wait a minute,

162) I would feel not only invaded in the sense that someone had OBTAINED

information that I would rather they DID n’t

163) Course on merchandise that I was buying on CARDS, I was getting the

MONEY back,

164) BACK when I was going to school you just did n’t get away with the things

these kids get away with NOW.

165) I always tried to UNDERSTAND things, not tried to MEMORIZE.

166) they ’re throwing more money at it NOW than ever BEFORE

167) the other part of it is PARENTS have quit becoming PARENTS.

168) they try to ENCOURAGE you to follow a specific curriculum, although you

do n’t HAVE to.

169) YOU take this subject much more personally than I do, I suppose.

170) for example if you ’d been a TECHNICIAN instead of an ENGINEER.

171) if it ’s not MOM then DAD or somebody got to move in there and do the job,

because the kids really need it.

172) if it ’s not MOM then dad or SOMEBODY got to move in there and do the

job, because the kids really need it.

173) if I had been allowed to work, maybe THIRTY hours a week instead of FIFTY

hours a week, I might still be working basically full time or part time, if there had been

some way to work it out,

174) people walk IN OUT

175) as far as housework goes, MEN can do housework just as easily as WOMEN,

176) the boys in this next generation are not going to have to be told as much this

needs to be done, because MOM was there saying that DAD is there,

177) They ’re going to say to the kids you need do this, because it needs to be done

not because it ’s a woman ’s job or a man ’s job, but because it ’s DIRTY and it needs

to be CLEAN.

178) I felt like when they were young, that was the time to instill it. That it could

be added to and strengthened as they grew OLDER, but when they were LITTLE,

179) if you teach them when they ’re LITTLE the way you want them to be, and

the things that are important to you, then you add onto it as they get OLDER.
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180) it could be a flame stitch where rather than DRAWING a picture you ’re

MAKING a design like a geometric or whatever,

181) I STARTED a project, that I swore I was going to FINISH for somebody for

Christmas.

182) That ’s pretty interesting just because you KNOW a subject matter does n’t

mean you can TEACH it.

183) they ’ve quoted statistics that my THROAT just about fell into my TOES.

184) if they ca n’t, if they have missed that training, then somebody, before you

’re start PENALIZING them with bad grades for not being able to communicate what

they ’re thinking, TEACH them these basic skills.

185) as a WESTERNER in INDIA, I was often surprised, and felt my sense of

privacy there was quite invaded.

186) seeing what drugs DID to him makes me realize what it COULD do to people,

in the work force as well.

187) YOU do a lot more area than I do.

188) I DID something a little bit different this year that I have n’t DONE before,

189) I think it would probably depend on whether this was a FORMAL or a IN-

FORMAL dinner party.

190) also to get totally off the subject of CRAWFISH lots of VEGETABLES and

hors d’oeuvres and stuff like that for a dinner party I think that that really helps

191) also to get totally off the subject of CRAWFISH lots of vegetables and HORS

d’oeuvres and stuff like that for a dinner party I think that that really helps

192) before I had my second child we sort of had a contest going where HE would

cook and then the next time it would be MY turn and I ’d try to outdo him and then he

’d try to outdo me

193) before I had my second child we sort of had a contest going where he would

cook and then the next time it would be my turn and I ’d try to outdo him and then HE

’d try to outdo me

194) before I had my second child we sort of had a contest going where he would

cook and then the next time it would be my turn and I ’d try to outdo HIM and then he

’d try to outdo ME

195) we threatened to make the other two make us dinner one time Just to even it

out since WE seemed to be unfairly doing all the cooking THEY were doing all the

enjoying

196) we threatened to make the other two make us dinner one time Just to even it
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out since we seemed to be unfairly doing all the COOKING they were doing all the

ENJOYING

197) A SHOTGUN hurts worse than a PISTOL does.

198) I think you could recover from a PISTOL but not from a SHOTGUN.

199) We traded his PISTOL for that SHOTGUN.

200) they start asking questions and in the sense are INVADING your privacy

although, if you know what the social norms are, quote unquote, you ASKED for

it.

201) I ’ve never really joined a club because I have n’t got the TIME. Not because

I have n’t got the DESIRE.

202) Do you believe there ought to be legislation guiding the, BUYER and the

SELLER ?

203) the PERSON who sells the gun ought to protect themselves because if that

gun ’s registered to them and SOMEBODY else uses that gun in something, the cops

are going to come to you.

204) is n’t there a way to DEREGISTER yourself after you REGISTER a gun ?

205) I kind of worry about getting a car that ’s that new with low mileage on it

because you wonder why did the person that OWNED it want to get RID of it.

206) she ’s going to SELL it rather than TRADE it in.

207) after WASTING the first six years, partying and everything else, I decided,

uh-huh, time to settle down and DO something.

208) Course my job was such that I could n’t DO it as much as I WANTED

209) you think about the layer of bureaucracy between the MONEY and the RE-

CIPIENT,

210) they ’ll help the country eventually, too, because rather than having a bunch

of UNEDUCATED people we can have EDUCATED people,

211) they use ELECTRONIC and ACOUSTIC interchangeably,

212) PARENTS are n’t PARENTS.

213) So many times, you had the COAL miners and STEEL workers going out at

the same time.

214) So many times, you had the coal MINERS and steel WORKERS going out at

the same time.

215) when I was in JUNIOR high and HIGH school that never happened.

216) the woman who OWNED it SOLD it.

217) THEIR attitude and philosophy was just completely, opposite from MINE,
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218) in fact I ’m doing that right now with their afternoons, when THEY get home

before I do.

219) HE has enough relatives to make up for ME not having any.

220) HE had to kind of get used to US when we first started going together.

221) it has everybody that you COULD ever imagine, and some you COULD n’t.

222) maybe those are not the clothes that are the most, APPEALING to you, or the

most, COMPLIMENTARY to you.

223) someone else is telling me, okay, let ’s move THIS way, let ’s move THAT

way, instead of me having to think about it so much.

224) I think, of course, now I go the other extreme, I do not like to see, in the

corporate areas, all the WOMEN dressed like MEN, with the suits and, white shirts

and ties and what have you so that they all look exactly the same.

225) you could hardly tell the WOMEN from the MEN except for the lengths of

the pants. one was a skirt and one was a pant.

226) gosh, we ’RE keeping these men in prison for fifteen or twenty years on death

row, and not DOING anything with them,

227) like I say, I do n’t think the guy who ’s going to rob a Seven Eleven, is going

to rob a Seven Eleven whether he has a GUN or a KNIFE, baseball bat, or, whatever,

228) there are a lot of kids who when they ’re TEN look like they ’re TWELVE, or

fourteen and, especially some of the minority children. Whether, a racist or not,

229) there are a lot of kids who when they ’re TEN look like they ’re twelve, or

FOURTEEN and, especially some of the minority children. Whether, a racist or not,

230) if some of them are DOING something that they SHOULD n’t be and then

they have one of those toy guns in their hands

231) They can play with ANYTHING and make it a GUN.

232) they ’d have that respect for what it DOES, and what it CAN do.

233) boy if someone did break in, I do n’t know that I COULD or WOULD even

grab it.

234) It was like, YOU come after ME, you ’re going to get it.

235) one of the things that ’s in their culture that I really think the major corpora-

tions should pay attention to, is the fact that, while Japan was becoming a great power,

financially, the people that worked for those companies, worked for the same company

they worked for at SIXTY-FIVE, as they did when they were EIGHTEEN.

236) I should probably go back and read the book NOW that I just saw the movie

again not too long AGO.
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237) I was afraid that RAMBO was going to do the same thing that ROCKY was

going to do, Go into fourteen hundred episodes.

238) I ca n’t seem to communicate with a CAT like I can with my DOG.

239) I think, in a way we ’re able to read each other pretty well because, SHE

knows when I ’m upset and I know when she ’s not feeling good too.

240) I think, in a way we ’re able to read each other pretty well because, she knows

when I ’m upset and I know when SHE ’s not feeling good too.

241) Now some people object during primaries, having to declare a party, whether

REPUBLICAN or DEMOCRAT

242) If they really wanted to vote Republican, they could go in the primary and say

they were voting DEMOCRAT and then stack the ballot for someone that perhaps the

REPUBLICAN could beat.

243) I do think more needs to be done along that line to help to, teach the everyone,

more about what is going on with VOTING and with NONVOTING. So that, they ’re

making some more intelligent decisions.

244) I do n’t know how it would be bringing in, CAT to a full grown DOG.

245) I would n’t want to bring a CAT into a full grown DOG,

246) FIRING Tom Landry and HIRING Jimmy Johnson
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